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Abstract— Logistic regression is well known to the data mining 

research community as a tool for modeling and classification. 

The presence of outliers is an unavoidable phenomenon in data 

analysis. Detection of outliers is important to increase the 

accuracy of the required estimates and for reliable knowledge 

discovery from the underlying databases. Most of the existing 

outlier detection methods in regression analysis are based on 

the single case deletion approach that is inefficient in the 

presence of multiple outliers because of the well known 

masking and swamping effects. To avoid these effects the 

multiple case deletion approach has been introduced. We 

propose a group deletion approach based diagnostic measure 

for identifying multiple influential observations in logistic 

regression. At the same time we introduce a plotting technique 

that can classify data into outliers, high leverage points, as well 

as influential and regular observations. This paper has two 

objectives. First, it investigates the problems of outlier 

detection in logistic regression, proposes a new method that 

can find multiple influential observations, and classifies the 

types of outlier. Secondly, it shows the necessity for proper 

identification of outliers and influential observations as a 

prelude for reliable knowledge discovery from modeling and 

classification via logistic regression. We demonstrate the 

efficiency of our method, compare the performance with the 

existing popular diagnostic methods, and explore the necessity 

of outlier detection for reliability and robustness in modeling 
and classification by using real datasets.  

Keywords - data mining; high leverge point; influential 

observation; knowledge discovery; outlier; pattern recognition; 
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I.  INTRODUCTION  

It has been recognized that the Knowledge Discovery in 
Databases (KDD) community ignored statistical methods on 
the basis of courses that they took many years ago [1]. 
Logistic regression (LR) is a statistical technique mainly 
used for modeling for the case of a categorical (binomial and 
multinomial) response variable. From its original domain in 
epidemiology and health research, the applications of LR 
have expanded to cover almost every branch of knowledge 
including business, marketing, engineering, criminology, 
ecology, space and spatial sciences [2, 3]. In recent years, it 
has drawn huge attention as a successful Data Mining (DM) 
and high dimensional classification tool [4]. DM is an 
intermediate step in KDD (Fig. 1) involving algorithms that 

explore databases, extract patterns and develop models for 
analysis and prediction. The success of DM depends heavily 
on the algorithms and techniques used. Before performing 
DM techniques one of the steps of the KDD paradigm (Fig. 
1) [5, 6] is data processing, which covers data cleaning and 
preparing data to ensure accurate results, making proper 
decision and helping to obtain reliable knowledge. It is 
known that the presence of outliers can make a technique 
unreliable, give inaccurate, non-robust results, and draw 
imperfect and erroneous inferences. Knorr et al. [7] identify 
outlier detection as a meaningful and important Knowledge 
Discovery (KD) task. 

The well known Least Squares (LS) method is one of the 
most popular approaches to estimate the parameters in linear 
regression. But LS has assumptions for which estimators 
holds some nice and expected properties that do not hold for 
LR. This shortcoming of LR has lead to the Iterative Re-
weighted Least Squares (IRLS) based Maximum Likelihood 
(ML) method to become popular for estimating the 
parameters in LR [8, 9]. Pregibon [10] states that "The ML 
method has good optimality properties in ideal settings, but 
is extremely sensitive to 'bad' data. 'Bad' from the point of 
view of outlying responses (Y), and bad from the point of 
view of extreme points in the design space (X)". Based on 
the ML approach, LR analysis is sensitive to outliers and 
gives inaccurate and inconsistent results. One remedy for the 
outlier problem in regression analysis is the employment of 
diagnostics. There are many methods used for outlier 
detection in LR [2, 3, 8, 10]. It is a common idea that outliers 
are influential to the analysis, but not all the outliers are 
influential and vice versa [11,12]. Hence proper 
identification and classification of outliers and influential 
observations are equally important for robust analysis and to 
make reasonable conclusions. Most of the existing methods 
are based on single-case deletion and are inefficient in the 
presence of multiple outliers because of masking and 
swamping phenomena. We propose an algorithm that can 
identify multiple influential observations and classify the 
data into types of outliers in LR. 

After fitting an LR model and before making any 
inference based on the fit, an extra and essential step should 
be the evaluation and checking of the performance of the 
model. This paper investigates assessment of the LR results 
with and without outliers in a dataset, and shows the 
importance of outlier diagnostics for obtaining reliable 



knowledge from modeling, prediction and classification. The 
paper concentrates on two and three variables data that 
enables interpretation of the results. 

 The rest of the paper is arranged as follows: Section II 
shows how outlier problems are related to reliability issues in 
KD. In Section III, we give brief ideas about LR, outlier 
categories, and LR diagnostics. Section IV proposes a new 
method for the identification of multiple influential 
observations and a graphical display for the classification of 
outliers' categories in LR. Section V presents experimental 
results, evaluates the performance of the proposed technique, 
shows how outliers can affect the results from LR modeling 
and classification, and how it relates to reliability issues in 
KD. In Section VI, we present conclusions. 

 

 
 

Figure 1. The typical steps constituting the KDD process.  

