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ABSTRACT

A novel data analysis approach that is automatic, self-learning and self-explained,
and which provides accurate and reliable results is reported. The data analysis tool is
capable of performing multivariate non-parametric regression analysis, as well as
quantitative inferential analysis using predictive learning. Statistical approaches such
as multiple regression or discriminant analysis are usually used to perform this kind
of analysis. However, they lack universal capabilities and their success in any

particular application is directly affected by the problem complexity.

The approach employs the use of Artificial Neural Networks (ANNs) and Fuzzy
Logic to perform the data analysis. The features of these two techniques are the
means by which the developed data analysis approach has the ability to perform self-
learning as well as allowing user interaction in the learning process. Further, they
offer a means by which rules may be generated to assist human understanding of the

learned analysis model, and so enable an analyst to include external knowledge.

Two problems in the resource industry have been used to illustrate the proposed
method, as these applications contain non-linearity in the data that is unknown and
difficult to derive. They are well log data analysis in petroleum exploration and
hydrocyclone data analysis in mineral processing. This research also explores how
this proposed data analysis approach could enhance the analysis process for problems

of this type.



CONTRIBUTIONS

This research contributes to the field of data analysis by proposing an automatic,
self-learning and self-explained data analysis approach. In achieving this, it is shown
that statistical theory can be applied to analyse the functionality of Artificial Neural
Networks (ANNs). The thesis extends the generalisation capability of the
Backpropagation Neural Network (BPNN) and highlights the factors that affect it.
New approaches to improve the generalisation confidence of these networks are also
proposed by employing a Self-organising Map (SOM) data-splitting validation and
the interactive reinforcement learning approach. It is shown that the learning of an
ANN can be controlled in such a way as to allow human interaction via a Modular
Neural Network and through controlling the distribution of data in interactive
reinforcement learning. In addition, a new input contribution method is proposed to

identify significant input parameters.

It 1s also shown that combining the advantages of both ANNs and Fuzzy logic allows
rules to be created to describe the generalised function of what an ANN has learned.

This permits human interaction in the learning.

The value of this data analysis approach proposed is demonstrated in two complex
application areas. It is shown they offer a significant improvement over previous

methods and are an attractive option for the resource industry.
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Chapter 1

CHAPTER 1: INTRODUCTION

1.1 THE DATA ANALYSIS PROBLEM

In most engineering applications, the role of data analysis is critically important. The
data analysis approach used must be able to provide a reasonable summary as well as
an analysis of the data. There are two broad categories of data analysis; descriptive
and inferential (Mendenhall and Sincich, 1992; Phipps and Quine, 1998). Descriptive
analysis simply aims to find a description of the data as presented solution. No
prediction of what might have been achieved outside the range is expected, nor
should it be undertaken. For inferential analysis, however, the analysis tool is
expected to derive the underlying function from which the data derives and therefore
allow the prediction of data that could be expected in the experiment for different

input values.

Clearly, inferential analysis is the more complex problem. It faces the difficulty that
1t may only ever process a sample and that may be an incomplete description of the
population. By implication, inferential analysis must extract as much information as

possible from the sample and draw sound inferences about the population.

In most applications, whatever data analysis approach is adopted, it is required to
offer reasonable interpolation performance and provide some indication when
extrapolation is appropriate. Given the diversity of potential problems, it is
inappropriate to consider a generic data analysis approach. However, with slight
modification, any new data analysis technique should obviously be applicable to a

particular class of applications.



Chapter 1
This thesis presents a new quantitative inferential analysis technique using predictive

learning. Predictive learning systems (Keans, 1994; Vapnik, 1995} attempt to
construct useful prediction functions purely by processing data taken from past
successfully resolved problems. They assume, as they must, that all useful
mformation is available in the supplied data. However, being a learning system, their

analysis can shift in the light of new information.

The inferential analysis technique presented can solve multivariate non-parametric
regression problems. Hence it can be used to deal with non-linear or random data
(sometimes with bias). It is robust in the presence of noise. Inferential analysis
normally makes use of a predictive learning algorithm to extract knowledge from the
supplied sample when dealing with non-linear, random, noisy and heterogeneous
data. In statistics, the empirical model, multivariate non-parametric regression
analysis and discniminant analysis are usually employed (Hardle, 1990; MacLachlan,
1992). Although these approaches are widely used, they do have their limitations
(Cherkassky et. al, 1994). They can normally deal with only small amount of training
data and as some prior assumption need to be made, it is very difficult to analyze
complex problems. Statistical approaches are based on structured models and
therefore they are very computationally complex. Further, it is difficult for non-
statisticians to understand and use them. Statistical approaches tend to be inflexible,
as it is very difficult to find an analysis model that applies universally to any class of
problem. Most of the time, the operating conditions can change from one operation
to another. It is also tedious to build another model every time the operating
condition changes. All these problems present an argument for the search for a better

data analysis approach to handle the same degree of analysis.
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1.2 EMPLOYING ARTIFICIAL NEURAL NETWORKS AND FUZZY
LOGIC IN DATA ANALYSIS

Recently, Artificial Neural Networks (ANNs) have emerged as an option for
inferential data analysis (Friedman, 1994; Bruce and Robert, 1994). The observation
sample that is used to derive the predictive model is known as training data in an
ANN development. The independent variables, or the predictor variables, are known
as the input Variﬁbles and the dependent variables, or the responses, are known as the

output variables.

In supervised learning (Kartalopulos, 1996), an ANN makes use of the input
variables and their corresponding output variables to learn the relationship between
them. Once found, the learned ANN is then used to predict values for the output
variables given some new input data set. For unsupervised learning, an ANN will
only make use of the input variables and attempts to arrange them in a way that is

meaningful to the analyst.

ANN analysis is quite similar to statistical approaches in that both have learning
algorithm to help them realise the data analysis model. However, an ANN has the
advantages of being robust with the ability to handle large amounts of data. Novice
users can also easily understand the use of an ANN. An ANN also has the ability to
handle very complex functions (Cherkassky et. al, 1994). There are some limitations.
For example, the quality of the results predicted cannot be assured and the data
analysis model built may not be able to be interpreted. A more detailed analysis of

ANN limitations is discussed in Chapter 2.
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Fuzzy Logic (FL) is also becoming popular in dealing with data analysis problems

that are normally handled by statistical approaches or ANNs (Kosko, 1997).
However, traditional FL data analysis systems do not have any learning algorithm to
build the analysis model. Rather, they make use of human knowledge, past
experience or detailed analysis of the available data by other means in order to build
the fuzzy rules for the data analysis. The advantages of using FL are the ability to
interpret the analysis model built and to handle fuzzy data. The data analysis model
can also be changed easily by modifying the fuzzy rule base. The major limitation is

the difficulty in building the fuzzy rules due to lack of learning capability.

ANNs and FL are complementary technologies in designing an intelligent data
analysis approach (Williams, 1994). That suggests combining the two (Nauck, 1995).
For example, fuzzy logic could be used to enhance the learning capabilities or
performance of the neural network. In another approach, a neural network and fuzzy
system could be integrated into a single architecture. However, a human analyst may
still have difficulties understanding the analysis model computed. Analysis of the
prediction model is also very time consuming. Therefore, it was one of the prime
objectives of the research presented to find a better way of combining the advantages
of the ANN and FL such that these particular problems could be overcome. What has
been achieved is a novel data analysis approach that is automatic, self-learning and

self-explained that can provide accurate and reliable results.
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1.3 THE PROBLEM OF WELL LOG AND HYDROCYCLONE DATA
ANALYSIS

In engineering, the most important criteria in developing a data analysis approach is
that it gives reasonable prediction results for practical problems. To validate the
model presented in this thesis, two problems from the resource industry were closely
examined. They are the problems of well log data analysis in petroleum exploration

and hydrocyclone control in mineral processing.

Well log data analysis plays an important role in petroleum exploration. It is used to
identify the potential for oil production at a given source and so forms the basis for
estimating the financial returns and economic benefits. More specifically, it is the
means of predicting the petrophysical properties of each well. That has a significant
impact on the total budget spent on coring. More details on well log data analysis are

given in Chapter 2.

Hydrocyclones find extensive applications in mineral processing for the
classification and separation of solids suspended in fluids. This task is important, as
any mistake in classification will result in huge losses. Due to the complexity of the
separation mechanism in the hydrocyclone, the interpretation of the physical
behaviour and forces acting on the particles is not clear. The task of hydrocyclone

data analysis is to describe this performance. More details are given in Chapter 2.
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14  THE CONTRIBUTIONS OF THIS THESIS

This research has examined most of the factors that contribute to the successful
application of ANNs to any data analysis problem. That is to say, the ability to
handle a very large amount of training data, the generalisation capability of the ANN,
and the reduction of the unnecessary input variables to reduce the network’s
parameters. Most of the processes in the proposed approach have made to be
automatic. This is of benefit to any novice users who have little knowledge about

ANNEs.

The integration of an ANN with a Fuzzy logic system is also proposed. The objective
in this case was to allow user interaction in the development of the data analysis

model.

It is shown the proposed data analysis approach is able to address the limitations of
the statistical, ANN and FL approaches raised in the previous sections for at least the
two problem classes analysed. This research has also identified that in order to obtain
reliable results, a more integrated approach than has been customary is needed.

Consequently, the proposed approach includes a variety of different components.

For cases where there are very large amounts of available sample data, it is always
safe to assume that the underlying functions are very complex for an ANN to learn.
This research has shown that with some ANNS, it is possible to learn the complex
functions perfectly in a much shorter period of time than usual. This leads to a

structure that has been termed a Modular Neural Network,
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The most important feature of an ANN is the ability to generalise. For that reason, an
intensive study was made of this issue. It was found that statistical approaches could
be a very powerful and useful tool for analysing the generalisation capability of an
ANN and lead to a good insight into the process. Factors that contribute to the
generalisation capability of the ANN are also highlighted by this approach. This has
lead to new approaches being formulated in this thesis to ensure that the
generalisation of an ANN can be achieved. One of these new approaches also allows
a human analyst to control how an ANN learns. Results presented show that these

proposed techniques provide better results.

When dealing with large number of input variables, a human analyst would
appreciate a straightforward technique to identify the significant input variables. An
input contribution measure is proposed for this task. This is easy to use and quick to
determine the significant input variables. Results presented show that it is a reliable

way of identifying significant input variables.

Finally, a Generalised Neural-Fuzzy System has been developed to allow an ANN
data analysis tool to provide a self-explanation function. It makes use of the fuzzy
rules to explain the generalised function of the ANN such that a human analyst can
understand how the data analysis model derives inferential results. This developed
Generalised Neural-Fuzzy System will also allow the analyst to modify or add in
knowledge or past experience into the model. It is shown that this proposed data
analysis approach is an automatic, self-learning and self-explained that can provide

accurate and reliable analysis results.
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1.5 AN OVERVIEW OF THE THESIS

Chapter 2 overviews the problem of well log data analysis in the petroleum industry
and hydrocyclone control parameters identification in mineral processing. It also
reviews the problems of current data analysis methods used in these fields. This

chapter also frames the objectives of this research and its significance.

The first part of Chapter 3 examines the possibility of applying an ANN to
hydrocyclone data analysis. This chapter also makes a comparison between an ANN
approach and conventional approaches used currently in the field. The second part of
this chapter examines the advantages of using a Modular Neural Network (MNN)

over a single Neural Network in data analysis.

Chapter 4 examines the generalisation capability of the Backpropagation Neural
Network (BPNN) and the factors that affect it. New techniques and approaches are
presented to extend that capability. Some of the formulated techniques also allow a
human analyst to control how a BPNN should learn. This chapter demonstrates that
statistical analysis of the BPNN can be used to better understand the generalisation
capability of a BPNN. Statistical analysis may also verify the factors that affect the

generalisation capability.

After investigating the use of an ANN as a data analysis approach, the uses of fuzzy
logic are examined in chapter 5. A self-generating fuzzy rule algorithm is presented
to extract rules from data. This chapter shows that combining the advantages of the
integrated ANN data analysis tool and the self-generating fuzzy rule technique

produces a Compact Generalised Neural Fuzzy Rule System. An efficient way of

8
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identifying the significant input variables for predicting the corresponding output

variables is proposed. This input contribution measure effectively reduces the
number of fuzzy rules. As the number of fuzzy rules presented could be quite large,

an algorithm to reduce the fuzzy rule base is also proposed.

Chapter 6 concludes the thesis. It examines how the objectives of this research have

been accomplished. Future directions in this field of study are also suggested.
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CHAPTER 2:
PROBLEMS OF THE ANALYSIS OF WELL LOG AND

HYDROCYCLONE DATA

2.1  SIMILARITIES IN ANALYSISING WELL LOG AND

HYDROCYCLONE DATA

Well log data analysis in the petroleum industry (Crain, 1986; Rider, 1996) and
hydrocyclone data analysis in the mineral industry (Bradley, 1965) fall into the same
class of non-linear data analysis problems. There are a large number of well-
developed techniques for solving linear problems and some classes of nonlinear data
analysis techniques (Mendenhall and Sincich, 1992). Nonlinear data analysis,
especially where the nature of the nonlinearity is unknown, is far more difficult to

deal with,

The problem in this case is an identification problem. There are known inputs to
some ‘black box’ plus measured outputs. The problem is to determine a function that

describes the link between the two.

In most instances, the techniques that approximate well to non-linear functions are
those which can be generalised from the given set of input and output pairs.
However, that set may not be perfect due to human or measurement error. That is to
say, the data set is noisy. The main objective for data analysis is to make use of the
given noisy and imprecise nonlinear data to enhance the desired output responses.

This analysis also tries to reduce irrelevant and unwanted responses. In the past,

10
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parametric or semi parametric approaches with some prior assumptions have been

used to handle this form of data analysis. Non-parametric techniques have becoming

more popular in recent decade due to the improvement in computing power.

In this thesis, well log data analysis in petroleum industry and hydrocyclone data
analysis in mineral industry are used as examples to illustrate the power of the data
analysis approach proposed. Although the collection of the data in these two fields is
different, they both fall into the same category of inferential nonlinear data analysis

problems.

A well or drill hole is made in order to gain information on some region. Samples
extracted from the underground cores are examined intensively to obtain the desired
outputs; the petrophysical properties of the well. Hopefully, this well log data will
then allow a good prediction of the petrophysical properties of the area as a whole,

Well log data analysis is largely concerned with forming such predictions.

For hydrocyclones, the input and output parameters are measured in an experimental
laboratory and used to form the final design of the system. The objective here is to

predict the output parameters and so the function of the system.

Although these problems seem to be different, they have many similarities. The data
involved in both cases are non-linear, random, noisy, and sometime may be
heterogeneous. In both cases, too, the desirable form of a data analysis tool is a
system which is automatic, self-learning, and self-explaining that can provide

accurate and reliable prediction results. In neither case is the objective to replace the

11
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human analyst involved. Rather, it is to provide assistance to them to make their

broader task easier. Those analysts need to be able to examine and understand the
designed data analysis model. Further, as will be indicated, it is extremely useful if
they can also manipulate and incorporate prior knowledge or experience into the

model.

2.2  THE PROBLEM OF WELL LOG DATA ANALYSIS

The cost of developing a petroleum reservoir now requires exploration to be a very
carefully managed and controlled process. The initial phase normally involves a
series of boreholes being drilled at different locations around the region believed to
hold the reservoir. Then well logging instruments are then lowered into each
borehole to collect data typically every 150mm or so of depth. These data are known
in the industry as well log data. Now follows a very intense processing of this data in

order to commence an evaluation of the reservoir’s potential.

Well logging instruments used for this data acquisition broadly fall into three
categories: electrical, nuclear and acoustic (Rider, 1996). Examples of the
measurements obtained are Gamma Ray (GR), Resistivity (RT), Spontaneous
Potential (SP), Neutron Density (NPHI) and Sonic interval transit time (DT). There
are over fifty different types of logging tools available for different requirements.
Measurements of the formation and fluid properties in and around the well bore

location are also usually included in the well log data.
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Physical rock samples from various depths are obtained by using a coring barrel to

recover intact cylindrical samples of reservoir rock. These samples are then sent to a
laboratory and examined using various physical and chemical processes. Data
obtained from this phase are known as core data in the log analysis process.
Although core data is the most accurate way of assessing the hydrocarbon of a well,
they are very difficult and expensive to obtain. Means of providing good prediction
of the petrophysical properties is necessary to avoid spending excessive amounts of
money on coring. Therefore it is important to establish an accurate well log data

analysis procedure to provide reliable information for the log analyst.

Two key issues in reservoir evaluation using well log data are the characterisation of
formation and the prediction of petrophysical properties. Examples of petrophysical
properties are porosity, permeability and volume of clay. While a core data set gives
an accurate picture of the petrophysical properties at specific depths, it takes a
lengthy process and incurs great expense to obtain such data. Hence, only limited
core data are available at selected wells and depths. The objective of well log data
analysis is therefore to establish an accurate interpretation model which can be used
to predict the petrophysical properties for uncored depths and boreholes around that

region (Crain, 1986; Asquith and Gibson, 1982).

An accurate prediction is essential to the ultimate determination of the economic
viability of the exploration and the production capacity of the particular well or
region. Ideally, the model can be used to interpret log data from wells within the
neighbouring region without the need to carry out further core analysis. This requires

an integrated knowledge of the tool responses and geology together with various
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mathematical techniques. This is important in order to derive an interpretation model

that relates the log data to the petrophysical properties. However, the establishment
of an accurate well log interpretation model is not an easy task due to the complexity
of different factors that influence the log responses (Doventon, 1986). This demands

a high level of human expertise, experience and knowledge.

A large number of techniques have been introduced in order to establish an adequate
interpretation model over the past 50 years (Marett and Kimminau, 1990). The way
the well log analysis is carried out has also changed due to the development in
logging tools. It has also changed due to the development of the physics of porous
media and the development of computer technology. However, the derivation of such
interpretation models normally falls into two main approaches: empirical and

statistical.

In the empirical approach, mathematical functions relating the desired petrophysical
properties based on several well log data inspired by theoretical concepts are used
(Coates and Dumanoir, 1974; Kapadia and Menzie, 1985). This approach has long
been favoured in the field and much effort has been made to understand petroleum
engineering principles. However, in cases where the geological characteristics are
different, the empirical models may not perform well. They may also fail in cases
where formations are separated by great distances or formed in totally distinct
deposition environments. The unique geophysical characteristic of each region
prevents a single formula to be universally applicable. As the number of parameters
that the mathematical functions can handle is limited, it 1s also difficult to establish

an accurate model. Further, it is inflexible, thus it takes much time and effort to
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present another empirical model for the new situation.

Statistical techniques are viewed as a more practical approach to this problem
(Wendt et al., 1986; Yao and Holditch, 1993; Condert et al., 1994). The common
statistical techniques used are regression analysis and discriminant analysis. The
simplest form of regression analysis is to find the relationship on a two dimensional
crossplot. The derived regression equations are then used to predict the petrophysical
properties. The equations are used to predict in the same well where core data are not
available or other wells around the region. However, a number of initial assumptions
of the model need to be made. Assumptions must also be made of the statistical

characteristics of the data.

These assumptions will normally over-simplify the data and smooth out real
variations in it. They also provide bias due to their estimation nature. In cases where
complex analysis needs to be exercised, multiple linear regression and non-linear
regression techniques can be used. Discriminant analysis is a multivariate technique
designed to separate samples into groups based on information presented by the
training data. It also requires certain statistical assumptions to be made before

analysis is carried out.

Statistical techniques lack universal capabilities and their successful application is an
inverse function of the problem complexity. When the problem is complex, the
assumptions are more difficult to estimate correctly. Statistical techniques also limit
the number of well log data that can be handled at the same time. With the increasing

number of instruments and log data, it becomes difficult to apply the traditional
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statistical and graphical methods.

Before going further, the factors that could possibly affect the accuracy of the well
log analysis should be examined. First, as the logging tools are ever increasing, it is
difficult to understand the non-lincar response equations of some of the tools. This
will make any prior assumptions on the statistical model difficult. Secondly,
uncertainties may arise from the errors in log measurement such as depth
mismatching and bad hole. Thirdly, human error could occur in the process of core
analysis to generate core information. These problems have provided the motivation

to explore other analysis approaches.

In the past few years, another technique that has emerged as an option for well log
data analysis 1s the Artificial Neural Network (ANN) (Baldwin et al., 1990; Wiener
et al, 1991;Rogers et al., 1992; Osbome, 1992). ANN performs analysis in a
fundamentally different way from the traditional empirical and statistical approaches.
ANNSs can also address most of the mentioned factors that could possibly affect the
accuracy of the model. An ANN does not require a prior assumption of the functional
form of the dependency. It also offers a numerical model free of estimators and
dynamic systems as well as the capability of modeling complex nonlinear processes

with acceptable accuracy and has the ability to reject noise.

An ANN is also different from a conventional computer program. A computer
program does take in inputs, process them and returns some results, but the
computational block constructed about an algorithm or heuristic. However, in an

ANN, a carefully selected and representative set of training data is provided for the
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ANN to learn the underlying mathematical model intrinsically. It is for this reason

that an ANN is suitable for applications whose solution is unknown or difficult to

determine.

Research has shown that an ANN can provide better well log data analysis than
statistical approaches (Wong et al., 1995a). Most well log data analyses are based on
the Multi-layer Neural Network (MLNN) using the backpropagation learning
algorithm (Rumelhart et al., 1986), which is commonly known as a Backpropagation
Neural Network (BPNN). A BPNN is suited to this application as it resembles the
characteristics of regression analysis in statistical approaches. However, a BPNN is a
non-linear and non-parametnc technique. A BPNN also has the ability to perform
pattern classification, function approximation and regression analysis. All these have

made BPNNs popular in well log data analysis.

Although ANNs have been found to perform better than traditional statistical and
empirical methods, log analysts still have reservations in using them. The main
reason for this 1s that log analysts have little control on how and what the ANN
should learn. Then after the ANN has learned the functions, the log analysts have no
way to understand how the interpretation model predicts, nor can they perform any
modification on that interpretation model. However, ANNs still have considerable
advantages if the drawbacks can be overcome. This has been the main motivation for

this research.
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2.3 HYDROCYCLONE CONTROL MODELING

Hydrocyclones (Bradley, 1965) find extensive application in the mineral process
industry where they are used for the classification and separations of solids
suspended in fluids. They are manufactured in different shapes and sizes to suit
specific purposes. Hydrocyclones normally have no moving parts. The feed slurry
containing all sizes of particles enters the hydrocyclone. Inside, due to centrifugal

force experienced by the slurry, the heavier particles will be separated from the

lighter.

After the particles suspended in the fluid are classified, they are discharged either
from the vortex finder as overflow or from the spigot opening as underflow. Due to
the complexity of the separation mechanism in the hydrocyclone, the interpretation
of the physical behaviour and forces acting on the particles is not clear. Much work
has been done on describing hydrocyclone performance using mathematical
modelling (Kelsall, 1952; Bradley, 1965; Lynch and Rao, 1975; Plitt, 1976; Gupta

and Eren, 1990).

The performance of a hydrocyclone 1s normally described by a parameter known as
d50. This parameter determines the classification efficiency. It represents a particular
particle size reporting 50% to the overflow and 50% to the underflow streams. The
separation efficiency of hydrocyclones depends on the dimensions of the
hydrocyclone and the operational parameters. Examples of the operational
parameters are flowrates and densities of slurries. D50 is not a monitored parameter,

but determined from separation curves known as fromp curves. They are used to
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provide the relationship between the weight fraction of each particle size in the

overflow and underflow streams.

In practical applications, the d50 curve is corrected by assuming that a fraction of the
heavier particles is entering the overflow stream. This is equivalent to the fraction of
water in the underflow. This correction of d50 is designated as d50c. The correct
estimation of d50c 1s important since it is directly related to the efficiency of
operations. Under normal industrial applications of hydrocyclones, any deviation
from a desired d50c value cannot be restored without changing the operation
conditions or/and the geometry of the hydrocyclone. Also, sensing the changes in
d50c is a difficult task. It requires external interference by taking appropriate samples
from the overflow and underflow streams. At the same time conducting lengthy size

distribution analyses of these samples.

Gupta and Eren (1990) have discussed the automatic control of hydrocyclones. The
output signal d50c cannot be sensed or conditioned directly, thus d50c needs to be
calculated from the operation parameters. The automatic control of hydrocyclones
can be achieved by manipulation of the operational parameters such as diameters of
the spigot opening, the vortex finder height, the inlet flowrate, the density and the
temperature of slurries for a set value of d50c. The correct prediction of d50c is

essential to generate control signals.

Mathematically, d50c can be estimated from empirical models derived from
experimental data by using analytical and statistical techniques. Some of the

conventional formulae can be found in the literature (Gupta and Eren, 1590; Lynch
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and Rao, 1975; Lynch, 1977; Mizrahi and Cohen, 1966; Plitt, 1976). Nevertheless,

these models are hard to derive since the effect of each variable must be separately
identified and incorporated into the formula. Most of the models have been derived
by using multivariate analysis on the data where just one variable is varied while all

others are held constant.

