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ABSTRACT

This thesis documents the development and application of a computer model
for gibbsite, an aluminium tri-hydroxide polymorph. In particular, the work
has emphasized the idea of computer modelling technigues combining with ex-
perimental observations to provide greater insight than either could separately.
Chapter One provides an overview and introduction to the fields of solid state
chemistry, crystallization and computer modelling. These ideas are extended in
Chapter Two to include a more detailed discussion of the theoretical principles
behind the modelling in this project. The development of transferable oxalate and
hydroxide potential models, intended primarily for sodium oxalate and gibbsite,
is described in Chapter Three. Both ab initio hypersurface fitting and lattice fit-
ting techniques were utilized, with an average structural fitting error of under two
percent. In addition, the potentials were used to successfully reproduce several
(related) crystal structures, thus establishing the quality of the model. In Chapter
Four, the model for gibbsite was employed in generating equilibrium and growth
morphologies. The equilibrium merphology was found to give excellent agreement
with experiment, with all observed faces present. However, the importance of the
prismatic planes is underestimated. Also discussed in the chapter is a method
for predicting the phenomenon of crystalline twinning. This technique was suc-
cessfully applied to a number of systems, including gibbsite and sodium oxalate.
In Chapter Five, the equilibrium morphology calculations performed earlier were
extended by probing the effects of cation incorporation on the habit of gibbsite.
This study was conducted in order to provide a first step in estimating the role
of the crystallizing solution. Calculations of the change in surface energy caused
by the replacement of a surface proton with a cation from solution were made.
Different crystal habits were constructed by applying a range of defect surface
coverage values to each of the faces appearing in the morphology. The resulting
defect morphologies were in excellent agreement with crystal habits commonly

observed by experimentalists. Also, the work provided an explanation for the



earlier underestimation of the prismatic faces. Chapter Six documents molecu-
lar simulations of solutions containing the major species known to be present in
industrial and experimental Bayer liquors. The structuring in two solutions, one
containing sodium hydroxide and the other potassium hydroxide, was probed by
constructing graphs of the radial distribution functions. These plots indicated
that a significant degree of ion pairing was occurring between the alkali metal
cations (Nat and K+) and the aluminate monomer ([AI{{OH)4]~). Furthermore,
these cations were found to be acting as ’'bridges’ which stabilize multiple alumi-
nate monomers, allowing them to form clusters. This data was used to assist in
explaining vibrational spectra, and to postulate that clustering may be the origin

of the fine particle suspensions noted during the induction period.
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Chapter 1
Introduction

Crystalline materials have found countless application in today’s society. Interest
in crystals can be found in a wide range of fields such as medicine, industrial
refining and the development of semiconductor and optical devices. The distin-
guishing property of these solids is the well defined patterns in which the con-
stituent atoms and molecules are arrayed [1]. As observed by Kepler in 1611 and
Hooke in 1665, it is this high degree of internal ordering that is responsible for
the regular crystalline polyhedra that are observed in Nature [2][3]. These early
speculators also showed that the shapes of observed crystals could be obtained by
packing together spheres of identical radii. Further development on this theme
was made by Haiiy (1782) who explained the occurrence of various crystal faces
by packing together parallelepipeds; which closely resemble the lattice or unit
cells in current usage [4]. In 1912 Laue suggested that if crystals were as regular
as supposed, then X-rays ought to diffract from them [5]. He then developed
an atomic diffraction theory, which was experimentally verified by Friedrich and
Knipping [6]. This important finding quickly led to the first crystal structure
determination (of NaCl) which was performed by W.H. and W.L. Bragg in 1913
[7].

Today, interest in crystals falls broadly into one of three different categories.
Firstly, work focused on the characteristics and properties of the crystalline ma-
terial generally falls within the scope of the material sciences. Secondly, the
determination and classification of the internal structure of a crystal may be des-
ignated as crystallography. Finally, the production of the crystalline material
and how its external properties, such as size and shape, may be affected under
different applied conditions may be labelled as crystal growth or, more broadly,
crystallization. In practice, these fields often overlap. For example, interest in

crystalline properties is often directed towards the manufacture of crystals that
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Figure 1.1: The two possibilities for pattern repetition (motif enclosed in solid
box) in one dimensional space.

conform to certain standards (e.g. purity, size, shape). Conversely, in the field
of crystal production, a knowledge of the ordered properties of the crystal is re-
quired to understand and model the mechanisms of growth. The latter area is

the primary focus of this work.

1.1 Crystal Science

1.1.1 Crystallography

In general, crystallography is concerned with how a motif is repeated throughout
space. For the case of a purely linear motif, there are two unique ways to fill
one dimensional space (Figure 1.1). The first method involves the use of simple
translations, while the second method employs a reflection operation. Since the
uppermost pattern in Figure 1.1 has been produced using translation only, the
motif enclosed in the solid rectangle is also called a (one dimensional) unit cell.
However, the unit cell for the lower pattern needs to be twice as large to include
the original motif (solid rectangle} and also one reflection (dashed area). This
combination is necessary so that the application of only translation operations
to the unit cell will fill all one dimensional space. Since the latter unit cell is
comprised of two motifs that are symmetry related, it is possible to characterize
a unit cell with details of the unique motif, plus any internal symmetry operations
required to create a full unit cell. A cell that has been symmetry reduced in this
fashion is known as the asymmetric unit.

Proceeding to two and three dimensional patterns, it can be shown that there
15 a maximum of 17 and 230 unique ways to fill their respective spaces [8]. The
derivation of the 230 possible three dimensional patterns was independently con-
ducted by Fedorov, Barlow and Schoenflies in the late nineteenth century. Schoen-
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flies, who employed group theory, is responsible for usage of the term ’space group’
to describe these patterns [4]. However, due to the complexity of the three di-
mensional case, it is often convenient to create an analogy between the three
dimensional ordering in crystals and the patterns that may be drawn on a flat
sheet of paper, via the projection from a higher dimension approach [9]. Two
dimensional patterns or tilings are useful, as they are often easier to visualize
(and much easier to draw) than their three dimensional counterparts.

One of the basic rules of crystallography requires that translational repetition
of a crystal’s unit cell must fill all space. This may be regarded as a stability
issue, as repeated gaps in unit cell packing are inherently unstable and unlikely
to appeatr in Nature. This does not mean that there are no holes in the matter
that comprises a crystal, only that copies of the unit cell are required to pack
perfectly together in a regular fashion. An apparent exception to this rule was
the discovery of quasi-crystalline material by Shechtman et al. [10] which ex-
hibited icosahedral symmetry, yet gave the characteristic sharp diffraction peaks
of a crystal. This symmetry is forbidden in true crystals as it is impossible to
completely tile a flat surface with non-interleaving pentagons. Initially, there was
a considerable degree of debate over the explanation of this phenomenon. Some
researchers suggested that quasi-crystals possessed multiple unit cells that are
semi-disordered at short range, but ordered at longer range. This is is usually
represented in the form of Penrose tiling [6][11]. In contrast, confusion arose when
certain crystals, apparently exhibiting this forbidden symmetry, were explained
in terms of crystalline twinning [12][13]. However, this is a microcrystalline state,
and is distinguishable from the true quasi-crystalline material [14].

It is conventional to use a unit cell that has straight edges and flat terminating
surfaces. This does not remove any generality, and simplifies matters enormously.
With this in mind, a set of constraints to which a unit cell must conform may
readily be postulated. Consider an infinite block of homogeneous matter which is
to be divided into identical finite units that can be packed together ad infinitum
to reproduce the original block of matter. If a series of parallel cuts is applied, all
of which are separated by a distance a (cutl), we obtain slices of material that
are infinite in two dimensions. If a different series of equally spaced (separation
b) parallel cuts are applied (cut 2), which are not parallel to the first, then fingers
of material are created that are infinite in one dimension. Finally, if a third series
of parallel cuts (cut 3) are applied, each separated by ¢ and not parallel to cut 1
or cut 2, the goal of finite elements that reproduce the whole has been achieved
(Figure 1.2). These unit cells are parallelepipeds with unique side lengths of (a,
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Figure 1.2: Decomposition of a block of homogeneous matter using parallel planar
cuts.

b, c) and angles given by («, 3, ) as shown in Figure 1.3. For a block of matter,
built from such units, the points at which the vertices of adjacent blocks touch are
known as lattice points. A system that possesses only one such lattice point per
building block is termed a primitive lattice. In the illustration, the lattice points
are not unique and could, for example, be placed at the center of each fundamental
building block. In addition, taking only representative combinations of (a, b, c)
and (a, 3, ), there are a total of seven unique crystal classes. While each class
contains a single primitive or P-type lattice [15], some possess additional (non-
primitive) lattice types as shown in Table 1.1. The letters used to indicate the
type of non-primitive lattice are: I = body centered, F = face centered and C =
single face centered. Note that the latter centering type implies that the ¢ axis
is not in the plane of the centered face. Thus, A and B centering are alternate
possible notations that also appear in the literature.

In the previous discussion of lattices, it has been assumed that matter is
homogeneous, and lacking in any internal order. This is of course unrealistic, as
crystals have atoms and molecules located at or around the lattice points. In
the simplest possible case, a crystal may have lattice points with only a single
atom located at each, such as in metallic lattices. This internal order has some
consequences on the choice of a, b and ¢. By convention, the smallest possible
lengths for the three axes are chosen. However, many materials have multiple
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Figure 1.3: Unit cell with side lengths a, b and ¢ and angles a, 3, ~.

[ Crystal class Lattice types (centering) Unit cell restrictions
Triclinic Triclinic parallelepiped (P) atb#fec
a#B#y
Monoclinic Monoclinic parallelepiped (P) a#b#c
Clinorhombic prism (C) a=v=90°#£3
Orthorombic Rectangular prism (P) a#*b#c
Face-centered rectangular prism (F) a=0Ff=vy=90°

Rhombic prism (C)
Body centered prism (1)

Tetragonal Square prism (P) a=b#c
Body centered square prism (I) a=f=v=90°

Cubic Cubic (P) a=b=c
Body centered cubic (T) o=g=~v=90°

Face centered cubic (F)
Trigonal Rhombohedron (P) a=b=c
a=p8=n90°, < 120°
Hexagonal Hexagonal prism (P) a=b#c

a=j3=090° v=120°

Table 1.1: The 14 Bravais lattices types. For unit cell lengths, the usage of #
means only that equality is not required by symmetry.
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arrangements of atoms present, which may or may not possess some additional
symmetry. Classification is achieved by sorting this internal symmetry into one
of 32 possible point groups. The name point group derives from fact that they
produce all space (i.e. all possible packing arrangements) about a lattice point,
leaving the point unmoved [16]. Point groups are comprised of a set of symmetry
operations that may include the following (or any combination thereof): rotations,
reflections and inversions. When applied to lattices, translational operations must
also be considered. Thus, combinations of these operators, such as a translation
and reflection (glide plane) and a translation and rotation (screw axis) also occur.
Combining the 14 lattices (arrangements of lattice points) with the 32 point
groups {arrangement about a lattice point) we obtain 230 unique possibilities, or
space groups, to which any crystal may be designated.

Morphology

In Nature, crystals are obviously not infinite, but are terminated by surfaces. The
shape of single crystals may be broadly classified according to the dimension of
their surfaces. Those crystals with a surface dimension of two are polyhedra, being
terminated by macroscopically flat surfaces. Such surfaces are usually classified
using integer multiples (A, %,!) of the inverses of their intercepts on the three
crystallographic axes. These are the Miller indices, which describe a family of
parallel planes as shown in Figure 1.4. These planes are equally spaced, with
the separation denoted as dpy. Crystals with a non-integer surface dimension are
termed dendrites [17], which include bifurcated structures such as snow flakes.
These forms are also known as fractals.

Morphology prediction is concerned with the shapes a given crystal may take,
and the factors influencing such phenomena. In this work, the focus is on predic-
tions for polyhedra only. Around the mid-1600’s it was observed that identical
substances sometimes formed crysials of differing size and shape. However, Steno
{18] observed that in these cases the angles between adjacent pairs of faces re-
mained the same. This led Haiiy to remark that crystal faces could be referenced
with rational indices [19]. However, the biggest advancement in morphology
prediction came when Bravais noted that the importance of a face was often
proportional to its interplanar spacing dpz. This enables the determination of
a crystal’s shape from information about its unit cell only. In practical terms,
this approach is based on the idea that faces with the largest interplanar spacing
grow the slowest, and thereby dominate the morphology. Later modifications of
this method were made by Freidel, Donnay and Harker [20][21](22] in order to
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Figure 1.4: The Miller indices (hkl) reference a family of planes via the inverse
intercepts of the crystallographic directions @, 7 and 2.

account for internal symmetry within the interplanar spacings. This method of
morphology prediction is known as the BFDH technique. While enjoying reason-
able success [23], this approach has a significant flaw in that it ignores the nature
of the atomic species that comprise the crystal.

The relative growth rates of crystal faces is at the heart of several morphology
methods, and can be probed in more realistic ways than a BFDH analysis. In 1955
Hartman and Perdok introduced the concept of a periodic bond chain (PBC), and
an alternative scheme for the morphological ranking of faces [24][25][26]. These
researchers defined a PBC as an uninterrupted network of growth units connected
by strong bonds. Faces that contained no such PBCs parallel to the orientation
of the face are termed K-faces. Faces with only one parallel PBC are termed
S faces. Finally, those faces parallel to two or more intersecting PBCs are the
F-faces. According to definition, there must be a finite number of PBCs for a
given crystal. This suggests that growth of the K faces will be most favoured
due to extension of the PBCs as growth units are incorporated onto the surface.
Thus, the order of morphological importance is rated as F > S > K, which is the
same as the ranking of numbers of PBCs parallel to the face.

More recently, Hartman and Bennema [27] found that a quantity called the
attachment energy could be employed to predict morphology. The attachment
energy, which may be readily calculated from computer simulations, is the energy
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released when a complete layer of growth units precipitates on a crystal face.
The shape constructed from the values of the attachment energy for the different
crystal faces is known as the growth morphology.

Equilibrium morphology predictions are based on the earlier idea of Gibbs,
who stated that a crystal of given volume will assume a habit that minimizes
its surface free energy [28]. The surface free energy is equal to the surface en-
ergy at 0K, and is frequently approximated by the surface energy in morphology
predictions. This is generally accepted to be the habit achieved by a crystal in

equilibrium with its surroundings.

Non-Ideal Crystals

In practice, crystals are rarely the perfectly ordered structures described above,
due to the presence of imperfections or defects. The driving force for the formation
of such defects is the gain in entropy when the order of a lattice is perturbed in
some way [1]. Thus, defect concentrations tend to increase as the temperature
is raised. Such defects are not always undesirable. For example, some defects
in metals can increase strength, as they act to block the motions of dislocations
{due to some applied force) through the bulk of the material. In other conditions,
such as the manufacture of crystals to some standard of purity, it is obviously
desirable to limit the presence of defects as much as possible.

The first general class of imperfection is the point defect {29]. This may occur
as either a vacancy in a lattice (Schottky defect), an interstitial impurity (Frenkel
defect) or an impurity substitution. An additional set of defects sometimes occurs
when the lattice is damaged at multiple points, either by heat or the bombard-
ment of X-rays, gamma rays, electrons or neutrons. These defects arise when
an electron becomes bound at an anionic vacancy, in order to compensate for
an imbalance in charge. This is one variety of the so-called colour centre defect,
which gains its name from the resulting change in crystal colour; for example,
diamonds can appear blue after electron bombardment.

The second class of defects is the line defects [1], which are also known as
dislocations. These defects occur when lattices translate or slip relative to each
other, and they appear as either an edge or a screw dislocation, or a combination
of both. The edge defect involves a lateral translation (unequal to the lattice
repeat vector) of planes of lattice points relative to one another, as shown in
Figure 1.5. This defect is also described in terms of an insertion of an extra
half plane of atoms above the slip plane of the dislocation. The other form of

dislocation, the screw defect, acts as a bridge between two adjacent layers as
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Figure 1.5: Edge dislocation in a laitice.

Figure 1.6: Screw dislocation.

illustrated in Figure 1.6. This defect essentially turns two distinct parallel planes
into a single plane using a spiral ramp.

The final class of defects are the planar defects. Here, crystals are subdivided
into sections or grains that possess different lattice orientations. The planar areas
of mismatch separating each region are called grain boundaries. In practice, the
structure of these boundaries may be quite complex. However, if the deviation
in orientation between adjacent grains is low, the boundaries can be described
relatively easily in terms of dislocations {1]. For example, stacking faults are
planar regions of mis-register, bounded on either side by partial dislocations of
opposite sign. Twin boundaries, may be regarded as a special case of this type of
defect, where the different lattice orientations of the constituent grains are related

by a symmetry operation. This form of defect is sometimes manifested in the form
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a) b)

Figure 1.7: a) A simple crystal twin, with a mirror plane relation, b) mimetic
twin containing six constituent crystals, and giving the appearance of hexagonal
symmetry.

of twinned crystals. These are two (or more) crystals of the same material that
are either intergrown or in contact vie a mutual facet. Characteristically, the
constituent crystals are related by a symmetry operation such as a mirror plane
or a rotation axis (Figure 1.7a). Multiply twinned crystals, such as the mimetic
twin, also occur. These are repeated twins that give the appearance of a higher
order symmetry than is actually present, as shown in Figure 1.7b. Polysynthetic
twinning, where regular twinning occurs at, or close to, the unit cell level can

lead to new crystal structures and superlattices.

1.1.2 Crystallization
Overview

There are many different forms of crystallization, such as vapour growth, melt
growth, solution growth and solid state recrystallization. However, all branches of
crystal growth are primarily concerned with the mechanisms by which dispersed
particles in a liquid or gas phase solidify into a highly ordered crystalline array.
The individual particles that condense to form the crystal are known as the growth
units. In some cases the growth units may be a full unit cell, or they may be
simply the smallest stoichiometric piece of the unit cell. However, the situation
can be more complicated than this, as there may be several ways solute particles
can be combined to form growth units. In addition, environmental parameters,
such as temperature, the local surface structure, and the nature of the growth
units might all affect a given system’s growth mechanism.

Under typical industrial conditions, where the rate of crystallization is usually
as high as possible, the term precipitation is often used instead of crystallization.

This distinguishes it from natural formation of crystals; which nearly always
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occurs on a much longer time scale. Industrial precipitation is a very old industry,
with evidence of chemically manufactured alum produced by the Egyptians in
1500 B.C. [30]. Tt is also a very diverse field, with a wide range of processes such
as those in industrial ore purification plants, drug manufacturing, and industrial
gemstone production. Crystallization is not limited to industrial concerns. In
nature, there are also a broad range of crystallization processes, such as the growth
of kidney stones, bones, and teeth which are of obvious medical importance.

Crystallization Driving Force

Although certain basic principles apply to all forms of erystal growth, this work
is concerned with growth from solution. This may be written as a dissolution-

reprecipitation equilibrium reaction.

Aaqueous = Aso!id

In order to bias the reaction a particular way, for example to favour precip-
itation, a net driving force is required. This may be represented by the ther-
modynamic driving force Ay [19), which is defined as the difference in chemical

potential between initial and final phases,

Hp = Hinitial ~— M final (1‘1)

where

=+ Hlna (1.2)

here a is the activity constant, defined as @ = yC with ~ the activity coeffi-
cient and € the solute concentration. However, for practical reasons the driving
force is commonly represented in terms of the supersaturation ratio; which is a
dimensionless quantity written as,

C
G 1.3
Ceguitibrium (13)
or,
S = exp(%) (1.4)
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Nucleation

The initial phase of crystallization, when the first microscopic crystalline ma-
terial (or nuclei) begin to appear is known as nucleation. There are two main
types of nucleation, known as primary and secondary nucleation. Any nucleation
that occurs without the aid of pre-formed crystalline material is called primary
nucleation. Primary nucleation can be either homogeneous (spontaneous forma-
tion of nuclei, dominant at high supersaturations) or heterogeneous {occurs when
suitably configured impurities act as templates for the formation of nuclei). Al-
ternatively, any nucleation that occurs due to the assistance of pre-crystallized
material is termed secondary nucleation.

Fundamental to an understanding of the process of primary nucleation is the
definition of a critical nucleus size [19]. This quantity may be understood to
be that size for which all smaller particles are unstable and tend to re-dissolve,
whilst all larger particles tend to be stable and able to grow. For the case of
homogeneous nucleation, working against the driving force is the difficulty faced
by solute particles in having to group together and become orientated into some
uniform lattice. This energetic barrier may be expressed as an accompanying
gain in surface and volume free energy of a solute nuclei (AG) possessing surface

area A and volume V, compared to the solute particles in solution. That is,

AG = Ay + V.AG, (1.5)

where v is the interfacial tension per unit surface area, and AG, is the free
energy change for the phase transition per unit volume. If the particle is assumed
to be a sphere of radius r, then there is some critical radius r..; for which AG is

minimum. Solving gives,

—2y

Terit = T (1-6)
v
and 1673
L
AG iy = SQGE (1.7

For the case of heterogeneous nucleation, the case is not so simple and greatly
depends on the details of the type of impurity acting as a template. In general,
the most important term is considered to be the change in the behaviour of the
interfacial tension. This may be decomposed into the surface tension between:
the nuclei and the solution <,,, the nuclei and the template ,;, and between

the template and the solution . These three quantities lessen the gain in free
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energy for heterogenous AG* over the homogeneous case AG so that,

AG” = (Yns; Tnt, V1s)- DG, o<1 (1.8)

Secondary nucleation, resulting from the presence of small fragments of crys-
talline material, may occur as a result of internal or external factors. The different
sources of these nuclei allow them to be labeled in terms of the so-called “breeding
mechanisms”, as described by Strickland-Constable [31]. If crystalline seeds are
manually introduced into the system, this is labelled as initial breeding. Seeds
may also be generated through collision of particles in solution (attrition breed-
ing) or through the hydrodynamic flow of the parent phase (fluid shear breeding).
High supersaturations may also result in the formation of fragile dendrites which
are dispersed by solution flow and can act as nucleation sites (dendritic breeding).
An additional form of secondary nucleation due to semi-ordered solution in the
vicinity of the crystal, known as catalytic breeding, is also thought to occur [32].

Crystal Growth

For solution growth, the two fundamental processes of interest are: transport
mechanisms within the solvent, and the actual incorporation of growth units. If
the rate at which precipitation proceeds is dominated by the first step, then crys-
tallization is said to be diffusion controlled. In this range, the principles of fluid
mechanics are employed. However, if growth is dominated by the incorporation
step, the process is said to be integration controlled. Integration control is a
function of the attraction between the crystal and the growth units. It is affected
by the local surface structure and solution parameters, such as temperature and
supersaturation.

The attachment of large numbers of growth units to a surface was first treated
statistically in the works of Kossel, Volmer and several other workers. The prod-
uct of these early studies is still employed in some work today in the form of what
is known as the Kossel model [33]. This is a simplification of the more general
Ising (lattice gas) and Tempkin (multilayer) models [34]. The Kossel model treats
a crystallization system as a large assembly of cubic blocks which are either solid
particles, or parcels of fluid. Each block interacts only with its nearest neighbours,
of which there are 6, according to some appropriate potential function. All solid
particles must sit above another solid particle with no defects, gaps or overhangs
allowed. This results in a surface that possesses several different adsorption sites.
The three most important types are the kink (K), step (S), and surface (F) sites,



Figure 1.8: Kossel surface showing the three most important sites.

as shown in Figure 1.8.

This model has been used to study growth rates and transitions between
smooth and rough growth. Smooth growth is defined as the growth mechanism by
which the building blocks of a crystal attach only at the step or kink sites, causing
lateral growth until the layer is completely filled. This type of growth is also called
layer growth or birth and spread. In this model, the steps and kinks that arise are
a product of some initial two dimensional nucleus that has grown sufficiently large.
The high energy barrier for the formation of this initial nucleus means that it is
the rate determining step for growth. The second form, known as rough growth, is
the result of indiscriminate adhering of growth units to the surface of the crystal.
This occurs when the step free energy is relatively small. Rough growth may
occur if the driving force for crystallization is especially high, when this is known
as kinetic roughening [35]. Alternatively, rough growth may also occur when the
temperature is sufficiently high. Thermal rough growth and smooth growth are
separated by a quantity known as the roughening temperature, as studied in both
analytical and computer methods [36][37][38]. Below the roughening temperature
smooth growth occurs, while at higher temperatures rough growth dominates.

While successful in some cases, this model has been unable to explain the
growth of crystals when there is an insufficient driving force to cause the formation
of solid particles on a flat surface. According to the model, an inability to produce
2D nuclei should result in termination of crystal growth whenever a flat surface is
formed. This is at variance with experimental findings. In 1951, Burton, Cabrera
and Frank [39] described a mechanism by which the barrier of 2D nucleation could
be overcome, or in fact bypassed. They showed that the propagation of screw
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dislocations produced self-perpetuating step sites (see Figure 1.6) where growth
units could incorporate.

Crystal size may also be increased by other means. An important process,
known as aggregation, occurs when multiple crystals join to form large clumps.
Aggregation, combined with the further growth of the crystalline cluster is termed
agglomeration. Agglomeration may be divided into two basic events; the proba-
bility of particle collision and the probability of particle cementation. In complex
systems, the latter step is sometimes broken into an association function, based
on interparticle attraction, and a sticking or consolidation function.

Modelling these complex solution processes revolves around the solution of
differential equations describing the system. All processes in nature must obey the
conservation equations describing mass and heat balance. However, manufacture
of crystals is usually regulated by the desire to obtain a product that conforms to a
certain crystal size distribution (CSD). Thus modelling is additionally concerned
with solving the time dependent population balance equation [32] for n(x,t),
which is the number of particles in size range [z, x + dz| at time ¢,

Bngl;,t) + 3G($,;)a;”(37st) +C(z, 1)} = Qla, 1) (1.9)

with the volume V' assumed to be constant. In this expression, G is the growth

V{

and C' is the net flux of crystals out of a particular size range [z, z + dz], due
to internal processes. (J is the volumetric net flux of crystals out of the system
attributed to physical input and extraction feeds. Note that C may be further
broken down into birth and death expressions, distinguished from the normal
crystal growth G, as they are emploved to model phenomenon such as agglomer-
ation and attrition.

Solution of the population balance equation is difficult, and assumptions gen-
erally have to be made. One of the simplest is the mixed suspension, mixed
product removal (MSMPR) scheme. Here, the system is considered to be per-
fectly mixed, so that each portion of fluid is assumed to have an equal probability
of leaving the crystallizer at any given time. Although useful, this is not represen-
tative of the complex fluid dynamics within an industrial scale crystallizer [40],
and additional studies have focused on developing more realistic treatments. In
particular, the types of mixing and non-uniform concentration distributions are
of interest because of the large effect upon the resulting CSD [41][42][43].
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Non-ideal Crystal Growth

An important aspect is the effect that impurities in solution may have on growth.
In examining such impurities, the effect on solution species is of primary impor-
tance. Principally, concern focuses on whether complexing takes place between
the impurity and the growth unit. If this occurs then nucleation and/or growth
rates are retarded. There are also two further aspects to consider. Firstly, is the
impurity structurally compatible (and incorporation is energetically favourable)
with one or more surfaces of the crystal? Secondly, is the defect repellent to
further growth units? If only the first is satisfied, then incorporation will occur,
with possibly some defects forming depending on the magnitude of the strain the
presence of the impurity causes within the crystal lattice. If both incorporation
and repulsion occur, then the defect will cause face blocking and thus an overall
change to the crystal morphology.

The above can be considered controllable aspects that, once their workings
are fully understood, could be eliminated with application of certain techniques.
However there is another broad group of factors that cause deviations in growth
rate and crystal morphology that are non-repeatable, and thus not directly con-
trollable. The source of these anomalies is generally attributed to dislocations,
adsorbed impurities, and other forms of surface damage to the crystal [35][44].
One or more of these factors may affect the growth rates of individual crystals
differently, and collectively lead to the phenomenon known as growth rate dis-

persion.

1.2 Gibbsite

Gibbsite is an intermediate compound produced during commercial alumina pro-
duction. This is an important Western Australian industry, with almost eight and
a half million tonnes of alumina produced in 1997, contributing approximately
2.1 billion dollars to the economy [45]. As gibbsite production is also the slowest
and most difficult stage of the alumina production process, it is naturally the
focus of considerable research interest.

1.2.1 Structure and Morphology

Not all crystalline substances with the same chemical formula possess identical in-
ternal symmetry. For cases where this occurs, the different crystal structures are

known as polymorphs. Gibbsite is one of the four known polymorphs of AI{OH)s.
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.,

Saalfeld Gale
Atom X y z X y Z
H1 ]0.101 | 0.152 | 0.876 | 0.077262 | 0.136549 | 0.874464
H2 | 0.595 ] 0.673 | 0.902 | 0.574642 | 0.552033 | 0.897494
H3 |0.503 | 0.137 | 0.810 | 0.494353 | 0.110970 | 0.795476
H4 |[0.971 [ 0.801 | 0.893 | 0.951158 | 0.814745 | 0.886939
H5 [0.293 | 0.724 | 0.804 | 0.295768 | 0.716748 | 0.794078
H6 | 0.815 | 0.160 | 0.810 ! 0.805904 { 0.161311 | 0.797539

Table 1.2: Unique hydrogen positions in gibbsite, taken from X-ray analysis
{Saalfeld) and from quantum mechanical calculations (Gale).

The other structures are: bayerite [46][47], nordstrandite [48] and doyleite [49].
Gibbsite has a monoclinic lattice and belongs to the space group P 2;/n. The
definitive structural determination was performed by Saalfeld [50] using X-ray
diffraction. Unfortunately, low electronic density associated with the hydrogen
atoms makes their positions difficult to determine using X-ray diffraction tech-
niques. One solution would be to re-scale all the O-H bond lengths to a standard
value in order to correct for the systematic underestimation. However, this is not
entirely suitable as there will be some variation in the true material depending
on the extent of hydrogen bonding that each site is involved in.

Work by Giese [51] attempted to resolve this by minimizing the electrostatic
repulsion experienced by the hydrogens. However, his technique was limited to 2
fixed electrostatic point charge model. In this work, the hydrogen positions from
a fully periodic quantumn mechanical calculation, performed by Gale [52}, were
substituted for the X-ray values. The calculation was performed using the total
energy pseudopotential method [53] with a planewave basis set expanded to a
cutoff of 650 eV. Norm conserving pseudopotentials were employed for aluminium
and oxygen, whilst a bare Coulomb potential was utilized for hydrogen. The
Brillouin zone was sampled using just the gamma point which was found to be
adequate, based upon tests for higher numbers of K points. The calculations
were performed using the GGA gradient corrected density functional of Perdew
and Wang [54]. A restricted optimization was performed in which the unit cell
parameters, and Al and O coordinates were frozen at the experimental values
[50] with only the hydrogen atom positions allowed to vary. These results are
presented in Table 1.2 along with Saalfeld’s original values.

In crystalline gibbsite, the aluminium atoms are octahedrally coordinated and
in layers of pseudo hexagonal rings. These layers are stacked above one another
(bearing a similarity to graphite) and held together by relatively strong hydrogen
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A

Figure 1.9: Stacking in the gibbsite lattice.

bonding. An illustration of the alternate double layers of oxygen atoms AA
and BB, each separated by mirror planes is shown in Figure 1.9. In gibbsite,
single hydrogen bonds occur for all H atoms, apart from H2 which participates
in a second weaker hydrogen bond [51]. All O-H pairs in gibbsite are either
approximately perpendicular or parallel to the plane of the layers (see Figure
1.10). This is distinguished from bayerite which has a more complicated hydrogen
bonding pattern with a third more oblique orientation of O-H pairs between the
layers (Figure 1.11). For both these structures, the complex hydrogen bonding
is a source of some difficulty when attempting to create an accurate interatomic
potential model.

In the absence of any environmental considerations, bayerite is thermodynam-
ically more stable than gibbsite [55]. In alkaline environments, gibbsite tends to
be more stable than bayerite [56]. In addition, gibbsite is more abundant in na-
ture and typical morphologies vary from hexagonal platelets, to the more common
concretionary, massive, clay-like, and stalactitic forms [57][58]. Under industrial
conditions, gibbsite usually crystallizes as either hexagonal tablets or diamond
prisms [55]. These crystals often grow into mixed agglomerates of both hexago-
nal and diamond shaped crystals. Elongated hexagonal prisms can also be formed
from sodium aluminate solutions at low supersaturations and high temperatures
under industrial type conditions. This elongation occurs along the c-axis.
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Figure 1.10: The hydroxide double layer configuration in gibbsite, with unique
hydrogen atoms labelled.

Figure 1.11: The complex double hydroxide layer configuration in bayerite.
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Figure 1.12: A flowchart illustrating the four main stages of the Bayer process.
The approximate time required, as a percentage of the overall processing time, is
graphically represented for each of the stages.

1.2.2 Precipitation
Overview

Industrially, the precipitation of gibbsite is accomplished using the Bayer process.
This method has survived largely unchanged for over a hundred years since it was
first formulated by Karl Bayer in 1888. An idealistic four step scheme describing
the Bayer process is presented in Figure 1.12. The precipitation step is by far the
longest, taking almost 90% of the overall processing time. It may be written in

terms of a dissolution-reprecipitation reaction,

However, as noted previously, gibbsite contains octahedrally coordinated alu-
minium atoms, whilst the aluminate monomer AI(OH)j (qq) is tetrahedrally coor-
dinated. The mechanism by which the monomer undergoes the necessary change
to become incorporated in gibbsite AI(OH)s (s is not well understood. This de-
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ficiency hinders the investigation of key issues such as: the slow rate of gibbsite

growth, and the incorporation of cationic impurities.

