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Abstract. This paper presents new analytical modelling of shunt circuit control responses for 

tuning electromechanical piezoelectric vibration power harvesting structures with proof mass 

offset. For this combination, the dynamic closed-form boundary value equations reduced from 

strong form variational principles were developed using the extended Hamiltonian principle to 

formulate the new coupled orthonormalised electromechanical power harvesting equations 

showing combinations of the mechanical system (dynamical behaviour of piezoelectric 

structure), electromechanical system (electrical piezoelectric response) and electrical system 

(tuning and harvesting circuits). The reduced equations can be further formulated to give the 

complete forms of new electromechanical multi-mode FRFs and time waveform of the 

standard AC-DC circuit interface. The proposed technique can demonstrate self-adaptive 

harvesting response capabilities for tuning the frequency band and the power amplitude of the 

harvesting devices. The self-adaptive tuning strategies are demonstrated by modelling the 

shunt circuit behaviour of the piezoelectric control layer in order to optimise the harvesting 

piezoelectric layer during operation under input base excitation. In such situations, with proper 

tuning parameters the system performance can be substantially improved. Moreover, the 

validation of the closed-form technique is also provided by developing the Ritz method-based 

weak form analytical approach giving similar results. Finally, the parametric analytical studies 

have been explored to identify direct and relevant contributions for vibration power harvesting 

behaviours. 

Keyword: analytical closed form and weak form, frequency response, piezoelectric, power 

harvesting, shunt control, signal analysis, time waveform, vibration. 

 

1. Introduction 

The vast majority of autonomous piezoelectric structures in the various engineering applications 

encompass shunt control and energy harvesting systems. These two research works are obviously 

investigated separately in many previous publications. In one hand, piezoelectric shunt control also 

known as passive circuit control is aimed at the use of vibration suppression in smart structures. On 

the other hand, electrical power capture of piezoelectric structures using input from the surrounding 

vibration has been an attractive field in the application of self-powered smart wireless sensor systems. 

Interestingly, both research areas can provide similar technical insight giving complementary benefit 

for vibration power harvesting devices since the idea is for matching the resonance of the device to 
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the dominant frequency of the ambient vibration source and for tuning the frequency band to 

maximise the system amplitude. Many research efforts have been devoted to improving the 

piezoelectric energy harvesters using different interface circuit systems in order to optimise their 

system performance levels. Some of them have been devoted to developing various analytical 

techniques of the standard cantilever laminated piezoelectric power harvesting devices. Starting with 

the electrical equivalent system, the simplified lumped parameter models with resistive impedance [1-

2] and AC-DC power generation [3] followed by the synchronized switching harvesting on an 

inductor (SSHI) in the harvesting circuit [4-5] and synchronized charge extraction (SCE) technique 

[6] have been developed to increase power output in many different case studies. Due to increasing 

demand of accuracy, analytical techniques of the typical laminated piezoelectric beam structures 

connected with resistive shunt circuit have used different system approaches such as Rayleigh-Ritz 

method [7-10], distributed parameter system [11], electromechanical weak-form techniques [12-13], 

closed form techniques [14], and assumed-mode method [15], transfer matrix method [16] and 

analytical modal analysis method with AC-DC rectification [17]. For effective and alternative 

approaches, the numerical techniques using ANSYS software [18-20] have been developed. Then, 

continuing numerical works have presented the formulations of finite element models of the 

distributed system [21] and the new electromechanical finite element analysis of the laminated 

structure with tip mass offset [22].  

 

The recent energy harvesting techniques have also been broadened into frequency tuning systems. For 

the mechanical tuning system, starting with the use of a tip mass on the end of the smart structure, a 

shift in frequency from high to low value has become a common practice, especially when the 

piezoelectric structure is relative small [1, 7, 11-13]. Another [23] has used a movable mass to reach 

the particular desired tuning frequency range. Then, further works have been developed into particular 

multimodal power harvesting concepts using one or more auxiliary beams connected to the main 

piezoelectric beam [24-27]. Moreover, another recent alternative way for widening multifrequency 

bandwidth of energy harvesting systems involves the use of multiple piezoelectric beams with various 

electrical connection patterns with specific focus on the mathematical techniques [28-30]. The 

development has included the specific theoretical works of parallel and series piezoelectric 

connections with circuit interface using the impedance approach [31] and the SSHI system [32-33]. 

For the electrical tuning system, it was found that so far only a few published research works have 

discussed the adaptive resonance smart structure by tuning the electrical piezoelectric element either 

by using a segmented electrode or layer system such that the power harvesting from another 

piezoelectric element can be extracted. This also includes the tuning and harvesting circuit network 

system that are connected together for the self-tuning and power generation system [34-35], while 

others [36-37] used a separate circuit system for the tuning circuit with capacitors and resistive load 

for harvesting power.  
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Other applications of the piezoelectric transducer have also been developed for the shunt control 

circuit of the smart structure. Although the piezoelectric shunt control system is used to suppress the 

vibration of the smart structure, the technical study, however provides direct fundamental concepts for 

developing energy harvesting systems as indicated in the previous examples using either the resistive 

shunt circuit or switch circuit system or even the electrical tuning system. Moreover, the benefit can 

also be found in devising self-adaptive energy harvesting systems, capable of having a continuously 

shifting frequency response band and periodical tuning in the time-power domain as proposed in this 

paper. Original contribution of shunt circuit control was first introduced using LC circuits [38]. The 

characteristics of the piezoelectric shunt control mainly consists of the RL circuit (along with inherent 

piezoelectric capacitance) acting as the passive electrical network for tuning the amplitude response of 

the smart structure [39-43]. Since targeting the control system to a certain resonance frequency of the 

system requires large inductance up to thousands of Henries [44], the synthetic inductor or gyrator 

[45-46] must be utilised. The original contribution of the gyrator itself was first introduced using 

impedance analysis [47]. Furthermore, the multimode shunt circuit with the RLC branches using 

numerous tuning techniques for the piezoelectric structures [48-55] was also developed for the 

multimode suppression of the system. 

In the aforementioned works, the two independent technical developments of the piezoelectric 

systems have significantly contributed to the power harvesting and shunt control smart structure 

applications. The electrical tuning system raises the issue underpinning the crucial techniques using 

the electrical network system as shunt circuit control and power harvesting circuit system connected 

to the piezoelectric elements. Interestingly, as discovered with technical limitations of the previous 

power harvesting research works, this research work shows that the combination of the shunt circuit 

control and power harvesting system using proper techniques can demonstrate self-adaptive 

harvesting response capabilities. In this paper, novel analytical techniques of the coupled system of 

shunted control and electromechanical piezoelectric power harvester structure with proof mass offset 

have been developed using the extended Hamiltonian principle for deriving the dynamical closed-

form boundary value equations. At this stage, there are no other publications addressing the 

development of the proposed new analytical techniques with the combinations of the tuning and 

harvesting circuits, mechanical system (elasticity with mechanical stress and dynamic motions), and 

electromechanical system (electrical displacement, electrical stress and electric-polarity field). As a 

result of these combinations, the normalised closed-form electromechanical transverse dynamic 

equations were reduced to formulate the complete forms of electromechanical multi-mode FRFs. 

