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SUMMARY

Nonlinearities exist in all process control systems. The use of linear control
techniques is valid only in a narrow range of operation. Therefore, in this thesis,
multivariable nonlinear control techniques are considered. The target process is the
single effect evaporative process of the liquor burning unit in Alcoa’s alumina refinery
in Kwinana and the proposed triple effects unit in the Wagerup refinery. Two types
of nonlinear control strategies using differential geometry were studied, namely, the
input output linearization (Kravaris and Soroush, 1990) and the input state
linearization (Hunt et al, 1983a). The research has successfully demonstrated the
superiority and simplicity of the nonlinear controller through simulations and plant
implementations. An integrated software package using MAPLE V.3 as the computing
environment was developed to automate the solution algorithms and to graphically
simulate the closed loop dynamics of different processes using the two nonlinear

control strategies.

The issue of robustness of the nonlinear controller was addressed by developing a
procedure called uncertainty vector adjustment. The effectiveness of the new strategy
was successfully demonstrated on the simulated liquor burning process. Furthermore,
the stability of the adjustment technique was proved and its theoretical bounds were

established using Lyapunov function analysis.

A comparative study of geometric nonlinear filter and extended Kalman filter was
conducted to reduce the requirement of full state feedback necessary for nonlinear
control using either input output linearization or input state linearization. The
simulation of the single effect evaporation unit of the liquor burning process showed
that the geometric nonlinear filter is superior to the extended Kalman filter in terms of

nonlinear tracking performances.

The plant trials of the input output linearization in Alcoa’s Kwinana alumina refinery

demonstrated the practicability and feasibility of implementing nonlinear control in an
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industrial setting and also fostered a closer gap between academia and industry. The
trials established guidelines for implementing a global linearizing controller on site,
including conversion of the relevant constraints and the output of an industrial
proportional and integral controlier to the equivalent proportional and integral action
required by the nonlinear controller. The results showed that the performance of the
nonlinear controller was better than the current linear controller on site in terms of
responsiveness and resistance to disturbances. Hence, the nonlinear control strategy

enables the process to settle faster.

All in all, efforts have been made in this thesis to minimise the use of abstract
mathematical language and, in some cases, simplify the language so that nonlinear
control theory can be understood by a wider range of audience, especially industrial
practitioners. It is hoped that the insights provided in the dissertation will encourage
more industrial implementations of nonlinear controllers and forge more interaction to

close the widening gap between academic and industrial practice in process control.

Keywords: nonlinear control, differential  geometry, symbolic  algebra,
evaporator process, uncertainly vector adjusiment, geometric

nonlinear filter
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CHAPTER ORE

INTRODUCTION

1.1  WHY NONLINEAR CONTROL THEORY

A chemical process modelled linearly is merely a mathematical abstraction that could
never be encountered in a real world. In practice, nonlinearities exist in essentially
every process control system. They arise from either the nonlinear character of the
physical laws governing plant dynamics and the steady state behaviour, or man-made

control elements with nonlinear characteristics.

Models formulated from nonlinear differential equations are customarily linearized
around a steady state condition and are then applied using linear control theories to
synthesis linear controllers (Kailath, 1980 and Chen, 1970). Using linear theories as
design and analytical tools, the advantage is in the existence of analytical solutions
leading to generally more rigorous stability and performance proofs. In addition, the
computational requirements for the simulation and implementation of the linear
system are lower than for the nonlinear case. However, the use of linear control
techniques is limited where global behaviour is important. As described in the
literature, linear theories neglect the nonlinear aspects of the system and are valid only
in the close vicinity of steady state operations. In spite of this knowledge, most
chemical control systems in industries are based on conventional linear control
strategies because nonlinear control engineering is generally regarded as a difficult,
and more often than not, a confusing endeavour. This remark is somehow justifiable
in view of the abstract nature and the algebra involved in the theory making the results
difficult to understand and to apply by the majority of control engineers. However, in
the past decade, significant development has occurred in the nonlinear control field,
especially the differential geometric approach. Combined with the advances in control

system hardware and software, the formulation of the inherently difficult nonlinear
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problems is facilitated and the practical applications of nonlinear control strategies are
now real. Many successful simulations and implementations of nonlinear control
schemes can be found in the literature, for example, Lee (1993), Hunt et al (1983a),
Rouchon (1992), and Bequette (1991). Therefore, in recent time, the focus of

research is shifting to this new and exciting area of process control.

Alcoa of Australia, as a leader in alumina refinery operations, recognises the potential
of nonlinear control and its benefits over linear control. The refinery uses Bayer
process to produce alumina from bauxite and current control schemes are mainly
linear based. There are situations when the conventional control fails making the
performance either unsatisfactory or not up to some stringent requirements. The
probable consequences are off-specification products, inefficient use of resources and
hence, higher production costs. Ultimately, the company may become less
competitive in the world market. A process unit in one of the company’s refineries
was used as a test bed in this thesis for simulating and implementing the nonlinear

control techniques examined.

1.2 BRrIEF HisTORY OF NONLINEAR CONTROL THEORY

Many approaches have been developed for nonlinear system theory since 1940s.
Firstly, there are relatively simple techniques, such as phase-plane analysis (Graham
and McRuer, 1961), which are graphical in nature and thus of limited generality.
Then there are techniques based on describing function (Graham and McRuer, 1961,
and Billing et al, 1984), Volterra/Wiener Series (Rugh, 1981), operator theory (de
Figneiredo and Chen, 1993) and differential geometry (Isidori, 1995).

Describing function and operator theory are philosophically appealing, but are very
difficult to understand and hence to implement. Volterra/Wienner approach uses
some aspects of differential equation descriptions, transform representations, as well
as some operator theories. The concepts involved are not difficult, but require a
certain mathematical maturity in abstract realisation theory. The application of

differential geometry, or Lie algebra, in nonlinear control system began in the 1970s.
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The approach is considered as the equivalent mathematical tool to the matrix algebra
in linear theory and it is able to provide exact linearization, valid over the entire
operating region. The study in this thesis will focus entirely on this approach. The
discussions to be presented will frequently use the term “nonlinear control theory” or

“exact linearization” to refer to the class of “nonlinear control theory based on

differential geometry”.

1.3 MoOTIVATIONS FOR THIS STUDY

The author aims to provide the practical aspects of the technique and demonstrate the
superiority of the nonlinear control strategy to the linear based controller by applying
it to a simulation of an evaporative stage of the liquor burning unit associated with
Bayer process in the alumina refinery operation. Furthermore, the use of abstract
mathematical language, as in most classic literatures, will be avoided or explained in
great details. The thesis will also attempt to resolve the robustness problem for the
multiple-input multiple-output (MIMO) nonlinear system associated with this rather
“recent” control technique. The ultimate goal of this study is to bridge the gap
between industry and academia by demonstrating the superiority and, most
importantly, the simplicity of the differential geometry based nonlinear control theory.
It is hoped that the insights provided during this study will encourage control
engineers to, at least, consider nonlinear control strategies as an alternative to

traditional linear techniques in their future projects.

The nonlinear systems to be considered here are autonomous in the standard input-
linear form, the control affine system. Two static nonlinear control theories are
studied in this context: Su-Hunt-Meyer (SHM) transformation (Hunt et al, 1983a) and
global linearizing control (GLC) by Kravaris and Soroush (1990). In addition, a short
investigation on GMC developed by Lee and Sullivan (1988) is performed. The three
nonlinear control theories selected are based on their completeness as theories by
themselves, and the amount of algebra and computational powers involved.
Furthermore, the practical aspects and industrial values of the theories, except GMC

(Lee, 1993), are rather unexplored in the chemical industry. These issues are
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addressed using a fully developed simulation of a single effect evaporator and an
extension to triple effects to demonstrate the intricacies of implementing these

controllers in an industrial environment.

1.4 OBJECTIVES AND CONTRIBUTIONS

The objectives and contributions of the thesis are:

e To demonstrate the superiority and simplicity of the nonlinear control theory to
control an industrial process (a single effect evaporator).

o To perform analysis and synthesis of a robust nonlinear controller for a MIMO
system, based on the nonlinear control theories studied here, in the presence of
parametric uncertainties in the modelling equations.

o To investigate the practical values and feasibility of implementing nonlinear control
theory in an industrial setting.

e To further extend the application of the nonlinear control theory to a simulation of
a more challenging and complicated industrial process (a triple effects evaporator).

e To bridge the gap between academia and industry in the understanding of process
control knowledge and technology.

e To explore the usefulness of symbolic algebraic computations as an educational
and research tool to illustrate the concept of control theory.

e To develop a software package so that systematic design methodologies for

nonlinear control systems can be automated.

1.5 THEs!S OVERVIEW

In Chapter 2, the introduction and literature survey of recently developed techniques
of exact or feedback linearization based on differential geometry are presented.
Particular attention is given to the input output linearization (1/O) and input state
linearization (I/S). The mathematical preliminaries and theories of the three nonlinear
control techniques, including GLC by Kravaris and Soroush (1990), SHM (Hunt et al,
1983a) and GMC by Lee and Sullivan (1988) are detailed. A simplified solution

algorithm for SHM transformation is proposed in this chapter, and the symbolic
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loop dynamics of the nonlinear system.

A more challenging control problem for the nonlinear control techniques is presented
in Chapter 7. The target process is a triple effects evaporator which is designed on
the basis of a five effects evaporation operation associated with a new liquor burning
unit in Alcoa’s Wagerup refinery. The process is mathematically modelled by
performing mass and energy balances and is simulated as the single effect case in
MAPLE. The closed loop responses are studied using the linear and nonlinear control
strategies. The robust nonlinear control algorithm synthesis proposed in Chapter 6 is

also tested.

Since the entire nonlinear control algorithm relies on full-state feedback, in Chapter 3
we briefly investigate situations where states are not available. In this case, either
state estimation or output feedback is necessary. The example of the single effect
evaporator of the liquor burning unit is used to illustrate the theories of state

observation by Extended Kalman Filter (EKF) and Geometric Nonlinear Filter (GNF).

To bridge the gap between the academia and industry, the plant implementation of the
/O on the single effect evaporator of the liquor burning process in Kwinana refinery
is necessary and is also significant for demonstrating the practicability of the nonlinear
control strategy. The discussions and results are presented in Chapter 9. Finally,

conclusions and recommendations are given in Chapter 10.
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CHAPTER TWO

FEEDBACK LINEARIZATION AND
SYMBOLIC COMPUTATIONS

2.1 INTRODUCTION TO FEEDBACK LINEARIZATION THEORY

In the past decade, there has been significant progress in nonlinear system theory
using differential geometry techniques. This was motivated by the geometric
approach of linear theory introduced by Woham (1979). Using differential geometry
as the mathematical tool, one can apply “word by word” conversion of most of the
result in linear systems to nonlinear systems, The major success is the development of
the state feedback linearization theory in the design of nonlinear control system. The
central idea of state feedback linearization is to transform a nonlinear system into
either a fully, or a partially linear system via state feedback. One can then use the
matured linear controller design technique to complete the control circuit. Being
different from the traditional linearization using the first order Taylor’s series, the
linearization of a nonlinear system using this method is exact and valid throughout the

entire operating region of interest.

2.1.1 Full State Feedback Linearization

Full state feedback linearization means that the linearization is performed in the input-
state sense. Therefore, it is also called the input state lineanzation (I/S). The
operation involves three fundamental steps: nonlinear change of coordinate in the
state space, nonlinear change of coordinate in the input space and nonlinear state

feedback.

Figure 2.1 shows the relationship between the nonlinear and transformed linear
system. The control of the original nonlinear system is conducted through the

transformed linear system because of the existence of exact linear relationship
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between the transformed linear state and the transformed linear input. The

transformations are algebraic functions mapping the nonlinear to linear space.

Set Transformed MNonlinear Nonlinear o
; : Linear Input Coordinat Input State Cutput | Output
Point Linear p . oor ma:e P Process , tp!
+ Controller Transformation Map
Nonlinear Feedback Loop
Transformed
Linear State Coordinate
Transformation
Transformed Linear Loop

Figure 2.1: The Fundamental Structure of Full State Linearization

2.1.2 Partial State Feedback Linearization

Partial state feedback linearization linearizes the nonlinear system in the input-output
sense. Exact linear relationship exists between the transformed linear inputs and the
original outputs of the system. The steps involved in this operation are nonlinear
changes of coordinates in the input space and nonlinear state feedback. Figure 2.2

shows that the control of the nonlinear system is performed through the transformed

linear input-output loop.

Set Transformed Nenlinear Nonlinear
Point Linear |Linear Input Coordinate Input B State Gutput | Output
» » CESS » >
+ Controller Transformation b Map

3

Nonlinear Feedback Loop

Transformed Linear Loop

Figure 2.2: The Fundamental Structure of Partial State Feedback Linearization
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2.2 LITERATURE RESEARCH

Two books are available on the state feedback linearization by differential geometry,
including Isidori (1995) and Slotine and Li (1991). The book by Slotine and Li
(1991) presents the fundamental results of nonlinear control theory while keeping the
mathematical complexity to a minimum degree. It also demonstrates their uses and
implications in the design of practical nonlinear systems. The other book by lsidori
(1995) provides a detailed and recent perspective of the field. However, the book

employs modern algebraic language.

Apart from these books, three review papers must also be mentioned. Kravaris and
Kantor (1990) provides an excellent review on geometric methods for nonlinear
process control. The discussion is limited to single-input single-output (SISO)
systems. However, the references are current and extensive. The other two review
papers are by Bequette (1991) and Kantor (1987). Bequette (1991) surveyed
nonlinear control system techniques and its applications in industries from ad-hoc or
process-specific strategies to predictive control approaches based on nonlinear
programming. Kantor (1987), on the other hand, focuses on the theory and the

applications of differential geometry in the nonlinear control system.

In this dissertation, static state feedback linearization is to be investigated. For
dynamic state feedback linearization and systems which are not feedback linearizable,
discussions and theories can be found in Kang (1991). The investigations in this
content are divided into two main areas: static input-state linearization and static

input-output linearization.

2.2.1 Input State Linearization (I/S)

I/S was firstly introduced by Brockett (1978) on the SISO nonlinear system. Su
(1982) extended the theory to a wider class of linear equivalent nonlinear systems and
gave a comparison of the two theories. Hunt et al (1983a) extended the

transformation proposed by Su (1982) to MIMO systems and called it the Su-Hunt-
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Meyer (SHM) transformation which becomes one of the representatives of I/S. A
similar but more general theory of I/S was developed by Isidori (1995). This theory
further advanced the idea of SHM transformation to cover a broader class of
nonlinear systems. A discussion of the relationship between the two theories can be
found in a later section. Another technique called pseudolinearization, developed by
Reboulet and Champetier (1984), also extended the SHM transformation with less
restrictive conditions of linearizability. Once again a broader class of nonlinear
systems can then be linearized. However, the technique presented is only valid for
SISO cases. An overview of SHM transformation can be found in Alsop (1987) as
well. Alsop extended the singular value decomposition in the linear control theory to
decompose a MIMO system into various SISO subsystems so that nonlinear control
theories developed for the SISO system can be applied to MIMO systems. His
investigations included SHM transformation, Krener’s approximate transformation
technique (Krener, 1984), and direct linearization approach (Hermann, 1984).
Henson (1992} and Slotine and Li (1991) also provided brief discussions on I/S.

The actual application in chemical process industry of SHM transformation or other
I/S 1s quite limited. Therefore, this motivates the current work to investigate the

practical applicability of this theory in this area.

2.2.2 Input Output Linearization (l/O)

The literature on static /O 1s more extensive than those on I/S. The first results
appeared in 1980s and early works can be found in Isidori and Krener (1982),
Nijmeiger (1982), Isidori and Ruberti (1984), Boothby (1984), Rugh (1984) and
Gilbert and Ha (1984). The theories developed during that period assumed very
restrictive assumptions on process dynamics and were very mathematically oriented.
Therefore, their applications were very limited. Kravaris and Chung (1987) advanced
the work of Gilbert and Ha (1984) and successfully developed a relatively simple, less
restrictive theory on I/O for SISO nonlinear systems. The control structure is called
global linearizing control (GLC). Daoutidis and Kravaris (1989) synthesised a

feedforward/state feedback controllers for a broader class of SISO systems with
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measurable disturbances based on the I/O presented in Kravaris and Chung (1987). In
1990, Kravaris and Soroush followed up on the ideas and extended the GLC with
state feedback and feedforward/state feedback to MIMO systems.

The synthesis of the discrete-time nonlinear feedforward/state feedback and state
feedback controllers were addressed in Soroush and Kravaris (1994) and (1992)
respectively. Henson and Seborg (1990) extended the work of Daoutidis and
Kravaris (1989) to a more general class of process models, in which the manipulated
input and disturbances may appear nonlinearly, instead of the typical input-linear
form. The aforementioned literature is concerned with minimum phase processes
having stable zero dynamics. For non-minimum phase processes, the nonlinear
controller synthesis based on I/O can be found in Kravaris et al (1994). In this article,
Kravaris replaced the state feedback requirement in the GLC with output feedback,
the idea of which was first introduced in Wright and Kravaris (1993). Dynamic
output feedback controller for minimum phase processes was successfully synthesised
in Daoutidis and Kravaris (1994). The notion and details of nonlinear zero dynamics
of a multivariable process can be found in Calvet (1989} and Isidori (1995). The
experimental studies of GLC in chemical processes include, for example, Nakamoto
and Watanabe {1991), Soroush and Kravaris {1993, 1994), and Palanki et al (1994).
Finally, a comprehensive overview of the status and development of GLC is provided
in Kravaris and Arkun (1989) which listed several chemical processes using this

technique.

Another famous control structure, the generic model control (GMC), was developed
by Lee and Sullivan (1988). It is based on the theory of state feedback linearization in
the input-output map. The technique is very simple and received a lot of attention in
the control industry. A complete study of GMC can be found in Zhou (1990). 1t
contains materials on robustness and extensions to systems with higher relative orders
and with constraints. Lee (1993) presented some industrial applications of GMC such

as distillation and evaporation processes.
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The focus of this thesis in the area of I/O is on the practical aspects of this control
structure. The I/O studied here is based on Kravaris and Soroush {1990), that 1s, the
nonlinear multivariable process is minimum phase and the state feedback linearization
is static which requires full state feedback. Investigations on GMC will also be

carried out and the relationship between the two structures will be discussed n

section 2.4.2.2.

MATHEMATICAL PRELIMINARIES FOR DIFFERENTIAL GEOMETRY

2.3

The objective of this section is to provide the necessary background for differential
geometry which will be applied in subsequent chapters. Further details can be found in

Kravaris and Kantor (1990), Isidori (1995) or Vidyasagar (1993).

2.3.1 Vector Fields and Scalar Fields
Let R” denote the n-dimensional Euclidian space with elements being 'points' or

'vectors' depending on the context.

A scalar field on R is a function defined on an open subset U R” with values in

R. In other words, a scalar field A(x) assigns to a given element x = (x,%;,"+,x,) of
U a real number h(x,x,,---,%,). A C' scalar field is a continuous function of

(x,,%,,.%,) for which all partial derivatives exist while a C scalar field is a

continuous function for which all partial derivatives of arbitrary order exist.

A vector field on R" is a vector function defined on an open subset U < R" with
values in R". Hence, a vector field g(x) assigns to a given element x = (x,,%;,-, x,)

of I/ the vector

g](xlsxz :“'}xn)

XX, .., x ).
g(x,,%,,...,X,) = g%, 2oy ") inR".

gn(xlixz 1"'=xn)
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A C' vector field on R” is a continuous function of (x;,x,,-++,x,) for which all

partial derivatives exist, while a C” vector field on R” is a continuous function for

which all partial derivatives of arbitrary order exist.

2.3.2 Lie Derivative
Given a (™ vector field fon R", and a C” scalar field # on R", the Lie derivative of 2

with respect to f is defined as

oh &h ch
th:<dh,f> =:9—;f1 “i"éT'fz + e A
1 2

The Lie derivative is a C scalar field on R". Thus, higher order Lie derivatives can be

defined inductively as follows:

It h= L (1" )= {dL¥™ h,f) =23 0t e, (2.2)

Algebraic Properties of the Lie derivative

L L(eh +eyhy) = €Ll +C Lebyiiiiis (2.3)

where ¢, and ¢, are scalar constants.

h = a](m)L,i h+a, (X)er Bl (2.4)

a{x)f) + o (x)f;

where a,(x) and a,(x) are scalar functions of x.

2.3.3 Lie Bracket
Given C” vector fields f, g on R”, the Lie bracket [f, g] is a C vector field on R”
defined by

where &f /&x and Jg/dx are the Jacobians.
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Successive iterated Lie brackets can be defined with the standard notation as follows:

ad’f,g=¢g
ad'f,g=1f,
s . [ g] ............................................................................. (2.6)
ad*f,g = [f (ad*'s, g)]
Algebraic Properties of the Lie bracket
1. Antisymmetry
[f,g] = —[g,f] ....................................................................................... (2.7)
2. For the scalar constants ¢, and ¢,,
[e.f, +e,f, 58] = cfi.gl+e [£2 58] e (2.8)
3. Jacobi's identity
[[fl,fz],f3]+[[f2,f3],fl]+[[f3,f]],f2} | OO (2.9)
4. Leibnitz’s formula
L Lh = L Lh- L[r‘g] h
Lth = LLh-2L 0 h+ L b
In general,
LI*h = L'L h—(k]L""L h+[kjL""2L h-
g f - r~e 1 £ adlg 2 ¥ adi g
.................... (2.10)

[’f) L7 Ly ket (F) Ly h

2

2.4 DEFINING THE NONLINEAR CONTROL SYSTEM

Throughout this thesis, we consider the following multivariable autonomous (time-

invariant) input-linear system. It is given in state space form, with m inputs and w
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outputs and without direct feed-through from input to output.

i

() = f(x(0))+ 2 (e (x0)
7@ = h{x(®) P= 1w

where f | g, &, ..., 8, are C* vector fields on R” | and hl(x), h, (x), ...,hw(x) are
scalar fields on R". In other words, the mappings f, g, g, ..., &, , and the functions

h(x), 1,(x), ..., h,(x) are smooth in their arguments, that is, all entries are real-

valued functions of x with continuous partial derivatives of any order. In addition, y,
x and u represent the deviation vectors with y € R", x € R”, and u € R",

respectively.

As a state space for a model, a subspace U of R" is sometimes considered rather than
R” itself This may be due to physical constraints in the process, a mathematical
constraint established by the equations themselves when some solutions or trajectories
are not allowed, or constraints imposed by the input or initial state in order to avoid
singularities at some points in the state space. However, in many cases, it is allowed

to simply set I/=R" (Vidyasagar, 1993).

2.4.1 Su-Hunt-Meyer (SHM) Transformation

The SHM transformation (Hunt et al, 1983a) maps the nonlinear system described in
(2.11) to the linear system in Brunovsky’s canonical form (Brunovsky, 1970; and
Luenberger, 1967) given in (2.12) below. Kravaris and Kantor (1990) showed that
the exact feedback linearization of Isidori (1995) is equivalent to the SHM approach
when n = r, where r is the relative order for the SISO system. They indicated that this
equivalence is preserved for MIMO systems. However, the dimension » of the state
space must exactly equal the sum of the relative orders r1, r2, ..., 7 (Isidori, 1995).
The relative order 7; is defined in (2.30) in the next section. The Brunovsky’s

canonical form is:
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B(1) = AE()+BU(E) oo (2.12)

where £ € R*, p ¢ R” and

[ 6100..0 1 ! 0000..0
1 | 1 .
0019..0 , | )
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0010..0
1 1 assasanes 1 K
0 1 0 | [T K m
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X \ , 0000..1 00001
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The Kronecker indices of the system are K, K,, ..., K indicating the orders of the

various subsystems of integrators in series which make up the Brunovsky's canonical

form. The indices are invariant to feedback transformation and have the following

characteristics:
2. K 2K, 2. 2K

The variable transformation generates new states in terms of the original nonlinear
states and new inputs as a function of the original inputs and the original nonlinear

states. The following sections give details on how to obtain the transformation.

2.4.1.1 Algorithm for Computing Kronecker Indices
The criterion to vield the correct Kronecker indices for the nonlinear system (2.11) is
that the system is linearizable. The algorithm for determining the Kronecker indices is

presented below with discussions in Alsop (1987), Calvet (1989) and Kalman (1972).
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1. Generate the following matrix with (7 - ar) + 1 rows

g g: - Em
f f, f,g,
[ ,:g,] [ 32] . [ g ] (n-m+1) rows ........ (2.13)
(ad"'"’f,gl) (ad"""f,gz) (ad”"”f,gm)
2. Set
o, = number of independent vector fields in the first row
a = number of independent vector fields in the first two rows
Sy = number of independent vector fields in the first (n-m) rows
Clyrme = number of independent vector fields in the entire (#-m-+1) rows
3. Define
o = o, (always equal to the number of inputs, m)
rn = o) - Oy
Fom = Clpon = U

4. Avalue for K, is determined by the number of 7, that satisfy r, > (i=1, .., m and

j=0, .., n-m).

5. To minimise the generation of unnecessary rows in (2.13), it was recommended by

Alsop (1987) to start with the first 7 / (m+1) rows of the matrix in (2.13) and
determine the value of K. (i = 1, ..., m) by steps 2 to 4. If ZL K, <n, then add

one row in (2.13) and repeat steps 2 to 4. The addition of rows is repeated until

ZLKi:n.
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3.4.1.2 Criteria for Transformation

After the values of K, have been determined, three criteria (Hunt et al, 1983a) need to

be satisfied before proceeding to the variable transformation.

1. The rank of the following matrix C must be # in some neighbourhood of the origin

for the nonlinear process to be controllable and linearizable.

........................... 2.14
...,gm,[f,gm],---,adKf‘f,gm} @19

2. The set of vector fields,
C.i = {gl:[f’gi]’“"adKj_Zfagl!gz =[f7‘g2]a"'sadKj_2f= g0 (215)

n.’gm’[f’gm],...’ad?{j"zf’gm}

must be involutive forj =1, 2, ..., m.

For a set of vector fields Z = {z] 1Zy,eennZ, } , involutivity means that

[2.(x).2,(x)] = 2, & (®)2.(x),

where o/ (x) is a function of x and 1 <4, j <p, i #j. To illustrate the basic

notion of involutivity, we consider the following pair of three dimensional first-

order homogeneous linear partial differential equations with A(x) as the solution.

Jh Jh h
h= _ —
LP )22 (x) ox + pz(x) or., + p3(x) 7%, 0
Ah éh ch
L h= —t+ g, (x)— 0
4 % (x) x, T4 (x) ax, " qB(x) x,

where p and q are vector functions. If a nontrivial solution exists, then
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L, gh=L, (L)~ L (L, B)=L,(0) - L, (0)=0

[p.a]
In particular, if [p , ¢] can be written as a weighted sum
[p.a] = alx)p+5(x)a

then L[p‘q]h:O from (2.4). The constraints turn out to be necessary and

sufficient conditions for the existence of solutions to the system of partial

differential equations and is called involutivity.

3. span(CﬁCJ):span(Cj) F=Loi Mo (2.16)

2.4.1.3 Transformation of Variables

We define the following transformation variables,

(xl’xﬁ"“’xn) = (];, TZa’Tn)
(u, 1y, 1,) = (TM, PRI y;m)

Transformations are obtained as solutions of the following systems of partial

differential equations.

1. Calculate 7,7, ,,,.... T, ., With

(dTl,(adff,gi)):O j=01,...K, -2
<dT’l+‘ ’(adjf’g"» : 0 e (2.18)
<dT%_lH,(adff,g,.)):0 j=0,1,..K_ -2

i
where o ; ZZK,. andi=1,2,...,m
i=1
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2. With 7|

1 gt

T, . from(2.18), ['s(j=2,.,njzotlxotle.

o, + 1) are obtained by solving the following set of partial differential equations,

U (2.19)

Hence (2.18) and (2.19) provide 7',..., 7,,..

n

3. T.,..., T, canbe determined by

PSRN

T

n+l

<d7;],f+ig,. u>

i=1

i=1

<d7;7f+igi ui>: ].:r+m

i=1

T,

-t

The above equations show that only the solutions 7]

latag +le7">

of (2.18) need

to be found. Since the first-order linear partial differential equations can be solved by
reducing to systems of ordinary differential equations, the required ordinary
differential equations are given below and then the solutions are chosen. It 1§ clear
that these m functions will not be unique due to the arbitrary selection of the

associated functions in (2.18).

WithK, 2K, 2 ... 2K, we define

S, = rank{(aa’K“‘f,gi) | (adKFff,gi) EC}i=] » £=12,......(221)

Real parameters ¢,,1,,...,¢t, are introduced and with §,,
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g%z(adK"‘f,g;) s.t. x(0)=0
.jT’z:(adK*“f,gz) st x(@.0=x¢) (2.22)
then with S,, the second set of equations is
ai: =(aad*t,g,) stx{tnts, 0) = x{t1ets)
ai; = (0™ ) statotstea0) =3t i) 2.23)
aj,l = (o r,gs) stx{ti s, 0) =x{nts,)

The above process is continued until the last set of equations is generated with S, =m

and all the parameters ¢, .1, ,...,t, are introduced. The process will end with

ax
ot

n

—g,  stox{tutt, 0)=x{h,0 RO P (2.24)

Hence, from the sequential solutions of the above equations, the 7,7, ,,....T, .
transforms are set to be equal to the solution for the ¢, variable determined from the

set of differential equations of the form:

ox _ (ad*'1,g,) e T R, (2.25)

o,

i

From (2.18), I, =t () forj=1, 0+ 1,..,0,, + L.
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2.4.1.4 Proposed Special Case of the SHM Transformation

The equations in SHM transformation can become very involved and impossible to
handle in some situations. Therefore, in this thesis, a simplified solution algorithm is
developed and formulated. It is observed that a special case of the SHM
transformation arises when the number of state variables is equal to that of
manipulated inputs (Le. n = m). With n = m and the proposed solution algorithm
presented below, the calculations involved are simplified and can easily be handled by

existing computational software.

1. Kronecker indices

K=K;=..=K;=1

2. Criteria for Transformation
Wwith K, =K,=...=K,=1and if g,,8,, -, &, are linearly independent, criteria
1 and 3 described above are trivially satisfied. The criterion on involutivity still

poses a problem but is now easier to handle than before.

3. Transformation of Variables

As mentioned earlier, only the solutions 7,7, ,.,....7, . need to be found. By

setting the initial conditions of the ordinary differential equations (2.22) to (2.25)

to zero, these solutions are arbitrarily selected to be

Xz 1
T, = dx s.t. x{0)=0
: k g.(2) O = (2.26)
T, = [° L & stx(0)=0
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where g.(n) refers to the n" component of the vector g». To ensure the existence
of the integrals in (2.26), gn(n) is not equal to zero. The initial conditions are

selected using the fact that all solution trajectories pass through the origin.

The solutions T}, 7, .1, Io determined by the above initial condition x(0) =0

will not be as general as those provided by Hunt et al (1983). Nevertheless, these
solutions are solutions which can be easily obtained analytically and are simpler and
easier to handle in most circumstances. The effectiveness of the modified algorithm
depends on the actual process and its degree of nonlinearity. Since the special case is
a simplified version, or a subset, of the original SHM approach, the degree of
nonlinearity that can be handled will be reduced. It should be noted that (2.26) can

also be applied to situations where nzm.

2.4.1.5 Summary of the Algorithm for the SHM Transformation

The steps of the SHM transformation are listed below.

1. The Kronecker indices are computed using algorithm described in section 2.4.1.1.

2. Through (2.22) to (2.25) (or using the simplified algorithm in (2.26)), determine
7,7, T

1 fop+tormts Sa, g4l

3 The rest of the T transforms are calculated using (2.19) and (2.20).

2.4.1.6 Feedback Control by the SHM Transformation

Using the T transformation computed above, the feedback control scheme can be
designed for the nonlinear process. The following block diagram which is a simplified
version of the figure provided in Hunt et al (19832) explains how the transformation
can be implemented and how a linear controller is incorporated in the control scheme.
The linear control strategy used is usually the proportional and integral linear

controller because it is most commonly used in the plant.
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Figure 2.3: Feedback Control by SHM Transformation

2.4.2 Input Output Linearization (I/O)
Consider a minimum phase nonlinear system as shown in (2.11) with equal number of
inputs and outputs (» = w) , input output linearization (Kravaris and Soroush, 1990}

determines a static state feedback law of the form:

where v is the external input vector of the transformed linear closed loop system so
that the closed loop behaviour between the external input and the output is linear.
The required P(x) and Q(x) for a decoupled closed loop input output behaviour in
(2.27) are defined as

P(x) = _A(x_)] B (2.28)
Qx) = A(x)
where
Blrl Lg, erl_lhl(x) blrl Lg,,, L;H hl(x)

A(x) = :
ﬂmrm Lgl L;m-] hm(x) Tt ﬁmr er ( )
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3 B L (%)
Bx) = |
Zﬁmkl‘ﬁhm(x)

Bik are scalar design parameters, A(x) is the characteristic matrix, and r; is the

relative order of the # output y:.

The relative order r; (Isidori, 1995 and Karvaris and Soroush, 1990) associated with
the i output y; of the multivariable system in (2.11) is defined as the smallest non-

negative integer such that the following row matrix
L, L' h(x) L, LA (x) - Ly L7 ()] o (2.29)

has at least one nonzero element at the steady state X,. The total relative order of the

system is defined as Z;r,. .

The relative order »; can be interpreted as the smallest order of the derivative of y; at
any time £, which explicitly depends on at least one of the components of the input
vector #. In analogy with the linear system, the relative order of an output y; is equal
to the difference between the degree of the denominator polynomial and the degree of

the numerator polynomial of the corresponding transfer function.
Using the Leibnitz’s formula in (2.10), the row matrix in (2.29) can also be written as

[Lad,”"g,h*'(x) Lad,”—lgzhi(x) Lad,"'“g,,,h'(x)} .................................. (2.30)

In cases where no relative order can be defined, the system would have an infinite
relative order. This means the output does not depend on the input u, but only on the

steady state X,.
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Further discussions on the property of relative order can be found in Isidori (19953).
Lu and Bell (1994) also provided an insight into the intrinsic property and the

application of the relative order for SISO affine systems.

2.4.2.1 MIMO Globally Linearizing Control (GLC) Structure
In this thesis, the decoupled input output behaviour, i.e. the i output depends on the

i input only, is considered and given by the equation below.

FLoa dky
BuLh =y

Using the u-v relationship in (2.27) and the state variables measured for the
decoupled system, a simple proportional and integral controller for each (v, —,) pair
is used to control the corresponding linear output to its set point. The control law is

given by:

) K,
v, = ﬂ,-oy?’(f)+Kc,(yf””(‘)—y:-(’))+7;"J‘o(yfp(’)‘yf(’))d’ ........... (2.32)
(i=1,...m) '

The entire control structure with the external linear and internal state feedback
controller is called Multi-Input Multi-Output  Globally  Linearizing Control
(MIMOGLC) structure (Kravaris and Soroush, 1990) shown in Figure 2.4 with the
following closed loop transfer function:

y:‘ (S) _ KCI s+ K[i /Tji

Nd 7 L p: f p;
WO B 4 By St B +ch)s+K,J /7,

i

From (2.33), it follows that the poles or the stability of the system depends on the
design parameters. For a perfect model, the perfect control is achieved by assigning
the poles to be negative infinity. However, the presence of modelling errors may

limit the achievable closed loop performance, and hence may pose limitations on the
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choice of the design parameters. In other words, the design parameters can be

determined using the concept of pole placements in linear control theory.

|

. [ 1

Static State | x |
Feedback Process P OI:.I/Itput : y

Law ap :

1

1

1

y P Multivariable
+ Linear »
Controller

Figure 2.4: Multi-Input Multi-Output Globally Linearizing Control Structure

2.4.2.2 A Special Case of the Input Output Linearization: Generic Model

Control

A special case of the input output linearization arises when the relative order of the

system is equal to one. With 7 =1 (=1...,m), the decoupled input output

behaviour is described by:

. ~ dy
vi=Bien +1B11—£;1'
........................................................................... (2.34)
p » Ay,
Vm:ﬁmﬂym +ﬁml_d-7
and by setting
B = B =-=f,,=0
. - fR U T PO SO POrPO PP O R RSP T I (2.35)
By =P ==, =1
The input output behaviour in (2.32) becomes
dy;
==L T L) TUUT U O P PR PP PSSP PP PR TP S .
vi=— (i=1,....m) (2.36)
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and the control law with the P1 controller is

Now compare (2.36) and (2.37) with the control law of GMC (Lee and Sullivan,
1988) for a decoupled system, that is,
dy,

T kh.(y,.“" - y,.) + k,, ;(y;"’ - y,.)dt ................................................. (2.38)

where k,; and k, are the performance specification parameters for ;. It can be
proved that the GMC control law in (2.38) is the same as that by the /O shown in
(2.36) and (2.37) and the closed loop transfer function yielded by using GMC is

yi(s) k,s+ky,
y#{s) Stk stk

This is equivalent to (2.33) which is obtained by using I/O. This equivalence has been
established independently by To et al (1995a), and briefly described in Barolo (1994).

Zhou (1990) has developed an algorithm for appling GMC in a higher relative order
system. Tt should be noted that there is no clear relationship between GMC and /O

when the relative order is greater than one.

2.4.2.3 Design Procedures of MIMOGLC Structure
In summary, the following steps are involved in the design procedure of a MIMOGLC

system.

1. Determine the relative order 7, for each y,
2. Compute the static state feedback law
3. Select fi’ﬂ, so that the performance of the resulting linear (v, —y,) system is

satisfactory

4. Design an external linear multivariable controller for the (v, — y;) system
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More elaborate discussion on /O for a general process with no decoupled 1nput

output behaviour is provided in Kravaris and Soroush (1990).

