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ABSTRACT

This thesis investigates the characteristics of static torsional mesh stiffness, load
sharing ratio, and transmission errors of gears in mesh with and without a localised

tooth crack.

Gearing is perhaps one of the most critical components in power transmission
systems. The transmission error of gears in mesh is considered to be one of the main
causes of gear noise and vibration. Numerous papers have been published on gear
transmission error measurement and many investigations have been devoted to gear
vibration analysis. There still, however, remains to be developed a general non-
linear Finite Element Model capable of predicting the effect of variations of gear
torsional mesh stiffness, transmission error, transmitted load and load sharing ratio.
The primary purpose of this study was to develop such a model and to study the
behaviour of the static torsional mesh stiffness, load sharing ratio, and transmission

error over one completed cycle of the tooth mesh.

The research outlined in this thesis considers the variations of the whole gear body
stiffness arising from the gear body rotation due to tooth bending deflection,

shearing displacement, and contact deformation. Many different positions within the



meshing cycle were investigated and then compared with the results of a gear mesh

having a single cracked tooth.

In order to handle contact problems with the finite element method, the stiffness
relationship between the two contact areas must be established. Existing Finite
Element codes rely on the use of the variational approach to formulate contact
problems. This can be achieved by insertion of a contact element placed in between
the two contacting areas where contact occurs. For modelling of gear teeth in mesh,
the penalty parameter of the contact element is user-defined and it varies through the
cyclic mesh. A simple strategy of how to overcome these difficulties is also
presented. Most of the previously published finite element analysis with gears has
involved only partial teeth models. In an investigation of gear transmission errors
using contact elements, the whole body of the gears in mesh must be modelled,
becausc the penalty parameter of the contact elements must account for the
flexibility of the entire body of the gear not just the local stiffness at the contact

point.
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NOTATION

The notation defined below is a partial list of the principal notation used throughout
this thesis. Due to the wide variety of topics covered in this thesis, some exceptions
will exist. Less frequently used symbols, and symbols that have different meanings
in different contexts, are defined where they are used. Matrices and vectors are

denoted by boldface type.

General Symbols

Symbol Meaning

At Time increment

a FElement acceleration vector, addendum of the involute
tooth (mm)

a Acceleration vector

A Global acceleration vector

b Dedendum of the involute tooth, mm

b Body force vector

B, B”, B*, BY The tooth displacement vector caused by bending and
shearing for the tooth pair A and D of the pinion and gear

xvi




respectively, m.

C Constitutive matrix

e Linear strain tensor, offset of the rack cutter (mm)
E Young’s modulus

E¢, Hardening modulus

f Concentrated force vector

A D D
F*, F*, F*, F!

The component of the total applied force vector Fy»,

Ft‘:‘;’[; , at the contact A and D of the pinion and gear

respectively, N.

FAD pAD The total applied force vectors of the pinion and gear
02 ol g

respectively, N.
F* FP_ FA EP The friction force contributions along the path of contact of

sp? Tsp* Tsgc Tsg

each meshing tooth pair at the contact A and D of the

pinion and gear respectively, N.

FA FD FA FD

op? “op? “og? Tog

The normal force contributions along the path of contact of
each meshing tooth pair at the contact A and D of the

pinion and gear respectively, N.

FA,D FA,D

tot,np * ~ tot ng

The total normal forces along the path of contact of the

pinion and gear respectively, N,

A D 7A D
HP,HP,Hg,Hg

The contact deformation vector of the tooth pair A and D of

the pinion and gear respectively, m.

k Element stiffness matrix

K Global stiffness matrix

K,, The single tooth torsional mesh stiffness of the output and
input gear, N.m/rad.

KN The combined normal contact stiffness of the pinion and

gear, N.m/rad.

Xvii




KN, KN, The single tooth normal contact stiffness of the pinion and
gear respectively, N.m/rad.

K,.K, The single tooth torsional mesh stiffness at particular
meshing positions of the pinion and gear respectively,
N.mv/rad

KT, The combined tangential contact stiffness of the pinion and
gear, N.m/rad.

A [P 1A [P The corresponding normal load sharing ratios of each

np? np ? ng ? ng

meshing tooth pair at the contact A and D of the pinion and
gear respectively

m Metric module, mm

m Element mass matrix

M Global mass matrix

m, Speed ratio.

N Number of gear teeth

N,, N, Number of gear teeth of the input gear and output gear
respectively

Ni,N:,Ns, Boundary unit vectors

q Boundary traction vector

The transverse plane contact radius vector on the pinion

and gear tooth pair A and D respectively, m.

Time, thickness

g:p

The torsional load vector of the output and input gear, N.m.

TpA, Tpu, Tgﬂ, Tgu

The vectorial contribution to the total applied torque of the

tooth pair A and D of the pinion and gear respectively,
N.m.

TA,D

lot,p * tot,g

The total applied torque vector of the pinion and gear
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respectively, N.m.

T,, T, The total applied torque vectors at particular meshing
positions of the pinion and gear respectively, N.m.

u Displacement vector with component u; , u, , and uz

U Global displacement vector

u Element displacement vector

v Velocity vector with components vy , U2 , and U3

v Global velocity vector

X Spatial coordinates

X Material coordinates

Z The gear ratio

[B] Strain-displacement matrix

[C] Damping matrix

D] Elasticity matrix

{F} Force vector

fa The normal force

f; The tangential force

1] Identity matrix

K] Stiffness matrix

[M] Mass matrix

{0] Null matrix

[S] Stress stiffness matrix

u, v, w, {u} Displacement, displacement vector

s3U Virtual internal work

Y Virtual external work

Xix




X, ¥, Z Element coordinate

X, Y. Z Nodal coordinates (usually global cartesian)

Greek Symbols

Symbol Meaning

0* gP 9? gv The transverse plane angular rotation of the gear body
P’ p? ? 2

caused by bending deflection, shearing displacement and

contact deformation of the single tooth pair A and D of the

pinion and gear respectively, rad.

gAD pgAD The transverse plane angular rotation of the gear body
P2 7e

caused by bending deflection, shearing displacement and

contact deformation of the double tooth pair A and D of the

pinion and gear respectively, rad.

6,, Angular rotation of the output and input gear, rad.
A Increment

c Cauchy stress tensor, stress

) Mass density of the material

v Element velocity vector

1L Coefficient of friction

v Poisson’s ratio

£ Green-Lagrange strain tensor, strain

M Non-linear strain tensor

r Material particle set on a boundary, boundary of Q
T Space occupied by a boundary I

XX




Material particle set of a body

5

Q Material particle set within the interior of a body, Any
domain

o) Space occupied by a body

tQ Space taken by the interior particle Q of a body

Sw Virtual work in an element

SW Virtual work in a system

) Shape function

oy Yield stress

o Penalty parameter, coefficient of thermal expansion

Superscripts and Subscripts Symbols

Symbol Meaning
subscripts p and g Represent the pinion (input gear) and gear (output gear)
respectively.
subscript s Denotes single tooth pair in contact.

Subscript m

Denotes double tooth pair in contact.

Subscript ¢

Denotes combined normal or tangential contact stiffness.

superscripts A and D

Represents the contact point along the path of contact of

the double tooth pair contact zone.

superscript i

Indicates the contact point along the path of contact of
single tooth pair contact zone., equilibrium iteration

number

XX




CHAPTER 1

INTRODUCTION AND JUSTIFICATION

1.1 GENERAL INTRODUCTION

Out of all the types of gearbox noise, one of the most difficult to control is gear
noise generated at the tooth mesh frequency. Transmission error is considered to be
one of the main contributors to noise and vibration in a gear set and is defined as the
difference between the theoretical and actual angular positions of a gear in relation
to the pinion. According to most authors, gear noise is closely related to
transmission error. A pinion and gear having ideal involute profiles running with no
loading torque should theoretically run with zero transmission error. However, when
these same gears transmit torque, the combined torsional mesh stiffness of each gear
changes throughout the mesh cycle as the teeth deflect, causing variations in angular
rotation of the gear body. The difference in angular rotation position between where
the gear is in relation to the pinion, as opposed to where it should theoretically be, is
what 1s termed transmission error. Even though the transmission error is relatively
small, it is these slight variations which can cause noise and vibration in rotating
gears in mesh. If the tooth mesh excitation occurs at a frequency which matches a
resonance of the shafts or gear housing, the noise is enhanced. This phenomenon is
actively being researched in order to try to minimize the amount of transmission

error in gears, and thereby reduce the amount of noise generated.



1.2 TORSIONAL MESH STIFFNESS

The torsional mesh stiffness of gears in mesh is defined by Sirichai (Sirichai et al.
1997; Sirichai et al. 1998; Sirichai et al. 1998), as the ratio between the torsional
load and the total elastic angular rotation of the gear body. Total angular rotation is
defined as the angle through which a gear turns due to bending, shearing and contact
of the gear teeth when in loaded mesh with the fixed mating gear. The torsional
mesh stiffness varies as the gear teeth rotate through the mesh cycle. In spur gears,
where contact alternates between the single-tooth-pair contact and the double-tooth-
pair contact, each tooth pair may be thought of as a spring. The torsional mesh
stiffness alternates between the stiffness of a single spring and the stiffness of two
springs in parallel, that is, the torsional mesh stiffness varies throughout the meshing
position as it decreases and increases dramatically as the meshing of the tecth
change from the double pair to single pair of teeth in contact and vice-versa. The
development of a torsional mesh stiffness model of gears in mesh can be used to

determine the transmission error throughout the mesh cycle.
1.3 GEAR TRANSMISSION ERROR

The transmission error of gears in mesh (TE} is the single most important factor in
the generation of gear noise and vibration. It has been defined by Welbourn
(Welbourn 1972; Welbourn 1979) as the difference between the actual position of
the output gear and the position it would occupy if the gear drive were perfectly
conjugate. The equation for transmission error may be expressed in angular units as

given below,

TE = 6, -(2),, rad, (1.3.1)

where Z is the gear ratio and O, denotes the angular rotation of the input and

output gear in radians respectively. The definition above is appropriate for both
loaded and unloaded gears, and can be applied statically or dynamically. Harris
(Harris 1958) was the first to identify transmission error as a significant contributor

to gear dynamics and the measurement of transmission error was first performed in



the 1960°s by the National Engineering Laboratory and by Gregory, Harris and
Munro (Gregory et al. 1963; Gregory et al. 1963; Gregory et al. 1963). Many others

have performed measurements of transmission errors since that time.

When gears are unloaded, a pinion and gear with the involute profiles should
theoretically run with zero transmission error, except for manufacturing inaccuracies
such as profile errors, spacing errors, and runout. Transmission errors can also result
from imperfect mounting such as geometrical errors of alignment, and static and
dynamic elastic deflections in the supporting bearing shafts and structure. However,
when gears with the ideal involute profiles are loaded, the torsional mesh stiffness of
each gear changes throughout the mesh cycle, causing variations in angular rotation

of the gear body and subsequent transmission error.

1.4 GENERAL REMARKS ON CONTACT ANALYSIS

In almost all mechanical and structural engineering systems, interactions occur
between two mechanical components or two parts of a single component when they
come into contact with each other. Contact problems are highly nonlinear and
require significant computer resources to solve. Contact nonlinearities occur when
two or more components come into or out of contact with each other. One may
argue that the subject of contact mechanics started in 1882 with the publication of
the classical work by Hertz (Hertz 1881). The Hertz theory is however restricted to
frictionless contact and perfectly elastic solids, (see: Refaat 1995). Progress in
contact mechanics in the second half of this century has been associated largely with
the removal of these restrictions. A proper treatment of friction at the interface of
bodies in contact has enabled the elastic theory to be extended to both slipping and

rolling contact in a realistic way.

The contact between two components or bodies is a static phenomenon if the two
bodies are in static equilibrium, (Zhong 1993). Otherwise the contact is a dynamic
phenomenon. A dynamic contact is often much more complicated than a static one.
In engineering applications, most contact processes are dynamic in a restrictive
sense. Many of them can, however, be regarded as static for simplicity. By nature,

contact phenomena. always involve friction phenomena. However, friction effects



may be neglected for simplicity in situations where frictional forces are sufficiently
small. Therefore, we may have a frictionless contact, which is a special case of

general contact.

Despite the importance of contacts in the mechanics of solids and its engineering
applications, contact effects are rarely taken into account seriously in conventional
engineering analysis, because of the extreme complexity involved. Mechanical
problems involving contacts are inherently non-linear. In contrast to other
mechanical problems, contact problems involve unknown boundary conditions.
Specifically, the actual contacting surface and the stresses and displacements on the
contact surface are all unknown prior to the solution of the problem. Consequently, a
mathematical model of contact problems involves systems of inequalities or non-
linear equations. Furthermore, rigorous modelling of friction is quite difficult as the
friction depends on, among other factors, the surface smoothness, the physical and
chemical properties of the material, the motion, and the temperature of the

contacting surface.

A rigorous analysis of the contact problem that takes all these complex aspects into
account remains extremely difficult. With the rapid development of computational
mechanics, however, great progress has been made in numerical studies of the
problem. By use of the finite element method, many contact problems, ranging from

relatively simple ones to quite complicated ones, can be solved with high accuracy.
1.5 OBJECTIVES OF THE RESEARCH

Despite a lot of investigations devoted to gear research and analysis (Gregory et al.
1963; Hayashi and Hayashi 1981; Milenkovic and Shmuter 1982; Kohler and Regan
1985; Mark 1987, Smith 1987; Smith 1987, Baron et al. 1988; Houser and
Blankenship 1989; Vinayak and Houser 1992; Bard et al. 1994; Barnett and Yildrim
1994; Kurokawa et al. 1994; Munro and Yildirim 1994; Sundaresan et al. 1994;
Umeyama 1994; Gosselin et al. 1995; Litvin and Lu 1995; Toshinari 1995; Velex et
al. 1995; Houser et al. 1996; Sweeney and Randall 1996; Litvin and Kim 1997;
Regalado and Houser 1998; Sirichai et al. 1998) there still remains to be developed a

general numerical approach capable of predicting the effects of variations in gear
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geometry, torsional mesh stiffness, transmission error, and transmitted load. The
objectives of this thesis are to use a numerical approach to develop theoretical
models of the behaviour of spur gears in mesh, to help predict the effect of gear
tooth damage on transmission error. The main focus of the current research as

developed here is,

» to devise efficient and reliable CAD solution techniques (AUTODESK 1995;
AUTODESK 1995; AUTODESK 1997) to generate the profile of spur gear

teeth for transfer to subsequent analysis using the finite element method,

o to develop a strategy to determine an appropriate value of the penalty
parameter of generalised contact elements and to compare with Hertzian

theory.

» to devise efficient and reliable solution techniques and programs necessary to
define the penalty parameter of the contact elements at each contact position

throughout the gear mesh cycle,

e to develop the theoretical changes in the torsional mesh stiffness of ideal

involute spur gears throughout the mesh cycle using finite element analysis,

¢ to develop a program for determining the static transmission error of ideal

involute spur gears in mesh at each position of the mesh cycle,

¢ to use Finite Element Analysis to determine the load sharing ratio of ideal

involute spur gears in mesh at each position of the mesh cycle,

e to use Finite Element Analysis to predict the effect of localised gear tooth
damage on the torsional mesh stiffness, transmission error, and the load
sharing ratio of the ideal involute spur gears in mesh, at each position of the

mesh cycle, where the tooth damage occurs outside of the contact region.



1.6 LAYOUT OF THESIS

This thesis comprises a total of eight chapters. Chapter 1 presents a general
introduction, the significance of the research work and objectives to be achieved.
The definition of torsional mesh stiffness for gears in mesh and gear transmission
error and the reasons for their occurrences are also given. A general statement of
contact analysis is given, along with the specific characteristics of the research work.

Finally the layout of the study is described.

Chapter 2 provides a critical review of the state of the literature relating to the
research. It contains a significant presentation of relevant and pertinent publications
on the subject of contact analysis and documents a vast amount of literature on gear

mathematical models and measurements for vibration analysis and noise control.

Chapter 3 provides a concise representation of the variational inequalities and
variation equality formulations of contact problems for elastic media, suitable for
implementation in engineering applications. It also describes an analytical model of
the gear body rotation compatibility condition, the static torsional mesh stiffness and

the gear transmission error.

Chapter 4 describes a contact problem classification, capability and kinematics, as
well as advantages and disadvantages of contact elements and how to overcome
some of the disadvantages. In order to model a contact problem with the finite
element method, the stiffness relationship between the two contact surfaces must be
established. This relationship can be established through a contact clement that is
inserted between the two contacting areas. The accuracy of contact problems
depends on the choice of the penalty parameter which is not known at the start of
any analysis. A high value of the penalty parameter can lead to ill-conditioning of
the global stiffness matrix as well as convergence difficulties, giving a very slow
convergence rate and a large number of equilibrium iterations or a very small time
step to generate a solution in each substep. A low value of the penalty parameter can
lead to over-penetration of the surfaces. In this chapter, a case study of how to select
an appropriate value of the penalty parameter is presented using finite element

analysis and the results of an approach deflection study are compared to analytical
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formulations based upon Hertzian stress theory, Boresi and Sidebottom (1985) and

Young (1989).

In Chapter S, the involute and fillet tooth profile equations used in the finite element
model have been introduced. A customised CAD program was used to generate the
profile of the teeth and the profile was then transferred to an FEA program to
generate the finite element model of gears in mesh. The accuracy of finite element
modelling of contact problems depends on the choice of the penalty parameter for
the contact element. For modelling of gear teeth in mesh, the penalty parameter also
varies as the gear teeth rotate through the cyclic mesh. This chapter provides a Finite
Element Model which is used to predict the torsional mesh stiffness of a pair of spur
gears in mesh. The model involves the use of 2D plain strain elements, coupled with
contact elements at the area of contact between the meshing teeth. A simple strategy
of how to determine an appropriate value of the penalty parameter of the contact
elements is also presented. The theoretical changes in the torsional mesh stiffness
throughout the mesh cycle are developed using finite element analysis. A Smm
through thickness tooth crack is also modelled, and the comparison of the torsional

mesh stiffness with and without the tooth crack is discussed.

In Chapter 6, a spur gear mesh consisting of a pinion with a single cracked tooth in a
gear is considered and a comparison of results of static transmission error between
gears with and without the cracked tooth is made. The theoretical changes in the
torsional mesh stiffness throughout the mesh cycle, presented in chapter 5 using
finite element analysis, are related to the static transmission error in this chapter. At
each particular meshing position, the angular rotation of the pinion due to tooth
bending, shearing and contact displacement is calculated in the gear reference frame
by restraining the gear from rotating, with the pinion having a torque input load. In
relation to the pinion reference frame, the pinion is restrained from rotating, with the
gear having the torque input load and the resulting angular rotation of the gear is
also computed. The angular rotations obtained by these two models provide the
static transmission error of the ideal involute profile gears under load. In this
chapter, a detailed analysis of the variation of the transmission error throughout the
mesh cycle is presented and discussed. Many different positions within the meshing

cycle were investigated and then compared with a pinion with a single cracked
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tooth. Variations of applied torque that affect the transmission error were also

investigated.

Chapter 7 presents the development of an FEA program used to determine the load
sharing ratio of spur gears in mesh. The development of the torsional mesh stiffness
model of gears in mesh is used to determine the load sharing ratio throughout the
mesh cycle and a comparison of results of load sharing ratio between gears with and
without the cracked tooth is made. In this chapter, a detailed variation of the load
sharing ratio throughout the mesh cycle is presented. Different values of input torque
that might affect the load sharing ratio were investigated and then compared with

results from a pinion with a single cracked tooth.