Since the main focus is to develop the closed-form technique, the weak form analytical approach 

based on the Ritz method, has also been briefly developed for the use of validation showing similar 

results to that of the closed-form solution. Parametric case studies have been explored for identifying 
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the most feasible adaptive tuning frequency, amplitude and time waveform power harvesting system 

responses.    

2. Constitutive electromechanical equations  

In the robust coupled system as shown in Fig. 1a, the smart structure with proof mass offset under 

base excitation consists of three layers (tuning piezoelectric, substructure and harvesting 

piezoelectric), connected with two separated circuit systems. On the lower layer, passive shunt circuit 

control using RL paralleled with C circuit is used for tuning the system response of the structure. For 

the upper layer, the standard harvesting circuit is used for generating power. It is important to note 

here, if the passive RL shunt circuit and inherent piezoelectric capacitor Cv are in series, implementing 

shunt circuit resonance will require a very large inductor which is not commercially available because 

the value of optimal inductance is simply formulated as Ls = 1/(Cvω2) where the resonance of the 

smart structure is equal to the tuning circuit resonance. For example, by implementing an RL circuit, 

the smart structure resonance of 45 Hz with inherent piezoelectric capacitor Cv of 18.4 nF requires an 

inductor of 679.8 H. In this case, the large inductance for the typical shunt circuit can be identified 

due to the very low inherent piezoelectric capacitance and low resonance of the structure. For 

practical purposes, implementing an inductor up to thousands of Henries can only be synthesised 

using the specific inductor or gyrator [44] as has been widely used in the passive shunt circuit of 

piezoelectric controls [39-43, 48-55]. Moreover, it can also be necessarily tuned in size by adding an 

external capacitor C in parallel to the shunt circuit RL giving the benefit for self-adaptive tuning 

system response as shown in Fig. 1b. Details of the mathematical expressions for the simplified 

piezoelectric tuning circuit of Fig. 1c can be found in the forthcoming section.  

Here, the linear piezoelectric beam constitutive equations based on the 3-1 mode of piezoelectric 

constant operation and 3-3 effect of piezoelectric permittivity can be formulated in terms of stress-

electric displacement relation [56-58] as, 

3311111 EeScT E  , 

            3331313 ε ESeD S ,                                   (1) 

where the parameters T , S, E  and D represent stress, strain, electric field, and electric displacement, 

respectively. Moreover, coefficients c, e, and ε indicate elastic constant, piezoelectric coefficients and 

permittivity at constant strain, respectively. Note that the notations of the piezoelectric material are 

written according to the IEEE standards [59]. Also note that Eq. (1) is widely used in many 

piezoelectric power harvester applications.  
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Since the system as shown in Fig. 1 includes the electrical shunted piezoelectric control system and 

electrical harvesting piezoelectric system, Eq. (1) can be modified into stress-electric field relations 

for the tuning piezoelectric material as, 

 
         1

3
1

31
1

1
11

1 DgScT D  ,   

     
       1

333
1

1
1

31
1

3

1

DεSgE S


  .                                                  (2) 

The modified constitutive equations in terms of stress-electric field relations for the harvesting 

piezoelectric material can be formulated as, 

          3
3

3
31

3
1

33
1 DgScT D  ,   

                3
333

3
1

3
31

3
3

1

DεSgE S


  .                                                  (3) 

Fig.1. Piezoelectric beam power harvesting with offset proof mass operating under base input excitation: 

a) physical system, b) tuning circuit for tuning piezoelectric layer, c) simplified tuning circuit for tuning 

piezoelectric layer. 

a 

b c 



6 
 

 

The linear-elastic constitutive relation for the substructure can also be formulated as,  

       2
1

2
11

2
1 ScT  .                                                          (4) 

Coefficients cD and g indicate modified elastic constant and modified piezoelectric constant, 

respectively given in Appendix A. Note that the notations for each layer of the laminated structure in 

Fig. 1 can be stated in the superscripts, especially for stress T, strain S, elastic stiffness c, density ρ, 

width b, thickness h, and cross-sectional area A where superscripts 1, 2 and 3 represent the tuning 

piezoelectric, brass, and harvesting piezoelectric layers, respectively. Here, the strain field for each 

layer of the beam can be formulated as,   

 
 
2

2

1
x

tx,w
ztx,S




  ,                                                       (5)  

where variable z is the distance from the neutral axis to each layer.     

3. Electromechanical closed-form boundary value method 

This section deals with development of the new analytical method for the very first time by means of 

combining the tuning and harvesting circuits, mechanical system (elasticity with mechanical stress 

and dynamic motions) and electromechanical system (electrical displacement, electrical stress and 

electric-polarity field). At this stage, two analytical studies using closed-form boundary value method 

reduced from strong form of variational principle are provided here. First, the piezoelectric energy 

harvesting coupled with tuning circuit and standard resistive circuit (non-rectifier) was formulated. 

Second, the piezoelectric energy harvesting coupled with tuning circuit and standard AC-DC interface 

(rectifier with capacitor and resistor) as shown in Fig. 1 was formulated.  

 

3.1. Coupled System of Electrical Shunted Circuit and Standard Harvesting AC Circuit.   

This section derives the key equations of the coupled tuning and standard resistive circuit systems for 

piezoelectric energy harvesters using the extended Hamiltonian principle to give, 
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,                                  (6) 

or           0d  tδWRδWLδWCδWFδWEδPEδKE
2

1

t

t

.                                                 (7) 

Note that each functional energy term of Eq. (6) can be formulated in Eqs. (8)-(14). The kinetic 

energy of the structure with the proof mass offset can be reformulated as,               
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Note that since the system is under base excitation in Fig. 1a, the detail of the mathematical equations 

for the dynamical structure and proof mass offset as shown in the kinetic energy can be found in [22]. 