Because of these difficulties, all the conventional models are restricted to a few
estimation variables. The common estimation variables are the flowrates and
densities of slurries, the height of vortex finder, the fixed dimensions and the
pressure differences. Since experimental conditions can change from one operation
to another, the empirical models may not be applicable universally. This may explain
the existence of many different formulae obtained using similar estimation variables.
Even using the same test rig it is difficult to keep consistent operations over a period
of time. Variables such as the solid contents and the particle size distribution within
the slurry tend to fluctuate from time to time. In order to give a wider applicability to
the conventional models, incorporation of additional control parameters, such as
water and solid split ratios or densities is necessary. However, when using
conventional approaches, it is difficult to include more control parameters and is also

time consuming.

As ANNs are not popular in hydrocyclone control parameter identification, one of

the objectives of this research was to initiate the use of ANNs in this field. The next

chapter will examine this in more detail.
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24 THE LIMITATIONS OF ARTIFICIAL NEURAL NETWORKS IN

SOLVING THESE DATA ANALYSIS PROBLEMS

In most practical cases, using an ANN is not simple. In particular, if the training of

the ANN is not handled properly, the results can be very disastrous.

When the amount of input data is large, the underlying function that the ANN needs
to learn is normally very complex. Therefore, in order for the ANN to fully identify
the function, learning should take a very long time. That aside, if the number of
iterations is insufficient, the ANN may not be able to fully learn the underlying
function. This may greatly affect the prediction accuracy of the model. This problem

is discussed in Chapter 3, and a new technique is proposed to handle it.

A second issue is that the trained network should have learnt the underlying
generalised function of the data instead of memorising the training data. Although
ANNSs are known to have a generalisation capability that sees a rejection of noise,
this is not always achieved if the training is not handled properly. The capability of
generalisation is particularly important in the situation where the data are very noisy.
In most practical cases, noise exists in both the input variables and output variables.
Noisy data normally means that there is an irregular mapping between the input and
output. In designing a generalised ANN data analysis tool, the factors that will affect
the generalisation capability need to be investigated intensively. Chapter 4 gives an
intensive study of the generalisation capability of ANNs and current approaches to
handling this problem are also reviewed at the beginning of that chapter. After

investigating the factors that affect the generalisation capability; with the objective of
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designing an automatic data analysis approach in mind; some straightforward and

new approaches are proposed to ensure better generalisation capability.

Third, if the number of available input parameters is large, there must be some
indications of the significance of each input to the output. This is especially
important in well log data analysis, given the number of logging tools which may
potentially be employed. As an ANN only consists of weights, it just acts like a
“black box” to the analyst. Analysts need to spend a considerable time in
understanding the configuration of the ANN before they can perform an input
contribution measure. Garson (1991) and Wong et. al (1995¢) have proposed an
input contribution measurement in analysing the weights. This requires relatively
complex analysis beyond the scope of a novice user of ANNs. Besides, the
complexity of the weight vector in the ANN may prevent the derivation of an

accurate input contribution measure.

Fourth, after an ANN is trained, it acts like a “black box” with only weight
connections between the nodes. Unlike an empirical expression with limited terms
and coefficients, the analyst would have difficulty in understanding the vast number
of weights involved and how the network performs a task. In addition, if some
weights of the ANN are modified, the effects on the output are unpredictable. Some
kind of approach to represent the underlying function learned by the ANN is needed
to provide a better understanding of the model. This problem may be solved by
another technique that could express the function in human understandable rules

known as Fuzzy Logic (FL) (Zadeh, 1965).
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A fuzzy set allows for the degree of membership of an item in a set to be any real

number between 0 and 1 (Zadeh, 1965). This allows human observations,
expressions and expertise to be modelled more closely. Once the fuzzy sets have
been defined, it is possible to use them in constructing rules for fuzzy expert systems
and in performing fuzzy inference (Wang, 1991). Fuzzy reasoning is expressed as
linguistic rules in the form “If x is A, then y is B”, where x and y are fuzzy variables,
and A and B are fuzzy values. This form of description corresponds well to the rules

expressed by humans.

The use of Fuzzy Logic (FL) simplifies the development of an intelligent data

analysis too] with the following features:-

1. Sophisticated knowledge and rich human experience can be incorporated into the
fuzzy knowledge base in a form that is close to natural language.

2. The incorporated knowledge is not necessarily precise and complete.

3. The input facts to be accessed in fuzzy inference are not necessarily clear cut nor
do they have to match the given knowledge exactly.

4, Partially matched conclusions can be inferred from the fuzzy facts and the

established fuzzy knowledge base.

This approach is suitable to the application of most data analysis problem as the
model for each situation may vary greatly and it allows the incorporation of
intelligent and human knowledge to deal with each individual case. However, the
extracting of fuzzy rules for the data analysis problem could be a nightmare to

analysts with little experience. This could be a major drawback for use in well log

23



Chapter 2

data analysis and hydrocyclone control parameters identification.

Several researchers have used ANN and FL together to perform a task (Lin and
George, 1995; Jian, 1993; Zhang and Kandel, 1998). There are several ways where
these two techniques can be made to work hand in hand to perform a specific data
analysis task (Nauck, 1995). However, the analysts still have difficulties
understanding the analysis model. Analysis of the prediction model is also very time
consuming. Besides, the integration of the human experience and knowledge may
still be impossible. Thus one of the major objectives of this research was to look for a
straightforward Neural-Fuzzy data analysis approach. It should be automatic, self-
learning and self-explained so that it could be used by any novice users. This data
analysis approach should also be able to allow users to control the learning, and as
well as be able to integrate knowledge or modify the model without too much

difficulty.
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CHAPTER 3:
A DATA ANALYSIS TOOL EMPLOYING AN ARTIFICTAL

NEURAL NETWORK

3.1 INTRODUCTION

ANNs has many advantages over conventional approaches that use empirical
formulae or statistical methods. ANNs have also shown successful application in
well log data analysis. However, they are not popular for hydrocyclone data analysis.
The first part of this chapter examines the feasibility of using ANNs in hydrocyclone
control parameters identification. It also shows that the same ANN approach could
be used in hydrocyclone data analysis problem. This approach has already been

investigated for well log data analysis.

The shortcomings of ANN’s need to be addressed and this is done later in the
chapter. The most significant of these is that an ANN may not perform well when the
data volume is very large. One important reason for this behaviour is that the
underlying function is very complex. Another is that the number of iterations
required in learning the complex function was underestimated or that the ANN
learning time was insufficient. Possibly the distribution of the large data volume may
have affected the ANN’s ability to fully generalise the “truth” function. In the second
part of this chapter, a new Modular Neural Network (MNN) is proposed that

overcomes some of these difficulties.
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3.2 EMPLOYING ARTIFICIAL NEURAL NETWORKS IN

HYDROCYCLONE DATA ANALYSIS

3.2.1 ESTIMATING THE PARAMETER D50C

For the purpose of this study, a Kerb hydrocyclone model D6B-12°-839 was chosen.
The slurry that was fed into the hydrocyclone for classification was made from a
stock sample of -212um sized quartz. The slurry was suspended in water circulating
through the system. The quartz was mixed thoroughly each time before the slurry
was made. Samples were taken manually from the overflow and underflow streams.
Size analysis was then performed. After that, d50c can be estimated to assess the
performance of the hydrocyclone. However, the size analysis is a time consuming
and tedious task. Mathematically, the d50c can also be estimated from empirical
models derived from analytical and statistical techniques. Some of the typical
conventional formulae can be found in Gupta and Eren (1990}, Plitt (1976), Lynch
and Rao (1975) and Mizrahi and Cohen (1966). The five conventional hydrocyclone
variables that were used to estimate d50c¢ are the inlet flowrate, inlet density, the

vortex finder height, the spigot-opening diameter, and the operating temperature.

3.2.2 BACKPROPAGATION NEURAL NETWORK (BPNN)

When a BPNN is used in hydrocyclone data analysis, the results from the physical
size analysis are used as the training data. The input neurons of the BPNN
correspond to the five hydrocyclone variables, and the output neuron is assigned to

the d50c. The BPNN has a number of layers. The input layer consists of all the input
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neurons and the output layer just the output neuron. There are also one or more

hidden layers. All the neurons in each layer are connected to all the neurons in next
layer with the connection between two neurons in different layers represented by a

weight factor.

The objective of training the BPNN is to adjust the weights so that the application of
a set of inputs produces the desired output. The training set consists of a number of
desired input and output pairs. The input set is presented to the input layer of the
BPNN. A calculation is done to obtain the actual output set by proceeding in order
from the input layer to the output layer. At the output, the total error on each output
neuron, which is the sum of squares of the differences between the desired output
and the computed output is calculated. This value is used in a learning algorithm to

update the weights and the process is back propagated through the network.

Once the modification of all the connection weights is done, a new set of outputs can
be computed and subsequently a new total error will be obtained. This back-
propagated process repeats until the value of the total error is below some particular
threshold. At this stage, the BPNN is considered to have learned the function. After
the BPNN has leamned and gencralised from the training data, it is then used to

predict d50c under the same operational conditions.
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3.2.3 A COMPARISON BETWEEN RESULTS OBTAINED THROUGH

CONVENTIONAL METHODS AGAINST THOSE WITH THE

BPNN

To see that a BPNN can be used in hydrocyclone control parameters identification,

results obtained from such a network were compared to those generated from the

Gupta’s model (1990) and the Plitt’s model (1976). Figure 3.1 illustrates these as

compared to the observed d50c. It can be seen that BPNN’s results are better for

most values of d50c. Further statistical analysis of the data used to produce this

figure gave the following. For Gupta's model, the correlation coefficient was 0.983

with r-squared value of 96.66%. For Plitt's model, the correlation coefficient was

0.895 with r-squared value of 80.14%. For the BPNN, in contrast, the correlation

coefficient was 0.986 with an r-squared value of 97.17%. These are summarised in

Table 3.1.
Table 3.1: Results from different analysis approach.
Analysis Approach Correlation Coefficient r-squared value
Gupta 0.983 96.66%
Plitt 0.895 80.14%
BPNN 0.986 97.17%
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100
@ 4 9
—— d50¢ Observed
—— d50¢ Gupta & Eren
= d50c BPNN o
-0 d50c Plitt :

Observed and Computed d50 -

2 58 1 4 7 036 9 2 5814 7 0 3 6 9 258 1 47 03 6 9
Run Numbers

Figure 3.1: Results of the d50¢ using different approaches as compared to the

observed data.

The BPNN approach clearly out-performs the other two. The reason why the results
generated by Plitt’s model have the worst accuracy is mainly due the inconsistency
between the models. This is due to the fact that the hydrocyclone set-up condition for
realising the Plitt model may be quite different to that of the Gupta model. While this
BPNN analysis is based on the hydrocyclone set-up condition used to realise Gupta’s

model, that is why it performs well compared to BPNN.

This shows that the conventional approaches cannot be applied universally. They
will only perform well when the operational condition is almost the same as that for
which the model is derived. A BPNN is more flexible and should be able to be
applied universally. A BPNN will generate promising results as long as the predicted

results yield the same condition as those in the training data. Moreover, as a BPNN
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has a learning capability, it is easy for it to re-build another model under a new

operational condition. Table 3.2 also gives a summary of the comparisons between

the conventional approach and the BPNN.

Table 3.2: Comparisons of conventional approach and BPNN.

Conventional Approach BPNN
Model assumption Yes No
Applied universally No Yes
Learning Ability No Yes
Rebuild another model Difficult Easy

3.24  ADDITIONAL ESTIMATION PARAMETERS AND RESULTS

Another advantage of using a BPNN is that incorporating new input variables is easy
to do. The changes that need to be made to the BPNN are to increase the number of
input neurons and present the extra input parameters in training. The learning
capability of the BPNN will take care of the addition input parameters in the final
function. In the conventional approach, new input variables often take a very long
time to incorporate into the analysis. As the number of input variables increases, the
conventional analysis process will become much more complicated. With an
increasing number of input parameters, a stage will be reached where the analysis is
so complex that it 1s not possible to incorporate them. However, due to the difference
in the operational condition in different problems, it is important to include as many

input parameters in the prediction as possible. Each input parameter, though, may not

30




Chapter 3
be universally important in all, but it would be expected that inclusion of most of the

available input parameters in the prediction model should lead to greater accuracy.

In Figure 3.2, three further parameters are included as input parameters in this
analtysis. The five conventional hydrocyclone variables that were used in the last
section to estimate d50c are the inlet flowrate, inlet density, the vortex finder height,
the spigot-opening diameter, and the operating temperature. With the three additional
parameters, this makes the total number of input parameters used in predicting d50c
to eight. The additional parameters were the underflow and overflow flowrates, and
the ratios of the two flowrates. In this case, a statistical analysis indicated that the
correlation coefficient of trained results increased to 0.995 giving an r-squared value
0f 98.9%. This gives a better prediction as compared with the conventional five input
parameters. However, the training time for the BPNN is longer compared to the five
input parameter problem. Based on a Pentium 90 PC, it took about 14 minutes to
train for 8 inputs and 16 hidden neurcns, but only 4 minutes for five inputs and 10
hidden neurons. The selected number of hidden neurons used in these two cases
generated the best results. Although, the training for eight inputs is slower, once it
has learned the function, d50c can still be generated in a very short time. It takes

about 30 seconds to predict d50c¢ for both cases.

Figure 3.3 depicts the trained BPNN results with fourteen input variables with the
addition of water and solid split ratios, the overflow and underflow densities and the
pressure difference between the inlet and the overflow streams. In this case, the
correlation coefficient has further improved to 0.995 with an r-squared value of

98.97%. In this case, it takes about 20 minutes to train the network, while the
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prediction still takes about 30 seconds.
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Figure 3.3: The data and predicted results with fourteen parameters

3.2.5 BENCHMARKING BPNN’S PREDICTION CAPABILITY

To really benchmark the performance of the BPNN, it should be used on data not

used in the training process. Once a BPNN network is trained, the learning of the
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network is assumed to be holding for any future data generated under the same

operational conditions. The easiest way to test the BPNN is to arbitrarily select half
of the available data from measurements for training purposes and use the other half

for testing.

In this case study, the five input parameters were selected as those in Figure 3.1.
Graphical results of tests are illustrated in Figure 3.4. Here, the correlation
coefficient was found to be to 0.98 with an r-squared value of 97.67%, which is
exceptional. This shows that the BPNN has the ability to make accurate predictions

as long as the operational condition is the same as for the training data.
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Figure 3.4 The results of the testing data.
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3.2.6 AN ANALYSIS OF THE IMPROVEMENTS ACHIEVED

THROUGH USING A BPNN

In the prediction of the hydrocyclone parameter d50c, the results from two best-
known conventional models have been compared to those obtained by the application
of a BPNN. It has been shown that in this case the BPNN gives better results that fit
well with the original data. Application of the BPNN is also universal while
conventional models only work well in particular situations. To re-build a new model
for other operational conditions, BPNN can do that easily. Unlike conventional
models, BPNN can also incorporate additional hydrocyclone input parameters easily.
This will sometimes help to improve the prediction performance. There is no limit on
how many input parameters the BPNN can handle outside of the problem of training
time. Once the BPNN has learned the function, the prediction time is largely
independent of the number of inputs. This first part of the chapter has also shown
that BPNN is capable of producing accurate results to cases that are not seen in the
training process. If the operational conditions remain the same as those for the
training data, then the prediction generated from a BPNN is very promising. This
study has indicated that the use of BPNN can lead to a more effective and efficient

automatic control of hydrocyclones.

In spite of this, the drawbacks mentioned in chapter 2 would discourage the use of a
BPNN in hydrocyclone control parameters identification. Further refinement of the
approach is needed in order to win the confidence of potential users. The subsequent
sections of this chapter and future chapters will examine these problems in details.

New methods are proposed to handle them.
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3.3 THE MODULAR NEURAL NETWORK

A problem that was clearly implied earlier in this chapter is how to deal with the
complex functions underlying a large volume of available training data. To achieve
this, the Modular Neural Network (MNN) is proposed. The MNN is based on the
Self-organising Map (SOM) (Kohonen, 1989; Kohonen, 1990; Kohonen, 1995),
Learming Vector Quantisation (LVQ) (Kohonen et al., 1992) and BPNN. Although
the development of this network is presented using well log data analysis for
illustration, it is easily employed for hydrocyclone control parameters identification
or any similar problem. However, this proposed MNN can only be used when the

available training data is large.

As compared to the conventional BPNN approach that uses only a single network,
the MNN enables the division of a complex network into a number of sub-networks.
Initially, a SOM and LVQ are used to classify the data. Several BPNNs
corresponding to the number of classes obtained from the SOM are then trained for
the purpose of prediction. Since the number of data to be handled by each sub-
network is effectively reduced, the training time is significantly shortened. The data
that falls into the same sub-network will have similar characteristics, thus effectively

reducing the complexity of the function that the ANN needs to learn.

This discussion of the MNN is arranged into two major parts. The first will focus on

the classification approach. The second will examine the prediction results of the

MNN.
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34 THE VALUE OF THE MODULAR NEURAL NETWORK

A BPNN is capable of learning any non-linear function from the available training
data. However, if the available training data is large and complex as shown in Figure
3.5, the underlying function may be too complex for a single ANN to adequately
represent it. This suggests a multiple representation that in turn leads to the prospect
of modules. Noting Figure 3.6, if the data can be first classified before the BPNN
learning process, the functions handled by each sub-section will be very much
simpler compared to the whole set of training data. Further, the overall function
should be able to learn in a shorter time. Given that function is better represented, the

prediction results should also increase.

There are several ways of performing a classification of the training data. However
the objective here is for a technique where this may be done automatically and
transparently to the human analyst. A SOM is selected as the best classification
approach as it uses unsupervised learning. Further, it has the ability to learn and

organise information without being given correct outputs for the inputs.

A SOM network consists of two layers of nodes. Each output node is computed with
the dot product of its weight vector and the input vector. The result will reflect the
similarity between the two vectors. At the end of training, a SOM will make use of
its own learning ability to arrange the available training data into different cluster.
After a SOM has classified the training data, an LVQ, which also uses supervised
learning, is used to fine-tune the classification process. LVQs are closely related to

SOMs, but use the given classification information to define the class regions in the
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input space. In this case, the SOM and LVQ will learn from the data and perform
their own classification process. This is desirable to meet the objective of automated

operations.

Figure 3.5: Function handle by one BPNN

Figure 3.6: Functions handle by MNN
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3.5 THE CLASSIFICATION PROCESS

3.51  APPLYING SOM AND LVQ ALGORITHMS TO LITHOLOGY

CLASSIFICATIONS

Lithology classification involves the deduction of the principal rock matrix
composition via data obtained from various well logging instruments. These
instruments record the physical properties of earth at specific depths along the well
bore. The measured quantities include resistivity, bulk density, gamma ray, neutron
porosity, sonic waves and other parameters. The determined lithologies can then be
used to answer a variety of questions such as thickness of a specific zone or depth of
a particular formation. In addition to classification of lithologies, well logging data
are also used to determine or predict petrophysical properties such as porosity,
permeability and water saturation. This information is essential for the prediction of
reservoir characteristics and subsequently the determination of reservoir production

and related economic factors.

To illustrate the approach adopted, an example of 127 training samples comprising
six input variables and three rock matrix outputs was used to derive representative
results. The trained network was then applied to 378 test data values. In applying the
SOM and LVQ algorithms to classification, a number of approaches were followed

as listed below.

Approach 1: Apply the SOM algorithm to the input and output data separately and

then compare the classification results. If the results are compatible, the
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network for the input data can then be taken as the classification model.

Approach 2: Manually classify the input data and train the network with the LVQ

algorithm based on the assumed classes.

Approach 3; Classify the output data using SOM algorithm. Unlike the manual
approach in 2, the input data is now classified automatically according
to their output characteristics. The LVQ algorithm is then applied. The

resultant network will be the classification model for subsequent inputs.

In a preliminary examination, results from Approach 1 proved unsatisfaciory. An
1deal result is one that classifies both sets of input and output data into comparable
classes. The matching accuracy between the two classification results in this case
was found to be less than 50%. This indicates that the mapping between the two sets

of data is not unique. Hence this approach was abandoned.

The second approach assumes that the input data are classified according to the input
and/or output characteristics. This requires the experience and knowledge of a human
analyst. That individual needs to observe the input data and determine the class
patterns. With the manually classified input data, the LVQ algorithm is then applied
to train the network. This is time consuming and inefficient. Further, the
classification accuracy is very much dependent on the expertise of the personnel

involved.

Since it is known that a certain relationship exists between the input vectors and the
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characteristics within the output data, the third approach uses the output data as the

basis for initial classification. The SOM is first applied to classify the output data.
The classes obtained are then used to label the input vectors. The input vectors
coupled with the output class labels are then applied to the LVQ algorithm. The

process is summarised in the following steps.
Step 1: Normalise the input and output data.

Step 2: Determine the number of classes required and apply SOM algorithm to the

output vectors.
Step 3: Label the input vectors according to output classifications from Step 2.
Step 4: Apply the LVQ algorithm to the normalised inputs and establish the network.

Once the network is trained, new input data can be classified by applying the

normalised data to the network.
3.5.2 RESULTS AND DISCUSSIONS

The hardware platform employed to derive the results quoted was a PC 486-DX
computer running at a clock speed of 33MHz. The SOM and LVQ programs are
based on the SOM-PAK and LVQ-PAK obtained from Helsinki University of

Technology (Kohonen et al., 1992).
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Within the LVQ-PAK, the LVQ algorithms are implemented with a number of

variations. They are the LVQIL, OLVQIl, LVQ2 and LVQ3 algorithms. Details of
these algorithms are given in Kohonen et al. {1992). In this study, the OLVQ1
{optimised learning rate LVQ1) was used. A set of 127 training samples was used to
examine the performance and accuracy of the SOM and LVQ algorithms. Results are
graphed in Figure 3.7. Three output variables were used in the classification process
as described in Step 2. They were rock matrices MATRIX-1, MATRIX-2 and
MATRIX-3, which correspond to sandstone, limestone and dolomite respectively.
Three output grid sizes for the SOM output layer were tested. The quantisation error

and execution time due to these three configurations are tabulated in Table 3.3.

Table 3.3: Comparison of execution time and quantization errors

Output Grid Size Time Quantization Error
1x3 5 sec 0.17666
2x3 6 sec 0.14822
3x3 7 sec 0.11061

As will be noted, the quantization error reduces with an increasing number of classes.
However, increasing the number of classes implies a reduction of the generalisation
capability. On the other hand, if the number of classes is too low, the network
provides poor discrimination. In this study, an output grid size of 2x3 was chosen as

it presents better results as compared to the others.

In order to illustrate the characteristics of the rock matrix compositions, samples with

the least quantization error in each class are shown in Table 3.4. In the same table,
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the number of samples grouped under each class is also illustrated.
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Figure 3.7: Graphical plot of data and results
Table 3.4: Samples of rock matrix composition
Depth Class Number MAT-1 MAT -2 | MAT-3
70950 ft 1 72 0.9417 0.0583 0
7099.5 ft 2 22 0.8272 0.1353 0.0502
7133.5 ft 3 33 0.5337 0.2802 0.2494

(a) 1x3 gnd size
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Depth Class | Number| MAT-1 | MAT-2 MAT-3
7137.0 ft 14 0.5082 0.2430 0.3333
70335 ft 16 0.5337 0.2802 0.2494
7054.5 fi 13 0.7209 0.2105 0.0918
7047.0 ft 14 0.8421 0.0487 0.1463
7077.0 ft 12 0.9345 0.0655 0
71025 fi 58 0.9668 0.0147 0.0248

(b) 2x3 grid size

Depth Class | Number | MAT-1 MAT -2 MAT-3
7113.0 ft 1 12 0.3686 0.3489 0.1239
7053.0 ft 2 6 0.6011 0.3027 0.1290
7048.5 ft 3 9 0.7990 0.2010 0
71370 ft 4 6 0.5082 0.2430 0.3333
7180.5 ft 5 7 0.7390 0.1337 0.1705
7095.0 f ) 11 0.9417 0.0583 0
7198.5 ft 7 14 0.6722 0.0459 0.3775
7045.5 ft 8 7 0.8819 0.0158 0.1371
71025 ft 9 55 0.9668 0.0148 0.0248

(c) 3x3 grid size
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In Table 3.4(a), the composition of class 1 for the 1x3 grid-size is predominantly
sandstone (MAT-1) and classes 2 and 3 show different ratios of limestone (MAT-2)
and dolomite {MAT-3). In the 2x3 grid-size output as shown in Table 3.4(b), samples
in classes 5 and 6 have similar characteristics to those shown in 1x3 grid-size class 1.
However, class 6 has less sandstone and an increased proportion of limestone. This
indicates that the SOM algorithm has subdivided class 1 in the 1x3 grid-size into two
regions as shown in the case of the 2x3 grid-size. Another way to relate them is to
consider the number of samples grouped under each class. In the 1x3 grid-size class
1, there are 72 samples. Classes 5 and 6 in the 2x3 grid-size have a total of 70
samples. A similar relationship is observed between class 2 in 1x3 and classes 3 and
4 in the 2x3 output. Also, class 3 in 1x3 can be considered to be equivalent to classes
1 and 4 in the 2x3 grid-size. Results from the 3x3 grid-size also exhibit similar

characteristics when compared to the other outputs.