Finally, Chapter 8 summarises the general conclusions of the thesis and its
contribution to the area of contact mechanics, torsional mesh stiffness, transmission
load sharing ratio, and gear transmission error, together with some recommendations

for future work.

Appendix F describes the static torsional mesh stiffness measurement set-up and
method. This Appendix presents data measured from a static gear test rig, which was
designed to create a pure torque transmitted to a spur gear pair in mesh. Once the
gears were pre-loaded, the known torque load was increased while the angular
deflection of the spur gears was measured by a pair of optical auto-collimators. The
same procedure was followed for a variety of different loads allowing a graph of
torque versus angular displacement to be obtained. The relationship between torque
and angular displacement was linear within the elastic range as expected. From the
measurements, the static torsional mesh stiffness of the gear mesh at particular
positions was obtained by calculating the gradient from the corresponding torque
versus angular displacement relationship. By changing the meshing positions, the
mesh stiffness of the gear during the entire meshing cycle was obtained. Attention is
devoted to the strategy adopted in treating the elastic torsional mesh stiffness,
together with discussions, comparison of results with the finite element model and

contclusions.



CHAPTER 2

LITERATURE REVIEW

2.1 OVERVIEW

Gears are one of the most critical components in industrial rotating machinery.
There is a vast amount of literature on gear modelling. The objectives in dynamic
modelling of gears has varied from vibration analysis and noise control, to
transmission errors and stability analysis over at least the past five decades. The

ultimate goals in gear modelling may be summarised as the study of the following,

stress analysis such as bending and contact stresses,

surface pitting and scoring,

transmission efficiency,

radiated noise,

loads on the other machine elements of the system especially on bearings, stability
regions,

natural frequencies of the system,

vibratory motion of the system,

whirling of rotors,

condition monitoring, fault detection, diagnosis, prognosis, reliability,

and fatigue life.



The models proposed by several investigators show considerable variations not only
in the effects included, but also in the basic assumptions made. Although it is quite
difficult to group the mathematical models developed in gear dynamics, Ozguven
and Houser (Ozguven and Houser 1988; Ozguven and Houser 1988) have presented
a thorough classification of gear dynamic mathematical models. In 1990, Houser
(Houser 1990) and Zakrajsek et al. (Zakrajsek and al. 1990) outlined the past and
current research projects of gear dynamics and gear noise at Ohio State University’s
Research Laboratory and NASA Lewis Research Centre respectively. Du (Du 1997)

also classified various gear dynamic models into groups.

The current literature review also attempts to classify gear dynamic models into
groupings with particular relevance to the research presented in this thesis. It is
possible for some models to be considered in more than one grouping, and so the

following classification seems appropriate.

o Models with Tooth Compliance. There is a very large number of studies
which include the tooth stiffness as the only potential energy storing element
in the system. This group includes single tooth models and tooth pair models.
For single tooth models, the objectives usually are tooth stress analysis. For
the models with a pair of teeth, the focuses mostly are contact stress and
mesh stiffhess analysis. That is, the flexibility (torsional and/or transverse) of
the shafts, bearings, etc., are all neglected. In such studies the system is
usually modelled as a single degree of freedom spring-mass system. Some of

the models have also been analysed using the Finite Element Method.

* Models for Gear Dynamics. Such models include the flexibility of the other
elements as well as the tooth compliance. Of particular interest have been the
torsional flexibility of shafts and the lateral flexibility of the bearings and
shafts along the line of action. In some studies, the transverse vibrations of a
gear-carrying shaft are considered in two mutually perpendicular directions,
thus allowing the shaft to whirl. In such models, the torsional vibration of the

system is usually considered.
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e Models With A Whole Gearbox. The studies in this group may be viewed as
current and advanced studies and all elements in the system including the
gear casing, are considered in the models. The gearbox may be single stage

or multi-stage.

In the solution of the system equations, numerical techniques have usually been
employed. Although most of the models for which numerical techniques are used are
lumped parameter models, some investigators have introduced continuous system or
finite element models. While closed form solutions are given for some simple
mathematical models, analog computer solutions have sometimes been preferred for

non-linear and more complicated models, particularly in the earlier studies.

In some studies the main objective has been to find the system natural frequencies
and mode shapes and, therefore, only free vibration analyses are made. However,
usually the dynamic response of the system is analysed for a defined excitation. In
most of the studies the response of the system to forcing due to gear errors and to
parametric excitation due to tooth stiffness variation during the tooth contact cycle is
determined. The models constructed to study the excitations due to gear errors
and/or tooth stiffness variation provide cither a transient vibration analysis or a
harmonic vibration analysis by first determining the Fourier series coefficients of the
excitation. Some studies also include the non-linear effect caused by loss of tooth
contact or by the friction between meshing teeth. The excitation is then taken as an

impact load and a transient vibration analysis is made.
2.2 GEAR MODELLING

Numerous mathematical models have been developed for different purposes, the
basic characteristics of each class of dynamic models along with the objectives and
different parameters considered in modelling has been discussed in section 2.1. This
section presents a review of papers published in the areas outlined above, including

brief information about the model and the approximations and assumption made.
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2.2.1 Models with Tooth Compliance

The basic characteristic of the models in this group is that the only compliance
considered is due to the gear tooth and that all other elements have been assumed to
be perfectly rigid. The model is either a single tooth model or a tooth pair model.
For single tooth models, the objectives usually are tooth stress analysis. For models
with a pair of teeth, the focus is mostly contact stress and meshing stiffness analysis.
The resulting models are either translational or torsional. With torsional models one
can study the torsional vibrations of gears in mesh, whereas with translational
models the tooth of a gear is considered as a cantilever beam and one can study the
forced vibrations of the teeth. In cither of these models, the transmission error

excitation is simulated by a displacement excitation at the gear mesh.

In 1956, Nakada and Utagawa (Nakada and Utagawa 1956) considered varying
elasticity of the mating teeth in their vibratory model. The torsional vibrations of
two mating gears were simulated by introducing an equivalent translational
vibratory system. The time variation of stiffness was approximated as a rectangular
wave and closed form solutions of piecewise linear equations were obtained for
different damping cases for accurately manufactured gear tooth profiles. Another
mass and equivalent spring model was introduced in 1957 by Zeman (Zeman 1957).
He neglected the variation of stiffness and analysed the transient effects of periodic
profile errors. Harris’s work (Harris 1958) was an important contribution in which
the importance of transmission error in gear trains was discussed and photo-elastic
gear models were used. In his single degree of freedom model, he considered three
internal sources of vibration: manufacturing crrors, variation in the tooth stiffness
and non-linearity in tooth stiffness due to the loss of contact. He treated the
excitation as periodic and employed a graphical phase-plane technique for the
solution. Harris seems to have been the first to point out the importance of
transmission error by showing that the behavior of spur gears at low speeds can be
summarised in a set of static transmission error curves. He also appears to have been
the first to predict the dynamic instability due to parametric excitation of the gear

mesh.
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In 1963, Gregory, et al. (Gregory et al. 1963; Gregory et al. 1963) extended the
theoretical analysis of Harris (Harris 1958) and made comparisons with
experimental observations. The torsional vibratory model of Gregory, et al.,
included a sinusoidal-type stiffness variation as an approximation. They treated the
excitation as periodic, and solved the equations of motion analytically for zero
damping and on an analog computer for non-zero damping. The experimental data
(Gregory et al. 1963) and the computational results (Gregory et al. 1963) generally
confirmed Harris’s contention that non-linear effects are insignificant when damping
is more than about 0.07 of critical. It was claimed that when damping is heavy the
simple theory of damped linear motion could be used. Aida, et al. (Aida et al. 1967;
Aida 1968; Aida 1969) presented examples of other studies in this area. He
modelled the vibration characteristics of gears by considering the excitation terms
due to tooth profile errors and pitch errors, and by including the variation of teeth
mesh stiffness. In the model of Aida, et al., time varying mesh stiffness and periodic
tooth errors were considered, and the model was used for determining stability
regions and steady state gear vibrations. A comparison with experimental

measurements was also made.

Bollinger and Harker (Bollinger and Harker 1967) investigated the dynamic
instability that may arise due to varying mesh stiffness. They used a simple single
degree of freedom model with an equivalent mass representing the inertia of the gear
and pinion. Mesh stiffness variation was assumed to be harmonic. The solution of
the resulting equation of motion was obtained by using an analog computer, and it
was shown that the dynamic load may be reduced by increasing the damping

between the gear teeth or by reducing the amount of stiffness variation.

In 1967, Tordion and Gerardin (Tordion and Gerardin 1967) used an equivalent
single degree of freedom dynamic model to determine transmission error from
experimental measurements of angular vibrations. They first constructed a torsional
multi-degree of freedom model for a general rotational system with a gear mesh.
Then, only the equations of the gears were considered for obtaining an equivalent
single degree of freedom model with constant mesh stiffness and a displacement
excitation representing the transmission error. An analog computer solution was

used to obtain the transmission error from the measured angular accelerations. The
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transmission error was proposed to be used as a new concept for determining the

gear quality, rather than individual errors.

In 1973, Wallace and Seireg (Wallace and Seireg 1973) used a finite element model
of a single tooth to analyze the stress, deformation and fracture in gear teeth when
subjected to dynamic loading. Impulsive loads applied at different points on the
tooth surface and moving loads normatl to the tooth profile were studied. In the same
year, Wilcox and Coleman (Wilcox and Coleman 1973) also analysed gear tooth
stresses. They developed a new accurate stress formula for gear teeth based entirely
on the finite element method and presented a comparison between the new formula

and the previous one.

In 1978, Remmers (Remmers 1978) presented a damped vibratory model in which
the transmission error of a spur gear was expressed as a Fourier series. He used
viscous damping and constant tooth pair stiffness, and considered the effects of

spacing errors, load, and design contact ratio and profile modifications.

Rebbechi and Crisp (Rebbechi and Crisp 1981; Rebbechi and Crisp 1983)
considered the material damping of the gear-wheel shafts, while the compliance of
the shafts was neglected. The three-degree of freedom model was reduced to a two
degree of freedom model for the study of the torsional vibrations of a gear pair, and
an uncoupled equation, which gave the tooth deflection. The other effects included
in the model were material damping inherent to the tooth, perturbations of input and
output torque, arbitrary tooth profile errors, time variation of that error due to
deformation, and perturbations of the base circle due to profile errors. The effects of
kinetic sliding friction at the contact point and the sliding velocity on the dynamics
of continuous meshing were also studied (Rebbechi and Crisp 1983) and in 1996,
Rebbechi, et al. (Rebbechi et al. 1996), obtained measurements of the gear tooth

dynamic friction under various speed and load situations.

In 1985, Wang (Wang 1985) studied the effect of torsional vibration in his model.
The research was focused on the analytical evaluation of gear dynamic factors based
on rigid body dynamics and discussed different cases in which the transmission

errors have different effects on the dynamic load. He commented that the
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transmission errors have a system wide effect and could be used to analyse rigid-

body vibrating gear systems in which the gear deflection is not considered.

In the late 1980s, Ramamurti and Rao (Ramamurti and Rao 1988) presented a new
approach to the stress analysis of spur gear teeth using FEM. Their new approach,
with a cyclic system of gear teeth and with asymmetry of the load on the teeth,
allowed computation of the stress distribution in the adjacent teeth from the analysis
of one tooth only. The boundary conditions imposed between the two adjacent teeth

in the conventional FEM were avoided in their approach.

In 1988, Vijayakar, Busby, and Houser (Vijayakar et al. 1988) used a simplex type
algorithm to impose frictional contact conditions on finite element models. They
established the contact equations with the frictional factor and solved them for
known output moment load on the output gear. In their finite element model, they
analysed their problem in two dimensions and in order to model the involute profile
as closely as possible, a special five node linear transition element was used. In the
same year, Ozguven and Houser (Ozguven and Houser 1988) presented a non-lincar
model of a single degree of freedom system for the dynamic analysis of a gear pair.
In their studies, they developed two methods for calculating the dynamic mesh and
tooth forces, dynamic factors based on stresses, and dynamic transmission error
from measured or calculated loaded static transmission errors. The first method was
an accurate method, which included the time variation of both mesh stiffness and
damping. The second approach was a more approximate method in which the time

average of the mesh stiffness was used.

In 1990, Sundarajan and Young (Sundarajan and Young 1990) developed a three
dimensional finite element substructure method to improve the accuracy of
calculation of the gear tooth contact and fillet stress in large spur and helical gear
systems. The finite element analysis and pre-processing software they developed
simplified the data input and reduced the manual effort involved in the analysis.
When some parameters (misalignment for example) were changed, most of the
stiffness matrices were not recalculated. They considered the contact problem by
using contact boundary conditions, which meant that the contact or area was defined

in the analysis. One year later, Sundarajan and Amin (Sundarajan and Amin 1991)
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investigated the finite element analysis of a ring gear and the casing and presented

another finite element computer program to solve this problem.

The contact conditions of gear teeth are very sensitive to the geometry of the
contacting surfaces, which means that the finite element mesh near the contact zone
needs to be very highly refined. However it is not recommended to have a fine mesh
everywhere in the model, in order to reduce the computational requirements.
Vijayakar and Houser (Vijayakar and Houser 1993) studied the contact analysis of
gears using a combined finite element and surface integral method. They developed
a Contact Analysis Program Package which supports stress contours, transmission
errors, contact pressure distribution and load distribution calculation. Their approach
was based on the assumption that beyond a certain distance from the contact zone,
the finite element method predicted deformations well and the elastic half space
method was accurate in predicting relative displacements of points near the contact
zone. Under these assumptions, it was possible to make predictions of surface
displacements that make use of the advantages of both the finite element method as

well as the surface integral approach.

In 1994, a review of the current contact stress and deformation formulations
compared to finite element analysis was given by Gosselin, et al. (Gosselin et al.
1994). They presented an original approach to meshing line contact for spur gears
and point contact for spiral bevel gear pairs for finite element analysis using contact
elements and they then compared the contact deformation results with recognised
analytical formulations. Their results showed that the contact deformations differ
from 20% to 150% between the analytical approaches and FEM. In the same year,
Chen, Litvin, and Shabana (Chen et al. 1994) proposed an approach for the
computerised simulation of mesh and contact of loaded gear drives that enables
determination of the instantaneous contact ellipse, the contact force distributed over
the contact ellipse and the real contact ratio. They also established a finite element
model for the maximum bending stress calculation on a tooth. The friction forces
between gear teeth, the elastic deflection of the body of the gear, the shaft and the

bearings were neglected in their approach and their model.
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2.2.2 Models for Gear Dynamics

Some of the early mathematical models, in which the stiffness and mass contribution
of the shafts carrying the gears in mesh were ignored, showed good agreement with
the experimental measurements, However, it was realized in the late 1960s and early
1970s that dynamic models in which the shaft and bearing flexibility were
considered would be necessary for more general models. Unless the stiffness of
these elements were relatively high or low compared to the effective mesh stiffness,
the vibration coupling of different elements cannot be neglected. In general, a high
degree of correlation was obtained between the experimental results and the
predictions provided by many of the early single degree of freedom models. This
can be explained by the fact that the experimental rigs used in such studies satisfied
most of the basic assumptions made in the mathematical model. For example, a very
short shaft might be assumed to be rigidly mounted in the transverse direction. In
practical applications however, these assumptions may not always be satisfied and
so one then needs more general models in which the flexibility and mass of the other

elements are considered as well.

The models that could be considered in this group are either torsional models, in
which only the torsional stiffness of the gear-carrying shafts is included, or torsional
and translational models, in which both the torsional and transverse flexibility of the

gear-carrying shafts are considered.

In the early 1960s, Johnson (Johnson 1962) used a receptance coupling technique to
calculate the natural frequencies from the receptance equation obtained by first
separately finding the receptances at the meshing point of each of a pair of general
shafts. In the model, the varying mesh stiffness was replaced by a constant stiffness
equal to the mean value of the varying stiffness and thus a linear system was
obtained. His work was one of the first attempts to use mesh stiffness in coupling the
torsional vibration of gear shafts. Mahalingam (Mahalingam 1968) presented a
similar model in 1968, where the formulae for support receptance at a gear-wheel
bearing was developed and then used to study the effects of gearbox and frame

flexibility on the torsional vibration.
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An mmportant contribution in this area came in 1970 from Kobler, Pratt and
Thomson (Kobler et al. 1970) who concluded from their experimental results that
dynamic loads and noise result primarily from the steady state vibration of the gear
system when forced by transmission errors. They developed a six-degree of freedom
dynamic model with four torsional degrees of freedom and one lateral degree of
freedom in the direction of the tooth force on each shaft. They assumed the tooth
mesh stiffness to be constant in their model and the spectrum analysis of the static
transmission error for the single-stage reduction gear unit used was also given. In
1971, Kasuba (Kasuba 1971) used one and two degree of freedom models based on
his previous work (Kasuba 1961), to determine dynamic load factors for gears which
were heavily loaded. He used a torsional vibratory model, which considered the
torsional stiffness of the shaft. He also argued that the rigidity of the connection
shafts is much lower than the rigidity of the gear teeth in meshing, and then
decoupled the meshing system. The tooth error in mesh was represented by a pure
sine function having the frequency of tooth meshing. In his model the tooth meshing

stiffness was time varying.

In 1972, Wang and Morse (Wang and Morse 1972) constructed a torsional model
including shaft and gear web stiffness as well as a constant mesh stiffness. The
mode] was represented by a spring mass system having many degrees of freedom.
The transfer matrix technique was applied to give the static and dynamic torsional
response of a general gear train system. It was found that the torsional natural
frequencies and mode shapes determined from a free vibration analysis correlated
with experimental results at low frequencies. Later, Wang {Wang 1974) extended
this work to the linear and non-linear transient analysis of complex torsional géar
train systems. In this later model he considered the variation of tooth stiffness, and
included gear tooth backlash, linear and non-linear damping elements and multi-
shock loading. Three different numerical methods that can be used in the solution of
non-linear systems that cannot be approximated piecewise linearly were also briefly

discussed in his work.

In the 1980s more and more complicated models were developed in order to include
several other effects and to obtain more accurate predictions, while some simple

models were still developed for the purpose of simplifying dynamic load prediction
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for gear standards. In 1980, lida, et al. (Iida et al. 1980) investigated the coupled
torsional-flexural vibration of a shaft in spur geared systems in which they assumed
that the output shaft was flexible in bending and the input shaft was rigid in bending.
They derived equations of motion for a 6-degree-of-freedom (DOF) system where
the driving gear had a torsional DOF while the driven gear had x, y and torsional
DOF is due to mass imbalance and geometrical eccentricity. They assumed that the
tooth contact was maintained during the rotation and that the mesh was rigid. Four
years later, Iida and Tamura (lida and Tamura 1984) continued to study coupled
torsional flexural vibration of geared shaft systems. In that study, their model

consists of three shafis, rather than two shafts, one of them being a counter shaft.