Aluminate Solution Species

The identification of species present in Bayer liquors is an obvious stepping stone
to elucidating the growth mechanism. Consequently, numerous researchers have
conducted IR and Raman studies in an attempt to address this issue [59][60][61].
These studies have demonstrated that most of the aluminium in caustic alumi-
nate solution has four-fold coordination, which is almost universally believed to
be due to the aluminate monomer AI(OH); [62][63]. Unfortunately, many of
these studies are inconclusive regarding further species identification, due to the
difficulty in interpreting the results [61].

Moolenaar et al. [39] proposed that the tetrahedral monomeric ions exist in
equilibrium with the similarly coordinated dimeric hydroxo ion [AI(QOH )30 Al(O H);3]*—,
with many researchers in agreement [60](64][65}[66]. However, limiting the alu-
minate species distribution to the above two anions may be premature. Gibbsite,
which precipitates spontaneously from pure, homogeneous caustic solutions su-
persaturated with aluminium [67}, has a complex structure in which the octahe-
drally coordinated aluminium atoms are linked to one another by double hydroxo
bridges [50]. Clearly, the spontaneous precipitation of gibbsite from solution must
involve further changes in anionic structure (four-fold to six-fold aluminium coor-
dination and oxo to hydroxo bridging) together with the formation of oligomeric
intermediate species. In addition, there is some evidence to suggest that the IR
and Raman data are not unambiguous. There is a difficulty in identifying the
precise nature of Al to Al bond bridging in solution, as those frequencies pre-
viously attributed to Al-O-Al linkages have been observed in hydroxyaluminate
compounds possessing no such single oxygen bridging [68][69].

In addition to experimental spectra measurements, computational methods
have also been brought to bear on these problems. Most of these studies have
centered around calculating the relative thermodynamic stabilities of the different
species. However, there are problems inherent to this approach as well. Quantum
chemical calculations [70][71] have been used to explain the ultraviolet spectra
of sodium aluminate solutions in terms of three anions, A{OH)y, Al,O(OH )~
and Al(OH)". However, other authors [72] have shown that the UV spectrum
of rigorously pure sodium aluminate solutions is largely featureless, and that any
observed features can be ascribed to iron or vanadium contamination. The use

of both ab initio and semi-empirical quantum mechanics by Honglin et al. [73]
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indicated that the most stable species in sodium aluminate solutions, apart from
the monomer, is the [AI{(OH);0Al(OH)3)*~ dimer which is preferred over the
[A{OH)3(OH),Al{OH)3)? dimer. This is consistent with Moolenar’s conclu-
sions. In contrast, semi-empirical findings of Gerson et al. |74] concluded that
the double oxo-bridged dimer is more stable, under different applied conditions.
These conflicting conclusions underline the importance of accurately accounting
for the environmental conditions in order for any species predictions to be mean-
ingfuil.

Until recently, there have been few studies that have attempted to rigorously
investigate solvated poly-aluminate species that may exist under basic condi-
tions. This is largely due to the significant increase in computational expense
when explicitly including a solvation shell. In recent work by Gale ef al. [75],
a number of aluminate species were modelled using a combination of explicit
solvation and a continuum dielectric model. The authors obtained the expected
result that the AI(OH); monomer, typically coordinated with 4 water molecules,
is the dominant solution species. The study also predicts that, at high sodium
aluminate concentrations, the dimerization to the double hydroxy bridged dimer
[AI{OH )s{OH), Al{(OH )3]*"is the most energetically favourable.

There is little doubt that geometries calculated via quantum mechanics, with
the subsequent prediction of vibrational frequencies, have been useful in describ-
ing the S; symmetry of the Al(OH); monomeric ion [76][77]. Disparity in further
results has led to lack of agreement concerning additional species, although there
is consensus that there are small amounts of higher order polymeric species. The
precise nature of these species is still debatable, with other studies attempting
to link (in addition to dimers) higher order species such as tetramers [74] and
hexamers [78] with gibbsite precipitation. Whilst increasingly accurate quan-
tum mechanics calculations [75] are now becoming feasible, knowledge concerning

polymeric species in concentrated aluminate solutions is still inconclusive.

Precipitation Mechanisms

Like most industrial crystallization processes, the Bayer process utilizes secondary
nucleation. This is usually accomplished after the clarification stage by initial
breeding with a continuous feed of seed nuclei. Enlargement of crystals occurs
through crystal growth and agglomeration, although attrition can occur [79)].
The average growth rate, as measured by Misra and White [80], is quite low
(1-2 pm/h). There have been many attempts to explain the slowness of the
precipitation mechanism, addressing the problem from both computational and
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experimental standpoints. However, lack of conclusive data concerning the species
present in solution, combined with the complexities of the process have thus
far prevented any resolution of the problem. However, it is generally accepted
that industrial gibbsite precipitation is integration controlled. This is supported
by evidence of the relatively high activation energy of the reaction [81](82][83],
the dependence on crystal surface area [84], and independence from agitation
conditions [85].

Finely divided globular material on the surface of industrially produced gibb-
site crystals has been observed by scanning electron microscopy [86][87]. This
has led various researchers to suggest that the material is a precursory stage that
eventually undergoes a phase transformation to gibbsite. However, there is some
disagreement as to the exact identity of this precursory phase, in part due to the
effects of different applied conditions [88]. Some researchers have suggested that
the precursory phase material is amorphous 4{(OH); [89], pseudoboehmite [90],
bayerite [74][91] and even a semi-ordered, gel-like layer [92][93].

Researchers have also attempted to characterize the growth mechanism by de-
termining the growth rate dependence on the crystallization driving force. Mea-
surements of growth rates in bulk experiments have shown that the rate is con-
sistent with a spiral growth mechanism [80][81]{82][94]. However, the dependence
of growth rate on surface area and the negligible growth at low supersaturations
suggests that the growth mechanism occurs through a 2D nucleation mechanism
[84]{95]. Recent atomic force microscope studies of the growth of the gibbsite
basal plane (002} by Freij et al. [96] has suggested that a combination of these
two mechanisms occurs. The authors observe that step growth is dominant at low
supersaturations, while the birth and spread mechanism prevails at high super-
saturations. Midway between these two extremes, growth vza both mechanisms

was observed.

1.3 Molecular modelling

1.3.1 Atomic Theory

The idea that matter is composed of atoms has formed the basis for much of
modern science over the last 200 years. However, until recently, no one had ac-
tually seen an atom and even today the pictures at atomic resolution are still
fuzzy at best [97]. It is therefore quite intriguing that the existence of atoms was
first. proposed more than two thousand years ago, by early Greek philosophers.
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In the 4th century B.C., Democritus expounded his ideas that all materials could
be subdivided into smaller and smaller constituents, but only up to a point. He
believed that this indivisible and invisible unit of matter, constituted all visible
matter. It was not until the early nineteenth century that scientists began de-
vising experiments to validate and characterize these building blocks of matter
[98]. The principles and concepts of modern chemical and molecular theory can
be said to originate from the work of John Dalton, around 200 years ago. Dalton
constructed wooden balls connected with sticks in order to represent molecules as
atoms connected by some form of bonding [97]. In addition to Dalton, work by
Avogadro, Faraday and Mendeleev pioneered the understanding of the types of
atoms, the rules governing their combinations, and their systematic classification
[98].

The idea that matter interacts via a force field can perhaps be traced back to
Newton’s landmark work [99] concerning the theory of gravitation. Although in-
correctly performed, Newton even applied a repulsive inverse radial law to atomic
interactions in order to explain Boyle’s law [3]. However, it was not until the re-
spective works of Boskovic, Clairaut and later Laplace and Gauss that the mod-
ern idea of atoms repelling at short range and attracting at long range emerged,
and was put on a more rigorous mathematical footing [100][101][102]. Almost
in parallel with these early theories of matter, the classical theory of light was
developed. The first convincing argument that light was a wave was given by
Huygens in 1678 [5]. But it was not until 1873 that the mathematically rigorous
electromagnetic equations were written down by Maxwell.

Thus, up until the twentieth century, scientific understanding was largely en-
trenched in these two core laws of classical physics. The interactions between the
atoms comprising solid matter was modelled using simple potential forms that
depended only on geometric parameters, whilst light was treated as a continuous
electromagnetic wave. However, Planck’s work in 1900 on blackbody radiation,
and further work by Einstein on the photoelectric effect in 1905, led to the conclu-
sion that light was actually composed of particles (later called photons) [98][103].
Soon, with data from experimental techniques, a new understanding of matter
was also achieved. Neils Bohr proposed a revolutionary new model of the atom
in 1913. Here, electrons existed in stationary non-classical states centered on the
nucleus. A transition between states was accompanied by a release or absorption
of discrete amounts of energy. This model was able to predict hydrogen spectra
to an accuracy of about 0.02% [5].

However, the Bohr model proved unsuccessful for any atom other than hydro-

33



gen. The next major progression came in 1924, when de Broglie suggested that
as light has particle-like properties, so might matter have wave-like properties.
Quantitatively, particles may be thought of as matter waves characterized by a
wavelength A = %, where h is Planck’s constant and p is the momentum of the
particle. Experimental evidence of electron diffraction soon proved this hypothe-
sis. In 1925, Schroedinger developed the famous eigenvalue equation Ev = Hy,
the solution of which is at the heart of most applied quantum mechanics. In this
equation, the stationary energy states (E) of a given matter wave () are the
eigenvalues of the system’s Hamiltonian operator {H). Some debate ensued as to
the precise interpretation of ¢ [104], with the generally accepted interpretation
eventually becoming that of Born [105]. This states that |¢|° dr is the proba-
bility of finding the matter wave (or particle) in some finite volume element dr.
Hence, the classical idea of atoms behaving like tennis balls and molecular bonds

as springs, was superseded as a representation of physical behaviour.

1.3.2 Computer Modelling
Overview

With the discussion of the previous section, it might be supposed that atom-
atom potentials find little current application. However, classical potentials are
still useful whenever large numbers of atoms are considered, provided they are not
used to model any properties which depend explicitly on the electronic structure
[106]. This includes the making or breaking of bonds, although there has been
some work involving hybrid classical-quantum mechanics models which treat in-
teractions as classical at long range and quantum mechanically at short range
[107][108][109][110]. The use of potentials still has a large niche in computa-
tional chemistry, as their simplicity gives a certain flexibility and power as well as
yielding considerable savings in computer time over the more rigorous quantum
mechanical techniques. Even as computing power attains greater levels, empirical
potentials are still likely to remain a tool for probing larger and larger numbers
of atoms. There are several good general review articles on the subject of com-
puter modelling [106][111][112][113] and also books detailing theory and methods
{114]]115].

Most problems of everyday interest are manifestly macroscopic, involving
numbers of atoms that are of the order of 10%® and higher. Typical worksta-
tions today can deal explicitly with groups of atoms of the order of 10?, and
with current supercomputers a system with 10° atoms may be attempted [1186].
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Despite rapid progress, which will undoubtedly expand these limits, simulations
with numbers of atoms approaching that of real systems are unlikely to be con-
ducted for some time. This means that some form of approximate method must
be sought. Some assistance can be found in the fact that crystals are very ordered
structures, which can be reduced to a relatively small non-trivial part and a set of
operators describing how this part is replicated through all space. By dividing a
model into unique and repetitive parts, rapid convergence summation techniques
can be employed to deal with the repetitions.

There are certain advantages to molecular modelling. Computational exper-
iments can be performed with relatively little cost, and are readily repeatable.
There is also an advantage in being able to directly monitor behaviour at the
atomic level. In addition, once a good model has been constructed (which may
not be a trivial task) it is possible to apply it in many different ways that would
be too difficult or expensive to implement experimentally. Avoidance of some of
the problems facing experimentalists is also enjoyed, as simulations of processes
are in situ by definition, yet completely non-intrusive.

In general, the basic principles behind most forms of molecular modelling
are the same. To begin, an initial configuration must be constructed with the
appropriate boundary conditions. These conditions are usually either three di-
mensicnal periodic, two dimensional periodic, or isolated clusters. Then, with
respect to defined variables, minimum energy configurations are sought. Energy
evaluations can be broken into two parts: summation of the short range poten-
tials, and summation of the electrostatic interactions. The summation of the
Coulombic interactions in periodic structures merits special attention. This is
because the charge interactions are slowly (and conditionally) convergent. The
usual approach, known as the Ewald method {117], is to perform a partial trans-
form into reciprocal space to aid the convergence. Although originally formulated
for three dimensionally periodic structures, it may also be modified for summation

in two dimensions [118].

Solution Studies

These investigations are concerned with generating a number of feasible states
which are a representative sample of the entire range of possible system states.
From these states, the quantities of interest are extracted in some form of aver-
age value. The first simulation of a liquid was accomplished by Metropolis et al.
[119] who also laid the foundation for what is termed the Monte-Carlo simulation

method. This process involves the random generation of possible configurations



for a given system, and is suitable for modelling stochastic processes such as
mean atomic displacements in a liquid. The other important method is molecu-
lar dynamics, where states are generated by explicitly modelling the trajectories
of individual atoms. The first dynamics experiments on a liquid {composed of
hard spherical particles undergoing perfectly elastic collisions) was reported by
Alder and Wainright [120}[121][122]. Since then, simulations containing larger
and larger polyatomic species have been investigated [115]. Molecular dynamics
is suitable for any time dependent {non-equilibrium) processes, such as nucle-
ation and growth rates, although there has been some recent work employing the
Monte-Carlo technique to model rate processes, which have compared favourably
to molecular dynamics [34].

Particularly popular in studying nucleation and crystallization processes is the
Lennard-Jones fluid, with several studies applying either Monte-Carlo or molec-
ular dynamics techniques to the problem [123][124][125]{126]. Simulations by
Wolde et al. [123] demonstrate a technique whereby the nucleation rate in a
Lennard-Jones liquid may be calculated. Density functional theory has also been
used to model the phase transformation during crystal and melt growth in atomic
liquids by Shen and Oxtoby [124). They found that a diffusive model is less rep-
resentative than a collision-limited model. Studies of the crystallization of water
have also been conducted [125], indicating that local electric fields may play an
important role in the formation of polar crystals. While there has been con-
siderable work concerned with crystallization from the melt, recent studies of
crystallization in a simple binary (solute-solvent)} solution have been attempted
by Anwar and Boateng [126] and Huitema [34]. In both cases, the authors have
shown how parameters such as the chemical potential (supersaturation) and the
presence of impurities affect the mechanism of the crystallization process.

Bulk Studies

Here a model is sought for the crystal structure(s) of interest that reproduces
physically measurable quantities. The most obvious is the atomic coordinates
in the unit cell, and the dimensions and shape of the unit cell. If suitable data
are available, reproducing other parameters such as elastic constants, vibrational
data and relative permittivities should also be attempted [127][128][129][130].
Other means to this end have also been demonstrated. Work by Pavese et al.
[131] centered on modelling the thermal dependence of the structural and elastic
properties of calcite. They used the quasi-harmonic approach [132][133] in order

to derive expressions for the change in these parameters with temperature to a
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reasonable degree of accuracy. Alternatively, some workers have fitted multiple
lattices in order to construct a model that is applicable to a large number of
binary and ternary oxides [134]. Due to the fitting of different crystal lattices,
this approach samples the values of potentials at a wider range of separations,
and is therefore more likely to be representative of the true interatomic forces.
In general, the application of computer modelling to the solid state can be
approached in several different ways. The first approach is the minimisation of
lattice energy by attempting to reduce the gradients of the forces on individual
atoms, which are governed by the interatomic potentials. This method has been
used to seclve for the crystal structure of complex materials, such as in the work
by Gorman et al. {135]. Initially, the authors employed a grid search method to
approximately locate the positions of cationic species in various microporous ma-
terials. The use of a geometric optimization technique then allowed a final refined
structure to be determined. In addition, molecular mechanics studies have also
been used to conduct investigations on aluminium site preference in MFI (high
silicate content) zeolites [136]. Alternatively, Monte-Carlo type approaches have
been used to find the minimum energy configuration using random perturbations
in the atomic positions. An investigation by Teppen et el. [137] illustrates the use
of this technique in deriving a potential model for several clay minerals. Molecular
dynamics simulations have also been used, for example, in the work by Smirnov
and van de Graaf [138]. The authors examined the electronegativity and induced
dipole moments of adsorbed methane in MFI and MEL zeolites, which was found
to yield important information on the active regions in the pore system of the
host zeolite. Combinations of the above techniques have also been employed.
The use of Molecular mechanics and Monte-Carlo techniques was demonstrated
by Freeman and Catlow [112] in order to reproduce the crystal structure of rutile.
To accomplish this, the authors used a Monte-Carlo driven simulated annealing
method to refine a random starting point, which was then further refined with

energy minimisation techniques.

Surface and Morphology Studies

Calculations involving surfaces are similar to bulk studies, but higher quality
potentials are generally needed due to the boundary conditions of solvent or
vacuum over a two dimensional periodic surface [113]. There may also be some
doubt concerning the wisdom of employing identical interaction terms, regardless
of whether the species involved are at the surface or in the bulk. Fortunately,
this situation is improved by the fact that atoms at the surface often relax so
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that the Madelung potential approximates that in the bulk [139]. However, this
relaxation means that separations between atomic species ai the surface will
differ from their counterparts in the bulk. As a consequence, some degree of error
may be introduced by employing potentials that have been explicitly derived to
reproduce the bulk structure and properties [97]. Such effects may be partially
overcome by fitting to a range of different crystal structures that contain the same
chemical species. This will result in a potential model that is robust over a wider
range of chemical environments and species separations.

Morphology predictive schemes have been applied to a range of materials from
simple oxides [140][141] and organic materials [142], to more complex protein
structures such as lysozyme [143]. Studies have even been conducted in order
to predict the time dependent morphology of quartz using computer methods
[144]. Many such studies are of interest and have been developed in order to pro-
vide insight into industrial problems. Studies of the crystal forms of the calcium
carbonate polymorphs [145][146] are of considerable geological, chemical and bi-
ological importance [147]. There has also been considerable interest in modelling
the effect of impurities on calcite morphology [148][149][150]). Work en modelling
the morphology of barium sulphate morphology, an important compound in water
treatment and off-shore oil platforms [151], has also been conducted [129].

1.3.3 Project Aims

It may be argued that industrial concerns are largely macroscopic and therefore
molecular modelling is ill-suited as an investigative tool. As an example, the pre-
diction of crystal size distributions using explicit molecular modelling of growth
processes in an industrial crystallizer is beyond the capability of current com-
puters. Thus, this problem must be left to mathematical analysis on a larger
length scale. However, certain problems such as the growth mechanism and the
effect of growth modifiers are in origin microscopic and amenable to atom-atom
interaction studies.

In the literature, computational work that is of relevance to the Bayer pro-
cess may be roughly divided into two main areas. The first is growth species
and mechanism determination, which was discussed earlier in Section 1.2.2. As
mentioned, these studies have been inconclusive. To provide further clues, some
computational studies of synthetic Bayer liquors have been conducted as part of
this thesis. Although it is close to impossible to model all the possible components
in a Bayer liquor, the major species thought to be present have been included.

These studies have primarily been concerned with investigating the possibility of
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solution structuring.

The second area is concerned with the development and utilization of a model
for the gibbsite crystal structure. Potential developmental work in this area,
apart from studies by Lee et al. [152], have not directly been concerned with the
Bayer process. In addition, all these works suffer from certain limitations that
are discussed in Section 3.3.

Thus, there is a deficiency in potential model development, which will clearly
affect subsequent modelling studies. This work attempts to address this prob-
lem by constructing a model that reproduces available gibbsite observables to
a high degree of accuracy. The gibbsite model was applied to three problems.
Firstly, both equilibrium and growth morphologies were calculated and compared
to experiment. Secondly, the possibility of twinning was investigated. Thirdly,
with the relaxed surfaces generated from these morphology studies, the effect of
sodium and potassium incorporation was studied. This part of the project was
aimed at obtaining a greater understanding of the known phenomenon of cation
incorporation in gibbsite.

In summary, the aims of this project were to gain a better understanding of
phenomena, such as solution structuring and final morphologies, that are relevant
to the precipitation of gibbsite. Care has been taken to use experimental data
with modelling techniques in order to produce a model that is as physically rep-
resentative of real processes as possible. Thus, the derived model is of sufficient

quality to be employed in related studies in the future.
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Chapter 2
Principles of Computer Modelling

The investigation of systems comprising multiple interacting particles is a disci-
pline that probes events at the atomic scale right through to processes occurring
at the cosmic level. Independent of scale, or the types of forces acting between
the particles, there is a singular problem in that no known exact solution exists.
Indeed, there is no known general analytical solution to any system with three or
more mutually interacting bodies [153]. Thus, numerical techniques provide the
only means of solution. All of these numerical methods are based on solving a sys-
tem of equations, where each equation represents the net work done on a particle
by all others in the system. In molecular modelling, all structures are composed
of various atomic species; with particle interactions dominated by electrostatic
forces. This makes solution somewhat harder than in the gravitational N-body
problem, as the particles can either attract or repel depending upon the sign of
their charges. In general, methods of solution can be categorized according to
whether the interacting particles comprising the system are treated as classical
particles, or as quantum wave packets. It is currently believed that quantum
mechanics offers the definitive description of how particles of matter interact at
the atomic level. However, despite the various levels of approximation available,
a quantum mechanical approach is usually far too time consuming in even mod-
estly macroscopic simulations. Thus, a necessary part of computer modelling is
selecting the most suitable method, from a range of different types and levels of
approximation.

2.1 Quantum Mechanics

The formalism of quantum mechanics is markedly different from classical mechan-
ics. In particular, certain physical quantities are expressed as expectation values
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Observable quantity Classical mechanics | Quantum mechanics
Position i T
Momentum 7 = m%?- by
Kinetic energy . — L2
Potential energy (conservative field) V(T) V(T)
Total energy 4+ V(7) —LV 4+ V()

Table 2.1: Classical properties and their quantum mechanical counterparts. For
some vector quantity ¥, the magnitude is written as z (= | 7).

of an operator that acts on the system’s wave function ¥, and not as intrinsi-
cally measurable properties of the particle itself. Whilst some of these particle
properties, such as position, remain the same in both classical and quantum de-
scriptions, others are quite different. Table 2.1 indicates the relationship between
classical and quantum mechanical expressions for some of the common particle
properties. The momentum operator shown is a simplification of the more gen-
eral time dependent form [103]. In both formalisms, the total energy of a system
is the sum of the kinetic (K') and potential energy {U) components, and is also
called the Hamiltonian (H).

In quantum mechanics, a particle is thought not to have an inherent value of
momentum or kinetic energy, until it has been measured by an observer. This
leads to the concept of describing physical quantities, such as the momentum of
some particle j, as the expectation value of the (normalized) wavefunction W.
That is,

h
(7} = f v (?vj) U dr (2.1)
Where the operator V; acts with respect to the coordinates of the particle j.
Expression 2.1 may also be written in Dirac notation as,

(7,)=(¥/ve) 2

In practice, we are usually interested in applying quantum mechanics to determine

the properties of an atomic or molecular system as a whole, rather than the
individual motions of the particles that comprise it. The total energy E of the
system is of particular interest, and can be found by taking the expected value
of the Hamiltonian,

E = (U|H|T) (2.3)
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The expression shown in 2.3 is also known as the time independent Schroedinger
equation, and has only been solved analytically for simple problems. One well
studied example is the spinless two-body hydrogen-like atom. Here, a single elec-
tron moves in a Coulomb field created by the nucleus which is assumed to be
stationary at the origin. Due to the disparity in masses, the nuclear speed will
usually be much less than that of the electron. Nuclear and electronic motions
can thus be treated separately (Born-Oppenheimer approximation). Hence, for
the electron,

e
Flm — 2.4
U dregr ( )
and
h
= — 2.
K 2mev (2.5)

with the computed eigenfunctions ¥; and corresponding eigenvalues E; describing
the possible electronic orbitals and their energy levels respectively. The index 2
represents the particular state, which can also be written in a more informative
way as three quantum numbers (n, £ and my) that uniquely specify the stationary
state (ignoring spin). Solutions are known to be separable into angular and radial
components [154]. The angular parts comprise the well known spherical harmonic
functions ¥;™, while the radial components R,; can be decomposed into terms

involving the Laguerre polynomials L**'. Hence
g p ) n+f bl

‘I’n,m,f = Y’[mtR'nf (26)
with corresponding eigenvalues,

elm,

E, = (ires22rtnt (2.7)
For many electron systems, the interaction terms make it impossible to obtain a
general analytical solution. Common approximate solution methods include the
so-called ab initio and semi-empirical approaches. The former has two main sub-
divisions: the Hartree-Fock method including correlation methods that employ
exact exchange, and the Density Functional approach. The term ab initio is a
slight misnomer; its usage arises from the fact that after the initial Hamiltonian
is written down, the problem is solved with rigour and without recourse to exper-
imental data [155]. Conversely, semi-empirical methods do employ experimental

data to simplify the solution process, with some subsequent loss of generality.
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2.1.1 Hamiltonjan A PProximationg

Hartree Fock Theory

. 1 Z
h(71) = —Zy2 _ Ze (2.9)
2 1
and describing pairwise electronic interactions,
1
971, y) = L (2.10)
Ti2

Thus, the fy)] Hamiltoniap js written as [105],

W= G+ 3 (G192, %) ke - 5 Wklo(7, PIlib) (1)

The first term inside the two-electron Summation can pe interpreted aq the
Coulomb repulsion eXperienced by two charge clouds, ‘The second term is the
exchange energy, which arigeg from the indist.inguishabllity of the electrong, Phys-
ically, it represents the correlation of electron motions with like spin.

Based on purely physical arguments, the trye multi-electronic wavefunction
¥ is expected to show that electronic motions are not independent. That is, the
mutual repuision of electrons wil) result in some degree of correlation hetween
their motiong. As the Hariree-Fock method treats each electron ag moving in
an averaged field due to the other electrons, the correlation betweep individua]
electrons of Obposite spin is pot, accounted for. Clearly, thig will result ip energieg
that are too high due t¢ excessive repulsion. Typical energies computed by the
Hartree-Fock method (called the Hartree-Fock limit) are good to within about one
percent of the experimenty] energy [156]. Although this ig 4 reasonable estimate
in absolute terms, it ig insuflicient for most chemica) Purposes.

A common method to inclyde electron correlation into the result achieved



by a Hartree-Fock calculation is to add it as a perturbation, so that the system
Hamiltonian becomes

H = p#F + \gor (2.12)

For the case where A (a book-keeping parameter) is 0, the solution is the Hartree-
Fock limit, and is assumed to have known solutions (¢/'F, ¢;), whilst when A =1,

the full electron correlation due to /" is introduced. It can be shown [105] that

the change in energy due to the exira term can be written as

Ei=ef" + AGIH iy + A° Y <z |hHF;j> <j |hHF‘ z> +O(AY) (2.13)

HF _ _HF
i#] “ T

where the last term represents the third order and higher terms. A calculation
that includes correction terms up to order A" is said to have been performed at
the MPn (Mgller Plesset) level.

Density Functional Theory

This method arose from the Hohenberg-Kohn theory [157], and is essentially
based on the assumption that the ground state energy of a system is a functional
of the calculated electron density p,

Elpl = Ko] + Ulp] + J1] + exels] (2.14)

Whilst the single electron kinetic and nuclear interaction energy terms (K and
U) remain comparable to the Hartree-Fock case [114], this formulation has some
consequences for the two electron interaction terms. The direct Coulomb term

can be written more explicitly as,

Jo] = //p(?l)g(?h?2)p(?2)d?1d?2 (2.15)

which is equivalent to pairs of electrons being treated as mutually repelling charge
clouds. The non-classical term e€[p] is included to account for the electron ex-
change and correlation contributions. The search for expressions describing the
exchange and correlation energy is difficult, and has challenged researchers for
many years [158]. The local density approximation (LDA) is a common method
used to develop explicit expressions for these terms. In this scheme, it is assumed
that p(7) is slowly and smoothly varying throughout the molecule. Thus, the
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bound electrons can be considered to behave somewhat like a uniform electron gas.
However, with the use of density gradient expansions, functionals that take into
account the inhomogeneity of the electron gas have also been developed. Some
commonly used expressions are the PW (Perdew and Wang) and LYP (Lee, Yang
and Parr) correlation functionals and the B (Becke) gradient corrected exchange
functional {159].

Semi-Empirical Approach

As the name implies, the central idea behind these methods is to simplify the
Hamiltonian by replacing integral evaluations with experimentally derived data.
These methods usually assume the core electrons to be “frozen”, and thus having
only a modifying effect on the potential of the nucleus [155]. For the valence
electrons, part of the one electron operator h{r;) (equation 2.9) can be written as
terms involving orbitals centered on single atoms. These terms are not evaluated
explicitly, but taken from experimental valence ionization energies or electron
affinities. For molecular systems, the semi-empirical methods are usually based on
the parameterization of single electron terms only. This is because all two electron
contributions require different parameterizations for a given atom, depending
upon the other atom type involved. However, much of ihe difficulty in solving
for the wavefunctions and energies of a system lies in evaluating the two electron
integral terms, (ij |g(71, 72)}| kI). The semi-empirical methods can be classified
in part by how they treat these terms. A popular method, the modified neglect
of differential overlap (MNDO) [160] keeps only terms where 7 = j and k = [ and
also those where all the orbitals are centered on the same atom. There are three
main variations of this method: MNDO, AM1 [161] (second parameterization of
MNDO) and PM3 {162] (third parameterization of MNDQO). The latter represents
perhaps the state of the art for these types of calculations [155].

2.1.2 Self Consistent Fields

There is a problem in finding the solutions F;, as the analytical form of ¥; is
unknown. The usual approach is to write a new wavefunction 1 in terms of a
linear combination of known functions. This reduces the problem of determining
an unknown function, to that of solving for unknown expansion coefficients. The
functions used to describe the wavefunction should span the solution space in
order to eventually reach the correct answer. Therefore, such a group of functions
is also known as a basis set. By the variational principle [156] such a construction

45



places an upper bound on the true ground state energy,

g0 < (Gl H )
A (Wi )

There remains some difficulty, however, as the solutions (E;, ¥;) can only be

(2.16)

computed after terms involving the wavefunction ; are explicitly evaluated. In
essence, this means that the solution is required in order to evaluate itself. The
usual approach involves a feed-back loop, where an initial guess at the solu-
tion becomes refined through successive iterations. For some approximate eigen-
functions ¢, obtained using the old set 4, any new information in the solution

can be expressed as

A = o — projy e (2.17)

where the second term evaluates the projection of the approximate solution onto

the old solution. Thus, a new set of eigenfunctions can be written,

with a and b the adjustable mixing parameters. When 90+ = () the solution
is said to be self-consistent and equal to the best possible wavefunction within
the current basis set. This is the self consistent field (SCF) procedure.

2.1.3 Basis Sets

For a multi-electron atomic system, a logical choice for basis functions might be
the single electron solutions from the hydrogen-like atom (¢;). Typically, products
of these single particle functions are used to represent the system wavefunction.
However, the total wavefunction is required to be antisymmetric with respect
to the exchange of particle labels. Physically, this is a consequence of the Pauli
exclusion principle which states that no two electrons can have identical quantum
numbers. A convenient way to write such an n-electron wavefunction is the Slater
determinant,

1

¢1(1) e ﬁbn(l)

: » : (2.19)
¢1(n) - ¢a(n)
since a determinant changes sign when two rows are swapped. In molecular

systems, the atomic orbitals are replaced by molecular orbitals (MOs). A common
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Figure 2.1: Exponential and Gaussian functions.

method of formulating a MO is to employ a linear combination of atomic orbitals,
this is the LCAO method.

The radial part of the orbital expression R from equation 2.6 is often approx-
imated with,

R= N -1leg-tr (2.20)

where n* the effective quantum number and £ allowing for the screening of the
nucleus by the inner electrons. There are empirical rules given by Slater for
determining n* and &, and these functions are thus known as Slater-type orbitals
(STOs) [163].

However, products of exp(—r) are difficult functions to integrate, while Gaus-
sian functions exp{—r?) are much easier. In addition, the product of two Gaus-
sians is also a Gaussian, which makes the evaluation of many centered (molecular)
overlap integrals much simpler. Unfortunately, Gaussian functions do not quite
match the features of the exponential type functions, as shown in Figure 2.1. The
illustration indicates how Gaussian functions underestimate the electron density
near the origin due to the lack of an exponential cusp. Also, at longer range,
Gaussians decay faster than exponential functions. One method of overcoming
these deficiencies is to use more than one Gaussian function for a single atomic
orbital. This enables a more accurate description of the electron density to be
achieved. Such functions are denoted STO-nG, indicating that a linear combina-
tion of n Gaussians is used for each atomic orbital. The STO-3G is a commonly

used minimal basis set, used when only a qualitative answer is desired or larger

47



basis sets are computationally prohibitive. In addition, this basis set has been
used to determine geometries of compounds involving lighter elements quite ef-
fectively, in part due to a fortuitous cancellation of errors [164]. However, the
computed energetics for this basis are generally much worse.