They were reduced due to relative displacement w(x,t) defined as the difference between absolute 

displacement wabs(x,t) and base excitation wbase(t). The potential energy or strain energy of the 

structure can be formulated as, 
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The electrical energy term for the piezoelectric elements can be formulated to give, 

     
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The magnetic co-energy of the inductor in terms of the tuning circuit can be formulated as, 

         21
32

1
tqLLW s  .                                                                 (11) 

where the synthetic inductance value from Fig. 1b can be reduced from the equivalent impedance 

analysis,    42531 ZZZZZZin  by allowing the relations Z1=R1, Z2=R2, Z3=R3, Z5=R5, and Z4= 

1/(jωCs) to give sin LjωZ   [44-46]. Therefore, the synthetic inductance value can be formulated as, 

                                 
2

531
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CRRR
L s

s  .                                                                   (12) 

The electrical energy of the capacitor in terms of the tuning circuit can be formulated as, 
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The non-conservative work on the system due to the input base excitation can be stated as, 
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Contribution of the dynamical beam structure and proof mass offset as shown in non-conservative 

work can be found in [22]. The electrical work dissipated by resistors can be stated as,  
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The functional forms aL  and fW  from Hamiltonian’s principle can be seen as the continuous 

differentiable functions of virtual displacement, electric displacement and charge for the whole system 

that can be stated as, 
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Equations (16) and (17) can be further formulated using total differential equations as, 
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Corresponding with Eqs. (8)-(15) and (18)-(19), Eq. (7) can be further formulated using integro-

differential equations and the variational principle to give the dynamical closed-form boundary value 

equation reduced from the strong form method as, 
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x

tx,w
δ

x

tx,w
C

x

tx,w
δtqη

L

v

L

t

L
1

1
0

1

1
1

2

2
1

0
2

2

0

33 d
































    

      
 

            tδqtqRtqLtδq
C

tq
x

x

x,tw
η ls

L

v

1
3

1
3

1
3

3

0
3

3

2

2
3 d  

















       

            0d33
1

2
1

2 






 ttδqtqR

C

tδqtq
d        .                                                               (20) 

Note that parameter D3 for two piezoelectric layers implied in Eq. (16) has been modified in Eq. (20) 

using      LbqD 11
1

1
3  and      LbqD 333

3  . Each coefficient in Eq. (20) can be found in Appendices 

B, C, and D. Also note that the zeroth mass moment of inertia of all layers was given as 
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     




m

i

iii hbρI
1

0  where parameter b is the width of the interlayer and term m is number of layers. 

Moreover, other parameters of zeroth and second mass moment of inertias of tip mass offset tipI0
 and 

tipI2
 can be found in [22]. However, the neutral axis zn used in the geometry calculation of the tip 

mass must be based on Appendix C.  Applying KCL for the tuning circuit in Fig. 1 gives the electric 

charge equation as, 

                                                            
     1

3
1

2
1

1 qqq   .                                                          (21) 

As shown, variable
 1
2q in Eq. (20) can be eliminated in the forthcoming reduced equations for 

simplicity using the relation as,  

                 

     
     

     
     

     tqδ
C

tq
tqδ

C

tq
tqδ

C

tq
tqδ

C

tq
tqδ

C

tq 1
3

1
31

3

1
11

1

1
31

1

1
11

2

1
2   .      (22)       

After applying duBois-Reymond’s theorem for each virtual displacement field, the first constitutive 

electromechanical dynamic equation reduced from Eq. (20) can be formulated as,  

 tx,δw :      
 

0
2

2

2

2

00 






















x

tx,w

x
CtwItx,wI tbase

 .                                (23) 

The second, third and fourth constitutive electromechanical dynamic equations related to the coupled 

tuning and harvesting circuits of piezoelectric structure can be formulated as, 

     
   tδq
1

1  :     
 

  
  

0
11

1
31

11
0

2

2
1 





















C

tq
tq

CC
dx

x

x,tw
η

v

L

, 

 
   tδq
1

3   :  
     

     
0

1
1

1
31

3
1

3 
C

tq

C

tq
tqRtqL ls  , 

                        tδq 3  : 
      

 
   0

0

3

3

3

2

2
3 





L

d

v

tqR
C

tq
dx

x

x,tw
η  .                             (24) 

The boundary conditions can be formulated as, 

                                    00 t,w    ,  
 

0
0






x

t,w
, 

                 tL,δw    : 
 

 
 

0
2

2

000 



























x

tL,w

x
CwItL,wI

x

tL,w
Ix tbase

tiptiptip
c 


, 

 
 

 
              0: 331

1
1

2

2

200















tqηtqη

x

tL,w
C

x

tL,w
ItL,wIxwIx

x

tL,w
δ t

tiptip
cbase

tip
c


 .    (25) 

The solution form of Eqs.(23)-(25) can be formulated using mode superposition depending on the 

normalised mode shapes and generalised time dependent coordinates to give, 
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     





1

ˆ

r
rr twxWx,tw .                                                    (26) 

The normalised mode shape can be proved as shown in Appendix E. Eq. (23) can be reformulated by 

substituting Eq. (26) and then multiplying with  xWq
ˆ and integrating with respect to x  to give, 

       
 

        0dˆdˆ

d

ˆd

d

d
dˆˆ

0

0

0
2

2

2

2

0

0 













 

L

baseq

L

rq
r

t

L

rqr xtwxWIxtwxW
x

xW

x
CxtwxWxWI  .  (27) 

Eqs. (24a) and (24c) can also be further formulated by applying Eq. (26) to give, 

        

   
 

 
  

  
0

11
d

d

ˆd
1

31
1̀1

10
2

2
1 


















 C

tq
tq

CC
twx

x

xW
η

vr

L

r
r , 

   
 

  
 

   0d
d

ˆd 3

3

3

10
2

2
3 





tqR
C

tq
twx

x

xW
η d

vr

L

r
r  .                                     (28) 

Substituting Eq. (28a) into Eq.(24b) gives, 

        

   

  
 

 
 

  
         01

1
d

d

ˆd 1
3

1
3

1
31

1

10
2

2

1

11




















 




tqRtqLtq
CC

C

C
twx

x

xW

CC

Cη
ls

v

v

r

L

r
r

v

v  .       (29) 

Moreover, applying Eq. (26) into the boundary conditions from Eq. (25) gives, 

    00ˆ rW   ,    
 

0
d

0ˆd


x

Wr  ,                                                  

                       
 

     
 

  0
d

ˆd

d

dˆ
d

ˆd
2

2

000 













 tw

x

LW

x
CwItwLWItw

x

LW
Ix rtbase

tip
r

tiptip
c

 ,    

                             
 

 
 

 tw
x

LW
Ctw

x

LW
ItwLWIxtwIx t

tiptip
cbase

tip
c 2

2

200
d

ˆd

d

ˆdˆ    

        
          0331

1
1  tqηtqη .                                                                                      (30) 

The second term of (27) needs to be further manipulated using partial integration and orthogonality 

relations and then applying the boundary conditions from (30a) and multiplying by  twr  to give, 