II. OUTLIERS AND RELIABILITY ISSUES  

There are many names and definitions of outliers (e.g. 
abnormal, anomaly, exceptional, intrusion, noise and 
unusual), and many ways exist for detecting outliers in 
different fields of knowledge including statistics, machine 
learning, data mining, computer vision, photogrammetry and 
remote sensing [7, 10, 13, 14, 15, 16, 17, 18]. Most outlier 
investigations have been in statistics [2, 3, 13, 19, 20, 21, 22, 
23]. The definition of Hawkins [13] captures the meaning 
and spirit of the word well: "An outlier is an observation that 
deviates so much from the other observations as to arouse 
suspicions that it was generated by a different mechanism". 
John [24] defines an outlier as 'surprising veridical data', a 
point belonging to class A but actually situated inside class B 
so the true (veridical) classification of the point is surprising 
to the observer. Outliers occur very frequently in real data, 
and they often go unnoticed because much data is processed 
by computers without careful inspection and screening [14]. 
Outliers may appear because of human error such as 
keypunch errors, mechanical faults (such as transmission or 
recoding errors), changes in system behaviour, exceptional 
events (natural disasters such as earthquakes and floods), 
instrument error, or simply through natural deviations in 
populations [14, 17]. The presence of outliers in a dataset 
may cause the parameter estimation to be erroneous, 
misclassifying the outcomes and consequently creating 
problems when making inferences with the wrong model. A 
key issue which could significantly affect real world 
applications in data mining is the reliability issues of 
knowledge discovery [25]. Some interesting and major 
questions are found in reliability issues: (i) what are the 
major factors that can make the discovery process 
unreliable? (ii) how can we make sure that the discovered 

knowledge are reliable? (iii) under what conditions can a 
reliable discovery be assured? (iv) what techniques are there 
that can improve the reliability of discovered knowledge? (v) 
when can we trust that the discovered knowledge is reliable 
and reflects the real data? [5, 25,  26, 27]. Answers to these 
questions are influenced by the presence of outliers in a 
dataset. We observe in Section V(B) that most of the 
reliability issues can be (directly or indirectly) addressed by 
the proper investigation and treatment of outliers. 

III.  LOGISTIC REGRESSION DIAGNOSTICS, 
CLASSIFICATION OF OUTLIERS, RELATED PRINCIPLES AND 

METHODS 

A. Logistic Regression  and Diagnostics 

Logistic regression is a technique for describing how a 
categorical response variable is functionally related with one 
or more explanatory (predictor/regressor) variables. LR can 
deal with multinomial as well as binomial response 
variables. In this paper we focus on the binomial (e.g. 0, 1) 
response. The customary model for LR is: 

E(Y | X)= π (X)

where π (X) (hereafter π) is the probability of the outcome 
(success of an event) of some functionally associated 
explanatory variable (X). The log of [π (.)/(1–π (.))] can be 
defined as a linear function called logit (log odds) of X, i.e.: 
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X is an n×k (k = p+1) data matrix, and βT=(β0, β1,..., βp) is the 
vector of parameters. Hence the LR model in (1) can be re-
written as: 

επ Y 

where Y is a vector of binary (0, 1) responses and ε is the 
error term: 
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which follows a distribution with mean 0 and variance    
π(1–π). Since ε violates most of the LS assumptions, LR 
employs the Iterative Re-weighted LS (IRLS) based 
Maximum Likelihood (ML) method for parameter estimation 
[8]. It is known that ML estimation is sensitive to outliers. 
Hence outlier diagnostics are necessary for reliable 
parameter estimation to fit a correct model and to obtain 
accurate classification.  



Regression diagnostics are quantities computed from the 
data with the purpose of pinpointing unusual 
(outliers/influential) observations, which can then be studied 
and corrected (if necessary) or deleted, followed by fitting 
the remaining data (inliers) by classical (e.g. LS) methods 
[14]. The diagnostic approach is a combination of graphical 
and numerical methods. In recent years diagnostics have 
become an essential part of LR based study [2,  9,  28].  

B. Classification of Outliers in Logistic Regression  

As in linear regression, typically outliers in LR can be 
categorized into three classes: outliers, high leverage points 
and influential observations. These are obtained by (i) 
deviation/change in X (explanatory) space, called leverage 
points (ii) deviation in Y (response variable) not in X, called 
vertical outliers (iii) deviation in both spaces (Fig. 2). 
Outliers and high leverage points have a very close 
relationship to influential observations. Influential 
observations are defined as points, which either individually 
or together with several other observations, have a 
demonstrably larger impact on the calculated values of 
various estimates (coefficients, standard errors, t-values etc.) 
[20]. In LR, outliers and influential observations may occur 
as misclassification between the binary (0, 1) responses. It 
may occur by meaningful deviation (we also see low 
leverage) in explanatory variables, which also affect the 
response as such, so that the usual pattern (S-curve; (Fig. 2 
(green line)) of the majority of the data is disrupted [28]. 

 

 
Figure 2. Outliers, and linear and logistic (S-curve) models.  