Another commonly used class of basis sets are the split valence n —ijG family.
Here 7 is the number of Gaussians used for core orbitals, while the 7 and j indicate
that a linear combination of i functions are used for the inner part of the valence
orbitals and j functions for the outer part of the valence orbitals. This splitting of
the valence orbital is also termed a double zeta basis. Other sets exist with triple
zeta valence splitting. The split valence sets 3-21G up to 6-31G are something of
a compromise set, providing reasonable geometric evaluations and progressively
better energetics. The incremental cost is relatively small by today’s computing
standards. In general, more functions are used for the core electrons compared
to the valence electrons because of their greater contribution to the electronic
energy. However, when highly polarizable atoms, negatively charged species or
some form of molecular dissociation is studied, higher quality basis sets than
those mentioned above should be used.

To model polarization of an orbital with angular quantum number £, basis
functions from £ + 1 are used. Thus, for the hydrogen atom, p functions are
used. To denote such a basis set, the symbols ** are appended to indicate that
polarization functions are included for all atomic species. In addition, since Gaus-
sian functions vanish faster than exponential functions, it may become necessary
to use diffuse functions. These sets have extra Gaussians that tend to vanish
at longer than usual range, and are appended with +-+ to indicate that diffuse
functions are included for all atoms. For historic reasons, + and * are used to
indicate that all basis sets excepting those for the hydrogen atom have these extra
functions. With the 6-31G™* set at the MP2 level an average level of agreement
of bond lengths to 0.018A has been achieved for a large number of closed shell
electronic systems|165]. Larger basis sets such as 6-311G** have been shown to
give agreement in the 0.006-0.013A range [166].

2.2 Empirical Potentials

Despite the increasing processor power available for simulations, employing quan-
tum mechanics is often far too computationally expensive. Indeed, the study of
overall trends and properties of large numbers of atoms may not even demand the

precision of a quantum mechanical calculation. An alternative method of describ-
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ing atomic and molecular interactions is to use empirically fitted functions. Here, -
the central focus is on replacing complex quantum mechanical effects with some
form of average interaction field. Tt is convenient to classify all such interactions
as either electrostatic, intermolecular or intramolecular. However, the distinction
between these types of interactions is not always clear cut. In this work, electro-
static interactions will refer to all monopole-monopole terms, and only in special
cases to the dipole moment. Intermolecular functions will be used to describe
the short range repulsive forces, as well as the longer range induced dipole in-
teractions. Lastly, intramolecular potentials are utilized to describe the bonding,
angle-bending and torsional energy within a molecule. The application of such
empirical functions is frequently termed molecular mechanics in the literature.

2.2.1 TFunctional Forms
Electrostatic Interactions

The monopole interactions between charged species are evaluated wia the usual

coulombic term,

gy

= 2.21
471'67'7;]' ( )

if
with suitable point charges allocated to the atoms. Assignment of point charges is
frequently taken from the results of an electron population analysis of the molecule
in question. Whilst this approach has been questioned by some workers, it has
nonetheless proved reasonably successful [167][168). An issue that has been raised
in the literature, is the validity of using the dielectric constant of free space € = ¢.
In order to account for the effect of neighbouring electronic charge clouds, it has
been suggested that a distance dependent dielectric ¢ o r;; be utilized [169][170].
However, this leads to much steeper gradients on the electrostatic interactions,
rather than the desired uniform muting. Other researchers have suggested the
usage of various fixed values that are greater than that of a vacuum [171]{172].
In some cases, it may be undesirable to model the electrostatic interactions in
terms of point charges alone. The polarizability of an atom can be modelled using
the method described by Dick and Overhauser [173]. This technique involves
coupling a shell {massless point charge) to the positive core of an atom, from
which it is Coulombically screened.

E(r) = —kr® (2.22)
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Here, the displacement of the shell from the core is represented by r, with a

corresponding restoring force k. Thus, the polarizability « can be written as,

2

_ g
o= 7 (2.23)

with ¢ the shell charge and f the damping due to short range forces. Physically,

the shell can be thought to represent the polarizable valence electrons, while
the core charge is the nucleus plus inner shell electrons. In the literature, a
dipolar shell model is frequently emploved for oxygen in inorganic compounds
[128][130]{131][174], although the polarizability of some of the heavier metallic

cations has also been modelled [134].

Intermolecular Functions

A rigorous explanation of van der Waals attraction was first attempted in 1912
by Keesom, and was based on the interactions between permanent dipoles. A
refinement on this analysis by Debye enabled the effect of induced dipoles to be
quantified. However, the attraction between neutral molecules was not accounted
for until the quantum mechanical treatment of dispersion by London in 1930 [175].
In these works, it was found that the attractive forces approximately follow an
inverse sixth power relationship with distance; this is reflected in the empirical
functions.

A commonly occurring non-bonded form, known as the Lennard-Jones poten-
tial [176], can be written as

E(r) = ;'3-1- - TE; (2.24)

with m and n chosen to reflect the repulsion and van der Waals forces respectively.
For a value of n = 6, m has been shown to have an optimal value of 9 in some
cases [114], and 12 in others [177]. Thus, given the coefficients A and B of the
repulsive and attractive forces, the interaction energy at an arbitrary distance r
can readily be evaluated. In comparable fashion, the Buckingham potential [178]
is defined as,

-z C
E(ry=Ae" % — = (2.25)

where the interacting atom types are separated by a distance r. Thus, the pair-
wise energy between any two atoms may be evaluated if the short range repulsion

parameters A and p, plus the coefficient C of the long range attraction force are
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known. Quantum mechanical calculations on helium by Slater [179] and neon by
Bleick and Meyer [180] have indicated that short range atomic repulsion is ade-
quately represented by an exponential relation. However, as there is no positive
inverse power in the Buckingham potential; the energy as r — 0 experiences a
maximum point past which the potential is no longer repulsive. This shortcom-
ing is usually of little concern as it occurs at reasonably close atomic separations.
Hence, it is unlikely to cause problems at equilibrium or near-equilibrium situa-
tions [181].

Intramolecular Functions

Bonded interactions between two atoms are sometimes described using the ex-

pansion,

1
Fop = 5h(r = 10)? + 2K (r = 7o) + . (2.26)

where r is the instantaneous separation of the bonded atoms and ry is the equi-
librium bond distance. If the bond distance is not stretched significantly from
equilibrium, the third order (and higher) terms may be set to zero so that the
bond stretching is purely harmonic. An additional form of bonded potential, the

Morse potential, may be written as
Eap = Do((1 — e7*r=m0))2 _ 1) (2.27)
with D, @ and ry completely defining the bonded interaction energy. For covalent
bonding between three atoms, a harmonic angle bending potential may be used,
1 2
Eape = Ek(g - 90) (2'28)

where the equilibrium bond angle is 6, the instantaneous angle #, and the restor-
ing force k. It is usual to employ no higher than a four body potential in a
molecular mechanics system. The four body term is also known as the torsional
potential, which may be expressed as,

Eabcd = %k(l + COS(TL¢ — ¢0) (229)

with n the periodicity, £ the torsional constant, ¢ the torsional angle, and ¢, the
equilibrium torsional angle.
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2.2.2 Fitting

Whilst suitable potential forms can be readily chosen for a given system, the
parameters specific to the atomic species involved are generally not known. One
of the most common method of obtaining these parameters is to refine an initial
guess by the method of least squares. This approach assumes that there is a set
of known observables {yf*} which the model must reproduce. The least squares
method seeks to determine the unknown model parameters @ = (x4, T2, ..y Zn)

so that the calculated observables {f¢} minimize some error function [182],

m
Jerr = sz‘(yfbs - yfak)z (230)
=1
with weighting parameters w;, and the usual requirement that,

Aferr A forr

However, the results yielded by this method can be biased considerably by cal-

culated properties with large deviations from the experimental value. This may
not be desirable, particularly if the experimental values have an associated mea-
surement error. Hence, judicious choice of weights (w;) may be required in order
that such points do not completely dominate the approximation.

There are many different methods for finding minima on a given n-dimensional
hypersurface. These can generally be sub-divided into three groups according to
whether the first derivatives, the second derivatives, or neither are used. The
latter includes the simplex search method, which is discussed further in 4.3.1. The
two main first order methods are the steepest decent and the conjugate gradient
techniques [168]. The steepest decent approach involves successive movements
on the hypersurface according to the direction of the gradient. However, this
method can experience oscillations in an extremely narrow minimum. Hence,
the conjugate gradient method is sometimes used as the direction of movement is
computed from the both the gradient vector and the previous direction of motion,
which avoids the oscillation problem {114]. The second derivative methods, which
require the gradients as well, are typically based around the well known Newton-
Raphson method. In this scheme, an iterative procedure is used that generates a

new vector Ty from T; that is closer to the minimum,

! ?
Ty = Ti - ff,,((?:)) (2.32)

Refinements on this basic idea, such as the Quasi-Newton methods, revolve
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around special techniques to estimate the second derivative terms, as the direct
evaluation and subsequent matrix inversion constitute the most time consuming
steps [114]. In general, studies employing second derivative methods have proven
to be particularly efficient in lattice simulations [106][183].

Usually, when searching a hypersurface, the global minimum is sought. How-
ever, in reality there are frequently local minima present. All the above methods
have no intrinsic way of distinguishing a local minimum from a global minimum.
This can present a problem if not dealt with. One approach is to perform more
than one minima search, with each starting from a different position on a grid
that spans the hypersurface domain. By adjusting the mesh size of the grid, the
absolute or global minimum can usually be located. In addition, incorporating
a known atomic interaction function from another (suitable) system can also be
useful. This is because, by holding this known potential fixed, the other potential
functions are less likely to locate to some spurious minima.

Observables

In order to employ a potential model to calculate some unknown quantity with
confidence, it is clear that as many data points as possible should be sampled in
the fitting procedure. For crystal systems, the most common range of observables
employed in fitting are: the lattice parameters, elastic constants, permittivities
and phonon frequencies. However, the main sources of experimental data are the
atomic positions and the lattice parameters. These are weighted higher in the
fitting procedure as they dominate the properties subsequently calculated from
the potential model. Multiple structures may also be fitted in order to increase
the number of sample points for each potential. This assists in avoiding potential
models that only reproduce the correct interaction energy for the few interatomic
distances sampled by one or two structures. This is advisable when attempting
to transfer the model to a different structure, relaxing a cleaved surface, or at-
tempting to model defects, as large motions may occur and the potentials may
well yield erroneous energies.

As previously discussed, in some applications it is not feasible to apply quan-
tum mechanics. However, when experimental data is imprecise or unavailable,
it may be convenient to use classical atom-atom potentials that approximate a
quantum mechanically derived energy hypersurface. The dimension of this hy-
persurface corresponds to the number of degrees of freedom in the system of
interest. Thus, energy calculations for a number of distorted configurations in
the system of interest become the observables to be fitted by a potential model.
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Unfortunately, generating a hypersurface for the solid state is computationally
demanding, and calculations in the gas phase are frequently used instead. For gas
phase calculations involving ionic materials, caution is required as ionicity may
change from the gas to the solid state. However, with the application of suitable
care, this approach has been shown to yield good results. In the work of Jentys
et al. [184], ab initio LDA calculations on clusters of atoms were conducted. The
resulting energy hypersurfaces were employed to generate interatomic potentials
suitable for modelling CdO and CdS inclusions in zeolite. In addition, since no
charge transfer was observed to occur between the inclusions and a zeolite frag-
ment, the assumption of constant ionicity and the use of atom-atom potentials
was justified.

2.3 The Crystal Lattice

Lattice Energy

The lattice energy of a crystal is defined as the energy required to change one
mole of solid at 1 atmosphere and 0K into its gas phase constituents,

+ -

Although lattice energy is positive in this definition it is not uncommon to see
negative lattice energies, which are defined in the reverse sense to the above re-
action. As lattice energy is not directly measurable by experiment, Hess’s law is
often used to describe the disassociation process in terms of several intermediate
reactions, the enthalpies of which are either known or can be determined. This
principle may also be used to calculate an unknown reaction energy in an other-
wise known system, with the use of the Born-Haber cycle [29]. As an example, to
compare the relative stability of two crystal lattices AB,y and AC},), a loop may
be constructed (Figure 2.2). Here, the components Clg and B, are assumed
to be isolated from everything else so that they contribute nothing to AFE. If
the enthalpies of formation of the constituents, and the enthalpy change for some
intermediate reaction paths (z and y) are known, then the quantity AE can be
determined.

In this work, all structures of interest are ionic compounds, with the lattice
energy therefore dominated by the monopole interaction terms. The summation
of the Coulombic interaction of the #* species with all other species can be written

as,
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AC + B
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. - L
A(g} + B(g] + C(@

Figure 2.2: Simple Born-Haber cycle, with 2 and y representing known reaction
pathways.
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Epono = §° ZiZse (2.33)
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With Ze being the charge of the species. In some cases, the symmetry of the

lattice allows the total monopole contribution to the lattice energy to be written

as,

-2
Mﬂ_f_

(2.34)
To

%Z E:nono —
£

where M represents an infinite summation of terms that converges to the Madelung
constant for that particular ionic arrangement. Zte and Z~e are the opposing
Charged species, and ry the minimum lattice separation. In more complex cases,
the evaluation of the monopole energy must be performed explicitly using Equa-
tion 2.33. However, there is a difficulty in that the summation is slowly and
conditionally convergent. The Ewald summation technique [117], which involves
performing a partial transformation into reciprocal space, is a common method
employed to accelerate the convergence.

The non-Coulombic interactions acting upon the i* atom, usually determined
by the potential model, can be written as the summation of the n-body terms,

Egzmz—Coulombz’c —_ Z ¢’a’j(7§iﬂ ?3) + Z éijk(?ﬁ T*’j, _":)k) + ... (2.35)

Jik
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To calculate the net lattice energy it is necessary to sum over the entire number of
atoms, with multiplication by factors of % for two-body terms (% for three body,

and so on) to compensate for duplicate counting,

Etot — %Z (Egnono + Ezzm—()oulmnbic) (236)
1

In most of the simulations in this work, the static lattice approximation is em-
ployed. This means that, unless otherwise stated, all calculations are performed

with no inclusion of thermal effects.

Lattice Vibrations

Lattice types were discussed in section 1.1.1 these are also called the direct lat-
tices. The periodic nature of crystalline materials means that analysis in Fourier
space is common. It is therefore more convenient to work in reciprocal space.
The unit cell vectors (@, _b>,"5’) may be mapped from real space to reciprocal
space using the following transformation |[1],

- -
— b x7¢ — T X — T x b
k{=2 ko=2n kqg=2 2.37

The vibrations in a crystal lattice may be treated as oscillations arising from the
motions of atoms. As such, a quantum treatment of these oscillators shows that
vibrations are discrete, with elastic energy levels E = (n + 3)hw [185]. Here, w
is the angular frequency and n is the quantum number of the vibrational mode.
In a crystal, the wave vector _I? (corresponding to the mode of vibration) must
satisfy the periodic boundary conditions. For a cubic lattice of volume V = L3,
the number of modes at a given frequency (w) is given by the density of states,

Dw) = (2—[7’7)3 fw Bk (2.38)

where the integral is over the surface of constant w in Fourier or reciprocal space
[186]. For a given potential model describing the interactions in a crystal lattice,
the density of states function can be computed for a range of frequencies. The
resulting phonon spectrum can then be compared to experimental vibrational
data to verify the atomic and molecular interaction terms in the model.
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2.4 Surfaces and Morphology

2.4.1 Morphology Prediction

A surface may be modelled as a stack of interacting layers which are classified
as belonging to one of two different region types. The uppermost layers are
designated as region 1, and here the atoms are allowed to move until the net
force acting upon them converges to zero. Region 2 comprises the layers beneath
region 1, and here all the atoms are held in fixed positions. Thus, when both
region types are constructed with sufficient depth, region 2 simulates the effect
of the bulk crystal on the surface layers.

Extending this concept of constructing a surface from layers, it is useful to
define the attachment energy of a plane (hkl),

o0
EM =Y (2.39)

i=1
with E; being the interaction energy (per molecule) between a growth slice of
thickness dy and the i layer [141]. Thus, the attachment energy corresponds
to the energy released when a complete growth slice precipitates on the crystal
surface. For each face, the higher the absolute value of the corresponding E,u
the faster this surface will grow. By ranking each face according to the inverse of
its growth rate, the growth morphology may be consiructed [27].

The surface energy for a plane (hk!) can be written as:

hki > Eice — Boutk

By = St (2.40)
where E%;., is the energy of the i slice in region 1, Eyy is the energy of an
equivalent slice in the bulk and A**! is the surface area. The equilibrium mor-
phology is the habit a crystal of given volume takes according to the minimization
of its net surface free energy [28]. The surface energy is typically used in place of
the surface free energy.

The visualization of a morphology prediction is typically accomplished by
means of the Wulff construction [187], which assumes that the shortest distance
from the centre of a crystal to each of its bounding facets is proportional to the

rate of growth (or surface energy) of that face.
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Figure 2.3: Type I surface, all possible cuts are valid.

2.4.2 Surface Types

The most common means to generate a surface is to cleave the bulk using a
planar cut, defined by the Miller index (hkl) of that face. However, the Miller
index alone cannot be used to define a crystal surface. This is because there may
be more than one unique surface configuration depending upon the perpendicular
location of the cleavage plane. Thus, in order to completely define a surface, a
shift parameter must also be specified. This is commonly written as a fraction of
the dp; value. The choice of shifts is limited to those which do not have a dipole
moment normal to the newly created surface, as discussed below.

For ionic materials, there are three different types of faces. These surfaces
may be classified according to the complexity of the layer structure. Type I faces
are the simplest, the arrangement of ions means that no matter where the bulk
is cleaved the surface will not be polar (see Figure 2.3). However, some surfaces
can be polar or non-polar depending on where the bulk is cleaved, these are the
type II faces (Figure 2.4). A type IIT surface is composed of alternate, evenly
spaced layers of oppositely charged species (Figure 2.5). This results in a polar
surface no matter where the bulk is cleaved. It can be shown that a surface
with a perpendicular dipole moment has an infinite surface energy [188], which
is not physically realistic. This does not mean that these surfaces do not occur
in nature, but that some neutralization mechanism is necessary. For a computer
simulation, polar surfaces are usually neutralized by mechanical means.

A common technique to accomplish this neutralization can be demonstrated

by writing a type III surface as a stack of 2n alternating layers of oppositely
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Figure 2.4: Type II surface, cut 1 is invalid, but cut 2 is valid.

e L1 | ) (—
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Figure 2.5: Type III surface, no cuts are valid.
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charged species (A and B). Let the distance between layers be Az. As the 2n
layers must have a net charge of zero, the total charge on a row of A (Q4) is
equal and opposite to the total charge on a row of B (@5) so that Q4 = —@s.
Also, the dipole moment is independent of origin, and will be chosen to coincide
with the bottom of the surface region, which is the first row of A. Thus, the
contribution to the dipole moment perpendicular to the surface by all A4 atoms
is given by,

Daz = 20,Qali—1)0z

: (2.41)
= QAAZ 2:?:'l(z - 1)
while the contribution from all B atoms is,
Dpz = TLQslli- Hod
= QB+ Qplz T, (i—-1) (2.42)
= Qpies — Da-z

with the total perpendicular dipole moment,

E’E = ﬁA.E-l- BBE (2.43)

Comparing the result of 2.42 to equation 2.43 it is apparent that the total

perpendicular dipole moment can never be zero despite the choice of @4, @5, n

iz
2

half of the uppermost (n**) layer of B were removed, then the dipole would be

or Az, as the contribution from layers of B is too large by Qp25%. However, if
reduced by a factor of 2Qz(n — %)/_\z, which is close to what is desired. Since
the net charge must be conserved, this half layer can only be relocated elsewhere
in the system and not destroyed. If the new location is some layer j then the
contribution to the perpendicular dipole moment from all B becomes,

Dpz = Quhz(B—4n-1)+1G-1)+Qsbz Thyi—1)

2 . : (2.44)
= Qplz(%)+Qelz Y, (i—1)

Hence, setting Dz=0 requires that j = 0. Thus the half plane of species from
the top layer should be moved to the layer directly below row 1, which is the
bottom of the surface region.
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2.5 Dynamics

One of the earliest applications of computational chemistry was the simulation
of a simple liquid composed of hard spheres {115]. Today, computing power has
increased to the point where it is possible to simulate the behaviour of sclutions
containing thousands of atoms and molecules. Although this represents only a
very small sample of liquid, the use of repeated images (periodic boundary condi-
tions) can approximate the effect of a surrounding bulk liquid on a smaller explicit
simulation cell. Techniques in seiting up and running a dynamics simulation differ
in several ways from the solid and surface modelling cases discussed previously.
Most importantly, the rapid motions and complex structuring of components in a
fluid necessitate additional care when setting up the simulation. This is to ensure
that any data extraction, which will be statistical in nature, yields an unbiased

and representative sample of ’true’ behaviour.

2.5.1 Initialization

Before any liquid simulation and subsequent data extraction can be performed,
the initial placements of all the atomic and molecular solution species must be
assigned. Typically, no data is available in order to generate some reasonable
initial system state. This means an improbable choice of starting position may
trap the simulation and limit the number of solution configurations that could
possibly occur. This is generally avoided by performing multiple simulations
from different starting configurations, and comparing the results. Algorithms
for creating an initial configuration are usually variants of the lattice approach.
Here components are placed at evenly spaced lattice points in a box. The lattice
separation is chosen to avoid overlap between neighbouring molecules. Clearly,
this is an unrealistic state for any liquid and a period of equilibration is needed,
the length of which is dependent on two chief aspects. Firstly, the ordering in
the initialization lattice must have vanished, and secondly quantities such as the
pressure and potential energy should have reached some steady state value [115].

2.5.2 Equations of Motion

Dynamics is principally concerned with how the positions, velocity and accelera-
tion of a group of NV particles changes, given some initial state. Thus, the problem
can be reduced to solving for z)(t + At) given e(t), with i = 1..N and the
derivatives 7. Many such methods are built around the Taylor expansion [182],
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z(t+ At) = 2(t) + %—tm’(t) + %—rﬁx”(t) + ... (2.45)
An example of such a numerical method is the Runge-Kutta technique, which
is very robust and often used as a starter for the faster but more sensitive al-
gorithms such as the Adams-Bashforth-Moulton predictor-corrector [153] or the
Gear method [189]. These latter methods are more efficient as they employ ex-
trapolation techniques using previous data points. However, starter methods are
still required in order to supply the necessary information for initializing the first
cycle of the more complex methods. In addition, the robust starting integra-
tor may also be useful when the functions that are to be integrated are rapidly
varying and cause numerical instability in the predictor-corrector cycle [182].

An important consideration in any simulation is the choice of step size, which
is a compromise between accuracy and speed. Typically, a step size that is approx-
imately a tenth of the period of the smallest event is chosen; giving a resolution
of around 10 data points. For flexible molecules, a time step of about 1 fs is
frequently used [114]. However, this is complicated by the fact that the events
requiring the small time scale may be quite rare; such as molecular collisions in
a low density environment. This can lead to long and inefficient simulations, for
which the step size cannot be shortened without invalidating the results. Some
methods, such as the Runge-Kutta-Fehlberg method include techniques to adjust
the step size when necessary [182].

In the case of molecular systems, some coordinates are redundant, due to
atoms that are connected to each other. For example, instead of 3N coordinates
describing a rigid molecule that has fixed bond lengths, only 3 coordinates de-
scribing the position of the center of mass and 2 describing orientation are needed.
Thus, a transformation to generalized coordinates g; is performed to eliminate the
dependent coordinates,

G = flz1, .., 2n) ) (2.46)

which also have generalized associated forces Q;,

=1

T, dx
=3 F=2 2.4
Q=2 Fg (2.47)

Classical mechanics employs the Lagrangian equation [190] in order to formulate

a system of simultaneous equations,
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with g; the associated time derivative of ¢;, and L is the Lagrangian function
defined as the kinetic energy minus the potential energy, L = K — U.

2.5.3 Simulation Sampling

After equilibration, measurements of some quantity of interest are typically made
at periodic intervals. Clearly, there are an infinite number of possible states ®(t)
for a system comprising N particles, each with an associated position, velocity and
acceleration vector. As any observation is entirely dependent upon the particular
state the N particles are currently in, it is usual to determine the time average of
the desired observable R,

R = lim % /;afz[@(t)]dt (2.49)

T—o0

Where R is the functional corresponding to the observable of interest. In practice,
sampling is performed from a group, or ensemble, that is representative of the
external conditions. For example, almost all simulations impose the restriction
that the number of particles must remain constant. Ensemble types are denoted
by whichever quantities are held fixed. Some of the most common ensembles used
are: NVT, NVE, NPT and the NPH, with N the number of particles in the
system, V' the volume, T the temperature, E the energy, P the pressure and H
the enthalpy.

Statistical mechanics allows certain properties to be calculated from the par-

tition function @ (also called the sum over states), such as the internal energy,

olnQ
— 2 [P
U=kT ( o7 )V (2.50)
the enthalpy,
alnQ oln()
H = kT? | =X .
kT (m,, )T+kTV( = )T (2.51)
and the Gibbs free energy,
G = ~kTinQ + kTV 9inQ (2.52)
ov /.

These results represent what a real experiment would be expected to yield under
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the same ensemble conditions. However, one of the basic principles of statistical
mechanics, the ergodic hypothesis, states that the ensemble average is the same
as the time average [114]. As equation 2.49 is readily evaluated, it is usual to
compute the time average of some quantity in a simulation and assume that this

approaches the ensemble average as the sampling time is increased.

2.6 Computer Software

2.6.1 Computational

All computer codes were run on UNTX machines. Primarily this included several
Silicon Graphics workstations, and also some Intel Linux machines. Ab initio
Hartree Fock calculations were performed using the CADPAC code from Cam-
bridge [191], while density functional calculations involved the DMOL package
from MSI [192]. Both these codes were only executable on Silicon Graphics ma-
chines. The semi empirical code employed was MOPAC [193], which was run on
both Silicon Graphics and Linux machines. Dynamics studies were accomplished
on the Silicon Graphics machines, using the DISCOVERS5 code from MSI. Whilst
there are a host of free Molecular Dynamics codes that run on Linux platforms
[193], many do not have the flexibility and extended range of features found in
the commercial MSI package. Solid state molecular mechanics calculations were
performed on both Intel and Silicon Graphics machines with GULP [194] and
MARVIN [141] programs. With the exception of the MSI and CADPAC codes,
all the above packages are freely available for academic use.

2.6.2 Data Analysis

The computations employed in this work often yielded large amounts of raw
data that required some processing for visualization and interpretation. The Perl
(practical extraction and report language [195]) proved to be a useful tool in
parsing and processing large data files. Typically, codes were written in order
to generate information that could be easily displayed in (for example) a typical
spreadsheet program. Perl may be regarded as offering a sophisticated array of
text parsing operators, useful in automating the process of sifting through large
numbers of data files for only a few values. Tt also offers adequate mathematical
manipulation tools, albeit with interpreted speed performance. As Perl may be
interfaced with C, the relative slowness of Perl under computationally demanding

conditions is not a major problem. In addition, there are Perl compilers available,
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however they are relatively new and at present not quite as stable as their inter-
pretive counterparts. Perl is freely available and runs on a variety of platforms,
including Macintosh, MSDOS, 0S/2, VMS and various UNIX platforms. While
Perl’s control structures are very similar to those in C, it is much more suited
to manipulating strings containing both text and numerical data. Most of the
code written as part of this project was in Perl, with one important exception,
the molecular dynamics initialization (MDI) program, where the higher speed
of compiled C code in dealing with mathematical manipulation of arrays was
thought to be important. These codes are found in the Appendix, and described

in more detail in later sections.

2.6.3 Visualization

All images created for this work were made on a Pentium 200MHz machine, run-
ning RedHat Linux 5.0 [196]. A Perl script was written to employ the POVRAY
[197] rendering code to generate the molecular images, whilst the GIMP [198]
paint program was utilized to create all other pictures. Morphology visualization
was accomplished with the JSHAPE Java code [199]. All these packages are freely
available.
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Chapter 3

Empirical Potential Fitting

3.1 Hydroxide Compounds

3.1.1 Background

Some important areas of modelling that are applicable to the crystal growth in-
dustry include, morphology predictions, impurity effects and solution structuring.
For many such studies, the relevant processes occur on far toc macroscopic a level
to involve quantum mechanics as a predictive tool. The development of a simpli-
fied model for gibbsite and related compounds is therefore of primary importance.
Throughout this project, the construction of an accurate interatomic potential
model for gibbsite has occupied a substantial portion of the total effort. Much of
the work involved feed-back stages of model development, followed by subsequent
correction as a result of experimental input. The final gibbsite model is presented
in this chapter.

In the literature, three prior efforts to develop a potential model for gibbsite
exist. The model by Baram and Parker [200] was derived from earlier studies
by Lewis and Catlow [127] and was primarily constructed to examine hydroxyl
defects at silicate surfaces and within the bulk. However, it was found that the
model works quite well for gibbsite and bayerite, but in both cases the ¢ lattice -
parameter is significantly larger than the experimental crystal structure. Molec-
ular dynamics studies by Teppen ef al. [137] were accomplished with & gibbsite
potential that reproduces the lattice constants to a high degree of accuracy. How-
ever, the authors indicate that the hydrogen bonding pattern between the layers
deviates significantly from the experimental gibbsite crystal structure. This pro-
duces a monoclinic angle that is too large. Lee ef al. [152] also developed a
potential set for gibbsite that was found to be sufficient for qualitative morpho-
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logical studies. However, more detailed work with this model is not feasible as it

produces a significant error in the monoclinic angle.

3.1.2 Method

As the potential models in the literature all fail to accurately reproduce the lat-
tice parameters of gibbsite, a new model was developed. In addition to gibbsite
and bayerite, the crystal structures of sodium, potassium, calcium and magne-
sium hydroxides were also fitted. These structures provided a means to test the
robustness of the hydroxide model developed for the two polymorphs of AI(OH)s.
In order to fit these structures, the use of a formal charge for aluminium was
mandatory. This follows from the fact that it is difficult to transfer potentials
between ionic metal hydroxides if the net charge on the OH group is not -1.
However, the usage of partial charges within the hydroxyl group was adopted by
necessity, as the hydrogen bonding interactions are quite complex in the AI{OH);
polymorphs.

3.1.3 Results

Initially, the potential model was developed in order to reproduce the gibbsite
and bayerite crystal lattices, and their respective hydroxide stretching frequencies.
Presented in Table 3.1 are the potentials developed for gibbsite and bayerite. Note
that the Morse bonding term in the hydroxide ion acts between both the oxygen
and hydrogen cores, whereas all other oxygen potentials (including the oxygen-
hydrogen intermolecular Buckingham term) have the conventional behaviour of
acting upon the shell. This approach was found to give better results when
attempting to maintain hydroxide bond lengths and stretching frequencies. Also,
as maximum transferability of the model is desirable, an aluminium oxy-hydroxide
structure (diaspore) was also fitted.

Due to the choice of charge model, it was relatively straightforward to extend
the Al{OH); potential model to alkali metal hydroxides. The hydroxide terms
and charges have been taken from the above results and directly substituted into
the additional structures, so that only the cation terms were fitted. The final
potentials are shown in Table 3.2. Cation to hydrogen potentials were found to
be necessary for this model. This is most likely a compensation due to the partial
charge model used for the hydrogen, resulting in a lower Coulombic repulsion
with the cationic species than actually occurs. Cation to cation potentials were
in general not required, with sufficient repulsion experienced due to the formal
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Atom types Interaction parameters
Buckingham
A (V) | p{A) [C (eV AP)
AlO 1342.86 | 0.2944 0.0
0-0 9999.97 | 0.1490 17.0
O-H 235.00 | 0.2500 0.0
Morse
D, (eV) |a (A | 4 (A)
O-H 5.4246 | 2.2682 0.95
Spring constant
k (eV rad—?)
O 60.1
Coulombic
q
Al core 3.000
O shell -2.366
O core 0.948
H core 0.418

Table 3.1: Potential parameters from the gibbsite and bayerite dual fitting results.

Atom types Buckingham parameters
AV) | p(A) [ C (eV.AF)
Na-O 939.77 | 0.2978 0.0
Na-H 244.06 | 0.2843 0.0
Mg-O 967.90 | 0.3017 0.0
Mg-H 480.42 | 0.3048 0.0
K-O 3209.90 | 0.2810 0.0
K-K 738.33 | 0.3867 0.0
K-H 404.67 | 0.2041 0.0
Ca-0O 1356.84 1 0.3208 0.0
Ca-H 323.44 | 0.3016 0.0

Table 3.2: Buckingham potential parameters for other hydroxides.
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| experimental values | calculated values
e [b@A) [ eA)] 8C) JaB) oA BT B0
gibbsite 8.68 | 5.08 { 9.74 | 9454 8.81 499 | 9.79 | 95.95
bayerite 506 | 8.67 | 9.42 | 90.26 506 | 881 | 9.49 { 90.97
diaspore | 4.40 | 9.42 | 2.84 - 4.34 | 938 | 2.92 -
NaOH 3.40 | 11.38 | 3.40 - 3.43 | 11.40 | 3.36 -
Mg(OH), [ 3.13 | 3.13 | 4.71 - 3.10 { 3.10 | 4.76 -
KOH 5.89 3.94 | 7.72 | 110,30 || 5.97 | 3.95 7.65 | 110.60
Ca(OH), | 3.59 | 3.59 | 4.91 - 3.57 | 3.37 | 494 -

Table 3.3: Error in computed lattice parameters using the common hydroxide
model. Values not shown are zero by virtue of lattice symmetry.

| experimental value (cm™?) [ calculated value (cm™T)

gibbsite 3617 3576
bayerite 3534 3579

Table 3.4: Hydroxide stretching frequencies (cm™?).

charge model. The one exception was potassium, a fact which may be attributed
to the larger radius of the ion.