                       

 
   

 
   twLW

x

LW

x
CxtwxW

x

xW

x
C rq

r
tr

L

q
r

t
ˆ

d

ˆd

d

d
d

d

ˆd

d

d

2

2

0
2

2

2

2































 

 

                   
   

 
   

  xtw
x

xW

x

xW
Ctw

x

LW

x

LW
C r

qr
L

tr
qr

t d
d

ˆd

d

ˆd

d

ˆd

d

ˆd

2

2

2

2

0
2

2

 .                                 (31) 

Substituting Eqs. (30b)-(30c) into (31) gives, 

                 

 
           twLWLWIwLWIxtwxW

x

xW

x
C rqr

tip
baseq

tip
r

L

q
r

t  ˆˆˆdˆ

d

ˆd

d

d
00

0
2

2

2

2

















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 
   

   
 tw

x

LW
Ixw

x

LW
LWIxwLW

x

LW
Ix base

qtip
cr

q
r

tip
crq

rtip
c 

d

ˆd

d

ˆd
ˆˆ

d

ˆd
000

           

 
   

               
   

  xtw
x

xW

x

xW
Ctq

x

LW
ηtq

x

LW
ηtw

x

LW

x

LW
I r

qr
L

t
qq

r
qrtip

d
d

ˆd

d

ˆd

d

ˆd

d

ˆd

d

ˆd

d

ˆd

2

2

2

2

0

331
1

1
2   .(32) 

Corresponding to (32), Eq. (27) can be reformulated to give, 

           
           

 
   twLW

x

LW
IxtwLWLWItwxxWxWI rq

rtip
crqr

tip
L

rqr  ˆ
d

ˆdˆˆdˆˆ
00

0

0 
   

                       

           
 

 
   

 
   

 txw
x

xW

x

xW
Ctw

x

LW

x

LW
Itw

x

LW
LWIx r

qr
L

tr
qrtip

r
q

r
tip

c d
d

ˆd

d

ˆd

d

ˆd

d

ˆd

d

ˆd
ˆ

2

2

2

2

0
20    

                            
L

baseq
qq

twxxWItq
x

LW
ηtq

x

LW
η

0

0
331

1
1 dˆ

d

ˆd

d

ˆd
                          

      
 

 tw
x

LW
IxtwLWI base

qtip
cbaseq

tip 
d

ˆd
ˆ

00
 .                                                                    (33) 

Considering the orthonormality property of the mechanical dynamic equations from Eq. (33) gives, 

       
 

 LW
x

LW
IxLWLWIxxWxWI q

rtip
cqr

tip
L

qr
ˆ

d

ˆdˆˆdˆˆ
00

0

0         

                            
     

rq
qrtipq

r
tip

c δ
x

LW

x

LW
I

x

LW
LWIx 

d

ˆd

d

ˆd

d

ˆd
ˆ

20 , 

               
   

rqr
qr

L

t δωx
x

xW

x

xW
C

2

2

2

2

2

0

d
d

ˆd

d

ˆd
 ,                                                   (34) 

where rqδ  is the Kronecker delta, defined as unity for rq   and zero for rq  . Note that parameters 

 xWr
ˆ and  xWq

ˆ  indicate normalised mode shapes. In terms of orthonormality, the Rayleigh 

mechanical damping can be formulated as, 

     rqrrrqrrqrq δωζδωβγδc 2
2

  ,                                               (35) 

where γ and β indicate Rayleigh damping coefficients. Corresponding to Eq. (34), Eq. (33) associated 

with Eq. (35) can now be reformulated to give the normalised closed-form electromechanical 

transverse dynamic equations as, 

                       
                 twQtqTtqTtwωtwωζtw baserrrrrrrr   331

1
12

2
.                       (36) 

Eliminating
  tq 1

1 from Eq. (36) using Eq. (28a) gives, 

           





1

112 ˆ2
r

rrrrrrrrr twCμTTtwωtwωζtw 
 

 
           twQtqTtμqT baserrr  331

3
1

.                                             (37) 

Eqs. (28b) and (29) can be further formulated as, 
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             ,0ˆ

1

11
3

1
3

1
3

 




twμTtqPtqRtqL r
r

rCls 
                    

 

                                             0ˆ

1

3333  




twTtqPtqR r
r

rVd    .                                          (38) 

It is noted that Eqs. (37) and (38) consist of three new coupled electromechanical power harvesting 

equations showing the combinations of the mechanical system (dynamical behaviour of piezoelectric 

structure), electromechanical system (electrical piezoelectric response) and electrical system (tuning 

and harvesting circuits). These three equations must show dependable relations when formulating 

electromechanical FRFs as given in the next stage. At this case, since Eqs. (37)-(38) have been 

normalised, the parameters rT , rT̂ , VP , and rQ can be reduced as, 

         

     L
x

W
ηT r

r
d

ˆd11 

 

,       L
x

W
ηT r

r
d

ˆd33   ,      










10

2

2
1

1

1 d
d

ˆdˆ

r

L
r

r
r x

x

xW
ηT , 

                  










10

2

2
3

1

3 d
d

ˆdˆ

r

L
r

r
r x

x

xW
ηT ,  

 3

3 1

v
V

C
P 

 
,  μ

C
PC  1

1
 , 

 

  CC

C
μ

v

v




1

1

, 

           
 
x

LW
IxLWIxxWIQ rtip

cr
tip

L

rr
d

ˆdˆdˆ
00

0
0

  .                                           (39) 

Note that Eq. (38a) can be expressed into the series equivalent circuit for the tuning piezoelectric 

system as shown in Fig. 1c where parameter    twTV r
r

re 





1

1ˆ  represents the equivalent voltage 

source generated due to electromechanical piezoelectric coupling and mechanical motion, parameter 

equivalent capacitor  μC 1  on the circuit represents   CμPC  1  on the equation and μ  is a 

constant term due to the coupled inherent piezoelectric capacitor and external capacitor. Note that the 

optimal inductance-based resonance response can be formulated from Eq. (38a) as
2

rCs ωPL  . 

