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ABSTRACT 
 

The Northern Carnarvon Basin is the richest petroleum province in Australia. About 

50 gas/condensate and oil fields, associated mainly with Jurassic source rocks, have 

been discovered in the sub-basins and on the Rankin Platform since 1964. The basin 

is located at the southern end of the North West Shelf of Australia. It can be mainly 

subdivided into the Exmouth, Barrow, Dampier and Beagle Sub-basins, the Rankin 

Platform and Exmouth Plateau. The sub-basins are rift-related grabens and half-

grabens developed during the Jurassic to the earliest Cretaceous and contain over 10 

kilometres of Mesozoic and Cainozoic sedimentary rocks, among which are several 

thousand meters of Jurassic rocks. The formations of the Jurassic and the lower part 

of the Barrow Group of Early Cretaceous age in the sub-basins of the Northern 

Carnarvon Basin were found to be overpressured with excess pressures of 5-29 MPa 

at depths of 2900-3600 m indicated by repeat formation tests (RFTs) and drill stem 

tests (DSTs). The characteristics of organic matter, thermal history and thermal 

maturity, pressure seal and overpressure evolution in the sub-basins are crucial to a 

proper understanding of the nature and dynamic processes of hydrocarbon 

generation and migration in the basin. 

 

Based on organic geochemical data, the important source rocks in the basin are 

Jurassic organic-rich fine-grained rocks including the Murat Siltstone, the rift-

related Athol Formation and Dingo Claystone. The Mungaroo Formation of the 

Middle-Upper Triassic contains gas-generating source rocks. These formations are 

recognised to be organic rich based on 1256 values of the total organic carbon 

content (TOC, %) from 17 wells. Average TOC values (calculated from samples 

with TOC < 15 %) are about 2.19 % in the Mungaroo Formation, about 2.09 % in 

the Murat Siltstone and about 1.74 % in the Athol Formation and Dingo Claystone. 

Data from kerogen element analysis, Rock-Eval pyrolysis, visual kerogen 

composition and some biomarkers have been used to evaluate the kerogen type in 

the basin. It appears that type III kerogen is the dominant organic-matter type in the 

Triassic and Jurassic source rocks, while the Dingo Claystone may contain some oil-

prone organic matter. 

 



The vitrinite reflectance (Ro) data in some wells of the Northern Carnarvon Basin 

are anomalously low. As a major thermal maturity indicator, the anomalously low 

Ro data seriously hinder the assessment of thermal maturity in the basin. This study 

differs from other studies in that it has paid more attention to Rock-Eval Tmax data. 

Therefore, problems affecting Tmax data in evaluating thermal maturity were 

investigated. A case study of contaminated Rock-Eval data in Bambra-2 and thermal 

modelling using Tmax data in 16 wells from different tectonic subdivisions were 

carried out. The major problems for using Tmax data were found to be contamination 

by drilling-mud additives, natural bitumen and suppression due to hydrogen index 

(HI) > 150 in some wells. Although the data reveal uncertainties and there is about 

!3-10 % error for thermal modelling by using the proposed relationship of Ro and 

Tmax, the "reliable" Tmax data are found to be important, and useful to assess thermal 

maturity and reduce the influence of unexpectedly low Ro data.  

 

This study analyzed the characteristics of deep overpressured zones and top pressure 

seals, in detail, in 7 wells based on the observed fluid pressure data and 

petrophysical data. The deep overpressured system (depth greater than 2650-3000 

m) in the Jurassic formations and the lower part of the Barrow Group is shown by 

the measured fluid pressure data including RFTs, DSTs and mud weights. The 

highly overpressured Jurassic fine-grained rocks also exhibit well-log responses of 

high sonic transit times and low formation resistivities. The deep overpressured 

zone, however, may not necessarily be caused by anomalously high porosities due to 

undercompaction. The porosities in the deep overpressured Jurassic rocks may be 

significantly less than the well-log derived porosities, which may indicate that the 

sonic-log and resistivity-log also directly respond to the overpressuring in the deep 

overpressured fine-grained rocks of the sub-basins. Based on the profiles of fluid 

pressure and well-log data in 5 wells of the Barrow Sub-basin, a top pressure seal 

was interpreted to be consistent with the transitional pressure zone in the Barrow 

Sub-basin. This top pressure seal was observed to consist of a rock layer of 60-80 % 

claystone and siltstone. The depths of the rock layer range from 2650 m to 3300 m 

with thicknesses of 300-500 m and temperatures of 110-135 oC. Based on the well-

log data, measured porosity and sandstone diagenesis, the rock layer seems to be 



well compacted and cemented with a porosity range of about 2-5 % and calculated 

permeabilities of about 10-19-10-22 m2. 

This study performed thermal history and maturity modelling in 14 wells using the 

BasinMod 1D software. It was found that the thermal maturity data in 4 wells are 

consistent with the maturity curves predicted by the rifting heat flow history 

associated with the tectonic regime of this basin. The maximum heat flows during 

the rift event of the Jurassic and earliest Cretaceous possibly ranged from 60-70 

mW/m2 along the sub-basins and 70-80 mW/m2 on the southern and central 

Exmouth Plateau. This study also carried out two case studies of thermal maturity 

and thermal modelling within the deep overpressured system in the Barrow and 

Bambra wells of the Barrow Sub-basin. These case studies were aimed at 

understanding whether overpressure has a determinable influence on thermal 

maturation in this region. It was found that there is no evidence for overpressure-

related retardation of thermal maturity in the deep overpressured system, based on 

the measured maturity, biomarker maturity parameters and 1D thermal modelling. 

Therefore, based on the data analysed, overpressure is an insignificant factor in 

thermal maturity and hydrocarbon generation in this basin. 

 

Three seismic lines in the Exmouth, Barrow and Dampier Sub-basins were selected 

and converted to depth cross-sections, and then 2D geological models were created 

for overpressure evolution modelling. A major object of these 2D geological models 

was to define the critical faults. A top pressure seal was also detected based on the 

2D model of the Barrow Sub-basin. Two-dimensional overpressure modelling was 

performed using the BasinMod 2D software. The mathematical 2D model takes into 

consideration compaction, fluid thermal expansion, pressure produced by 

hydrocarbon generation and quartz cementation. The sealed overpressured 

conditions can be modelled with fault sealing, bottom pressure seal (permeabilities 

of 10-23-10-25 m2) and top pressure seal (permeabilities of 10-19-10-22 m2). The 

modelling supports the development of a top pressure seal with quartz cementation. 

The 2D modelling suggests the rapid sedimentation rates can cause compaction 

disequilibrium in the fine-grained rocks, which may be a mechanism for 

overpressure generation during the Jurassic to the Early Cretaceous.  

 



The data suggest that the present-day deep overpressure is not associated with the 

porosity anomaly due to compaction disequilibrium and that compaction may be 

much less important than recurrent pressure charges because most of the porosity in 

the Jurassic source rocks has been lost through compaction and deposition rates 

have been very slow since the beginning of the Cainozoic.  

 

Three simple 1D models were developed and applied to estimate how rapidly the 

overpressure dissipates. The results suggest that the present day overpressure would 

be almost dissipated after 2 million years with a pressure seal with an average 

permeability of 10-22 m2 (10-7 md). On the basis of numerous accumulations of oil 

and gas to be expelled from the overpressured Jurassic source rocks in the basin and 

the pressure seal modelling, it seems that the top pressure seal with permeabilities of 

10-19-10-22 m2 (10-4-10-7 md) is not enough to retain the deep overpressure for tens of 

millions of years without pressure recharging. Only if the permeabilities were 10-23 

m2 (10-8 md) or less, would a long-lived overpressured system be preserved. This 

study suggests that hydrocarbon generation, especially gas generation and thermal 

expansion, within sealed conditions of low-permeability is a likely major cause for 

maintaining the deep overpressure over the past tens of millions of years.  

 

Keywords: Thermal history; Deep overpressure; Type III kerogen; Rock-Eval Tmax; 

Thermal maturity; Palaeoheatflow modelling; Pressure seal; 2D deep overpressure 

modelling; Pressure behaviour modelling; Overpressure generation; Northern 

Carnarvon Basin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

TABLE OF CONTENTS 
 
 
ACKNOWLEDGEMENTS ................................................................................... i 
ABSTRACT .......................................................................................................... iii 
LIST OF FIGURES.............................................................................................. xi 
LIST OF TABLES............................................................................................. xxii 
 
Part I     Introduction and Regional Geology ....................................... 1   
 
CHAPTER 1     INTRODUCTION ..................................................................... 2 
  
1.1 Previous work and background of this study .................................................... 2 

1.1.1 Previous work.......................................................................................... 2 
1.1.2 Background of this study......................................................................... 4                            

1.2 Aims and objectives .......................................................................................... 6 
1.2.1 Aims ........................................................................................................ 6 
1.2.2 Objectives................................................................................................ 6 

1.3 Methodology ..................................................................................................... 7 
1.3.1 Geological method .................................................................................. 9 
1.3.2 Basin modelling....................................................................................... 9 

1.4 Data sources and sets....................................................................................... 11 
1.4.1 Data sources .......................................................................................... 11 
1.4.2 Data sets ................................................................................................ 13 

 
CHAPTER 2     REGIONAL GEOLOGY ........................................................ 17 
 
2.1 Location of study area ..................................................................................... 17 
2.2 Stratigraphy ..................................................................................................... 17  

2.2.1 Triassic .................................................................................................. 18 
2.2.2 Jurassic .................................................................................................. 21 
2.2.3 Cretaceous ............................................................................................. 22 
2.2.4 Cainozoic............................................................................................... 23  

2.3 Tectonic subdivisions, structures and faults.................................................... 24                            
       2.3.1 Tectonic subdivisions ............................................................................ 24  

2.3.2 Structures and faults .............................................................................. 24 
2.4 Geological evolution ....................................................................................... 26 

2.4.1 Pre-rift phase ......................................................................................... 26 
2.4.2 Syn-rift phase ........................................................................................ 27 
2.4.3 Post-rift phase........................................................................................ 29 

 
Part II     Source Rocks, Rock-Eval Tmax and  Deep 
Overpressure................................................................................................... 30 
 
CHAPTER 3     SOURCE ROCKS AND ORGANIC MATTER ................... 31 
 
3.1 Source rocks .................................................................................................... 31 
3.2 Richness of organic matter .............................................................................. 32 
3.3 Type of organic matter .................................................................................... 38 
3.4 Summary ......................................................................................................... 48 
 



CHAPTER 4     ASSESSMENT OF ROCK-EVAL Tmax DATA IN THE 
BAMBRA-2 WELL: A CASE STUDY OF THE CONTAMINATED 
ROCK-EVAL DATA .......................................................................................... 49 
 
4.1 Introduction ..................................................................................................... 49 
4.2 Sources of Rock-Eval data .............................................................................. 51 
4.3 Gas chromatography (GC) analysis ................................................................ 51 
4.4 Discussion ....................................................................................................... 54 
4.5 Summary ......................................................................................................... 58 
 
CHAPTER 5     DEEP OVERPRESSURED SYSTEM AND TOP 
PRESSURE SEAL............................................................................................... 59  
  
5.1 Introduction ..................................................................................................... 59  
5.2 Overpressure and petrophysical data............................................................... 59 

5.2.1 Measured fluid pressure data for overpressure ..................................... 60 
5.2.2 Well-log data for overpressure.............................................................. 61 
5.2.3 Petrophysical expression of the deep overpressured zone .................... 65 

5.2.3.1 Jurassic overpressure in the Barrow Sub-basin ........................ 65 
5.2.3.2 Jurassic overpressure in the Exmouth Sub-basin...................... 69 
5.2.3.3 Jurassic overpressure in the Dampier Sub-basin ...................... 69 
5.2.3.4 Overpressure in the Barrow Group of the Barrow Sub-basin... 70 

5.3 Top pressure seal in the Barrow Sub-basin ..................................................... 71 
5.4 Summary ......................................................................................................... 74 
 
Part III  One-dimensional Thermal History Modelling .................... 76 
 
CHAPTER 6     ONE-DIMENSIONAL MODELS AND DATA SETS ......... 77 
 
6.1 One-dimensional models ................................................................................. 77 

6.1.1 Geohistory/burial history....................................................................... 77 
6.1.2 Tectonic subsidence .............................................................................. 77 
6.1.3 Heat flow ............................................................................................... 78 
6.1.4 Temperature and thermal maturity ........................................................ 80 

6.2 Data sets .......................................................................................................... 81 
6.2.1 Stratigraphic data and porosity-depth relationship................................ 81 
6.2.2 Geothermal parameters ......................................................................... 82 
6.2.3 Thermal maturity................................................................................... 83 
6.2.4 Eroded thickness ................................................................................... 84 
6.2.5 Palaeobathymetry and sea-level variations ........................................... 85 

 
CHAPTER 7     ONE-DIMENSIONAL HEAT FLOW AND THERMAL    
MATURITY MODELLING .............................................................................. 86 
 
7.1 Introduction ..................................................................................................... 86 
7.2 Data used in the study ..................................................................................... 88 
7.3 Relationship between vitrinite reflectance (Ro) and Rock-Eval Tmax.............. 89 
7.4 Modelling of tectonic subsidence and sedimentation rates ............................. 93 
7.5 Modelling of heat flow and thermal maturity ................................................. 93 

7.5.1 Thermal modelling for 2 wells in the Exmouth Sub-basin ................... 93 
7.5.1.1 Jurabi-1 thermal modelling....................................................... 93 
7.5.1.2 Zeewulf-1 thermal modelling ................................................... 97 

7.5.2 Thermal modelling for 2 wells in the Barrow Sub-basin ...................... 98 



7.5.2.1 Anchor-1 thermal modelling..................................................... 98 
7.5.2.2 Bowers-1 thermal modelling .................................................... 98 

7.5.3 Thermal modelling for 3 wells in the Dampier and  
         Beagle Sub-basins ............................................................................... 103 

7.5.3.1 Rosemary-1 thermal modelling .............................................. 103 
7.5.3.2 Madeleine-1 thermal modelling.............................................. 103 
7.5.3.3 Depuch-1 thermal modelling .................................................. 106 

7.5.4 Thermal modelling for 2 wells on the Rankin Platform...................... 110 
7.5.4.1 North Gorgon-1 thermal modelling ........................................ 110 
7.5.4.2 North Rankin-1 thermal modelling......................................... 112 

7.5.5 Thermal modelling for 2 wells on the Exmouth Plateau..................... 115 
7.5.5.1 Investigator-1 thermal modelling............................................ 115 
7.5.5.2 Jupiter-1 thermal modelling.................................................... 118 

7.6 Summary ....................................................................................................... 118 
 
CHAPTER 8     THERMAL MATURITY AND THERMAL 
MODELLING WITHIN THE OVERPRESSURED JURASSIC 
ROCKS IN THE BARROW AND BAMBRA WELLS................................. 122 
 
8.1 Introduction ................................................................................................... 122 
8.2 Thermal maturity........................................................................................... 124 
8.3 Data sets for thermal maturity modelling...................................................... 126 
8.4 Thermal maturity modelling.......................................................................... 131                           

8.4.1 Barrow-1 thermal modelling ............................................................... 131 
8.4.2 Barrow Deep-1 thermal modelling...................................................... 133 
8.4.3 Bambra-2 thermal modelling .............................................................. 138 

8.5 Discussion ..................................................................................................... 144 
8.6 Summary ....................................................................................................... 147 
 
Part IV     Two-dimensional Models, Deep Overpressure 
Modelling and Pressure Behaviour Modelling ................................ 148 
 
CHAPATER 9     TWO-DIMENSIONAL MODELS  AND  DATA 
REQUIREMENTS FOR DEEP OVERPRESSURE MODELLING ........... 149 
 
9.1 BasinMod 2D ................................................................................................ 149 

9.1.1 Governing equations in the BasinMod 2D.......................................... 149 
9.1.2 The models used in BasinMod 2D ...................................................... 151 

9.2 Depth conversion for cross-sections and two-dimensional geological 
       models .......................................................................................................... 153 

9.2.1 Depth conversion for cross-sections ................................................... 153 
9.2.2 Two-dimensional geological models .................................................. 155 

9.3 Porosity and permeability.............................................................................. 158 
9.4 Boundary conditions and data requirements ................................................. 164 

9.4.1 Boundary conditions ........................................................................... 164 
9.4.2 Data requirements ............................................................................... 165 
9.4.3 Data sets .............................................................................................. 166 

 
CHAPATER 10     TWO-DIMENSIONAL DEEP OVERPRESSURE 
MODELLING AND PRESSURE BEHAVIOUR MODELLING ................ 169 
 
10.1 Introduction ................................................................................................. 169 
10.2 Two-dimensional overpressure modelling in the Barrow Sub-basin .......... 173 



10.2.1 Correlation between the predicted values and the observed data...... 173 
10.2.1.1 Data from Bambra-2 for correlation ..................................... 173 
10.2.1.2 Data from West Tryal Rocks-1 for correlation ..................... 175 

10.2.2 Results of the BasinMod 2D modelling ............................................ 175 
10.2.2.1 Sedimentation rates............................................................... 175 
10.2.2.2 Porosity and permeability ..................................................... 175 
10.2.2.3 Fluid pressure........................................................................ 182 
10.2.2.4 General discussion ................................................................ 183 

10.3 Two-dimensional overpressure modelling in the Exmouth Sub-basin ....... 186 
10.3.1 Correlation between the calculated values and the observed data .... 186 

10.3.1.1 Fluid pressure correlation ..................................................... 186 
10.3.1.2 Temperature and maturity correlation .................................. 186 

10.3.2 Results of the BasinMod 2D modelling ............................................ 189 
10.3.2.1 Sedimentation rates............................................................... 189 
10.3.2.2 Porosity and permeability ..................................................... 189 
10.3.2.3 Fluid pressure........................................................................ 190 

10.4 Two-dimensional overpressure modelling in the Dampier Sub-basin ........ 195 
10.4.1 Correlation between the calculated values and the observed data .... 198 

10.4.1.1 Fluid pressure correlation ..................................................... 198 
10.4.1.2 Temperature and maturity correlation .................................. 198 

10.4.2 Results of the BasinMod 2D modelling ............................................ 198 
10.4.2.1 Sedimentation rates............................................................... 198 
10.4.2.2 Porosity and permeability ..................................................... 201 
10.4.2.3 Fluid pressure........................................................................ 202 

10.5 Pressure behaviour modelling ..................................................................... 207 
10.6 Discussion ................................................................................................... 211 

10.6.1 Pressure seal ...................................................................................... 211 
10.6.2 Possible major mechanisms for the deep overpressure ..................... 215 

10.6.2.1 Compaction disequilibrium................................................... 215 
10.6.2.2 Hydrocarbon generation ....................................................... 217 

10.7 Summary ..................................................................................................... 218 
 
CONCLUSIONS AND LIMITATIONS ......................................................... 220 
 
REFERENCES .................................................................................................. 227 
 
WELL COMPLETION REPORTS ................................................................ 249 
 
 
Appendix 1 Measured bulk density and matrix density for 6 claystone 
samples from the conventional core in Bambra-2............................................... 252 
 
Appendix 2 110/11 seismic line (interpreted by Australian Geological 
Survey Organisation) in the Exmouth Sub-basin ................................................ 253 
 
Appendix 3 101R/09 seismic line (interpreted by Australian Geological 
Survey Organisation) in the Dampier Sub-basin................................................. 254 
 
Appendix 4 Horizon legend for 110/11 and 101R/09 seismic lines................... 255 

 
Appendix 5 List of published papers and conference presentations 
during this study .................................................................................................. 256 



LIST OF TABLES 
 
Table Page 
 
1-1 Samples from the Bambra-2 well for geochemical analyses .......................... 12 
 
1-2 The data from 23 wells in the Northern Carnarvon Basin for the 

modelling ........................................................................................................ 15 
 
1-3 Seismic lines used in this study collected from the Department of 

Minerals and Energy of Western Australia .................................................... 16 
 
3-1 Statistics of total organic matter (TOC, %) in 17 wells from various 

tectonic subdivisions of the Northern Carnarvon Basin ................................. 33 
 
3-2 Visual compositions of organic matter (%) from organic petrographic 

analyses........................................................................................................... 42 
 
3-3 Molecular parameters of organic source for paraffinic oils and rocks in 

the Barrow Sub-basin ..................................................................................... 44 
 
4-1 Rock-Eval pyrolysis results for Jurassic core samples from Bambra-2 in 

the Barrow Sub-basin ..................................................................................... 52 
 
4-2 Rock-Eval pyrolysis results for the Jurassic drill cuttings (claystone) 

from Bambra-2 in the Barrow Sub-basin........................................................ 54 
 
5-1 Measured high fluid pressures in four studied wells in the Northern 

Carnarvon Basin ............................................................................................. 61 
 
5-2 Measured total porosity and horizontal permeability values from the 

conventional core (claystone) in Bambra-2 .................................................... 62 
 
5-3 Measured porosity and permeability values for the conventional core 

samples (sandstone) in the Bambra-1 well ..................................................... 62 
 
5-4 Porosity evaluations based on density and neutron log data for 

sandstones of the Barrow Group in West Barrow-2....................................... 62 
 
5-5 Tops of the Jurassic overpressured zone in five wells in three sub-basins ..... 71 
  
 
5-6 Temperatures at the top of the deep overpressured zone in seven wells in 

three sub-basins .............................................................................................. 71 
 
5-7 Average compositions of minerals from the conventional core samples 

(sandstone) in the Bambra-1 well ................................................................... 73 
 
6-1 Some present-day thermal parameters of 14 wells for 1D thermal 

modelling in the Northern Carnarvon Basin................................................... 80 



 
6-2 Default matrix thermal conductivity and matrix heat capacity in the 

BasinMod 1D.................................................................................................. 83 
 
6-3 Eq VR data in four wells used in this study.................................................... 84 
 
7-1 The eleven wells for thermal modelling in the Northern Carnarvon Basin .... 89 
 
7-2 Ro and Rock-Eval pyrolysis data for five wells in the Northern 

Carnarvon Basin ............................................................................................. 92 
 
8-1 Measured vitrinite reflectance for three wells and Eq VR values for the 

Barrow-1 well in the Barrow Sub-basin ....................................................... 127 
 
8-2 Rock-Eval pyrolysis data for the cuttings samples in the Barrow Deep-1 

well in the Barrow Sub-basin ....................................................................... 127 
 
8-3 Rock-Eval pyrolysis data for the cuttings and core samples in the 

Barrow-1 well in the Barrow Sub-basin ....................................................... 128 
 
8-4 Molecular parameters of thermal maturity for rocks in the Barrow and 

Bambra areas ................................................................................................ 129 
 
8-5 The percentages of four lithologies for various formations of the two 

selected wells in the Barrow Sub-basin ........................................................ 130 
 
8-6 Formation temperatures for the Bambra-2 and Barrow Deep-1 wells in 

the Barrow Sub-basin ................................................................................... 130 
 
8-7 Examples for the difficulty of distinguishing vitrinite and inertinite in 

the samples of Bambra-2 .............................................................................. 146 
 
9-1 Important constants applied in BasinMod 2D............................................... 151 
 
9-2 Porosity and permeability in sandstones from 12 wells in the Northern 

Carnarvon Basin ........................................................................................... 164 
 
10-1 Measured formation temperatures from three wells in the Exmouth 

Sub-basin ...................................................................................................... 189 
 
10-2 Measured BHTs from three wells in the Dampier Sub-basin ..................... 201 
 
10-3 The heat flow values required for fitting the measured maturity data 

from the 1D BasinMod modelling and the BasinMod 2D modelling in 
three sub-basins ............................................................................................ 219 

 
 
 



LIST OF FIGURES 
 
Figure Page 
 
1-1 Gas, gas/condensate and oil fields in the Carnarvon Basin prior to 1997 

(after Hocking et al., 1987; Baillie and Jacobson, 1997; Petroleum 

Division, Department of Minerals and Energy, Western Australia, 1999)....... 3 

 
1-2 Generalised ideal and work process of basin modelling for the thermal 

history and overpressure modelling in this study. ............................................ 8 
 
1-3 Database of seismic lines and well locations in the Northern Carnarvon 

Basin. .............................................................................................................. 14 
 
2-1 Sedimentary basins of Western Australia (after Trendall and Cockbain, 

1990; Hocking et al., 1994; Purcell and Purcell, 1994).................................. 18 
 
2-2 The Exmouth, Barrow, Dampier and Beagle Sub-basins, Rankin Platform 

and Exmouth Plateau in the Northern Carnarvon Basin with adjacent 
three abyssal plains (after AGSO North West Shelf Study Group, 1994; 
Polomka et al., 1999). Also showing the cross-section of the Exmouth 
and Barrow Sub-basins, Alpha Arch and Exmouth Plateau (simplified 
from Tindale et al., 1998). See Fig. 1-3 for well locations............................. 19 

 
2-3 Generalized stratigraphic column of the sub-basins in the Northern 

Carnarvon Basin (after Blevin et al., 1994; Labutis, 1994; Stagg and 
Colwell, 1994; Polomka et al., 1999). ............................................................ 20 

 
2-4 Tectonic subdivisions, structures and faults of the North Carnarvon Basin 

(after Stagg and Colwell, 1988)...................................................................... 25 
 
3-1 A map shows well locations and the tectonic subdivisions in the Northern    
      Carnarvon Basin (after Woodside Offshore Petroleum, 1988; Scott,   
      1992)................................................................................................................ 34 
 
3-2 Histogram of total organic matter for the Gearle Siltstone, Windalia 

Radiolarite and Muderong Shale in the Northerm Carnarvon Basin.............. 35 
 
3-3 Histogram of total organic matter for the Barrow Group in the Northern 

Carnarvon Basin. ............................................................................................ 35 
 
3-4 Histogram of total organic matter for the Dupuy Formation, Dingo 

Claystone and Athol Formation in the Northern Carnarvon Basin. ............... 36 
 
3-5 Histogram of total organic matter for the Murat Siltstone in the Northern 

Carnarvon Basin. ............................................................................................ 36 
3-6 Histogram of total organic matter for the Mungaroo Formation in the 

Northern Carnarvon Basin. ............................................................................. 37 



 
3-7 Plots of atomic H/C versus atomic O/C and hydrogen index versus Tmax 
      show mainly type III organic matter in the samples from three wells 

within the Exmouth Sub-basin. See Fig. 3-1 for well locations... .................. 39 
 
3-8 Plots of hydrogen index versus Tmax show kerogen type for the samples 

from six wells in the Barrow and Dampier Sub-basins. See Fig. 3-1 for 
well locations. ................................................................................................. 40 

 
3-9 Diagrams of HI (hydrogen index) versus Tmax and S2 versus TOC show 

the characteristics of organic matter in the samples from the Depuch-1 
well of the Beagle Sub-basin. The numbers show that the samples with 
relatively high HI values are generally consistent with relatively high 
TOC or coals. a: HI=167; b: HI=171; c: HI=51; d: HI=190. See Fig. 3-1 
for the well location.. ...................................................................................... 41 

 
3-10 Diagrams of HI (hydrogen index) versus Tmax and S2 versus TOC show 

the characteristics of organic matter within the Mungaroo Formation in 
three wells on the Rankin Platform and Exmouth Plateau. Samples with 
number 1, 2 and 3 are coal-bearing samples.1: TOC=13.7 %; 2: 
TOC=13.3 %; 3: TOC=20.7 %. See Fig. 3-1 for well locations..................... 41 

 
3-11 Geochemical profiles of the Jurassic source rocks in the Jurabi-1 well of 

the Exmouth Sub-basin. TOC: Total organic carbon; S1: Free 
hydrocarbons (mg HC/g rock); S2: Pyrolysable hydrocarbons (mg HC/g 
rock); Hydrogen index: S2%100/TOC; Tmax: Temperature at the top of S2 
peak; Production index: S1/S1+S2. Type of hydrocarbon generated for 
immature stage................................................................................................ 45 

 
3-12 Geochemical profiles of the Middle-Upper Jurassic and the lower part of 

the Barrow Group for the Barrow Deep-1 and Barrow-1 wells in the 
Barrow Sub-basin. TOC: Total organic carbon; S1: Free hydrocarbons 
(mg HC/g rock); S2: Pyrolysable hydrocarbons (mg HC/g rock); 
Hydrogen index: S2%100/TOC; Tmax: Temperature at the top of S2 peak; 
Production index: S1/S1+S2. Type of hydrocarbon generated for immature 
stage. See Fig. 3-1 for well locations.............................................................. 46 

 
3-13 Geochemical profiles of the Middle-Upper Jurassic and Lower 

Cretaceous in the Depuch-1 well of the Beagle Sub-basin. TOC: Total 
organic carbon; S1: Free hydrocarbons (mg HC/g rock); S2: Pyrolysable 
hydrocarbons (mg HC/g rock); Hydrogen index: S2%100/TOC; Tmax: 
Temperature at the top of S2 peak; Production index: S1/S1+S2. .................... 47 

 
4-1 Well profiles for total organic matter (TOC), hydrogen index 

(HI=S2%100/TOC), Rock-Eval Tmax, S1 (free hydrocarbons) and 
production index (PI= S1/S1+S2) values versus depth for 280 cuttings 
samples and 27 side-wall cores and 4 conventional core samples in the 
Bambra-2 well. CC: Conventional core samples; SWC (1): SWC samples 
with normal and acceptable Tmax values; SWC (2): SWC samples with 



low and three abnormal Tmax values. See Table 1 for the Rock-Eval data 
in the core samples.......................................................................................... 53  

 
4-2 Six examples of saturated hydrocarbon distributions from gas 

chromatography for two uncontaminated conventional core samples (A 
and B), three contaminated side-wall cores (C, E and F) and one 
contaminated cuttings (D) in the Bambra-2 well. EOM: Extractable 
organic matter (mg/g TOC). A, B, C and F from AMDEL (1983); D and 
E from GSCC (2000). ..................................................................................... 55 

 
5-1 Profiles of fluid pressure versus depth in Barrow Deep-1; sonic transit 

times and formation resistivities within claystone and silty claystone 
versus depth in Barrow Deep-1/Barrow-1. DST: Drill stem test.................... 66 

 
5-2 Profiles of fluid pressure versus depth; sonic, resistivity and density log 

data within claystone and silty claystone versus depth in Bambra-1. RFT: 
Repeat formation test; LOT: Leak-off test. .................................................... 66 

 
5-3 Profiles of fluid pressure versus depth; sonic transit times and formation 

resistivities within claystone and silty claystone versus depth in Bambra-
2. RFT: Repeat formation test; LOT: Leak-off test. ....................................... 67 

 
5-4 Profiles of fluid pressure versus depth; sonic, resistivity and density log 

data within claystone and silty claystone versus depth in Jurabi-1. LOT: 
Leak-off test.................................................................................................... 67 

 
5-5 The profile of fluid pressure versus depth in Dampier-1. DST: Drill stem 

test................................................................................................................... 68 
 
5-6 Profiles of fluid pressure versus depth; sonic, resistivity and density log 

data within claystone and silty claystone versus depth in West Barrow-
1/1A. LOT: Leak-off test. ............................................................................... 68 

 
5-7 Profiles of fluid pressure versus depth; sonic transit times within 

claystone and silty claystone versus depth in West Barrow-2. RFT: 
Repeat formation test. ..................................................................................... 68 

 
6-1  A map shows the locations of the modelled wells and the tectonic    
       subdivisions in the Northern Carnarvon Basin (after Woodside   
       Offshore Petroleum, 1988; Scott, 1992)......................................................... 82 
 
7-1 A map showing the locations of the modelled wells in the Northern 

Carnarvon Basin (after Woodside Offshore Petroleum, 1988; Scott, 
1992). .............................................................................................................. 89 

 
7-2 Relationship between Tmax and vitrinite reflectance (Ro) from coal and 

type III kerogen within the Triassic (Tr.) and Jurassic (Ju.) formation in 
the Northern Carnarvon Basin. ....................................................................... 91 

 



7-3 A plot of hydrogen index (HI) versus Tmax showing that the maturity data 
in Fig. 7-2 are associated with type III of organic matter without coal-
related samples. Tr.-Triassic; Ju.-Jurassic. ..................................................... 91 

 
7-4 Calculated tectonic subsidence curves and sedimentation rates for Barrow 

Deep-1 and Bambra-2, showing the phases of syn-rift and post-rift. ............. 94 
 
7-5 Jurabi-1 thermal maturity modelling showing the measured maturity data 

and calculated maturity curves (A). Also showing the rift heat flow 
profile (B). Curve 1: The modelled maturity curve obtained from the rift 
heat flow history; Curve 2: The calculated maturity curve using the 
constant heat flow history (52.1 mW/m2 and seabed temperature of 23 
oC). .................................................................................................................. 96 

 
7-6 The modelled geohistory and histories of temperature and maturity using 

the rift-related heat flow history for the Jurabi-1 well.................................... 97 
 
7-7 Zeewulf-1 thermal maturity modelling showing the measured maturity 

data and the calculated maturity curve using the constant thermal history. ... 99 
 
7-8 The modelled geohistory and histories of temperature and thermal 

maturity using the current heat flow and seafloor temperature for the 
Zeewulf-1 well................................................................................................ 99 

 
7-9 Anchor-1 thermal maturity modelling showing the measured maturity 

data and the calculated maturity curve using the constant heat flow 
history. .......................................................................................................... 100 

 
7-10 The modelled geohistory and histories of temperature and thermal 

maturity using the current heat flow and seabed temperature for the 
Anchor-1 well. .............................................................................................. 100 

 
7-11 Bowers-1 thermal maturity modelling showing the observed maturity 

data and modelled maturity curves (A). Also showing the rift heat flow 
model (B). Curve 1: The modelled maturity curve obtained from the rift 
heat flow history; Curve 2: The calculated maturity curve using the 
current heat flow of 55.3 mW/m2 and seabed temperature of 21 oC. Ro 
(1) and Ro (2) were measured by Robertson Research Australia Pty. Ltd. 
and Keiraville Konsultants, respectively. ..................................................... 101 

 
7-12 The calculated geohistory and thermal effect history using the rift-

related heat flow history for the Bowers-1 well. .......................................... 102 
 
7-13 Rosemary-1 thermal maturity modelling showing the measured maturity 

data and the modelled maturity curve using the constant current heat flow 
history. .......................................................................................................... 104 

 
7-14 The modelled geohistory and histories of temperature and thermal 

maturity using current heat flow and seabed temperature for the 
Rosemary-1 well. .......................................................................................... 104 



 
7-15 Madeleine-1 thermal maturity modelling showing the observed maturity 

data and modelled maturity curve obtained from the constant current heat 
flow history. The maturity curve can be modelled using the rift heat flow 
history as well (see B). Ro (1): Ro data from core and cuttings samples 
were measured by Robertson Research Australia Pty. Ltd.; Ro (2): Ro 
data from core samples were measured by Woodside Petroleum. 
Winning: Winning Group (Valanginian to early Late Cretaceous).............. 105 

 
7-16 The modelled histories of burial, temperature and thermal maturity for 

the Madeleine-1 well using the constant current heat flow (A) and the 
rift-associated heat flow history (B). ............................................................ 107 

 
7-17 The modelled cumulative oil and gas generation from the Dingo 

Claystone and Athol Formation using the constant current heat flow 
history at the site of the Madeleine-1 well.................................................... 108 

 
7-18 The modelled cumulative oil and gas generation from the Dingo 

Claystone and Athol Formation using the rift-related heat flow history in 
the Madeleine-1 well. ................................................................................... 109 

 
7-19 Depuch-1 thermal maturity modelling showing a general match between 

the observed and modelled maturity using the constant current heat flow 
and seafloor temperature............................................................................... 111 

 
7-20 The modelled geohistory and thermal effect using the current heat flow 

and seafloor temperature for the Depuch-1 well. ......................................... 111 
 
7-21 North Gorgon-1 thermal maturity modelling showing a fit to the 

measured maturity data indicating that the maturity data corresponds with 
the current heat flow of 57.1 mW/m2 and seafloor temperature 20 oC, 
irrespective of a missing section from 0 to 3200 m...................................... 113 

 
7-22 The modelled geohistory and histories of temperature and thermal 

maturity using the constant current heat flow and seafloor temperature for 
the North Gorgon-1 well............................................................................... 113 

 
7-23 North Rankin-1 thermal maturity modelling showing a fit to the 

measured maturity data indicating that the maturity data corresponds with 
the current heat flow of 53.5 mW/m2 and seafloor temperature 21 oC, 
irrespective of a missing section from 0 m to 2000 m. Also showing the 
thermal evolution of the Mungaroo Formation. Winning: Winning Group 
(Valanginian to early Late Cretaceous). ....................................................... 114 

 
7-24 The modelled geohistory and thermal effect using the current heat flow 

and seafloor temperature for the North Rankin-1 well. ................................ 115 
7-25 Investigator-1 thermal maturity modelling showing the observed 

maturity data and modelled maturity curves (A). Also showing the rift 
heat flow model (B). Curve 1: The calculated maturity curve obtained 
from the rift heat flow history; Curve 2: The calculated maturity curve 



using the current heat flow of 56.8 mW/m2 and seabed temperature of 
5.5 oC. ........................................................................................................... 116 

 
7-26 The modelled geohistory and histories of temperature and thermal 

maturity using the rift-related heat flow history for the Investigator-1 
well. .............................................................................................................. 117 

 
7-27 Jupiter-1 thermal maturity modelling showing the observed maturity 

data and modelled maturity curves (A). Also showing the rift heat flow 
model (B). Curve 1: The calculated maturity curve obtained from the rift 
heat flow history; Curve 2: The calculated maturity curve using the 
constant heat flow history (54.3 mW/m2 and seabed temperature of 5 
oC). ................................................................................................................ 119 

 
7-28 The modelled geohistory and histories of temperature and thermal 

maturity using the rift-related heat flow history for the Jupiter-1 well. ....... 120 
 
8-1 Profiles of fluid pressure, Tmax, TOC (total organic carbon) and hydrogen 

index (S2×100/TOC) versus depth for the Barrow-1 and Barrow Deep-1 
wells. RILD: Deep Induction Log. ............................................................... 125 

 
8-2 Profiles of fluid pressure, Tmax data versus depth for the Bambra-2 well. 

Cores (1): SWC and conventional core samples with the normal and 
acceptable Tmax values, see Table 4-1 for the Rock-Eval data; Cores (2): 
SWC with the contaminated Tmax values.................................................... 125 

 
8-3 Barrow-1 thermal maturity modelling showing the measured maturity 

data and the calculated maturity curve obtained from the present heat 
flow and surface temperature. The formation temperatures are the 
corrected bottom hole temperatures. See Table 8-1 for Ro and Eq VR 
data................................................................................................................ 132 

 
8-4 The modelled geohistory and histories of temperature and thermal 

maturity using the current heat flow and surface temperature for the 
Barrow-1 well. .............................................................................................. 132 

 
8-5 Barrow Deep-1 thermal maturity modelling showing the observed 

maturity data and the modelled maturity curve obtained from the current 
heat flow and surface temperature. Assumed Tmax error ! 2-10 oC for 
uncertainty. See Table 8-1 for Ro (1) and Ro (2). ......................................... 134 

 
8-6 The modelled geohistory and histories of temperature and thermal 

maturity using the current heat flow and surface temperature for the 
Barrow Deep-1 well...................................................................................... 134 

 
8-7 The modelled cumulative oil and gas generation from the Dingo 

Claystone and Athol Formation using the constant current heat flow 
history in the Barrow Deep-1 well................................................................ 135 

 



8-8 Barrow Deep-1 thermal maturity modelling showing the observed 
maturity data and the modelled maturity curve obtained from the rift-
related heat flow history (see Fig. 8-10). Assumed Tmax error ! 2-10 oC 
for uncertainty. See Table 8-1 for Ro (1) and Ro (2)..................................... 136 

 
8-9 The modelled geohistory and histories of temperature and thermal 

maturity using the rift-related heat flow history (see Fig. 8-10) for the 
Barrow Deep-1 well...................................................................................... 136 

 
8-10 The modelled cumulative oil and gas generation from the Dingo 

Claystone and Athol Formation using the rift heat flow history in the 
Barrow Deep-1 well...................................................................................... 137 

 
8-11 Bambra-2 thermal maturity modelling showing the measured maturity 

data and calculated maturity curve obtained from the present heat flow 
and seafloor temperature. Tmax (1): Normal and acceptable Tmax values 
and assumed error ! 2-10 oC for uncertainty; Tmax (2): Low Tmax values 
(contaminated). See Table 8-1 for Ro data, and Table 4-1 for Tmax (1) and 
Tmax (2) data. ................................................................................................. 140 

 
8-12 The modelled geohistory and histories of temperature and thermal 

maturity using the current heat flow value and surface temperature for the 
Bambra-2 well. ............................................................................................. 140 

 
8-13 The modelled cumulative oil and gas generation from the Dingo 

Claystone and Athol Formation using the constant current heat flow 
history in the Bambra-2 well. ....................................................................... 141 

 
8-14 Bambra-2 thermal maturity modelling showing the measured maturity 

data and calculated maturity curve obtained from the rift-related heat 
flow history (see Fig. 8-16). Tmax (1): Normal and acceptable Tmax values 
and assumed error ! 2-10 oC for uncertainty; Tmax (2): Low Tmax values 
(contaminated). See Table 8-1 for Ro data, and Table 4-1 for Tmax (1) and 
Tmax (2) data. ................................................................................................. 142 

 
8-15 The modelled geohistory and histories of temperature and thermal 

maturity using the rift heat flow history (see Fig. 8-16) for the Bambra-2 
well. .............................................................................................................. 142 

 
8-16 The modelled cumulative oil and gas generation from the Dingo 

Claystone and Athol Formation using the rift heat flow history in the 
Bambra-2 well. ............................................................................................. 143 

 
9-1 A map showing sub-basins and locations of the modelled cross-sections 

and wells in the Northern Carnarvon Basin (after Woodside Offshore 
Petroleum, 1998; Scott, 1992). ..................................................................... 153 

9-2 Correlation between two time-depth relationships from well velocity 
surveys and seismic velocity data at approximate locations of the 
Zeewulf-1, Novara-1 and Ottrim-1 wells along the 110/11 seismic line in 
the Exmouth Sub-basin. Relationship 1: The time-depth relationship from 



well velocity surveys; Relationship 2: The time-depth relationship from 
seismic velocity data..................................................................................... 156 

 
9-3 Correlation between two time-depth relationships from well velocity 

surveys and seismic velocity data at approximate locations of the 
Goodwyn-7, Rosermary-1 and Hampton-1 wells along the 101R/09 
seismic line in the Dampier Sub-basin. Relationship 1: The time-depth 
relationship from well velocity surveys; Relationship 2: The time-depth 
relationship from seismic velocity data. ....................................................... 157  

 
9-4 Correlation between two time-depth relationships from well velocity 

surveys and seismic velocity data at approximate locations of the West 
Tryal Rocks-1and Bambra-2 wells along the AB seismic line in the 
Barrow Sub-basin. Relationship 1: The time-depth relationship from well 
velocity surveys; Relationship 2: The time-depth relationship from 
seismic velocity data..................................................................................... 158 

 
9-5 The 2D model of the A-B cross-section used to model overpressure in the 

Barrow Sub-basin. ........................................................................................ 159 
 
9-6 The 2D model of the 110/11 cross-section used to model overpressure in 

the Exmouth Sub-basin................................................................................. 160 
 
9-7 The 2D model of the 101R/09 cross-section used to model overpressure 

in the Dampier Sub-basin. ............................................................................ 161 
 
9-8 Plots of the measured porosity values of claystone, siltstone, sandstone 

and carbonate versus present-day depth from some wells of the Northern 
Carnarvon Basin. .......................................................................................... 163 

 
9-9 The relationship between the measured vertical permeability and 

horizontal permeability values in the Northern Carnarvon Basin. ............... 165 
 
10-1 Correlation between the modelled curves and the observed porosities, 

fluid pressures, temperatures and maturity values at the site of Bambra-2 
along the cross-section in the Barrow Sub-basin. Numbers 1-12 represent 
different formations. ..................................................................................... 174 

 
10-2 Correlation between the modelled curves and the observed fluid 

pressures, temperatures and maturity values at the well site of West Tryal 
Rocks-1 along the cross-section in the Barrow Sub-basin. .......................... 176 

 
10-3-1 A series of the modelled chronological plots of porosity and 

permeability at x-distance of 50000 m of the cross-section (see Fig. 9-5 
for the location) in the Barrow Sub-basin.  Numbers 1-6 represent 
different formations. ..................................................................................... 178 

10-3-2 A series of the modelled chronological plots of porosity and 
permeability at x-distance of 50000 m of the cross-section (see Fig. 9-5 
for the location) in the Barrow Sub-basin. Numbers 1-12 represent 
different formations. ..................................................................................... 179 



 
10-4 Four profiles of the modelled porosity at 145 Ma (A), 120 Ma (B), 65 

Ma (C) and present-day (D) for the cross-section in the Barrow Sub-
basin. ............................................................................................................. 180 

 
10-5 Four profiles of the modelled vertical permeability at 145 Ma (A), 120 

Ma (B), 65 Ma (C) and present-day (D) for the cross-section in the 
Barrow Sub-basin. ........................................................................................ 181 

 
10-6-1 The modelled chronological profiles of the deep overpressure 

evolution for the cross-section in the Barrow Sub-basin. Arrows show 
water flow direction. (A) 160 Ma, (B) 145 Ma, (C) 136 Ma and (D) 120 
Ma. ................................................................................................................ 184 

 
10-6-2 The modelled chronological profiles of the deep overpressure 

evolution for the cross-section in the Barrow Sub-basin. Arrows show 
water flow direction. (E) 90 Ma, (F) 65 Ma, (G) 24 Ma and (H) Present-
day................................................................................................................. 185 

 
10-7 Correlation between the modelled fluid pressures and the measured fluid 

pressures, including RFT pressures and mud weights, at the well sites of 
Zeewulf-1, Novara-1 and Outtrim-1 along the 110/11 cross-section in the 
Exmouth Sub-basin....................................................................................... 187 

 
10-8 Correlation between the modelled temperature and maturity curves and 

the observed formation temperatures and vitrinite reflectance data at the 
three well sites of Zeewulf-1, Novara-1 and Outtrim-1 along the 110/11 
cross-section in the Exmouth Sub-basin....................................................... 188 

 
10-9-1 Four modelled profiles of porosity evolution at 160 Ma (A), 145 Ma 

(B), 136 Ma (C) and 120 Ma (D) for the 110/11 cross-section in the 
Exmouth Sub-basin....................................................................................... 191 

 
10-9-2 Four modelled profiles of porosity evolution at 90 Ma (E), 65 Ma (F), 

24 Ma (G) and 0 Ma (H) for the 110/11 cross-section in the Exmouth 
Sub-basin. ..................................................................................................... 192 

 
10-10-1 Four modelled profiles of vertical permeability evolution at 160 Ma 

(A), 145 Ma (B), 136 Ma (C) and 120 Ma (D) for the 110/11 cross-
section in the Exmouth Sub-basin. ............................................................... 193 

 
10-10-2 Four modelled profiles of vertical permeability evolution at 90 Ma 

(E), 65 Ma (F), 24 Ma (G) and 0 Ma (H) for the 110/11 cross-section in 
the Exmouth Sub-basin................................................................................. 194 

 
10-11-1 Four modelled profiles of the excess pressure at 160 Ma (A), 145 Ma 

(B), 136 Ma (C) and 120 Ma (D) for the deep overpressure evolution 
along the 110/11 cross-section in the Exmouth Sub-basin. Arrows show 
water flow direction. ..................................................................................... 196 

 



10-11-2 Four modelled profiles of the excess pressure at 90 Ma (E), 65 Ma 
(F), 24 Ma (G) and 0 Ma (H) for the deep overpressure evolution along 
the 110/11 cross-section in the Exmouth Sub-basin. Arrows show water 
flow direction................................................................................................ 197 

 
10-12 Correlation between the modelled fluid pressures and the measured 

fluid pressures, including RFT pressures and mud weight pressures, at the 
three well sites of Goodwyn-7, Rosemary-1 and Hampton-1along the 
101R/09 cross-section in the Dampier Sub-basin......................................... 199 

 
10-13 Correlation between the modelled temperature and maturity curves and 

the observed formation temperatures and thermal maturity data at the 
well sites of Goodwyn-7, Rosemary-1 and Hampton-1 along the 101R/09 
cross-section in the Dampier Sub-basin. ...................................................... 200 

 
10-14-1 Four modelled profiles of porosity evolution at 160 Ma (A), 145 Ma 

(B), 136 Ma (C) and 120 Ma (D) for the 101R/09 cross-section in the 
Dampier Sub-basin. ...................................................................................... 203 

 
10-14-2 Four modelled profiles of porosity evolution at 90 Ma (E), 65 Ma 

(F), 24 Ma (G) and 0 Ma (H) for the 101R/09 cross-section in the 
Dampier Sub-basin. ...................................................................................... 204 

 
10-15-1 Four modelled profiles of vertical permeability evolution at 160 Ma 

(A), 145 Ma (B), 136 Ma (C) and 120 Ma (D) for the 101R/09 cross-
section in the Dampier Sub-basin. ................................................................ 205 

 
10-15-2 Four modelled profiles of vertical permeability evolution at 90 Ma 

(E), 65 Ma (F), 24 Ma (G) and 0 Ma (H) for the 101R/09 cross-section in 
the Dampier Sub-basin. ................................................................................ 206 

 
10-16-1 Four modelled profiles of the excess pressure at 160 Ma (A), 145 Ma 

(B), 136 Ma (C) and 120 Ma (D) for the deep overpressure evolution 
along the 101R/09 cross-section in the Dampier Sub-basin. Arrows show 
water flow direction. ..................................................................................... 208 

 
10-16-2 Four modelled profiles of the excess pressure at 90 Ma (E), 65 Ma 

(F), 24 Ma (G) and 0 Ma (H) for the deep overpressure evolution along 
the 101R/09 cross-section in the Dampier Sub-basin. Arrows show water 
flow direction................................................................................................ 209 

 
10-17 A graph showing the conditions of the modelling based on Equation 

(10-1), and depth versus excess pressure (Pex) for various times after 
initial application of the excess pressure zone (<P) between 3000 m and 
6000 m. The porosity ( ) and permeability (k) of the various layers used 
are illustrated. ............................................................................................... 212 

 
10-18 A graph of depth versus excess pressure (Pex) for various times after 

initial application of the excess pressure zone (<P) between 3000 m and 



6000 m. The porosity ( ) and permeability (k) of the various layers used 
are illustrated. ............................................................................................... 212 

 
10-19 A graph of depth versus excess pressure (Pex) for various times after 

initial application of the excess pressure zone (<P) between 3000 m and 
6000 m. The porosity ( ) and permeability (k) of the various layers used 
are illustrated. ............................................................................................... 214 

 
10-20 Maximum time (in years) over which a layer of given thickness and 

permeability may confine excess pressures. Shaded area indicates 
approximate permeability required to sustain a 100-1000-m-thick seal 
over geologic time (Deming, 1994).............................................................. 214 

 
 
 
 



 
 
 
 

Sheng HE 
 
 
 
 
 
 
 
 
 
 

This thesis is presented for the Degree of  

Doctor of Philosophy of  

Curtin University of Technology 

 
 
 
 
 
 
 
 
 
 

June 2002 



Chapter 1  Introduction 

 

2
 

 
 

 
 
 
 
 
                                                         
                                                
____________________________ 
 

                                  Part I     
                                                  

                                             Introduction and Regional  
                                   Geology 
                                                 
____________________________ 
 
 



Chapter 1  Introduction 

 

3
 

 
 

CHAPTER 1     INTRODUCTION 
 

1.1 Previous work and background of this study 
 

1.1.1 Previous work 

 

The Northern Carnarvon Basin, the most important gas and oil province in 

Australia, is located at the southern end of the North West Shelf, Western Australia. 