C. Related Diagnostic Principles and Methods 

Pregibon [10] provides the foundation of LR diagnostics 
that has been extended from the idea of linear regression. In 
LR, the basic building blocks for the identification of 
outlying and influential points are the residual vector and the 
projection matrix [10]. In a similar fashion to linear 

regression, the ith residual )ˆ( ii yy   can be defined in LR as:  

 iii y π̂ε̂  

The projection (leverage) matrix is a diagonal matrix that 
gives the fitted values of the response variable as the 
projection onto the covariate space. It has been derived by 
Pregibon [10] as: 

 2/112/1 )( VXVXXXVH TT  

where V is a diagonal matrix with diagonal elements 

)π̂1(π̂ iiiv  . Using Pregibon's linear regression like 

approximation, (6) holds as
 iiiiii yhy )1(π̂ε̂  ; hii is 

the ith diagonal element of H defined as: 
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and variance of the residual )1()ε̂( iiii hvv  . Hence, the 

standardized Pearson residual for LR is defined as: 
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Observations with 3|| sir  are generally treated as outliers 

[8, 9], and large hii ( > ck/n; c = 2 or 3) values are generally 
identified as high leverage points. Hosmer and Lemeshow 
[2] point out that in LR the most extreme points in covariate 
space may not necessarily have high leverage values if their 
weights are very small. Residuals, standardized residuals and 
leverage values are useful for detecting extreme points, but 
not for assessing their various aspects on the fit [10]. Welsch 
[29] points out that neither the leverage nor the Studentized 
residual alone will usually be sufficient to identify the 
influential cases. The most popular two methods (available 
in most of the software packages) for the identification of 
influential observations in linear regression are Cook's 
Distance (CD) [30] and DFFITS [20]. Variants of them are 
now available in LR. Welsch [29] suggests DFFITS as a 
better choice, which is defined in LR as:  
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Observations with DFFITS values greater than 3√(k/n) are 
identified as influential cases. All the above measures are 
based on the single case deletion approach, hence naturally 
they are affected by the well known masking and swamping 
phenomena [31] and fail to detect outliers in the presence of 
multiple outliers and/or influential cases [9, 28]. The group 
deletion approach introduced in [31] is an approach to outlier 
detection that forms a clean subset of the data that is 
presumably free of outliers, and then test the outlyingness of 
the remaining points relative to the clean subset. A group 
deleted version of the Generalized Standardized Pearson 
Residual (GSPR) [9] and the Generalized Weight (GW) [28] 
have been introduced for detecting multiple outliers and high 
leverage points respectively in LR. These methods find a 
suspect group (D) of d outlying/unusual cases with the help 
of graphical methods, robust techniques such as LMS, LTS, 
RLS [14] and/or appropriate diagnostics measures like 
residuals, leverage values and BACON [32]. Interested 
readers are referred to [9, 28, 31] to find out more about the 



identification of the suspect group D and the group deletion 
approach. The group of remaining (n-d) cases is denoted as R 
(clean set). Without loss of generality, the data in 
explanatory variables (X), response variable (Y) and the 
variance-covariance matrix V can be defined respectively as:  
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estimated parameters (coefficients). The fitted value for the 
ith response based on the R set for the entire model can be 
defined as: 
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Hence, the ith group-deleted version of residual, 
corresponding variance and the ith diagonal element of the 
leverage matrix respectively can be defined as:  
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Using (12, 13, 14), the Generalized Standardized Pearson 
Residual (GSPR) [9] and the Generalized Weight (GW) [28] 
are proposed respectively as: 
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are identified as outliers and high leverage points 
respectively.  
 

IV. PROPOSED METHOD   

This section proposes an influence measure for 
identifying multiple influential cases in LR. Based on the 
Mahalanobis Distance (MD), it has the advantage of 
classifying the observations into outliers, high leverage 
points, influential and regular observations.   

The Mahalanobis Distance (MD) is one of the most well 
known distances used for identifying multivariate outliers 
and is defined as: 

)()( 1 ZZZZMD i
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where Z is a m variate random variable with mean Z and 
covariance matrix Σ . It is known that MD follows a Chi-
square (χ2) distribution. Observations with MD values greater 

than √( 2
975.0,χm ) are usually treated as outliers. Due to the 

non-robustness of Z  and Σ , MD suffers from masking and 
swamping phenomena [33]. Although it is still quite easy to 
detect a single outlier using MD, this approach no longer 
suffices for multiple outliers [34]. To reduce outlier effects 
many robust estimators of mean and covariance matrix have 
been introduced in the literature [34, 35].  

We propose a MD type Influence Distance (ID) to find 
influential cases in LR. We generate a two column matrix of 
GSPR in (15) and GW in (16) to preserve information about 
both generalized standardized Pearson residuals and 
generalized leverage values. We define this matrix as the 
generalized residual-leverage matrix G : 
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We define ID as: 
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where )(RG and )(R are the mean and covariance matrix 

based on the R group (excluding the observations which are 
identified as outliers by GSPR). To reduce the effects of 

outliers on Z  and Σ in (17), and to make the ID robust, we 

use the )(RG and )(R in (19). In a similar fashion to MD, ID 

follows a Chi-square distribution, and observations having 

ID values larger than √( 2
975.0,2χ ) = 2.716 are identified as 

influential observations.  
We also propose a classification plot using the ID to 

classify the data into outliers, high leverage points, 
influential and regular observations, see Figure 3. We 

generate a scatter plot of GSPR ( *
sir ) versus GW ( *

iih ) and 

sketch three cut-off lines. The first two cut-off lines are 

horizontal, parallel to the *
iih  axis at GSPR= ±3 to find 

outliers, and the third cut-off line is vertical, parallel to the 
*
sir  axis at median( *

iih )+3×MAD( *
iih ) that can separate the 

high leverage points from the usual cases. Finally, we draw a 
confidence (influence) ellipse on the scatter plot based on the 
ID values in (19). Finally, observations outside the ellipse 
are identified as influential cases. The remaining 
observations that are not outliers, high leverage points or 
influential observations can be treated as regular or usual 
cases. The identification and classification methods are 
summarized in Algorithm 1.  