25 SyMBOLIC COMPUTATIONS

2.5.1 What are Symbolic Computations?

Computer algebra systems or symbolic algebraic computation on computers replace
the traditional pencil and paper in doing mathematical computations and
manipulations with keyboard and display.  Being different from the basic
programming language such as FORTRAN, the interactive systems allow the users to
compute and program not only with numbers, but also with symbols, formulae,
equations and so on. That is, exact analytical solutions can be obtained for
calculations such as differentiation and matrix algebra with symbolic entries without
much tedious human effort. This makes the computer algebra systems a very
powerful and valuable tool for not only mathematicians, but also scientists including

engineers.

The idea of computer algebra was pioneered by Lady Ada Lovelace (Haper et al,
1991) about a century and a half ago. The first computer algebra systems were
written to solve specific problems in the field of applied mathematics. Since those
systems were non-interactive and were available for a limited number of operating
systems, the applications were restricted. The first generation of general purpose
computer algebra systems were developed in early sixties. These programs, for
example, REDUCE (Rayna, 1987) and MACSYMA (Pavelle and Wang, 1985), could
systematically deal with unassigned variables in general purpose mathematical
problems such as solving equations and differentiation. The drawbacks of these
packages were prohibitive cost, computational demand and limited problem types and
applications.  With new developments in mathematics, computer hardware and
software, a new generation of symbolic computation system has arisen. At the
moment, two leading packages, namely MAPLE (Char et al, 1991) and MATHEMATICA

(Wolfram, 1988), are widely used. According to Van Essen (1992), the two
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programs offer roughly the same possibilities and constraints. The differences lie only
in details like syntaxes and internal structure. Overall MAPLE is significantly faster for
symbolic computations, having slightly more possibilities and support of mathematical
procedures as well as having neater semantics and structure. On the other hand,
MATHEMATICA provides a wide range of graphics functions and is famous for its
documentation. Both packages are still being enhanced and expanding. Each new
release is more powerful than the previous version and less different from the other.
Other systems such as muMATH (Wooff and Hodgkinson, 1987), Derive (Glynn,
1989), and SCRATCHPAD (Haper et al, 1991) are also available. Comprehensive
descriptions and guides for the above packages can be found in Harper et al (1991).
The book also provides short reviews of other books and articles on symbolic
computational systems. Heck (1993) has also provided a good introduction on

several major computer algebra systems, especially MAPLE.

2.5.2 MAPLE: The Introduction
In this study, the computer algebra system, MAPLE Version V.3, is chosen to be used

as the computing medium because

e the exact analytical solutions are preferred to numerical ones because of the
complex nonlinear control theories involved;

e it saves time and effort in performing the algebra and mathematics involved in
implementing the nonlinear control algorithm; and,

e it allows the user to study the implications and properties of solutions and

different scenarios efficiently and quickly.

MAPLE V.3 was developed at the University of Waterloo in 1980 and is a powerful
mathematical tool that has already found significant use in investigating and analysing
problems in science and engineering. The symbolic, numeric, and graphical power
that MAPLE offers can greatly assist in the mathematical aspects of any study. The
internal structure of MAPLE is composed of small kernels which contain all standard

mathematical operations. It also has a library of other standard mathematical
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functions which are only loaded when they are explicitly needed. Apart from the
kernels and the library, MAPLE contains several powerful packages of procedures
written in MAPLE programming language. Among all the packages, the Linear
Algebra package, linalg, has about 100 procedures concerning linear algebra that
allow matrix manipulations, computations of rank, eigenvalues, determinant, inverse
matrices and so on. It is understood that linear algebra is the essential tool in both
linear and nonlinear control theory. Therefore, this package is used frequently in the

implementations developed for this thesis.

Another aspect of MAPLE is its internal programming language which allows all
conventional programming structures, like repetitions, conditional executions, data
structures and visualisation. Hence, combining with MAPLE commands, the user is
able to write procedures for specific applications. The two and three dimensional
graphic capability allow MAPLE to plot functions of up to two independent variables.
All the above explain why MAPLE is a suitable computing environment for the
research here as well as for general chemical engineering study. As a matter of fact,
the popular simulation package, SIMULINK (SIMULINK, 1992), has incorporated
MAPLE as one of its many features in its latest version. In the past, mathematics was
usually the major hindrance for implementing new technology in industry. However,
with the availability of mega computing powers and the advanced development in
symbolic computational theories, this hurdle is being gradually removed. Therefore,
the computer algebra system will not only have an important role in the future of the
industrial process engineering control practice, but will also provide a new aspect of

mathematics to both academic and industrial practitioner.

2.5.3 Applications of Symbolic Computations in Process Control

Recently, substantial interests have been shown by scientists and engineers in the use
of the symbolic computation programs for both research and industrial applications.
The application of symbolic computation in control engineering has been investigated
by several researchers. For example, Ogunye (1994) evaluated the application of

MAPLE V as a tool for advanced control studies and several linear control theories;
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Rothfup et al (1993) analysed observability and reachability and designed observers
and controllers for nonlinear systems using the program MACNON which is based on
MacsYMA: and Akhrif and Blankenship (1988) used MACSYMA to solve some
control problems. The use of MAPLE in analysis and design of nonlinear control
system has been illustrated by Essen (1992), Essen and Jager (1993), and Jager (1992,
1994, and 1995). In Jager (1995), a package called NONLINCON was developed for
mechanical engineering applications. The package, which was based on the nonlinear
control theories developed by Isidori (1995), is able to compute the zero dynamics,
normal form, and the feedback law of the input output and state space linearization.
Taylor and Atherley (1995) have demonstrated some of the ways MAPLE can be used
in the chemical engineering curriculum and commented that programming code for
MAPLE is more natural for mathematical work and produces much shorter, easier to

understand, programs than FORTRAN.

An integrated MAPLE package for designing and simulating the closed loop dynamics
of systems using nonlinear control theories is developed and detailed in Appendix A.
The appendix addresses the usefulness of the symbolic algebraic computation for both
symbolic and numerical analysis in nonlinear control using differential geometry. The
procedures are developed in MAPLE V.3 environment and are based on two feedback
linearizations, namely, input output linearization by Kravaris and Soroush (1990) and
input state linearization by Hunt et al (1983a). Apart from computing the associated
transformation for each nonlinear control theories, the procedures presented in the
appendix, which take one step further than NONLINCON, are able to simulate the
closed loop responses of chemical systems graphically by making use of the graphic
capability of MAPLE V.3. As a result, different chemical systems and scenarios can be
investigated with these procedures. Jager (1995) has already shown that NONLINCON
can solve textbook problems successfully. Therefore, a more complicated industrial
problem will be employed here to demonstrate the application of the nonlinear control
package developed here and to explore the capabilities of MAPLE. To the best of the
author’s knowledge, no chemical engineering application has been reported using

MAPLE as an integrated computing substratum in the nonlinear control area.
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2.6 CONCLUSIONS

Two nonlinear control theories, input output linearization and Su-Hunt-Meyer
transformation are presented in this chapter. The algorithms for determining the state
feedback law and the transformation for each strategy are detailed. The MIMO
system studied in this thesis are autonomous and input-linear. It was shown that the
generic model control is a subset of the input output linearization for relative order
one systems. For systems where the number of inputs is equal to the number of
states, a simplified algorithm was proposed for the Su-Hunt-Meyer transformation to
reduce the computational complexity. Finally, a brief literature review was provided
on symbolic computational softwares, and MAPLE V.3 was introduced as the

computing environment for implementation studies necessary for the thesis.
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CHAPTER THREE

NONLINE&R CONTROL OF &
SIMULATED SINGLE EFFECT
EVAPORATOR PROCESS

3.1 Liquor BURNING PROCESS (LBP

Alcoa of Australia at Kwinana has been operating a liquor burning facility since 1988.
The objective of the operation is to remove the organic impurities of the spent caustic
liquor so that the liquor can be re-used in the mainstream Bayer process. The current
control strategies are purely feedback in nature and according to the technical
personnel poor control performance causes significant ramifications for the
downstream operation. Therefore, request was made to investigate the options
available to improve the process control of the operation. Many evaporation units
operate in the Kwinana refinery and Alcoa is currently designing a liquor burning
plant for their Wagerup refinery. Therefore, any knowledge and insights gained from
this investigation will be essential for improving the control performance of existing
units and for the control strategies to be installed for the new liquor burning plant at

Wagerup. This has been one of the main motivations of this thesis.

3.1.1 Process Description

The first stage of the liquor burning process is a single-effect evaporator, in which a
side stream of the main caustic liquor circuit is evaporated at high recycle rates, to
achieve product of specified density. Evaporator flash tank inventory is also regulated,
but is of lesser importance. The process is open loop unstable but controllable. A
simplified process flow diagram is shown in Figure 3.1. Product density and flash tank

inventory are each controlled by SISO feedback loops, that use proportional and
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integral (PI) action. The flowrate of the cooling water (Qcy) is manipulated for
density (o) regulation, while the feed liquor flow (Or) is adjusted for inventory
contro! (4). The two loops tend to interact, and do not cope well with disturbances.
Density deviations which impact on downstream operations are undesirable. Two
main disturbances can be identified which are the variation of the product flowrate
(O5) caused by downstream process and the reduction of recycle flow (Qg) or heater
feed flow (Que) during a heater wash cycle. In this study, the effect of the first
disturbance will be investigated because this disturbance occurs on a day-to-day basis

while the second one only happens once a year during a heat wash.

—® -
. Flash Tank ‘ Hot Well (HW?}
Cooling Water Vapour Discharge | >
(CW) ) l
Condenser ¢
Flash Recyele (R) 1 Product (P)
Tank ; HD
r -@ -
“ Steam
Heaters
Flash Tank
| Liquid Discharge
(o FC-Flow Controller
HF
Feed/Spent Caustic | Li-Level Indicator
(F) DI-Density Indicator

Figure 3.1: Flowsheet of Liquor Burning Process
3.1.2 Dynamic Modelling

The equations used to model the liquor burning process evaporator were derived from
mass and energy balances around the flowsheet in Figure 3.1. The model is for a two-
input two-output system (2x2) representing an idealised description of a highly
nonlinear, complex unit operation. The strict validity of the equations was not
established. However, the equations were considered to provide adequate descriptions
of the process for the purpose of the evaluation of contro! strategies. Moreover, the
qualitative trends and relationships revealed by the simulation of the model are

considered to be realistic by plant personnel.
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3.1.2.1 Assumptions

The assumptions involved in the derivation of the dynamic equations are as follows:

o o o B

1L

12.

13.
14.

15.

Total liquor volume in heat exchangers and piping is equivalent to 2 tank of
area of 23.12 m?, and height of 2.21 m. This capacity is added to the flash
tank inventory.

The temperature of the discharge of the steam heaters is assumed to be
constant at 95 °C.

The liquor boiling point elevation is assumed to be constant at 16 °C.

The hot well approach temperature is assumed to be constant at 5 °C.

The cooling water temperature is assumed to be constant at 40 °C.

The specific heat capacity of liquor is assumed to be constant at 3142 Jkg/°C.
Flow controller dynamics are not simulated.

All temperature equations are solved consistently in °C unit.

The product density is assumed to be equal to the flash tank liquid discharge
density.

The process is assumed to be adiabatic.

The volume of the liquor remains constant in all ancillary pipe works since the
pipes run full.

The evaporation rate is calculated on liquid water basis.

The setpoint is assumed to be constant at the corresponding steady state.

Flow ranges:

Feed Flowrate = 0 to 50 m¥%hr

Cooling Water Flowrate = 0 to 700 mé/hr

Initial steady state conditions:

Feed Flowrate = 25.0 m¥hr

Cooling Water Flowrate = 313 m*/hr

Flash Tank Level =271 m

Flash Tank Liquid Discharge Density = 1.762 tonne/m’ or 1762 kg/m?

Flash Tank Liquid Discharge Temperature = 88.4 °C
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The above assumptions are considered to be valid according to the plant personnel
and reasonable in this case study. The major concern here is the temperature of the
heater discharge assumed to be constant at 95 °C which, in fact, varies slightly in the
actual situation. The implication of this assumption is that no heat transfer efficiency
is taken into account. Hence, the mathematics of the model is simplified and the

assumption is actually justified in the later chapter on the plant implementation.

3.1.2.2 Dynamic Equations
The dynamic model including three state equations with two inputs and two outputs is

summarised below. Detailed derivations can be found in To et al (1995¢).

1. Flash Tank Level

2 Flash Tank Liquid Discharge Density, which is assumed to be equal to the product
density (25)

d 1, (Qpe —Q . .
il (%:P‘)"Qm—my—( (Que=Qr 1) -
.................. 32
(QHF B QP) (O ( )
O -..JHF_QF) )F’D )
3. Flash Tank Liquid Discharge Temperature
dil, _ 1 (QHF—QP)(QF Pr +(QHF_QF)pD) C. T
dt  Cppdhpy Qur oo
..(3.3)
sty Hy —Cpp T [(QHF _QP) (QF Pr +(QHF _QF)pD) . ]
QHF
4. Evaporation Rate Calculation
C T, - T, —\T,+T
iy, =P (7.+7.) 6 SRS (3.4)

H, - P.HW(TD _(f; + Ta))
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Equations (3.1) to (3.4) show that the dynamic model of the liquor burning process is

highly nonlinear, especially (3.3). The nonlinearity of the model will become more

evident in the open loop response presented in section 3.2.1.

3.1.2.3 Selection of Input and Qutput Variables

The state, input and output variables are listed in Table 3.1. All these variables were

selected based on the existing situation on site. Investigations have been carried out

by Le Page (1993) to evaluate different linear control strategies using the Matlab-

Simulink package (SIMULINK, 1992).

Table 3.2 lists the four configurations

evaluated. A summary of this report is included in Appendix G.

Table 3.1: List of State, Input, and Output Variables for 2x2 LBP

State Variables Manipulated Inputs QOutputs

X, h u, Or Vi h

X, Po u, Ocw Y2 2, (= 0p)
X; 7,

Table 3.2: Potential Linear Control Strategies for 2x2 LBP

Configuration Output Variables Input Variables
A Flash Tank Level Feed Liquor Flowrate
(Existing) Product Density Cooling Water Flowrate
B Flash Tank Level Feed Liquor Flowrate
Flash Tank Temperature Cooling Water Flowrate
Product Density Flash Tank Temperature
C Flash Tank Level Feed Liquor Flowrate
(Feedforward with Cooling Water Flowrate | Ratioed to Feed Liquor Flowrate
Feedback Trim by Product Density Ratio of Cooling Water Flowrate
Shinsky,1988) to Feed Liquor Flowrate
D As per C, but with Ratio factor scaled by Recycle
(similar to C) Fi*zfi;(i::;éi a;:ciﬂj‘:{trr;'ltznt Flowrate Factor
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Two separate disturbance scenarios were investigated. They are 2 m’/hr increase in
product flowrate at time = 1000 seconds and 500 klhr decrease in heater feed
flowrate at t = 1000 seconds. The results showed that configuration B provided the
worst performance. Configurations C and D gave excellent performance for both
scenarios, followed by the existing strategy A. The trial of configuration D on site

was completed in the middle of 1995 (App G) and improved control performance was

observed.

The reasons for using configuration A in this particular study are as follow:

« Configuration A is simple, yet it is able to provide reasonable control performance
so that it can be implemented and compared easily with the nonlinear control

strategies investigated in the later section.

e Configurations C and D are slightly more complicated than configuration A to be
implemented in the nonlinear control framework as a result of the ratio and
feedforward relationship even though they might provide better control

performance.

e One of the objectives of this thesis is to compare different nonlinear control
strategies with the linear theory. Therefore, it is not necessary to use the best
input-output configuration, for the purpose of pure comparison here, as long as

the same configuration is used throughout the entire study.

Even though configuration A is used in both linear and nonlinear control scheme in
this study, the results obtained will also be compared to the control performance
achieved using configuration D so as to illustrate the superiority of the nonlinear

controllers.

3.2  SIMULATION RESULTS

Based on the disturbance of an increase of the product flowrate from 10 to 12 m*/hr,
the simulation results are first presented for the open loop system obtained using the

local linearization and the SHM transformation. The closed loop results are then
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provided in order to compare the /O and the SHM transformation, using the local

linearization as the bench mark. Finally, the GMC results are com

obtained using I/O.

For this simulation, the dynamic equations in section 3.1.2.2 were re-

standard form of (2.11) as shown below.

£(x)

g,(x)

% ) 1
(e)0-5)
( o )[ A x]_x2 ](1 QQ:F]

1 7
A
u, (xz _pF) Q
Ax, O F
Tiap _xs] i _ - )
A X, X, Q-HF (x2 pF) % h
0
u, gp (xz_" pF) (—2-
Ax, Osr o
Tup xs)[ _ (ﬁ Q_p]
Ax x, i (xz pF) QHF

Crc (

( Pm(

Cocw (xa — Tow —

(z+n»

n[x‘q

T +T)

HA X, Xy (HV —Crew (x

(T +1,))

[x_ji_
i CP,D

)

arranged

pared with those

in the
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All the responses were calculated in terms of deviation variables. The simulations
were implemented using MAPLE V.3 (Char et al ,1988). Appendix A provides the
manual for using the procedures developed here for the 1/O and the SHM
transformation. The code for the procedures are t0o long to be included in this thesis
and can be found in To et al (1996b). The calling sequences and sample outputs
including the transformation relationships for the SHM transformation and state
feedback law for the /O are presented in Appendices B and C. The procedures for
the GMC can be easily obtained from that developed for the /O (because the GMC is
a subset of [/O).

3.2.1 Open Loop Simuiation Results

Figure 3.2 shows the open loop dynamics for the height of the liquid in the flash tank,
product density and liquid discharge temperature of the flash tank obtained by the
local linearization and the SHM transformation. It is observed that local linearization
over-estimated the values when the deviation from steady state values, that is, zero, s
comparatively large. Overall, the two results are comparable. Tt is important to
mention that the linear system obtained using first order Taylor series (or the
transformed linear system in the case of the SHM transformation) were solved
analytically, as described by Ray (1981). More details can be found in Appendix A.
Moreover, the eigenvalues of the characteristic matrix of the linearized model
obtained using Taylor series are 0.309x10°®, -0.135 and -19.5. This implies that the
system is open loop stable, except for the contro! of inventory of the flash tank 7
which is open loop unstable due to the ‘zero’ eigenvalue. The controllability and

observability matrices show that the system is controllable and observable.
3.2.2 Closed Loop Simulation Results

3.2.2.1 Input Output Linearization versus Su-Hunt-Meyer Transformation
The closed loop responses of the liquor burning facility obtained by local linearization

(Linear), I/O and SHM transformation are shown in Figure 3.3. The sampling time

used was 0.1 hr. The PI controller tuning parameters and design parameters, By, in
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/O are listed in 7able 3.3. The
which give the best performance in the simulation and in the plant and

selected to achieve the best responses.
error (ITAE) performance indices for each control strategy i

of 20 hours time span and are shown in Table 3.4. These results are discussed in

section 3.3 below.
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Figure 3.2: Open Loop Dynamics of 2x2 LBP by Local Linearization and SHM
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s computed on the basis
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Table 3.3: PI Tuning Parameters and Design Parameters 23,.,‘ for 2x2 LBP
Design Parameters, By PI Controller Parameters
ﬁlﬂ 1 ﬁz[] ]. KC] =Kc2 "].O
ﬁ“ 25 BZ[ 900 Kn = Kp_ -10
n 20
U2 30
Table 3.4: ITAE of 2x2 LBP using Local Linearization, /O and SHM
Control Strategy Height Density
Local Linearization 0.2082 187.2
1/0 Linearization 0.0077 1.158
SHM Transformation 0.0104 35.88
Table 3.5: Design Parameters for GMC and /O in 2x2 LBP
Generic Model Control Input Output Linearization
Vi h Y2 Dp Yi h Y2 i
k” '15 k[z -15 ﬂ]o 1 ﬁzo 1
kz; "40 k22 -40 ﬁ“ 05 ﬁz’l 05
Ko -0.5 Ka -0.03
Ky -3.25 Kp -0.02
o 1 T 1

Table 3.6: ITAE of 2x2 LBP using GMC and /O

Control Strategy Height Density
1/O Linearization 0.0004147 0.02402
GMC 0.0008927 0.02951

3.2.2.2 Input Output Linearization versus Generic Model Control

As mentioned in Chapter 2, the GMC is a special case of the I/O. In this section, the

closed loop dynamics of the liquid burning process obtained using I/O is compared

with GMC results. The simulation was implemented with the sampling time of 0.01
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hr. The responses of the three states and the two input variables are shown in Figure
3.4. The design parameters used and the ITAE indices computed based on 2.5 hours
time span for each control strategy are shown in Tables 3.5 and 3.6, respectively. A
different set of design parameters was used for /O to investigate the effect of the

parameters on the performances and the poles of the system to ensure stability.
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3.3 DISCUSSIONS

3.3.1 Local Linearization

Local linearization provided a reasonable controller performance as expected from the
results of Le Page (1993). It was observed that the performance of the height control
can be improved by increasing the gain to a value of 40%/% while the 10%/% gain
used for density control was close to the optimum value. However, the input

dynamics must be investigated in using such a high gain.

3.3.2 Input Output Linearization and Generic Model Control
The control performance obtained using /O was superior to the other two techniques
based on the ITAE performance index. The calculation involved is not as complicated

as for SHM transformation and can be easily handled by MAPLE. The four design
parameters ﬁ' , gave great flexibility in improving control performance. The
improvements in the closed loop responses obtained by simply decreasing the values
of ﬁ” and ;5‘21 from 25 to 0.5 were obvious when comparing the simulation results

in sections 3.2.2.1 and 3.2.2.2. As mentioned in Chapter 2, there is a definite
relationship between the design parameters of the conirol law and the poles of the
input output dynamics. Therefore, the corresponding poles of the system were
computed and they are listed in Tables 3.7 and 3.8. The values of the negative poles
become more negative as the design parameters were decreased, so that the system
became more stable. In addition, since the system was more stable and ‘linear’ as a
result of the transformation, the tuning of the PI controller was much easier than the
traditional linear PI control strategy. The control performance provided by GMC was
very similar to that for /O since both methods are equivalent as indicated in the
previous chapter. The poles computed for the height and density control loops were
both -2.31 which is in between -3.10 (pole of height control loop in /O Case 2) and -
1.96 (pole of density control loop in /O Case 2). This explains why the ITAE of the
height control obtained using I/O is only half of that using GMC while similar ITAE

values were obtained for the density control in both scenarios.
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Table 3.7: Parameters of Height Control Loop by /O

B[D ﬁ] . KC] KH 'Ih POleS
1/O case 1 1 25 -10 -10 20 -2.01
1/QO case 2 1 0.5 -0.5 -3.25 1 -3.10

Table 3.8: Parameters of Density Control Loop by /O

IABZU BZ] ch K[z T PO].eS
1/O case 1 1 900 -10 -10 30 -1.27
/O case 2 1 0.5 -0.03 -0.02 1 -1.96

Table 3.9: Parameters of Both Height and Density Control Loop by GMC

ﬁm f}u ky; ks, Poles

GMC 0 1 -15 -40 -231

Tt should be noted that singular points which were identified for the characteristic
matrix A(x) in (2.29) (i.e. points at which this matrix is singular) for the I/O were
well beyond the desirable operating region. Therefore, we do not need to be overly

concerned about them.

Overall, it is the flexibility of the design parameters that makes the I/O control
strategy better than the GMC and SHM transformation. However, extra parameters
were introduced into the control system which may require tuning from time to time.
Furthermore, comparing the response curves, the control performance obtained using
both GMC and T/O are about 10 times better than that using configuration D in Le
Page (1993).

3.3.3 Su-Hunt-Meyer Transformation
The control strategy by SHM transformation requires very involved and complicated
calculations which could not be handled by MAPLE. Therefore, in this investigation,

the simplified solution algorithm proposed in Chapter 2 was employed. The algorithm
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requires the number of states to be equal to that of inputs; hence, the f(x) in (3.5) was
simplified by expressing the disturbance explicitly as a constant input thereby
converting the system to a three states, three inputs and two outputs system. This
system can be easily solved by MAPLE. However, the constant disturbance input was
treated as a manipulated input in the feedback law of SHM transformation. This
caused an undesirable drop in the liquid discharge temperature shown in Figure 3.2
which lead to the decrease in the values of the two manipulated inputs. In addition, it
was noticed that there is a slight offset of 0.17 kg/m’ in the density control. The
obvious solution to these problems was to remove the disturbance input by
appropriate control action such as a simple PI controller.  In other words, a
feedforward action could be introduced into the system. An improved control
performance resulted when the feedforward action was implemented. Unfortunately,
the product flowrate, that is, the disturbance used in this study, is determined by

downstream process. Therefore, varying the disturbance is not a practical choice

here.

Another solution was to replace the constant disturbance input with a real
manipulated input. After consulting Alcoa, it was found that the heater discharge
temperature {Tp), which was assumed to be constant, can be used as the third input
so that the liquid discharge temperature of the flash tank becomes the third output.
The heater discharge temperature can then in turn be adjusted by varying the steam
flowrate (Qs) through the steam heaters. Asa result, assumption 2 in section 3.1.2.1

can be removed. The details of this investigation will be provided in the next chapter.

3.4 CONCLUSIONS

The SHM transformation, O and GMC have been applied to the liquor burning
process. The control strategies were compared with the classical local linearization.
The open loop results using SHM transformation revealed that the performance by
loca! linearization was compatible when the deviation is small. The simulation
showed that similar control performances were obtained in the case of GMC and I/O
which substantiate the theoretical finding of the fact that the GMC is a subset of the

/O as in the previous chapter. The mathematics involved in the originai SHM
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transformation were too complicated to be solved by MAPLE. Therefore, equations
were simplified and solved using the special case proposed in Chapter 2. The
preliminary investigation showed that nonlinear control theories are superior to local
linearization since the later required 20 hours to return the system to its steady- state
while the nonlinear strategies took only 2 hours. In all cases, the responses of the two
manipulated inputs were observed to be very smooth. Finally, the results showed that
/O gave the most flexible and satisfactory control performance against the
disturbance specified. Further investigation is necessary for the SHM transformation
with the real three inputs, three states and three outputs system proposed in section

3.3.3. The results of this investigation are shown in the next chapter.
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CHAPTER FOUR

ROBUSTNESS STUDY OF NONLINEAR
CONTROL THEORIES

4.1 INTRODUCTION

A robust control system is insensitive to changes in process conditions and to errors in
the process model. Robustness is a very important property for a model based control
system such as the nonlinear control theories studied in this thesis, because the
mathematical model used to derive the control strategy or transformation relationships
will never be able to provide an exact picture of the actual process. Therefore, the
transformation relationships or the control strategy employed must at least be able to
remain stable and converge under the adverse effect of a certain degree of uncertainty
in the model, or mismatch between the model and the plant. The issue of robustness
of nonlinear control theory has been addressed by many researchers in recent years.
Details of literature research in this area will be given in the two chapters that follow.
The robustness associated with each nonlinear control strategy will be studied by
introducing an unknown parametric modelling error into the mathematical model. It
is acknowledged that this type of robustness (i.e., a change in only one or more
process parameters) is limited in practice. However, it is a good starting point to
demonstrate the capability of the algorithms in handling the general robustness
problems associated with modelling errors in the process description. The objective
of this chapter is to address the robustness issue of nonlinear control theories through
the simulation of closed loop responses of the evaporative stage of the liquor burning
process under a model uncertainty. Moreover, the investigation in this chapter will act
as a guideline for selecting the most suitable nonlinear control strategy to be tested on
site. The results for this trial will be reported in Chapter 9. Further robustness study

and analysis are presented in the next two chapters.
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4.2  SIMULATION RESULTS ON ROBUSTNESS PROPERTY

Robustness was studied by changing the temperature factor 7 (hot well approach

temperature + boiling point elevation) in the process model described in Chapter 3

from 21 to 30°C. With the same disturbance of 2 m¥hr increase in product flowrate |
as in the previous chapter, the closed loop responses obtained using each control

strategy before and after the change of the temperature factor 7, were observed and

compared according to the corresponding ITAE performance index. For the case of
SHM transformation, the proposed three-input three-output system was studied.

More information will be provided in the next section. The robustness issue of GMC

and /O were investigated with the two-input two-output model as described in

Chapter 3. The linear control strategy was also included as a bench mark.

4.2.1 Input Qutput Linearization and Generic Model Control

The closed foop dynamics using local linearization was simulated with a sampling time
of 0.1 hour. GMC and I/O were studied for the 2x2 system with a sampling time of
0.01 hour. The reason for using 0.1 hour for the linear controller is that the system
took 20 hours to converge. Using 0.1 hour, instead of 0.01 hour, as the sampling
time significantly shortened the simulation time. It was also found that there is no
significant changes in performance of the linear controller when 0.01 hour was used.
Moreover, the sampling time of 0.01 hour is chosen because the actual industrial
setting is usually at approxmiately 30 seconds (0.083 hour). The corresponding ITAE
performance indices based on 20 hours time span for local linearization and 2.5 hours
for GMC and /O are tabulated in Tables 4.1, 4.2 and 4.3, respectively. The 20 hours
period was used for local linearization since this was how long it took the response to
reach steady state. The response curves for each case are presented in Figures 4.1,
4.2 and 4.3. All design and tuning parameters are as described in Table 3.3 for local

linearization and Table 3.5 for GMC and I/O in Chapter 3.
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Table 4.1; ITAE for Local Linearization with 7,= 21 and 7,= 30

T,=21 7,=30
Height 0.2082 0.2025
Density 187.2 281.2

Table 4.2: ITAE for GMC with 7= 21 and 7,= 30

=21 ;=30
Height 0.0008927 0.000224
Density 0.02951 0.1932

Table 4.3: ITAE for I/O with 7,= 21 and 7,= 30

T,=21 T,=30
Height 0.0004147 0.0003096
Density 0.02402 0.1496
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422 Su-Hunt-Meyer Transformation

As a result of the undesirable behaviour observed in the SHM transformation for the
virtual three states, three inputs and two outputs system, a real three inputs and three
outputs (3x3) system was proposed. In the following, the additional mass and energy

balance equations required and the simulation results are given.

The state, input and output variables involved in the proposed model are shown in

Table 4.4 below.

Table 4.4: List of State, Input, and Qutput Variables for 3x3 LPB

State Variables Manipulated Inputs Outputs

X, h u, O ¥ h

X, Pp u, Ocw Vs p,(~pp)
X; 7, u, Top, Vs 7,

The third manipulated input is the heater discharge temperature which is controlled by
manipulating the steam flowrate through the steam heaters. The related assumptions

and dynamic relationships are restated from Chapter 3 and presented as follows with

additional details:

1. The volume and the mass remain unchanged as the pipes are full, that is,

Opr = Qo
Pur = Prup

2. The process is adiabatic and all heat is transferred via condensing steam. Hence,
no sensible heat is involved.
3. The specific heat capacity of the heater feed and the heater discharge are both

equal to that of the flash tank liquid discharge.

Comr = CP.HD = CP,D
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With the above assumptions, the equation relating the steam flowrate and the heater

discharge temperature 1s

m. H
T = T A e {4.1)
e . Qe Prr CP,D

The temperature and density of the heater feed are described below.

7 o= LePeletOopolo e (4.2)
QF pF +QD pD
Or pr+ 05 Po
p e 4.3)
HF QF+QD

The state equations presented in section 3.1.2.2 are re-arranged in the standard form
of (2.11) in Chapter 2. These equations are given below. The first order Taylor

series was applied to linearize the nonlinear term (u, xu3) around their steady state

values before the SHM transformation was employed. The calling sequences and
sample outputs can be found in Appendices B and C. The sampling time used was

0.01 hour which is approximately equal to the value used in the industry (Chapter 9).

f(x) = 0

2 = | (2
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_ CP,CW (xs - ];:W - (Te + T;))
A@;C@w( ~(7,+1,)))
_ Cpow (x3

£,(x)

g:(x)

| Ax, x,

-(7.+7.) [
3_(7; +7:1))) 3

(@ - 7 or - 1-

T+T )))[x2_1)

A(H, qmﬁsﬁ+ﬂ
Cpew (xa ~Tow
_A X X2 (HV = Cpow (x

o

H,

&)

The dotted lines in Figure 4.4 represent the responses when the temperature factor 7y

equals 30 while the continuous curves represent the nominal situation with no

modelling error. The tuning parameters used are shown in Table 4.5. The tuning

parameters for the height and density control were different from those used in the

two input-two output case presented in Chapter 3 because the gains used were too

high and hence caused instability. The ITAE performance indices computed on the

basis of 2.5 hours time span are tabulated in Table 4.6.

Table 4.5: PI Controller Tuning Parameters for SHM transformation

K=K, T

Height -1 20

Density -0.05 30
Temperature -20 No integral action

Table 4.6; ITAE for SHM Transformation with 7,= 21 and 7= 30

T,=21 7;=30
Height 0.003594 0.0009056
Density 0.009492 0.5160
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4.3 Discussions ON SIMULATED ROBUSTNESS PROPERTY

Comparing the nonlinear control strategies with the linear control technique, the
nonlinear strategies are more sensitive to modelling errors or less robust than the
traditional linear technique. However, the control performance, obtained using the
nonlinear control strategies, is still far better than the linear case. A detailed discussion

of the simulation results is given below.

4.3.1 Input Output Linearization, Generic Model Control and Linear
Control
The height control in each case was improved when the temperature factor was
increased from 21 to 30°C. However, the density control, which is the primary aspect
of the entire investigation, deteriorated in each case. It was observed that VO still
provided the best control performance, followed by GMC. Since both GMC and I/O
are equivalent, their performances are expected to be similar. Even though the
control performance obtained using the nonlinear control theories was not as good as
before, it remains superior to that using the classical linear control based on the ITAE

indices computed.

4.3.2 Su-Hunt-Meyer Transformation

With the three input-three output model, the control performance obtained using
SHM transformation is considerably better than before and is now very comparable
with the I/O and GMC. In the robustness study, the ITAE value for density control 1s
100 times the value before the error was introduced. For the flash tank inventory
control, the performance is much better than before which corresponds to the results
obtained from other control strategies. This implies that this strategy is very sensitive
to modelling errors. Consequently, the SHM transformation may be unsuitable for
industrial implementation.  More investigation is required to explore this

transformation further.
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Figure 4.4: Closed Loop Dynamics
(

of 3x3 LBP using SHM Transformation
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4.4 CONCLUSIONS ON SIMULATED ROBUSTNESS PROPERTY

This chapter showed that the control performances obtained using the nonlinear
control strategies deteriorated with the introduction of the modelling error. Hence, a
serious robustness problem was identified with the use of each nonlinear control
strategy. Since in the actual industrial situation, more modelling errors are involved in
implementing the control strategies, the control performance is expected to
deteriorate even more which may result in instability. It can be inferred from the
single parametric error simulation here that the linear control may not be able to
handle the actual system because of the longer settling time and higher ITAE indices.
On the other hand, the nonlinear control may be able to provide reasonable and
satisfactory control with probably a slight adjustment to the design and tuning
parameters. Among the three nonlinear control strategies, it was concluded that the
[0 is the most suitable scheme to be implemented on site, because of its flexibility
and the excellent control performance observed in this and the previous chapter.
Therefore, further investigation on the robustness of I/O is necessary and proposed

adjustment procedures and analysis are given in the following chapters.
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CHAPTER FIVE

ROBUST CONTROLLER SYNTHESIS
UsiNng UNCERTAINTY VECTOR
ADJUSTMENT

5.1 INTRODUCTION

The robustness issue of three nonlinear control theories: /O (Kravaris and Soroush,
1990), GMC (Lee and Sullivan, 1988) and SHM transformation by Hunt et al (1983a)
were addressed in Chapter 4. The simulation results obtained using the evaporative
stage of the liquor burning process showed that the control performances deteriorated
when a modelling error was introduced. The ITAE performance indices were
approximately 6 times the nominal ITAE for both I/O and GMC. In the case of SHM
transformation, the ITAE index was approximately 54 times higher. The objective of
this chapter is to propose a new compensation method for /O and SHM
transformation to improve their closed loop control performance under the effects of
modelling errors, and hence, improve their robustness. Since it was shown in Chapter
2 that the GMC is a subset of the I/O, discussions on the 1/0 given here can equally
apply to GMC.

5.2 BRIEF LITERATURE REVIEW ON MODELLING ERRORS

Modelling errors, either parametric or structural, associated with the dynamic model
play an important role in determining the effectiveness of a control scheme. The most
obvious effects of modelling errors on the control performance are overshoots, and
longer rise and settling times. In some cases, it may lead to instability. Therefore,
some adjustments must be made to the static transformation relationships in order to
compensate for the adverse effects of modelling errors. However, it should be noted
that, in some cases, modelling errors can have a positive effect on the closed loop

dynamics. Such instance was observed in the inventory control of the liquor burning
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process shown in Chapter 4.

In the past, different approaches were presented to deal with the impact of modelling
errors on closed loop responses. One simple solution to modelling errors is to change
the controller design or the controller tuning parameters. However, this method may
not be very convenient and practical when the nature and magnitude of error is mostly
unknown. A robust controller design based on the I/O was synthesised for a SISO
system by Kravaris and Palanki (1988). The approach was mathematically very
involved and required prior knowledge of the error structure. For the SHM
transformation, Su et al (1983) gave a robustness analysis of the stability of the
transformation. However, this is not practical and may be difficult to check. Zhou
(1990) presented a process/model mismatch compensation for the GMC. The
approach was simple and effective. However, it involved a derivative estimator which
may cause instability in a noisy process unless a filter was used (Seborg et al, 1989).
Other attempts have been made to design a stable robust controller for uncertain
feedback lineanzable systems (for example, Arkun and Calvet (1992), Chen and
Leitmann {1987), Khorasani (1989), Liao et al (1991) and Ha (1989)). These
approaches require restrictive conditions on the structure of the model/plant mismatch
and are difficult and complex to implement in many situations. Other techniques
include adaptive control and gain scheduling that update the model parameters
(Seborg et al (1986), Pollard and Brosilow (1985) and Clarke et al (1987 a, b)) to
minimise the effect of modelling errors. While these techniques are practical and
easily implementable, they only work for a certain class of linear systems and cannot

be used for the control affine system under study in this thesis.