The input vectors of the training data are then labelled with the class numbers
obtained from the SOM algorithm. Six input variables consisting of data measured
from the neutron, density, resistivity, gamma ray, sonic and spontaneous potential
instruments are used. They are applied to the OLVQ1 algorithm and the recognition

accuracy is obtained. The results are summarised in Table 3.5.
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Table 3.5: Recognition accuracy and number of samples in each class

Class Recognition Accuracy
1 100%
2 100%
3 100%
Average Accuracy 100%

(a) 1x3 grid-size

Class Recognition Accuracy

1 100%

2 100%

3 100%

4 100%

5 91.67%

6 100%
Average Accuracy 99.21%

(b) 2x3 grid- size
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Class Recognition Accuracy
1 100%
2 100%
3 100%
4 100%
5 85.71%
6 90.91%
7 92.86%
8 100%
9 100%
Average Accuracy 97.64%

(c) 3x3 grid- size

Table 3.6: Samples of test results

Depth(ft) | RHOB | NPHI | RT GR DT SP CLASS
72015 | 0.8012 | 0.2446 | 0.0027 | 0.5842 | 0.6484 | 0.0613 4
7202.0 | 07711 | 0.2533 | 0.0027 | 0.6006 | 0.6651 | 0.0254 4
72025 | 0.7606 | 0.2610 | 0.0028 | 0.6359 | 0.6512 | 0.0199 4
7203.0 | 0.7835 | 0.2547 | 0.0029 | 0.7241 | 0.6624 | 0.0209 4

(a) consistent lithofacies
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Depth(ft) | RHOB | NPHI RT GR DT SP CLASS

71985 | 0.7466 | 0.3446 | 0.0016 | 0.5045 | 0.8711 | 0.0450 1

7199.0 | 0.8045 | 0.2959 | 0.0025 | 0.5683 | 0.6579 | 0.0330 4

7199.5 | 0.8169 | 0.2341 | 0.0033 | 0.4625 | 0.5786 | 0.0330 1

72000 | 0.8310 | 0.2636 | 0.0030 | 05477 | 0.5934 | 0.0311 1

(b) additional class between known classes

Table 3.5 illustrates very high recognition accuracy. However, the value decreases
with increasing grid-size. This is due to the existence of data in the overlapped
boundaries between classes. As the number of classes is increased, the overlapped

areas are also increased and some of these data may be classified incorrectly.

After the network 1s trained, a set of test data is applied to validate and check the
accuracy of the network. A plot of the classification results is also shown in Figure
3.7. The test data were obtained from the same well at an interval of 0.5 ft whereas
the training samples were recorded at an interval of 1.5 ft. Samples of the results are
shown in Table 3.6. In this table, the entries shown in italics are the original training
data while the rest are testing data. In most cases, the test data have shown
consistency between two known classes. This is illustrated in Table 3.6(a). However,
there are occasions where the network has identified the existence of additional
lithofacies. In Table 3.6(b) a class 4 output is identified at 7199 ft. At close

examination of the input characteristics, similarity between those at 7199 ft. and
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those at 7201.5 ft is observed. This illustrates that the proposed approach in this

example is providing a more refined picture of the lithology with higher resolution.

3.6 PREDICTION CAPABILITIES OF A MODULAR NEURAL

NETWORK

3.6.1 THE APPROACH

The block diagram of the modular neural network is shown in Fig. 3.8. A number of
BPNN networks corresponding to the number of classes obtained from SOM are
trained. After the classification process, the data fed into the different BPNNs has

similar characteristics. In this way, training of the BPNN takes a shorter time.
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Figure 3.8: Block diagram of Modular Neural Network.

3.6.2 CASE RESULTS AND DISCUSSIONS

Some field data was used to test the procedure. A set of data that contained 127 input
logs and corresponding output properties was used for training. Another set of 127
testing data was used to examine the performance of the modular neural network
comprising a SOM, LVQ and BPNN. The results obtained were then compared to a
conventional single BPNN network. The hardware platform used to derive all results

was a PC Pentium-90 computer.
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In this study, three output rock matrices were used to demonstrate the prediction

ability of the proposed network. The rock matrices are (MAT-1) sandstone, (MAT-2)
limestone and (MAT-3) dolomite. The input logs used were (RHOB) bulk density,
(NPHI) neutron, (RT) uninvaded zone resistivity, (GR) gamma ray, (DT) sonic travel

time and (SP) spontaneous potential.

The BPNN configuration chosen for the single network consisted of six input
neurons, five hidden neurons and three output neurons. For the modular network, the
SOM was initially used to classify the training data into nine different classes. Nine
classes were found to be appropriate for classifying the data. As noted, the
quantization error reduces with an increasing number of classes but also reduces the
generalisation capability. On the other hand, if the number of classes is too low, the
network provides poor discrimination. In this study, an output grid size of 3x3 was

chosen as the better option.

These classes were attached to the input logs for the training of the LVQ network.
The training data were also divided into the corresponding classes for training of
individual BPNN networks. The BPNN configuration chosen for all the 9 sub-

networks was the same as the single BPNN network.

Table 3.7 shows the results obtained from the modular network as compared to the
results from the single network approach. As expected, the training time for the
modular network was much shorter than the single network method. The overall
accuracy of the modular network was also better based on the comparison between

their mean square errors. The mean square error of the modular network was
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calculated by taking the average of the mean square errors from the sub-networks.

Figure 3.9 shows the graphical plot of the results generated from the single BPNN as
compared to the actual core data. The modular network’s output 1s shown in the
graphical plot in Figure 3.10. From these figures, it can be observed that the modular
network’s output follows closely to the desired output core data. The correlation
between the neural network’s output and the desired core data are calculated by
statistical method using the percent similarity coefficient. For single BPNN method,
the percentage similarity for MAT-1, MAT-2 and MAT-3 are 92.4, 41.4 and 53.8
respectively. As for the modular neural network, the similarity is 98.7, 8§9.9 and 92.5
respectively. Again, these figures have given a clear indication that the modular

neural network performs better than single BPNN.
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Table 3.7 Comparison of Single BPNN and Modular Neural Network.

Modular Network

Single Network

BPNN Configuration

Ox
6 input neurons
5 hidden neurons

3 output neurons

6 input neurons
5 hidden neurons

3 output neurons

Training Time

Network 1: 72 sec
Network 2: 58 sec
Network 3: 16 sec
Network 4: 50 sec
Network 5: 7 sec
Network 6: 28 sec
Network 7: 44 sec
Network 8: 49 sec
Network 9: 98 sec
Total: 7 minutes 34 minutes
Mean Square Error
Network 1: 0.001872
Network 2: 0.0001
Network 3: 0.000082
Network 4: 0.0001
Network 5: 0.000099
Network 6: 0.0001
Network 7: 0.0001
Network 8: 0.0001
Network 9: 0.0018
Average: 0.00048 0.0297
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3.7 ADVANTAGES GAINED BY USING THE MNN OVER AN ANN

A modular neural network that is capable of separating the complex function into
different smaller module has been proposed and tested. The MNN not only perform
the separation automatically, but also provide a more accurate and reliable alternative
to the single BPNN approach. As the MNN makes use of several BPNNs, the
learning process is more accurate in realising the underlying function. This is mainly

due to the fact that each BPNN only learns from data that has similar characteristics.

First, SOM and LVQ algorithms have been used to classify the set of data from the
mmput variables. After the classification process, a number of BPNNs are then used.
The test results have shown that this approach to petrophysical prediction generates
more accurate prediction compared to the conventional single BPNN approach.
Results from the case study have also shown that the training time of this MNN is
shorter. This approach could be used as an alternative method for the analysis tool in

addition to the conventional methods,
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CHAPTER 4:

GENERALISATION OF A BPNN

4.1 INTRODUCTION

As suggested in chapter 2, the generalisation capability of an ANN has a great effect
on its prediction accuracy. This chapter will examine some of the problems in
obtaining the best generalisation capability and new techniques are examined which

achieve this.

Previously, discussion has centred on the use of a BPNN in function approximation.
The most important feature of a BPNN is its ability to generalise. After a network
has been trained with the available data, it is naturally desirable that the network
provides reasonable performance for input data other than the training data set.

However, without a systematic approach in design, that may not be the outcome.

Two primary conditions contribute to the failure to achieve a generalised network.
First, the training data set does not possess all the characteristics of the population.
Second, the test data used to set the generalisation function of the BPNN are

statistically different from the training data.

Poor generalisation may also occur due to underfitting or overfitting. In the first case,
the network is undertrained such that the system error remains high at the end of the
training process. This may be due to insufficient iterations or the number of hidden

units in the network configuration is too small. In these cases, the problem can be
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overcome with an increased number of training iterations or to use an alternative

network configuration. In the case of overfitting, this phenomenon (Weigend et. al,
1991) occurs when the network tries to fit all the data that may include substantial
noise signals on the underlying function. Overfitting may also occur due to the use of
large number of hidden units. One of the ways to avoid it is to use all the available
training data while reducing the number of hidden units. However, a question arises:
how many hidden units are appropriate to avoid overfitting or underfitting?
Lawrence et. al (1996) have shown that a large number of hidden units can reduce
the training and generalisation errors. However, this may lead to overfitting if no

measure is taken to avoid this particular problem.

Most of the research in determining the best generalisation ability of an BPNN has
focused on estimating the complexity of the network (Moody, 1992; Solla, 1993) and
the network size (Yu, 1992; Baum and Haussler, 1989). Some effective approaches
used to avoid underfitting and overfitting of the network include weight decay
(Weigend et. al, 1991), early stopping (Wang et. al, 1994; Sarle, 1995) and utilising
hint (Abu-Mostafa, 1990). Here, the early stopping approach (Nelson and

Ilingworth, 1991; Wang et. al, 1994) is investigated.

The early stopping approach has a number of advantages including that it is fast in
determining the generalisation point and it can be applied successfully to networks in
which the number of weights far exceeds the sample size. In this approach, available
data set must be divided into a training data set and a validation data set. This,
however, leads to the question of what proportion of available samples should be

used as the validation data as well as how to extract or select these validation cases?
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A straightforward technique is to divide the available data by trial and error. This is
known as the spilt-sample validation approach (Weiss and Kulikowski, 1991). The
error calculated on the validation set is used to determine when to stop the training
process. In this case, the ability of providing a generalised BPNN is very much
dependent on the validation set. Typically, several independent splits are performed
and then the results averaged to obtain an overall estimate of the network
performance. This method of validation is widely accepted, but it does suffer from
the disadvantage of a long training time due to multiple training sessions on different
splits. In addition to being sensitive to the specific method of splitting the data and
the long training time, it also requires a large number of available data. Furthermore,
the number of hidden units and the distribution of the data contribute to the effects on
the generalisation ability of the network. In subsequent sections of this chapter, the
problem of determining the training and validation data will be examined more fully.

It is assumed that there are sufficient observed data.

In terms of the problem of data distribution, the validation error will start to rise
when the BPNN tries to fit all the minority data. In effect, a generalised BPNN will
treat those minority data as noise and they are not included in the underlying
function. However, in cases where the training data are difficult and expensive to
obtain, some of the minority data may be significant and should be included in the
final generalisation curve of the BPNN. Under these situations, it is difficult to allow
a BPNN to include these small numbers of significant training data and at the same
time be able to reject those noisy data. An investigation into this problem is also

presented within the chapter.
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This chapter additionally analyses the factors that affect the generalisation capability

of a BPNN from a statistical viewpoint. This enables a better understanding of them.
These statistical insights are also used to provide a better understanding of the new

proposed techniques, and to show their feasibility.

4.2  SPLIT-SAMPLE VALIDATION

Split-sample validation 1s the most commonly used method for estimating the
generalisation capability of a BPNN using the early-stopping approach {Weiss and
Kilikowski, 1991). A set of validation data that is not used in the training process is
used to calculate the validation error. The validation error is found in the same way

as the average training system error of the BPNN:

1
Ve = EP(Z (Tp — Op)* (4.1)
where Ve = average validation error
P = no. of patterns
Tp = target patterns

Op  =output patterns

The stopping point in this method is suggested to be the point when the validation
error starts to rise as this suggests it is the point where the generalisation ability starts
to degrade. Figure 4.1 shows a typical plot of the training and validation errors.
When training starts, the errors for both data sets will normally reduce. After much
training iteration, the validation error normally starts to rise although the training

error may continue to fall. This suggests that the BPNN starts to overfit. The BPNN
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training process can be stopped at this point, as further training will result in

overfitting.

Walidation error

Trairing error

Optimal stopping point

No. of iteration

Figure 4.1: Typical plot of training and validation error

Using the early-stopping validation technique, the generalisation ability of a BPNN
is highly dependent on the validation data set. Hence, the splitting method used is
important. However, there are no rules to suggest the best splitting methods.
Nevertheless, the validation data set should demonstrate two characteristics: (1) the
validation set should be statistically close to the training set, and (2), the validation
error should indicate the generalisation ability of the final BPNN as it is used as the
stopping criteria for the training process. In order to address these two

characteristics, a SOM data-splitting approach has been proposed and examined.
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4.3 SOM DATA-SPLITTING

4.3.1 THE CONCEPT OF SOM DATA SPLITTING

If U is the universal sample space of all the cases of data to be processed by the

network, then the training set TR should be statistically similar to U:-

s(TR) < s(U) (4.2)

where s( ) indicates the statistical characteristics of a data set.

If s(TR) covers the complete sample space, the validation set (VA) and testing set

(TE) should be statistically similar to the training set,. That is,

s(VA) < s(TR) (4.3)

s(TE) ¢ s(TR) (4.4)

and with the condition: VA n TE=&J .

However, if the conventional random approach of data splitting is used, this may

result in a worst-case situation defined by the following equations.

s(TR) < s(U) (4.5)

s(VA) c s(U) (4.6)
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s(TE) < s(U) 4.7)

and conditions:

TRNAVANTE=9,

s(TR) # s(VA) # (TE)

In this case, the statistical characteristics of the three data sets are mutually exclusive.
The training set does not cover all the sample space, and the validation and testing
sets will not be able to give a fair indication of the generalisation ability of the
network. It 1s therefore essential to ensure the similarity of the statistical

characteristics of these three data sets.

In SOM data-splitting, the available data are first classified into different clusters
using unsupervised learning. If U is classified into C; to C, clusters, then U can be

written as:

U={C+C+Ci+....C } (4.8)

If the training data set is selected from ecach one of the # clusters and some are left
for testing and validation, then the conditions on equation (4.3) and (4.4) are
satisfied. In this case, the training set will cover all the desired underlying cases. The
validation set and testing set are subsets from the clusters from which the training set

1s selected.
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In data splitting, after the SOM has classified the available data, a quantization error
corresponding to each data point is generated. A number of splitting approaches on

this classified data set can be adopted:-

1. Lowest QE
Select the data in each class which has the lowest quantization error and forms the

training set. The remaining data are used as the validation set.

2. Low-High QF
Select all the data with the lowest and highest quantization error in each class and

form the training set. The remaining data form the validation set.

3. Mean OQF
The training set comprises of data from each class with the mean quantization error.

Similar to above, the remaining data form the validation set.

With this SOM data-splitting approach, data from each class are selected for training

or validation.

4.3.2 A CASE STUDY ON THE SOM DATA SPLITTING TECHNIQUE

In this case study, the problem of predicting petrophysical properties from well log
data has been selected to test the proposed SOM data-splitting approach. Core data

from five wells within a particular region are used. It was assumed that all these
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wells exhibit similar petrophysical properties. Core data from four wells were used as

training data. The core data in the fifth well were reserved as a testing set to verfy
the accuracy of the trained BPNN. There were a total of 85 training core data values
and 32 test data values. A total of nine input logs were available and the target
petrophysical property to be predicted was porosity. In this case, all the available
input logs were assumed to be important. The network configuration selected for this

study comprised of nine input nodes and one output node.

For comparison purposes, two other splitting approaches had been used. The splitting

approaches were:

1. Select one skip one: Select the first core data as training data and the next one as

validation data. Repeat this selection until the end of the set of core data.

2. Block selection: Select the first half of the available data set as training and the

second half as the validation set.

A BPNN was trained and tested without the use of any validation set. The training
process was stopped when the average system error was reduced to the minimum.
This is referred to subsequently as Test 1 and it was used to compare the results

obtained from subsequent networks trained with the data-splitting approaches.

Test 2A to Test 4B were based on the data-splitting methods without the use of
SOM. Tests 2 and 3 were based on the “Select one skip one” approach described

above. The differences between the two were the swapping of the test and validation
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data sets. Test 4 was based on the “Block selection” approach. In each test, two

stopping criteria had been used. Test A means that the training was stopped when the
minimum error or maximum number of iterations was reached. Test B means that the
training was stopped when the validation error started to rise. A summary of these

tests is listed below.

Test 1: Train with all available core data and aims to reduce the average
system error to minimum.
Test 2A: Use the “Select one skip one” approach and aims to reduce the system

error to minimum.

Test 2B: Same as Test 2ZA, but stop training when validation error starts to rise.

Test 3A: Same as Test 2A but the training data and validation data sets are
interchanged.

Test 3B: Same as Test 3A, but stop training when validation error starts to rise.

Test 4A: Using “Block selection” approach and aims to reduce the system error
to minimum.

Test 4B: Same as Test 4A but stop training when validation error starts to rise.

The total number of training and validation data used in the above tests are shown in

Table 4.1.
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TABLE 4.1: Number of training and validation data for Test 1 to Test 4B.

Training Validation
Test 1 85 0
Test 2A & 2B 43 42
Test 3A & 3B 42 43
Test 4A & 4B 43 42

For SOM data-splitting, the 85 training core data were classified into predefined

classes. The maps selected were 6-by-6 (36 classes), 7-by-7 (49 classes) and 8-by-8

(64 classes). These dimensions were chosen because it was intended to keep the

number of training data between one-third to two-third of all the available data. After

classification, quantization errors for each data were generated.

Based on the 6-by-6 output classes, several tests had been carried out. A description

of these tests is as follows:-

Test 5A:

Test 5B:

Test 6A:

Test 6B:

Select one data from each class and two from those classes that had
more data as the training set. The purpose of this selection was to
maintain the same number of training and validation data as in Test
2A and Test 2B. The BPNN was trained to the minimum system error.
Same as Test 5B but stop training when the validation error started to
rise.

Use Lowest QE approach and reduce the system error to a minimum.
Same as Test 6A but training was stopped when the validation error

started to rise.
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Test TA:

Test 7B:

Test 8A:

Test 8B:

Low-High QE approach was used and the system error was reduced to
a minimum.

Same as Test 7A but stop training when the validation error started to
rise.

Use Mean QE approach and reduce the system error to a minimum.
Same as Test 8A but stop training when the validation error started to

rise.

As for classifications based on 7-by-7 and 8-by-8 maps, only the Mean QE approach

was used. This was because the number of data in each class had been reduced and

there was no need to use more than one data point from each class. Tests 9A and 9B

were carried out on the 7-by-7 class data. Finally, Tests 10A and 10B were

performed on the core data classified into the 8-by-8 map.

Test 9A:

Test 9B:

Test 10A:

Test 10B:

Use Mean QE approach and reduce the system error to a minimum.
Same as Test 9A but stop training when the validation error started to
rise.

Use Mean QE approach and reduce the system error to a minimum.
Same as Test 10A but stop training when the validation error started to

rise.

The total numbers of the training and validation data used in all these SOM data-

splitting methods are shown in Table 4.2,
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TABLE 4.2: Number of training and validation data used from Test SA to Test 10B.

Training | Validation
Test 5SA & 5B 43 42
Test 6A & 6B 30 55
Test 7A & 7B 53 32
Test 8A & 8B 30 55
Test 9A & 9B 38 47
Test 10A & 10B 42 43

4.3.3 A DISCUSSION OF THE STUDY RESULTS

The tests performed in this case study were carried out on a Pentium-90 computer,

All the application software was developed using the C programming language.

Having trained with data prepared from the tests mentioned in the previous section,

the BPNNs were tested with the 32 core data in the fifth well for the prediction of

porosity. During the training stage, all the tests were aimed to reduce the system

error to 0.001 or stop after 50,000 iterations. The results obtained from these BPNNs

were then compared with the core porosity values. Two statistical similarity and

dissimilarity measures were calculated for comparison purposes (Kovach, 1993),

they are:
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Percent similarity coefficient (PERCENT):

z kmin(Xikszk)

PSC; =100
DX _X )

Euclidean distance (EUCLID):

1
ED,;- = (Z k(Xik _Xjk)z)z

where 7 and j represent the two data to be compared and & represents the pattern

TOWS.

The results from Test 1 to Test 4B are shown in Table 4.3, and the results for various
SOM data-splitting method are shown in Table 4.4. Test 4B could not be carried out
because the validation error started to rise from the beginning of the training. This

may suggest that the validation data and training data are statistically dissimilar.

TABLE 4.3: Results and training time for Test 1 to Test 4B.

TEST | PERCENT | EUCLID | Training Time

1 01.865 0.8 25 min

2A 89.727 1.046 10 min

2B 93.199 0.627 13 sec

3A 92.842 0.67 2.8 min

3B 91.17 0.723 4 sec

4A 85.369 1.299 6.4 min

4B NIL NIL NIL

69



Chapter 4

From Table 4.3, Test 1 gave a relatively good result of 91.9% of similarity. However,
the training time was close to half an hour and the number of training data used was
85. The system error did not reach 0.001 and the test stopped at 50,000 iterations. For
cases using the data-splitting approach, Test 2B gave the best result and the training
time was 13 seconds. Test 3B also gave a result that is compatible to Test 1 and only
4 seconds were used. However, it can be observed that the split-sample validation
based on the select-one-leave-one and the block-select methods could not guarantee a
better resuit for early stopping. The table shows that the result from Test 3A is better

than Test 3B and Test 1. Hence a better method is required.

From a practical viewpoint, this suggests that the user has to repeat the splitting
process in order to find the best splitting arrangement. This is commonly done, but it
can be very time-consuming, especially when there is a large amount of data. Some
of the data may be statistically similar while others exhibit different characteristics.
This will lead to grossly incorrect results. This phenomenon was demonstrated in the

case of Tests 4A and 4B.
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TABLE 4.4: Results and training time using SOM data-splitting

TEST PERCENT | EUCLID | Training Time
SA 86.748 1.261 23.8 min
5B 93.731 0.591 1.3 min
6A 88.236 1.034 4.8 min
6B 91.998 0.662 3 sec
7A 39.941 0.956 24.5 min
7B 92.572 0.653 48 sec
8A 90.935 0.849 23 min
8B 91.678 0.693 4 sec
9A 89.11 1.22 23.7 min
9B 91.74 0.762 34 sec
10A 90.917 0.735 5.5 min
10B 93.33 0.637 5 sec

As shown in the results from Test 5 to Test 10, the SOM classification approach for
data splitting performed better than Tests 1 to 4. Disregarding the ways that the
training data were selected from each class, an overall improvement in the results can
be observed. The best result is obtained from Test 5B with a percentage of similarity
of 93.7% and a training time of 1.3 minutes. In Tests 6B and &B, the results were
92% and 91.7% respectively. It should be noted that only 30 training data were used

in both cases and the training time was less than 4 seconds. Test 10B used 42 training
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data and it gives a result of 93.3%. The value is again better than the result from Test

2B above.

Although their similarity coefficients do vary slightly between different splitting
methods, the results from the SOM data-splitting and early stopping approaches are
constantly better than the others. It is important that the training data must include all
the essential characteristics of the population and that statistically similar validation
data be used for verification of the network’s generalisation ability. Data obtained
from the SOM approach fulfils these requirements. Another advantage is that the
overall training time is greatly reduced, as it is not necessary to repeat and try
different data-splitting processes. In order to illustrate the generalisation capability of
the networks, Figure 4.2 shows a plot from Test 5 comparing the predicted porosity
with the core porosity. Test 5A is the plot without early stopping while Test 5B
shows the result of using the SOM approach. It can be observed that the predicted

porosity with validation gives a better result compared to the one without validation.
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Figure 4.2: Comparing predicted porosity with core porosity.
Figure 4.3(a) and 4.3(b) are cross-plots of the trained network outputs with respect to
the core training data also from Test 5. Figure 4.3(a) shows that the output from Test
5A without any validation gives better correlation between the training data and the
network output. Figure 4.4(a) and 4.4(b) are cross-plots of the predicted outputs from
Test SA and 5B with respect to the testing core data in the fifth well. These data have
not been presented to the network during the training or validation phases. It can be
observed that overfitting has taken place in Test SA as shown in Figure 4.4(a). Test
5A performed well in the training process as demonstrated in Figure 4.3(a) but failed
to predict reasonably for data that were not included in the training process. On the
other hand, the SOM data-splitting method provided better results as illustrated in
Figure 4.4(b). Similar results were also observed from the other tests (Test 6 to Test

10).
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Figure 4.3(a): Cross-plot of predicted porosity Vs training core data from Test SA

without early stopping validation

Predicted porosity (WALILD
1

08 +
> -+
>
+*e

o0& 1. .32 .:#‘4»

- >
0.4 + >

»
0.2 +
u] t + t +
o 02 0.4 0.5 0.8 1

Training core porosity

Figure 4.3(b): Cross-plot of predicted porosity Vs training core data from Test 5B

with early stopping validation
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Figure 4.4(a): Cross-plot of predicted porosity Vs testing core data from 5th well in

Test 5A without early stopping validation.
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Figure 4.4(b}: Cross-plot of predicted porosity Vs testing core data from 5th well in

Test 5B with early stopping validation.
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4.4 THE NUMBER OF HIDDEN UNITS AND SOM DATA-SPLITTING

4.4.1 USING A LARGE NUMBER OF HIDDEN UNITS

Underfitting normally occurs due to too small a number of hidden units or too little
training iteration. This problem should always be avoided by using more training
iterations and a larger number of hidden units. However, a large number of hidden
units may result in overfitting as the network will iry to fit all the data including any
noise (Smith, 1993; Weigend et. al, 1991). A commonly used approach to avoid this
1s the early stopping validation approach mentioned earlier. The proposed SOM data-
splitting approach also allows a confident selection of validation set from the

available data.