Algorithm 1. 

(i) Calculate *
sir  in (15) and *

iih in (16) using the group 

deletion approach in Section III (C).  
(ii) Construct the matrix G according to (18).  

(iii) Calculate )(RG  and )(R based on the R group after 

the deletion of outlying cases identified by *
sir .  

(iv) Calculate ID using (19). 
(v) Find influential observations for which  

 IDi > 716.2χ 2
975.0,2  .  

(vi) To sketch the classification plot (Fig. 3): (a) draw an 

scatter plot *
sir  versus *

iih (b) draw cut-off lines at ±3 and 

median( *
iih )+3×MAD( *

iih ) through the *
sir  and *

iih axes 

respectively (c) draw an influence ellipse based on the ID 
values and the Chi-square cut-off value.  

 

 
Figure 3. Classification plot.  

V. EXPERIMENTAL RESULTS 

We consider numerical examples to assess the efficiency of 
the proposed algorithm for the identification of influential 
observations through well-referred real datasets. Second, we 
investigate the problems of outliers in model building and 
classification, and the necessities of outlier diagnostics for 
inferring reliable knowledge from LR as a part of the KD.  

A. Performance Evaluation of the Algorithm 

To determine the efficiency of the proposed algorithm for 

finding multiple influential cases in LR, we use the two 

following datasets in our demonstration.  

1) Modified Brown Data: 
We first consider the Brown et al. [36] data. The original 

dataset contains 53 observations of five regressors. We only 
consider acid phosphatase (A.P.) as a regressor here for 
illustrating diagnostics in simple LR. The original objective 
was to see whether an elevated level of phosphatase in 
blood serum would be of value for predicting whether or not 
a prostate cancer patient also had lymph node involvement 
(L.N.I.) [8]. Ryan [8] shows that the original data contains a 
single (case 24) outlier. To see the influence of the presence 
of multiple outliers, and to see the effects of masking and 
swamping, we modify the data by including two more cases: 
54 and 55, and changing the responses (1 to 0) of the 25th 
and 53rd patients. The modified dataset on the 55 patients 
are given in Table 1. Although the X-Y scatter plot in LR 
has a very little explorer value, the scatter plot (Fig. 4(a)) of 

the L.N.I. versus A.P. values shows that the five cases (24, 
25, 53, 54, 55) are among the patients without nodal 
involvement that have much higher A.P. levels than the 
majority of cases.  

TABLE. 1 MODIFIED BROWN DATA 

i L.N.I. A.P. i L.N.I. A.P. i L.N.I. A.P. i L.N.I. A.P. 

1 0 48 15 0 47 29 0 50 43 1 81 

2 0 56 16 0 49 30 0 40 44 1 76 

3 0 50 17 0 50 31 0 55 45 1 70 

4 0 52 18 0 78 32 0 59 46 1 78 

5 0 50 19 0 83 33 1 48 47 1 70 

6 0 49 20 0 98 34 1 51 48 1 67 

7 0 46 21 0 52 35 1 49 49 1 82 

8 0 62 22 0 75 36 0 48 50 1 67 

9 1 56 23 1 99 37 0 63 51 1 72 

10 0 55 24 0 187 38 0 102 52 1 89 

11 0 62 25 (1)0 136 39 0 76 53 (1)0 126 

12 0 71 26 1 82 40 0 95 54 0 200 

13 0 65 27 0 40 41 0 66 55 0 220 

14 1 67 28 0 50 42 1 84    

 
Table 2 contains all the single and group deletion 

diagnostics results. They show that standardized Pearson 
residuals fail to find any of the outliers. This means all the 
five outliers are masked as good points. Leverage values 
identify four cases (24, 25, 54, 55) as high leverage points. 
To employ the proposed algorithm for finding multiple 
influential cases, we form the deletion group D of the five 
suspect cases determined by Fig. 4(a). Based on the clean 
set R, we calculate GSPR [9] and GW [28]. Results of 

GSPR ( *
sir ) in Table 2 show that three cases (24, 54, 55) are 

correctly identified as outliers (Fig. 4(e)) and six cases (20, 
23, 25, 38, 40, 53) are identified as high leverage points by 

the group deleted version of leverage values, GW ( *
iih , Fig. 

4(f)). Single case deletion influence measure DFFITS failed 
to detect any of the cases as influential, which shows that 
DFFITS values are affected by masking. The results in table 
2 (columns 7 and 14) along with Fig. 4(g) shows that the 
proposed ID successfully identifies all the five influential 
cases (24, 25, 53, 54, 55) as well as one more (case 38) 
which has a large A.P. value (102). It is clear that case 38 
was masked before by the presence of multiple unusual 
cases. Fig. 4(h) shows the overall classification properly. 