In this work, a new approach, called uncertainty vector adjustment (UVA), is
proposed for both /O and SHM transformation in order to improve the control
performance degraded by parametric modelling errors. The main advantages of the
new approach are that it requires no prior knowledge of the modelling errors, and no
restrictive conditions need to be satisfied. Using adjustments provided by the new

approach, the control performance is improved in terms of the ITAE index,
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overshoots and settling time criteria. Even though the focus of this study is on
parametric modelling errors, the proposed procedure is theoretically valid for
compensating structural modelling uncertainties, based on the development and

characteristics of UVA.

§.3 THEORETICAL DEVELOPMENT OF UNCERTAINTY VECTOR ADJUSTMENT

As mentioned in the previous section, an adjustment must be made to the state
feedback law or the transformation in order to compensate for the adverse effects of
modelling errors. The required adjustment must be estimated according to the nature
and magnitude of modelling errors which, unfortunately, are unknown in most
circumstances. Therefore, the first task is to estimate the effects of modelling errors

with the state model equations.

Given the state model equations in the standard input linear form obtained from mass

and energy balances around the process,

x(f) = f(x(t))+j2::u;(t)gf(x(t)) ............................................................. (5.1)

Suppose that there are modelling errors in the mathematical model (5.1), the values of
x at any time f, obtained from the model will be different from the values of x,

measured in the plant. Consequently, at time ¢, X will be different from x, by an

uncertainty vector 6. The true model for the plant can therefore be represented by the

following state equation,

where § = [5 N ,,]Alr and T denotes transpose of the vector .

Substituting (5.1) into (5.2), we obtain,
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where F(x)=1f(x)+38. At a specific time #, 5(f) can be determined using the

following equation.

In order to compute 8(f) by (5.4), x(¢) and x,{¢) have to be calculated first. x(f)can
be obtained from the state model equation (5.1), but %,(¢) has to be estimated from

state variables x,(#) measured from the plant by a simple difference equation,

i (F)= XP(I)_:"(I_I‘) ............................................................................ (5.5)

&

where £, is the sampling time of the system.

Since (5.3) is in the standard input linear form, I/O and SHM transformation can be
directly applied to it. The approach appears to be simple and practical, but it has
some associated problems. A theoretical analysis is presented below to reduce the

severity of these problems.

54 THEORETICAL ANALYSIS OF UNCERTAINTY VECTOR ADJUSTMENT

Two potential problems associated with the UVA are:

« the instability caused by the estimation of () using the difference equation in
(5.5)
« the computation of x(f) requires a complete simulation of the nominal process

which leads to complication in programming and in actual implementation.

5.4.1 Instability caused by the Derivative Estimation

The first problem involving the estimation of the derivative X, at time  can be solved

by using the property of an asymptotically stable process (Slotine and Li, 1991).
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Definition 5.1:
The equilibrivm state x,(#) = 0 is said to be asymptotically stable if, for any R

> 0, there exists 0 <r <R, such that if ”1»:P (O)“ <r, then lep(t)H <R for all

t>0 and x,(f) >0 as > o, where[] . | denotes the Euclidean norm on R”.

Essentially, asymptotic stability means that the system trajectory can be kept
arbitrarily close (and eventually converges) to the origin by starting sufficiently close

to it. Hence, if the system is asymptotically stable at the onigin, for any 7> 0, the

mean of the states X, is bounded and remains sufficiently close to the origin.

Assuming that x, is asymptotically stable as defined in Definition 5.1, for every

g >0, there exists a small g suchthat 0<¢ <y, and 7, = 7,(p) where

%)< x Vi>0

||ip(t)|| <¢ and X, (t) -0 Vs ]; ............................................. (5.6)

This implies that for every & > 0, there exists a small ¥ such that 0 <y <g, and

1,=1,(r) fo

[ ()< V150
K@<y and X0 V7

where ~ indicates the mean of a variable, and 7, and 7, are referred to as the

transition periods.

The transition period is the time allowed for the mean values of either the states or the
time derivatives of the states to return to an arbitrary bound which is close to the
origin. For any time beyond this transition period, the mean values will remain in the
bound and can be approximated by zero. The idea of transition period can be related

to the time constant in linear control theory. The size of the period depends entirely
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on the dynamics of the process and the arbitrary values of @ and y selected. The

smaller the values chosen for ¢ and , the longer the transition period.

(5.7) allows Ep to approximate X, at any time £. When the transition period is small,

T, can be assumed to be negligible. However, when 7, is large, (5.7) can still be used
because it provides a more stable, but not necessarily more accurate approximation

than the difference equation in (5.5) at all time ¢. Therefore, it is necessary that

x.(1)—>0 W E>0 et (5.8)

to ensure a consistently stable adjustment to the transformation relationships. It is
important to point out again that the main concern here is the stability of the
uncertainty vector. Another advantage of using (5.8) is that the uncertainty vector
will not depend on the size of the transition period. With the foregone, the

computation of the uncertainty vector in (5.4) at any time ¢ can be rewritten as

As a result of the approximation given in (5.8), (5.9) can only provide an estimate of
the true uncertainty vector. Therefore, parameters are introduced into (5.9) to adjust
the estimated value of the uncertainty vector to ensure a better controller

performance. That is,

8, | [6,.{~%)

9, &,, € R.  Equation (5.10) also implies that the uncertainty

where &,,,6,,,..., 8,
vector can be either equal to or greater than the size of modelling errors, depending
on the uncertainty vector parameters used. Discussion on selection of the uncertainty

vector parameters will be provided in sections 5.5.3 and 5.7.
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The instability caused by the derivative estimator is eliminated by allowing (¢} to be

approximated by its mean value which tends to the origin at all time. (5.10) implies
that only the model equations are required to estimate the uncertainty vector.
Moreover, unlike the difference equation, the uncertainty vector estimated using

(5.10) does not depend on the sampling time of the system.

5.4.2 Simulation of the Nominal Process
The UVA in (5.10) requires the simulation of the nominal process in order to compute

the model %(#). This will complicate the programming and make the approach very

hard to implement as described below. In order to simulate the nominal process, a
knowledge of the characteristics of the disturbances is required. In addition, the
simulations of the nominal process must start simultaneously with the actual process
and follow through at each time step so that appropriate adjustments can be estimated
and applied to the actual process. Therefore, the approach becomes inflexible and

impractical.

Before proposing a solution to this problem, the original model equations for x are
rewritten in a simpler format as in (5.11). It is important to note that no uncertainty

vector is applied here.

To obtain x for the estimation of uncertainty vector requires the values of the states
x, which is the solution trajectory of the above nonlinear model, and the nominal
manipulated inputs uw, which is computed from the nominal transformation

relationships obtained using either the I/O or the SHM transformation.

Instead of using the states x, the actual plant state variables x,, is substituted into
(5.11) and the nominal transformation relationships to obtain w, and then x.

Therefore, an approximation of % can be expressed as
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The implication of (5.12) is that the uncertainty vector now depends on two factors,
the nominal state-space model, and the actual measured plant states, which makes the

approach more flexible and practical.

5.5 ALGORITHM FOR UNCERTAINTY VECTOR ADJUSTMENT

The UVA is modified with the solutions proposed in the above sections. The
complete algorithm for the UVA is described below.

Step 0: Obtain the nominal transformation relationships with the nominal dynamic
model

Step 1: Rewrite the state model equations in terms of the uncertainty vector as shown
in (5.3)

Step 2: Obtain the adjusted transformation relationships by applying the nonhnear
control strategy to adjusted state equations in Step 1 directly

Step 3: Set the uncertainty vector parameters in (5.10)

At each sampling time,

Step 4: Measure the plant states x,

Step 5: Obtain the transformed inputs by any linear control strategy as described in
Chapter 2

Step 6: Compute u(x,) with the plant states in Step 4 and the transformed inputs in
Step 5 by the nominal transformation relationships in Step 0

Step 7: Approxtmate X with the plant states in Step 4 and u(x,) computed in Step 6
by the nominal state equations

Step 8: Estimate the uncertainty vector & by (5.10)

Step 9: Calculate the adjusted manipulated inputs u,guseq for the plant by substituting
X,, O and the transformed inputs into the adjusted transformation relationships

obtained in Step 2
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Repeat Steps 4 to 9 until the process has returned to steady state. Note that the word
adjusted implies that UVA is used.

5.5.1 Uncertainty Vector Adjustment and Input Output Linearization
The implementation of the UVA with the I/O is shown in Figure 5.1. The adjusted

static state feedback law obtained by I/O with the uncertainty vector is shown below.

W, gicied (x) = P(x) + Q(x) VA4 R(X) oo, (5.13)

P(x), Q(x) and R(x) are defined as follow.

P(x) = _Aadjumd(x)—lB(")
Qx) = Agua(x)”
R(x) = Aadjmd(x)'!c(x)
where
ﬂlr L, LHEh(x) . L, L:;ah(x)
A gusted (x) =

B.. L, L:m;;h,,,(x) o B L L:+;h,,,(x)

Sb 1A (o) S htinG)
B(x) = : and C(x) :
Zﬁmk Lkh (x) Zﬁmk LEE: hm(x)
k=1
By substituting (5.10) in (5.11), it can be shown that whené ,, =6 ,, =...=6,, =0,
= §=0
= C X) =0 and Aadjusted (X) = A(X)
Therefore,
Wy (X) = B(X) Lot (5.14)

and hence the original feedback law can be obtained from the adjusted law by setting
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the uncertainty vector parameters to zero. The following theorems can be applied in

this situation.

-t}
Model X
P State Equations |
u|
T (xl’) Uncertainty Vector
Static State Equatjon (5.10}
L Feedback Law
(with ne UVA) l 8
» | Static State
.". ( ) » PI v Feedback Law [w—
+ Controifer (Wﬂh UVA)
- ¥
Y

Figure 5.1: Application of UVA to I/O

Theorem 5.1
The relative order of the adjusted system is equal to that of the nominal

system.

Proof:
The relative order 7; of the i output y, defined in Isidori (1995) 1s

[L 7 h(x) L, L' A(x) - L L7 h(x)]

which has at least a nonzero element at the steady state x,.

Now with the uncertainty vector,
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[L L;:lﬁ h'(xn) ng L?‘:lﬁ h:'(xo) e Lg‘,,| Li:]ﬁ hf(xo)]
[Lgl Lith(x,) L, L7'h(x,) - L, Li hi(xn)]
+[Lg, Ly h;(xn) L, L?I ha‘(xo) L, L hi(xo)] :

where 7 is the relative order of the i output in the adjusted system at x,, However,
L, L7 h(x,) L, LT A(x,) -~ L Ii'm(x)] = [0 0 - o]

because by definition the uncertainty vector has to be exactly zero at x=x_.

Therefore,

[L Ll‘+5 t( ) L Ll’+6h:( o) o Lg,,, Lﬁ};]sh,(xu)]
(L, L' h(x) L, Li'a(x) -~ L, L by (x,)]

Hence, the relative order of the adjusted system has to be equal to that of the nominal

system, that is, 7, =7, .

Theorem 5.2

At the steady state (x=Xx_), the adjusted characteristic matrix will be

nonsingular if the nominal characteristic matrix is nonsingular.

Proof:

The characteristic matrix of the system with the UVA is defined as

B L, L:':; m(x) - B, L Lidh(x)
Aadjuslcd (X) = . . .
B, L;; h(x) - B, L, Lt h,(x)

which 1s equivalent to
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Blrl Lgl L’I"rlhi(x) T 31” Lg" L;'rlhl(x)

Aadjusted (x) = R * . *
B L Le B (x) - B, L L'k (x)
B, L L' h(x) - B, L Ly h(x)
+ : :
B Ly Le™ (%) - B L Lk (x)
That is,

ﬁ]r! Lg[ L;rlh](x) Tt ﬁlrl Lgm L;I'lh] (x)
Aadjusted (X) = A(X) + : :

-~

B L L h(x) - B, L Lz h(x)

Since the relative order remains unchanged by the introduction of the uncertainty
vector and the second part of the above equation is zero when x = x,, therefore, at the
steady state, A,gjusted(X) 1s nonstngular if the nominal characteristic matrix A(x) is

nonsingular, that is, the determinant of A(x) is not equal to zero.

5.5.2 Uncertainty Vector Adjustment and Su-Hunt-Meyer Transformation
The special case of SHM transformation (7 = m) proposed in Chapter 2 is considered

here. The transformation of the original states is obtained using
o= ["—=dy stx0)=0
g (1)

X3 1
T, = I"?(Z)dxz s.t. x(0) =0

1
L S (n) dx, 5.t x(0)=0

Since the solutions 7, (i = 1,...,n) depend on [g, g, --- g,] only, it is easy to see

that

=T (= Lo e s ) e, (5.15)

1, adjusted
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However, the adjusted transformation of the manipulated inputs

T,.; sgusea (J = L,...,m) is a function of the original states, the original inputs and the

n

uncertainty vector, and can be expressed as

7:r:+l, adjusted = <d ];’ (f + 5) + Zg_r uj>
7=1

‘7:1+2,adjusted = <d I;’ (f + 6)+ Zgj uj>
j=1

Tr‘:+m,adjusted = <d1;’ (f + 6)+zg1 uj>

so that

I;—r+j.adjusted =<d7: ’f +igj uj>+(dr ’6> (izl"“’n’j: 1""’m)

=1 .. (5.16})
=T, +(dT, ,5)
where
T ) )
@7 .8)=2h 5+ g e OL g,
axl axZ C?xnl
By substituting (5.10} into (5.16), it can be easily shown that
Irr|:+_)".a|:ljl.|stt:d = T;H—j When5p| =5p2 ="':5pn =0 (517)

It should be noted that, for systems with 77 > m, the adjusted transformed states are
functions of the original states and the uncertainty vector, while the adjusted
transformation of the inputs can be computed using (5.16). The block diagram in
Figure 5.2 shows how the SHM transformation can be implemented using the UVA

approach.
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it}
| Model &
*| State Equations
u(x
? (%) Uncertainty Vector
Inverse of Equation (5.10)
g Transformation
(with no UVA) i 3
Set Point I Inverse of
Pl Transformation jfeg—
+ Controller | Transformed (with UVA)
- Linear Inputs
W adjusted A
Process
- Transformation -
T}, adjusted > T’l. adjusted !p
h 4
Cutput
Map
l y

Figure 5.2: Application of UVA to SHM

5.5.3 Selection of the Uncertainty Vector Parameters

The uncertainty vector parameters are used to adjust the values of the uncertainty
vector estimated so that more appropriate actions can be taken against the modelling
errors. Since the parameters can be any real number, it is difficult to determine their
approximate values. Suggestions are given below to assist in determining suitable

values of these parameters.

Firstly, it is important to emphasis that the adjustment is removed by setting the
parameters to zero. Secondly, depending on the overall effects of the modelling
errors on the dynamic equations, the sign of the parameters will determine whether
the adjustment is to compensate or to enhance the overall effect of the modelling
errors. Therefore, it is important that the correct sign is used or the process will
become unstable. Thirdly, in general, parameters with magnitudes greater than 1 will
lead to better control performance. Finally, since the overall effect of modelling

errors depends on the process as well as the control strategy, the choice of the
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parameters will be different from one strategy to another. However, from our
experience, the values of positive one are recommended as starting values for most
cases. Further discussions on the choice of uncertainty vector parameters will be

provided with illustrations in the next section.

5.6  SIMULATION RESULTS USING UNCERTAINTY VECTOR ADJUSTMENT

The target process was the evaporative stage of the liquor burning process with the
product flowrate increased from 10 to 12 m¥hr as the main disturbance, as described
in Chapter 3. In this investigation, an additional modelling error was introduced into
the model. Apart from the increase of temperature factor from 21 to 30°C in Chapter
4, the error of a decrease in feed density from 1300 to 1250 kg/m* was introduced.

The nonlinear control strategies studied with the UVA were the I/O and SHM

transformation. Two cases were investigated which were labelled as

o Case I: the closed loop dynamics of the liquor burning process with the
temperature factor as the only modelling error
o Case 2: the closed loop dynamics of the liquor burning process with both

temperature factor and feed density as modelling errors

The effects of different uncertainty vector parameters were also investigated in both
cases. The simulation results were compared with the dynamics obtained without the
new approach. The performance was assessed using the ITAE index. All ITAE
indices in simulations were computed on the basis of 2.5 hours time span. All
responses were calculated in deviation variables. The sampling time used was 0.01

hour for all simulations.
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5.6.1 Input Output Linearization
A two-input two output liquor burning process was studied as in chapter 4. The state

model equations were firstly rewritten in the form of (5.3) and the vectors were,
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The design and tuning parameters used were the same as those in Chapter 4 and are
summarized in the following table. The effects of three different sets of uncertainty
vector parameters which are listed in Table 5.1 were studied. The nominal ITAE
indices are shown in Table 5.2 for comparison with the indices obtained in Cases 1
and 2 tabulated in Tables 5.3 and 5.4. The closed loop responses for Case 1 are
presented in Figures 5.3, 5.4 and 5.5. Figures 5.6 to 5.8 show the simulation results

for Case 2.

Table 5.1: Design Parameters f?,.,c, PI Controller Tuning Parameters and Uncertainty
Vector Parameters for [/O

Design PI Controller Parameters Uncertainty Vector
Parameters, 5, Parameters
Bo=Bn | 1| Ka | 05 | Ko | 003 | &, o | o
Bo=fy |05 Ku | 325 | Ko | 002 [ & ] 2

o 60 T 60 53 0 0

Table 5.2: Nominal ITAE for Closed Loop Dynamics with No Modelling Error using

/O

Height

Density

No modelling Error

0.0004147

0.02402
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Table 5.3: ITAE for Closed Loop Dynamics with Temperature Factor as Modelling
Error using 1/0 (Case 1)

Case 1 ' Height Density

with uncertainty vector 0.0001405 0.03562
(81 =0, 8, =1and &,;=0)

with uncertainty vector 0.00009470 0.02131
(8 =0, & =2and 5, =0)

with uncertainty vector 0.0001743 0.04399
(=1, 5n=1and &;=0)

without uncertainty vector 0.0003096 0.1496

Table 5.4: ITAE for Closed Loop Dynamics with Temperature Factor and Feed
Density as Modelling Errors using I/O (Case 2)

Case 2 Height Density

with uncertainty vector 0.0002116 0.05752
(6, =0, 8. =1and &, =0)

with uncertainty vector 0.0001496 0.03344
(81 =0, 6, =2 and §y; = 0)

with uncertainty vector 0.0001424 0.06649
(6, =1, 82=1and §,; = 0)

without uncertainty vector 0.0004656 0.2307




Robust Controller Synthesis Using Uncertainty Vector Adjustment

5-19

Closed Loop Dynamics for Height (m)
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Figure 5.3: Closed Loop Dynamics for Case 1 using /O with 6, = (0, 1,0)

( = —with UVA——without UVA)




Robust Controller Synthesis Using Uncertainty Vector Adjustment

5-20

Closed Loop Dynamics for Height (m)
0.5 1 1.5 2
.lT‘ . ~ 1 4 -l
N e = !
time (hour)
Closed Loop Dynamics for Density (kg/m3)
1 1.5 2
=
g
i
=}
time (hour}
Closed Loop Dynamics for Temperature (deg.C)
1.5 2
kil
2
2
&
g
[F)
—
time (hour)

Feed Flowrate

Closed Loop Dynaimes for Feed Flowrate

{m3/hr)

CW Flowrate

{m3/hr)

Closed Loop Dynamics for CW Flowrate

time (hour)

1 1.5

time (hour)

without UVA )

( = —with UVA

Figure 5.4; Closed Loop Dynamics for Case 1 using I/O with &, = (0, 2, 0)
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Closed Loop Dynamics for Height (m)
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Figure 5.5: Closed Loop Dynamics for Case 1 using /O with §, = (1,1, 0)

(= —with UVA

without UVA )




Robust Controller Synthesis Using Uncertainty Vector Adjustment

5-22

Closed Leop Dynamics for Height (m}
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Figure 5.6: Closed Loop Dynamics for Case 2 using /O with §, = (0, 1, 0)
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Closed Loop Dynamics for Height (m)
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Closed Loop Dynamics for Height (m)
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5.6.2 Su-Hunt-Meyer Transformation

A three-input three-output system was studied as described in Chapter 4. The special

case of SHM transformation was investigated with and without the UVA.

model equations were rewritten in the form of (5.3) as shown below.

F(x)

g,(x)=

g(x)

gs(x) =

A (H,, ~Cogw (% -
CP.CW (xs - TCW - (T +1,
| Ax, x, (HV ~Coe (5 (T, +T.

The state
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The third manipulated input, steam flowrate, was derived from the temperature of the
heater discharge. As observed in Chapter 4, the two response curves follow closely
to each other. Therefore, the investigation on the closed loop dynamics of the steam
flowrate was omitted. Only the response of the heater discharge temperature was
studied in this research. As a result, the three manipulated inputs under investigation

here are feed flowrate, cooling water flowrate and heater discharge temperature.

The same proportional and integral controller tuning parameters were used as in the
previous chapter. Table 5.5 shows the controller tuning and the uncertainty vector

parameters.

Table 5.5: PI Controller Tuning Parameters and Uncertainty Vector Parameters for

SHM
PI Controller Tuning Parameters Uncertainty Vector Parameters
Ko =Ky 1.00 T 20 uvp, 0 0 1
K- =K, 0.06 T 30 uvp, 1 2 1
K=K 20.0 s 0 Y 0 0 0

Table 5.6: Nominal ITAE for Closed Loop Dynamics with no Modelling Error using
SHM

Height Density
No modelling Error , 0.003594 0.009492
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Table 5.7: ITAE for Closed Loop Dynamics with Temperature Factor as Modelling
Error using SHM (Case 1)

Case 1 Height Density

with uncertainty vector 0.0009050 0.2119
(8,,=0, & =1and 6, = 0)

with uncertainty vector 0.0009302 0.1357
(8, =0, 5, =2 and & = 0)

with uncertainty vector 0.002199 0.2178
(61 =1, 6,=1and §,;=0)

without uncertainty vector 0.0009055 0.5160

Table 5.8: ITAE for Closed Loop Dynamics with Temperature Factor and Feed
Density as Modelling Errors using SHM (Case 2)

Case 2 Height Density

with uncertainty vector 0.0005319 0.3478
(6, =0, 8,=12and §;=0)

with uncertainty vector 0.0003559 0.2240
(8,1 =0, 8, =2 and G =0)

with uncertainty vector 0.001730 0.3587
(G =1, &=1and 5 =0)

without uncertainty vector 0.0013934 0.8712

The above tables show the ITAE indices for the nominal case, cases 1 and 2 obtained

by SHM transformation. The closed loop responses for these two cases are shown in

Figures 5.9 to 5.14.
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Figure 5.9: Closed Loop Dynamics for Case 1 using SHM with 6, = (0, 1, 0)
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Figure 5.10: Closed Loop Dynamics for Case 1 using SHM with §, =(0, 2, 0)

(== =with UVA——without UVA)




Robust Controller Synthesis Using Uncertainty Vector Adjustment

5-30

Closed Loop Dynamics for Height (m)

Closed Loop Diynaimes for Feed Flowrate

time (howr)

m3/hr)
1 1.5 2 ¢
. \ ‘ 2
5 . 2
2 &=
= 3
4
24
time Chour) time (hour)
Closed Loop Dynamics for Density (kg/m3) Closed Loop Dynamics for CW Flowrate
m3/hr
. ( )
‘ g
r o
z g
2 =]
g =
= =
Q
time (hour) time (hour)
Closed Loop Dynamics for Temperature Closad Loop Dynamics for HD Temperature
{degC) (degC)
2
]
o [+
g g
5 E
g =
; 2
) =

time ¢hour)

Figure 5.11: Closed Loop Dynamics for Case 1 using SHM with 3, = (1, 1, 0)

( = =with UVA

without UVA)




Robust Controlier Synthesis Using Uncertainty Vector Adjustment 5-31

r Closed Loop Dynamics for Height (m) Closed Loop Dynaimes for Feed Flowrate
(m3/Mr)
0.5 1 L5 2
z
&
2
=
-]
5
=
0 0.5 1 1.5 2
time (hour)

time (hour)

Closed Loop Dynamics for Density (kgm3} Closed Loop Dynamics for CW Flowrate

(m3/hr)
2
= { P
o
2
Q
o
=
&)
time (howr)
i
Closed Loop Dynamics for Temperature Closed Loop Dynamics for HD Temperature
(deg G (deg. O
0.8 g
2
v 0.6 [
| 2
o
g o E
£ 02 fa
= =0 ; } ! i
04 0 0.5 1 15 2
time (hour)

time {(hour)

Figure 5.12: Closed Loop Dynamics for Case 2 using SHM with §, = (0, 1, 0)
( = =—with UVA——without UVA )




Robust Controller Synthesis Using Uncertainty Vector Adjustment

3-32

Closed Loop Dynamics for Height (m)

Closed Loop Dynaimcs for Feed Flowrate

04 f ; ¢ —

time (hour)

(m3/hr)
0 0.5 1 1.5 2
0.002
0.000 2
B _0.002 :
.6 B E:
= 3
-0,004 | 2
-0.006 1 0 0.5 1 L5 2
time (hour) time ¢hour)
Closed Loop Dynamics for Density (kg'm3) Closad Loop Dynamics for CW Flowrate
(m3/hr)
0 0.5 1 1.5 2
> 4 z
o
Z
<
[™
=
[
time (hour) time (hour)
Closed Loop Drynamics for Temperature Closed Loop Dynamics for HD Temperature
{deg C) (deg ©)
0 0.5 1 1.5
I 4
£
g £
g B
=N =
E =)
gl =

time (hour)

Figure 5.13: Closed Loop Dynamics for Case 2 using SHM with &, = (0, 2, 0)
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57 DiscussioN OnN RoBuUST CONTROLLER SYNTHESIS USING UNCERTAINTY

VECTOR ADJUSTMENT

The UVA has been applied to two nonlinear control theories, /O and SHM
transformation, using the evaporative stage of the liquor burning process. The
effectiveness of the adjustment is demonstrated by the significant improvements
observed in control performances in terms of ITAE indices and overshoots in
response curves. Before discussing the results obtained in the above section, a few
comments are made on the two problems associated with the original UVA discussed
earlier. Simulations have been initially performed using the original UVA. No
improvement in performance was observed. After the solution to problem one was
introduced, a slight improvement in ITAE was obtained. An even better performance
was achieved when the solution to both problems were implemented. Therefore, this
confirmed the necessity of the proposed solutions to ensure reasonable controller

performance in the presence of uncertainties in the process model.

The following sections provide discussion on the simulation results obtained in section
5.6. The overall effects on the process caused by the modelling errors were different
for the two nonlinear control schemes. The differences are explained below and
discussions is also provided on the selection of parameters for each strategy. It
should be noted that the third parameter 8,3 was kept at zero in all cases because the
control objectives are the density and the height. The control of the third output, the
temperature of the liquor in the flash tank, was deemed to be of no primary

importance by plant personnel.

57.1 Case 1: An Increase in Temperature Factor for Input Output
Linearization and Su-Hunt-Meyer Transformation

The error introduced in Case 1 was an increase of 9°C in the temperature factor. The

following discussions equally apply to both nonlinear strategies studied here. Based

on the ITAE indices in the nominal situation, the simulation results showed that the

error improved the control performance for the level control loop, but degraded the
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density control performance. Therefore, no adjustment was necessary for the height
control while a full adjustment was required for the density control. Hence the
suitable uncertainty vector parameters were {0, 1, 0). The appropriateness of the
parameters was checked with two other sets of parameters which were (1, 1, 0) and

(0, 2, 0).

Firstly, the performance obtained with parameters (0, 1, 0) was compared with that
obtained with (1, 1, 0). The objective was to show that any attempt to compensate an
error which has a positive effect on the closed loop dynamics will lead to a poorer
control performance. In the case of /O, the ITAE obtained with (1, 1, 0) was slightly
better than that without UVA, that is, (0, 0, 0). However, a significant overshoot was
observed in the first half hour which was unsatisfactory (Figure 3.5). When the
parameters (0, 1, 0) were used, an excellent control performance was obtained in all
aspects (Figure 5.3). The degradation in control performances of the liquor level
caused by using (1, 1, 0) is even more serious for the SHM transformation and
improvements were obvious when (0, 1, 0) was applied. The response curves are

shown in Figures 5.11 and 5.9, respectively.

Once the uncertainty vector parameter for the level control was determined to be
zero, an investigation was carried out to determine the effect of the increase of the
other parameter. Thus, the uncertainty vector parameter for the density control was
increased from 1 to 2. Improvements in control performance were observed for both
methods, as shown in Tables 5.3 and 5.7. Therefore, with the modelling error of an
increase of 9°C in temperature factor, the density control was improved as its
associated uncertainty vector parameter was increased. However, the dynamics of the
manipulated inputs appeared to become more vigorous and less stable as the
parameter increased. Since the flow controller dynamics is not considered in this

context, a further increase of the parameter is not recommended.

With the two parameter sets (1, 1, 0) and (0, 2, 0) simulated, it was demonstrated that

the parameters (0, 1, 0) were most suitable for the situation here. It should be noted
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that instability in performance was observed when negative values of parameters were

used during the simulation to determine the best set of parameters.

5.7.2 Case 2: An Increase in Temperature Factor and a Decrease in
Feed Density

Two errors were introduced into the dynamic model, that is, an increase in the

temperature factor and a decrease in the feed density. Unlike case 1, the overall

effects on the process caused by these errors were different for the two nonlinear

control schemes. The following sections explain the differences and provide

discussions on the selections of parameters for each scheme.

5.7.2.1 Input Qutput Linearization

Compared with the nominal situation, on the one hand, the overall effects of these
errors deteriorated the density control; on the other hand, the nominal ITAE index for
the height is almost the same as the ITAE when no UVA was used. Therefore, the
suitable uncertainty vector parameters could be either (0, 1, 0) or (1, 1, 0). The
simulation results in Figure 5.8 show that the parameters (1, 1, 0) improved control
performances for both density and height control. The ITAE index in Table 5.4 for
the height response is about three quarter of the value obtained with parameters (0, 1,
0). However, the parameters (0, 1, 0) provide a slightly ‘better density control and no
overshoot in the response curve of the height (Figure 5.6). The simulation also
shows that a better density control will automatically lead to a better height control,
which is due to interactions between the two variables. In addition, it was observed
that both height and density control were further improved when the parameters were
increased from (0, 1, 0) to (0, 2, 0) (Figure 5.7). Once again it appears that (0, 2, 0)
are the most suitable parameters, based on the ITAE indices. However, with the same
argument regarding the stability of the input dynamics as for case 1, the parameters
(0, 1, 0) were considered to be the most suitable for this situation and hence a further

increase of the parameters is not recommended.
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5.7.2.2 Su-Hunt-Meyer Transformation

In the case of the SHM transformation (Figures 5.12 to 5.14), the ITAE indices
showed that the introduction of the two errors lead to an improvement in height
control but a deterioration in density control. Therefore, parameters {0, 1, 0) were
suitable, using the previous arguments. The closed loop response for this case is
shown in Figure 5.12. When the parameters (1, 1, 0) were used, the ITAE index
obtained for the level control was larger than that for no adjustment case (see Table
5.4). This showed that any attempt to compensate a positive effect error leads to a
degradation in control performance. With the parameters increased to (0, 2, 0), the
control performance for density was further improved as expected. However, using
the same argument regarding the stability of inputs and the controller dynamics as
above, the parameters (0, 1, 0) were considered to be more appropriate than the

parameters {0, 2, 0) in this study.

5.8 CONCLUSIONS ON RoBUST CONTROLLER SYNTHESIS USING UNCERTAINTY

VECTOR ADJUSTMENT

The uncertainty vector approach was proposed to compensate for the deterioration in
control performance caused by modelling errors. As a result, the two nonlinear
control techniques, I/O and SHM transformation, became more robust and hence less
sensitive to modelling errors. The target process studied was the evaporative stage of
the liquor burning process. The development of an algorithm for the new approach
was detailed. Concluding from the simutation results, this approach should only be
applied when the overall effects of modelling errors degrade the performance. Any
attempt to compensate any modelling error that has a positive effect will lead to
degradation in performance. It is also important to note that the effects of modelling
errors are very specific for the control schemes implemented on the process.
Therefore, the overall effects of the modelling error should be investigated before any
action is taken. However, if the situation is not allowed as in most industrial
processes, a trial and error procedure will be necessary to determine suitable values of
the parameters. The recommended starting values are +/ since, in most cases, the

performance will be degraded by the modelling errors. The magnitude of the
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uncertainty vector parameters is also an important aspect. The performance can
usually be further improved by increasing the parameters which are limited by the

stability of the inputs and the controller dynamics.
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CHAPTER SIX

LYAPUNOV FUNCTION ANALYSIS OF
THE UNCERTAINTY VECTOR
ADJUSTMENT

6.1 INTRODUCTION

The uncertainty vector approach has been developed and implemented successfully
with the I/O and SHM transformation in the simulation of the evaporative stage of the
liquor burning process. The basic definition, preliminary study and practical aspects
of the approach have been established in the last chapter. In this chapter, the
investigation will continue on the theoretical aspects of the UVA. The analytical tool
used here is the direct method of Lyapunov stability theory. The stability properties
of the closed loop dynamics of the evaporative system obtained using the two
nonlinear control theories are examined. Using Lyapunov function, the theoretical
bound of the uncertainty vector and the modelling errors are determined for each
nonlinear control strategy to guarantee the asymptotic stability of the closed loop

system.

6.2 BACKGROUND

Stability theory draws conclusions about the behaviour of a system without actually
computing its solution trajectories. The first stability theory for the analysis of
arbitrary differential equations was developed by a Russian mathematician, Alexandr
Mikhailovich Lyapunov. In 1892, Lyapunov presented two methods for stability
analysis, which were the linearization method and direct method, in his PhD thesis
entitled The General Problem of Motion Stability (Lyapunov (English translated
version), 1992). The linearization method draws conclusions about the local stability

of a nonlinear system in the close vicinity of its steady state from the stability
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properties of its linear approximation. The direct method determines the stability
properties of a nonlinear system by constructing a scalar energy-like function (a
Lyapunov function) for the system and examining the time variation of the function.
Lyapunov not only introduced the basic definitions of stability, but he also proved
many of the fundamental theorems. However, his work was only brought to the
attention of the control engineering community in the Western World by the
publication of a book by La Salle and Lefschetz in 1961. Today Lyapunov’s
linearization method has established the theoretical justification of linear control,
while the direct method is an indispensable tool in the analysis and synthesis of

nonlinear systems.

Apart from being a method of stability analysis, an important application of Lyapunov
function is to design a robust and stable nonlinear controller with the existence of a
stable Lyapunov function as the design criteria. Many researchers have also used
Lyapunov’s direct method to estimate the performance of a closed loop system and

study its robustness. This chapter will focus on the latter application.

6.3 BRIEF LITERATURE REVIEW

6.3.1 Construction of a Lyapunov Function

One hindrance of using the Lyapunov's direct method in stability analysis of a specific
nonlinear system is the construction of a Lyapunov function for that system. Methods
for linear system have been well developed. However, the methods developed for
autonomous nonlinear systems are usually iterative and mathematically involved, for
example, Zubov (1964), Hahn (1967) and Loparo and Blankenship (1978). Michel et
al (1982) developed a computer software to generate Lyapunov functions. An
iterative procedure by Vannelli and Vidyasagar, 1985 yielded a maximal Lyapunov
function that is a rational function rather than polynomials as proposed in
aforementioned methods. Several authors have constructed Lyapunov function
candidates by studying and analysing nonlinear feedback systems, for instance,

Brokett (1966), Walker and McClamroch (1967), Weissenberger (1968) and Willems
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(1971).

6.3.2 Robust Controller Design by Lyapunov Functions

Robust nonlinear control for systems with uncertainty such as modelling errors and
unknown disturbances has received extensive attention in the past few years. Many
studies have been performed in the area of robust controller synthesis, for example,
Gutman (1979); Corless and Leitmann (1981); Chen and Leitmann (1987); Chen
(1988); and Qu and Dorsey (1992), but only a number of control schemes was
developed for the differential geometry based nonlinear control theory to operate
against specific types of uncertainties. Of those approaches mentioned, the Lyapunov

function method is of central importance.

For SISO systems, Kravaris and Palanki (1988) have proposed a robust controller
design for input output linearizable system with uncertainties satisfying some
matching conditions. In addition, Arkun and Calvet (1992) developed a stabilisation
method which loosen the matching conditions, and Slotine and Hedrick (1993) and
Pleau and McLellan (1994) provided systematic designs which required no matching
conditions for the I/O. For feedback linearization in input-state sense, three recent
papers have been written on robust stabilisation which are Khorasani (1989) and Kim
and Groves (1993) for autonomous systems, and Marino and Tomei (1993) for non-
autonomous systems. All these methods are conservative, require restrictive
conditions on the uncertainties; and are mathematically complicated limiting their

applications.

The literature on the robust control of MIMO feedback linearizable systems is very
limited. Zhou and Lee (1992) synthesised a robust generic model controller for
MIMO cases with no matching conditions required. However, it can only be applied
to first order systems and requires the estimation of the time derivatives of the state

variables. Therefore, the application of the algorithm is limited.
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6.4 MATHEMATICAL PRELIMINARY

In this section, the intuitive notions of asymptotic stability in local and global sense for
autonomous systems are introduced. The concepts are formally defined and their
practical meanings are explained. After addressing the background issue of stability,
the basic philosophy of Lyapunov’s direct method is explained and some relevant
theorems are presented. All the definitions and theorems presented in the following

sections are referenced to Slotine and Li (1991) and Vidyasagar (1993).