This section compares the performance of networks with different numbers of hidden
units using the SOM data-splitting and early stopping validation approaches to

enable the BPNN will reach the best generalisation point.

4.4.2 COMPARING A DIFFERENT NUMBER OF HIDDEN UNITS

A problem of well log data analysis was again used to illustrate the approach. A set
of typical well-log data comprising 303 core data measurements was used. This set
of data consists of 9 input logs (PEF, RHOB, NPHI, CALI, RT, RXO, GR, DT and
SP). Typical petrophysical properties to be determined are porosity, permeability,
volume of clay (VCL) and a number of other parameters. In this study, results of
VCL were examined. The available 303 core data were first classified using the

unsupervised SOM method. Testing and validation data sets were then selected from
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each cluster. If a cluster contains only one data point, it was selected as the training
data. This is to ensure that the training of BPNN covers all possible features. Table

4.5 shows the number of data in each set from the SOM data-splitting approach.

Table 4.5: Number of training, validation and testing data.

Set No. of data
Training 117
Validation 77
Testing 109

The number of hidden units varied from very small to 8 times the number of training
cases. Table 4.6 shows several tests and the corresponding number of hidden units
being used.

Table 4.6: Number of hidden units in each test.

Test No. of hidden units
1 3
2 5
3 18
4 52
5 82

The BPNN was trained with the training data set and the validation error was
calculated for every cycle of the training process. The error measure used in this case
was as follows:
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2
ERROR = 0.5 (Zp - Op)*)

where Tp = target pattern
Op = output pattern

P =no. of patterns

As the training and validation errors may oscillate during training, the process was
allowed to run until the network converged and the validation error rose steadily
indicating the network was overfitted. At this point, training was stopped and the
network configuration with the lowest validation error was used. After the training
and validation processes had been completed, the testing data set was then used to

generate an unbiased estimation of the BPNN’s generalisation ability.

4.4.3 DISCUSSION OF THE CASE STUDY RESULTS

The BPNNs from Tests 1 to 5 in Table 4.6 were trained and stopped at the lowest

validation error point. The error formula, given above was used to calculate the

errors. Table 4.7 shows the training and validation errors of five networks.
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Table 4.7: Training and Validation Error.

Test Training Validation
error error
1 0.00269 0.00404
2 0.00198 0.00557
3 0.00200 0.00548
4 0.00213 0.00340
5 0.00191 0.00362

In order to assess the generalisation ability, the training and the validation data set
were combined to form Data Set P, which was used previously during the training
process. The Testing Data Set T, was one that had not been applied to the network
during training. Results from these two data sets were used to compare the

performance of the networks. The results are tabulated in Table 4.8.

Table 4.8: Comparison of Errors for different BPNNs.

Test No.of |Errorfrom| Error from
Hidden | DataSetP | DataSetT
units

1 3 0.00345 0.00591

2 5 0.00362 0.00579

3 18 0.00359 (.00571

4 52 0.00275 0.00431

5 82 0.00262 0.00392

79



Chapter 4

From these results, errors due to Data Set P in Table 4.8 were dependent on both
training and validation errors in Table 4.7. The value was approximately the average
of the traimng and validation errors. In Test 2, although the training error is the
lowest, it has a high validation error. The overall error therefore became the largest
compared to the other test cases. This shows that the validation error has a significant
effect in determining the overall error. It also suggests that using the training or
validation error alone is not a good estimation of the generalisation ability of the
BPNN. The use of an unbiased testing set such as Data Set T, which was not used
previously in the training process, should be used to estimate the generalisation
ability. From Table 4.8, it is observed that the overall error decreases as the number
of hidden units increases. Test 5 with the largest number of hidden units gives the
lowest errors from both data sets P and T. This suggests that when the number of
hidden units increases, it can fit the underlying function better and at the same time
avoids underfitting. However, it may be argued that an over-sized network may
result in overfitting. Using the early-stopping validation approach to locate the best
generalisation point solves this problem, and using the SOM data-splitting approach

ensures similarity of the data sets.

Figures 4.5 and 4.6 are cross-plots of the predicted outputs generated by the BPNN
in Test 1 as compared to core data. Figure 4.5 shows the comparison with the core
data set P while Figure 4.6 is the comparison with core data set T. Figures 4.7 and

4.8 show similar cross-plots from the outputs generated from the BPNN in Test 5.
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Figure 4.5: Cross-plot of core data set P vs BPNN predicted output from Test 1
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Figure 4.6: Cross-plot of core data set T vs BPNN predicted output from Test 1
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Figure 4.7: Cross-plot of core data set P vs BPNN predicted output from Test 5
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Figure 4.8: Cross-plot of core data set T vs BPNN predicted output from Test 5
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4.5 GENERALISATION BIAS OF BPNN AND SOM DATA-SPLITTING

When the SOM data-splitting early-stopping validation method is used in the training
process for the prevention of overfitting, the system errors due to the training and
validation data are calculated in each iteration. In the SOM data-splitting approach as
discussed in section 4.2, the training and validation sets are split in such a way that
both sets are statistically similar. This can ensure that the training set covers the
whole sample space of the availabie data. At the same time, the validation set will
give a better indication of the generalisation ability of the BPNN. Minority data
normally falls into the training set after the SOM data splitting. This will be deemed

as noise by the validation error in the training of a BPNN.

In the early stopping validation approach, the training set is used to train the BPNN
and the validation set is used to guide the generalisation ability of the BPNN, Since
the training and validation data are different, it is assumed that the generalisation
point is reached when the validation error starts to rise. The network will start to
memorise all the training data and overfit from henceforth. At this point, the network
is characterised by a generalisation curve that provides the best fit for both the

training and validation data.

If there are training data that are few in number and located outside of the
generalisation curve, they will be treated as noise and be ignored. Figure 4.9
illustrates an example with three points that are treated as noise and are excluded by
the generalisation curve. Assuming that the point highlighted with a circle in Figure

4.9 is deemed by the user as a significant data and it is desirable to be included in the
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final generalisation curve as shown in Figure 4.10. Using the data splitting early

stopping validation approach, it is not possible for the network to recognise that
particular data and to include it in the generalisation curve while treating the other
two points as noise. In this case, it is known that there is a bias in the generalisation
ability of the BPNN. Normally, the BPNN will bias towards the majority of the
training data and treat the minority as noise. However, the question need to be
resolved of whether those few minorities are significant, and if so, how can they be

included in the final generalisation curve of the BPNN?

Figure 4.9: Example of a generalisation curve.
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Figure 4.10: Desirable generalisation curve.

4.6 INTERACTIVE REINFORCEMENT TRAINING

4.6.1 DATA BIAS IN BPNN TRAINING

In examining the validation approach and the characteristics of the BPNN traming, it

can be deduced that:

(1) in order to obtain a low bias and low variance in BPNN training, a large
number of training data that contributes to the actual generalisation curve need

to be used;

(2) the significant minority data will only appear in the training set, so that when

the validation set is used to stop the training, it will normally bias towards the

majority data and stop at the point where it predict the best with majority data.
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This deduction may be used to solve the problem of how to include, if necessary, the

significant minority data in the final generalisation curve while at the same time

rejecting the noise present in the training data set. There are two ways this can be

done;

(1) Obtain more data that contributes to the characteristics of the minority data.

(2) Manipulate the training and validation process of the BPNN such that it can

include those significant minorities.

The first approach is usually not practical as the training data is difficult and

expensive to obtain. However, the second approach may be feasible.

An interactive reinforcement training scheme is proposed to address the second

approach. The steps involved in this approach are as follow:

(1) Identify the minority data in the data sct and examine them.

(2) Pick up the known significant data point that is in the minority of the data set.

(3) Duplicate that significant data point in the training set and validation set.

(4) Traimn and validate the BPNN with all data including these reinforcement data

points.
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(5) Check the trained BPNN to see that it can accommodate the characteristics of

the minority significant data.

(6) If not, reinforce that data point again by duplicating more data in the training

set and validation set.

(7) Re-do Steps (4).

In this proposed interactive reinforcement training approach, the user can modify the
BPNN generalisation curve easily by just duplicating the significant data point. This

will force the BPNN to recognise that point in the training and the validation sets.

4.6.2 CASE STUDY

A case study using the BPNN to predict the porosity from well log data in petroleum
industries was used in this investigation. A typical well with 41 core data was used.
After the SOM data splitting, the available data were divided into training and
validation set. Twenty points were used for training while the remainder were used
for validation. In this well, the majority of the core data had been clustered around
the same region with exception of three data points. This suggests that these three
points could be noise. Under normal situation, they will appear only in the training
set with SOM data splitting. Hence, the generalisation curve will leave them out

when the validation set is used to stop the training.
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However, if one of the three points is recognised to be significant, it is difficult to

modify the generalisation curve by using normal BPNN training and validation. With

interactive reinforcement training, it is possible to incorporate that point easily.

Some tests were carried out to iflustrate the effects of the interactive reinforcement
training approach. The numbers of the duplicated significant data used in each test

are as tabulated in Table 4.9,

Test 1 used normal BPNN training without any reinforcement involved in the
training process. Tests 2, 3 and 6 had only reinforcement in the validation set. Tests 4
and 7 had only reinforcement in the training set. In Tests 5 and 8, both the training

and validation sets were reinforced by the significant point.

Table 4.9: Number of reinforced data in the test cases.

Test No. of reinforced significant | No. of reinforced significant
data in training set data in validation set
1 0 0
2 0 1
3 0 2
4 2 0
5 2 2
6 0 5
7 5 0
8 5 5
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4.6.3 CASE RESULTS AND DISCUSSIONS

The output plots of all the tests are shown in Figure 4.11. The predicted outputs from
the BPNN are shown in lines and the core data are shown in asterisks on the plot. T1
corresponds to the results from Test 1, T2 corresponds to the results of Test 2 and so

Of11.

The result plotted for T1 are the predicted output when no interactive reinforcement
training is involved, which is also the normal training procedure used in training and
validating the BPNN. In this case, it can be observed that the BPNN generalised to
the majority training samples and left out the three that are different from the
generalising curve. In this situation, all the three outliners are treated as noise by the
BPNN. However, if upon inspection of this plot the log analyst was sure that the
lowest outliner data point at around 740 metres is significant data, that data point
could be reinforced and the BPNN re-trained. Results from Test 2 to Test 8 illustrate
the modified generalised curve under each condition. When more than two data
points were reinforced in the validation set as in the cases of Tests 3, 5, 6 and §, the
BPNN generalisation function moved towards the desired data point. This suggests
that the BPNN generalisation curve had began to incorporate that significant point. In
effect, the generalisation curve had been modified towards the truth generalisation
point. It can also be observed that the highest outlier point around 730 metres has

similar characteristics as that of the reinforcement point.

This test also indicates that the validation set plays an important role in deciding the

bias of the BPNN generalisation curve. In Test 4 and 7, although that data point had
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been duplicated two or more times in the training set but not in the validation set, the

BPNN is still unable to recognise it as a significant point as shown in Figure 4.11.

A final Test was performed to include the other two data points around 730 metres
using the proposed interactive reinforcement training. The resulting plot is shown in
Figure 4.12. In this case, the BPNN recognised all three points as significant data and

included them in the final BPNN generalisation curve.

The case study has shown that an interactive reinforcement training approach has
successfully led the BPNN to include those data that would otherwise be ignored. Tt
has also shown that the validation set has a great effect in determining the bias of the

BPNN generalisation curve.
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Figure 4.11: Cutput plots from eight test cases.
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Figure 4.12: Output plot of test case with all three points reinforced.

4.7 TECHNIQUES TO ENSURE GENERALISATION

The SOM data-splitting and early stopping validation approach to determine the
generalisation ability of a BPNN has been shown to be reliable. An investigation of
the use of SOM as a data-splitting approach for the selection of training and
validation data sets has also been reported. These data sets are used to train a BPNN
based on a split-sample validation early stopping method. The results derived show
that the use of the SOM approach is consistent in providing a good generalised

network and the training time is reduced while avoiding the overfitting problem. The
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SOM has also ensured that the training data set has enough information to include

the underlying function, as well as the generation of a statistically similar validation

set.

This is useful in the application of split-sample validation and early stopping for
BPNN training. The effect of the number of hidden units on the overall performance
has also been investigated in this chapter. It has shown that the overall performance
of the BPNN is better with more hidden units. This is because when the number of
hidden units increases, it can fit the underlying function better and avoiding
underfitting. However, an over-sized network may result in overfitting. This problem
is now solved by using this proposed SOM data-splitting and early stopping
validation approach to locate the best generalisation point. With this approach, it
provides a fast and reliable splitting criterion and prevents the BPNN from

underfitting or overfitting when large numbers of hidden units are used.

This chapter has also shown that the generalisation curve may be modified using
interactive reinforcement training of the BPNN. In this approach, the validation can
still effectively prevent the BPNN from overfitting the noise. At the same time
includes the significant minority data in the final generalisation curve of the BPNN,
The approach incorporates inputs from a human for the identification of significant
training points that may have been missed out due to the generalisation
characteristics of the network. This interactive reinforcement training approach is
useful when the number of training data are few and difficult to obtain due to high

cost involved. It provides a means to allow a user interactively modify the network
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characteristics without the need of alternating the weights within the network which

are difficult to comprehend.

Now that the generalisation problems in a BPNN have been examined from a
network viewpoint, the rest of this chapter examines the problems of generalisations
via statistical analysis. This enables the generalisation of a BPNN to be better

understood.

4.8 THE RELATIONSHIPS BETWEEN ANNs AND STATISTICS

In recent years, the relationships and overlaps between the fields of neural networks
and statistical methods have been explored (Sarle, 1994; Cheng and Titterington,
1994; Ripley, 1993). As statistical methods are mainly concerned with data analysis,
it may seem that they have little connections with neural networks which were
originally developed to model biological systems. However, in terms of applications
and characteristics, there are considerable similarities between these techniques. For
example, the feedforward BPNN is similar to projection pursuit regression, the
Hebbian neural network is similar to principal component analysis, and the Kohonen
net is similar to k-means cluster analysis {Sarle, 1994; Cheng and Titterington, 1994,
Ripley, 1993). Those without any similarities with statistical techniques are the

Kohonen Self-organising Map and the Reinforcement learning net.

Although there are areas of overlap between the two fields of study, there are
distinctive research objectives in each discipline. Neural network researchers are

trying to design machine intelligence with an ability to adapt and learn. Most likely,
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the network 1s treated like a black box that requires minimum human intervention,

and is used to provide behaviour of "data in and prediction out". It gives an
impression that anybody without experience should be able to use neural network

tools with confidence based on the automatic leaming characteristics.

On the other hand, statisticians usually depend on human understanding of the
problem under study before designing any estimation model. They then generate
hypotheses, test assumptions, and many other parameters to help them to understand
the proposed model. From these different objectives, it will be useful if both of the

statistical and the neural network disciplines are used hand in hand.

As statisticians have done much research in the field of data analysis over the past
few decades, conceptual foundations and analysis techniques are already well
established. It would be very useful to employ statistical analysis techniques to help
in designing better neural network systems. As the original objective of developing
neural networks was to model the way a human brain learns and functions, the
notions of learning, self-organising, dynamics and field theory may provide
mspiration for future study. The purpose of this part of the thesis is to perform a
statistical analysis on the important issue of the BPNN’s generalisation ability, so as
to provide a better understanding of the factors that affect the generalisation

capability of the BPNN.
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4.9 STATISTICAL ANALYSIS OF A BPNN

The majority of Artificial Neural Network (ANN) applications can be categorised
under two main headings: classification and function approximation. In function
approximation, the BPNN's are similar and comparable to non-parametric estimators
(White, 1989; German et. al, 1992) in statistics. The objective is to build a model to
represent the relationship between the input (independent variable) x and the target
(dependent variable) y without any assumed prior parameters. Given that the input
vector X and the target vector Y, expression (4.9) can be used to describe the
relationship:

¥ = g(X) 4.9)

When obtaining the training set (observations), there will be some environmental
factors that affect the measurements. Therefore it is not possible to have an exact
function, g(¢ ), that describes the relationship between X and Y. However, a
probabilistic relationship governed by a joint probability law P{y) can be used to
describe the relative frequency of occurrence of vector pair (X,, Y,) for n training set.
The joint probability law P(y can be further separated into an environmental
probability law P(1) and a conditional probability law Pf7). For notation expression,

the probability law is expressed as:

P(v) = P(W)P(7) (4.10)

The environmental probability law P(z) describes the occurrence of the input X. The

conditional probability law P( describes the occurrence of the output ¥ based on
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the given input X. A vector pair (X, Y) is considered as noise if X does not follow the

environmental probability law P(x), or the output Y based on the given X does not

follow the conditional probability law P(.

From (4.9), the relationship g(X) based on the available training set can be assumed
to be analogous to the conditional probability law P(3. Therefore, it is the role of »
that the BPNN is performing. It can also be denoted as E(Y|X) as the Expectation of

Y given X. Therefore:

g(X)=E(Y| X) (4.11)

In a BPNN, g(X} is not always obtained directly from the training set (X, Y,). It has
to undergo certain training (estimation) process in realising the best g(X). In a BPNN,
the best g(X) model is directly related to the internal weights ¥, which can be
expressed as:

g(X)= f(X,W™) (4.12)

where W* denotes the set of the weights giving the best estimation

() 1s the estimating function of the network.

From the above condition and taking error into account, equation (4.9) is therefore:

Y= f(X,W*)+6 (4.13)

where &denotes the error.
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The output vector (predicted value), O will be:
O=f(X,W) (4.14)

To find the best weights #* so as to minimise the error function & a BPNN makes

use of the error backpropagation learning algorithm (Rumelhart et. al, 1986) to

i

perform the mean square errors minimisation process, Z[Y - f(X, W), or

i=1
Z[Y — 0]’ . As the prediction performance of the BPNN is very much dependent on
i=1

the weights W, the expected performance functions A(w) could be expressed as:

A(w)

= E([Y -01%)

=E(IY -E(Y | X)+ E(Y | X)-07)

= E([Y - E(Y | X))+ E((E(Y | X) - O1*)+ 2E([Y - E(Y | X)I[E(Y | X)-O])
= E([Y - E(Y | X)I*)+ E([E(Y | X)- 01")

As mean square error (MSE) combines the bias and variance into one measures
(German et. al, 1992; Wadsworth, 1990). The above expression can then be

separated into bias and variance term using the relationship of MSE = bias® +

variance:
BIAS =E(Y|X)-0 or =EY|X)- f(X, W) (4.15)
VARIANCE =E([Y -E(Y|X)]") (4.16)
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Hence, the set of best weights (W*) which minimises the prediction error is
effectively dependent on the bias and variance of the training set as demonstrated in
the above analysis. Based on these parameters, an indication of the generalisation

ability of the network can be derived as shown in the next section.

4.10 STATISTICAL ANALYSIS OF GENERALISATION CAPABILITY

The generalisation ability of the BPNN is the most important feature in most
practical applications. It is a factor used to measure how close is the final model
JIXW*) to the expected model E(Y|X). As the realisation of the best-fit model is
dependent on the available training data, it is also regarded as a measure on how
good the BPNN can provide reasonable prediction from ‘unseen’ input data other
than the training data set. The BPNN using backpropagation where this learning
depends on mean square error to adjust the weights # in order to minimise the
prediction error function £ The objective is to keep the mean square error as small as
possible. From equation (4.15) and (4.16), bias and variance directly affect the value
of the mean square error. It is therefore important to keep these two components

small as well. However, it is difficult to keep them simultancously small.

From equation (4.15), the bias is also dependent on the weights W, therefore the size
of the network plays an important role in enabling the generalisation ability of the
BPNN. A small network with only one hidden node will most likely be biased, as the
available function f{X, W) has limited span to adjust its weights (German et. al, 1992).

In neural network terms, it is underfitting. Figure 4.13 illustrates this. Lawrence et. al
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{1996) and Fung et. al {1997) have shown that a large number of hidden nodes can

make the learning fast with better training and generalisation errors. Yu (1992) has
also shown that with large number of hidden nodes, it is more likely to have no local
minima. From these analysis, it is realised that with large hidden nodes, the bias can
be reduced, thus improved the model f{X, W*). Beside the weights relating to bias, the
number of fraining vectors (X, ¥,) will also contribute to the amount of bias. The
more available training vectors (X,, Y,) arc available, the less bias is the model.
Usually, for most applications where training data is difficult and expensive to

obtain, this has little significant in reducing the bias.

It would seem that by reducing the bias, the mean square error can be reduced, but
this will normally increase the variance. Therefore, there is a need to keep a balance
between the variance and bias. The contribution of the variance is largely dependent
on the noise involved and the distribution of the training set. For the case of the noisy
data, when a BPNN tries to reduce the mean square error with small amount of bias
using large number of hidden nodes, it has the danger that the variance will increase
tremendously due to noisy training vectors. In effect, the final BPNN prediction
model will not have good generalisation ability due to the high variance. This is the
phenomenon of overfitting in neural network, and Figure 4.14 shows the graphical
example of overfitting. In order to balance the contribution of the bias and variance
in the final model, automatic smoothing technique can be applied (German et. al,
1992). The common smoothing techniques used are cross-validation (Stone, 1974;

Plutowski et. al, 1994) and early stopping validation (Wang et. al, 1994; Sarle, 1995).
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Figure 4.13: Underfitting
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Figure 4.14: Overfitting

A smoothing technique is able to provide better control between bias and variance
when the training set is noisy, but the distribution of the training data will generate
another problem. Where the ‘clean’ data is not evenly distributed, the probability law
vwill bias towards the majorities (large statistical frequency). As for the minorities
(small statistical frequency), they will be smoothened up by the automatic smoothing
technique and treated as noise. Figure 4.15 shows an example of a non-evenly
distributed ‘clean’ data set, and how the expected function has been smoothed. This
is valid as shown from equation 4.10, conditional probability law » will affect to
some extent on the final prediction model f{X, W*). In effect, this will increase the
bias again. Under this circumstance, a technique needs to be introduced, such that the
distribution of the ‘clean’ data can be evened up, such that the BPNN will be able to

accommodate the minority characteristic function,
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Figure 4.15: Non-Evenly distributed ‘clean’ data

In this section, the generalisation ability of the BPNN can be concluded that it is

largely dependent on the following factors:

L. . number of hidden nodes or size of the weights
2. amount of noise in the training set
3. distribution of the ‘clean’ training data in the training set.

A few points need to be noted from this analysis. First, a large number of hidden
nodes or adjustable weights are favourable and can reduce bias. Secondly, the
balancing of the bias and variance could be achieved by using some automatic

smoothing techniques like cross-validation or early stopping validation. Thirdly, a
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technique should be introduced to ensure the distribution of the ‘clean’ data is not

smoothened by the automatic smoothing technique.

4.11 STATISTICAL ANALYSIS OF THE EARLY-STOPPING

TECHNIQUE

Although cross-validation and early-splitting validation are considered two different
types of automatic smoothing techniques, they do have their similarities. Both of
them divide the whole sample of the available data set into training and validation
sets. The difference is the way they perform smoothing in training of the BPNN. In
cross-validation technique, the available data set is usually divided into k& subsets of
equal size. A & number of BPNN is set up, each time leaving out one of the subsets
from the training. The validation error is then calculated only based on the omitted
subset. This is sometime known as ‘leave-one-out’ cross-validation. However, the
main disadvantage of this automatic smoothing technique is the training time needed
to train & networks. As for early stopping validation, it works on the basis of split-
sample methods. This only requires one network to be trained. This is a more

practical and easier automatic smoothing technique.

When applying early stopping validation, the available data set is first split into
training and validation sets. A very large number of hidden nodes are used to set up
the BPNN. This is considered favourable as discussed in the previous section, as bias
will be reduced. By using a small learning rate, the validation error (which is also
mean square error) is calculated periodically. The training process is stopped when

the validation starts to rise. In this case, the validation is just like a teacher guiding a
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student. It therefore plays a very important part in obtaining the best generalisation

ability of the BPNN.

Just like the error function used in training the BPNN, the validation process also
contributes to the bias/variance dilemma. Beside this, the splitting of the training and
validation set 1s the major contribution of the final generalisation ability of the
BPNN. It has been demonstrated by Prechelt (1994) that the validation error will
oscillate several times during the process of training. Figure 4.16 shows this
situation. In the same paper, it was proposed that training should let the BPNN

converge, and then observe the point with the smallest validation error.