Again, since the inherent piezoelectric capacitance is a relatively very small value, implementing the 

shunt resonance frequency whose value is equal to the resonance of the structural system, requires 

very large inductance. Therefore, the application of synthetic inductance (gyrator) must be employed 

for the practical purpose. To obtain the multi-mode electromechanical FRFs equations, Eqs. (37)-(38) 

can be further formulated using Laplace transformation giving the transfer functions which can be 

reduced into the frequency response relations. After simplification, the multi-mode electromechanical 

FRFs of the relative transverse displacement equation can be formulated as, 
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     

   

     
   

        










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In terms of Eq. (26), Eq. (40) can be modified into functions of position along the structure (x) and 

frequency domain (ω) to give,
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The relative transverse displacement FRFs at the end of the proof mass can be formulated as, 
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Moreover, the multimode electric charge FRFs at tuning circuit can be formulated as, 
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The multimode electric charge FRFs of the harvesting circuit can be formulated to give, 
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Other multimode FRFs relations can also be further formulated by using Eqs. (40)-(44). Here the 

multi-mode electric current FRFs of the tuning circuit can be formulated as,  
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Voltage FRFs across the resistor, inductor and capacitor of the tuning circuit can be formulated 

respectively as, 
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Note that parameter 
 1
2q in Eq. (46b) can be obtained using Eq. (28a) in terms of Eqs. (21), (40) and 

(43). Power FRFs across the resistor, inductor and capacitor of the tuning circuit can be formulated 

respectively as, 
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Moreover, the multi-mode electric current FRFs at harvesting circuit can be formulated to give, 
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Voltage and power FRFs across the resistor of the harvesting circuit can be formulated respectively 

as,
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Note that the absolute transverse displacement and velocity FRFs can be formulated using Eqs. (41) 

and (42) to give, 
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3.2. Coupled System of Electrical Shunted Circuit and Standard Harvesting AC-DC Interface Circuit.   

The operating electrical waveform from the harvesting piezoelectric system was affected by the 

electrical shunt control of the tuning piezoelectric component as proved in the previous section. 

During the half-cycle period, the process of the output current of the harvesting piezoelectric through 

the ideal AC-DC interface circuit can be illustrated in two intervals as shown in Fig 2. For every 

positive cycle, when diodes D1 and D2 are forward biased and conduct, the output voltage from 

rectifier vd is equal to that of harvesting piezoelectric voltage vp and the current increases for charging. 

By the time of discharging, diodes D3 and D4 are reverse biased and do not conduct resulting in 

exponential decay of vd and no current. During the negative half-cycle, the diodes D3 and D4 will 

become forward biased and conduct whereas diodes D1 and D2 return to reverse biased.  

                                  

Discharging

ti

VDC

IDC

VDC through Capacitor

VAC

VDC through Rectifier

t

t

t

tf ti+T/2

Charging

IDC through 

Capacitor

IDC through 

Load ResistanceIDC

t
 

a. Current flowing with interval ti < t < tf indicating the charging time over every half-cycle of 

the frequency. 

 

With the corresponding previous theoretical derivations, the robust coupled system interface of shunt 

control and harvesting DC rectifier with smoothing RC circuit can be formulated using the previous 

equations in Eq. (37) with slight modification in Eq. (38b). The following equations of the coupled 

system response during the period of charging can be formulated as,  
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Fig.2. Time waveforms of the standard harvesting circuit   
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Note that the first term in Eq. (51c) was introduced by replacing the first term from Eq. (38c.). This 

can be obtained by removing the second term in Eq. (15) and introducing the new electrical work 

done by the harvesting piezoelectric layer     tδqtvδWFr d
3  for the Hamiltonian functional energy 

in Eq. (7).  Differentiating Eq. (51c) with respect to time gives,  
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The equation for the harvesting circuit using the KCL equation can be formulated as, 

     
   03 

d

d
dd

R

v
vCtq  .                                                        (53) 

Substituting parameter
  tq 3

from Eq. (51c) into Eq. (51a) and parameter 
  tq 3  from (52) into Eq. 

(53), the results of which can be incorporated with Eq. (51b), gives the following state space 

representation of the multi-mode response system as,               
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b. Current flowing with interval t f < t < ti + T/2 indicating the discharging times every half-cycle 

of the frequency. 
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For this case, the harvesting circuit can be formulated as,  

     0
d

d
dd

R

v
vC  .                                                       (55) 

The solution form of Eq. (55) can be stated as, 
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Note that the expressions of Eqs. (54) and (56) can be utilized to estimate the current and voltage 

waveform during the charging and discharging periods.  

 

4. Electromechanical weak form analytical approach 

An alternative solution technique can also be formulated using the weak-form reduced from the 

variational principle corresponding to virtual relative transverse displacement field, harvesting 

electrical charge and tuning electrical charge. The weak form-based Ritz method [13, 60-61] is further 

developed here for the tuning piezoelectric power harvesting system. This technique that involves a 

test function in the essence of the piecewise continuous function for the entire structural domain, 

requires the straightforward solution that should meet continuity requirements and boundary 

conditions. In terms of Eqs. (8)-(18), the weak form of Eq. (7) can be formulated as,     

            

       
   

x
x

tx,δw

x

tx,w
Ctx,δwtwItx,δwtx,wI

2

1

t

t

L

tbase d

0
2

2

2

2

00 

























 

           

         

 
   tL,δwwItL,wI

x

tL,w
Ix base

tiptiptip
c













 


000

 

       
     

       































L
tip

cbase
tip

c
tip

x

x,tδw
qη

x

L,tw
δL,twIxwIx

x

L,tw
I

0
2

2
1

1
1

002



 

       
    

        
 

  tδq
C

tq
dx

x

x,tw
ηdx

x

tx,δw
tqη

L

v

1
1

0
1

1
1

2

2
1

2

2
33































     

           
      

 
            tδqtqRtqLtδq

C

tq
dx

x

x,tw
η ls

L

v

1
3

1
3

1
3

3

0
3

3

2

2
3  



















   

  

            0d33
1

2
1

2 






 ttδqtqR

C

tδqtq
d        .                                                                 (57) 

Note that each coefficient can be found in Appendices B, C, and D. Moreover, coefficients
0

I , tipI0
 

and tipI2
 have been described after Eq. (20). Eq. (57) still has the variable 

 1
2q which can be 
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eliminated using the relation of Eq. (22) and after simplification the reduced equations can be 

prescribed using normalised eigenfunction series forms,  

         
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r
rr twxWx,tw
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                                            (58) 

The first electromechanical dynamic equation represents the coupled tuning-harvesting 

piezoelectric bimorph under transverse bending form as, 
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The second, third and fourth equations represent the electromechanical harvesting piezoelectric, 

tuning piezoelectric and tuning circuit forms, respectively to give, 
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The constitutive equations from Eqs. (59)-(60) can also be reformulated into matrix form by 

including the mechanical damping coefficients to give,  
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 ,(61) 
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Eq. (61) represents the normalised differential electromechanical dynamic equation of the coupled 

tuning-harvesting piezoelectric bimorph beam with tip mass offset under operating input base 

excitation. Since Eq. (62) involves parameter  .Wr
ˆ representing the normalised eigenfunction, the 

normalised mode shapes for the Euler-Bernoulli bimorph beam can be formulated  as,       
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Parameter  .Wr can be obtained from the generalized space-dependent Ritz eigenfunctions as,   
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Note that the parameter mode shape  xWk  can be found in Appendix E and the generalized Ritz 

coefficient krc  is the eigenvector matrix where each column corresponds to a specific independent 

eigenvalue. The coefficient can only be proved by replacing Eq. (58) with  
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and rearranging Eq. (61) by considering the characteristic mechanical equation 
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rqrqr cMωK ,....,m,q, 21 . It should be noted that rc  is called the Ritz coefficient for 

the mechanical transverse bending form which sometimes refers to the eigenvectors in the mechanical 

domain. Corresponding to Eqs. (61), the orthonormalisations can now be further proven by using Eq. 