6.4.1 Concepts of Stability
Lyapunov’s theory abounds in a variety of notions of stability. In this study, the focus

is only on asymptotic stability in terms of local and global behaviour,

6.4.1.1 Local Asymptotic Stability

A system is said to be asymptotically stable in a local sense if there exists an
equilibrium state, such as the origin, and its system trajectory satisfies Definition 6.1.
Local means that the initial state has to be within a certain distance from the

equilibrium state.

Definition 6.1:
The equilibrium state x(¢) = 0 is said to be asymptotically stable if, for any R >

0, there exists 0 <7 < R, such that if ”x(O)H <r, then ”x(t)” <R forall t20

and x(t)—)O as f —» oo,

Essentially, local asymptotic stability means that the system trajectory can be kept
arbitrarily close, and eventually converges, to the origin by starting sufficiently close

to it.

6.4.1.2 Global Asymptotic Stability
The following definition characterises the global behaviour of an asymptotically stable

system.
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Definition 6.2:
If asymptotic stability holds for any initial state, the equilibrium point is said to

be globally asymprotically stable.

The concept of global stability allows the initial state to be at any distance away from
the equilibrium. For linear systems, the asymptotic stability is always global.
However, a nonlinear system which is locally asymptotically stable does not imply that

the system is globally stable.

6.4.2 Lyapunov’s Direct Method

The basic philosophy of Lyapunov’s direct method relates to the total energy of a
system. If the system dynamics are such that the total energy of the system is
monotonically decreasing with time, then the system, whether linear or nonlinear,
must eventually settle down to its equilibrium state. Thus, the stability of a system
can be concluded by simply examining the time variation of a single scalar energy

function.

6.4.2.1 Lyapunov Function

The objective of the Lyapunov’s direct method is to construct the scalar energy
function for the nonlinear system. This energy function is called Lyapunov function.
Before relating the Lyapunov function to the stability theory, the definition of a

positive definite function has to be introduced.

Definition 6.3:
A scalar continuous function V(x) is said to be globally positive definite if

V(0) =0and x#20 = V(x)>0 holds over the entire state space. If the
properties only hold when ||x(t)” < R, then W(x) is a locally positive definite

function.

The above definition implies that J has a unique minimum at the origin, in a certain

ball of radius R if it is locally positive definite, or in the entire state space if it is
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globally positive definite.

Lyapunov Function for Locally Asymptotic Stability
Let B denote the sphere or ball defined by Hx(t)“ < R in state space.

Theorem 6.1:
Assume that there exists a scalar function F(x) with continuous first partial

derivatives such that ¥{(x) is locally positive definite in By , and its time
derivative V(x) along any state trajectory of the nonlinear system is locally

negative definite in Bp. Then the equilibrium point at the origin is locally

asymptotically stable in Bg.

Lyapunov Function for Globally Asymptotic Stability
To assert global asymptonc stability of a system, the ball B in the local theorem has
to be expanded to the entire state space. In addition, the scalar function ¥(x) must be

radially unbounded, that is, V(x) — % as x| —> .

Theorem 6.2

Assume that there exists a scalar function (x) with continuous first order
partial derivatives such that ¥(x) is globally positive definite, V(x) is globally
negative definite and V(x) —> o as x> . Then the equilibrium point at

the origin is globally asymptotically stable.
The proof for the above theorems can be found in Slotine and Li (1991).

Remark

For a given nonlinear system, many Lyapunov function candidates may exist and one
Lyapunov function may yield more conclusive results than the others. If any of the
conditions is not met for a particular Lyapunov function candidate, the stability

property of the system will be inconclusive and a different Lyapunov function
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candidate should be tested.

6.5 CONSTRUCTION OF LYAPUNOV FUNCTIONS THROUGH TRANSFORMED

LINEAR SYSTEM
The Lyapunov function analysis requires one to search for a function which satisfies
some pre-specified properties as described above. The main problem of the analysis is
the construction of such a function for a specific system. As mentioned in section
6.3.1 of this chapter, there is no simple and unifying way of finding stable Lyapunov
functions for nonlinear systems. This is the fundamental drawback of the direct
method. However, systematic techniques for constructing Lyapunov functions for
linear system are well-established and can be found in literature such as Kailath
(1980), Slotine and Li (1991) and Vidyasagar (1993). This chapter proposes a
general method for constructing valid Lyapunov functions for a state feedback
linearizable nonlinear system making use of the existing techniques from the linear
control theory. Using the nonlinear control theory, the nonlinear system is mapped
onto another coordinate system or space in which the system behaves linearly (the
transformed linear system) under feedback conditions. Vidyasagar (1993, p397) states
that the integral curve of a transformed vector field in a new coordinate system is the
same as the integral curve of the vector field in its original coordinate system. In
other words, the following theorem can be stated. A proof of this theorem is also

given for each nonlinear control scheme.

Theorem 6.3
The original nonlinear system is asymptotically stable if and only if the
transformed linear system is asymptotically stable provided the following

assumptions are satisified.

OB O] BT PP
(2)  x = 0 is the only solution for h(x) = 0 for /'O or x = 0 is the only
solution for T(x) = 0 for SHM.
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Corollary 6.1
A strict Lyapunov function exists for the original nonlinear system if and only
if a strict Lyapunov function exist for the transformed linear system. The two
Lyapunov functions are related by the transformation relationships employed if

assumptions (1) and (2) are satisfied.

Theorem 6.3 and Corollary 6.1 can be simply proved by the fact that the transformed
linear system is a subspace of the original nonlinear space. Therefore, suppose that
the original nonlinear system is asymptotically stable, the transformed linear system
must be asymptotically stable. This is true for any control system which satisfies

assumptions (1) and (2).

The second assumption is a very strong condition which many systems are unlikely to

meet. However, this is necessary for F(h(x)) to a Lyapunove function in x.

The converse of Theorem 6.3 and Corollary 6.1 can be proved by showing that the
Lyapunov function for a nonlinear system is actually a composite function of the
Lyapunov function of the transformed system and the transformation relationships by
assuming that the transformed linear system is asymptotically stable, or a Lyapunov
function exists for the transformed linear system. The nonlinear control theories

considered here are the /O and the SHM transformation.

6.5.1 Proof of Theorem 6.3 for Input Output Linearization
Consider the decoupled transformed input cutput linear system in state space form

obtained from the transformation of a nonlinear system using the JO:

where
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C 0 1 0 - o )} i i ]
I i oo
- 0 R
0 0
Q 0 1 : i i
B Py b
Bir, Bir, oo
A= -t ’
: . 0
P 0 10 o)
R 1o :
U B 0
H 0 H r
0 Pl 0 0 1 [
L =B Pajra-y
I P Prrn |
i 0 e e 0 ) r b
0 07 :
1 _
0 0 (ry-13 Vv
ﬁi(rl —]) '-)-)-1--;-- !
B=|"""" Y= and v =
0 0 ym Vv,
0 . 0 r, _—
g - 0 1 ym
L ﬁm{r,..w 1) - .

Suppose a linear feedback control is applied to the transformed linear system in (6.1)
to asymptotically stabilise the system about the origin. For brevity, a proportional

controller with a gain matrix K, is used for the analysis here.

With v = K. y substituted, (6.1) becomes

Ay+ B(KC y)
(A +BEL)Y oo (6.2)
= Cy

el
It

The eigenvalues of C in (6.2) must have negative real parts since the closed loop
dynamics of the transformed linear system (6.2) is asymptotically stable about the

origin.
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The Lyapunov function can be constructed for (6.2) with techniques from linear

control theory.

Choose a negative definite matrix Q such as -I for the following equation,

so that a unique positive definite solution P is obtained.

A strict Lyapunov function for the transformed closed loop linear system (6.2) is

V(Y] = ¥ Py e (6.4)

The time derivative of the above Lyapunov function is

) = ZL(;—; yj) ......................................................................... (6.5)

which is negative definite as V7is a strict Lyapunov function. And,

V(y)=> 90 as [y = 00 oo (6.6)

Since y = h(x), therefore the Lyapunov function in (6.4) is also a function of x.

V() = V(B(x)) = V(X) iii i (6.7)

provided that x = 0 is the only solution for h(x) = 0.

When [x||— o,

ly| = o, therefore
V(%) => 00 a8 X = 00 oo (6.8)

Substitute y = h(x) into (6.5) to obtain
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Py) = le[gi j’f]

oV é’y,]i

Zi:lz;’=l[:§7j ax]-

(202
7(x)

Since V(y) is negative definite, (x) must be negative definite. The implication of

(6.7), (6.8) and (6.9) is that the strict Lyapunov function for the origin in the original
nonlinear x-space is a composite function of the Lyapunov function in the transformed
linear y-space and the transformation relationships which, in this case, transform the

states to the outputs, thatis, y = h(x). Hence, the proof is completed for /O.

6.5.2 Proof of Theorem 6.3 for Su-Hunt-Meyer Transformation
The proof for the SHM transformation is similar to that for the I/O. Similar proof can
also be found in Su et al (1983). Suppose a linear feedback control is applied to the

transformed linear system to stabilise the system asymptotically about the origin.

where C=A +BK,; p=K_.E and the matrices A and B are shown in (2.12) of

Chapter 2.

Since the transformed linear system is asymptotically stable by the gain matrix K,

the eigenvalues of matrix C must have negative real parts. The positive definite
matrix P is computed as explained above. Therefore, the strict Lyapunov function for

the closed loop transformed linear system (6.10) 1s

The time derivative of the above Lyapunov function is
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ple) = 2[5; ] ..................................................................... (6.12)

which is negative definite as ¥ is a strict Lyapunov function. Moreover,
(E) o as [e] -
By definition, &, =7, forj=1, .., nand T;is a fanction of x. Therefore,

V(E) = V(TE) = V(X) oinininins (6.13)

provided that x = 0 is the only solution for T(x) = 0.

Since |x]| > ¢, — oo, therefore V(x) = 0. And,

'e) = 2 ‘{a«: SEJ

no | OV
z.\57)
v T,

PP 1[,” %J O (6.14)

= (5)
V()

I

I

Therefore, the Lyapunov function for the nonlinear system is a composite function of
the Lyapunov function for the transformed linear system in &-space and the
transformation relationships, 7(x) for j = 1, ..., #. Thus the proof is completed for

SHM transformation.
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6.6 THEORETICAL BoOUNDS FOR UNCERTAINTY VECTOR AND MODELLING

ERROR
Modelling errors are always present in the mathematical representation of a process.
In the last chapter, an uncertainty vector was proposed to describe the overall effect
of modelling errors. Apart from using the above Lyapunov analysis to predict the
stability of a nonlinear system, the analysis can also be used to establish the theoretical
bound of the uncertainty vector and the modelling error within which the system
remains asymptotically stable at the origin. This section will substantiate the
discussions and findings in the last chapter and provide a complete analysis on the

proposed UVA method.

6.6.1 Theoretical Bounds for the Uncertainty Vector Using Input Output
Linearization
Assume that the Lyapunov function for the nominal nonlinear system has been

determined using Corollary 6.1,
V(y)=y Py and y = h(x)

Here we assume that there is no modelling error or uncertainty vector in y = h(x).

Therefore, V' of the nominal system is also the Lyapunov function of the adjusted

nonlinear system. The time derivative of V" with u,gusted 18

: [ov oV ov | .
Viguse = 2 X
x, Jx, ox,
ST UV OTUTUURUUUIURURUI (6.15)
av
= E;:| (f + guadjustcd)
Therefore, using (5.13), the above equation becomes
, av -1
Vdiusted = {_5_;] (f + g(—Aadjum) (B +C- v)) ....................................... (6.16)

where
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ﬁlrl Lgi L;:-_ao‘ hl T ﬁ]r L Lf+5h
Aadjustcd = . . *
ﬁmr L L;M+I5hm T ﬂmr L Lt:":lshm
ZButhh] ZBH’, Lfsh\
k=0 . k=1 .
B = : and C = :
Zﬁmkl’fhm Z;Bkakh
_k:O N _k:'l K

For the system to be asymptotically stable, }* has to be negative definite. That is,

[ZZJ(erg( adjmd)_l(B+C—v)) R BN (6.17)

{6.17) defines the boundary of the uncertainty vector implicitly for systems with well-
defined relative order for each output. When the relative order of each output is
greater than 1, the isolation of & in (6.17), if possible, involves heavy algebra which
leads to a mathematically complicated expression. However, when the relative order
of each output is equal to 1, the bound of the uncertainty vector can be defined

explicitly. That is,

i4
8] < o e (6.18)
o SR [
L P I R |
I
0 0 ﬁml
where || . || indicates the Euclidean norm.

It should be noted that ¥ in (6.18) is the time derivative of the Lyapunov function of

the nominal system. That is,

o= [‘;ﬂ(ngu)
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The proof of (6.18) is given below. When , =7, =---=r =1,
—f} . 0
| 0” L, h L, h
Aadjusted = A = . .. 0 : :
' . L h, L, h,
0 O ﬂml : )
ﬁlO 0 0 ﬂ]l O 0 L[ h]
0 0 .
B = . 0 h+| | . 0 :
. - . p Lf hm
0 0 ﬂm() 0 0 ﬂml

A2 ? [Ls."l] o m
¢ P N RN e

. 0 -
- L L h
0 0B, |-°"
Substituting A, B and C into (6.17) gives

{%J (f+e(-a)" (B+C-v))

év Ao Y o
o e e
+|:E:|g(—A ) : -_.o_’ AO [E:IS< 0
0 .- 0 8,
That 1is,
oV Vv P 0000 Sh
P+ o ef—a Y 0 e [P s < o
0 e O ﬂml

where the relation of X = f + g(~A)” (B - v) has been used. This implies that
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ﬁ“ 0 ... 0
O L PR S 2.1 PO
Ax : . -.0 Ax
0 - 0B,
Therefore,
v P 00 9 Jh
Vo< [Zigat] ? | Bt N (6.19)
ax . 0 ox
0 0 ﬁml

One of the sufficient conditions for (6.19) to be valid is when

oV By 92 Ah
7 V| 4| 0 = i |[dh]g
i I ” L%t:lg 2o 0 |:§x}
0 -0 B,

where | . | indicate the absolute value of a scalar quantity.

The issue here is that the above inequality is the sufficient condition for (6.19),

therefore, the stability of the adjusted system. Hence, it is conservative.

Furthermore, one of the sufficient condition for (6.19) to be true is when

oV B Qo ? Ah
14 K lgar| O o |48
7| > {5x}8 RN [5x}lﬁﬂ
0 -0 ﬂml

Therefore, further conservative condition is established. The final conservative upper
bound of & to guarantee the stability of the closed loop system is

7]
By 0 0

av 4l 0 e Zh
o lgAT Y e L 2=
SR

O .- 0 ﬂmi

1Bl < and (6.18) is proved.




Lyapunov Function Analysis of the Uncertainty Vector Adjustment 6-17

6.6.2 Theoretical Bounds for the Uncertainty Vector Using Su-Hunt-
Meyer Transformation
Consider the nonlinear system with » = m, the expression for the adjusted manipulated

inputs is shown below:

T LT | | LT
Wogiusted — (--‘;'1 : - - L (620)
Lom! Ll L Tn
where
LGi II Lgm T;
G = . H
LS| I;' LBM 1:'

It is assumed that the Lyapunov function for the nominal nonlinear system has been
determined using Corollary 6.1. The Lyapunov function candidate in (6.11) depends
on T, .., T, which are not functions of the uncertainty vector when n = m. Therefore,
the Lyapunov function for the nominal system is the same as that for the adjusted
system if the same gain matrix is used for both cases. It is important to note that the
Lyapunov function for the adjusted system will be different from the nominal one for

system with n > m since the adjusted transformed states 77 agjsuted Tsadjusted ATE

.....

functions of not only the original states, but also of the uncertainty vector.

With the Lyapunov function constructed, the bound of the uncertainty vector for the

system with 7 = m 1s,
_ﬁV}.
—|x
| Ox
ov o
fx ax

As indicated in (6.19), ¥ is the time derivative of the Lyapunov function of the

B < Temmm = T mT s (6.21)

nominal system.
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Proof:
With U,gjusted in (6.20) substituted into(6.14),

j:t+l LFII LBT;
. oV o : . .
Vadjugtcd = 5_ f+gG : - : - AR I Y O (6.22)
). 4
i’::+m Lf]; LST::
Now, it can be seen that
E o %]
ox, dx, L 1, Ox, ox,
G=| : : |g and o= o [
oI, 0T, 7| [2% . 2%
_axl é‘xn_ _axl 5xn_ \

Substituting the above equations into (6.22) gives

( T;H-] Ll‘ Tl‘ )
f+gG™ S B
7:1+m Lf T;p
Vadjusted |:iri} ( _57]' aT; ] N —57; 52} 1)
ox s ol B
ox, ox, Ox, ox,
— & - : : |9
o7, éT or, a7,
L\ | dx, ox, | | Ox, fx, | )
ELA
ox, ox,
Since n = m, g and : : are square matrices. Furthermore, the
o7, T,
| Ix, dx,, |

existence of transformation guarantees that the two matrices are invertible. Hence,
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( Ty | [LeT )
f+gG™' B
T;H-m Ll‘T;z
Vs = 2| [ en . an]en | em
X x, ox, | |éx, Jx,
-lgg'| : : : : |8
or, . on| |on .. oL
L dx, dx, | | % ax, | J)
That is,
"oy 1, L1
Vadjusmd = |- f+gG" Co|- : -9
ox
- B Y;Hm Ll'T;
v’
- & ix-5
ﬁp(x )
?:l+l LI'T;
where the relation of x=f + g G * |~| i {ihasbeen used.
T;H-m Lf]:r

¥ gusea MUSE be negative definite to guarantee the system to be asymptotically stable.

Therefore,

With the same conditions and derviations of (6.18), a conservative upper bound for &

can be found and (6.21) is proved.
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6.6.3 Existence of the Bound for the Uncertainty Vector
Using the Lyapunov function of the nominal system, the bound of the uncertainty
vector for both /O and SHM transformation are defined. The following informal

proofs are performed regarding the existence of the bound defined in (6.18) and
(6.21).

The norm used here is the Euclidean norm in order to guarantee the continuous
property of the bound. The existence of the bound in (6.18) and (6.21) can be proved
by the fact that the system is asymptotically stable; hence, the states are continuous
and bounded. Therefore, the bounds must exist for the norms in the two equations.
That is, the norm of the uncertainty vector in both cases must be less than some
values, Lyo for the closed loop system using IO, and Lsin for systems employing

SHM transformation, respectively.

6.6.4 Theoretical Bound for Modelling Errors

The definition of the uncertainty vector in (5.10) of Chapter 5 implies that the
Euclidean norm of the uncertainty vector is an estimate of the norm of the modelling
eITorS. Ther_efore, the upper bound of the uncertainty vector is an esitmate of the
upper boundary of the modelling errors. That is, in order to guarantee the asymptotic

stability of the closed loop system,

Overall Effect of V|
Modelling Error ~ 1 | (6.24)
ﬂll 0 O
oV 4t 0 : Zh
2T la A ual
ox .0 ax
0 0 ﬁml
for /O with , =r, =---=r, =1, and
Overall Effect of |V ]
‘ Modelling Error ............................................................ (6.25)
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for SHM transformation with n = m.

6.6.5 Theoretical Bound for Uncertainty Vector Parameters

The theoretical bound for the uncertainty vector parameters can be determined from
(6.18) and (6.21) for 'O and SHM transformation, respectively. By the definition in
(5.10) of Chapter 5,

51 §P[(—-i]) 5_;1' O “ne 0 —X-"]
5;2 = 5-"2(5—-3&2) = 0 5” 0 —?2 Eap (_i)
o) LGl Lo 0 5 l-x

Taking norm on both sides,
O TEY T ) - S (6.26)

As a result of the norm in (6.18), (6.21) and (6.26), it is too complicated to explicitly
determine the bounds for the uncertainty vector parameters. Therefore, instead of
establishing a complicated mathematical relationships, (6.18) and (6.21) will be used

as conditions for the selection of parameters.

6.6.6 Remarks

Even though (6.18) is only valid for the uncertainty vector in VO with r; = 1, the
above discussions of (6.18) are applicable to system with r; > 1 since (6.18) is derived
from (6.17) which is a general expression for any system. The same argument is valid
for (6.21) describing the uncertainty vector in SHM transformation. In other words,
despite the difference in the algebra involved, the implications of (6.21) are also true

for system with n > m.
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6.7  SIMULATION RESULTS AND DISCUSSIONS

6.7.1 Construction of Lyapunov Functions

The evaporative unit of the liquor burning process associated with the Bayer process
is used here as a continuation of the previous investigation. Two simulation programs
have been written with MAPLE V.3 to generate the Lyapunov function for the
evaporative unit when the /O and the SHM transformation were used as the control
strategy. The output of the two simulation programs are detailed in To et al {1996b).

The Lyapunov functions constructed with the simulation program are:
Vo= 04167dx,” +04167dx," oo (6.30)
for the I/O, and

V = 01051x107 +2672672dx,’ +0.1422 x 10° In(0.762 + d,)’
+0.7733 x 107 In(0.762 + di, ) + 0.0001019 dx,’

for the SHM transformation. The gain matrices used are:

: -1 0 0
-5 0
K, = {O } forl/O,and K, = |0 -006 0 | for SHM.
0 0 -20

It can be easily seen that the Lyapunov function in (6.30) is positive definite for any
value of dx; and dx,. However, (6.31) is less obvious because of the third and the
forth term involving the term d,. Since ¥ in (6.30) is positive definite for any value
of dx; and dx;, a plot of V' with dx, = dx, = 0 is included in Figure 6.1 to show that
V is also positive definite within the operating range of dx,. Therefore, Vin (6.31) is
positive definite within the entire operating range or locally and hence is a Lyapunov

function candidate for the system.
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The time derivative of the two Lyapunov function candidates in (6.30) and (6.31) are

too complicated to be shown here. They can be found in To et al. (1996d).
However, the plots of ¥ at dx; = 0 for both nonlinear control theories are provided in
Figures 6.2 and 6.3 to show that ¥ in both cases are negative definite. It is noted
that the level surfaces of ¥ at other values of dx; have the same shape but at different

levels and none of the surfaces is found above the plane ¥ = 0.

1.8E+7

1.6E+7
1.4E+7
1.2E+7
1.0E+7
8.0E+6
6.0E+6
4. 0E+6 4
20E+6 | /
0.0E+0 t t t +

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

dx2

Figure 6.1: ¥/ versus dx; with dx, = dx, = 0 for SHM
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I/O: dV/dt at dx2=0

Figure 6.2: Level Curve of ¥V at dx; = 0 for /O

SHM: dV/dt at dx2=0

Figure 6.3: Level Curve of V atdx; =0 for SHM
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In short, a global Lyapunov function (6.30) is constructed for the closed loop
dynamics using the I/O while the Lyapunov function (6.31) determined for the SHM
transformation is only valid in a local sense because the transformation for dx; is only
valid when d, > -0.762. However, it should be noted that the steady state value of
the density of the liquor in the flash tank x; is nominated to be 1.762 tonne/m’.
Therefore, it would only be under very abnormal situations that the density would fall
below 1 tonne/m® so that the locality of the Lyapunov function for the SHM

transformation is reasonable.

6.7.2 Determination of the Bound for the Uncertainty Vector

With the Lyapunov functions constructed, the bound of the uncertainty vector or the
modelling error can be established using (6.18) and (6.21) for /O and SHM
transformation, respectively. The calculation of the norms encountered no difficulty,
despite the nonlinearities and complexities in V . However, in order to determine Lio
and Lan, it was necessary to locate the minimum or the lower bound of the
denominators in (6.18) and (6.21). As a result of the nonlinearities, especially the
square roots in the Euclidean norms, the determinations of these bounds become very
difficult for MAPLE. However, since the establishment of the existence of Lyo and
Lsmv is more important than the actual determinations of Lyo and Lgng and also
because these values have virtually no practical consequence, it was decided that the
bounds of the uncertainty vector or the modelling errors should be expressed as a

function of x.

6.8 (CONCLUSIONS

The theoretical bounds of the uncertainty vector and the modelling errors have been
established for both /O and SHM transformation using Lyapunov function analysis.
The analysis showed that an upper bound exists for the uncertainty vector in order to
guarantee the stability of the closed loop system, and this bound is also the upper

bound of the modelling errors by the definition of the uncertainty vector.
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Besides the above robustness analysis, it was proved in this chapter that the Lyapunov
function of the nonlinear system is a composite function of the Lyapunov function of

the transformed linear system and the transformation relationships.

With the theoretical analysis here and the practical aspects in the previous study, the
study of the new UVA procedure is considered to be completed for the I/O and SHM
transformation schemes. It can be concluded that the uncertainty vector is simple and
effective. Most important of all, the adjustment requires no restrictive conditions as
other existing techniques. The uncertainty vector exists provided the nonlinear system
is feedback transformable to a linear system by the /O and the SHM transformation

under nominal situations.
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CHAPTER SEVEN

SIMULATION AND CONTROL OF &

TRIPLE EFFECTS EVAPORATOR

7.1 INTRODUCTION

In the previous chapters, two nonlinear control strategies were applied to the
simulation of a single effect industrial evaporator. The results showed that the control
performance obtained using the nonlinear control strategies, especially the /O, were
better than the traditional SISO linear controller. Robustness studies of the nonlinear
control strategies led to the development of UVA; thereby, more appropriate control
action, computed based on the effect of modelling errors, can be applied to the system
affected by modelling errors.  The effectiveness of the new procedure was
corroborated by the improvements observed in the simulation of the single effect
gvaporator. In this chapter, a more complicated problem is proposed to challenge the
nonlinear control theories and the new UVA procedure. The target process selected
is a triple effects evaporator designed on the basts of a new five effects evaporation
unit associated with a new liquor burning process in Alcoa’s Wagerup alumina

refinery. The five effects evaporator could not be used due to proprietary reasons.

The model of the triple effects evaporation process was developed using mass and
energy balances and then the simulation was implemented using MAPLE V.3. The
control performances were investigated using both linear and nonlinear control
schemes. The UVA procedure was applied to the nonlinear control system to

demonstrate its effectiveness against modelling errors.

The literature on the control of multiple effect evaporators in the chemical engineering

application is limited. Shinskey (1988) discussed the linear control of a double effect
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evaporator and Burdett and Holland (1971) modelled the dynamics of a multiple
effect evaporator. Other studies related to multiple effect evaporators are in the area
of food engineering, for example, Tonelli et al (1990), Quaak and Gerritsen (1990},
Runyon et al (1991) and Driscoll et al (1995). Therefore, the contribution of this
chapter is significant in providing insights into the nonfinear control of a muitiple

effects evaporator in chemical engineering applications.

7.2 TRIPLE EFFECTS EVAPORATOR DESIGN

7.2.1 Process Description

The basic function and structure of the triple effects evaporator are the same as the
single effect evaporation unit described in Chapter 3. The two designs treat
approximately the same amount of feed liquor. The difference is that the steam
requirements of the triple effects design is significantly less than the single effect
evaporator since the triple effects design is more energy efficient. The simplified
process flow diagram is shown in Figure 7.1. Tables 7.1 to 7.4 tabulate the steady
state values of each stream. Some of the values have employed more than three
significant figures in order to ensure that the time derivative of each state variable in
the dynamic model equations presented in the following section is kept as close to
zero as numerically possible at the specified steady state conditions. The product
density and the inventory in each flash tank are still the prime control objectives. The
triple effects evaporator employs the countercurrent feed design where the feed
enters the effect operating at the lowest pressure and is pumped from one effect to the
other in the direction opposite to that in which the vapour is flowing. Thus the
product leaves the evaporator in the effect that functions at the highest pressure. The
main characteristics of the triple effects evaporator design in this context which are
different from the typical countercurrent feed design are that the second and third
effect operate at the same pressure and the vapour exiting from these two effects
provides the energy requirement for the first effect. Thus the heat source for both
second and third effects is the fresh steam and no steam is required for the first stage

under normal operating circumstances. The unusual arrangement here is able to
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provide additional degrees of freedom in control. The reason will be clear in the later

section which describes the proposed control scheme for the operation.

Condenser

Steam (S)

Cooling Water
€W

Hot Well

(HW) Tank |

Heater 1

lorD,

Feed (F) ——™

Figure 7.1: Flowsheet of Triple effects Evaporator Design

7.2.2 Dynamic Modelling

The dynamic equations used to model the triple effects evaporator design were
derived from mass and energy balances around the flowsheet in Figure 7.1. The
model is for a six-input six-output system representing a mathematically complex and
highly nonlinear unit operation. The strict validity of the equations was not
established because the unit is yet to be constructed. Nevertheless, the model is
considered to give an adequate description of the operation for the purpose of the
evaluation of control strategies, based on the experience gained from the single effect
evaporator operation. Moreover, the simulation will definitely provide some insight

and useful information for the future operation.




Simulation And Control of A Triple Effects Evaporator

7-4

Table 7.1: Steady State Values of Process Variables for Evaporator Stage 1

Stream F Dy Vi
Description Feed to | Underflow from | Flash Vapour
Effect 1 Flash Tank 1 | ex Flash Tank 1
Avg. Flow at Temp. m’/hr 29.7 2290 29499.92
Mass Flow at Temp. | tonne/hr 41 3298 = 7.059981
Temperature °’C 66 90.6 74.6
SG at Temperature kg/m’ 1380 1440 0.24
Heat Capacity kl/kg 329 3.25
Boiling Point Elevation °C 16
Pressure (Gauge) kPa 38.1
Latent Heat kJ/kg 2234.1
Stream HF, HD,
Description Feed to | Discharge from
Heater 1 Heater 1
Avg. Flow at Temp. | m'/hr | =2296 = 2296
Mass Flow at Temp. | tonne/hr | 3304.9 33049
Temperature °C =903 | =91.87509747
SG at Temperature kg/m® | =1439 = 1439
Heat Capacity kl/kg =325 =3.25
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Table 7.2: Steady State Values of Process Variables for Evaporator Stage 2

Stream P, D, Va
Description Feed to | Underflow from { Flash Vapour
Effect 2 Flash Tank 2 | ex Flash Tank 2
Avg. Flow at Temp. m’/hr 23.7 2300 7136.23
Mass Flow at Temp. | tonne/hr 34.1 3427 = 4.924000055
Temperature °C 90.6 129 105
SG at Temperature kg/m’ 1440 1490 0.69
Heat Capacity kl/kg 3.25 332
Boiling Point Elevation °C 24
Pressure (Gauge) kPa 126
Latent Heat kJ/kg 2190.7
Stream HF, HD,
Description Feed to | Discharge from
Heater 2 Heater 2
Avg Flow at Temp. | m’hr | =2305 = 2305
Mass Flow at Temp. | tonne/hr [ 3431.9 34319
Temperature °C =128.6 | =129.7613460
SG at Temperature kg/m’ = 1489 = 1489
Heat Capacity kl/kg =332 =3.32
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Table 7.3: Steady State Values of Process Variables for Evaporator Stage 3

Stream P, D; Vs
Description Feed to | Underflow from | Flash Vapour
Effect 3 Flash Tank 3 | ex Flash Tank 3
Avg. Flow at Temp. m’/hr 19.6 2300 4019.3
Mass Flow at Temp. | tonne/hr 29.2 3542 =2.773321582
Temperature °C 129 135 105
SG at Temperature kg/m’ 1490 1540 0.69
Heat Capacity kJ/kg 332 3.41
Boiling Point Elevation °C 30
Pressure (Gauge) kPa 126
Latent Heat kl/kg 2190.7
Stream HF; HD;
Description Feed to | Discharge from
Heater 3 Heater 3
Avg. Flow at Temp. | m’hr | =2302.5 = 2302.5
Mass Flow at Temp. | tonne/hr [ 3544.9 35449
Temperature °C =134.9 | =135.3933081
SG at Temperature kg/m' | =1539.6 = 15396
Heat Capacity kl/kg 3.41 3.41
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Table 7.4 Steady State Values of Product Stream and Utilities

Stream P; CwW S
Description Product | Cooling Water Total Live
to Condenser Steam
Avg. Flow at Temp. m’/hr 17.1 =~ 77.4681 4153.92
Mass Flow at Temp. | tonne/hr 26.3 = 774681 = 8.97246615
Temperature °C 135 27 144
SG at Temperature kg/m® 1540 1000 2.16
Heat Capacity kl/kg 3.41
Pressure (Gauge) kPa 406
Latent Heat kl/kg 2110.5
Stream Sy Sz S;
Description Live Steam | Live Steam | Live Steam to
to Heater 1 to Heater 2 Heater 3
Avg. Flow at Temp. m’/hr 0 2905.5574 | 1248.343287
Mass Flow at Temp. | tonne/hr 0 =6.276004 | =2.69646215
Temperature °’C 144 144 144
SG at Temperature kg/m’ 2.16 2.16 2.16
Pressure (Gauge) kPa 406 406 406
Latent Heat kl/kg 21105 2110.5 2110.5
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7.2.2.1 Assumptions

The assumptions involved in the derivation of the dynamic equations are similar to

those for the single effect evaporator listed in section 3.1.2.1 of Chapter 3 and they

are summarised as follow:

Rl AT L

11.
12.

Total liquor volume in heat exchangers and piping is equivalent to a tank of area
of 23.12 m?, and height of 2.21 m. This capacity is added to the inventory of each
flash tank. It is also assumed that the tank size is the same for all effects.

The hot well approach temperature is assumed to be constant at 5 °C.

The liquor boiling point elevation is assumed to be constant.

The cooling water temperature is assumed to be constant.

The specific heat capacity of liquor is assumed to be constant.

Flow controller dynamics are not simulated.

All temperature equations are solved consistently in °C unit.

The process is assumed to be adiabatic.

The volume of the liquor remains constant in all ancillary pipe works since the

pipes run full.

. The evaporation rate is calculated on liquid water basis.

The setpoint is assumed to be constant at the corresponding steady state value.
The heat transfer efficiency is usually larger than 98% according to the plant

personnel. Therefore, the efficiency can be assumed to be 100%.

7.2.2.2 Dynamic Equations

The model which is composed of nine state equations with six inputs and six outputs

is summarised below. The manipulations of the equations were performed by MAPLE

V.3 and the print-out in Appendix D shows the combined model equations.

1.

Stage 1

dh Opr, — 1, _QD,

di A
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dp, _ Que Pur, — 1y, +(mv1 'FQHF;)pl

dt A h

aT O, Prir, Comn, Tam, =1y, My — Coi Ty (Q”Fl Par _m’/’) (7.3)

a4
dt Co, Abp,
where
Op, = On +0u O vttt et
OC'W CP cw (T; _(1; + Zl - IE:W)
B, T e s
| H, ~Coow (5-(1.+17,))

Iy = + iR POV OO UUPIUPP R PITOP
o i erﬁ Pur, CP,HF‘,
Ty = Pr O Coe T+ Op Con i = 91 O, o 7.7)
Prr, Qmﬁ C}D,m«"l
PrQrtp On —p 0
Pun = —— (‘2 B e (7.8)
HE,
2. Stage 2
dh, - QHF& N m”z _ QD: 79
P I (7.9)
dp, _ QHFz Pug, — My, + (mv QHF;) P (7.10)
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daIl, Orr, Prr, Coan, Tup, — My, H,-Cpy I (er2 Pur, ~ mvz)

dt Cp A, b p,

where

Op, = Op +Cm - O v

Op 0y Cpy T + 105, Hy -0y py Cp, T,
2 HV

2

Mg, H,

T = T.+
o i e
: P O

, Prr, Cr o,

P On Coy T + P, Op, Co2 b — P2 Op, Coa 1,

T, = =4 S s s
S Pur, Orr, CP.HFZ
A Qn + P2 Op, — P2 O,
Prp, = e s
O,
3. Stage3

%_ _ QHF,ﬂmVJ—QDs

dt A

dp, _ Qm?1 Pz, — My, +(mV3 - QHF,)P}

dt A, h,

dl; _ Our, Prs Corm, Tap, =, H, —Cpy 1 (QHFS Pur, “m;g)

dt Crs 45 1y 3

where
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R A o ¢ (7.20)
W, = On P2 Con Ty ¥t Hy =Cn Py G L (7.21)
3 HV}
tirg, H
T, = T+ O RO (7.22)

QHF, Par, CP.HF,

oo P2 G Tt O Cos b ps Oy Coals (7.23)

HE,
Prr, QHF, CP,H}«;

P2 sz + 24 QD, — P QP, (7.24)

Ppgr, = 0
HF,

The input and output variables are listed in 7able 7.5. All these variables were
selected after consulting the plant personnel and based on the study of the single
effect evaporator. It should be noted that all the state equations are input-linear

except d7,/dt and dT,/dt.

Table 7.5 List of Variables for the Triple Effects Evaporator

Manipulated Inputs Outputs
u; Or Vi hy
P o ¥z 7
us O, b hs
Uy Qcw Ya Ty
Us s, Ys Pe = P;
Us i, Vs Pr = P;
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7.2.3 Selection of Control Strategies _

The study of the single effect evaporator showed that the I/O provided the best
control performance. Therefore, the control strategies used for the investigation of
the control of the triple effects evaporator are the /O with the classical linear
controller using proportional and integral action as the bench mark. The SHM
transformation is not applicable in this case because the state equations d T, /dt and
dT,/dt are not input-linear and the algebra involved for either the simplified or
original solution algorithm is too complicated to be implemented in MAPLE. The
design method of YO was modified in order to solve a more general class of process
models because of the two input-nonlinear state equations present in the triple
evaporator model. In addition, the tedious manipulations in isolating the f vector and
the g matrix from the complicated state equations using MAPLE were proved to be
non-trivial because of the zero-equivalent problem. Details can be found in Appendix
A. The proposed modification is based on the results of the study of a SISO case for
the /O by Henson and Seborg (1990).