Petroleum exploration in the basin commenced in 1924 (Hocking et al., 1987). In 

1953 the first exploration well, Rough Range-1, was drilled by WAPET (Western 

Australian Petroleum Pty. Ltd.) on the Rough Range Anticline in the Exmouth Sub-

basin and it brought the first flowing oil in Australian history (Hocking et al., 1987). 

The Barrow Island Anticline in the Barrow Sub-basin had been found in 1954 and a 

well, Barrow-1, was drilled by WAPET in 1964 on the Anticline. This was the first 

commercial oilfield in the Northern Carnarvon Basin associated with Upper Jurassic 

sandstone reservoirs (Campbell et al., 1984). Production started in 1966 (Baillie and 

Jacobson, 1997). The first offshore well, Legendre-1 in Western Australian waters 

was drilled by Woodside (Woodside Offshore Petroleum Pty. Ltd.) in 1968 in the 

Dampier Sub-basin and obtained oil flow to the surface at a rate of 160 m3/day from 

Lower Cretaceous sandstones (Vincent and Tilbury, 1988).  In 1971, Woodsite 

made the first discovery on the Rankin Platform, the large North Rankin gas field 

with sandstone reservoirs of Late Triassic to Early Jurassic age (Beston, 1986; 

Cockbain, 1989). The large Goodwyn gas and condensate field (reservoir in the 

Mungaroo Formation) was also discovered in 1971 by Woodside (Vincent and 

Tilbury, 1988). The West Tryal Rocks gas field (reservoir in the Mungaroo 

Formation) was discovered in 1972 by WAPET (McClure et al., 1988) and the large 

Gorgon gas field with reservoirs in the Late Triassic and earliest Cretaceous, was 

discovered in 1981 by WAPET (Campbell and Smith, 1982; McClure et al., 1988). 

From the early 1970s to the 1990s, intensive petroleum exploration has led to a 

series of discoveries of gas, gas/condensate and oil fields. Up to 1999, 

approximately 50 gas, gas/condensate and oil fields had been discovered in the 

Northern Carnarvon Basin (Fig. 1-1) (Hocking et al., 1987; Kopsen, 1994; le 

Poidevin and Lowden, 1994; Baillie and Jacobson, 1997; Petroleum Division of the 
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Department of Minerals and Energy, Western Australia, 1999), while some gas 

and/or oil accumulations still wait to be developed.  

 

       

 

      Fig. 1-1 Gas, gas/condensate and oil fields in the Carnarvon Basin prior to 1997 (after    

      Hocking et al., 1987; Baillie and Jacobson, 1997; Petroleum Division of the Department   

      of Minerals and Energy, Western Australia, 1999). 

 

With petroleum exploration and discovery in the Northern Carnarvon Basin, the 

regional geology, origin and evolution of the basin and petroleum geology have 

been extensively studied and research papers, concerning several aspects of organic 

geochemistry of oils and source rocks, organic-matter maturity, basin modelling of 

thermal history and overpressure evolution, have been published. Some significant 

publications, research reports and theses related to the above topics in the Northern 

Carnarvon Basin are listed below:    
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1. Petroleum organic geochemistry and geochemical correlation (Powell and 

McKirdy, 1972, 1973a, 1973b; Brikké, 1982; Volkman et al., 1983; van Aarssen 

et al., 1996; Pitchford et al., 1999; van Aarssen et al., 1999). 

 

2. Source rocks and organic matter (Scott, 1992, 1994; Gorter, 1994; Teerman, 

1994). 

 

3. Thermal maturation and suppression of vitrinite reflectance (Ro) (Cook and 

Kantsler, 1980; Volkman et al., 1983; Alexander et al., 1988; Wilkins et al., 

1992a, 1992b, 1995; Kaiko and Tingate, 1996; Kaiko, 1998; Samuelsson and 

Middleton, 1998).  

 

4. Overpressure (Horstman, 1988; Zaunbrecher, 1994; Yassir, 1996; Swarbrick and 

Hillis, 1999; van Ruth et al., 2000; Tingate et al., 2001) 

 

5. Thermal and maturity modelling (Swift et al., 1988; Alexander et al., 1990; 

Wilkins et al., 1994; Ghori, 1995; Kaiko and Tingate, 1996; Kaiko, 1998; 2000; 

Samuelsson and Middleton, 1998; Tindale et al., 1998) 

 

6. Two-dimensional modelling of petroleum system (Vear, 1998) and two-

dimensional overpressure modelling (Bekele et al., 2001).  

 

1.1.2 Background of this study 

 

The Northern Carnarvon Basin can be subdivided into the Exmouth, Barrow, 

Dampier and Beagle Sub-basins, the Rankin Platform and the Exmouth Plateau (e.g. 

Hocking et al., 1994). These tectonic subdivisions were developed by rifting during 

the Jurassic-Early Cretaceous on the Pre-Triassic basement (e.g. Barber, 1982; 

Hocking et al., 1987; Westphal and Aigner, 1997). Although different tectonic 

models for the evolution of the Northern Carnarvon Basin were proposed by Stagg 

and Colwell (1994), and Daim and Lennox (1998), the conceptual model for this 

study is based on a rift tectonic setting and thermal regime (e.g. McKenzie, 1978; 

Middleton and Hunt, 1989). Direct evidence of thermal maturity experienced during 

rifting in most sub-basin wells may have been removed by burial in a later sag-phase 
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deposition in the Barrow-Dampier Sub-basins (Kaiko and Tingate, 1996). However, 

there is still an absence of studies for evidence of rift heat flow in the Northern 

Carnarvon Basin. 

 

According to well-drilling records and interpretations of seismic data, the 

sedimentary rocks associated with the syn-rift phase in the sub-basins are up to 7000 

m thick. The Jurassic rift-related sequence is dominated by organic-rich claystones 

and siltstones which are recognized as the most important source rocks in the sub-

basins (e.g. McClure et al., 1988; Parry and Smith, 1988; Baillie and Jacobson, 

1997; Ellis et al., 1999). However, the richness, type and maturity of organic matter 

in the Jurassic source rocks have not been well understood. 

 

On the basis of studies of maturity and thermal modelling (e.g. Wilkins et al., 1992a; 

Kaiko and Tingate, 1996; Samuelsson and Middleton, 1998), vitrinite reflectance 

(Ro), as a major maturity indicator, in some wells is considered to be significantly 

suppressed by perhydrous effects through marine influenced suppression and/or 

inaccurate identification of vitrinite, and shows an anomalously small increase with 

depth. So far, Rock-Eval Tmax values, as a maturity indicator, have not been well 

studied in this basin. It could be useful to constrain the anomalously low vitrinite 

reflectance and to assess thermal maturity.  

 

The anomalously low Ro profiles in the Barrow and Bambra wells occur within the 

overpressured Jurassic sequence (Kopsen and McGann, 1985). Swarbrick and Hillis 

(1999) suggest that the overpressure may retard the thermal maturation of the 

Jurassic source rocks and delay the petroleum generation and charging time 

predicated by basin modelling. Therefore, whether thermal maturity and 

hydrocarbon generation in the sealed overpressured compartments are retarded by 

the overpressuring has remained a question. Further study is indicated. 

 

Overpressure in the Northern Carnarvon Basin has been studied by Horstman 

(1988), Zaunbrecher (1994), van Ruth et al. (2000) and Tingate et al. (2001). Its 

presence in the Jurassic section and the lower part of the Barrow Group of the 

earliest Cretaceous is confirmed by the measured fluid pressure data. Tingate et al. 

(2001) stated that all overpressure occurrences are accompanied by an increase in 
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sonic transit time and that disequilibrium compaction is the dominant mechanism for 

the overpressure. Recently, Bekele et al. (2001) have carried out numerical 2D basin 

modelling to reconstruct the overpressure generation in the Barrow Sub-basin. They 

proposed that compaction disequilibrium and the permeability of shale layers are 

dominant controls on overpressures, while the contribution to the maximum pressure 

anomaly by organic maturation is approximately 15 %. However, the features and 

formation of pressure seal, interpretation of well-log data for the deep overpressured 

system and top pressure seal, and the processes of deep overpressure generation and 

maintenance in the Jurassic sequence with varying major mechanisms are still 

poorly understood.  

 

1.2  Aims and objectives 
 

1.2.1 Aims 

 

The heat flow history and overpressure build-up in the Jurassic sequence are 

intrinsically related to the dynamic processes (extension, rapid subsidence and 

sedimentation, thermal input and fluid flow) of the basin. Geotemperature and fluid 

overpressure are recognized as essential agents for hydrocarbon generation and 

migration, which interact with the basin evolution. Based on the discussion above, 

the studies of thermal history modelling and overpressure evolution in the rift-

related basin aim at significantly increasing understanding of (1) palaeoheatflow and 

thermal maturity, (2) thermal maturity and petroleum generation in the Jurassic 

overpressured system, and (3) the origins and processes of development and 

preservation of the deep overpressured system. 

 

1.2.2 Objectives 

 

This research has been carried out with the following objectives.  

 

1. Collection of data on total organic carbon content of source rocks, type and 

maturity of organic matter, especially in the Jurassic source rocks. 
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2. Assessment of Rock-Eval Tmax data for thermal maturity study and thermal 

modelling.  

 

3. Analyses of the characteristics of the deep overpressured system and top 

pressure seal. 

 

4. Interpretation of well-log data for the deep overpressured system and top 

pressure seal. 

 

5. One-dimensional modelling for thermal history associated with the rift heat flow 

(McKenzie, 1978; Jarvis and McKenzie, 1980) in some selected wells.  

 

6. Studies of thermal maturity and thermal modelling in the Jurassic sealed 

overpressured system. 

 

7. Seismic data interpretation and depth conversion for 2D geological models.  

 

8. Two-dimensional overpressure modelling for three cross-sections in the 

Exmouth, Barrow and Dampier Sub-basins, and one-dimensional pressure 

behavior modelling in low-permeability (10-18-10-22 m2) environments.  

 

1.3  Methodology 
 

Heat-flow and fluid pressure are the principal agents in sedimentary basin evolution. 

In the processes of basin development, the most significant geochemical and 

geophysical phenomena of self-organization are petroleum generation, migration 

and accumulation, which are closely related to geothermal and geopressure histories. 

Organic-matter maturation and hydrocarbon generation are controlled by chemical 

reaction kinetics which are primarily temperature and time dependent (e.g. Hunt, 

1979, 1991, 1996; Waples, 1980; Middleton, 1982; Tissot and Welte, 1984; 

Burnham and Sweeney, 1989; Sweeney and Burnham, 1990; Barker, 1996; 

Cranganu and Deming, 1996; Schenk et al, 1997). It is well-known that petroleum 

migration is governed by physical and physiochemical processes in relation to 
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sedimentation, compaction, fluid pressure, pore, microfracture and faults, and the 

properties of rocks and pore fluids (e.g. Hubbert, 1953; McAuliffe, 1979; 

Schowalter, 1979; Aydin, 2000), while fluid pressure is the most important factor 

for oil and gas migration in an overpressure environment called the pressure-driven 

process (Hunt, 1990; Schegg et al., 1999). The heat-flow history is a geodynamic 

process associated with basin origin (e.g. Middleton and Hunt, 1989; Allen and 

Allen, 1990). The history of fluid pressure is of solid-fluid interactive processes 

related to sedimentation, compaction, temperature, diagenesis, hydrocarbon 

generation and expulsion. Numerical basin models can synthesize the geological, 

geophysical and geochemical data to describe the complex phenomena and integrate 

the process in temporal order and spatial limit (e.g. Ungerer et al., 1990; Waples et 

al., 1992a, 1992b; Barker, 1996). Also calculated results by basin modelling can be 

calibrated and optimized by the observed data. Swarbrick (1995) pointed out that the 

results based on the present data matched in basin modelling still give limited 

information to test the validity of the models to simulate practical conditions in the 

geological past. However, it is undoubted that basin modelling is a very useful tool 

to understand geological processes. This study integrates geological, geochemical 

and geophysical data and emphasizes geological models in combination with the 

numerical modelling approach. The generalized ideal and work processes of basin 

modelling for these studies are shown in Fig. 1-2. 

 

                      Fig. 1-2 Generalised ideal and work process of basin modelling  

                      for the thermal history and overpressure modelling in this study. 

Observed Data

Geological Conceptual Model 

Geological 
parameters

Mathematical 
Models  

Basin Modelling
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1.3.1 Geological method 

 

The geological method aims at creating a conceptual geological model of the basin 

evolution on the basis of previous works and using geological, geochemical and 

geophysical data collected from various sources, selecting and studying geological 

variables as well as their relationships.  

 

(1) Basic geological processes: tectonic, subsidence, deposition, uplift and erosion. 

 

(2) The present thermal state including the present temperatures and heat-flows. 

 

(3) The measured fluid pressure, formation compaction, the properties of the 

boundaries and the distribution of faults etc. 

 

(4) Organic-matter parameters including total organic carbon, kerogen type and 

thermal maturity.  

 

(5) Characteristics of measured porosity and well-log-derived porosity from 

claystone, and porosity and permeability from sandstones. 

 

1.3.2 Basin modelling 

 

Basin modelling is the study of dynamic and interactive geological processes using 

the BasinMod 1D and 2D software package. The software used in this study aims at 

applying a mathematical method to describe and calculate sedimentation, 

compaction, cementation, heat transfer, hydrocarbon generation, fluid pressure 

evolution and fluid flow through geological time. 

 

Mathematical method 

 

(1) The equations of backstripping (decompaction) and tectonic subsidence were 

used to reconstruct burial history or geohistory and subsidence. 
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(2) The kinetic model of quartz cementation and porosity loss (Walderhaug, 1996) 

was applied to calculate porosity associated with the cementation in the rock 

layer of the top pressure seal in 2D modelling 

 

(3) The kinetic model of the Arrhenius first-order parallel-reaction (Burnham, 

1989) and the chemical kinetic model of vitrinite reflectance (Sweeney and 

Burnham, 1990) were selected to describe the temperature and time 

dependence, and to calculate thermal maturity and hydrocarbon generation. 

 

(4) The volumetric change model of organic matter during thermal evolution of 

solid kerogen into gas, oil and residue was used to calculate generation 

pressure.   

 

(5) The pressure-controlled model (Düppenbecker et al., 1991) was selected for 

calculation of hydrocarbon expulsion in 2D overpressure modelling. 

 

(6) The transient heat flow equation (governing equation) was used to describe 

thermal conduction and convection. 

 

(7) The pressure equation (governing equation) was used to calculate fluid 

pressure (overpressure generation and preservation) as a function of formation 

compaction, temperature (fluid thermal expansion) and hydraulic conductivity.  

 

(8) Multiphase fluid flow equations (governing equation) were used to model the 

processes of compaction-driven water flow direction. 

 

Numerical modelling 

 

Numerical modelling was carried out for thermal history reconstruction and 

overpressure evolution. The modelled results were correlated with the observed data 

for the calibration and optimization of geological parameters so that acceptable 

results were produced including the histories of burial, subsidence, heat flow, 

temperature, thermal maturity, hydrocarbon generation, and overpressure generation 

and maintenance. 
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The numerical modelling was performed using the BasinMod 1D software (version 

7.06) and 2D software (version 4.61) by Platte River Associates, Inc.  Parameters 

and models used in the BasinMod software package can be selected or modified by 

users. The theory, methodology and default parameters in the BasinMod software 

are given in the BasinMod reference manuals (Platte River Associates, Inc., 1996, 

1998a, 1998b). 

 

1.4  Data sources and sets 
 

1.4.1 Data sources 

 

The data used for this study were collected from different sources including open 

files, research reports and published literature. Most well data, including well 

completion reports, geochemical data, formation temperatures, pore fluid pressures 

and well logs, were taken from open files at the Department of Minerals and Energy 

of Western Australia (DMEWA). Seismic data (3100 km) were collected from open 

files at either the Australian Geological Survey Organisation (AGSO) or the 

DMEWA. Velocity data of 101R/09 and 110/11 deep seismic lines were supplied by 

AGSO. Five cross-sections of interpreted seismic lines in the Exmouth Sub-basin 

and the Exmouth Plateau were also provided by BHP Petroleum. Some default 

values, including initial porosity, matrix density, grain size, matrix thermal 

conductivity, fluid conductivity, matrix heat capacity, kerogen kinetic parameters 

etc., were provided by the BasinMod 1D and 2D softwares.  

 

Additionally,  experimental analyses in this study include: Rock-Eval pyrolysis, gas 

chromatography (GC), gas chromatography-mass spectrometry (GC-MS) and 

claystone density measurements for samples from a conventional core, side-wall 

cores and cuttings in the Bambra-2 well (Table 1-1). The Rock-Eval pyrolysis was 

carried out at the Geological Survey of Canada, Calgary. The GC and GC-MS were 

analyzed at the Geological Survey of Canada, Calgary and Curtin University of 

Technology. The claystone density was measured at Curtin University of 

Technology.  
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Table 1-1 Samples from the Bambra-2 well for geochemical analyses 
 

Depth (m) Type of Sample Analysis 

2012.5 Side Wall Core Rock-Eval Pyrolysis 
2172.5 Side Wall Core Rock-Eval Pyrolysis 
2313.5 Side Wall Core Rock-Eval Pyrolysis 
3795 Side Wall Core Rock-Eval Pyrolysis 
3795 Side Wall Core Rock-Eval Pyrolysis (Extracted) 
3906 Side Wall Core Rock-Eval Pyrolysis  
3906 Side Wall Core Rock-Eval Pyrolysis (Extracted) 
4225 Side Wall Core Rock-Eval Pyrolysis  
4225 Side Wall Core Rock-Eval Pyrolysis (Extracted) 
4225 Side Wall Core Gas Chromatography 
4274 Conventional Core Rock-Eval Pyrolysis  
4274 Conventional Core Gas chromatography-mass spectrometry 
4283 Conventional Core Rock-Eval Pyrolysis 
4283 Conventional Core Gas Chromatography 
4283 Conventional Core Gas chromatography-mass spectrometry 
4301 Side Wall Core Rock-Eval Pyrolysis 
4301 Side Wall Core Rock-Eval Pyrolysis (Extracted) 
4301 Side Wall Core Gas Chromatography 
4406 Side Wall Core Rock-Eval Pyrolysis 
4406 Side Wall Core Rock-Eval Pyrolysis (Extracted) 
2660-2665 Cuttings Rock-Eval Pyrolysis  
2660-2665 Cuttings Rock-Eval Pyrolysis (Extracted)  
2660-2665 Cuttings Gas Chromatography 
3090-3095 Cuttings Rock-Eval Pyrolysis 
3090-3095 Cuttings Rock-Eval Pyrolysis (Extracted) 
3440-3445 Cuttings Rock-Eval Pyrolysis 
3530-3535 Cuttings Rock-Eval Pyrolysis 
3970-3975 Cuttings Rock-Eval Pyrolysis 
3970-3975 Cuttings Rock-Eval Pyrolysis (Extracted) 
3970-3975 Cuttings Gas Chromatography 
4115-4120 Cuttings Rock-Eval Pyrolysis 
4280-4285 Cuttings Rock-Eval Pyrolysis 
4274 Conventional Core Density 
4279 Conventional Core Density 
4283 Conventional Core Density 

 
Rock-Eval 6 pyrolysis for 17 samples were carried out at the Geological Survey of Canada, 
Calgary (2000). 
Extraction and Rock-Eval 6 pyrolysis for 8 samples were carried out at the Geological 
Survey of Canada, Calgary (2000). 
Gas Chromatography analysis for 5 samples was performed at the Geological Survey of 
Canada, Calgary (2000). 
Gas chromatography-mass spectrometry analysis for two samples was performed at the 
Geological Survey of Canada, Calgary (2000) and the School of Applied Chemistry of 
Curtin University of Technology (2001). 
Density measurements for three claystone samples were completed at the CSIRO Chemical 
Laboratory (2001). 
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1.4.2 Data sets 

 

A total of 67 exploration well completion reports were reviewed with 41 wells being 

further studied for heat flow histories. The data sets of 14 wells from their well 

completion reports were available for 1D modelling of the heat flow histories using 

the BasinMod 1D software. The data sets of 8 wells from their well completion 

reports (among them, 3 wells used for 1D modelling) were used in 2D modelling. 

These wells used in the modelling were drilled in different tectonic subdivisions 

between 1964 and 1984 by various companies (Fig. 1-3 and Table 1-2).  

 

 

1600 km of interpreted migrated deep seismic data from AGSO (Fig. 1-3), acquired 

between 1990 and 1992, were reviewed. 1500 km of migrated seismic lines, with a 

time record of 5 to 6 seconds TWT, were also reviewed. These seismic lines had 

been acquired between 1978 and 1991, and were collected from DMEWA and 

AGSO (Fig. 1-3). Three seismic lines, 110/11, 101R/09 and A-B were selected for 

2D modelling. Line A-B, in the Barrow Sub-basin, was assembled from eight lines 

shown in table 1-3 and is about 120 km long. Lone 110/11 is in the Exmouth Sub-

basin and about 150 km long. Line 101R/09 is in the Dampier Sub-basin and about 

135 km long. These seismic lines were converted from time to depth cross-sections 

based on well velocity surveys and seismic velocity data for two-dimensional 

overpressure modelling.  

 
The data sets of organic-matter richness, type and maturity were derived from 17 

exploration wells in the basin. The values of porosity and permeability were 

collected from 59 wells in the basin.  
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Table 1-2  The data from 23 wells in the Northern Carnarvon Basin for the modelling 
 
Well Name SD T. D. 

(m) 
R.T.-MSL 
(m) 

W. D. 
(m) 

Age of T. D. Year  
Completed 

Operator 

Jurabi-1a 3712.00 17.4 60.0 Late Triassic 1982 ESSO 

Novara-1b 2753.00 8.0 372.0 Early Cretaceous 1983 ESSO 

Outtrim-1b 1725.00 30.5 91.0 Late Jurassic 1984 ESSO 

Zeewulf-1a, b 

 

EB 

3500.00 10.4 1194.2 Late Triassic 1979 ESSO 

Anchor-1a 3049.00 24.5 18.0 Middle Jurassic 1969 WAPET 

Bambra-1 3666.00 31.75 24.51 Late Jurassic 1983 AOPL 

Bambra-2a, b 4591.00 26.0 26.0 Middle Jurassic 1983 AOPL 

Barrow-1a 2982.47 3.35* 0 Late Jurassic 1964 WAPET 

Barrow Deep-1a 4650.00 7.92* 0 Middle Jurassic 1973 WAPET 

Bowers-1a 4300.00 25.0 133.3 Late Triassic 1982 WAPET 

West Barrow-1/1A 3520.00 10.3 98.0 Early Cretaceous 1982 OONL 

West Barrow-2 

 

 

 

 

BB 

3437.00 8.3 98.0 Early Cretaceous 1985 BHP 

Dampier-1 4141.62 9.14 76.2 Late Jurassic 1969 Woodside 

Hampton-1b 2584.00 30.0 53.0 Early Triassic 1974 Woodside 

Madeleine-1a 4427.53 9.14 68.9 Middle Jurassic 1969 Woodside 

Rosemary-1a, b 

 
 
DB 

3909.06 9.5 64.9 Middle Jurassic 1973 Woodside 

Depuch-1a BS 4300.00 10.0 143.0 Early Jurassic 1974 Woodside 

Goodwyn-7b 3446.00 17.0 134.0 Late Triassic 1985 Woodside 

North Gorgon-1a 4500.00 25.0 215.0 Late Triassic 1983 WAPET 

North Rankin-1a 3534.00 30.2 122.2 Late Triassic 1971 Woodside 

West Tryal Rocks-1b 

 
 
RP 

3866.39 12.2 137.8 Late Triassic 1973 WAPET 

Investigator-1a  3745.60 10.4 841.2 Late Triassic 1979 ESSO 

Jupiter-1a 

 
EP 4946.00 9.5 959.8 Middle-Late  

Triassic 

1979 Phillips 

 
SD: Subdivision; T. D.: Total depth; R. T.: Rotary table; MSL: Mean sea level; W. D.: Water depth; 
EB: Exmouth Sub-basin; BB: Barrow Sub-basin; DB: Dampier Sub-basin; BS: Beagle Sub-basin; 
RP: Rankin Platform; EP: Exmouth Plateau. * R. T. - G. L. (ground level). a: Wells for 1D thermal 
modelling; b: Wells for 2D modelling. 
 

AOPL - Australian Occidental Pty. Ltd. 

BHP - BHP Petroleum Pty Ltd. 

ESSO - ESSO Exploration and Production Australia Ltd. 

Lasmo - Lasmo Oil (Australia) Limited. 

OONL - Offshore Oil N.L. 

Phillips - Phillips Australian Oil Company 

WAPET - West Australian Petroleum Pty. Ltd. 

Woodside - Woodside Offshore Petroleum Pty. Ltd. 
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Table 1-3 Seismic lines used in this study collected from the Department of Minerals and 
Energy of Western Australia 
 
Line Shot Point Operator Line Shot Point Operator 

82-53 1-1310 AOPL 86A-3106/A 1-1563 Woodside 

82-53A 1204-1370 AOPL CD88-B32 1001-2105 CPNL 

82-52A 1-155 AOPL 86B-3175/A 1-558 Woodside 

82-133 1-380 AOPL G86-122 101-1003 ARCO 

83-388 1-779 AOPL G86-140 952-101 ARCO 

83-405 1-361 AOPL HM88A-197 1426-927 BHP 

B85T-649 63-426 BCPL X78A-933 2260-1952 GSI 

81-65 (stack) 1-1732 WOPL X79B-1203 2000-2835 GSI 

K91-13 101-1345 WOPL C81B-145 4757-3272 BHP 

K91-36 1-1177 WOPL C81B-145B 3271-1929 BHP 

J89-23 1-1560 WMC LC89-29 440-1832 LOL 

B82-01M 125-629 WAPET LC89-058 63-470 LOL 

 

AOPL - Australian Occidental Pty. Ltd. 

BCPL - Bond Corporation Pty. Ltd. 

WOPL - Wesminco Oil Pty. Ltd. 

WMC - Western Mining Corporation. 

WAPET - West Australian Petroleum Pty. Ltd. 

Woodside - Woodside Offshore Petroleum Pty. Ltd. 

CPNL - Command Petroleum N. L. 

ARCO - ARCO International 

BHP - BHP Petroleum Pty. Ltd. 

GSI - Geophysical Service International 

LOL - Lasmo Oil Ltd. 
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CHAPTER 2     REGIONAL GEOLOGY 
 

2.1 Location of study area 
 

The Northern Carnarvon Basin is one of a series of extensional basins that form the 

North West Shelf of Australia. It is located at the southern end of the North West 

Shelf (Fig. 2-1). Geologically, it belongs to the Westralian Superbasin which is 

composed of the Perth, Northern Carnarvon, Offshore Canning, Browse and 

Northern Bonaparte basins (Yeates et al., 1987). It stretches from the Precambrian 

Craton in the east to a continental-oceanic crustal boundary in the north, west and 

the southwest, with, respectively, the Argo, Gascoyne and Cuvier Abyssal Plains 

(Hocking, et al., 1987; AGSO North West Shelf Study Group, 1994) (Fig. 2-2). The 

basin is transitional towards the Canning Basin in the northeast, and the Southern 

Carnarvon Basin in the south (Figures 2-1 and 2-2). The main tectonic subdivisions 

of the Northern Carnarvon Basin (Fig. 2-2) are the Exmouth, Barrow, Dampier and 

Beagle sub-basins, the Rankin Platform and the Exmouth Plateau (Hocking, 1988). 

These subdivisions are commonly referred to as the Mesozoic-Cainozoic basin over 

the pre-Triassic basement. Sediments usually extend to the continental-oceanic crust 

boundary.  

 

2.2 Stratigraphy  

 

The Northern Carnarvon Basin contains thick Mesozoic and Cainozoic sedimentary 

rocks overlying the pre-Triassic basement. The sub-basins contain up to 12 km of 

Mesozoic-Cainozoic sediments. The generalized stratigraphic column of the 

Mesozoic and Cainozoic in the Northern Carnarvon Basin, especially for the sub-

basins, based on Barber (1994), Labutis (1994), Stagg and Colwell (1994) and 

Polomka et al. (1999), is shown in Fig. 2-3. There are thinner (non-existent in 

places) Middle-Upper Jurassic syn-rift sedimentary rocks on the Rankin Platform 

and the Exmouth Plateau.  



Chapter 10  Regional Geology 18

 

                 Fig. 2-1 Sedimentary basins of Western Australia (after Trendall and  

                  Cockbain, 1990; Hocking et al., 1994; Purcell and Purcell, 1994). 

 

2.2.1 Triassic 

 

The Triassic sequence represents a series of northeast-trending depocentres in the 

Northern Carnarvon Basin (Hocking, 1988). The boundary between the Permian and 

Triassic in the Barrow-Dampier Sub-basins is an angular unconformity in places 

(Westphal and Aigner, 1997). This sequence is a several kilometers blanket over 

most areas of the basin and can be divided into two parts (Cook et al., 1985; 

Hocking, 1988). The lower part of the Triassic sequence, the Locker Shale, is 

dominated by shale and siltstone but contains minor intercalated limestone and 

sandstone with low-energy marine conditions. The upper part, called the Mungaroo 

Formation, is mostly fluvio-deltaic sedimentary rocks involving sandstone, siltstone, 
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mudstone with thin coals, and minor conglomerates. Deposition of the overlying 

Mungaroo Formation extended into the Rhaetian in most areas in the basin 

(Hocking, 1988). 

 

2.2.2 Jurassic 

 

The bottom of the Jurassic is the Brigadier Formation, a sequence of thinly 

interbedded sandstone and shale, which overlies the Mungaroo Formation, and 

extends into the Rhaetian-Middle Hettangian in most areas of the basin margin 

(Crostella and Barter, 1980; Parry and Smith, 1988). The Jurassic section overlying 

the Brigadier Formation is separated mainly into three formations which are the 

Murat Formation, the Athol Formation and the Dingo Claystone. 

 

The lower part of the Jurassic between the Upper Hettangian and the Pliensbachian 

is the Murat Formation with paralic environments, dominated by land-organic-rich 

siltstone and claystone in the Exmouth, Barrow and Dampier Sub-basins (Hocking, 

1988). The equivalent of the Murat Formation (the lower Legendre Formation) in 

the Beagle Sub-basin consists of shallow-marine and fluvial-deltaic sandstone, 

siltstone and shale with thin coals (Blevin et al., 1994).  

 

The middle part of the Jurassic, between the Toarcian and the Callovian, is the Athol 

Formation, a syn-rift graben deposit dominated by organic-rich claystone and 

siltstone. The formation is up to several thousand meters thick in the depocentres of 

the rift grabens or half-grabens, and gradually thins on the graben flanks. The 

depositional environment for the Athol Formation in the Exmouth, Barrow and 

Dampier Sub-basins is a low-energy, restricted marine environment (Kopsen and 

McGann, 1985; Hocking, 1988; Parry and Smith, 1988; Woodside Offshore 

Petroleum, 1988; Baillie and Jacobson, 1997). The equivalent of the Athol 

Formation (the upper part of the Legendre Formation) in the Beagle Sub-basin 

consists of fluvial sandstone, siltstone and claystone with minor coal (Blevin et al., 

1994).  
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The upper part of the Jurassic is the marine Dingo Claystone, composed of fine-

grained rocks with minor sandstone over the Exmouth, Barrow and Dampier Sub-

basins, and thin to missing in the Beagle Sub-basin. The upper part of the Upper 

Jurassic is the Dupuy Formation. It developed as submarine-fan sediments in the 

Exmouth Sub-basin, as turbidite sandstones and debris flows in the Barrow Sub-

basin, and as turbidite sandstones (Angel Formation) in the Dampier Sub-basin 

(Kopsen and McGann, 1985; Tait, 1985; Hocking, 1988; Parry and Smith, 1988; 

Woodside Offshore Petroleum, 1988; Baillie and Jacobson, 1997).  

 

2.2.3 Cretaceous  

 

The Barrow Group was deposited during the Berriasian to Valanginian, and is 

considered to be a syn-rift sequence of sandstone and shale in the Exmouth and 

Barrow Sub-basins, and on the southern margin of the Exmouth Plateau (Tindale et 

al., 1998; Polomka et al., 1999). This group was formed by a prograding delta. The 

delta's bottomsets are submarine fan, turbidite and deepwater facies and its topsets 

are fluvial to shallow marine deposition (Kopsen and McGann, 1985; Tait, 1985). 

The Barrow Group is two coarsening up sequences composed of interbedded 

sandstone, siltstone and claystone in the lower part of the group, and sandstone with 

minor siltstone in the upper part of the group (Hocking, 1988). The group has a 

maximum thickness of 1600 m (Baillie and Jacobson, 1997) and is an excellent 

reservoir unit over the underlying basin structures and some uplift blocks (McClure 

et al., 1988). The Forestier Claystone between Berriasian and middle Valanginian in 

the Beagle Sub-basin is a marine claystone over the sub-basin and can act as a seal 

(Blevin et al., 1994).   

 

After the breakup of Australia from Greater India in the Valanginian, the Mardie 

Greensand and Birdrong Sandstone were deposited along the shoreface-nearshore 

areas and in the offshore with higher energy conditions. The Muderong Shale 

formed a widespread transgressive marine shale and siltstone with minor sandstone 

and blanketed most of the Northern Carnarvon Basin until the late Aptian (Kopsen 

and McGann, 1985; Hocking, 1988; Blevin et al., 1994). This formation is 

recognised to be an effective regional top seal to the underlying Barrow Group 

sandstone, and Jurassic and older reservoirs on some structurally high elements in 
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the sub-basins (McClure et al., 1988; Parry and Smith, 1988; Baillie and Jacobson, 

1997). The Windalia Sandstone is considered to be a member of the Muderong 

Shale and interpreted as a storm-generated shelf sand deposited below normal wave 

base (Campbell et al., 1984). The Windalia Radiolarite, Gearle Siltstone and 

Haycock Marl were deposited under a general deepening of depositional 

environments and continued till approximately the Turonian (Apthorpe, 1979), with 

inferred water depths in excess of 200 m (Kopsen and McGann, 1985). 

 

A basin-wide change of lithology from siliciclastic to calcareous deposition 

commenced in the Santonian (Hocking, 1988). Because of the lack of terrigenous 

clastic supply, marl, calcarenite and limestone were the principal lithologies from 

the Santonian to the Cainozoic (Barber, 1982). The Toolonga Calcilutite is 

widespread in the Northern Carnarvon Basin. Korojon Calcarenite deposition 

occurred locally, in shallower areas where energy levels were higher. The Withnell 

Formation is an offshore equivalent of the Korojon Calcarenite in the Beagle Sub-

basin. The Miria Marl also has a wide deposition in the Northern Carnarvon Basin 

(Hocking, 1988). 

 

2.2.4 Cainozoic 

 

During the Cainozoic, carbonate-dominated sequences were deposited with 

moderate to low energy shelf to slope environments (Hocking, 1988). Four 

sedimentation cycles were recognised by Quilty (1977) and Hocking (1988). Cycle 

1 was the Late Paleocene to the Early Eocene associated with Cardabia Calcarenite 

deposition. Cycle 2 occurred in the Middle-Late Eocene corresponding to the Giralia 

Calcarenite. This formation was deposited in environments ranging from nearshore 

and inner marine shelf to outer shelf and slope with various lithologies of calcilutite, 

calcisiltite, calcarenite, calcareous siltstone and siliciclastic sediments. Cycle 3 was 

from the Late Oligocene to Middle Miocene. During this period the Cape Range 

Group, including the Mandu Limestone, Tulki Limestone and Trealla Limestone, 

was deposited as carbonate-dominated lithologies of calcilutite and calcareous marl 

in environments which deepened from shallow marine and inner shelf to outer shelf, 

slope and deep marine. This sequence is a northwards-thickening sheet of sediment 
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over the continental shelf. Siliciclastic deposition occurred only in the Middle 

Miocene on the western flank of Cape Range and in the northeast along parts of the 

Rankin Platform. Cycle 4 ranged from the Late Miocene to the Holocene. The 

Delambre Formation with fine calcisiltite and calcilutite was deposited mainly in a 

low energy, marine shelf to slope environment. This sequence ranges in thickness 

from several hundred meters to more than one thousand meters.   

 

2.3 Tectonic subdivisions, structures and faults 
 

2.3.1 Tectonic subdivisions  

 

Based on the studies of Hill (1994), Hocking et al. (1994), and Stagg and Colwell 

(1994), a tectonic subdivision map for the Northern Carnarvon Basin is shown in 

Fig. 2-4. From southeast to northwest, the Northern Carnarvon Basin comprises the 

Peedamullah and Lambert Shelves flanked by the Enderby Terrace, a series of four 

northeast-trending grabens and half-grabens which are the Exmouth, Barrow, 

Dampier and Beagle Sub-basins, the Rankin Platform and its southerly extension, 

the Alpha Arch, and the Exmouth Plateau.   

 

2.3.2 Structures and faults 

 

The depocentres of the Jurassic and Early Cretaceous are bounded by a series of 

horsts to the west and by the Peedamullah and Lambert Shelves to the east. The 

Exmouth and Barrow Sub-basins are separated by the Alpha Arch. The Dampier and 

Beagle Sub-basins are separated by the De Grey Nose. The Exmouth Plateau can be 

divided into two parts, the central and southern plateau, and the northern plateau, on 

the basis of fault features. The central and southern Exmouth Plateau is dominated 

by north-trending or north-northeast-trending faults at the Upper Triassic to Middle 

Jurassic or Early Cretaceous. The principal fault trends on the northern Exmouth 

Plateau are east-northeast. The northeast- and north-northeast-trending normal faults 

predominate in the areas of the sub-basins and the Rankin Platform. These faults are 

associated  with  the  extension  of  the  lithosphere  during  the  rift  phase  until  the 
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breakup of Gondwana. There are several fault systems, including the Rankin Fault 

System, the Flinders Fault System and the Rosemary Fault System. The Flinders and 
Rosemary Fault Systems extend along the east flanks of the Barrow and Dampier 

Sub-basins and consist of high-angle faults that may be antithetic to the Rankin 

Fault System. There are several anticlines, structural arches and noses along the 

eastern margin of the basin. 

  

2.4 Geological evolution 
 

The geological evolution of the Northern Carnarvon Basin, as a part of the 

Northwest Shelf, commenced in the Late Palaeozoic. During this time the North 

West Shelf belonged to the eastern part of Gondwana and formed part of the 

southern Tethyan continental margin (Exon and Colwell, 1994; Westphal and 

Aigner, 1997). Falvey and Mutter (1981) believed that the subsidence of the 

continental margin occurred as an intracratonic phase, which started in the Permian 

and resulted in the Westralian Superbasin on the southern margin of Tethys (Yeates 

et al., 1987). A previous extension of the superbasin terminated in the Late Permian. 

Thus, the geological evolution of the Northern Carnarvon Basin from the Triassic 

can be divided into three major phases: (1) a pre-rift phase which occurred during 

the Triassic, (2) a syn-rift phase which occurred during the Early Jurassic until a 

complete continental breakup of Gondwana in the earliest Cretaceous, and (3) a 

post-rift phase as a passive continental margin from the Early Cretaceous to the 

Cainozoic when the basin experienced various short episodes of compression due to 

the convergence between the Australian and Asian plates. 

 

2.4.1 Pre-rift phase 

  

The Triassic section shows little, or no evidence, of syn-depositional extensional 

faulting along the entire North West Shelf (Etheridge and O'Brien, 1994; Westphal 

and Aigner, 1997) and, thus, a tectonically calm period is thought to have taken 

place in the Triassic (Falvey and Mutter, 1981; Barber, 1982; Westphal and Aigner, 

1997). Based on seismic data, Barber (1982) and the AGSO North West Shelf Study 

Group (1994) interpreted the presence of several kilometres of Triassic sedimentary 
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rocks nearly everywhere on the continental margin. The lower part of the Triassic 

sequence is composed of the marine Locker Shale (Barber, 1982). The Mungaroo 

Formation, the upper part of the Triassic rocks, is mostly of fluvio-deltaic origin. 

The top of the Mungaroo Formation consists of shallow-marine siliciclastics and 

shallow-marine carbonates on the Exmouth Plateau (Barber, 1982; Cook et al., 

1985; Colwell et al., 1994; Exon and Colwell, 1994). The Murat Siltstone of the 

Lower Jurassic is a pre-rift shallow marine succession deposited over the sub-basin 

area. Several hundred meters of this sequence were probably deposited on the 

Exmouth Plateau and eroded during the Middle Jurassic (Barber, 1982).  

 

2.4.2 Syn-rift phase  

 

The early rift is interpreted to have commenced in the Latest Triassic to the earliest 

Jurassic based on K/Ar ages from three volcanic samples on the Wombat Plateau 

dated from 213 to 192 Ma (von Stackelberg et al., 1980; Exon and Colwell, 1994; 

Westphal and Aigner, 1997). Hocking et al. (1987) considered that the rifting 

recommenced in either the latest Triassic or the earliest Jurassic. Boyd et al. (1993) 

considered that the rift occurred from Hettangian to Callovian, and a second rift and 

final breakup took place between Callovian and Hauterivian. The extension in the 

sub-basins of the Northern Carnarvon Basin began in the Early Jurassic (about 190 

Ma), until the continental breakup of Gondwana in the Late Jurassic and 

Valanginian (Barber, 1982; Westphal and Aigner, 1997; Tindale et al., 1998; 

Polomka et al., 1999). The extension finally caused the separation of Australia from 

Greater India in the Callovian-Valanginian (Exon and Colwell, 1994; Westphal and 

Aigner, 1997). The rifting led to a series of four NE-SW to NNE-SSW-trending rift 

grabens and half-grabens (sub-basins) with rapid subsidence and deposition, 

numerous parallel normal faults and the block-faulted structures of the Rankin 

Platform (Barber, 1982). Differential subsidence occurred due to the extension 

resulting in the accumulation of thick fine-grained sequences in the sub-basins, 

whereas several hundred metres to 2500 metres of sediments were eroded on the 

shoulders of rift grabens along the Rankin Platform, the Peedamullah and Lambert 

Shelves (Barber, 1982; Kopsen and McGann, 1985; Hocking, 1988; Westphal and 

Aigner, 1997; Crostella et al., 2000). Tindale et al. (1998) considered that the 

Jurassic syn-rift sequence is either absent or highly condensed across the Exmouth 
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Plateau. Based on regional deep seismic data interpreted by AGSO on the Exmouth 

Plateau, a number of small-scale faulted half-grabens developed during rifting. The 

faults controlled deposition, and up to one thousand metres of Jurassic syn-rift 

sequence were deposited on the downthrown sides of these faults, while syn-rift 

sediments are thin, or absent, on the upthrown side of the faults. Erosion of several 

hundred metres has been interpreted on the structural highs of the Exmouth Plateau 

as a result of rifting (Barber, 1982).  