These potentials reproduce the lattice parameters of the fitted crystal struc-
tures to a high degree of accuracy. In Table 3.3, the computed lattice parameters
are compared to the experimental values. In almost all cases, the error is no more
than 2% of the measured values. In addition, the deviations in lattice parameters
were generally sought to be of both positive and negative sign; as this aids in
maintaining the unit cell volume. Of considerable importance is the ability of
the gibbsite model to maintain the monoclinic angle at nearly the correct value.
As previously mentioned, the complexity of the interlayer hydrogen bonding has
previously led to considerable difficulty in preventing excessive sliding of the dou-
ble OH layers, which in turn causes an artificial increase in 3. The calculated
frequencies of the hydroxide stretching in gibbsite and bayerite were also com-
puted and compared to experimentally measured values taken from [201]. These
are shown in Table 3.4. Although the frequencies are not an exact match, they

are of similar magnitude.

3.1.4 Discussion

The initial parameters for the gibbsite fitting were taken from gas phase calcula-
tions between pairs of atoms. Ab initio Hartree-Fock calculations of the energy at
various separations of AL-O, O-O and O-H atom pairs were performed. Several
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Figure 3.1: The calculated bulk structure of gibbsite, viewed down the ¢ axis.

basis sets were examined, with the final results taken from the 6-31G** basis
set with MP2 correction. These values were fitted using the GULP program in
order to make a first guess at suitable parameters for the potential model. Tt
was expected, due to the simplicity of the approach, that these values would not
closely resemble the actual pairwise interactions in the gibbsite lattice. Conse-
quently, significant changes were introduced to the potential model during the
fitting process.

To examine how well the model reproduces the structure of gibbsite, the
final optimized configuration was examined. The generated crystal structure is
shown in Figure 3.1, whilst the experimental structure is given in Figure 3.2.
The aluminium and oxygen pseudo-hexagonal framework has been reproduced
quite well. The only significant deviation is the slight distortion of the pseudo-
hexagonal rings. This has some impact on later studies involving cleavage of the
bulk structure, particularly on planes that are orthogonal to the basal (002) face.

The O-H bond distances in the experimental gibbsite structure (with quan-
tum mechanically derived proton positions) were compared with the computed
structure, as shown in Table 3.5. Clearly, the calculated values are all slightly too
high. However, tightening the Morse potential to compensate for this deficiency
has the consequence of adversely affecting the stretching frequencies as well. A
similar form of behaviour also occurs in the calculated lattice parameters. That
is, adjusting a potential parameter to improve one lattice constant will increase
the error in another. This suggests that a local minimum in the total devia-
tion (sum of squares) has been achieved. Further refinement may be possible,
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Figure 3.2: The experimental bulk structure of gibbsite, viewed down the ¢ axis.

Hydroxide bond distances

| experimental (A)

calculated (A)

0.9674
0.9755
0.9782
0.9740
0.9798
0.9826

0.9927
0.9976
0.9969
0.9986
0.9940
0.9976

Table 3.5: Bond length comparisons for hydroxyl groups in gibbsite. The ex-
perimental values were taken from Saalfeld’s structure determination [50], with
quantum mechanically corrected proton positions calculated by Gale [52].
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although it is likely that the goodness of fit is close to the achievable limit, given

the classical interaction model used.

3.2 Oxalate Compounds

3.2.1 Background

Although a principal aim of this project was the development of a potential
model for gibbsite, other compounds are of interest due to their effect on gibbsite
precipitation in the Bayer process. Sodium oxalate can coprecipitate with gibbsite
in alumina refining, degrading the product and resulting in higher production of
undesirable fine material. To avoid this problem the refineries are run at far from
optimum conditions, reducing alumina yield. A separate oxalate removal process
is required, representing a huge cost in lost production and increased refining
costs for the alumina industry [202]. In addition to the industrial importance of
sodium oxalate, latter studies were conducted involving a successful predictive
model utilizing both gibbsite and oxalate potentials (Section 4.3). The theme
of transferability and parallel development is a desirable step in the direction of
future effort. Hence, although oxalate and gibbsite models were not directly used
in a joint simulation, this will be attempted in the future.

Consistent with the principle of fitting to as many observables as possible,
the sodium oxalate potential model was developed in order to reproduce the
crystal structures of calcium and potassium oxalates as well. Oxalate salts are
also of great biological, medical and industrial importance. Calcium oxalate is
the major component of more than 70% of kidney stones [203]. In 1981, 1%
of all hospital admissions in the USA were for kidney stone problems. This
represents an enormous health care cost and extensive studies into calcium oxalate
crystallization and its inhibition have been conducted. An understanding of all
aspects of the underlying mechanisms of stone formation would provide invaluable
information in efforts to prevent its occurrence [204].

The generation of an accurate, transferable computer model of the oxalate
species and its interaction with metal ions is a vital step to modelling crystal
growth in different environments for many different oxalate salts. Modelling the
growth mechanisms of oxalate salts and how they are modified in the presence
of foreign molecules and ions will lead to the design of novel crystal growth
modifiers. The technique of generating interatomic potentials from high quality

ab initio calculations rather than fitting to experimental data is becoming more
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widely utilized. In recent years a lot of work has been conducted on zeolites in an
attempt to predict the structure and properties of as yet unsynthesized zeolites.
Ermoskin et el. [205] used ab initio calculations to derive a potential for hydroxyl
groups. Hill and Sauer [206] derived a consistent force field for the simulation of
protonated alumina silicates on the basis of ab initio calculations. Hartree-Fock
calculations have been used to obtain potential parameters for alumina which are
superior to empirical parameterizations [207).

Derivation of potentials for organic molecules has also been a major field of
study. The structure of tri-tert-butylmethane was finally resolved with the aid
of quantum mechanically derived potentials [208]. Development of an ab initio
force field for polycarbonates occurred after preliminary quantum mechanical
calculations on several smaller compounds: carbonic acid, methyl and dimethyl
carbonates, phenyl carbonate and 2,2-diphenylpropane [209]. Development of a
force field from the ab initio potential energy surfaces has been used for molecular
simulations of alkanes [210].

3.2.2 Method

The problems encountered in modelling molecular monoanions are well docu-
mented [211]. However there have been few publications addressing the inherent
problems in modelling molecular dianions [212]. During the investigation of the
oxalate dianion ([C20,4)?7), it was found that the techniques used for monoan-
ions failed to produce a stable oxalate dianion. The principal difficulty lies in
stabilizing the excess negative charge on the ion. In oxalate compounds, this in-
stability is compensated for by the presence of a surrounding lattice. Tt has been
suggested that a point charge array can be utilized to mimic the electrostatic
influence of the crystal lattice [106). The choice of point charge configuration is
therefore made so that the molecular geometry approximately matches that in
the observed crystal structures. In addition, careful examination of the orbital
energy levels was required to monitor the excess negative charge on the oxalate
dianion.

It was decided to employ several quantum mechanical models to study the en-
ergetics of the oxalate dianion. Consequently, an assessment of the most suitable
method for intramolecular potential generation was made. Three quantum me-
chanical techniques were used to reproduce the geometry of the oxalate dianion.
These were the Hartree-Fock, density functional and semi-empirical approaches.
The respective packages employed were CADPAC, DMOL, and MOPAC. It was
decided to investigate the 6-31G basis set for the Hartree-Fock, and the corre-
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[ Structure | C-C Bondlength (A) | C-O Bondlength (&) | Reference |
sodium oxalate 1.568 1.253/1.265 [213]
potassium oxalate 1.581 1.256/1.262 214
calcium oxalate 1.563 1.254/1.257 215
averaged oxalate 1.564 1.251 216

Table 3.6: Experimental geometry of oxalate compounds.

sponding DN basis set for density functional techniques. In addition, the effect
of including polarization functions and MP2 correlation correction was investi-
gated. Diffuse basis sets were also examined, but discarded due to poor oxalate
geometry. However, diffuse functions were better at accommodating the excess
negative charge on the oxalate ion as would be expected.

After the determination of a suitable point charge array, the generation of
energy hypersurfaces for the oxalate dianion was accomplished. Molecular distor-
tions, including bond stretching, angle bending and molecular twisting (torsion)
were performed in order to construct a suitable set of intramolecular potentials.
These were then transferred as fixed potentials into further fitting of several ox-
alate structures, namely; sodium oxalate, potassium oxalate monohydrate and
calcium oxalate monohydrate. The quality of the resulting interatomic potentials

was assessed on the basis of how well they reproduced the crystal structures.

3.2.3 Results
Vacuum Geometries

Experimental oxalate geometries were examined in order to establish an estima-
tion of the desired quantum mechanical geometries. The experimentally deter-
mined bond lengths for the oxalate dianion in sodium oxalate, potassium oxalate
monohydrate, calcium oxalate monohydrate and as an average from nine crystal
structures are given in Table 3.6. These data suggest that a typical carbon-carbon
bond length might be expected to be 1.57A, with the carbon-oxygen bond length
around 1.254 or 1.26A.

Table 3.7 gives the oxalate geometries calculated using the three methods in
vacuum. Both the Hartree-Fock and density functional methods overestimate
the length of the carbon-carbon bond, whilst the semi-empirical method gives
an underestimate. In addition, the carbon-oxygen bond length is overestimated,
except for the Hartree-Fock calculations omitting the MP2 correction. As the
errors are quite large for a quantum mechanical approach, this suggests that
further effort is needed before intramolecular potentials describing the energetics
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Method used Basis set [ C-C distance (A) | C-O distance (&)
Semi-empirical (AM1) 1.5405 1.2755
Hartree-Fock 6-31G 1.5817 1.2662
6-31G MP2 1.6045 1.3106
6-31G* 1.6032 1.2427
6-31G* MP2 1.6072 1.2740
Density Functional DN 1.6821 1.2906
DNP 1.6855 1.2738

Table 3.7: Oxalate geometries, calculated in vacuo.

are sought.

In the absence of other charges, Coulomb repulsion between the ends of the
oxalate dianion becomes the dominant force, causing this stretching of the molec-
ular dianion. However, the worst problem is with the Highest Occupied Molecular
Orbital (HOMO) energies. A previous study involving dianions [212] has shown
electrons can be ejected from the HOMO. Our calculations of the energy levels
of the oxalate dianion indicates a similar instability, as the HOMO is positive.
Ejection of an electron will reduce the overall charge on the dianion and reduce

the bond strain, increasing the stability in vacuum.

Point Charge Arrays

The oxalate dianion, like O?~, is not stable in vacuum, but requires the stabilizing
presence of a surrounding solution or crystal structure for molecular integrity.
To simulate this a point charge array was placed around the oxalate dianion.
The electrostatic potential experienced by an oxalate dianion in a crystal lattice
was calculated using GULP. An infinite periodic sodium oxalate crystal with
one missing oxalate dianion was constructed. The electrostatic topography in the
region of the missing oxalate dianion was then calculated. The point charge array
was constructed to qualitatively reproduce the electrostatic potential that an
oxalate anion would experience in a crystal structure. The point charge array was
altered manually until the HOMO energy was negative and the calculated bond
lengths matched those observed experimentally. The electrostatic topography
around the oxalate dianion in the point charge array was found to reasonably
match that obtained using GULP in the crystal lattice.

The construction of the point charge array required the use of fractional point
charges to give a sufficiently accurate array whilst balancing the double neg-
ative charge associated with the oxalate dianion. Unfortunately MOPAC, the
semi-empirical package, does not have facilities for fractional point charges and
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Figure 3.3: Crystalline electrostatic topography in the plane of a removed oxalate
dianion (sodium oxalate).

therefore the point charge array could not be constructed using MOPAC. The
electrostatic topography around a removed oxalate dianion in crystalline sodium
oxalate is shown in Figure 3.3. In addition, the out of plane structure was ex-
amined by constructing contour maps at right angles to the above plane (Figures
3.4 and 3.5).

The geometry of the oxalate anion was recalculated in the presence of the
point charge array using both Hartree-Fock and density functional methods. Six
point charges, possessing the same symmetry configuration as the oxalate dianion,
were situated as shown in Figure 3.6. To compare the effect of the point charges
with a potential felt by oxalate in the sodium oxalate lattice, the electrostatic to-
pography within the array was calculated. In Figure 3.7 the in-plane electrostatic
field is shown, whilst Figures 3.8 and 3.9 illustrate the out-of-plane electrostatic
variations. Note that the point charge array does not precisely mimic the cal-
culated topography and contour maps in the sodium oxalate structure. However,
this is desirable as the local electrostatic potential will change between different
oxalate structures. Hence, precise reproduction of the electrostatic field would
hinder the development of a transferable oxalate potential.

The distortion in contour maps of the 'real’ system from the more symmetric
'idealized’ electronic system results from additional oxalate species in the real
lattice being sufficiently close to impact on the topography. This is difficult
to simulate in the point array case, as charges that are too close may artificially
remove some of the electronic charge density from the dianion. Indeed, this factor

also contributes to the success of the smaller basis sets compared to the larger
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Figure 3.4: Electrostatic contour map at right angles to the plane of the oxalate

site; sliced through a carbon atom.
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Figure 3.5: Electrostatic contour map at right angles to the plane of the oxalate
site; sliced through two oxygen atoms (attached to the same carbon atom).
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Figure 3.6: Oxalate dianion in a fractional point charge array.
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Figure 3.7: Electrostatic topography within the point charge array.
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Figure 3.8: Point charge electrostatic contour map at right angles to the oxalate
site; taken through the plane of a carbon atom.
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Figure 3.9: Point charge electrostatic contour map at right angles to the oxalate
site; taken through the plane of two oxygen atoms (attached to the same carbon).
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Method Basis C-C bondlength (A) | C-O bondlength (A)
HF ab initio 6-31G 1.5710 1.2434
6-31G MP2 1.5975 1.2923
6-31G* 1.5947 1.2271
6-31G* MP2 1.6040 1.2602
Density functional DN 1.5826 1.2905
DNP 1.5903 1.2731

Table 3.8: Oxalate geometries in a point charge array.

more diffuse ones. The results from the minimization of the oxalate dianion in
the point charge array are given in Table 3.8. In all cases the HOMO energy was
found to be negative, indicating the formation of a stable molecular bond. The
bond lengths calculated using the 6-31G basis set without the MP2 correction
are close to those observed experimentally. The carbon-carbon bond length is
only slightly longer and the carbon-oxygen bond length only slightly shorter than
the average. The density functional bond lengths for the DN basis set are not as
close, but are still in good agreement.

The 6-31G basis set without MP2 adjustment most accurately reproduced
the experimental oxalate geometry. The 6-31G* basis set increased the carbon-
carbon bond length and decreased the carbon-oxygen bond length farther from
their respective experimental values. The MP2 correction worsened the calculated
model, increasing both the carbon-carbon and carbon-oxygen bond lengths. For
the density functional calculations, the DN basis set was more accurate for the
C-C bond length, but the DNP basis set more accurate for the C-O bond length.
The polarization functions failed to improve the calculated oxalate geometry. This
may be due to the approximate nature of the electrostatic topography produced
with the point charge array, and nearness of the point charges adversely affecting
the polarization contributions.

Empirical Potential Derivation

Having calculated the optimized geometries using point charge arrays, it was nec-
essary to generate a potential energy hypersurface to which intramolecular poten-
tials could be fitted. Hypersurface generation involved randomly perturbing the
positions of the C and O atoms in oxalate by up to 2.5% and computing the re-
sulting energy. Two separate hypersurfaces were generated from 60 perturbations
of the oxalate dianion. The corresponding energy of each perturbation was deter-
mined using the 6-31G basis set {without MP2 adjustment) for the Hartree-Fock
hypersurface, while the DN basis was set used to calculate the density functional
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Figure 3.10: Energy residuals for the fitted potential models, compared against
the respective quantum mechanical calculations.

hypersurface.

With the use of the GULP program, intramolecular potentials were derived
from both hypersurfaces. Harmonic terms were found to be successful in describ-
ing the two body bond and three body terms. As a measure of the goodness
of fit of each potential model to the respective hypersurface, a plot illustrating
the residual energy for all oxalate perturbations is displayed in Figure 3.10. The
intramolecular potentials reproduce the respective hypersurfaces to good agree-
ment, with the RMS value of the error being 0.45 kJ /mol in both cases. The
derived potentials are given in Table 3.9.

‘The above intramolecular potentials were then employed to accurately repro-
duce the crystal structures of three oxalate salts. Multiple related structures
were fitted in order to test the robustness of both intramolecular models. Thus, a
transferable potential model for sodium, potassium and calcium oxalates was de-
veloped by the method of simultaneous fitting. This generated a potential model
for oxalate which could be used for other oxalate systems, but which may not nec-
essarily have been the best possible model for each individual oxalate compound.
However, the benefits of producing a transferable potential heavily outweigh this
loss of accuracy.
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| Atom types Hartree-Fock density functional

harmonic parameters
E(eVAS r(A) | k(eVA?) 1y (A)
C-0 60.74 1.24 52.72 1.28
C-C 26.47 1.59 29.29 1.56
three body parameters
k (eV deg.”®) 6 (deg.) [ k (eV deg.™%) 8, (deg.)
0-C-0 7.17 127.80 6.90 127.20
0-C-C 7.29 116.40 12.04 116.80
torsional parameters
k (eV deg."%) ¢ (deg.) | k (eV deg.”?) ¢y (deg.)
0-C-C-0 0.01968 0 0.02014 0
C-C-0-0 0.2689 0 0.2961 0

Table 3.9: Oxalate intramolecular potentials.

f Atom types | Interaction parameters
harmonic
k (eV A™%) ro (A)
H-O 23.717 0.96
three body
k (eV deg.™*) | 8y (deg.)
H-O-H 2.4505 104.5

Table 3.10: CVFF water intramolecular potentials.

The sodium oxalate unit cell parameters and atomic coordinates were obtained
from the X-ray diffraction study of Reed and Olmstead [213]. Potassium oxalate
monohydrate data was obtained from the neutron diffraction study of Sequeira,
Srikanta and Chidambaram [214]. The calcium oxalate monohydrate data was
obtained from the from the X-ray diffraction study of Tazzoli and Domeneghetti
[215]. In fitting calcium oxalate monohydrate, the partial occupancy of the water
oxygens was neglected due to limitations of the GULP code when dealing with
fractional occupancies. The dominant positions were assigned an occupancy of 1.

Initial values of the oxygen potentials were taken from the sulfate Bucking-
ham model of Allan et al. [129]. This assumes that oxalate oxygen terms will
be comparable to the sulfate oxygen terms. This approximation was made as
the partial charge on oxygen in the sulfate model (-0.84) is very similar to the
Mulliken charge from the Hartree-Fock calculations (-0.8492). Intramolecular wa-
ter parameters necessary for the potassium and calcium oxalate structures were
taken from the CVFF forcefield from MSI (Table 3.10). In similar fashion, the

oxygen interactions for water were taken as being the same as the equivalent

82



Atom types | Hartree Fock | density functional |
C 0.60 0.60
O -0.80 -0.80
Na 1.0 1.0
K 1.0 1.0
Ca 2.0 2.0
0O -0.76 -0.76
H 0.38 0.38

Table 3.11: Atomic point charges.

Atoms Buckingham parameters
AeV) | p(A) | C (evV AP)
C-C 993.630 | 0.2405 10.05

C-Ouzat 604.568 | 0.2782 | 13.56
Oozat-Ooat | 5161.96 {0.2224 |  19.97
C-Ouwater | 1130.75 | 0.2464 | 18.64
Ovzat-Owater | 482.146 | 0.3700 |  28.00
Owater-Owater | 10520.5 [ 0.2614 |  50.29

Na-C 730.60 | 0.3060 0.0
Na-Ogpa 2501.76 | 0.2488 0.0
K-C 6300.00 | 0.2628 0.0

K-Opor | 12287.96 | 0.2441 | 25.0
K-Oparer | 1959.29 [ 0.2866 | 140
Ca-Oueqr | 1076.91 | 0.2830 0.0
Ca-Opater | 2652.63 | 0.2753 0.0

Table 3.12: Oxalate intermolecular potentials.

sulfate interactions as the charge on oxygen in water is -0.82. The final charges
assigned to each atom are given in Table 3.11. Formal charges were given to
cations, whilst the partial charges on the oxalate atoms were allowed to vary as
part of the fitting process.

Table 3.12 lists the intermolecular potentials for sodium oxalate, potassium
oxalate monohydrate and calcium oxalate monohydrate. The first six potentials
in Table 3.12, along with the charges and intramolecular potentials constitute the
transferable oxalate-hydrate potential model. The models were able to reproduce
the experimentally observed unit cell parameters with a reasonable degree of
accuracy. Table 3.13 indicates the differences in unit cell parameters between
the calculated model and the experimentally observed values. For each oxalate
modelled with each method the first three calculated phonon frequencies were
zero, asrequired. The diagonal elastic constants and the dielectric constants were

positive, also as expected for a stable model. The bond lengths were recalculated
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| Percentage deviation for computed versus experimental parameters
parameter Hartree-Fock density functional
sodium | potassium | calcium | sodium | potassium calcium
a -0.43 1.44 -1.74 -0.68 2.17 -1.16
b 0.95 -0.15 -1.73 1.90 0.14 -1.39
c -1.60 -1.87 1.41 -1.43 -1.88 1.80
3 -0.10 -0.58 0.09 -0.54 -0.28 (.01

Table 3.13: The accuracy of potentials derived from Hartree-Fock and density
functional methods in reproducing the experimental structure of sodium oxalate,
potassium oxalate monohydrate and calcium oxalate monohydrate.

and still agreed with the distances expected for oxalate and water. The potassium
oxalate fitting was less accurate, probably due to its longer carbon-carbon bond
length, which was less accurately modelled by the general oxalate model than was
the case for either the sodium or calcium structures.

3.2.4 Discussion

Although both potential models perform well, the Hartree-Fock derived potentials
are slightly superior. This may seem surprising as these calculations did not
utilize any post Hartree Fock corrections, so the density functional calculations are
expected to be more accurate. However, given that the Hartree-Fock calculations
best reproduced the geometry of the oxalate anion, it can be seen that the best
potential set is the one which includes the best intra-molecular potentials. This
supports the use of accurate quantum mechanical calculations in the derivation
of interatomic potentials of molecular anjons.

It is notable that standard Hartree-Fock, density functional and semi-empirical
calculations on the molecular oxalate dianion failed to produce a stable geome-
try. Embedding the dianion in a point charge array stabilized the molecule al-
lowing derivation of a potential energy hypersurface. Intramolecular potentials
were successfully fitted to the hypersurface. Subsequent fitting of intermolecular
potentials resulted in models that matched the unit cell parameters for sodium
oxalate, potassium oxalate monchydrate and calcium oxalate monohydrate. The
potentials derived with the Hartree-Fock intramolecular potentials represent a
good transferable potential model.
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Chapter 4

Predicting Gibbsite Morphology

4.1 Background

Industrially, the crystalline habit is often highly important, as certain forms are
more desirable than others. This may be due to intermediate processing con-
cerns, such as filtering, or for convenience in transportation and handling. In the
case of a final product, there may be a desired habit specification. In all cases,
a knowledge of the morphology and how to properly regulate it is of consider-
able importance. To this end, the application of molecular modelling to gibbsite
morphology prediction was examined.

As was noted in the discussion in section 1.2.2, gibbsite growth is integration
controlled. Thus, morphology techniques involving surface and structural ener-
getics should provide a convenient means for predicting the crystalline habit. A
predicted habit can be readily obtained using molecular modelling, providing the
interatomic forces within the crystal can be ascertained with reasonable accu-
racy. The interatomic potential model, developed in the previous section, was
constructed independently of any morphology estimate. Comparison of the mor-
phology prediction and the experimental data should therefore yield an indication
of the quality and transferability of the underlying potential model.

There are a few different forms of gibbsite morphology that have been doc-
umented in the literature. The most commonly occurring are the diamond and
hexagonal prisms [91][152][217]. In both cases, the basal {002}, and the prismatic
{110} planes are morphologically dominant. Tn addition, the faces that complete
the hexagonal prism in the morphology are the {200} planes. Mineralogy ref-
erences give a typical morphology (Figure 4.1) that is similar to the illustration
in Deer, Howie and Zussman [57]. Industrially manufactured crystals {grown in
caustic conditions), while consistent with this habit, tend to exhibit certain ad-
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Figure 4.1: Commonly occurring faces in gibbsite morphologies.

Figure 4.2: Experimental gibbsite morphology, grown slowly from caustic (from
Lee [218]).

ditional faces. Figure 4.2 is an SEM micrograph of laboratory produced gibbsite,
taken by Lee [218]. These crystals were grown by ageing sodium aluminate solu-
tions (2.7 moles L™! aluminium, 3.8 moles L™! sodium hydroxide), prepared by
dissolving gibbsite (C31, Alcoa Chemical Division, Arkansas) in sodium hydroxide
(AR Grade) solution, and subsequent holding at 80 °C' for 95 hours. The mor-
phology of the crystal is clearly pseudo-hexagonal. The principal crystals faces
were identified as the (002) basal plane, with the (110) and (200) planes forming
the edges of the crystal. The presence of additional surfaces was also noied in
these morphologies. By measuring the angles between the prismatic planes and
the unknown faces, these were identified as the {101} and {112} surfaces.
Morphology prediction techniques are not limited solely to the case of single
crystals, and may be readily extended to examine the phenomenon of crystalline
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twinning. As mentioned in section 1.1.1, twinning arises due to a mis-orientation
in lattice stacking. In this chapter, the prediction of contact twins has also been
attempted. Contact twins are defined as two or more connected crystallites, each
possessing orientations that are related by the action of a symmetry operation.
Restriction is also made to the cases where the symmetry relationship between
twinned crystallites is either a mirror or glide plane.

The compounds gibbsite and sodium oxalate, both of which are relevant to the
Bayer process, are known to form twins. Researchers have observed gibbsite crys-
tals that are six-fold twinned about [001], resulting in a pseudo-hexagonal mor-
phology [91][217]. These are distinct from the single crystal hexagons mentioned
previously, as the twin boundaries (particularly at the vertices of the hexagon)
display some degree of discontinuity. In an aqueous environment, Strom et ol.
[142] observed that sodium oxalate is almost always twinned on the (200) face.
Thus, an investigation into the twinning of these two substances was conducted.
The model was tested for generality by applying it to several other systems in
which twinning is also observed. Selection of these trial systems was limited pri-
marily by the availability of good potential models for crystals that are known to
form twins. All potentials were obtained from the literature, with the exception
of those for sodium oxalate and gibbsite which were derived during the course of
this project. Potentials for zircon and corundum were extracted from the paper
by Gay and Rohl [141}], potentials for rutile were taken from the work of Sayle et
al. [219], and aragonite parameters were obtained from Pavese et al. [128].

4.2 Gibbsite Single Crystal Habit

4.2.1 Methodology

A morphology prediction scheme similar to that outlined in the paper by Gay
and Rohl [{141] was used. In order to predict the morphology of gibbsite, a set of
suitable faces for which the surface and attachment energies are computed must,
be obtained. Tow index faces are generally more dominant in the morphology,
as they tend to have thicker growth slices than the higher index faces. Thus,
calculations could be limited to a set of candidate faces comprising the lower
index faces. However, without any additional information, this list would still
be quite large. A better approach is to use a BFDH analysis to generate a set
of candidate faces that is only slightly larger than necessary. Thus, selection of
candidate faces (hkl) is determined by the corresponding interplanar spacings
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Figure 4.3: Shifts generated by z coordinates of atoms and molecule centroids in
a given growth slice of thickness dj. The five possibilities a to e represent all
possible unique cuts, each of which generates a different planar surface.

(dnk1). Although an over simplification, this method proved useful in reducing a
large number of possibilities to a small set which includes the faces that appear
in the morphology.

All surfaces are constructed by discarding atoms and molecules in the bulk
structure that are above an appropriate planar cut. However, the variable factor
is the offset or shift of the cleavage plane within the interplanar spacing d.
That is, there may be more than one surface configuration for any given plane,
according to where the bulk is cleaved within a layer. The surfaces in gibbsite
are all type II faces, which means that not all cuts are valid, due to the formation
of a perpendicular dipole moment and thus an infinite surface energy [188]. To
automate the process of determining the allowed cuts for each face, a Perl script
COMPSHIFT (see Appendix A.2.1) was written. This program scans all possible
shift values within the interplanar spacing. These shifts are derived from the z
coordinates of the atoms in a growth slice. Thus, each cut is generated in order to
keep a layer of atoms, and all those below, while discarding those above. Molecules
are considered whole entities, so that the centroid of the molecule corresponds to
one shift value (Figure 4.3). For each of these shift values, the dipole moment
perpendicular to the surface is computed, and discarded if it does not vanish. For
this dipole calculation, the data from a single point MARVIN calculation is used.

For gibbsite surfaces, the resulting output from the COMPSHIFT program is
summarized in Table 4.1. Here, the number of raw cuts is the total number of cuts
with zero dipole, whilst the reduced cuts have some of these shift values ignored
because the corresponding unrelaxed surface energy is too high. Eliminated shift
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(hkl) | dn | Raw cuts | Reduced cuts | Shift values
(002) | 48675 2 1 0.25
(200) | 4.3810 2 1 0.0
(110) [ 43384 | 4 1 0.0
(101) | 6.2006 1 2 0.0
0.5
(101) [ 6.8769 4 2 0.0
0.5
(112) [ 3.1501 | 2 1 0.0
(112) | 3.3246 3 1 0.0
(011) | 4.4430 4 3 0.28
0.72
(012) | 3.4855 1 2 0.24
0.76
(111) | 3.8891 6 ) 0.0
0.5

Table 4.1: Computed shifts for gibbsite.

values were those with associated surface energies differing by more than 1.5 J
m~? from the lowest unrelaxed surface energy for that face (Appendix A.2.1).

Surface configuration

As the only molecules in the model are the hydroxide ions, the hydrogen positions
play an important role in determining the configuration of a cleaved surface. As a
result, it was necessary to compare the surfaces generated from the experimental
crystal structure (modified by the quantum mechanically derived proton posi-
tions) with the surfaces obtained using the developed empirical potentials. This
is due to the fact that the proton positions are not perfectly reproduced by the
latter. For most faces, the application of a planar cut to both the experimen-
tal and computed crystal structures produced equivalent surfaces. In Figure 4.4,
the generated (002) face has been illustrated, showing the six coordinate surface
aluminium atoms. In addition, the chamfering faces {101} and {112}, as well
as the prismatic {200} face were all successfully reproduced using the planar cut
mechanism. Note that the monoclinic symmetry of the gibbsite lattice means
that separate calculations are required for the (101) and (10T), as well as for the
(112) and (112) faces. Each of the remaining chamfering faces are related by
symmetry to those above.

When the planar cut method was applied to generate the (110) face from
the computed structure, there were found to be alternate rows of four and six
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Figure 4.5: Cleavages of the (110) surface, a) planar cut, b) manual cut.

coordinate aluminium atoms (Figure 4.5a). On relaxation, the surface energy of
this face is too large for it to appear in the morphology. As an alternative to the
planar cut method, a surface may be manually constructed by swapping pairs
of hydroxide ions on either side of the cleavage plane. This enables a different
configuration to be examined, whilst preserving the system’s overall charge neu-
trality. By altering the positions of two hydroxide ions, it was possible to create a
surface where all the surface aluminium atoms are five coordinate (Figure 4.5b).
This configuration matches the coordination of the experimental surface, created
using a planar cut. Subsequent calculations have indicated that this is the pre-
ferred configuration, as the relaxed surface energy is significantly lower than that
of the planar cut shown.

Apart from (110), the (111) surface was the only other for which a planar cut
did not produce a configuration that matched that generated from the crystal
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plane | Eg.s (J m™?) | Eyy (kJ mol™T)
(002) 0.22 -347
(200) 0.59 -1991
(110) 0.59 -3196
(101) 0.45 -996
(101) 0.53 -949
(112) (.46 -1922
(112) 0.50 -2154
(011) 0.75 -3149
(012) 0.63 -5893
(111) 0.64 -2064

Table 4.2: Relaxed surface and attachment energies for gibbsite.

structure, and needed to be manually constructed.

4.2.2 Results

The relaxed surface and attachment energies were computed using the MARVIN
{141] package (Table 4.2). Clearly, the basal plane is dominant in both predictive
schemes. However, the attachment energy for the (110) face is more negative than
most of the other attachment energies. Thus, although the other prismatic face
(200) will not be eliminated by virtue of the magnitude of E,;, it will nonetheless
have little morphological importance due to the apparent rapid growth of the
(110) face. It is also evident that the difference in relative growth rates of the
two prismatic faces will also generate an elongation in the growth morphology that
is perpendicular to c. Such morphologies have not been experimentally observed.

Using the data in Table 4.2, Wulff plots may be generated to visualize the
calculated gibbsite habits for the two schemes. The calculated equilibrium and
growth morphologies are illustrated in Figures 4.6 and 4.7 respectively. As ex-
pected, the morphology predicted from the relaxed attachment energy differed
from experimental observation, as the {200} and {110} faces are not reproduced.
Also, the predicted growth morphology is significantly elongated in the [010]
direction, which is not consistent with experimental observations. However, the
relaxed equilibrium morphology, with a non-planar cut for the (110) face, success-
fully predicted the appearance of the prismatic faces, giving the best agreement
with experiment. The only difference between the predicted tabular hexagonal
morphology and experiment appears to be the lower than observed morphological
importance of the {200} and {110} prismatic faces.