2) Modified Finney Data 
We consider another dataset from Finney [37], which has 

been extensively analyzed later by many authors as an 
example of multiple LR diagnostics [9, 10, 28]. This dataset 
has 39 cases with two regressors. The dataset in Table 3 was 
obtained in a controlled study of the effect of rate and 
volume of air inspired on a transient vasoconstriction in the 
skin of the digits [10]. The character plot of Fig. 5(a) has 
been created by plotting rate versus volume, and the 
characteristics corresponding to occurrence (1) and non 
occurrence (0) have been shown by different colors. Using a 
contour plot Pregibon [10] shows that this dataset may 
contain two outliers (cases 4 and 18). To get more outliers 
and to see the effects of multiple outliers, we deliberately 
interchange (0 to 1) for cases (10, 11) as shown in Table 3. 



TABLE. 2 DIAGNOSTIC RESULTS FOR MODIFIED BROWN DATA 

i 
|rsi| 

(3.00) 

hii 

(0.073) 

|DFFITSi| 

(0.572) 

|rsi*| 

(3.00) 

hii* 

(0.081) 

IDi 

(2.716) 
i 

|rsi| 

(3.00) 

hii 

(0.073) 

|DFFITSi| 

(0.572) 

|rsi*| 

(3.00) 

hii* 

(0.081) 

IDi 

(2.716) 

1 -0.740 0.029 -0.124 -0.520 0.040 0.578 29 -0.737 0.027 -0.120 -0.543 0.037 0.655 

2 -0.728 0.023 -0.110 -0.615 0.029 0.906 30 -0.753 0.036 -0.141 -0.441 0.052 0.459 

3 -0.737 0.027 -0.120 -0.543 0.037 0.655 31 -0.729 0.024 -0.111 -0.602 0.030 0.866 

4 -0.734 0.026 -0.116 -0.566 0.034 0.739 32 -0.723 0.022 -0.106 -0.655 0.026 1.017 

5 -0.737 0.027 -0.120 -0.543 0.037 0.655 33 1.391 0.029 0.237 1.998 0.040 1.994 

6 -0.739 0.028 -0.122 -0.531 0.038 0.615 34 1.396 0.026 0.228 1.869 0.035 1.863 

7 -0.743 0.030 -0.128 -0.499 0.043 0.515 35 1.393 0.028 0.234 1.954 0.038 1.948 

8 -0.719 0.020 -0.102 -0.698 0.024 1.104 36 -0.740 0.029 -0.124 -0.520 0.040 0.578 

9 1.406 0.023 0.216 1.672 0.029 1.696 37 -0.718 0.020 -0.101 -0.714 0.023 1.126 

10 -0.729 0.024 -0.111 -0.602 0.030 0.866 38 -0.674 0.030 -0.111 -1.740 0.131 3.173 

11 -0.719 0.020 -0.102 -0.698 0.024 1.104 39 -0.701 0.018 -0.093 -0.949 0.034 1.091 

12 -0.707 0.018 -0.095 -0.849 0.026 1.165 40 -0.681 0.025 -0.103 -1.476 0.101 2.215 

13 -0.715 0.019 -0.099 -0.745 0.023 1.159 41 -0.714 0.019 -0.098 -0.761 0.023 1.170 

14 1.431 0.019 0.198 1.315 0.023 1.428 42 1.475 0.020 0.204 0.926 0.056 1.054 

15 -0.742 0.029 -0.126 -0.510 0.042 0.545 43 1.466 0.019 0.200 0.983 0.046 0.999 

16 -0.739 0.028 -0.122 -0.531 0.038 0.615 44 1.453 0.018 0.196 1.089 0.034 1.113 

17 -0.737 0.027 -0.120 -0.543 0.037 0.655 45 1.438 0.018 0.196 1.234 0.025 1.335 

18 -0.699 0.019 -0.093 -0.993 0.038 1.063 46 1.458 0.019 0.197 1.045 0.038 1.048 

19 -0.693 0.020 -0.094 -1.114 0.052 1.101 47 1.438 0.018 0.196 1.234 0.025 1.335 

20 -0.678 0.027 -0.106 -1.584 0.114 2.624 48 1.431 0.019 0.198 1.315 0.023 1.428 

21 -0.734 0.026 -0.116 -0.566 0.034 0.739 49 1.469 0.019 0.201 0.964 0.049 1.003 

22 -0.702 0.018 -0.094 -0.928 0.032 1.108 50 1.431 0.019 0.198 1.315 0.023 1.428 

23 1.520 0.028 0.244 0.689 0.118 2.706 51 1.443 0.018 0.195 1.183 0.027 1.264 

24 -0.634 0.186 -0.275 -9.979 0.051 9.995 52 1.489 0.022 0.214 0.839 0.075 1.420 

25 -0.650 0.074 -0.167 0.274 0.126 2.837 53 -0.656 0.058 -0.148 0.339 0.132 3.061 

26 1.469 0.019 0.201 0.964 0.049 1.003 54 -0.634 0.222 -0.308 -13.311 0.037 13.426 

27 -0.753 0.036 -0.141 -0.441 0.052 0.459 55 -0.637 0.281 -0.366 -20.662 0.021 20.914 

28 -0.737 0.027 -0.120 -0.543 0.037 0.655        

 

 
Figure 4. Modified Brown data (a) scatter plot; L.N.I. versus A.P. (b) index plot of standardized Pearson residual (c) index plot of leverage values (d) index 

plot of DFFITS (e) index plot of GSPR (f) index plot of GW (g) index plot of ID (h) classification plot.  