(63) and applying the orthogonality property of the mechanical dynamic equations for the Euler-

Bernoulli bimorph beam as, 
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where rqδ  is the Kronecker delta, defined as unity for rq   and zero for rq  . Note that parameters 

 xWr
ˆ and  xWq

ˆ  indicate normalised mode shapes. Applying the orthonormalisations from Eq. (65) 

into Eq. (61) gives, 
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Like the closed-form boundary value equation technique, three coupled equations based on the weak 

form must also show dependable relations when formulating the electromechanical FRFs and there 

are similarities between these two techniques with different analytical methods. Moreover, the FRFs 

provide accurate results as long as the test function-based Ritz eigenfunction is chosen correctly. At 

this case, since Eq. (66) has been normalised, the parameters rP  and rP̂ can be reduced as, 
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Note that other parameters can be seen in Eq. (62). Laplace transformation can be used to formulate 

the multi-mode electromechanical FRFs equations giving the transfer functions. Here only one 

example of the harvesting electrical power FRF is shown across the load resistance after 

simplification, 
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5. Result and discussion 

 

This section discusses parametric case studies of the coupled system of shunted control and 

electromechanical power harvester of piezoelectric bimorph structure with proof mass offset using 

velocity and power FRFs and time waveform DC output responses. The studies mainly discuss 

options to find the most feasible and effective tuning circuit parameters that are applicable for power 
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harvesting schemes because certain cases of tuning parameters (e.g. optimal tuning circuit parameter) 

do not give benefit for the power harvesting. The material properties of the piezoelectric bimorph 

beam are given in Table 1. The piezoelectric material used here was made from PZT PSI-5A4E. The 

geometrical structures with tip mass offset under input excitation of 1 m/s2 as shown in Fig. 1 with 

beam length L and width b with the lower piezoelectric thickness h(1), substructure (brass) thickness 

h(2) and upper piezoelectric thickness h(3) were set to 60 mm, 6 mm, 0.267 mm, 0.5 mm and 0.508 

mm, respectively. The dimensions of the tip mass offset  lt, ht and b (width) were set to 15 mm, 10 mm 

and 6 mm, respectively.  

 

 
Material  properties Piezoelectric layers     Brass 

Young’s modulus, 11c  (GPa) 66 105 

Density, ρ (kg/m3) 7800 9000 

Piezoelectric constant, d31 

(pm/V) 
-190 - 

Permittivity, 
T
33  (F/m) 1800 o  - 

permittivity of free space, 

o (pF/m) 
8.854 - 

 

It is important to note here, comparisons between closed form and Ritz methods are used for 

validations in this paper. Only two validations are given as examples. At some cases, the 

identification of power harvesting responses can be obtained separately by analysing two different 

varying load resistances. For example, in Fig 3a, by choosing certain values of the tuning circuit 

parameters, the power amplitudes with the two peaks of resonance appear using optimal tuning 

inductance value where the maximum power amplitude can be achieved at the harvesting load 

resistance of 1.5 MΩ. The two analytical techniques give good agreement. By scrutinizing Fig. 3b, the 

power harvesting responses using variable tuning circuit load resistances show the characteristic 

shifting responses based on the fixed harvesting load resistance of 1.5 MΩ. Again, comparison 

between the two analytical techniques shows accurate results. Moreover, detail of the tuning 

behaviour can be seen in Fig. 4a, where the two peaks of resonance occur not only at the lower 

harvesting circuit load resistance around 80 kΩ, but also at the higher harvesting circuit load 

resistance around 1.5 MΩ. However, the two peaks of resonance at the harvesting circuit load 

resistance of 1.5 MΩ shows exactly the same response to that of Fig. 3a. Slightly different results can 

be seen in Fig. 4b, where shifting resonance frequency based on varying tuning circuit load resistance 

can be seen with the maximum amplitude from the chosen harvesting circuit load resistance of 1.5 

MΩ. The two figures show that the resonance can be widened by up to 7 Hz. 

Table 1. Material properties of the power harvesting device 
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Fig.3. Power harvesting FRFs with fixed tuning capacitor C = 20 nF and synthetic inductance Ls = 250.6 H:  

a) variable harvesting load resistance with fixed tuning load resistances Rl =100 Ω (solid line–closed form and 

circle–Ritz method), b) variable tuning load resistance with fixed harvesting load resistances Rd =1.5 MΩ 

(solid line–closed form and circle–Ritz method). 

Fig.4. Power harvesting FRFs with fixed tuning capacitor 20 nF and synthetic inductance Ls =  250.6 H:       

a) variable harvesting load resistance with fixed tuning load resistance Rl  =100 Ω, b) variable tuning load 

resistance with fixed harvesting load resistance Rd =1.5 MΩ. 

a b 

a b 

a 
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In Fig. 5a, the tuning power FRFs can also be set using different parametric circuit techniques. It is 

clearly seen from Fig. 5b that the bandwidth of the two peaks of resonance gradually increases with 

decreasing variable tuning capacitance or increasing variable inductance. Note that Fig. 5c can be 

used for identifying the inductance value using 2
rCs ωPL  . For example, the capacitance can be 

tuned to be a lower value resulting in larger inductance so as to widen the frequency band. For the 

higher inductance, the bandwidth of the two peaks of resonance seems to be more pronounced. The 

benefit is that the tuning level obtained can reach a maximum of 7 Hz using a tuning capacitance of 

20 nF and even higher up to 10 Hz if the tuning capacitance of 5 nF was chosen as shown in Fig. 5b.   

 

 

 

 

Fig.5. Power harvesting FRFs with fixed harvesting and tuning load resistances Rd =1.5 MΩ and Rl =100 Ω 

respectively: a) variable tuning capacitance corresponding with variable synthetic inductance, b) contour 

response of  Fig. 5a, c) relation of  variable tuning capacitance and synthetic inductance being used in Fig.5a.  