Validation Error

FecrtrrrrrrrrrrrrrrTrTrTrrTTTIT T T e T T T TE T T T T Il

Training Cycle

Figure 4.16: Oscillation of validation error.
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4.12 FORMULATION OF AN APPROACH

4.12.1 PROBLEMS OF ENSURING GENERALISATION

The factors that directly affect the generalisation ability of a BPNN have been
identified. The automatic smoothing technique has also been examined. It can be
concluded that to reduce the bias of the mean square error term, a large number of
hidden nodes is more practical so that underfitting can be prevented. An automatic
smoothing technique is needed to ensure that the variance is kept small as well (to
prevent overfitting). Early stopping validation is more preferable as it is fast and can
be used in the situation where the number of hidden nodes is large. To find the
lowest validation error, the training process is allowed to converge, and then the
weights at the lowest validation error is used as the best weights W*. However, there

are still problems that have to be solved:

1. How to split the training and validation set?

2. How to modify the distribution of the ‘clean’ data?

This section will provide answers to these two problems. Before discussing the

solution for the first problem, the characteristics of the Self-organising Map (SOM)

algorithm need to be examined.
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4.12.2 STATISTICAL ANALYSIS ON SELF-ORGANISING MAP (SOM)

SOM is designed with the intention to closely simulate the various organisations
found in various brain structures and has a close relationship to brain maps
(Kohonen, 1990; Kohonen, 1995). Its main feature is the ability to visualise high
dimensional input spaces onto a smaller dimensional display, usually two-
dimensional. In this discussion, only two-dimensional arrays will be of interest. Let
the input data space %" be mapped by the SOM onto a two-dimensional array with 7
nodes. Associated with each I node is a parametric reference vector m;=[14, 113, ...
Al e 9, where #y 1s the connection weights between node [ and input .
Therefore, the input data space # consisting of input vector X=/x,,x,..x,J, e X e
%, can be visualised as being connected to all nodes in parallel via a scalar weights
£4;. The aim of the learning is to map all the »n input vectors X, onto m, by adjusting

weights z4; such that the SOM gives the best match response locations.

SOM can also be said to be a nonlinear projection of the probability density function
p(X) of the high dimensional input vector space onto the two-dimensional display
map. Normally, to find the best matching node /, the input vector X is compared to
all reference vector m; by searching the smallest Euclidean distances || X — my |,

signified by c. Therefore,

¢ = argmin]| X —m, [} (4.17)

or

| X —m, ||=min{) X - m, |} 4.18)
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During the learning process, beside the node that best matches the input vector X is
allowed to learn, those nodes that are close to the node up to a certain distance will

also be allowed to learn. The learning process is expressed as:

mi(t+1) = m, () + h ([ X () - m, ()] (4.19)

where 7 is discrete time coordinate

and /4(1) is the neighbourhood function

After the learning process has converged, the map will display the probability density
function p(X} that best describes all the input vectors space. At the end of the
learning process, an average quantisation error of the map will be generated to
indicate how well the map matches the entire input vectors X,. The average

quantisation error 1s defined as:

E= i X=m,|P p(X)dxX (4.20)

Beside the average quantisation error, an individual quantisation error is also used to
measure how well the input vector matches the closest node 7, and is similar to

equation (4.18).
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4.12.3 STATISTICAL ANALYSIS OF SOM DATA SPLITTING

Section 4.10 showed how important and crucial a task is splitting the available data
into training and validation sets. The training set will give information on what the
BPNN should learn, and the validation set acts as a teacher to guide the BPNN such
that it will learn the correct function. As the BPNN is based on a training set to
obtain the underlying knowledge, therefore it should contain more data than the
validation set. Although it is known that the training set should be larger than the

validation set, the problem of how to effectively split them still exists.

The rule for splitting the available data into a training and validation set is that the
training set should be statistically similar to the whole sample space. The validation
set should also be statistically similar to the training set as it has to act as a teacher.
With this rule, by looking back to SOM algorithm in the last section, SOM can be
used as a nonlinear probability density function projection on the two-dimensional
map. Therefore in each node 7, the probability density function of the input vectors
being mapped onto it should have a similar probability density function. This also
implies that the input vectors that are mapped onto the same node should have
similar relative occurrences as denoted by P(X). This P(X} is similar to the
environmental probability law P(x) in equation (4.10). From the analysis in section
4.10, the role of training the BPNN can be regarded as a search for the conditional
probability law P(3). The formulation of P(X) here has to be extended. Instead of
mapping just the input vector X, both input vector X and target vector ¥ are used in
the learning of the SOM. A joint probability between X and Y is assumed and is

denoted as P(X Y). It can further be expressed as:
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P(X,Y)=P(X |Y)P(Y)=P(Y | X)P(X) (4.21)

As equation (4.21) is actually similar to equation (4.10), it can then say that the joint
probability function density of a SOM is directly related to the joint probability law
mentioned in section 4.10. With this, it can also be realised that the joint vectors of X

and Y falling in the same node should have very similar statistical characteristics.

In order to satisfy the rule of splitting data, a methodology can be formulated. The »
available data set that consists of X input vector and Y output vector are first used to
train the SOM. After the map has been trained and individual quantisation errors
have been generated, a selection can be made. A data set is selected as validation
data 1f 1t has a small quantisation error as compared to the other data sets in the same
node. This will ensure that the validation set is a sub-set of the training set. However,
for cases where there is only one data set in that node, it will be left in the training
set. This is to ensure that the training set can covers the whole sample space of the
available data, and to ensure that the training set is always larger than the validation
set. After all the available data has been split into training and validation sets, the
BPNN can start to learn and the process is stopped by using early stopping validation
technique. Until now, the user can increase the confidence of the generalisation

ability of the BPNN by solving one of the problems mentioned in section 4.12.
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4.12.4 STATISTICAL ANALYSIS OF INTERACTIVE REINFORCEMENT

LEARNING

To address the second problem mentioned in section 4.12, it is assumed that the user
has some knowledge of the problem in order to identify the minority ‘clean’ data. An
interactive reinforcement learning works on the principle that when a child cannot
understand a concept, the teacher will repeat the same concept again and again until

the child can pick it up.

If the ‘clean’ data appear to have small statistical frequency, it will not be
represented by the joint probability law +; and eventually be smoothened up by the
early stopping validation technique. A straightforward approach in order for the
minority ‘clean’ data to be accommedated in the final generalisation function of the
BPNN, is to go back and obtain more data sets. However, it may be impossible for
most cases, as data are difficult and expensive to obtain. A methodology has been
proposed to increase the statistical frequency of that ‘clean’ data easily and
confidently. By repeating the same data set a number of times, the relative statistical
frequency of that ‘clean’ data set will be increased. This will has an effect on the
final generalisation ability of the BPNN as it changes the mean of the whole data set.
It will subsequently affect the mean square error from the learning process, and, it
also affects the bias and variance of the model. As the early stopping validation
technique makes use of training set and validation set to perform the automatic
smoothing, it is important that the ‘clean’ data is repeated in both the training and
validation set. This process may need to be repeated a few times until the minority

‘clean’ data set can be accommodated in the final generalisation function of the
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BPNN. With this interactive reinforcement learning method, all the problems

mentioned have been solved.

413 CONCLUSIONS

As the study of statistics is a powerful tool in data analysis, it is used in this chapter
to establish a procedure for determining the factors that contribute to the
generalisation ability of a BPNN. Statistics provides a greater understanding and a
more meaningful explanation of the factors involved, thus they indicate directions for

searching new solutions.

The factors that have been identified t are the size of the weights or the number of
hidden nodes, the amount of noise in the training set, and the distribution of the
‘clean’ data. From this statistical analysis, the techniques have been developed to
ensure that the best generalisation function of the BPNN can be obtained. To avoid
underfitting, a large number of hidden nodes is used to set up the BPNN. This will
also enable that the vector of the weights can learn any complexity inherent in the
problem. In order to avoid the BPNN from overfitting, early stopping validation is
used to perform automatic smoothing. The SOM data splitting approach was shown
to be able to split the training and validation set satisfactorily. In cases where the
distribution of the ‘clean’ data is not even, interactive reinforcement lcarning may be
used to require the BPNN to accommodate them while rejecting noise at the same
time. After the statistical analysis of the generalisation problem and the techniques
proposed, there can be some confidence that the generalisation ability of a BPNN can

be increased.
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CHAPTER 5.

A COMPACT GENERALISED NEURAL FUZZY SYSTEM

5.1  THE APPLICATION OF FUZZY LOGIC

As has been shown previously, an Artificial Neural Network {ANN) has the ability to
perform non-linear input and output mapping from a training data set. It is also
capable of generalisation by rejecting noise and generating results for input data that
are new to the network. However, once the ANN is trained, it acts like a “black-box”.
Further, a user will have some difficulty in comprehending the significance of the
vast number of weights involved. Moreover, the effects of the output are

unpredictable if some of the weights are modified.

On the other hand, a Fuzzy Logic (FL) system seems more reasonable for expressing
knowledge or underlying functions in linguistic terms. Examining the fuzzy rules to
understand the behaviour of the analysing system is a relatively easy task for most
observers. Besides presenting human understandable rules, a FL system also has the
ability to handle fuzzy information and so is capable of handling non-linear
functions. As a conventional FL system does not have the ability to learn and adapt
from the available data, the setting up of the fuzzy rules can be a very tedious task. It
can be even more tedious if a large number of input parameters are involved. A
solution to the problem is proposed by extracting the rules from the training data.
The proposal 1s achieved by modifying the self-generating fuzzy rule extraction
algorithm of Abe and Lan (1995). However, the extracted rules do not have the
ability to reject noise when transforming every set of training data into rules. In this
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case, they may not have the best generalisation capability. Besides, the rules

generated may not be able to interpret the new input data, as the rules may not cover
the whole universe of discourse. When a FL system is used for the purpose of
function approximation, it suffers from the curse of dimensionality. The number of
fuzzy rules increases exponentially with the number of input variables as well as the
number of fuzzy membership functions. Due to these disadvantages, there is a need
to integrate the two techniques (ANN and FL) together such that they will

complement each other.

A compact generalised fuzzy interpretation system using a Backpropagation Neural
Network (BPNN) for ensuring gencralisation capability has been developed. The first
step in designing the system is to perform an input contribution measure in order to
identify the significant input variables. This will recognise those variables that are
needed to perform reasonable prediction. At the same time, this reduced set of input
variables will also cause the number of rules involved in the final system to be
reduced. The next step is to train a BPNN with the available training data using the
identified input variables. The approaches outlined previously are used to allow the
network to learn the best generalisation point. After the network is trained, it is used
to generate training data according to the number of memberships defined in the
fuzzy system. The self-generating fuzzy rules algorithm is then used to extract rules
from thesc data. This ensures that the rules generated will incorporate the
generalisation capability of the trained BPNN. As the data generated by the BPNN
will cover the whole universe of discourse of the fuzzy system, the rules in the final
system can be used to interpret any data that are not covered by the original training

data.
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As the fuzzy rules generated in this system are directly related to the number of input
parameters and membership functions, the final rule base could be very large. A user
would need to spend considerable time in examining the rule base if changes were
planned, and it is unlikely to be practical to examine all the fuzzy rules. As the
purpose of generating fuzzy rules in obtaining the generalised underlying function
from the training data is to allow for user interaction, an approach to reduce the fuzzy
rules is necessary. Therefore, a reduced fuzzy rule-base approach to the development

of a generalised neural-fuzzy interpretation model is outlined.

5.2 ANINPUT CONTRIBUTION MEASURE

5.2.1 THE IMPORTANCE OF IDENTIFYING THE SIGNIFICANT INPUT

In most practical data analysis problems, the number of available input variables for
analysis can be very large. In most cases, an analyst must rely on their experience to
determine the relevant input variables before performing the data analysis. With the
increasing sophistication of problems tackled, the number of available input variables
may increase tremendously. This is especially true in the case of well log data
analysis. Hence, the task of finding the most appropriate input variables can be very

tedious.

Although dealing with a large number of inputs and outputs does not pose any
particular difficulty for a BPNN, several factors must be taken into account when
constructing the network. If a large numbers of input variables are used in the

prediction model, the training time will be very long. On the other hand, if too few
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input variables or inappropriate variables are used, the interpretation model may not

be accurate. Also, when the generalisation function is transformed into fuzzy rules,
the number of fuzzy rules will be very large as unnecessary input parameters are
incorporated into it. Hence, it is necessary to select the most appropriate nput
variables for the prediction model. In addition, from a user’s viewpoint, it would be
useful to know the input-output relationship being established by the model and what

input variables are crucial in predicting the desired output.

5.2.2 MEASURING INPUT CONTRIBUTIONS

After a BPNN is trained, the information of the model is represented by the values of
the weight connections. In most cases, the measurement of input contributions is
determined from the magnitude of these weights. Garson (1991} has proposed an
input contribution measurement based on a formula that calculates the size of the
input to the hidden weights with respect to the sum of all the weights in the input
layer. It 1s then weighted by the magnitude of the connection to the respective output
units. Wong et al (1995¢) have used another measure based on the input
contributions to the hidden units by using the absolute values of the weights. In both
approaches, it is necessary to examine the weights of the network one by one. This
requires relatively complex analysis and in some cases, the results may not be

accurate,

A straightforward approach to measure input contributions without the need of
weights analysis is outlined. A BPNN is treated as a ‘black box” with inputs, [ij, iz,

... 1p} and outputs, [01, 0z, ... Ony]. The measurement is based on the change of output
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with respect to the maximum variations in each input. The training set is replaced by

cycling each input with its maximum and minimum values. This is illustrated by the

following process which assumes a network with n inputs, [i;,....is] and one single

output, 0.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Starting from training pattern 1, i; is replaced by its minimum while

the other inputs remain unchanged. Calculate the output as o;| min 1;.

Similar to Step 1 but the maximum of i; is used. The output is denoted

as o1 max i;.

The derivative of the first pattern is calculated from the difference of

these two values, as
Ao, | i = (0, | maxi, —o, | mini,)

Steps 1 to 3 are repeated for the next pattern until the last training

pattern, p.

The normalised derivative for input 1 at the output is then calculated

from
P N2
Z(Aoj i)
Tholi; =&
P

where p is the number of training data
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Step 6: The above 5 steps are repeated for the other inputs until all the

normalised input derivatives are obtained, i.e.

[TAo | i), TAo|i;,....,TA0 | i,]

Step 7:  The input contributions for the output are then calculated in terms of a

percentage from the following expression:

TAo|i
C, =—189lk  xq009, (5.1)

R

> (TAoli))

J=1
where Cy 1s the % contribution at input k,
n is the number of input nodes, and

o is the output.

If the network has more than one output, the same procedure can be applied by

extending it to other outputs.

The case studies following are used to illustrate the benefits gained by employing

this input contribution measure.
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5.2.3 A CASE STUDY TO ILLUSTRATE THE INPUT MEASURE

5.2.3.1 THE DATA SET

In this section, three sets of test results are presented to illustrate the value of the
approach where all are based on a well log problem. In the first, the main objective 1s
to illustrate the performance of this methodology. In the second, it is to study how
this input contributions measure can assist in sclecting the significant and most
appropriate input logs. In the third, known insignificant inputs are artificially
generated and included, with the purpose of determining the ability of the input

contribution measure to reject these unrelated inputs.

A set of 90 traiming data from a typical well was used to train a neural network based
model using a SOM data-splitting validation approach proposed in chapter 4.
Another set of 89 data was then used as the test set for evaluating the prediction
performance of the trained network. In this well, there are a total of 12 input logs.
They are: (1) photoelectric (PEF), (2) bulk density (RHOB), (3) neutron (NPHI), (4)
caliper (CALI), (5) uninvaded resistivity (RT), (6) invaded zone resistivity (RXO),
(7) gamma ray (GR), (8) potassium (POTA), (9) thorium (THO), (10) uranium
(URA), (11) sonic travel time (DT), and (12) spontaneous potential (SP). The output

petrophysical property that is to be predicted is porosity (PHIE).

5.2.3.2 THE INPUT MEASURE TEST

In the first test, all the twelve available input logs were used. The network

configuration consisted of 12 input nodes, 24 hidden nodes and 1 output node. After
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the network was trained using the SOM data-splitting validation approach, the test

set was then used to assess the performance of the network. Based on the input
contribution measure, the two most significant input logs were purposely eliminated.
The BPNN was then re-trained with the remaining 10 input logs. The purpose of this
exercise was to test the effects on performance of the network when the most

significant inputs were removed.

The objective of the second test was to illustrate the selection process for the most
appropriate inputs. It also gave a suggestion on the number of input logs that will
produce the best prediction result. The BPNN trained in the previous test was first
trained with all 12 input logs. Subsequent tests reduced a number of logs in turn
based on the contribution measure. The tests results obtained are shown in Table 5.1.
Ranking of the input contributions in the second column of the Table 5.1 is based on
the percentage contributions as calculated from equation 5.1, with 1 giving the

highest contribution and 12 as the lowest.
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Table 5.1: Case Study Two Tests

Example| Ranked input logs |No. of input
being eliminated logs used
1 11& 12 10
2 9,10,11&12 8
3 8,9,10,11&12 7
4 7,8.9,10,11& 12 6
5 6,7,8,9,10,11&12 5
6 5,6,7,8,9,10,11&12 4
7 3.4,5,6,7,8,9, 2
10,11&12

In the third test, the network with the most appropriate input logs that gave the best

prediction results in the previous study was used. Two examples stood out. In the

first, an extra input, generated randomly, was added to the training set. In the second,

the number of randomly generated inputs was increased to four. The purpose of this

test was to observe the values of the input contributions measure. These unrelated

inputs were expected to contribute insignificantly if they were not correlated to the

output,
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Mean square error (MSE) was used to evaluate the performance of the networks

where this was calculated according to:.

Q.(T,-0,)")

MSE =
2P
where T, = target pattern
Oy = output pattern
P = number of patterns
5.2.3.3 RESULTS FROM TEST ONE

The input contribution percentages of the network with all 12 input logs are shown in
Figure 5.1. Another network was trained with only 10 input logs by eliminating the
two most significant contributors. The logs left out in this example were bulk density
(RHOB) and uninvaded resistivity (RT). A comparison of the results from these two

networks is shown in Table 5.2.
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% contributions
45 7

40 4
35 1
30 +
25 4
20 4
15 +
10 4

M M
T T T T 1

12 3 4 5 68 7 8 89 10 11 12
input logs

Figure 5.1: Percentage Contributions of Input Logs

Table 5.2: Errors from Test One

Example | No. of Input ERROR
With all 12 0.0011
mput logs
Leave out 10 0.0280
RHOB &
RT

These results show that by leaving out the two most significant input logs, the
prediction error based on the testing data set has increased greatly. Further, that the
input contributions measure gives an accurate indication of the importance of the
input logs used in the porosity prediction model. It does not require any prior

knowledge and examination of the weights within the network.
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5.2.3.4 RESULTS FROM TEST TWO

Seven networks with a different number of input logs were trained. The input logs

used for each example are tabulated in Table 5.3 and the MSE for all the examples

are shown in Table 5.4.

Table 5.3: Input logs used in each example.

Example Input logs used No. of logs

1 [RHOB,NPHL,CALLRT,GR, 10

POTA,THO,URA,DT,SP

2 RHOB,NPHI,CALLRT,GR, 8

POTA,URA,DT

3 RHOB,NPHI,CALI,RT,GR, 7

URA,DT
4 RHOB,CALLRT,GR,URA, 6
DT
5 RHOB,CALILRT,GR,DT 5
6 RHOB,CALLRT,DT 4

7 RHOB,RT 2

124



Chapter 5

Table 5.4: MSE measure for each example.

Example ERROR
1 0.0012
2 0.0010
3 0.0008
4 0.0007
5 0.0017
6 0.0023
7 0.0035

From the table it can be observed that the error starts to decrease with the reduction
of input logs with least significance. However, if too many input logs are climinated,
the prediction accuracy will start to reduce. From Figure 5.1, it can be observed that
a number of input logs contribute insignificantly. They are PEF, NPHI, RXO, POTA,
THO and SP. By reducing these logs, then as shown in Table 5.4, the overall
performance from Example 4 is shown to be the best. This illustrates that the
selection of the most appropriate input logs can be easily carried out by inspecting a

plot of the input contribution measure similar to Figure 5.1.

5.2.3.5 RESULTS FROM TEST THREE

In this test, a few randomly generated inputs were used to test the ability of the
proposed method in rejecting unrelated inputs. Two trials were carried out. The

number of logs used in each is tabulated in Table 5.5. Results from Example 4 of
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Case Two in Table 5.4 show the best prediction result. The network is therefore used

as the basis of this study. The randomly generated inputs are identified as N in

Example 1 and N1, N2, N3 and N4 in Example 2 as shown in Table 5.5.

Table 5.5: Input logs used in each Example.

Example Input logs used No. of

logs

1 RHOB,CALLRT,GR,URA, 7

DT,N

2 RHOB,N1,CALIN2,RT,GR, 10

N3,URA, DT,N4

Figures 5.2 and 5.3 are plots of the percentage contributions of all the input used in
these two examples. The randomly generated inputs in both tests contribute
insignificantly. By using the proposed selection criteria, these input logs can be

ignored without affecting the overall performance of the network.

%e contrbbutions
45

40 1=RHOB 5=URA
35 2=CALl 6=DT
30 3=RT 7=N

2 4= GR

20
15
10

input logs

Figure 5.2; Percentage Input Contributions of Test 1.
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sz | 3=CALI 8=URA
4=N2 0=DT
20 1 5=RT 10=H4
15 1
10 ¢
5 1
0 } —i
1 2 3 4 5 6 7 & 910
mput logs

Figure 5.3: Percentage Input Contributions of Test 2.

5.2.4 CASE STUDY 2

5.2.4.1 HYDROCYCLONE ANALYSIS

Data collected from a Krebs hydrocyclone model D6B-120-839 were used. A BPNN
was first trained with 95 samples of training data. The network was then tested with
44 samples of testing data not used in the training process. These data were used to
determine the prediction ability of the network. Fourteen input parameters were used
initially. The output of the network is the d50c value which determines the separation
cfficiency. Three networks were trained and the input parameters used in each case
are shown in Table 5.6. In Test 1, a network was trained with all the 14 input
parameters. They were the inlet flowrate (Qi), overflow flowrate {Qo), underflow
flowrate (Qu), ratio of flowrates (Qo/Qu), split ratio (So/Su), solid percentage (Pi),

vortex finder height (H), spigot opening diameter (Du), inlet density (Ri), overflow
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density (Ro), underflow density (Ru), water split ratio {WS), differential pressure

between the inlet and the overflow streams (dP) and temperature of slurry (T).

After completion of the training process, the input contributions measure was then
used to examine the relative significance of each parameter. A plot of the percentage
contributions for each parameter is shown in Figure 5.4. Based on the results from
this measurement, six significant input parameters were selected. They were used to
train another network in Test 2. The significant inputs selected were Qi, Ri, Ro, Pi,
dP and Du. In order to compare results from previous work, Test 3 was a network
which used parameters that were found in an empirical formula reported by Gupta et.
al (1990). The parameters used in Test 3 are Qi, Ri, H, Du and T. In Test 3, the most

significant parameter Ro is left out.

Table 5.6: Input parameters used in each test.

Test No. of input Input parameters
used
1 14 Qi, Qo, Qu, Qo/Qu,

So/Su, Ri, Ro, Ru, Pi,

dP, WS, H,Du, T

2 6 Qi, Ri, Ro, Pi, dP, Du

3 5 Qi,Ri, H,Du, T
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Figure 5.4: Input contributions measure of all 14 input parameters

Results from these tests in terms of training time, training and testing accuracy are
summarized in Table 5.7. The last row in Table 5.7 provides accuracy due to the
calculated results from the empirical formula. The training time assumes processing
on a Pentium 90 Personal Computer where in this case the program was developed in
the C++ programming language. From these results, it can be observed that Test 2
has given the best performance. It requires only a third of the training time used in
Test 1. Although Test 1 has utilised all 14 parameters, the accuracy is almost
1dentical to that of Test 2. Test 3 required less time than Test 2, but the performance
is worse. This is due to the fact the most important parameter has been omitted. The
final result due to the empirical formula did not require any training time (but
extensive work has been done previously to establish such a formula), and the

performance 1s shown to be lower than the neural network results.
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Table 5.7: Results from neural networks and empirical formula

Test Training time | Correlation of network | Correlation of network
output against output against
TRAINING data TESTING data
1 11 min 0.989894 0.992331
2 4 min 0.992234 0.993748
3 3 min 25 sec (.984593 0.985527
Gupta & NA (.748121 0.849941
Eren’s
formula

53 A SELF-GENERATING FUZZY INTERPRETATION SYSTEM

5.3.1 SETTING UP THE FUZZY RULES

The objective of this self-generating fuzzy system is to aid the user in setting up a

fuzzy rules interpretation model by mapping the available data to their corresponding

memberships. After this has been done, the user can examine the interpretation

model from the fuzzy rules and then modify or add-on to the rule base easily. The

fuzzy interpretation model is established in the following manner:

(1) Normalise the data between O and 1 by using a linear or logarithmic

transformation depending on the nature of the data. This is to ensure that the

resolutions of all data are similar,
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(2) Define the shape of the membership function, number of fuzzy regions and fuzzy

)

terms for all data.