Neriya, et al. in 1985 (Neriya et al. 1985) also investigated the coupled torsional
flexural vibration of a geared shaft system due to imbalance and geometrical
eccentricity. The difference in the work with respect to lida, et al. (Iida et al. 1980)
was that they used the finite element method to solve their problem. In their model,
there were 6 beam elements for each of the driving and driven shafts which were
coupled at the contact to account for the tooth flexibility. Their model had 41
degrees of freedom. They solved the free vibration problem to obtain the natural
frequencies and mode shapes. The normal mode analysis was then employed to
obtain the dynamic response of the system under the excitations arising from the

mass imbalance and geometrical eccentricity in gears.

In early studies, the mesh stiffness of teeth was considered to be constant. Iwatsubo
and Kawai (Iwatsubo et al. 1984), studied the coupled lateral and torsional
vibrations of geared rotors, considering mainly the effect of the periodic variation of
mesh stiffness and a tooth profile correction. Their model had two simply supported
rotors with a spur gear at the centre of each rotor. The stability condition of the
system was analysed in their study. In the same year, Iwatsubo, Arii and Kawai
(Iwatsubo et al. 1984} analysed the coupled lateral and torsional vibration of the
geared system constructed from a pair of spur gears using the transfer matrix
method. In their research, they considered three cases in the analysis of the free
vibration of the system: 1. The mesh force acting on the contact line was a function
of the rotation of each gear, 2. The mesh force acting on the contact line was a

function of the rotation and flexure at each gear, and 3. The system was not coupled
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by the gears. The forced vibration caused by the mass imbalance of the gears was

also calculated.

A new topic, the computer simulation of the torsional and flexural vibration in drive
systems, was studied by Laschet and Troeder (Laschet and Troeder 1984). They
developed computer programs and applied simulation techniques to predict and
analyse the performance of gears trains. The distinctive feature of their research was
that the backlash of the gears was considered in their programs and CAD data of the

gear geometry could be used in their programs.

In 1985, Wang (Wang 1985) developed a torsional only vibration model, He focused
on an analytical evaluation of gear dynamic factors based on rigid body dynamics
and discussed different cases in which the transmission errors have different effects
upon the dynamic load. He commented that the transmission error had a system
wide effect and could be used to analyse rigid-body vibrating gear systems in which

the gear deflection was not considered.

Tavares and Prodonoff (Tavares and Prodonoff 1986) proposed a new approach for
torsional vibration analysis of gear-branched propulsion systems in 1986. Idle gears
in a gear-branched system were modelled as part of the inertia of the master gear and
the finite element method was used in their approach. In the same year, Umezawa, et
al. (Umezawa et al. 1986) set up a test gearing unit which consisted of an input shaft,
countershaft and output shaft. The gears were placed at arbitrary positions on the
shafts in their unit so that the effect of the countershaft on the bending vibration and
on the sound radiation became clear. At almost the same time, lida, et al. (Iida et al.
1986) studied a three axis gear system but with some differences from Umezawa, et
al., firstly, because the countershaft was on soft supports and secondly, the model

was a coupled torsional-lateral vibration analytical model.

In 1992, a finite element model of a geared rotor system on flexible bearings was
developed by Kahraman, et al. (Kahraman et al. 1992). The coupling between the
torsional and transverse vibrations of the gears were considered in the model. They
applied the transmission error as excitation at the mesh point to simulate the variable

mesh stiffness. They presented three different geared systems as numerical examples
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and discussed the effect of bearing compliance on gear dynamics. The assumptions
they used were that the gear mesh was modelled by a pair of rigid disks connected
by a spring and a damper with constant value which represented the average mesh

values and tooth separation was not considered.

Another model presented by Kahraman (Kahraman 1993) was a linear dynamic
model of a helical gear pair. The model considered the shaft and bearing flexibility
and the dynamic coupling among the transverse, torsional, axial, and rocking
motions due to the gear mesh. The natural frequencies and mode shapes were
predicted and the forced response due to the static transmission error was predicted.
After the parametric study of the effect of the helix angle on the free and forced
vibrational characteristics of a gear pair, the conclusion was reached that the axial
vibrations of a helical gear system could be neglected in predicting the natural
frequencies and the dynamic mesh forces. The assumption for their model was that
the gears were modelled as rigid disks, the clearances and stiffness changes of the
bearings were neglected, and the system was assumed to be symmetrical about the

transverse plane of the gears.
2.2.3 Models with a Whole Gearbox

The research models reviewed in this section are seen as being advanced because
traditional analysis approaches mentioned previously in the gear dynamic area have
concentrated on the internal rotating system and have excluded dynamic effects of
the casing and flexible mounts. The focus of this group is on the dynamic analysis of
the geared rotor system, which includes the gear pair, shafts, rolling element

bearings, a motor, a load, a casing and flexible or rigid mounts.

In 1991, Lim and Singh (Lim and Singh 1991) presented a detailed study of the
vibration analysis of complete gear boxes. Their research was based on previous
studies including the bearing stiffness formulation (Lim and Singh 1990) and system
studies (Lim and Singh 1990). They developed linear time-invariant, discrete
dynamic models of an overall box by using lumped parameter and dynamic finite
element techniques. They studied three example cases: case I, a single-stage rotor

system with rigid casing and flexible mounts; case II, a spur gear drive system with
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rigid casing and flexible mounts; and case III, a high-precision spur gear drive
system with flexible casing and rigid mounts. They used the gear mesh coupling
stiffness matrix to couple the two gears and used the bearing stiffness matrix to link
the shafts and casing. In their finite element model, the gear, pinion, motor and load
were simulated as generalised mass and inertia elements and the gear mesh stiffness
matrix and bearing stiffness matrix were modelled as six-dimensional generalised
stiffness matrices. They used the FEM software ANSYS to analyse their models.
They made a parametric study of the effect of casing mass and mount stiffness on
the system natural frequencies. A comparison of the casing flexural vibrations

between the simulation and the experiment was presented.

Choy, et al. (Choy et al. 1991) presented a vibration analysis with the effect of
casing motion and mass imbalance for a multi-stage gear transmission in 1991. In
order to investigate the effect of the casing motion and mass imbalance, four major
cases of external excitations were examined in their study. They employed the
modal method to transform the equations of motion into modal coordinates to solve
the uncoupled system. They concluded that the influence of the casing motion on
system vibration is more pronounced in a stiffer rotor system. In the same year, El-
Saeidy Fawzi (El-Saeidy Fawzi 1991) presented an analytical model for simulating
the effect of tooth backlash and ball bearing deadband clearance on the vibration
spectrum in a spur gearbox. The contact between meshing teeth using the time-
varying mesh stiffness and mesh-damping factor was discussed. From their study,
they concluded that the backlash and bearing deadband clearance had a pronounced
effect on the vibration spectrum of a gearbox. In this model, the gearbox casing was
assumed to be rigid, therefore, both ends of each shaft had the same displacements.

There was no experimental result to verify the analytical result of this research.

One year later, Choy, et al. (Choy et al. 1992) continued their study on the multi-
stage gear system. The work presented in that study was the development and
application of a combined approach of using the modal synthesis and finite element
methods in analysing the dynamics of multi-stage gear systems coupled with the
gearbox structure or casing. In their solution procedure, modal equations of motion
were developed for each rotor-bearing-gear stage using the transfer matrix method to

evaluate the modal parameters, and the modal characteristics of the gearbox
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structure were evaluated using a finite element model in NASTRAN. The modal
equations for each rotor stage and the gearbox structure were coupled through the

bearing supports and gear mesh.

After this study, they used their analytical model to predict the dynamic
characteristics of a gear noise rig at the NASA Lewis Research Centre and then used
experimental results from the test rig to verify the analytical model (Choy et al.
1993). Their conclusions were that the dynamics of the casing can be accurately
modelled with a limited amount of analytically predicted vibration modes, and that
the characteristics and trends of the casing vibration spectra predicted by the

analytical model were very similar to those found in the experimental data.

In 1992, Ong (Ong 1992) described the application of the eigenvalue economisation
method coupled with the frontal solution technique to a vehicle transmission system
comprising an integral bell-housing gearbox, extension housing, drive shaft and
rear-axle assembly. In this study, super-elements were applied using the structural
dynamic substructuring technique for the finite element analysis. The pinion shafts
were represented by beam elements and the gears and bearings were represented by
lumped mass elements in the analytical model. Finally, a comparison was made
between experimental results and the finite element method, which showed good

agreement.

Most analyses of gearboxes appear to be concerned with the dynamic response and
vibration characteristics. In 1994, Sabot and Peret-Liaudet (Sabot and Perret-Liaudet
1994) presented another phase of study, noise analysis of gearboxes. They pointed
out that a troublesome part of the noise within the car or truck cab could be
attributed to the gearbox and that this noise was associated with the vibrations
induced by the transmission error which gives rise to dynamic loads on the teeth,
shafts, bearings and casing. They computed the noise radiated by the gearbox casing
using the Rayleigh Integral Formulation in which the acceleration response of the
casing associated with the finite element method calculation was considered. Their
results showed that although the test model was a simplified gearbox, their
numerical analysis provided a better understanding of the sound radiation

characteristics of geared transmission systems.
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At the same time, Kato, et al. (Kato et al. 1994) developed a simulation method by
integrating finite element vibration analysis and boundary element acoustic analysis
for the purpose of evaluating the sound power radiated from the gearbox and
achieved good agreement with the experimental results. In their model, each shaft
was modelled using beam elements and the mass and rotating inertia of the gear was
modelled as lumped masses and added to the shaft. Each of the rolling element
bearings was represented as a spring and damper and the casing of the gearbox was
modelled by a thin shell element in the finite element package program ISAP-6.
Their acoustic analysis in the frequency domain showed that the sound power at the

mesh frequency was greater than the sound power at other frequencies.

There have also been various studies aimed at modelling a single mechanical
element, a complex system containing several gears as well as other mechanical or

electrical elements and other special topics, such as,

Load Sharing Ratio (Remmers 1978; Drago et al. 1979; Walford and Stone 1980;
Bahgat et al. 1983; Ozguven and Houser 1988; Kuang and Yang 1992; Liou et al.
1992; Liou et al. 1996; Litvin et al. 1996; Zhang and Fang 1998, Chabert, 1974 #35)
Mesh Stiffness (Gargiulo 1980; Kahraman and Singh 1991; Kuang and Yang 1992;
Brousseau et al. 1994; Daniewicz et al. 1994; Sirichai et al. 1996; Velinsky 1996;
Du et al.,, Elkholdy et al. 1998; Gosselin et al. 1998; Nadolski and Pielorz 1998)
Bearing Stiffness (Childs 1980; Gargiulo 1980; Bahgat et al. 1981; Smith 1987; Lim
and Singh 1990; Lim and Singh 1990; Kahraman and Singh 1991; Lim and Singh
1991; Lim and Singh 1992)

Shaft In A Gear System (Johnson 1962; Iida et al. 1980; lida and Tamura 1984;
Neriya et al. 1985; lida et al. 1986; Lin et al. 1988; Prasad et al. 1992; Zhong-Sheng
et al. 1993; Okamoto et al. 1994)

Casing Analysis Of A Gearbox (Drago et al. 1979; Randall 1980; Randall 1984,
Mcfadden 1985; Tavares and Prodonoff 1986; Houser 1990; Randall and Kelly
1990; Zakrajsek and al. 1990; Sundarajan and Amin 1991; Choy et al. 1992; Inoue
et al. 1992; Maruyama et al. 1992; Oswald et al. 1992; Oswald et al. 1992; Perret-
Liaudet and Sabot 1992; Kato et al. 1994; Kissling 1994; Oswald et al. 1994; Sabot
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and Perret-Liaudet 1994; Sabot and Perret-Liaudet 1994; Zhang and Kohler 1994;
Zhang et al. 1994; Du 1997)

Gear Transmission Error Measurement (Gregory et al. 1963; Tordian and Geraldin
1967, Tordion and Gerardin 1967; Hayashi and Hayashi 1981; Houser and
Blankenship 1989; Rebbechi et al. 1992; Vinayak and Houser 1992; Bard et al.
1994; Barnett and Yildrim 1994; Munro and Yildirim 1994; Velex ét al. 1995;
Houser et al. 1996; Sweeney and Randall 1996)

Transmission System (Drago et al. 1979; Ong 1992; Choy and Polyshchuk 1995;
Choy et al. 1996; Choy et al. 1996; Forrester 1996; Regalado and Houser 1998)
Computerized Design And Generation Of Gears (Litvin and Hsiao 1993; Litvin and
Lu 1993; Blazakis and Houser 1994; Zhang et al. 1994; Litvin et al. 1995; Litvin et
al. 1995; Litvin and Lu 1995; Litvin and Feng 1996; Litvin and Seol 1996; Seol and
Litvin 1996; Seol and Litvin 1996; Litvin and Kim 1997; Litvin et al. 1998; Litvin et
al. 1998)

Gear Geometry (Chen et al. 1992; Fujio et al. 1992; Kin 1992; Kubo et al. 1992;
Tsai and Chang 1992; Donno and Litvin 1998; Dooner and Seireg 1998; Feng et al.
1998; Su and Houser 1998)

Gear Noise Design (Aida et al. 1967; Aida 1968; Aida 1969; Kobler et al. 1970;
Daly and Smith 1979; Drago et al. 1979; Welbourn 1979; Smith 1987; Baron et al.
1988; Houser 1990; Randall and Deyang 1990; Randall and Kelly 1990; Zakrajsek
and al. 1990; Mark 1992; Maruyama et al. 1992; Oswald et al. 1992; Oswald et al.
1992; Alattass et al. 1994; Lewicki et al. 1994; Oswald et al. 1994; Sabot and Perret-
Liaudet 1994; Sabot and Perret-Liaudet 1994; Tuma et al. 1994; Zhang and Kohler
1994; Zhang et al. 1994; Litvin et al. 1995; Roosmalen 1995; Wang and Tong 1996;
Cheng and Lim 1998; Stadtfeld 1998)

Stress Analysis (Arikan and Kaftanogtu 1989; Arikan 1991; Arikan and Tamar
1992; Moriwaki et al. 1993; Rao and Muthuveerappan 1993; Baret et al. 1994;
Daniewicz et al. 1994; Vijayarangan and Ganesan 1994; Lu et al. 1995; Refaat and
Meguid 1995; Litvin et al. 1996; Kalluri and Houser 1998; Kim et al. 1998; Richard
E. Dippery et al. 1998)
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2.3 CONTACT ANALYSIS

Studies on contact problems began hundreds of years ago and their history may be

divided into various stages, as briefly described in the following sections.

In the first stage, contact bodies were restricted to rigid bodies or simple elastic
bodies and only global phenomena such as the total contact forces were observed.
Newton’s third law and Coulomb’s friction law may be considered as the two
greatest results in this stage. The basic ideas developed are still used today in some
analyses. As an example, the problem depicted in Figure 2.3.1 (a) can be considered.
A stiff elastic block A lies on another stiff elastic block B which lies on a rigid
ground C. A force P is applied on block A as shown in the figure.

P

p v
AW A i
A Fe Fy

B Fl

£ s —#
S i

Ff

(a) (b)

Figure 2.3.1. (a) A contact system consisting of two elastic blocks and a rigid

ground. (b) Decomposition of the contact system into free bodies.

To study its global behavior, this simple contact system may be decomposed by
making free bodies as shown in Figure 2.3.1 (b), where the contact forces and

frictional forces are subjected to the following contact conditions:

' = F°, F) = Ff  (Newton’s third law) (2.3.1)
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F spF'

Fy <p, Ff : (Coulomb’s friction law) (2.3.2)

where x4, and u, are friction coefficients between A and B and between B and C,

respectively.

In this example, only the total contact force and the total frictional force are
considered, without bothering about how these forces are actually distributed on the
contact surface. While this procedure can be used to analyse the global behaviour of
the block for some purposes, it is not sufficient for other purposes, such as studying
the damage of the block due to wear, which demands the knowledge of contact

stress distributions on the contacting surface.

The development of Mechanical Science and the advances in engineering activities
made it of interest to study increasingly complex contact problems. Local
phenomena, like stress distributions on contacting surfaces, began to be observed.
Among others, Hertz was a leading scientist in this area. His successful treatment of
a static contact problem in elasticity in the 1880s (Hertz 1881; Hertz 1882), has been
regarded as a milestone in the field. In his study, Hertz assumed that contact bodies
can be regarded as elastic half-spaces with small deformations and that contacting
arcas arc small and, in general, elliptical. He also assumed that the contacting
boundaries are frictionless. An example of the classical Hertzian contact problem is

presented here for clarification.

Two elastic spheres in contact are shown in Figure 2.3.2(a). In the Hertzian contact
theory, the displacements of the contacting boundaries are assumed to satisfy the

following condition (Johnson 1985),

s +u, =g —(1/2R)r) (2.3.3)

where u, and u; are the displacement components in the x, direction of the

contacting boundaries from the two spheres, respectively. The initial separation of
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the two contacting boundaries is given by g, and % = 1% + RL in which R and R,
1 2

are the radii of the two spheres, respectively, and r is the distance between a given

contacting point and the centre of the contacting area, which is a circle in this case.
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Figure 2.3.2. (a) Two spheres in contact. (b) Contact pressure distribution between

the two spheres according to Hertzian contact theory.

On the basis of equation (2.3.3), the contact pressure distribution on the contacting

arca can be found as,
3
- ARVt
g=q,[1-(—)1] , (2.3.4)
Fy

where 7, is the radius of the contacting area and g, is the maximum pressure at the

centre. The pressure distribution in equation (2.3.4} is plotted in Figure 2.3.2(b).

In spite of the fact that the Hertz theory of contact has stood the test of time and has
been a landmark in applied mechanics for many decades, it suffers from major
restrictions. These limitations are that the bodies have smooth continuous surfaces,
the stress and displacements can be deduced from the small strain theory of elasticity

applied to a linear elastic half-space, and that the surfaces are frictionless. Following
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Hertz’s work, many rescarchers and scientists studied contact problems between
elastic bodies of different shapes and under different circumstances with or without
friction. Examples can be found in Goodman, Gladwell, and Johnson (Goodman
1954; Goodman and Keer 1965; Gladwell 1980; Johnson 1985). In the work by
Goldsmith (Goldsmith 1960), impact problems were studied via analytical and
experimental approaches. A common feature in these studies is that the geometry
and deformation of a contact body was assumed in such a way that available
mathematical and mechanical tools can be used to obtain a close-form solution of
the problem. We may classify such studies as the second stage. The approaches used
in this stage are obviously very restrictive and can only be applied to very special

probiems.

With the rapid development in the capabilities of digital computers, numerical
methods became the prime interest of researchers, especially in engineering
disciplines where the aim was to obtain more realistic solutions. Therefore, the third
stage may be viewed as the numerical study stage, in which numerical methods have
been used for the solution of contact problems. Among other possible methods, the
finite element method has been most widely used. With the finite element method,
the references included in this area include (Zienkiewicz 1967; Zienkiewicz 1971;
Oden 1972; Hinton and Owen 1977; Zienkiewicz 1977; Bathe 1982; Pittman et al.
1984; Cook et al. 1989; Kleiber 1989; Zienkiewicz and Taylor 1994; Zienkiewicz
and Taylor 1994; Cook 1995). Contact bodies are approximated by collections of
finite elements and contact boundaries are approximated by collections of polygons.
The contact bodies may have complicated geometry and material properties and may
deform in an arbitrary way. The solution of the contact problem finally involves

solving algebraic equation systems instead of obtaining a close-form solution.
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CHAPTER 3

ANALYTICAL MODELS

3.1 NUMERICAL METHOD OF CONTACT ANALYSIS

Contact problems present many significant difficulties. Firstly, the actual region of
contact between deformable bodies in contact is not known until the solution has
been obtained. Depending on the loads, material, boundary conditions, and other
factors, surface can come into and go out of contact with each other in a largely
unpredictable and abrupt manner. Secondly, most contact problems need to account
for friction. There are several friction laws and models to choose from, and all are
nonlinear. Frictional response can be chaotic, making solution convergence difficult
(ANSYS 1997). In addition to those difficulties, many contact problems must also
address multi-field effects, such as the conductance of heat and electrical currents in

the areas of contact.