7.2.4 Proposed Input Output Linearization for a General Class of Process
The method for applying the /O to a more general class of nonlinear process is
developed in this section. In particular, input variables may appear nonlinearly and

the models are not required to have a relative degree one.

Consider the following general class of autonomous models with » states, m inputs

and w outputs,

x = f (x, u)
y, = h(x) i=1..,w
where fis a C° vector field on R” and A (x), #,(x), ..., b, (x) are scalar fields on R".

In other words, the mapping f and the functions 4,(x), 4,(x), ..., 4, (x) are smooth in

their arguments, that is, all entries are real-valued functions of x with continuous
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partial derivatives of any order. In addition, y, x and u represent vectors with y €

R”, x € R, and u € R, respectively.

The algorithm proposed here is an extension of the I/O by Kravaris and Soroush
(1990) and the discussion of the general SISO system by Henson and Seborg (1990).
The I/O algorithm has already been detailed in Chapter 2. The proposed algorithm
can be used to determine the static state feedback law of the I/O for more general
systems, in which the inputs may appear nonlinearly. However, it is assumed that the

process is minimum phase and all states can be accurately measured or estimated.

7.2.4.1 Relative Order

To obtain the static state feedback law, the relative order characterises how the inputs
affect the outputs directly. The relative order 7, associated with the i output of the
general system (7.25) is defined to be the smallest non-negative integer such that the

following row matrix

(L 'm(x) (L 'k (x) a(L; ' (x))
fu, Ju, du

has at least one nonzero element at the steady state x,. The total relative order of the

system is defined to be the summation of the relative orders 7; for 1 <7 <w.

7.2.4.2 Design Method
Consider the minimum phase system (7.25) with equal number of inputs and outputs

(m =w), the decoupled input output behaviour is described by the following equation.

LT dky
rczz;)ﬁlk dtkl =W
] D (7.27)
> 7 Y
ﬂm - = Vm
E Y dt
k
where ::" = Lh(x)
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According to the implicit function theorem (Henson and Seborg, 1990), the static
state feedback law to be used to determine the original nonlinear inputs u, that is, the

solution of (7.27), exists if the following conditions are satisfied.

1. (7.27) must be a function of u. That 1s,

|:c9v[. dv, 9y

has at least one non-zero element for 1 <7< m.
Ju,  du, ou,,

2. For every x, and v, there exists a unique U,.

The first condition is always satisfied if the system has well-defined relative orders.
The second condition is to ensure that a unique inverse or solution exists for (7.27).
This condition may not be satisfied when the system has multiple steady states. In this
case, more than one solutions exists and the validity of each solution would depend on
the operating region of the actual system and the numerical technique used to solve

(7.27).

If the inverse of (7.27) or a unique state feedback law exists and the state variables are
measured for the decoupled system, the MIMOGLC structure can be constructed as
described in section 2.4.2.1. Using the same proportional and integral controller for

each (v, — y,) pair, the control law and the closed loop transfer function are exactly

the same as (2.33) and (2.34) of Chapter 2, respectively.

7.3 SIMULATION RESULTS AND DISCUSSIONS

7.3.1 Specifications for the Simulation

This section presents the relevant data used in the simulation for the closed loop
dynamics of the triple effects evaporator. The closed loop responses were
investigated with a disturbance of approximately 3 m’/hr increase in the product
flowrate of Stage 3. The study is divided into two sections: the study of the nominal

situation with no modelling error and the study of robustness which demonstrates the
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effectiveness of the UVA proposed in Chapter 5 by introducing modelling errors into

the model.

The MAPLE simulation program for the I/O is written based on the procedures
developed in Appendix A and is provided in Appendix E. The state feedback law and

a sample of the output can also be found in Appendix E.

The relative order of each output is obviously 1 because the six output variables are
in fact six of the nine state variables. The closed loop responses of the triple effects
evaporator were obtained using local linearization (Linear) and I/O. The sampling
time used was 0.02 hour. The PI controller tuning parameters and design parameters
B, in VO are listed in Table 7.6. The tuning parameters and 25',.,‘ were selected based
on the results of Chapter 3 to achieve the most suitable responses in terms of the input
dynamics. The ITAE performance indices for each control strategy were computed
on the basis of 10 hours time span, since this was how long it took for the responses

to completely settle down.

Table 7.6: PI Controller Tuning Parameters and Design Parameters B,.k

- Design Parameters, B PI Controller Parameters
ﬁw 1 Bn 0.5 Ko 10 ™ 60
By 1 B, 0.5 Ko 10 - 60
Bm 1 ﬁﬂ 0.5 Ko 10 s 60
B 1 B, 05 | Ko | 500 | g, | 60
)éso 1 ﬁﬂ 0.5 Kes 10 Ts 60
ﬁﬁo 1 ,236[ 0.5 Kes 10 Tis 60

The simulation of the closed loop dynamics of the triple effects evaporator in presence
of a specific disturbance was successfully implemented using MAPLE V.3. However,
several problems were encountered and solutions were proposed to redress each

problem.
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MAPLE was unable to compute the term exp(A(t-r)) in the analytical solution (A.2) in
Appendix A of the linearized model equations (A.1). This could be due to memory
limitations caused by the fact that A is a 9 by 9 matrix. Therefore, instead of using the
linear analytical solution, the state trajectory was obtained using the simple Euler
method. However, it was found that the temperature equations were very sensitive to
a small change in the input variables using this method. Therefore, it was concluded
that the system of nonlinear differential equations was ill-conditioned and suitable

scaling of the temperature equations were necessary. The scaling factors used for the

equations 7', 7, and 7, were 100, 10 and 10, respectively.

Despite the fact that MAPLE cannot compute the term exp(A(t-r)), MAPLE was able to
compute the eigenvalues of the characteristic matrix A. The matrices A, ¥ and I are
the Jacobian matrices with respect to the vector of states x, inputs u and disturbances
d, correspondingly, and can be found in Appendix F. The last three rows of the
matrix A confirmed that scaling should be applied to the equations 7, 7, and 7,
since some of the elements in the correspronding rows are 10 to 10000 times larger

than the rest.

The eigenvaiues of the characteristic matrix were determined using MAPLE and
recorded in Appendix F. All the eigenvalues except the one for T} which is virtually
zero are negative or have negative real parts. This implies that all states or outputs of
the process are open loop stable except 71. Therefore, T; was included in the control
scheme even though the product temperature of the single effect evaporator can be

left under the open loop control.

The zero elements in disturbance matrix I imply that the specified disturbance has no
effect on the states: h ,h,p, ,p, and T3, in terms of the open loop dynamics.
However, the simulation using the Euler method showed that the disturbance affected
all the states. The implication is that part of the nonlinearity of the model is lost in the

process of linearization using the first order Taylor series and, unlike the single effect
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evaporator model, the use of a linearized model is not sufficient to represent the triple
effects evaporation process. Apart from the Euler method, other numerical methods
can be used to approximate the solution trajectory of the model such as modified
Euler method, Runge-Kutta method, Adams method and Adams-Moulton method.
All these methods are detailed in Gerald and Wheatley (1989). However, the Euler
method was selected for this study because of its simplicity in implementation. The
simulation results showed that the method is sufficient for the purpose of comparing
different control strategies and is able to provide better approximations than the

linearization method.

7.3.2 Study of the Nominal Situation

The study of the nominal situation presents the closed loop response of the triple
effects evaporator against the specific disturbance described above assuming that
there is no modelling error. The ITAE indices for each output using local
linearization and IO are tabulated in Table 7.7. The response curves of the output,
state and input variables are shown in Figures 7.2 and 7.3 for local linearization and

for I/Q, respectively.

Table 7.7: ITAE for Triple Effects Evaporator (Nominal Case)

Control Strategy Local Linearization Input Output Linearization
h 0.0640 0.0000488
h _ 0.0213 0.0000379
hs 0.0264 0.00465
7 0.0461 0.00702
Pe, =P 0.00664 0.0000209
P = P 0.00268 0.000452
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Tinear: Density (1000 kg/m3} vs Time {(hr)
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Linear: Temperature (deg. C} vs Time {hr)
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Figure 7.2: Closed Loop Dynamics of Triple Effects Evaporator using Linear Control

(Nominal Case)
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[7O: Liquor Flow (m3/hr} vs Time {thr)

1 6 Time

Figure 73 (¢} —Qr +0, U0,

2

7O: Steamn Flow (1000 kg/br} vs Time (hr}

o 1 2 Time a 4 -

—15+

~axl

Figure 7.3 (d): + mg, U my,




Simulation And Control of A Triple Effects Evaporator 7-23
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[7O: Temperature (deg. C} vs Time (hr}
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Figure 7.3: Closed Loop Dynamics of Triple Effects Evaporator using I/O Control
(Nominal Case)
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The control performance of the triple effects evaporator for the specific disturbance of
a 3 m/hr increase in product flowrate obtained using the linear proportional and
integral controller were found to be better than the case for the single effect
evaporator, using the ITAE indices and the observed response curves (Figures 7.2
and 7.3). However, comparing the linear and the nonlinear controller, the
performance of the nonlinear controller was about 10 to 1000 times better than the
linear counterpart in terms of the ITAE indices shown in Table 7.7. The most
obvious difference in the two control performances can be found in the response
curves of the state variable T, (Figures 7.2(e) and 7.3(g)). In both cases, the state
variable 7, was under open loop control. However, 73 remained at approximately
zero at all time in the case of the nonlinear controller while large offsets were
observed in the linear control. The control actions provided by the nonlinear
controller (Figures 7.3(c), (d) and (h)) were faster and more accurate in reaching set
point values than the linear ones (Figures 7.2(b), (d) and (f)). The nonlinear controller
counteracted the effect of the disturbance within the first sampling time while the
linear one took more than 5 sampling times to respond. The responses obtained using
the input output linearization can be considered as dead-beat responses. However,
since the input dynamics were not considered here, dead-beat responses might not be
desirable. The plant personnel confirmed that all the simulated control actions

obtained here were feasible and implementable on the plant site.

7.3.3 Study of Robustness

The robustness of the linear and the nonlinear controller was studied by introducing
parametric errors into the model. The results given below were obtained by
introducing two parametric errors which were an increase of 9°C in the temperature
approach T, of the condenser and a decrease of 80 kg/m’ in the feed density pr. The
UVA procedure was applied to the I/O to correct the degraded control performarnce.
Table 7.8 show the ITAE indices for local linearization and /O with and without
UVA. Figures 7.4 and 7.5 provide the closed loop dynamics of the triple effects
evaporator for the linear and nonlinear controllers, respectively.  The control
performance obtained using the /O with uncertainty vector parameters of (10, 0, 0, 0,

0,0, 10, 0, 0) is shown in Figure 7.6.
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Figure 7.5: Closed Loop Dynamics of Triple Effects Evaporator using I/O Control
(Robustness Study without UVA)
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Figure 7.6: Closed Loop Dynamics of Triple Effects Evaporator using /'O Control
(Robustness Study with UVA)
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Table 7.8: ITAE for Robustness Study of Triple Effects Evaporator with Two

Modelling Errors
Control Strategy | Local Linearization /O

without UVA with UVA

h 0.186 0.00922 0.00366
hy 0.106 0.0000379 0.0000379

h 0.0314 0.00465 0.00465

1 0.131 0.0218 0.00345
Pr = P2 0.0260 0.0000209 0.0000209

Pr =P 0.00314 0.000452 0.000452




Simulation And Control of A Triple Effects Evaporator 7-39

7.3.3.1 Discussions on Robustness Study without Uncertainty Vector
Adjustment
For the linear controller, the deterioration in control performance was minimal when
the parametric errors were introduced. The new ITAE indices were approximately 0
to S times higher than the nominal values (see Tables 7.7 and 7.8), which agrees with
the previous conclusion that the single effect evaporator using the linear controller is
more robust than the nonlinear one. The deteriorations in controller performances
using /O were only observed in the output variables 4, and Ty (Figures 7.3(a), 7.3(g),
7.5(a) and 7.5¢9)). The ITAE indices for A and T\ were approximately 10 and 100
times higher than the nominal situation (see Tables 7.7 and 7.8). In both situations of
linear and nonlinear control schemes, the responses of the product density remained
unchanged in spite of the introduction of the two parametric errors. This implied that
the triple effects evaporator design is more robust to the parametric modelling errors

tested here than the single effect design.

7.3.3.2 Discussions on Robustness Study Using Uncertainty Vector Adjustment

The deterioration observed in the control performances of the output variables /; and
T can be improved by applying the UVA procedure proposed in Chapter 5. The
results in the previous section clearly demonstrate the effectiveness of the proposed
adjustment. Since only the control performances of /; and 7, deteriorated, the
uncertainty vector parameters used were (10, 0, 0, 0, 0, 0, 10, 0, 0). Also, because
the model equations for the triple effects evaporator design are less susceptible to
changes, it was necessary to use larger values of adjustment parameters, for example,
a value of 10, to correct the degraded control performances. Table 7.8 shows that the
ITAE indices for A; and T) obtained using the UVA were approximately 39% and
15% of the values without UVA, respectively. The response curves of 4, and 7 for
the cases with and without the UVA are given in Figure 7.7, and the improvements
in performances can be clearly seen in this figure. The uncertainty vector adjusted
control actions, shown in Figures 7.6, were completely different from the situations
without the UVA (Figures 7.5). Despite of the great similarity between the adjusted

controls and the control action determined for the nominal situation (Figures 7.3),
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the final steady state in Figure 7.6 is different from those in the other figures. It
implies that there is a possiblity of multiple steady states existed in the system.
Further investigation is necessary to study the steady state and dynamic behaviours of

the system.

7.4 FURTHER TEST FOR UNCERTAINTY VECTOR ADJUSTMENT

The effectiveness of the UVA was further examined by introducing more parametric
errors into the system with the uncertainty vector parameters fixed at (10, 0, 0, 0, 0,
0, 10, 0, 0). This test demonstrates that the proposed procedure can actually improve

the robustness of a nonlinear control system.

The additional modelling errors were a 4°C increase in feed temperature 7, a 3°C
increase in cooling water temperature 7cw, and a 5 J/kg/°C increase in the specific
heat capacity of the product stream Cps. Therefore, there were five modelling errors
in total. The simulations were carried out in the same way as described in section 7.3
of this chapter. The response curves of the output, state and input variables with and
without the UVA are very similar to those observed in the case of two modelling
errors (Figures 7.5 and 7.6), and therefore, they are omitted to avoid unnecessary
repetitions. The ITAE indices for the scenario with and without the UVA are given in
Table 7.9 below. Once again, only the control performances of A and 7)
deteriorated further due to the three additional modelling errors. The ITAE indices of
the rest of the output variables remained unaffected and were about the same as their
nominal values. When the UVA with (10, 0, 0, 0, 0, 0, 10, 0, 0) as the parameters
was applied, the performances greatly improved. Comparing this with the case
without the adjustment, the percentages of improvements were approximately 80%
and 90%, respectively, which were even higher than in the case for the two modelling
errors. The reason is that the performances in this case deteriorated more than before

and hence there was a bigger margin for the adjustment to improve.

Since there was no change in the simulation conditions and the same uncertainty
vector parameters were used, the introduction of the UVA to the control system has

not only corrected the modelling errors and has thereby improved the control
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performance, but has also successfully improved the robustness of the I/O.

Table 7.9: ITAE for Robustness Study of Triple Effects Evaporator with Five

Modelling Errors
Control Strategy I/0 without UVA 1/0 with UVA
n 0.0132 0.00292
h 0.0000379 0.0000379
h; 0.00463 0.00463
T 0.0370 0.00412
Pr =P 0.0000209 0.0000209
Pr = Ps 0.000456 0.000456

7.5 CONCLUSIONS

The study in this chapter has extended the results of previous investigations to a
higher level by designing a nonlinear control scheme for a triple effects evaporator.
The triple effects evaporator was designed on the basis of a new five effects
evaporator in Alcoa’s Wagerup refinery. A dynamic model for the triple effects
evaporator was constructed by performing mass and energy balances around the
system. The control schemes used were the classic PI linear controller and the
modified I/O for a general class of nonlinear processes. The SHM transformation is
not applicable in this case because it is restricted to input-linear systems only. The
input and output variables were selected based on: the results of the single effect
evaporator presented in Chapter 3; the advice from plant personnel; and the analysis
of the characteristic matrix of the linearized model. The simulation results showed
that the control obtained using the I/O was superior than the one using the linear
controller, based on the ITAE indices. The robustness study demonstrated the
effectiveness of the proposed UVA by individually introducing two and five modelling
errors into the dynamic model of the triple effects evaporator system. Overall,
compared with the single effect evaporator design, the triple effects evaporator is a
better design in terms of energy saving, control and robustness. Furthermore, the use
of a more complicated model in this chapter has successfully proved that the proposed

UVA procedure of Chapter 5 has the ability to correct the adverse effects of
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modelling errors and to improve the robustness of a nonlinear control strategy.
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CHAPTER EIGHT

USE OF STATE OBSERVERS IN

NONLINEAR CONTROL

8.1 INTRODUCTION

Geometric nonlinear control strategies explored in this thesis assume the complete
accessibility of the states for the computation of the transformation relationships.
Since this is not usually the case in real plant situations (due to one reason or the
other), the design of an observer to generate an estimate that converges
asymptotically to the actual states is necessary. The state estimates can then be used
to implement the nonlinear control algorithm. This chapter evaluates two types of
state observers, which are the Geometric Nonlinear Filter (GNF) developed by Bestle
and Zeitz (1983) and the Extended Kalman Filter (EKF) (Watanabe, 1992) for

chemical engineering applications.

The target system used in this study is the single effect evaporation unit of the liquor
burning process described in Chapter 3. MAPLE V.3 is once again used as the
computing environment. According to Kailath (1980), it is convenient to set the input
at any time to zero for the state observer design since the effect of a nonzero (but
known) input is merely to change the values of the state vector. This assumption will
be used here. Therefore, the open loop situation will be investigated to briefly
illustrate the idea of GNF and EKF. The results obtained here using the open loop

state observer are equally applicable for the closed loop situation.

8.2 BRIEF LITERATURE REVIEW ON GEOMETRIC NONLINEAR FILTERS

The basic idea of the design method of GNF is the same as that of the nonlinear

controller itself. It transforms the nonlinear model to a linear form, known as
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observer canonical form, through the use of a nonlinear state transformation and
output injection so that the well-developed linear theory can be used in the filter gain

computation.

The existence of transformations to the observer canonical form has been addressed
by Thau (1973) and Bestle and Zeitz (1983). Thau (1973) gave a sufficient condition
for the asymptotic stability of the origin of the error differential equation. Assuming
that a transformation exists, Bestle and Zeitz (1983) provided an alternative approach
to obtain the GNF design without actually computing the transformation. This
alternative GNF design is used in this study. A discussion of the GNF design by
Bestle and Zeitz (1983) is given below and it can also be found in Walcott et al (1987)
and Isidori {1995).

Another GNF design introduced by Krener (1984) and Frezza et al (1988) is the
asymptotic GNF technique which uses the modified and approximate observer
canonical form. This technique is a combined structure of the Bestle and Zeitz’s GNF
design and Kalman filter. As a result, it accounts for state and measurement
perturbations and results in solutions very similar in nature to the Kalman filter,
Unlike the Bestle and Zeitz’s GNF, this design requires explicit determination of the
transformation which could present a problem in chemical engineering application
because of the complex mathematical manipulations of the necessary equations which
are usually highly nonlinear. To the best of the author’s knowledge, the GNF has
been mostly used in the electrical and mechanical engineering areas and this is the first

time that this technique will be applied to a chemical process system.

8.3 GEOMETRIC NONLINEAR FILTER

The following sections briefly describe the method of GNF for a MIMO nomnlinear
system. The relevant equations for obtaining the transformation relationships which
transforms the nonlinear system into the observer canonical form are given. The
derivation of these equations are omitted since further details are available in Walcott

et al (1987). The observer design is discussed in section 8.3.2.
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8.3.1 Transformation of Nonlinear Systems into Observer Form

We consider the following multivariable autonomous nonlinear system with w

outputs,
1 = f(x)
" (X) 8.1
g m(e) = | 3| e———————— (8.1)

where fis a C* vector field on R" and #,(x),...,A, (x) are scalar fields on R". In other
words, the mapping f and the functions #(x),...,4,(x) are smooth in their
arguments. y and x are vectors with y eR™ and x eR", respectively. It is desired

to determine a nonlinear transformation T: R” — R", where

such that (8.1) is transformed into the MIMO observer canonical form shown below.

) —B] 0 ¢‘1(Y)
N
0 B, [60
i €, C, ] e (8.3)
ey C,
y = g'sz =1 |5
_€II+12+...+2, Cw

where the square matrices B, € R**% and the row matrices C, eR'*" are

0 0 0
, L4+
l M p— e
B, = . 0 and C, = (0 - 01 0 - O
n
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with i = 1,--»,w . Theintegers / ,---,/, are the observability indices defined below.

Observability
The nonlinear system (8.1) is observable if the following observability matrix is non-

singular on R” near the steady state.

[ d(Lh) |
(5

d(Li ')

]
i

d(.rf;h)
d(Lh,)

d(L’,*.‘ ‘)

where /,,+--,1  are non-negative integers and /, + 7, +---+1, =n and the functional

operator d denotes the gradient of a scalar field.

Starting Vectors

The starting vectors for generating the Jacobian matrix of the transformation can be
determined using the observability indices and matrix. The proof can be found in

Walcott et al (1987) and Isidori (1995). The w starting vectors are:

o or T |5
0"51 a§]+;l é§l+1‘+---+f,._1

where T denotes the matrix transpose.

Jacobian of Transformation

With the w starting vectors determined, one can proceed to obtain the following

equation for the Jacobian of the desired transformation:
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T
L [ad“’f,ﬂ o adt g 2L
It é¢, Iz
ad’f, or . ad"'f, o1 Do e, (8.6)
é§l+l, agl-ﬂl :
adof’__a—T- ad’w“‘f,_é’__'r____
; a§l+!1+---+l,_l 0‘,§I+ll+---+s‘,,_1
The transformation (8.2) is obtained by integrating the above Jacobian matrix.
8.3.2 Observer Design
For the MIMO system (8.1), the observer is governed by the following equation.
N B, 0 ) b, (Y)
E = E—| 1 |=K(F-¥) e, (8.7)
0 B, $.(¥)
where ~ denotes the estimated value and
[ k. 0 0 |
kl,z, -1 0
0 k,,
K = :
kz,x, -1
0
0 ko
0 0 kw‘," -
Now, we define the error as
€ = B m e (8.8)

Hence, the error satisfies the linear differential equation:
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B, 0
e = SRR S U PRSPPSO TP (8.9)
0 5
where
0 0 -k,
1 —k,
B, = . ! (i=1...,w)
0 1 -k,
The characteristic polynomial for the error differential equation (8.9) is
P(s) = H:"zl(k,.‘ﬁ th stk st +s"‘) ................................. (8.10)

Hence, the convergence behaviour of (8.9) can be easily assigned by the appropriate

choice of the elements of K. The condition for stability is that all the roots of (8.10)

must have negative real parts.

8.3.3 Alternative Observer Design

As indicated in the above section, the determination of the transformation involves
integrating the Jacobian matrix with the nonlinear equations as its elements. In other
words, we need to solve a system of partial differential equations. The current
version of MAPLE V.3 is unable to handle partial differential equations. Therefore, an
approximation of the transformation is necessary. Bestle and Zeitz (1987) suggested

an alternative approach based on linearizing the observer equation (8.7) about the

-~

estimates &, where i=/_ 1 +1,,---, 1, +1, +--+1 . For (8.1), the alternative

design is given by the following equation:

X o= f(R) + gE)(Y — BE)) oo (8.11)

where




Use of State Observers in Nonlinear Control 8-7

T T T
g(x) = T, 2x] |52 e e
é,& ﬁf;l 55‘1*“1 5§JL+:2+---+1,,

Equation (8.11) will be used to obtain the observer design for the single effect

evaporator given in the later section.

8.4 EXTENDED KALMAN FILTER

This section reviews the design method of the discrete-time extended Kalman filter for
a nonlinear system having Gaussian white noise in its measurement. Further
discussions on EKF can be found in Watanabe (1992) and Ray (1981). The basic idea
of EKF is to linearize the nonlinearity by applying the first order Taylor series about
the current state estimate.

Consider an autonomous nonlinear model of the discrete-time form

x(t+1,) = Fx()u(@) o)) (8.12)
¥(8) = h(x()u(e), ()] oo (8.13)

where f and h are C vector fields on R”. In other words, the mapping f and h are
smooth in their arguments, that is, all entries are real-valued functions of x with
continuous partial derivatives of any order. y, x and u represent the deviation vectors
with y € R”, x € R”, and u € R", respectively. o and v are the zero-mean Gaussian

white noises having covariance matrices Q and R.

By taking the Taylor expansion of (8.12) at x{f)= i(t|t‘),m(r): 0 and of (8.13)
around x(1) = i(r |- ts), v(t) = 0, where i(t]t - ts) denotes () given X(f-1,),
{8.12) and (8.13) become
x(t+1,) = £(&(e]e) u(e), 0,1) + ¥ (x(1) - (¢ ] 1)) + GO (1) o (8.14)
y() = n(E(e]r 1) u),0,1)+ BE)(x(0) - 2(t|t - 1,)) + I(E)0(F) ... (8.15)
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Ry = 0000,

07 x(t)

x(t)=&(t|t) o{t)=0

_ ‘?f(x(’l“(‘),@(t),t)
G(t) = do(1) (s a0
H{) = 5h(x(t),u(t),u(t),t)

é’x(t)

x(r)=%(t|t-) v(t)=0

5() = c?h(x(t)c;t((?),u(t),t)

x(t)=&(t]e - £ )oo{t)=0

Applying the Kalman filter algorithm (Watanabe, 1992) to (8.14) and (8.15), the
algorithm for EKF is therefore:

1. Given (1), obtain (¢ +7,) using the initial condition of i(0|0) = £(0),

e+t |ty = F(R(E)E) 0(E), 0 1) oo (8.16)
2. Obtain the filter error covariance matrix P{z + 7, |#) using the initial condition of

P(0/0) = P(0),

P(t+1,|t) = FO)P(t|)FT(0) + G)Q)GT () oo (8.17)

3. Compute the filter gain K at time £ + £,

H(t +1)P(t +1, [)H (e +1,)+)
K(t+2,)=P(t+1,|t)H (1 +1,) ...(8.18)
Je+t)R{E+2,)T (t+12,)
4. Given the output y(t + 1‘,), determine the current state estimate at time ¢ + £,
f)+

K(t+1,) (y(t +1,) - (&t + 1,

&(r+1,

t+1,)=%t+1,

..(8.19)

) ult +1,),0,¢ + 2‘))
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5. Update the filter error covariance matrix

P(t+t, |t +2,)=(1-K(+1) B+ ) P(t +1,

8.5 SIMULATION RESULTS

The simulation example used is the single stage evaporation unit of the liquor burning
process of Chapter 3. MAPLE V.3 was used to implement the simulation for both
observer designs (GNF and EKF). The scenario investigated is the open loop
response of a 2 m’/hr increase in the product flow. The sampling time used in each
case is 0.05 hour and the time span is 1 hour. All process variables are presented in
deviation values. The same two outputs system described in Chapter 3 were
considered. They are the inventory level and the density of the liquor discharge of the
flash tank. The initial conditions of states were assumed to be zero in both GNF and
EKF designs. The tracking performance of each filter is measured by the integral time-
weighted absolute error (ITAE) performance index. In this case, the error is defined

as stated in (8.8).

8.5.1 Determination of Actual Plant States

The determination of the actual plant states required the solution trajectory of the
three state equations (3.1), (3.2) and (3.3). The three ordinary differential equations
were solved using the numerical routine in MAPLE V.3 after the analytical and Laplace
routines were unable to provide a solution because of the complex algebra involved.
Gaussian white noise using the identity matrix I as the covariance matrix was added to
the computed values of the states to represent the actual plant states. Therefore, the

actual model with the noise s

0001 0 0
(1) = fx(f)u())+} 0 000001 O |o()
0 0 0001 ... (8.21)
100 0001 0
) = [o I o}[ [ 0 o.ooom}m(t)

where f (x(t), u(t)) represents (3.1), (3.2) and (3.3) in the standard form of (2.11).
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8.5.2 Implementation of the Geometric Nonlinear Filter

The first step in implementing the GNF for the liquor burning process is to compute
the observability matrix and hence the observability indices. By trial and error, the
observability indices obtained were /, =2 and [, = 1. Then the Jacobian matrix of the
transformation is determined. Since MAPLE V.3 does not have the ability to solve the
partial differential equations here, the alternative GNF design provided in section

8.3.3 was applied. The observer gain matrix used in the simulation was

which gave the following characteristic polynomial with all three roots equal to -1.
P(s) = (1+2$+sz) (1+s)

The final observer design equations are too long and complicated to be included in
this thesis. Further details can be found in To and Tadé (1996e). However, it is
important to note that these differential equations cannot be solved using the
analytical or Laplace routine in Maple V.3 and using simple Euler method caused
serious numerical errors in the results. Therefore, the more sophisticated numerical
dsolve routine in MAPLE V.3 was used instead. The open loop response curves for
each state are shown in Figures 8.1. The ITAE indices are shown in Table §.1.

These results are discussed below,

Table 8.1: ITAE for GNF and EKF

GNF EKF
Height 0.000750 0.000209
Density 0.351x107 0.156x107
Temperature 0.000395 0.000438
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8.5.3 Implementation of the Extended Kalman Filter
To implement the discrete time EKF, it was first necessary to convert the continuous
time model equations (3.1) to (3.3) to discrete time form using the finite difference

techniques such as the forward difference approximation (Seborg et al, 1989). That

x(t+1) = x(t)+f(x(t),u()) 2,

The reason for using this technique is its simplicity in implementation which is the
samne reason for choosing the discrete time EKF over the continuous time format. In
addition, the discrete time EKF requires only simple matrix algebra to solve the
discrete Ricatti differential equation on-line in order to determine the filter error
covariance matrix at each sampling time. However, since the finite difference
technique is used, the choice of sampling time is very important. This is discussed

further in the next section.

The initial condition of the filter error covariance matrix P(O) was assumed to be 0,

The simulation results and the ITAE indices are shown in Figure 8.2 and Table 8.1,

respectively.

8.6 DISCUSSIONS

The reason for the use of 0.05 hour (180 seconds) as the sampling time for the
simulation was that serious numerical round-off error was experienced in the state
estimation of the liquor discharge temperature of the flash tank when the value of 0.1
hour (360 seconds) was employed. In the industry, the sampling time used is usually

around 30 seconds so that numerical instability is less likely to occur.
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The open loop response curves in Figures 8.1 and 8.2 and the ITAE indices in Table
8.1 show that the tracking performance of EKF is better than the GNF for the
estimation of height and density. This is because the filter gain of EKF was
continuously adjusted based on the information of the noise covariance matrices Q
and R while the filter gain using GNF was constant. However, the tracking
performance of the EKF for the temperature variable was poorer than that of GNF, as
it is shown in the two figures and the performance indices in 7able 8.1 (0.000438 for
EKF and 0.000395 for GNF). The degree of the nonlinearity in this case is far greater
than the case for the height and the density. Hence, the results here showed that the
GNF is much better than the EKF in coping with systems having high degree of
nonlinearity. The performance of EKF increases with decreasing sampling time. This
is entirely due to the forward difference numerical technique used to convert the
continuous time model into discrete time form. It is recommended that a sampling
time of less than 0.05 hour should be used to get closer to the industrial situation of

about 30 seconds (0.00833 hour).

The computational time required to determine the states at each sampling time for the
GNF is significantly longer than that for the EKF. The results here are opposite to the
findings in literature, such as Bishop and Antoulas (1994) and Frezza et al (1988).
This is because, in this study, the transformation could not be determined due to the
limitation of MAPLE V.3 and the final state observer equations obtained using the
alternative observer design approach given in section 8.3.3 were very complicated and
needed to be solved numerically at each time step. Therefore, the computational time
increased significantly. On the other hand, the discrete time EKF involved only

straight-forward matrix algebraic manipulations.

The performances of both filters degraded (Table 8.2) when the magnitude of the
covariance of the Gaussian white noise was increased by three times. The response
curves are similar to Figures 8.1 and 8.2; hence, they are omitted to avoid repetitions.
The tracking performance of both filters remained good and stable for observing the

states, height and density. However, significant deteriorations in performance were
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observed in the estimation of the temperature. The deterioration of GNF was
considerable and can be explained by the constant filter gain used for the simulation.
Performance improved significantly when the magnitude of the filter gain was
increased. For example, when k;p = 50, k11 = 1200 and 4y = 5, the corresponding
ITAE values for height, density and temperature became 0.000697, 0.974x107 and
0.001180, respectively. However, instability resulted if the magnitude of the filter
gain used was too high. The tracking performance of EKF for height and density was
reasonably good because the filter gain was computed based on the new covariance
matrix at each sampling time. However, the performance for the temperature
remained poorer than that of GNF. This could be due to the high value of the
sampling time used in the simulation. Improvement was observed when the sampling
time was decreased to 0.01 hour (36 seconds). In fact, the performance of both filters
depends significantly on the sampling time since a numerical routine was used for the
simulation to solve the differential equations and the discrete time model was used for

the EKF implementation.

Table 8.2: ITAE for GNF and EKF with Covariance Matrix =3 1

GNF EKF
Height 0.00143 0.000625
Density 0.0000106 0.468x10°
Temperature 0.001186 0.00128

8.7 CONGLUSIONS

Two types of nonlinear filters, GNF and EKF, were investigated in this chapter to
provide the state observers for nonlinear control strategies studied in the previous
chapters. The case study here used the single effect evaporator of the liquor burning
process as the target system. The open loop situation of a disturbance of 2 m’/hr
increase in the product flow was investigated. The tracking performances of both
filters were good and stable. The GNF was slightly better than EKF in observing
highly nonlinear system such as the temperature situation in this case. However, the

GNF required significantly longer computational time than EKF because of the more
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complicated observer design equations. This was mainly because MAPLE V.3 was
unable to obtain the transformation for GNF. Otherwise, the computational time will
be significantly shorter and more efficient than EKF (Bishop and Antoulas, 1994 and
Frezza et al, 1988). When the covariance of the noise was increased, GNF was re-
tuned and EKF required smaller sampling time to maintain the tracking performance.
The performances of both filters are a function of the sampling time. In conclusion,
both filters are comparable in performance, but the EKF is recommended as the state
observer for the nonlinear control strategies studied based on the finding in this case
study because of its efficiency and less algebra involved in its implementation. Further
work is required to explore the use of GNF for highly nonlinear systems. This may
require the use of other sophisticated and efficient software or a simplification of the

algorithms for practical implementations.
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CHAPTER NINE

PLANT IMPLEMENTATION OF INPUT
OUTPUT LINEARIZATION ON THE

LIQUOR BURNING PROCESS

9.1  INTRODUCTION

In the preceding chapters, we have concentrated on specific issues in designing a
nonlinear contro! system for the simulated single effect evaporative stage of the liquor
burning process in the Alcoa Alumina Refinery, Kwinana. The major emphasis has
been on applying the input output linearization and the Su-Hunt-Meyer transformation
to the simulation of the nonlinear process. This chapter is devoted to plant trials of
implementing the input output linearization on the actual process. The trials were
carried out in January 1996 even though it was originally scheduled for in November
1994, Earlier coding and debugging were done in July 1995. Other plant priorities
and personnel commitments led to the postponement of the implementation trials till
January 1996. We are therefore grateful that these tnals took place at all. The /O
was chosen over SHM because the results in the previous chapters showed that the
I/O was easier to implement, more robust, and provided better overall control
performance in terms of the ITAE indices than SHM. The liquor burning process is a
two-input two-output system, as described in Chapter 3. The I/O nonlinear controller
was compared to the feedforward ratio linear control strategy (Configuration D, see
section 3.1.2.3), which has currently replaced the linear SISO scheme (Configuration
A) discussed in this thesis. According to plant personnel, the strategy using
Configuration D gave a better performance than the former SISO scheme. It is hoped

that this plant trial for input output linearization will stimulate further applications of
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the nenlinear control theory for plant situations.

9.2 RESULTS AND DiSCUSSIONS

The results obtained during the trial and the discussions on issues involved in
implementing the nonlinear controller are given in the following sections. All states
were measured on-line at a sampling time of 30 seconds. The control algorithm was
coded in Honeywell Control Language (Honeywell, 1991) and the resident device is
the customised block of the Application Module in the Local Control Network. The
results shown in this chapter are in scaled values so as to preserve the plant

proprietary information.

9.2.1 Pl Action in the Nonlinear Controlier and Industrial Pl Controller
The nonlinear controller, as described in section 2.4.2.1, employs the MIMO Global
Linearizing Control structure. The structure uses the proportional and integral action

to stabilise the transformed linear system. The design parameters ;3,-;; used were the

same as those in the simulation. Therefore, substituting fi‘,o = fi'zo =1 into the PI

control law (2.32), gives

= KO -30)+ L0 - n0)ar

(¢=12)

The implication of the above PI control law requires the output of the PI controller as
the output variables, height and density, instead of the input variables, flowrate of feed
and cooling water. The industrial PI controller is coded in the velocity form and
returns only the actual values of the process input variables (See Figure 9.1).
Therefore, the following solution (Figure 9.2) was proposed to form the link between

the industrial PI controller and the nonlinear PI controlling action (9.1).
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__________________________________

Pl-Industrial J

_____________

Figure 9.1: PI-Industrial Controller Actions

The flowrate of the feed and the cooling water returned by the industrial PI controller

were converted to equivalent level and density values by the following equations.