The actual structure of the relaxed gibbsite surfaces was examined. The (200)
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Figure 4.6: Relaxed equilibrium morphology of gibbsite.
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Figure 4.7: Relaxed growth morphology of gibbsite.
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Figure 4.9: Side views of a) the (101) face and b) the (10T) faces.

face, unlike the other prismatic (110) face, was cleaved to form a five coordinate
aluminium surface without any manual modification (Figure 4.8). The relaxed
(101) face and (10T) faces, both obtained with a purely planar cut, are shown in
Figure 4.9. The relaxed (112) and (112) surfaces, each of which was also generated
using a planar cut, are shown in Figure 4.10. From the above figures, and those
shown in the previous section, it is clear that the stable surfaces of gibbsite are all
characterized by five coordinate aluminium atoms, with the six coordinate basal
plane being the only exception. The other faces, selected as possible candidates in
the morphology due to their dy;, value, but discarded due to large surface energies,
have at least one four coordinate aluminium at the surface. For most of these
cases, it was not possible to modify the surface hydroxyl groups to increase the
coordination of all the four coordinate aluminium atoms. This was due to charge
neutrality constraints combined with the lack of suitable six coordinate surface

aluminium atoms for exchange. In addition, some cases resulted in configurations
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Figure 4.10: Side views of a) the (112) and b) the (112) surfaces.

that were unstable due to very uneven surface structure.

4.2.3 Discussion

With no consideration of solvent, the morphology predictions in this work have
been carried out in what amounts to vacuum conditions. It follows that a large
component in determining the validity of this work is the effect of the presence
of a solution on the morphology. In principle, the calculations could be modified
to account for the presence of solvent molecules. If steady-state conditions were
assumed, this would yield little additional information, as all faces would be likely
to be affected equally. For the kinetics of the growth to be properly modelled,
the use of molecular dynamics to investigate the liquid-solid interface would be
required. Unfortunately, this would be too computationally demanding. Hence,
the methods discussed and developed here succeed where the growth mechanism
is dominated by structural factors alone.

Despite problems when generating the correct cut for the (110) surface of gibb-
site, the relaxed equilibrium morphology yielded a prediction that was in good
agreement with experiment. It is likely that the configuration chosen, namely 5
coordinate aluminium atoms, is representative of the true surface. This is sup-
ported by the fact that the experimental structure with quantum mechanically
optimized proton positions produces a similar surface. However, the configuration
of the corresponding growth slice proved more difficult to ascertain. This uncer-
tainty is compounded by the lack of available data concerning the growth unit(s)
involved in gibbsite precipitation. The growth morphology, which is highly de-
pendent upon a knowledge of growth units, failed to reproduce a result consistent
with experiment. In particular, the attachment energies for the (110) surface is
too low for the face to appear in the growth morphology.

It is notable that, for all the stable faces, the surface aluminium atoms are

five coordinate. The basal plane, which is six coordinate, is the only exception
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and will be morphologically dominant due to its significantly lower surface en-
ergy. This trend for gibbsite surfaces to be composed of entirely five coordinate
aluminium atoms may have implications in growth unit studies of the prismatic
and chamfering faces. In addition, as the basal plane is the only surface with 6-
coordinate aluminium atoms, it seems likely that there is different growth mecha-
nism and growth unit for the basal plane. These findings are supported in recent
experimental AFM work by Freij ef al. [96].

4.3 Gibbsite twinning

While not of significant concern to the Bayer industry, twinning can sometimes be
a problem in areas of crystal growth where any form of defect is undesirable. For
example, twinning is of interest in the production of thin-films [220]. In addition,
twinning can sometimes play an important role in the growth kinetics [221]. Es-
tablishing a method for the general prediction of twinning in systems other than
gibbsite would therefore be of interest. In addition, if the twinning model were
successful, the potentials developed for gibbsite would receive some justification.
As gibbsite morphology has been illustrated previously, representative habits for
the other trial systems selected for twinning have been included. Illustrations of
single crystal habits of aragonite (Figure 4.11), corundum (Figure 4.12), rutile
(Figure 4.13) and zircon (Figure 4.14) were taken from the literature [222]. The
habit of sodium oxalate was taken from Strom ef al. [223], which was noted by
the authors to be almost always twinned on the (200) plane as shown in Figure
4.15.

4.3.1 Methodology

It has been suggested that the main requirement for the formation of twins is a
relatively small stacking fault energy [1]{224]. Since this phenomena is directly
related to the stacking of adjacent growth layers, it is apparent that a model
based on attachment energy is the most suitable for analysis. To calculate the
attachment energies of normal {E7%™a') and reflected growth slices (E[e/ <),
the simulation model illustrated in Figure 4.16 was used. The simulation cell
represents a vertical segment of crystal which is repeated infinitely in two dimen-
sions. The normal growth slice is simply a continuation of the bulk structure,
and thus has a known spatial location. The reflected slice was generated by con-
structing the mirror image of the growth slice, with the mirror plane parallel

to the surface under consideration. Here, the situation is more complicated as
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Figure 4.11: Sample habit for aragonite.

Figure 4.12: Single crystal morphology for corundum.
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Figure 4.13: Single crystal morphology for rutile.
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Figure 4.14: Single crystal morphology for zircon.
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Figure 4.15: Sodium oxalate twinned crystal morphology.
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Figure 4.16: Simulation cell, for computing the attachment energy of a growth
slice.

neither the vertical nor horizontal positions are known. For each value of (x, v,
z}, representing the position of the slice parallel to the growing surface, the total
energy of the system can be computed using,

Etnta( = Esur_ftu:e + Es!ice + Ez’nter (4'1)

Where Ejy; foce is the interaction of particles in the surface block, E,jce represents
the interaction of particles in the slice, and E,,., is the interaction between
particles in the slice with particles in the bulk. All quantities are computed using
a periodic summation method.

Minimisation of Ey,,; was achieved by translating the reflected slice in three
dimensions. This yielded the minimum value of Fy,;., (= Eret ‘emd) since Eoup foce
and FEg; are both independent of location. Subtracting the (minimized) total
energy of a reflected slice from the total (minimized) energy calculated for a
normal growth slice, produces the difference in attachment energy between the
two slices,

Enwma; Ereﬂected _ E::ﬁrmal _ E;;& flected

total - total - (42)

- Etw@'n

Thus, Eyyin is the extra energy required for a reflected layer stacking fault to form.
This quantity must be sufficiently small if twinning is to occur. However, in order
to establish a quantitative means for predicting twinning, the Fj,;, values must
be converted into a percentage of the total intermolecular lattice energy. This
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particular scaling is used as the magnitude of the attachment energy is dependent
upon only the intermolecular contributions to the energy. Intramolecular terms
will not contribute as no new bonds are formed when a slice is attached to the
surface.

Energy minimisation

A Perl script (Appendix A.2.2) was employed to compute Ey,;, in the simulations.
Input parameters for the script are a list of Miller indices plus a valid correspond-
ing shift. For gibbsite, these were taken from the results given in Table 4.1, and
values for the other salts were calculated in a similar fashion. The script utilizes
the computer program MARVIN [141] for single point energy calculations. Thus,
a suitable input file containing the unit cell coordinates and = set of potentials
was also required.

For each candidate face, a normal growth slice is reflected to form the twinned
growth slice. Faces that possessed a mirror or glide plane which did not pass
through any molecules were discarded. This removes the candidate faces where
the twinned state is identical to the untwinned state. The mirrored slice is then
placed above the bulk and allowed to translate as a rigid entity in three dimensions
toward the position of lowest energy. To solve this minimisation problem, a
modified version of the SIMPLEX algorithm [225] was employed. The action
of the SIMPLEX method can be described using a tetrahedron sitting on the
potential energy hyper-surface. Each vertex of the tetrahedron represents the
spatial location of the growth slice, with a corresponding energy. By reflecting
the point of highest energy through the opposing face, a new tetrahedron is
created with a lower maximum energy. Thus, successive iterations will approach
a minimum point, where all four vertices converge to within a given tolerance.
For each face, the minimized total energy of the reflected system is subtracted
from the total energy of the normal system and scaled to yield E,,,;,.

The basic SIMPLEX method was modified slightly in an attempt to improve
the likelihood that the global minimum is reached. This change consisted of ex-
ecuting several independent minimisation cycles, each of which was performed
with the mirrored slice starting from a different location above the surface of
the crystal. The starting locations were constrained to form a grid with lateral
coordinates ranging from 0 to the length of the surface repeat unit. This ap-
proach resulted in a lower minimum for a few cases. However, the local minima
found previously did not differ greatly in energy from the more accurate answer.
Increasing the number of grid locations beyond 3 by 3 was found to be computa-
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(kL) | Euyin | (h&D) | Eqin | (kD) | Bpin | (BED) | Etwin | (RED | Erin

gibbsite | (002) | -0.33 [ (110) [ 0.035 [ (200) | 1.5 [(101) | 15 | (112)| 3.3

Table 4.3: Gibbsite twinning, E,,, as a percentage of the intermolecular lattice
energy.

(h'kl) Etlwin (hkl) Efw:‘n (hkl) Et3wm
sodium oxalate | (200} | 0.034 [ (001) | 6.1 | (110) | 6.5
aragonite (110) [ 0.30 | (101) | 2.3 | (111) | 9.3
corundum (100) | 0.64 | (10-1) | 39 |(20-1)| 7.6
rutile (011) | 0.25 | (211) | 3.3 | (111) | 5.1
zircon (112) | 1.8 | (101) | 2.3 | (301) | 8.2

Table 4.4: Ey,;, values as a percentage of the intermolecular lattice energy, for
the three faces in each structure with the lowest energy requirement for twinning.

tionally infeasible.

4.3.2 Results

For all faces in our computed gibbsite morphology, the values of Ey,;, were cal-
culated using a three by three grid and listed in Table 4.3. A negative value
indicates a twinned structure that is more stable than the normal structure. For
the (002) face of gibbsite, the preference for the twinned state is representative of
the higher thermodynamic stability of bayerite in vacuo, which has a comparable
Al, O stacking (see section 1.2.1). As the interatomic potentials derived were
fitted to both structures, the higher stability of the bayerite stacking is reflected
in the results. However, gibbsite twinned in this manner is not completely identi-
cal to bayerite, as the hydroxyl orientations are different. With the exception of
the (002) face, all the other gibbsite surfaces in Table 4.3 have positive twinning
energies. Of these, the (110) face is clearly the most favourable for twinning to
occur.

The lowest Ey,;, values, computed for the faces in the other trial systems, are
presented in Table 4.4. In all cases, the energy required for twinning was found
to be positive. The calculations were all performed using a 3 by 3 grid minima
search, and all values have been converted to a percentage of the intermolecular
lattice energy. It was confirmed from the literature (Table 4.5) that, for all the
above systems, the face with the lowest Ej,;, value is experimentally observed to
twin.

By scaling the E,,,, values, it is anticipated that a maximal cut-off may be
determined, below which twinning will occur. If the results in Tables 4.4 and 4.3
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| Twinning | References
sodium oxalate Usually twinned on (200) [223]
gibbsite Common on (001), and about [130] [57][58][222][226]
less common on (100) and (110)
aragonite Very common on (110) [58][222]{226
corundum Common on (100) 58][222][226
rutile Common on (011), 58](222]|226
also on (031} as interpenetrating twins.
zircon Rare on (101} and (112) [227][228][229][230]

Table 4.5: Observed twinning for the selected crystalline materials.

are compared to a cutoff of a little less than one percent of the lattice energy,
then all systems are in agreement with experimentally observed twins that occur
with a high degree of frequency. Note that the value of Ey,;, for sodium oxalate
is quite small. This is consistent with the observations by Strom et al. [223]
indicating that sodium oxalate, grown in an aqueous solution, is almost always
twinned on the (200) plane. In the cases where twinning is rare or uncommon,
it is anticipated that a cut-off of a little more than two percent is necessary, for
example, in order to incorporate the {101) and (112) faces of zircon. In addition,
this would alsoc account for the rare (200) twinning in gibbsite. However, such
a cutoff would also predict that the (101) face for both aragonite and gibbsite
should also twin, which has not been observed to occur.

For each compound, the configuration of the face that produced the smallest
value of Fy,i, was examined. These surfaces are evidently those that, according
to the model, are the most likely to exhibit twinning. Two projections of the
same twin on the (002) plane of gibbsite are shown in Figure 4.17. These views
show that during the minimization process the reflected slice has undergone lat-
eral translation in one direction only. The twinned symmetry relation is thus a
glide plane, and not a pure reflection. Figure 4.18 shows two projections of the
molecular arrangement in a minimized sodium oxalate twin, both of which are
parallel to the {200) plane. In this case, the reflected slice has undergone lateral
translation along both surface axial directions. Images of the twin boundaries for
aragonite (Figure 4.19), corundum (Figure 4.20), rutile (Figure 4.21) and zircon
(Figure 4.22) are also presented.

4.3.3 Discussion

From most of the mineralogy references, gibbsite twinning on the (110) face is

relatively infrequent. The results from the calculations suggest otherwise. The
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Figure 4.17: Minimized basal plane twin of gibbsite looking along the a) a axis
and along the b) b axis.

Figure 4.18: Sodium oxalate reflection twin on the (200) plane, viewed along the
a) b axis and along the b) ¢* axis.
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Figure 4.19: Aragonite, twinned on the (110) plane.

Figure 4.20: Corundum, twinned on the (200) plane.
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Figure 4.21: Rutile, twinned on the (011) plane.

Figure 4.22: Zircon, twinned on the (101) plane.
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Figure 4.23: Polarization micrograph of a six-fold gibbsite twin. The common
boundaries between segments are the twin planes, and are parallel to the (110)
surface (from Sweegers et al. [217]).

highly favourable twinning energy for the (110) face of gibbsite has some support
from Sweegers ef ol. [217]. Here, gibbsite crystals were grown from synthetic
Bayer liquors (initial relative v-Al{OH); supersaturations of 0.21 - 0.45 at 80°C)
with the authors noting a wide variety of gibbsite morphologies, plus a signifi-
cant degree of twinning. The occurrence of relatively small elongated hexagonal
gibbsite prisms (2-5 ym in width and 10-15 um in length) as well as much larger
(100-200 pm) hexagonal plates was noted. The authors state that the latter case
was always the result of six-fold repeated twinning about the (110) plane (Figure
4.23). In addition, frequent polysynthetic twinning on the (002) plane was also
observed (Figure 4.24), which is in good agreement with the low twinning energy
requirement calculated in this chapter.

The method described in section 4.3.1 was successful in predicting forms of
frequently occurring twinning. These involved only planes of reflection and subse-
quent translation. However, there exist other forms of twinning that the method
cannot model in its current form. These include inversion and rotation twins,
such as the one about the [130] direction in gibbsite (see Table 4.5). It is also
evident, that deformation twinning, resulting from the motion of dislocations in
an applied stress field is unsuited to this method. Although only a mirror op-
eration is coded, a rotation operation may also be incorporated provided care is
taken to ensure that the lateral repeat vectors of the rotated slice are coincident

with the surface lateral translation vectors. It is also feasible that the method-
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Figure 4.24: Polysynthetic twinning in gibbsite, with arrows indicating the mul-
tiple twin boundaries parallel to the (002) plane (from Sweegers et al. [217]).

ology employed to predict twinning may be extended to examine other types of
stacking faults. It would be possible to determine the energy released when a
suitably adjusted layer is attached to the crystal, and compare this value to the
attachment energy of a regular layer. This would yield information about both
the configuration, and the likelihood of formation for such a defect.
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Chapter 5

Habit Modification

5.1 Background

The incorporation of foreign species into crystals has received much attention in
the literature. Of particular relevance is the effect that these impurities have on
the surface energy, and therefore crystal morphology. Many studies of defects
have involved computing the surface segregation energy, which is defined as the
tendency for a defect in the bulk to migrate to the surface [149]. For example,
researchers have modelled the effects of cationic defects on the surface energy,
and thus predicted the resulting effect on the morphology of calcite [148]. Further
studies on this system have also yielded information concerning nucleation and
crystal growth [150]. Corundum studies by Davies et al. [231] indicate that
segregation tends to be highly surface and coverage dependent. However, most of
the defect studies described above have been concerned with impurity migration
to the crystal surface, important in processes such as sintering. In this work,
the focus is on the energy required to replace a proton at the surface of gibbsite
with a cation from solution. Thus, although a similar appreach is adopted, the
cationic replacement energy is used instead of the segregation energy.

The potential model presented in Chapter 4 successfully predicted all observed
faces in the experimental gibbsite morphology. However, the calculations under-
estimate the importance of the prismatic faces, possibly due to the assumption
of vacuum growth conditions. Tt is therefore of interest to include some effects
of solution upon the morphological prediction. Solution studies have shown that
cationic species tend to be closely linked with clusters of aluminate monomers
[61]. This solution structuring is examined in more detail in Chapter 6. In addi-
tion, evidence of cation incorporation was noted in the work by Lee et al. [152].
Thus, it is possible that incorporation occurs when growth units (accompanied by
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Cation | Incorporation (ppm}
Sodium 67000
Potassium 2050
Caesium 1750

Table 5.1: Cation incorporation in gibbsite crystals grown in three different alkali
metal aluminate solutions, taken from Lee et al. [152].

associated cations) dock into the surface of gibbsite. This work has been based
on the suggestion of Wefers [55], that the sodium cation acts as an impurity
substitution by replacing a proton.

Gibbsite crystals grown experimentally in sodium, potassium, and caesium
aluminate solutions are generally characterized by pseudo hexagons or diamond
shaped morphologies. Typically, the importance of the prismatic faces in the
pseudo-hexagonal morphology increases with the ionic radius of the cation [91].
Impurity incorporation levels in alkali aluminate solutions have also been mea-
sured by Lee ef al. [152], as shown in Table 5.1. The key feature of these results
is the relatively high degree of sodium bulk incorporation, compared to the larger
alkali metal cations.

5.2 Method

5.2.1 Candidate replacement sites

Modeliing of surface defects is usually assumed to follow a Langmuir isotherm,
so that the enthalpy of adsorption of a single impurity is independent of the
fractional coverage [175]. However, this is only true for values of surface coverage
that are sufficiently low enough to prevent defects from repelling one another. In
addition, the local surface structure at individual sites may also vary considerably,
resulting in different degrees of defect interaction on each face of the same crystal.
Surface hydrogen separations in gibbsite are relatively small, and high values of
defect coverage would undoubtedly result in a considerable amount of repulsion.
Thus, a minimum surface area requirement per defect will be imposed. This
requirement is made to ensure that the calculations made are for isolated defects
only. Clearly, extrapolation of this data to high values of defect concentration
will not yield very reliable results. As a consequence, only relatively low surface
coverage values will be considered for analysis.

The surface structure of gibbsite is quite complex, and for some faces it is not
clear which protons should be considered as surface sites. The figures in Section
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Figure 5.1: Hydrogen accessibility determination, achieved by sweeping a probe
atom over the surface (spherical polar coordinates used).

4.2 show how there are a range of hydrogens at different elevations, with partial
overlap making it difficult to distinguish between surface and bulk hydrogens.
However, it is imperative to determine the total number of surface sites, firstly
in order to determine candidates for substitution calculations, and secondly so
that surface coverage values may be assessed. In this work, a modified version of
the method of Connolly [232] has been adopted in order to analyze the surfaces
in the calculated morphology of gibbsite. The essential idea is to determine how
accessible the hydrogen atoms are to a given probe atom. A program was written
in Perl to accomplish this (see Appendix A.2.3). The code determines how much
of the surface of each proton can be brought into contact with a probe atom,
without the probe overlapping the surface of any other atom. The size of each
atom in the gibbsite surface was taken to be the appropriate Van der Waals radius,
whilst the ionic radius was used for the probe. Two separate analyses, one with a
sodium probe and the other with a potassium probe atom, were performed. The
percentage accessible area of the entire sphere of the hydrogen atom is scanned
by looping through values of ¢ and 8, as indicated in Figure 5.1.

A general scheme was applied to differentiate between a surface and a bulk
hydrogen. A list of accessibilities of all unique protons was drawn up, and sorted
from highest to lowest (Tables 5.2 and 5.3). Clearly, the largest accessibility values
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Hydrogen accessibilities (%)

Candidate | (002) | (200) | (110) (101) | (i01) (112) [ (112)
1 32.46 [ 49.27 [ 49.12 | 37.87 38.60 | 41.67 41.81 | 44.44 | 43.86
2 30.85 | 30.62 | 47.66 | 37.87 38.45 | 41.67 41.81 | 41.96 | 40.94
3 30.41 | 30.85 | 46.78 | 36.70 37.43 | 32.60 33.19 | 37.57 | 38.60
1 28.80 | 15.35 | 39.91 | 36.70 37.43 | 32.02 33.19 | 37.13 | 38.01
5 8.48 | 3.36 | 29.09 [ 22.37 23.39 | 15.04 13.30 | 36.40 | 34.06
6 2.05 | 0.00 [27.34[22.37 23.39 | 15.94 13.30 | 34.94 | 32.46
7 9149 | 0.15 0.00 | 0.00 3.95 | 34.80 | 30.99
8 1784 015 0.00 | 0.00 3.95 | 26.00 | 29.82
9 12.87 93.98 | 20.18
10 10.23 92.37 | 16.96
11 2.34 14.33 | 16.08
12 0.15 12.72 | 9.06
13 0.00 365 | 2.78
4 3.07 | 0.58
15 0.00 | 0.15

Surface sites [ 4 3 | 5 6 6 | 4 4 9 8

I

Table 5.2: Accessibility (sodium probe) of surface protons in gibbsite. The two
columns for the (101) and (10T) faces list the results for the two possible shifts.

are a little under 50%, with most being in the 30%-40% range. Note that for the
(110) face in the gibbsite morphology, the corrected cut described in the previous
chapter was used. It is apparent that one distinguishing character between surface
and bulk sites should be a large drop in the percentage accessibility. Given that
the highest accessibility for most of these surfaces is ~40%, it is questionable
whether a proton on the same surface with less than half this accessibility (for
example) should also be treated as a true 'surface’ site. Hence, for each face, the

cutoff was caleulated to be the accessibility of the most exposed proton, minus
20%.

5.2.2 Defect surface energy

Surface energy is computed by subtracting the energy of a slice at the surface from
an equivalent slice in the bulk. This calculation is automated by the MARVIN
[141] program. In the current study, the energy of the slice in the bulk will not
be comparable when performing the surface defect calculation, as the bulk slices
will contain no defects. Manual calculation was thus required. Using a Langmuir
relation, the defect surface energy Egﬁf; for each face in the morphology can be
written as {150,
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Hydrogen accessibility (%)

Candidate | (002) | (200) [ (110) | (101) a0 a1 [
1 29.24 | 47.22 | 43.71 | 33.33 33.04 | 38.6 38.45 | 41.08 [ 39.18
2 25.58 | 34.94 | 41.37 | 32.60 33.04 | 386 38.16 | 36.55 { 34.94
3 26.02 | 23.39 | 40.50 | 31.58 33.04 | 27.49 27.78 | 32.80 | 33.19
4 24121 5.26 | 33.92 | 31.14 32.31 | 26.75 26.61 | 32.31 | 31.87
5 132 | 3.36 [ 2295 | 17.11 17.11[ 9.94 3.80 | 32.16 | 30.85
6 073 | 0.44 | 20.76 | 17.11 17.11| 9.94 3.65 | 31.29 | 27.63
7 13457 0.00 0.00 | 0.00 0.00 | 30.41 | 26.90
8 11.11 21.93 | 25.88
9 7.02 17.84 | 14.47
10 117 16.96 | 11.84
11 0.44 8.63 | 13.30
12 (.00 249 | 1.32
13 1.02 | 0.15
14 0.44 | 0.00
15 0.00

Surface sites | 4 2 G 6 4 4 | 8 | 8 |

Table 5.3: Accessibility (potassium probe) of surface protons in gibbsite. The two
columns for the (101) and (101) faces list the results for the two possible shifts.

E%I% = EPY 4 X Erep (5.1)

sur f sur f

The term ET¢ represents the surface energy of the pure surface, and was taken
from the calculations described in Section 4.2. The fractional quantity y is the
defect surface coverage, and the replacement energy E,., is the extra energy {per
unit surface area) required to form a maximally covered defective surface from a
pure surface. Thus, it might be expected that the replacement energy is the sum
of the energies computed for each isolated defect. In such a scheme, if a value
for x were selected such that only one proton per repeat unit was replaced, the
change in surface energy would be the average expected if all candidate sites were
equally likely to be the defect.

This approach is flawed, however, as surfaces with low defect densities might
be expected to favour sites with the smallest associated defect replacement ener-
gies. Thus, a new quantity F,,, is defined as the energy required to substitute a
particular proton on the surface of gibbsite with a cation from solution. However,
a given surface coverage value may correspond to a non-integer number of defect
sites. In this work, each surface coverage value will be assumed to correspond

to a number of whole sites and one partial site. For example, 30% coverage on
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the (112) plane, which has 8 defect sites, implies 2.4 "effective’ sites. This is bro-
ken into a number of "whole’ sites (2) plus a ’fractional’ site (0.4). An effective
FErep can be calculated in such a way that x.E,, is the energy per unit surface
area required to replace the two protons with the lowest associated E,,;, plus a
weighted contribution from the third lowest. In the example selected this weight
would be 0.4.

Calculation of the substitution energy was accomplished with the aid of the
following expression,

AE
nAOH)3) + MOHuy — (n—DAWOH). AlOH): MOy + HyOy

This describes the substitution energy required (Ey; = AFE) to replace a proton
on a gibbsite surface with a cation M+ from solution. Thus, separate runs for
each face in the morphology and each candidate site were required. The MARVIN
code was employed to relax the gibbsite surfaces (with the substituted defect) and
compute E%/® the total energy of region 1. The total energy of region 1 for the
pure material E%"® was taken from the calculations in Chapter 4.

Unfortunately, the difference between the two region 1 energies is not equal to
Eup. Tn order to compute the substitution energy, a suitable Born-Haber cycle
was developed (Figure 5.2). The values of each reaction shown in this figure are
listed below.

AFBy=—936.7 kJ mol—1

+ - + -
Nag, + OHy, — Nag, +O0H g,
AE3=—8529%J mol=1
+ - + -
K +OH, — Kiag) + OHy
AFE3=—-523.0 kJ mol—?
—1.4 0.4 -
O™+ Hy — OH,
AF4=1133 kJ mol—?
_ a9
AEs5=—44.00 kJ mol—1
10 — HyOq

These enthalpies were determined with the aid of the values shown in Table 5.4.
In the table, AH} is the enthalpy of formation, Ej.y represents the lattice energy,
AH,;?;, is the j®* ionization potential, AH,g is the electron gain enthalpy and AH,,,;
is the sublimation enthalpy. The enthalpies of hydration at infinite dilution were
calculated by employing the cycle shown in Figure 5.3. Hence, AE, and AF, are
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Figure 5.2: A Born-Haber cycle for the evaluation of the substitution energy
(Egup = AF). The diagram is written so that AF is the sum of the quantities on
the lower reaction pathway.

Quantity Intermediate steps Value (kJ mol™!)
AH[Naf, ] - -240.34
AH{ K] - ~952.14
AH,[OI, ] . ~230.015
AHY [N - 495.84
AHY[K] - 418.81
A, [Na| Hi[Nag)] 1075
AH,[K] Hy[K)] 89.0
A {OH )] - 39.3
AH,JOH - -176.34
AH{OH, | | AH;[OHy)]+ AH,,|OH] “137.03
AH AL - 330.4
>3 AHYAL - 5139.0
AHJARY] | AH Alg] + T3, AHD[Al] 5469.4
AH [0, - -241.826
AH [H;0p)] - ~985.830
AH;[ALO;] - “1675.7
Erau| Al O3] - 15916

Table 5.4: Enthalpy values used in the Born-Haber cycles, together with any
intermediate steps used to derive them. All quantities in this table were obtained

from Lide [233).
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Figure 5.3: A Born-Haber hydration enthalpy cycle, written so that AF is equal
to the sum of the enthalpies along the lower reaction pathway.

evaluated by adding all the quantities along the lower reaction pathway, with Na
and K substituted respectively for M. For the OHy, bond energy (AEj;), the
minimum value of the Morse potential was used. The value of AE, was calculated
using,

Eigpe

3 —
AlOsy — 2413 + 307

which yields,

AH[OG] = §(Bian[ALOs] + AH[ALOs()] — 2AH[AE])
— 1100 &k J mol~1

thus,

AE; = AHf[O?g_)] + AHf[HgO(g)] - EAHf{OH(;)]
= 1133 kJ mol™t

Finally, AE; is simply the difference between the enthalpies of formation of
gaseous and liquid water,

AEs = AH{[HOu)) — AH [ HOq)]
= 44.00 kJ mol™t
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(hkl) | Surface area
(A?)
(002) 42.0
(200) 48.9
(110) 08.7
(101) 69.1
(101) 62.3
(112) | 135.6
(112) 12R8.8

Table 5.5: A listing of the surface area of a single repeat unit, for each face in
the gibbsite morphology.

In addition to gibbsite potentials, the defect minimization and subsequent en-
ergy calculations require functions describing cation interactions. In Section 3.4,
suitable potentials for sodium and potassium interactions with hydroxides were
developed. The metallic potentials have been fitted to more than one structure,
and all non metallic terms are transferable between the 7 compounds with good
agreement. Thus, the relevant cation potentials from Table 3.2 were employed in
the calculations described in this chapter.

5.3 Results

5.3.1 Defect energy calculations

The model employed by MARVIN creates a surface by infinitely replicating the
corresponding repeat units in two dimensions. The surface configuration of the
repeat unit was examined for proton accessibility. Presented in Table 5.5 are
the surface areas corresponding to each repeat unit of all faces in the gibbsite
morphology. As any impurity substitution will also be repeated, the question of
defect interaction must be considered. A surface area of approximately 10042
per defect was judged sufficient for a non-interacting single isolated defect to be
studied. Thus, for the (002}, (200), (101) and (10T) faces, only one defect per four
surface repeat units (in a 2x2 configuration) was created; thus quadrupling the
surface area and the number of candidate proton sites (note that these extra sites
will be identical by symmetry to those on the original repeat unit). In addition, as
the (101) and (10T) faces possess two possible cuts with similar surface energies,
both of these were investigated. Finally, the (110), (112) and (11%) surfaces
possessed surface areas that were judged sufficiently large that a single supercell
was not required.
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Eow (kJ mol™)

Surface site | (002) | (200) ] (i10) | (101) ([01) [ (119) | (11D)
1 260.0 | 278.4 | 322.5 | 207.1 241.2 | 145.2 488.7 ] 238.9 [ 380.7
2 292.8 | 204.7 | 323.7 | 207.1 241.2 | 141.7 502.0 | 198.3 | 443.1
3 293.0 | 134.0 | 256.9 | 189.8 205.2 | 218.8 392.2 | 207.7 | 328.0
4 279.7 138.7 1 189.8 205.2 | 218.8 392.1 | 213.5 | 408.2
) 108.7 | 199.4 210.2 2219 | 374.5
6 199.4 210.2 169.4 | 4425
7 247.9 | 213.4
8 463.5 | 194.6
9 215.2

Table 5.6: Substitution energies for the sodium defect surface. The ordering of
defect sites corresponds that in Table 5.2.

By (kJ mol™?)
Surface site | (002) | (200) | (110) (101) (101) | (112) [ (112)
1 762.4 | 549.4 | 497.6 | 316.0 579.8 [ 4209 521.7 [ 411.6 [ 401.3
2 381.9 | 300.3 | 467.1 [ 318.8 597.0 [ 420.9 520.2 | 310.7 | 309.0
3 527.8 401.8 | 510.9 315.7 [ 359.3 418.1 | 301.8 | 375.1
4 414.6 326.6 | 510.8 315.7 [ 350.9 365.3 | 244.9 | 396.3
5 654.5 665.8 333.7 | 331.4
6 654.5 665.8 429.3 | 411.9
7 359.9 [ 519.0
8 452.6 | 427.2

Table 5.7: Substitution energies for the potassium defect surface.The ordering of
defect sites corresponds to that in Table 5.3.

Defects were created by substituting each candidate proton and the oxygen it
was bonded to with a cationic species (Nator Kt) and an O?~ ion respectively.
Replacement of the oxygen was required due to charge neutrality requirements, as
a partial charge model was used for the hydroxyl component of gibbsite. Impurity
substitution was made on the relaxed surfaces from the equilibrium morphology
prediction {Section 4.2). The defect surfaces constructed were then allowed to
relax to a minimum, where the final region 1 energy was recorded. For each face,
the region 1 energy was combined with the enthalpies of the reactions shown
previously to determine the direct substitution energy E,,,. These values were
recorded in Table 5.6 for sodium, and Table 5.7 for potassium. The scheme
described in Section 5.2.2 was then applied to calculate an effective Erep and thus
the defect surface energy for a range of surface coverage values.