 

The earliest continental breakup of Gondwana occurred at about 160 Ma (Veevers 

and Li, 1991), or at about 155 Ma (Ludden, 1992), to the north of the basin where 

the Argo Abyssal Plain formed the earliest part of the Indian Ocean. Seafloor 

spreading (further extension) has been proposed to have begun in the Valanginian, 

ca. 136 Ma (Müller et al., 1998), or 132.5 Ma (Veevers and Li, 1991), associated 

with separation of Australia and Greater India, and the formation of the Gascoyne 

and Cuvier Abyssal Plains to the west and southwest of the basin. The breakup times 

were widely accompanied by volcanism along the outer Western Australian margin 

(Exon and Colwell, 1994). The actual continental breakup is commonly dated as 

being concomitant with an unconformity, called the “main unconformity” in the 

Northern Carnarvon Basin. As a result of the breakup, the main unconformity in the 

Beagle Sub-basin is the contact between the Callovian and the Oxfordian sequences 

(Blevin et al., 1994). The main unconformity in the Dampier Sub-basin is within the 

Oxfordian sequence (Vincent and Tilbury, 1988; Barber, 1994). An important 

unconformity in the Exmouth and Barrow Sub-basins is the boundary between the 

Barrow Group and the Winning Group (Valanginian to early Late Cretaceous) 

(Westphal and Aigner, 1997; Tindale et al., 1998; Polomka et al., 1999). The 

thickness of the Upper Jurassic to the lowest Cretaceous sedimentary rocks varies 

considerably in the Northern Carnarvon Basin. During this period, the sequences are 

considered to be syn-rift deposits in the Exmouth and Barrow Sub-basins (Tindale et 

al., 1998). On the Exmouth Plateau, the Oxfordian to Tithonian interval is a thin 

sequence (condensed sedimentary section). During the Late Jurassic, the Rankin 

Platform remained a positive area above sea-level (Barber, 1982). In the earliest 

Cretaceous before the Valanginian breakup, a syn-rift sequence (Barrow Group) was 

deposited in the Exmouth and Barrow Sub-basins, and over the southern margin of 

the Exmouth Plateau, while several localised Triassic fault blocks of the Rankin 
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Platform still remained elevated above sea-level (Barber, 1982). The marginal areas 

of the basin were subjected to erosion (Hocking, 1988). 

2.4.3 Post-rift phase 

  

Following the breakup of Australia from Greater India, the basin developed as a 

passive continental margin and underwent a thermal subsidence phase as a result of 

cooling in the lithosphere. Thermal subsidence commenced in the north of the basin 

and progressively shifted to the south. During the Cretaceous, several periods of 

minor uplift and erosion (structural inversion) occurred in the basin (Tindale et al., 

1998). From the Santonian, calcilutite, calcarenite and marl became the prime 

lithologies due to peneplanation of the continental provenance areas (Barber, 1982). 

During the Cainozoic, northwest Australia experienced various short and localised 

episodes of compression during the Cainozoic which have been interpreted as a 

result of tectonic stresses generated from the convergence of Australian and Asian 

plates (Westphal and Aigner, 1997). This compression caused localised structural 

deformation and strike-slip faulting throughout the North West Shelf (Kopsen and 

McGann, 1985; Cockbain, 1989; Tindale et al., 1998). However, the effects of these 

tectonic events on the entire Northern Carnarvon Basin are considered to be small 

and of brief duration (Westphal and Aigner, 1997; Keep et al., 1998). The 

carbonate-dominated Cainozoic sequence with minor siliciclastic sediments was 

deposited over the basin (Hocking, 1988).  
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CHAPTER 3     SOURCE ROCKS AND ORGANIC MATTER 

 

3.1 Source rocks 
 

The potential source rocks and characteristics of the organic matter in the Triassic, 

Jurassic and Lower Cretaceous in the Northern Carnarvon Basin have been studied 

by Scott (1992, 1994), and discussed by a number of researchers (e.g. Powell and 

McKirdy, 1973a; Volkman et al., 1983; Cook et al., 1985; Kopsen and McGann, 

1985; Parry and Smith, 1988; Woodside Offshore Petroleum, 1988).  

 

The Triassic source rocks can be separated into two parts. The lower part (Locker 

Shale) appears to contain oil-potential organic matter deposited in a marine 

environment (Barber, 1982; Scott, 1992, 1994). The upper part (Mungaroo 

Formation) is composed of a coaly sequence of fluvio-deltaic facies, and sources gas 

and condensate. However, the very top of the Mungaroo Formation had some 

marine influence (Cook et al., 1985).  

 

The Jurassic sequences, including the Murat Siltstone, Athol Formation and Dingo 

Claystone, are the most important source rocks in the sub-basins of the Northern 

Carnarvon Basin (McClure et al., 1988; Parry and Smith, 1988; Baillie and 

Jacobson, 1997). The Lower-Middle Jurassic rocks in the sub-basins are composed 

of paralic-marginal marine lithofacies containing a large amount of woody, land-

derived organic matter and are thus considered to form predominately 

gas/condensate-prone source rocks (Scott, 1992). The Dingo Claystone of the Upper 

Jurassic contains mixed terrestrial and marine organic matter (gas and oil-prone 

source) deposited in a near-shore environment (Powell and McKirdy, 1973a; 

Volkman et al., 1983), with somewhat less terrestrial input than the Lower-Middle 

Jurassic (Kopsen and McGann, 1985; Parry and Smith, 1988; van Aarssen et al., 

1996). Geochemical evidence reveals a general similarity in the compositions of the 

condensates and oils from the Triassic, Jurassic and Cretaceous reservoirs in the 

Dampier Sub-basin and on the Rankin Platform, and also suggests that the 

hydrocarbons have been generated from these Jurassic source rocks with the mixed 
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nonmarine and marine organic matter (Powell and McKirdy, 1973a). Volkman et al. 

(1983) and van Aarssen et al. (1996) proposed that the Upper Jurassic source rock is 

the most important oil source in the Barrow Sub-basin, based on the oil-source rock 

correlation. Furthermore, van Aarssen et al. (1996) suggested that these oils and 

condensates from the Barrow Sub-basin, correlated with samples from the Koolinda-

1 well, were sourced from an interval of the source rocks of Middle-Upper 

Oxfordian age. It is recognized that the kerogen of the Upper Jurassic from wells 

drilled on structural highs, and basin margins, is mainly derived from terrestrial 

higher plants (Kopsen and McGann, 1985; Parry and Smith, 1988). Kopsen and 

McGann (1985) stated that the Lower Cretaceous has some oil-prone source rocks 

within the Barrow Group and the lower part of the marine Muderong Shale in the 

Barrow-Dampier Sub-basins.  

 

3.2 Richness of organic matter 
 

The organic matter richness of source rocks is estimated usually using the total 

organic carbon content (TOC, %), although the TOC is residual TOC when dealing 

with mature source rocks as the overall converting efficiency of organic carbon is 

generally less than 15 wt.% (Hunt, 1979). Quantity of organic matter in source rocks 

can be calculated using a universal conversion factor of 1.22 (Barker, 1996). The 

study has collected 1256 values of TOC from 17 wells in the various tectonic 

subdivisions of the Northern Carnarvon Basin (see Table 3-1 and Fig. 3-1). The 

distributions of TOC at different intervals of the potential source rocks are shown in 

histograms (Figures 3-2 to 3-6).  

 

Figure 3-2 shows that 206 TOC values in the Cretaceous Gearle Siltstone, Windalia 

Radioarite and Muderong Shale mainly range from 0.5 % to 3 %, and that values 

between 1 and 2 % cover more than 50 % of the shale samples. About 80 % of the 

samples have more than 1 % TOC. Figure 3-3 and Table 3-1 show that most TOC 

values in the Barrow Group range from 0.1 to 3.7 %. About 60 % of the samples in 

this group are higher than 1.0 % TOC, but about 40 % are lower than 1.0 % TOC. 

An average TOC value in the Barrow Group is 1.30 %. 
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Figure 3-4 shows that 582 TOC values in the Dupuy Formation, Dingo Claystone 

and Athol  Formation of the syn-rift Jurassic mostly  range from 0.5 % to 3.5 %. The 
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values between 1 % and 2.5 % cover about 80 % of the samples. The TOC values in 

the Murat Siltstone of the pre-rift Jurassic principally vary from 0.5 to 6 %, whereas 

the TOC values of about 70 % of the samples are higher than 1 % (Fig. 3-5). In the 

Beagle Sub-basin, the coal-bearing sequence of the Jurassic source rocks has higher 

TOC, and most values of greater than 10 % TOC in Figures 3-4 and 3-5 occur in the 

Beagle Sub-basin. In general, the Jurassic rocks can be considered to be rich in total 

organic matter. An average TOC value in the Dupuy Formation, Dingo Claystone 

and Athol Formation is 1.74 % and in the Murat Siltstone is 2.09 %. 

 

The Mungaroo Formation of the Middle-Upper Triassic is a coaly interval rich in 

organic matter. TOC values in this formation are from 0.1 to 35.9 % with an average 

TOC value of 2.19 %. The TOC values range from 0.5 to 14 % for 80 % of the 

samples. The TOC values in approximately 65 % of the samples are greater than 1 

% (Fig. 3-6). TOC values in the Locker Shale of the Lower-Middle Triassic are 

between 0.6 and 1.94 % from the limited data (Table 3-1).  

 
 
 

 
 
           
         Fig. 3-1 A map shows well locations and the tectonic subdivisions in the Northern    
         Carnarvon Basin (after Woodside Offshore Petroleum, 1988; Scott, 1992). 
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      Fig. 3-6 Histogram of total organic matter for the Mungaroo Formation in the   

      Northern Carnarvon Basin. 

 

Barker (1996) considered that a TOC value of 1.0 % is the lower limit for an 

effective source rock because a source rock with less than 1.0 % will never generate 

enough oil to initiate primary migration. Peters (1986) mentioned that a TOC 

between 0.5 and 1.0 % indicates a fair source-rock generative potential, TOC values 

ranging from 1.0 % to 2.0 % a good generative potential, and TOC values greater 

than 2.0 % a very good generative potential. According to this criterion, 60 to 80 % 

of the TOC values from the samples of the Triassic, Jurassic and Cretaceous in this 

basin belong to the good or very good source-rock generative-potential categories. 

Baillie and Jacobson (1997) pointed out that TOC values typically range from 1 to 6 

% in the Dingo Claystone, Athol Formation and Murat Siltstone. The range and the 

calculated average values of the total organic carbon in the five intervals mentioned 

above in 17 wells are shown in Table 3-1. The values of TOC >15 % are not 

included in Table 3-1.  
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3.3 Type of organic matter 
 

Organic matter type is an important factor in evaluating source rock potential and 

has an important influence on the nature of hydrocarbon products (Hunt, 1979; 

Tissot and Welte, 1984; Barker, 1996). Jones (1984) studied generative potential of 

oil and gas from different organic facies with Ro of about 0.5 %. He pointed out that 

gas-prone organic facies have a hydrogen index (HI=S2%100/TOC) of less than 200; 

mixed oil-gas-prone facies have a HI between 200 and 350; oil-prone facies have a 

HI ranging from 350 to more than 1000. Peters (1986) proposed that for immature 

source rocks, the HI for gas-prone organic matter is less than 150; gas-oil-prone 

organic matter is between 150-300; oil-prone organic matter is more than 300. The 

organic matter type within the Triassic, Jurassic and Cretaceous in this basin has 

been reviewed on the basis of kerogen element analysis and Rock-Eval pyrolysis for 

bulk geochemical properties, and organic petrographic analysis for visual kerogen 

compositions and some biomarker data.     

 

The atomic H/C (hydrogen/carbon ratio) and atomic O/C (oxygen/carbon ratio) from 

elemental analyses of kerogen for three wells in the Exmouth Sub-basin are shown 

in the van Krevelen diagrams (Fig. 3-7). Their evolution paths with maturation 

indicate that the bulk geochemical properties of kerogen in the Jurassic and Early 

Cretaceous are mainly those of type III kerogen. The organic matter in the upper 

part of the Jurassic sequence in the Jurabi-1 well of the Exmouth Sub-basin appears 

to have relatively high HI ranging from 200 to 315 (Fig. 3-7). The plot of HI against 

Tmax values in Fig. 3-8 for six wells in the Barrow and Dampier Sub-basins indicates 

that the organic matter is dominated by type III kerogen. Figure 3-9 shows organic 

matter of the Jurassic source rock samples in the Depuch-1 well of the Beagle Sub-

basin. Some coaly samples of the Jurassic source rocks in this well have relatively 

high HI values ranging from 241 to 389. Rock-Eval data of the Upper Triassic rocks 

(Mungaroo Formation) from the North Gorgon-1, Investigator-1 and Jupiter-1 wells 

(Fig. 3-10) show that the organic matter belongs to type III kerogen in accordance 

with the coal-bearing nature of the Upper Triassic sequence. Consequently, from the 

bulk geochemical data, the organic matter within the Upper Triassic, Jurassic and 

Lower Cretaceous in these well sites is mainly type III kerogen.  
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The relative percentages of visual kerogen compositions based on organic 

petrographic analysis in seven wells in the Barrow Sub-basin by Teerman (1994) are 

given in Table 3-2. The organic matter in the Upper and Middle Jurassic rocks 

consists of various mixtures of amorphous II and III, structured liptinite, vitrinite 

and inertinite. Structured liptinite in the Athol Formation of the Middle Jurassic 

consists of relatively more terrestrial sources, including pollen, spores and cuticle, 

compared to a higher proportion of marine algal source in the Dingo Claystone of 

the Upper Jurassic (Teerman, 1994). The kerogen composition data listed in Table 

3-2 indicate that the maximum percentages of vitrinite and inertinite in the Athol 

Formation are 70 % and 25 %, respectively, while the maximum percentages of 

vitrinite and inertinite in the Dingo Claystone are 45 % and 20 %, respectively. 

Although the analyses from certain wells may not accurately represent the entire 

organic matter assemblage in the basin, the organic matter in the Jurassic is of a 

mixed marine and terrigenous source with more land materials in the Middle 

Jurassic rocks and more marine input in the Upper Jurassic rocks. The organic 

matter in the Upper Triassic Mungaroo Formation in the West Tryal Rocks-1 well is 

composed of amorphous III, structured liptinite, vitrinite and inertinite, which is 

oxidized organic matter and humic materials (Teerman, 1994).  

 

Table 3-2  Visual compositions of organic matter (%) from organic petrographic analyses 
(Teerman, 1994) 
 

Well Formation 1Amorphous 
II 

2Amorphous 
III 

Structured 
Liptinite 

Vitrinite Inertinite Solid 
Bitumen 

Dupuy 35-40 0 15-20 25-30 15-20  Bambra-1 
Dingo 25-50 0-5 10 30-45 10-15  

Barrow 
Deep-1 

Athol 20-50 10-25? <5-5 20-50 5-10 Trace-5 

Bowers-1 Athol 30-40 0? 5 40-50 10-20 Trace 
Dingo 50 0 10 35 10  Dorrigo-1 
Athol 30-50 0 10 30-60 10-25  
Dingo 30-45 0 10-25 20-35 10-20   

Emma-1 Athol 30-50 0-55 5-10 30-45 10-15  
Parker-1 Athol Trace-20 10-40 5-10 40-70 5-15  
West Tryal 
Rocks-1 

Mungaroo  35-50 5-15 25-40 10-20  

 

1: Amorphous II is chemically equivalent to end member type II kerogen that primarily originates 

from algal and bacterial precursors. 

2: Amorphous III is generally equivalent to type III kerogen that derives from hydrogen-poor humic 

precursors or a product of poor preservation. 

See Fig. 3-1 for well locations. 
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Several molecular parameters for assessment of the source from the relative 

abundances of C27 and C29 steranes, and pristane and phytane in oils and rocks in the 

Barrow Sub-basin are listed in Table 3-3. The C29 steranes originate from the 

precursor C29 sterols that predominate in higher plants (Huang and Meinshein, 1979; 

Volkman et al., 1983). Thus, the proportion of C27 and C29 steranes in oils and rocks 

can serve as an indicator for the source of land-plant organic matter (Volkman et al., 

1983). The geochemical correlation indicates that the crude oils in the Barrow Sub-

basin had a source in the Dingo Claystone of the Upper Jurassic and that the ratios 

of C27 and C29 steranes in oils and source rocks in the Dingo Claystone (A and B; 

Table 3-3) are consistent with a mixed marine and terrigenous source (Volkman et 

al., 1983). The pristane/phytane ratios in the oils are also consistent with their 

formation (C; Table 3-3) from the mixed marine and nonmarine organic matter 

deposited in a marginal marine (near-shore) environment (Powell and McKirdy, 

1973a; Volkman et al., 1983). Moreover, the oils in the Jurassic rocks have a high 

wax content which suggests that the terrestrial source is a significant contributor to 

the hydrocarbon potential in the basin (Powell and McKirdy, 1973a). 

 

Parry and Smith (1988) stated that sampling from wells drilled on structural highs or 

basin margins for source rock analysis is obviously limited. They believed that there 

is sufficient source rock of the oil-prone type in the Barrow Sub-basin. Scott (1992) 

suggested that the Rock-Eval method is underestimating the oil potential of the 

Jurassic source rocks in both marine and continental sequences. Ellis et al. (1999) 

considered that the organic matter in the Dingo Claystone is mixed marine and 

terrestrial material, and the Athol Formation may have contributed some oil in the 

Barrow Sub-basin. Tissot and Welte (1984) pointed out that type III kerogen occurs 

quite frequently in thick sequences of clastic sediments along continental margins, 

and microbial degradation of the terrestrial plant and vegetal debris in these basins is 

usually limited due to depositional environment and rapid burial. The discussion of 

type III kerogen mentioned above is not incompatible with the major accumulations 

of gas and oil discovered in the sub-basins and on the Rankin Platform. Based on the 

viewpoint of Peters (1986) and the geochemical data of samples from these wells, 

most of the organic matter within the Lower-Middle Jurassic in the areas of well 

locations on the structural highs and basin margins have the potential to generate 

mixtures of gas and oil, but mainly gas (Parry and Smith, 1988), while the partial 
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organic matter in the Upper Jurassic source rocks from the organic facies in the 

depocentres of the Barrow-Dampier Sub-basins is likely to be more oil-prone. The 

kerogen within the Upper Triassic coaly sequence is primarily gas-prone organic 

matter.  

 

Table 3-3 Molecular parameters of organic source for paraffinic oils and rocks in the 

Barrow Sub-basin 

 
Well Sample Depth (m) Formation A B C 

Barrowa Oil 1890 Dupuy (SS) 0.80 1.70 3.10 

Barrowa Oil 2010 Dupuy  (SS) 0.94 1.20 2.80 

Bambra-1b Condensate (RFT) 2051  Barrow (SS) 1.25 0.81 3.46 

Bambra-1b Oil 2053.25 Barrow (SS) 1.41 0.88 2.81 

Bambra-1b Oil (RFT) 3640.5  Dingo (SS) 0.60 0.56 2.54 

Bambra-2b Oil (DST) 2032-2033.5 Barrow (SS) 0.86 1.27 2.39 

Bambra-2b Oil (DST) 2037-2038.5 Barrow (SS) 0.88 1.09 1.90 

       

Barrow-1a Core 10 1036 Barrow (ST) 0.54 0.90 2.50 

Barrow-1a Core 34 2402 Dingo (ST) 1.00 1.20 2.40 

Barrow-1a Core 37 2835 Dingo (CS) 1.30 1.50 2.30 

Bambra-1b Core 2715.5 Dupuy (CS) 0.66 0.47 2.40 

Bambra-1b Core 2727.8 Dupuy (CS) 0.76 0.82 2.79 

Bambra-1b Cuttings 3610 Dingo (CS) 1.00 0.55 2.53 

Bambra-2c Core 4274 Athol (CS) 0.79 0.53 1.85 

Bambra-2d Core 4283 Athol (CS) 0.93 1.11 3.16 

 

RFT: Repeat formation test; DST: Drill stem test; SS: Sandstone; ST: Siltstone; CS: Claystone. 
A: C27 (20R)-5α(H), 14α(H), 17α(H)-sterane / C29 (20R)-5α(H), 14α(H), 17α(H)-sterane 
B: C27 (20R)-13β(H), 17α(H)-diasterane / C29 (20R)-13β(H), 17α(H)-diasterane 
C: Pristane / Phytane 
a: Data were taken from Volkman et al. (1983).  
b: Data were collected from well-completion reports. 
c: Data were analyzed at Curtin University of Technology (2001). 
d: Date were analyzed at the Geological Survey of Canada, Calgary (2001).  
See Fig. 3-1 for well locations. 
 

Figures 3-11, 3-12 and 3-13 are three typical geochemical profiles of the Jurassic 

source rocks from the Rock-Eval pyrolysis data for Jurabi-1 in the Exmouth Sub- 

basin, Barrow Deep-1/ Barrow-1 in the Barrow Sub-basin and Depuch-1 in the 

Beagle Sub-basin. 
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3.4 Summary 
 

The most important source rocks in the basin are the Jurassic claystone and siltstone 

rocks. The rift-related Dingo Claystone and Athol Formation of the Jurassic 

generally contain 0.2 to 4 % TOC with an average value of about 1.74 %. TOC 

values from about 80 % of the samples in these formations range from 1 % to 4 %. 

TOC values in the Murat Siltstone of the Lower Jurassic are primarily between 0.5 

and 6 % with an average value of about 2.1 %. TOC values in the coaly Mungaroo 

Formation of the Middle-Upper Triassic are between 0.1 and 35.9 % with an 

average value of about 2.2 % (calculated from samples with TOC < 15 %). 

 

The organic matter in the Middle-Upper Triassic is mainly derived from land 

materials, which is dominated by the type III kerogen with gas potential. The 

organic matter in the Lower-Middle Jurassic consists of a mixture of more terrestrial 

and less marine input giving a gas and oil-prone source but mainly a gas source. The 

organic matter in the Upper Jurassic is mixed marine and terrigenous materials, but 

it seems to have less terrestrial input than in the Lower-Middle Jurassic source 

rocks, and may contain a significant source of oil-prone organic matter within the 

Barrow-Dampier Sub-basins. It should be noted that there are not enough data to 

evaluate the type of organic matter in the Murat Siltstone of the Lower Jurassic in 

these sub-basins. 



Chapter 3  Source Rocks and Organic Matter 42

            Table 3-1 Statistics of total organic matter (TOC, %) in 17 wells from various 
tectonic subdivisions in the Northern Carnarvon Basin 
 

Cretaceous Jurassic  
Well Gearle *Windalia Muderong Barrow Dupuy Dingo Athol Murat 
Jurabi-1 1.28-3.68 

2.14 (4) 
1.06-1.80 
1.43 (2) 

1.26   0.34-4.12 
1.70 (82) 

0.50-1.16 
0.77 (13) 

Novara-1 0.55-1.82 
1.40 (10) 

0.19-1.52 
0.96 (5) 

1.23-2.42 
1.80 (4) 

0.14-1.67 
1.01 (10) 

    

Outtrim-1 1.27-3.17 
2.09 (13) 

1.05-1.96 
1.63 (5) 

0.87-2.51 
1.64 (9) 

0.10-2.54 
1.30 (22) 

0.35-2.74 
0.96 (6) 

   

Zeewulf-1    0.27-0.53 
0.44 (3) 

    

Anchor-1   1.55-2.27 
1.88 (5) 

0.75-1.93 
1.47 (9) 

0.66-1.37 
1.00 (3) 

0.48-2.47 
1.41 (80) 

  

Barrow-1 
Barrow Deep-1 

2.08-8.43 
3.87 (24) 

1.66-3.24 
2.45 (2) 

1.28-3.78 
2.17 (18) 

0.10-3.68 
1.38 (22) 

0.37-1.49 
1.12 (7) 

0.35-3.68 
1.90 (110) 

0.92-2.56 
1.54 (70) 

 

Dampier-1 0.25-3.13 
1.12 (9) 

0.36-3.70 
1.84 (21) 

0.35-3.31 
1.63 (91) 

  

Hampton-1 1.18-1.54 
1.36 (2) 

  0.23-1.89 
0.80 (8) 

0.70-3.81 
1.32 (23) 

Madeleine-1 0.21-2.74 
1.12 (16) 

0.21-2.35 
1.15 (33) 

0.39-3.31 
1.75 (83) 

0.16-2.19 
1.19 (17) 

 

Rosemary-1      0.57-2.16 
1.72 (12) 

0.55-4.64 
2.11 (13) 

 

Depuch-1 0.46-2.22 
1.33 (8) 

  1.77-12.81 
6.40 (11) 

3.06-10.65 
5.16 (9) 

Picard-1 0.25-3.37 
1.45 (23) 

  0.19-4.88 
2.31 (13) 

0.37-5.92 
2.26 (40) 

North 
Gorgon-1 

0.60-1.82 
1.13 (17) 

1.00-1.12 
1.06 (2) 

1.10-2.84 
1.65 (28) 

0.24-2.00 
1.41 (10) 

    

North 
Rankin-1 

        

Investigator-1    0.15-1.41 
0.94 (15) 

    

Jupiter-1         

            Range/average value (total samples). * Windalia: Windalia Radiolarite. See Fig. 3-1 for well 
locations. The data were collected from well completion  
              reports. The values of TOC > 15 % are not included in this table. 
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CHAPTER 4     ASSESSMENT OF ROCK-EVAL TMAX DATA IN 

THE BAMBRA-2 WELL: A CASE STUDY OF THE 

CONTAMINATED ROCK-EVAL DATA 

 

4.1 Introduction 
 

Rock-Eval Tmax (oC) is the temperature at which the S2 (mg HC/g rock) peak reaches 

its maximum amount of hydrocarbon generation during Rock-Eval pyrolysis (e.g. 

Espitalié et al., 1984; Peters, 1986; Tissot et al., 1987). When reliable values are 

obtained, Rock-Eval Tmax increases progressively with thermal maturity (e.g. 

Espitalié et al., 1984; Tissot and Welte, 1984; Waples, 1985; Peters, 1986). Tissot 

and Welte (1984), Peters (1986), and Hunt (1996) have also recognized factors that 

influence Tmax values, such as organic matter types, contamination, and the mineral 

matrix. Peters (1986) stressed that many maturity parameters, especially Tmax, 

depend on the type of organic matter from which they are derived. Tissot et al. 

(1987) proposed that Tmax is a good maturation indicator between 420 and 460 oC in 

type II kerogen, and between 400 and 600 oC in terrestrially derived type III 

kerogen. It has also been shown that Tmax values can be correlated to vitrinite 

reflectance for humic coal and type III kerogen (Teichmüller and Durand, 1983; 

Espitalié et al., 1984; Waples, 1985; Tissot et al., 1987).  

 

Hunt (1996) and Peters (1986) pointed out that contaminants, such as drilling-mud 

additives and natural bitumen, can raise or lower Tmax values depending on their 

composition and the relative kerogen concentration. Hunt (1996) reported that heavy 

hydrocarbons can cause multiple S2 peaks. He also reported that Tmax values of 

about 365 to 375 oC within an interval of 600 metres in a well offshore Louisiana 

(Gulf Coast) were derived from cuttings contaminated with cetane (C16H34) due to 

the presence of diesel in the mud. Bordenave et al. (1993) reported an example 

showing that the Tmax has no meaning when the total organic carbon (TOC) is lower 

than 0.3 % and S2 lower than 0.5 mg HC/g rock, especially if an oil base mud is 

used. Peters (1986) reported Tmax values for drilling-mud additives, such as walnut 

hulls which have a Tmax value of 425 oC. A recent study by Daniel M. Jarvie 
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indicates that walnut hulls will give a Tmax value of about 335 to 360 oC (personal 

communication, 2001). Clementz (1979) reported that solid bitumen and the heavy-

end fraction of petroleum produce a measurable response in the S2 temperature 

range from 350 to 450 oC. Kruge (1983) also stated that heavy bitumen can affect 

the S2 peak causing abnormal Tmax values. Vandenbroucke et al. (1993) showed that 

the Tmax values measured on kerogen in the overpressured zone of the Handil field, 

Mahakam Delta, Indonesia, are significantly lower than the values measured on the 

coal samples, because the organic matter contains a significant percentage of 

pyrobitumen. Snowdon (1995) pointed out that Tmax might be suppressed about 1 oC 

for each 50 hydrogen index (HI=S2×100/TOC) increment, when it is above 100 to 

150 for typical type III organic matter. Peters (1986) noted that samples dominated 

by recycled organic matter with equivalent low maturity (Ro < 0.6 %) show 

variations in Tmax up to about 10o C. 

 

It has been shown, however, that the use of solvent extraction techniques prior to 

Rock-Eval pyrolysis may produce more accurate Tmax values (Clementz, 1979; 

Kruge, 1983; Peters, 1986; Tissot et al., 1987). Solvent extraction removes 

extraneous and indigenous hydrocarbons that both elute in the S1 (free 

hydrocarbons, mg HC/g rock) peak and sometimes carry over into the S2 peak 

(Clementz, 1979). Extraction provides a relatively "clean" sample for Rock-Eval 

pyrolysis and increased accuracy in Tmax measurements.  

 

This study demonstrates that the cuttings below about 3300 metres in the Bambra-2 

well are strongly contaminated, possibly by drilling-mud additives, yielding Tmax 

values much lower than those from conventional core and some side-wall core 

samples. It also demonstrates that some side-wall cores are also contaminated by 

drilling-mud additives such as diesel. Since the measured vitrinite reflectance values 

for the Upper-Middle Jurassic source rocks in the Bambra-2 well are anomalously 

low (e.g. Kopsen and McGann, 1985; Kaiko and Tingate, 1996) and the Jurassic 

sequence is highly overpressured (e.g. Kopsen and McGann, 1985; Tingate et al., 

2001), the case study for the reliability of Rock-Eval Tmax data is significant for 

evaluation of the thermal maturity in this well.  
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4.2 Sources of Rock-Eval data 
 

The Bambra-2 well is located in the Barrow Sub-basin of the Northern Carnarvon 

Basin, North West Shelf of Western Australia (Fig. 3-1). The well was drilled to a 

total depth of 4591 metres (RT) within Middle Jurassic rocks (Fig. 4-1). The 

Jurassic sediments are considered to be major source rocks dominated by land-

derived organic matter (e.g. Kopsen and McGann, 1985; Scott, 1992). Rock-Eval 

data from 280 cuttings, 21 side-wall cores and 2 conventional core samples, and 4 

gas chromatograms (GC) of saturated hydrocarbon fractions were obtained from the 

Bambra-2 well. The majority of the Rock-Eval data were measured using standard 

methods by the Australian Mineral Development Laboratories (AMDEL) in 1983. In 

addition four side-wall core samples, two conventional core samples, and four 

cuttings samples, were analyzed with Rock-Eval 6 pyrolysis, using standard 

methods at the Geological Survey of Canada, Calgary (GSCC) in 2000. The four 

side-wall core samples and three of the cuttings samples were also extracted in a 

Soxhlet extraction apparatus using an azeotropic mixture of chloroform:methanol 

(87:13) for 24 hours to remove soluble organic matter (both diesel contaminants and 

indigenous) in order to examine the effect of the additives on Tmax values. The 

Rock-Eval data are shown in Fig. 4-1, Table 4-1 (Rock-Eval data from the 

conventional core and the side-wall core samples) and Table 4-2 (Rock-Eval data 

from the cuttings samples). 

 

4.3 Gas Chromatography (GC) Analysis 
 

Based on the Bambra-2 Well Completion Report, 5 % and 6 % (by volume) of 

diesel was added to the drilling mud at 2424 and 4486 metres respectively (Fig. 4-

1). It was also noted in the well completion report that diesel was present in trace 

amounts in the mud system during the drilling from about 3100 to 4485 metres. 

Figure 4-2 shows the distinct characteristics of the saturated hydrocarbon fractions 

from GC analysis for two conventional core samples (uncontaminated) and from 

three examples of side-wall core samples and one cuttings sample. Based on the 

distribution of saturated hydrocarbons in Fig. 4-2, these traces indicate that the SWC 

and  cuttings  samples  were  both  contaminated  by  diesel  in the drilling mud. The  
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Table 4-1 Rock-Eval pyrolysis results for Jurassic core samples from Bambra-2 in the 
Barrow Sub-basin 
 

Depth 
(m) 

Tmax 
(oC) 

S1 S2 S3 TOC 
(wt. %) 

HI OI PI Type of  
Sample 

Evaluation 
for Tmax 

2616b 438 0.46 0.78 1.29 0.74 105 174 0.37 SWC (CS) Acceptable  
2734b 436 1.09 0.62 1.42 0.69 89 205 0.64 SWC (ASST) Low  
2803b 438 0.61 1.05 1.16 0.93 112 124 0.37 SWC (CS) Acceptable 
2955b 438 0.77 0.84 1.21 0.81 103 149 0.48 SWC (CS) Low 
3056.5b 439 1.24 0.55 1.23 0.63 87 195 0.69 SWC (CS) Low  
3195b 445 0.51 1.76 1.45 1.11 158 130 0.22 SWC (STS) Acceptable 
3250b 441 0.53 1.08 0.79 0.83 130 95 0.33 SWC (STS) Low 
3430b  446 1.05 2.12 5.49 1.43 148 383 0.33 SWC (CS) Acceptable 
3650b 454 0.57 0.83 1.38 1.16 71 118 0.41 SWC (CS) Acceptable 
3676b 451 3.21 1.81 1.46 1.66 109 87 0.64 SWC (CS) Low 
3782b 455 1.70 1.39 1.89 1.67 83 113 0.55 SWC (CS Low 
3795b 444 6.52 1.20 2.62 1.57 76 167 0.84 SWC (CS) Low  
3795a 453 1.81 3.51 4.81 2.53 139 190 0.34 SWC (CS) Low  
3795a 461 0.05 1.67 3.57 1.95 86 183 0.03 Extracted  Normal  
3824b 454 3.02 1.56 3.21 1.67 93 192 0.66 SWC (CS) Low  
3851b 451 4.45 1.09 3.87 1.56 69 248 0.80 SWC (CS) Low  
3906a 457 1.27 2.34 2.44 2.05 114 119 0.35 SWC (CS) Low  
3906a 462 0.05 1.04 2.48 1.63 65 152 0.04 Extracted  Normal  
3980b 457 1.55 0.84 1.41 0.90 93 156 0.65 SWC (STS) Low  
4090b 462 2.39 1.03 0.96 0.86 119 111 0.70 SWC (SCS) Low  
4225a 335 1.04 1.32 0.92 1.42 93 65 0.44 SWC (CS) Abnormal 
4225a 485 0.03 0.53 0.68 1.11 48 61 0.05 Extracted  Normal  
4274a 484 0.11 0.34 0.10 0.74 46 14 0.25 CC (CS) Normal  
4279b 484 0.30 0.31 2.74 0.86 36 318 0.49 CC (CS) Normal 
4282.9b 487 0.20 0.25 0.71 0.76 32 93 0.44 CC (CS) Normal  
4283a 490 0.13 0.39 0.03 0.97 40 3 0.24 CC (CS) Normal  
4295b 410 3.85 0.81 3.99 1.19 68 335 0.83 SWC (CS) Abnormal 
4301a 337 0.53 0.95 1.16 0.99 96 117 0.37 SWC (CS) Abnormal 
4301a 488 0.03 0.35 0.86 0.77 45 112 0.07 Extracted  Normal  
4353b 389 3.00 0.55 2.28 0.85 64 268 0.85 SWC (STS) Abnormal  
4445.5b 412 1.29 0.42 1.25 0.60 70 208 0.75 SWC (STS) Abnormal  

 
a: Rock-Eval data were measured with Rock-Eval 6 by the Geological Survey of Canada, Calgary 
(GSCC) (2000).  
b: Rock-Eval data were measured by the Australian Mineral Development Laboratories (AMDEL) 
(1983).  
 
CC-conventional core; SWC-side-wall core; CS-claystone; STS-siltstone; ASST-argillaceous 
sandstone; SCS-sandy claystone.  
 
Tmax: Temperature of the top of S2 peak; S1: Free hydrocarbons (mg HC/g rock); S2: Pyrolysable hydrocarbons 
(mg HC/g rock); S3: CO2 from pyrolysis (mg CO2/g rock); TOC: Total organic carbon (wt. %); HI: Hydrogen 
index (S2 % 100/TOC); OI: Oxygen index (S3 % 100/TOC); PI: Production index (S1/S1+S2). 
 

contaminants mainly contain C14-C18 hydrocarbons (diesel) and C19-C25 

hydrocarbons (heavy gas oil), with boiling points of about 250 to 400 oC (Tissot and 

Welte, 1984; Hunt, 1996). Furthermore, an obvious difference from the GC 

characteristics of saturated hydrocarbon fractions is the much higher relative 

intensities  of pristane and phytane in the SWC  and  the cuttings samples  compared  
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with the conventional core samples at similar depths. This increased pristane to 

phytane ratio may represent a  characteristic feature of the diesel in the  drilling-mud 

additives. The extractable organic matter (EOM, mg/g TOC) from the side-wall core 

samples is also noted to be much higher than those in the conventional core samples 

(Fig. 4-2 A and B).  

 

Table 4-2 Rock-Eval pyrolysis results for the Jurassic drill cuttings (claystone) from 
Bambra-2 in the Barrow Sub-basin 
 

Depth 
(m) 

Tmax 
(oC) 

S1 S2 S3 TOC 
(wt.%) 

HI OI PI Washed Picked Extracted 

2660-2665 431 0.14 0.43 0.06 0.35 123 16 0.25 √   
2660-2665 432 0.00 0.23 0.48 0.25 92 192 0.01 √  √ 
3090-3095 433 0.65 3.75 1.83 1.54 244 119 0.15 √   
3090-3095 435 0.08 1.44 2.16 1.00 145 216 0.05 √  √ 
3440-3445 442 0.14 0.65 3.55 1.12 59 397 0.17 √ √  
3970-3975 430 0.14 0.85 1.75 1.43 60 122 0.14 √   
3970-3975 442 0.04 0.49 2.99 1.21 41 247 0.07 √  √ 

3970-3975 442 0.04 0.49 2.95 1.23 41 240 0.07 √  √ repeat 
3970-3975 450 0.12 0.27 1.08 0.60 47 180 0.30 √ √  

  
The Rock-Eval data were measured with Rock-Eval 6 at the Geological Survey of Canada. 
 

4.4 Discussion 
 

Figure 4-1 illustrates the results from the Rock-Eval analysis for Bambra-2. Note 

that the Tmax values from all the samples show two distinct trends. One trend shows 

progressive increase in values with depth and consists of results from core samples, 

extracted SWC samples and SWC samples with S1 values between 0.46 and 1.05 

(Table 4-1). The other trend is defined by the data from cuttings samples. This trend 

is noted to have very little increase in value with depth and a slight decrease at 

depths greater than approximately 3600 metres. It should be also noted that the Tmax 

values from the side-wall core samples with S1 values generally between 1.09 and 

6.52 (Table 4-1 and Fig. 4-1, SWC (2)) exhibit relatively lower, or significantly 

lower, values than the higher value Tmax trend defined by the data from the 

conventional core samples, extracted SWC samples and SWC samples with S1 

values between 0.46 and 1.05, which is considered to be that of normal and 

acceptable Tmax data. Clementz (1979) proposed that data from a sample should be 

treated with caution if S1 is more than 1. The presence of free hydrocarbons (S1>1 or 

2) is  likely to affect the S2 peak,  and  extraction  is  necessary  prior to  pyrolysis to  
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avoid misinterpretation of the Rock-Eval data (Kruge, 1983). The extracted samples 

can generally give more  reliable Tmax values  (Clementz, 1979; Kruge, 1983; Peters,  

1986; Tissot et al., 1987). Tmax values for some unextracted side-wall core samples 

with relatively low S1 values are considered acceptable, based on the increasing Tmax 

trend (Fig. 4-1). The relatively low and abnormally low Tmax values (< 

approximately 415 oC) from the side-wall cores, especially those with S1 values 

more than 1 and anomalously high PI (production indices=S1/S1+S2) (Table 4-1), are 

thought to be caused by the diesel added to the mud at 2424 and 4486 metres. The 

observation of bitumen in thin- sections of the source rocks suggests that the 

difference of S2 values between the extracted and unextracted SWC samples (the 

lower Tmax values in SWC) may be influenced by natural heavy bitumen to some 

extent. This problem may be overcome by solvent extraction prior to pyrolysis (e.g. 

Clementz, 1979; Kruge, 1983). In fact, if the S2 peak is shifted and/or altered by any 

additive, the Tmax value may be dramatically affected. 

 

Comparisons of the Rock-Eval data from the cuttings, the side-wall cores and the 

conventional core samples indicate that total organic carbon and hydrogen indices in 

the cuttings and the side-wall cores are likely to be increased by organic 

contaminants such as the diesel (Fig. 4-1 and Table 4-1). Anomalously high PI in 

the cuttings between 2424 and 3076 metres, and from 4486 metres to total depth, are 

related to the diesel contaminated drilling mud. This is reflected in the low Tmax 

values from the cuttings samples, especially from about 3300 metres to total depth 

which are much lower than those from the Tmax trend defined by the conventional 

core samples, extracted SWC samples and SWC samples with S1 values between 

0.46 and 1.05 (Table 4-1; Fig. 4-1). The Tmax values from the cuttings samples, 

between 2424 and 3100 metres, generally range from 430 oC to 439 oC. Between 

about 3100 and 4430 metres, they generally range from 415 oC to 439 oC with the 

lowest value being 334 oC. In the depth interval from about 4430 to 4500 metres, the 

Tmax values from the cuttings samples range from 436 oC to 468 oC, which is 

significantly higher than the shallower Tmax values but these values are still also 

obviously lower than those from the conventional core samples and extracted SWC 

samples. From 4500 metres to total depth, the cuttings samples are considered to be 

heavily contaminated by the diesel. This is indicated by the anomalously low Tmax 

values of 383 to 401 oC (Fig. 4-1).  
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Four cuttings samples were washed and air-dried for Rock-Eval 6 pyrolysis, and a 
duplicate sample for three of them was also extracted for additional Rock-Eval 6 
pyrolysis. Table 4-2 shows that the Tmax values for the washed cuttings range from 
430 oC to 433 oC. The values for the washed and extracted cuttings range from 432 
oC to 442 oC. Two cuttings samples at 3440-3445 metres and 3970-3975 metres 
were also picked free of contaminants after being water-washed and air-dried, and 
the two Tmax values of 442 oC  and 450 oC obtained from Rock-Eval 6 pyrolysis 
(Table 4-2), which are significantly higher than the previous trend from cuttings 
(Fig.4-1). It should be noted that although these values are still lower than those 
indicated by the conventional core and extracted SWC trend, it does indicate a 
marked increase from the samples that had not been picked. The results from picked 
and extracted samples strongly suggest that at least part of the difference in Tmax 
values between the cuttings samples and the core samples may have been caused by 
the contamination by the diesel and other drilling-mud additives. It also indicates 
that even when dealing with extracted cuttings samples other factors may influence 
the results, therefore, care should be taken in the final interpretation of the results. 
Additionally, for the cuttings samples, between approximately 4500 and 4591 
metres, it would seem that contamination by the diesel is likely to be the major 
cause for the higher S1 and PI with correspondingly low Tmax values ranging 
between 383 and 410 oC (Fig. 4-1).  
 

Based on the analysis of migrated hydrocarbon in the Barrow Group from the well 
completion report, the Tmax values over the upper part of the group between 2000 
and 2300 metres (Fig. 4-1) may be suppressed by 2 to 10 oC by the natural 
hydrocarbon compared to the Tmax trend from the core samples which increase 
regularly with depth. The Tmax values in the top part of the Barrow Group and the 
Muderong Shale between 1630 and 2000 metres (Fig. 4-1) may be related to 
recycled organic matter to some extent, which may cause the Tmax values to rise by 
up to several degrees compared to the "normal" Tmax trend. Although depositional 
environment and organic facies may also influence the Tmax values, the influence 
should be minor in the present Tmax data, because of the type III kerogen and clastic 
lithologies in this well.  

 

Hunt (1996) proposed that Tmax values should be rejected if HI is less than 50 mg 

HC/g TOC or if S2 is less than 0.2 mg HC/g rock. However, Tmax values from the 

conventional core samples from 4274 to 4283 metres in Table 4-1 are 484 to 490 oC 
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with HI ranging from 32 to 46 and S2 ranging from 0.25 to 0.39. These Tmax values 

should be considered normal results for three reasons. Firstly, two examples of gas 

chromatograms of saturated fractions from the conventional core samples at 4274.2 

and 4282.9 metres in Fig. 4-2 show that the organic matter is obviously mature (e.g. 

Allan and Douglas, 1977). Thus, thermal maturity is the major cause of the low HI. 

Secondly, the Tmax from the solvent extracted side-wall cores at 4225 and 4301 

metres give similar Tmax values to the conventional core samples (Table 4-1), and 

the Tmax values of 485 oC and 488 oC indicate a high maturity level. Finally, average 

vitrinite reflectance values of 1.45 % to 1.74 % were measured in the conventional 

core sample at 4274 metres by Dr. L.W. Gurba (University of New South Wales) 

and Dr. Alex Kaiko (Curtin University of Technology), corresponding to Tmax 

values of 470 to 490 oC (Teichmüller and Durand, 1983; Espitalié et al., 1984; 

Tissot et al., 1987). Obviously, the Tmax values of the conventional core samples are 

in agreement with the higher maturity assessment from the vitrinite reflectance 

measurements. 

 

4.5 Summary 
 

In this study, it was found that the main problems to affect Tmax data in the Bambra-

2 well included (1) contamination by drilling mud additives, (2) natural 

hydrocarbons, and (3) recycled organic matter. The cuttings samples in the Barrow 

Group may be contaminated by natural hydrocarbons, resulting in their Tmax values 

being 2 to 10 oC lower than the regularly increasing Tmax trend from core samples. 

The Tmax values in the cuttings in the Jurassic section, especially from about 3300 

metres to total depth, within the higher maturity interval, in the Bambra-2 well, were 

significantly lowered by contamination by drilling-mud additives, including diesel. 

The GC analysis indicates that the use of diesel in drilling mud is considered to be 

the major cause for the abnormal and low Tmax values in the side-wall cores. 

Generally, the Tmax values, from the SWC with S1<1, the solvent extracted SWC and 

the conventional core samples, provide a relatively reliable maturity trend in this 

well. This study indicates that higher quality Rock-Eval Tmax results are obtained 

from the conventional core samples and the relatively cleaned samples. The study 

also suggests that samples with a HI between 30 and 50 in higher maturity zones 

should provide valid Tmax values in this case. 
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CHAPTER 5     DEEP OVERPRESSURED SYSTEM AND  

TOP PRESSURE SEAL 
 

5.1 Introduction 
 

Overpressure distribution in the Northern Carnarvon Basin has been investigated by 

Horstman (1988), Zaunbrecher (1994), Yassir (1996), van Ruth et al. (2000) and 

Tingate et al. (2001). Overpressure in the Northern Carnarvon Basin is observed in 

the Early Cretaceous Muderong Shale and Barrow Group, the Jurassic sequences 

and the Mungaroo Formation of Triassic age (Zaunbrecher, 1994; Tingate et al., 

2001). This study focuses on the fluid pressure modelling in the deep overpressured 

system in the Jurassic section in the sub-basins of the Northern Carnarvon Basin. 

The deep overpressured system is evidenced by the measured fluid pressure data, 

including repeat formation tests (RFT) and drill stem tests (DST), and is also 

confirmed by mud weights and well-log responses associated with high sonic transit 

times and low resistivity values in the Jurassic fine-grained rocks.  

 

A pressure seal within a rock layer is defined as capable of confining anomalous 

pressure over geological time (e.g. Hunt, 1990; Deming, 1994). Hunt (1990) stated 

that the tops of many compartment seals in clastic rocks appear to consist of 

multiple bands of calcite mineralization along a thermocline where temperatures 

range from 90 oC to 100 oC. The pressure seal is a cement diagenetic layer 

(Weedman et al., 1996), and the cementation process causes the precipitation of 

minerals in the pore space (Wangen, 2000). Weedman et al. (1996) noted that most 

of the cement diagenesis occurred before the pressure seal became effective as a 

permeability barrier. Quartz overgrowth precipitation forms at 80-110 oC (Bjørlykke 

and Egeberg, 1993; Walderhaug, 1996; Weedman et al., 1996), and the calcite 

cement precipitation forms at about 100-135 oC (Weedman et al., 1996).  