In this approach, only triangular membership functions are used. The number of
fuzzy regions used is the same for all inputs and output. Fuzzy terms used are in
the form of L for low, M for medium and H for high. An example of a five fuzzy

region term is:

VL,L, M, H, VH.

The space associated with each fuzzy term over the universal discourse for each
variable is then calculated and divided evenly. For example a value with range

between () and 1 with 5 membership-terms is shown in Figure 5.5.

0 0.25 0.5 0.75 1

Figure 5.5: Distribution of 5 membership-terms
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“4)

(5)

©)

(7

For each available training data, a fuzzy rule is established by directly mapping
the physical value of the variable to the corresponding fuzzy membership

function.

Most of the time for a given value, it will normally fall into more than one fuzzy

region. In this case, a degree is given to that value in the fuzzy region. The value

is then assigned to the fuzzy region with maximum degree.

Go through Steps (1-4) with all the available data and generate one rule for each

input-output data pair.

Reduce the fuzzy rule base.

In this step, all rules are examined for similarity. Similar rules are then

eliminated and taken out of the rule base.

The set of reduced fuzzy rules together with the centroid defuzzification

algorithm now forms the fuzzy interpretation model.

After the fuzzy-rule interpretation model has been set up, it can then be used to

predict any from any unknown input data. With the fuzzy interpretation model being

set up, based on the analyst’s experience, the rules may be manipulated explicitly to

incorporate human knowledge and experience.

132



Chapter 5

5.3.2 APPLICATION OF A SELF-GENERATING FUZZY

INTERPRETATION SYSTEM

A case study is used to illustrate the application of this proposed approach. Well log
data from two typical wells was used to predict the petrophysical property, porosity
(PHI). Core data from one well was used to establish a prediction model based on the
proposed self-generating fuzzy rules inference system. The model was then used to
predict the porosity of the second well. The input logs used in this case study were
gamma ray {GR), deep induction resistivity (ILD) and sonic travel time (DT) and all
the variables are normalised between the values of 0 and 1. The first well had a total
of 71 core data and was used as the training well. The second well had 51 core data
and was used as the testing well to test the prediction accuracy of the trained fuzzy

interpretation model,

A few tests were carried out to see the effect of the number of memberships. The
numbers of rules obtained by varying the number of memberships are shown in
Table 5.8. The rules extraction time for the three cases varied from 30 sec to | min
based on computation using a Pentium 90 Personal Computer. Results showed that
the number of fuzzy rules increased with the number of membership terms. The
prediction accuracy for both training and testing wells in each test case is tabulated in
Table 5.9. It can be observed from Table 5.9 that the results obtained from the self-
generating fuzzy rules inference system have high correlation to the original core
data. Figures 5.6 and 5.7 are the output plots from the 9 memberships fuzzy inference
system for the training and testing wells respectively. Figure 5.8 shows a section of

the fuzzy rules extracted from the core data after rule climination using 5
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membership. Figure 5.9 shows the fuzzy membership function for the 5 memberships

fuzzy inference system.

Table 5.8: No. of rules generated for each case.

No. of membership No. of rules extracted
5 29
7 46
9 63

Table 5.9: Prediction accuracy for each case.

No. of Training Testing
membership Correlation Correlation
5 0.805 0.792
7 0.889 0.853
9 0.917 0.865

134



Chapter 5

+ PHI
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Figure 5.6: Output plot of TRAINING well using 9 membership functions,

+ PHI
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Figure 5.7: Output plot of TESTING well using 9 membership functions.

135



Chapter 5

If GR =hand ILD =1 and DT = h then PHI =m

IfGR =h and ILD = vl and DT = m then PHI =1

IfGR=mand ILD =v]l and DT =h then PHI =m

IfGR=hand ILD =vl and DT = h then PHI =m

If GR =vh and ILD = vl and DT = h then PHI =m

If GR =vh and ILD =1and DT =h then PHI =m

IfGR=hand ILD =1and DT =h then PHI=h

IfGR=hand ILD=1and DT =vhthen PHI=h

If GR =vhand ILD =1 and DT = vh then PHI=h

IfGR =m and ILD =m and DT = m then PHI = m

Figure 5.8: Section of rules for 5 membership fuzzy system.

vl vh

0 0.25 0.5 0.75 1

Figure 5.9: Fuzzy terms and regions for 5 memberships fuzzy inference system.

From the results, the fuzzy interpretation model can generate promising predictions.
The time taken in setting up the fuzzy interpretation model is also very short. With
the understanding of the membership functions such as those in Figure 5.9, the rules

can be examined and modified. As the raw data has been first normalised between 0
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and 1, the membership functions of all the input and output variables will be similar

as those shown m Figure 5.9. This again enables the analyst to easily understand all

the fuzzy terms regardless of the number of input and output variables.

54  KNOWLEDGE REPRESENTATION OF A BPNN BY FUZZY RULES

54.1 COMPACT GENERALISED NEURAL-FUZZY SYSTEM

Although the self-generating fuzzy rules system could extract human understandable
rules, it has no generalisation capability and the rules generated cannot cover the
whole universe of discourse. A technique is therefore presented to confidently set up
a fuzzy system understandable by human users. At the same time, though, the rules
involved should best describe the underlying function of the training data by
rejecting noise. In reducing the number of rules in the final system, the input
contribution measure described earlier has been incorporated to identify the

significant input variables.

A BPNN and the self-generating fuzzy rules system have both strengths and
weaknesses. A BPNN uses SOM data-splitting and an early stopping validation
method to provide generalisation ability from the available training data. However,
once the network is trained, it is difficult to understand the operation of the system
and a user cannot add or modify the behaviour of the model. In the self-generating
fuzzy rules system, the fuzzy rules are extracted from the training data. There is no
validation to ensure that the rules extracted are describing the generalised underlying
function of the training data. Further, as the rules are extracted for all training points,

noise will also be included in the fuzzy rule-base.

137



Chapter 3

The compact generalised neural-fuzzy system outlined combines the two approaches
in order to preserve the advantages of each technique. It is based on three broad
concepts. First, the mput contribution measure based on a BPNN is used to identify
the significant input variables. Second, a generalised BPNN is trained according to
the techniques outlined in the previous chapter. The third part involves the setting up
of a self-generating fuzzy rules system. The following procedure outlines how the

overall system is established.

Step 1. Perform an Inputs Contribution Measure based on a BPNN.

Step 2. Train another BPNN using SOM data-splitting and early stopping

validation with only the significant input variables.

Step 3. After the network has been trained, determine the number of

memberships for the fuzzy system.

Step 4. Generate input variables for all possible memberships.

Step 5. Apply the generated input data to the BPNN and obtain outputs for the

corresponding inputs.

Step 6. Use the self-generating fuzzy rules algorithm to establish fuzzy rules

based on the input and output data generated from the neural network.
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Step 7. The extracted rules form the fuzzy rule-base of the generalised fuzzy
interpretation system. The final system wuses the centroid

defuzzification technique.

To apply the system to any unknown data set, the new incoming data are first
normalised. In order to ensure similar responses to those in the training set, identical
scaling factors for the training data are used. The input data are then fuzzified
according to the predefined membership functions. Each set of input data in fuzzy
terms is applied to the fuzzy rule-base and a fuzzy output is obtained through the
inference process. The output is then defuzzified to become the crisp output from the

generalised fuzzy interpretation model.
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54.2 USAGE OF THE COMPACT GENERALISED NEURAL-FUZZY

SYSTEM

The problem of well log data analysis is used as a case study to examine the
performance of this compact generalised neural-fuzzy system. A typical problem
comprising two boreholes is used. There is a total of 289 core data in the first
borehole that is used as the training well and a total of 140 core data in the second.
The second borehole was used as “blind test” to benchmark the performance of this
proposed interpretation model and so not used in the training process in any way. For
these two boreholes, data from 13 well logging tools were available. They were bulk
density correction density (DRHO), photoelectric capture cross section (PEF), bulk
density (RHOB), neutron (NPHI), caliper (CALI), uninvaded resistivity (RT),
invaded zone resistivity (RXO), gamma ray (GR), potassium (POTA), thorium
(THO), uramium (URAN), sonic travel time (DT), and spontaneous potential (SP).
The petrophysical property that was of interest in this case was the volume of clay
(VCL). The presence of clay has an important effect on the permeability that governs
the ease of extraction of fluid. In addition, it also affects the log readings. It is
therefore one of the important properties in well log interpretation. In this study, all

the data was normalised between 0 and 1.

A BPNN using all 13 input well logs and 1 output was established to perform the
input contribution measure. The network was trained and stopped at 5000 iterations
despite the fact that the training error may not have reached a sufficiently low value.
After the training was stopped, the percentage input contribution measures from all

the input well logs was obtained and shown in Figure 5.10. In this case, the input
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well logs found to be important were RHOB, NPHI, RT and GR. With the purpose of

reducing the number of fuzzy rules in the final system, only the four inputs with
highest contribution percentage were selected as the significant inputs. However, if
only the GR was selected in designing the system, the prediction would not be good
even though it has the highest percentage and clearly stands out from the others. This
is due the fact that the volume of clay is not solely dependent on GR, but also has
some degree of dependence on RHOB, NPHI and RT. Although DRHO and PEF
may have effects on the final system, their presence may not improve the accuracy,
as their percentages are considerably lower. However, if they are also selected, the

fuzzy rule-base will have very large number of fuzzy rules.

Vdurre of Clay

Figure 5.10: Input Contribution Measure of the Test Case.
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Based on the most significant input logs, two interpretation systems were set up and

the accuracy of these models was compared. The first interpretation system only
made use of a BPNN. The second was a proposed compact generalised neural-fuzzy
system. To compare the effects of the number of fuzzy memberships on the
performance of the second system, 5 and 7 membership functions were used. Table
5.10 shows the system configurations under each system and their required training
times. The training time is based on a Pentium 166MMX PC running software
developed using a Borland C++ compiler. As the proposed generalised neural-fuzzy
system comprises a BPNN and the self-extraction fuzzy rules algorithm, the training
time shown in Table 5.10 is the total of the two-step procedure. It can be observed
that the number of rules for the proposed generalised fuzzy interpretation system
covers all the possible input membership combinations. For example, a five
membership fuzzy system with four input variables will have 54, that is, 625 rules. In
this way, the generalisation capability of the neural network will be able to predict
data that are not covered by the original training data. The prediction accuracy of all
the system is shown in Table 5.11. The error measure used for comparison is the
Mean Square Error (MSE).

Table 5.10: System configuration and training time

System Type Configuration | No. of rules Training
extracted Time
BPNN BPNN 4 input nodes, NA 24 min
8 hidden nodes
1 output node
FUZSMF Compact 5 membership 625 rules 26min
Generalised functions
Neural-Fuzzy
System
FUZTMF Compact 7 membership 2401 rules 30min
Generalised functions
Neural-Fuzzy
System
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Table 5.11: Prediction accuracy of all the system

System Type Configuration MSE
BPNN BPNN 4 input nodes, 0.0020
8 hidden nodes
1 output node
FUZSMF Compact 5 membership 0.0026
Generalised functions
Neural-Fuzzy
System
FUZTMF Compact 7 membership 0.0023
Generalised functions
Neural-Fuzzy
System

From Table 5.11, the BPNN system has MSE of 0.0020, the 5-membership
generalised neural-fuzzy system of 0.0026 and 7-membership generalised neural-
fuzzy system of 0.0023. Although the MSE shows that the BPNN has the best
prediction results, the generalised system could be fully understood and modified by
a user. From the MSE, the generalised neural-fuzzy system has comparatively good
prediction results as compared to those from BPNN, but with human understand
fuzzy rules presented. Between the different fuzzy systems, the one with the 7-
membership performs best. This is because of the increase in the number of fuzzy

rules that are used to define the underlying function.

The output plot of the predicted results is shown in Figure 5.11. This shows the
compact generalised neural-fuzzy system’s performance is comparable to that of the
BPNN. It has the generalisation ability of the BPNN and at the same time provides
users with human understandable rules. A small selection of the rules is given in
Figure 5.12 and the division of the membership functions is shown in Figure 5.13.

Table 5.12 shows a summary of comparison for the features of the two test systems
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in the case study as well as the self-generating fuzzy rules system. From this table, it
can be seen that this proposed compact generalised neural-fuzzy system has all the
advantages of the BPNN model and the Self-generating Fuzzy Rules System. In
addition, by using the input contribution measure, the user can identify the

significant input variables to build the final system so as to reduce the number of

fuzzy rules.
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Figure 5.11: Graphical plot of the predicted results and core data.
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Figure 5.12: Examples of the Generalised Fuzzy Rules.

1

Membership

VH

0

0.25

0.5

0.75

Universe of discourse

Figure 5.13: Division of the five membership functions.
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Table 5.12: Comparison summary

System Learning | Generalisatio Noise Interpretati | Linguistic
ability n ability Rejection on of new | Fuzzy rules
data
BPNN Yes Yes Yes Yes No
Self- No No No No Yes
generating
Fuzzy Rules
System
Compact Yes Yes Yes Yes Yes
Generalised
Neural-
Fuzzy
System
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5.5 A REDUCED FUZZY RULES BASE SYSTEM

5.5.1 WHY IT IS NECESSARY TO REDUCE THE FUZZY RULE BASE

The compact generalised neural-fuzzy system outlined has addressed the
disadvantages of the ANN and FL system. In the compact generalised ncural-fuzzy
interpretation model, a complete set of fuzzy rules covering all the fuzzy patches in
the input-output state space is derived. This set of fuzzy rules describes the
generalised underlying function of the available training data. The prediction
accuracy of this fuzzy model, however, is dependent on the number of fuzzy
memberships. In general, the prediction accuracy will normally improve as the
number of membership increases. However, the fuzzy rules will grow exponentially
with the increasing number of membership functions. Further, the fuzzy rules will
also increase exponentially with an increase in the number of inputs. The formula
used to obtain the total number of fuzzy rules of the generalised neural-fuzzy

interpretation model can be expressed as:

Number of fuzzy rules = M’

where M =number of memberships

I =number of input parameters

In the case of a data set consists of four input data and seven membership functions,
the total number of fuzzy rules will be 2401. With this number of fuzzy rules, it
becomes apparent that it is impractical to examine or manipulate the model

manually. In addition, the prediction process will take a comparatively long time,
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As the purpose of generating fuzzy rules in obtaining the generalised underlying
function from the training data is to allow for user interaction, an approach to
redﬁcing the number of fuzzy rules is necessary. In this section, a reduced fuzzy rule-
base approach to the development of a generalised neural-fuzzy interpretation model
is proposed. A case study based on the well log data analysis used in petroleum
industry illustrates the proposed method. The results show that the number of fuzzy
rules for the testing well can be reduced by up to 95%. It is also shown that the
prediction accuracy is preserved as compared to the compact generalised neural-

fuzzy interpretation model.

5.5.2 REDUCED FUZZY RULES BASE APPROACH

For most cases, the data set under investigation will not utilise all the fuzzy rules in
the generalised interpretation model. As the input data are normally obtained from
specific sample within the population, the characteristics of the sample will normally
cover part of the generalised underlying function. Based on this property, the fuzzy
rule-base of the interpretation model can be reduced by examining the number of
times that a fuzzy rule in the generalised fuzzy system is fired. This will lead to the

development of a unique and compact rule-base for each sample as described below.

Step 1. A compact generalised neural-fuzzy interpretation model with the
complete generalised fuzzy rule-base is set up. The rule-base 1s named

as the Generalised Fuzzy Library.
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Step 2.

Step 3.

Step 4.

Step 5.

Input data from a new data set are applied to the model after the

normalisation and fuzzification processes.

The fuzzy rules fired in the inference process are extracted. This set of
rules is the Reduced Fuzzy Rule Base for the particular sample under

investigation.

The number of times that a rule is fired will indicate the importance of

the rule within the rule-base,

For different samples within the population, a compact model can be
established for each case based on the reduced fuzzy rule-base

approach.

As the number of rules in the compact model is much smaller, the inference process

will take a much shorter time. In addition, an examination of the reduced rule-base

by a data analyst is now feasible.
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5.5.3 REDUCED FUZZY RULES BASED IN PRACTICE

A problem of well log data analysis is used to illustrate the approach. It is based on
typical data from two boreholes. A total of 289 core data in the first borehole was
used as the training data. A total of 140 core data from the second borehole was used
for testing. The second borehole was used as a “blind test” to benchmark the
performance of the proposed approach. The core or log data from the second well
was not been used in the training process in any way. For these two boreholes, data
from four well logging instruments were used. The input logs used were bulk density
(RHOB), neutron (NPHI), uninvaded resistivity (RT), and gamma ray (GR). The
petrophysical property that is of interest in this case is volume of clay (VCL). The
presence of clay has an important effect on the permeability that in turn governs the
ease of extraction of fluid. In addition, it also affects the log readings. It is thercfore
one of the important properties in well log interpretation. All data was normalised

between O and 1.

Two tests were carried out, the first based on the generalised neural-fuzzy well log
interpretation model as described in previous section. The second test was based on
the Reduced Fuzzy Rule Base method described. The training well data was used to
train and extract the fuzzy rules that best described the generalised underlying
function. After the fuzzy rules were extracted, they were used to form the
Generalised Fuzzy Library for the boreholes around that region. In this case, the
Generalised Fuzzy Library with 7 fuzzy membership functions consists of 2401
fuzzy rules. In the first test, the Generalised Fuzzy Library with all 2401 fuzzy rules

was used to ifer results for the testing well. In the second test, only the fired fuzzy
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rules from test 1 were used to infer results for the testing well. These fired fuzzy

rules then formed the Reduced Fuzzy Rule Base for the testing well for examination

by the user.

For the first test, a generalised neural-fuzzy well log interpretation model was used.
A total of 2401 fuzzy tules were generated using 7 membership functions. The
division of the memberships is evenly distributed using triangular functions as shown
in Figure 5.14. These 2401 fuzzy rule also formed the generalised fuzzy library for
boreholes around the region. To determine the performance of the system, the
predicted results for the second well using the generalised fuzzy library were
compared to the actual core data. The errors were measured in terms of the

normalised Mean Square Error (MSE).

In the case of the second test, log data from the second well were applied to the
generalised fuzzy library. The number of times a fuzzy rule fired was recorded.
Those fuzzy rules fired during the process were then extracted to form the Reduced
Fuzzy Rule Base for the second well. Prediction results are inferred only from the

reduced fuzzy rule base. The MSE of the second approach was also calculated.

Table 5.13 gives a summary comparing the results obtained from the two tests. For
the reduced fuzzy rule-base approach, the number of fuzzy rules used to infer the
predictions for the testing well was 124, This is greatly reduced from the original
Generalised Fuzzy Library as used in Test 1. With the set of reduced fuzzy rule base
and the information about how many times that the rules were fired, the log analysts

may focus their attention to those rules that are deemed to be important. In terms of
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accuracy, as the rules in the second approach are identical to those in the generalised

fuzzy library, the prediction accuracy is not affected at all. In terms of execution time
for the inference process, the reduced fuzzy rule-base approach is also much shorter.
The processing time is based on a Pentium 166-MMX Personal Computer where the

program employed was developed in the C++ programming language.

EL EH

Universal of Discourse

Figure 5.14: Distribution of Membership Functions

Table 5.13. Summary of results from the two approaches.

Approaches | No. of rules “Blind” Test MSE Processing
Time
Generalised 2401 0.00237 4 minutes
Neural
Fuzzy
Model
Reduced 124 0.00237 10 sec
Fuzzy Rule
Base

As the reduced fuzzy rules are used to infer results for the testing well, the log
analysts can manipulate this set of rules based on their experience and knowledge of
the borehole. In turn this will medify the prediction characteristics of the testing well.

Figures 5.15 and 5.16 show the crossplots of the results obtained from the
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generalised neural-fuzzy model and from the reduced fuzzy rule-base respectively. It

can be observed that there is no difference in the predictions obtained from the two

systems.
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Figure 5.15: Crossplot of the predicted results from Generalised Neural-Fuzzy Model
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Figure 5.16: Crossplot of the predicted results from the Reduce Fuzzy Rule-Base vs

Core VCL

153



Chapter 5

5.6 A COMPLETE DATA ANALYSIS PACKAGE

5.6.1 THE OVERALL APPROACH

Before using the overall data analysis approach outlined, the analyst has to first
decide on using a single ANN or Modular Neural Network by examining the size of
the data. Normally, for a large volume of available training data, it can be assumed
that the underlying function is heterogeneous. In this case, a Modular Neural
Network should be used. Figure 5.17 shows the flow diagram of how this data
analysis model can be built, and Figure 5.18 shows how the constructed model can

be used to predict data.

After determining the type of ANN to be used, the SOM data splitting technique is
used to divide the available data into training and validation sets. By using these sets
together with the early-stopping validation technique, an analyst can ensure the
generalisation capability of the ANN. In cases where the training data are not evenly
distributed, that is, with bias, interactive reinforcement learning can be used to
control the training process. This will ensure that the ANN can recognise the
minorities that are significant in the training data, and effectively allow the analyst to

control how the ANN should learn.

If the available input parameters are large, the straightforward input contribution
measure can be used to identify the significant input parameters required to predict
the particular output variable. This effectively reduces the number of fuzzy rules
extracted by the compact generalised neural-fuzzy system, and may also improve the

prediction results in some instances. After the generalised ANN data analysis model
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has been built, data are generated for the self-generating fuzzy rules algorithm to
extract human understandable rules for building the generalised fuzzy rules base.
When the prediction model is used to predict a sample in the population, the reduced
fuzzy rules base that best describes the function used in the prediction can then be
constructed. With this reduced fuzzy rules base, an analyst can shorten the time to
examine the prediction model in order to modify or add-on knowledge and so

1mprove the prediction results for that sample.
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Building of the data analysis model.

START
N v Meodular Neural Network
Is available core
data large? ¥
Single Neural Network Use SOM to classify training
"| data
User User k
interface: interface: Tl‘ail.l LVQ for class
Select Select a prediction
BPNN class v
parameters number Seperate training data into
different files according to
SOM classes
Y
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Is user familar available data into training
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g learming {Repeat for each
class if MNN)

Is available input
logs large?

Input contribution measure:
Select sensitive input logs.
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Figure 5.17: Building of the data analysis model
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Predicting output from the built interpretation model
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i
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Derivation of Reduced Fuzzy
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Examine the Reduced Fuzzy
Rules Base and modify them
to improve prediction

Figure 5.18: Prediction algorithm
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5.6.2 A COMPARISON WITH OTHER APPROACHES

The data analysis approach outlined offers the support that data analysts require and
it is also more robust in most respects than traditional statistical, Artificial Neural
Network, Fuzzy Logic and Neuro-fuzzy approaches. Table 5.14 summarises a
comparison between this data analysis approach and traditional approaches based
onthe desired characteristics of a data analysis tool. Table 5.14 suggests this data
analysis approach is both useful and significant. The traditional statistical approach
used in the comparison is a non-parametric multiple regression analysis using
predictive learning. The traditional Neuro-Fuzzy approach refers to approaches that

mcorporate neural network and fuzzy logic as a hybrid system.

Most of the approaches in the comparison table have a self-learning ability except for
the FL approach. FL normally requires the analyst to perform intensive study on the
available data and derive the relationship - and so fuzzy rules - manually. This is a
very tedious and time-consuming task. Hence FL is normally considered to lack a
generalisation capability, unless the data contains straightforward underlying
functions without noise. Most approaches under comparison, except FL, would
normally incorporate some kind of validation technique to ensure their generalisation
capability. However, in this comparison, the reliability of their generalisation

capability is not to be taken into consideration.

When using a data analysis tool, a novice analyst would like to spend minimum time

in gaining familiarity. In this case, ANN and this proposed approach stand up well
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above the other. The analyst just needs to know a few initial parameters, and the tool

will undertake learning by itself.

Table 5.14: Summary of Comparisons

Traditional ANN FL Traditional New
Statistics Neurofuzzy | approach
Self-learning Yes Yes No Yes Yes
Generalisation Yes Yes No Yes Yes
Time spend on | Very long Short Long Moderate Short
understanding
how to use the
data analysis
tool
Self-explained | Not quite No Yes No Yes
Ease of No No Yes No Yes
modification
and add-on
Controlling Yes No Yes No Yes
how the model
is built
Handling of No Yes No Yes Yes
very large
amount of data
Handling of No Yes No No Yes
very large
amount of
input variables

Afier the data analysis model has been constructed, how well the model can be
understood by the analyst is considered by the self-explained feature in the
comparison table. For this feature, FL and this proposed approach stand out from the
others as they both provide near-natural language fuzzy rules. The statistical
approach is not considered as self-explained because an analyst needs to have strong
statistics background in order to derive and understand the model. With the
availability of the human understandable fuzzy rules in FL and this approach, it is
easy for an analyst to modify or add-on to the prediction model. The analyst could

also control how the analysis model should predict. However, the analyst would also
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like to control how the prediction model is formulated, ANN and traditional Neuro-

Fuzzy data analysis approaches normally do not allow any such interaction.