Diagnostics results in Table 4 show that Pearson 
standardized residuals fail to identify any outlier, all the four 
outliers are masked in the presence of the group of outliers 
(cases 4, 8, 10 and 11). Leverage values identify two wrong 
cases (31, 32) as high leverage points, while DFFITS fails to 
identify any one of the influential cases. We calculate the 

group deletion diagnostics (GSPR and GW) measures using 
the same suspect group (cases 4, 10, 11 and 18) suggested by 
Imon and Hadi [9]. In Table 4, we see the GSPR values 
(columns 5 and 12; Fig. 5(e)) identifies the four cases as 
outliers and the GW values (columns 6 and 13) identify 
many cases as high leverage points (Fig. 5(f)).  



TABLE. 3 MODIFIED FINNEY DATA 

i Y Volume Rate i Y Volume Rate i Y Volume Rate 

1 1 3.70 0.825 14 1 1.40 2.330 27 1 1.80 1.500 

2 1 3.50 1.090 15 1 0.75 3.750 28 0 0.95 1.900 

3 1 1.25 2.500 16 1 2.30 1.640 29 1 1.90 0.950 

4 1 0.75 1.500 17 1 3.20 1.600 30 0 1.60 0.400 

5 1 0.80 3.200 18 1 0.85 1.415 31 1 2.70 0.750 

6 1 0.70 3.500 19 0 1.70 1.060 32 0 2.35 0.030 

7 0 0.60 0.750 20 1 1.80 1.800 33 0 1.10 1.830 

8 0 1.10 1.700 21 0 0.40 2.000 34 1 1.10 2.200 

9 0 0.90 0.750 22 0 0.95 1.360 35 1 1.20 2.000 

10 (0)1 0.90 0.450 23 0 1.35 1.350 36 1 0.80 3.330 

11 (0)1 0.80 0.570 24 0 1.50 1.360 37 0 0.95 1.900 

12 0 0.55 2.750 25 1 1.60 1.780 38 0 0.75 1.900 

13 0 0.60 3.000 26 0 0.60 1.500 39 1 1.30 1.625 

To sort out the influential cases, we employ the algorithm  
for ID. We use the suspect group (cases 4, 10, 11 and 18) 
identified by GSPR for the deletion, and compute the mean 
and covariance matrix from the remaining 35 cases, and the 
ID values using (19). Results in Table 4 (columns 7 and 14) 
show that ID identifies all four cases (4, 10, 11 and 18) with 
three more cases (13, 32, 39) as influential that were masked 
before. Since the ID values for the influential cases are much 
larger than the values of the non-influential cases, we rescale 
the ID values by taking logs for better visualization. Fig. 5(g) 
shows clear separation between influential and non-
influential cases. The character plot (Fig. 5(a)) of the cases 
(13, 32, 39) justifies the performance of the proposed ID.  

TABLE. 4 DIAGNOSTIC RESULTS OF MODIFIED FINNEY DATA 

i 
|rsi| 

(3.00) 

hii 

(0.154) 

|DFFITSi| 

(0.832) 

|rsi*| 

(3.00) 

hii* 

(0.044) 

IDi 

(2.716) 
i 

|rsi| 

(3.00) 

hii 

(0.154) 

|DFFITSi| 

(0.832) 

|rsi*| 

(3.00) 

hii* 

(0.044) 

IDi 

(2.716) 

1 0.1491 0.072 -0.127 0.000 0.00000 0.532 21 -0.6157 0.100 -0.201 -0.001 0.00007 0.533 

2 0.1543 0.068 -0.112 0.000 0.00000 0.532 22 -0.7032 0.061 -0.175 -0.005 0.00068 0.532 

3 0.5799 0.061 0.148 0.035 0.01708 0.444 23 -1.0176 0.045 -0.194 -0.151 0.09264 0.331 

4 1.6914 0.071 0.353 587.164 0.00013 965.085 24 -1.1836 0.048 -0.210 -0.615 0.17485 0.937 

5 0.6074 0.118 0.209 0.041 0.02304 0.417 25 0.6301 0.052 0.134 0.079 0.05443 0.288 

6 0.5683 0.149 0.215 0.020 0.00763 0.489 26 -0.5520 0.084 -0.166 0.000 0.00001 0.533 

7 -0.3570 0.093 -0.099 0.000 0.00000 0.532 27 0.6174 0.067 0.143 0.061 0.03996 0.344 

8 -0.9807 0.039 -0.190 -0.110 0.06880 0.357 28 -0.9577 0.044 -0.201 -0.086 0.05323 0.389 

9 -0.4759 0.094 -0.150 0.000 0.00000 0.532 29 0.7854 0.096 0.222 0.576 0.42628 1.829 

10 2.7516 0.102 0.790 44522.925 0.00000 73194.797 30 -0.7693 0.128 -0.244 -0.008 0.00156 0.531 

11 2.8168 0.098 0.774 56039.735 0.00000 92128.254 31 0.4223 0.160 0.184 0.001 0.00009 0.531 

12 -1.1087 0.110 -0.359 -0.276 0.27368 0.572 32 -1.3568 0.288 -0.444 -1.144 1.28008 4.314 