 

5.2 Overpressure and petrophysical data 
 

Relevant data from eight wells are used in this study. The wells in the Barrow Sub-

basin are clustered in three groups (1) “Barrow Island” (Barrow-1 and Barrow 
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Deep-1, which is a deeper well close to Barrow-1), (2) the “Bambra location” 

(Bambra-1 and Bambra-2), and (3) the “West Barrow location” (West Barrow-1/1A 

and West Barrow-2). The selected Jurabi-1 well is in the Exmouth Sub-basin and the 

Dampier-1 well is in the Dampier Sub-basin. Figure 3-1 shows the locations of these 

wells. Pressure data from Barrow Deep-1 have been used in a previously published 

studied by Tingate et al. (2001). 

 

5.2.1 Measured fluid pressure data for overpressure 

 

Overpressure is the condition when pore-fluid pressure exceeds hydrostatic pressure 

(a static column of water or brine) for a given depth (Dickinson, 1953; Bradley, 

1975). The hydrostatic pressure gradient of a fresh water column is 0.0098 MPa/m 

(0.43 psi/ft) (Hunt, 1990). Hunt (1990) pointed out that the pressure/depth gradient 

of a saturated salt solution is 0.012 MPa/m (0.53 psi/ft), and any pressures outside 

this limit are considered to exhibit abnormally high fluid pressure (overpressure). 

 

Usually the fluid pressures are measured by repeat formation tests (RFT) and drill 

stem tests (DST) at specific depths in permeable formations, and these are valuable 

control points for fluid pressures in a pressure profile from an individual well. The 

RFT is specifically designed to evaluate formation pressures (Swarbrick, 1995). 

Mud weight can act as a rough approximation for the trend of fluid pressure within a 

well because it is used to overbalance pore fluid pressures by a small amount during 

drilling. It is important to distinguish and discard data that reflect a significantly 

overbalanced drilling condition. Horstman (1988) indicated that on the North West 

Shelf a formation is considered to be overpressured if a mud weight of 0.0125 

MPa/m (1.25 g/cm3 Specific Gravity) is encountered. van Ruth et al. (2000) 

considered that the mud pressure is a fairly reliable indicator of pore pressure in 

permeable formations of the North West Shelf. They also proposed that the mud 

weight gradient of 0.0125 MPa/m demarcates the boundary between the 

overpressured and normally pressured regimes in the North West Shelf basins. 

However, it must be remembered that mud weight is often only the "best guess" of 

the drilling engineers as to where the overpressured formations are situated. 
 



Chapter 5  Deep Overpressure and Top Pressure Seal 61

Plots of pressure versus depth for the various wells are shown in Figures 5-1 to 5-7. 

The observed pressure data are annotated with respect to their source: either RFT or 

DST. All three separate locations in the Barrow Sub-basin (Barrow Island, Bambra 

location and West Barrow location) show a deep overpressured zone. The observed 

overpressure and excess pressure, above the hydrostatic pressure (hydrostatic 

pressure gradient assumed to be 0.0103 MPa/m), for 4 wells are listed in Table 5-1. 
 

Table 5-1 Measured high fluid pressures in four studied wells in the Northern Carnarvon 
Basin 
 

Depth  

(m) 

Fluid  

Pressure (MPa) 

Excess 

Pressure (MPa) 

 

Type of Data 

 

Formation 

 

Well 

3130 56.39 23.84 RFT 

3640.5 66.52 28.66 RFT 

 

Bambra-1 

3231 58.95 25.35 DST 

3307 61.36 26.97 DST 

3411 63.43 27.96 DST 

3459 64.40 28.43 DST 

 

 

Barrow Deep-1 

2929 38.95 8.49 DST 

3037 36.89 5.30 DST 

3650 42.47 4.51 DST 

 

 

 

 

Dingo 

Claystone 

 

Dampier-1 

3306 60.63 26.25 RFT 

3423 63.85 28.25 RFT 

 
Barrow Group 

 

West Barrow-2 

 

The measured pressure data were collected from well-completion reports. The calculation of excess 

pressure is based on the hydrostatic pressure gradient of 0.0103 MPa/m. RFT: Repeat formation test; 

DST: Drill stem test. 

 

5.2.2 Well-log data for overpressure 

 

Sonic-log and resistivity-log data from the seven wells used in this study, are plotted 

in Figures 5-1 to 5-7. Note that Barrow-1 and Barrow Deep-1 are combined into a 

single plot. Also, porosity and permeability data were extracted from well 

completion reports (Tables 5-2, 5-3 and 5-4) where available and mainly based on 

well-log interpretation with few laboratory measurements of porosity and 

permeability available.  
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Table 5-2 Measured total porosity and horizontal permeability values from the conventional 
core (claystone) in Bambra-2 
 

Depth  

(m) 

Porosity  

(%) 

Horizontal 

Permeability (md) 

Depth  

(m) 

Porosity  

(%) 

Horizontal  

Permeability (md) 

4274 5.6 0.01 4279 5.0 0.02 

4275 5.5 0.01 4280 5.1 < 0.01 

4276 5.6 < 0.01 4281 5.7 0.01 

4277 6.6 0.02 4282 5.1 < 0.01 

4278 5.5 0.01 4283 4.9 < 0.01 

 

Data were collected from the well-completion report. 

 

Table 5-3 Measured porosity and permeability values for the conventional core samples 
(sandstone) in the Bambra-1 well 
 

Porosity (%) Horizontal Permeability (md) Vertical Permeability (md)  

Depth (m) Range Average Range Average Range Average 

2713.05-2728.7 4.2-19.8 16.62 0.02-16 6.41 0.02-12 4.45 

 

1md = 10-15 m2 

Data were collected from the well completion report. 

 

Table 5-4 Porosity evaluations based on density and neutron log data for sandstones of the 
Barrow Group in West Barrow-2 
 

Depth Interval (m) Range of Porosity (%) Average Porosity (%) 

2520-2834 3-20 11.5 

2882-2922 3-12 8 

3291-3319 2-10 4.5 

3366-3437 1-12.5 4.5 

 

Data were collected from the well-completion report. 

 

The fluid pressure in low-permeability rocks, such as shales, is rarely determinable. 

It may be inferred from adjacent permeable rocks, or from the interpreted well-log 

porosity, such as sonic and density logs (Swarbrick and Osborne, 1998). Trends 

showing high sonic transit times versus depth in shale, which deviate from a normal 

compaction trend, are often interpreted to be a product of undercompaction. These 

high-sonic trends, in turn, are often interpreted to reflect a high fluid pressure regime 

(e.g. Magara, 1978). Typical shale resistivity is observed to increase with depth, as a 
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complex function of decrease of saline-, bound- and pore-water volume versus a 

relative increase of electrically conductive clay minerals. However, in many 

overpressured zones, shale resistivity has been observed to decrease with depth (e.g. 

Bigelow, 1994a; Hermanrud et al. 1998).  

 

Hermanrud et al. (1998) proposed that both sonic and resistivity logs may also be 

influenced by textural changes induced by overpressuring in shales without 

abnormally high porosities from wells on Haltenbanken, offshore Mid-Norway. 

They suggested that resistivity logs might respond directly to fluid overpressuring 

because of increase fluid connectivity in the microfractures of the overpressured 

shales rather than "indirectly" to anomalous shale porosity, as predicted by the 

undercompaction mechanism. They also suggested that the sonic-log produces a 

higher transit time (lower formation velocity), because of reduced transport capacity 

in the matrix of the overpressured rocks.  

 

In evaluating porosity and permeability of the fine-grained (clay-dominated) rocks 

for the studied wells in the Barrow and Exmouth Sub-basins, intervals with gamma-

ray values greater than 80 API units in Cretaceous formations and greater than 90 

API units in Jurassic sequences were selected. These gamma-ray values reflect 

typical "shale-base-lines" for these sequences. The resistivity analysis was based on 

the deep induction log (RILD). Induction logs can be run in all types of drilling mud 

(Bigelow, 1994a). It was assumed that the deep induction log records relatively 

accurate formation resistivity values in thick (> 1.5 m), resistive zones with true 

formation resistivity values less than 100 ohm/meters (Asquith and Gibson, 1983). 

The lithologies in the Jurassic overpressured system are dominated by massive 

organic-rich claystones and siltstones. Tingate et al. (2001) stated that all 

overpressure occurrences are accompanied by an increase in sonic transit time. 

These well-log data, in combination with the measured high fluid pressures in the 

Jurassic sandstones, can be explained by overpressuring in the Jurassic fine-grained 

rocks.  

 

In the Barrow Sub-basin, on the basis of the available density-log data at 2800-3660 

metres in Bambra-1 (Fig. 5-3), the bulk density-log readings in the Jurassic 

overpressured sequence are about 2.57-2.63 kg/m3 without any abnormal trend. 
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Thus, the density-log-derived porosities could be smaller than 6 % in the observed 

overpressured compartment, which are significantly less than the calculated sonic-

derived porosities of 13 to 18 % and resistivity-derived porosities of 9 to 11 % in the 

compartment of this well. The measurements of total porosity from a conventional 

core (claystone) between 4274 and 4283 metres in the overpressured system in 

Bambra-2 range from 4.9 % to 6.6 % (Table 5-2). The ranges of the measured bulk 

density and matrix density for the core are 2.55 and 2.56 kg/m3 and 2.63 to 2.64 

kg/m3, respectively. However, the calculated sonic-derived and resistivity-derived 

porosities are 13.5 to 17.6 % (sonic transit times: 279 to 295 3s/m) and 11.6 to12.5 

% (resistivity values: 2.31 to 2.71 ohmm), respectively, at this specific depth 

interval in this well. Again, the overpressured zone of the lower part of the Barrow 

Group in the West Barrow wells is also associated with high sonic transit times and 

low resistivity values in mudstones (Figures 5-6 and 5-7). However, the average 

bulk density-log readings for the fine-grained rocks are about 2.55 to 2.65 kg/m3, 

and do not exhibit a density (or porosity) anomaly within the overpressured zone 

(3000 metres to a total depth of 3520 metres) in West Barrow-1/1A (Fig. 5-6). 

 

In the Exmouth Sub-basin, the density-log from 3200 to 3550 metres within the 

major Jurassic overpressured zone in Jurabi-1 (Fig. 5-4) indicates that the bulk 

density values range from 2.60 kg/m3 to 2.65 kg/m3, which in turn suggest that the 

porosities in the overpressured interval could be lower than 4 %. However, the 

sonic-derived and resistivity-derived porosities are estimated to be 6 to 12 % from 

the sonic transit times of 250 to 275 3s/m and 7.8 to 9.6 % from resistivity values 

of 3.9 to 5.9 ohmm, respectively. The results illustrate that the porosities in situ in 

the main overpressured zone are also lower than the calculated porosities based on 

the sonic-log and resistivity-log data in the fine-grained rocks. 

 

The correlation of the acoustic, electric, density well-log data and the measured 
porosities in the claystone and siltstone-dominated highly overpressured zone 
suggests that the actual porosity values are likely to be significantly lower than the 
sonic-log and resistivity-log-derived porosities in these cases. This also suggests that 
the present-day Jurassic overpressured source rocks do not have a significant 
porosity anomaly due to underpressure. In other words, it seems that most of the 
porosity in the overpressured source section has been lost through compaction. This 



Chapter 5  Deep Overpressure and Top Pressure Seal 65

appears to be consistent with the finding by Hermanrud et al. (1998) and Teige et al. 
(1999), who proposed that the sonic and resistivity logs also respond anomalously, 
due to overpressuring in shales.  
 
5.2.3 Petrophysical expression of the deep overpressured zone 
 
The characteristics of the overpressure from the pressure profiles in the Jurassic 
section and the Barrow Group are explained based on the RFT, DST, mud weight 
and well-log data (Figures 5-1 to 5-7). 
 
5.2.3.1 Jurassic overpressure in the Barrow Sub-basin 
 
As shown in Fig. 5-1, the resistivity-log values in fine-grained rocks appear to 
decline at about 2650 metres in the combined Barrow Deep-1/Barrow-1 well, which 
is approximately consistent with the top of the interpreted Jurassic overpressured 
zone in the well studied by Zaunbrecher (1994). In this well, four measured pressure 
values in sandstones (Table 5-1) from DST, high mud weights of 0.0128-0.0203 
MPa/m used from 2743 to 4650 metres (total depth) and sonic-log and resistivity-
log data in claystones confirm that the Jurassic fine-grained section is highly 
overpressured. The excess pressures underlying the transitional pressure zone range 
from about 20 MPa to 30 MPa, if 0.0103 MPa/m is used as a hydrostatic pressure 
gradient with a water salinity of 30 g/l NaCl equivalent. 
 
Figures 5-2 and 5-3 indicate that an increase of sonic transit times and decrease of 
resistivity values in the Jurassic shaley sequence begin about 2800 metres in 
Bambra-1 and 2900 metres in Bambra-2, which are approximately coincident with 
the tops of the Jurassic overpressured zone. In Bambra-1, high mud weights of 
0.0124 to 0.0185 MPa/m took place from 2853 metres to a total depth of 3666 
metres. In Bambra-2, high mud weights of 0.0124 to 0.0193 MPa/m were used from 
2821 metres to a total depth of 4591 metres. The mud weight in this well was 
progressively increased from about 3000 metres to the total depth in the Jurassic 
sequence, which was usually accompanied with high gas reading, as an indication of 
pore pressure, based on the well completion report. In combination with two RFT 
pressure values in sandstones (Table 5-1) in Bambra-1, well-log data and high mud 
weights  indicate  that  there  is  an  anomalously  high  fluid  pressure  regime in the 
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Jurassic sequence. According to the well completion reports, water salinity in the 

Upper Jurassic section is approximately 20 to 45 g/l NaCl equivalent. Thus, the 

hydrostatic pressure gradient is about 0.0102 to 0.0104 MPa/m, and the estimated 

excess pressure in the Jurassic overpressured compartment of the Bambra-2 well 

may be in the range of 20 to 30 MPa. Based on a kick condition in Bambra-1 

(Tingate et al., 2001), the kick occurred at 3169.4 metres with a kill mud weight of 

1.82 S.G. (Specific Gravity), indicating that the mud weight pressure was about 

58.76 MPa and that the formation pressure may be 57 to 58 MPa with a excess 

pressure of 25 to 26 MPa, which is consistent with the measured data in this well 

(Table 5-1). 

5.2.3.2 Jurassic overpressure in the Exmouth Sub-basin 

On the basis of acoustic and electric well-log profiles and mud weight pressure data 

in Jurabi-1 (Fig. 5-4), the top of the deep overpressured system appears to be about 

2900 metres. The pressure/depth gradient of mud weight between 2900 metres and 

the total depth of 3712 metres (R.T.) ranges from about 0.0125 MPa/m to 0.0169 

MPa/m and the expected excess pressure can be up to 20 MPa in the Jurassic section 

in this well. It was found that the sonic-log and resistivity-log data reveal that the 

Jurassic rocks between 2385 and 2950 metres have abnormalities from the normal 

trends. However, there are relatively low density-log values in the interval 2385 to 

2950 metres. It suggests that these well-logs respond to anomalously high porosities 

owing to undercompaction but the zone is only slightly overpressured based on the 

mud weights. 

 

5.2.3.3 Jurassic overpressure in the Dampier Sub-basin 

 

There are no suitable well-log data for Dampier-1. Based on the measured pressure 

data in Fig. 5-5, the Jurassic (slightly) overpressured zone is likely to occur in the 

upper part of the Upper Jurassic sequence (> 2900 m) in this well. The DST data 

indicate that the excess pressures may range from 4 MPa to 8 MPa between 2900 

and 3700 metres. Based on the study by Tingate et al. (2001), the top of the 

overpressure zone in the well occurs at 3643 metres. Perhaps an obvious increase in 

the overpressure starts at 3805 metres because the pressure/depth gradient of the 
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mud weight changes from 0.0125 MPa/m at 3753 metres to 0.0144 MPa/m at this 

depth, indicating that the excess pressure may reach 15 to 20 MPa in the Jurassic 

shaley sequence from 3805 metres to a total depth of 4142 metres (R.T.). The fluid 

pressure profile in Fig. 5-5 confirms that the Jurassic deep overpressured system has 

also been developed and preserved in the Dampier Sub-basin.   

 

5.2.3.4 Overpressure in the Barrow Group of the Barrow Sub-basin 

 

Figures 5-6 and 5-7 show that the observed overpressured zones in the lower part of 

the Barrow Group in the West Barrow-1/1A and West Barrow-2 wells are indicated 

by RFT pressures (Table 5-1), mud weights and well-log data with excess pressures 

of about 10 to 30 MPa. The top of the overpressured zone appears to be consistent 

with sonic and resistivity log responses at about 3000 metres. The mud weight used 

in West Barrow-1/1A increased from 2990 to 3142 metres with mud weight 

gradients from 0.011 MPa/m to 0.013 MPa/m and then gradually increased to a total 

depth of 3520 metres with a mud weight gradient of 0.0173 MPa/m. The mud 

weight used in the Barrow Group in West Barrow-2 began to increase at 2969 

metres with a mud weight gradient of 0.0127 MPa/m and continued to increase to a 

total depth of 3437 metres with a mud weight gradient of 0.0192 MPa/m. Based on 

the well-completion report of Tryal Rocks-1 in this sub-basin, the overpressure may 

also occur in the Barrow Group as indicated by mud weight records with 0.0152 to 

0.0168 MPa/m from 2866 metres to a total depth of 3695 metres. In addition, based 

on the sonic-logs in these two West Barrow wells (Figures 5-6 and 5-7) and the 

density log in West Barrow 1/1A (Fig. 5-6), the sonic-log response has been 

interpreted to reflect undercompaction with slight overpressuring in the Muderong 

Shale between about 2200 and 2500 metres. The mud weights are less than 1.23 

S.G. in West Barrow 1/1A and less than 1.35 S.G. in West Barrow 2. There are, 

however, no measured data to confirm the abnormal porosities and overpressured 

status.  

 

Table 5-5 shows the tops of the Jurassic overpressured zones in five wells as 

recorded by Zaunbrecher (1994) and Tingate et al. (2001). Table 5-6 shows 

temperatures at the top of the deep overpressured zone in the studied wells.  
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Table 5-5 Tops of the Jurassic overpressured zone in five wells in three sub-basins 
 

Well Top of Overpressure (m) 

(Zaunbrecher, 1994) 

Top of Overpressure (m) 

(Tingate et al., 2001) 

Sub-basin 

Bambra-1 2725  2900 

Bambra-2 2725  

Barrow Deep-1 2650 2603 

 

Barrow 

Dampier-1  3643 Dampier 

Jurabi-1 2400 2383 Exmouth 

 

 

Table 5-6 Temperatures at the top of the deep overpressured zone in seven wells in three 
sub-basins 
 

Well Top of Overpressure (m) Temperature (oC) Sub-basin 

Bambra-1 2800 115 

Bambra-2 2900 118 

Barrow Deep-1 2650 110 

West Barrow-1A 3000 125 

West Barrow-2 3000 125 

 

 

Barrow Sub-basin 

Dampier-1 2900 ? 110 ? Dampier Sub-basin 

Jurabi-1 2900 125 Exmouth Sub-basin 

 

 

5.3 Top pressure seal in the Barrow Sub-basin 
 

The data for explaining top pressure seals are available from the wells in the Barrow 

Sub-basin. In general, top pressure seals are coincident with the pressure transition 

zone (Hunt, 1990). The depths of the top pressure seal for the deep overpressured 

system in the five wells range from about 2650 m to 3300 m and the temperatures 

range from about 110 oC to 135 oC.  

 

The proposed top pressure seal within the Jurassic overpressured system ranges 

from about 2650 to 3150 metres in Barrow Deep-1, about 2800 to 3100 metres in 

Bambra-1 and about 2900 to 3200 metres in Bambra-2 (Figures 5-1, 5-2 and 5-3), 

with temperatures ranging from about 110 oC to 130 oC. The top pressure seal in the 

three wells consists of a rock layer of thick claystone and siltstone with interbedded 
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sandstone and thin limestone. The rock layer contains about 60 to 80 % claystone 

and siltstone and its thickness varies from about 300 to 500 metres.  

 

Figures 5-6 and 5-7 show that the top pressure seal in the Barrow Group of West 

Barrow-1/1A and West Barrow-2 may range from 3000 to 3300 metres with 

temperatures between 125-135 oC. The rock layer of the pressure seal contains about 

80 % claystone and siltstone with thin sandstone and its thickness is about 300 

metres. 

 

The sandstones inside or near the deep overpressured system appear to have 

extensive cementation, which in turn leads to a significant decrease in porosity and 

permeability in the sandstones. Wulff (1991) studied the cementation of sandstone 

in a conventional core at 2713 to 2730 m just overlying the interpreted pressure seal 

in Bambra-1. The main mineral compositions of the sandstones collected from 

Wulff (1991) and the well completion report are shown in Table 5-7. This Upper 

Jurassic fine sandstone is cemented with moderately abundant authigenic quartz 

overgrowths, siderite and calcite/dolomite, resulting in quite low permeability 

compared with porosity as listed in Table 5-3.  

 

Based on the well-completion report of West Barrow-2, the ranges of well-log-

derived porosities in the sandstones from the Barrow Group are given in Table 5-4.  

Secondary silica cement and interstitial detrital clay has severely reduced the 

primary porosity in the sandstones between 2882 and 3319 metres in comparison to 

the sandstones at 2520 to 2834 metres. Extensive silica and clay cementation has 

filled in almost all pore voids, resulting in negligible effective porosity in the 

sandstones from the interval 3366 to 3437 metres in this well. The claystone and 

silty claystone in the rock layer of the top pressure seal were strongly compacted 

according to the density-log data (Figures 5-2 and 5-6). The density values in the top 

pressure seal are 2.57 to 2.63 kg/m3 in Bambra-1 and 2.55 to 2.63 kg/m3 in West 

Barrrow-1/1A. Based on the density-log data in the interval of the top pressure seals 

and the measured matrix density (2.63-2.64 kg/m3) for the Jurassic claystone core 

(4274-4283 m) in Bambra-2 (Appendix 1), the claystone porosities within the top 

pressure seal can be assessed to be � 5 %, thus the permeability values are 
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calculated to be 10-19 m2 or lower using the modified Kozeny-Carman equation 

(Ungerer et al., 1990): 
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where k is permeability (m2), S0 is specific surface area of rock matrix (m2/ m3); ∗φ  

is effective porosity, ∗φ  =  - 3.1 % 10-10 % S0,  is porosity. The equation 5-1 

describes the very low permeabilities of compacted shales with S0 about 1.51%107 

(m2/ m3), based on a shale grain size of about 4%10-7 m. Therefore, 3.1 % 10-10 % S0 

is about 0.0047. 
 

Table 5-7 Average compositions of minerals from the conventional core samples 
(sandstone) in the Bambra-1 well 
 

Minerial 2716 m 2716.75 m 2720 m 2721.19 m 2722.05 m 2723.05 m 2725 m 

Quartz (%) 53 55 55 30 60 60 60 

Feldspar (%) 16 5 17 5 10 10 15 

Calcite/dolomite 

Cement (%) 

NA NA 2 5 Trace NA 

Siderite (%) 21 

 

15 

 10 10 2 1 

Argillaceous 

matrix (%) 

NA 10 NA 40 5 10 NA 

 
Data from the samples at 2716.75 m, 2721.19 m, 2722.05 m and 2723.05 m were analyzed by Wulff 

(1991). Data from samples at 2716 m, 2720 m and 2725 m were collected from the well completion 

report. NA: Not available.  

 

Deming (1994) demonstrated that three factors are necessary to define a pressure 

seal; time (t, Ma), thickness (z, m) and permeability (k, m2) and gave the equation 

(5-2) (derived from a diffusion equation):  
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 where  is rock compressibility (10-10 <  > 10-8 Pa-1) (Neuzil, 1986; Ge and Garven, 

1992),  is dynamic viscosity of pure water (about 3.0 % 10-4 Pa∃s at 95 oC). If the 

compressibility value for shale is 10-9 Pa-1, then, 
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zt                                                                                            (5-3) 

 

As described by the equation, the time over which a seal may confine a pressure 

transient is directly proportional to the square of the seal thickness (z) and inversely 

proportional to the seal permeability (k). If the time span required for the pressure 

seal unit (about 300 to 500 metres thick) to confine the overpressure in the Jurassic 

sequence is considered to be 1 to 100 Ma, the calculated permeabilities range from 

about 10-22 m2 to 10-24 m2. An error as large as a factor of 10 could occur due to 

uncertainties in the values used for rock compressibility (Deming, 1994). Based on 

the calculation of Deming (1994), without pressure recharge, a 500-m-thick pressure 

seal unit with permeability of 10-22 m2 can maintain overpressure for several million 

years at best.  

 

5.4 Summary 
 

The Jurassic sequence in the sub-basins of the Northern Carnarvon Basin is highly 

overpressured with excess pressure between about 10-30 MPa as indicated by DSTs, 

RFTs and mud weights. A deep overpressured system commonly has associated 

high sonic transit times and low resistivity values in the fine-grained rocks. The 

response of the sonic-log and resistivity-log to the fine-grained rocks in the study 

area further supports the overpressured regime in the Jurassic source rocks. The 

overpressure is also found in specific zones in the Barrow Group of the Barrow Sub-

basin. 

 

This study suggests that the sonic and resistivity logs may respond anomalously to 

the overpressuring in the thick claystone and siltstone in these sub-basins, and also 

suggests that the deep overpressured system is not associated with high porosities 

that could be derived from the sonic-log and resistivity-log data by conventional 
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interpretation procedures. It seems that the deep overpressured zone at present is 

related to relatively high density, and that the porosity is likely to be less than 6 !1 % 

based on the density-log and measured claystone porosities.  

 

The top pressure seals, associated with pressure transition zones, consist of a rock 

layer with 60 to 80 % claystone and siltstone, 20 to 40 % sandstone, and thin 

carbonate units within the Barrow Group and Upper Jurassic strata in the Barrow 

Sub-basin. The rock layer appears to be well compacted and cemented by quartz 

overgrowths and calcite which have relatively high density values. The top of the 

deep overpressured system can vary from about 2650 to 3000 metres with 

temperatures between 110 oC and 125 oC. The thickness of the rock layer varies 

from about 300 to 500 metres in the Barrow Sub-basin. The estimated porosities in 

the claystone of the rock layer are 2 to 5 % based on well-log data and some 

measured porosity values, and thus the calculated permeability may range from 

about 10-19 m2 to 10-22 m2.  
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CHAPTER 6     ONE-DIMENSIONAL MODELS AND  

DATA SETS 
 

6.1 One-dimensional models  
 

One-dimensional modelling aims at reconstructing thermal and maturity histories in 

this study. The primary models and calculations include geohistory/burial history, 

heat flow, temperature and thermal maturity (Platte River Associates, Inc., 1996).  

 

6.1.1 Geohistory/burial history  

 

The quantitative analysis of geohistory/burial history through time is used to 

reconstruct thermal and maturity histories. This analysis aims at producing time-

depth histories and sedimentation rates. The correction of decompaction needs to be 

carried out for geohistory/burial history analysis. The reconstruction of geohistory 

also needs the data of palaeobathymetry and sea level fluctuations. Decompaction 

(backstripping) is based on the skeletal (solid grain) volume being constant, while 

the rock volume is changed with depth of burial due to the loss of porosity (Allen 

and Allen, 1990). Thus, the integrated equation is given: 
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where z1 and z2 are the top and bottom depths of a rock layer at a given time, z3 and 

z4 are new depths of the rock layer at another time,  is porosity that is a function of 

depth (z). 

 

6.1.2 Tectonic subsidence 

 

A tectonic subsidence curve is useful in explaining the basin-forming mechanism. 

Tectonic subsidence can be obtained after the removal of the subsidence due to the 

sediment load and corrections for variations in water depth and eustatic sea-level 

changes.  It reflects the lithospheric isostatic processes which cause basins to form 



Chapter 6  One-dimensional Models and Data Sets 

 

79

 

and is considered as the subsidence by tectonic effects, which backstrips (removes) 

the sediment load and replaces its load only by a column of water (Lerche, 1990; 

Joy, 1992). Tectonic subsidence is calculated using the equation of Steckler and 

Watts (1978): 
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where Ts is the tectonic subsidence, H is the sedimentary layer thickness of the 

column corrected for compaction, Wd is the palaeo-water depth, <SL is the change in 

palaeo-sea level relative to the present-day sea level, m, s, and w are the densities 

of mantle, sediments and water, respectively. 

 

6.1.3 Heat flow 

   

The thermal history in a sedimentary basin relies on the heat flow from the mantle 

and radiogenic heat produced in the crust (Lachenbruch, 1970). Allen and Allen 

(1990) stated that geothermal evolution is controlled by the basal heat flow history 

of the basin, physical properties of the lithosphere, and heat generation from 

radioactive sources within the sediments and regional water flow. The increase in 

heat flow during rifting is related to the lithospheric thinning, which influences heat 

entering the basin from the asthenosphere. The heat transfer modes in sedimentary 

rocks are conduction related to lithology, porosity and nature of pore fluids, and 

convection related to compaction-driven flow, gravity-driven flow and anomalous 

heat intrusion. In this study a one-dimensional model is used where the heat flow is 

transferred by vertical conduction and lateral influence is ignored. The boundary 

conditions of the thermal data are provided in Table 6-1. Both rift heat flow and 

constant heat flow models can be evaluated by comparing the measured maturity 

data with the calculated maturity curves.  

 

In the BasinMod 1D software, two basic assumptions for heat flow histories can be 

adopted: (1) steady state, a constant heat flow over time, and (2) non-steady state, a 

variable heat flow over time such as a rift heat flow history.  
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Steady state heat flow was calculated using a heat flow/thermal conductivity model: 

 

,
dz
dTkflowHeat =                                                                                                (6-3) 

 

where k is thermal conductivity; T is temperature (oK); z is depth (m). 

 

Transient heat flow was calculated using the transient diffusion equation and Heat 

transfer is assumed to be by vertical conduction using the equation: 
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where T is temperature (oK); k is thermal conductivity; c is heat capacity; t is time. 

 

The BasinMod 1D provides a modified Jarvis and McKenzie (1980) algorithm to 

calculate rift heat flow. 
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where F(t) is heat flow at surface at time t; t is time of rifting; k is thermal 

conductivity; kT1/z is heat flow prior to rifting, based on present day heat flow; a is 

thickness of lithosphere, fixed at 125 km. 

 

A  factor is required for the calculation of rifting heat flow in the BasinMod 1D, 

which is defined as: 

 

 = initial lithospheric thickness / lithospheric thickness immediately after 

stretching 
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Table 6-1 Some present-day thermal parameters of 14 wells for 1D thermal modelling in 
the Northern Carnarvon Basin 
 

 
Well Name 

Geothermal 
Gradient 
(oC/100m) 

Seabed or Surface 
Temperature 

(oC) 

Heat Flow 
 

(mW/m2) 

Water Depth 
 

(m) 

 
Subdivision 

Jurabi-1 3.50 23 52.1 60 
Zeewulf-1 3.80 4.5 59.6 1194 

Exmouth 
Sub-basin 

Anchor-1 3.30 24 53.6 18 
Bambra-2 3.25 24 56.0 26 
Barrow-1 3.25 25 57.5 0 
Barrow Deep-1 3.25 25 57.5 0 
Bowers-1 3.40 21 55.3 133 

 
 
Barrow 
Sub-basin 

Madeleine-1 3.00 23 48.2 69 
Rosemary-1 3.00 21 47.5 65 

Dampier 
Sub-basin 

Depuch-1 3.00 21 49.4 143 Beagle 
Sub-basin 

North Gorgon-1 3.60 20 57.1 215 
North Rankin-1 2.90 21 53.5 122 

Rankin 
Platform 

Investigator-1 3.40 5.5 56.8 841 
Jupiter-1 3.20 5 54.3 960 

Exmouth 
Plateau 

 

The rift heat flow model, which entails a higher heat flow episode during the rift 

phase and an exponential reduction during the post-rift phase (McKenzie, 1978), has 

been introduced as a fundamental consideration for the relationship between thermal 

history and tectonic evolution. The study by Allen and Allen (1990) indicates that 

the heat flow in an active rift (syn-rift) is about 63 to 110 mW/m2 with an average 

heat flow value of 80 mW/m2, and in a thermally subsiding rift (post-rift) is about 37 

to 66 mW/m2 with an average value of 50 mW/m2. Lysak (1992) investigated a 

relationship between heat flow variations and structural positions in active 

continental rift systems, indicating that the highest heat flow distributes along 

subsiding grabens, active fault zones and around volcanic centres, while heat flow 

on rift shoulders is generally lower than in the axial graben system. 

 

6.1.4 Temperature and thermal maturity  

 

Temperature was calculated using the transient heat flow model. Time and depth 

steps of 1 Ma and 100 m respectively were used. The method to calculate 
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temperature takes into account the thermal conductivity plus the heat capacity of the 

lithologies in the model, giving a more accurate heat-flow profile.  

The BasinMod 1D provides a method, together with default values of kinetic 

parameters, for the calculation of vitrinite maturation, using the chemical-kinetic 

model of vitrinite reflectance (Sweeney and Burnham, 1990). Vitrinite reflectance is 

a function of temperature and time, as described by the Arrhenius equation, which 

shows that the reaction rate of vitrinite maturation increases exponentially with 

temperature and linearly with time. The method allows the calculation of Ro values, 

ranging between 0.3 and 4.5 %, so as to compare with the measured maturity data 

and calibrate heat flow histories. 

  

6.2 Data sets 
 

Fourteen wells (Table 6-1 and Fig. 6-1) in various tectonic subdivisions of the 

Northern Carnarvon Basin were selected on the basis of available data for thermal 

modelling using BasinMod 1D (version 7.06, Platte River Associates, Inc.). The 

input data used for this modelling was collected from open files, such as well-

completion reports from the Department of Minerals and Energy of Western 

Australia. The initial porosity, matrix density, matrix thermal conductivity and 

matrix heat capacity were adopted from the default values in BasinMod 1D. In 

addition, conventional and side-wall core samples in Bambra-2 were analyzed for 

Rock-Eval pyrolysis.  

 

6.2.1 Stratigraphic data and porosity-depth relationship 

 

The stratigraphic data include the present thickness of stratigraphic intervals, 

lithology, and absolute age. The formation thickness is based on well-completion 

reports and well-log information. The undifferentiated formations within the 

Cainozoic were defined using the interpreted seismic data by the AGSO. Five 

lithologies (sandstone, siltstone, shale/claystone, limestone and coal) were used and 

the average content of each lithology was calculated as a percentage of mixed 

lithologies in a single formation. Absolute ages were obtained from the stratigraphic 
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table and the micropaleontological analysis of well-completion reports. The 

geological time scale is referenced in Labutis (1994) and Polomka et al. (1999).  
 

 

 
             Fig. 6-1 A map shows the locations of the modelled wells and the tectonic    
             subdivisions in the Northern Carnarvon Basin (after Woodside Offshore  
             Petroleum, 1988; Scott, 1992). 
 

The porosity-depth relationship for the backstripping of compacted stratigraphic 

thicknesses by Falvey and Middleton (1981), used in BasinMod 1D, is employed to 

model burial histories. The relationship was developed in the offshore Perth Basin, 

which also contains shallow carbonates similar to the Northern Carnarvon Basin. 

 

6.2.2 Geothermal parameters 

 

The present geothermal parameters include formation temperature, seabed 

temperature, thermal conductivity, heat capacity and heat flow. Present-day 

formation temperature can be estimated from drill stem test (DST) temperature, and 

the extrapolated bottom hole temperature (BHT-bottom hole temperature) using 

Horner plot correction. Where there was not sufficient data to correct the BHT using 

a Horner plot, BHT was corrected by adding 10 % of the raw BHT value. The 

current seabed temperature was based on the studies by Pickard and Emery (1982) 
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and Horstman (1988). Combining the formation temperature with seabed 

temperature allowed geothermal gradient to be calculated (Table 6-1). In the 

BasinMod 1D software, the default values of matrix thermal conductivity and matrix 

heat capacity were used (Table 6-2) and were calculated using the algorithms for 

temperature correction. The Deming and Chapman (1989) method was used to 

calculate fluid conductivity. Present-day heat flow was calculated using formation 

and seafloor temperatures with the steady-state heat flow model in BasinMod 1D 

(Table 6-1).  

 

Table 6-2 Default matrix thermal conductivity and matrix heat capacity in the BasinMod 
1D 
 

Lithology Matrix Thermal Conductivity 
(W∃ m-1∃ K-1) (Default) 

Matrix  Heat Capacity 
(kJ∃ m-3∃ K-1) (Default) 

Sandstone 4.4 2800 
Siltstone 2 2650 

Shale 1.5 2100 
Limestone 2.9 2600 
Dolomite 4.8 2600 

Coal 0.3 950 
 

 

6.2.3 Thermal maturity 

 

Multiple thermal maturity indicators, including vitrinite reflectance (Ro), equivalent 

vitrinite reflectance (Eq VR) and Rock-Eval Tmax, have been used in an attempt to 

overcome problems with limited data sets and to use them in combination in the 

assessment of thermal maturity in this study. 

 

The vitrinite reflectance values in dispersed organic matter are mean random 

vitrinite reflectance in oil (Ro %). The mean maximum reflectance values are not 

systematically different from the mean random reflectance in the dispersed organic 

matter (Kaiko and Tingate, 1996). Conversion of the maximum reflectance to 

random values can use an established relationship, Ro = Rmax/1.061, by Hoover and 

Davis (1980). 

 

The equivalent vitrinite reflectance (Eq VR) values, using the fluorescence alteration 

of multiple macerals (FAMM) technique, are believed to be equivalent to 
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unsuppressed vitrinite reflectance and calibrated in units of "mean random vitrinite 

reflectance". They range from about 0.45 to 1.20 %  (Wilkins et al., 1992a, 1992b, 

1995), and were analyzed by CSIRO Petroleum. The Eq VR data in four wells have 

been used for the studies of thermal and maturity modelling (Table 6-3). 

 

The reliability of Rock-Eval Tmax data was investigated in this basin. It was found 

that the problems that alter the Rock-Eval S2 peak which in turn affect Tmax data in 

assessment of thermal maturity include (1) contamination by drilling mud additives, 

(2) suppression due to HI > 150, (3) recycled organic matter, and (4) caved material. 

The abnormal Rock-Eval Tmax data from a maturity trend of an individual well could 

be identified, and should be ignored when they are significantly affected by these 

problems. The suppression of Tmax values due to HI > 150 could be corrected for 

type III kerogen based on the study of Snowdon (1995). The REESA (Rock-Eval 

Expert System Analysis) Rules in BasinMod 1D can be used for filtering Rock-Eval 

data.  

 

Table 6-3 Eq VR data in four wells used in this study 
  

Barrow-1 Bowers-1 Depuch-1 Jupiter-1 

Depth 

(m) 

Eq VR 

(%) 
Depth 

(m) 

Sample 

Type 

Eq VR 

(%) 
Depth 

(m) 

Sample 

Type 

Eq VR 

(%) 
Depth 

(m) 

Eq VR 

(%) 

1261 0.50 2000-2100 Cuttings 0.63 2215-2225 Cuttings 0.6 2753 0.50 

1679 0.53 2545-2555 Cuttings 0.77 2530-2540 Cuttings 0.64 3013 0.49 

1808 0.62 2850-2860 Cuttings 0.89 2850-2860 Cuttings 0.61 3178 0.58 

1981 0.68 2955-2960 Cuttings 0.91 3160-3170 Cuttings 0.67 3328 0.59 

2039 0.78 3060-3065 Cuttings 0.90 3420-3430 Cuttings 0.64 3593 0.62 

2371 0.80 3550 Cuttings 0.92 3860-3870 Cuttings 0.72 3903 0.82 

2597 0.86 3676.5 Cuttings 1.15 4015-4025 Cuttings 0.76 4248 0.74 

2835 0.98 3750-3760 Cuttings 1.18 4125-4135 Cuttings 0.80 4397 1.14 

  3915-3925 Cuttings 1.20 4200-4210 Cuttings 0.80 4533 1.00 

     4290-4300 Cuttings 0.83 4838 1.14 

 
The Eq VR values were measured by CSIRO Petroleum. 

 

6.2.4 Eroded thickness 
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The erosional thickness is important for burial, thermal and maturity modelling. 

However, there are no available well-log data for estimating erosional thicknesses. 

Seismic data can be used to make a rough correlation, and estimate thicknesses at 

the main unconformity. Based on AGSO's seismic interpretation, the seismic 

reflections show obvious erosional phenomena at the unconformity between the 

Triassic or Jurassic and Cretaceous sequences on the Rankin Platform. The missing 

section of the Lower Jurassic was estimated to be from several hundred meters up to 

one thousand meters thick (Barber, 1982). The Triassic erosional thickness ranges 

from zero to more than one thousand meters. Therefore, the total erosional thickness 

during the rifting until breakup on the Rankin Platform ranges from several hundred 

meters to more than two thousand meters. Some of the Lower Jurassic rocks may 

have been eroded on the structural highs of the Exmouth Plateau during the Middle 

Jurassic. In addition, where strata are absent and there is no evidence of erosion 

from seismic data, it has been treated as periods of non-deposition. 

 

6.2.5 Palaeobathymetry and sea-level variations 

  

Palaeobathymetry may affect thermal modelling owing to the variation of 

palaeoseafloor temperatures. Kaiko and Tait (2001) used seismic data to study the 

palaeo-water depths of the Late Jurassic to Cainozoic for some individual wells of 

the Northern Carnarvon Basin. These palaeo-water depth data were used for 1D 

modelling and were also used to evaluate water-sediment interface temperatures for 

the wells selected in this study. The palaeobathymetric values in the Triassic and 

Early-Middle Jurassic were estimated using lithology and palynofacies analysis in 

the well completion reports, and a study by Bradshaw et al. (1988). These were 

about 5 to 20 metres in the Middle-Late Triassic, 20 to 50 metres in the Early 

Jurassic, and 50 to 350 metres in the Middle-Late Jurassic. Similar deep water 

conditions persisted over most of the study area until the Tertiary, when prograding 

carbonate sediments again produced a shallow shelf environment. 

 

The long-term eustatic curves of the Mesozoic-Cenozoic by Haq et al. (1987) were 

adopted for changes of relative sea-level through time. 
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CHAPTER 7     ONE-DIMENSIONAL HEAT FLOW AND 

THERMAL MATURITY MODELLING 
 

7.1 Introduction  
 

The heat flow history of a basin is calculated by establishing an agreement between 

a calculated (or modelled) maturity curve and the equivalent observed maturity 

parameter (such as vitrinite reflectance, or Rock-Eval Tmax). Then, this calculated 

heat flow history can be used to predict the thermal maturity of source rocks and the 

timing of hydrocarbon generation. The calculated, or modelled, thermal maturity 

parameters are usually derived from models that use (1) empirically-based 

temperature and time integrals (e.g. Waples, 1980; Middleton, 1982), (2) the 

Arrhenius-reaction approach (e.g. Lerche et al., 1984; Wood, 1988), or (3) multiple 

Arrhenius-reaction models, which attempt to simulate the chemical reactions which 

produce maturation (e.g. Larter, 1988; Sweeney and Burnham, 1990). Temperature 

is the most sensitive parameter in thermal maturity and hydrocarbon generation, and 

Tissot et al. (1987) consider that reconstruction of temperature history is essential 

when evaluating petroleum prospects. Formation temperature depends upon heat 

flow, thermal conductivity, burial depth and the water-sediment interface or surface 

temperature.  

 

Vitrinite reflectance is the most widely used indicator of thermal maturity (e.g. 

Waples, 1985; Tissot and Welte, 1984; Allen and Allen, 1990; Hunt, 1996). Wilkins 

et al. (1992a) pointed out that two major causes of the anomalously low vitrinite 

reflectance for some North West Shelf wells are: (1) the suppression of vitrinite 

reflectance through marine influence; (2) the difficulty of identifying the vitrinite 

population in dispersed organic matter. Marine influence resulting in lower Ro 

values were proposed by Wilkins et al. (1992a), Hunt (1996), Kaiko and Tingate 

(1996) and Gurba and Ward (1998). Samuelsson and Middleton (1998) stressed that 

the vitrinite reflectance suppression in this basin has led to an underestimation of the 

true level of thermal maturity. As a major thermal maturity indicator, these problems 

with vitrinite reflectance make it difficult to estimate the thermal history in many 

wells of this basin. Researches have used alternative thermal parameters and Ro 
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correction for attempting to overcome the problems associated with the anomalously 

low Ro in studies of the basin’s thermal history and the thermal evolution of source 

rocks. Alexander, Marzi and Kagi (1990) applied molecular markers as thermal 

indicators for modelling the palaeoheatflow of the Jupiter-1 well in the basin. 

Wilkins, Russell and Ellacott (1994) evaluated thermal maturity of five Northern 

Carnarvon Basin wells using equivalent vitrinite reflectance (Eq VR) data, which is 

analysed by the technique of the fluorescence alteration of multiple macerals 

(FAMM). Kaiko and Tingate (1996) used the spore coloration combined with Ro 

and FAMM data for assessment of thermal maturity in the Barrow and Dampier 

Sub-basins. Samuelsson and Middleton (1998) corrected vitrinite reflectance values 

based on the method of Lo (1993) for reconstruction of heat flow histories in seven 

wells of the basin.  

 

Studies of palaeoheat flow in rift-related basins indicate that high palaeoheat flow is 

commonly associated with rifting and seafloor spreading (Mello and Karner, 1996; 

Zhou and Littke, 1999), and the reconstruction of thermal history from vitrinite 

reflectance is a function of the tectonic history in a sedimentary basin (e.g. 

Middleton, 1982; Allen and Allen, 1990).  Based on theoretical and empirical 

studies (McKenzie, 1978; Barber, 1982; Hellinger and Sclater, 1983; Middleton and 

Hunt, 1989; Driscoll and Karner, 1998; Tindale et al., 1998; Polomka et al., 1999), 

the evolution of the Northern Carnarvon Basin during the Jurassic is commonly 

accepted to be comprised of two major phases: (1) rapid subsidence and faulting, 

and (2) thermal subsidence.  

 

However, direct evidence for estimating past heat flow from palaeotemperatures 

(derived from vitrinite reflectance, Rock-Eval Tmax, or similar parameters) in most 

Barrow and Dampier Sub-basin wells may have disappeared since the 

palaeotemperatures experienced during the rifting phase may have been equalled, or 

exceeded, by those associated during burial in later sag-phase sedimentation (Kaiko 

and Tingate, 1996). Nielsen (1996) proposed that organic maturity indicators tend to 

remember only the maximum temperature encountered, and when organic matter in 

the present era experiences the maximum geotemperature, maturity indicators are 

less sensitive to thermal reconstruction. 
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The Northern Carnarvon Basin is the richest hydrocarbon province in Australia 

(Kopsen, 1994). About 50 gas/condensate and oil fields, associated with the 

postulated Triassic and Jurassic source rocks, have been discovered (Vincent and 

Tilbury, 1988; Lawry and Carter, 1992; le Poidevin and Lowden, 1994; Baillie and 

Jacobson, 1997). The thermal history models for the study region have been 

proposed by (1) Swift et al. (1988), who proposed maximum heat flows of about 77 

to 80 mW/m2 in the Jupiter-1 well and about 105 to 110 mW/m2 in the Dampier-1 

well, (2) Alexander et al. (1990), who modelled maximum heat flow with possible 

ranges of 70 to 75 mW/m2 between 140 Ma and 240 Ma in the Jupiter-1 well, (3) 

Wilkins et al. (1994), who modelled palaeoheat flows for the Gorgon-1 and 

Chinook-1 wells, (4) Kaiko and Tingate (1996), who studied the present-day heat 

flows and thermal histories modelling using constant heat flows in the Barrow and 

Dampier Sub-basins, and (5) Samuelsson and Middleton (1998), who modelled 

maximum palaeoheat flows of about 65 to 95 mW/m2, between 170 Ma and 250 Ma. 