Bodies in contact may have complicated geometries and material properties and may
deform in an arbitrary way. The solution of the contact problem involves solving
algebraic equation systems instead of obtaining a closed-form solution. To
demonstrate the basic ideas in the solution procedure of contact problems using the
finite element method, a simple contact problem can be demonstrated (Zhong 1993).

A simply connected body consisting of an elastic material is subjected to the load
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and boundary conditions as shown in Figure 3.1.1(a). The body occupies a space
domain £ in a coordinate system 0x;X,x3 as shown in the figure. Let t denote time,
X a position vector, u(x,t) the displacement field, and a(x.t) the acceleration field
within the body, respectively. The motion of block is then governed by the

following equation,

oo, (x,¢)
ox

K

+b,(x,t)= pa(x,t), i=1to3andj=1t03 (3.1.1)

where oj (x,t) is the Cauchy stress component, b; (x.t) is the ith component of the
body force vector b (x.t), p is the mass density of the material which is assumed
constant within €, and a; (x,t) 1s the ith component of the acceleration vector of a

material particle within the body.
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Figure 3.1.1. (a) An elastic body in contact (b} A finite element model of the body.

For elastic materials, the stress-strain relation is given by the generalized Hook’s law

as,

o, (x,t) = cuen(xt), k=1to3andl=1to3 (3.1.2)
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where ¢y are material parameters and ey (x,t) are the strain components, which are

related to the displacement u(x,t) as follows,

e (%.0) 2| o o
i k

1{6"* LN a“*("’f)} . (3.13)
The boundary of 2 is denoted by I" and consists of three distinct parts,

T = I“duFquc ) (3.1.4)
where I'y denotes the part of the boundary where displacements are prescribed, I';

denotes the part where boundary traction are prescribed, and I'; denotes the part

where contacts may occur. The prescribed boundary conditions are expressed as,

I

u.(x,1) E,-(x,t), xely, (3.1.5)
and

o, (x,1)N ;

q,(x.1), xely, (3.1.6)

where ;;(x, t) and &,(x,t) are prescribed displacement components and boundary

traction components, respectively, and N; are the components of an outward unit

normal vector on the boundary I'r, which can be considered as constants.

The initia]l conditions which are to be satisfied by the displacement field u(x,t) can

be simply expressed as,

u(x,0) H(x) , xeQ , (3.1.7)

and

v(x,0) = v(x), xeQ (3.1.8)

where u(x) and ;(x) are the prescribed values for u(x,0) and v(x,0), respectively.
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On the boundary I', the condition which must be satisfied is that the normal contact
stress should be compressive and that the boundary should not penetrate into the

rigid ground. These condition are expressed as,

g(x,t) g(x)— u(x,t)x N>0, xely,, (3.19)

and

‘h(xst)

I

q.(x,t)xN <0, xel, (3.1.10)

where g(x, t) defines the gap between the contact surface and the rigid ground,
g(x) denotes the initial value of g(x,), q,(x,¢) is the contact traction, and q,(x,1)

is the normal component of q_(x,¢) in the outward normal direction of the surface.

Furthermore, the condition must be satisfied that,
e(x,t)xq(x,t) = 0 , 3111

which means that if g(x,¢) is non-zero, ¢,(x,¢) must be zero and if q, (x,t) is non-

Zero, g(x, t) must be zero.

Assuming Coulomb’s friction law on the surface, the tangential component, denoted

by g, (x, t), of the contact traction must satisfy the condition that,
q,(x,1) < v q,(x,0), xel,, (3.1.12)

and the tangential velocity of the contacting boundary, denoted by v ,(x,t), must

satisfy the condition that,

Ii
o]

v, {x,) . it ¢,(x,t)< v g, (x,1), xel., (3.1.13)

and

v,(x.1)

Il

A qf(x,t), if q,(x,t): v q, (x,t), xel,, (3.1.14)
where v is the friction coefficient, A is a non-negative scalar, and
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q,(x1) = q.(x)-qxH)N . (3.1.15)

Equations (3.1.9) to (3.1.14) are the governing conditions which characterise the
contact problem. It is convenient to drop the arguments x and t in the parentheses for
all quantities for simplicity. It must be remembered though, that all the kinematic
and mechanical quantities are functions of both position x and time t for general

dynamic problems, but are functions only of position x for static problems.
3.1.1 Variation Incqualities

Let us consider now, the classic Signorini problem (Kikuchi and Oden 1988) of the
static equilibrium of the elastic body in frictionless contact with the rigid ground.
The acceleration of the body is zero and no friction forces are assumed to act on the
body. Furthermore, all prescribed displacements are assumed to be zero. The
equation of motion and boundary conditions for the body reduce to the following

equations.

Static equilibrium condition,

o, | | |
5 £+ b, = 0, i=l1to3andj=1to3. (3.1.16)
x|

4

Prescribed boundary conditions,

u, = u, only , (3.1.17)
and

o, N, = g, only . | (3.1.18)

Contact conditions,

g = g,—uNz=z0, onf, , (3.1.19)
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and
4 = q,N<0, onl; , (3.1.20)
and

q,2 = 0, onl, . (3.1.21)

The Signorini problem can be formulated in an alternative way by using the
principle of virtual work. Let V denote a set of admissible displacement fields for
the body. It is assumed that any member v of V is sufficiently smooth that all
necessary mathematical operations are well defined. By an admissible displacement
field, it is also meant that the contact condition is satisfied by the displacement field,

which gives,

g = g,—-VvN20, onl¢ . (3.1.22)
Suppose now that u 1s the true solution of the Signorini problem. This also means
that u is a member of V, i.e. u € V. The actual stress produced by u is denoted by o

(u). Let du be an admissible virtual displacement given by du = v-u and de be the

virtual strain produced by du. Then, the principle of virtual work can be stated as,

o, Se, dO = [b:sudQ+ (g, 6udS+ (g, 6uds | (3.1.23)
I i~ .[ ..‘ .[
Q Q Iy L.

where summations on 1 and ] are assumed with i and j ranging from 1 to 3, and 8u,

denoting the virtual displacement in the normal direction on the potential contacting

boundary I'..
Now 1t holds that,
g, oW = g, (WN-uN),
- g (vN-uN+g, - g,),
= ¢q (vN-g,)=0 . (3.1.24)
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Thus, it can be obtained from equation (3.1.23) and (3.1.24) that,

[o,0e,d02 > [bidud+ [q,6udS . (3.1.25)
Q Q T

s

Equation (3.1.25) is a variation inequality. An advantage of the formulation is that
all the boundary conditions, inciuding the contact conditions, are incorporated into a
single variation inequality. Furthermore, with the variation inequality formulation,
the existence and/or uniqueness of solution can be proved and error estimates can be

obtained for some contact problems.
3.1.2 Variation Equalities

Although the methods of solution of such an inequality are now well established, a
comprehensive mathematical background is required to work with such a
formulation, as shown by (Panagiotopoulos 1975; Panagiotopoulos 1977; Kikuchi
and Song 1980; Compos et al. 1982; Talaslidis and Panagiotopoulos 1982; Martins
and Oden 1983; Pires and Oden 1983; May 1986; Sayegh and Tso 1986; Klarbring
1986a; Klarbring 1986b; Panagiotopoulos and Lazaridis 1987; Klarbring et al. 1988;
Zhong and Sun 1988; Johnson and Quigley 1989; Lee and Kwak 1989; Refaat and
Meguid 1994a; Refaat and Meguid 1994b; Refaat 1995; Refaat and Meguid 1995;
Refaat and Meguid 1996; Refaat and Refaat 1997).

While many prefer to work with a variational inequality, many others prefer to work
straightforwardly with a variational equality as can be seen for example in (Wilson
and Parsons 1970; Chan and Tuba 1971a; Chan and Tuba 1971b; Hughes et al.
1976; Fredriksson 1976a; Fredriksson [976b; Sachdeva et al. 1981; Tseng and Olsen
1981; Arva and Hegemier 1982; Goudreau and Haliquist 1982; Mahmoud et al.
1982; Haber and Abel 1983; Fredriksson 1984; Padovan et al. 1984; Rahman et al.
1984; Bathe and Chaudhary 1985; Hallquist et al. 1985; Rothert et al. 1985;
Chaudhary and Bathe 1986; Chen and Pwu 1986; Nour-Omid and Wriggers 1986;
Tzou and Schiff 1987; Heyliger and Reddy 1987a; Heyliger and Reddy 1987b;
Doudoumis and Mitsopoulou 1988; Noor and Kim 1989; Lec 1989a; Lee 1989b).
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For engineering researchers, it is perhaps more straightforward to consider the

following variation equality formulation.

In applying the principle of virtual work, we recognize the fact that contact traction

exists only on contacting boundaries, i.e. the boundaries that actually are in contact.
Let the contacting boundary be denoted by I'.. Then, we can write, instead of

equation (3.1.23), the following equation,

[o,0e,dQ- [bi ud- (g, 6udS - [q,6uds = 0 . (3.1.26)
s} Q Ty L

Our problem is now to find the displacement field u and the contact traction q such
that equation (3.1.26) and all the boundary conditions, including contact conditions,
are satisfied. One problem associated with the variation equalities formulation is that
the actual contacting boundary is in general unknown a priori in implicit analysis,
bringing difficulties in carrying out the surface integral on I in equation (3.1.26).
To solve equation (3.1.26), an incremental trial-error procedure with iteration is thus

required.

Dynamic effects have not been included in equation (3.1.26). For dynamic contact
problems, the virtual work done by inertia forces also needs to be considered and the

following equation is obtained in place of equation (3.1.26),
[o,0e,dQ + [pa,ou,d2 - [b: 6u,dQ- [q,6udS - [q,6ud5= 0 . (3.127)
I 0 Q Ty L.

3.2 THE FINITE ELEMENT METHOD OF CONTACT ANALYSIS

This section reviews the basic steps and ingredients in the solution of equation
(3.1.27) using finite element analysis. To carry out the integrations in equation
(3.1.27), the domain € is divided into subdomains, called finite elements, for

example as shown in Figure 3.1.1(b). Integrations in equation (3.1.27) are carried
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out on element level and assembled to obtain an equation system for the whole
domain. If contact does not occur, i.e. q, = 0, the finite element discretization of

equation (3.1.27) leads to,

[MJ{A} + [KHU} = {F}, | (3.2.1)

where [M] is the mass matrix, [K] is the stiffness, {U} is the displacement vector,
{A} is the acceleration vector, and {F} is the external load vector as in the standard

finite element procedure.

If contact does occur, g, will be non-zero and will contribute to equation (3.2.1). In
the finite element method, g, can be obtained from its nodal values, denoted by 4"

at node m, at discrete finite element nodes by interpolations. Then g," can be taken
as the primary unknowns to be solved for. Denoting the contribution of contact

forces to the load vector by {F. }, we can write,

[MI{A} + [K{U} = {F} +{F.} . (3.2.2a)

In equation (3.2.2a), {F. } is unknown and is to be calculated under the constraint
given in equation (3.2.2b). With the finite element discretization, the kinematic

constraint on contacting nodes can be put into the form,

[QIU} + {G} 0 . (3.2.2b}
where {G} is calculated from initial gaps of contacting nodes and [Q] is a coefficient

matrix resulting from the finite element discretization.

In order to solve equation (3.2.2), we must first determine the total number of
contacting nodes, which are unknown until the solution is found. Thus, trial
contacting nodes need to be used and iterations need to be carried out to find the true
contacting nodes. At the same time, the contact condition must be enforced to solve
the unknown contact force, which necessitates a constraint method. If frictionat

effects are to be considered, a friction law governing the tangential contact force is
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required. Furthermore, we have both displacements and accelerations as unknowns
in equation (3.2.2). Therefore, a time integration method is also required for the

solution.

The above discussion on the finite element solution procedure for contact problems
is neither general nor complete, rather, it can help to show some of the ingredients in
solving contact problems with the finite element method. These basic ingredients

may be classified as follows.

e Variational formulation, which provides a basis for the finite element
discretisation,

¢ Element formulation, which calculates the element contribution to the coefficient
matrix and the load vector in equation (3.1.2).

» Material modelling, which determines the stress-strain relationships and plays an
important role in the element formulation.

¢ [Friction law, which governs the frictional forces if frictional effects are to be
included.

» Contact constraint method, which provides a means of calculating the unknown
contact forces under contact constraints.

e Contact searching algorithm, which searches potential contacting nodes and
determines the locations of contacting nodes accurately and efficiently.

e Time integration method, which integrates in the time domain.

o Linearisation and iterative procedure, which transforms a geometrical non-linear
problem into a series of geometrical linear problems. In general contact
problems with geometrical non-linearities, a linearisation procedure will be

required to treat the geometrical non-linearity.

With the use of advanced finite element techniques, no restriction is in principle
necessary on the geometry, material properties, and deformation patterns of
contacting bodies. The versatility of the finite element method makes it possible to
attack extremely complicated problems. Over the last few decades, great efforts have
been devoted to the finite element study of contact problems. Remarkable progress

has been made in both theoretical studies and engineering applications.
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3.3 GEAR BODY ROTATION COMPATIBILITY

Evaluating load share between meshing teeth gears is a complex process when more
than one-tooth pair are simultaneously in contact and an iterative numerical solution
must be used. This section presents a general approach to calculate how load is
shared between meshing teeth in spur gear pairs, taking into account the composite

tooth deflection due to bending, shearing and contact deformation.

When the gears are put into mesh as shown in Figure 3.3.1, the line tangent to both
base circles is defined as the line of action for involute gears. In one complete tooth
mesh cycle, the contact starts at point A, as shown in Figure 3.3.1(a), where the
outside diameter circle, the addendum circle, of the gear intersects the line of action.
The mesh cycle ends at point E, as shown in Figure 3.3.1(e), where the outside
diameter of the pinion intersects the line of action. Consider the two identical spur
gears in mesh, as shown in Figure 3.3.1. When the first tooth pair contacts at point
A, between the tooth tip of the output gear and the root of the input gear (pinion), a
second tooth pair is already in contact at point D. As the gear rotates, the point of
contact will move along the line of action APE. When the first tooth pair reaches
point B, as shown in Figure 3.3.1(b), the second tooth pair disengages at point E
leaving only the first tooth pair in the single contact zone. When this first tooth pair
rotates to point D, as shown in Figure 3.3.1(d), the next tooth pair begins
engagement at point A which starts another mesh cycle. Finally, one complete tooth
meshing cycle is completed when this first tooth pair rotates to peoint E, as shown in

Figure 3.3.1{e).

In order to simplify the complexity of the problem, the load sharing compatibility
condition is based on the assumption that the sum of the torque contributions of each

meshing tooth pair must equal the total applied torque.
In considering the single pair contact zone between points B to D, as shown in

Figure 3.3.1(b} to Figure 3.3.1(d), for example at contact point B of Figure 3.3.2, the

torque vectors are defined by the following cross product,
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start meshing cycle, A completed ane meshing cycle, E

single pair contact zone B-D
(a) double gair contact zone A-B and D-E (e)

Figure 3.3.1. Illustration of one complete tooth meshing cycle.

Figure 3.3.2. [llustration of the single pair contact zone at point B.
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for the pinion,

T, = RIxF’ | (3.3.1)
and for the gear,
) = R}xF’ (33.2)

where T: and T; , are the torque vectors of the single pair contact zone at point B
of the pinion and gear respectively. The transverse plane contact radius vectors on

the pinion and gear tooth at point B are given by R} and R?, and the applied force

vectors of the pinion and gear are given by FpB and Ff , at the contact points B of the

pinion and gear respectively.
Next, considering the double pair contact zone of the two contact pairs at A and D as
shown in Figure 3.3.3, where the sum of the torque contributions of each meshing

tooth pair A and D must equal the total applied torque, the torques will be given by,

for the pinion,

8 — A D
Tos = TH+T)
— A A D D
= [RAxFA)+[RPxEP) (3.33)
and for the gear,
» — A D
Tors = Tr+T)
_ A A D D
= (RAxF*)+[RPF?), (3.3.4)

where T,", T, T,', T, are the torque vectorial contributions to the total applied

torque of tooth pairs at A and D of the pinion and gear respectively and T,7, and

T&'E are the total applied torque vectors of the pinion and gear respectively. The

transverse plane contact radius vectors on the piniont and gear tooth pair A and D are

givenby R, RE, R;, R, and the load share vectors F;‘, E>, F}, F, are part of

the total applied force vectors F>P and F2P | at the contact points A and D of the

tot,p tot,g ?

pinion and gear respectively.
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Figure 3.3.3. lllustration of the double pair contact zone, points A and D.

Analytical equations can also be developed for the rotation of the gear and pinion
hubs, mcluding the effects of tooth bending deflection and shearing displacement
and contact deformation. In the pinion reference frame, it is assumed that the pinion
hub remains stationary, (infinitely stiff for rotation), while the gear rotates due to an
applied torque. All rotation formulae will therefore relate to the pinion, although this
approach can easily be reversed to consider pinion rotation instead of the gear

rotation.

Considering the single pair contact zone at point B as shown in Figure 3.3.2, the

condition of angular rotation of the gear body will then be given by,

for the pinion,

6, = —"RB P (3.3.5)

and for the gear,

43



oP = i il R (3.3.6)

where Bf and BE are the tooth displacement vectors caused by bending and
shearing for tooth pairs B of the pinion and gear respectively, HE and Hg are the

contact deformation vectors of tooth pairs B of the pinion and gear respectively. 9?
denotes the transverse plane angular rotation of the pinion body caused by bending
deflection, shearing displacement and contact deformation of the tooth pair B while

the gear is stationary. Conversely, for the gear rotation while the pinion is stationary,

G: gives the transverse plane angular rotation of the gear body.

3.4 'FHE COMBINED SINGLE PAIR TORSIONAL MESH STIFFNESS

The combined torsional mesh stiffness is defined as the ratio between the torsional
load and the angular rotation of the gear body. The torsional mesh stiffness varies
throughout the meshing position as it decreases and increases dramatically as the
meshing of the teeth change from the double pair to single pair of teeth in contact
and vice-versa. The development of a torsional mesh stiffness model of gears in

mesh can be used to determine the transmission error throughout the mesh cycle.

Considering the combined torsional mesh stiffness of a single tooth pair contact
zone as shown in Figure 3.3.2, the single tooth torsional mesh stiffness of a single
tooth pair in contact is defined as the ratio between the torsional load (T) and the
elastic angular rotation (8) of the gear body as shown in Figure 3.4.1. In the single

tooth pair contact zone, as the pinion rotates, the single tooth torsional mesh stiffness

of the pinion, K , is decreasing while the single tooth torsional stiffness of the gear,

K., ., is increasing. When the pinion rotates to the pitch point P as shown in Figure

3.3.1(c), the single tooth torsional stiffness of both gears are equal because both of

them are assumed to be identical spur gears with ratio 1:1.