13 -1.3554 0.124 -0.459 -1.997 0.90055 3.504 33 -1.0578 0.037 -0.200 -0.229 0.14620 0.342 

14 0.5540 0.058 0.134 0.023 0.00941 0.480 34 0.7921 0.045 0.171 0.731 0.30392 1.639 

15 0.4682 0.151 0.171 0.003 0.00043 0.528 35 0.8071 0.039 0.161 0.870 0.24012 1.678 

16 0.3559 0.088 0.096 0.000 0.00001 0.532 36 0.5649 0.126 0.201 0.020 0.00801 0.488 

17 0.1516 0.057 -0.127 0.000 0.00000 0.532 37 -0.9577 0.044 -0.201 -0.086 0.05323 0.389 

18 1.6115 0.066 0.335 386.514 0.00026 635.219 38 -0.7972 0.061 -0.198 -0.015 0.00438 0.524 

19 -1.2160 0.073 -0.243 -0.718 0.21561 1.072 39 0.9132 0.037 0.173 2.658 0.18395 4.477 

20 0.5176 0.066 0.122 0.012 0.00351 0.511        

 

 
Figure 5. Modified Finney data (a) character plot; rate versus volume with the response values (1, 0) (b) index plot of standardized Pearson residual (c) index 

plot of leverage values (d) index plot of DFFITS (e) index plot of GSPR (f) index plot of GW (g) index plot of ID (h) classification plot. 



The huge differences among the values of the diagnostics 
measures mean the confidence ellipse is not clearly visible, 
the graphical plot performs the classification well.  

In summary, results from the above two datasets show 
that although GSPR [9] and GW [28] are able to identify 
outliers and high leverage points respectively, they can not 
identify influential cases, whereas the proposed ID perfectly 
identifies the influential cases even in the presence of 
multiple unusual cases and free from masking and swamping 
effects. Moreover, ID has the ability to classify the outliers' 
categories and regular observations as well.   

B. LR Model Reliability Checking and Performance 

Evaluation in Prediction and Classification  

This section analyzes the LR model for the Brown [36] 
dataset. The analysis is carried out for the datasets with and 
without outliers detected by the proposed algorithm. Table 5 
contains results for LR models from the dataset with and 
without outliers to allow comparison and to see the effects 
created in the presence of outliers. Results are analyzed for 
statistical significance both for estimation of the parameters 
and testing of the estimates that can be directly related to 
reliability issues in KD. We perform the necessary tasks as: 
(i) parameter estimation and model fitting, (ii) statistical 
significance of the individual parameters estimated, (iii) 
overall model evaluation, (iv) goodness-of-fit test, (v) 
classification power evaluation of the LR classifier, and (vi) 
power and accuracy evaluation of the prediction.  

For the results in Table 5, we fit the logit model to the 
data with and without outliers respectively as: 

 ..003.0463.0))π1/(πlog( PA 

 ..055.0134.4))π1/(πlog( PA 

Using (20, 21), we see big shifts among the parameter values 
of the fitted models. The extreme case is the gradient is 
reversed. According to the Z-test both the estimated 
parameters (slope and intercept) are significant at the 5% 

level (i.e. p < 0.05) for the LR model from the data without 
outliers. In the presence of outliers, the same parameters are 
insignificant to the fitted model. A similar decision can be 
made for the hypothesis: all slopes are zero. That means that 
in the presence of outliers, the LR model is unreliable for 
prediction (p = 0.669). Without outliers the LR model is 
highly significant with p = 0.007. Fig 6 shows the predicted 
probabilities from the derived models. The LR model from 
observations with outliers does not follow any S-curve (red 
line) shape but after the deletion of the outliers the predicted 
probabilities produce a well shaped S-curve (green).   

To test the overall model, we use both inferential and 
descriptive statistics. For the Hosmer-Lemshow (H-L) 
goodness-of-fit test, the p value is larger than 0.05 which is 
good for a well fitted model. This desirable non-significance 
outcome indicates that the model prediction significantly 
supports the observed. The same statistic draws the reverse 
conclusion when the dataset is outlier contaminated. We 
know that a better model is one that results in a larger 
likelihood, where the likelihood is the joint probability of 
observing the sample values given the model parameters. 
This measures the fitted model's success rate for explaining 
the response variable by the predictor(s). Log likelihood 
(LL) and ˗2 Log likelihood (˗2LL) values show that the LR 
model without outliers fits better than the model with 
outliers. Similar outcomes can be drawn from the variants of 
the coefficient of determination (R2). The R2 values of Cox 
and Snell [38] and Nagelkerke [39] are much larger for the 
model without outliers. Results of R2 show that after deleting 
the outliers the explanation ability of the LR model has been 
significantly increased. 

LR can classify responses according to the respective 
predicted probabilities using a contingency (classification) 
table. In Table 6, the 2×2 contingency table shows that the 
LR model for all observations makes 58% overall correct 
classification which is increased to 69% after the deletion of 
outliers. Results also show that the LR model totally fails to 
classify the response (L.N.I. involvement;1) before the 
deletion of outliers. Respective mosaic plots (Fig. 7) show 
the power of classification for both types of responses. 