However, their models are not associated with the algorithm for rifting heat flow 

history of Jarvis and McKenzie (1980).  

 

The aims of this chapter are (1) to investigate the applicability of the classical 

McKenzie- model (McKenzie, 1978; Jarvis and McKenzie, 1980) for rifting thermal 

history to the study area, (2) to propose a Ro-Tmax relationship and use Tmax data for 

the evaluation of thermal maturity compared with other maturity parameters of Ro 

and Eq VR, and (3) to present detailed thermal modelling of individual wells based 

on the correlation between Tmax and Ro. 

  

7.2 Data used in the study  
 

Eleven wells (Table 7-1) from various subdivisions of the Northern Carnarvon Basin 

(Fig. 7-1) were selected on the basis of suitability for thermal modelling. The input 

data have been discussed in Chapter 6. The initial porosity, matrix density, matrix 

thermal conductivity and matrix heat capacity were adopted from the default values 

in BasinMod 1D.  
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           Fig. 7-1 A map showing well locations for the thermal modelling and tectonic   
           subdivisions in the Northern Carnarvon Basin (after Woodside Offshore  
           Petroleum, 1988; Scott, 1992). 
 
 
Table 7-1 The eleven wells for thermal modelling in the Northern Carnarvon Basin 
 
Subdivision Well 

Exmouth Sub-basin Jurabi-1, Zeewulf-1 

Barrow Sub-basin Anchor-1, Bowers-1 

Dampier Sub-basin  Madeleine-1, Rosemary-1 

Beagle Sub-basin Depuch-1 

Rankin Platform North Gorgon-1, North Rankin-1 

Exmouth Plateau Investigator-1, Jupiter-1 

 

 

7.3 Relationship between vitrinite reflectance (Ro) and Rock-Eval 

Tmax 
 

Figure 7-2 shows a comparison of Tmax from Rock-Eval pyrolysis versus vitrinite 

reflectance within the Middle-Upper Triassic (Mungaroo Formation) and Jurassic 

source rocks in wells of the Northern Carnarvon Basin. The Rock-Eval Tmax and 

vitrinite reflectance data plotted in Fig. 7-2 are listed in Table 7-2. The data indicate 
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that the organic matter for the Mungaroo Formation is related to type III kerogen 

(Fig. 7-3). The depositional environment of the Mungaroo Formation is fluvio-

deltaic with an abundance of terrestrial plants (Barber, 1982; Cook et al., 1985), and 

for this reason suppression of vitrinite reflectance is not expected (Wilkins et al., 

1994). It is proposed that the data in Fig. 7-2 represent a reasonable correlation for 

Tmax in organic matter on the North West Shelf versus vitrinite reflectance. This 

correlation is only marginally different from the published correlation for the 

generalized behavior of Tmax versus Ro of Tissot and Welte (1984).   

 

The values of Tmax and Ro (measured by Robertson Research, 1986 and AGIP, 1993) 

in the Jurassic rocks from the Anchor-1 well are plotted in Fig. 7-2.  These data 

indicate that the relationship between Tmax and Ro is consistent with that plotted for 

the Mungaroo Formation, and thus these Tmax and Ro data are not contaminated or 

exhibit significant vitrinite reflectance suppression. Furthermore, it is important to 

note that the organic matter for the data in Anchor-1 is related to type III kerogen 

(Fig. 3-7). Also, Tmax and Ro values with type III kerogen for the Lower Jurassic 

source rocks in the Bowers-1 well (measured by Robertson Research and Analab) 

are consistent with the relationship between Tmax and Ro plotted in Figure 7-2.  

 

In a supporting study, Tmax, with values ranging from 484 oC to 490 oC, was 

measured from a conventional core in the Middle Jurassic at 4274 to 4283 metres in 

the Bambra-2 (measured by Australian Mineral Development Laboratories, Amdel, 

in 1983 and Geological Survey of Canada, 2000, see Table 4-1). These Tmax values 

correspond to Ro values of 1.5-1.8 % based on the relationships between Tmax and Ro 

provided by Teichmüller and Durand (1983), Espitalié et al. (1984) and Tissot et al. 

(1987). Corroborating this correlation, the measured vitrinite reflectance from 

“verified” vitrinite particles within this core fall in a range from about 1.2 to 2.0 % 

(measured by L.W. Gurba of University of New South Wales, 2000). These data 

could correlate with the Ro measurement of 1.7 % by Cook and Kanstler (1980) at 

the depth of 4290 metres in the Barrow Deep-1 well.  The observed Tmax = 484 oC 

and 490 oC and Ro = 1.7 % (being representative of the above cited Tmax and Ro 

data) for the conventional core samples in the Bambra-2 well are shown in Fig. 7-2.  
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Table 7-2 Ro and Rock-Eval pyrolysis data for five wells in the Northern Carnarvon Basin 
 
Depth  
(m) 

Ro 

(%) 

Tmax 
(oC) 

S1 S2 S3 TOC 
(wt.%) 

HI OI PI Sam. Well 

1800  431 0.10 0.68     0.13 CC  
1881-1896 0.55 431 0.19 1.47 1.37 1.44 102.00 95.14 0.11 CT  
1988-2003 0.61 432 0.13 1.70 1.21 1.42 119.70 85.21 0.07 CT  
2226-2241 0.67 434 0.43 2.30 1.66 1.65 139.30 100.60 0.16 CT  
2393-2409 0.64 433 0.23 1.30 1.49 1.24 104.80 120.10 0.15 CT Anchor-1 
2546-2561 0.68 434 0.24 1.40 1.61 1.72 81.40 93.60 0.15 CT (Jurassic) 
2686-2701 0.65 437 0.33 1.46 1.22 1.65 88.48 73.94 0.18 CT  
2754  438 0.23 0.73     0.24 CC  

2851-2866 0.76 439 0.19 1.18 1.28 1.63 72.39 78.53 0.14 CT  
3030-3046 0.83 442 0.09 0.48 0.84 1.16 41.38 72.41 0.16 CT  
            
4274 1.74 484 0.11 0.34 0.10 0.74 46 14 0.25 CC Bambra-2 
4283 1.74 490 0.13 0.39 0.03 0.97 40 3 0.24 CC (Jurassic) 
            
3735-3750 1.27 459 0.38 1.19 1.94 1.70 70.00 114.00 0.24 CT Bowers-1 
3840-3855 1.31 459 0.28 1.12 1.19 2.12 53.00 56.00 0.20 CT (Jurassic) 
            
3900-3915 1.43 468 0.38 1.43 2.02 2.80 51.00 72.00 0.21 CT  
3985-4000 1.43 474 0.34 2.10 5.79 4.67 45.00 124.00 0.14 CT  
4000-4005 1.38 468 0.21 1.27 3.61 2.49 51.00 145.00 0.14 CT  
4000-4015 1.56 467 0.32 1.15 1.64 2.21 52.00 74.00 0.22 CT Bowers-1 
4100-4105 1.56 482         (Triassic) 
4200-4205 1.66 477 0.17 0.89 1.52 1.85 48.00 82.00 0.16 CT  
4295-4300 1.80 479          
4295-4300 1.87 487 2.00 7.33 1.78 10.07 72.00 17.00 0.21 CT  
            
3050 0.49 430 0.49 5.15 1.2 5.01 102.70 23.95 0.09 CT  
3190 0.57 428 1.04 13.5 1.92 3.51 146.40 20.77 0.07 CT  
3615 0.63 437 5.03 77.1 5.49 35.9 214.60 15.29 0.06 CT  
3910 0.83 438 3.11 34.3 1.95 18.0 190.30 10.83 0.08 CT Jupiter-1 
4220 0.77 439 0.32 3.35 1.37 2.90 115.00 47.00 0.09 CT (Triassic) 
4455 0.86 440 0.94 5.22 0.92 4.23 123.40 21.74 0.15 CT  
4750 1.33 454 2.48 22.4 0.91 13.3 168.60 6.84 0.10 CT  
4865 1.36 460 3.13 26.6 1.22 13.7 194.40 8.91 0.11 CT  
            
3500-3525 1.00 442 0.95 1.01 1.54 1.41 71.00 109.00 0.48 CT  
3650-3675 1.00 445 0.84 1.93 1.03 2.20 87.00 46.00 0.30 CT  
3750-3775 1.07 447 0.97 2.98 1.19 2.95 101.00 40.00 0.25 CT North  
3875-3900 1.07 446 0.39 0.65 0.70 1.05 61.00 66.00 0.38 CT Gorgon-1 
4100-4125 1.18 449 0.51 0.77 0.59 1.22 63.00 48.00 0.40 CT (Triassic) 
4285-4290 1.18 453 0.38 0.90 0.63 1.27 70.00 49.00 0.30 CT  
4385-4390 1.29 455 0.15 0.25 0.26 0.56 44.00 46.00 0.38 CT  
4490-4500 1.39 463 0.21 0.33 0.22 0.78 42.00 28.00 0.39 CT  
 

* Rock-Eval data were collected from the well-completion reports and the reports prepared by Robertson 

Research Australia Pty. Ltd., 1986. 

 
Tmax: Temperature of the top of S2 peak; S1: Free hydrocarbons (mg HC/g rock); S2: Pyrolysable hydrocarbons 

(mg HC/g rock); S3: CO2 from pyrolysis (mg CO2/g rock); TOC: Total organic carbon (wt. %); HI: Hydrogen 

index (S2 % 100/TOC); OI: Oxygen index (S3 % 100/TOC); PI: Production index (S1/S1+S2). Sam.: Sample. CC: 

Conventional core; CT: Cuttings.   
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The Jurassic organic matter in the studied wells consists mainly of type III kerogen 

(Figures 3-6 to 3-9). The Jurassic organic matter in the Depuch-1 well is related to 

the coal-bearing strata and type III kerogen with HI ranging from about 40 to 389. 

The relationship between Ro versus Tmax (Fig. 7-2), as an average conversion trend 

of two maturity data sets, has been used to convert Tmax data into Ro values in the 

BasinMod 1D software mainly for the Mungaroo Formation and Jurassic sequence 

in the selected wells.  

 

7.4 Modelling of tectonic subsidence and sedimentation rates 
 

The tectonic subsidence (water-loaded subsidence) can be obtained after the 

removal of the sediment-loaded subsidence and after corrections of the palaeo-water 

depth (the data provided by Dr. Alex Kaiko) and palaeosea level variations through 

time. Subsidence analysis can help in the understanding of the histories of the syn-

rift (Jurassic and earliest Cretaceous) and post-rift (Cretaceous and Cainozoic). 

Figure 7-4 shows the tectonic subsidence curves in the Bambra-2 and Barrow Deep-

1 wells calculated by applying the equation of Steckler and Watts (1978) in the 

BasinMod 1D software. These curves exhibit two principal phases of subsidence in 

accordance with the rift tectonic regime, which generally agree with previous 

regional studies (e.g. Barber, 1982; Exon and Colwell, 1994; Müller et al., 1998; 

Polomka et al., 1999). These results indicate that rapid subsidence and 

corresponding high sedimentation rates took place during the rift-extensional period, 

and thermal subsidence with lower sedimentation rates occurred during the post-rift 

period. During the rift phase, the sedimentation rates ranged from about 80 m/Ma to 

200 m/Ma. During the post-rift phase, sedimentation rates ranged from less than 10 

m/Ma to 50 m/Ma. However, the sedimentation rates in the Cretaceous were 10 to 

50 m/Ma, while the rates in the Cainozoic ranged from less than 10 to 20 m/Ma. 

 

7.5 Modelling of heat flow and thermal maturity 
 

7.5.1 Thermal modelling for 2 wells in the Exmouth Sub-basin 

  

7.5.1.1 Jurabi-1 thermal modelling 
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The Jurabi-1 well is located on the southwestern flank of the Muiron Anticline in the 

eastern Exmouth Sub-basin (Fig. 7-1). The boundary between the Upper Jurassic 

strata and Muderong Shale is the main unconformity. Barrow Group is absent at the 

well site, and the group is thought to have been eroded during the breakup in the 

Valanginian, when a thickness of several hundred meters was eroded. This is based 

on seismic and sonic log data. Nevertheless, there are 1063 metres of Cretaceous-

Cenozoic sedimentary rocks in this well. Three formation temperatures were 

determined from BHTs using Horner plots. The current heat flow of 52.1 mW/m2 is 

calculated from the formation temperatures with a seafloor temperature of 23 oC.  

 

The maturity profiles in this well with Ro (measured by A.C. Cook, 1982) from side-

wall cores and Tmax data from cuttings samples (measured by PGA Consultants, 

1992 and Geotech, 1995) are shown in Fig. 7-5A. It can be seen that three of the 

four Ro values are in the Murat Siltstone, Brigadier and Mungaroo Formations, one 

is an anomalously low value in the Athol Formation, and all the Tmax data are in the 

Middle and Upper Jurassic sequence. It should be noted that some Tmax values, 

between 1535 and 2400 metres with HI ranging from 168 to 314, are likely to be 

suppressed about 1-3 oC, according to the study of Snowdon (1995). Also, the Tmax 

data from 1305 to 1470 metres are possibly related to recycled organic matter. Thus, 

Tmax is not as reliable as non-anomalous vitrinite reflectance, as a maturity indicator, 

in this well.   

 

The thermal modelling, using the current heat flow (projected back into the past), 

does not give a match between the observed maturity profile and calculated maturity 

curve (Fig. 7-5A, curve 2). A good fit to the maturity data, however, was achieved 

from a rift heat flow model, with 600 metres of erosion thickness and exponentially 

decreasing heat flow to the present (Fig. 7-5A, curve 1 and Fig. 7-5B). The 

modelled maturity curve links the Tmax data in the Dingo Claystone and Athol 

Formation with the Ro data in the Lower Jurassic and Upper Triassic (Fig. 7-5A). 

The proposed syn-rift phase in this sub-basin started at 190 Ma and terminated at 

136 Ma. The maximum heat flow of about 67 mW/m2 is 29 % greater than the 

current heat flow. Figure 7-6 shows the histories of burial, temperature and thermal 

maturity in the Jurabi-1 well with the rift-related heat flow history. It is obvious that 

the  model  produces  the maximum  temperature  during the syn-rift phase due to an  
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increase in rift heat flow, recorded by the maturity indicator in the Mungaroo 

Formation and the Jurassic sequences. 

 

    Fig. 7-6 The modelled geohistory and histories of temperature and maturity using the  

     rift-related heat flow history for the Jurabi-1 well. 

 

7.5.1.2 Zeewulf-1 thermal modelling  

 

Zeewulf-1 well was drilled on a structural high in the western margin of the 

Exmouth Sub-basin in a water depth of 1194 metres. There is only 5 metres of 

Upper Jurassic rocks and a lack of Lower-Middle Jurassic and top Triassic rocks in 

this well. The uplift and erosion on the structure could occur during rifting until 

about 150 Ma. Therefore, the main unconformity is the contact between the Upper 

Triassic sequence and the Upper Jurassic rocks. It is likely that the Lower Jurassic 

and the top of the Upper Triassic were eroded during the rifting. The erosional 

thickness could be about 1000 metres or more. The sedimentary rocks overlying the 

Upper Triassic are 1887 metres thick. Two formation temperatures are Horner-plot 

type temperatures. The calculated current heat flow is 59.6 mW/m2 (seabed 

temperature = 4.5 oC). Most vitrinite reflectance data (measured by A.C. Cook, 

1979) are from side-wall cores, which can be modelled well by the current heat flow 

and seabed temperature (Fig. 7-7). Figure 7-8 gives the geohistory, temperature and 

Korojon
Windalia



Chapter 7  1D Heat Flow and Thermal Maturity Modelling 98

maturity histories in this well. The model indicates that the organic matter in the 

Mungaroo Formation experienced decreasing temperatures at the place of uplift and 

erosion associated with the Jurassic extension. The secondary maturity increase is 

due to later burial during the post-rift phase. 

 

7.5.2 Thermal modelling for 2 wells in the Barrow Sub-basin 

 

7.5.2.1 Anchor-1 thermal modelling 

 

Anchor-1 well was drilled in the southern margin of the Barrow Sub-basin. In this 

case, six formation temperatures are corrected from the BHTs (raw BHTs + 10%). A 

current heat flow of 53.6 mW/m2 is estimated, with a seabed temperature of 24 oC. 

The vitrinite reflectance values (measured by Robertson Research Australia Pty. 

Ltd.) and the Tmax data (measured by Robertson Research Australia Pty. Ltd., BHP 

and AGIP) are shown in Fig. 7-9. Both Ro and Tmax data can be matched with the 

present heat flow and seabed temperature. This modelled result suggests that both Ro 

and Tmax values can be used to evaluate the thermal maturity trend in this well and 

also suggests that the organic matter in the well site is at maximum temperature at 

present (Fig. 7-9). Figure 7-10 indicates a basically continued burial and thermal 

effect histories in this well.   

 

7.5.2.2 Bowers-1 thermal modelling 

 

The Bowers-1 well was drilled on a faulted anticlinal structure on the eastern flank 

of the Alpha Arch in the Barrow Sub-basin (Fig. 7-1). The well contains a thin 

Jurassic sequence, but there is no palynological evidence to indicate that Middle-

Upper Jurassic strata are absent. In this case, two formation temperatures were 

derived from Horner-plot corrections and the seafloor temperature is 21 oC. The 

calculated current heat flow is 55.3 mW/m. The vitrinite reflectance values 

(measured by Robertson Research Australia Pty. Ltd. and Keiraville Konsultants, 

1989), Tmax data (measured by Robertson Research Australia Pty. Ltd. and Analab, 

1982) and Eq VR values (CSIRO Petroleum) are plotted in Fig. 7-11A. It can be 

seen  that  the Ro  data  from  Triassic  rocks,  obtained  from  different  laboratories, 
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unanimously support high thermal maturity, which is also consistent with the Tmax 

data. Most Ro data (measured by Keiraville Konsultants, 1989) in the Jurassic to 

Cretaceous formations are too low to be modelled even by a constant present-day 

heat flow. The best match, between the measured non-anomalous maturity data 

(Tmax and Ro) and the calculated maturity curve, was obtained from a rift heat flow 

model. The model assumes that the syn-rift phase began at 190 Ma and ended at 136 

Ma, which is when the maximum rift heat flow of 105 mW/m2 occurred (Figure 7-

11B). The modelled maximum heat flow is 88 % higher than the present-day heat 

flow. Although the modelled maximum heat flow is anomalously high, we have no 

reason to suspect the validity of the vitrinite reflectance data from the Triassic-aged 

sediments of this well. Thus, we conclude that the palaeoheat flow in this region 

may be abnormally high. The modelled geohistory and thermal effect history, 

corresponding to the thermal model, are shown in Fig. 7-12.  
 

       

 

      Fig. 7-12  The calculated geohistory and thermal effect history using the rift-related  

       heat flow history for the Bowers-1 well. 
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7.5.3 Thermal modelling for 3 wells in the Dampier and Beagle Sub-basins 

 

7.5.3.1 Rosemary-1 thermal modelling 

 

The Dampier Sub-basin is a rift graben between the Beagle Sub-basin on the north 

and the Barrow Sub-basin on the south. It is bounded on the west by the Rankin 

Platform and on the east by the Lambert Shelf. The geological history of the basin 

has been studied by a number of workers (e.g. Crostella and Chaney, 1978; Kopsen 

and McGann, 1985; Veenstra, 1985; Vincent and Tilbury, 1988; Barber, 1994; Hill, 

1994; Miller and Smith, 1996). Rosemary-1 was drilled on a faulted structure on the 

Rosemary Fault System along the east flank of the sub-basin. In the acceptable 

Rock-Eval data, the values of hydrogen index in the Jurassic organic-matter 

generally range from about 80 to 191, with the Tmax values ranging from 432 oC to 

442 oC, related to type III kerogen. The formation temperatures were corrected from 

BHTs (raw BHTs + 10%). A current heat flow is calculated to be 47.5 mW/m2 with 

a seabed temperature of 21 oC. The two sets of measured reflectance data (CSIRO 

and Robertson Research Australia Pty. Ltd.) are significantly lower than the 

modelled maturity trend, which is based on the present-day heat flow and seabed 

temperature (Fig. 7-13). The modelled maturity curve, on the basis of these 

corrected formation temperatures, is consistent with the Tmax data, which may 

represent a lower limit maturity trend. Figure 7-14 shows the modelled histories of 

burial, temperature and maturity for this well. 

 

7.5.3.2 Madeleine-1 thermal modelling 

 

The Madeleine-1 well was drilled in the Dampier Sub-basin (Fig. 7-1). In this case, 

the formation temperatures are corrected from the measured well temperatures 

(BHT + 10 %). A current heat flow of 48.2 mW/m2 (seafloor temperature = 23 oC) is 

estimated. The two sets of vitrinite reflectance data (measured by Robertson 

Research Australia Pty. Ltd. and Woodside Petroleum) from core and cutting 

samples fall significantly lower than the calculated maturity curve for the constant 

current heat flow model (Fig. 7-15A).  
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Tmax data (measured by Robertson Research Australia Pty. Ltd. and Woodside 

Petroleum) from both core and cutting samples can be used to evaluate the thermal 

maturity trend in this well (Figure 7-15A). The Tmax data with S1 � 1 used for the 

thermal modelling was examined using the REESA Rules. The constant current heat 

flow model provides a good match to the relatively reliable Tmax data. The fact that 

the present-day heat flow model can match the present maturity indicator suggests 

that the thermal effect due to present-day burial has exceeded any thermal effect that 

may have been imprinted on the sedimentary rocks during the syn-rift phase as 

noted by Kaiko and Tingate (1996). To fit the modelled maturity trend, a rift-related 

heat flow can be calculated with varying water-sediments interface temperature due 

to palaeoseawater depth changes that contain uncertainties. The rift heat flow has a 

peak heat flow value about 63 mW/m2 at about 155 Ma. Figures 7-16 to 7-18 show 

the difference between the thermal histories and hydrocarbon generation effects 

using the constant heat flow with the present seabed temperature and the rift heat 

flow with varying seabed temperatures. The rift-related heat flow history may be 

more reasonable for predicting histories of thermal maturity and hydrocarbon 

generation according to the rift tectonic setting of this basin.  

 

7.5.3.3 Depuch-1 thermal modelling 

 

The Depuch-1 well was drilled on the northern flank of the main depocentre in the 

Beagle Sub-basin. The sub-basin is situated at the northernmost of the elongate rift 

grabens and is separated from the Dampier Sub-basin by the De Grey Nose (Figure 

7-1). Three formation temperatures were obtained from corrected BHTs (raw BHT + 

10 %). The measured maturity profiles with Ro (measured by Robertson Research 

and Keiraville Konsultants), Eq VR (CSIRO Petroleum) and Tmax data (Robertson 

Research) are shown in Fig. 7-19.  

 

It should be also noted that some Tmax values are likely to be suppressed by about 1 

to 4 oC, due to HI > 150 to 389 in coal-related samples, and the observed vitrinite 

reflectance values in the Jurassic rocks may be suppressed by about 0.1 to 0.3 %. 

The corrected Tmax data can be matched (Fig. 7-19) by the maturity model generated 

from the assumption of a constant current heat flow, which was calculated to be 49.4 
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mW/m2 (seabed temperature = 21 oC). The modelled result suggests that the 
maturity level, about 0.6-1.0 % Ro in the Jurassic sequence of this well, is less 
sensitive to rifting heat flow modelling and that the Jurassic source rocks in this 
location experienced relatively low temperature increases during the earlier syn-rift 
phase. The fact that the present-day heat flow model and seabed temperature can 
match these maturity data further suggests that the sedimentary sequence is currently 
experiencing its maximum temperature. The modelled geohistory and thermal effect 
are shown in Fig. 7-20. 
 
7.5.4 Thermal modelling for 2 wells on the Rankin Platform 
 
7.5.4.1 North Gorgon-1 thermal modelling 
 
The North Gorgon-1 well was drilled in the northern part of the Gorgon structure of 
the southern part of the Rankin Platform (Fig. 7-1), a relatively high structure, which 
forms the western boundary of the Barrow-Dampier Sub-basins. The Gorgon 
structure is a series of northeast-southwest trending, en-echelon horst blocks of the 
Rankin Platform. The horst blocks consist of Triassic rocks. During the Early-
Middle Jurassic, the structure underwent uplift and erosion associated with the syn-
rift phase. Hellinger and Sclater (1983) proposed that extension and subsidence 
within the rift phase is generally accompanied by uplift and erosion of the rift 
shoulders. Structural models by Stein (1994) show that some parts of the Rankin 
Platform have undergone in excess of 1.5 kilometres of rift-related uplift. Based on 
missing successions in the well data and interpreted seismic lines from the AGSO, 
the Lower Jurassic and the upper part of the Mungaroo Formation are missing and 
the erosional thickness is estimated to be 1500 to 2000 metres. Formation 
temperatures are based on DST temperatures. The maturity profiles, with Ro data 
(measured by Keiraville Konsultants) and Tmax data (measured by Amdel) in Fig. 7-
21, indicate that there is no obvious break at the boundary between the Mungaroo 
Formation and Barrow Group. The measured maturity data can be matched well by 
the model, which assumes a constant current heat flow of 57.1 mW/m2 (seafloor 
temperature = 20 oC), irrespective of a missing section of Triassic and Lower 
Jurassic from 0 to 3200 metres. It is considered that the Rankin Platform as a 
western rift shoulder underwent a period of temperature decrease during the rift-
associated  uplift  and  erosion.  This  case  illustrates  that  the  graben  shoulder has 
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possibly experienced a higher thermal effect, associated with the burial during the 

Cretaceous and Cainozoic, than in the syn-rift phase. In fact, it is most likely that the 

platform was undergoing a period of uplift and erosional cooling during the syn-rift 

phase. Additionally, the distribution of the highest heat flow during the rifting is 

commonly along the rift grabens rather than on a rift shoulder (Lysak, 1992). Figure 

7-22 shows the modelled histories of burial and temperature in this well. This 

indicates that the maximum burial depth before the uplift and erosion is about 3040 

m and the temperature is about 125 oC, and the present-day burial depth is about 

4470 m and the temperature is about 165 oC. 

 

7.5.4.2 North Rankin-1 thermal modelling 

 

The North Rankin-1 well was drilled in the northern part of the Rankin Platform, 

adjacent to the Dampier Sub-basin to the east. The well penetrated the sedimentary 

section of the Upper Triassic to the Quaternary with the eroded section of the upper 

part of the Upper Triassic to the Lower Jurassic. There is a lack of the Middle-Upper 

Jurassic sequences and the Barrow Group at this well site. A major unconformity is 

the contact between the Upper Triassic sequence and the Winning Group 

(Valanginian to Cenomanian). A probable erosional thickness ranges from about 

1500 m to 2000 m during the rifting of the continental breakup. The post-rift 

sequence of the Cretaceous-Cainozoic is 2535 m. Four formation temperatures were 

collected from the DST data and one corrected BHT (raw BHT + 10 %) at 1703 m. 

The maturity profiles with vitrinite reflectance data and Tmax data (Robertson 

Research) in the Upper Triassic are shown in Fig. 7-23A. The measured maturity 

data can be modelled by the current heat flow of 53.5 mW/m2 (seabed temperature = 

21 oC) regardless of a missing section of Triassic and Lower Jurassic rocks from 0 to 

2000 metres thick. Based on this model, the calculated Ro values prior to the rift-

associated uplift and erosion may be 0.46-0.64 % for the top and bottom of the 

Mungaroo Formation and it underwent further maturation with a Ro increment of 

about 0.1 % from about 30 Ma due to the post-rift reburial (Fig. 7-23B). Its burial 

and thermal effect histories are shown in Fig. 7-24. 
 



Chapter 7  1D Heat Flow and Thermal Maturity Modelling 105

 

Fig. 7-24  The modelled geohistory and thermal effect using the current heat flow  

        and seafloor temperature for the North Rankin-1 well. 

 

7.5.5 Thermal modelling for 2 wells on the Exmouth Plateau 

 

7.5.5.1 Investigator-1 thermal modelling 

 

The Investigator-1 well was drilled in the southern Exmouth Plateau. The 

depositional and tectonic evolution of the Exmouth Plateau have been discussed by 

many authors (e.g. Barber, 1982, 1988; Exon and Colwell, 1994; Tindale et al., 

1998). Based on the palynological analyses in the well-completion report, there is a 

condensed Jurassic interval (188 m) and a thick succession of the Barrow Group 

(1619 m). The Lower-Middle Jurassic interval is probably not completely 

represented, and is only 44 m thick. The formation temperatures are based on one 

Horner-plot-corrected temperature of 97.2 oC at 3592 m, and two corrected BHTs 

(raw BHT + 10 %). The maturity profiles with vitrinite reflectance (measured by A. 

C. Cook, 1979) and the Tmax data (measured by BHP, 1993) are shown in Fig. 7-

25A. There is an obvious break in the Ro profile at about 3000 m, and there are no 

Tmax data in the Barrow Group. As a result of the breakup in the Valanginian, the 

unconformity   is   comprised  of  a   contact   between  the   Barrow  Group  and  the  
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Muderong Shale (Tindale et al., 1998). The two segments of the Ro profile are 

unlikely to be caused by a discontinuous thermal effect between the Jurassic 

sequence and the Barrow Group due to a possible erosional period during the 

Middle Jurassic. The model, based on extrapolation of the current heat flow of 56.8 

mW/m2 (seafloor temperature = 5.5 oC) back in time, is inconsistent with the 

measured Ro values (Fig. 7-25A). A rift palaeoheat flow scenario is shown in Fig. 7-

25B, and the modelled result is also shown in Fig. 7-25A. The rift thermal model 

matches the measured Ro and Tmax profiles in the Triassic and Jurassic, but observed 

values are lower in the Barrow Group interval. This suggests that the measured Ro 

values in the Barrow Group should be inferred to be suppressed or incorrect. The 

syn-rift phase is assumed to commence in the earliest Jurassic (208 Ma) and 

continue to breakup (136 Ma). The modelled maximum heat flow, which 

subsequently decayed exponentially to the present-day value, was determined to be 

78 mW/m2, and was 37 % higher than the present heat flow of 56.8 mW/m2. Figure 

7-26 shows the geohistory and the modelled histories of temperature and thermal 

maturity using the rift-related heat flow history.  

 

 

Fig. 7-26 The modelled geohistory and histories of temperature and thermal maturity    

using the rift-related heat flow history for the Investigator-1 well. The erosional thickness  

of 300 m was used during the Middle Jurassic. 

Low-Middle Jurassic

Delambre/Cape Range
Giralia/Cardabia

Gearle
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7.5.5.2 Jupiter-1 thermal modelling 

 

The Jupiter-1 well was drilled on an upthrown block of a fault half-graben on the 

central Exmouth Plateau. The well has a condensed Upper Jurassic interval of 15 m 

from the Callovian to the Tithonian. The Lower-Middle Jurassic sequence and 

Barrow Group are absent. The three profiles of the measured maturity data include 

vitrinite reflectance (measured by A. C. Cook, 1979, 1985 and AMDEL, 1996), Eq 

VR (CSIRO Petroleum) and Tmax data (measured by Geotech, 1996) within the 

Mungaroo Formation of the Middle-Upper Triassic (Fig. 7-27A). The formation 

temperatures are all Horner-plot-corrected BHTs. It is difficult to get a fit between 

the observed maturity data and calculated (modelled) maturity curve, based on the 

present heat flow of 54.3 mW/m2 (seabed temperature = 5 oC) in this well. A good 

fit between the observed and calculated maturity for this well is obtained using the 

rift heat flow model (Fig. 7-27B). The peak thermal influence during rifting on this 

well location is considered to be from 208 Ma to 155 Ma. The modelled maximum 

value of the rift palaeoheat flow was about 72 mW/m2, which exponentially 

decreased to the present value during the post-rift phase. The peak heat flow value is 

about 33 % more than the present heat flow. Figure 7-28 is the geohistory, and 

thermal history associated with the rift-related heat flow. 

 

7.6 Summary 
 

Possible errors in the modelled palaeoheat flow may be related to the conceptual 

model for the present study, and also to input data, such as: (1) a single thermal 

event during syn-rifting, (2) the assumption of only vertical thermal conduction, and 

(3) uncertainties of the input data, such as thermal maturity, matrix thermal 

conductivity, formation temperature, palaeoseafloor or surface temperature, 

erosional thickness and hiatus time.  These factors should be taken into 

consideration when evaluating the modelled results. 

 

Heat flow modelling indicates that the measured thermal maturity data in some 

wells are consistent with rift heat flow models (Jarvis and McKenzie, 1980) 

associated with the Jurassic to earliest Cretaceous rifting in the sub-basins (190-136  
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Ma), the southern Exmouth Plateau (208-136 Ma) and central Exmouth Plateau 

(208-155 Ma). In the sub-basins, the modelled maximum rift heat flow is 67 mW/m2 

in Jurabi-1, which appears to be typical in the Barrow Sub-basin.  However, the 

palaeoheat flow was found to be 105 mW/m2 in Bowers-1. On the Exmouth Plateau, 

the modelled highest rift heat flow is 72 mW/m2 in Jupiter-1, and 78 mW/m2 in 

Investigator-1. This study may indicate that there is a relatively high heat flow 

during the syn-rift phase in the Exmouth, Barrow and Dampier Sub-basins. This 

thermal modelling suggests that it is necessary to use the rift heat flow model for 

predicting the history of thermal maturity and the timing of hydrocarbon generation 

of the Triassic and Jurassic source rocks along the depocentres of the Exmouth, 

Barrow and Dampier Sub-basins. 

 

 

     Fig. 7-28 The modelled geohistory and histories of temperature and thermal maturity       

     using the rift-related heat flow history for the Jupiter-1 well. 

 

It was found that the major problems influencing the reliability of Tmax data for the 

assessment of thermal maturity were (1) contamination by drilling-mud additives in 

both cuttings and side wall cores (Chapter 4), and (2) suppression due to HI > 150, 

although natural bitumen, recycled organic matter and cavings may also present 

problems.  In general, the reliable Tmax data are consistent with the non-anomalous 

Cape Range
Cardabia
Toolonga
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(non-suppressed) Ro data and some Eq VR data, which plot according to the 

proposed Ro-Tmax relationship (Fig. 7-2) for the basin. The relationship has been 

extensively tested with many wells in this study. This study indicates that reliable 

Tmax data are important, and useful, to evaluate thermal maturity, especially where 

other maturity data are unavailable. The study shows the correlation developed 

between Tmax and Ro in the detailed thermal modelling of individual wells and also 

indicates that a good, reliable correlation between Tmax and Ro may go towards 

overcoming the problems associated with the anomalously low vitrinite reflectance. 

However, the proposed relationship of Ro to Tmax is preliminary, and more study is 

needed to improve this correlation. It should be noted that the relationship between 

Ro and Tmax, used in this study, may result in !3-10 % error for the calculated 

vitrinite reflectance.  
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Fig. 7-24  The modelled geohistory and thermal effect using the current heat flow  

        and seafloor temperature for the North Rankin-1 well. 

 

7.5.5 Thermal modelling for 2 wells on the Exmouth Plateau 

 

7.5.5.1 Investigator-1 thermal modelling 

 

The Investigator-1 well was drilled in the southern Exmouth Plateau. The 

depositional and tectonic evolution of the Exmouth Plateau have been discussed by 

many authors (e.g. Barber, 1982, 1988; Exon and Colwell, 1994; Tindale et al., 

1998). Based on the palynological analyses in the well-completion report, there is a 

condensed Jurassic interval (188 m) and a thick succession of the Barrow Group 

(1619 m). The Lower-Middle Jurassic interval is probably not completely 

represented, and is only 44 m thick. The formation temperatures are based on one 

Horner-plot-corrected temperature of 97.2 oC at 3592 m, and two corrected BHTs 

(raw BHT + 10 %). The maturity profiles with vitrinite reflectance (measured by A. 

C. Cook, 1979) and the Tmax data (measured by BHP, 1993) are shown in Fig. 7-

25A. There is an obvious break in the Ro profile at about 3000 m, and there are no 

Tmax data in the Barrow Group. As a result of the breakup in the Valanginian, the 

unconformity   is   comprised  of  a   contact   between  the   Barrow  Group  and  the  
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Muderong Shale (Tindale et al., 1998). The two segments of the Ro profile are 

unlikely to be caused by a discontinuous thermal effect between the Jurassic 

sequence and the Barrow Group due to a possible erosional period during the 

Middle Jurassic. The model, based on extrapolation of the current heat flow of 56.8 

mW/m2 (seafloor temperature = 5.5 oC) back in time, is inconsistent with the 

measured Ro values (Fig. 7-25A). A rift palaeoheat flow scenario is shown in Fig. 7-

25B, and the modelled result is also shown in Fig. 7-25A. The rift thermal model 

matches the measured Ro and Tmax profiles in the Triassic and Jurassic, but observed 

values are lower in the Barrow Group interval. This suggests that the measured Ro 

values in the Barrow Group should be inferred to be suppressed or incorrect. The 

syn-rift phase is assumed to commence in the earliest Jurassic (208 Ma) and 

continue to breakup (136 Ma). The modelled maximum heat flow, which 

subsequently decayed exponentially to the present-day value, was determined to be 

78 mW/m2, and was 37 % higher than the present heat flow of 56.8 mW/m2. Figure 

7-26 shows the geohistory and the modelled histories of temperature and thermal 

maturity using the rift-related heat flow history.  

 

 

Fig. 7-26 The modelled geohistory and histories of temperature and thermal maturity    

using the rift-related heat flow history for the Investigator-1 well. The erosional thickness  

of 300 m was used during the Middle Jurassic. 
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7.5.5.2 Jupiter-1 thermal modelling 

 

The Jupiter-1 well was drilled on an upthrown block of a fault half-graben on the 

central Exmouth Plateau. The well has a condensed Upper Jurassic interval of 15 m 

from the Callovian to the Tithonian. The Lower-Middle Jurassic sequence and 

Barrow Group are absent. The three profiles of the measured maturity data include 

vitrinite reflectance (measured by A. C. Cook, 1979, 1985 and AMDEL, 1996), Eq 

VR (CSIRO Petroleum) and Tmax data (measured by Geotech, 1996) within the 

Mungaroo Formation of the Middle-Upper Triassic (Fig. 7-27A). The formation 

temperatures are all Horner-plot-corrected BHTs. It is difficult to get a fit between 

the observed maturity data and calculated (modelled) maturity curve, based on the 

present heat flow of 54.3 mW/m2 (seabed temperature = 5 oC) in this well. A good 

fit between the observed and calculated maturity for this well is obtained using the 

rift heat flow model (Fig. 7-27B). The peak thermal influence during rifting on this 

well location is considered to be from 208 Ma to 155 Ma. The modelled maximum 

value of the rift palaeoheat flow was about 72 mW/m2, which exponentially 

decreased to the present value during the post-rift phase. The peak heat flow value is 

about 33 % more than the present heat flow. Figure 7-28 is the geohistory, and 

thermal history associated with the rift-related heat flow. 

 

7.6 Summary 
 

Possible errors in the modelled palaeoheat flow may be related to the conceptual 

model for the present study, and also to input data, such as: (1) a single thermal 

event during syn-rifting, (2) the assumption of only vertical thermal conduction, and 

(3) uncertainties of the input data, such as thermal maturity, matrix thermal 

conductivity, formation temperature, palaeoseafloor or surface temperature, 

erosional thickness and hiatus time.  These factors should be taken into 

consideration when evaluating the modelled results. 

 

Heat flow modelling indicates that the measured thermal maturity data in some 

wells are consistent with rift heat flow models (Jarvis and McKenzie, 1980) 

associated with the Jurassic to earliest Cretaceous rifting in the sub-basins (190-136  
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Ma), the southern Exmouth Plateau (208-136 Ma) and central Exmouth Plateau 

(208-155 Ma). In the sub-basins, the modelled maximum rift heat flow is 67 mW/m2 

in Jurabi-1, which appears to be typical in the Barrow Sub-basin.  However, the 

palaeoheat flow was found to be 105 mW/m2 in Bowers-1. On the Exmouth Plateau, 

the modelled highest rift heat flow is 72 mW/m2 in Jupiter-1, and 78 mW/m2 in 

Investigator-1. This study may indicate that there is a relatively high heat flow 

during the syn-rift phase in the Exmouth, Barrow and Dampier Sub-basins. This 

thermal modelling suggests that it is necessary to use the rift heat flow model for 

predicting the history of thermal maturity and the timing of hydrocarbon generation 

of the Triassic and Jurassic source rocks along the depocentres of the Exmouth, 

Barrow and Dampier Sub-basins. 

 

 

     Fig. 7-28 The modelled geohistory and histories of temperature and thermal maturity       

     using the rift-related heat flow history for the Jupiter-1 well. 

 

It was found that the major problems influencing the reliability of Tmax data for the 

assessment of thermal maturity were (1) contamination by drilling-mud additives in 

both cuttings and side wall cores (Chapter 4), and (2) suppression due to HI > 150, 

although natural bitumen, recycled organic matter and cavings may also present 

problems.  In general, the reliable Tmax data are consistent with the non-anomalous 
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(non-suppressed) Ro data and some Eq VR data, which plot according to the 

proposed Ro-Tmax relationship (Fig. 7-2) for the basin. The relationship has been 

extensively tested with many wells in this study. This study indicates that reliable 

Tmax data are important, and useful, to evaluate thermal maturity, especially where 

other maturity data are unavailable. The study shows the correlation developed 

between Tmax and Ro in the detailed thermal modelling of individual wells and also 

indicates that a good, reliable correlation between Tmax and Ro may go towards 

overcoming the problems associated with the anomalously low vitrinite reflectance. 

However, the proposed relationship of Ro to Tmax is preliminary, and more study is 

needed to improve this correlation. It should be noted that the relationship between 

Ro and Tmax, used in this study, may result in !3-10 % error for the calculated 

vitrinite reflectance.  
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CHAPTER 8     THERMAL MATURITY AND THERMAL 

MODELLING WITHIN THE OVERPRESSURED JURASSIC 

ROCKS IN THE BARROW AND BAMBRA WELLS 
 

8.1  Introduction  
 

Overpressure is common in many sedimentary basins worldwide (e.g. Bigelow, 

1994b; Swarbrick and Osborne, 1998). Disequilibrium compaction and fluid volume 

expansion during gas generation are considered to be the major contributors to large 

magnitude overpressure (e.g. Swarbrick and Osborne, 1998). Hunt (1990) has noted 

that much of the world's oil and gas has been generated from source rocks in deep 

(>3000 m) overpressured fluid compartments, and the fluid thermal expansion and 

hydrocarbon generation result in overpressure within sealed compartments of 

sedimentary basins. McTavish (1998) has also pointed out that the abnormal profiles 

of organic matter maturation in overpressured sequence, which express the 

retardation of maturation, are a worldwide phenomenon.  

 

Vitrinite reflectance (Ro) is the most widely used maturity indicator in petroleum 

exploration (e.g. Tissot and Welte, 1984; Allen and Allen, 1990; Hunt, 1996). A 

common interpretation for unexpectedly low Ro is vitrinite-reflectance suppression, 

which occurs when measurement is made on  (1) liptinite-rich organic matter, and 

(2) a perhydrous vitrinite population (e.g. Hutton and Cook, 1980; Price and Barker, 

1985; Raymond and Murchison, 1991), or (3) vitrinite deposited under marine 

influence (e.g. Wilkins et al., 1992a; Hunt, 1996; Gurba and Ward, 1998). In 

overpressured systems, an alternative explanation for anomalously low vitrinite 

reflectance values is due to overpressure retardation of organic matter maturation 

(McTavish, 1978; Hao et al., 1995; McTavish, 1998; Carr, 1999). McTavish (1978) 

described possible pressure retardation of vitrinite reflectance in some North Sea 

wells, and Hao et al. (1995) found that overpressure has significantly retarded 

organic matter maturation and petroleum generation from the LD3011 well in the 

Yinggehai Basin, South China Sea. In contrast, Hunt (1979; 1996) emphasized that 

vitrinite maturation is not significantly affected by pressure, only by temperature. 

Tissot and Welte (1984) pointed out that the influence of pressure is probably 
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subordinate to that of temperature on the basis of geological studies and 

experimental work. Furthermore, Allen and Allen (1990) stated that pressure is a 

negligible factor in thermal maturity. These authors stressed that the most important 

factor in thermal maturity is temperature, with pressure being relatively unimportant 

in hydrocarbon generation. Similarly, Khorasani and Michelsen (1994) 

demonstrated that the effect of overpressure in shales has no important influence on 

the observed relationship between temperature and vitrinite reflectance.  

 

The unusually steep vitrinite reflectance profiles, mainly in the Jurassic and the 

Lower Cretaceous formations in the Northern Carnarvon Basin, North West Shelf of 

Australia, have been studied by various authors (e.g. Wilkins et al., 1992a; Kaiko 

and Tingate, 1996; Samuelsson and Middleton, 1998). Wilkins et al. (1992a) 

proposed that the two main sources of error in the vitrinite reflectance data for some 

North West Shelf wells are the suppression of vitrinite reflectance with marine 

influence and/or inaccurate identification of vitrinite in dispersed organic matter. 

They also indicated that some North West Shelf wells show a surprisingly small 

increase in vitrinite reflectance with increasing depth that is impossible to fit with 

thermal maturity modelling.  
 

McTavish (1998) maintained that apparently abnormal maturity profiles in source 

rocks found in overpressured sequences are widespread in the world, including other 

unpublished examples from the North West Shelf of Australia. With regard to the 

Australian North West Shelf, and in the Barrow Sub-basin of the Northern 

Carnarvon Basin specifically, the deeper part of some anomalous vitrinite 

reflectance profiles is associated with high overpressure (e.g. Kopsen and McGann, 

1985; Wilkins et al., 1992a; Swarbrick and Hillis, 1999). Kopsen and McGann 

(1985) described present-day thermal maturities of the Barrow and Bambra wells 

below expected values with the apparent vitrinite under-maturity occurring within 

the highly overpressured Jurassic sequence. Wilkins et al. (1992a) pointed out that 

the lower part of the Jurassic sequence in Barrow Deep-1 is strongly overpressured, 

but considered that the overpressure effect on vitrinite reflectance was likely to be 

small. Swarbrick and Hillis (1999) suggested that the vitrinite reflectance data from 

the North West Shelf basins should be used with caution where overpressuring is 

significant. They further suggested that the retardation of maturation was largely 
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responsible for delayed petroleum-trap charging, which was at variance with the 

charge time predicted by some basin modelling exercises. It is clear from the above 

that there is an unsolved problem: are the anomalously low vitrinite reflectance 

profiles in the overpressured Jurassic sequence of the Barrow Sub-basin due to 

overpressure-related retardation of thermal maturity? This topic is believed to merit 

further attention. This chapter aims to improve an understanding of whether the 

overpressure has a determinable influence on thermal maturity and petroleum 

generation in two separate case studies using measured maturity data and thermal 

modelling in the overpressured Jurassic section in the Barrow and Bambra wells. 

The wells for the case studies are (1) the Barrow-1/Barrow Deep-1 wells, and (2) the 

Bambra-1/Bambra-2 wells (Fig. 6-1).  

 

8.2  Thermal maturity 
 

The thermal maturity data used in this study include Ro, equivalent vitrinite 

reflectance (Eq VR) and Rock Eval Tmax. The Ro data in three wells and Eq VR in 

Barrow-1 are listed in Table 8-1. It can be seen that the majority of measured 

vitrinite reflectance values in these three wells are unexpectedly low compared with 

Eq VR and Rock-Eval Tmax data. Rock-Eval Tmax data for Bambra-2, Barrow Deep-1 

and Barrow-1 are listed in Table 4-1, Tables 8-2 and 8-3, respectively. Figures 8-1 

and 8-2 show that the Jurassic section is highly overpressured in these wells and the 

Rock-Eval Tmax data generally increase with increasing depth. It should be noted 

that the Tmax data used in Bambra-2 are the acceptable and normal values in Table 4-

1. However, it is uncertain whether the thermal maturity has been retarded in the 

overpressured zone. It needs to be further studied, combined with more maturity 

parameters and thermal modelling.  