The single tooth torsional mesh stiffness of the pinion is given by,
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K® - LI (3.4.1)

B
KP

- » O, angular rotation
g p of gear body, rad.

Figure 3.4.1. The single tooth torsional mesh stiffness of a single tooth pair in

contact with identical spur gears.

and the single tooth torsional mesh stiffness of the gear is given by,
B — B
K, = —, (3.4.2)

where Kf and KE denote the single tooth torsional mesh stiffness's of the single

tooth pairs at B of the pinion and gear respectively.

The combined single pair torsional mesh stiffness at contact point B of Figure 3.3.2,

K., , is calculated by combining the single tooth torsional mesh stiffness K and

KE , as springs connected in series as shown in Figure 3.4.2, and is given by,
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B B
KK

B B’
KP+K?

K® = (3.4.3)

where the superscript ® denotes the point along the path of contact of the single tooth
pair contact zone. The single tooth torsional mesh stiffness's KE and K: are

obtained by equation (3.4.1) and (3.4.2) respectively.

B B
_ K, xK,
m B B
K, +K,

Figure 3.4.2. 'Two springs connected in series.

3.5 THE COMBINED DOUBLE PAIRTORSIONAL MESH STIFFNESS

For the double tooth pair in contact, the combined double pair torsional mesh

stiffness K*" is calculated by combining the combined single pair torsional mesh

stiffness's K and K as springs connected in parallel, as shown in Figure 3.5.1,

and is given by,

K0 = K!+K” (3.5.1)

m?®

with the combined single pair torsional mesh stiffness's given by,

A A
KA — Kp xKg
" KA+KA s
L |
KPxK?
K, = Nk (3.5.2)
P 4
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where the superscripts ** denote the contact points of each tooth pair along the path
P

of contact of the double tooth pair contact zone respectively.

A A
K! K;
A K;xK;
" K;;'+K;’
K = KA+ KP
K2 xK?
D _ g
'IM Ko =57 xs
P g
D
| K,

Figure 3.5.1. A double spring connected in parallel.

3.6 THE TRANSMISSION ERROR

The term transmission error is used to describe the difference between the
theoretical and actual relative angular rotation between a pinion and a gear. Two
types of transmission error are commonly referred to in the literature (Townsend
1991; Dudley et al. 1995). The first is the manufactured transmission error such as
profile inaccuracies, spacing errors, and gear tooth runout, When gears are unloaded,
a pinion and gear with perfect involute profiles and no spacing or runout errors
should theoretically run with zero transmission error. The second is loaded
transmission error, which is similar in principle to the manufactured transmission
error but takes into account tooth bending deflection, shearing displacement and
contact deformation due to load. When gears with perfect involute profiles are
loaded, the combined torsional mesh stiffness of each gear changes, causing
variations in angular rotation of the gear body. The gear transmission error is related
directly to the deviation of the angular rotation of the two gear bodies and the
relative angular rotation of the two gears is inversely proportional to the combined
torsional mesh stiffness. The combined torsional mesh stiffness varies throughout
the meshing position as it decreases and increases dramatically as the meshing of the

tecth change from the double pair to single pair of teeth in contact and vice-versa.
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The transmission error of gears in mesh at particular positions throughout the mesh
cycle was generated in this research by rotating both solid gears then creating a
finite element model in that particular position. In order to develop representative
results, a large number of finite element models at different meshing positions were
undertaken for this investigation. One of the most important criteria for each model
was that the first potential contact nodes of both surfaces would be created exactly
on the intersection point between the pressure line and the involute curve for that
particular tooth. The additional problem of determining the penalty parameter at
each contact position was overcome, so that it could be user-defined in the finite
element model. At each particular meshing position, the angular rotation of the

pinion due to tooth bending, shearing and contact displacement was calculated in the
gear reference frame by restraining the gear from rotating, 8, =0, with the pinion
having a torque input load. In this case, 8, =0, and 8, is in the opposite direction to
that resulting from forward motion of &,, changing the TE result to positive as seen

by equation (3.6.1),
TE = 6,~-(2),, rad, (3.6.1)

where Z is the gear ratio and 0, is the angular rotation of the input and oﬁtput

g

gears in radians respectively.

In relation to the pinion reference frame, the pinion was restrained from rotating,
&, =0, with the gear having the torque input load and the resulting angular rotation
of the gear was computed. In this second case, 8, =0, and the TE will be positive
for forward motion of 8,. After compensating torque and angular rotation for the

gear ratio, the result from these two models should be the same, and so the mean of
these two angular rotations would give the best estimate of the true static

transmission error of the involute profile gears under load.
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CHAPTER 4

MODELLING WITH CONTACT
ELEMENTS

4.1 OVERVIEW OF CONTACT ANALYSIS

Contact problems are highly nonlinear and require significant computer resources to
solve. Contact nonlinearities occur when two or more components come into or out
of contact with each other or when two components slide relative to each another.

The computational difficulties occur because one or both of the following are
unknown,

o The contacting areas. In general, the exact regions of contact are unknown as
they are dependant on the loads, materials, and the boundary conditions of
the problem being considered. The contact surface can come into and go out
of contact with the other surface in a largely unpredictable and erratic
manner.

e The forces transmitted, both normal and tangential (frictional forces). Most
contact problems need to account for friction. Several friction laws are
available, and all are nonlinear, making the frictional response solution

convergence difficult,
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In addition to these difficulties, the conductance of heat and electrical currents in the

areas of contact must also be addressed in many contact problems.
4.2 CONTACT PROBLEM CLASSIFICATION

There are many types of contact problems that may be encountered, including gear
transmissions, dynamic impacts, metal forming, bolted joints, crash dynamics,
assemblies of components, interference fits, etc. All of these contact problems, as
well as others types of contact analysis, can be split into two general classes
(ANSYS 1997),

o rigid—to—flexible bodies in contact,
and

e flexible-to—flexible bodies in contact.

In rigid—to—flexible contact problems, one or more of the contacting surfaces are
treated as rigid, which has a much higher stiffness relative to the deformable body it
contacts. Many metal forming problems fall into this category.

The other class, flexible—to—flexible, is where both or all contacting bodies are
deformable. Examples of a flexible—to—flexible analysis include gears in mesh,

bolted joints, interference fits, etc.
4.3 CONTACT ELEMENT CAPABILITY
In general, there are three basic types of contact model applications (ANSYS 1995),

» Point-to-point contact, where the exact location of contact should be known
beforehand. These types of contact problems usuvally only allow small
amounts of relative sliding deformation between contact surfaces,

e Point-to-surface contact, where the exact location of the contacting area may

not be known beforehand. These types of contact problems allow large
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amounts of deformation and large relative sliding. Also, the opposing meshes
do not have to have the same discretisation or compatible mesh,

and

e Surface-to-surface contact, typically used to model surface—to—surfcae

contact applications of rigid-to-flexible classification.

To use the contact capability, the possible interaction areas where contact might
occur needs to be identified. This identification is achieved through contact
elements, which can then be used to track the kinetics of the deformation process.
These contact elements are then overlaid on the parts of the model that are being

analyzed for interaction.

4.4 CONTACT ELEMENT KINEMATICS

With the rapid development in the capabilities of digital computers, numerical
methods became the prime interest of many researchers, especially, in engineering
disciplines (See for example: Bathe 1982; Cook et al. 1989; Zienkiewicz and Taylor
1994; Zienkiewicz and Taylor 1994; Cook 1995). The Finite Element Method
(FEM) can now be considered the favourite method to treat frictional contact
problems, because of its proven success in treating a wide range of engineering
problems in areas of solid mechanics, fluid flow, heat transfer, electromagnetic field

and coupled field problems.

The FEM treats contact problems by extending the variational formulation upon
which the FE method is based. The stiffness matrix associated with contact elements
and other element stiffness matrices of the body are formulated and assembled into
the original FE code. The solution is then obtained by solving the resulting set of

nonlinear equations.

Figure 4.4.1 shows a typical example of such contact elements. This particular
element, 2D contact element for point to surface contact problem, is adopted in
several FE packages including ANSYS (ANSYS 1995). It is applicable to 2-D

geometry, plane strain, plain stress, or axisymmetry situations. The area of contact
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between two or more bodies is generally not known in advance. It may be applied to
the contact of solid bodies for static or dynamic analyses, to problems with or
without friction, and to flexible-to-flexible or rigid-to-flexible body contact. In this

case, the element is based on two stiffness values. They are the combined normal
contact stiffness KN, and the combined tangential contact stiffness KT,. The
combined normal contact stiffness KN _ is used to penalise interpenetration between

the two bodies, while the combined tangential contact stiffness KT, is used to

approximate the sudden jump in the tangential force, as represented by Coulomb’s

friction law when sliding is detected between the two contacting nodes.

Contact Surface and Nodes

W
Y (or axial}
/ N J
: N
. 1/ Ly S a K
X (or radial) K 77
7 177
7 /

Target Surface and Nodes

Figure 4.4.1. 2-D Point-to-surface contact elements and nodal contact forces.

In order to satisfy contact compatibility, forces are developed (see Figure 4.4.1,
where, f, yx and f; 5k are the normatl and tangential forces at node [.J,K respectively.)
in a direction n normal to the target plane that will tend to reduce the penetration to

an acceptable numerical level. In addition to compatibility forces, friction forces are
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developed in a direction s tangent to the target plane. Two methods of satisfying
contact compatibility are available: (i) a penalty method, and (ii) a combined penalty
plus Lagrange multiplier method. The penalty method enforces approximate
compatibility by means of a contact stiffness. The combined penalty plus Lagrange
multiplier approach satisfies compatibility to a user-defined precision by the

generation of additional contact forces that are referred to as Lagrange forces.
4.5 ADVANTAGES AND DISADVANTAGES OF CONTACT ELEMENTS

Because of the simplicity of their formulation, ‘the advantages of using contact

elements are,

» They are easy to use,

o They are simple to formulate,
¢ They are easily accommodated into existing FE codes.

However, using contact elements poses some difficulties such as the fact that their
performance, in term of convergence and accuracy, depends on user defined

parameters.
4.6 PENALTY PARAMETERS FOR CONTACT ELEMENTS

In order to handle a contact analysis with the finite element method, a stiffness
relationship between the two contact areas must be established when contact occurs.
This relationship can be established through a spring that is placed between the two
contacting areas when contact occurs. This is essential to prevent the two areas from
passing through each other. This method of enforcing contact compatibility is called
the penalty method. The contact stiffness is the penalty parameter which is an
element real constant of the contact element. There are two kinds of contact
stiffness, the combined normal contact stiffness and the combined tangential or

sticking contact stiffness.
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4,6,1 The Combined Normal Contact stiffness

A major problem in the implementation of contact elements is the assignment of
values to KN_. The amount of penetration, or incompatibility, between the two
surfaces is therefore dependent on the combined normal contact stiffness. Ideally

there should be no penetration, but this implies a KN_ value equal to infinity.

However, the use of an excessively high value of KN_ will also lead to ill-
conditioning of the global stiffness matrix as well as convergence difficulties. 111-
conditioning of the stiffness matrix means that some terms of the matrix are very
large compared to others. When these sets of equations are solved, the numerical
round-off errors that occur can be significant so that sometimes the solution is
grossly incorrect. On the other hand, the use of smaller values of the combined
normal contact stiffness can result in convergence to the wrong solution allowing for
interpenetration and wrong estimates of the stick and slip regions. In practice, a high
enough stiffness is desired so that the contact penetration is acceptably small, but
still low enough so that convergence or ill-conditioned problems do not arise. The
contact stiffness value must be chosen with care in order to minimise both the

penetration and the number of iterations needed.

4.6.2 The Combined Tangential Contact Stiffness

The Coulomb law states that the tangential force f; transmitted between the two

bodies cannot exceed a fraction of the normal force f, as,

IA

| s | -phh o, (4.6.1)

where pl is the coefficient of friction defined as a material property.
Once {5 is exceeded, the two bodies will slide relative to one another. The coefficient
of dynamic friction is usually less than the coefficient of static friction. Two types of

Coulomb friction models are available in ANSYS, (ANSYS 1993), the elastic

coulomb friction model and the rigid coulomb friction model.
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Elastic Coulomb Friction behavior allows both sticking and sliding conditions to
occur. The axis u; in Figure 4.6.1 is the relative sliding displacement. The two
surfaces will deform tangentially if there is a sliding force applied. If the sliding
force is less than pf,, when the force is removed, the two surfaces will return to their
original tangential location. When the sliding force exceeds uf,, the surface will

slide inelastically. The size of the elastic zone depends on the value of the combined

tangential contact stiffness KT, . Similar to the combine normal contact stiffness

KN._, a high value of KT, is desired, but not so high that it conversely affects the

convergence of the problem.

Sliding zone

wl

KT

Sliding zone

_p,ﬁ_‘

\Elastic sticking zone

Figure 4.6.1. Contact zone relationship using elastic Coulomb friction.

Rigid Coulomb Friction behavior allows only sliding friction to occur. The sliding
relationship between force and deflection behavior is as shown in Figure 4.6.2. This
model is only good for analyses where the two surfaces are continuously sliding
relative to one another. It always applies a resisting force against sliding, equal to

pi, and the direction of the force always opposes the motion.
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b,

_pf;1

Figure 4.6.2. Contact zone relationship using rigid Coulomb friction.

4,7 A STRATEGY OF HOW TO DETERMINE THE PENALTY PARAMETER

In order to handle contact problems with the finite element method, the stiffness
relationship between the two contact areas must be established through a contact
element that is placed in between the two contacting areas where contact occurs. The
accuracy of the solution which is obtained, depends on the choice of the contact
stiffness. If the contact stiffness is too small, the surface penetration may be too
large, which may cause unacceptable errors. On the other hand, if the contact
stiffness is too large, the contact stiffness may produce severe numerical problems in
the solution process or simply make a solution impossible to solve because of ill-
conditioning with the stiffness matrix as some terms of the matrix are very large

compared to others.

The underlying premise which has been used in this work is that to determine an
appropriate value of the combined normal contact stiffness, KN, and the combined
sticking or tangential contact stiffness, KT, , the value of contact stiffness should be

computed from the local compliance of the component in contact. The method by

which this can be done depends on the kind of FEA models as given below.

1. For bulky solid models, the contact stiffness accounts for the flexibility
of only the local stiffness of the materials at the point of contact.
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2. For flexible models, such as beams, shells, and gears, the contact
stiffness accounts for the flexibility of the entire component and not just

the local stiffness of the material at the point of contact.

For both cases, the user-defined contact stiffness of the contact element can be seen

as being equivalent to each component stiffness connected in series as given by,

_ (KN, *KN,)
° (KN, +KN,)’

(4.7.1)
Where KN, and KN, are the normal contact stiffness of each component, f is the

correction factor, which accounts for variations in contact problems such as mesh

size, number of real nodes in contact, frictional effects, accuracy of contact nodal
position, etc. In the case of translational stiffness, KN, , are equivalent to translation
load divide by translation deflection in the same load direction. For the case of the
torsional stiffness of gears in mesh, KN, will be equal to the torsional load divided

by the angular deflection. For either case, the load is applied at the potential contact

nodes in a single-iteration (lincar) analysis.

In the case of elastic Coulomb friction, convergence is usually adversely affected if
the sticking zone is too small (see Figure 4.6.1), where KT, is too large, because
some of the points in contact oscillate between sliding and sticking or sliding left

and right. Friction experiments do indicate that a sticking zone is a real behavior, but

there has been no easy way to measure and quantify it. As a rule of thumb, the

combined tangential contact stiffness KT, should usually be 1, 2, or 3 orders of

magnitude less than the combined normal contact stiffness KN, depending on the

type of contact element.
4.8 APPLICATION AND CONVERGENCE STUDY OF TwO CYLINDERS IN CONTACT

The accuracy of contact problems depend on the choice of the penalty parameter

which is not known at the start of any analysis, and which is verifiable only by the
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amount of penetration in the solution. As mentioned above, a high value of the
penalty parameter can lead to ill-conditioning of the global stiffness matrix as well
as convergence difficulties, giving a very slow convergence rate and a large number
of equilibrium iterations or a very small time step to generate a solution in each
substep. Conversely, a low value of the penalty parameter can lead to over-
penetration of the surfaces. In this section, a synthetic verification of how to select
the appropriate value of the penalty parameter is presented using finite element

analysis and a Hertzian comparison of two cylinders in contact.

Most of the previously published work on general contact problems has relied upon
contact elements. However, it appears that the selected value of the combined
normal contact stiffness has not been investigated in great detail. The primary
purpose of this study was to determine an appropriate value for the penalty

parameter.

The analysis was carried out by a model of two identical cylinders using a 2D point-
to-surface contact element between the contact surface. A number of factors have
been investigated in this study. Firstly, the effect of varying the combined normal
contact stiffness on the approach deflection of the cylinders was studied. Secondly,
the effect of other parameters such as using a smaller step size, the combined penalty
plus Lagrange multiplier method, a more refined mesh over the contacting surface,
and an asymmetric contact were also investigated. Finally, the results of the
approach deflection were compared to analytical formulations based upon Hertzian

stress theory (Boresi and Sidebottom 1985; Young 1985).

Hertzian theory for two cylinders in contact provides the equation for the approach

deflection as,

2F (1-v*
Approach deflection = 2hd-v)|2 +In b, +1n D, \ (4.8.1)
nE 3 b b
where,
F, = compressive force per unit length (N/m) ,
Y = Poisson’s Ratio,
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D, = cylindrical diameter 1,2, and

b = half width of the rectangular contact area.

The question, which this work addresses, is how to model the approach deflection of
two general surfaces in contact using finite element analysis. The ultimate aim is to
be able to model two gear teeth in contact under a variety of tooth conditions. To
assist this, an initial investigation was carried out on the contact between two
identical cylinders as shown in Figure 4.8.1(a). A finite element model of the
cylinders was constructed as shown. The cylinder parameters are shown in Table

4.8.1.
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Figure 4.8.1. Finite Element model. (a) two cylinders in contact. (b) a quarter

model.

The cylinders were modelled by the quadratic plane-stress four-noded element
through their thickness. The contact effect was modelled using 2D point-to-surface
general contact elements, which consisted of a contact node and a target surface as
shown in Figure 4.4.1. The contact element can be generated as a symmetric or as an
asymmetric contact element. The symmetric contact element was created by two sets
of contact elements between the contact surfaces as shown in Figure 4.8.2(a). The
asymmetric contact element was created by using only one set of contact elements

between the contact surfaces as shown in Figure 4.8.2(b). The assumption was made
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that there was no friction or motion between the two cylinders when they were in

contact.
Table 4.8.1. Cylinder parameters for the Finite Element Model
* material Aluminium 2024-T3
* Young’s Modulus, E 73E9 N/m’
e Poisson’s Ratio, v 0.33
e Diameter, D;> 0.069 m.
e Length h 0015 m.

Contact and also Target Surface

Target and also Contact Surface
(@)

Contact Surface

Target Surface
(b}

Figure 4.8.2. Finite element model of the contact surfaces (a) symmetric contact.

{(b) asymmetric contact.

In order to develop an accurate model of the cylinders in contact for the convergence
study, an investigation of a large number of modelling variables was undertaken.