Fig.6. Power harvesting FRFs based on variable synthetic inductance with fixed tuning capacitance C = 20 nF 

and harvesting load resistance Rd  = 1.5 MΩ: a) fixed tuning load resistance Rl  = 25 MΩ, b) fixed tuning load 

resistance Rl  = 5 kΩ. 

b a 

b 
c 
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Unlike the tuning configuration of Fig. 5, Fig. 6a shows that the system power harvesting response 

remains constant with high amplitude. However, corresponding with the result shown in Fig. 6b, the 

power harvesting FRF begins to shift for the particular range of inductance. This occurs because the 

inductance value is exactly the same value as being used for the analysis in Fig. 3.  

 

Moreover, Fig. 7a shows wider tuning system response compared with other previous case studies. 

For particular values of the fixed tuning and harvesting circuit load resistances, the shift of power 

harvesting frequency band with two peaks appears to be more pronounced for certain variable 

inductance values, even away from the optimal synthetic inductance (Ls = 250.6 H). It is clearly seen 

that the parameter tuning circuit for this case study show the most feasible and complementary 

guideline to simultaneously modify the power harvesting system responses. Figs. 7b and 7c clearly 

illustrate that the resonance frequency tuning can exceed 20 Hz as long as the tuning and harvesting 

circuit load resistances and tuning capacitance are chosen correctly.  

Fig. 7. Power harvesting FRFs with fixed tuning capacitance C = 20 nF and fixed harvesting and tuning load 

resistances Rd  = 1.5 MΩ and Rl =100 Ω respectively: a) variable synthetic inductance, b)  contour response of Fig. 

7a, c) snapshot at particular synthetic inductance values  (slightly away from optimal inductance) 

a 

b 
c 
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As shown in Figs. 8a-8c, the three figures show different trend because certain harvesting and tuning 

circuit load resistance values cannot significantly affect the shift of velocity resonance frequency 

using certain tuning inductance values. This was aimed to explore how the tuning and harvesting 

circuit parameters affect each other in the self-adaptive response system. Furthermore, the system 

response as shown in Fig. 8c provides example of widening frequency band with the given multiple 

peaks of amplitude. 

 

For DC harvesting electrical outputs, the voltage waveforms through the rectifier and capacitor can be 

seen in Figs. 9a and 10a with different operating tuning circuit capacitance values. The DC waveform 

behaviour as shown in Fig. 9a indicates a phenomenon of initial beat waveform due to the similar 

frequencies from the mechanical smart structure system and tuning circuit. However, this only occurs 

during the first 3 seconds and after that it is a constant time waveform with dramatic reduction of 

voltage. For this case, it is clearly seen that the power harvesting using optimal synthetic inductance 

may not be effective due to having a very low power amplitude range where it is only applicable for 

vibration suppression. As mentioned previously, the paper is aimed to find the most feasible tuning 

power harvesting systems where a few cases of ineffective tuning parameters are also presented for 

understanding the whole scenario of tuning effect in relation to the power harvesting scheme. In Fig. 

9c, the DC power harvesting across load resistance also gives low amplitude. Two Hilbert envelopes 

of the initial beat signals for tip absolute velocity occur at the first two seconds as shown in Fig. 9d. 

Fig.8. Tip absolute velocity FRFs based on variable synthetic inductance with fixed tuning capacitance  

C = 20 nF and harvesting load resistance Rd =1.5 MΩ: a) fixed tuning load resistance Rl =25 MΩ,        

b) fixed tuning load resistance Rl =5 kΩ, c) fixed tuning load resistance Rl =100 Ω. 

a b 

c 
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Detail of mathematical analysis of the Hilbert envelope reduced from Hilbert transform can be found 

in [62] where signal pattern detection of velocity time waveform can be seen clearly from the peak-to-

peak amplitude. In Figs. 10a-10d, the DC voltage, capacitive DC current, DC power across load 

resistance and velocity signals tend to be constant after 1.5 seconds as being away from the beating 

frequency since the tuning circuit resonance is not similar with the smart structure system due to 

changing the value of the tuning circuit capacitance. Adding the smoothing capacitor onto the 

harvesting circuit clearly gives reduction of the ripple voltage as shown in red colour. As a result, the 

charging process through the capacitor at certain times only occurs for the ripple process each time 

the diodes conduct to capture the process of AC-DC current as shown in Fig. 10b. Once the capacitor 

discharges, no current will flow. In Fig. 10d, Hilbert envelope has also been detected from the 

velocity time waveform signal giving the accurate direct pattern of the mobility of the signal itself.  

  

   
 

 

 

 

 

b 

Fig. 9. Time waveform signal with initial beating phenomenon based on tuning capacitance C = 20 nF with 

synthetic inductance 250.6 H, harvesting capacitance Cd = 0.3 nF and harvesting and tuning load resistances  Rd  

=1.5 MΩ and Rl = 100 Ω: a)  DC Voltage, b) DC capacitor current, c) DC power harvesting across load resistance, 

d) tip absolute velocity.  

d c 

a 
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As shown in Fig. 11, increasing the broadband power harvesting across the load resistance can be 

identified by altering the tuning circuit inductance values (slighly away from optimal inductance value 

or away from the beat frequency signal). Overall, the power harvesting provides better tuning with 

higher amplitude. Moreover, the signal with the inductance of 421 H seems to be the most feasible 

tuning response giving higher amplitude and wider tuning frequency compared with other 

inductances. By viewing Fig. 12, the power harvesting across load resistance using tuning inductance 

of 421 H with tuning circuit capacitance of 20 nF also gives the highest time waveform amplitude. It 

is clearly seen that the tuning circuit capacitance also provides major effect to increase or decrease 

power harvesting amplitude.  

Fig. 10. Time waveform signal based on tuning capacitance C = 30 nF with synthetic inductance 250.6 H, 

 harvesting capacitance 0.3 nF and harvesting and tuning load resistances Rd =1.5 MΩ and Rl = 100 Ω: 

a)  DC Voltage, b) DC capacitor current, c) DC power harvesting across load, d) tip absolute velocity. 

a 

d c 

b 
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The DC power harvesting waveform across load resistance as shown in Fig. 13 increases with 

increasing harvesting load resistance until reaching the maximum amplitude and then gradually 

decreases when reaching the open circuit load resistance. Note that the amount of ripple voltage 

reduces with increasing harvesting load resistance where the time of the capacitor to discharge 

decreases. This will give benefit for faster charging of the capacitor in many electronic aplications. At 

this case, the capacitor in parallel with load resistance can provide a basic example of  reducing the 

DC voltage ripple.  