 

The molecular parameters of thermal maturity from gas chromatography (GC) and 

gas chromatography-mass spectrometry (GC-MS) analyses of saturated hydrocarbon 

fractions from paraffinic crude oils and rocks in the Barrow and Bambra areas are 

given in Table 8-4. Volkman et al. (1983) demonstrated that these crude oils in the 

Barrow Sub-basin had a source in the Upper Jurassic Dingo Claystone formation. 

The distributions of n-alkane  hydrocarbons  from GC analyses on the extracts of the  
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conventional core samples (4274.2 m and 4282.9 m) show quite high levels of 

thermal maturity (Fig. 4-2, A and B). Peters and Moldowan (1993) and Hunt (1996) 

recommend that the ratios of C29 20S/(20S+20R) and C29 ββ/(ββ+αα) steranes can 

be used as maturity indicators with maturity ranges, compared with vitrinite 

reflectance, between < 0.4-0.8 % and < 0.4-0.9 % Ro respectively. As can be 

expected on the basis of Peters and Moldowan (1993) and Hunt (1996), the 

traditionally used biomarker maturity parameters based on steranes for the source 

rock samples at 3610 m, 4274 m and 4283 m (A and B; Table 8-4) in the 

overpressured zone have all reached their equilibrium values. The steadily 

decreasing pristane/n-C17 and phytane/n-C18 ratios in rocks (C and D; Table 8-4) 

with burial depth indicate that the thermal maturity of the source rocks in the 

overpressured interval increases with increasing depth (temperature). This organic 

geochemical evidence indicates that the organic matter in the source rocks of the 

observed overpressured interval in the Barrow and Bambra areas has experienced 

moderate to high levels of thermal maturation and that a detectable maturation 

retardation has not been observed from the sedimentary organic matter in the 

overpressured system. 

 

8.3 Data sets for thermal maturity modelling 
 

Key input data for the modelling comprise the present thickness of the stratigraphic 

interval, lithology (Table 8-5), absolute age, measured formation temperatures 

(Table 8-6), thermal maturities and palaeobathymetries based on the data from Dr. 

Alex Kaiko (personal communication). The porosity-depth relationship for 

backstripping established by Falvey and Middleton (1981) was adopted for the 

modelling of burial histories. In the study areas of the selected wells, there is no 

significant erosion (Ellis et al., 1999) to influence the maturity modelling, although 

uplift may have occurred during the Tertiary (Densley et al., 2000). Hiatuses have 

been treated as periods of non-deposition. Some present-day geothermal parameters 

are shown in Table 6-1. Formation temperatures used in this thermal modelling are 

listed in Table 8-6. 
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Table 8-1  Measured vitrinite reflectance for three wells and Eq VR values for the Barrow-1 
well in the Barrow Sub-basin 
 

Barrow-1 Barrow Deep-1 Bambra-2 
Depth 
(m) 

bRo  
(%) 

Depth 
(m) 

cEq VR 
(%) 

Depth 
(m) 

dRo (1) 
(%) 

Depth 
(m) 

eRo (2)  
(%) 

Depth 
(m) 

aRo (%) 

1013 0.36 1261 0.5 2934 0.63 3053 0.78 2616 0.53 
1166 0.37 1679 0.53 3025 0.61 3354 1.00 2624 0.51 
1288 0.38 1808 0.62 3208 0.63 3656 0.98 2734 0.45 
1349 0.42 1981 0.68  3300 0.76 3960 1.00 2815 0.51 
1641 0.44 2039 0.78 3391 0.73 3964 1.68 2955 0.51 
1982 0.48 C 2371 0.80 3513 0.86 4290 1.70 3056.4 0.49 
2222 0.48 C 2597 0.86  3604 0.93 4650 2.17 3250 0.47 
2294 0.50 2835 0.98  3787 0.89   3560 0.53 
2402 0.62 Cs   4336 1.17   3671 0.57 
2416 0.52   4427 1.10   3890 0.84 
2597 0.51 C   4610 1.14   4447 0.97 
2835 0.56 C         
2835 0.73 Cs         
2903 0.56         

 

a: Ro data all from side-wall cores in Bambra-2 were measured by Australian Mineral Development   

    Laboratories (Amdel) (1983).  

b: Ro data in Barrow-1 were measured by Robertson Research Australia Pty. Ltd. (1964). C: Core   

    sample. Cs: Core samples, the Ro was measured by Cook and Kanstler (1980). 

c: Eq VR data in Barrow-1 were measured by CSIRO Petroleum (1992). 

d: Ro (1) data in Barrow Deep-1 were measured by Robertson Research Australia Pty. Ltd. (1979). 

e: Ro (2) data in Barrow Deep-1 were measured by Cook and Kanstler (1980).  

 

 

 

Table 8-2  Rock-Eval pyrolysis data for the cuttings samples in the Barrow Deep-1 well in 
the Barrow Sub-basin 
 

Depth 
(m) 

Tmax 
(oC) 

S1 S2 S3 TOC 
(wt. %) 

HI OI PI 

2941-2956 440  0.9048 0.8700 1.74 52 50  
2941-2956 443  1.4616 1.3440 1.68 87 80  
3002-3017 445 ? 0.1265 0.5060 1.9780 2.30 22 86 0.2 
3048-3063 447 0.3073 2.7664 1.3286 1.82 152 73 0.1 
3216-3231 451 ? 0.5101 1.1904 0.9176 2.48 48 37 0.3 
3505-3520 459  0.3875 0.8835 1.55 25 57  
3932-3947 462 0.2923 2.6314 0.4014 2.23 118 18 0.1 

 

Note: Rock-Eval data were collected from the report prepared by Robertson Research Australia Pty. Ltd., 1986.   

 

Tmax: Temperature of the top of S2 peak; S1: Free hydrocarbons (mg HC/g rock); S2: Pyrolysable hydrocarbons 

(mg HC/g rock); S3: CO2 from pyrolysis (mg CO2/g rock); TOC: Total organic carbon (wt. %); HI: Hydrogen 

index (S2 % 100/TOC); OI: Oxygen index (S3 % 100/TOC); PI: Production index (S1/S1+S2). 
 



Chapter 8  Thermal Maturity within the Overpressured Jurassic Rocks 

 

128

 

Table 8-3  Rock-Eval pyrolysis data for the cuttings and core samples in the Barrow-1 well 
in the Barrow Sub-basin 
 

Depth 

(m) 

Tmax 

(oC) 

S1 S2 S3 TOC 

(wt. %) 

HI OI PI Type of 

Sample 

1484-1500 428  1.6642 1.0676 3.14 53 34  Cuttings 

1484-1500 434  1.3797 0.9417 2.19 63 43  Cuttings 

1808 437 0.1280 1.1520 0.5184 1.44 80 36 0.1 Core 

1942-1957 436  0.9322 0.8374 1.58 59 53  Cuttings 

2222 437 0.2598 1.0395 0.8085 1.65 63 49 0.2 Core 

2286-2301 437  1.0065 0.8784 1.83 55 48  Cuttings 

2301-2316 440 0.2176 2.8910 0.3920 2.45 118 16 0.1 Cuttings 

2423-2438 435  0.6032 0.7592 1.04 58 73  Cuttings 

2499-2515 435  0.5978 1.2566 1.22 49 103  Cuttings 

2515-2530 440  1.8240 0.5320 1.90 96 28  Cuttings 

2597 440 0.3832 1.5330 0.6510 2.10 73 31 0.2 Core 

2667-2682 439  0.7503 0.3843 1.83 41 21  Cuttings 

2758-2774 444  1.3213 0.9593 1.81 73 53  Cuttings 

2804-2819 439  2.3998 0.4732 1.69 142 28  Cuttings 

2804-2819 440 0.2064 2.3739 0.2895 1.93 123 15 0.1 Cuttings 

2835 441 0.1200 1.0800 0.6048 1.44 75 42 0.1 Core 

2865-2880 443  0.2680 0.6120 1.80 126 34  Cuttings 

2880-2896 444 0.1332 1.3468 0.8806 2.59 52 34 0.1 Cuttings 

2911-2926 441 0.5557 2.2230 0.6270 1.90 117 33 0.2 Cuttings 

2972-2981 450 0.5628 2.2512 0.4020 2.01 112 20 0.2 Cuttings 

2972-2981 444 0.1272 1.1450 0.8244 2.29 50 36 0.1 Cuttings 

 

* Rock-Eval data were collected from the report prepared by Robertson Research Australia Pty. Ltd., 1986. 

 

Tmax: Temperature of the top of S2 peak; S1: Free hydrocarbons (mg HC/g rock); S2: Pyrolysable hydrocarbons 

(mg HC/g rock); S3: CO2 from pyrolysis (mg CO2/g rock); TOC: Total organic carbon (wt. %); HI: Hydrogen 

index (S2 % 100/TOC); OI: Oxygen index (S3 % 100/TOC); PI: Production index (S1/S1+S2). 
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Table 8-4 Molecular parameters of thermal maturity for rocks in the Barrow and Bambra 
areas 
 

Well Sample Depth  

(m) 

Formation A B C D Ro e 

(%) 

Pressure 

Bambra-2a Oil 2032-
2033.5 

Barrow  0.55 0.49 0.29 0.13   

Bambra-1a Oil 2053.25 Barrow  0.53 0.52 0.30 0.12   

Barrowb Oil 1890 Dupuy  0.50 0.43 0.21 0.08   

Barrowb Oil 2010 Dupuy   0.52 0.48 0.19 0.07   

Bambra-1a Oil 3640.5 Dingo  0.59 0.53 0.30 0.15   

          

Barrow-1a Core 10  1036     

(ST) 

Barrow  0.21 0.25 1.30 0.64 0.45 Normal 

Barrow-1a Core 34  2402     

(ST) 

Dingo  0.45 0.38 0.39 0.23 0.70 Normal 

Bambra-1b Core      2715.5  

(CS) 

Dupuy  0.41 0.32 0.58 0.26 0.80 Normal 

Barrow-1a Core 37 2835     

(CS) 

Dingo  0.54 0.39 0.40 0.22 0.90 Overpressure 

Bambra-1b Cuttings 3610     

(CS) 

Dingo  0.53 0.54 0.41 0.18 1.23 Overpressure 

Bambra-2c Core      4274     

(CS) 

Athol  0.53 0.54 0.22
b 

0.13
b 

1.70 Overpressure 

Bambra-2d Core      4283     

(CS) 

Athol  0.53  0.53 0.27 0.12 1.70 Overpressure 

 

ST: Siltstone; CS: Claystone 

A: C29 20S/(20S+20R) steranes 

B: C29 ββ/(ββ+αα) steranes 

C: Pristane / n-heptadecane (n-C17) 

D: Phytane / n-octadecane (n-C18) 

a: Data were taken from Volkman et al. (1983).  

b: Data were collected from the well-completion reports. 

c: GC-MS analysis was carried out at the Curtin University of Technology, Perth, Australia (2001). 

d: GC-MS analysis was carried out at the Geological Survey of Canada, Calgary (2001). 

e: Ro (%) values were predicted by thermal maturity modelling. 
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Table 8-5  The percentages of four lithologies for various formations of the two selected 
wells in the Barrow Sub-basin 
 

Bambra-2 Barrow Deep-1  

Formation Sands. 

( %) 

Silts. 

(%) 

Clays. 

(%) 

Limes. 

(%) 

Sands. 

( %) 

Silts. 

(%) 

Clays. 

(%) 

Limes. 

(%) 

Delambre 0 0 0 100     

Cape Range 0 0 0 100 0 0 0 100 

Giralia 0 10 10 80 0 13 8 79 

Cardabia 0 0 5 95 0 0 5 95 

Toolonga 10 0 30 60 0 0 40 60 

Gearle 5 45 45 5 0 60 26 14 

Windalia 0 30 65 5 35 60 5 0 

Muderong 8 37 50 5 15 16 66 3 

Barrow 80 5 10 5 72 21 5 2 

Dupuy 45 25 27 3 39 57 3 1 

Dingo 23 25 51 1 16 34 49 1 

Athol 10 30 59 1 2 18 78 2 

 

Sands.: Sandstone; Silts.: Siltstone; Clays.: Claystone; Limes.: Limestone 

 

 

Table 8-6  Formation temperatures for the Bambra-2 and Barrow Deep-1 wells in the 
Barrow Sub-basin 
 

Bambra-2 Barrow Deep-1 

Depth 

(m) 

Formation 

Temperature (oC) 

Description Depth 

(m) 

Formation 

Temperature (oC) 

Description 

2423 102.5 Horner Plot 3247 134 Production Test 

3085 113 Horner Plot 3332 137 Production Test 

3672 135 Horner Plot 3431 139 Production Test 

4050 158.5 Horner Plot 3447 132 DST 

4477 170 Horner Plot 3467 143 DST 

4584 175 Horner Plot 4153 161 Horner Plot 
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8.4 Thermal maturity modelling  
 

Palaeotemperatures were calculated using the transient-heat-flow model with a 

constant heat-flow history (calculated current heat flow) and seabed/surface 

temperature through time, because the palaeotemperatures in this region experienced 

during the rifting phase may have been equalled, or exceeded, by those associated 

during the later sag-phase sedimentation (Kaiko and Tingate, 1996; Nielsen, 1996). 

Palaeotemperatures were also calculated using a rift-related heat flow model and 

varying seabed/surface temperature over geological time. The rift-related heat flow 

history was calculated based on the modified Jarvis and McKenzie (1980) algorithm 

in the BasinMod 1D. The method of temperature calculation takes into account the 

thermal conductivity plus the heat capacity of the lithologies in this model. The 

kinetics of vitrinite maturation is a function of temperature and time. Ro curves were 

calculated using the chemical kinetic model of vitrinite reflectance (Sweeney and 

Burnham, 1990) in the BasinMod 1D.  

 

8.4.1 Barrow-1 thermal modelling 

 

Figure 8-3 shows the modelled maturity curves and temperature line in Barrow-1, 

which correspond to the upper part of Barrow Deep-1. The formation temperatures, 

calculated current heat flow and surface temperature are based on the values from 

Barrow Deep-1 (Tables 6-1 and 8-6). The modelled temperature line is consistent 

with the corrected BHTs (raw BHT + 10 %) in this well. The modelled result 

indicates that the measured Ro data (Table 8-1) are much lower than the calculated 

maturity curves. Nevertheless, both Eq VR data and Tmax data measured from core 

and cutting samples can be matched using the current heat flow (surface temperature 

= 25 oC) (Fig. 8-3). According to the fluid pressure profile in Fig. 8-1, sedimentary 

rocks shallower than 2650 m are normally pressured, and 2650 m to a total depth of 

2970 m is the pressure transition zone in this well. This result indicates that the 

measured Ro is probably suppressed and suggests that the anomalously steep 

vitrinite reflectance profile should not be related to the pore fluid pressure. Fig. 8-4 

shows the modelled geohistory and histories of temperature and thermal maturity 

using the constant heat flow and surface temperature histories for this well.  



Chapter 8  Thermal Maturity within the Overpressured Jurassic Rocks 

 

132

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8  Thermal Maturity within the Overpressured Jurassic Rocks 

 

133

 

8.4.2 Barrow Deep-1 thermal modelling 

 

Figure 8-5 shows that the modelled maturity curve was obtained from the constant 

current heat-flow history as in the Barrow-1 modelling (Tables 6-1 and 8-6). The 

measured maturity data, which indicates two sets of vitrinite reflectance values 

(Table 8-1) and Tmax data, are from the overpressured Jurassic source section. The 

Ro (1) data were measured by Robertson Research Australia Pty. Ltd. (1979) (open-

file data) and the Ro (2) data by Cook and Kantsler (1980). Both Ro datasets are 

generally lower than the modelled maturity curves. However, the anomalously low 

Ro values are inconsistent with low maturity and are not supported by Rock-Eval 

data.  

 

The predicted maturity curve obtained from the present-day heat flow and surface 

temperature (Fig. 8-5) is consistent with the Tmax data, and the measured Ro (2) data 

for the three deepest values of Cook and Kantsler (1980). After a comparison of the 

three deepest Ro (2) values and the reliable Tmax values with the good-fit maturity 

curve, it is found that there is also no reliable evidence to support overpressure 

influence on the thermal maturity in the highly overpressured Jurassic section. Also, 

the Jurassic source rocks between 3150-4550 m have experienced moderate to over 

maturity consistent with the predicted maturity (Ro: 1.05-2.2 %) between 3150-4550 

m with small to very little remaining hydrocarbon generation potential (most of 

hydrogen indices range from < 10 to 50, while TOC range from 1 % to 2.5%) in the 

overpressured sequence, whereas the three hydrogen indices between 60 to 110 at 

about 3900-4170 m are thought to be due to some contribution of solid bitumen (5 

% of solid bitumen content at 4145 m) based on the organic petrographic analysis of 

Teerman (1994) (Fig. 8-1). This case study indicates that the anomalously low Ro 

data, measured by Robertson Research Australia Pty. Ltd. and Cook and Kantsler 

(1980), are not significantly affected by the overpressuring. It should be noted that 

casing point control and careful sample scrutiny confirm that cavings are not 

responsible for the anomalously low Ro values (Fig. 8-1). Figure 8-6 shows the 

modelled histories of burial and thermal effect using the constant thermal condition 

for this well. Figure 8-7 shows the calculated cumulative oil and gas generation 

from the Dingo Claystone and Athol Formation with the constant heat flow and 

surface in this well.  
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Additionally, a good-fit between the valid maturity data (Tmax data and Ro values) 

and the calculated maturity curve was also obtained from a rift heat flow model (Fig. 

8-8). Figure 8-9 shows the modelled histories of burial, temperature and thermal 

maturity. Figure 8-10A indicates the rifting heat flow model used in this modelling, 

which has a maximum heat flow of about 67 mW/m2 during the syn-rift phase and 

varying seabed temperature (or surface temperature). Figures 8-10B and 8-10C 

indicate the cumulative oil and gas generation from the Dingo Claystone and Athol 

Formation using the rift heat flow history for this well. It should be noted that the 

modelled results indicate the difference of the histories of temperature, maturity and 

hydrocarbon generation using different thermal models (Figures 8-6, 8-7, 8-9 and 8-

10). 

 

8.4.3 Bambra-2 thermal modelling 

 

Good quality Tmax data (acceptable and normal Tmax data in Table 4-1 and Fig. 8-2) 

from conventional core and SWC samples were used for thermal maturity modelling 

in this well. Figure 8-11 shows the correlation between the modelled maturity curve 

and the observed Ro and Tmax data in this well. The current heat flow of 56 mW/m2 

was estimated from the formation temperatures (Horner-plot-corrected BHTs) and 

seafloor temperature (24 Co). The model produces the predicted temperature line 

and the maturity curve approximately fits to both the measured formation 

temperatures and Tmax data. The measured vitrinite reflectance values, all from side-

wall cores, are much lower than the modelled maturity pattern and Tmax data trend. 

This suggests that the observed Ro data are anomalously low and probably 

suppressed in agreement with Kaiko and Tingate (1996). It is possible that the true 

maturity trend in the Jurassic rocks may be better indicated by the Tmax values from 

core samples.  

 

These are corroborated by measurements of vitrinite reflectance on a Bambra-2 

conventional core at 4274-4283 m, which range between about 1.2 % and 2.0 % Ro 

(measured by Dr L.W. Gurba at the University of New South Wales, Australia). Six 

Tmax values of 484-490 oC (Table 4-1), measured from the conventional core and 

extracted SWC samples at 4225-4301 m, correspond to Ro values of about 1.5-1.8 % 

(Tissot and Welte, 1994). The modelled Ro at 4280 m in Bambra-2 is 1.6-1.8 %. The 
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n-alkane distributions, from GC analyses on saturated hydrocarbon fractions of the 

conventional core extracts (A and B; Fig. 4-1), represent a high mature organic 

matter and suggest that this source rock is within a wet gas and condensate 

generating stage, which fits well with the Tmax values from the conventional core. 

Therefore, the predicted Ro values of about 1.7 % could be the true maturity level 

for the conventional core.  

 

In conjunction with the reliable pyrolysis data, biomarker maturity, n-alkane 

distributions and kinetic modelling of thermal maturity, the Tmax values are believed 

to represent the true trend of thermal maturity in this well. This strongly suggests 

that the anomalously low vitrinite reflectance need not necessarily be a function of 

overpressure in the Jurassic shaley sequence.  

 

Hunt (1996) pointed out that high geothermal gradients in overpressured shales are 

attributed to the low thermal conductivity of such shales that seem to act as heat 

insulators causing temperature increase, and this can enhance hydrocarbon 

generation. High porosity in the undercompacted zone yields a lower bulk thermal 

conductivity, and this increases the geothermal gradient. Sensitive analysis for low 

thermal conductivity in the overpressured Jurassic shaley sequence was carried out 

in this modelling, but it should be noted that this parameter does not influence the 

conclusions of this paper. 

 

Figures 8-12 and 8-13 show the calculated geohistory, temperature and maturity 

histories, and the cumulative hydrocarbon generation from the Dingo Claystone and 

Athol Formation obtained using the constant heat flow and seafloor temperature.  

 

In addition, the good Tmax values from Bambra-2 can be also matched by the rift-

related heat flow history (Fig. 8-14). Figure 8-15 displays the calculated geohistory, 

histories of temperature and maturity. Figure 8-16A shows the rifting heat flow 

history which exhibits the rift heat flow increase during 190-136 Ma with the 

maximum value of 68 mW/m2 at 136 Ma and exponentially decreases in the post-rift 

phase.  Figures 8-16B and 8-16C show the cumulative hydrocarbon generation from 

the  Dingo  Claystone  and   Athol  Formation  obtained  from  the  rifting  heat-flow 
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models. The histories of thermal effect and hydrocarbon generation obtained from 

the two heat flow models (constant and rift) are different.  
 

8.5  Discussion 
 

Some controversy surrounds the retardation of hydrocarbon generation in 

overpressured zones. Cecil et al. (1977) and Carr (1999) considered that 

overpressure can retard thermal maturity and hydrocarbon generation because the 

generated light component is unable to escape, or there is insufficient space for the 

generated hydrocarbons in the overpressured system. Cecil et al. (1977) pointed out 

that the overpressured zone behaves as a closed thermodynamic system, thus the 

expulsion of light hydrocarbons is retarded and organic metamorphism is inhibited. 

Hao et al. (1995) and Osborne and Swarbrick (1997) considered that hydrocarbon 

generation, and cracking to gas, may be self-limiting in a sealed system because 

pressure buildup may retard further organic metamorphism. In contrast, Hunt (1990) 

proposed that the generation and migration of oil and gas in sealed overpressured 

systems, plus thermal expansion of pore fluids causes fracturing of pressure seals 

during periods of basin sinking, and are associated with the episodic process of seal 

breakout and resealing cycles. In an overpressured system, fluid flow is limited, but 

not totally restricted by low-permeability rocks (e.g. Bredehoeft et al., 1994). 

Overpressures caused by hydrocarbon generation can form microfractures, which 

can act as migration pathways, based on geological observation of the petroleum 

expulsion phenomena (e.g. Düppenbecker et al., 1991; Márquez and Mountjoy, 

1996). Many authors also attribute overpressure development in sedimentary basins 

to petroleum generation, and fluid-volume expansion during oil and gas generation 

and thermal cracking of crude oil to gas within a sealed compartment (e.g. Spencer, 

1987; Hunt, 1990; Düppenbecker et al., 1991; Bredehoeft et al., 1994; Luo and 

Vasseur, 1996; Márquez and Mountjoy, 1996; Swarbrick and Osborne, 1998).  

 

The observation of thin-sections of the claystone from the conventional core at 

4274-4283 m in Bambra-2 indicates that the Jurassic source rocks contain bitumen. 

Teerman (1994) presented data indicating less than 5 % to 5 % bitumen in the 

organic matter of the Upper Jurassic samples, based on the study of visual 

compositions of kerogen. Perhaps lower than expected vitrinite reflectance is related 
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to solid bitumen to some extent, as suggested by Lo (1992). Similarly, anomalously 

low Tmax values may also be influenced by an increase in heavy bitumen content in 

overpressured source rocks because these generated heavy hydrocarbons are not 

expelled efficiently. Vandenbroucke et al. (1983) showed that the Tmax values 

measured on kerogen in the high pressure zone of the Handil field, Mahakam Delta, 

Indonesia, are significantly lower than the values measured on the coal samples 

because the organic matter contains abundant pyrobitumens. This process involves 

the migration of lighter hydrocarbons leaving behind heavy oil that, being unable to 

be expelled, is cracked to gas and pyrobitumens owing to thermal effects in the 

overpressured compartments (Hunt, 1990). Clememtz (1979) and Kruge (1983) 

pointed out that solid bitumen and heavy bitumen can affect the S2 peak resulting in 

abnormal Tmax values, but that these problems could be overcome by solvent 

extraction prior to pyrolysis, and the subsequent evaluation of S2 after solvent 

extraction. Hunt (1996) stated that asphaltites, pyrobitumens and some resinites are 

not soluble in conventional organic solvents and that microscopic studies can assist 

in recognizing insoluble bitumen interference. The valid Rock-Eval Tmax data used 

in this study have been carefully analyzed and examined (see Chapter 4).  

 

As described in Chapter 4, the anomalously low vitrinite reflectance values in some 

samples of the Bambra-2 well appear to be also related to the difficulty of 

distinguishing vitrinite and inertinite macerals due to the very small size of the 

organic particles and quite high maturity (Dr. Lila W. Gurba, personal 

communication). Table 8-7 contains the examples that show this problem probably 

results in an inaccurate identification of vitrinite and inertinite in the two samples in 

Bambra-2. Thus, the inertinite reflectance range in Table 8-7 should be the range of 

vitrinite reflectance and inertinite reflectance. 

 

In combination with the accumulation of hydrocarbons, oil-source geochemical 

correlations in the sub-basin (Volkman, et al., 1983) and the studies of thermal 

maturity, thermal modelling and modelled hydrocarbon generation (Figures 8-3 to 8-

16), the occurrence of overpressure in the two studied cases suggests the existence 

of a dynamic overpressured sealed compartment in the Jurassic source section, 

where hydrocarbon generation, especially gas generation, is likely to be the 

significant mechanism for generating overpressure. In summary, for the Barrow 
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Deep-1 well, the Jurassic overpressured zone occurs at 2642-4642 m (true vertical 

depth) and temperatures of 113-175 oC, with fluid pressures of about 40-80 MPa and 

Ro 0.8-2.2 %. In the Bambra-2 well, the Jurassic overpressured zone occurs at 2874-

4490 m (true vertical depth) and temperatures of 119-170 oC, with fluid pressures of 

about 40-80 MPa and Ro 0.85-1.9 %. 

 

Table 8-7 Examples for the difficulty of distinguishing vitrinite and inertinite in the 
samples of Bambra-2 
 
 

Depth  

(m) 

 

Type 

of  

Samp

le 

Inertinite 

Reflectance 

Range (%) 

 

 N 

 

Description 

4278.38 Core 1.44-2.72 30 Inertinite common, exinite rare, no 

vitrinite 

4282 Core 1.26-2.82 37 Inertinite common, *vitrinite sparse, 

exinite rare 

 
Note: The data were taken from the well-completion report. 

N: Number of the measured grains. 

* No measurements of vitrinite reflectance from the well-completion report. 

 

Possible errors in the predicted maturity may be incurred from (1) the proposed 

thermal models and (2) uncertainty in the measured maturity values. However, these 

errors are slight, and do not impact significantly on the purpose and conclusion of 

this paper. Major differences do occur between the anomalously low maturity values 

and the “true” values which have not been suppressed or contaminated. If the 

anomalously low maturity data are ignored, there is no evidence for overpressure-

related retardation of thermal maturity. Using the well-known thermal and chemical- 

kinetic model in the BasinMod software, the two fields of study in the sub-basin 

demonstrate that the true maturity profiles need not be significantly related to 

overpressure retardation within the sealed system. Although laboratory retardation 

of maturation and hydrocarbon generation, due to high pressure, has been observed 

(e.g. Sajgó et al., 1986; Price and Wenger, 1992; Hill et al., 1994; Dalla Torre et al, 
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1997), the overpressure effect on thermal maturity is negligible within the studied 

cases in the Barrow Sub-basin, North West Shelf of Australia. Although the datasets 

in this study are limited, these results indicate that overpressure retardation is not a 

global phenomenon, at least. To determine the true origins of geology and 

geochemistry for abnormal maturity profiles in geologically overpressured 

conditions, it is recommended that more field studies be carried out.  
 

8.6  Summary 
 

In the wells examined, the anomalously low Tmax and Ro values do not appear to be 

significantly related to overpressure effects. The anomalous Tmax values are mainly 

caused by contamination by drilling-mud additives. This study supports previous 

studies that the two major causes of abnormal Ro values are (1) the suppression of 

vitrinite reflectance through marine influence, and (2) misidentification of vitrinite 

macerals.  

 

Thermal maturity described by the biomarker parameters and n-alkane distributions 

from GC-MS and GC analyses of the saturate fractions suggest that the organic 

matter in the Jurassic overpressured source rocks is not associated with a maturation 

anomaly. Thermal maturity modelling indicates that the temperature-time-related 

kinetic model can provide a match between good maturity data (Ro, Tmax and Eq 

VR) and the calculated maturity curves in the Jurassic highly overpressured system. 

This study indicates that the true thermal maturity (Ro 0.8-2.2 %) of the observed 

Jurassic source rocks is not detectably influenced by the observed overpressure 

(fluid pressure about 40-80 MPa at 3000-4600 m). In conclusion, these field cases 

indicate that the overpressure is, therefore, an unimportant factor in the thermal 

maturity and hydrocarbon generation in this area.  

 

In addition, both the current heat flow history (steady state) and the rift heat-flow 

model (no-steady state) can provide a match between the valid maturity data and the 

predicted maturity curves at present, but the thermal effect histories are clearly 

different. 
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CHAPTER 9     TWO-DIMENSIONAL MODELS AND DATA 

REQUIREMENTS FOR DEEP OVERPRESSURE MODELLING 
 

9.1 BasinMod 2D  
 

Overpressure reconstruction with two-dimensional modelling was performed using 

the BasinMod 2D software package (version 4.61). It was developed by Platte River 

Associates, Inc. and its theoretical background is explained in the BasinMod 2D 

reference manual (Platte River Associates, Inc., 1998b). The BasinMod uses the 

finite difference method in its numerical solution of the governing equations for the 

calculation of pressure, temperature and fluid flow. The governing equations include 

pressure, heat conduction and convection, and three-phase fluid migration. The 

model takes into consideration the contributions of compaction, temperature (water 

thermal expansion), hydrocarbon generation and quartz cementation to overpressure 

generation and maintenance. However, this model does not take lateral compressive 

forces into account.  
 

9.1.1 Governing equations in the BasinMod 2D 

 

The governing equation of pressure is: 
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where ξ  is rock matrix thickness; subscript x refers to x-direction and subscript z 

refers to z-direction; ϕ  is porosity; P is the pore fluid pressure; T is temperature; t is 

time; k is permeability; 8 is density; 3 is viscosity.  
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The governing equation of temperature is: 
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The left-hand side of equation (9-2) is: 
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where H is enthalpy; subscript r refers to rock matrix; subscript f refers to fluid; 

subscript w refers to water; subscript s refers to solid; subscript x refers to x-

direction; subscript z refers to z-direction; superscript n+1 refers to the current time 

step; superscript n refers to the previous time step; ϕ  is porosity; P is excess 

pressure; T is temperature; t is time; K is thermal conductivity; 8 is density; c is 

thermal capacity; k is permeability; 3 is viscosity; g is gravitational constant; QH is 

internal heat sources (not used in the model). 

 

The equation of the three phases referring to water, oil and gas for migration are: 
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where subscript f refers to fluids of water (w), oil (o) and gas (g); P is pore fluid 

pressure; 8 is fluid density; e is void ratio (Z/1-Z); Z is porosity; S is saturation of 

fluid; F is grain size; 3 is viscosity; 5 is rock matrix thickness; q is source term; 

kx, kz is absolute permeability in the x and z directions, respectively; kf is relative 

permeabilities of water, oil and gas, respectively. 
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Some constant values for modelling in BasinMod 2D are listed in Table 9-1. 

 

Table 9-1 Important constants applied in BasinMod 2D 
 

Symbol Constant Unit Value 
αo Oil Expansibility oC-1 1.0 × 10-3 
βo Oil Compressibility Pa-1 6.0 × 10-10 
αw Water Expansibility oC-1 5.0 × 10-4 
βw Water Compressibility Pa-1 4.3 × 10-10 
µo Oil Viscosity Pa∃S 2.9991 × 10-4 
µw Water Viscosity Pa∃S 5.0960 × 10-4 
µg Gas Viscosity Pa∃S 1.5000 × 10-4 
ρk Kerogen Density kg∃m-3 1800 
ρo Oil Density at Surface kg∃m-3 850 
ρg Gas Density at Surface kg∃m-3 0.7 
Co Oil Heat Capacity J∃kg-1∃K-1 1047 
Cw Water Heat Capacity J∃kg-1∃K-1 4187 
Cr Rock Heat Capacity J∃kg-1∃K-1 840 
R Universal Gas Constant J∃mol-1∃K-1 8.319 

 

 

9.1.2 The models used in BasinMod 2D 

 

The subsidence and burial histories are a fundamental part of 2D modelling. 

Sediment compaction modelling provides a framework for subsequent thermal, 

hydrocarbon generation and fluid migration modelling. It is a dynamic model and a 

comprehensive calculation with interrelationship of physical and chemical variables.  

 

Three options of the porosity-depth relationships in BasinMod 2D, by Sclater and 

Christie (1980), Falvey and Middleton (1981), and Baldwin and Butler (1985), can 

be chosen for backstripping. The porosity-depth relationship by Falvey and 

Middleton (1981) is employed to model burial history and calculate basin 

subsidence. The relationship is established based on the offshore Perth Basin with 

shallow carbonates similar to the Northern Carnarvon Basin.  

 

Two options can be selected for the permeability reduction process. One is the 

power function developed by Hubbert (1940) and Lerche (1990). The other is the 

modified Kozeny-Carman equation developed by Ungerer et al. (1990). 
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These kinetic models for hydrocarbon generation modelling in BasinMod 2D are 

described through multiple parallel reactions governed by first-order kinetics and the 

Arrhenius law (Tissot et al., 1987; Espitalié et al., 1988; Burnham, 1989). The 

kinetic model used in this study for hydrocarbon generation modelling is the well-

accepted model by Burnham (1989). The chemical kinetic model of Sweeney and 

Burnham (1990) was used to calculate vitrinite maturation.  

 

The volumetric changes during the degradation of solid kerogen into oil, gas and 

residue may cause an increase in pore pressure. The pressure increment due to 

generation pressures contributed by the generated oil and gas can be calculated 

based on the equations of Lerche (1990) in this model. Thus, the pore pressure 

regime related to hydrocarbon generation can be investigated.   

 

Two options of oil and gas expulsion models can be selected for hydrocarbon 

primary migration. One is the saturation expulsion model (Mackenzie and Quigley, 

1988; Cooles et al., 1986). The other is the pressure-controlled expulsion model 

(Düppenbecker et al., 1991). Three phases refer to oil, gas and water.  

 

Porosity loss due to quartz cementation during burial can be calculated in BasinMod 

2D software using the kinetic model of Walderhaug (1996). This function was used 

to model the porosity loss in the top pressure-sealing zone in the Barrow Sub-basin.      

 

The models and parameters used in BasinMod 2D, such as porosity-depth 

relationship, lithologic properties, kinetic parameters of hydrocarbon generation, 

compaction equations, models for temperature calculation, expulsion, fault, 

migration and algorithms for calibration parameters, can be selected or modified by 

users. The petroleum geological processes modelled by BasinMod 2D are dynamic 

and interactive in chronological order. Subsidence, burial, compaction, temperature, 

pore pressure evolution, multiple-phase fluid flow, organic-matter maturity, 

hydrocarbon generation, expulsion and migration can be calculated by the model. 
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9.2 Depth conversion for cross-sections and two-dimensional 

geological models 
 

9.2.1 Depth conversion for cross-sections 

 

Three seismic lines, the A-B line in the Barrow Sub-basin, 110/11 in the Exmouth 

Sub-basin and 101R/09 in the Dampier Sub-basin (Fig. 9-1), were selected for 2D 

overpressure modelling. The directions of these three lines are almost at right angles 

to the direction of the structural trends within the sub-basins. The 110/11 and 

101R/09 seismic lines were interpreted by AGSO. The A-B line has been interpreted 

based on three wells along the line and two interpreted intersecting seismic lines, 

101R/02 and 136/20 (Fig. 9-1). 

 

 

 

     Fig. 9-1 A map showing sub-basins and locations of the modelled cross-sections   

     and wells in the Northern Carnarvon Basin (after Woodside Offshore  Petroleum,     

     1998; Scott, 1992). 

 

The seismic line conversions to depth cross-sections have been made using 

relationships between time and depth, which can be calculated from velocity data. 
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Velocity surveys in wells are used to determine average velocity as a function of 

depth, but they are not deep enough for time-depth conversion if time (two way 

time) is greater than 2.5 seconds. Stacking velocities for 110/11 and 101R/09 lines 

from AGSO have been used to calculate time-depth curves for depth conversion. 

The root-mean-square velocity data (rmsv) for the A-B line have been used to 

produce time-depth relationships. The relationship of time-depth can be calculated 

from interval velocity, which is the average velocity over some interval of travel 

path. Interval velocity is often calculated from rmsv using the Dix equation (Dix, 

1955), given below:  
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where Vi is the interval velocities (m/s); Vr is the rmsv (m/s); tn is the zero-offset 

arrival time corresponding to the nth reflection. 

 

Stacking velocity is a function of reflection travel-time. Root-mean-square velocity 

can be calculated from stacking velocity after corrections. Dip correction is 

necessary for stacking velocity to rmsv. Thus, dip correction of stacking velocity 

was carried out under the assumption that reflectors are on a parallel incline.  
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where V1 is the rmsv (m/s) in the first layer; Vr is the rmsv (m/s); Vs is the stacking 

velocities (m/s); K is the dip of the interface from the observed <t0 and <x, tg K = 

<t0 / <x. 
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The time-depth curves were calculated from rmsv using the Dix equation and a 

spline interpolation method with an interpolated interval of 0.05 s as shown in 

Figures 9-2 to 9-4. It can be seen that the seismic-velocity-derived time-depth 

relationships correlated well with those from velocity surveys in nearby wells along 

the three seismic lines. The errors of the converted depth using seismic velocity data 

are less than 5 % in shallow parts compared with the well data. Thus, seismic 

velocity data have been used for the time-depth conversion for these seismic lines. 

However, more errors may occur in the time-depth conversion of deep parts using 

the seismic-derived time-depth relationships. 

 

9.2.2 Two-dimensional geological models 

 

In the Barrow Sub-basin, the stratigraphy of the A-B depth-converted cross-section 

is divided into 8 events and lithology units (Fig. 9-5). Along the A-B cross-section, 

three wells, West Tryal Rocks-1, Bambra-2 and Dorrigo-1, have been selected to 

provide geological data. The well data from Tryal Rocks-1 has been also referred to 

in building the 2D geological model. In the Exmouth Sub-basin, the interpreted 

110/11 seismic line is shown in Appendix 2. The stratigraphy of the 110/11 depth-

converted cross-section is divided into 11 events and different lithology mixes (Fig. 

9-6). The geological data from three wells, Zeewulf-1, Novara-1 and Outtrim-1 

along the 110/11 cross-section have been used to set up the 2D geological model. In 

the Dampier Sub-basin, the interpreted 101R/09 seismic line is shown in Appendix 

3. The stratigraphy of the 101R/09 depth-converted cross-section is also divided into 

11 events and lithology units (Fig. 9-7). Along the 101R/09 cross-section, the 

geological data were derived from three wells, Goodwyn-7, Rosemary-1 and 

Hampton-1 for the 2D geological model. 

 

The fault distribution and the geometry of these depth cross-sections were 

interpreted from seismic data and information from wells. In fact, many geological 

events are too complex to model quantitatively. In order to construct models, they 

must not only be acceptable geologically, but also be suitable for numerical 

procedures. Simplification of the model is necessary but over-simplification of 

seismic and  geological  information  needs  to  be avoided.  Many simplifications in  

 



Chapter 9  Two-dimensional Models and Data  

 

157

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 9  Two-dimensional Models and Data  

 

158

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 9  Two-dimensional Models and Data  

 

159

these models need to be made, for instance, the over-occurrence of faults on cross-

sections  and  the changes of  lithology  and  organic  matter along the cross-sections 

were simplified. It should be emphasized that the 2D model studied here is 

geologically simple in terms of fluid flow and pressure dynamics. The geological 

conceptual model and the observed data play key roles for choosing a number of 

parameters in the modelling. 

 

 

 

   Fig. 9-4 Correlation between two time-depth relationships from well velocity surveys and   

    seismic velocity data at approximate locations of the West Tryal Rocks-1 and Bambra-2   

    wells along the AB seismic line in the Barrow Sub-basin. Relationship 1: The time-depth  

    relationship from well velocity surveys; Relationship 2: The time-depth relationship from   

    seismic velocity data. 

 

9.3 Porosity and permeability 
 

The porosity for shales is mainly a function of compaction. The compaction of 

shales normally increases with increasing depth due to the increase in load. 

Therefore, under normal compaction, the porosity of shales decreases and the bulk 

density of shales increases with increasing depth.  However, when the shale contains  
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50 % silt, the compaction is a complex process with chemical compaction (e.g. 

Chapman, 1994). The compaction of sandstones is more complex because it is the 

result of both mechanical and chemical processes (e.g. Lundegard, 1991; Ramm, 

1992). Normal relationships between porosity and depth describe the process of 

mechanical compaction and are important for burial reconstruction. The 

permeability is a critical control on the evolution of abnormal pressure. For clastic 

sediments, permeability is frequently treated as a function of porosity (e.g. Ungerer 

et al., 1990; Lerche, 1990). Based on the study of Deming (1994), the minimum 

permeability needed for a geological unit (100 m to 1000 m) to act as a pressure seal 

over a time interval of about 1-100 Ma is in the range 10-21-10-24 m2.   

 

Figure 9-8 shows 83 measured porosity values from claystone and silty claystone 

from 10 wells versus present-day depth. In general, the porosity ranges from 2 % to 

5 % at a depth of about 3000 m. The calculated permeability values, using the 

modified Kozeny-Carman equation by Ungerer et al. (1990), are < 10-19 m. The 

normally compacted claystones can be described using an exponential form of the 

porosity (Z) and depth (D) relationship )exp(0 cD−= ϕϕ (Z0 is initial porosity; c is 

a coefficient that explains the rate at which the exponential decrease in porosity 

takes place with depth.). Based on the measured porosities of claystone and silty 

claystone in Fig. 9-8, the calculated coefficient is in range of 0.0007-0.0008 and the 

initial porosity is about 56 %. Figure 9-8 also shows the measured 235 porosity 

values from siltstones versus depth in 21 wells of the Northern Carnarvon Basin. 

 

Ranges, and average values, of porosity and permeability from 12 wells for 

sandstones are shown in Table 9-2. The average values of porosity and permeability 

in sandstones generally decrease with burial depth.  The porosity values, from 1479 

sandstone samples in 45 wells of the Northern Carnarvon Basin, against depth were 

plotted in Fig. 9-8, which may represent a trend of porosity decrease in sandstones. 

The trend may not only be controlled by mechanical compaction, but also by 

chemical compaction involving cementation and dissolution. In general, the 

permeability values in sandstones are not � 10-21 m2, which is required for a rock 

layer to act as a pressure seal (Deming, 1994).  
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The measured porosity values from 100 limestone and dolomite samples versus 

present-day depth are also shown in Fig. 9-8. 

 

Figure 9-9 shows the 167 coupled values of horizontal permeability (HP) and 

vertical permeability (VP) in sandstones from 9 wells. In ten sandstone samples, HP 

is equal to VP and in 20 samples is less than VP, while horizontal permeabilities in 

137 sandstone samples are greater than vertical permeabilities. The ratio of VP/HP 

in 137 samples ranges from 0.1 to 0.9, the average value of the ratio being 0.5. In 

BasinMod 2D, the permeability anisotropy (the ratio of vertical permeability to 

horizontal permeability) is 0.4 for sandstones, 0.2 for siltstones and shales, and 0.5 

for limestones.  

 

Table 9-2 Porosity and permeability in sandstones from 12 wells in the Northern Carnarvon 
Basin 
 

Porosity 
(%) 

Permeability 
(md, 10-15 m2) 

 
Formation 

Depth 
(m) 

Range Average Range Average 
Muderong Shale 617-1254 19.4-33.4 25.95 

(36) 
0.01-28 1.49 

(36) 
Birdrong Sandstone 799-822 2.4-30 17.63 

(19) 
0.01-5161 1011 

(19) 
919-2413 0.7-36.5 20.55 

(123) 
0.01-9656 865.78 

(120) 
 

Barrow Group 
3063-3673 2.8-17.3 10.43 

(31) 
0.02-108 7.12 

(31) 
Dupuy Formation 1246-2729 4.2-32.7 18.11 

(188) 
0.01-315 36.7 

(237) 
Dingo, Athol,  Murat 2919-3193 7-19 13.76 

(20) 
<0.01-0.13 0.025 

(20) 
Mungaroo 
Formation 

1903-4235 3-26 15.07 
(100) 

<0.01-
1680 

151.55 
(116) 

 
Note: The numbers inside brackets are the number of measurements of porosity and permeability. 
Dingo: Dingo Claystone; Athol: Athol Formation; Murat: Murat Siltstone.  
The data of porosity and permeability were collected from well completion reports. 
 

 

9.4 Boundary conditions and data requirements 
 

9.4.1 Boundary conditions 

 

The bottom boundary in BasinMod 2D can be defined by users from three different 

boundary conditions, a closed boundary, an open boundary and a fractionally open 
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boundary. In 2D modelling, the bottom boundary is usually assumed as a closed 

boundary because it generally represents tightly compacted sedimentary rocks. 

These rocks have limited fluid movement and a large uncertainty. Thus, in this 2D 

modelling, the bottom boundary is assumed to be a closed boundary. The lateral 

boundary can be chosen by users from three situations, a constant flow condition, a 

closed boundary and an open boundary. The constant flow condition is assumed for 

left and right side boundaries in the modelling. For temperature calculation, the 

transient heat flow model was used with constant heat flows. The seabed 

temperature is based on the water-sediment interface temperature data in the 

BasinMod 1D. There is no heat transfer through the lateral boundaries.  

 

                  Fig. 9-9 The relationship between the measured  vertical permeability  

                   and horizontal permeability values in the Northern Carnarvon Basin. 

 

9.4.2 Data requirements 

 

Input data for the modelling include:  

(1) Depth cross-section (horizons, unconformities, hiatuses and faults).  

(2) Stratigraphy and lithology. 

(3) Heat flows and seabed temperatures. 
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(4) Kerogen type and total organic carbon (TOC, %).  

(5) Palaeo-seawater depths  

(6) Erosional thickness.  

 

The measured data from an individual well, including thermal maturity, formation 

temperature, fluid pressure, mud weight, porosity and permeability, were used to 

correlate with the modelled results at the well points along the cross-section in order 

to calibrate and optimize parameters and to produce acceptable calculations.  

 

Two numerical methods of finite difference and finite element are used in the 

BasinMod 2D software. The modelling requires the software operator to set time 

(∆t), lateral distance (x-distance) (∆x) and vertical-depth distance (∆z) increments. 