Owing to double symmetry, only one quarter of the cylinder was modelled using the
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finite element mesh shown in Figure 4.8.1(b). The major parameters, which were
considered to have an effect on the finite element solution of the approach

deflection, were,

1. the combined normal contact stiftness,
2. the number of substeps,
3. the combined penalty plus Lagrange multiplier method,
4. the mesh size, '
and

5. the asymmetric contact.

Each of these variables was investigated in detail. The result of each of the

convergence variables is presented below.

4.8.1 The Combined Normal Contact Stiffness

The penalty method allows surface penetrations, which can be controlled by
changing the penalty parameter of the combined normal contact stiffness. If the
combined normal contact stiffness is too small then the surface penetration may be
too large, which may cause unacceptable errors. Thus the stiffness must be big
enough to control the surface penetrations below a certain level. On the other hand,
if the penalty parameter is too large, then the combined normal contact stiffness may
produce severe numerical problems in the solution process or simply make a

solution impossible to solve. For most contact analyses of bulky solid models, the

value of the combined normal contact stiffness, KN_, may be estimated (ANSYS

1995) as,
KN, ~ fEh (4.8.2)
Where,
f = A factor that controls contact compatibility. This factor is usually be
between 0.01 and 100,
E = smallest Young’s Modulus of the contacting materials,
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and
h = The characteristic contact length. This value depends on the
particular geometry of the problem, h = “thickness” for plane stress
with thickness.

To see the effect of varying the combined normal contact stiffness, eight models
(KN, = 0.05Eh, 0.1Eh, 0.5Eh, 1.0Eh, 5.0Eh, 10.0Eh, 50.0Eh, and 100Eh) of the
combined normal contact stiffness given by equation (4.8.2) were investigated. The
coefficient f was varied from 0.05 to 100 with the mesh size at the contact surface
being 0.0001 m. In this study, the time-history results were used to define nodal
displacements for the approach deflection and reaction forces as shown in Figure

4.8.3.
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Figure 4.8.3. Effect of the combined normal contact stiffness. ‘

It can be clearly seen that the gradient curve between the compressive force and the
approach deflection starts to converge when KN_ is equal to 0.5Eh. Any further

increase in the value of the combined normal contact stiffness appeared to yield the
same gradient. It was found that the higher values of the combined normal contact
stiffness caused a slower convergence rate with a significant increase in the CPU-

time required to solve the problem. Therefore the optimum convergence due to the

combined normal contact stiffness variation appeared to be KN equal to 0.5Eh.
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4.8.2 The Number of Substeps

The optimal combined normal contact stiffness (KN _ equal to 0.5Eh) was further

modified using smaller substeps by setting the minimum number of substeps equal
to 20 in the FE model of the nonlinear analysis. The comparative results for the
approach deflection is shown in Figure 4.8.4, which shows no significant difference.
It was found however, that increasing the number of substeps from 10 to 20 caused a
significant increase in the CPU-time require for problem solving. The results
indicate that a minimum number of substeps equal to 10 was sufficient enough for

this convergence study.
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Compressive force (N)

Figure 4.8.4. Effect of the number of substeps.

4.8.3 The Combined Penalty Plus Lagrange Multiplier Method

The two basic methods of contact constraint, the penalty and the combined penalty
plus Lagrange multiplier method were compared. The resuits of the approach
deflection are shown in Figure 4.8.5. Once again there was no significant difference
in the results, however, the combined penaity plus Lagrange multiplier method
caused a significant increase in the CPU-time required for problem solving. This
was especially true when the number of new unknowns (user-defined) introduced
into the solution was relatively large. The increase in CPU-time required by the new
contact unknowns depended not only on the number of new unknowns but also on

the node numbering of that part of the body where the unknowns were defined. It
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would appear that the penalty method provides the best method appropriate for the

problem being considered.
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Figure 4.8.5. Effect of the contact constraint method.

4.8.4 The Mesh Size

The finite element model using the optimum contact stiffness was remeshed using a
finer mesh size from 0.0001 m (imesh) to 0.00005 m (fmesh) at the contact surface.
The comparative results of the approach deflection versus the normal contact force
are shown in figure 4.8.6. The results showed that there appeared to be no significant
difference in the deflection, although a finer mesh size was much more time-
consuming for the nonlinear analysis and caused a significant increase in the CPU-
time. The original mesh size of 0.0001m was thus seen to be very appropriate and

was used for the remainder of the investigation.
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Figure 4.8.6. Lffect of the mesh size.

64



4.8.5 The Symmetric/Asymmetric Contact

A comparative study between two sets of contact elements (symmetric contact) and
one set of contact elements (asymmetric contact) was undertaken as shown in Figure
4.8.7 The results indicated that the stiffness for the asymmetric contact was too low
when compared with symmetric contact. The asymmetric contact is usually the most
efficient way to model surface-to-surface contact provided that it is clear which
surfaces are designated to be the contact surface and target surface respectively.
However, it has been found that under some circumstances, asymmetric contact does
not perform satisfactorily, particularly if it is not clear which surface should be the
contact and which should be the target. In these cases symmetric contact is required.
In such cases, each surface can be designated to be a target and a contact surface. It
is then possible to generate two sets of contact elements between the contacting
surfaces. Specific situations that require symmetric contact include, (1} Both
potential contact surfaces are identically symmetric. (2) If the choice between
symmetric and asymmetric contact is not clear, then fully symmetric contact should
be used. (3) The contact problem is one in which a node-to node model is employed,
and (4) Both potential contact surfaces have nearly equal mesh densities and/or

arbitrary shapes.
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Figure 4.8.7. Effect of symmetric and asymmetric contact.
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4.8.6 Comparison between 2-D Plain Strain and 3-D Brick Elements

The convergence study has shown that the approach deflection between the two
cylinders can be accurately modelled using the penalty method with a mesh size of
0.0001m, a normal contact stiffness of KN_ = O.SEh, a minimum of 10 substeps and
using the symmetric contact elements. For comparative purposes, the results of the
approach deflection were further compared using 2-D plain stress elements, 2-D
plain strain elements, and 3-D solid brick elements. The main reason explaining this
further investigation lies in the fact that the Hertz contact theory of the tiny contact
area is a 3 dimensional stress problem and the 2-D plain stress FEA analysis as

outlined above is a 2 dimensional plane stress problem.

The comparison of results from FEA and the Hertzian theory are shown in Figure
4.8.8 and Figure 4.8.9. It can be clearly seen that the results from the approach

deflection analysis using 2-D plane stress is about 10 percent higher when compare

with the Hertzian theory.
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Figure 4.8.8. Comparison of approach deflection between 2D and 3D elements.

The results of the 2-D plane stress element analysis were further compared with 2-D
plane strain elements and 3-D brick elements. As illustrated in Figure 4.8.9, the
results of approach deflection of 2-D plane strain are very close, with less than 3 %

difference from the Hertzian theory. The main reason why 3-D solid brick elements
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were not closer to the Hertzian theory was most likely because this study did not
mesh 3-D brick eight-node elements at the contact area as fine as 2-D plane stress or
plane strain elements. A 3-D brick element analysis using fine elements is very time
consurming and was not warranted given the high level of accuracy obtained using

the 2-D plane strain element.
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Figure 4.8.9. Comparison of approach deflection in percentage.

4.9 VERIFICATION OF A STRATEGY ON HOW TO DETERMINE THE PENALTY

PARAMETER

The purpose of this verification was to confirm that the techniques, which have been
developed for determining the contact stiffness, can be applied to general contact
problems and to assess the accuracy of the results. In order to verify the validity of
the procedure, the frictional contact between two identical cylinders, (Sirichai et al.
1997), as shown in Figure 4.9.1(a), was further analysed. The elastic properties of
the cylinders were given as E=69 GPa., and v= 0.33, with diameter 0.138 m. The
coefficient of friction was taken as n=0.4. The cylinders were modelled using the
quadratic 2D plain strain four-node element with an increased number of elements
at the candidate contact surface to 100 microns mesh size. The contacting area was
modelled using 2D point-to-surface general contact elements with a symmetric
contact. As the two cylinders in contact are bulky solids, the contact elements should
be modelled by using only the local stiffness of the material at the point of contact.

This can be achieved as shown in Figure 4.9.1(b), where only the first two potential
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contact nodes with two elements on each cylinder are considered. By applying a
concentrated compression load, 7, equal to 1x10° N, to both potential contact
nodes in a single-iteration (linear) analysis, where the surrounding nodes are

restrained, the combined normal contact stiffness, KN _ can be computed.

Two
potential
contact
nodes

Restrained

" ll m nodes

/

/

I a— —
& 9
@) (b

Figure 4.9.1. FEM (a) Two quarter cylinders in contact (b} the potential contact

nodes.

From the applied load and the resuiting deflections, equation (4.7.1) can be seen to

give, using 1.0 for f,

f(KN, *KN,)
’ (KN, +KN,)
= —f(F") (4.9.1)
(Y, +Y,) -
1.0{1000000)
(1.60773¢ — 5+1.60773e - 5)

= 3.11 el0 N/m ~ (.5E N/m.

The comparison of the deflection results of the centre of the cylinders for various

values of the normal contact stiffness, with Hertzian theory are shown in Figure
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4.8.3, (Sirichai et al. 1997). It can be clearly seen that the gradient curve between the

compressive force and the approach deflection starts to converge when the value of

the combined normal contact stiffness KN _ is equal to 0.5E. Any further increase in
the value of the combined normal contact stiffness KN, yields the same gradient,

showing that the combined normal contact stiffness KN_ is approximately equal to

0.5E. In addition, with further improvments resulting from using a cylinder body
clement from 2-D plain stress with thickness to be 2-D plain strain, the result of the
approach deflection was less than 3 % different from the Hertzian theory, as shown
in Figure 4.8.9. The technique for finding the normal contact stiffness for bulky

solids as used above, therefore appears to be correct.
4.10 CONCLUSION

This chapter has dealt with an initial investigation of how to verify the value of the
combined normal contact stiffness for surfaces in contact, which can have values of
the combined normal contact stiffness in the range from 0.01Eh to 100Eh. The
results of these investigations give a clear picture of what occurs when using
different values of the combined normal contact stiffness and should be particularly
useful for all kinds of contact elements. The value of the combined normal contact
stiffness which must be defined by the user is generally not known at the start of the
solution process, and in accordance with ANSYS (ANSYS 1995), the solution is
verified by checking that the amount of penetration is not excessive - without any
clear guidelines as to how much is considered excessive. This synthetic verification
method and strategy of how to choose a correct value of the penalty parameter and
the appropriate contact constraint method should be very useful in solving all kinds
of general contact problems. In this chapter, a strategy for choosing an appropriate
value of the combined normal contact stiffness has been presented. The method has
been demonstrated to work well for bulky solids like two cylinders in contact. The
method involves the creation of first potential contact nodes and keypoints. The
keypoints are used for specifying the edge lengths of the elements and mesh sizes at
the candidate contact surfaces. The results for the stiffness of two cylinders in

contact have been shown to agree very closely with Hertzian theory, 3% different
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when 2-D planc strain element were used with a mesh size of 10 um at the contact

point.

70



CHAPTER 5

FINITE ELEMENT ANALYSIS OF GEARS
IN MESH: THE COMBINED TORSIONAL
MESH STIFFNESS

5.1 INTRODUCTION

This chapter presents a finite clement analysis of two spur gears in mesh. The model
- predicts the combined torsional mesh stiffness of the two gears in mesh when one of
the gears is restrained from rotating, with the other gear having a torque input load,
see section 5.1.1. The combined torsional mesh stiffness of two gears in mesh varies
with the meshing position as the tecth rotate within the mesh cycle. In particular, the
combined torsional mesh stiffness decreases and increases dramatically as the
meshing of the teeth change from the double pair of ieeth in contact, to the single
pair of teeth in contact and vice-versa. The accuracy of finite element modelling of
contact problems depends on the choice of the penalty parameter for the contact
element, as seen in Chapter 4. For modelling of gear teeth in mesh, the penalty
parameter also varies as the gear teeth rotate through the cyclic mesh. This chapter
presents a simple strategy of how to determine an appropriate value of the penalty

parameter as the gears rotate through the mesh cycle. The combined torsional mesh
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stiffness is then predicted as a function of the position of the mesh point in the mesh

cycle.

(Gears are one of the most critical components in industrial rotating machinery. In
recent years, many different procedures have been developed to model the behaviour
of gears in mesh. Examples of this can be seen in references (Tordian and Geraldin
1967; Remmers 1978; Drago et al. 1979; Walford and Stone 1980; Hayashi and
Hayashi 1981; Bahgat et al. 1983; Ozguven and Houser 1988; Kahraman and Singh
1991; Kuang and Yang 1992; Liou et al. 1992; Rebbechi et al. 1992; Vinayak and
Houser 1992; Bard et al. 1994; Brousseau et al. 1994; Daniewicz et al. 1994;
Kowalczyk 1994; Munro and Yildirim 1994; Refaat and Meguid 1994; Refaat and
Meguid 1995; Velex et al. 1995; Liou et al. 1996; Litvin et al. 1996; Sirichai et al.
1996; Sweeney and Randall 1996; Velinsky 1996; Sirichai et al. 1997, Gargiulo,
1980 #399; Elkholdy et al. 1998, Tordion, 1967 #410; Gosselin et al. 1998; Nadolski
and Pielorz 1998; Zhang and Fang 1998, Underhill, 1997 #12). One of the many
factors which can be investigated, is the combined torsional mesh stiffness variation

as the gear teeth rotate through the mesh cycle.

In order to model contact problems with the finite element method, the stiffness
relationship between the two contact bodies must be established, otherwise the two
bodies will pass through each other. One of the means of solving this problem is
through the use of a contact element. The convergence and accuracy of contact
problems depends on the choice of the penalty parameter for the contact element,
which must be defined by the user, as demonstrated in Chapter 4. Some of the
previously published work has used analytical techniques such as the variational
inequality approach (see for more in: Panagiotopoulos 1975; Panagiotopoulos 1977,
Kikuchi and Song 1980; Compos et al. 1982; Talaslidis and Panagiotopoulos 1982;
Martins and Oden 1983; Pires and Oden 1983; May 1986; Sayegh and Tso 1986,
Klarbring 1986a; Klarbring 1986b; Klarbring et al. 1988; Zhong and Sun 1988;
Johnson and Quigley 1989; Lee and Kwak 1989; Kowalczyk 1994,
Panagiotopoulos, 1987 #497; Refaat and Meguid 1994; Refaat and Meguid 1994;
Refaat 1995; Refaat and Meguid 1995; Refaat and Meguid 1996; Refaat and Refaat
1997; Underhill et al. 1997), which tend to be complicated and difficult to use. This

chapter presents a simple method for choosing an appropriate value of the penalty
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parameter. The method has been verified using two cylinders in contact and the
result compared with Hertzian theory in Chapter 4. The same strategy is used here to

determine an appropriate value of the penalty parameter of gears in cyclic mesh.
3.1.1 Defining a Torque input Load

Two methods have been developed for applying an input torque load to the gears in

mesh in this thesis.

The first method consists of an indirect approach where the gear is restrained from
rotating by constraining all DOF of the master coupled node of the gear hub. A
torque input load on the pinion hub is then generated by defining DOF angular
constraints for the master coupled node of the pinion hub. This method is used in
chapter 5, and the step-by-step procedure describing how the torque input load is
used for finding the combined torsional mesh stiffness is outlined in section 5.9,

followed by a flow chart shown in Figure 5.9.1.

The second method represents a direct method for developing a torque input load.
The gear is restrained from rotating by constraining all DOF of the master coupled
node of the gear hub, then a torque input load is applied to the pinion hub by
defining a tangential force at the master coupled node of the pinion hub. This
method 1s used in chapter 6 and 7, and the step-by-step procedure describing how
the torque input load is used for finding the static transmission error is outlined in

section 7.6, followed 'by a flow chart shown in Figure 7.6.1.
5.2 ToOOTH PROFILE

The finite element model of spur gears in mesh is based upon test gears which have
been used in an experimental investigation (Sirichai et al. 1996), and the test gear
parameters are shown in Table 5.2.1. The test gears have a ratio of 1:1. The involute
and fillet tooth profile equations used in the finite element model have been
introduced by references (Litvin 1989; Townsend 1991; Kuang and Yang 1992). For
most of the other gears, profile equations can be found in references (Litvin and

Hstao 1993; Litvin and Lu 1993; Zhang et al. 1994; Litvin et al. 1995; Litvin and Lu
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1995; Litvin and Feng 1996, Litvin and Seol 1996; Seol and Litvin 1996; Seol and
Litvin 1996; Litvin and Kim 1997; Donno and Litvin 1998; Feng et al. 1998; Litvin
et al. 1998; Litvin et al. 1998; Litvin et al. 1998). Gear tooth profiles and other gear
tooth calculations can be performed on a personal computer by the use of a small
computer program or by a purchased program developed by a gear consultant or
others. This section show some of the basic equations used for calculating gear tooth
involute profile coordinates and gear tooth fillet coordinates. A customised
AutoLisp, (AUTODESK 1995), AutoCAD programming language was used to
generate the profile of the teeth and the profile was then transferred from AutoCAD,
to finite element code (ANSYS 1995), to generate the finite element model of gears
in mesh. The equations for generating the involute and fillet tooth profile are given
below. The customised AutoLisp program for generating the involute and fillet tooth

profile is given in Appendix A.

Table 5.2.1  Test Gear Parameters

s gear lype standard involute, full-depth teeth
e material aluminum

e modulus of elasticity, E 69 Gpa,

e Poisson’s ratio, v 0.33

e face width 0.015 m.

s module, m 6 mm.

* number of teeth 23

e pressure angle 20 degrees

e theoretical contact ratio 1.59

o theoretical angle of meshing cycle 24.912 degrees
e addendum 1.00m

e dedendum 1.25m

The following algorithm calculates the coordinates of an involute and fillet tooth
profile based on the tooth profile generating method introduce by (Litvin 1989,
Kuang, 1992 #34). The following equations for the generated involute (curve AB)
and fillet (curve BC) tooth profile as shown in Figure 5.2.1 are valid for gears

conjugate to the counterpart basic rack where,
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e m is metric module, mm

o N is number of tecth

o Addendum, a= o m (usually o = 1.0}

¢ Dedendum, b= 3 m (usually p =1.25)

e Tipradius, r; = y m (usually y = 0.25)

e ( 1s pressure angle.