PI(H) = 221+ [.%SOLQF)J ......................................................... 9.2)
Pl.(p) = 120+07 [%ﬁtﬁ)) ................................................. (9.3)
DCS | smE
|
Pl-Industrial ‘
C,,, iQF |
A 4 b 4
0. 22y 1 12 o o b L"'”";;m;;; ______ MNorlnear
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Cutputs of PI-GLC Tsm‘e Variables ! i
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Figure 9.2: Conversion of Pl-Industrial to PI-GL.C
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The above linear relationships simply scale the output of the industrial PI controller to
obtain the necessary conversion and are constructed around the following steady state

values and ranges of the height and density, respectively.

Table 9.1: Steady State Values and Ranges of Height and Density

Steady State Range
Height 2.71 m at 25 m’/hour Feed Flow 221t03.21m
Density 1.762 tonne/m”® or 1762 kg/m’ 1.2 to 1.9 tonne/m’
at 313.087 m*/hour Cooling Water Flow

The proposed conversion assumed that linear relationships exist between the level and
the feed flow, and the density and the cooling water flow. This assumption may
actually limit the performance of the nonlinear controller. However, this scaling is
essential and is the most direct and practical way of linking the two PI controllers.
The assumption was justified by the successful results of the trial given in later

sections.

9.2.2 Anti-reset Windup for Pl Controller

Reset windup is an inherent disadvantage of the integral control action in the PI
controller. As a result of the unusual arrangement of the PI control action in the
GLC, constraints on the process inputs cannot be directly imposed on the integral
action of this nonlinear PI controller (9.1). To prevent reset windup from occurring

in the industrial PI controller, we proposed the following solution.

When the output of the nonlinear controller, feed or cooling water flowrate, reaches
the upper limit, any further increase in the output of the corresponding industrial P1
controller is set to zero automatically. The same logic is applied to the lower limit of
each process input variable. In other words, the output of the industrial PI is

implicitly constrained by imposing limits on the output of the nonlinear controller.

Apart from the upper and lower limits constraints on the outputs of the nonlinear

controller, there are other constraints imposed on the values to ensure that the flows
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do not disturb the process too much. The maximum changes allowed for the feed and

cooling water flows are 5 and 50 m*/hour, respectively.

9.2.3 Initialisation of Pl Controller

Since the industrial PI controller is implemented in the velocity form, it is therefore
necessary to initialise the controller when the nonlinear controller is switched on. To
initialise the PI controller, we require the inverse of the state feedback law. All
current states and process inputs were fetched, validated and stored. Using the

inverse of the state feedback law, the transformed linear inputsv, or Plg (4} and
v, or Pl .(p) were determined. These values were then corrected to the

equivalent flow states, that is, P1, s.i(Q7) and Pl y.u(Oy ). of the industrial PI

controller using the inverse of (9.2) and (9.3). Hence, the current values of the inputs
(level and density) and the outputs (equivalent feed and cooling water flow) required

to commission the industrial PI controller were determined.

9.2.4 Tuning of Pl Controiler

The tuning of the PI controller was performed by trial and error. First, the error used
in the PI block was defined as Error = Process Value - Set Point. The results are
shown in Figure 9.3. For the level control, the tuning parameters used were -50 %/%
for the proportional gain and 30 minutes for the integral time. These parameters were
kept constant during the test. The proportional gain and the integral time for the
density control started with the values of -2000 %/% and 20 minutes, respectively.
However, as shown in Figure 9.3, oscillations were observed in all process variable.
This implies that the tuning parameters were too high and the control actions were
too severe. Therefore, the proportional gain and the integral time for the density
control were changed to -1000 %/% and 50 minutes at 13:30. It is clearly shown in
the figure that the oscillations died off immediately and all variables remained stable
despite the presence of process noise. These values of tuning parameters were used

for all the subsequent tests.
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Figure 9.3: PI Controller Tuning for I/O Implementation
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9.2.5 Nonlinear Controtler Implementation Tests

Two tests were conducted to examine the performance of the nonlinear controller.
They were a flow change in the product stream and a change in the density set point.
Similar tests were performed on the existing feedforward ratio controller to provide a
bench mark or a basis for comparison. Details and discussions of each test are

provided in the following sections.

9.2.5.1 Step Change in Product Flowrate

The step change in the product flowrate for the feed forward ratio and the nonlinear
controller is shown in Figures 9.4 and 9.5, respectively. For the nonlinear controller
(Figure 9.5), the approximately 2 m/hour decrease in product flowrate had no effect
on the density and the level which remained at their set points. However, in the case
of the feedforward ratio controller (Figure 9.4), the 2 m’/hour increase in flow led to
small disturbances in the density and level response curves which settled to their
corresponding set points after a period of approximately 2 hours. In Figure 9.4, a
decrease of 0.5 m’/hour in the product flow was also introduced into the process at
21:00 hours. The level controlled by the feed flow was not affected by this
disturbance, as in the nonlinear case. Despite the relatively small decrease in flow, the
density was greatly disturbed and took more than 3 hours to settle. This observation
illustrates that the nonlinear controller performed better than the feadforward ratio
controller in the presence of a decrease in the product flow. Since the feedforward
ratio controller has no difficulty in coping with any increase in product flow, similar or
even better performance can be expected for the nonlinear controller. Therefore, no

test was necessary for this scenario.




Plant Implementation of Input Quiput Linearization 9-8

n31/1/%6

60 Feedfoward Ratio Control: Step Testo

]
_ w0 E
&
E S0 A O S 2 - é
25 =2
g
2]
40 20
17:00 18:00 19:00 20:00 21:00 22:00 23:.00 0:00
" Time ~

Level (%) =—=——TFeed Flowrate (m3/hr) ‘

Feedforward Ratio Control: Step Test on 31/1/96

I 20 14

e o
= T o=

\ §_ 85 12-%2" %

‘ ;E_‘. == .

\ 80 ‘ 10 \

‘ 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00 .

‘ Time

1. Temperature (deg. C) e Product Flowrate (m3/ar)

Feedforward Ratio Control: Step Test on 31/1/96

750
650
550
450
350

250
0:00

. 1.625

Density
P
L]
U
CW Flowrate

1.585 -
\ 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Time
\ Density (1000 kg/m3) - -~~~ Density Set Point ————CW Flowrate (m3/hr) \
Figure 9.4 Product Flow Step Test for Feedforward Ratio Control




Plant Implementation of Input Output Linearization

VO: Step Test on 31/1/96

60 35
-
. £

o

z 50 £
- ]
&

40 : : : ‘ : . —lao

14:16 1436 14:56 15:16 15:36 15:56 16:16 16:36

Time
r Level (%) =—Feed Flowrate {m3/hr)

L _
F \
VO: StepTest on 31/1/96
90 14
2 13

2 2
\ =
E 851 [12 E E
E F — Ll
; 1 ! 11
\ 80 + r \ T ‘ T T .l 10
14:16 14:36 14:56 i5:16 15:36 15:56 16:16 16:36
~ Time
L Temperature (deg. C) wee Product Flowrate (mMEJl 4|
[— 7
VO: StepTest on 31/1/96
1.625 T 750
L6550 o
& L ss0 &
= =
@ L 450 =
(=]
350 &
1.585 + T " v T T 250
14:16 14:36 14:56 15:16 15:36 15:56 16:16 16:36
Time
r Density (1000 kg/m3) ----~ Density Set Point CW Flowrate (m3/hr)

L

Figure 9.5: Product Flow Step Test for /0 Implementation




Plant Implementation of Input Quitput Linearization 9-10

9.2.5.2 Set Point Change in Density Control

A set point test was performed on both controllers. The set point was first dropped
from 1.605 t0 1.600 tonne/m’ and then ceturned to 1.605 tonne/m’. The results are
shown in Figures 9.6 and 9.7. For /O, the test began at 9:00 (Figure 9.5). The
decrease in set point led to slight disturbances in both level and density controls and
‘ the settling time Was approximately 1 hour. When the set point was increased back 10
1.6035 tonne/m’ at 10:30 hours, larger disruptions Were observed and the settling fimes

in this scenario wereé slightly more than 1 hour for pboth controls.

For the case of the feedforward ratio controller, gimilar responses 10 the nonlinear
case were observed when the set point was decreased to 1.600 tonne/m’ at 12:40
hours (Figure 9.6). Only shight disturbances 10 the level and density control were
caused by this change. The settling time for both control was slightly more than 1
hour. However, when the set point was increased back 1o 1.605 tonne/m’ at 2:15
hours, the feedforward ratio controller for the density was very stuggish. On the other
hand, the level control was unaffected. AR unexpected drop of 0.5 m’/hour in the
product fow caused DY the downstream operation is observed In Figure 9.6. Based
on the results in the previous section, this flow cut should lead to 3 rise in the liquor
density; hence, 3 shorter settling time. In spite of this, the density remained below the

set point for at {east 2 hours. The final settling time was about 3 hours.

The foregone demonstrates that the nonlinear controller is mOTe aggressive and

responds 10 disturbances faster than the feedforward ratio controtler.
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9.2.5.3 Discussion

The series of tests showed that the product flow is a major disturbance in the process.
The nonlinear controller performed well in the presence of a disturbance and a set
point change. The comparison here might not be very appropriate because of the
changing process conditions, especially the product flow. However, the feedforward
ratio controller provided a reasonable reference with which the performance of the
nonlinear controller can be gauged. It is possible to quantify the performances
obtained during the test using ITAE. However, the results would not be meaningful
as a result of the changing process conditions during tests. Therefore only the settling

time was used as a quantifying tool here.

Another comment is that the nonlinear controller appeared to be too aggressive. It is
obvious that the nonlinear controller used a lot more control energy than the
feedforward one. This might increase the operating cost of the process. To curtail
the severity of this problem, the tuning parameters can be further reduced. Therefore,
relatively smoother control actions can be established with less control energy used.
Moreover, the level and density can be kept even closer to their set points. Even
though the control action using the nonlinear controller is fairly aggressive as
mentioned before, it is important to note that no process variable has ever reached the

safety bracket of the plant unit.

In the nonlinear case, a very high level of noise was present in the response curves
which could be due to the aggressive behaviour of the nonlinear controller. This
situation is similar to those where a very high proportional gain was used in the PI
linear control loop. The noise level can be reduced by using filters or by reducing the
magnitudes of the PI tuning parameters. Compared with the feedforward ratio
control, the increase in CPU loading required to run the nonlinear control codes in the
Application Module is negligible because the coding involved only basic algebraic

calculations.
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The success of the trial here showed that the dynamic model developed in Chapter 3
for this process was valid even though it was not critically checked and validated. In
other words, the model provides a suitable representation of the actual process and

the assumptions are justified.

9.3 CONCLUSIONS

The MIMO Global Linearizing Control using the input output linearization was
successfully implemented on the single effect evaporative stage of the liquor burning
process. The major problem encountered in the trial was the difference between the
industrial PI controller which has its output as the process input and the nonlinear P1
action used in GLC which has its output as the process output. A simple linear
relationship was proposed to convert the output of the industrial PI to the equivalent
output value of the nonlinear PI. Besides converting the values, the industrial P1
controller must be properly initialised using the inverse of the linear relationship and
of the state feedback law when switching to the nonlinear controller. Moreover, the
output of industrial PI controller was also indirectly constrained to further increase or
decrease when the output of the nonlinear controller reaches the upper or lower limit

of the process input, respectively. This prevents reset windup of the integral action.

The tuning of the nonlinear controller was done by trial and error. The results
showed that the performance of the nonlinear controller is more aggressive and
responsive than the existing feedforward ratio controller. At the same time, the
assumptions and the dynamic model used to construct the nonlinear controller were

indirectly shown to be appropriate.

In conclusion, this chapter covered not only the practicability and superiority of the
nonlinear controller using input output linearization, but it has also established a link
between academia and industry. It is hoped that further tests can be done in future to
implement more of the strategies proposed in this thesis and, in particular, further
work can be done to assess the economic benefits of the nonlinear techniques

compared to the existing control of this process unit.
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CHAPTER TEN

CONCLUSIONS AND RECOMMENDATIONS

10.1 _ CONCLUSIONS

In this research, two types of nonlinear control theories, namely, input output and
input state linearization (Su-Hunt-Meyer transformation), were studied using the
liquor burning unit associated with the Bayer process for alumina processing as the
target process. Two designs of the liquor burning unit were investigated: a single
effect and a triple effects evaporator design. One of the aims of the thesis was to
demonstrate the superiority and simplicity of the nonlinear control techniques using
computer simulations and plant implementations. The simulation was implemented
using MAPLE V.3 as the computing environment and the results were compared with

SISO linear control scheme with proportional and integral action.

The algorithm of the input output linearization was straight forward and can be
directly applied to the target process. On the other hand, the Su-Hunt-Meyer
transformation was too complicated and difficult to be handled by MAPLE V.3 and a
simplified solution algorithm was proposed to obtain this nonlinear transformation.
The simplified algorithm was successfully implemented in the simulated single effect

evaporation unit.

Only the input output linearization was implemented on the simulation of the
nonlinear control of the triple effect evaporation unit. Since the dynamic model is
input nonlinear, the Su-Hunt-Meyer transformation which is only applicable to input
linear systems could not be used. Moreover, the computation of the transformation
would be too difficult for MAPLE V.3 to handle. An algorithm was developed to
extend the input output linearization to solve a general class of nonlinear MIMO

process. This algorithm was successfully implemented on the triple effect evaporator.

Robustness issue was also addressed in this thesis since the nonlinear control strategy
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is a model-based technique. A procedure called uncertainty vector adjustment was
developed to improve the robustness of each of the nonlinear control theory. The
procedure provides an appropriate adjustment to the nonlinear transformation
according to the overall effect of modelling errors (structural or parametric) on the

time derivative of the actual plant states measured x,. This adjustment or additional
control action keeps X, at zero at all time. Consequently, the corrupted control

system with the uncertainty vector adjustment settles and converges faster than the
one without the UVA. The effectiveness of the UVA was illustrated on the simulated
single effect and the triple effects evaporation units. Using Lyapunov function
analysis, the stability of the UVA was theoretically established and the bounds of the
uncertainty vector and modelling errors within which the controlled system remains

asymptotically stable were also determined.

Geometric nonlinear control requires full state feedback for the computation of the
nonlinear transformation. This condition is not always satisfied in an industrial
setting. Therefore, a brief discussion on state observers is included in this thesis. The
state observers studied were geometric nonlinear and extended Kalman filters. The
basic idea of the geometric nonlinear filter is similar to the nonlinear control theory.
The nonlinear system is transformed into a state observer canonical form through a
nonlinear transformation. The simulation of the open loop dynamics of the single
effect evaporator showed that the geometric nonlinear filter can cope with
nonlinearity better than the extended Kalman filter. However, in this study, the
computational time required by the geometric nonlinear filter is much longer than that
for the extended Kalman filter. This is because of the limitation of MAPLE V.3 to
determine the transformation. As a result, it was concluded that the extended Kalman
filter is more suitable as the state observer for implementing the nonlinear controller

because of its comparable performance and less algebraic manipulations.

An integrated MAPLE package was developed for designing and simulating the closed
loop dynamics of systems using the nonlinear control theories studied in this thesis.

The package automates the computing algorithms for input output linearization and
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Su-Hunt-Meyer transformation. The package has the ability to provide graphical
representation of the closed loop responses of a nonlinear control system. The
usefulness and limitations of MAPLE were also addressed. It was concluded that
MAPLE is one of the most suitable tools available for investigating nonlinear control
systems. Moreover, there is no doubt that recent developments in this area of

symbolic computation is imperative to the design and analysis of control algorithms.

The practical value and feasibility of the nonlinear control theory were investigated by
implementing the input output linearization in an industrial environment. The results
showed that the nonfinear controller performed better than the feedforward ratio
controller, which is currently used on site, in terms of fast settling time,
aggressiveness and resistance to disturbances. Besides demonstrating the supertority
and the simplicity of implementing the nonlinear controller, this exercise has
successfully bridged the gap between academia and industry since substantial

interaction was necessary.

10.2 RECOMMENDATIONS

The research in this context has successfully taken up academic and industrial
challenge and has also raised many questions which need to be discussed further.
Therefore, the following recommendations are stated for future research in the

nonlinear control area.

Developing a reliable, interactive and easy-to-implement model is the first step of
designing a nonlinear control system. This local description of the process can be
identified using the first principles of chemistry and physics (analytical model) or
statistical system identification techniques (systemic model). The nonlinear control
theory so far has only been designed based on the analytical model. However, it is not
always possible to establish an analytical model for a chemical process. Therefore, a
systemic model is required. In order to use the nonlinear control theory, the resulting
nonlinear polynomial difference equation representation of the process model has to

be converted to the form of a nonlinear state space realisation, for example,
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NARMAX or Volterra series model. The higher order terms in this realisation
represent process uncertainties. An investigation should be performed to develop a
conversion algorithm to generate the NARMAX or Volterra series model. Wether
the model is analytical or systemic, physical insights and relevant assumptions are

essential in developing an adequate, yet not overly simplified model.

A lot of research has been conducted in the area of general nonlinear systems with, for
example, non-minimum phase behaviour, high dimensionality and significant time
delay. However, they are often very complicated and too mathematically abstract.
Therefore, as in this thesis, more efforts should be focused at establishing links
between the academic theory and industrial practice, in order to simplify all these
abstract theories or at least, isolate special cases so that the theory can be more viable

and “user friendly”.

The plant trial of the input output linearization was very successful in this case study.
However, more tests are necessary in order to actually implement the nonlinear
controller in the refinery. Not only that the controller has to be proven performance

wise, but it also has to be justified in the economic sense.

The uncertainty vector adjustment developed in this thesis appears to be very practical
and easy-to-implement. Further investigations should be performed to explore the
ability and limitation of the procedure. The adjustment should be tested with different

types of nonlinear control theory and chemical systems.

The robustness of the geometric nonlinear and extended Kalman filters has not been
studied in this thesis due to time limitations. It is recommended that the stability and
performance of each filter should be investigated in the presence of modelling errors.
The possibility of applying UVA to the state observer theory, especially the geometric
nonlinear filter, should also be researched. Theoretically, the procedure will provide
adjustments to the nonlinear transformation of the nonlinear filter. Hence, improved

tracking performance can be achieved in the presence of modelling errors.
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APPENDIX &

A& MAPLE PACKAGE FOR

NONLINEAR CONTROL STUDY

A.1 INTRODUCTION

Mathematical programming in MAPLE is straight-forward and conventional and
allows repetitions, conditional executions, data structures and visualisation.
Combined with MAPLE commands, powerful MAPLE procedures can easily be
written and implemented for specific applications. The simulation package in this
context includes five MAPLE procedures running on a UNIX platform. The
procedures follow the input output linearization (I/O) developed by Kravaris and
Soroush (1990) and the special case of SHM transformation proposed in Chapter 2.
Apart from computing the associated transformation relationships for each control
theory, the procedures are able to simulate the closed loop systems graphically using
the nonlinear control schemes studied in this context. As a result, different systems

and scenarios can be investigated using these procedures.

A.2 MATHEMATICAL PRELIMINARY

The theories of /O and the special case of SHM transformation are detailed in
Chapter 2. To implement the simulation of the closed loop dynamics of a nonlinear
system on computer, it is necessary to determine the state trajectory, that is, the
solution of the nonlinear state equations (2.11) in Chapter 2. This can be done by first

linearizing (2.11) in Chapter 2 using the first-order Taylor series. That is,

X o= AX T WU HTd e (A.1)

The above linear state equations can then be solved analytically as shown in Ray

(1981). For an autonomous linear system, the analytical solution takes the following
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form

x(f) = e x, 4 [ (Pu(r)+ T AR dr (A2)

where A, ¥ and T are Jacobian matrices with respect to the vector of states x, inputs
u and disturbances d, correspondingly. x, indicates the initial states at time 4,. (A.2)
is implemented in MAPLE in order to obtain the state trajectory at any time 7. The use
of the simple equation (A.1) and (A.2) is justifiable in the case of the single effect
evaporator because the process is rather “linear” as shown in Figures 3.2. However, a
more sophisticated numerical technique was required in the simulation of the triple

effect evaporator.

A.3 ALGORITHMS FOR MAPLE PROCEDURES

The simulation package in this context includes five MAPLE procedures running on a
UNIX platform. The procedures io and shm are developed to compute static state
feedback laws and transformation using YO and SHM transformation, respectively.
The static state feedback law and the transformation are then passed to the
procedures ioloop and shmloop to implement the simulations of the closed loop
dynamics against specific disturbances using the corresponding control strategies.
The linear control algorithm used has proportional and integral action only. The fifth
procedure L is developed to compute the Lie derivative required by both control
strategies. Data is generated and stored in seguence format so that plots can be
displayed for each state, output and input variables with the XMAPLE package plofs.
The five procedures also require the MAPLE package /inalg to perform the necessary
matrix manipulations. The arguments required by each procedure are minimal and are
fully explained and checked in each procedure. The plots generated can be displayed
using the command display from the plots package. The structures of the
implementation of the procedures io and ioloop are shown in Figures A.1 and A.2.
The flowcharts for procedures shm and shmloop are very similar to Figures A.1 and
A.2; hence, they are omitted. It should be noted that the flowcharts presented here do
not represent a complete specification of the procedures by themselves, rather they

should be used as an aid in understanding of the integral listings of the procedures
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which are documentated in Technical Report 6/96 and are excluded from this thesis

due to space limitiation.

Procedure: io

xvar, uvar, f, g, h, xs,
u, rel

Number of States, n
Number of [nput, m
Number of Output, m

————bl For Output,i=1tom ]

|Initia1ize Relative Order, rel (i) = 0|

Y

——PfReIative Order, rel(i) = rel(i} + l]

i
Compute the row matrix (2.30) in Chapeter 2 Procedure L.
for Output, 1 Lie Derivative

heck if the Non-Zero element is Zerd
at the required steady state?

Rel(i): Not Define}/

at steady state

Yes
Print Relative Order Array
rel
A
Construct Matrices A & B
=> Matrices P & Q Procedure L
in (2.28) in Chapter 2 Lie Denivative

F
/ Obtain State Feedback Law, y

Figure A 1: Flowchart of Procedure /o
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Procedure: ioloop

S, h, u, yvar, xvar, uvar, dvar, d,
xs, us, ds, b, Kp, ti, UL, LL,
yplot, xplot, uplot

v

Number of States, n
Number of Input, m
Number of Qutput, w
Number of Disturbance, nd

IObtain the linearized state equations (A. lj

Set
Sampling Time, ts
Number of [terations, kset

Y
———b[For k=1to ksetl
Y

]Time,t=k*ts|

Fjompute the next states with (ﬂ

ICompute the QOutput, y = h(x)l

Proportional and Integral Control Action
for Transformed Linear Inputs
with (2.33) in Chapter 2

I

Compute Nonlinear Control, u
with State Feedback Law

Procedure io

; State Feedback Law

I

Check Upper and Lower Limits
of each Input, u

|

Calculate Integral Time Weighted Error
ITAE for each Output

| Update and Store Data in Sequence |

Y
/ yplot, xplot, uplot, ITAE /

Figure A.2: Flowchart of Procedure /

oloop




Appendix - A MAPLE Package for Nonlinear Control Study A-5

A4 USER GUIDE FOR MAPLE PROCEDURES

A.4.1 Descriptions of Procedures

This section contains the user’s guide for implementing the procedures described
above. It is important to note that the user has to use with () command to include
the relevant MAPLE packages in his or her calling sequences in order to run the
procedures. In addition, the procedures require XMAPLE V.3 to implement. The

following sections provide a description of each procedure in the package.

A.4.1.1 L - Lie Derivative

Calling Statement: L (variables, f, h);

Synopsis: The procedure computes the Lie derivative of a scalar
function 4 in the direction of vector £, given the independent
variables, variables. (See Page 2-9)

MAPLE Package: linalg for linear algebra calculations

Input Arguments:

variables list of variables
e.g. variables == [x1, x2, x3];

f | vector of functions depending on variables
e.g. f:=vector ([f1, 12, £3]);

h a scalar function depending on variables

A.4.1.2 io and ioloop - Input Output Linearization

io Relative Order and State Feedback Law of Input Output
Linearization

Calling Statement: io (xvar, uvar, f, g, h, xs, u, rel);

Synopsis: The procedure determines the relative order array and the

state feedback law.
MAPLE Package: linalg for linear algebra calculations

MAPLE Procedure: L for Lie derivative calculation
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Input Arguments:

xvar

uvar

Xs

Output Parameters:

1)

rel

ioloop

Calling Statement:

Synopsis:

MAPLE Package:

MAPLE Procedure:
Input Arguments:
S

state space variables x, defined as a list of variables

e.g. xvar = [x1, x2,...];

input variables u, defined as a list of variables

e.g. uvar .= [ul, u2, ],

state vector f{(x), defined as a vector

e.g. = vector([fl, £2,...]);

input matrix g(x), with g1, g2,..., gn as the corresponding
input vectors, defined as a matrix

e.g. g = augment (gl, g2,...);

output vector h(x), defined as a vector

e.g. h :=vector([hl, h2,..]);

steady state of state variables, defined as a list of real
numbers

e.g. xs = [xls, x2s,...];

feedback laws computed, defined as an array

relative order array, defined as an array

Closed loop dynamics of input output linearization

ioloop (S, h, u, yvar, xvar, uvar, dvar, d, xs, us, ds, b, Kp, i,
UL, LL, yplot, xplot, uplot):

The procedure generates data for plots to evaluate closed

dynamics of a nonlinear process with equal number of

outputs and inputs using the input output linearization.

linalg for linear algebra calculations

plots for display plots generated

io for computing the state feedback law, u

state equations, defined as a vector of equations

e.g. S:=vector([S1, S2,...]);
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yvar, xvar, uvar, avar

xs, us, ds

Kp

t

UL LL

QOutput Parameters:

yplot, xplot, uplot

ITAE

output vector, defined as a vector of equations

e.g. h:==vector([hl, h2,...]);

feedback law computed using procedure io, defined as an
array

output, state, input, and disturbance variables, defined as a
list of variables

e.g yvar=[yl, y2,.];

disturbance vector, in deviation terms, defined as a vector of
real numbers

e.g. d:=vector([1, 2,...]);

steady state of state, input and disturbance variables, defined
as a list of real numbers

e.g. xs = [xls, x2s,...];

design parameters, defined as an array of real numbers

eg. b = array(l.no of inputs, 0..relative order,
[[L,..LIL. 3%

proportional gain for linear controller, (deviation/deviation),
defined as a list of real numbers

e.g. Kp:=[10, 10,...];

integral time for linear controller (hr), defined as a list of real
numbers

eg ti=[], 1,.];

upper and lower limits of input variables in deviations,
defined as a list of real numbers

e.g. UL:=[10, 10,...];

plots for output, state, and input variables in deviation terms
use command display (yplot[i}); to view yplot[i]
integral time weighted error for each output 'y, a local print-

out from the procedure
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A.4.1.3 shm and shmloop - Su-Hunt-Meyer Transformation

shm
Calling Statement:

Synopsis:

MAPLE Package:
MAPLE Procedure:

Input Arguments:

xvar

war

Output Parameters:

T

shmloop

Calling Statement:

transformation array for Su-Hunt-Meyer transformation

shm (xvar, uvar, f, g, T);

The procedure computes the state and input transformation
for a nonlinear system with equal number of states and inputs
using the simplified solution algorithm proposed in section
4.1.4 of chapter 2.

linalg for linear algebra calculations

L for Lie derivative calculation

state space variables x, defined as a list of variables

e.g. xvar .= [x1,x2,..];

input variables u, defined as a list of variables

e.g. uvar ;= [ul, u2,..];

state vector f{(x), defined as a vector

e.g. f:=vector([fl, £2,...]);

input matrix g(x), with gl, g2,..., gn as the corresponding

input vectors, defined as a matrix

e.g. g == augment (gl, g2,...);

transformation functions computed, defined as an array
e.g. T :=array (l.n+n)

where

T[1], T[2],..., T[n] = state transformation

T[n+1], T[n+2],..., T{n+n] = input transformation

closed loop dynamics of Su-Hunt-Meyer transformation
shmloop (8, h, T, yvar, xvar, uvar, dvar, d, Kp, ti, UL, LL,
yplot, xplot, uplot):
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Synopsis:

MAPLE Package:

MAPLE Procedure:

Input Arguments:
S

yvar, xvar, uvar, dvar

ti

UL LL

Output Parameters:

yplot, xplot, uplot

The procedure generates data for plots to evaluate closed
dynamics of a nonlinear process with equal number of states
and inputs using simplified Su-Hunt-Meyer transformation.
linalg for linear algebra calculations

plots for display plots generated

shm for computing the transformation array, 7

state equations, defined as a vector of equations

e.g. S:=vector([S1, 82,...1);

output vector, defined as a vector of equations

e.g. h:=vector([hl, h2,..]);

transformation relationships computed using procedure shm,
defined as an array

output, state, input, and disturbance variables, defined as a
list of variables

e.g yvar=[yl, ¥2,..];

disturbance vector, in deviation terms, defined as a vector of
real numbers

e.g. d:=vector([1, 2,...]);

proportional gain for linear controller, (deviation/deviation),
defined as a list of real numbers

e.g. Kp:=[10, 10,...];

integral time for linear controller (hr), defined as a list of real
numbers

eg t:=[1, 1,..];

upper and lower limits of input variables in deviations,
defined as a list of real numbers

e.g. UL:=[10, 10,...];

plots for output, state, and input variables in deviation terms

use command display (yplot[i}); to view yplot[i]
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ITAE integral time weighted error for each output y, a local print-

out from the procedure

A.4.2 Other Options and Settings in Procedures ioloop and shmloop

Other pertinent programming options and default settings in procedure ioloop and
shmloop are listed as follow.

Number of iterations, kset default value = 15
Frequency of data output and stored, ou? default value = 5
Sampling time, #s default value = 0.01
Base time, #0 default value =0

A.4.3 Other Conditions Required by Procedure ioloop and shmloop
Two other implicit conditions are required by procedures ioloop and shmioop in order

to implement the closed loop response of a system.

e Both procedures require that the system starts from its steady state.
o As presented in the Chapter 2, SHM transformation requires all states and inputs
to be in deviation term. Therefore, the procedure shmloop always sets the steady

state to the origin.

A.5 ILLUSTRATIVE EXAMPLE To USE THE MAPLE PROCEDURES

The illustrative example presented here is the evaporator stage of liquor burning
process. Details of the process can be found in Chapter 3. The calling sequences for
procedures io and ioloop are shown in Appendix B with the sample output, while the
sequences and output for procedures shm and shmloop are presented in the same
appendix. The procedures have been tested extensively with examples from Essen
(1992), which are detailed in Comito (1995). Figures A.3 and 4.4 show examples of
graphs generated in XMAPLE V.3. The plot generated in XMAPLE is printed as a gif
file, colour-edited and inserted into Window WinWord 6.0 as a picture. The
procedures developed here form the basis of the MAPLE procedure developed for the

simulation of a triple effect evaporator in Chapter 7.
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A.6  DISCUSSION

A.6.1 Single Effect Evaporator

The single effect evaporator in the liquor burning unit involved a three dimensional
problem with two inputs and two outputs. MAPLE implemented the algorithms for the
/O and successfully computed the state feedback law and simulated the closed loop
dynamics. For the SHM transformation, attempts 0 solve the original algorithm
presented in Hunt et al (1983a) as discussed in section 2.4.1.3 proved abortive. This
was because the original algorithm involved computing of the Lie bracket and solving
a system of ordinary differential equations which necessitated more sophisticated
solve and dsolve procedures (Jager, 1995). Therefore, the special case with the
simplified solution algorithm was proposed to redress the problem. In order to
implement the simplified algorithm, the example was modified to a three-input three-
output system so that the number of states equals the number of inputs. MAPLE

successfully solved and simulated the closed loop system in this case.

A.6.2 Triple Effect Evaporator

Since MAPLE was able to handle the above example smoothly and successfully, a
triple effects evaporator model was next considered as a challenging task. The model
has nine state equations with six inputs and six outputs. The IO strategy was tested.
The first problem experienced during development was the zero-equivalence problem
(Heck, 1993) or rather round-off error in the numerical sense. MAPLE allows the user
to employ as many digits as required. However, the verification of the equality of the

following equations turned out to be non-trivial in MAPLE.

- Qe (T —48)
§ =-004325259516(Q,,, + O ) - 179.9307959 T e
232 x10" ~ 1

1004091696 (QP, +0,) +1799307959 T, (Qpl ~ 0, ~0;) +86366782030,,

R=-
—02321460% 107 +4160T,

Tt can be easily shown that § = R by hand calculation. However, the answer obtained
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for (S - R) using MAPLE is not an exact zero. For example,

(43T, - 49833)(Q, -0y ) - 2500,

S—R=04x10""°
~116073 + 208 T,

The above answer was obtained using 100 digits. A slightly different answer was
obtained when the number of digits used was 10. Despite the fact that the leading
term is 107, the numerical value of the rest of the expression could be in the region
of 10° - 10”. Therefore, (S - R) would fall in the range of 10 - 10™ and hence a
serious round-off error was observed in the results. This problem was observed only
when numeric calculations involved a division. Similar situations were encountered
when solving /inear equations using sofve. Therefore, it is recommended to perform
all calculation symbolically first and then substitute the numeric values for the relevant
symbolic parameters afterwards. However, MAPLE results are not easy to check.
Inherent to the use of symbolic computation is the creation of results which contain
very long and intricate expressions. This is clearly shown in the state feedback laws
and transformations in Appendix C. The clarity and evaluation of such results are

difficult and almost impossible.

Another problem was with the /inalg package which failed to return a solution for
(A.2) for the linearized model of the triple effects evaporator. MAPLE failed to return
a solution for the term exp(A(t-r)). This could be due to memory limitations caused
by the fact that A is a 9 by 9 matrix. Therefore, instead of using the linear analytical
solution, the state trajectory was obtained using the simple Euler method. With the
above problems noted and corrected, MAPLE successfully implemented the simulation

of the triple effects evaporator using the /O scheme.

In general, the MAPLE computations are smooth, fast and efficient in terms of time
and programming statements. Concerning the limits of the software, these can often
be corrected by modifying the procedures to accommodate more possibilities.
Sometimes the limitation could lie in the control algorithm itself or in the properties of

the system under study. A suitable ERROR message is usually returned, either by
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MAPLE or the relevant procedure. Obviously there is a lot of room for improvement
in the procedures developed here. The procedures form a template for more
sophisticated procedures and have achieved the objective of demonstrating the
capability and limitations of MAPLE as an integrated simulation package for

complicated nonlinear control theories.

A.7 CONCLUSIONS ON DeVELOPED MAPLE PROCEDURES

DEVELOPED MAPLE PR ==

An integrated simulation package for two nonlinear control schemes was developed
using the symbolic computational software, MapPLE V.3. The package contains five
procedures which automate the computational algorithms for VO and SHM
iransformation. At the same time, graphic representation of the closed loop responses
of a system using the nonlinear control strategies is achieved. The capability of
MAPLE was also explored. Typical textbook problems can be solved successfully by
MAPLE. However, more complicated problems cause SOME difficulties in
computations. It was found that computation cannot be done for complex methods
like the original SHM transformation. Modifications in procedures solve and dsolve
are recommended. The zero-equivalence problem which leads to round-off error is
very undesirable. Despite of all these problems, MAPLE, in most situations, provided
symbolic and numerical results quickly and efficiently with a tremendous gain in time
and with a minimal effort. Even though the strict viability of employing MAPLE for
investigating nonlinear control systems cannot be established, there is no doubt that
MAPLE is the most suitable tool among the few means available and should be used in
both academia and industry by instructors to illustrate fundamental concepts in
different areas of chemical engineering. The one to one correspondence between
symbolic code in MAPLE V.3 and mathematical algorithms being implemented
encourages better understanding and appreciation of the aspects of mathematics in
process control. With the unique advantages and different possibilities possessed by
symbolic computations, its developments have opened a new dimension in the design

and analysis of control algorithms.




Appendix - Calling Sequences for MAPLE Procedures B-1

APPENDIX B

CALLING SEQUENCES FOR MAPLE
PROCEDURES

B.1 CALLING SEQUENCES FOR PROCEDURES 10 AND IOLCOP

#

#  File: 1otest
# Calling sequence for io
#

#  ByToLap Chi
#  on11-10-95

#

#

#  Specify all data
#

with(linalg):
with(plots):
A=23.12:
Cpcw:=4160:
Cphw:=4160:
Cpd:=3142:

F=21:

Tew:=40:

Thd:=93:
lambdav:=2660000:
rhof:=1.3:

#
Steady State values for uls and u2s

#
#
# uls = Feed Flowrate, tonne/hr

#  u2s= Cooling Water Flowrate, tonne/hr
#

#

uls;=25.0147:

u2s:=313.087:

us:=[uls, u2s]:

#

#  Steady State values for Disturbance, d1s and d2s
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#

# d1s = Product Flowrate, Qp, tonne/hr
# d2s = Heater Feed Flowrate, Qhf, tonne/hr
#

#

d1s:=10:

d2s:=1000:

ds:=[d1s, d2s]:

#

# Steady State values

#

#  x1s=height in BFT, m

#  x2s = density of liquor out of BFT, tonne/m3
#  x3s=temperature in BFT, deg.C

#

x1s:=2.71;

x25.=1.762:

x35:=88.431:

xs:=[x18,x28,x3s]:

#

#  Specify gl vector

#

gl:=vector([1/A,(thof-x2)*(1-d1s/ d2s)/(A*x1),((Thd-x3)/(A*x1 *x2))*{rhof-
x2)*(1-d1s/d2s)]):

#

# Specify g2 vector

#

m:=Cpew*(x3-Tew-F)/(A*(lambdav-Cphw*(x3 -Fp):
g2:=vector([-m,m*(x2-1)/x1,m*(x3-lambdav/ Cpd)/(x1*x2)]):

z:=augment(g1, g2):

ﬁ Specify D1 vector

?) 1:=vector([-1/A {x2-rhof)*uls/{A*x1*d2s),((Thd-x3)/(A*x] *x2)*((x2-
rhof)*uls/d2s-x2)]):

% Specify D2 vector

D2:=vector([0,-(x2-rhof)*d 1s*uls/(A*x1 *d2572),(Thd-x3)/(A*x1¥x2)*
(x2-(x2-rhof)*(d1s*uls/d2s"2))]):

#

Al:=scalarmul{D1,d1s):

A2:=scalarmul(D2,d2s):

f=add(Al,A2):

#

#  Specify hl & h2
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#

hl:=x1:

h2:=x2:
h:=vector([h1,h2]):
#

# Set yvar, xvar, uvar, dvar
#

yvar:=[x1, x2]:
xvar:=[x1,x2,x3]:
uvar:=[ul, u2]:
dvar:=[d1, d2}:

#

# Setup State Equations

#

mv:= (Cpcw*(x3 -(Tew+F))/(lambdav-Cphw*(x3-F)))*u2:
#

S1:=1/A*(ul-d1-mv):

S2:=1/(A*x1)*((d2-d1y*ul *rhof/d2-mv-(d2-d1-mv-(d2-d] Y*(d2-ul)/d2)
*x2):

$3:=1/(Cpd* A*x1*x2)*(((d2-d1)*(ul*rhof+(d2-u 1)*x2)*Cpd*Thd/d2)-(mv
*lambdav)-((d2-d1)*(ul *rhof+(d2-ul)*x2)/d2-mv)*Cpd*x3).