When there is a very large volume of available training data, statistical approaches
and FL will normally have some difficulty in handling them as these techniques
required assumptions to be made and the detailed analysis of the data. A large
available training data volume is very tedious for an analysts to fully process. As the
complexity of the prediction model is a function of the input variables, statistical
approaches, FL and even Neuro-Fuzzy techniques could have difficulty in deriving a
prediction model. In cases where there are a large number of input variables, the
learning of the underlying function could be handled well with the ANN and the

approach examined here.
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CHAPTER 6: A NEW APPROACH TO DATA ANALYSIS

6.1 INTRODUCTION

A data analysis approach has been outlined that combines the best of ANN and FL
approaches together with new techniques. This research has achieved the principal
objective of producing a desirable data analysis model providing accurate and
reliable results that is capable of self-learming and which is self-explained. It also
meets the objective of being an automatic data analysis approach, as minimum users’

training and understanding of the data analysis model are required.

This new data analysis approach copes with problems where the primary needs are

the following:

1. Robustness in the data analysis model

2. An ability to cope with very high data volumes.

3. Aneed to include external knowledge of some form into the analysis process.

It is questionable if data analysis of the character currently desired in many practical
applications is possible by a single method. A more sophisticated approach based on
the integration of a number of methods is becoming essential and that is one of the
prime characteristics of the data analysis system put forward. By far the most novel

feature, however, is that it allows a varying degree of human intervention in the
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analysis ranging from none whatsoever by an inexperienced analyst to a very strong

interactive involvement if this is seen as producing worthwhile outcomes.

This approach is suitable for applications that require quantitative, non-parametric,
non-linear, inferential analysis using predictive learning. It stands up well against
other data analysis approaches such as conventional statistics, ANN analysis, Fuzzy

Logic analysis, and conventional Neuro-Fuzzy logic analysis.

As shown in chapter 5, this approach embodies all the advantages of other common
approaches. It has the self-learning and generalisation capabilities of conventional
statistical, ANN and Neuro-Fuzzy data analysis methods. Further, it resembles ANN
in the sense that the effort needed to employ the system effectively is minimal, but at
the same time it offers the advantages of fuzzy logic systems in offering self-
explanation features. That allows easy modification of the knowledge base utilised

for analysis, and the inclusion of prior knowledge if this is important to the problem.

This data analysis system copes well with all three of the issues outlined. It has been
tested with real world problems drawn from the resource industry and shown to offer
significant benefits. This research has also initiated the use of ANN and FL in the
field of hydrocyclone control data analysis in mineral processing. At the same time,
it has improved the analysis process in well log data analysis in petroleum

exploration.
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6.2 ROBUSTNESS OF THE NEW APPROACH

In any data analysis problem, the essential objective is to extract information where
this may be interpreted as meaningful data that aids human understanding of some
problem. It is always possible to assume that the sample under analysis would
normally provide enough information to the analyst to infer the rest of the population
of interest. However, in most practical cases, as indicated by the two applications
presented in this research, many factors could distort the sample in establishing the
data analysis model. If these factors are not handled well in establishing the data

analysis model, the objective of the data analysis may not be met.

The problem, though, is that data in most practical problems is subject to noise and
possibly nonlinear distortion, and there is no simple remedy to this at source. In this
circumstance, a data analysis model is required that can successfully reject the noise

- or at least minimise its impact - and overcome nonlinearity.

Noise can be due to human errors, incorrect mapping between input and output
variables, or experimental errors. The main advantage of neural networks is the
ability to reject noise. However, as has been shown in this research, if the training of

the neural networks is not handled well, a poor outcome may result.

Although validation is the most common way to ensure generalisation capability of
the data analysis, a problem has been discovered in this research. However, SOM
data splitting better ensures that the training data set covers the whole sample space

and that the validation set can give a better indication of the generalisation function

163



Chapter 6

Besides eliminating the noise in establishing the data analysis model, the distribution
of the available data is also an important factor in the success of the data analysis.
Depending on the nature of the problem, the data collected may not be evenly
distributed. If some of the significant data collected only represents a small portion
of the total available sample, they could be treated as noise when the validation
technique is used. This research has also recognised the fact that sometimes it is not
possible or feasible to obtain more training data to reinforce the minorities. The
Interactive Reinforcement Learning has shown to be successful in overcoming this

problem.

6.3 DEALING WITH HIGH DATA VOLUMES

The need to cope with large data volumes is self-evident in a modem context. The
increasing use of automated measurement systems means there are no longer limits

in many cases on data gathering.

This data analysis system copes well with high data volumes through a simple
process of modularisation. With the advancement of technology, some applications
could result with a large pool of data that could be used for establishing the data
analysis model. Under this kind of situation, it would be very tedious and time
consuming for any data analysis technique to fully realise the underlying functions.
One assumption has to be made under this kind of situation. It is assumed that the

underlying functions are very complex.,
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In an inference system, clustering can break down the underlying function into

different regions before establishing the data analysis model. However, most analysts
would like the clustering to be done as easily as possible, so that the overall analysis
time would not be increased but at the same time accuracy is ensured. This research
has recognised this need, and the SOM and LVQ techniques used in the Modular
Neural Network (MNN) have been shown to be very successful in performing a

break down on the large data set.

It is reasonable to expect that the number of input variables for a typical problem will
increase in the future. If all the input variables are used, this can result in a very
complex data analysis model. In most cases, the complexity of this model is a
function of the number of the input variables. In cases where the input variable has
little implication on the results, it can have a negative effect. It would affect the
accuracy of the model. The Input Contribution Measure discussed has handled this
issue well by identifying those significant input variables required for the prediction

of the results.

6.4 HUMAN INVOLVMENT IN THIS DATA ANALYSIS SYSTEM

The final need is a little unusnal and a feature of this method. In many problems,
while the specific numerical outcomes of the analysis are, of course, not known, the
form of the solution is from either past experience or theoretical considerations. In
that case, an analyst may wish to influence the development of the solution by

including external information, or even to make the data analysis process interactive.
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The method presented here is automatic, as it requires minimum decision and

assumption making by the analyst when building the data analysis model. At the
same time, it requires little knowledge on the analyst's part concerning the methods
employed, and the time taken to learn how to use this data analysis tool is minimal.
For any non-experienced user, the tool can automatically select the initial parameters
it requires. Further, the tool includes techniques that cope with the generalisation

issue in learning.

If, though, the user wishes to strongly interact with the analysis, then this tool
provides a number of features to allow it. It is a self-explained data analysis system
in the sense that it offers reasons for its analysis through a listing of human
understandable fuzzy rules that permit an analyst to understand the model. Further,
if desired the analyst can influence the further processing of the data by either

modifying or omitting any of these rules, or by including additional rules.

Understanding how the model performs an analysis of the problem is important in
many instances. It allows an analyst to generate deductions from the analysis, justify
the feasibility of the analysis, and verify the accuracy of the predictions. This
adaptive feature is important. When the model is applied in different situations,

naturally different requirements will arise.

6.5 FURTHER ADVANCEMENT

Although this data analysis approach has made use of statistical theory in realising

the factors that affect the generalisation capability of the Artificial Neural Network
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(ANN), statistics is not incorporated in any way to enhance the data analysis model.

Statistical theory has existed for many years, and is now a rich and sophisticated
body of knowledge. It would be useful to incorporate some of that with the data

analysis approach developed here.

This might be done when analysing the available training and prediction data.
Statistical methods can be used to examine whether the predicted data sample is
similar to the training data, or the significance of the training sample in inferring the
population under study. This can greatly assist the analyst to understand why a
prediction is not as good as expected. In addition, some of the confidence tests used
in statistics may also be used to provide some indication on the built model. This
research has already combined the advantages of using the ANN and Fuzzy Logic
(FL). It would be fruitful if more advanced statistical techniques could also be

incorporated.

This research highlights the need to solve the problem of the “curse of
dimensionality” in the fuzzy rules. As FL makes use of fuzzy patches to cover the
fuzzy function approximation, the smaller the patches, the better the prediction.
However, this leads to rule explosion. The number of fuzzy rules involved is directly
related to the number of input variables and the number of memberships derived in
the fuzzy systems. The fuzzy rules would grow exponentially with the increase of the
input variables and the membership functions. Moreover, as the number of fuzzy
rules increase, the time taken to infer results may also increase. This is normally
caused by the inefficiency of the search algorithm in finding the appropriate fuzzy

rules to fire. Some kind of optimising technique, compression technique or
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identification algorithm for highlighting the significant rules may need to be studied

in order to solve this problem.

As data warchousing is an emerging technology, the incorporation of a data mining
algorithm would be an added advantage to the data analysis model. The main
objective would be to allow knowledge re-use. Analysis done in one situation could
act as a guideline, experience or even underground rules for any new analysis. This
could allow the data analysis model to have self-adaptive and self-adjusting features.
This is important, as most of the analysis done for a problem in a given environment

would normally be applicable to any new situations in a similar environment.
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APPENDIX

EXAMPLES OF WELL LOG TRAINING DATA

Well 1

DEPT FPLC DT5 RHOM  PEFL GR HTHO HFK CPER
2384.5 2570983 127.6295 2.05352 3.79039 108.8282 10.55514 0.04647 1200
2385 24.15843 124.1845 205552 3.66891 105.5139 10.42928  0.0468 1080

2386.5 28.74162 135.8735 2.06598 3.75522 92.44421 11.96003 0.04799 760
2388 28.30051 163.6027 2.07553 3.66213 106.1338 11.58234 0.04668 878
2388.5 29.00179 165.1741 2.07275 3.61293 103.4823 12.94101 0.04773 1000
2389.5 29.97439 164.2113 2.07659 3.70124 101.0237 12.88491 0.04856 680
2390.5 3118223 164.5089 2.07312 3.46471 101.2554 12.36763 0.04783 750
2391 32.46099 163.7203 2.07693  3.2266 100.5139 12.54343 0.04847 683
2391.5 32.83678 162.811 2.10556 3.34587 100.0795 12.67908 0.04948 670
2393 36.39331 161.5774 220925 3.83055 98.39657 11.92749 0.05102 730
2394.5 26.80068 161.1354 236919  4.3879 100.0538 9.06182 0.04223 213
2396 44.56467 159.1518 238352 4.642 101.5655 10.60322 0.04178 Q99
2386.5 4226454 160.77563 2.23499 3.77477 104.1641 10.64734 0.04454 57
2397.5 35987 163.6072 212767 3.46546 104.9578 12.63567 0.04578 3.75
2400 38.57444 1482441 212298 3.32466 103.3136 11.02678 0.0442 479
2400.5 36.23676 140.7351 2.11538 3.36057 105.9651 11.31663 0.04379 456
2402 40.50702 119.7322 2.10875 3.77632 102.9772 11.40214 0.04955 519
2404 36.47886 104.4688 2.11688 3.90013 83.56909 10.96408 0.04896 659
2404.5 38.28829 106.5685 2.1217 3.74942 89.66756 10.89684 0.04969 719
2405.5 38.02789 123.9211 2.11592 3.38349 97.26858 11.24379 0.05254 490
2406.5 35.32311 129.7024 210813 3.40037 101.554 10.39445 0.05465 841
2407.5 39.81006 130.0476 2.08435 3.76026 100.5967 10.35458 0.05238 978
2409 40.38274 127.5699 2.08504 3.80364 99.29298 10.64094 0.05308 436

24105 37.21211 127.9568 2.09191 3.46264 108.5056 11.0534 0.05164 1090
2411 3855773 128.0461 209243 3.4495 106.0615 10.80573 0.04913 1530
24125 36.46567 127.0833 2.09712 3.57044 104.1902 12.01374 0.04769 1530

2414 38.18531 128.0432 2.09475 3.42954 103.8804 11.64647 0.04613 738
24155 37.30674 127.2396 2.08527 3.28715 101.2613 11.54508 0.04669 920
2416.5 37.42654 127.0476 2.08474 3.37564 103.0261 11956832  0.0472 890

2417 36.11405 126.8557 2.08882 3.38028 105.0533 11.94015 0.04742 1300
2418 3521386 126.5447 21156 3.80586 108.7242 13.12063  0.0462 1360
2420.5 4221754 126.1592 2.12594 3.81187 100.8335 14.0877 0.04614 1030

2422 38.52407 126.5595 2.10742 3.74661 103.3832 14.03065 0.04352 821
2424 4313388 127.3274 21332 3.93999 104.6429 13.95048 (.04698 1720
24255 3911763 127.0491 2.09957 3.65254 102.9692 13.84829 0.04357 836
2427 3755252 126.5119 2.09067 3.62158 107.9417 13.66085 0.04495 553

24285 37.94286 126.2232 2.09999 3.50885 104.4351 16.33503 0.04438 1070
2429 37.10844 126.5089 2.09353 3.38108 104.319 15.84915 0.04328 1180

2430 3729977 126.4822 2.10044 3.41243 1052829 15.35676 0.04314 19
2432.5 16.07881 126.7961 2.17954 3.78141 111.0953 18.84766 0.04745 362
2433.5 23.26469 127.4926 2.16776 3.72426 109.023 17.61089 0.04584 131

2434 20.59321 127.6771 2.18052 3.96681 108.2106 17.80061 0.04503 29.9
24355 13.60252 126.4673 2.14337 3.50857 111.3867 18.74508 0.04381 133
2438.5 2523774 117.3348 23025 543066 122.355 17.16517 0.03584 343
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Well 2

DEPT
23445
2345
2345.5
2346
2346.5
2347
23475
2348
23485
2349
2349.5
2350
23505
2351
23515
2352
2352.5
2353
2353.5
2354
2354.5
2355
2355.5
2356
2356.5
2357
2357.5
2358
2358.5
2359
2358.5
2360
2360.5
2361
2361.5
2362
2362.5
2363
2363.5
2364
2364.5
2365
2365.5
2366
2366.5
2367
2367.5
2368
2368.5
2369
2369.5

NPHI
31.8234
30.9595
29,9372

29.673
31.5987
36.1035
39.4973
41.5862
38.0752
40.4182
37.3875
38.5163
35.6464
36.6567
36.3114

37.783
39.1894
40.3632
40.4579
38.1276
37.0641
34.9576
37.4572
39.8439
41.6194
40.3533
39.0723
38.1824
40.3746
38.9244
38.1942
36.0135
36.4662
37.9217
39.4365
39.6361
38.1035
36.9327
37.5817
379183
39.7438
39.3411
40.5484
37.6175
37.1688
37.1566
38.1456
41.0485
41.1575
40.4513
38.1864

DT

129.8
134.5
140.1
147.8
160.7
157.9
155.3
143.9
138.8
133.7
134.1
133.5
132.9
133.2
1326
1324
133.2
133.5
133.5
134.2
134.8

135
134.8
134.2
133.9
133.6
133.4
133.6
133.8
133.9
134.1
134.2
135.1
13563
136.4
136.5
135.2
135.8

135
135.7
136.6
136.5
136.3
136.5
136.3
136.2
136.1
159.4
136.7

133

132

RHOB
2.3032
2.2944
2.1929

2.094
2.0551
2.0611
2.0717
2.0752
2.0726
2.0704

2.075
2.0743
2.0701
2.0616
2.0563
2.0506
2.0527
2.0539

2.058
2.0601
2.0664
2.0701
2.0787
2.0877
2.0949
2.0946
2.0901
2.0888
2.0921
2.1008
2.1035

2.092
2.0783
2.0645
2.0671
2.0711
2.0812
2.0839
2.0789
2.0722

2.069
2.0787

2.085
2.1091
2.1214
2.1337

2.141
2.1349
2.1538
2.2406
2.3948

PEF
4.8477
4.0858
3.4531
3.0762
3.1152
3.1035
3.0918
3.0176
3.0898
3.1816
3.2754
3.3008
3.2852
3.3027
3.2656
3.2578
3.1113
3.0781
2.9277
3.0098
3.0293
3.1758
3.2285
3.2812
3.2559

3.082
2.9902
2.9531
3.0608
3.1445
3.2109
3.1914
3.1562
3.1152
3.2031
3.35565
3.462¢9
3.5039
3.2715
3.1211
3.0762
3.2441
3.4668
3.5234
3.4629
3.4863
3.5489
3.7363
4.1953
5.5039
6.2578

GR
121.625
120.875

119.8125
116.75
117
114.9375
109.4375
109.4375
113.9375
123.3125
130
129.125
129.375
123
117.0625
111
112.3125
117.8125
123.1875
117.5
117.25
109.125
116.875
110.25
117.0625
104.25
106.6875
102.375
105.6875
108.25
118.0625
120.5625
117.6875
113.625
112.375
113.6875
108.125
110.25
110.6875
112.25
111.375
116.0625
116.5625
119.75
125.75
125.8125
131
120.625
122.5625
109.5625
106.1875

THOR
14.7967
14.9935
14,0592
13.2393
12.9576
13.4062
13.4707
13.2802
13.6213
13.5487
13.5921
13.4882
12.8718
12.7664
12.6287
12.4183
12.4585
12.4324
13.5863
12.6666
12.4347
12.3256
12.6231
12.6033
12.5192
12.9508
12.9598
13.1858
12.9344
12.8908
13.0961
13.2788
13.5071
13.6338
13.4333
13.5045
13.2841
13.6396
13.5745
14.0053
13.9333
13.9531
14.2713
14.4254

14.474
14.3637
13.7977
13.5723
13.2886
13.1077
13.1672

POTA
0.0581
0.0595
0.0575
0.0558
0.0552
0.0566
0.0567
0.0563
0.05869
0.0569
0.0572
0.0573
0.0566
0.0566
0.0562
0.0556
0.0558
0.0559
0.0597
0.0579
0.0576

0.057
0.0575
0.0568
0.0565
0.0574
0.05671
0.0571
0.0565
0.0562
0.0585
0.0567
0.0569
0.0572
0.0571
0.0574
0.0573
0.0583
0.0588
0.0601
0.0597
0.0598
0.0611
0.0617
0.0622
0.0623
0.0604

0.06
0.0592
0.0587
0.0588

KH
148.3895
129.9638
184.3427
241.3442
179.7563
141.6146
143.2423
185.1544
209.5713

164.147

1566.217
160.2001
232.0691
272.8171
340.7158
3943295
346.0764
286.3412
177.8476

303.268
335.6624
451.5985

309.755
327.3916
256.6865
334.4174
330.2338
353.5749
314.3037
314.6046
234.6194
232.3286
225.9565
220.2514
2298401
216.4228
298.9472
266.9182

268.937
221.2356
205.5683
183.0535
157.3013
154.2131
130.0112
133.9188
121.8549

83.4441
165.2291

275.939
287.5779
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2370
23705
2371
2371.5
2372
23725
2373
2373.5
2374
2374.5
2375
2375.5
2376
2376.5
2377
2377.5
2378
2378.5
2379
23795
2380
2380.5
2381
2381.5
2382
23825
2383
23835
2384
2384.5
2385
2385.5
2386
2386.5
2387
2387.5
2388
2388.5
2389
2389.5
2390
2390.5
230
23915
2392
2392.5
2393
23935
2394
23945
2395
2395.5
2396
2396.5

35.9084
37.8119
38.5985
42.5596
41.4803
43.8892
42.5951
41.0224
38.2809
36.0392
37.8364
38.2468
37.8639
34.7852
35.2534
36.6042
38.7658
37.2991
37.0922
38.3091

39.844
40.4826
37.7307
38.3671

36.091

36.228
35.8427
37.9237
40,9253

42.559
42.1896
39.0795
35.4295
35.8359
37.9492
38.3502
37.7484
36.8089
37.1415
36.9498
35.8361
36.0514
34.7635
35.6133
38.6631
39.3681

38.258
34.3268
33.1839
34.6204
35.7829
38.1588

37.397
38.3017

133.3
95.5
839
88.2
89.5

119.4

136.2

136.5

137.3

137.1

134.4

127.3

135.7

133.4

129.7

127.8

127.7

125.2

117

110.8

109.8

114.2

123

128.2

132

1291

128.6

128.7

117.9

117.7

128.5

125.3

111.5

111.2

110.2

110.5

110.5

109.8

1101

121.7

125.3

127.6

120.1

129.2

128.7

128.7

1278

12864

129.1

128.4

128.2

127.5

127.3

127.7

2.5012
2.4789
24126
2.3441
2.262
2.1805
2.149
2.1188
2.0093
2.0865
20793
2.0726
2.0921
2.1226
2167
22
2.2134
2.2488
2.2898
2.2693
24751
2.1004
2.0848
2.0983
2.1282
2.1425
2.1632
2.1884
2.2071
2.239
2.3165
2.4601
2.4924
2.3746
2.2871
2.287
2.308
2.3001
2.2703
2.2265
21911
2174
2.1651
2.1567
2.1501
2.153
2,1508
2.1534
21632
2.1651
218675
2.1564
2.15644
2.1615

5.8945
5.5859
4.9766
4.4375
3.8223
34297
3.1621
3.0273
2.9883
2.9746
2.8398
2.8379
2.8504
3.1016
3.332
3.5605
3.9551
4.5234
4.2539
3.709
3.1328
2.8887
2.7949
2.8652
2.9219
2.9609
2.9707
2.9453
2.9922
3.2324
4.4688
4.1641
3.6758
3.2051
3.4746
3.6055
3.5176
3.2969
3.168
3.1602
3.1094
3.2891
3.3574
3.3262
3.2051
3.168
3.2168
3.3379
3.4258
3.5488
3.5
3.4043
3.2891
3.2441

101.375
103.875
111.375
109.625
114.9375
115.8375
126.25
130.375
125.8125
123.4375
122.125
121.875
124.8125
125
127.8125
130.5
129.5
133.75
125.125
123.9375
121.1875
127.6875
127.4375
129.125
127
131.75
136.375
144.875
154.125
154.625
157.5
146.625
143.25
136.625
131.25
132.25
126.625
126.5625
122.375
123.125
131.5
130.25
135.875
129.875
129.125
128.25
127.9375
134.75
138.125
136.625
130.75
124.5
122.8125
122.875

13.2179
14.0598
14.4362
14.4478
14.5896
14.2685
14.2483
14.0538

14.577
15.1792
15.5992
15.3708
15.7914
15.7354
15.9454
16.6607
16.3493
15.8697
15.5519
15.6906
15.7273
16.7389

17.205
17.0985
17.2799

17.357
17.7112
17.4852
17.2865
16.9613
16.6752
16.3605
16.6723
16.9997
16.8165
16.0365

16.322
16.1347
16.1866
16.3186
16.6207
16.8114

16.457
18.3875

15.958
15.8028
16.8988

16.258
16.0317
16.0229
16.0138
16.2351
15.9434
16.3101

0.0589
0.0608
0.0615
0.061
0.0604
0.0578
0.0564
0.0548
0.0551
0.0553
0.0554
0.0539
0.0542
0.0537
0.0537
0.0545
0.0535
0.0509
0.0495
0.0496
0.0493
0.0535
0.0543
0.0538
0.053¢9
0.0534
0.0535
0.0525
0.052
0.0514
0.0506
0.0494
0.05
0.0509
0.0507
0.0493
0.0501
0.0497
0.0508
0.052
0.0529
0.0538
0.0534
0.0537
0.0528
0.0528
0.0533
0.0543
0.0542
0.0547
0.0547
0.0556
0.0555
0.0569

291.7811
479.1415
477.5863
402.4848
362.0255
164.8001
82.4498
85.286
83.2231
91.7697
79.7254
101.7385
62.9952
76.572
66.8242
45.6993
45.4082
50.9167
82.8072
91.4432
103.0666
62.0835
49.5236
40.0746
38.1647
34.4473
27.6345
21.3496
20.8401
19.9181
14.4369
19.7248
31.5006
38.86858
49.6037
61.3364
64.7953
74.5967
85.0178
63.4442
47.4561
44.8594
46.0827
53.4675
54.4819
59.2239
61.0675
54.2646
57.1696
57.2805
62.9669
63.4055
78.0392
64.9985
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2397
2397.5
2398
2398.5
2399
2399.5
2400
2400.5
2401
24015
2402
2402.5
2403
2403.5
2404
2404.5
2405
24055
2406
2406.5
2407
2407.5
2408
2408.5
2409
2409.5
2410
2410.5
2411
24115
2412
2412.5
2413
24135
2414
24145
2415
24155
2416
2416.5
2417
2417.5
2418
2418.5
2419
24195
2420
2420.5
2421
2421.5
2422
2422.5
2423
2423.5

37.3928
36.36
35.3877
36.0098
35.4624
34.5148
36.0318
35.9591
39.4253
37.2033
37.9991
35.2151
38.4653
39.4159
38.9959
36.4104
35.3369
35.9395
36.3987
37.248
35.7224
349273
32.8386
34.3837
36.3038
41.2884
44 215
43.9503
40.5401
37.3802
39.2187
38.6937
39.4101
35.2031
32.5794
30.7616
29,9292
34,0705
36.1846
36.5313
35.8147
38.1541
41.9538
43.473
43.5585
41.3113
40.4361
41.0761
41.3347
42.3305
39.5093
40.158
39.6581
42.5191

128
126.3
126.3
128.1
127.4
127.4

126
127.6
126.2

127
127.3
127.7
127.7
127.7
129.6
127.5
128.3
127.56
127.6
126.3
123.9
122.5
1227

124
126.7

129
129.8
133.8
128.3
127.7
126.4
127.2
124.7
117.3
110.7
112.8
117.4

94.1
100.5

101
116.2
132.5
135.2
127.3
126.3
125.9

133
132.7
133.2
132.7
133.5
133.6
132.8
132.8

21784
2.1824
217386
2.1702
21706
2.1709
2.1747
2.1893
2.1991
2.2005

2.204
2.2077
2.2133

2.227
2.2259
2.2265
2.2167
2.2238
2.2299
2.250
2.2695
2.2747
2.2457
2.2156
2.2026
21977