These increments are increased to allow more rapid computation, or decreased to 

obtain greater accuracy (albeit longer computation time). The cell divisions are 

based on the size of time step and the number of lateral cells which may affect the 

stability and precision of the calculation and resolution of the modelled compaction, 

fluid flow, thermal results and excess pressures. More precise results can be 

obtained through the use of a smaller time step. The examination, using time steps 

of 0.5, 1, and 2 Ma, and distance increments of 0.5 and 1 km, indicates that the time 

step of 1 Ma in the Jurassic section and 2 Ma in the other formations is satisfactory, 

and the lateral distance interval of 1 km is reasonable for the stability and precision 

of the calculated results. For our modelling, ∆t was chosen to be 1Ma and 2 Ma, and 

∆x was selected to be 1 km for cell divisions. Vertical distance increments (∆z) were 

calculated from time increments and sedimentation rates. These values were also 

chosen to permit reasonable computation times on a Pentium-III, 800 MHz personal 

computer. 

 

9.4.3 Date sets  

 

The ages of stratigraphic events 

 

The absolute age of a stratigraphic event is based on the stratigraphic table and the 

palaeontological analysis in the wells along the two-dimensional models. Both 
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isochronous and time-transgressive events concerning horizons and unconformities 

were handled in the BasinMod 2D. The geological time scale is referenced to the 

publications of Labutis (1994) and Polomka et al. (1999). 

 

Lithologies 

 

Lithologic mixes for stratigraphic events are calculated from the selected wells 

along cross-sections. The thicknesses of four main lithologies (sandstone, siltstone, 

shale/claystone and limestone) of each stratigraphic event from well information and 

the average content of each lithology are calculated as a percentage for mixed 

lithologies in a single stratigraphic event. There is no relevant data for explaining 

reservoir layers and fluid flow conduits in these studied 2D regional geological 

models.      

 

Total organic carbon and kerogen type 

 

Based on our statistics of 1030 measured TOC (%) values in shales, average values 

and ranges of total organic carbon content are 1.3 % and 0.5-3.0 % in the Barrow 

Group, 1.7 % and 0.5-5.0 % in the Dupuy Formation, Dingo Claystone and Athol 

Formation, 2.1 % and 0.5-6.0 % in the Murat Siltstone, 2.2 % and 0.5-14.0 % in the 

Mungaroo Formation. Type III kerogen was used in the Barrow Group, the Jurassic 

source rocks and the Mungaroo Formation.  

 

Thermal parameters 

 

Steady-state heat flow (constant heat flow) values and seabed temperatures, the 

default values of matrix thermal conductivity and matrix heat capacity in BasinMod 

2D, as in BasinMod 1D, were used in the 2D modelling.  

 

Palaeobathymetry 

 

Palaeobathymetry is a necessary parameter for the reconstruction of subsidence 

history. Hardenbol et al. (1981), Joy (1992), and Emery and Myers (1996) provided 

methods, using seismic data, to determine palaeo-water depths. Seismic profiles 
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sometimes provide good information about the relative bathymetries. Palaeo-water 

depths can be estimated from coastal onlaps, shelf breaks, lithology, eroded and 

non-deposition areas with some calibrated calculation. Kaiko and Tait (2000) 

studied the post-rift tectonic subsidence and the palaeo-water depth using seismic 

data for some wells in the Northern Carnarvon Basin. Because of a lack of good data 

concerning palaeobathymetric values in the Triassic and Jurassic sequences, the 

lithology and palynofacies analysis in the wells and the studies of the environment 

and palaeogeography by Bint and Helby (1988) and Bradshaw et al. (1988) were 

used to evaluate the palaeo-water depths. These were about 2-50 m during the 

Middle-Late Triassic, 20-50 m during the Early Jurassic, 50-350 m during the 

Middle-Late Jurassic, 200-400 m during the Cretaceous and 20-300 m in the 

Cenozoic. 

  

Erosional events 

 

A large uplift and erosion event took place on the Rankin Platform and the structural 

highs during the syn-rift phase associated with the breakup of Gondwana. The 

erosional effects are clearly visible on the seismic lines. Generally, the sedimentary 

rocks of the Murat Siltstone (Lower Jurassic) and the upper part of the Mungaroo 

Formation (Upper Triassic) were eroded during the late Early Jurassic to the 

breakup time. It is estimated that the eroded thicknesses were from several hundred 

meters to two thousand meters on the Rankin Platform. Uplift and erosion also 

occurred on the eastern flank of the basin. Possibly several hundred meters and up to 

one thousand meters of the Barrow group (Earliest Cretaceous) and the Dingo 

Claystone (Upper Jurassic) were eroded during the breakup time. The erosional 

thicknesses during the Cretaceous and the Cenozoic seem to be small from the 

selected seismic lines. 
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CHAPTER 10     TWO-DIMENSIONAL DEEP OVERPRESSURE 

MODELLING AND PRESSURE BEHAVIOUR MODELLING 
 

10.1 Introduction 
 

Overpressure is encountered in the formations of Jurassic age and the Barrow Group 

(of the earliest Cretaceous age) in some wells within the Northern Carnarvon Basin 

(Zaunbrecher, 1994). Overpressure influences many fluid-related aspects of 

petroleum geology, including diagenesis and reservoir quality (e.g. Burley, 1993). 

The processes of migration and accumulation of oil and gas are strongly influenced 

by overpressured systems (e.g. England et al., 1987; Hunt, 1990). It also constitutes 

a hazard in drilling wells and directly impacts on drilling costs and the safety of 

petroleum exploration (Tingate et al., 2001).   

 

The mechanisms proposed for increasing fluid pressure (pore fluid pressure) in 

sedimentary basins include (1) rapid loading causing compaction disequilibrium that 

is common in fine-grained rocks (e.g. Chapman, 1972; Magara, 1978; Swarbrick, 

1995; Hunt, 1996), (2) aquathermal expansion and thermal expansion of fluids (e.g. 

Barker, 1972; Bradley, 1975; Plumley, 1980; Miller and Luk, 1993; Hunt, 1990; 

Alnes and Lilburn, 1998), (3) hydrocarbon generation (e.g. Timko and Fertl, 1971; 

Law and Dickinson, 1985; Spencer, 1987; Düppenbecker et al., 1991) and oil-to-gas 

cracking (e.g. Chaney, 1950; Barker, 1990; Luo and Vasseur, 1996), (4) 

compression of lateral tectonic stress (e.g. Berry, 1973), (5) smectite to illite 

transformation and clay dehydration (Powers, 1967; Burst, 1969; Schmidt, 1973), 

(6) osmosis in shales (Marine and Fritz, 1981), and (7) effect of gas buoyancy in 

sealed units (Swarbrick, 1995). Generating overpressures from the latter three 

mechanisms are considered to be small in most cases (Swarbrick, 1995). The 

contribution of horizontal compression to overpressure generation is considered to 

be minor in passive continental margin basins (Swarbrick and Osborne, 1998). Luo 

and Vasseur (1996) demonstrated that oil generation is unimportant for overpressure 

generation if the organic matter content of rocks is less than 5 %, while gas 

generation and oil-to-gas cracking are significant contributions to overpressure. Lou 

and Vasseur (1992) suggested that in practical geopressure studies, the pressuring 

effect of aquathermal factor could be neglected. Swarbrick and Hillis (1999) 
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presented data showing thermal expansion of fluid during burial to be a relatively 

minor mechanism for overpressure development. 

  

Swarbrick and Osborne (1998) reviewed various overpressure mechanisms indicated 

in the literature and proposed that the major mechanisms for large magnitude 

overpressure, in most extensional sedimentary basins, are compaction 

disequilibrium due to rapid loading in fine-grained sequences, and fluid volume 

expansion during gas generation. Recently, Yardley and Swarbrick (2000) used 2D 

models to show that disequilibrium compaction-generated overpressure can 

significantly enhance the excess pressure (the difference between fluid pressure and 

hydrostatic pressure) at structural highs by the lateral transfer of fluids from deep 

overpressured parts of a basin along laterally extensive inclined aquifers, both in 

recently deposited reservoirs and in old structures.  

 

In support of the compaction disequilibrium mechanism, Gretener and Bloch (1992) 

noted that there were two types of overpressure development in sedimentary basins: 

(1) compaction disequilibrium, in which there is unrestricted lateral flow and 

restricted vertical flow, and (2) sealed compartments, in which there is both 

restricted lateral and vertical flow. Mann and Mackenzie (1990) presented an 

argument that compaction disequilibrium was the dominant mechanism for observed 

fluid overpressure in the Gulf of Mexico and the North Sea, based on an empirical 

relationship between overpressure gradient, permeability and deposition rate. Luo 

and Vasseur (1992) also presented an argument that the excess pressure is so great 

that it cannot be explained by compaction alone in some areas, such as the United 

States Gulf of Coast. Despite the arguments for compaction disequilibrium 

(generally undercompaction) being the cause of overpressure in many basins, a 

significant corpus of evidence has also been gathered that may suggest otherwise. 

Bradley (1975) and Swarbrick (1995) suggest that excess pressure will dissipate 

once burial slows to a rate at which fluid loss matches the addition of overburden 

stress. Hermanrud et al. (1998) demonstrated that high fluid overpressures in the 

thick shale-prone Upper Jurassic and Lower Cretaceous sequences on Haltenbanken 

(offshore mid-Norway) have not significantly contributed to high porosity in 

overpressured zones. The conclusion of the Hermanrud et al. (1998) and Teige et al. 

(1999) studies is that there is no abnormally high porosity (and, thus, 
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undercompaction) on Haltenbanken in the North Sea, but rather the sonic and 

resistivity wireline logs are responding to the present day fluid overpressure. Hunt et 

al. (1998) stated that fine-grained quartz and carbonates stop compacting at 

porosities around 3 %, whereas shales containing minerals with large surface areas, 

such as smectite and illite, stop compacting at porosities around 10 %. More 

recently, Lee and Deming (2002) studied the overpressure in the Anadarko Basin, 

southwestern Oklahoma. They proposed that the overpressure can not be explained 

by compaction disequilibrium and that the best explanations are gas generation and 

gas capillary seals. 

 

Barker (1972) noted that the high-pressure zones should be effectively isolated from 

their surroundings. Bradley (1975) considered that the abnormal pressured system 

must be completely enclosed by seals on all sides. Hunt (1990) pointed out that to 

maintain overpressure through geological time requires seals that are almost 

completely impermeable or a continuous pressure recharge must occur during basin 

sinking. Hunt (1990), Powley (1990), Bradley and Powley (1994), and Ortoleva 

(1994) proposed that the pressure fluid compartments are characterized by an 

effective seal, in three-dimensions. The efficiency of low-permeability units, fine-

grained rocks, may be enhanced by diagenetic cements (Hunt, 1990; Swarbrick, 

1995). Deming (1994) demonstrated that the permeability needed for a geological 

layer to act as a pressure seal is in the range 10-21-10-24 m2. To maintain overpressure 

in sedimentary basins over geological time, highly effective pressure seals, such as 

low-permeability rocks and lateral fault sealing, are required to be capable of 

preventing fluid expulsion from sealed compartments. 

 

The Northern Carnarvon Basin is a hydrocarbon-rich overpressured basin. 

Petroleum generation is believed to be mainly associated with the Jurassic organic-

rich, clay-rich section which is highly overpressured. Previous authors have 

proposed various origins for the generation of the fluid overpressure in the Northern 

Carnarvon Basin which principally include (1) hydrocarbon generation (Horstman 

1988) or gas generation (Zaunbrecher 1994), and (2) compaction disequilibrium 

(Swarbrick & Hillis 1999; Bekele et al. 2001; Tingate et al. 2001). However, 

Swarbrick and Hillis (1999) suggested that the generation of a large volume of gas 

could be a secondary source of overpressure as well. Bekele et al. (2001) also 
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proposed that organic maturation has a contribution of approximately 15 percent to 

the maximum pressure anomaly in the Barrow Sub-basin, based on 2D numerical 

basin modelling. Horstman (1988) maintained that hydrocarbon generation is the 

most important mechanism within source rocks, based on a comparison of the depth 

of the oil window and the top of the overpressured zone. Zaunbrecher (1994) 

considered that gas generation and accumulation are the likely origin for the 

overpressure in reservoirs sealed by overpressured clays.  

 

Clearly, both the hydrocarbon generation and disequilibrium compaction 

mechanisms have been most commonly proposed by various authors to be the 

dominant genesis of the observed overpressures for the Jurassic clay-rich and some 

Cretaceous sequences in the Northern Carnarvon Basin. With reference to previous 

work, the following questions concerning the deep overpressured system in the sub-

basins are still of great interest to the study of overpressure modelling: (1) What is 

the effect of the top pressure seal for maintaining the deep overpressure in the sub-

basins? (2) What does the evolution of the deep overpressured system look like in 

the sub-basins? (3) What are the processes and major mechanisms of the generation 

and maintenance of the deep overpressured system in the sub-basins? and (4) What 

is the pressure behaviour within low-permeability (10-18-10-22 m2) environments? 

The aim of this chapter to propose possible answers for these questions based on 

results from (1) studies of deep overpressure, formation compaction and pressure 

seal in Chapter 5 and this Chapter, and (2) overpressure modelling using BasinMod 

2D software and approximation of pressure behaviour modelling within low-

permeability conditions based on a well-known diffusion equation. 

 
Two-dimensional modelling was performed using the BasinMod 2D package 

(version 4.61) to reconstruct the evolutions of porosity and permeability, formation 

of pressure seal with compaction and cementation, generation and preservation of 

the deep overpressure on the studied cross-sections in the Barrow, Exmouth and 

Dampier Sub-basins. It should be noted that the 2D modelling should be perceived 

to give a qualitative overview for the overpressure history rather than strict 

quantitative results. Three 1D models were developed to investigate the low-

permeability conditions required to maintain overpressure and to determine the 

dissipation time of the observed deep overpressure in the Bambra locality of the 
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Barrow Sub-basin. This modelling was based on a well-known diffusion 

approximation for pressure behaviour in porous media. 

 
10.2 Two-dimensional overpressure modelling in the Barrow Sub-

basin 

 
The length of the AB cross-section (Fig. 9-5) in the Barrow Sub-basin for the 2D 
modelling is 120 km and its maximum depth is about 10700 m. The cross-section 
has been divided into 22,537 cells with time intervals of 1-2 Ma and x-distance 
intervals of 1 km. Top pressure seal of the deep overpressured system in this 
geological model was designed with 300-500 m thickness and was modelled with 
quartz cementation.  
 
10.2.1 Correlation between the predicted values and the observed data  
 
10.2.1.1 Data from Bambra-2 for correlation 
 
Figure 10-1A shows modelled porosity and permeability curves, and some measured 
porosity and permeability values at the Bambra-2 well site along the cross-section in 
the Barrow Sub-basin (x-distance of 90,000 m on Fig. 9-5). The porosity curve 
matches the observed claystone porosity values of 4.9-6.6 % from a conventional 
core at 4274-4283 m. The measured permeability values for this core at 4274-4283 
m are generally � 10-17 m2 (data from the well completion report), which are 
basically consistent with the calculated values of about 10-18-10-19 m2 in the 
overpressured Middle Jurassic. Figure 10-1B shows that the modelled fluid pressure 
and excess pressure curves at present basically fit with the mud weight pressures and 
RFT pressures from Bambra-1. The modelled maximum excess pressure is about 
35.6 MPa at a depth of 4600 m within the Athol Formation. Figure 10-1C shows the 
calculated temperature and vitrinite reflectance curves at present and the measured 
formation temperatures and thermal maturity values. The formation temperatures 
from Bambra-2 are the extrapolated bottom hole temperatures using the Horner-plot. 
The observed thermal maturity values were derived from a 1D modelled maturity 
trend obtained from Rock-Eval Tmax data in Bambra-2, which can be modelled using 
the present-day seabed temperatures and constant heat flow values in the range of 
43-46 mW/m2 along the cross-section.  
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10.2.1.2 Data from West Tryal Rocks-1 for correlation 

 

Figure 10-2A shows the modelled fluid pressure and the RFT pressures and mud 

weights at the West Tryal Rocks-1 well site along the cross-section (x-distance of 

7600 m on Fig. 9-5). Figure 10-2B also shows the modelled temperature and 

maturity curves and the measured formation temperatures and thermal maturity 

values at this well site. There are two estimated formation temperatures, one (146.7 
oC at 3866 m) is the extrapolated bottom hole temperature using the Horner-plot and 

the other is the corrected bottom hole temperature by adding 10 % of the raw 

temperature (120 oC at 3433 m). The measured maturity values are the 1D modelled 

maturity trend using the real Rock-Eval Tmax data in West Tryal Rocks-1 which can 

be well matched using the constant heat flow values in the range of 43-46 mW/m2 

and current seabed temperatures along the cross-section.  

 

10.2.2 Results of the BasinMod 2D modelling 

 

10.2.2.1 Sedimentation rates 

 

Based on the calculated sedimentation rates in the sub-basin, the burial history can 

be divided into three periods. Rapid loading occurred during the Jurassic and 

Earliest Cretaceous (136 Ma) with sedimentation rates of about 80-180 m/Ma in the 

graben. The sedimentation rates were about 40-60 m/Ma during the Early 

Cretaceous to the early Late Cretaceous (136-90 Ma) and about 10-20 m/Ma during 

the Late Cretaceous and Cainozoic.  

 

10.2.2.2 Porosity and permeability 

 

A number of the modelled chronological evolution profiles of porosity and 

permeability at x-distances of 50,000 m were selected (Fig. 10-3; approximately 

mid-basin, see Fig. 9-5 for the location). The various ages for the profiles of porosity 

and permeability are 160 Ma, 145 Ma, 136 Ma, 120 Ma, 90 Ma, 65 Ma, 24 Ma and 

present-day. Based on the modelled porosity, the permeability history was 

calculated using the modified Kozeny-Carman equation (Ungerer et al., 1990) in 

BasinMod 2D. Figure 10-3 indicates porosity and permeability histories: 
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1. At 160 Ma and 145 Ma (Fig. 10-3-1 A and B), the rapid sedimentation and 

compaction resulted in a porosity value of much less than 1 % and very low-

permeability of about 10-24 m2 at the bottom of the Jurassic section. This 

modelling indicates that a rock layer about 150 m thick with permeability of 

about 10-24 m2 was formed in the Jurassic bottom section of the central sub-basin 

since about 140 Ma. Then this rock layer became thicker as a nearly closed 

boundary in the modelling.  

 

2. At 136 Ma, 120 Ma and 90 Ma (Fig. 10-3-1 C and D, and Fig. 10-3-2 E), rapid 

compaction occurred at the top part of the Jurassic section resulting in the 

porosity decreasing from about 20 % to about 5.0 % and the vertical 

permeability decreasing from about 10-17 m2 to 10-19 m2, whereas the maximum 

porosities in the middle of the undercompacted zone were about 13-22 %.  

 

3. At 65 Ma and 24 Ma (Fig. 10-3-2 F and G), the vertical permeability values at 

the top of the Jurassic rocks were about 10-20-10-21 m2, and the maximum 

porosity values in the middle of the Jurassic ranged from 8 % to 11 %. 

 

4. At present (Fig. 10-3-2 H), the vertical permeability for the top pressure seal is 

10-20-10-22 m2 and for the bottom pressure seal is 10-24 m2, and the maximum 

porosity in the middle Jurassic section is about 7 %.  

 

Figures 10-4 and 10-5 give the modelled distributions of porosities and vertical 

permeabilities at 145 Ma, 120 Ma, 65 Ma and present-day for the cross-section. The 

modelled results indicate that the maximum porosities in the middle of the Jurassic 

section remain 6-11 % at 65 Ma and 4-8 % at present. The distribution of the 

present-day vertical permeability (Fig. 10-5 D) shows two abnormally low 

permeability zones (1) at a relatively shallow depth of about 3000 m to 3500 m with 

permeabilities of about 10-20-10-22 m2, and (2) in a deep region near the base of the 

Jurassic (6000 m - 9000 m) with permeability of about 10-24 m2 within the sub-basin. 

From these models, one could possibly propose the existence of a pressure cell, 

based on the identification of upper and lower permeability seals for the cell. The 

top pressure seal could be interpreted to be coincident with the upper low  

permeability  zone  ( 3000 - 3500 m ),   and   the  cell  may   be  confined  by  lateral  
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closed faults and a deeper zone, which appears to be associated with the base of the 

Jurassic sediments (6000-9000 m).  

 

10.2.2.3 Fluid pressure 

 

Eight representative profiles of excess pressure were selected to demonstrate the 

modelled chronological results for the following geological times: the end of the 

Middle Jurassic (160 Ma), the end of the Late Jurassic (145 Ma), the early period of 

the Early Cretaceous (136 Ma), the middle of the Early Cretaceous (120 Ma), the 

early period of the Late cretaceous (90 Ma), the end of the Late Cretaceous (65 Ma), 

the end of the Oligocene (24 Ma) and present-day (Fig. 10-6). Figure 10-6-1 (A and 

B) shows that the Jurassic overpressure was developed during the deposition of 

claystone and siltstone-dominated Jurassic and the Lowest Cretaceous sequences 

with the maximum excess pressures of about 35 MPa and 65 MPa at 160 Ma and 

145 Ma respectively in the Jurassic succession. The buildup of the high fluid 

pressure was modelled, which may be related to rapid sedimentation rates in Jurassic 

fine-grained sediments. These excess pressure profiles show that the significant 

upward compaction-driven water flow was indicated by the water flow direction, 

and that overpressure was also released along fault conduits. Figure 10-6-1 (C and 

D) and Figure 10-6-2 (E) show that the maximum excess pressures were about 80 

MPa, 83 MPa and 90 MPa at 136 Ma, 120 Ma and 90 Ma, respectively, in the 

Jurassic section. The Jurassic overpressured system may be recharged in terms of 

the current modelling package, owing to compaction disequilibrium during the 

deposition of the Upper Jurassic and Lower Cretaceous indicated by the porosity 

history (Fig. 10-3). The direction of water flow was obviously controlled by the 

permeability increase from deeper to shallower. Figure 10-6-2 (F, G and H) shows 

the overpressure evolution in the Tertiary and Quaternary. The modelling shows that 

the deep overpressured system has been sealed from at least Cainozoic because the 

upward and lateral water flow has been significantly weakened, which could suggest 

that a top pressure seal, and lateral closed faults, were becoming more effective 

through time to maintain the overpressure. This isolation condition seems to be an 

important control for maintaining the deep overpressure based on the BasinMod 2D 

modelling.  
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10.2.2.4 General discussion 

 

There is an absence of observed data from the deep overpressured section at depths 

greater than 4650 m. The calculated deep overpressure below 5000 m using the 

BasinMod 2D modelling may not be valid.  

 

A significant error for the overpressure distribution may be related to fault 

distribution in the depocentre of the sub-basin because faults, as conduits allow pore 

fluid flow. A possible error may be also derived from the steady-state thermal model 

for thermal expansion of pore fluids and hydrocarbon generation, but it was 

discovered to be minor in the BasinMod 2D modelled results, based on the 

sensitivity analysis using various temperatures. The porosity is more sensitive to the 

overpressure modelling because the permeability calculation is based on it. 

 

The fact that this top pressure seal was designed to be independent of formation 

boundaries but modelled results show a close correlation between pressure seal and 

location and stratigraphy is particularly interesting. The influence of the top pressure 

seal was examined for the deep overpressured system. The results indicate that there 

are various distributions of the overpressure predicted for two distinct models with, 

and without, the designed top pressure seal, and that these are unlikely to match 

measured pressure data without the top pressure seal. As the result of cementation, 

the modelled porosity in the interpreted top pressure seal was calculated to be 1.5-

4.5 % and the calculated permeability values ranged from 10-20 m2 to 10-22 m2 at 

present (Fig. 10-4 D and Fig. 10-5 D). This suggests that quartz cementation is a 

significant factor in forming the low-permeability rocks in the depth interval of the 

interpreted top pressure seal of the sub basin. 

 

Temperature increase results in pore fluid expansion that produces overpressure. 

The contribution of thermal expansion of pore fluids to overpressure has been 

calculated in this cross-section using the BasinMod 2D. It is about 5-10 % of the 

maximum excess pressures. The generated pressure owing to hydrocarbon 

generation has been observed in the processes of the two-dimensional overpressure 

modelling.  However,  the  calculated  generation  pressure,  using  the  model of the  
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volumetric change in BasinMod 2D, is smaller (less than 2 MPa) irrespective of 

TOC values from 1 % to 6 %.  

 

10.3 Two-dimensional overpressure modelling in the Exmouth Sub-

basin 
 

The length and present-day depth of the 110/11 cross-section (see Fig. 9-6 for the 

cross-section) in the Exmouth Sub-basin are 150 km and about 12800 m, 

respectively. It has been divided into 34,397 cells with time intervals of 2 Ma and x-

distance intervals of 1 km. Many normal faults in the seismic cross-section were 

interpreted (Appendix 2). However, only crucial normal faults have been set up on 

the geological 2D model and were modelled throughout geological time. It should 

be noted that occurrences of many small-scale normal faults within the Barrow 

Group and Upper Jurassic section have been ignored because it is impossible to 

model too many small-scale faults using the numerical model. However, this may 

influence the modelled distribution of the deep overpressure to some extent. 

 

10.3.1 Correlation between the calculated values and the observed data  

 

10.3.1.1 Fluid pressure correlation 

 

Figure 10-7 shows the three pressure profiles of the modelled and measured fluid 

pressures at the well sites of Zeewulf-1, Novara-1 and Outtrim-1 along the 110/11 

cross-section in the Exmouth Sub-basin. Unfortunately, all three wells along the 

cross-section have not been drilled into the deep overpressured zone. These 

modelled results are consistent with the observed data which indicate that the 

shallower part (depth < 2800-3000 m) of the cross-section is a normal pressure 

system. However, a deep overpressured system has been observed in the Jurabi-1 

well at depths greater than 2900 m (Fig. 5-4), mentioned in Chapter 5.  

 

10.3.1.2 Temperature and maturity correlation 

  

Figure 10-8 indicates the modelled temperature lines and maturity trends, and the 

observed  formation  temperatures  and  thermal  maturity  values at the well sites of  
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Zeewulf-1, Novara-1 and Outtrim-1 along the 110/11 cross-section. The formation 

temperature values in the three wells are shown in Table 10-1.  The steady-state heat 

flows of 52-54 mW/m2 and constant seafloor temperatures can match well with both 

the measured formation temperatures and vitrinite reflectance values. It is 

geologically reasonable that this organic matter in the formations in the three wells 

experienced thermal effects only during the post-rift phase. 

 

Table 10-1 Measured formation temperatures from three wells in the Exmouth Sub-basin 
 

Well Depth (m) (K.B.) Formation Temperature (oC) Type of Temperature 
2860 68 Horner-plot Zeewulf-1 
3485 93.3 Horner-plot 
1151 48.8 Horner-plot 
1342 55.6 Horner-plot 

 
Novara-1 

2754 101.6 Horner-plot 
Outtrim-1 1726 86 Horner-plot 

 

 

10.3.2 Results of the BasinMod 2D modelling 

 

10.3.2.1 Sedimentation rates 

 

The burial history of this sub-basin can be divided into two periods based on 

calculated sedimentation rates. Rapid loading occurred during the Jurassic and 

Earliest Cretaceous (136 Ma) with sedimentation rates of about 80-180 m/Ma in the 

depocentre. The slow sedimentation rates are about 10-30 m/Ma from 135 Ma 

(Early Cretaceous) to the Cainozoic.  

 

10.3.2.2 Porosity and permeability 

 

A series of chronological profiles of porosity and permeability along the 110/11 

cross-section was plotted in Figures 10-9 and 10-10. The ages for the profiles of 

porosity and permeability are 160 Ma, 145 Ma, 136 Ma, 120 Ma, 90 Ma, 65 Ma, 24 

Ma and present-day. The porosity evolution was modelled, and, thus, based on the 

modelled porosity, permeability values were calculated using the modified Kozeny-

Carman equation (Ungerer et al. 1990) in BasinMod 2D. Figures 10-9 and 10-10 

show the evolution process of porosity and permeability:  
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1. At 160 Ma, 145 Ma and 136 Ma (Figures 10-9-1 A, B and C; 10-10-1 A, B and 

C), the bottom of the Jurassic section underwent rapid compaction leading to the 

occurrence of very low porosity and permeability zones with the lowest 

permeability values about 10-24 m2, which actually formed a impermeable 

bottom boundary of the Jurassic in the depocentre of the sub-basin since about 

138 Ma. It can be seen that strong compacted zones occurred along the major 

faults, which indicated that pore water rapidly migrated along the fault planes 

during the rifting burial and fault activity. It is obvious that porosities of about 

10-45 % remained in the middle-upper part of the Jurassic sequence. 

 

2. At 120 Ma, 90 Ma and 65 Ma (Figures 10-9-1 D; 10-9-2 E and F; 10-10-1 D; 

10-10-2 E and F), porosity slowly decreased in the Jurassic section due to slow 

overburden loading during this period. Pore water release along fault conduits 

tended to cease. The estimated porosities of 7-10 % remained in the middle of 

the Upper Jurassic sequence, while the Middle-Lower Jurassic rocks were highly 

compacted.  

 

3. At 24 Ma and present-day (Figures 10-9-2 G and H; 10-10-2 G and H), the 

porosity values in the Upper Jurassic section in the central sub-basin ranged 

from approximately 2 % to 7 %.  The vertical permeability was about 10-20 m2 at 

the top of the Upper Jurassic rocks and about 10-23-10-25 m2 in the Lower-Middle 

Jurassic rocks. It can be seen that the lateral fault sealing resulted in many 

separated cells in the deep overpressured system of the Jurassic section.  

 

10.3.2.3 Fluid pressure 

 

The calculated eight profiles of chronological excess pressure have been chosen to 

show the modelled deep overpressure evolution for the following geological times: 

the end of the Middle Jurassic (160 Ma), the end of the Late Jurassic (145 Ma), the 

early period of the Early Cretaceous (136 Ma), the middle of the Early Cretaceous 

(120 Ma), the early period of the Late Cretaceous (90 Ma), the end of the Late 

Cretaceous (65 Ma), the end of the Oligocene (24 Ma) and present-day (Fig. 10-11). 

Figure 10-11-1 (A, B and C) shows that the Jurassic overpressure was developed 

during the deposition of the Jurassic and  the Lowest Cretaceous sequences  (Barrow 



Chapter 10  2D Overpressure Modelling and Pressure Behaviour Modelling 184

Group). The maximum excess pressures were calculated to be about 35 MPa, 83 

MPa and 103 MPa at 160 Ma, 145 Ma and 136 Ma, respectively in the Lower 

Jurassic succession. It seems that the rapid sedimentation rates in the fine-grained 

sediments during the rift phase were a significant cause of overpressure generation. 

From these excess pressure profiles, the migration of water was dominated by 

upward water flow as indicated by water flow direction and the lateral flow of water 

was presented on the cross-section. Pore water flow and overpressure emission from 

the Jurassic rocks along fault planes were significant events during the period. 

Figures 10-11-1 (D) and 10-11-2 (E) show that the upward emission of overpressure 

and water flow along the major normal faults from the Jurassic sequence were 

gradually weakened as faults closed during the time interval. The maximum excess 

pressures were modelled to be 85 MPa (120 Ma) and 62 MPa (90 Ma) in the 

Jurassic section. Figure 10-11-2 (F, G and H) shows the overpressure evolution 

during the Cainozoic. The modelled results indicate that the upward water flow and 

overpressure release from the Jurassic overpressured system appeared to be slow. It 

should be noted that the compaction effect for the deep overpressure should not be a 

significant source because most of the porosity has been lost through compaction 

and small porosities of 2-7 % remained in the well-compacted fine-grained Jurassic 

source rocks and very slow deposition from 64 Ma to present-day. However, the 

discharge of the modelled overpressure from the Jurassic overpressured 

compartments was slow and the maximum excess pressures were 53 MPa at 64 Ma 

and 45 MPa at present-day. The approximate 10 % of the total excess pressures were 

calculated to be caused by fluid thermal expansion and generated pressure. Perhaps, 

the deep overpressured system was significantly maintained by sealed conditions 

since the Cainozoic from the BasinMod 2D modelling.  

 

10.4 Two-dimensional overpressure modelling in the Dampier Sub-

basin 
 

The length of the 101R/09 cross-section in the Dampier Sub-basin for the modelling 

is about 135 km and the interpreted maximum depth of the cross-section is about 

11000 m.  The  cross-section was  divided into 29,765  cells  with time intervals of 2 



Chapter 10  2D Overpressure Modelling and Pressure Behaviour Modelling 185

Ma and x-distance intervals of 1 km. The critical normal faults were designed on the 

geological 2D model and were modelled over geological time.  

 

10.4.1 Correlation between the calculated values and the observed data  

 

10.4.1.1 Fluid pressure correlation 

 

Figure 10-12 shows correlation between the modelled pressure lines and measured 

fluid pressures at the three well sites of Goodwyn-7, Rosemary-1 and Hampton-1 

along the 101R/09 cross-section in the Dampier Sub-basin. These three wells were 

drilled either on the shoulders of the rift graben or on its flank (Fig. 9-7). Therefore, 

these wells have shown generally normal pressures in the Jurassic rocks (absence of 

the Jurassic formations in Goodwyn-7). The overpressure within the Jurassic section 

in this sub-basin was observed in Dampier-1. The slightly overpressured zone in this 

well occurs at a depth of about 2900 m (Fig. 5-5), mentioned in Chapter 5.  

 

10.4.1.2 Temperature and maturity correlation 

 

Figure 10-13 shows the calculated temperature and maturity, and the observed 

formation temperatures and maturity values at the well sites of Goodwyn-7, 

Rosemary-1 and Hampton-1 along the 101R/09 cross-section. All formation 

temperatures in the three wells are the corrected BHTs by adding 10 % of the raw 

BHTs (Table 10-2). The constant heat flows of 40-43 mW/m2 and seafloor 

temperatures can match with both the measured formation temperatures in the three 

wells and the maturity data in Rosemary-1 and Hampton-1 (absence of maturity data 

in Goodwyn-7). The observed maturity data were obtained from 1D modelled 

maturity trends using the Rock-Eval Tmax data in Rosemary-1 and Hampton-1.  

 

10.4.2 Results of the BasinMod 2D modelling 

 

10.4.2.1 Sedimentation rates 

 

Based on the calculated sedimentation rates along the cross-section, rapid deposition 

occurred  during the  Jurassic  period and  the depositional rates were about 100-250 
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m/Ma in the depocentre of the sub-basin. The sedimentation rates in the Cretaceous 

ranged from 10 m/Ma to 80 m/Ma. During the Cainozoic, relatively rapid loading 

occurred from an x-distance of 0 km to 80 km on the cross-section with 

sedimentation rates of about 40-80 m/Ma, while slow sedimentation occurred from 

an x-distance of 80 km to 135 km on the cross-section with the depositional rates of 

about 10-20 m/Ma. 

  

Table 10-2 Measured BHTs from three wells in the Dampier Sub-basin 
 

Well Depth (m) (K.B.) BHT (oC) Raw BHT + 10 % (oC) 
1819 63 69.3 Goodwyn-7 
3445 102 112.2 
1802 62.78 69.1 
1864 65.56 72.1 
2924 98.33 108.2 
3272 108.89 119.8 

 
 
Rosemary-1 

3905 125.56 138.1 
1194 53 58.3 Hampton-1 
2556 83 91.3 

 

 

10.4.2.2 Porosity and permeability 

 

A series of chronological profiles of the modelled porosity and permeability on the 

101R/09 cross-section was plotted in Figures 10-14 and 10-15. The ages for these 

profiles are also 160 Ma, 145 Ma, 136 Ma 120 Ma, 90 Ma, 65 Ma, 24 Ma and 

present-day. The porosity evolution was modelled referring to the parameters from 

the Barrow Sub-basin due to the lack of measured data. The permeability profiles 

were calculated using the modified Kozeny-Carman equation (Ungerer et al. 1990) 

in the BasinMod 2D. The features of porosity and permeability evolution are shown 

in Figures 10-14 and 10-15:  

 

1. At 160 Ma, 145 Ma and 136 Ma (Figures 10-14-1 A, B and C; 10-15-1 A, B and 

C), several hundred meters of the bottom of the Jurassic rocks experienced quick 

compaction and release of pore fluids in the depocentre of the sub-basin. It can 

be seen that modelled porosities of about 15-20 % remained in the Middle-

Lower Jurassic sequence and porosities of 20-40 % were in the Upper Jurassic 

section at 136 Ma. 
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2. At 120 Ma, 90 Ma and 65 Ma (Figures 10-14-1 D; 10-14-2 E and F; 10-15-1 D; 

10-15-2 E and F), with the deposition of the Cretaceous, the Jurassic rocks were 

gradually compacted causing porosity to decrease through the period. The 

maximum porosity value in the Jurassic section of the depocentre fell from about 

15 % at 120 Ma to about 8 % at 65 Ma.  

 

3. At 24 Ma and present-day (Figures 10-14-2 G and H; 10-15-2 G and H), the 

maximum porosity value was about 7 % at 24 Ma and 6 % at present-day in the 

Jurassic source rocks of the central sub-basin. The vertical permeability was 

about 10-19 m2 at the top of the Upper Jurassic section and about 10-24 m2 at the 

bottom of the Lower-Middle Jurassic section. It can be seen that the vertical 

permeability values in the rocks along faults in the central sub-basin were about 

10-24 m2. Therefore, from this modelling, the bottom of the Jurassic rocks and 

the fault rocks actually formed impermeable boundaries for the Jurassic source 

section in the centre of the sub-basin.  

 

10.4.2.3 Fluid pressure 

 

Eight profiles of the modelled excess pressure have been selected to explain the 

modelled deep overpressure history for the following geological times: the end of 

the Middle Jurassic (160 Ma), the end of the Late Jurassic (145 Ma), the early period 

of the Early Cretaceous (136 Ma), the middle of the Early Cretaceous (120 Ma), the 

early period of the Late Cretaceous (90 Ma), the end of the Late Cretaceous (65 

Ma), the end of the Oligocene (24 Ma) and present-day (Fig. 10-16). Figure 10-16-1 

(A and B) shows that the Jurassic overpressure was developed mainly in the Lower-

Middle Jurassic section during the deposition of the Jurassic rocks. The maximum 

excess pressures were about 40 MPa at 160 Ma and 65 MPa at 145 Ma. The lower 

part of the Jurassic section was overpressured in the central sub-basin. The dominant 

direction of water flow was upward. Figure 10-16-1 (C and D) shows that the deep 

overpressure was maintained in the Lower-Middle Jurassic rocks with the highest 

excess pressure of about 68 MPa. Upward water flow continued through this period. 

Figure 10-16-2 (E and F) shows the distribution of deep overpressure in the Jurassic 

was similar to that at 136-120 Ma. However, upward water flow significantly 

weakened during this time. Figure 10-16-2 (G and H) indicates that the overpressure 
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in the lower part of the Upper Jurassic from the left boundary to about middle of the 

cross-section was enhanced, which may be due to the deposition of the Cainozoic. 

Upward water flow occurred significantly in the Cainozoic sequence.  

 

10.5 Pressure behaviour modelling 
 

It seems that the variable of permeability is not sensitive to the deep overpressure 

calculation in the 2D overpressure modelling if the permeabilites are less than 10-19-

10-20 m2. Based on presently available stratigraphic, petrographical and 

petrophysical data, a pressure seal may exist within the sub-basins. However, 

questions remain as to whether the present-day maintained overpressure is caused by 

compaction disequilibrium in the geological past, and whether permeabilities of 10-

19-10-22 m-2 (10-4-10-7 md) for a pressure seal are sufficiently low to preserve the 

overpressure for tens of millions of years. A simple 1D model was used in the hope 

of estimating how rapidly pressure dissipates. It should be noted that dissipation of 

excess pressure is different in the 2D and 1D processes, in spite of fluid expulsion 

from overpressured shaly sections being dominantly vertical. However, with 2D, an 

extra dimension is added to permit dissipation (rather than just vertically), and the 

dissipation may be even more rapid. Thus, the deductions below may be 

strengthened. Therefore, the simple theoretical considerations below provide 

important information about overpressure longevity.  

 

Fundamental questions posed by the computer-based basin modelling are (1) the 

persistence of an overpressure cell over time, (2) the importance of compaction 

disequilibrium as a cause of maintained overpressure, and (3) the importance of 

hydrocarbon generation as a cause of maintained overpressure. Such questions may 

be resolved by the application of some simple mathematically tractable models. This 

section describes these simple models and their results. 

 

The theory of pressure modelling has been fully dealt with by Bear (1972) and 

Sahimi (1995), amongst others. It has been long recognised that diffusion 

approximation of pressure behaviour (Bear, 1972, pp. 408-409; Cossé, 1993, p. 134) 

by  using  exact tractable  mathematical  solutions is a relatively simple way to solve 
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pressure problems. One can thus circumvent the necessity of using time, and 

distance increments, which in turn may have compromised the accuracy of the 

modelling. 

 

These mathematical solutions can be used to determine the dissipation time of the 

overpressure observed in the pressure-depth profiles of Figures 5-1 to 5-7, assuming 

that compaction disequilibrium and hydrocarbon generation do not maintain the 

overpressure. The specifically selected area is the Bambra locality in the Barrow 

Sub-basin, where subsidence and deposition has been particularly slow over the past 

50 Ma, and compaction disequilibrium cannot be a major mechanism for 

maintaining overpressure. It is also assumed that the overpressured region is 3000 m 

thick (Fig. 10-17), and represents the Type-3 behaviour of Tingate et al. (2001, fig. 

9, p. 582), which is consistent with the BasinMod 2D models in Fig. 10-6. 

 

For the present modelling, it is assumed that there is an overpressured zone at some 

depth below the surface. Hydrostatic pressure is maintained to the top of this zone, 

and is also maintained below the zone. Initially, there is an excess pressure of ∆P 

throughout the zone, which has a thickness H.  Figure 10-17 shows this initial 

model, and subsequent pressure-depth decay profiles for various times, as calculated 

by the equation below.  For the above model conditions, the diffusion-behaviour 

equation for excess pressure (as a function of time and depth), Pex, has been well 

approximated by Carslaw and Jaeger (1959, p. 96): 
 

Pex  =  ∆P(4/π) exp[-βπ2t/H2]sin[πz/H]  ,                                                          (10-1) 

 

where ∆P is the initial excess pressure of the zone, β is a diffusivity parameter (units 

of m2/s), t is time in seconds, H is the thickness of the overpressured zone in metres, 

and z is depth in the overpressured zone in metres. The parameter β is defined as 

k/φµc, where k is permeability, φ is porosity, µ is viscosity and c is compressibility 

of fluid. 

 

Three models have been computed:  
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(1) where the porosity and the permeability of the overpressured zone are 1 % and 

10-22 m2 (10-7 md), respectively (Fig. 10-17),  

 

(2) where the porosity and the permeability of the overpressured zone are 5 % and 

10-20 m2 (10-5 md), respectively (Fig. 10-18), and 

 

(3) where the porosity and the permeability of the overpressured zone are 5 % and 

10-18 m2 (10-3 md), respectively (Fig. 10-19).  

   

The compressibility is assumed to be 5 x 10-10 Pa-1, and the viscosity is assumed to 

be 0.001 Pa∃S, which are both close to that of water. The thickness of the 

overpressured zone is taken to be 3000 m. 

 

When interpreting these results, it must be remembered that the model is designed to 

show the amount of excess pressure remaining in the Bambra locality, if the 

presently observed overpressure were to decay. Thus, the model in Fig. 10-17 

suggests that some small amount of initial excess pressure would remain after 2 

million years of dissipation, and that a half amount of excess pressure would be lost 

after 1 million years, if the permeability of the overpressured zone were 

predominantly 10-22 m2 (10-7 md). The model in Fig. 10-18 suggests that the 

overpressure would be almost dissipated after 100,000 years, if the permeability of 

the zone were 10-20 m2 (10-5 md). The model in Fig. 10-19 suggests that after only 

1000 years most of the excess pressure has dissipated from a 3000 m thick 

overpressure zone with the average permeability of 10-18 m2 (10-3 md). 

 

10.6 Discussion 
 

10.6.1 Pressure seal 

 

Deming (1994) discussed three factors (time, thickness and permeability) necessary 

to define a pressure seal in greater detail, and calculated the maximum time related 

to a seal layer of given thickness and permeability to confine excess pressures, using 

the  well-known diffusion equation (Fig. 10-20).  The calculated results indicate that  
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(1) a 800-1000-m-thick rock layer with permeability of 10-21 m2 (10-6 md) would 

maintain overpressure from one million years to several million years, (2) the 

overpressure would be dissipated after one million years to several million years if 

there was a 300-500-m-thick rock layer with the permeability of 10-22 m2 (10-7 md), 

and (3) a 300-500-m-thick rock layer with permeability of about 10-23 m2 (10-8 md), 

or less, would maintain the overpressure from ten million years to several tens of 

millions of years.  

 

The pressure seal modelling of pressure behaviour in porous media in the Bambra 

locality of the Barrow Sub-basin for maintaining excess pressures in the sealed 

environments also suggests that even in an overpressure zone of over a thousand 

meters thick within a very low-permeability (10-22 m-2) area, the overpressure can be 

maintained only several million years at best. It implies that it is almost impossible 

for the observed top pressure seal in the Barrow Sub-basin to preserve the deep 

overpressure for tens of millions of years, without continued renewal of the 

overpressure.  

 

This modelling, therefore, raises the issue of realistic average permeabilities for the 

Middle-Upper Jurassic shale sequence in the Barrow Sub-basin. Bruce et al. (1996) 

suggested that compacted clays typically have permeabilities in the 10-16 m2 to 10-17 

m2 (10-1-10-2 md) range. Schön (1996) also suggested from an extensive literature 

review that the lower limit of permeability in shale is about 10-20 m2 (10-5 md). As 

mentioned above, the porosities in the top pressure seal generally range from 2 % to 

5 % based on the well-log data and some measured porosity data from claystone, 

thus, the permeabilities possibly range from 10-19 m2 (10-4 md) to 10-22 m2 (10-7 md). 

It seems that a permeability value as low as 10-22 m2 is the lower limit for a 

compacted, even strongly compacted shale. However, the above results of the 

pressure seal imply that for overpressures to be retained in a thick zone for several 

million years, or longer, the permeability of the zone must be significantly less than 

10-20 m2 (10-5 md) by several orders of magnitude (about, or less than, 10-23 m2). It 

requires a porosity of less than 1 % but this very small porosity for the whole top 

pressure seal is very unlikely to occur.  
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From the physio-chemical point of view, the difficulty for hydrocarbon expulsion 

from source rocks may depend on its saturation and wettability in the pore media. 

Firstly, it is more difficult for oil and gas migration to occur from a well-compacted 

shale if water saturation is high, as the hydrocarbon relative permeabilities will be 

very low. Secondly, the capillary pressure for oil and gas migration will be high if 

there are water-wet source rocks.  The low hydrocarbon relative permeabilities at a 

top pressure seal, which is water-wet, may be quite efficient in preventing oil and 

gas being expelled from the deep overpressured source rocks. It has been, however, 

proposed that the wettability in source shales is different from reservoirs. There may 

be a possibility of variable hydrocarbon-wettability in various parts of the source 

section, for example, a distribution of bitumen within the pore centre network of a 

shale (Barker, 1980), or specific wetting paths (Ungerer et al., 1990) with relatively 

high hydrocarbon saturation and relative permeabilities. To maintain the 

overpressure, a seal is still required, or, at least, the release of overpressure through 

the seal should be slower than generating overpressure. Although the occurrence of 

deep overpressure suggests the existence of a relatively effective pressure seal, it is 

very unlikely that the seal is a unique factor for maintaining the deep overpressure 

for up to several millions of years or so. The results using BasinMod 2D, therefore, 

may have significantly overstated the effect of the seal conditions for maintaining 

overpressure. Thus, it is suggested that continuous oil and gas generation, and 

thermal expansion with continuous pressure recharge over the past tens of millions 

of years is required to maintain the deep overpressure. 