For the (101) face, neither of the two possible shift values possessed lower
surface energies for all fractional coverage values. Hence, the mean defect surface
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Figure 5.4: Sodium impurity surface energies. For clarity, the basal and prismatic
faces have been drawn with line markers.

energy of the two shifts was plotted; yielding an estimation of the average mor-
phological importance for the (101) face. This procedure was also required for the
(10T) face. A plot of the resulting defect surface energy for sodium is displayed
in Figure 5.4, and for potassium in Figure 5.5. These figures show a degree of
similarity, in particular for the low to medium surface coverage regime, as both
the prismatic faces have lower slopes than all the other faces. Thus, assuming
approximately uniform coverage, these plots suggest that cation incorporation
will tend to have an elongating effect on the morphology, as the surface energy
of the prismatic faces will rise the least quickly.

5.3.2 Predicted morphologies

Unfortunately, it is not known to what extent sodium and potassium are dis-
tributed over the respective faces in the morphology. Assuming an equal 10%
coverage, the resulting equilibrium morphologies are shown in Figure 5.6. Clearly,
cation incorporation assists in explaining the underestimation of the prismatic
faces by the earlier equilibrium morphology prediction, shown in Figure 4.6. As a
first step toward examining the consequence of different levels of defect coverage,

the experimental differences in incorporation will be noted. Data from Lee et al.
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Figure 5.5: Potassium impurity surface energies. For clarity, the basal and pris-
matic faces have been drawn with line markers.
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Figure 5.6: Defect morphologies for a) sodium incorporation and b) potassium
incorporation. Both are determined from a uniform 10% surface coverage.
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Esub (Jm_z)

Site | (002) | (200) [ (110) [  (101) (101) (112} { (112)
1 |0.245]0.114 [ 0.183 ] 0.114 0.123 | 0.0944 0.261 [ 0.207 [ 0.251
2 10.264]0.173]0.233[0.114 0.123 | 0.0968 0.261 | 0.243 | 0.275
3 10.276 | 0.236 | 0.432 [ 0.120 0.126 | 0.146 0.326 | 0.254 | 0.423
4 10.276 0.543 | 0.120 0.126 | 0.146 0.335 | 0.261 | 0.483
5 0.545 | 0.124 0.145 0.264 | 0.502
6 0.124 0.145 0.272 | 0.526
7 0.293 { 0.570
8 0.304 [ 0.571
9 0.568

Table 5.8: Ranked sodium substitution energies. Note that for those faces with
2x2 surface constructions, only the defect energies from one surface repeat unit
are listed as the other will be identical by symmetry.

Esub (Jm_z)
Site | (002) [ (200) | (110) (101) (10T) (112) [ (112)
1 ]10.360 ; 0.255 | 0.549 | 0.190 0.190 | 0.239 0.243 | 0.300 | 0.398
2 0391 | 0.466 | 0.676 | 0.192 0.190 | 0.240 0.279 | 0.370 | 0.427
3 {0.498 0.786 { 0.307 0.348 | 0.280 0.347 { 0.380 | 0.484
4 10.719 0.837 [ 0.307 0.359 { 0.280 0.348 | 0.409 | 0.511
5 0.393 0.400 0.441 | 0.517
6 0.393 0.400 0.504 | 0.531
7 0.526 | 0.551
8 0.554 | 0.669

Table 5.9: Ranked potassium substitution energies. Note that for those faces
with 2x2 surface constructions, only the defect energies from one surface repeat
unit are listed as the others will be identical by symmetry.

[152] clearly indicates that cation incorporation is considerably higher for sodium
than for potassium, as shown in Table 5.1. This suggests that an alternate ap-
proach may be required if the surface coverage is approximately proportional to
the bulk incorporation.

As an estimation of the effects of higher concentrations of defects, the substi-
tution energies shown in Table 5.6 and Table 5.7 were adjusted according to the
appropriate surface area values. These were then ranked from lowest to highest
and displayed in Table 5.8 (sodium} and Table 5.9 (potassium). Note that the
(002), {200}, (101) and (10T) surface areas are quadruple the values shown in Ta-
ble 5.5, due to the 2x2 construction used in the actual calculations. The resulting
values calculated represent the average energy per unit surface area required to

create an impurity substitution at a given proton site. Surface coverage may be
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Figure 5.7: Sodium defect morphologies with increasing levels of surface coverage,
10% on a) and 20% on b) for those faces with the smallest defect energy per unis
surface area; namely, {101}, {101} and {200}. All other faces have 5% defect
coverage.

assumed to occur in such a way as to minimize the total defect energy. For sodium
incorporation, the energy per unit surface area required to form (for example) the
first four defects is significantly lower for the {200}, {101} and {107} faces. Con-
sequently, these surfaces would be expected to experience more incorporation {at
these sites) in a higher defect density regime. Two separate morphologies with
10% and 20% coverage for the {101}, {10T} and {200} faces are illustrated in
Figure 5.7, with 5% defect coverage applied to all the other faces. Clearly, the
habit is approaching that of a truncated diamond; a morphology commonly found
in sodium aluminate solutions [152][217]. An image of this experimental form has
been reproduced in Figure 5.8.

Consideration of the average defect replacement energies per unit surface area
for potassium should not be necessary. This is due to the low level of incorpora-
tion, which suggests that defects may be treated as completely isolated to good
approximation. Thus, the relative rankings of the average energy to substitute
a single impurity should provide an indication of relative coverage. It is notable
that the direct potassium substitution energies (i.e. without surface area consid-
eration) shown in Table 5.7 are generally higher for the basal plane. This suggests
that incorporation on the (002) plane is considerably less, and perhaps even un-
favourable, compared to the other faces. In addition, a similar argument will
apply for sodium defects. Sodium and potassium defect morphologies with 5%
coverage on the basal plane, and 10% on the other faces are shown in Figure 5.9.
These illustrations show how the importance of the chamfering faces is reduced
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Figure 5.8: SEM image of gibbsite diamond morphology from Sweegers et al.
[217]. The prismatic faces were identified as belonging to the {110} family.

(002)

A% (101) \.

(200)

Figure 5.9: a) Sodium, and b) potassium defect morphologies, with 5% coverage
on the basal plane. All other faces have 10% surface coverage.
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Figure 5.10: Relaxed (002) surface, containing a single sodium defect.

due to the promotion of the basal plane (¢f. Figure 5.6).

5.3.3 Surface reorganization

An illustration of sodium and potassium defect configurations at one of the four
proton sites on the basal plane is shown in Figure 5.10 and Figure 5.11, re-
spectively.  The cation positions of both optimized configurations are similar.
However, there is noticeably more disturbance in the surface structure for the
potassium defect. In particular, the hydroxyl orientations at the right end of the
surface slab, which would be quite close to the periodic image of the potassium
ion, have shifted noticeably. The magnitude of the disturbance in the crystal
surface caused by the presence of a metallic cation is thus of some interest. The
average displacements of atoms from their initial relaxed positions on the pure
surface are shown in Table 5.10 for sodium defects, and in Table 5.11 for potas-
sium. These were taken from the final relaxed (defect) structures of all candidate
proton sites. The data show that the disturbance due to potassium is greater than
sodium, which is expected from the respective ionic radii of the impurities. This
provides some explanation as to why defect energy creation requirements are
higher for potassium than sodium, and thus why the levels of incorporation of
the respective cations are very different.

It is evident that the atoms on the (002) surface experience the least distur-
bance after cation substitution (Tables 5.10 and 5.11). The basal plane is also
the only surface for which Al is six coordinate (all other faces have five coordinate
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Figure 5.11: Relaxed (002) surface, containing a single potassium defect.

(hkl) | Mean atomic displacement (A)
Al | O i
(002) | 0.018 | 0.020 0.035
(200) [ 0.044 | 0.048 0.065
(110) | 0.059 | 0.068 0.10
(101) | 0.061 | 0.065 0.087
(101) | 0.076 | 0.089 U.12
(112) | 0.002 | 0.10 0.15
(113) | 0.12 | 0.15 0.22

Table 5.10: Surface atom distortion due to a sodium impurity.

(hkl) | Mean atomic displacement (A)
Al O H
(002) | 0.040 | 0.044 0.079
(200) | 0.10 | 0.1 0.15
(110) | 0.075 | 0.090 0.13
(101) | 0.10 | 0.11 0.15
(101) [ 0.11 | 0.13 0.18
(112) [ 0.11 | 0.13 0.20
(112) | 0.14 | 0.17 0.26

Table 5.11: Surface atom distortion due to a potassium impurity.



Figure 5.12: (200) surface of gibbsite, showing a) the pure surface and b) the
minimized substitution defect position.

surface aluminium atoms). This suggests that the higher aluminium coordina-
tion on the basal face allows little hydroxyl reorientation to occur, due to high
repulsion when disturbed from the 'normal’ configuration. In contrast, the sur-
faces with only five coordinate aluminium atoms permit more reorientation of the
surface hydroxyl groups. This greater freedom on the non-basal surfaces is also
responsible for the lower replacement energies compared to the basal plane, as the
cation to hydrogen repulsion and the oxygen to cation attraction contributions
are more readily optimized. This can be seen in an image of the (200) surface
in Figure 5.12, where the upper image shows the pure surface and the lower the
minimized defect surface. Principally, the central row of hydroxyl groups have
re-orientated to bring the oxygen atoms closer to the cation, which is embedded

in the five coordinate surface (Figure 5.13).

5.4 Discussion

The predictions of this study are valid in the low to medium surface coverage
regime, as the model has been defined such that defects do not interact. If ap-
proximately equal surface coverage is assumed, the effect of impurity substitution
is to increase the importance of the prismatic faces. This consequently elongates
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Figure 5.13: Embedded sodium defect on the (200) surface of gibbsite.

the equilibrium morphology, and helps to explain the previous underestimation
in Section 4.2. This is in good agreement with experimental results, with obser-
vations by Mensah [91] and Lee et al. [152] noting the elongation of the prismatic
faces in both potassium and sodium aluminate solutions. However, the disparity
in the levels of incorporation for sodium compared to potassium necessitated a
different means of estimating the relative levels of incorporation on each of the
different faces in the morphology. This analysis has yielded a possible explanation
for the diamond morphologies observed in sodium aluminate liquors. In addition,
consideration of the magnitude of the defect replacement energy suggests that
incorporation should reduce the importance of the chamfered faces, and promote
the basal face. This accounts for the lower than expected morphological impor-
tance of the basal plane in the illustrations in Figure 5.6.

In both cation incorporation calculations, the defect surface energy tends to
rise most quickly for the basal plane. Experimentally, the basal plane is more
significant than this result might suggest. However, the basal plane does have
significantly lower "pure’ surface energy. Hence, if coverage is low, the basal plane
would still be dominant in the morphology. It may also be argued that as the
basal plane generally has larger energy requirements for substitution to occur, it
will experience the smallest defect coverage. In addition, the data from Tables
5.10 and 5.11 suggest that of all the faces, the basal plane is most suitable to
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incorporating into the bulk any defects that happen to form on the surface. This
might facilitate the overgrowth of any defects that do occur (so that the surface
reverts back to its ‘pure’ state), resulting in a lower surface energy than expected
from the data in Figures 5.4 and 5.5. As a consequence, the basal plane in the
diamond morphologies in Figure 5.7 may be even more dominant. This would
effectively reduce the importance of the {112} chamfering faces, and serve to
explain why these faces are not noted in experimental observations.

Although this work predicts that gibbsite crystals from potassium aluminate
solutions are longer than those grown from sodium aluminate, the elongation is
not as distinct as experimental evidence suggests. If a growth model were utilized
instead of the equilibrium model employed here, the change in attachment energy
(and hence the growth rate) caused by the surface impurity could be considered.
Clearly, the larger the disturbance in the surface caused by the defect the more
subsequent growth unit incorporation will be retarded. If sufficient defects were
formed, the face may even become completely blocked. Comparing Table 5.10
with Table 5.11, it is evident that potassium defects cause the greatest restruc-
turing of the gibbsite surface. This suggests that face blocking is likely to be more
dominant in potassium aluminate solutions over sodium aluminate solutions. A
further argument for face blocking aiding the elongation of gibbsite morphology
is the lower energy requirement for defect substitution on the prismatic faces.
This should make defects preferentially form, and therefore block, the prismatic
faces.
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Chapter 6

Aluminate solution modelling

6.1 Background

Molecular modelling based on the structural energetics of the crystalline solid is
useful in areas such as the prediction of final morphology. However, the pathway
through which that result is achieved is also of importance. Primarily, it is the
identification of the growth units that is lacking from the current understanding of
the precipitation process of gibbsite, although several related pieces of information
are known. The most abundant species in Bayer liquors is almost certainly the
tetrahedrally coordinated [A{{OH)s]™ ion [61]. Since aluminium in gibbsite is
octahedrally coordinated, there must be a coordination change from 4 fold to 6
fold coordination on crystallization. An answer to how this occurs has not been
forthcoming. This is partly due to the extremely hostile nature of Bayer liquors,
resulting in indirect and inconclusive experimental data. Computer modelling
techniques present a complementary means to approach the problem.

Many recent studies on the nature of aqueous solutions have been accom-
plished using molecular dynamics. Work by Levitt ef al. [234] documents a
model (mainly for use with macromolecules) which reproduces selected physi-
cal properties of water. Laaksonen et al. [235] conducted an investigation of
the methane-water system, employing molecular dynamics to generate spatial
distribution functions describing the local solution structure. Investigations by
Mancera ef al. [236] focused on the effect of temperature on the aggregation of
methane in aqueous solution. In addition, ionic systems have also been investi-
gated. lon selectivity was examined by plotting the free energy profile of cations
to a crown ether in water [237]. In addition, a hybrid QM/MM technique has
been employed to show that a classical approach is inadequate to describe the
solvation of the doubly charged calcium ion in water [238].
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Ideally, gibbsite precipitation may be studied by modelling the behaviour
of gibbsite surfaces in contact with Bayer liquors. Unfortunately, running such
a complex simulation for any reasonable length of time would require extensive
computing power. An intermediate approach would be to model only the solution
part using molecular dynamics. The aim of this investigation would be to note
any structuring that may occur as a precursory stage to the formation of gibbsite
growth units. The time scale of this experiment should be as long as possible, in
order to accommodate the slow rate of gibbsite precipitation. Although there are
hybrid quantum mechanics and molecular modelling techniques available, these
would be impractical for the relatively lengthy simulation times required; at least
until further data is obtained. Unfortunately, employing a molecular mechanics
scheme to the dynamics will allow molecule flexing but not bond creation or anni-
hilation. Thus, although new solution species will not be formed, any clustering
that might precede such a transformation should still occur.

This chapter focuses on the structure of caustic aluminate solutions in rela-
tion to the precipitation of gibbsite. The composition of any given industrial
Bayer liquor can be quite complex and varied, due to differences in both the
raw ore and the precipitation procedure. Thus, fundamental investigations are
often conducted using a synthetic Bayer liquor. These liquors are commonly
prepared via the treatment of aluminium wire with a sodium hydroxide solution
[61] [67], or the dissolution of gibbsite pellets in a hot caustic solution [152][239].
This suggests that the primary species desirable to model might be: A{OH)],
Na*, OH~ and H,O. The involvement of the cationic species in the gibbsite
crystallization process was mentioned in section 1.2.2. As a result, studies have
been conducted in order to probe the precise nature of the cationic influence on
gibbsite morphology, in particular, the effects of replacing sodium with lithium,
potassium and caesium [61][152].

An investigation of solution structuring in synthetic Bayer liquors was con-
ducted with the aid of molecular dynamics simulations. Four separate simulations
were performed, three of which were sodium aluminate sclutions and the other
a potassium aluminate solution. In addition, experimental data from vibrational
spectroscopy experiments by Helen Watling [61] were compared to the results
from the simulations. The experiment also involved separate spectral studies
with Nat, Ktand Cs* cations. As mentioned previously, there is some diffi-
culty in unambiguously interpreting spectral data. Thus, combining computer
simulation with experimental data should help improve current understanding of
synthetic Bayer liquors.

128



6.2 Method

In this study, molecular dynamics simulations are employed to investigate possible
ion associations in aluminate solutions (synthetic Bayer liquors), at concentra-
tions of industrial relevance. All simulations were conducted on Silicon Graphics
workstations, using the Discover package from Molecular Simulations Incorpo-
rated [192]. The ESFF potential set [240] was chosen to represent all force field
interactions, since the system contains two metallic atom types in addition to oxy-
gen and hydrogen. The molecular mechanics approach taken forbids the breaking
or formation of bonds. However, a fully quantum mechanical simulation of this
nature is not currently feasible, and the study was restricted to examine only pos-
sible solution structuring. The Verlei velocity method was employed to integrate
the equations of motion. All simulations were conducted with the use of periodic
boundary conditions; with the Ewald technique {241} employed to evaluate the
van der Waals and Coulombic interactions.

Three systems were constructed, each possessing a composition similar to that
of a synthetic Bayer liquor (7 AH{(OH);,5 OH~, 12 Na* and 192 H,0 molecules
at randomized locations). A target volume of about 6330A3 would thus vield
a solution with [AI{OH);]~1.8M and [NaOH]~3.2M. An additional simulation,
where K+ was substituted as the cationic species, was also performed. The
apparent experimental duplication was introduced as a result of the complexity
of the systems under consideration. Dynamics simulations are sensitive to initial
position and, if phase space is to be representatively sampled, multiple simmulations
with different starting configurations should eliminate problems if the system is
not truly ergodic [115].

Due to the slow rate of gibbsite crystallization, it was decided that the simula-
tions should be run for as long as possible; within the constraints of the available
computational facilities. Large scale (10% — 10° atoms) molecular dynamics simu-
lations are typically run for a net time of no more than about 300ps-400ps, which
includes both data collection and equilibration phases {123][125][126]. In this
work, the three sodium aluminate solutions were run for 500ps and the potas-
sium aluminate solution for 300ps of simulation time. The step size for all stages
was chosen to be 1fs, which is considered suitable for flexible molecular systems
[114].

For each simulation, the molecules of the system were placed in a cubic lattice,
the dimensions of which were selected to avoid overlap. A randomizing program,
MDI (Appendix A.1.1) was written to select the location and orientation of each
component, within the constraint of the overall required numbers of species. How-
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ever, due to the use of a lattice for initial species placement, the simulation cell
will be very ordered and unrepresentative of the liquid phase. Thus, it is conve-
nient to quantify the ordering in a system of N particles (molecules or lone ions)
in terms of a single parameter A [114],

1 &2 (%ﬂ)
A= — cos 2 (6.1)
3N;§; P

where the i** particle has a centroid located at (], 22, z3) and the lattice vector is
given by (a',a”, a®). For the case |A| = 1, the system possesses maximal ordering,
whereas the maximally disordered state is achieved when || is zero.

To obtain the correct cell density, a period of simulation at high pressure is
required. Given the composition of the simulation cell, the enclosing cubic box
is required to possess a dimension of La18.54, which corresponds to a density

3. The concentration and density of this simulation

of approximately 1.2 g/cm
therefore is similar to that of a synthetic Bayer liquor at 80°C' [242]. A further
period of simulation is also needed to properly equilibrate the liquid at the desired
temperature. Equilibration was accomplished using the robust Andersen temper-
ature control method [115], whilst the more realistic Berendsen method was used
for the data collection [243]. Snapshots of the simulation, containing only posi-
tional data were stored every 100 steps. These were subsequently analyzed for

possible solution structuring.

6.3 Sodium aluminate

6.3.1 Equilibration

The initial lattice configuration of the first simulation, generated by the MDI
program, is displayed in Figure 6.1. In terms of purely structural arguments, it
is evident that the simulation cell requires an equilibration period in order to
approximate the liquid phase. In particular, the correct density and relaxation of
the initial simulation lattice must be achieved. A short high pressure (constant
NPT) dynamics run was conducted, with the configuration and density of each
simulation step recorded. Subsequently, the configuration which best matched the |
required density was selected. However, the duration of this run is not long and
the resultant simulation cell will still inherit some of the initial lattice ordering,
Further equilibration was attempted by conducting a 200ps NVT dynamics
run. Sequential values of the order parameter during the first picosecond of
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Figure 6.1: Cell configuration for simulation 1, illustrating the initial lattice place-
ment.
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Figure 6.2: The first picosecond of equilibration, clearly demonstrating the lattice
melting.

this equilibration period were plotted for the first simulation (Figure 6.2). The
graph clearly indicates that lattice melting occurs quite quickly. To confirm that
the structuring present in the initial lattice had vanished for all simulations,
the order parameter was also calculated during the data collection period. A
distribution (Figure 6.3) was constructed which has the expected centering around
zero. Typically, for a system ai equilibrium, A experiences maximum fluctuations
of the order of 71—-1\7 ~ 0.07 [114]). This confirms that the lattice structuring has
sufficiently diminished by the time the simulation enters the data collection phase.

In an NVT ensemble, temperature is a calculated property of the atomic veloc-
ities and is regulated rather than fixed at some desired value. Thus, it is desirable
to perform an equilibration of sufficient length that the temperature acquires a
steady mean value. In the literature, synthetic Bayer liquors are typically held at
a range of temperatures between 60°C and 100°C' [67][91]{244]. Hence, a target
temperature of 350K with a tolerance of up to 20K was allowed. The duration
of the equilibration period was 200ps. This was found to allow sufficient time for
all lattice ordering to vanish, as well as the attainment of a steady mean temper-
ature. The temperature distributions for all three simulations, taken throughout
the equilibration period, are shown in Figure 6.4. From this plot, a very small
percentage clearly fall outside the desired range of £20K. A plot of the tempera-
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Figure 6.4: The temperature distributions of the sodium aluminate solutions,
taken during the equilibration period.
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Figure 6.5: The temperature distributions of the sodium aluminate solutions,
taken during the data collection period.

ture distributions for the data collection period is shown in Figure 6.5. Here the
bulk of the temperatures fall within 15K of the target temperature range; this
was considered acceptable.

To provide a contrast to Figure 6.1, a snapshot of simulation 1 after equili-
bration is shown in Figure 6.6. In addition to the considerations of temperature,
density and lattice ordering discussed above; it is evident that components should
be fairly uniformly dispersed. This has been achieved, enabling the data collection
phase to begin from a reasonable initial solution state.

6.3.2 Data Collection

Of primary interest is the solution structuring, which is most directly probed with
the use of radial distribution functions (RDFs). These functions were obtained by
measuring the molecular and ionic separations and placing them in bins of 0.25A
resolution. The first measurements made were the distances from the center of
each aluminate ion to all sodium cations. This data yielded the sodium aluminate
RDFs shown in Figure 6.7. The large peaks in Figure 6.7, which are centered at an
aluminate to cation separation of around 3.5A, indicate that a significant degree
of ion pairing is occurring. While the RDFs for simulation 1 and simulation 3
exhibit very similar behaviour, the second simulation experiences a greater degree
of ion pairing. In addition, past the first large peak in the RDFs, the rest of the
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Figure 6.6: The cell configuration for simulation 1, immediately before the data
collection phase.
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Figure 6.7: Radial distribution functions for the aluminium to sodium distances.

distributions appear to possess additional smaller peaks. While these are not
as distinct, the deviation from a smooth curve suggests that some longer range
solution structuring is also occurring.

In Figure 6.8, a graph of the number of cations paired with each aluminate,
versus the proportion of occurrence is shown. This data was obtained by recording
the number of cations paired to each aluminate, and summing over every frame
in the data collection period. Thus, normalization of the graph is accomplished
by dividing by the product of the number of aluminate ions (7) and the number
of frames (3000). In addition, with the use of Figure 6.7, a paired cation was
defined as being closer than 4.1A to the Al atom of an aluminate ion. The data
in Figure 6.8 indicate that the aluminate ions in simulations 1 and 3 are paired
to an average of between two and three cations. For simulation 2, there is a
large proportion of aluminates with three or more associated cations. As each
cell has a composition of 7 aluminates and 12 sodium ions, the cations are clearly
being shared by multiple aluminate ions which have come into proximity. This is
particularly evident in simulation 2.

The sharing of cations between adjacent aluminates was investigated further
by constructing radial distribution functions for aluminate Al-Al separations (Fig-
ure 6.9). Although all three of the plotted RDFs possess a peak at around 54, it is
evident that simulation 2 experiences the greatest degree of aluminate ‘clustering’.
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Figure 6.8: Proportion of clustering occurring between sodium and aluminate
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Figure 6.9: Radial distribution function for aluminium separations.
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Figure 6.10: Proportion of clustering occurring between aluminate ions.

It is these clustered aluminates, each with their own shell of paired cations, that
are responsible for the smaller peaks in Figure 6.7. Further information emerges
from the aluminate cluster size distribution shown in Figure 6.10. Here, a cluster
is defined as a group of linked aluminate monomers with Al-Al separations of not
more than 5.5A. This clustering data was collected by cumulatively recording the
size of the group each aluminate belongs to in each simulation frame. Thus, the
distribution was normalized with the same value employed to normalize the data
in Figure 6.8. The aluminate clustering plot shows that simulations 1 and 3 expe-
rience relatively small amounts of clustering, with a large fraction of aluminates
remaining ‘isolated’ during the simulation. However, the second simulation has
formed a very large group that is stable enough to account for almost half of the
simulation time. As the second simulation also possesses the highest number of
shared cations, it is probable that these sodium to aluminate bridges are playing
an important role in the formation of clusters.

In addition to the overall statistical information, the variance in cluster dis-
tribution as a function of time was also investigated. The cluster sizes present
throughout each simulation were graphed. The cluster distributions in simulation
1 (Figure 6.11) confirm that most of the aluminates are ’isolated’. The clusters
that do form however, occur in a randomly distributed manner. The larger degree
of clustering in simulation 2 is evident in Figure 6.12. Here the large groupings
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Figure 6.11: Frequency of occurrence of aluminate clusters of given size, through-
out simulation 1.

of six and seven aluminates are stable enough to dominate the latter half of the
simulation. The third simulation (Figure 6.13) is similar to the first; however, it
is notable that larger clusters of six aluminates briefly form throughout the run.

This can also be seen from Figure 6.10.

6.4 Ion pairing and cationic species

To examine the possible effects of replacing sodium with a different cationic
species, a simulated potassium hydroxide solution was also investigated. Equili-
bration of the simulated liquor was accomplished in the same fashion as for the
prior sodium aluminate simulations. However, after the 200ps of equilibration,
only 100ps of data collection was conducted. This shorter run was considered
sufficient to extract the desired information. The order parameter distribution
for the data collection period is shown in Figure 6.14. This shows that the sim-
ulation has lost all lattice structure. The temperature distribution is shown in
Figure 6.15. This shows that the simulation achieved a steady state temperature
within the allowed tolerance.

The potassium to aluminate radial distribution function was constructed (Fig-
ure 6.16). This plot has a similar form to those shown in Figure 6.7, although the
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Figure 6.13: Frequency of occurrence for aluminate clusterings throughout simu-
lation 3.
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Figure 6.14: Order parameter distribution during the data collection period of
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Figure 6.15: Potassium aluminate temperature distribution, over the data collec-
tion period.
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Figure 6.16: Potassium to aluminate radial disiribution function.

mean ion pairing distance is greater at 3.94 (compared to 3.54 in sodium alu-
minate). This change must be related to the difference in ionic radius of sodium
(0.974) compared to the larger potassium (1.33A). In similar fashion, the alu-
minate to aluminate radial distribution function (Figure 6.17) exhibits the same
general features as the equivalent RDF of the sodium aluminate solution. The
mean separation of immediately adjacent clusters is larger, which is consistent
with the larger ionic radius of potassium.

The occurrence of ion pairing is frequently invoked in order to explain anoma-
lous reductions in the conductivity of an electrolyte. This is most evident for ion
pairs that are charge neutral, and hence make no contribution to the conductiv-
ity. Thus, expressions for ion pair separation are centered around the electrolytic
properties of the solution. In particular, Bjerrum in 1926 developed an expression
for ion association based on the charges of the ions and the dielectric constant of
the medium in which they interact [245]. However, the difference in the dielec-
tric constant between sodium and potassium aluminate solutions is unlikely to
be sufficient to completely account for the 0.4A difference in ion pair separation.
To develop a suitable explanation, clearly the dimensions of the cationic species
involved should be considered. This approach is justified, as ion pairing is known
to be dependent upon cation radii [175].

Thus, in order to predict an approximate ion pairing distance, a comparison
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Figure 6.17: Aluminate to aluminate radial distribution function.

of the radii of the respective constituents was performed. This is trivial for the
cationic species, but less so for the aluminate monomer. The molecular volume
of an AI(OH)4 molecule was calculated by rolling a probe ion over the van der
Waals surface. This procedure was performed using the Cerius2 program from
MSI [192]. For the probe atoms Nat and K+, the volume was found to be
74.1A% and 76.0A3 respectively. Although AI(OH); is not a spherical molecule,
only the average ion pairing distance is sought. Thus, the aluminate monomer
was assumed to be a sphere for the purpose of obtaining an average molecular
radius. The radii were found to be 2.61A and 2.634 for Ng* and K+ probe ions
respectively. Adding to these the ionic radii of the probe gives distances of 3.58A
and 3.96A. These compare very favourably with the values obtained from the
simulations, and illustrates that the ion pairs are in close contact.

6.5 Discussion

The reaction for the dissolution of bauxite or the precipitation of gibbsite from
hot alkaline aluminate solutions in the Bayer Process is often represented as,

NoOH

AJ(OH)Z(W) =  AlOH)s3() + OH(_a.q)
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but this expression fails to indicate the complexity of even the simplest case where
gibbsite nuclei (AI{(OH)3), form spontanecusly in a supersaturated aluminate

solution. Homogeneous gibbsite nucleation must involve processes such as:

¢ ordering of aluminate ions in solution,

formation of hydroxo-bridges between Al atoms,

a change from tetrahedral to octahedral Al coordination geometry,

the release of sodium and hydroxyl ions from the nucleating crystal into the
bulk solution,

and the separation of solid phase from solution (dehydration).

Even in the Bayer process, where solutions are seeded and growth consists mainly
of the incremental addition of gibbsite to seed crystal surfaces (during agglomer-
ation, growth and secondary nucleation), aluminate ions must undergo changes
similar to those listed above. Thus, any mechanism that is proposed for the
precipitation of gibbsite must account for these processes, while being consis-
tent with experimental observations. The data collected in the present study
contribute mainly to an understanding of solution ordering.

A significant degree of ion pairing was noted in both sodium and potassium
aluminate simulations. Experimental evidence lends some support to these find-
ings. Raman spectra of alkali metal hydroxides have been found to exhibit a very
broad low-intensity, low-frequency band at ~300 em™!. This has been attributed
to MOH . H,0, in which an almost symmetric O — M — O linkage exists [246].
The intensity of this band is reduced when aluminium is introduced into solution,
a feature which has been interpreted as indicating that cation affinity is greater
for the aluminate ion than for the hydroxide ion [247].

The data used to generate Figure 6.8 was examined in order to establish
how the number of paired cations changes as a function of time. This analysis
indicated that, in general, the cations associated with an aluminate are not rigidly
bound. Thus, throughout the entire simulation, there is a random fuctuation in
the number of cations paired with a particular aluminate. The mean value of
these oscillations in associated cations was reported earlier as being between two
and three. This mobility of the bridging cations is an important feature, since one
of the intermediate steps in gibbsite precipitation involves the release of sodium
ions to the bulk solution.
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Interpretation of simulation data suggests that a similar trend in behaviour
is occurring for both sodium and potassium solutions. The most notable differ-
ence is the weaker pairing between potassium and aluminate. This is supported
by experimental findings. The results from analysis of spectra has showed the
effects of the different cations on aluminate vibrational bands to be small [61].
Apart from a systematic decrease in the 620 ¢m™! band intensity accompanied
by a small increase in width at half height in the order Na>K, the spectra are
remarkably similar across the full frequency range. Thus, comparisons between
spectra of sodium and potassium aluminate solutions indicate that, if these spec-
tral differences are due to cation-aluminate ion pairing, then pairing is stronger
in the sodium system [61].

The data collected in the molecular dynamics simulations may be thought
to indicate that the cationic and aluminate species evolve, from initial isolation,
into subsequently larger and larger groups. These groups being characterized by
ion pairing and aluminate clustering. This implies that, if given sufficient time,
the simulations would exhibit the form seen in Figure 6.18, where all seven alu-
minates are bound into a maximal cluster. However, this will not necessarily
occur as clusters may disperse again after formation. Simulations 1 and 3 both
experience a certain degree of larger cluster sizes that do not persist. In partic-
ular, simulation 3, briefly forms size 6 clusters at various stages throughout the
run (Figure 6.13). These clusters disperse relatively quickly, and do not form
the larger maximal clustering seen in simulation 2. Thus, it is unlikely that a
gradual acquisition of aluminates will in general continue until a maximal cluster
is formed. The key factor in this regard is the number of sodium cations each
aluminate ion is paired with. Figure 6.8 shows that simulations I and 3 experi-
ence an average of approximately two cation pairs per aluminate ion. Contrasting
this with simulation 2, where the average number of paired cations is higher, it
is evident that larger cluster sizes can be more readily sustained.

It has been assumed that monomeric AI{OH); ions would be distributed ran-
domly (homogeneously) in solution. However, the simulations predict that they
aggregate into clusters which are stabilized by the cationic species. Unfortunately,
the limitation of the simulation method used is that bonds cannot be formed or
broken. Hence, although the aluminate monomers are predicted to form clusters
which facilitate the formation of polyaluminate species, no information about ei-
ther the bonding between aluminate ions or the aluminium geometry is obtained
from these simulations. In addition, the stabilizing cations paired to the alumi-
nates have been demonstrated to be quite mobile. This is certainly expected,
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Figure 6.18: Snapshot of aluminates forming a maximal cluster size.
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given that ejection of sodium is an important part of the gibbsite precipitation
step.