¢ Addendum modification coefficient X = e/m

e e is cutter offset

The parametric representation coordinates of the involute profile (curve AB) is,

i %(6)
6 = , 5.2.1
©) {y(e)} -2

Y
bt

Figure 5.2.1. Coordinate system for generating involute and fillet tooth profiles.

where coordinates of the involute curve are given by equation (5.2.2) and (5.2.3),

x(@) = -I\Tz—m {sin(@) - [[e + zitﬁ] cosd + %sind}} cos( + ¢)} , (5.2.2)
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and

- Nm L 2X iné lsi
y(@) = 5 {COS(B) + HG + 2N)cosd) + N sin ¢} sin(9 + ¢)} . (5.2.3)

The parameter 0, in radians, of the involute curve is limited to the following range,

0 <0<0 : (5.2.4)

min max

where the parameters O, and 9 . of the involute curve are given by equation

n

(5.2.5) and (5.2.6),
o = %[U+(V+X)cot9] , (5.2.5)
and
o1 2 _ r (. 2X _™
0. Nooss J(2+N+2X)’ - (Ncos¢) (1 2 J b= 526)

The parameters U and V of the involute curve are given by,

c
i

_| T _ _r
[4+(a y)tan¢+cos¢} : (5.2.7)

and

A"/ = y-a . (5.2.8)

The parametric representation coordinates of the fillet profile (curve BC) is,

- X(0)
0 = . 529
" {y(e)} :29)

where coordinates of the fillet curve are given by equation {5.2.10) and (5.2.11),

x(0) = m(Pcosd+Qsing), (5.2.10)
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and

y@) = m(-Psin¢+Qcoso). (5.2.11)

The parameter 6 of the fillet curve is limited to the following range,

(5.2.12)

where the parameters 6_. and 0__ of the fillet curve are given by equation (5.2.13)

and (5.2.14),

6, = %[U+(V+X)cot0] . (5.2.13)
and
2U
) = = 5.2.14
max N ( )

The parameters P, Q, and L of the fillet curve are given by,

P - JL{U_N_BJ, (5.2.15)
L 2
Q = ﬁ‘i‘(—\[j—)(—)-f-v-fﬁ"-x, (5216)
L (2U-Ne 2
and
2
L - 1+4(_Vij , (5.2.17)
2U—NO

5.3 FINITE ELEMENT MODEL OF GEARS IN MESH

The involute and fillet tooth profile of the spur gears used in the finite element
model were based on those developed in the AutoLisp file of appendix A, then
transferred to ANSYS to generate the finite element model of the gears in mesh as

shown in Figure 5.3.1.
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Figure 5.3.1. Finite Element Model of the spur gears in mesh.

Most of the previously published finite element work with gear models has involved
only partial teeth models. In an investigation of gear transmission errors using
factors such as variational combined torsional mesh stiffness, the whole body of the
gears in mesh must be modelled. This ensures that the penalty parameter of the
contact element accounts for the flexibility of the entire body of the gear not just the
local stiffness at the contact point and tooth body, (see more detail in: ANSYS 1995;
ANSYS 1997; Sirichai et al. 1997). A finite element model of the spur gears in
mesh, without any tooth damage, is shown in Figure 5.3.1. The gear body was
modelled using quadratic 2D plane strain elements and the contact surface area was
modelied using 2D point-to-surface general contact elements, which included elastic
Coulomb frictional effects. The contact element was generated as a symmetric

contact.

The combined torsional mesh stiffness of gears in mesh at particular positions
throughout the mesh cycle was obtained by rotating both solid gears then creating a

finite element model in that particular position. In order to develop representative
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results, a large number of finite element models at different meshing positions were

undertaken for this investigation.
5.4 THEPENALTY PARAMETER ANALYTICAL MODEL

In order to handle gears in mesh with the finite element method using contact
elements, the stiffness relationship between the two contact areas of the gear teeth

must be established. The stiffness of the contact element is composed of the

combined normal contact stiffness, KN_, and the combined tangential contact

stiffness, KT,. The method of enforcing contact compatibility used in this thesis
was based on the penalty parameter plus Lagrange multiplier method. The accuracy
of the solution obtained depends on the choice of the combined normal contact
stiffness, KN . If the combined normal contact stiffness is too small, the surface
penetration may be too large, which may cause unacceptable errors. On the other
hand, if the combined normal contact stiffness is too large, the combined normal
contact stiffness may produce severe numerical problems in the solution process or

simply make a solution impossible to solve because of ill conditioning.

The combined tangential contact stiffness, KT, , as with the combined normal
contact stiffness, ideally should be high, but not so high that it adversely affects
convergence. As a guideline, the combined tangential contact stiffness should be
between 1 and 3 orders of magnitude less than the combined normal contact
stiffness, (see more detail in: ANSYS 1995). A default value for the elastic Coulomb
friction is KT, equal to KN_/100. However, recent experimental work on gear
tooth friction by Rebbechi (Rebbechi and Crisp 1981; Rebbechi and Crisp 1983;
Rebbechi et al. 1992; Rebbechi et al. 1996), especially the results of the
measurement of gear tooth dynamic friction (Rebbechi et al. 1996), has shown

typical friction coefficient results of 0.06. A value for the elastic Coulomb friction of

KT, equal to 0.067* KN, was thus used in this rescarch.

The main strategy behind the determination of an appropriate value of the combined

normal contact stiffness was that the combined normal contact stiffness should be
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computed from the local compliance of the component. It should account for the
flexibility of the entire gear body and not just the local stiffness of the teeth material

at the point of contact.

5.5 THE COMBINED NORMAL CONTACT STIFFNESS VARIATION

The combined normal contact stiffness of the contact elements for gears in mesh at
particular positions throughout the mesh cycle was generated by rotating both solid
gears then creating a finite element model in each particular position. The gear body
was modelled using quadratic 2D plane strain elements and the contact surface areas
were modelled using 2D point-to-surface general contact elements, including elastic
Coulomb frictional effects. The contact element was generated as a symmetrical
contact. The difficulty of determining the combined normal contact stiffness of the
contact clement at each contact position was then overcome, so that it could be user-
defined in the finite element model for further determination of the combined

torsional mesh stiffness and the transmission error.

~ The technique by which the tooth normal contact stiffness of the contact elements
was obtained involved restraining the first potential contact nodes, one node for each
gear for a single tooth pair in contact and two nodes for each gear for the double
tooth pair in contact. A torsional load was then developed by rotating both gear hubs

in a single-iteration analysis. The tooth normal contact stiffness of the contact

elements of the pinion and gear, KN, and KN, was then computed from the

g 2
applied torque and the corresponding angle of rotation of the pinion and gear hub,

0, and 6, for the pinion and gear respectively.

As the mesh geometry of the gear teeth changes over each mesh cycle, the user-
defined value of the combined normal contact stiffness of the contact element must
also vary within each meshing cycle. The combined normal contact stiffness KN_

must therefore be computed at each meshing position. This can be computed from
the tooth normal contact stiffness for the full completed meshing cycle as shown in

Figure 5.5.1. Having computed the combined normal contact stiffness at each
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meshing position, the combined torsional mesh stiffness of the pinion and gear in

mesh can then be determined as shown in section 5.7.
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Figure 5.5.1. The variation of the combined normal contact stiffness of the contact

element with the undamaged tooth.

5.6 COMPARISON OF THE VARIATION OF COMBINED NORMAL CONTACT

STIFFNESS WITH AND WITHOUT A CRACKED PINION TOOTH

One of the more difficult areas for gear fault detection is the correct diagnosis of
localised tooth damage, where the important distinction between a tooth crack and a
tooth spall must be made. To aid in the development of improved diagnostic
techniques, finite element modelling of gear teeth in mesh with and without local
teeth cracks should ultimately improve the understanding of the influence of
localised teeth cracks on the resulting gearcase vibration. This section presents the
results of FEA modelling of the comparison of the normal contact stiffness with and
without a cracked pinion tooth including the modelling of 2 2, 5, and 10 mm crack at

the root of one of the pinion teeth.
A finite element model of the spur gears in mesh as shown in Figure 5.3.1, with the

pinion have a single cracked tooth with through thickness of depth 2, 5, and 10 mm,

was also developed in the investigation. The crack was assumed to have been
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initiated at the point of the highest fillet stress (see for example: Fredriksson 1984;
Mcfadden 1986; Abersck et al. 1994; Daniewicz et al. 1994; Ding et al. 1995;
Flasker et al. 1995; Andersson 1996; Yang et al. 1996; Blarasin et al. 1997; Brie et
al. 1997, Park et al. 1997; Glodez et al. 1998; Howard et al. 1998; Ramamurti and
Neogy 1998; Sirichai et al. 1998; Sirichai et al. 1998; Tradegard et al. 1998; Xu and
Saigal 1998). A finite element model of a tooth with a through thickness crack of

depth 5 mm in the fillet region is shown in Figure 5.6.1.

Figure 5.6.1. Finite clement mesh of a cracked pinion tooth.

The same procedure, as outlined in section 5.5, was followed for the cracked pinion
model. The computed value of the combined normal contact stiffness of the contact
elements of gears in mesh, with one pinion tooth cracked, at particular positions
throughout the mesh cycle was generated by rotating both solid gears then creating a

finite element model in each particular position.

The procedure as developed in section 5.5 was followed with various tooth crack
sizes, for calculation of the tooth normal contact stiffnesses with tooth damage. The
first potential contact nodes were again created exactly on the intersection point

between the line of action and the involute curve of the contacting teeth of both
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gears. A torsional load was then applied by rotating both gear hubs in a single-
iteration analysis. The tooth normal contact stiffness of the contact elements of both
the pinion and gear was thus computed from the applied torque and the

corresponding angle of rotation of the pinion and gear hub respectively.

Figure 5.6.2 shows the comparison results of the combined normal contact stiffness
of the contact element with/without the cracked pinion tooth with the through
thickness crack depth of 5 mm. The combined normal contact stiffness of the gear
mesh with the damaged tooth gradunally decreases after the damaged pinion tooth
starts to come in contact during the double pair contact zone. The maximum
decrease in stiffness is clearly seen at the end of the single pair contact zone of the
damaged pinion tooth. Finally, during the second half of the double pair contact
zone, the combined normal contact stiffness of the gear mesh with the damage tooth
decreases slightly because most of the contact load is shared with the other

undamaged tooth contact pair. This is discussed in more detail in Chapter 7.
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Figure 5.6.2. The comparison of the combined normal contact stiffness of the

contact element with/without a damaged tooth.
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5.7 THE VARIATION OF COMBINED TORSIONAL MESH STIFFNESS

Having computed the combined normal contact stiffness's of the pinion and gear at
various mesh positions, the combined torsional mesh stiffness of the gears in mesh
was able to be determined. The combined torsional mesh stiffness of the gears in
mesh, K, can be obtained by introducing a prescribed rotation of the coupled nodes
of the input gear hub, while restraining all nodes of the output gear hub. The
computed value of the combined normal contact stiffness, KN _ for the uncracked
model at each particular meshing position was used in the FE model. The result of
the combined torsional mesh stiffness of the input gear at each particular meshing
position was obtained by calculating the gradient of the linear relationship between
torque and angular displacement at each meshing position, as shown in Figure 5.7.1.
In this manner the combined torsional mesh stiffness of the input gear over the entire

meshing cycle was obtained using FEA, giving the result shown in Figure 5.7.2.
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Figure 5.7.1. 'The combined torsional mesh stiffness, K, , at one meshing position.

As expected, the resulting combined torsional mesh stiffness of the input gear varies
dramatically throughout the meshing cycle, and it appears to be periodic with the
tooth position. As the number of teeth in mesh changes from two to one and then

back to two teeth in contact, the combined torsional mesh stiffness decreases and
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increases respectively. At the middle of the double pair of teeth in contact, a small

variation in the combined torsional mesh stiffness also appears.
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Figure 5.7.2. The combined torsional mesh stiffness of the undamaged gears in

mesh over one mesh cycle.

A second model of the combined torsional mesh stiffness of the gears in mesh was
also developed by considering gear rotation instead of the pinion rotation, K,. A

prescribed rotation of the coupled nodes of the output gear hub was introduced,
while restraining all nodes of the input gear hub. The computed value of the
combined normal contact stiffness, KN, at each particular meshing position was
again used in the FE model. The result of the combined torsional mesh stiffness of
the gears at particular meshing positions was obtained by the same process as
outlined above. Figure 5.7.3 shows the comparative results of the combined

torsional mesh stiffness at one meshing position between the two models.

Using the same procedure as for the first model, the combined torsional mesh
stiffness of the gears in mesh over the entire meshing cycle was obtained using FEA.
Figure 5.7.4 shows the comparative results from the two procedures of the combined
torsional mesh stiffness of the gears in mesh. As expected, the resuits of both models
are very similar as the same actual system is being considered in both models. The
slight differences between the model results could reasonably be due to numerical

€rror.
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Figure 5.7.3. Comparison of the combined torsional mesh stiffness, K, ,and K, .
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Figure 5.7.4. Comparison of the combined torsional mesh stiffness of the gears in

mesh from the two models, K, ,and K g
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5.8 COMPARISON OF COMBINED TORSIONAL MESH STIFFNESS WITH/WITHOUT
CRACKED PINION TOOTH

The same procedure as used in section 5.7 was followed for the cracked pinion
model, although the computed value of the combined normal contact stiffness of the
cracked pinion was used in the FE model. The result of the combined torsional mesh
stiffness of the input gear with the cracked pinion tooth of 5 mm for the entire

meshing cycle was obtained, and the comparison results with the undamaged pinion

are shown in Figure 5.8.1.
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Figure 5.8.1. Comparison of the combined torsional mesh stiffness of the pinion

with (C5) / without (CO} damaged tooth.

As clearly seen in Figure 5.8.1, the combined torsional mesh stiffness for the pinion
with the cracked tooth is slightly smaller than the undamaged results. The difference
of the combined torsional mesh stiffness values between the uncracked and cracked

pinton are shown in Figure 5.8.2.
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Figure 5.8.2. The difference of the combined torsional mesh stiffness between the

uncracked and cracked pinion, K .

It can be seen from the comparison that the combined torsional mesh stiffness for
the cracked pinion starts reducing gradually until the end of the single tooth pair in
contact, where its value increases suddenly as another uncracked tooth starts to come
into contact. Before the cracked pinion leaves the mesh, its combined torsional mesh

stiffness starts to decrease because the tooth is being loaded closer to its tip.

5.9 THE PROCEDURE FOR MODELLING THE COMBINED NORMAL CONTACT

STIFFNESS AND THE COMBINED TORSIONAL MESH STIFFNESS

The procedure for modelling the combined normal contact stiffness of the contact
elements and the combined torsional mesh stiffness is outlined by a step-by-step
description followed by a flow chart shown in Figure 5.9.1. The program was
written using the ANSYS Parametric Design Language and the entire program is
provided in appendix B for the undamaged tooth and in appendix C for the damaged
tooth.

The step-by-step procedures for the determination of the combined normal contact

stiffness of the contact elements and the combined torsional mesh stiffness of the

gears in mesh with and without a damaged tooth are described below.
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Define array parameters:
1. Define a basic array parameter and its meshing position dimensions such as

angle of rotation and keypoints, then save it as a parameter file.

Do-loop:

2. Do-loop of meshing position covering a completc mesh cycle. For the
undamaged gear mesh the loop will run from Figure 3.3.1(a) to (d) because the
procedure for the loop in Figure 3.3.1(d) to (e) is just the same as that for (a) to
(b). However, for the damaged gear mesh, the loop procedure must run over the
completed cyclic mesh as shown in Figure 3.3.1(a) to (e) because of the change

in the damaged tooth stiffness.

Resume FE model: (preprécessor)
3. Resumes the model and database, as shown in Figure 5.3.1, at the start of the

mesh cycle, see Figure 3.3.1(a).

Resume array parameters: (preprocessor)
4. Reads array parameters from a parameter file to extend the current parameters in

the database.

Rotate FE model: (preprocessor)

5. Sets the element type, element material, element real constant, and element
coordinate system of the gear body.

6. Activates a global cylindrical coordinate system of the pinion. Selects subset
areas of the pinion only, then rotates the FE model through particular meshing
position in degrees.

7. Activates a local cylindrical coordinate system of the gear. Selects subset arcas
of the gear only, then rotates the FE model through the same angular meshing

position as the pinion.

89



Parameter

Defi 1 >
etine arrai parameters \ﬁle

Do-loop

v

Resume FE model

v

Resume array parameters |

Y

Rotate FE model

Y

Generate contact elements

Y

Define sets of coupled nodes

y

Restrain contact keypoints

v

Rotate both gears hub

v

Compute a normal contact stiffness

Y

Delete DOF at contact keypoints

v

Restrain the gear hub

v

Rotate the pinion hub

Y

Compute combined torsional mesh stiffness

Y

Restrain the pinion hub

v

Rotate the gear hub

y

Compute combined torsional mesh stiffness

Completed cyclic mesh

YES
L 4
End analysis

mlco/cs.db

Database

NO

Figure 5.9.1. Procedure for modelling the combined normal contact stiffness of the

contact element and the combined torsional mesh stiffiiess.
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Generate contact elements: (preprocessor)

8.

10.
11.
12.
13.

14.

15.

Do loop condition of meshing position for the single pair or double pair of teeth
in mesh.

Deletes nodes and area elements associated with the contact teeth of both gears.
Specifies the division and spacing ratio on unmeshed lines of each contact tooth.
Concatenates multiple lines into one line for mapped meshing.

Generates nodes and area elements within the contact tooth area.

Groups potential contact nodes of the contact tooth into components for further
generation of the contact elements.

One of the most important criteria for each meshing position was that the first
potential contact nodes of both contact teeth, in step 10-12, must be created
exactly on the intersection point between the pressure line or line of action and
the involute curve. This strategy will activate contact nodes on the run by
moving nodes to every meshing position.

Sets the element type, element material, element real constant, and element
coordinate system of the contact element. Then generates symmetric contact

elements on potential contact nodes.

Define sets of couple nodes: (preprocessor)

16.

17.

Activates a global cylindrical coordinate system of the pinion. Selects the subset
nodes of the .pinion hub then rotates nodal coordinate systems into the global
cylindrical coordinate system. Defines a set of coupled nodes DOF. Stores
master node number of coupled set of the pinion hub.

Activates a local cylindrical coordinate system of the gear. Selects a subset node
of the gear hub then rotates nodal coordinate systems into the local cylindrical
coordinate system. Defines a set of coupled nodes DOF. Stores master node

number of coupled set of the gear hub.

Restrain contact keypoints: (preprocessor)

18.
19.

Defines gear material properties.

Restrains all DOF at the contact keypoints of the pinion and the gear. The
technique restrains the first potential contact nodes which are generated exactly
at contact keypoints in steps 9-11, one node for each gear for a single tooth pair

in contact and two nodes for each gear for the double tooth pair in contact.

91



Rotate both gear hubs: (preprocessor)
20. Define DOF constraints at master coupled nodes of the pinion and gear hubs.

21. Applies loads to both gear hubs in a single-iteration analysis.

Compute the combined normal contact stiffness: (postprocessor)

22. Specifies the total reaction force at the pinion hub and the gear hub.

23. Computes the combined torsional stiffness, defined as the ratio between the
torsional load and the angular rotation of the gear body, for the pinion model,
Ky, and the gear model, K,.

24. Computes the combined normal contact stiffness of that particular meshing

position and stores it as a user-defined array parameter for further use.

Delete DOF at contact keypoints: (preprocessor)
25. Deletes DOF constraints at contact keypoints
26. Sets element key options.

27. Defines the element real constants with Lagrange multiplier.

Restrain the gear hub: (preprocessor)

28. Restrains all DOF at the master coupled nodes of the gear hub.

Rotate the pinion hub: (preprocessor)

29. Applies the load to the pinion hub by defining DOF constraints to the master
coupled nodes of the pinion hub.

30. Specifies the optimized nonlinear solution and some enhanced internal solution

algorithms, such as number of substeps, etc.

Compute pinion torsional mesh stiffness: (postprocessor)

31. Specifies the nodal rotation and the total reaction force at the pinion hub to be
stored.

32. Computes the angular rotation of the pinion hub and the torsional load of each
substep in the nonlinear solution. Computes the combined torsional mesh
stiffness of the pinion defined as the gradient of relationship between torque and

angle of rotation. Redirects the results to a file in specific directory. The further
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analysis of gradients for the combined torsional mesh stiffness is also to be done

in Microsoft Excel.