 

10.6.2 Possible major mechanisms for the deep overpressure 

 

It seems that the practical top pressure seal is unlikely to maintain overpressure for 

more than several million years without a continued pressure recharge. There is no 

evidence that smectite to illite transformation has a determined role on the observed 

deep overpressure in the study area. These pose the consideration of two commonly 

proposed mechanisms of the observed overpressure (1) compaction disequilibrium, 

and (2) hydrocarbon generation.  

 

10.6.2.1 Compaction disequilibrium 
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Compaction disequilibrium is common in fine-grained rocks with high 

sedimentation rates which are usually overpressured (Swarbrick, 1995). These rates 

in fine-grained rocks during the Jurassic may cause overpressure in the sub-basins 

due to compaction disequilibrium. However, deep overpressure is very likely to 

dissipate in several million years unless the permeability of the top pressure seal is 

about 10-23 m2 (10-8 md), or less, which is very unlikely to occur. Since the 

Cainozoic, it seems that compaction disequilibrium has been an unlikely significant 

source of overpressure in the well-compacted Jurassic source rocks, if very low rates 

of subsidence and deposition occurred over the past tens of millions of years, as 

mentioned above.  

 

Many researchers assume the relationship between fluid pressure and effective stress 

of Terzaghi (1923): 

 

Pfl = Pob - 9eff  ,                                                                                                    (10-2) 

 

where Pfl is fluid pressure, Pob is overburden pressure, 9eff is effective stress. This 

relationship is based on laboratory experiments under surface conditions. 

 

The assumption supposes that fluid pressure increases as effective stress decreases, 

as is often suggested to occur during undercompaction (anomalous high porosities) 

of shales. Terzaghi's principle has been widely used to evaluate fluid pressure from 

well logs. However, Hermanrud et al. (1998) have questioned the application of the 

Terzaghi relationship (with respect to porosities derived from the sonic and 

resistivity log) on the basis of their study of porosities in overpressured shales in the 

Haltenbanken.  

 

In the present study (see also Chapter 5), the core-, neutron- and density-derived 

porosities in shales of the deep overpressured system are significantly lower than the 

sonic- and resistivity-derived porosities, which is consistent with the findings of 

Hermanrud et al. (1998). For example, the measured shale porosities range from 4.9-

6.6 % at 4274-4283 m in Bambra-2, but sonic-log derived porosities are 13-18 % 

(high sonic transit times of 279-295 3s/m) at the same depths in Bambra-2 (Fig. 5-

3). Density logs in Bambra-1, West Barrow-1/1A and Jurabi-1 in the deep 
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overpressured system do not exhibit any porosity anomaly (Figures 5-2, 5-4 and 5-

6). These suggest that the sonic-log and resistivity-log data may not be consistent 

with abnormally high porosities expected in the overpressured source rocks. In turn, 

this suggests that the present day deep overpressure is not associated with a 

significant porosity anomaly due to compaction disequilibrium in the fine-grained 

rocks. The maintenance of the overpressure in the Jurassic source rocks to the 

present-day, therefore, requires that a mechanism other than compaction 

disequilibrium be sought to explain the deep overpressures in the sub-basins. 

 

10.6.2.2 Hydrocarbon generation 

 

On the basis of this study, one has to consider that the major causes for pressure 

recharge to maintain the deep overpressures are hydrocarbon generation in the 

Cainozoic after the thick Jurassic shales and siltstones had been compacted and most 

of the porosity in the Jurassic sequence had been lost through compaction. In fact, 

the deep overpressured system in the Barrow Sub-basin, interpreted by the sonic-

log, resistivity-log and the measured pressure data, is in agreement with the 

observed zone of organic maturity of 0.8-2.0 % Ro (vitrinite reflectance) and an 

increased volume of gas-generating organic matter. The boundary between the 

pressure transition zone and the overpressured compartment (bottom of top pressure 

seal) is consistent with a maturity of about 1 % Ro. Ro at the top of the deep 

overpressured zone is about 1 % in Dampier-1 of the Dampier Sub-basin and also 

about 1 % in Jurabi-1 of the Exmouth Sub-basin. This may be why the deep 

overpressured zone frequently appears to have a planar top in a basin. The depth of 

the planar top seems to be associated with the upper part of the hydrocarbon 

generation zone with the thermal maturity range of about 0.8-1 %. It is proposed that 

if an effective pressure seal exists it can only maintain the overpressure for several 

million years at best, while continuous hydrocarbon generation, especially gas 

generation and thermal expansion, for a pressure recharge over the past several tens 

of millions of years is very likely to be the major cause of maintenance of the deep 

overpressure. As hydrocarbon generation and charge in the Jurassic source rocks is 

believed to have occurred since the Cainozoic, it is not inconceivable that an 

overpressure regime has been maintained since that time. 
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10.7 Summary 
 

This study and modelling has shown several possible ways of interpreting the 

observed abnormal fluid pressures in the sub-basins. The BasinMod 2D basin 

modelling has suggested a maintained pressure cell in the Jurassic sequence since 

the Cainozoic. This modelling may inadvertently support some unrealistic 

petrophysical parameters, and computational assumptions. Nevertheless, the 

modelled overpressure distribution at present-day is fairly consistent with the 

observed data. The pressure seal that appears to be present in the Barrow Sub-basin 

clearly suggests that the observed overpressure can be only maintained by the top 

pressure seal for several million years at best, unless extremely low permeabilities 

(10-23 m2 or less) occur for a thousand meters in the Jurassic shaley sequences of the 

sub-basins.  

 

The modelled results using the BasinMod 2D software suggest the following 

observations:  

 

(1) The rapid sedimentation rates in fine-grained rocks during the basin subsidence 

of the Jurassic, resulting in compaction disequilibrium, are likely to be a 

mechanism for generating overpressure. 

 

(2) The pressure seal, including top and bottom low-permeability rocks and lateral 

sealed faults, is one of the major controls on the deep overpressured 

compartments in the Jurassic shaley sequence since the Cainozoic.  

 

(3) Quartz cementation may be a significant factor in forming a low-permeability 

rock layer for a top pressure seal. 

 

(4) Thermal expansion of pore fluids makes a 5-10 % contribution to the maximum 

excess pressure in the studied case, and the generated pressure of hydrocarbon 

generation makes a less than 2 % contribution to the maximum excess pressure 

in the sub-basins. 
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(5) Additionally, the modelled heat flow values required to match the measured 

maturity data and formation temperatures, at the selected well sites along three 

cross-sections using BasinMod 2D, are significantly lower than the calculated 

current heat flows in these wells using BasinMod 1D. The calculated heat flows 

in these wells using the BasinMod 1D modelling are 10 % to 20 % higher than 

those from the BasinMod 2D modelling at these well sites along the cross-

sections (Table 10-3). 

 

Table 10-3 The heat flow values required for fitting the measured maturity data from the 
1D BasinMod modelling and the BasinMod 2D modelling in three sub-basins 
 

Well Name 1D Heat Flow 
(mW/m2) 

2D Heat Flow 
(mW/m2) 

Surface  
Temperature (oC) 

Water Depth 
(m) 

Bambra-2 56.0 24 26 
West Tryal Rocks-1 54.3 

43-46 
Barrow  21 138 

Outtrim-1 60.4 22 91 
Novara-1 52.8 17 372 
Zeewulf-1 59.7 

 
52-54 
Exmouth 4.5 1194 

Goodwyn-7 48.0 21 134 
Hampton-1 43.9 23 53 
Rosemary-1 47.5 

 
40-43 
Dampier 23 65 

 
 
Further modelling studies of pressure behaviour and formation compaction also 

suggest: 

 

(1) The permeability values of 10-19 m2 to 10-22 m2 in situ may be not sufficient for 

required permeabilities of about 10-23 m2, or less, to maintain the deep 

overpressured regime in the Jurassic section over a time span of several tens of 

millions of years.  

 

(2) Compaction disequilibrium may not be a significant source to charge and 

maintain the deep overpressures since the Cainozoic. 

 

(3) There is the strong possibility of the validity of the hypothesis proposed by 

Horstman (1988) and Zaunbrecher (1994) that a maintained deep overpressure 

regime in the sub-basins is the product of continued hydrocarbon generation, 

especially gas generation and thermal expansion, and subsequent further 

maturation, which entails oil to gas cracking. The sealed conditions of low-

permeability to retain the deep overpressure are still required.  
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m/Ma in the depocentre of the sub-basin. The sedimentation rates in the Cretaceous 

ranged from 10 m/Ma to 80 m/Ma. During the Cainozoic time, relatively rapid 

loading occurred from an x-distance of 0 km to 80 km on the cross-section with 

sedimentation rates of about 40-80 m/Ma, while slow sedimentation occurred from 

an x-distance of 80 km to 135 km on the cross-section with the depositional rates of 

about 10-20 m/Ma. 

  

Table 10-2 Measured BHTs from three wells in the Dampier Sub-basin 
 

Well Depth (m) (K.B.) BHT (oC) Raw BHT + 10 % (oC) 
1819 63 69.3 Goodwyn-7 
3445 102 112.2 
1802 62.78 69.1 
1864 65.56 72.1 
2924 98.33 108.2 
3272 108.89 119.8 

 
 
Rosemary-1 

3905 125.56 138.1 
1194 53 58.3 Hampton-1 
2556 83 91.3 

 

 

10.4.2.2 Porosity and permeability 

 

A series of chronological profiles of the modelled porosity and permeability on the 

101R/09 cross-section was plotted in Figures 10-14 and 10-15. The ages for these 

profiles are also 160 Ma, 145 Ma, 136 Ma 120 Ma, 90 Ma, 65 Ma, 24 Ma and 

present-day. The porosity evolution was modelled referring to the parameters from 

the Barrow Sub-basin due to the lack of measured data. The permeability profiles 

were calculated using the modified Kozeny-Carman equation (Ungerer et al. 1990) 

in the BasinMod 2D. The features of porosity and permeability evolution are shown 

in Figures 10-14 and 10-15:  

 

1. At 160 Ma, 145 Ma and 136 Ma (Figures 10-14-1 A, B and C; 10-15-1 A, B and 

C), several hundred meters of the bottom of the Jurassic rocks experienced quick 

compaction and released of pore fluids in the depocentre of the sub-basin. It can 

be seen that the modelled porosities of about 15-20 % remained in the Middle-

Lower Jurassic sequence and the porosities of 20-40 % were in the Upper 

Jurassic section at 136 Ma. 
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2. At 120 Ma, 90 Ma and 65 Ma (Figures 10-14-1 D; 10-14-2 E and F; 10-15-1 D; 

10-15-2 E and F), with the deposition of the Cretaceous, the Jurassic rocks were 

gradually compacted causing porosity to decrease through the period. The 

maximum porosity value in the Jurassic section of the depocentre fell from about 

15 % at 120 Ma to about 8 % at 65 Ma.  

 

3. At 24 Ma and present-day (Figures 10-14-2 G and H; 10-15-2 G and H), the 

maximum porosity value was about 7 % at 24 Ma and 6 % at present-day in the 

Jurassic source rocks of the central sub-basin. The vertical permeability was 

about 10-19 m2 at the top of the Upper Jurassic section and about 10-24 m2 at the 

bottom of the Lower-Middle Jurassic section. It can be seen that the vertical 

permeability values in the rocks along faults in the central sub-basin were about 

10-24 m2. Therefore, from this modelling, the bottom of the Jurassic rocks and 

the fault rocks actually formed impermeable boundaries for the Jurassic source 

section in the centre of the sub-basin.  

 

10.4.2.3 Fluid pressure 

 

Eight profiles of the modelled excess pressure have been selected to explain the 

modelled deep overpressure history for the following geological times: the end of 

the Middle Jurassic (160 Ma), the end of the Late Jurassic (145 Ma), the early period 

of the Early Cretaceous (136 Ma), the middle of the Early Cretaceous (120 Ma), the 

early period of the Late Cretaceous (90 Ma), the end of the Late Cretaceous (65 

Ma), the end of the Oligocene (24 Ma) and present-day (Fig. 10-16). Figure 10-16-1 

(A and B) shows that the Jurassic overpressure was developed mainly in the Lower-

Middle Jurassic section during the deposition of the Jurassic rocks. The maximum 

excess pressures were about 40 MPa at 160 Ma and 65 MPa at 145 Ma. The lower 

part of the Jurassic section was overpressured in the central sub-basin. The dominant 

direction of water flow was upward. Figure 10-16-1 (C and D) shows that the deep 

overpressure was maintained in the Lower-Middle Jurassic rocks with the highest 

excess pressure of about 68 MPa. Upward water flow continued through this period. 

Figure 10-16-2 (E and F) shows the distribution of deep overpressure in the Jurassic 

was similar to that at 136-120 Ma. However, upward water flow significantly 

weakened during this time. Figure 10-16-2 (G and H) indicates that the overpressure 
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in the lower part of the Upper Jurassic from the left boundary to about middle of the 

cross-section was enhanced, which may be due to the deposition of the Cainozoic. 

Upward water flow occurred significantly in the Cainozoic sequence.  

 

10.5 Pressure behaviour modelling 
 

It seems that the variable of permeability is not sensitive to the deep overpressure 

calculation in the 2D overpressure modelling if the permeabilites are less than 10-19-

10-20 m2. Based on presently available stratigraphic, petrographical and 

petrophysical data, the existence of a pressure seal may exist within the sub-basins. 

However, questions remain as to whether the present-day maintained overpressure is 

caused by compaction disequilibrium in the geological past, and whether 

permeabilities of 10-19-10-22 m-2 (10-4-10-7 md) for a pressure seal are sufficiently 

low to preserve the overpressure for tens of millions of years. A simple 1D model 

was used in the hope of estimating how rapidly pressure dissipates. It should be 

noted that dissipation of excess pressure varies 2D and 1D processes, in spite of 

fluid expulsion from overpressured shaly sections being dominantly vertical. 

However, with 2D, an extra dimension is added to permit dissipation (rather than 

just vertically), and the dissipation may be even more rapid. Thus, the deductions 

below may be strengthened. Therefore, the simple theoretical considerations below 

provide important information about overpressure longevity.  

 

Fundamental questions posed by the computer-based basin modelling are (1) the 

persistence of an overpressure cell over time, (2) the importance of compaction 

disequilibrium as a cause of maintained overpressure, and (3) the importance of 

hydrocarbon generation as a cause of maintained overpressure. Such questions may 

be resolved by the application of some simple mathematically tractable models. This 

section describes these simple models and their results. 

 

The theory of pressure modelling has been fully dealt with by Bear (1972) and 

Sahimi (1995), amongst others. It has been long recognised that diffusion 

approximation of pressure behaviour (Bear, 1972, pp. 408-409; Cossé, 1993, p. 134) 

by  using  exact tractable  mathematical  solutions is a relatively simple way to solve 
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pressure problems. One can thus circumvent the necessity of using time, and 

distance increments, which in turn may have compromised the accuracy of the 

modelling. 

 

The following problem relevant to the present-day overpressured zones of the 

Barrow Sub-basin was posed. These mathematical solutions to determine the 

dissipation time of the overpressure observed in the pressure-depth profiles of 

Figures 5-1 to 5-7, assuming that compaction disequilibrium and hydrocarbon 

generation do not maintain the overpressure. The specifically selected area is the 

Bambra locality, where subsidence and deposition has been particularly slow over 

the past 50 Ma, and compaction disequilibrium cannot be a major mechanism for 

maintaining overpressure. It is also assumed that the overpressured region is 3000 m 

thick (Fig. 10-17), and represents the Type-3 behaviour of Tingate et al. (2001, fig. 

9, p. 582), which is consistent with the BasinMod 2D models in Fig. 10-6. 

 

For the present modelling, it is assumed that there is an overpressured zone at some 

depth below the surface. Hydrostatic pressure is maintained to the top of this zone, 

and is also maintained below the zone. Initially within the zone, there is an excess 

pressure of ΔP throughout the zone, which has a thickness H.  Figure 10-17 shows 

this initial model, and subsequent pressure-depth decay profiles for various times, as 

calculated by the equation below.  For the above model conditions, the diffusion-

behaviour equation for excess pressure (as a function of time and depth), Pex, has 

been well-approximated by Carslaw and Jaeger (1959, p. 96): 

 

Pex  =  ΔP(4/π) exp[-βπ2t/H2]sin[πz/H]  ,                                                          (10-1) 

 

where ΔP is the initial excess pressure of the zone, β is a diffusivity parameter (units 

of m2/s), t is time in seconds, H is the thickness of the overpressured zone in metres, 

and z is depth in the overpressured zone in metres. The parameter β is defined as 

k/φμc, where k is permeability, φ is porosity, μ is viscosity and c is compressibility 

of fluid. 

 

Three models have been computed:  
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(1) where the porosity and the permeability of the overpressured zone are 1 % and 

10-22 m2 (10-7 md), respectively (Fig. 10-17),  

 

(2) where the porosity and the permeability of the overpressured zone are 5 % and 

10-20 m2 (10-5 md), respectively (Fig. 10-18), and 

 

(3) where the porosity and the permeability of the overpressured zone are 5 % and 

10-18 m2 (10-3 md), respectively (Fig. 10-19).  

   

The compressibility is assumed to be 5 x 10-10 Pa-1, and the viscosity is assumed to 

be 0.001 Pa∃S, which are both close to that of water. The thickness of the 

overpressured zone is taken to be 3000 m. 

 

When interpreting these results, it must be remembered that the model is designed to 

show the amount of excess pressure remaining in the Bambra locality, if the 

presently observed overpressure were to decay. Thus, the model in Fig. 10-17 

suggests that some small amount of initial excess pressure would remain after 2 

million years of dissipation, and that a half amount of excess pressure would be lost 

after 1 million years, if the permeability of the overpressured zone were 

predominantly 10-22 m2 (10-7 md). The model in Fig. 10-18 suggests that the 

overpressure would be almost dissipated after 100,000 years, if the permeability of 

the zone were 10-20 m2 (10-5 md). The model in Fig. 10-19 suggests that after only 

1000 years most of the excess pressure has dissipated from a 3000 m thick 

overpressure zone with the average permeability of 10-18 m2 (10-3 md). 

 

10.6 Discussion 
 

10.6.1 Pressure seal 

 

Deming (1994) discussed three factors (time, thickness and permeability) necessary 

to define a pressure seal in greater detail, and calculated the maximum time related 

to a seal layer of given thickness and permeability to confine excess pressures, using 

the  well-known diffusion equation (Fig. 10-20).  The calculated results indicate that  
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(1) a 800-1000-m-thick rock layer with the permeability of 10-21 m2 (10-6 md) would 

maintain overpressure from one million years to several million years, (2) the 

overpressure would be dissipated after one million years to several million years if 

there was a 300-500-m-thick rock layer with the permeability of 10-22 m2 (10-7 md), 

(3) a 300-500-m-thick rock layer with the permeability of about 10-23 m2 (10-8 md)or 

less would maintain the overpressure from ten million years to several tens of 

millions of years.  

 

The pressure seal modelling of pressure behaviour in porous media in the Bambra 

locality of the Barrow Sub-basin for maintaining excess pressures in the sealed 

environments also suggests that even in the overpressure zone of over a thousand 

meters thick within a very low-permeability (10-22 m-2) area, the overpressure can be 

maintained only several million years at best. It implies that the observed top 

pressure seal in the Barrow Sub-basin is almost impossible to preserve the deep 

overpressure for tens of millions of years, without continued renewal of the 

overpressure.  

 

This modelling, therefore, raises the issue of realistic average permeabilities for the 

Middle-Upper Jurassic shale sequence are in the Barrow Sub-basin. Bruce et al. 

(1996) suggested that compacted clays typically have permeabilities in the 10-16 m2 

to 10-17 m2 (10-1-10-2 md) range. Schön (1996) also suggested from an extensive 

literature review that the lower limit of permeability in shale is about 10-20 m2 (10-5 

md). As mentioned above, the porosities in the top pressure seal generally range 

from 2 % to 5 % based on the well-log data and some measured porosity data from 

claystone, thus, the permeabilities possibly range from 10-19 m2 (10-4 md) to 10-22 m2 

(10-7 md). It seems that a permeability value as low as 10-22 m2 is the lower limit 

value for a compacted, even strongly compacted shale. However, the above results 

of the pressure seal imply that for overpressures to be retained in a thick zone for 

several million years, or longer, the permeability of the zone must be significantly 

less than 10-20 m2 (10-5 md) by several orders of magnitude (about, or less than, 10-23 

m2). It requires a porosity of less than 1 % but this very small porosity for the whole 

top pressure seal is very unlikely to occur.  
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From the physio-chemical point of view, the difficulty for hydrocarbon expulsion 

from source rocks may depend on its saturation and wettability in the pore media. 

Firstly, it is more difficult for oil and gas migration to occur from a well-compacted 

shale if water saturation is high, as the hydrocarbon relative permeabilities will be 

very low. Secondly, the capillary pressure for oil and gas migration will be high if 

there are water-wet source rocks.  The low hydrocarbon relative permeabilities at a 

top pressure seal, which is water-wet, may be quite efficient in preventing oil and 

gas being expelled from the deep overpressured source rocks. It has been, however, 

proposed that the wettability in source shales is different from reservoirs. There may 

be a possibility of variable hydrocarbon-wettability in various parts of the source 

section, for example, a distribution of bitumen within the pore centre network of a 

shale (Barker, 1980), or specific wetting paths (Ungerer et al., 1990) with relatively 

high hydrocarbon saturation and relative permeabilities. To maintain the 

overpressure, a seal is still required, or, at least, the release of overpressure through 

the seal should be slower than generating overpressure. Although the occurrence of 

deep overpressure suggests the existence of a relatively effective pressure seal, it is 

very unlikely that the seal is a unique factor for maintaining the deep overpressure 

for up to several millions of years or so. The results using the BasinMod 2D, 

therefore, may have significantly overstated the effect of the seal conditions for 

maintaining overpressure. Thus, it is suggested that continuous oil and gas 

generation, and thermal expansion with continuous pressure recharge over the past 

tens of millions of years is required to maintain the deep overpressure. 

 

10.6.2 Possible major mechanisms for the deep overpressure 

 

It seems that the practical top pressure seal is unlikely to maintain overpressure for 

more than several million years without a continued pressure recharge. This poses 

the consideration of two commonly proposed mechanisms of the observed 

overpressure (1) compaction disequilibrium, and (2) hydrocarbon generation.  

 

10.6.2.1 Compaction disequilibrium 

  

Compaction disequilibrium is common in fine-grained rocks with high 

sedimentation rates which are usually overpressured (Swarbrick, 1995). These rates 
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in fine-grained rocks during the Jurassic may wide cause overpressure in the sub-

basins due to compaction disequilibrium. However, deep overpressure is very likely 

to dissipate in several million years only if the permeability of the top pressure seal 

is about 10-23 m2 (10-8 md), or less, which is very unlikely to occur. Since the 

Cainozoic, it seems that the compaction disequilibrium has been an unlikely 

significant source of overpressure in the well-compacted Jurassic source rocks, if 

very low rates of subsidence and deposition occurred over the past tens of millions 

of years, as mentioned above.  

 

Many researchers assume the relationship between fluid pressure and effective stress 

of Terzaghi (1923): 

 

Pfl = Pob - 9eff  ,                                                                                                    (10-2) 

 

where Pfl is fluid pressure, Pob is overburden pressure, 9eff is effective stress. This 

relationship is based on laboratory experiments under surface conditions. 

 

The assumption supposes that fluid pressure increases as effective stress decreases, 

as often suggested to occur during undercompaction (anomalous high porosities) of 

shales. Terzaghi's principle has been widely used to evaluate fluid pressure from 

well logs. However, Hermanrud et al. (1998) have questioned the application of the 

Terzaghi relationship (with respect to porosities derived from the sonic and 

resistivity log) on the basis of their study of porosities in overpressured shales in the 

Haltenbanken.  

 

In the present study (see also Chapter 5), the core-, neutron- and density-derived 

porosities in shales of the deep overpressured system are significantly lower than the 

sonic- and resistivity-derived porosities, which is consistent with the findings of 

Hermanrud et al. (1998). For example, the measured shale porosities range from 4.9-

6.6 % at 4274-4283 m in Bambra-2, but sonic-log derived porosities are 13-18 % 

(high sonic transit times of 279-295 3s/m) at the same depths of Bambra-2 (Fig. 5-

3). Density-logs in Bambra-1, West Barrow-1/1A and Jurabi-1 in the deep 

overpressured system do not exhibit any porosity anomaly (Figures 5-2, 5-4 and 5-

6). These suggest that the sonic-log and resistivity-log data may not be consistent 
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with abnormally high porosities expected in the overpressured source rocks. In turn, 

this suggests that the present day deep overpressure is not associated with a 

significant porosity anomaly due to compaction disequilibrium in the fine-grained 

rocks. The maintenance of the overpressure in the Jurassic source rocks to the 

present-day, therefore, requires that a mechanism other than compaction 

disequilibrium be sought to explain the deep overpressures in the sub-basins. 

 

10.6.2.2 Hydrocarbon generation 

 

On the basis of this study, one has to consider that the major causes for pressure 

recharge to maintain the deep overpressures are hydrocarbon generation in the 

Cainozoic after the thick Jurassic shales and siltstones had been compacted and most 

of the porosity in the Jurassic sequence had been lost through compaction. In fact, 

the deep overpressured system in the Barrow Sub-basin, interpreted by the sonic-

log, resistivity-log and the measured pressure data, is in agreement with the 

observed zone of organic maturity of 0.8-2.0 % Ro (vitrinite reflectance) and an 

increased volume of gas-generating organic matter. The boundary between the 

pressure transition zone and the overpressured compartment (bottom of top pressure 

seal) is consistent with a maturity of about 1 % Ro. Ro at the top of the deep 

overpressured zone is about 1 % in Dampier-1 of the Dampier Sub-basin and also 

about 1 % in Jurabi-1 of the Exmouth Sub-basin. This may be why the deep 

overpressured zone frequently appears to have a planar top in a basin. The depth of 

the planar top seems to be associated with the upper part of the hydrocarbon 

generation zone with the thermal maturity range of about 0.8-1 %. It is proposed that 

if an effective pressure seal exists it can only maintain the overpressure for several 

million years at best, while continuous hydrocarbon generation, especially gas 

generation and thermal expansion, for a pressure recharge over the past several tens 

of millions of years is very likely to be the major cause of maintenance of the deep 

overpressure. As hydrocarbon generation and charge in the Jurassic source rocks is 

believed to have occurred since the Cainozoic, it is not inconceivable that an 

overpressure regime has been maintained since that time. 
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10.7 Summary 
 

This study and modelling has shown several possible ways of interpreting the 

observed abnormal fluid pressures in the sub-basins. The BasinMod 2D basin 

modelling has suggested a maintained pressure cell in the Jurassic sequence since 

the Cainozoic. This modelling may inadvertently support some unrealistic 

petrophysical parameters, and computational assumptions. Nevertheless, the 

modelled overpressure distribution at present-day is fairly consistent with the 

observed data. The pressure seal that appears to be present in the Barrow Sub-basin 

clearly suggests that the observed overpressure can be only maintained by the top 

pressure seal for several million years at best, unless extremely low permeabilities 

(10-23 m2 or less) occur a thousand meters in the Jurassic shaley sequences of the 

sub-basins.  

 

The modelled results using the BasinMod 2D software suggest the following 

observations:  

 

(1) The rapid sedimentation rates in fine-grained rocks during the basin subsidence 

of the Jurassic, resulting in compaction disequilibrium, are likely to be a 

mechanism for generating overpressure. 

 

(2) The pressure seal, including top and bottom low-permeability rocks and lateral 

sealed faults, is one of the major controls on the deep overpressured 

compartments in the Jurassic shaley sequence since the Cainozoic.  

 

(3) Quartz cementation may be a significant factor in forming a low-permeability 

rock layer for a top pressure seal. 

 

(4) Thermal expansion of pore fluids makes a 5-10 % contribution to the maximum 

excess pressure in the studied case, and the generated pressure of hydrocarbon 

generation makes a less than 2 % contribution to the maximum excess pressure 

in the sub-basins. 
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(5) Additionally, the modelled heat flow values required to match the measured 

maturity data and formation temperatures, at the selected well sites along three 

cross-sections using the BasinMod 2D, are significantly lower than the 

calculated current heat flows in these wells using the BasinMod 1D. The 

calculated heat flows in these wells using the BasinMod 1D modelling are 10 % 

to 20 % higher than those from the BasinMod 2D modelling at these well sites 

along the cross-sections (Table 10-3). 

 

Table 10-3 The heat flow values required for fitting the measured maturity data from the 
1D BasinMod modelling and the BasinMod 2D modelling in three sub-basins 
 

Well Name 1D Heat Flow 
(mW/m2) 

2D Heat Flow 
(mW/m2) 

Surface  
Temperature (oC) 

Water Depth 
(m) 

Bambra-2 56.0 24 26 
West Tryal Rocks-1 54.3 

43-46 
Barrow  21 138 

Outtrim-1 60.4 22 91 
Novara-1 52.8 17 372 
Zeewulf-1 59.7 

 
52-54 
Exmouth 4.5 1194 

Goodwyn-7 48.0 21 134 
Hampton-1 43.9 23 53 
Rosemary-1 47.5 

 
40-43 
Dampier 23 65 

 
 
Further modelling studies of pressure behaviour and formation compaction also 

suggest: 

 

(1) The permeability values of 10-19 m2 to 10-22 m2 in situ may be not sufficient for 

required permeabilities of about 10-23 m2, or less, to maintain the deep 

overpressured regime in the Jurassic section over a time span of several tens of 

millions of years.  

 

(2) Compaction disequilibrium may not be a significant source to charge and 

maintain the deep overpressures since the Cainozoic. 

 

(3) There is the strong possibility of the validity of the hypothesis proposed by 

Horstman (1988) and Zaunbrecher (1994) that a maintained deep overpressure 

regime in the sub-basins is the product of continued hydrocarbon generation, 

especially gas generation and thermal expansion, and subsequent further 

maturation, which entails oil to gas cracking. The sealed conditions of low-

permeability to retain the deep overpressure are still required.  
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CONCLUSIONS AND LIMITATIONS 
 

Conclusions 
 

The principal aims of this study were evaluation of (1) heat flow history, (2) thermal 

maturity and hydrocarbon generation in the deep overpressured system, and (3) 

pressure seal and evolution of deep overpressure. The prime methods used were (1) 

geological analysis, and (2) basin modelling. Eight chapters contain the most 

important research work, data and viewpoints. Chapters 3, 4 and 5 explain the 

characteristics of organic matter, a case study of the reliability of Tmax data, the deep 

overpressured system and its top pressure seal. Chapters 6 and 7 describe the 1D 

model, parameters and BasinMod 1D modelling for thermal history and thermal 

maturity. Chapter 8 contains two case studies of the thermal maturity and thermal 

modelling in the deep overpressured zone. Chapters 9 and 10 establish 2D 

geological models and choose parameters, show the results of BasinMod 2D 

overpressure modelling, and discuss the effect of the pressure seal and major origins 

to generate and maintain the deep overpressured system. 

 

The major new findings from this study are as follows: 

 

• Reliable Tmax data are useful to evaluate thermal maturity and a relationship 

between vitrinite reflectance and Rock-Eval Tmax is proposed. 

  

• Some thermal maturity data are consistent with the rifting heat flow model of 

Jarvis and McKenzie (1980). 

 

• No undercompaction overpressure effect on retardation of maturation can be 

observed in these studied wells. The deep overpressure is a result of the thermal 

maturity and hydrocarbon generation in this basin. 

 

• The present day deep overpressured zone is not associated with a high porosity 

anomaly owing to compaction disequilibrium. 
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• The observed deep overpressure can not be maintained over tens of millions of 

years in a very low-permeability (10-22 m2 or 10-7 md) environment. 

 

• The major mechanism to maintain the observed deep overpressure through the 

last tens of millions of years is continued hydrocarbon generation, especially gas 

generation and thermal expansion, within sealed conditions. 

 

The conclusions, new facts and suggestions to be drawn from this study are as 

follows: 

 

1. The Jurassic and Upper Triassic formations are rich in total organic carbon on 

the basis of 1256 TOC values. TOC values in the Dupuy Formation, Dingo 

Claystone and Athol Formation of the Jurassic range from about 0.2 % to 13 % 

with an average value of about 1.74 %. TOC values in the Murat Siltstone of the 

Lower Jurassic range from about 0.4 % to 11 % with an average value of about 

2.09 %. TOC values in the Mungaroo Formation of the Middle-Upper Triassic 

range from about 0.2 % to 36 % with an average value of about 2.19 % 

calculated from the TOC values of less than 15 %. TOC contents in the coal-

bearing sequence of the Lower-Middle Jurassic of the Beagle Sub-basin have 

higher values. 

 

2. The organic matter in the Jurassic source rocks is a mixture of terrestrial and 

marine input, but its bulk geochemical feature appears to be dominated by type 

III kerogen based on the current data. The organic matter in the Lower-Middle 

Jurassic contains more terrigenous material and mainly gas generating type of 

organic matter, while the organic matter in the Upper Jurassic may consist of 

more marine material and some mixed type II/III kerogen for a more oil-prone 

type may occur in the Barrow-Dampier Sub-basins.  

 

3. The major problems influencing the reliability of Rock-Eval Tmax data for the 

assessment of thermal maturity are (1) contamination by drilling-mud additives, 

and (2) suppression due to HI > 150. Carefully estimating and selecting Tmax 

data are important. The reliable Tmax data are useful to evaluate thermal maturity, 

especially where no other reliable measured maturity parameters are available. 
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4. The Jurassic sequence and some low parts of the Barrow Group are 

overpressured with excess pressures of about 5-29 MPa at depths of about 2900-

3640 m from observations by repeat formation tests (RFTs) and drill stem tests 

(DSTs). The deep overpressured system (mainly in Jurassic rocks) is also 

coincident with increase in mud weights within the observed depth range of 

2650-4650 m. 

 

5. The Jurassic source rocks are also overpressured, corroborated by high sonic 

transit times and low formation resistivities in the fine-grained rocks. However, 

the measured claystone porosities are significantly lower than the sonic-log and 

resistivity-log derived porosities, and the density-log data are not in agreement 

with abnormal high porosities due to compaction disequilibrium in the 

overpressured source rocks. A possible explanation is that the sonic-log and 

resistivity-log also directly respond to the overpressuring in the deep 

overpressured fine-grained rocks of the sub-basins, which is consistent with the 

observation by Hermanrud et al. (1998). 

 

6. The top pressure seal for the deep overpressured system in the Barrow Sub-basin 

is interpreted to be consistent with a pressure transition zone. The top pressure 

seal was observed to be a rock layer containing 60-80 % claystone and siltstone 

with 20-40 % sandstone and thin limestone. The top of the rock layer has 

varying depths of about 2650-3000 m with temperatures of 110-125 oC. The 

bottom of the rock layer has depths ranging from 3100 m to 3300 m with 

temperatures of 125-135 oC. The thicknesses of the rock layer range from about 

300 m to 500 m. The estimated porosities of claystone in the rock layer, based 

on the well-log data and measured claystone porosities, are about 2-5 % and 

calculated permeabilities range from about 10-19- 10-22 m2. 

 

7. The evidence of rifting heat flow histories, during the rift event of the Jurassic 

and earliest Cretaceous, was modelled using multiple thermal maturity data from 

4 wells, Jurabi-1 in the Exmouth Sub-basin, Bowers-1 in the Barrow Sub-basin, 

and Investigator-1 and Jupiter-1 on the Exmouth Plateau. The thermal maturity 

data are consistent with the rifting heat flow model of Jarvis and McKenzie 

(1980). The maximum typical heat flow values during the rifting along the 
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rifting grabens (sub-basins) were determined to be 60-70 mW/m2 with relatively 

higher values in the Exmouth and Barrow Sub-basins and relatively lower values 

in the Dampier and Beagle Sub-basins. The maximum heat flow values during 

the rifting on the southern and central areas of the Exmouth Plateau possibly 

range from 70 mW/m2 to 80 mW/m2. 

 

8. During the rifting in the Jurassic and earliest Cretaceous, the Rankin Platform, as 

a western shoulder of grabens, underwent substantial uplift and erosion. The 

estimated erosional thickness may range from hundreds meters up to 2500 m. 

The 1D thermal modelling indicates that the Rankin Platform was experiencing a 

decrease of temperature during the rifting. There is no evidence that a higher 

rift-associated heat flow occurred on the Rankin Platform (western graben 

shoulder). 

 

9. The study of thermal modelling suggests that it is more geologically reasonable 

to use the rift-related heat flow histories for predicting temperature, thermal 

maturity and hydrocarbon generation in the depocentres of the sub-basins, while 

the constant heat flow model (calculated current heat flow and surface or 

seafloor temperature) can be generally used to predict the thermal effects on the 

graben shoulders. The constant heat flow model can be also used to calculate the 

maturity and temperature histories during the post-rift phase of basin 

development. 

 

10. This study propose a relationship between vitrinite reflectance and Rock-Eval 

Tmax for the assessment of thermal maturity and thermal modelling. The 

relationship is preliminary and further study is needed to improve the 

correlation. The relationship between Ro and Tmax used in the thermal study may 

result in ! 3-10 % error for the calculated vitrinite reflectance. 

 

11. The true thermal maturity (Ro: 0.8-2.2 %) in the observed Jurassic overpressured 

source rocks of the Barrow Sub-basin is not detectably influenced by the 

observed overpressure (fluid pressures of about 40-80 MPa at depths of 3000-

4600 m). Based on this study, overpressure retardation of organic-matter 
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maturation does not appear to be a global phenomenon, and the overpressure is 

not a significant factor in the thermal maturity and hydrocarbon generation in the 

study region. The temperature-time-related kinetic model can still be used to 

predict the thermal effects and timing of hydrocarbon generation in the deep 

overpressured Jurassic section in this basin. 

 

12. Rapid loading occurred during the Jurassic and earliest Cretaceous in the central 

areas of the sub-basins with sedimentation rates of about 80-250 m/Ma. The 

sedimentation rates were 10-80 m/Ma in the Cretaceous and generally 10-30 

m/Ma in Cainozoic. 

 

13. 2D modelled porosity along selected cross-sections indicate that higher porosity 

was retained in the Jurassic fine-grained rocks, and movement of the pore fluids 

was inhibited during the rapid deposition in the Jurassic and Early Cretaceous. 

However, the porosities at the present-day in the observed deep overpressured 

Jurassic section probably range from 2 % to 7 %. The discrepancy is probably 

due to an inappropriate porosity algorithm used in the modelling software. 

   

14. 2D overpressure modelling indicates that rapid sedimentation rates resulted in 

compaction disequilibrium in the fine-grained rocks, which is likely to be a 

significant mechanism of deep overpressure generation in the sub-basins during 

the Jurassic and Early Cretaceous. However, since the Cainozoic, the 

compaction disequilibrium should be much less important to maintain the deep 

highly overpressured system, because the Jurassic section had been well 

compacted and the depositional rates were very slow in most areas of the sub-

basins. 

 

15. The sealed conditions for the deep overpressured Jurassic section since the 

Cainozoic were modelled using the BasinMod 2D modelling. These conditions 

were formed by (1) laterally closed faults, (b) near impermeable rocks with 

permeabilities of about 10-23-10-25 m2 at the bottom of Jurassic, and (c) a top 

pressure seal with permeabilities of about 10-20-10-22 m2 in the Barrow Sub-basin 

and permeabilities in the top of the Jurassic section ranging from about 10-19 m2 

to 10-20 m2 in the Exmouth and Dampier Sub-basins. The model-derived 
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permeabilities of 10-23-10-25 m2 for the bottom of the Jurassic section may not 

necessarily be suitable to represent the bottom sealed conditions of the observed 

present day deep overpressured system. 

 

16. In combination with the characteristics of the top pressure seal in the Barrow 

Sub-basin, (a) 2D modelling for the deep overpressure, (b) the modelling for 

pressure behavior in low-permeability (10-18-10-22 m2) environments, and (c) the 

studies of pressure sealing by Deming (1994), one may conclude that the top 

pressure seal with a permeability of more than 10-23 m2 (10-23 md) is not 

sufficient to maintain deep overpressure without pressure recharge over the past 

tens of millions of years. The permeabilities required for the top pressure seal to 

retain deep overpressure over geological time span are 10-23 m2, or less, which 

are almost unlikely to occur in most natural geological circumstances. 

 

17. The study suggests that (1) the present day overpressured zone is not associated 

with an anomalous high porosity due to undercompaction, (2) slower 

sedimentation rates and subsidence occurred since the Early Cainozoic, (3) the 

Jurassic source rocks were compacted and most of the porosity had been lost 

through compaction since the middle Tertiary, and (4) the present-day observed 

deep overpressure is unlikely to have been the preserved, due to a mechanism of 

compaction disequilibrium, in the geological past. Therefore, it seems that 

compaction disequilibrium is not a significant mechanism for the deep 

overpressured system since the Cainozoic. 

  

18. An acceptable hypothesis for the major cause to maintain the observed deep 

overpressure through the last tens of millions of years is organic-matter 

maturation and continued hydrocarbon generation, especially gas generation and 

thermal expansion, as proposed by Horstman (1988), Hunt (1990) and 

Zaunbrecher (1994). Sealed conditions or low-permeability environments for 

retaining the deep overpressure are still necessary. 

 

19. On the basis of the 2D modelled results, it appears that quartz cementation may 

be a significant cause in creating a low-permeability rock layer with 

permeabilities of 10-19-10-22 m2 for a top pressure seal, which may be more 
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effective in preventing oil and gas being expelled from the well-compacted, 

overpressured Jurassic source section in a short period of geological time. This 

may imply (1) an episodic sequence of (a) hydrocarbon generation (especially 

gas generation) - (b) overpressure - (c) fracture - (d) hydrocarbon migration - (e) 

resealing, and (2) a pressure-driven process due to high overpressure caused by 

continuous hydrocarbon generation, especially gas generation, in the sealed 

overpressured source rocks for oil and gas migration, which occurred in the 

geological past in this basin. 

 

20. Based on 1D maturity modelling and the study of 2D overpressure evolution, oil 

and gas generation, migration and accumulation in the sub-basins since the Late 

Cretaceous are the most important events for an understanding and evaluation of 

oil and gas potential, and for petroleum exploration in this basin with deep 

overpressured compartments. 

 

Limitations 

 

The main limitations for this study are as follows: 

 

1. Although a great deal of data have been obtained for this study, the observed 

data are still insufficient for detailed studies of basin history. 

 

2. The geological models have been built with many simplifications, especially 

the 2D geological models, due to numerical procedures and data limitation. 

 

3. The uncertainties of thermal parameters and fluid parameters, and claystone 

permeability have not been fully resolved. 

 

4. It seems that the mathematical models in the 2D modelling are still far from 

satisfactory for the practical dynamic, and interaction, processes of geology and 

geochemistry. 
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ig. 2-4 Tectonic subdivisions, structures and faults of the North Carnarvon Basin (after Stagg and Colwell, 1994).
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Fig. 3-1 Locations of the wells for the data sources of total organic carbon and organic
matter type analyses in the Northern Carnarvon Basin (after Woodside Offshore
Petroleum, 1998; Scott, 1992).
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Fig. 3-11 Geochemical profiles of the Jurabi-1 well of the Exmouth Sub-basin. TOC: Total
organic carbon; S : Free hydrocarbons (mg HC/g rock); S : Pyrolysable hydrocarbons (mg HC/g rock); Hydrogen index:
S *100/TOC; T : Temperature at the top of S peak; Production index S /S +S . Type of hydrocarbon generated for
immature stage.
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Fig. 3-12 Geochemical profiles of the Middle-Upper Jurassic and the lower part of the Barrow Group for the Barrow
Deep-1 and Barrow-1 wells in the Barrow Sub-basin.

Type of hydrocarbon generated for immature stage. See Fig. 3-1 for well locations.

TOC: Total organic carbon; S : Free hydrocarbons (mg HC/g
rock); S : Pyrolysable hydrocarbons (mg HC/g rock); Hydrogen index: S *100/TOC; T : Temperature at the top of S
peak; Production index S /S +S .
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Fig. 3-13 Geochemical profiles of the Middle-Upper Jurassic and Lower Cretaceous in the Depuch-1 well of the
Beagle Sub-basin. TOC: Total organic carbon; S : Free hydrocarbons (mg HC/g rock); S : Pyrolysable hydrocarbons
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Fig. 3-2 Histogram of total organic matter for the Gearle Siltstone, Windalia
Radiolarite and Muderong Shale in the Northern Carnarvon Basin.

Fig. 3-3 Histogram of total organic matter for the Barrow Group in the Northern
Carnarvon Basin.
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Fig. 3-4 Histogram of total organic matter for the Dupuy Formation, Dingo
Claystone and Athol Formation in the Northern Carnarvon Basin.

Fig. 3-5 Histogram of total organic matter for the Murat Siltstone in the Northern
Carnarvon Basin.
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Fig. 3-7 Plots of atomic H/C versus atomic O/C and
organic matter for the samples from three wells within the

Exmouth Sub-basin. See Fig. 3-1 for well locations.
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Fig. 3-8 Plots of h kerogen type for the samples from
six wells in the Barrow and Dampier Sub-basins. See Fig. 3-1 for well locations.
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Fig. 3-9 Diagrams of HI (hydrogen index) versus T and S versus TOC show the
characteristics of organic matter in the samples from the Depuch-1 well of the Beagle
Sub-basin. The numbers show that the samples with relatively high HI values are
generally consistent with relatively high TOC or coals. a: HI=167; b: HI=171; c: HI=51;
d: HI=190. See Fig. 3-1 for the well location.

max 2

Fig. 3-10 Diagrams of HI versus T and S versus TOC show
the characteristics of organic matter within the Mungaroo Formation in three wells on
the Rankin Platform and Exmouth Plateau. Samples with number 1, 2 and 3 are coal-
bearing samples with TOC more than 10 %.1: TOC=13.7 %, HI=194.4; 2: TOC=13.3
%, HI=168.5; 3: TOC=20.7 %, HI=274.3. See Fig. 3-1 for well locations.
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Fig. 4-1 Location of the Bambra-2 well in the Barrow Sub-basin of the
Northern Carnarvon Basin.



Fig. 4-1 Well profiles for total organic matter (TOC), hydrogen index (HI=S *100/TOC), Rock-Eval Tmax, S (free hydrocarbons) and

production index (PI=S /S +S ) values versus depth for 280 cuttings samples and 27 side-wall cores and 4 conventional core samples in th

Bambra-2 well. CC: Conventional core samples; SWC (1): SWC samples with normal and acceptable Tmax values; SWC (2): SWC
samples with low and three abnormal T values. See Table 1 for the Rock-Eval data in the core samples.
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Fig. 4-2 Six examples of saturated hydrocarbon distributions from gas chromatography
for two uncontaminated conventional core samples (A and B), three contaminated side-
wall cores (C, E, and F) and one contaminated cuttings (D) in the Bambra-2 well.EOM:
Extractable organic matter (mg/g TOC). A, B, C and F from AMDEL (1983); D and E
from GSCC (2000).
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Fig. 5-1 Profiles of fluid pressure versus depth in Barrow Deep-1; sonic
transit times and formation resistivities within claystone and silty claystone
versus depth in Barrow Deep-1/Barrow-1. DST: Drill stem test.
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Fig. 5-2 Profiles of fluid pressure versus depth; sonic, resistivity and density log data
within claystone and silty claystone versus depth in Bambra-1. RFT: Repeat formation
test; LOT: Leak-off test.
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