2.203
2.1953
2.1856
2.1648
2.1625
2.1841
2.2244
2.3044
24143

2.487
2.4148

2271
2.1667
211561

2101
2.0968
2.1057
2.1164
2.1443
2.1553
2.1644
2.1682
2.1859
2.2026
2.2106
2.2082
2.2014
2.1986

3.2676
3.3457
3.4199
3.3691

3.377
3.2773
3.4318
3.3887
3.4844
3.3711
3.2871
3.2324
3.2285
3.2383
3.2715
3.2832
3.4902
3.4961
3.6562

3.793
4.0039
3.8395
3.8496
3.7461
3.7598
3.8633
3.9355
3.7129
3.3828
3.3281
3.4844
3.7773
4.0234
4.9297
5.8565%
4.8672
4.0898
3.4961
3.3301
3.3088
3.3477
3.4941
3.4336
3.4512
3.4277
3.6074
3.6465

3.666

3.832
41133
4.3308
4.2695
4.1914
4.0898

124.1875
124.0625
123.875
118.875
124.5
122.875
124.0625
123.5
134.25
141.625
151.75
150.375
151.875
181.75
147
147.125
138.625
143.625
142.5
137125
131.625
130.125
133.25
128.75
127.5625
122.0625
127.8125
125.3125
121.9375
115.5
112.5
116.0625
1129375
112.1875
109.1875
106.625
99.5
98.25
104.75
108.3125
109.5
107.375
106.125
104.9375
101.3125
100.625
100.0625
105.75
108.375
108.5625
110.0625
112.125
113.5625
108.3125

15.8946
16.0802
16.0348
16.0211
15.7123
15.9777
16.1845
16.7509
17.3247
17.3881
18.8479
18.6478
19.4696
19.6913
19.3655
196342
19.5575
19.8465
12.5978
14.8377

14.696
14.69H1
14.1987
14.3333
14,2385
14.5895
14,3503

14.539
14.2032
13.8007
13.0508
13.0528
13.3429
12.4402
11.8251

11.539
11.7326
12.0655
12.2866
12.4547
12.3397
12.4798
12.0219
10.4621
11.2131
11.0674
10.9815

11.622
11.3618
11.3524
11.0348
10.7214
10.2473
10.1021

0.056
0.0567

0.057
0.0572
0.0567
0.0573
0.0573
0.0585
0.0592
0.0583
0.0586
0.0673
0.0582
0.0579
0.0571
0.0576
0.0571
0.0579
0.0578
0.0569
0.05869
0.0569
0.0557
0.0561
0.0558
0.0567
0.0563
0.0566
0.0556
0.0551
0.0537

0.054
0.0546
0.0518
0.0494
0.0487
0.0502
0.0513
0.0523
0.0534
0.0538
0.0545
0.0535

0.051
0.0538
0.0536
0.0533
0.0547
0.0538
0.0538
0.0529
0.0525
0.0519

0.052

73.149
77.2988
85.7268
91.5075
91.5501
91.8303
78.3304
61.5335
32.5007
28.8779
14.3415
17.1025
11.5898
104145
11.7119
12.733
15.5844
13.1031
13.7946
75.1507
105.4594

118.796
148.1887
148.9396
136.0167
102.7043

78.81564

72.011

124.394
203.2546
276.0769
239.1518
2471272
429.8177
598.1857
606.6481
666.5497
887.7913
732.5217
686.8019
566.2405
384.9583
353.5088
591.7349

546.373
620.3539
573.7007
429.2542
414.2103
400.3065
458.8552
463.5211
526.4439
551.3867
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2424
24245
2425
24255
2426
2426.5
2427
24275
2428

Well 3

DEPT
23525
2353
2353.5
2354
23545
2385
2355.5
2356
2356.5
2357
2357.5
2358
2358.5
2359
2359.5
2360
2360.5
2361
2361.5
2362
2362.5
2363
2363.5
2364
2364.5
2365
2365.5
2366
2366.5
2367
2367.5
2368
2368.5
2369
2369.5
2370
2370.5
2371
23715
2372

42.4739
43.0898
43.8927
43.1694
41.4061
39.2516
39.2757

38.629
38.5717

NFHI

44.5902
44.8013
43.8096
42.9073
41.9425

40.609
40.7153
41.6305
44.2427
45.3989
46,6951
49.3649
52.4663
53.4635
50.6244
44.9915
40.4871
39.1984
38.7682
39.2798
39.0846

39.218
38.8386
38.0844
37.6301
37.9982
36.4657
359109
35.8074
36.1734
36.6924
35.2279
36.8008

36.653
37.1922
35.1092
35.8452
37.0627
38.0345
37.5013

133.2
1333
134.6
133.6
132.3
131.9
130.1
127.9
126.6

DTCO

140.9583
135.8036
131.3958
127.8199
127.6805
130.1771
135.0551
137.3854
140.0521
137.8155
129.6146
123.8125
121.4911
121.1414
122.5744
124.5982
127.0565
127.9226
128.6205
126.0908
125.2991
125.1265
126.5417
127.6864
128.9211
130.0327
130.0833
128.8676
124 5357
122.3988
122.8884
125.3571
127.4479
127.4628
1271741
126.8795
126.6414
126.2485
126.1696
126.2292

2.1876
2.1726
2.1699
21705
2.1665
2.1553
2.1489
21397
2.1352

RHOM

2.0085
2.0946
21203
2.0788

1.938
1.9433
2.0618
2.1652
2.1583
2.1432
2.0924
2.0804
2.0893
2.0361
1.6283
1.6741
1.9834
2.1783
2.3463
2.3375
2.3971
2.3613
2.1957
2.2244
2.1471
21637
2.1494
2.1077
2.1668
2.1309
2.1097
2.1159
2.1158
2.1055
21141
2.1052
2.0567
21174
2.1434
2.1449

3.9648
3.8398
3.8184
3.8945
3.9316
3.7852
3.6523
3.5605
3.5762

PEFL

4.0285
4.3138
3.6993
41216
4.6066
5.0771
3.9947
4.2941
4.2824
4.4718
4.0119
4.1188
4,143
5.1663
4.8098
5.1905
4.2849
3.0354
4.2298
3.7507
5.6297
4.3246
3.5116
3.3468
4.6105
3.8163
4.1351
4.2679
37192
3.38
3.6067
3.6976
3.6082
3.952
3.4065
3.8418
4.6047
3.8838
3.9787
4.0806

106.4375
106.3125
111.875
107.0625
108.875
101.25
107.125
106.625
107.9375

GR

109.3483

107.834
109.8934
111.2591
110.9676
110.2952
108.5664

107.212

105.377
103.7542
106.2473
108.9027
110.8061
114.8706
117.0753
124.7668
128.2968
132.3562
130.1015
126.4885
126.0981
126.4189
128.3548
127.2538
127.7726
126.4331
129.3125
133.1169
134.8958
137.2665
134.0307
134.1708

131.208
130.5587
131.6097
133.3555
135.0455
133.7957

133.335
134.3954

10.1917
10.2315
10.5408
10.5448
9.275
91371
8.8467
8.8087
9.5264

HTHO

16.593
15.0881
15.1027
15.0853
14.5518
13.8583
13.5041
13.8114
13.6633
15,0956
16.9567
18.1951
19.9623
22.0399
22.4531
22.4531
23.0125
22.3649

22.457
21.1553
21.6003
21.1652
20.2025

19.743
19.2813
18.9065
19.1194
19.5868
19.1727
20.1336
21.2508
20.9204
20.0982
20.0828
19.1304
18.5676
18.9345
18.7403
17.6474
18.0375

0.0529
0.0535
0.0548
0.0553
0.0536
0.0536
0.0531
0.0528
0.0547

HFK

0.0518
0.048
0.049

0.05
0.051

0.0492
0.051

0.0482

0.0472

0.0464

0.0476

0.0487

0.0491

0.0501
0.049
0.049

0.0466

0.0452

0.0434

0.0422
0.042

0.0426

0.0432

0.0435

0.0437

0.0452

0.0458

0.0456

0.0448

0.0452

0.0468

0.0478

0.0477

0.0481

0.0474

0.0475

0.0472
0.047

0.0474

0.04865

580.2407
564.4222
448.2883
526.9612

733.968
898.8781
887.0099
923.6324
8927578

KH

681.5688
568.1135
199.4702
517.2463
1281.529
1419.765
677.7079
391.9763
423.5577
500.32
338.55663
330.5359
212.2548
664.4201
1564.89
1505.54
192.2384
1.8873
1.7349
1.5524
9.1243
2.301
4.3305
2.932
78.8234
15.6449
30.7051
53.0581
7.5261
5.1244
10.1582
12.3227
14.9765
37.989
13.214
37.0975
236.3419
30.6311
33.9063
33.2195

183



Appendix

23725
2373
23735
2374
2374.5
2375.5
2376
2376.5
2377
2377.5
2378
2378.5
2379
23795
2380
2380.5
2381
2381.5
2382
2382.5
2383
2383.5
2384
23845
2385
23855
2386
2386.5
2387
2387.5
2388
2388.5
2389
2389.5
2390
2390.5
2391
2391.5
2392
2392.5
2383
2393.5
2394
2394.5
2395
2395.5
2396
2396.5
2397
23975
2398
2398.5
2399
2399.5

36.9307
36.8249
35.7505
35.2813
36.3764

36.966
36.4588
36.3057
36.0297
35.0565
35.3022
37.5717
38.8296
39.4013
37.2918
37.5629
38.1345
38.1805
37.1154
37.8978
37.5944
39.8697
40.0412
40.7884
40.0454
39.3715
39.4172
39.7305
40.5153
41.6535
40.4707
40.1156
38.4868
38.6455
38.1878
38.6469

39.229
37.6647

38.362
36.6876
36.0226
35.6786
37.8506
38.5609
36.8493
34.6814
36.4118
37.8306
39.2235
38.9109
39.1969
38.9831
40.2778
41.4475

126.4985
127.0417
127.4494
127.2812

127.067
126.9062
126.9688
127.6518
127.7976
127.8869
128.0045
125.8304

125.939
125.9568
125.8482

125619
125.6372
127.1384
129.1027
130.6696
132.9152
133.1845
134.4137
134.5104

132.811
133.0923
133.0476
132.5536
131.2076
126.1622
124.9464
124.3378
123.4673
123.4628
124.2946
121.3036

120.878
120.3125
119.5685
115.2335
116.2111
117.1888
122.4893
125.8413
129.1934

131.241
133.0695
135.1552
136.5855
135.8538
134.9412
134.0286

133.116
132.2034

21197
2.1268
2.1392
2.1386

2.152

2.114
2.0993
2.0944
2.1141
2.1236

2.136
2.1688
2.1597
2.1848
2.1535
2.1845
2.1983
2.2055
2.1949
2.2098
2.2011
2.1445
2.1423
2.0523
2.0872
1.9333
2.0757
2.0332

2.039
2.0815
2.0037
2.0795
2.0661
2.0382
2.0877
2.1247
2.1358
21279
2.1337
2.1314
2.1237

2,107

2115
2.1187
2.1402
2.1748
21777
2.2201
21141
2.1139
2.0887
2.0017
2.0884
2.0845

4.0621
3.7729
3.8698
3.2763
3.4832
3.9467
4.0288
4.5753
4.1394
4.1609
3.7212
3.9627
3.4869
4.1678
3.6596
3.4399
3.4917
34739
3.7401
3.3216
4.8763
3.4483
5.0079
4.3459
5.3604
4.0983
3.9196
3.6422
4.4131

4.479
43114
4.1055
4.4432
3.8561
3.8319
3.8448

4.929
3.6024
4.2811
4.4973
4.2096

4.078
4.0753
4.0413
4.1941
4.2625
4.6298
5.0117
3.7325
4.0787

3.838
4.0532
4.0485
4.4104

134.455
132.901
130.8365
127.5534
126.862
128.6474
131.507
132.7412
136.5224
136.7215
136.6582
136.8573
135.5704
137.9059
135.706
137.9108
135.6589
136.6439
133.9569
134.385
128.9408
122,274
112.256
104.3735
100.8014
98.4443
98.0303
96.9164
98.6085
99.8455
101.8044
100.7623
103.4815
104.7324
106.237
107.1421
107.4072
108.767
108.4816
106.9709
108.6547
105.494
104.2595
98.1696
96.5898
93.2482
96.4124
99.0841
102.285
101.4125
100.0193
100.693
103.1741
102.5066

17.9953
17.8803
17.9668
18.0528
18.2005
204488
20.4366

20.107
20.4743
21.1331
21.0528
20.8977
21.2833
22.2314
23.1108
22.5199
20.6606
19.9666
19.4402
19.2883

18.044
16.8511
15.2001
13.4824
12.7265
11.2086
11.7525
11.8311
12.2118
12.7273
13.5516
13.1221

13.667
13.7274
14.4877
13.5067
14.0687
13.7552
13.9285
13.9417
13.1401
13.1401
12.9664
14.2947
13.9935
13.7241
12.8771
14.3111
13.9934
14.7076
13.8427
13.8017
13.1636
12.9972

0.0479
0.0482

0.046
0.0465
0.0472
0.0478
0.0473
0.0475
0.0484
0.0515
0.0499
0.0488
0.0488
0.0473
0.0478

0.048
0.0473
0.0485
0.0487
0.0494
0.0487
0.0485

0.047
0.0481
0.0478
0.0477
0.0501
0.0503
0.0505
0.0504
0.0495

0.048
0.0484
0.0494
0.0504
0.0485
0.0471
0.0467
0.0472

0.047
0.0457
0.0457

0.046
0.0463
0.0483
0.0449
0.0442
0.0474
0.0496
0.0518
0.0491

0.049
0.0495
0.0506

50.1344
29.2542
31.225
12,5802
16.6375
35.738
42.0953
127.11289
30.6706
251108
8.2252
7.6969
4.0773
5.8575
3.9518
2.2219
2.7538
2.7997
5.8352
2.8679
89.4297
27.6298
665.5573
949.5594
1336.341
1420.138
916.8935
880.637
1225.734
1043.71
1178.08
842.0729
982.1821
784.9274
496.7415
372.0146
§29.8019
228.602
510.3304
679.4718
561.5479
623.3601
622.0894
635.068
681.7765
651.6025
812.3757
706.4843
445.9944
615.8798
654.9655
747.4307
754.1999
§77.388
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2400
2400.5
2401
2401.5
2402
2402.5
2403
2403.5
2404
2404.5
2405
2405.5
2406
2406.5
2407
2407 .5
2408
2408.5
2409
2409.5
2410
2410.5
2411

40.708
39.605
38.2864
37.7462
37.8593
38.0438
37.7735
36.9761
35.9444
37.168
37.75
38.8
39.4672
40.7271
41.8419
40.9241
38.6342
38.5177
39.7308
40.354
40.0703
38.7878
38.0128

131.8396
131.7371
131.6346

131.632
131.4205

131.327
131.2244
131.1219
131.0194
130.9168
130.8143
130.7118
130.6093
130.5067
130.4042
130.3017
130.1991
130.0966
1298.9941
128.8915

129.789
129.6865
120.56839

2.1051
2.1037
2.0902
2.1083

2118
2.1332
2.1594
2.1783
2.1573
2.1782
2.1825
2.1655
2.1834
2.1473
21415
2.1497
2.1327
2.1204
2.1027
2.1006
2.0865

2.089
2.0868

4.2034
3.9333
4.3145
4.1166
3.8225
4.4814
4.6236
5.3868
4.8208
4.8125
4.6662
4.3838
4,7226
4.0735
3.9568
4.2603
4.8756
4.2646
3.7125
3.8251
3.8188
3.8875
3.2784

99.0829
95.4935
90.9474
103.942
107.4273
106.5215
107.3281
106.1103
104.0364
105.0183
103.6763
104.4529
102.9086
103.0712
102.6323
103.6499
103.9478
101.7163
898.4328
96.6535
99.1831
101.2877
103.3255

11.9281
11.6266
11.4195
10.8993
10.638
10.5974
9.4607
9.3112
0.0858
8.8691
8.6361
8.5463
8.9568
9.724
10.177
10.2444
9.9582
10.5548
9.9347
9.8315
10.19
10.1057
10.0785

0.0491
0.0491
0.0482
0.0483
0.0501
0.0502
0.0491
0.0484
0.0482
0.0455
0.0448

0.048
0.0474
0.0511
0.0515
0.0504
0.0485

0.049
0.0494
0.0497

0.049
0.0471
0.0456

923.7972
888.4826
1050.827
840.0012
601.0807
890.735
886.2816
1191.299
1079.293
964.0809
913.4073
841.7522
952.0706
744.0908
6499
795.1604
1150.181
944 .98
839.2264
947.3512
923.3358
1013.89
528.7665
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EXAMPLES OF HYDROCYCLONE TRAINING DATA

Run
77
78
79
80
81
82

71
72
73
74
75
76

65
66
67
68
69
70

83
84
85
86
87
88
89

90
91
92
93
94
95
96

97
98
99
100
101
102

103
104
105
106
107

Qi
422
388
352
318
285
247

421
389
352
320
286
247

422
387
353
318
285
247

421
388
388
353
319
285
248

493
421
388
353
318
284
246

388
388
389
388
389
388

388
388
388
389
389

Qo
222
204
179
153
123
56

261
235
209
182
151
o8

278
251
223
197
159
119

278
258
258
230
197
166
129

242
225
205
180
159
125
51

199
200
203
208
208
209

238
237
240
243
243

Qu
200
184
173
165
162
191

160
154
143
138
135
148

144
136
130
121
126
128

143
130
130
123
122
119
118

221
196
183
173
159
159
185

189
188
186
181
181
179

149
151
148
146
146

Qo/Qu Sof/Su D50S D50cS

1.11
1.11
1.03
0.93
0.76
0.28

1.63
1.53
1.46
1.32
1.12
0.67

1.93
1.85
1.71
1.63
1.26
0.93

1.94
1.99
1.99
1.87
1.62
1.4
1.08

1.23
1.15
1.12
1.04
1
0.79
0.26

1.06
1.07
1.09
1.15
1.15
1147

1.6
1.57
1.62
1.66
1.66

1.181
1.089
1.06
0.925
0.679
0.306

1.501
1.486
1.351
1.156
0.981
0.685

1.665
1.787
1.504
1.252
1.126
0.82

2.1
1.804
1.886
1.872
1.559
1.265
0.924

1.24
1.298
1.065
1.004
0.844

0.74
0.358

1.108
1.004
1.13
1.165
1.148
1.21

1.575
1.653
1.739
1.777
1.768

28
29
27
21

17
17.4
17.3
16.5
14

13.9
14
12

11.56

11.3

4.5

11

9.4
9.5
7.5

28
28
275
24.5
19.5
8.5

245
24
25

26.4

245

245

13.5
13
135
13.5
14

48
48.5
435

41
39.5
46.5

21
218
21.7

21

21

23

16.8
16.6
16.8
17
17.3
17.5

13.5
14
14

156.5

15.5
16
17

40
40.5
39.5

37
375

34

46

38
36.5
35
358
36.2
33

18

18

18
17.8
17.2

D50F D50cF
29 50
285 47
2686 415
21 41
g 39.4
47
178 21.2
1856 215
175 22
17 217
165 21
3 21
146 17
141 17
141 17
144 177
1.5 17.5
8 18
89 125
1 15.5
9 14.5
10 15
95 155
956 165
3 17.5
29 40
275 40
27 39
255 38
225 39
10 34
45
2356 3756
25 37
26 36
242 38.5
25 355
24 32
14 18
13 185
14 16
14 18
13.5 175
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108

109
110
111

388

490
387
318

1112 284

113

114
116
116
117

118
119
120
121
122

123
124
125
126

127
128
129
130
131

132

133
134
135
138
137

138
139
140
141
142

143

144
145
146
147
148

149
150

248

368
388
388
388

429
388
317
287
247

389
391
389
385

475
390
322
287
250

382

483
361
317
283
245

435
386
318
290
249

386

420
388
320
285
246

387
387

250

339
259
213
187
157

269
271
268
266

338
308
247
226
196

303
309
308
321

337
260
210
187
161

275

362
281
227
201
170

377
334
273
248
210

339

373
346
29
256
218

230
241

138

151
128
105
97
91

119
117
120
122

91
80
70
61
51

86
82
81
64

138
130
112
100
89

107

121
110
90
§2
75

28
52
45
42
39

47

47
43
29
29
27

157
147

1.81

2.25
202
2.03
1.92
1.73

2.26
2.32
223
2.18

3.71
3.83
3.55
3.72
3.81

3.54
3.79
3.79

2.44
2.01
1.87
1.87
1.81

2.57

2.56
2.53
2.45
2.27

8.5
6.4
6.1
59
54

7.2

7.9
8
10
8.83
8.1

1.47
1.64

1.638

2.147
1.919
2.006
1.842
1.589

2.402
2.346
2.264
2.169

3.779
3.732
3.423
3.475
3.14

3.914
3.843
3.686
3.976

2.306
2.254
1.873
1.767
1.847

2.648

3.277
2.707
2.725
2.665
2.392

85
7.8
6.3
6.1
4.7

9.2

9.9

8.5

7.8
7.808
7.348

1.452
1.756

11

52
48.5
53.5

54

52

58
55
56
55

20
21
21
20
21

22
20
205
19.5

38.5
37.5
38.5
41
41.5

43

66
64.5
52
54.5
50

15
17.5
17
18
19

19

20
20
21
22
24

15
22

16

67
66

71
70

73
68
68
67

20.5
22
22

215
22

23

21

22
205

43.5
425
45
49
48

48

73.5
76
58.5
60
58

15.5
18
17.5
18
19

19

20
20
21
22
25

19
26

51.5
49

56
57

57
56
54
55

19.5
215
215
21
21.5

215
20
20
20

39
36.5
40
41.5
42

42.5

64
62
50
51
50

15
17
16.5
19
19

17.5

19.5
20
23.5
23
24

15
21

16

87
66.5
70
70.5
70

725

68.5

64.5
67

21.5
23
22
22

23.5

225
21
21
21

44
41.5
45
49
49.2

47.8

75
75
58
59
57

15.5
17

16.5
19
19

17.5

19.5
20
235
23
25

19
25

187
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151 387 253 134 189 1.832 3 34 34 34
152 248 155 64 165 1454 30 355 308 36

153 387 247 140 176 172 7 1356 75 135
154 391 284 107 265 273 11 125 11 14
155 380 328 61 539 5573 16 17 16 17

156 246 200 46 435 391 16 18 18 19

157 578 300 278 1.08 1378 21 265 19 255
168 518 267 251 1.06 1355 22 27 195 26
159 456 220 236 093 13289 215 265 18 25

160 580 348 232 15 195 15 175 14 165
161 519 302 217 139 1.808 15 17 13 16
162 460 259 201 129 1648 15 18 14 19

163 583 375 208 179 2227 8 11 75 105
164 582 375 207 18 2191 7 11 6.5 10
165 582 376 206 182 2195 75 115 11
166 583 377 2068 1.82 2148 7 10 10.5
167 583 377 206 1.82 2209 10 6 9.5
168 582 379 203 186 2182 7 11 6.2 105

[+)]
a o

168 517 326 11 171 193 75 15 6 11
170 462 285 177 16 1951 95 125 7 12

171 6579 377 202 186 2234 6 0.8 9.5
172 519 331 188 1.77 2174 6.5 11 10
173 463 289 174 166 1.092 6 11 4 11

[$ 104, ]

174 577 304 273 111 121 225 299 201 295
175 580 320 260 123 1391 27 325 26 325
176 581 206 375 141 1594 35 445 33 45

177 367 171 196 087 1195 215 285 17 27
178 367 194 173 112 1275 272 335 235 325
179 370 219 151 145 1688 37.5 46 345 455

180 267 114 153 0.74 0871 19 265 16 26
181 270 137 133 104 127 262 345 23 335
182 269 163 106 1.52 1738 40 495 38 48

183 678 354 224 158 1992 14 17 14 16
184 583 374 209 179 2135 16 19 16 18
185 &80 362 218 166 1819 22 305 266 30

186 269 129 140 092 1.156 125 19 85 185
187 266 151 115 131 1612 19 23 175 22
188 269 167 102 1.63 1833 26 30 25 29

188 582 378 204 185 1898 11 13 10 13
190 579 405 174 233 2926 13 145 13 14

188
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191

192
193
194

185
196
197

198
199
200

210
202
203

578

369
368
368

269
267
268

581
580
578

269
270
269

424

206
228
263

140
163
185

386
420
477

140
170
203

154

163
140
106

129
104
83

195
160
101

129
100
66

275

1.27
1.64
2.51

1.08
1.57
2.24

1.98
2.62
4.72

1.08
1.7
3.1

3.238

1.834
2.301
2.83

1.1
1.803
2.637

2.352
2.958
5372

1.022
2.019
3.756

18
125

16
19

15.5
22

17.5

19.5

16
18
215

17
18
242

1
10.8
13

156.5
16.8
19.8

18
14
20
10

20
20.5

17

18.5

14
15.5
22

17
20
23

10
10.4
12.5

16
16.2
19

189
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