Aluminate clustering has some corroboration in the literature. It has been
noted that spectra collected during the induction period, up to the point where
particles were visible as a faint suspension, are characterized by an increased in-
tensity of Rayleigh scattering [61]. The estimated diameter of the particles was
approximately one sixth of the wavelength of the laser used (1064 nm). Recent
additional data from multiangle laser light scattering [248] also showed a progres-
sive increase in light scattering prior to the appearance of suspended particles,
consistent with a nucleation mechanism. In that case, particles were estimated
to be & 180nm in diameter, but according to Rossiter et al. [67] this might be an
overestimation. The important point is that such particles could not form if the
aluminate ion clustering, as predicted by the simulation, did not take place. In
addition, certain bands observed in the Raman and infrared spectra of concen-
trated aluminate solutions have been interpreted as arising from the vibrations
of aluminate clusters (and any polyaluminate anions which form from them} [61].
The absence of spectral features characteristic of a distinct interfacial aluminate
layer at the growing crystal surface could be explained by the predicted cluster-
ing throughout the bulk solution, and the participation of such clusters in the
formation of polyanionic growth units.
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Conclusions and Future Work

This thesis has documented the development of a potential model for gibbsite
that has successfully reproduced a range of experimental data. The model was
obtained through fitting multiple hydroxide structures to ensure robustness and
transferability, with an average error in lattice parameters of under two percent.
Although a partial charge scheme was applied within the hydroxyl group, the
overall charge was constrained to -1 in order to facilitate transferability. Hence,
the model should be suitable for modelling other hydroxide materials of interest.
The importance of sodium oxalate to the Bayer process led to an attempt
to construct a transferable oxalate potential model. Firstly, an intramolecular
potential that described the oxalate dianion was sought. However, due to the
instability of the dianion under vacuum conditions, a point charge array that
approximately mimics the electrostatic field of a surrounding lattice was utilized.
‘This had the desired effect of stabilizing the HOMO and allowing a suitable energy
hypersurface to be constructed. The second stage of fitting involved developing
intermolecular terms in order to reproduce the sodium, potassium and calcium
oxalate monohydrate structures. This was accomplished by holding the previously
determined intramolecular potentials fixed, while fitting all the other terms.
The gibbsite potential model was successfully employed in an equilibrium
morphology prediction, with all experimentally observed faces reproduced. The
predicted habit is a chamfered hexagonal prism, which matches well with experi-
mentally grown crystals despite an underestimation of the prismatic faces. It was
also noted that all the surface aluminium atoms for each gibbsite face were five
coordinate. The one exception was the basal plane, with all the aluminium atoms
being six coordinate. One of the key issues in gibbsite crystallization is the iden-
tification of the growth unit(s). The development of a good potential model, in
addition to the studies on gibbsite surfaces, is an important contribution towards
this end. Future effort is needed to examine the docking of aluminate species
(that are known to be present in solution) onto gibbsite surfaces. Although the

empirical model developed in this work could be used to describe interactions

148



within gibbsite, a hybrid QM/MM method would be needed to deal with possible
aluminium coordination changes in the postulated growth unit(s).

Gibbsite is typically grown in alkali aluminate solutions, for which incorpora-
tion of the metallic cation is known to occur. This is thought to occur via proton
replacement. Modelling the change in surface energy, caused by impurity sub-
stitution, allowed 'defect’ morphelogies to be predicted. These were found to be
highly dependent upon the relative surface coverage of separate faces. However,
with the assumption of near uniform coverage for all faces, defect incorporation
was found to have an elongating effect on the morphelogy. Consideration of how
coverage might vary in order to minimize the defect energy per unit surface area
yielded a possible explanation for the formation of diamond gibbsite morpholo-
gies. Further information concerning defect morphologies may be ascertained by
applying a growth model, as opposed to the equilibrium model described in this
work. In particular, the calculation of the attachment energy of a growth slice
onto a defect surface should be attempted. As a result, information concerning
how such defects change the relative growth rates of the faces in gibbsite would
be determined.

In the defect studies, the arrangements of atoms on the surface of gibbsite were
complex and it was not trivial to ascertain which protons should be considered
surface sites and therefore candidates for replacement. Hence, a scheme that
computed each hydrogen’s accessibility to a given probe atom was used. The
SCURF code was written to accomplish this, and is suitable for application to any
system where some means to distinguish surface sites from buik sites is needed.
In addition, this work employed a 2x2 (manual) surface construction to avoid
artificially including edge sites as surface sites. A better method would be to
automatically construct periodic images surrounding the slab of material under
examination. This will be implemented in future revisions of the SCURF code.

Using attachment energy calculations of pure and reflected growth slices onto
crystal surfaces, a scheme for predicting crystalline twinning was developed. The
GTWIN code examines the difference in attachment energy for a normal growth
glice and its mirror image (with the plane of reflection parallel to the crystal
surface). Gibbsite was predicted to form reflection twins parallel to the (002) and
(110) planes. This result is confirmed in the literature from mineralogy references
and also from experimentally grown crystals in synthetic Bayer liquors. The use of
this scheme to successfully predict twinning in several additional crystal systems
suggests that it can be used generally as a means to predict reflection twins.
However, an obvious improvement to the GTWIN code would be the inclusion of
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additional symmetry operations so that other forms of twinning may be examined.

Complementing the solid state work, simulations of synthetic Bayer liquor
were also conducted which yielded two important pieces of information. Firstly, a
significant degree of ion pairing between the aluminate monomer and the cationic
species was observed to occur. Secondly, the grouping of aluminates into cation
mediated clusters was also noted. These findings helped propose an explanation
for observations made using IR and Raman spectroscopy studies. The signifi-
cant degree of binding between the cationic species and the aluminate monomer
(which is the dominant solution species) also provides a basis for explaining
cationic incorporation in gibbsite crystals. Further work, employing a compu-
tational methodology which allows for the formation and breaking of bonds is
needed to probe this further. Additional studies, probing the effect of different

concentrations should also provide valuable insight.
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Appendix A

Computer Codes

A brief description of the major codes developed during the course of this project
is presented. Where appropriate, suitable input and output samples are also

showm.

Al C

A.1.1 Dynamics Initializer
Description

This program (MDI) was designed to create a complete liquid simulation cell,
given the individual constituents and the amounts of each required. The total
number of lattice points (molecular sites) is determined from a specified parameter
L, so that the total number of molecules in the box is L3. Thus, L is simply the
dimension of the simulation cube in lattice points. The actual physical dimensions
of the box is automatically determined when the constituents are read in at run
time. The radius of the largest constituent is used to ensure that no overlap
occurs. The essential idea of the program is to separate the constituents into one
solvent and multiple solute particles. The default particle at each lattice point
is thus a solvent molecule. The box is then filled, one solute molecule at a time,
so that each particle is maximally dispersed from all previously placed particles.
This is accomplished by attempting to maximize the shell of solvent that will
be around the newly inserted particle. Typically, there are a number of possible
locations for placement, one of which is selected at random. In addition, before
the solute molecule is placed in the lattice, it is randomly rotated.

The program is executed as “MDI <INPUT_FILE>", where a typical input
file consists of lines such as:
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boxdim 5
80lv water.car
comp aluminate.car 5

output soup.car

The first line is the dimensions of the cube in lattice points. The second line
indicates the BIOSYM coordinates data file to be used as solvent. The third
line indicates a solute BIOSYM file plus the number of such species desired in
the lattice. This command may be repeated when multiple solute species are
required. The last line indicates the BIOSYM filename desired for the resultant
simulation cell. Note that the MST code used in the molecular dynamics studies
also requires an MDF (molecular data file) indicating molecular connectivities.
A separate Perl script is available that creates a suitable MDF file for the output

simulation cell. After the program has executed, an output summary is presented:

chosen angstrom separation = 5.000000
Filling box: 5 x 5 x b

aluminate.car : solvated 5 molecules
Number of solvent (water.car) molecules: 120

Output written successfully to: soup.car

Code listing

/* MDI - Molecular dynemics inititaliser */
/% v 0.2 %/

#include <math.h>
#include <stdic.h>
#include <string.h>
#include <sys/times.h>
#include "const.h"
#include "struc.h"

int numcomp=0; /+ number of compensnts to "dissclva” */

/* NB: deesn’t include solvent itsslf */
int boxdim; /* box dimension (ie side leangth in lattice pts) */
float lattsep; /% angstrom distance betwesn lattice pts *f
int kcompdat; /% array indicating component type at every location */
int mkmdf=0; /* make an mdf file? 1=yes 0=na */

char outfile[30];
char *get_line()};
char #get_item(char *, int, int);

main {int argc, char #argv(])
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int 1i,j;

if (arge<2}
{
printf("\n*#* Molecular Dynamics Initializer v2.Q **+\n\n");
printf ("Description:\n--------—-—- \r\n"};
printf("Creates a cubic lattice with specified components randomly \n");
printf("placed at the lattice points. Some affort has been taken to \n");
printf("ensure that the different components are reascnably dispersed,\n"};
printf{"simulating sclvation.\n\n");
printf("Useage:\n------ \n\t mdi input_file\n\n");
printf("Keywords: (input file)\n-------- \o\n");
printf ("boxdim <integer>

dimension of cube\n");

molecule to use as the solvent (BIOSYM car filse)\n");
printf("comp <filename> <integer> = solvate a specifisd number of molecules\n");
destination file (BIOSYM arc format)\n\n"};

printf{"solv <filename>

printf("output <filename>
printf("Notes:\n--w-- \n\n") ;
printf("1. comp is the only keyword that may appear more than once\n");
printf("2. If you need an mdf file you can run mkmdf afterwards\n\n"};
return;

}
/* load all the data »/

if (read_inpfile(argc, argv} == 2 || read_datfile{} == 2)
{
printf("Run unsuccessful!\n");
return;
}
else

{
/* main array */

compdat = (int *) malloc{boxdimsbexdim*boxdim¢sizeof{int));
if (!compdat)

{

printf("Unable to allocate memory for compdat!\a"};

return;

1

/% Initialise random numbsr generatox =»/

j=times (buffer);
srand(j);
j=j % 87;
for (i=0 ; i<j ; it++)
1{
rand();
}

srand(rand()};
/* Main routine - attempt to fill vacant lattice points */
if (£ill{() == 2)

{

printf("Run unguccessful!\n");
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returmn;

/% create car file x/
write_dat();

/* create mdf file if requested #/
if (mkmdf)

{

write_mdf (};

}

/% Print a run summary */

j=0;

for (i=1 ; i<=numcemp ; i++)
{
printf("%s : solvated %d molacules\n",comp[i].filename,comp[i].done);
j += comp[i].done;

i = boxdim*boxdim*boxdim - j;

printf("Number of solvent (¥s) molecules: %d\n",comp[0].filenama,i);
printf("Qutput written successfully to: %s\n",outfile);
}

FE L L P STy

/* Main subroutine =/
FRNERE R bk A )

int £i12()

{

int numsites; /* number of filled points =/
int i,j,k,p,s,sitematch,midmatch;

int nummid,numcand,candpt [MAXMID];

int r2,r2min[MAXMID] ,rmaxmin,dx,dy,dz;

int reqtot,ci,ri,pos;

float f;
float ran2();

/* NB: initially every point in box is 0 => solvent */
printf("Filling box: %d x ¥d x Yd\n",bexdim,boxdim,boxdim);

numsites = 0;
for (i=0 ; i<2 ; i++)
{
tor (j=0 ; j<2 ; j++)
{
for (k=0 ; k<2 ; k++)
{
site[numsites] .x = i*(boxdim-1);
site[numsites].y = j*(boxdim-1);

site[numsites].z = k*{boxdim-1);
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numsites++;

}

/* force positioning of lst component (in axact center of box) */

/* site updata #*/
site[numsites].component = 1;
site[numsites).x = (int) boxdim/2;
{int) boxdim/2;
(int) boxdim/2;

site[numsites].y

site[numsites].z

comp[1] .done++;

/* array update */

pos = site[numsitesl.x + (boxdim#sitel[numsites).y) + (boxdim¢bordinm*site[rumsites].z);
«{compdat+pos) = 1;

numsites++;

/* compute totsl number of components to dissolve */

ragtet=0;

for (i=1 ; i<=numcemp ; i++) /* omit solvent */
{
reqtot += comp[i].regnum;
}

ci = 1; /# index - components placed */

/* laoop over total number to dissolva %/
for (ri=1 ; ri<reqtot ; Ti++) /+ start at 1, since alrsady done 1 {above) */
{

/* select & component at random */
/* if ve’ve not exceeded the required number of that compinant */

if (comp[ci].done == comp[cil.reqnum) ci++; /* next component if doms #/
complcil . done++;

/* loopl gensrate midpoints */
k=0; /% num unique midpoints */

/* loop over all unique pairs (i,j) of already dissolved components */
for (i=0 ; i<numsites-1 ; i++)
{
for (j=i+l ; j<numsites ; j+#)
i
midpt [k] .
midpt[k].
midpt [k] .

L
1]

{int) (site[i).x + site[j].z)/2;
(int) (sitel[il.y + site[j).y)/2;
(int) (sits[il.z + site[j].z)/2;

o
]

/* chack midpoint against existing sites */
for (s=0 ; s<numsites ; s++)
1{
sitematch = 0;
if (midpt[k].x == site[s].x) sitematch++;
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if (midpt[k]l.y == site[s].y) sitematch++;
if {midpt[k].:z == site[s].z) sitematch++;
if (sitematch == 3) break;

T

/* valid mid peint only if not equal to sxisting sites #/
if {(sitetatch < 3)

{
midmatch=0; /* necessary for cass k=0 »/
for (p=0 ; p<k ; p++)

{

midmatch = Q;

if (midpt(k].x == midpt{pl.x) midmatch++;
if (midpt[k].y == midpt[p).y) midmatch++;
if (midpt[k].z == midpt[pl.z) midmatch++;
if (midmatech == 3) break;
/* uniqus mid peint only if not equal to existing midpoints x/
}
if {(midmatch < 3) k++; /* valid => save as kth midpoint /

1

)

nummid = k;
/* loop2 gemerate distances(sq’d) */
rmaxmin=0;

for (i=0) ; i<pummid ; i++) /¥ midpoint */
{

r2min[i] = boxdim*boxdim;

for {j=0 ; j<numsites ; j++) /* sites */
{
/* correct for periodic natura of hox »/
dx = abs(midpt[i].x - site[jl.x);
if (dx > beoxdim/2)

{
dx -= boxdim;
dx = abs{dx);
}

dy = abs(midpt[il.y - site[j1.¥);
if (dy > boxdim/2)

1{

dy -= boxdim;

dy = aba(dy);

¥
dz = abs{midpt[il.z - site({j].z);
if {dz > boxdim/2)}

{

dz -= boxdim;

dz = sbs(dz);

¥

/* 'reduced’ distance squared */
r2 = dx*dx;
2 += dy+dy;
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r2 += dz*dz;

/% local midpoint min */
if (2 < r2minlil) r2min[i] = r2;

}

/* detarmine the largest of the local midpoint minima */

if (¥2min(i] > rmexmin) rmexmin = r2min[i);

}

/* sxamine all midpoints and only admit those */

/* with the largest locel minima as candidate sites */

k=Q;

for (i=0 ; i<pummid ; i++)
if (r2min{i) == rmexmin) candpt[k++] = i;

numcand = k;
if (!numcand)
{

printf{"Ne candidate sites found!\n");

raturn 2;

}

/* Select (at random) a candidate site into */

/* which the current component will be placed */

£

ran2();

(int) (0.5 + numcand * f);

/% do site update =/
site[numsites].component = ci;

site[numsites].x
site[numsites}.y

site[numsites].z

/* do array data

midpt [candpt[s]].x;
midpt [candpt[s]].y;
midpt [candpt[s]].z;

update */

pos = site[numsites].x + (boxdim*site[numsites].y) +

(boxdim¥boxdim*site [numsites].z);

*{compdat+pos) = ci;

numsites++;

Y /* for total number of compoment */

/* output data =/

raturn Q;

}

/***ﬂ#t***t***1*ﬂ!*t**l**********iitl

/* read setup data from input file */

/**1**********#*t*ﬂ**ﬁ******k****tt*/

int read inpfile(int arge, char sargv[l)

{

int num;
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char itemi{10],item2[103,item3[107;
FILE #fp;

fp = fopen{argv[1],"r"};

if (fp)
{
printf{"Can’t open %s!\n",argv[i});
return 2;

}

num = 0}

for(;;>
{
num = fecanf (fp,"¥%s",&iteml);
if (num == -1) break;

if (stremp(iteml,"comp") == Q)
{
num = fscanf(fp,"¥s ¥%s",&item2,kitem3);
if (num != 2)
{
printf("Incomplete component line: ¥%s\n",itemi);
return 2;
¥
numcomp++ ;
stropy (comp [numcomp] . filename, item2);
comp [numcomp] .xeqnum = atoi(item3);
comp[numcomp] .done = Q;
}
else if (strcmp(itemi,"sclv") == ()
{
num = fecanf{fp,"¥%s",&item2);
if (num != 1)
{

printf{"Incomplete component line: ¥%s\n",iteml);

return 2;
}
strcpy(comp[0] .filename, itam?2);
¥
alse if (stremp(itemi,"boxdim™) == Q)
{

num = fscanf(fp,"¥s",kitem?);
if (oum !'= 1)
{
printf{"Incomplete component line: ¥%s\n",itemi);
return 2;
1
boxdim = atoi(item2); /% side length */
¥
elss if (stremp(iteml,"output") == )
{
num = fscanf(fp,"¥s" ,kitem2);
if (num i= 1)

{
printf("Incomplete component line: ¥s\n",iteml);
return 2;
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}
strepy(outfile, item2);

}
else if (stremp(itemi,'mdf") == Q)
{
mkmdf=1,;
}
} /* while */

FRERR ek Rk AR

/* Get .car data */
/A o ok

int read_datfile()

{

FILE *fp;

char *buff, dummy, data[MAXLINELEN];

int i,j,k,m,n,idx,eof_flag;

int r;
float r2,r2max;

buff = (char #)} malloc{MAXITEMLEN*sizeof(char));
/* cycle through all components and load their car data */
rZmex = Q; /* global maximum (ie dimensions of largest molscule) */

for (idx=0 ; idx<=numcomp ; idx++)

i
fp = fopen(comp[idx].filename,"r");
if (!tp)
{
printf{"Error opening data file: ¥s\n",complidx).filsname);
return 2;
}

/% read past header (assumses 4 lines - FIX ME) »/
i=20;
while(i<4)
1{
fread(&dummy,sizeof (char),1,fp);
if (dummy == '\n’) i++;

}

/* read .car data until end encountered - assume sof */
i=j = aof_flag = 0;
while(!eof_flag)
{

/* if we read a line with ro data baefore eof => bad data file =/
if (!fread(&datali],sizecf(char),1,fp))

{
printf{"Unexpscted EOF!\n");
if (13

raturn 2;
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/* process a line of data - ie either a CR */
/% or max line length encounterad - FIX ME */
if (datalil == ’\n’ || i==MAXLINELEN)
1{
buff = get_item(data,1,1);
if (!strncmp("end”,buff,3*sizecf(char)))
{
eof_flag = 1;
}
alze
{
if{ buff[0] 1= *\n’ )
{
E=0;
vhile(k < 8)
{
comp[idx] .atom[j] [kl = buff[kl;
kt++;
I
buff = gat_item(data,2,1);
sscant (buff,"¥£12",&comp[idx].x[§]1);
buff = get_item{data,3,1);
sscanf{buff,"{f12",kcomplidx] .y [j1);
buff = get_item({dats,4,1);
sscanf(buff,"%f£12" kcomp[idx] .z[j]1);
buff = get_item{data,5,0);
strcpy(comp [idx).taillj],buff);

jtt;
i=0;
/% if buff */
} /o if end */
¥ /* if (get line) */
else
it++;
} /* while not eof */
close(fp);

comp[idx] .numatoms = j;
/# calc. max distance between all atoms in comperent i */

for (n=0 ; n<comp[idx].numatoms-1 ; n++)

{

for (m=n+1 ; m<comp([idx].numatoms ; m++)
{
r2 = {comp[idx}.x[n]-complidx].x[m])*{comp[idx].x[n]-complidx].x{m]);
r2 += (comp[idx].y[nl-complidx].y[m])#(comp[idx] .y[u]-complidx].y[m]);
r2 += (complidx].z[n]-comp[idx].z[m])}*(complidx) .z [n]-comp[idx].z[m]};
if {r2 > r2max) r2max = r2;
}

}

} /* for each componsnt */

r = (int} (1.0 + sqrt(r2max));
lattsep = (float) r;
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printf("chosen angstrom separation = %f\n",lattsep);

reaturn 0

1

FLL e L eI T e Y Py
/* Save box to car file */
A ek o ok o ke e

int write_dat()

{

FILE *ip;

int f,s,n,pos;

float x,y,z,phi,theta,psi,start,stop,step;
float q[3],boxlen;

float ran2();

fp = fopan(outfile,"wt");

boxlen = bexdim * lattsep;
fprintf(fp,"!BI0OSYM archive 3\nPB{=0N\n");
fprintf(fp,"Multiple component MD Initialisation\n!DATE\n"};

fprintf(fp,"PBC ¥f %f ¥%f 90.0 90.0 90.0 (P 1)\n",boxlan,boxlen,boxlen);

start = lattsep/2;
stop = start + boxdim*lattsep ;

stap = lattsep;

pos=0; /» pointer - current array position »/

for (z=start ; z<stop ; zt=step)

{
for (y=start ; y<stop ; y+=step)
{
for (x=start ; x<stop ; x+=step)
{
s = *(compdat+pos); /* get compoment at this (x,y,z) pos’n */
pos++;

/* create some random rotations */
phi = 2,0*PI*ran2();
theta = PI - 2.0+PIsran2{);
psi = 2.04PI+ran2();

for (n=0 ; n<comp[s].numatoms ; n++}

1{
/#* do random rotation of coords */
ql0] = comp[s].x[n];
q{1] = comp[s).y[nl;
ql2] = comp[s).z[nl;

rot{kq[0] ,phi,theta,psi);
/* do translation of coords »/

ql0] += x;

ql1) += y;
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ql2] += z;
/% print adjusted coords to file /
for (£=0 ; £<8 ; f++)
{
if (comp[s].atom(n]{f] t= 7\0?)
fprintf(fp,"¥c",compls].atonln] [£]);
alse
fprintf(fp," ");
}
fprintf{fp," ");

it (q[0] > -0.000001 && q[0] < 10.0)
tprintf(fp,” ");
fprintf(fp,"%fL1 v,ql0l);

if (q[11 > -0.000001 &k ql1] < 10.0)
fprintf(fp,” ");
fprintf(fp,"{f11 ",ql1l);

if (g[2) > -0.000001 && ql2] < 10.0)
fprintf(fp," ");
fprintf (fp, 411 " ,q[2]);

fprintf(fp,"4s\n",comp[s].taillnl);
}
/* arc file format »/
fprintf(fp,"end\n");

/% arc file format */

fprintf(fp, "end\n");

/* car file formet - makes it difficult to create mdf Tile after »/
/* fprintf(fp,"end\nend\n"); */

close(fp);

J AR AR R Kok [

/+ mdf file creaticn */
[ O R Rk

vrits_mdf ()

{

printf("To make an mdf file you will havs to type:\n\n");
printf("\tokndf input_file\n\n");

}

PR L P TR e T T T T 74
/* read a line of data from specified file pointer #/

/t****tt**lﬁit****#*t***lll*lk***#***************t****lll*/

char *get_line(FILE +fp)
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char =*data;

int i;
date = (char *} malloc(sizeof(char)*MAXLEN):

if (data == NULL)
{
printf("get_line() : out of memory'!\n"};
}

i=0;
do
{
if(fread(data+i,sizeot(:har).i.fp) 1= 1)
{

printf("An error occurred reading file!\n"};

printf{"{d\n",1);
printf("%s\n" ,data);

return;
}
]
while(datal[i]l != *\n’);

datal[i] = *\0Q’;

return{data);

}

£ kR oK o EEAEAN L] ETITY)

/* Find the num-th item in an input lins of text */

/*****i#i****ttt**'ﬁli****###t*l*l‘*****t'**#iﬁ#t****f

/% FIXME - this fails with core dump if *line is an empty string /

char sget_item(char *line, int nuw, int op)

/% op =1 - return num item only */
/* ¢p = 0 - return num,num+1,numt2,... items as well #*/
{

int i,j,n,len;

char #*item;

item = {(char #) malloc(MAXITEMLEN#sizeaf(char));
len = str_len{line);

it {item == NULL)

1{
printf("Not enough memoryt\n");

return;
}
i=o

for {n=0 ; n<num ; n++)
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{

i=3j;

while(line[i] == * *)
i++;

1=
vhila{line[j] != * ’ &k j<len)
3+

}
/* Crude fix for finding the end of the input data %/

if (lop)
{
3=80;
while (line[j] »= ’0* && line[j] <= ’9*)
j+t;

}
strnepy (item,&line[i],j-1);

item[j-i+1] = ’\0*;
return item;

}

/at***tt*tm*n*tt***ttt*****/
/% get length of a string #/
£ R A AR R R

int str_len(char *datea)

int i=0;

do
{
i++;
}
vhile(+{data+i) != *\0?);

return(i);

}

F 3Rk ok ek ok ok
/% My random routine */
/R R AR A Rk

float ran2()
{

int i,j;
£loat 1

/* generate 2 random numbers %/

[y
i

rand();
rand(};

.
il
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/* meke range Q-1 #/

if (i < j)

f = (float) i / (fleat) j;
8lse

t = (float) j / (float) i;

raturn f;

}

A AR R Kk Ko ek
/* Debugging aids */
F AW ok on

testl()
{

int i,j;

for (i=0 ; i<=numecomp ; i++)
{
printf("component %d (¥s) : require %d\n",i,comp[il.filenama,comp[il.reqnum);
printf("\tcontains ¥%d atoms:\n",comp[i].numatoms);
for (j=0 ; j<comp[il.numatoms ; j++)
{
printf("\t\tatom %d : %s at (X£,%£,%£0\n".j,compli].atom[jl,comp[il.x[]],
compfil . y{j]1,complil.2[3]};
}
}
1

test2{int num)
{

int i;

printf("Filled sites: %d\n",num);

for (i=0 ; i<num ; i++)
{
printf(”(%¢,%d,%d)\n", site[i] .x,site[i].y,site[i].z);
}

}

A.2 Perl

A.2.1 Surfaces

Description

The COMPSHIFT program was written to automatically determine the valid
shifts for a given crystal structure and list of faces to examine. The program
relies on the MARVIN code for creating an initial surface, with a default shift
of 0. The z-coordinates of all atoms (and molecule centroids) are then used to
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generate a range of candidate shifts. Each cut is then tested using the MARVIN

code to see if a perpendicular dipole moment exists. The program is run as
“COMPSHIFT <INPUT_FILE.MVN> <MILLER_ PLANES>" with the first file
a suitable MARVIN input file, and the second a list of faces (one per line) to

examine. For gibbsite, the output from the program is:

(hk1)
(002)
(002)
(200}
(200)
(110)
(110)
(110)
(110)
(101)
(101)
(101)
(101)
(101)
(101)
(101)
(101)
(112)
(112)
(112)
(112)

Code listing

D(hk1)
4.8675
.8675
.3810
.3810
.3384
.3384
.3384
.3384
.2006
.2006
. 2006
.2006
.8769
.8769
.8769
.8769
.1591
.1591
. 3246
. 3246

W W W w o ®RO O DO D B b b B D b

#! jfusr/bin/perl

# compshift v0.1

# computes possible shifts for a list of faces by
# eliminating those with non zerc z dipole moment

Area
43.9896
43.9896
48 .8751
48.8751
98.7106
98.7106
98.7106
98.7106
69.0644
69.0644
69.0644
69.0644
62.2723
62.2723
62.2723
62.2723
135.5587
135.5587
128.8102
128.8102

$MARVIN = "/usr/local/bin/mervin";

$dz = 0.00025;
$dcet = 0.0005;
$dzdip = 0.005;

S

S OO0 0 0O 0O Q0 0O 0 0 0 0 00O o

hift

Esurf {un)

.0000 17.6236

.2500
. 0000
.2500
. 0000
.3795
.5001
.6207
.0000
. 2456
.5000
. 7544
. 0000
.2913
.5000
.7088
0.0000
0.5001
0.0000
0.5001

# z coord + this = cut
# unique shift separation
# judge zaro dipole
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0.3234
1.7830
5.3936
3.6785
5.8341
4.6427
5.9341
1.1829
2.8744
1.2882
2.8744
1.2858
3.1978
1.3491
3.1978
1.1828
2.9475
1.3448
3.5930

Eatt{(un)

-1

-0.8442
-2.0783
-0.9110
-2.4193

.4374
.1472
.9036
.8628
. 8987
.0316
L4077
.0316
.4233
.0316
.4616
.0316
.4160
. 0349
.4366
. 0349

Eslice (un)

-18.2832
-26.5734
-25.8170
-23.8578
-24.8219
-23.6890
-24.3128
-23.6890
-26.2972
-25.6890
-26.2590
-25.6890
-26.3046
-25.6857
-26.2840
-25.6857
~-25.8764
-24.6422
-25.8096
-24.3012



$DEBUG=0;

if ('QARGV[1])

{
print "Usage: compshift <marvin_file> <plane_file>\n\n";
print "plane_file should contain miller indices (ome face per line).\n";

}

$inp_file = $ARGV[0];
$hkl_file = $ARGVI1};
print “(h k 1) D(hkl) Area Shift Esurf({unre) Eatt{unre) Eslice(unre)\n";

$_ = $inp_file;
s/\./ /g;

split(" ");
$inp_base = $_[0];

open {INP,"$hkl_file");

while (<INP>)

{
s/./ /g;
chop;
$miller = $_;
s/ //g;
if (1$))

{

exit};

¥

get smallest commen (nonzero} multiple in (hkl)
$scm = gsimplify;

get 21l possible shifts fox this face
$num_shifts = gget_shifts;

which shifts have zero z-dipols
&comp_zdip;

compute info for those shifts
&comp_data;

output results

print

for ($i=0 ; $i<Snum_zd ; $i++)
{
print "($miller) *;
$zd_dspace[$i] = $zd_dhk1[3i]*$=zd_latt[$i}/$scm;
printf "%8.4f ",$=zd_dspace[$i];
printf "47.4f ", $zd_area[$i];
printt "{7.4f " ,$=zd_shift[$i];
printf “¥7.4f ", 4$zd_esurf[$il;
printt "}10.4f ", $zd_eatt[$i);
printf "}10.4f ",$zd_eslice[$i];
print ™\n";
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sub simplify
{
$_ = $miller;
split(’ );

$a = &ecf($_[0],8_[11);
$b = gscf($.[1],8_[21);
$c = kscf($a,$b);

if ($DEBUG)
{

priant "Doing ($miller)\n";
print "Smallest common factor: $c\n";
}

return($c);

}

ARSI RS

sub scf

{

if ($_[11 == )
{
return(abs($_[0]));
}

else
{
return(ksct($_[11,6_[01%$_(11));
}

}

sub gat_shifts
{
$top_file = $inp_base."_1.mvn";

system{"cp $inp_file $tmp_file\n");

epen (OUT,">>$tmp_fila");

print QUT "surface\n";

print OUT "miller a $miller‘\n";
print OUT "region 1 O 0 0 \n";
print 0UT "shift 0,.0\n";

print OUT "noenergy\n";

print QUT “print meolecule\n";
close OUT;

opan (MVN,"-|"} || exec{"$MARVIN $tmp_file");

while (<MVN>)
{
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if (/Layer Thickness/)
{
split{* ?);
$dnkl = $_{2];
}
if (/BLOCK A REGION 1/)
{
$i=Q;
$numols=0;
while (<MVN>)
1{
split(’ *);
if ($.[2] eq "core® [ $_[2] eq "shel™ || $_[2] eq "shell")
{
# print "$_[11 ($_[3] $_.[4]1 $_[6]1} $_[7]\n";
$mel[$i) = $_[71;

# init for moleculs calculation
$zcent [$mol [$il] = O;
$molsize[Smel[$i]] = O;

if ($mol[$i] > $nummols)
{
$nummols = $molf$il;
}
$z[$i] = $_[6];
$i++;
}
} # while MVN
} # if BLOCK A REGION 1
} # while MVN

# finished with input file
unlink $twmp_file;

$numatoms = $i;

if ($DEBUG)
1
print "Found $numatoms atoms\n";

print “Found $nummols molecules\n";

3

# got zcuts for lone atoms and staxt centroid calculations for molecules
$j=0;
$zmax = .5909;
for {$i=0 ; $i<$numatoms ; $i++)
{
if ($moll$i1)
1
$zcent [$mol [$i]] += $=z(9i];
$molsize [$mol[$i]]++;
}
olse
{
$zcut ($3] = $=[$il;
if ($zcut[$j] > $zmax)
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{
$zmax = $zcur($;];
¥
$3++;
}
}

# complete molecule centroid calculations
for ($i=1 ; $i<=%$nummols ; $i++)
{
$zcut [$j] = $zcent [$i]/$molsizs[$i];
if ($zcut[$j] > $zmax)
{
$zmax = Bzcut[$5];
}
$it+;
}

$numcuts = $j;

if ($DEBUG)
{
print "Found $numcuts possible cuts\n";
print "Maximum z velus: $zmax\n";
print "Sorting...\n";

}
&zsort;

# convert from physical z coords to a shift value
for ($i=0 ; $i<$numcuts ; $i++)
{
# +ve shift direction is in -ve z direction {ie invert)
$cut[$i] = -1.0%(($zcut[$i] - $dz)/$dhkl);
vhile ($cut[$i] < 0.0)
{
$cut [$i] += 1.0;
}
}

# eliminate any equivalent cuts -> shift[]
$shift[0] = 0.0; # add this as a special case
$shift[i] = $cut[0];
$j=9totcuts=2;

$ref=0;
for {($i=1 ; $i<Snumcuts ; $i++)
{
if ( ($cut[$i] - $cut[$ref]) > $dcut )}
{

#print "shift: $cut[$il\n";
$shift[$j++] = $cut[$i];

$totcuts++;
$reaf = $i;
}
}
if ($DEBUG)

i
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print "Found $totcuts unique shift values\n";
}

# some more cut processing

$flag=0;
for ($i=S$totcuts-1 ; $i>1 ; $i--)
{
# make cuts a littls nicer by taking midpoints
$sh = (§shift{$i] + $shift[$i-11)/2.0;
# eliminate any cuts due to common multiple inm h k 1
if (8sh < 1.0/$scm &% !'$flag)

{
$mark = $i+l;
$flag=t;
}
$shift[§i] = $sh;

)]
# were any eliminated?
if {$mark < $totcuts)
{
$totcuts=%mark;

¥

if ($DEBUG)
{

prict "Found $totcuts symmetry reduced shift values\n";
by

} # end sub
R

sub zsort
{
$swap=1;
while ($swap)
{
$swap=0;
for ($i=1 ; $i<$numcuts ; $i++)
{
if ($zcut[$i-1]1 < $zcut[$il)
{
$tomp = $zcut[$i-1];
$zcut[$i-1] = $zcut[$il;
$zcut[$i] = $tmp;
$swap=1;
}

RS
sub comp_zdip

{

# compute number of zero z-dipole cuts
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$j=0;

for ($i=0 ; $i<Ptotcuts ; $i++)

{

$tmp_file = $inp_base."_%$i.mvn";

system{"cp $inp file $tmp_file\n");

open {OUT,">>$tmp_file");

print QUT "surface\n";

print OUT “"miller a $miller\n";

print OUT "region L 0 0 0 \n";
# NEW

print OUT "depth a 10.0\n";

print OUT "shift $shift{$il\n";

print OUT "noensrgy\n";

print QUT “priat molecule\n";

close QUT;

open (MVYN,"-[") || exec("$MARVIN $tmp_file"};
vhils (<MVN>)
{
if (/Surface Dipole/)
{
split(® ’};
$zdip = abs{$_[4]);
if ($zdip < $dzdip)
{
$zd_shift[$;j] = $shife($i];
$zd_dipz[$j] = $_[4];
$i++;
}
}
}
# finished with file
unlink $tmp_file;
}

$num_zd = 45,
}

FrUTRTEprETETETI 004 00

sub comp_data
{

for ($i=0 ; $i<¥num_zd ; $i++)
{
$tmp_file = $inp_base."_$i.mva";
system("cp $inp_file $tmp_file\n");
open {QUT,">>$tmp_file");
print OUT "surface\n";
print OUT "miller a $miller‘\n";
print QUT "region L O 0 0 \n";
# NEW
print QUT “"depth a 10.0\n";
printf OUT "shift %7.4f\n",$zd_shift[$i];
print OUT "nominimize\n";
print QUT "prirt molecule\n";
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close OUT;
open (MVN,"-|") || exec("$MARVIN $tmp_file");
while (<MVN>)
{
if (/Surface Area/}
{
split(® 7);
$zd_area($i] = $_[2];
}
if (/Lattice Constant/)
{
split(* *);
$zd_latt[$iT = $_£2];
}
if (/Layer Thickness/)
{

split(® *);
$zd_dhk1({$i] = §_[2];
}

if (/Surface Energy/)
{
split(’ ’);
$zd_esurf[$i] = §_[3];
}

if (/Attachment Energy/)
{
split(’ *);
$2d_eatt[$i] = $_[3]1;
}

it (/8lice Energy/)
{
split(® ?);
$zd_eslice[8i] = $_[3];
}

}

# finished with input file
unlink $tmp_file;
}
}

A.2.2 Twinning
Description

The GTWIN program was written to automate the procedure of computing the
attachment energy of a growth slice, then inverting that same growth slice and
recalculating the attachment energy. The difference between the two was used to
determine if twinning was energetically feasible. The program uses the SIMPLEX
minimization method to find the most favourable location of the reflected growth

slice on the crystal surface. Thus, the function to be minimized is the total energy
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from a MARVIN run, which is computed for the reflected growth slice at some
position (x, y, z) above the surface. To attempt to enforce a more rigorous search
for the global minimum, the program runs several times with a different starting
position of the reflected slice. These starting positions are mesh points on a grid
that spans the repeat surface of the crystal. The number of mesh points per
repeat vector length is an adjustable program parameter.