TABLE 5. LR MODEL FIT AND SIGNIFICANCE TEST 

Results for all observations Results without outliers 

Parameter estimation Parameter estimation 

Predictor Coef. S. E. Z P 
Odds 

Ratio 

95% Conf. Int. 
Coef. S. E. Z P 

Odds 

Ratio 

95% Conf. Int. 

Lower Upper Lower Upper 

Constant  -0.463 0.674 -0.69 0.492    -4.134 1.486 -2.78 0.005    

A.P.       -0.003 0.008 -0.42 0.677 1.00 0.98 1.01 0.055 0.022 2.51 0.012 1.06 1.01 1.10 

Test Test 

Test that all slopes are zero: G = 0.183, df = 1, P-Value = 0.669 Test that all slopes are zero: G = 7.31, df = 1, P-Value = 0.007 

Goodness -of-fit  test Goodness -of-fit  test 

  χ
2
 df p   χ

2
 df p  

Pearson           42.144 34 0.159  Pearson    33.295 28 0.225  

Deviance          53.407 34 0.018  Deviance     41.167 28 0.052  

Hosmer-Lemeshow (H-L)  23.059 8 0.003  Hosmer-Lemeshow (H-L) 6.044 8 0.642  

Model Summery Model Summery 

Log-Likelihood (LL) -2 LL Cox & Snell R
2
 Nagelkerke R

2
 Log-Likelihood (LL) -2 LL Cox & Snell R

2
 Nagelkerke R

2
 

-34.681 69.363 0.003 0.005 -28.562 57.123 0.139 0.190 



Assessment of the predictive ability is vital and a critical 
step for the tools and algorithms that can predict. We use the 
well known Receiver Operating Characteristic (ROC) curve 
to assess the predictive ability of the LR models. This curve 
generates a number of classifications with different cut-off 
values between 0 and 1, and calculates the sensitivity (true 
positive) and specificity (true negative) for each of the cut-
off values. Plotting the sensitivity against ( 1 specificity) 
creates the desired curve and the Area Under the Curve 
(AUC), is used to assess the predictive ability of the 
underlying method. We see AUCs of the ROC curves 
generated by the predicted LR models from the datasets with 
and without outliers in Fig. 8(a) and Fig. 8(b) respectively. 
Table 7 shows the AUC for the LR model in the presence of 
outliers is 0.22 (insignificant predictive ability of the model) 
which is increased to 0.78 (highly significant) when the 
outliers have been deleted.  

 

 
Figure 6. Predicted probabilities versus A.P.  

TABLE 6.  CLASSIFICATION RESULTS WITH OUTLIERS AND WITHOUT 

OUTLIERS 

Predicted 

status 

All observations Without outliers 

Actual Status Actual status 

Absence 

(0) 

Presence 

(1) 

Total Absence 

(0) 

Presence 

(1) 

Total 

Absence 

(0) 

32 

(58.18%) 

23 

(41.82 %) 

55 

(100%) 

25 

(45.45%) 

10 

(18.18%) 

35 

(63.64%) 

Presence 

(1) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

7 

(12.73%) 

13 

(23.64%) 

20 

(36.36%) 

Total 
32 

(58.18%) 

23 

(41.82 %) 
55 

32 

(58.18%) 

23 

(41.82%) 

55 

 

Correct 

classif. 
58.18% 69.09% 

 

 
Figure 7. Mosaic plot (a) classification with outliers (b) classification 

without outliers.  

 
Figure 8. ROC curve (a) data with outliers (b) data without outliers.  

TABLE 7. ROC CURVES RESULTS 

 

Area S. E. 
Sig. 

(p) 

Asymptotic 95% 

 confidence interval 

Lower Bound Upper Bound 

All observations 0.219 0.064      0.000 0.094 0.345 

Without outliers 0.781 0.064 0.000 0.655 0.906 

VI. CONCLUSIONS  

This paper proposes a diagnostic measure for identifying 
multiple influential observations in logistic regression. It 
introduces a classification graph to classify outliers, high 
leverage points and influential observations in the same plot 
at one time. Diagnostic results show that the proposed 
measure efficiently identifies multiple influential cases, and 
the graph is helpful for visualizing outlier categories. In this 
paper, we discussed the results from logistic regression 
models with and without outliers. Results show that without 
careful outlier investigation, it may not be possible to get 
reliable knowledge using logistic regression for predictive 
modeling and classification. We observe that the outlier 
investigation in logistic regression is highly related to the 
issues raised for reliable knowledge discovery in Section II. 
We can answer the issues: (i) outlier detection is one of the 
major factors that affect the reliability of the discovery 
process, (ii) the conditions for reliable knowledge discovery 
can be improved by parameter estimation and testing the 
significance of the estimates, (iii) proper outlier diagnostics 
and treatment (deletion or correction of the outlying 
observations) can improve the reliability of discovered 
knowledge, (iv) when the test results meet the required 
statistical significance level, then we can trust that the 
discovered knowledge is reliable and reflects the real data. 
Therefore outlier detection and proper treatment is vital for 
obtaining reliable knowledge, and should be considered as a 
data preprocessing step in knowledge discovery in databases 
(KDD). The proposed diagnostic method is introduced for 
the binomial response variable in logistic regression. Future 
research will investigate the diagnostic method for (i) 
multinomial response variables, and (ii) large and high 
dimensional data as higher dimensional data presents extra 
problems that need to be addressed.  
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