#

S:=vector([S1, S2, S3]):

#

# Specify the disturbance

#

d:=vector({2,0]):

# .

4 Specify the Proportional Gain and Integral Time
#

Kp:=[10, 10]:

11:={0.6666666, 0.5]:

#

# Specify the upper and lower limits
#

UL:=[25, 350]:

LL:=[-25, -300]:

#

# Call procedure io

#

io(xvar,f,g,h,xs,u,rel);

#

# Specify design parameters, b

# Note: b must be specified after the calling of i0

# because io returns an empty array of b with u
#

b=array(1..2, 0.1, [[1,1],[0.5,0.5]]):
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#

# Call procedure ioloop

#

ioloop(S,h,u,yvar,xvar,uvar,dvar,d,
xs,us,ds,b,Kp,ti, UL,LL,
yplot,xplot,uplot).

B.2 CALLING SEQUENCES FOR PROCEDURES SHM AND SHMLOOP

File: shmtest
Calling sequence for shm and shmloop

By TO Lap Chi
Date: 11-10-95

Specify all data

o3 FH= IR 3k I H H 3k SR

with (plots):
with(linalg):
A=23.12:
Cpew:=4160:
Cphw:=4160:
Cpd:=3142:

F:=21:

Tew:=40:
lambdav:=2660000:
rhof:=1.3:

Steady State values for uls and u2s
uls = Feed Flowrate, tonne/hr

u2s = Cooling Water Flowrate, tonne/hr
u3s = Heater Discharge Temperature, deg.C

H o3 I IR W H I

uls:=25.0147:

u2s:=313.087:

u3s:=95:

#

# Steady State values for Disturbance, d1s and d2s
#

#  dls = Product Flowrate, Qp, tonne/hr

# d2s = Heater Feed Flowrate, Qhf, tonne/hr

#

dls:=10:
d2s:=1000:
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Steady State values

x1s = height in BFT, m
x2s = density of liquor out of BFT, tonne/m3
x3s = temperature in BFT, deg.C

3 o3k = = He 3k 3k

x1s:=2.71:

x2s:=1.762:

x35:=88.431:

#

#  Convert to deviation variables

#

x1:=x1st+dxl:

x2:=x2s+dx2:

x3:=x35+dx3:

#

ul:=ulst+dul:

u2:=u2s+du2:

u3:=u3s+du3:

#

dl:=d1stddl:

d2:=d2s+dd2:

#

# Specify gl vector

#

gl:=vector([ 1/A,(thof-x2)*(1-d1s/d2s)/(A*x] ), (1/(A*x1*x2))*(rhof-
x2)*(1-d1s/d2s)*(u3s-x3)]):

#

# Specify g2 vector

#

m:=Cpew*(x3-Tew-F)/(A*(lambdav-Cphw*(x3 -F))):
g2:=vector([-m,m*(x2-1)/x1,m*(x3 -lambdav/Cpd)/(x1*x2)}):
#

# Specify g3 vector

#

g3:=vector([0,0,(1/(A*x1*x2)y*((rhof-x2)*(1-d1 s/d2s)*uls+
(d2s-d1s)*x2)]):

#

g:=augment (g1, g2, g3):

#

# Yorm f vector

#

H:=vector([-d1s/A,0,1/(A*x1)*(uls*u3s*(1-d1 s/d2s)*((x2-rhof)/x2)+
(d1s-d2s)*x3)]):

#

Al:=scalarmul{gl,uls):
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A2:=scalarmul(g2,u2s):

A3:=scalarmul(g3,u3s):

add(A1l,A2):

add(",A3):

f:=add(",H):

mv.= (Cpcw*(x3-(Tcw+F))/(lambdav-Cphw*(x3-F)))*uZ:
#

# - Set up State Equations, S

#

S1:=1/A*(ul-d1-mv):
$2:=1/(A*x1)*((d2-d1)*ul*rhof/d2-mv-(d2-d] -mv-(d2-d1)*(d2-ul)/d2)
*x2):
$3:=1/(Cpd*A*x1*x2)*(((d2-d1)*(ul*rhof+{d2-u 1)*x2)*Cpd*u3/d2)-(mv
*lambdav)-((d2-d1)*(ul *rhof+(d2-ul)*x2)/d2-mv)*Cpd*x3):
#

S:=vector([S1, §2, S3]):

#

# Set xvar, uvar, dvar, yvar

#

xvar:=[dx1, dx2, dx3]:

uvar:=[dul, du2, du3]:

dvar:=[dd1, dd2]:

yvar:=[dx1, dx2, dx3]:

d:=vector([2,0]):

#

# Specify hl, h2 and h3

#

hl:=dxl:

h2:=dx2:

h3:=dx3:

h:=vector([h1, h2, h3]):

#

#  Set the proportional gain and integral time
#

Kp:=[10, 10, 20]:

ti-=[0.6666666, 0.5, 1e10]:

#

#  Set upper and lower limit of inputs

#

UL:=[25, 350, 20]:

LL:=[-25, -300, -20]:

#

#  Call procedure shm and shmloop
#

shm(xvar,uvar,f,g,T),

shmloop(S,h, T,yvar,xvar,uvar,dvar,d,Kp,ti, UL,LL,
yplot,xplot,uplot):
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APPENDIX C

SAMPLE OUTPUTS FOR MAPLE

PROCEDURES

C.1  SAMPLE OUTPUT OF PROCEDURES IO AND IOLOOP.

Warning: new definition for norm
Warning: new definition for trace

Relative Order Array:
[1,1]

Characteristic matrix;
b1, 1] (x3 - 61.)
[.04325259516 b[1, 1], 1.124567474 ]
-17171. +26. %3

: b[2, 11(-13. +10. x2)
[ - 004282006920 \
x1
b2, 1] (x3-61) (x2-1.)
- 1.124567474 ]
(-17171. +26. x3) x1

State feedback control law for input, 1, :

(1124567474 b[2, 1] x2 v[1] - 1.124567474 b[2, 1] x2 b[1, 0] x1
+ 4864046168 b[2, 1] x2 b[1, 1] - 1.124567474 b[2, 1] v[1]
+1.124567474 b[2, 1] b[1, 0] x1 - 4864046168 b[2, 1] b[1, 1]
+1.124567474 x1 b[1, 1] v[2] - 1124567474 x1 b[1, 1] b]2, 0] x2)/
((.0004864046200 x2 + .01395981250) b[1, 1] b[2, 1)
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State feedback control law for input, 2, :

- (- 17171. + 26. x3) ( - .05566608996 b[2, 11 v{1]
+ 05566608996 b[2, 1] b[1, 0] x1 - .02407702853 b[2, 11 b[1, 1]
+ 04282006920 b[2, 1] x2 v[1] - .04282006920 b[2, 1] x2 b[1, 0] x1
+.01852079118 b[2, 1] x2 b[1, 1] +.04325259516 x1 b1, 1] v[2]
- 04325259516 x1 b[1, 1] b[2, 0] x2)/
((.0004864046200 x2 + .01395981250) b[1, 1] b[2, 1] (x3 - 61.))

Matrix A:
[ © 0 -.02481022129 ]
[ ]
[ -6 ]
[ .13*10 -.15561123 .006976158169 ]
[ 1
[ -.00025687 57.43366241 -19.50041664 ]

Matrix B:

[ .04325259516 -.002074262889 ]

[ ]
[ -.007299952763 .0005832429224 ]

[ ]
[ -.02721531770 -.3293453149 }

Matrix D:

[ -.04325259516 0

[

[ -5
[ .00018445063 -.184450*10

[
[ -.1041559930 .1048367754

L T S S
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Closed Loop Dynamics - t, y, X, u:

-5
05, [ -.003445098, .8211*10 ],

-5
[ -.003445097825, .8210660910%10 , -.1639461205 ],

[ 2.25005468, 29.9959135 ]
10, [ -.005329050, .000016227 1,
[ -.005329049648, .00001622725292, -.5063215959 ],
[ 3.61367480, 51.6374497 ]
15, [ -.006251955, .000036752 ],
[ -.006251955172, .00003675189709, -.8166971469 ],

[ 4.35921890, 64.8701697 ]

Integral Time Weighted Absolute Errors:

[ -6 ]
[ 0000618782329 .2455035%10 ]

> display (yplot[1]);

>
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C.2 SAMPLE QuTPUT OF PROCEDURES SHM AND SHMLOOP

Warning: new definition for norm
Warning: new definition for trace

Transformation, 1, :
23.12000000 dx1

Transformation, 2, :
1306.488206 In(.7620000000 + dx2) + 355.1148%914

Transformation, 3, :
06370592190 dx3

Transformation, 4, :
15 12

-7 (- .2974358799*10 + .5200000002*10 dx3) dul

.2500000000*10
7
- .7435897*10 + 13000. dx3

14 12

-7 (.1426412000%10 +.5199999999*10 dx3) du2

+.2500000000*10
7
- 7435897*10 + 13000. dx3

8 15
-7 .31004000*10 +.1706128840*10 dx3

+.2500000000*10
7
- .7435897*10 + 13000. dx3

Transformation, 5, :
17 14
-.0003266220515 ( - .2942067966*10 + 51435467 13*10 dx3

17 15
- .6368112481*10 dx2 +.1113321799*10 dx2 dx3) dul

/ 7

/ (- 7435897*10 + 13000. dx3) (271. + 100. dx1) (381. + 500. dx2))

/
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16 16
- 0003266220515 (.2350618391*10 + .3084801038*10 dx2

14 15
+.8569204150%10 dx3 +.1124567474*10 dx2 dx3) du2

/ 7
/ ((-.7435897*10 + 13000. dx3) (271. + 100. dx1) (381. + 500. dx2))
/
13 17
- 0003266220515 (- .1415731426*10 + 281157069710 dx3

18 17
- .6271531308*10 dx2 + .3799368674*10 dx2 dx3)

/ 7
/ (( - 7435897*10 + 13000. dx3) (271. + 100. dx1) (381. + 500. dx2))
/

Transformation, 6, :

-15 28 28
.5000000000%10 ( - .3550655689*10 -.1977691755*10 dx2

25 25
+ .6207525999*10 dx3 +.3457550961*10 dx2 dx3) du3/

-15
(%1 (271. + 100. dx1) (881. + 500. dx2)) + .5000000000*10  (

25 24
- .2051727762*10 dx2 dx3 - .9478982251*10 dx3

22 2 26 22 2
+ 3546259580%10 dx2 dx3 +.1332477233*10 dx2 +.1638371926*10 dx3

25
+.6156044812*10 ) dul/(%1 (271. + 100. dx1) (881. + 500. dx2))
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-15
+ .5000000000*10

25 22 2 26
(.12617542646*10 dx3 - .3582080383*10 dx3 +.7449718368*10 ) du2

%1 (271. + 100. dx1) (881. + 500. dx2)

-15 24 29
+.5000000000%10 (- .1576281969*10 -.1299145717*10 dx2

28 28
+.2000404407*10 dx2 dx3 + .4410951501*10 dx3

25 2 25 2
- .3457550960*10 dx2 dx3 -.7329028798*10 dx3)/

(%1 (271. + 100. dx1) (881. + 500. dx2))

7
%1 = -.7435897*10 + 13000. dx3

Matrix A

[ o 0  -.02481022130]
[ ]
[ -6 ]
[ .13*10  -.15561122 006976158171 ]
[
[

]
-.00025680 57.43366257 -19.50041664 ]

Matrix B
[ .04325259516 -.002074262889 0
[
{ -.007299952763 .0005832429224 0

[
[ -.02721531760 -.3293453149 15.69712784

[
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Matrix D
[ -.04325259516 0 ]
[ ]
{ -5]
[ .00018445063 -.184450*10 ]
[ ]
[ -.1041559926 1048367754 ]

Closed Loop Dynamics - t, y, X, u:

.05, [ -.003385228419, .00001485683866, -.006638188019 ],
[ -.003385228419, .00001485683866, -.006638188019 1,
[ 2.024272234, 25.15601428, .5312861880 ]

.10, [ -.005566401246, .00002336434738, -.009168993985 ],
[ -.005566401246, .00002336434738, -.009168993985 ],
[ 3.474315104, 43.16659244, 9115411382 ]

15, [ -.006545540784, .00002767890555, -.01017696582 1
[ -.006545540784, .00002767890555, -.01017696582 ],

[ 4.295926545, 53.35074610, 1.126534763 ]

Integral Time Weighted Absolute Errors:

[ -6 ]
[ .00006432662351 .2714187624*10 0001059276998 ]

> display (yplot[1]);

>
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KAPPENDIX D

MoODEL EQUATIONS FOR TRIPLE

EFFECTS EVAPORATOR

D.1  MoODEL EQUATONS FOR TRIPLE EFFECTS EVAPORATOR
Qd1 = Qpl + Qhfl - Qf

Rho_fQf+Rho_1 Qhfl - Rho_1 Qf

Rho_hfl =
Qhfl
-mvl - Qpl +Qf
dhldt :=-
Al
Rho fQf-Rho_1 Qf- mvl + Rho_1 mvl
dRho_1dt =

Alhl
dT1dt := ((Rho_f Qf + Rho_1 Qhfl - Rho_1 Qf) Cphdl Thdl - mvl Hvl
- Cpl T1 (Rho_f Qf + Rho_1 Qhfl - Rho_1 Qf - mv1))/(Cpl Al hi Rho 1)
Qd2 :=Qp2 + Qhf2 - Qpl

Rho_1 Qpl + Rho_2 Qhf2 - Rho_2 Qpl

Rho hf2 ==
Qhf2
-mv2 - Qp2 + Qpl
dh2dt =
A2
Rho 1 Qpl - Rho_2 Qpl - mv2 + Rho_2 mv2
dRho_2dt ;= ---

A2 h2
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dT2dt := (Rho_1 Qpl + Rho_2 Qhf2 - Rho_2 Qp1) Cphd2 Thd2 - mv2 Hv2
- Cp2 T2 (Rho_1 Qp1 + Rho_2 Qhf2 - Rho_2 Qp1 - mv2))/(Cp2 A2 h2 Rho_2)
Qd3 = Qp3 + Qhf3 - Qp2
Rho 2 Qp2 +Rho_3 Qhf3 - Rho_3 Qp2

Rho hf3 =
Qhf3
-mv3 - Qp3 + Qp2
dh3dt :=
A3
Rho 2 Qp2 - Rho_3 Qp2 - mv3 + Rho_3 mv3
dRho_3dt :=

A3 h3
dT3dt := ((Rho_2 Qp2 + Rho_3 Qhf3 - Rho_3 Qp2) Cphd3 Thd3 - mv3 Hv3

- Cp3 T3 (Rho_2 Qp2 + Rho_3 Qhf3 - Rho_3 Qp2 - mv3})/(Cp3 A3 h3 Rho 3)
Qcw Cpew (T1 - TF - Tew)

mvl ;=
Hv1 - Cpew (T1 - TF)

msl Hsl + mv2 Hv2 + mv3 Hv3

Thdl := Thfl +
(Rho_f Qf + Rho_1 Qhfl - Rho_1 Qf) Cphfl

Qpl Rho 1 Cpl T1 + ms2 Hs2 - Qp2 Rho_2 Cp2 T2

mv2 =
Hv2

ms2 Hs2 (Rho_1 Qp1 + Rho_2 Qhf2 - Rho_2 Qpl) Cphf2

Thd2 := Thf2 +
2

Qhf2

Qp2 Rho_2 Cp2 T2 + ms3 Hs3 - Qp3 Rho_3 Cp3 T3

mv3 =
Hv3

ms3 Hs3 (Rho_2 Qp2 + Rho_3 Qhf3 - Rho_3 Qp2) Cphf3

Thd3 = Thf3 +
2

Qhf3
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Rho_fQf Cpf Tf + Rho_1 Cp1 T1 Qhfl - Rho_1 Cpl T1Qf

T = (Rho_f Qf + Rho_1 Qhfl - Rho_1 Qf) Cphfl
Qpl Rho_1 Cp1 T1 +Rho_2 Cp2 T2 Qhf2 - Rho_2 Cp2 T2 Qpl
Tz = (Rho_1 Qpl +Rho_2 Qhf2 - Rho_2 Qpl) Cphf2
Qp2 Rho_2 Cp2 T2 +Rho_3 Cp3 T3 Qhf3 - Rho_3 Cp3 T3 Qp2
T = (Rho_2 Qp2 + Rho_3 Qhf3 - Rho_3 Qp2) Cphf3
> dhldt;
Qpl Qf  Qcw Cpew (T1-TF - Tew)
) :K-I i -;i - Al (Hvl - Cpcw (T1 - TF))
> dhdr;
/ Rho 1Cp1T1 1 /Rho 2Cp2T2 1\
e +1,Qpt | -1/ Qp2
\ Hv2 / \ Hv2 / ms2 Hs2
A2 ) A2  m2H®
> dh3dt;
/ Rhé_z Cp2T2 \ /Rho 3Cp3 T3 \
o oo +1/Qp2 | - 1/Qp3
\  Hv3 / \ Hv3 / ms3 Hs3
A3 ' A3 ] A3 Hv3
> dRho_1dt;

/ Cpew (T1-TF-Tcw) Rho_1 Cpew (TI - TF - Tew)\

|- + | Qew
(Rho_f-Rho_1)Qf \ Hvl - Cpew (T1 - TF) Hv1 - Cpew (T1 - TF) /
+

Alhl Alhl
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> dRho_2dt;

/ Rho_1Cpl T1 Rho_2 Rho_1 Cpl TI\
|-Rho_2 - ~---m-mssmmmmeoms + Rho 1 + | Qp1
\ Hv2 H2

A2 h2

/ 2 \

| Rho 2 Cp2T2 Rho 2Cp2T2| /Rho 2Hs2  Hs2\

|- + | Qp2 | - | ms2
\ Hv2 Hv2 / \ Hv2 Hv2/

+

-+

A2 h2 A2 h2

> dRho_3dt;
/ Rho 2 Cp2 T2 Rho_3 Rho_2 Cp2 T2\

|-Rho_3 - + Rho 2 + | Qp2
\ Hv3 Hv3 /

A3 h3

/ 2 \
| Rho 3 Cp3 T3 Rho_3 Cp3 T3] /Rho 3 Hs3  Hs3\
|- + |Qp3 | - | ms3
\ Hv3 Hvd / \  Hv3 Hv3/
_|..
A3 h3 A3 h3

-+

>dT1dt;

/Cphdl (Rho_f Cpf Tf - Rho_1 Cp1 T1) \
| - Cpl T1 (Rho_f-Rho_1)| Qf

\ Cphfl /

Cphd1 T1 Qpl
+

Cpl A1hl Rho_1 Al hl Cphfl

Cphdl Rho_3 Cp3 T3 Qp3

+ (-
Cphfl

/ Cpew (T1-TF - Tew)Hvl  Cpl Tt Cpew (T1 - TF - Tew) \
- - | Qow
\

Hvl - Cpew (T1 - TF) Hvl - Cpew (T1 - TF) /
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Cphdl Hsl ms1  Cphdl Hs2ms2  Cphdl Hs3 ms3 Cphdll Rho 1 Cpl T1 Qhfl
+ + + +

Cphfl Cphfl Cphfl Cphfl

-Rho_1 Cp1 T1 Qhf1)/(Cp1 Al h1 Rho_1)

> dT2dt;
/ 2 2 \
| Cp2 T2 Rho_2|
(|Rho_2 Cp2 T2 - | Qp2 +
\ Hv2 /
/ 2 \
|(Rho 1 Qpl + Rho_2 Qhf2 - Rho_2 Qp1) Cphd2 Hs2 Cphf2 Cp2 T2 Hs2|
| - Hs2 + cmmmemmommeee- | ms2
| 2 Hv2 |
\ Qhf2 /

Cphd2 (Qpl Rho_1 Cp1 T1 + Rho_2 Cp2 T2 Qhf2 - Rho 2 Cp2 T2 Qpl)
+

Cphf2
- Qpl Rho_1Cpl T!

/ Qpl Rho_1 Cp1 T1\

- Cp2 T2 [Rho_1 Qpl +Rho_2 Qhf2 - Rho_2 Qpl - 1)/
\ Hv2 /
(Cp2 A2 h2 Rho_2)
> dT3dt;
/ 2 2 \
| Cp3 T3 Rho_3|
(|Rho 3Cp3 T3 - | Qp3 +
\ Hv3 [/
/ 2 \
|(Rho_2 Qp2 + Rho_3 Qhf3 - Rho_3 Qp2) Cphd3 Hs3 Cphf3 Cp3 T3 Hs3|
| ' - Hs3 + —mmermeemmmeen | ms3
| 2 Hv3 |
\ Qhf3 /

Cphd3 (Qp2 Rho_2 Cp2 T2 +Rho_3 Cp3 T3 Qhf3 - Rho_3 Cp3 T3 Qp2)
+

Cphf3
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-Qp2Rho 2Cp2 T2

/ Qp2 Rho_2 Cp2 T2\
- Cp3 T3 [Rho_2 Qp2 +Rho_3 Qhf3 - Rho_3 Qp2 - 1 ¥
\ Hv3 /

(Cp3 A3 h3 Rho_3)

>
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APPENDIX E

SIMULATION PROGRAM TRIIOUY AND

SaMPLE QOUTPUTS

1 PROGRAM triiouv FOR SIMULATION OF TRIPLE EFFECTS EVAPORATOR

File: triiouv

Equations Summary and Checking
for Triple Effect Evaporator: Effect 1
With Data (Revised Model)

With Uncertainty Vector

With Thd3 and Thf3 equations

By To Lap Chi
on 14 Sept 1995
on 21 Sept 1995

Lie derivative L_f h(x)

variables = list of variables

f = list of functions depending on variables
h = one function depending on variables

By Miro Kraetzl

o3k e 3 s e e R 3R YR 3k 3R 3 o 3 3 3 W W H: M

:= proc(variables,f,h)

local n, i, g, j, k, var;

n:=nops(variables);
var:=seq(variables[i], i=1..n),
g:=unapply(h,var),

S:=array(1..n):
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for j from 1 to ndo

S[1 = fjI*Pil(g)(var);
od;

sum(S[k], k=1..n);
simplify(");

end:
Equations Summary and Checking

for Triple Effect Evaporator: Effect 1
With Data

I = H 3 I

with (linalg):

readlib (unassign):

with (plots):

setoptions(titlefont=[ TIMES, ROMAN, 15]):
#

Data

#
#
#  Define the output variables
#
y
#
#

Feed Stream
#

#Qf=29.7.
#Rho_fi=1.38:
H#TE=66:
Cpf:=3290:

#

# HF1 Stream
#

Qhf1:=2296:
Cphfl:=Cpl:

#

# HD1 Stream
#

Cphd1:=Cp1:

#

# V1 Stream
#
Hv1:=2234100:

#

# D1 Stream
#

[1]:=hl: y[2}:=h2: y[3]:=h3: y[4]:=T1: y[5]:=Rho_2: y[6]:-=Rho_3:
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BPE1:=16:
Cpl:=3250:

#

# CW Stream
#
#Qcw:=77.4681:
Cpew:=4160:
#Tapp:=3:
TF:=BPE1+Tapp:
HTew:=27.

#

# Flash Tank1
#

Al:=2312:

#

# P1 Stream
#

#Qpl1:=23.7:

#

# S1 Stream
#

msl:=0;
Hs1:=2110500:

#

#

Qd1:=Qp1+Qhfl-Qf:

Rho_hfl:=simplify ((Rho_f*Qf+Rho_1*Qd1-Rho_1*Qp1)/Qhfl):
dhldt:=1/A1*{(Qhfl-mv1-Qd1):

dRho_ldt:=simplify(1/(A1*h1)*(Qhf1 *Rho_hfl-mv1+(mv1-Qhfl)*Rho_1)):
dT1dt:=1/(Cp1*Al*h1*Rho_1)*(Qhfl1*Rho_hf1*Cphd1*Thd1-mv1*Hv1-Cp1*T1*
(Qhf1*Rho_hfl-mv1)):

#

#

#  Equations Summary and Checking
#  for Triple Effect Evaporator: Effect 2
#

#

#  Data

#

#  HF2 Stream

#

Qhf2:=2305:

Cphf2:=Cp2:

#

#  HD2 Stream

#

Cphd2:=Cp2:
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V2 Stream
#
Hv2:=2190700:
D2 Stream

#
#
#
BPE2:=24:

Cp2:=3320:

# Flash Tank2
A2:=23.12:
P2 Stream

#
#
#
#
#Qp2:=19.6:

#

# 52 Stream

#

#ms2:=6.276004:

Hs2:=Hsl:

#

Qd2:=Qp2+Qhf2-Qpl:

Rho_hf2:=simplify ((Rho_1*Qp1+Rho_2*Qd2-Rho_2*Qp2)/Qhf2):
dh2dt:=1/A2*(Qhf2-mv2-Qd2):
dRho_2dt:=simplify(1/(A2*h2)*(Qhf2*Rho_hf2-mv2+(mv2-Qhf2)*Rho_2)):
dT2dt:=1/(Cp2*A2*h2*Rho_2)*(Qhf2*Rho_hf2*Cphd2*Thd2-mv2*Hv2-Cp2*T2*
(Qhf2*Rho_hf2-mv2)):

#

#

#  Equations Summary and Checking
#  for Triple Effect Evaporator: Effect 3
#

#  Data

#

#  HF3 Stream

#

Qhf3:=2302.5;

Cphf3:=Cp3:

#

#  HD3 Stream

#

Cphd3:=Cp3:

#

# V3 Stream

#
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Hv3:=2190700:

#

# D3 Stream
#

BPE3:=30:
#Cp3:73410:

#

#  Flash Tank2
#

A3:=23.12:

#

# P3 Stream
#

#Qp3:=17.1

#

# S3 Stream
#
#ms3:=2.69646215:
Hs3:=Hsl:
Ts:=144:

#

- Qd3:=Qp3+Qhf3-Qp2:
Rho_hf3:=simplify ((Rho_2*Qp2+Rho_3*Qd3-Rho_3*Qp3)/Qhf3):
#

dh3dt:=1/A3*(Qhf3-mv3-Qd3):
dRho_3dt:=simplify(1/(A3*h3)Y*(Qhf3*Rho_hf3-mv3+(mv3-Qhf3)*Rho_. £3))
dT3dt:=1/(Cp3*A3*h3*Rho_3)*(Qhf3*Rho_hf3*Cphd3*Thd3-mv3*Hv3-Cp3*T3*
(Qhf3*Rho_hf3-mv3)):

#
mv]:=(Qcw*Cpecw*(T1-TF-Tew))/(Hv1-Cpew*(T1-TF)):
#

#  Find mv2 and Thdl

#

Tv2:=T2-BPE2:

Thd1:=Thfl+(ms1*Hs1+mv2*Hv2+mv3*Hv3)/(Qhfl*Rho_hfl1*Cphfl):
mv2:=1/Hv2*(Qp1*Rho_1*Cp1*T1+ms2*Hs2-Qp2*Rho_2*Cp2*T2):
#

#  Find mv3 and Thd2

#

Tv3:=T3-BPE3:

Thd2:=Thf2+(ms2*Hs2/(Qhf2*Rho_hf2*Cphf2)):
mv3:=1/Hv3*(Qp2*Rho_2*Cp2*T2+ms3*Hs3-Qp3*Rho_3*Cp3*T3).
#

#  Thd3 equation

#

Thd3:=Thf3+(ms3*Hs3)/(Qhf3*Rho_hf3*Cphf3):

#
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#  Thfequations

#

Thefl:=simplify ((Rho_f*Qf*Cpf*Tf+Rho_1*Qd1*Cp1*T1 -Rho_1*Qpl1*Cp1*T1)
/®Rho_hf1*Qhf1*Cphfl)):

Thf2:=simplify (Rho_1*Qp1*Cpl *T1+Rho_2*Qd2*Cp2*T2-Rho_2*Qp2*Cp2*T2)
/(Rho_hf2*Qhf2*Cphf2)).

Thf3:=simplify ((Rho_2*Qp2*Cp2*T2+Rho_3*Qd3*Cp3*T3-Rho_3 *Qp3*Cp3*T3)
/(Rho_hf3*Qhf3*Cphf3)):

#

#  Define variables

#

xvar:=[h1,h2,h3,Rho_1,Rho_2,Rho_3,T1,T2,T3];
uvar:=[Qf,Qp1,Qp2,Qcw,ms2,ms3];

dvar:=[Qp3];

uncer:=[Tapp,Rho_f, Tf,Tew,Cp3];

#

#  Determining no of states

#

ns:=nops(xvar):

#

#  Determining no of inputs

#

nu:=nops(uvar):

#

#  Determining no of disturbance
#

nd:=nops(dvar):

# .

#  Determining no of uncertainty
#

nuncer:=nops{uncer):

#

#  Final Equations

#

uvarseq:=seq{uvar(i], i=1..nu):
dhldt:=collect(dh1dt, {uvarseq})+uv[1):
dh2dt:=collect(dh2dt, {uvarseq})+tuv[2]:
dh3dt:=collect(dh3dt, {uvarseq})tuv[3]:
dRho_1dt:=collect(dRho_1dt, {uvarseq})+tuv[4]:
dRho_2dt:=collect(dRho_2dt, {uvarseq})+uv[5]:
dRho_3dt:=collect(dRho_3dt, {uvarseq})+uv[6]:
collect(simplify(dT1dt), {uvarseq}):
dT1dt:=collect(", Qf)+uvl7]:
dT2dt:=collect(simplify(dT2dt), {uvarseq})tuv[8]:
dT3dt:=collect(dT3dt, {uvarseq})tuv[S]:

#

#  Feedback Law by Lie Derivative
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#

fvector:=vector([dh1dt, dh2dt, dh3dt, dRho_1dt, dRho_2dt, dRho_3dt,
dT1dt, dT2dt, dT3dt]):

assign (Qp3=17.1, Tapp=5, Rho_f=1.38, Tf=66, Tcw=27, Cp3=3410):

#

#  Set the design parameters

#
b:=matrix(nu,2,[1,0.5,
1,0.5,
1,0.5,
1,-0.5,
1,0.5,
1,0.5);
#
# Solve for the inverse
¥

forito nu do

Ev[i):=v[i]-b[i,2]*L(xvar, fvector, y[i])-b[i,11*y[i]:
od:
solve({seq(Ev[i], i=1..nu)}, {seq(uvar{j], j=1..nu}}):
assign("};
forito nudo
ufi}:=uvar{i]:
od:
#
# Print Feedback law
#
for i to nu do

print (' State feedback control law for input °,1);

Iprint(u[i]);

od;
unassign ('Qf, 'Qp1', 'Qp2', 'ms2’, 'ms3’, '‘Qcw'):
unassign ('Qp3', 'Tapp', Rho_f, 'Tf, 'Tew!, 'Cp3’):
#
# Set the steady state value
#
xs:=[2.71,2.71,2.71,1.44,1.49,1.54,90.6,129,135}]:
xss:=seq(xvar[i]=xs[i], i=1..ns);
#
us:=[29.7,23.7,19.6,77.4681,6.276004,2.69646215]:
uss:=seq(uvar[i]=us[i], i=1..nu};

#

ds:=[17.1]:
dss:=seq(dvar[i]=ds[i], i=1..nd),
#

uncers:={5, 1.38, 66, 27, 3410]:
#
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#  For nominal study

iuncerp:=uncers:

z For robustness study

ﬁncerp:=[l4, 1.30, 70, 30, 3415]:
ﬁncerss:=seq(uncer[i]=uncers[i], i=1..nuncer),
uncerps:=seq(uncer[i]=uncerp[i], i=1..nuncer);
§S:=[2.71,2.71,2.71,90.6,1.49,1.54];

#

# Set the disturance
#

d:=[Qp3=20.0];

#

#  Initializing the summation for integral action
#

ysum:=matrix(1,nu,0):

#

#  Initializing sampling time

#

t0:=0:

t5:=0.02,;

#

#  Initializing the u and x vectors
#

u0:=vector(nu,us);
x0:=vector(ns,xs):

#

#  Setthe UL and LL

#

UL:=[30, 30, 30, 500, 50, 50]:
LL:=[seq(-us[vv], vw=1..nu)]:

#

#  Initializing the ITAEx

#

ITAEx:=matrix{1,nu,0):

#

#  Specifying the number of iterations
#

kset:=500:

#

# Set the printout rate, out
#

out:=2:
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Ensure kset is multiple of ‘out’
set:=out*iquo(kset,out),

Initializing the arrays

Fh 3k ¥k R/ O

x1:=vector(ns,0):

ul:=vector(nu,0):

foritons do

xdset[0,1];=0e-30;

od;

forito nu do

udset[0,i]:=0;

od:

#

#  PI controller parameters

#

Kp:=[10, 10, 10, -500, 10, 10];

ti=[1,1,1, 1,1, 1, 1}

#

#  Uncertainty Vector Parameters

#

uvp:=[10,0,0,0,0,0,10,0,0];

uvO:=seq(uv[i]=0, i=1..ns):

#

# Start control action

#

print (' Closed Loop Dynamics - t, X, u:');

#

for k to kset do

#

t:=k*ts;

#

#  Compute the next plant states with uncertainty

#

x0s:=seq(xvar[i]=x0[i}, i=1..ns);

u0s:=seq{uvar[i]=uO[i], i=1..nu);

#

x1[1]:=subs(x0s,u0s,d,uncerps,uv0, dhldt)*ts+x0[1];
x1[2]:=subs{x0s,u0s,d,uncerps,uv0, dh2dt)*ts+x0[2],
x1[3]:=subs(x0s,u0s,d,uncerps,uv0, dh3dt)*ts+x0[3];
x1[4]:=subs(x0s,u0s,d,uncerps,uv0, dRho_1dt)*ts+x0[4];
x1{5]):=subs(x0s,u0s,d,uncerps,uv0, dRho_2dt)*ts+x0[5];
x1[6]:=subs(x0s,u0s,d,uncerps,uv0, dRho_3dt)*ts+x0[6];
x1[7]:=subs(x0s,u0s,d,uncerps,uv0, dT 1dt)/1e2*ts+x0[7];
x1[8]:=subs(x0s,u0s,d,uncerps,uv0, dT2dt)/1e1*ts+x0[8];
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x1[9]:=subs(x0s,u0s,d,uncerps,uv0, dT3dt)/lel *t5+x0[9];

#

# Convert Actual Values to Deviation
#

scalarmul(xvar,-1),

add(x1,");

xd:=subs(xss,");

#

# Computer the output

¥

x1s:=seq(xvar[i]=x1[i}, i=1..ns),
#

forito nu do

#

y1[i]:=subs(x1s,y[i]);

;d[i]:=yl [il-ys[il;

#  Integral action

#

ysum([ 1,i]:=ysum[ Lij+yd[i];

od:

#

#  Compute next input

#

forito nu do

v[i]:=ys[i]-Kp[i]*yd[i}-Kp[i]*ysum[ 1,i] *ts/ti[i];

od:

#

#

#  Obtain the input, w, without uv

#

for i to nu do

wli]:=subs(x1s,uv0, ufi]),

od;

#

ws:=seq(uvar[i]=wli], i=1..nu);

#

#  Obtain model dx/dt for uv

#

uv[1]:=uvp[ 1]*(-subs(x1s,ws,d,uncerss,uv0, dhldt)),
uv[2]:=uvp[2]*(-subs(x1s,ws,d,uncerss,uv0, dh2dt)),
uv[3]:=uvp[3]*(-subs(x1s,ws,d,uncerss,uvd, dh3 dt));
uv{4]:=uvp[4]*(-subs(x1s,ws,d,uncerss,uv0, dRho_1dt)),
uv[5]:=uvp[5]*(-subs(x1s,ws,d,uncerss,uvl, dRho_2dt));
uv[6]:=uvp[6]*(-subs(x1s,ws,d,uncerss,uv0, dRho_3dt));
uv[7]:=uvp[7]*(-subs(x1s,ws,d,uncerss,uv0, dT1 dt)/1e2),
uv[8]:=uvp[8]*(-subs(x1s,ws,d,uncerss,uv0, dT2dt)/1el),
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uv[9}:=uvp[9]*(-subs(x1s,ws,d,uncerss,uv0, dT3dt)/1el);
#

#  Obtain the final input, ul, with uv
#

for i to nu do

ulfi]:=subs(x1s, ufi]);

od;

#

# Ensure ul within limits

#

for i to nu do

if ul[i] > (us[il+UL[i]) then
ul[i]:=us[i}+UL[i];

elif ul{i] < (us[ij+LL[i]) then

ul[i}:=us[il+LL[i];

fi;

od:

#

# Convert actual value to deviation
#

scalarmul{uvar,-1);
add(ul,");
ud:=subs(uss,");

#

#  Compute next ITAE
#

forito nu do

ITAEx[1,i]:=ITAEx[1,]] + ts*abs(yd[i])*t;

od:

#

#  Print Out results and Store Coordinates for plots
#

for j from 0 to 0 do

#

if (k/out) = iquo(k,out) then
#

print(t,xd,ud);

#

forito nu do
udseq[k/out,i]:=t, ud[i];
udset[k/out,i]:=ud[i];
od:

#

forito ns do
xdseq[k/out,i}:=t, xd[1];
xdset[k/out,1]:=xd[1];
od:




Appendix - Simulation Program triiouv and Sample Outputs

E-12

#

fi,

#

od;

#

#  Reset Values
#

to=t:

x0:=x1:

ud:;=ul:

#

od:

#

#  Print ITAE
#

print (C °);

print (' Integral Time Weighted Absolute Errors:’);
print (ITAEx);

#

#  Data Sequences for plots
#

foritonsdo

xdg[i]:=[0,0,seq(xdseq[j,i], j=1..kset/out)];
xdmm([i]:=seq(xdset[j,i], j=0..kset/out);
xdmax[i]:=max(xdmm[i]};
xdmin[i]:=min{xdmm[i]);

od:

# :

foritonudo

udg[i]:=[0,0,seq(udseq[j,i], j=1..kset/out)];
udmm[i]:=seq(udset[j,i], j=0..kset/out);
udmax[i]:=max(udmm[i]);
udmin{i}:=min{udmm[i]);

od:

#

# Generation of Plots
#

tg:=t/1:

uplot[1]:=plot({seq(udg[i], i=1..1)}, Time=0..tg,
title="1/0: Liquor Flow (m3/hr} vs Time (hr),
color=red):

uplot[2]:=plot({seq(udg[i], i=2..2)}, Time=0..tg,

title="T/O: Liquor Flow (m3/hr) vs Time (hr)’, style=point, symbol=cross,

color=white):
uplot[3]:=plot({seq(udg(i), i=3..3)}, Time=0..tg,

title="1/O: Liquor Flow (m3/hr) vs Time (hr)’, style=point, symbol=box,

color=blue):
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uplot{4]:=plot({seq(udg[i], i=4..4)}, Time=0..tg,

title="T/O: CW Flow (1000 kg/hr) vs Time (hr)’, color=red):
uplot[5]:=plot({seq(udg(i], i=5..5)}, Time=0..tg,

title="I/0: Steam Flow (1000 kg/hr) vs Time (hr)’, style=point,symbol=cross,
color=white):

uplot[6]:=plot{{seq(udg[i], i=6..6)}, Time=0..tg,

title="I/0: Steam Flow (1000 kg/hr) vs Time (hr)’, style=point, symbol=box,
color=blue}:

#display({seq{uplot[i], 1=1..3)});

#display({seq(uplot[j], j=5..6)});

#display(uplot[4]);

#

xplot[1]:=plot{ {seq(xdg[i], i=1..1)}, Time=0..tg,

title="1/0: Height (m) vs Time {(hr)’,

color=red):

xplot[2]:=plot({seq(xdg[i], i=2..2)}, Time=0..tg,

title="1/0: Height (m} vs Time (hr)’, style=point, symbol=cross,
color=white):

xplot[3]:=plot({seq(xdg[i], i=3..3)}, Time=0..tg,

title="1/O: Height (m) vs Time (hr)’, style=point, symbol=box,
color=blue}:

#display({seq(xplot[i], i=1..3)}),

#display(xplot[3]);

#

xplot[4]:=plot({seq(xdg[i], 1=4..4)}, Time=0.t,

title="1/0: Density (1000 kg/m3} vs Time (hr)’,

color=red):

xplot[5]:=plot({seq(xdg[i], i=5..5)}, Time=0..tg,

title="1/Q: Density {1000 kg/m3) vs Time (hr)’, style=point, symbol=cross,
color=white):

xplot[6]:=plot({seq(xdg[i], i=6..6)}, Time=0..tg,

title="I/O: Density (1000 kg/m3) vs Time (hr)’, style=point, symbol=box,
color=blue):

#display({ seq(xplot[i], i=5..6)});

#display(xplot[4]);

#

xplot[7):=plot({seq(xdg[i], i=7..7)}, Time=0..tg,

title="1/O: Temperature (deg. C) vs Time (hr)’,

color=red):

xplot[8]:=plot({seq(xdg[i], i=8..8)}, Time=0. tg,

title="I/O: Temperature (deg. C) vs Time (hr)’, style=point, symbol=cross,
color=white):

xplot[9]:=plot({seq(xdg[i], i=9..9)}, Time=0..tg,

title="1/0: Temperature (deg. C) vs Time (hr)’, style=point, symbol=box,
color=blue):

#display{{seq(xplot[i], i=7..9)});

#
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Save data for excel files

#
#
# for k to kset/out do lprint (xdseq[k,1], xdset[k,7]); od;
#

E.2 SAMPLE QUTPUTS OF PROGRAM triiouy
xvar :=[hl, h2, h3, Rho_1, Rho_2, Rho_3, T1, T2, T3]

uvar = [Qf, Qpl, Qp2, Qcw, ms2, ms3]

dvar := [Qp3]

uncer ;= [Tapp, Rho_f, Tf, Tcw, Cp3]

J— [u— [y — Ja—y
. _' . " .
n Lh h Ln Lh

[ S T iy Sy N T S S ) W R T— Py —
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I
[ e W s B s B s Y s B e B s B s B s B s B e |
[
th

State feedback control law for input , 1
-.4438775683e-16*(.6816135352e40*T172*v[1]+.3588329369e44
+.9703178362e44*v[3]-.6816135352e40*T1"2*h1+.5269697128e37
*T1A3%h1-.3408067676e40*T 1°2*uv{ 1]+ 2634848564e37*T1°3*uv|1]
+.5269697128e37*T173*v[5]*h2-.5269697128e37*T1"3*Vv[1]
+.3843572231e45*Rho_2*h2-.1921786115e45%v{5]*h2+.2557734178e28
*Rho 1*T173*h3-.9458748800e27*Rho_1*T173-.8640709164e42
*T1-.9703178362e44*h3-.1596832238e40*uv[7]*Rho_1*h1*T1
+,7057725629e41*uv[7]*Rho_1*h1-,1948785054e37*T173-.2634848564¢37
*Rho_1*T1"3*uv[1]-.2557734178¢28*Rho_1*T1"3*v[3]+.9608930577e44
*uv[5]¥h2+.9608930577e44*Rho_2*uv[2]-.1921786115e45*Rho_2*v{2]
+.9608930577e44*uv[6]*h3-.2336528606e43*v{1]*T1+.2336528606e43*h1
*T1+.1411545126e42*v[4]*Rho_1*h1-.3193664475¢40*v[4]*Rho_1*h1*T1
-.6816135352e40*Rho_1*T1/2*v[1]+.384357223 1e45*Rho_3*h3-.1921786115e45
*y[6]*h3+.2557734178e28*Rho_1*T173*h2+.5269697128e37
*T173*v[6]*h3+.1325042662e32*Rho_3*T3+.9514682791e44*Rho_1*v[3]
-.1053939426e38*T173*Rho_2*h2+.9608930577e44*Rho_3*uv[3]
-.1921786115e45*Rho_3*v{3]+.2557734178e28*Rho_1*T1"3
*y[5]*h2+.2557734178€28*Rho_1*T13*Rho_3*v[3]-.1278867089¢28*Rho_1
*T173*uv[5]*h2-.5115468357e28*Rho_1*T1°3*Rho_2*h2
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-.1739052336e30*Rho_1*T172*v(6]*h3-.1739052336e30*Rho_1
*T1~2*Rho_2*v[2]+.8695261680e29*Rho_1*T1/2*Rho_2*uv[2]
-.1739052336e30*Rho_1*T172*Rho_3*v[3]+.8695261680e29*Rho_1*T1"2*uv[5]
*h2+ 3478104672e30*Rho_1*T12*Rho_2*h2+.2336528606e43*T1*h3
+.1168264303e43*T1*uv[3]-.2336528606e43*T1*v[3]
-.1739052336e30*Rho_1*T1/2*v[5]*h2+.8695261680e29*Rho_1
*T172*uv[6]*h3+.3478104672¢30*Rho_1*T1~2*Rho_3*h3
+.8695261680e29*Rho_1*T1”2*Rho_3*uv[3]-.9847447157¢27*Rho_1
*Rho_3*T3*T142+.3233183011e30*Rho_1*Rho_3*T3*T1
-.2634848564e37*uv[7]*Rho_1"2*h1*T1"2-.5269697128e37*v[4]*Rho_1"2
*h1*¥T172+.5269697128e37*T 1°3*h3-.5269697128e37*T1"3*v[2]
+.9514682791e44*Rho_1*v[2]+.1411545126e42*Rho_172*h1*T1
-.3193664475e40*Rho_1"2*h1*T1"2+.3193664475¢40*v[4]
*Rho_172*h1*T1-.4757341396e44*Rho_1*uv[3]-.97031783 59e44*Rho_1
*v[1]-.4757341396e44*Rho_1*uv[2]+.9703178359e44*Rho_1*hl
-.9514682791e44*Rho_1*h2+.4851589179e44*Rho_1*uv[1]+.1596832238e40
*uv[7]*Rho_172*h1*¥T1-.7960990759¢42*Rho_1*T1-.9514682791e44*Rho_1*h3
+.5269697128¢37*T173*Rho_2*v[2]+.1660169992e43*T1*Rho_3
-.3834273945¢40*T172*Rho_3-.1227215834e31*Rho_1*T1*Rho_3*uv{3]
-.1227215834e31*Rho_1*T1*Rho_2*uv[2]+.2454431668e31*Rho_1*T1
*y[6]*h3-.1227215834e31*Rho_1*T1*uv[6]*h3+.2634848564e37
*T173*uv[2]+.5269697128e37*T1°3*h2+.2454431668e31*Rho_1*T1
*v[5]*h2+.2454431668e31*Rho_1*T1*Rho_3*v[3]-.1227215834e31

*Rho 1*T1*uv[5]*¥h2-4908863335e31*Rho_1*T1*Rho_2*h2
+.2634848564e37*T13*uv[3]+.2454431668e31*Rho_1
*T1*Rho_2*v[2]-.4908863335e31*Rho_1*T1*Rho_3*h3
+.1948785054e37*T1~3*Rho_3-.5269697128e37*T1"3%v[3]-.5115468357e28
*Rho_1*T173*Rho_3*h3-,1278867089¢28*Rho_1
*T1"3*Rho_3*uv[3]+.2557734178e28*Rho_1*T1/3*v[6]*h3
-.1278867089e28*Rho_1*T1/3*uv[6]*h3+.2557734178¢28*Rho_1*T173*Rho_2
*y[2]-.127886708%e28*Rho_1*T173*Rho_2*uv[2]
+.1278867089e28*Rho_1*T173*uv[3]+.970317835%e44*v[1]
-.4851589181e44*uv[2]-.9703178359e44*h1-.9703178362e44*h2
+3408067676e40*Rho_1*T1°2*uv[1]-.4851589179%44*uv[1]
+.5269697128e37*T17°3*Rho_3*v[3]-.2634848564e37*T1"3*Rho_2
*uv[2]-.4851589181e44*uv[3]+.1000979983e41*Rho_1*h1*T1"2
-2634848564e37*T173*uv[5]*h2-.2152726390e43*Rho_1*T1*v[2]
+.2152726390e43*Rho_1*T1*h2+.1076363195e43
*Rho_1*T1*uv[2]-.1168264303e43*Rho_1*uv[1]*T1
-.1776050078e40*Rho_1*T172*uv[3]+.3552100155e40*Rho_1*T1/2*v[3]
-.3552100155e40*Rho_1*T172*h2+.9703178362e44*v[2]
-.1776050078e40*Rho_1*T1"2*uv[2]
-.2152726390e43*Rho_1*T1*v[3]+.1076363195e43
*Rho_1*T1*uv[3]+.2152726390e43*Rho_1*T1*h3
-.1325042662e32*Rho_1*Rho 3*T3+.2336528606e43*Rho_1*v[1]*T1
+.5269697128e37*Rho_1*T1"3*v[1]+.5269697128e37*Rho_1"2
*h1*T173-.1411545126e42*v[4]*Rho_172*h1-.2477683118e43*Rho_1*h1*T1
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-3552100155¢40*Rho_1*T1/2*h3-.6431184028¢29*Rho_1*T12*Rho_3
+5184117754e40%T1°2*Rho_3*uv[3]+.2073647102e41*T172*Rho_3*h3
+.5184117754e40*T1/2*uv[6]*h3-.1036823551e41*T1°2*v[6]*h3
-3408067677e40*T1°2*uv[2]-.6816135353e40*T 1°2*h2

+.6816135353e40* T1"2*y[2]+.5184117754e40*T172*Rho_2*uv[2]
-1036823551e41¥T1°2*Rho_2*V[2]+.2073647102e41*T1°2*Rho_2*h2
+.5184117754e40*T1°2*uv[5]*h2-.1036823551e41 *T1°2*Rho_3*v[3]
+.9847447157¢27*Rho_3*T3*T12-.1053939426¢38*Rho_}
*R1*T1/3+.2520672892e40*T172-.103682355 1641 *T 1°2*v[5]*h2
_6816135353e40*T1°2*h3+.6816135353e40*T1°2*v[3]

- 340806767 7e40* T1°2*uv[3]-.2634848564e37*T1~3*Rho_3
*uv[3]-.1053939426e38*T1°3*Rho_3*h3-.7057725629e41*uv{7]*Rho_1"2*h1
- 263484856437+ T1°3*uv[6]*h3+.5269697128¢37*v[4]*Rho_1*h1*T1/2
+.1168264303e43*uv[1]*T1+.2634848564e37*uv[7]*Rho_1*h1*T1"2
+1313601052e40*Rho_1*T142-.3233183011e30
*Rho_3*T3*T1-.2244627498e43*T1*Rho_3*uv[3]
-.8978509993e43*T1*Rho_3*h3+.3552100155¢40*Rho_1*T1/2%v{2]
-.2244627498e43*T 1 *uv[6]*h3+.4489254996e43*T1*v[6]
*h3-.2244627498e43*T1*Rho_2*uv[2]+.4489254996e43*T1*Rho_2*v{2]
-.8978509993e43*T1*Rho_2*h2-.2244627498e43*T1*uv[5]*h2
+.4489254996e43*T1*Rho_3*v[3]+.4489254996¢43
*T1#y[5]*h2+.9076726107e30*Rho_1*T1*Rho_3+.945874880027
*Rho_1*T1°3*Rho_3+.1278867089e28*Rho_1*T173*uv(2]
-2557734178e28*Rho_1*T1°3*v[2]+.3518621880e44*Rho_1-.710695124%44
*Rho_3+.1168264303e43*T1*uv[2]+.2336528606e43*T1*h2
-.2336528606e43*T1*v[2])/(-.8065170805€26-.1845976905¢22* T 12
+.8065170805e26*Rho_1-.1773279721e25*Rho_1*T1
+.1845976905€22*Rho_1*T112+.1922271048¢19*Rho_1*T1/3
+1773279721€25*T1-.1922271048¢19%T143)

State feedback control law for input , 2
19247999999¢-8* (5000000000, *v[5}*h2+5000000000.*Rho_3*v[3]
-2500000000.*uv[5]*h2-.1000000000e1 1*Rho_2*h2+5000000000.*h3
-5000000000. *v[2]+2500000000. *uv{2]+5000000000.*h2+5000000000. *Rho_2
*y[2]-2500000000.*Rho_2*uv[2]+5000000000.*v[6]
*h3+1849048443.*Rho_3-2500000000.*uv[6]*h3-.1000000000e11*Rho_3*h3
-5000000000.*v[3]-1849048443 .-2500000000.*Rho_3*uv{3]
+2500000000.*uv[3])/(Rho_1-1.)

State feedback control law for input , 3
.9247999999e-8*(5000000000. *v[6]*h3+1849048443 *Rho_3
-2500000000. *uv[6]*h3-.1000000000e11*Rho_3*h3+5000000000.*Rho_3 *v[3]
-1849048443.-2500000000.*Rho_3*uv[3]+5000000000.*h3-5000000000.*v[3]
+2500000000.*uv[3])/(-1. +Rho_2)
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State feedback control law for input , 4
1775510273e-15%(.2150563935e40*T1°2*v{1]+.3782657080e44*v[3]
-.2150563935e40*T12*h1+.1818045509e37*T1"3*h1
-.1075281967e40*T1/2*uv[1]+.9090227545¢36*T1"3*uv{1]+.1818045509e37
*T1/3%y[5]*h2-.1818045509e3 7*T13*v[1]+.6287369638e45*Rho_2*h2
-3143684819e45*v[5]*h2+.6394335443e27*Rho_1*T173*h3-
.2364687199e27*Rho__1*Tl"3-.2595066676342*T1-.3782657080844*h3-
.7351797532e39*uv[7]*Rho_1*h1*T1+.2051310565¢42
*uv[7]*Rho_1*h1-.6723308434¢3 6*T173-.9090227545e36*Rho_1*T1"3
*uv[1]-.6394335443e27*Rho_1*T1/3*v[3]+.1571842410e45*uv[5]*h2
+.1571842410e45*Rho_2*uv[2]-.3143684819e45*Rho_2*v(2]
+.1571842410e45*uv[6]*h3-.7017303102e42*v[1]*T1+
7017303102e42*h1*T1+.4102621131e42*v[4]*Rho_1*hl
-.1470359506e40*v[4]*Rho_1*h1*T}-.2150563935e40*Rho_1*T1/2*v[1]
+.6287369638e45%Rho_3*h3-.3143684819e45*v[6]*h3
+.6394335443e27*Rho_1*T1/3*h2+.1818045509¢37*T1"3*v[6]*h3
+.1398863237e44+.3851203852e32*Rho_3*T3+.2765419111e45*Rho_1*v[3]
-.3636091017e37*T1~3*Rho_2*h2+.1571842410e45*Rho_3*uv(3]
-.3143684819e45*Rho_3*v[3]+.6394335443e27*Rho_1*T1"3
*y[5]¥h2+.6394335443e27*Rho_1*T173*Rho_3*v[3]-.319716772227
*Rho_1*T1/3*uv[5]*h2-.127886708%9e28*Rho_1*T1"3*Rho_2*h2
-.3696150840e30*Rho_1*T1"2*v[6]*h3
-.3696150840e30*Rho_1*T1"2*Rho_2*v[2]
+.1848075420e30*Rho_1*T1/2*Rho_2*uv[2]-.3696150840e30*Rho_1
*T1~2*Rho_3*v[3]+.1848075420e30*Rho_1*T1"2*uv[5]*h2
+.7392301680e30*Rho_1*¥T1°2*Rho_2*h2+.7017303104e42*T1*h3
+.3508651552e42*T1*uv[3]-.7017303104e42*T1*v[3]-
.3696150840e30*Rho_1*T1°2*v[5]*h2+.1848075420e30*Rho_1
*T1/2*uv[6]*h3+.7392301680e30*Rho_1*T1"2*Rho_3*h3+.1848075420e30
*Rho 1*T172*Rho_3*uv[3]-.2461861788e27*Rho_1*Rho_3 *T3*T172
+.2063951788e30*Rho_1*Rho_3*T3*T1-.6587121408¢36*uv[7]
*Rho_172*h1*T172-.1317424282¢37*v[4]*Rho_172*hl *T12
+.1818045509e37*T173*h3-.1818045509e37*T1/3*v[2]
+.2765419111e45%Rho_1*v{2]+.4102621131e42*Rho_1"2*h1*T1
-.1470359506e40*Rho_172*h1*T1/2+.1470359506e40*v[4]

*Rho 1°2*h1*T1-.1382709556e45*Rho_1*uv[3]-.378265707%¢44
*Rho_1*v[1]-.1382709556e45*Rho_1*uv[2]+.3782657079%¢44*Rho_1*hl
-2765419111e45*Rho_1*h2+.1891328539¢44*Rho_1*uv[1]
+.7351797532e39*uv[7]*Rho_12*h1*T1-.3665231127e42*Rho_1*T1
-2765419111e45*Rho_1*h3+.1818045509¢37*T1°3*Rho_2*v[2]
+.6260297803e42*T1*Rho_3-.1123699642e40*T1/2*Rho_3-.3566872585e31
*Rho_1*T1*Rho_3*uv[3]-.3566872585¢31*Rho_1*T1*Rho_2*uv[2]
+7133745170e31*Rho_1*T1*v[6]*h3-.3566872585¢31*Rho_1*T1*uv[6]
*h3+.9090227543e36*T1/3*uv[2]+.1818045509¢37*T1"3*h2
+,7133745170e31*Rho_1*T1*v[5]*h2+.7133745170e31*Rho_1*T1*Rho_3*v[3]
-.3566872585e3 1*Rho_1*T1*uv[5]*h2-.1426749034e32*Rho_1*T1*Rho_2*h2
+.9090227543e36*T 13 *uv{3]+.7133745170e31*Rho_1*T1*Rho_2*v[2]
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-.1426749034e32*Rho_1*T1*Rho_3*h3+.6723308434¢36*T1/3*Rho_3
-.1818045509¢37*T1°3*v[3]-.1278867089¢28*Rho_1*T13*Rho_3*h3
-3197167722e27*Rho_1*T1/3*Rho_3*uv[3]+.6394335443e27*Rho_1
*T173*v[6]*h3-.3197167722€27*Rho_1*T173*uv[6]*h3
+.6394335443e27*Rho_1*T1°3*Rho_2*v[2]-.3197167722¢27*Rho_1*T1"3
*Rho_2*uv[2]+3197167722e27*Rho_1*T1/3*uv[3}+3782657079e44*v[1]
-.1891328540e44*uv]2]-.3782657079%44*h1-.3782657080e44*h2
+.1075281967e40*Rho_1*T172*uv[1]-.189132853%44*uv1]
+.1818045509¢37*T173*Rho_3*v[3]-.9090227543¢36*T1°3*Rho_2
*uv[2]-.1891328540e44*uv[3]+.3620923441e40*Rho_1*h1*T1°2
-.9090227543e36*T1°3 *uv[5]*h2-.9911127912e42*Rho_1*T1*v[2]
+9911127912e42*Rho_1*T1*h2+.4955563956e42*Rho_1*T1*uv[2]
-3508651551e42*Rho_1*uv[1]*T1-.4440125194e39*Rho_1*T1~2*uv[3]
+.8880250388e39*Rho_1*T172*v[3]-.8880250388¢39*Rho_1*T1"2*h2
+3782657080e44*v[2]-.4440125194€39*Rho_1*T1°2*uv[2]
-.9911127912e42*Rha_1*T1*v[3]+.4955563956e42*Rho_1*T1*uv[3]
+9911127912e42*Rho_1*T1*h3-.3851203852¢32*Rho_1*Rho_3*T3
+.7017303102e42*Rho_1*v[1]*T1+.1818045509¢37*Rho_1*T1/3*v[1]
+.1317424282e37*Rho_172*h1*T1/3-.4102621131e42*v[4]*Rho_12*h1
-.1111992423e43*Rho_1*h1*T1-.8880250388¢39*Rho_1*T172*h3
-.1366872391€30*Rho_1*T1"2*Rho_3+.1519294487¢40*T1/2
*Rho_3*uv][3]+.6077177947¢40*T1"2*Rho_3*h3+.1519294487e40*T1°2
*uv[6]*h3-.3038588973e40*T1/2*v[6]*h3-.1075281968e40*T1/2*uv[2]

- 215056393 5e40* T1°2*h2+ 215056393 5¢40* T1/2*v[2]+.151929448 740
*T1°2¥Rho_2*uv[2]-.3038588973e40*T1°2*Rho_2*v[2]
+.6077177947e40*T172*Rho_2*h2+.1519294487e40*T172*uv[5]*h2
-3038588973e40*T1"2*Rho_3*V[3]+.2461861788¢27*Rho_3*T3*T1"2
-.3135469790e37*Rho_1*h1*T173+.7952993791e39*T 12
-3038588973e40*T1°2*v[5]*h2-.2150563935e40*T1°2*h3
+2150563935e40*T1°2*v[3]-.1075281968e40* T 1°2*uv[3]-
19090227543€36*T1°3*Rho_3*uv[3]-.3636091017e37*T1"3*Rho_3*h3
-.2051310565e42*uv[7]*Rho_1/2*h1-.9090227543e36*T13*uv[6]*h3
+1317424282e37*v[4]*Rho_1*h1*T1/2+.3508651551e42*uv[1]*T1
+.6587121408e36*uv[7]*Rho_1*h1*T172+,3284002630e39*Rho_1*T1"2
-2063951788e30%Rho_3*T3*T1-.846421550842*T1*Rho_3*uv[3]
-.3385686203e43*T1*Rho_3*h3+.8880250388e39*Rho_1*T1°2%v[2]

- 8464215508e42%T 1 *uv[6]*h3+.1692843102e43*T1*v[6]*h3
-.8464215508¢42*T1*Rho_2*uv[2]+.1692843102e43*T1¥Rho_2*v[2]
-.3385686203e43*T1*Rho_2*h2- 8464215508¢42* T1*uv[5]*h2
+.1692843102e43*T1*Rho_3*v[3]+.1692843102e43*T1*v[5]*h2
+2638128080e31*Rho_1*T1*Rho_3+.2364687199¢27*Rho_1*T1/3*Rho_3+.
3197167722¢27*Rho_1*T1°3*uv[2]- 6394335443e27*Rho_1*T1/3*v[2]
+.1022678780e45*Rho_1-.1162565104e45*Rho_3+.3508651552e42*T1*uv{2]
+.7017303104e42*T1*h2-.7017303104e42*T1*v[2])/(-.8065170805¢26
-.1845976905€22*T1/2+.8065170805¢26*Rho_1-.1773279721€25*Rho_1*T1
+.1845976905¢22*Rho_1*T1/2+.1922271048¢19*Rho_1*T1"3
+177327972125%T1-.1922271048¢19*T1/3)
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State feedback control law for input , 5
-.3551020546e-19*(-2703287198e22*Rho_2*h2+.1351643599¢22*v[5]*h2
-.1351643599e22*h3*Rho_2+.6758217994e21*Rho_2"2*uv(2]
-.1351643599e22*Rho_2"2*v[2]-.1351643599¢22*v[5]*h2*Rho_2
+.4098508984¢21*Rho_2-.6758217994e21*uv[5]*h2
-.6758217994e21*Rho_2*uv[2]+.1351643599e22*Rho_2*v[2]
-.1351643599¢22*Rho_1*v[3]-.1351643599e22*Rho_1*v[2]
+.6758217994€21*Rho_1*uv[3]+.6758217994e21*Rho_1*uv[2]
+.1351643599¢22*Rho_1*h2+.7415508377¢18*Rho_1*T1
+.1351643599¢22*Rho_1*h3.7575227018e18*Rho_2*T2
+.1002611425¢19*Rho_1*T1*Rho_3*uv{3]+.2005222850e19
*Rho_1*T1*Rho_2*uv[2]-.2005222850¢19*Rho_1*T1*v[6]*h3
+.1002611425e19*Rho_1*T1*uv[6]*h3-.2005222850e19*Rho_1
*T1*y[5]*h2-.2005222850e19*Rho_1*T1*Rho_3*v[3]
+.1002611425e19*Rho_1*T1*uv[5]*h2+.6015668550e19*Rho_1
*T1*Rho_2*h2-.4010445700e19*Rho_1*T1*Rho_2*v[2]+.4010445700e19*Rho_1
*T1*Rho_3*h3+.4998508984e21*Rho_1*Rho_3-.1024206133e19*Rho_2
*T2*uv[6]*h3-.4096824530e19*Rho_2*T2*Rho_3*h3
+.2048412265¢19*Rho_2*T2*Rho_3*v{3]+.1002611425e19*Rho_1*T1
*uy[3]*Rho_2+.2005222850e19*Rho_1*T1*h3*Rho_2+.7415508377¢18
*Rho_1*T1*Rho_3*Rho_2-.2005222850e19*Rho_1*T1*v[3]*Rho_2
+.2005222850e19*Rho_1*T1*v[6]*h3*Rho_2-.1002611425e19*Rho_1
*T1*uv[6]*h3*Rho_2+.2005222850e19*Rho_1*T1*v[5]*h2*Rho_2
+2005222850e19*Rho_1*T1*Rho_3*v[3]*Rho_2-.1002611425¢19
*Rho_1*T1*Rho_3*uv[3]*Rho_2-.1002611425¢19*Rho_1*T1
*uv[5]*h2*Rho_2-4010445700e19*Rho_1*T1*Rho_3*h3*Rho_2
+.2005222850e19*Rho_1*T1*Rho_2/2*v[2]-.4998508984e21*Rho_3
*Rho_2-.4010445700e19*Rho_1*T1*Rho_2"2*h2-.135164359%¢22
*y[6]*h3*Rho_2+.6758217994e21*Rho_3*uv{3]*Rho_2-.1351643599¢22
*Rho_3*v[3]*Rho_2-.1002611425e19*Rho_1*T1*Rho_2"2*uv[2]
-.6758217994e21*uv[3]*Rho_2+.7575227018e18*Rho_2*T2*Rho_1
+.6758217994e21*uv[5]*h2*Rho_2+.6758217994e21*uv{6]*h3*Rho_2
+.2703287198e22*Rho_3*h3*Rho_2+,1351643599e22*v[3]*Rho_2
-.7415508377e18*Rho_2*Rho_1*T1-.2048412265e19*Rho_2*T2*h3*Rho_1
+.2048412265e19*Rho_2*T2*v[3]*Rho_1.1024206133e19*Rho_2*T2*uv{3]
*Rho 1+.1024206133¢19*Rho_2*T2*Rho_3*uv[3]*Rho_1-.2048412265¢19
*Rho 2*T2*v[6]*h3*Rho_1-.7575227018e18*Rho_3*Rho_2*T2*Rho_1
+.1024206133e19*Rho_2*T2*uv[6]*h3*Rho_1+.4096824530e19
*Rho_2*T2*Rho_3*h3*Rho_1-2048412265¢19*Rho_2*T2*Rho_3*v[3]*Rho_1
-.1024206133e19*Rho_2*T2*Rho_3*uv[3]+.2048412265¢19*Rho_2*T2*h3
-2048412265¢19*Rho_2*T2*v[3}+.1024206133e19*Rho_2*T2*uv[3]
+.2048412265e19*Rho_2*T2*v[6]*h3+.2005222850e19*Rho_1*T1*v[2]
-2005222850e19*Rho_1*T1*h2-.1002611425¢19*Rho_1*T1*uv(2]
+.2005222850¢19*Rho_1*T1*v[3]-.1002611425¢19*Rho_1*T1*uv{3]
-.2005222850e19*Rho_1*T1*h3+.7575227018e18*Rho_3*Rho_2*T2
-.7415508377e18*Rho_1*T1*Rho_3-.2703287198e22*Rho_1*Rho_3*h3
_.4998508984¢21*Rho_1+.1351643599¢22*Rho_1*Rho_2*v[2]
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+.2703287198e22*¥Rho_2"2*h2-.1351643599¢22*Rho_1*Rho_2*h2
+.1351643599¢22*Rho_1*Rho_3*V[3]-.6758217994¢21*Rho_1*uv[6]*h3
+.1351643599e22*Rho_1*v{6]*h3-.6758217994e21*Rho_1*Rho_2*uv[2]
-.6758217994¢21*Rho_1*Rho_3*uv[3])/(Rho_1-1.)/(-1.+Rho_2)

State feedback control law for input , 6
-.1775510273e-19%(-.2703287198e22*h3*Rho_2+.9997017967¢21*Rho_2
+.1351643599e22*uv[6]*h3+.5406574395¢22*Rho_3*h3
-.2703287198e22*v[6]*h3+.1556115912¢19*Rho_3*T3
+1351643599¢22*Rho_3*uv{3]-.2703287198¢22*Rho_3*v[3]
-.1515045404¢19*Rho_2*T2-.2048412265¢19*Rho_2*T2*uv[6]*h3
- 8193649060¢19*Rho_2*T2*Rho_3*h3+.4096824530e19*Rho_2*T2*Rho_3*v[3]
-.1351643599e22*uv[3]*Rho_2+.2703287198e22*v[3]*Rho_2
-.2048412265e19*Rho_2*T2*Rho_3*uv[3]+.4096824530e19*Rho_2 *T2*h3
_.4096824530e19*Rho_2*T2*v[3]+.2048412265¢19*Rho_2*T2*uv(3]
+.4096824530e19%Rho_2*T2*v[6]*h3+.1515045404e19*Rho_3*Rho_2*T2
-.1556115912e19*Rho_3*T3*Rho_2-.9997017967¢21*Rho_3)/(-1.+Rho_2)

xss =hl =271, h2=271,h3=2.71, Rho_1=1.44, Rho_2 = 1.49,
Rho 3 =1.54, T1 =90.6, T2 =129, T3 = 135

uss .= Qf =29.7, Qpl = 23.7, Qp2 = 19.6, Qcw = 77.4681, ms2 = 6.276004,
ms3 = 2.69646215

dss :=Qp3=17.1
uncerss ;= Tapp = 5, Rho_f=1.38, Tf= 66, Tcw = 27, Cp3 = 3410
uncerps := Tapp = 14, Rho_f=1.30, Tf =70, Tew = 30, Cp3 =3415
ys = [2.71, 2.71,2.71, 90.6, 1.49, 1.54]
d :=[Qp3 =20.0]
ts == .02
kset ;=10
Kp :=[10, 10, 10, -500, 10, 10]
ti=[1,1,1,11,1,1]

uvp :=[10,0,0,0,0,0, 10, 0, 0]
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Closed Loop Dynamics - t, X, U:
04,
[ .001172703, -.000393468, -.002751176, -.001210085, .000216334, -.000162529,

6
00137495, -.8%10 , 01513321,

[ -9.74084220, -.8472670, 1.2842917, -34.92561549, -2.722981476, -.837237290 ]
08,

[ .002090553, -.000107895, -.003413127, -.002080445, .000059321, -.000302023,

-5
00191479, -.12*10 , .0196578 ],

[ -12.47158598, 4773668, 2.1438895, -18.92249694, -2.096309183, -.617451720 ]
12,

-5
[ 002803509, -.000015651, -.003535793, -.002423963, .8605*10 , -.000338235,

-5
00301224, -.12*10 , .0205873 ],

[ -15.78713206, .9098480, 2.4208834, -10.37428527, -1.888943183, -.545953539 ]
.16

>

.5
[ .003217390, .000013664, - 003486248, -.002359573, -.7514*10 , -.000341162,

-5
00405574, -.12*10 , .0203658 ],

[ -18.16577190, 1.0376677, 2.5082545, -5.48279577, -1.830890834, -.522746342 ]
20,
[ .003418406, .000022518, -.003383920, -.002029679, -.000012381, -.000333579,

-5
.00487843, -,12*%10 , .0197888 ],
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[ -19.68829053, 1.0587317, 2.5339766, -2.53836633, -1.828305242, -.515261778 ]

Integral Time Weighted Absolute Errors:

-5
[.0000628065560, .13745212*10 , 0000746989564, .000077460660,

-6 -5
7557420*10 , .69836688*10 ]

>
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APPENDIX F

LINEARIZED MODEL FOR TRIPLE
EFFECTS EVAPORATOR

F.1 LINEARIZED MODEL FOR TRIPLE EFFECTS EVAPORATOR

The linearized model of the triple effect evaporator was computed using MAPLE V.3

by linearizing the nonlinear state equations.

X 0= Ax+Tu+Tdo (H.1)
where
[ 0 0 0 0 0 0 —0.00782 0 0
0 0 0 -0I38 0166 O  —-0.00191 0.00191 0
0 0 0 0 —0166 0.155 0 000191 0.00177
—0.00780 0 0 -0361 0 0 000127 0 0
A= 0 ~0.00723 0 0403 -0329 0  0.00039 —-0.000346 O
0 0 000305 0 0346 -029 0 0.000381 ~0.000353
~0.190 x 10~ 0 0 238 0  -268  ~L19 0 ~0.306
0 o212 x10° 0 —283 218 0 00699  —0.0611 0
o0 0 00499 0 -221 189 0 00619  -0.0583 |
0.0433  -00433 0  -0.00394 O 0
0 0.0349 00306 0  -0.0417 0
0 0 0.0306 0 0 -0.0417
~0.000958 0 0 0000640 0 0
Y = 0 0000716 -0.00228 0 000753 0
0 0 0.00171 0 0 0.00830
—0364 1446 0 0603 719 719
0 ) 166 0 133 o
0 0 —168 0 0 1.35
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-0.00279
—2.42
o
1.70

-123
-0330+ 0.03501
—0.0330-0.0350I
-0.243
The eigenvalues of matrix A is | —0.0749 + 0.06031 |.
-0.0749 — 0.06031
0824 x 107
-0.0165
—0.00496




Linear Control Strategies for Liquor Burning Process G-1

APPENDIX G

LINEAR CONTROL STRATEGIES FOR

LIQUOR BURNING PROCESS

This appendix includes the part of the memo written by Mr. Graham Le Page
containing the simulation of the liquor burning process using different linear control
strategies. The details of the analysis are omitted due to confidentiality but the main
results are included for comparison with those developed in this thesis. The
motivations of providing this report are to allow the readers to understand the
investigation performed on the liquor burning process by Alcoa in the past and also to

compare the results obtained in this thesis with the one obtained in the previous study.




Note: For copyright reasons Appendix G (ppG2-G14 of this thesis) has not been
reproduced,

(Co-ordinator, ADT Project (Retrospective), Curtin University of Technology,
13.1.03)
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