Fig. 11. Time waveform  power harvesting based on variable synthetic inductance with harvesting 

and tuning capacitances Cd  = 0.3 nF and C = 20 nF , and harvesting and tuning load resistances  

Rd  = 1.5 MΩ and Rl = 100 Ω.  

Fig. 12. Time waveform power harvesting based on variable tuning inductance with synthetic  

inductance Ls = 421 H,  harvesting capacitance Cd  = 0.3 nF and harvesting and tuning load 

 resistances Rd  =1.5 MΩ and Rl = 100 Ω.  
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6. Conclusion  

This paper has presented parametric case studies of the feasibility of tuning the piezoelectric power 

harvesters with the tip mass offset. Novel analytical techniques developed from the extended 

Hamiltonian principle have been derived using the dynamical closed-form boundary value method 

and the weak form analytical approach. Much attention for derivations has been given to the new 

normalised-three coupled electromechanical shunted piezoelectric power harvesting equations for 

formulating the complete forms of the new electromechanical multi-mode FRFs. Example of the 

validations between two analytical methods has also been shown, giving good agreement. Moreover, 

the combination of the shunt circuit control and power harvesting system has been explored to find 

the most feasible self-adaptive tuning harvesting response capabilities not only in the frequency 

response but also in the time waveform response. 

 

The technical findings can be concluded as follows: 

1. It is essential to identify the increasing power amplitudes and their tuning frequency using variable 

load resistance of the harvesting and tuning circuits with fixed tuning inductance and capacitor 

(optimal tuning circuit) before exploring other tuning parameters. It was found that the power 

FRFs increase followed by widening frequency bandwidth up to 7 Hz with certain harvesting and 

tuning circuit load resistance values. Examples can be seen in Figs. 3 and 4. However, point 5 

below also discusses their relations with the time waveform giving a reduction of power amplitude 

which is not effective for the power harvesting scheme.   

2.  Shift of power harvesting resonance can be achieved over a moderate larger range using variable 

tuning capacitance corresponding with the synthetic inductance representing the optimal tuning 

circuit. The larger frequency shift can extend up to 10 Hz. Examples can be seen in Fig. 5. This 

Fig. 13. Time waveform power harvesting based on variable harvesting load resistance with  

synthetic inductance Ls = 421 H,  harvesting and tuning capacitances Cd = 0.3 nF and C = 20 nF, 

and tuning load resistance Rl = 100 Ω.  
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case provides a guideline to identify the frequency tuning behaviour. However, the discussion in 

point 5 below shows that the example of choosing the optimal tuning circuit may not be effective 

for power harvesting systems due to very low time waveform amplitude. Alternative solutions for 

the most feasible and effective tuning power harvesting scheme is further discussed in points 4 and 

6 below.  

3. Shunt circuit control can also provide benefit for the use of sensitive and automatic frequency 

tuning responses from lower to moderate larger ranges if it is difficult to find a precise resonance 

match from the mechanical tuning system of the smart structure.  

4. Wider tuned power harvesting frequency band can be achieved using variable tuning inductance  

(away slightly from its optimal value) with certain values of the fixed tuning and harvesting circuit 

load resistances and fixed tuning capacitance. This case study provides examples of the most 

feasible tuning systems compared with other parametric studies. Examples can be seen in Fig. 7. It 

is important to note that this case study was obtained once the previous essential parametric case 

studies have been explored so as to further use the best values of harvesting and tuning load 

resistances, inductance and capacitance for identifying the maximum amplitude and widened 

frequency range.  

5. Using the optimal tuning circuit, the initial beating phenomenon of the time waveform DC power 

occurs followed by a dramatic reduction of amplitude. After a beating signal of less than a few 

seconds, the waveform amplitude seems to remain constant with very low value. Examples of this 

can be seen in Fig. 9. In relation with Fig. 3 with the same tuning circuit parameter, the power 

harvesting FRFs using the optimal circuit provides wider bandwidth, but in the time waveform the 

power decreases dramatically showing initial beating phenomenon. At this case the optimal circuit 

system may not be effective due to having very low amplitude, but is applicable for vibration 

suppression as many previous publications in the shunt control system have shown.      

6. Time waveform DC power harvesting using particular synthetic inductances being away from its 

optimal value provides effective ways to give the fluctuated amplitude in the time domain as being 

away from a beating frequency signal (away from an optimal synthetic inductance or optimal 

tuning circuit). Increasing power amplitudes are also affected by the use of certain values of the 

tuning circuit capacitance and harvesting load resistance. Examples of this can be seen in Figs.11-

13 with very high power amplitudes. Incorporating Fig. 7, the widening power harvesting FRFs 

can be achieved more than 20 Hz, giving the most feasible and effective tuning parameters in the 

application of the power harvesting system.  

 

Overall, the frequency response and time waveform power harvesting using the effect of the tuning 

circuit parameters are important aspects to be explored since the parametric case studies can provide 

the guideline to identify the most feasible tuning system in terms of the widening frequency band and 
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its amplitude. Also, the multiple shunt circuit networks for future work can also give further benefit 

for multiple wider tuning systems. 

Appendix A. Modified Elastic Constant and Piezoelectric Constant  

The modified elastic constant and piezoelectric constant for tuning and harvesting piezoelectric layers 

can be formulated, respectively as, 
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Note that general parameter   Si,
ε

33
 for piezoelectric layers (superscript  3,1i ) indicates the 

permittivity at constant strain (superscript S)      iTi,Si,
deεε 31313333   or      Ei,Ti, Si,
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11

2
313333

  where  Ti,
ε

33
 is 

the permittivity at constant stress (superscript T). 

Appendix B. Stiffness Coefficients for the Smart Structure 

The total transverse stiffness coefficient for triple layers can be formulated as, 
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Note that    2
11

2
ccD   is the non-piezoelectric material and neutral axis zn can be seen in Appendix C. 

Parameter b is the width of the interlayer and term m is number of layers.  

Appendix C. Determining the Neutral Axis of the Smart Structure 

In Fig. 1, the location of the asymmetric neutral axis measured from the x-axis to the top surface of 

the piezoelectric layer can be determined to give,  
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Appendix D. Modified Transverse Piezoelectric Coupling Coefficient and Modified Piezoelectric 

Internal Capacitance 

Modified transverse piezoelectric coupling in the tuning and harvesting piezoelectric layers can be 

formulated, respectively as, 
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The modified internal capacitances in the tuning and harvesting piezoelectric layers can be stated, 

respectively as,  
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Appendix E. Mode shapes of the Triple Layer Beam with Proof Mass Offset 

The mode shape of transverse bending can be formulated as, 
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Since Eq. (E1) contains variable ra1  as the transverse amplitude constant, the normalised mode shape 

can be formulated as,  
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