A sample invocation of the program “GTWIN GIBBSITE.MVN RESULTS _FILE
002, 0.0%, (the last two entries are the miller index and the corresponding shift
to use) produces the following output file:

#+% RESULTS FILE %

Label: none
Miller index: (002)
Delta twin energy: -1.6182 eV/unit
Total E for normal slice: -1282.5871 eV/unit
Detected number of molecules: 24
Translation vector: (2.98914,-1.10708,-0.08651) Angs.

An additional program AUTOTWIN, is also available which accepts one input file
specifying a list of faces, and shift values. It then invokes as many GTWIN calls

as required, thus completely automating the computation of twinning energies.

Code listing

#! Jusr/bin/perl
# performs norm & twin comparison using specified MARVIN file
# starts at different locations to try and seek the global min.

# v).99
# latest - slegant fix to SG/Linux NULL 1st char problem

it (1$ARGV[1])
{
print "Useage: gtwin marvin_file output_file [autotwin datal\n";
exit;

}

# [autotwin data)] = <miller>, <«frectional_cutoff>, <label®

# miller

if (!$ARGV[2])
{
$ARGV[2] = “not specified";
}

# cutoff
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it (!$ARGV[31)
{
$ARGV[3] = "o,
}
# label
it (!'$ARGV[41)
{
$ARGV[4] = "none";
}

# INITIALISE CONSTANTS #

# FIXED - should no longer be necessary
#computer system

# 0 - linux
# 1 - unix
# $08=1;

#numerical parameters

$NUM_DIM = 3;
$NUM_PTS = 4;
$TOL_MIN = 0.006;
$ALPHA = 1.0;
$BETA = 0.5;
$CAMMA = 2.0;

$MIN_ENERGY = 7777777.77;
$GRID_SIZE = 3;
CBVEC = (0.0,0.0,0.3, 0.2,0.3,0.2, 0.3,-0.3,0.2, -0.3,0.0,0.2):

#temporary filenames
$MYN_ORIG = “base.mvn";
$5RC_ORIG = "base.mvn-T";
$MVN_TMP = "base_xlat.mvn";
$SRC_TMP = "base_xlat.mvn-r";
$MOT_TMP = "base_xlat.mot";

#misc data
Cpattern = (“coordinates 1 A","cocrdinates 1 B","end","ENERGY BREAKDOWN®
"Surface Vectors:","Layer Thickness:","BLOCK B BASIS","u-._- "5

# SET UP FILENAMES #

$inp_file = §src_file = $src_norm = $src_twin = $base = QARGV[O];
$out_fils = QARGV[1];
$inp_file =" s/.mvn/_temp.mvn/;

§src_fila =~ s/.mvn/.mvn-r/;

$erc_norm =" s/.mvn/_norm.mvn-r/;
$src_twin = s/.mvn/_twin.mvn-r/;
$bass =" s/.mvr//;

$before = join("",4base,” before");
$after = join("",$bass,”_after");

$bulk = join("",$basa," _bulk"):
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# GENERATE MARVIN OUTPUT FOR SOURCE #

system("cp CARGVI0] $inp_file");

open (OUT, ">>$inp file") || die "Can’t open input file!";

print O0UT "\n";

print OUT "region 1 1 1 1i\n";

# comment out 1 line bslow if manually medified .mvn-r file is required
print OUT "output before marvin $base\n";

clese OUT;

system("/usr/local/bin/marvin $inp_file garbage.mot");

# GET THE SYSTEM’S LATTICE VECTORS #

open(INP,"garbage.mot"};

whils(<INP>)
{
# scan for surface vectors
if {/$pattern[4]1/)
{
Qvec = split(’ *};
$lattice_mag[0] = sqrt{$vec[2)+$vec[2]+8vec[3]*$vec[3]);
$_ = <INP>;
Ovec = split(’ *);
$lattice_magli] = sqrt($vec[0]+$vec(0l+$vec[1])*$veac[1]):
}
# scan for layer thickness
if (/$pattern[B]/)
{
Cuec = split(’ *);
$lattice_mag[2] = sqrt($vec[2]*$vec[2]);
b}
}
close (INP);

# Setup initialisatien vector BVEC
# and autcmate the Z displacement

tor ($j=0 ; $j<$NUM_PTS ; $j++)
{
for ($i=0 ; $i<INUM_DIM-1 : $i++)
{
$BVEC[$]+3NUM.DIM+$i] *= $lattice_mag[$i]/$GRID_SIZE;
}

#Z coord must be done separatsly (not part of grid)
$BVEC[$+$NUM_DIN+$NUM_DIM-1] *= $lattice_mag[$NUM_DIM-1];

# PARSE TO GENERATE NORMAL AND TWIN SOURCE FILE #

191



open (INP, $src_file);
open (QUTL,">$src_norm");
open (0UTZ2,">$src_twin");

# establish cutoff for trimming
$cutoff = $lattice_mag[$NUM_DIM-1]+$ARGV3];

while (<INP>)
{
if (/$pattern[1]/)
{
# keep 1 B as it is
print OUT1 "cocordinates 1 B\n";
§_ = <INP>;
until (/$pattern[2]/)
{
Oline = split(’ '};
$_ = jein(" ",$line(0],$1line[1],$1line(2],
$line[3],%lire[4]);

if ($cutoff)
{
if ($line[4] <= $cutoff)
{
print OUTL "$_\n";
¥
}
else
{
print QUT1 "§_\n";
}

$_ = <INP>;

1
}

if (/$pattern[0]/)
1{

# do twin source file - reflect 1 A
print OUT2 "coordinates 1 B\n";
$_ = <INP>;
until (/$patternl2]/)

1{
@line = split(’ *);

# reflact

$line{4] »= -1.0;

$_ = join(" ",$line[0],$line[1],$1ine[2],
$line[3].%1ine(4]);

if ($cutoff)

{

if {$line[4] <= $cutoff)
{
print QUT2 "$_\n";
}
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}
elye
1{
print QUT2 "$_\n";
}

§_ = <INP>;
}

}
}
print OUTt “end\n";
print OUT2 "end\n";
close INP;
close OUTL;
close 0UTZ2;

b AD S bbbbth h bh  H I8 b o P FrgrgTEY

# CYCLE THROUGH GRID OF STARTING LOCATIONS #

for ($gz=0 ; $gx<$GRID_SIZE ; $gx++)
{
for ($gy=0 ; $gy<3GRID_SIZE ; $uy++)
{

$gvec[0] = $lattice_mag[0]*$ux/$GRID_SIZE;
$gvec[l] = $lattice_mag[1]*$gy/$GRID_SIZE;
Qinit_vec =

{$BVEC[0]+$gvec[0],$BVEC[1]+$gvec[1] ,$BVEC[2],
$BVEC[3]1+$gvec (0] ,$BVEC[4]+$gvec[1],$BVEC[S],
$BVEC[6]+$gvec[0] ,$BVEC[7]+$gvec [1],$BVEC[],
$BVEC[9]+$gvec[0],$BVEC[10]+$gvec[1],$BYEC[11]);

# SIMPLEX MINIKISATION #

# generate initial function values

system("cp $src_twin $SRC_ORIG");
aystem("cp OARGV[0] $MVN_ORIG");

Op = @init_vec;
for ($i=0 ; Pi<$NUM_PTS ; $i++)
{

$y[$i] = Zfunction{Qp[3+$i,3+$i+1,3#3i+2]1);
}

# generate sum

for ($i=0 ; $i<$NUM_DIM ; $i++)

{

$sum = 0.0;

for ($j=0 ; $j<SNUM_PTS ; $j++)
{
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$sum += $p[SNUM_DIM+$j+8i];
¥
$psum[$i] = $sum;

}

# main loop

$flag = 0;
while (!$flag)
{

# flag the highest, next hightest and lowest valuss

if ($y[o] < ¢y[1d
{
$hi_ptr = i;
$nhi_ptr = 0;
$lo_ptr = Q;
}

else
{
$hi_ptr = 0;
$nhi_ptr = 1;
§lo_ptr = 1;
}

for ($i»2 ; $i<$NUM_PTS ; $i+t)

{

if ($y[$i] < $y[$lo_ptr])
1{
$lo_ptr = $i;
}

it (3y[$i) > $y[$hi_perl)
{
$nhi_ptr = $hi_ptr;
$hi_ptr = $i;
3

if ($y[9i) > $yf3¥nhi_ptr] k& $i '= $hi_ptr)
{
$nhi_ptr = $i;
}

}

# Now that peints are ranked - compute difference

$ydiff = $y[$hi_ptr] - $y[$lo_ptrl;
$rtol = kabs($ydiff);

# Test if differsnce satisfies tolerance
if ($rtol < $TOL_MIN)
{
last; # yes! break out of while loop

}

$y_test = greflect(-$ALPHA);
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if ($y_test <= $y[%lo_ptr])

{
$y_test = greflect ($GAMMA);
}

alsif ($y_test >= $y[$nhi_ptr])
{

$y_save = $y[$hi_ptr];
$y_test = kreflect($BETA);
if ($y_test >= $y_save)

{
for ($i=0 ; $i<$NUM_PTS ; $i++)
1
if ($i !'= $lo_ptr)
{
for ($j=0 ; $j<$NUM_DIM ; $j++)
{
$psuml$3] = 0.5+ ($p[SNUM_DIM*$i+$j]1+$p[$NUM_DIM+$1lo_ptr+331);
$p [$NUM_DIM*$i+$j] = $psum[$i];
}
§y[8$i] = &function{Qpsum);
3
}

# recalculate psum

for ($i=0 ; 3i<SNUM_DIM ; $i++]

{

$oum = 0.0;

for ($j=0 ; $j<$NUM_PTIS ; $j++)
{
$sum += $p[INUM_DIM+3j+8$i];
}

$psum[$i] = $sum;

}

}
}

} # end while
# calculate twinned energy

system{"cp $src_twin $SRC_ORIG™);
system{"cp GARGV{0] $MVN_ORIG");

$y(0) = gfunction{@p(3+$lo_ptr,3s$lo_ptr+i,3*flo_ptr+21);

#DEBUGH##

#print "Minimum emergy for this cycle = $temp\n";

#print "Translation vector = $p[3+$lo_ptr] $p(3+8lo_ptr+1] $p[3+$lo_ptr+2]\n";
H#DEBUGH##

if ($y[(0] < $MIN_ENERGY)
{
$MIN_ENERGY = $y[0];
Omin_vec = €p[3+$lo_ptr,3«$lo_ptr+1,3«$la_ptr+2];
}

HES R
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# END OF SIMPEX #
AR R R R G R AR S

} # $gy loop
¥ # $gx loop

YT 4 24 9 o i

# GENERATE TWIN ’BEFORE’ .arc FILE #

system("cp $src_twin $SRC_ODRIG™);

system("cp QARGV[0] $MVN_ORIG")};

open (QUT,">>$MVN_ORIG");

print QUT "\n";

print OUT "nooutput 2 a\noutput before biosym $before 2\n";
close QUT;

$dummy = &function{®BVEC[0,1,2]);

# Parse for number of molecules in region B #

open (INP,$MOT_TMP);
§_=<INP>;
#find appropriate section
until (/$pattern[6]/)
{
$_=<INP>;
}
#skip header
for ($i=0 ; $i<q ; $i++)
{
$_=<INP>;
}
#read until end
until (/@pattern[7]/)

{
$save = §_;
$_ = <INP>;
}

$_ = $save;
flast = split(’ *);
$twvin_mols = $last[6];

# GENERATE TWIN °AFTER’ .arc FILE #

pravem b o oA 9 A 2 o

system("cp $sre_twin $SRC_ORIG");

system("cp QARGV[0] $MVN_DRIG");

open {(OUT,">>$MVN_QORIG");

print 0UT "\n";

print QUT "nooutput 2 a\noutput before bicsym $after 2\n";
close QUT;

$ytwin = function{@min_vec[0,1,2]);
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# GENERATE BULK .arc FILE #
HHEAEHEEE RS R A S

system{"cp $src_norm $SRC_ORIG");
system{("cp QARGV[0] $MVN_ORIG");

open {QUT,">>$MVN_ORIG");

print OUT "\n";

print OUT "region 1 1 1 1\n";

print QUT "output before biosym $bulk 2\n";
close OUT;

$dummy = gfunction(0,0,0);

# GENERATE NORM ENERGY #

system("cp $src_norm $SRC_QRIG");
system("cp @ARGV[0] $MVN_ORIG");

$ynorm = &function(0,0,0);

HH TP rgrpTETET AN Y

# Parse for number of molecwnles in region B #

open (INP,$MOT_TMP);
$_=<INP>;
#find appropriate section
until {/$pattern[6l/)
{
§_=<INP>;
¥
#skip header
for ($i=0 ; $i<qd ; $i++)
{
$_=<INP>;
1
#read until end
until {/@pattern(71/)

{
$save = §_;
$_ = <INP>;
}

$. = $save;
@last = split(’ *');
$norm_mels = $last[6];

A HEER R AR
# SAVE RESULTS #
HRA R AR AR AR

# Note: prints to $out_file must APPEND, since we are lumping
# all the regults in the ons file.

197



apan{0UT,">>$out _file");
print QUT "Label: $ARGV[4]\n";
print OUT "Miller index: ($ARGV[2]1)\n";

# do some checks

if ($twin_mols != $norm_mols)
{
print OUT "\n#s*¥arning: the number of molecules in region B for waeint;
print QUT  "xxx twinred and normal structures are unequal! ##x\n";
}

if ($twin_mols <= Q)
{

# print OUT "\n*++Warning: no molecules in twin found! ***\n";
$tvin_mols = Q;
g

if ($norm_mels <= 0)
{

# print OUT "\n*s+Warning: no melscules in norm found! »#+\n";
$norm_mols = 0;

}

# compute difference in total region 1 energy
$diff = ($yoorm - $ytwin);

printf QUT “ Delta twin energy: %5.4f eV/unit\n", $diff;

printf 0UT " Total E for normal slice: %7.4f eV/unit\r",$ynorm;

printf QUT "Detected number of molacules: %d\n",$twin_mols;

printf QUT " Translation vector: (%2.5f,%2.5f,%2.5f) Angs.\n\n",Cmin_vec[0,1,2];
clese 0OUT;

# tidy up

#unlink $MVN_ORIG, $SRC_ORIG, $MVN_TMP, $SHC_TMP, $MOT_TME,

# $inp_file, $src_file, $src_norm, $src_twin, ’garbage.mot’;

8xit;

B e

sub reflect
# this function sxtrapolates through the face of the simplex
# across from the worst point to obtain a trial replacement point

{

$fac = 0_[0];

$facl = (1.0 - $fac)/$NUM_DIM;
$fac2 = $facl - $fac;

#print "reflect: fac = $fac $facl $fac2\n";
#print "reflect: psum = Opsum\n";

for ($k=0 ; $k<$NUM_DIM ; $k++)
{

$p_test[8k] = $psum[$k]+$facl-$p[3+$hi_ptr+dk]+$fac2;
¥

#print "reflect: p_test = €p_test\n";
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$y_test = &function(@p_test);

if ($y_test < $y[$hi_ptr])
{
$y[$hi_ptr] = $y_test;
for ($k=0 ; $k<$NUM_DIM ; $k++)
{
$psuml$k] += $p_test[$k] - $p[3+$hi_ptr+3k];
$p[3+¢hi_ptr+$k] = $p_test[$k];

¥
}
$y_test *= 1,
}
B e e e

sub function

# this accepts as input the x,y,z values and

# returns the resultant energy from a marvin run
# mssumes the existance of wmwarvin and source

# coordinates files

{
system("cp $MVN_ORIG $MVN_TMPY);

# get translation vector

Qvec = @_;

open{QUT,">>$KVN_TMP") ;

print OUT "\nsource $SRC_ORIG\n";

print QUT "translate b $vec[0] $vec[1] $vec[2]\n";
close OUT;

system("/usr/local/bin/marvin $MVN_TMP $SMOT_TME"};

#iparse output file for the total energy

$f1g = 0;
open (INP,$MOT_TMP) || die "can’t open $MOT_TMP\n";

while (<INP>)

{
if {/$pattern[3]1/)
{
$fig = 1;
for ($skip=0 ; $skip<i0 ; $skip++)
{
$_ = <INP>;
}
Qline = split(® *);
last;
}
3
if (1$f1g)
{
print "ERAOR: ENERGY NOT FOUND\n";
exit;
}
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$energy = $1lins(3];

sub abs

{

ir (e_[0] < O
{
€ _[0] == -1.0;
1

elsa

A.2.3 Accessibility
Description

The SCURF code was written to facilitate the determination of which hydrogen
atoms (in a given slab of material) should be regarded as belonging to the surface.
The essential idea is to loop over all atoms in the supplied slab, selecting only
the desired atoms for further testing. Each selected atom then has a probe atom
rolled over its surface. If the probe intersects the surface of any other atom.
{except the one being scanned), that particular contact point is assumed to be
inaccessible. Note that the appropriate ionic radius was used for the probe, and
the van der Waals radius was used for all other atoms.

The program is executed using “SCURF <INPUT FILE>". A typical input
file should specify the coordinates data file (BIOSYM or MARVIN) of the surface
slab, the atom type to test for accessibility, region cutoffs (optional), and the
probe atom to use. A sample input is presented below:

input marvin gibb_r002_2x2.mvn-r
type H
probe Na

Upon execution, this produces the following output summary:

Parsing: gibb_r002_2x2.mvn-r
Found 1344 atoms

Found 24 atoms to test
Testing 1 atom type(s): H
Probe atom type: NA
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Type: H Scanned: 24 Successful: 24

#142 . 30.56% accessible surface
#286 : 27.63% accessible surface
#21022 : 37.87% accessible surface
#21166 : 31.43% accessible surface
#140 : 31.14% accessible surface
#284 : 31.29% accessible surface
#21020 : 24.56% accessible surface
#21164 : 24.71% accessible surface
#143 : 24.56% accessible surface
#287 : 32.46% accessible surface
#21023 : 29.97% accessible surface
#21167 : 38.89% accessible surface
#141 : 22.95% accessible surface
#285 : 22.95% accessible surface
#21021 : 26.17% accessible surface
#21165 : 26.17Y accessible surface
#144 : 32.16% accessible surface
#288 : 25.73% accessible surface
#21024 : 8.63% accessible surface
#21168 : 1.02% accessible surface
#0 : 0.44% accessible surface
#283 : 0.44) accessible surface
#21019 : 0.44% accessible surface
#21163 : 0.44% accessible surface

o oD DR DR Do@DD ;R & D D b s oo Mmoo

Since a surface composed of four normal repeat units was used to generate the
above listing, each set of four subsequent hydrogens are equivalent. The different
accessibilities that occur are due to the artificial increase in exposure a hydrogen
will gain if near an edge or corner. Hence, for all surfaces, a 2x2 construction
was used for the purpose of accessibility determination. The true accessibility for
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each unique hydrogen is the lowest of the four equivalents.

Code listing

#! /usr/bin/perl

# SCURF, scan surface
# determines what atoms in a .c¢ar/.mvn-r file are “accessible"
# to a given probe atom

if (t$ARGV[D]}
{
print “Useage: scurf <input file>\n";
exit;

}

# radii - from marvin.par
# ionic for probes, VdW for all others
¥size = (*AL’,2.01,°0%,1.40,’H’,1.17,'NA*,0.97,°K",1.33);

$precbe = "NAP; # probe to scan the VdW surface (default)
# compute desired radius to use for surface accazszability scan

# TODD - ionic vs vdw automatically determined?
foreach $atom (keys ¥%siza)

{
$rad{3aton} = $size{$atom};
}
$pi = 3.141692654;
$da = $pi/i18.0; # angle coarseness - extended sphere swesp

# parse input file
$test_types=0;
$xlim=$ylim=$z1im=0;
$it=4nl=0;

&parse_input ($ARGVI0]);

# check results of parse

it (13if)
{
print "No input file specified!\n";
exit;

}

# open .arc data file
* possibility of parse MARVIN file?

$n=0;

$test_count=0;

if ($if == 1)
{
kparse_biosym($inp_file);
}

if ($if == 2)
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{
&parse _marvin($inp_file);

}

# inform user

print "Parsing: $inp_file\n";

print "Found $r atoms\n";

print "Found $test_count atoms to test\n";

print “Testing $test_types atom type(s): ";
for ($i=0 ; $i<ftest_types ; $i++)
{

print "$ttype[$il ";
$totnum{$ttype{$il} = 0;
$totak{$ttype[$il} = Q;
}

print "\a";

print "Probe atom type: $probe\n";

# loop over all atoms to test
for ($i=0 ; $i<$n ; $i++)
{
if (1$test_atom[$il)
{
next;
}
$freesurf ($i] = 0;
$totsurf[$i] = 0;

# print "Testing (# $i): Satype[$i] $x[$i] $y[$i] $=z[$il\n";
$candi=0; # assume i not a cadidate

$totnum{$atype [$il}++;

# radius of extended VdW sphere
$rexi = $rad{$atype[$il} + $rad{$probe};

# loop over surfacea of the sphare
for ($theta=0.0 ; $theta<ipi ; $theta+=$da)
{
for {$phi=0.0 ; $phi<2.0+$pi ; $phit+=9$da)
{
# convert spherical coords to cartesian
$xi = $x[$i] + $rexi*sin($theta)wcos($phi);
$yi = $y[$i] + $rexi+sin(Btheta)*sin($phi);
$zi = $z[$i] + $rexiscos(Ptheta);
# loop over all other atoms
for (§j=0 ; $j<$n ; $j++)
{
it ($1 = $j)
{
next;
}
# error trap
if (i$rad{$atype[$il1)
{
print "Uknown atom type (# $j): ";
print " ($atypel[$jl1)";
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printt " at (46.2f,%5.2f,%5.2f2\n" ,$x[$j],5y [$i1.3=[%j1;
exit;
¥
# atom j’s radius
$rexj = $rad{Satype[$jl} + $rad{$probe};
# make squared + fudge factor
$rexj_sq = $rexj*drexj;

# distance to atom j
$dist_sq = ($xi-$x[$j1)*($xi-$x[$i1);
$dist_sq += ($yi-$y[$11)»(8yi-$y($3i1);
$dist_sq += ($zi-$=[$51)+($zi-8=[$j1);

# distance to j is claoser than j’s axtended radius

# point (theta,phi) is bad - skip to next {theta,phi)

#printf "(%6.2f,%5.2,%6.20) - (45.2£,%6.2f,%5.28)\n" , $xi,8yi,$21,9x[851,8y[$3],$z(8i1;
#print "$dist_sq < S$rexj_sq\n";

if ($dist_sq < $rexj_sq)
{
goto skip;
}

} # for j

# no overlep with any jth atom => success!
$candi=1;

# measure % surface "free”

$fraesurf [$i]++;

skip:
$totsurf[$i]++;
+ # for phi
} # for theta

bypass:
if ($candi)
{
] print "DK!\n";
$totok{3atypel$ilT++;
}
} # for i

# OUTPUT SUMMARY
# CURR

print "\n";

print Mo \n";

print " QUTPUT SUMMARY \n";

Print Meeso o \n";

for ($i=0 ; 3i<$test_types ; $i++)
{
print "Type: $ttype[$i]l *;
print "Scanned: $totnum{$ttype[8il} *;
print "Successful: S$totok{$ttypel[$iltin";
}

print "\n";
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for ($i=D ; $i<$n ; $i++)
{
if ($test_atom[$i])
{
# print "Freesurf: $freesurf($il\n";
# print "Totsur?: $totsurf[$il\n";
$pefres = 100 * $freesurf[$i]/$totsurt[$i];
# if marvin file print moclecule number
if (§if == 2}
{
print "$atype[$i] #$marnum[$i] : ";
}
# otherwise use internal indexing
elsa
{
print P$atype[$i] #%i : *;
}
printf "}5.2f",$pcfree;
print "} accessibla surface\n";
}
}

print "\n";

sub parse_input

{
open (INP,"$_[01"} || die "Can’t open $_[0] for reading.\n";

while(<INP>)
{
if (/“input/)
{
split;
if ($_[1] eq "biosym")
i
$inp_file = $_[2];
$if=1;
¥
if ($_[1] sq "marvin")
{
$inp_file = $_[2];
$if=2;
}
¥
if (/"type/)
{
split;
$i=1;
vhile ($_[$i])
{
$ttype [$test_types] = §_[§i++];

205



$ttype[$test_types++] =" tr/fa-z/A-Z/;
}
}
if (/probe/)
1
split;
$probe = §_[1];
$probe =" tr/fa-z/A-Z/;
¥
if (/"zlim/)
{
split;
$xatart = $_[1);
$xend = §_[2];
$xlim=1;
$nl++;
}
if {/~ylim/)
{
split;
$ystart = $_[1];
$yend = $_[21;
$ylim=1;
$nl++,
}
if (/"~zlim/)
{
split;
$zstart = $_[11;
$zend = $_[2];

$zlim=1;
$nl++;
}
}
}
o m m e o i

sub parse_biosym

{
open (INP,"$_[01") ][ die "Can’t open $_[0] for reading.\n";

# skip BIOSYM headsr

do
{
$_ = <INP>;
if ($fail+ > 20)

1
# TODO better termination?
print "Error: unknown BIOSYM header or unexpected EQF.\n";
exit;
}
}
while{!/"IDATE/);
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$_ = <INP>;
if (/"PBCS)
{

# record data in PBC line

split;

$1limit [0 = $_[1];

$limit[1] = $_{21;

$limit[2] = $_[3];

print "PBC: $1limit[0] $limit[1] $1limit[2]'\n";
$_ = <INP>;

}

# parse all atom position data

$n=0;
de
{
$readflag=1;
$skip=0;
split;
# blank line check
it (v LoD
{
$skip=1;
¥
# ignors shells and lines starting with #
$test = substr($_[4],-1,1);
$test2 = substr($_[0],0,1);
if (§test eq "S" || $test2 eq "#")
i
$akip=1;
}

# termination of frame on doukle end only
if (1$skip)
{
$exit=0;
if (/end/)
{
$oxit++;
# get next
$_ = <INP>;
if {(/end/) # double end - frame termination
{
$axit++;
}
alse
{
$readflag=0;
b
}
else
{
# get atom data
$x[$n] = $_[1];
$y[$nl = $_[2];
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$z[¢n] = $_[3];
$atypel$nl = $_[71;
$atypel$n] =" tr/a-z/A-Z/;
# test if atom is of the type we want to test

$mat ch=0;
if ($test_typas)
{
for ($i=0 ; $i<$test_types ; $i++)
{
if ($atype[$n] eq $ttypel$il)
{
$match=1;
}
}
}
# test if atom is within any boundaries
it ($x1lim)
{
if {$x[$n) > $xend || $x[$n] < $xstart) { $match
}
if ($ylim)
{
if ($y[$n] > $yend |l $y[$n] < $ystart) { $match
}
if ($zlim)
{
if {$z{$n] > $zend || $z[$n] < $zstart) { $match
}

# match=1 => this atom is one we will tsst
if ($matck)
{
$test_atom[$n]=1;
}
else
{
$test_atom[$n]=0;
}
# next atom
$nt+;

}

} % if skip
if ($readflag)

{

$_ = <INP>;

}

¥
while(§exit < 2);

sub parse_marvin

{

208



open (INP,"$_[0]") || die "Can’t open $_[0] for reading.\n";

while(<INP>)
{
# get xid of any lines with text only
$save = §_;
tr/a-z//d;
tr/A-Z//4d;
trin//d;
split;

# any data?
if ($_[3]3
{
# restore {as data lines have text and numbers)

$_ = $save;

split(® *);

$atype[$n] = $_[01;
$atype[$n] =" tr/0-9//d;
$atype[$n] =" tx/a-z/A-Z/;

$marnum[$n] = $_[5];

$x[$n] = $_[2];
$y[en] = $_[31;
$z[$n] = $_[4];
# determine if atom is of the type(s) we want to test
$match=0;
if ($test_types)
{
for ($i=0 ; $i<$test_types ; $i++)
{
if ($atype[3n] eq $ttype[$il)
{
$match=1;
}
}
}
# all are matches
elue
{
$match=1;
}
# test if atom is within any boundarias
if ($xlim}
{
if ($x[$n] > $xend || $x[$n] < $xstart) { $match = 0: }
}
if ($ylim)
{
if ($y[$n] > Syend Il $y[$n] < 3ystart) { $match = 0; }
}
if ($zlim)
{
it ($z[$n] > $zend Il $2{$n] < $zstart) { $match = 0; }
}
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# match=1 => this atom is one we will test

if ($match)
{
$test_atom[$n]=1;
$tast_count++;
¥

$n+t,

} # if tignore

} # vhile
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