Restrain the pinion hub: (preprocessor)

33. Restrains all DOF at master coupled nodes of the pinion hub.

Rotate the gear hub: (preprocessor)

34. Applies the load to the gear hub by the defined DOF constraints to master
coupled nodes of the gear hub.

35. Specifies optimized nonlinear solution and some enhanced internal solution

algorithms, such as number of substeps, etc.

Compute gear torsional mesh stiffness: (postprocessor)

36. Specifies nodal rotation and the total reaction force at the gear hub to be stored.

37. Computes the angular rotation of the gear hub and the torsional load of each
substep using the nonlinear solution. Computes the combined torsional mesh
stiffness of the gear defined as the gradient relationship between torque and
angle of rotation. The result is also redirected to a file in a specific directory.
The further analysis of gradient of the combined torsional mesh stiffness is also

to be done in Microsoft Excel.

Completed cyclic mesh:

38. End a do loop when the cyclic mesh is completed and exit the program.

5.10 CONCLUSION

A strategy for choosihg an appropriate value of the combined normal contact
stiffness of contact elements at particular meshing positions, over the whole mesh
cycle, has been presented. The method has been demonstrated to work well for two
spur gears in mesh. The method involves the creation of potential contact nodes and
keypoints. The keypoints are used for specifying the edge lengths of the elements
and mesh sizes at the candidate contact surface. The first potential contact node was

restrained and the combined normal contact stiffness at each particular meshing
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position over the gear mesh cycle was then computed. The application of the
technique to two gears in mesh appears to have been successful, with the resulting

combined torsional mesh stiffness being periodic over each mesh cycle.

This chapter has also presented a general formulation for the combined torsional
mesh stiffness which takes into account the angular rotation of the gear blank caused
by tooth bending, shearing and contact deformation as calculated by FEA through
the use of contact elements. Geometrical error effects such as profile errors and

runout has not been considered in the calculation.

The combined torsional stiffness of the gears in mesh was obtained by introducing a
prescribed rotation of the coupled nodes of the input gear hub, while restraining all
nodes of the output gear hub. The computed value of the combined normal contact
stiffness of the contact elements with and without a damaged tooth at each particular
meshing position was used in each specific FE model. The result of the combined
torsional stiffness of the gear mesh at particular meshing positions was obtained by
calculating the gradient of the linear relationship between torque and angular
displacement and in this manner the combined torsional stiffness of the gears in
mesh for the entire meshing cycle was obtained. As expected, the resulting
combined torsional mesh stiffness of the gears in mesh varies dramatically
throughout the meshing cycle, and it appears to be periodic with the tooth position.
As the number of teeth in mesh changes from two to one and then back to two teeth
in contact, the combined torsional mesh stiffness decreases and increases. At the
middle of the double pair of teeth in contact, an abrupt change in the combined

torsional stiffness also appears and is the subject of an ongoing investigation.

The presence of a single cracked tooth has decreased the combined normal contact
stiffness of the contact element as well as modifying the overall combined torsional
mesh stiffness. When a single cracked tooth is in mesh it can be clearly seen, with
the largest effect occurring as the single tooth contact changes to the double tooth
contact. In the double pair contact zone, the effect was less because other
undamaged tooth pairs share the torque load. These results provide valuable insight

into the effect a single tooth crack has on torsional mesh stiffness, and should aid in
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the development of gear dynamic models aimed at modelling the resulting gear

vibration where teeth cracks are present.
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CHAPTER 6

FINITE ELEMENT ANALYSIS OF GEARS
IN MESH: THE STATIC TRANSMISSION
ERROR

6.1 INTRODUCTION

The transmission error of gears in mesh is a term used to describe the difference
between the theoretical and actual angular position between a pinion and a gear.
Transmission error is considered to be one of the main important causes of gear
noise and vibration. Numerous works have been published on gear transmission
error measurement (Gregory et al. 1963; Hayashi and Hayashi 1979; Hayashi and
Hayashi 1981; Mcfadden 1986; Vinayak and Houser 1992; Daniewicz et al. 1994,
Munro and Yildirim 1994; Yau et al. 1994; Velex et al. 1995; Munro 1997).
Experimentally, transmission error testing has been accomplished by rolling gears
together with backlash, and at their proper operating center distance. The input and
output angular motion characteristics of the gears are normally measured by
encoders and associated electronics. The data can be presented in graphical analog
form or can be further processed by Fast Fourier Transform (FFT) techniques to aid

in pinpointing the source of excitation. However, the measurement of transmission
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errors from test rigs has traditionally not shown a great amount of detail within each
meshing cycle. The primary purpose of this chapter is to develop the detailed static

loaded transmission error over one completed cycle of mesh.
Two types of transmission error are commonly referred to in the literature.

The first is the manufactured transmission error, which can be obtained for unloaded
gear sets when they rotate in single flank contact. The manufactured transmission
error is affected most by profile inaccuracies, spacing errors, and gear tooth runout.
Gears that have perfect involute profiles and no spacing or runout error should
produce a perfectly straight transmission error trace, which would result in a
spectrum with no peaks at discrete frequencies. It has been shown that there is a
direct relation between the manufactured transmission error and noise, (Welbourn

1972; Welbourn 1979; Smith 1983; Smith 1987; Smith 1987; Baron et al. 1988).

The second is the loaded transmission error, which is similar in principle to the
manufacturing transmission error but takes into account tooth bending deflection,
shearing displacement and contact deformation due to load. When gears operating at
low speed are loaded, two additional factors contribute to the transmission error

(Townsend 1991),

e A constant component due to the mean tooth compliance. This component is
of major significance in choosing appropriate profile modifications, but of
much less significance with regard to its contribution to mesh frequency
noise,

and

e A time-varying component that is a function of gear tooth geometry and

torsional mesh stiffness variation, as well as the manufactured transmission

error. This component contributes heavily to mesh frequency noise.
As gears are run at higher speeds, a dynamic component that is a function of the

system dynamics, (Ozguven and Houser 1988), must be included along with the

low speed effects aforementioned.
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When gears are unloaded, a pinion and gear with involute profiles should
theoretically run with zero transmission error. However, when gears with involute
profiles are loaded, the combined torsional mesh stiffness of each gear changes, as
shown in chapter 5, causing variations in angular rotation of the gear body. The
combined torsional mesh stiffness is defined as the ratio between the torsional load
and the angular rotation of the gear body. At each particular meshing position, the
angular rotation of the pinion due to tooth bending, shearing and contact
displacement is calculated in the gear reference frame by restraining the gear from
rotating, with the pinion having a torque input load. In relation to the pinion
reference frame, the pinion is restrained from rotating, with the gear having the
torque input load and the resulting angular rotation of the gear is computed. The
difference between these two angular rotations is the static transmission error of
gears under load at low speed, which can be expressed in angular units as shown in

equations (3.6.1).

One of the deficiencies in the measurement of the transmission error from test rigs is
that the detailed behaviour of each tooth meshing cycle isn’t present. Secondly the
manufactured transmission error such as spacing errors and runout error is much
greater than the loaded transmission error. Therefore the results of gear transmission
error measurement from the test rig is greatly influenced by the manufacturing
transmission errors (see for example of test rig results: Gregory et al. 1963; Tordian
and Geraldin 1967; Tordion and Gerardin 1967; Hayashi and Hayashi 1981; Houser
and Blankenship 1989; Rebbechi et al. 1992; Vinayak and Houser 1992; Bard et al.
1994; Barnett and Yildrim 1994; Munro and Yildirim 1994; Velex et al. 1995;
Houser et al. 1996; Sweeney and Randall 1996). In this chapter, a detailed
investigation of the variation of the loaded transmission error throughout the mesh
cycle is presented. Many different positions within the meshing cycle have been
investigated and then compared with the effect of a pinion having a single cracked
tooth. For modelling of gear teeth in mesh, the penalty parameter of the combined
normal contact stiffness of the contact element is user-defined and it varies through
the cyclic mesh. The simple strategy of how to overcome this difficulty was also

used.
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6.2 THE STATIC TRANSMISSION ERROR ANALYTICAL MODEL

The development of a static combined torsional mesh stiffness model of gears in
mesh, as developed in chapter 5, can be used to determine the static transmission
error throughout the mesh cycle. Consider the two identical spur gears in mesh as
shown in Figure 3.3.1, part (a) of which is enlarged here as shown in Figure 6.2.1.
Point A along the path of contact indicates the initial tooth contact where the
addendum circle of the output gear intersects the line of action. For involute gears,
the line of action is the common tangent line to the base circle. When the first tooth
pair contacts at point A, between the tooth tip of the output gear and the root of the
pinion, a second tooth pair is already in contact at point D. As the gear rotates, the
point of contact will move along the line of action APE. When the first tooth pair
reaches point B, the second tooth pair disengages at point E leaving only the first
tooth pair in the single contact zone. When this first tooth pair rotates to point D, the
next tooth pair begins engagement at point A and starts another mesh cycle, as

shown in Figure 3.3.1.

Path of contact

)

A T /
\ Pinion /

Figure 6.2.1. Expansion of Figure 3.3.1(a) at the start of the meshing cycle.

Considering the start of the meshing cycle of the two contact pairs at A and D as

shown in Figure 6.2.1, and using the equilibrium constraint that the sum of the
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torque contributions of each meshing tooth pair must equal the total applied torque,

then the torque equation will be given as shown below.

For the pinion, the torque equilibrium equation becomes,

AD . A D
Ty = T0+T),

) 621

and for the gear,

2

AD  _ A D
Tee = T, +T,

RA*EM )+ (RP*FP), (6.2.2)

I

where T, T, T}, T, are the torque vectorial contributions to the total applied

torque of tooth pairs at A and D of the pinion and gear respectively, and T,;>, and

T:;‘,[g) are the total applied torque vectors of the pinion and gear respectively. The
transverse plane contact radius vectors on the pinion and gear tooth pair A and D are
given by Ry, R”, R2, R} and the load sharing vectors F*, F?, F*, F” are part

of the total applied force vectors F&’E , and Ft‘;”[; , at the contact points A and D of
the pinion and gear respectively. The equations relating the load share vectors to the

total applied force vectors F,,> and F,,> are givenby F.,> = F* + F =-F," =-

F; _an . The equations relating the load sharing vectors at each tooth pair in contact
are F' =-F and F =-F. for the contact at points A and D of the pinion and

gear respectively.
The transmission error, TE, of gears in mesh with involute profile under load can be

defined as the difference between the actual position of the output gear and the

theoretical position it should occupy. In angular units, this can be expressed as,
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TE = 9,-(2)8, rad (6.2.3)

where Z represents the gear ratio, 0, , denotes the angular rotation of the input and

output gears in radians. The foregoing developments of equation (6.2.3) are
appropriate for both loaded and unloaded gears, and static or dynamic situations.
When gears are unloaded, transmission error contributions arise from manufacturing
inaccuracies such as profile errors, spacing errors, and runout. When gears are
loaded, the changes in angular rotation due to torsional mesh stiffness variations

must be accounted for in the evaluation of transmission error.

From previous experimental results, the time varying component of transmission
error, which is periodic at the tooth mesh frequency, has been shown to be related to
gear noise amplitude (Smith 1983; Smith 1987). In fact, it has been shown that the
transmission error of spur gears, which have large changes in torsional mesh
stiffness, can be reduced significantly by applying appropriate profile modifications
(Gregory et al. 1963; Welbourn 1979; Baron et al. 1988; Alattass et al. 1994,
Oswald et al. 1994; Litvin et al. 1995; Wang and Tong 1996).

6.3 THE STATIC TRANSMISSION ERROR FINITE ELEMENT MODEL

‘The static transmission error analysis developed here using the finite element model
of spur gears in mesh was based upon the same analytical model of the combined
torsional mesh stiffness, as shown in chapter 5. The steps involved are essentially
the same as for modelling the normal contact stiffness of the contact element and the
combined torsional mesh stiffness, except that a postprocessor solution was required

to calculate the transmission error.

The transmission error of gears in mesh at particular positions throughout the mesh
cycle was generated by rotating both solid gears then creating a finite element model
in that particular position using the appropriate value of the normal contact stiffness
of the contact element. Next, in the postprocessor solution, the static transmission
error of the gears in mesh was obtained from the FEA model by introducing a

prescribed load to the master coupled nodes of the pinion hub, while restraining all
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the nodes of the gear hub. The analysis then computes the angular rotation of the
pinion hub and the reaction gear torque from the reaction forces at the gear contact
teeth. The converse analysis was also done in a second model by introducing a
prescribed load, equal to the reaction gear torque from the previous calculation, to
the master coupled nodes of the gear hub, while restraining all the nodes of the
pinion hub. Finally, the values of the angular rotation of the pinion and gear were
used in equation (6.2.3) to compute the static transmission error at each particular
meshing position. The transmission error given by equation (6.2.3) was obtained by
the summation of the absolute angular rotations of the pinion and gear from the two
models divided by two, to get the true transmission error. In order to develop
representative results, a large number of finite element models at different meshing

positions were undertaken for this investigation.
6.3.1 The Static Transmission Error of Undamaged Gears

The procedure for modelling the static transmission error of gears in mesh is
outlined in the flow chart in Figure 7.6.1. The step-by-step description procedures
arc described in section 7.6 and the program batch file is listed in appendix D for the

uncracked pinion tooth and in appendix E for a cracked pinion tooth.

The stiffness of the contact elements, being user-defined, was composed of the

combined normal contact stiffness, KN_, and the combined tangential contact

stiffness, KT,. A default value for the elastic Coulomb friction KT, = KN_/100

was used in this investigation, as discussed in section 4.6.2.

Having computed the combined normal contact stiffness at each meshing position,
the transmission error of the pinion and the gear in mesh can then be determined. At
each particular meshing position, the angular rotation of the pinion and the gear due
to tooth bending, shearing and contact displacement was calculated in the gear

reference frame and the pinion reference frame in separate models respectively. The
angular rotation of the pinion, 0, and the output torque can be obtained by

introducing a prescribed torque input load at the master coupled nodes of the pinion

hub, while restraining the master coupled nodes of the gear hub. Conversely, in
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rclation to the pinion reference frame, the angular rotation of the gear, 0 g+ can be

obtained by restraining the pinion hub from rotating, with the gear having the torque
input load at the master coupled nodes of the gear hub. Each of these angular
rotations gives the static TE, however in this case, the average of these two angular
rotations was used to give the static transmission error of gears under load. In this
manner the static transmission error of gears in mesh over the entire meshing cycle
was obtained using FEA, giving the result as shown in Figure 6.3.1 using a constant

applied torque load of 76.2 N.m.

—___76.2N.m (C)
45
4
35
T 3
= 2.5 |
e
=2
*
WoLS |
=
0.5 .
0. . , ‘ . :
0 5 10 15 20 25

One tooth mesh cycle (deg)

Figure 6.3.1. The static transmission error of undamaged gears in mesh.

As expected, when perfect involute gears mesh under static load, the transmission
error is caused by the torsional mesh stiffness variations. In one complete cycle of
the undamaged gear mesh, the gear body rotation variations due to tooth bending
deflection, shearing displacement and contact deformation cause the transmission
error of each half of the mesh cycle to reflect at the pitch point. The static
transmission error shown in Figure 6.3.1 shows that the abrupt T.E. changes occur at
the transitional positions between two teeth to one tooth in mesh, and conversely, at
the transitional positions from one tooth to two teeth in mesh. These sudden changes

in the transmission error generate vibration and noise.
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6.3.2 The Static Transmission Error With/Without Cracked Pinion Tooth

A finite element model of the spur gears with the pinion having a single cracked
tooth, was developed for the investigation of the static transmission error. The crack
was assumed to have been initiated at the point of the highest fillet stress with a

through thickness crack of depth 5 mm in the fillet region.

The resulting combined normal contact stiffness, KN_, was shown in chapter 5. The

presence of the pinion tooth crack results in a decrease in the combined normal
contact stiffness. The reduction in the combined normal contact stiffness of the
cracked gear is greatest at the end of the single tooth pair contact zone because the

pinion tooth crack is being loaded closer to its tip.

The preprocessor involved here was essentially the same as for modelling the static
transmission error of the uncracked gear mesh outlined above. Having computed the
combined normal contact stiffness of the damaged gear at each meshing position, the
transinission error of the pinion and gear in mesh can then be determined. At each
particular meshing position, the angular rotation of the pinion due to tooth bending,
shearing and contact displacement is calculated in the gear reference frame by
restraining the gear from rotating, with the pinion having a torque input load. In
relation to the pinion reference frame, the pinion is restrained from rotating, with the
gear having the torque input load and the resulting angular rotation of the gear is
computed. The average between these two angular rotations provides the static
transmission error of the involute profile gears under load with the tooth damage.
The computed value of the combined normal contact stiffness for the cracked model
at each particular meshing position, as shown in chapter 5, was user-defined in the
FE model. In this manner the static transmission error of the gears in mesh over the
entire meshing cycle was obtained, giving the result shown in Figure 6.3.2 using a

constant applied torque of 76.2 N.m.
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Figure 6.3.2. The static transmission error of gears in mesh with a cracked tooth.

The result of the static transmission error of damaged gears in mesh is similar to that
of the undamaged gear shown in Figure 6.3.1. However, the transmission error of
each half of the cyclic mesh is not reflected at the pitch point but now varies
throughout the entire mesh cycle. For the second half of the double pair contact
zone, the transmission error is slightly higher than the first half of the double pair
contact zone. This is because the contact point of the cracked tooth moves closer to
its tip. Again the abrupt transmission error changes take place at the entry and exit of
mesh, and at the transition point between two teeth to one tooth in contact, and vice-
versa. These sudden changes are higher than for the undamaged gear mesh so it

should generate more vibration and noise.

The comparison of results of the static transmission error for the
undamaged/damaged model are shown in Figure 6.3.3. The greatest distinguishing
difference between the two occurs during the single pair contact zone, especially at
the end of the single tooth pair in contact where the cracked tooth is being loaded
closer to its tip. This is in agreement with the comparison of the combined torsional
mesh stiffness with/without the cracked pinion tooth as shown in chapter 5. In the
double tooth pair contact zone, the difference is small during the first half of the
double pair contact zone, when the damaged tooth first appears in mesh, but

increases during the second half of the double pair contact zone.
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Figure 6.3.3. Comparison of the static transmission error of undamaged/damaged

gears in mesh.

6.4 THE EFFECT OF INPUT LOAD ON THE STATIC TRANSMISSION ERROR

Further results of the static transmission error of the gears in mesh, as given by
equation (6.2.3), including different applied torques of 38.1, 76.2, 114.3, and 152.4
N.m, were computed over the full meshing cycle. The step procedures involved were
essentially the same as those in section 6.3.1, except that the solution required the

addition of 3 more do-loops for the variation of the input torque load.

The comparison of results of the effect of the input torque load on the static
transmission error of undamaged gears mesh is shown in Figure 6.4.1. As expected,
the amplitude of the transmission error is directly related to the magnitude of applied
torque, which is similar to other published work on the static and dynamic
transmission erTor measurements (Gregory et al. 1963; Houser and Blankenship
1989; Barnett and Yildrim 1994; Munro and Yildirim 1994; Velex et al. 1995). It
should be noted however, that the resulting transmission error over one tooth mesh
cycle as shown in Figure 6.4.1 is for the case where there are no runout or profile
errors on the teeth. The only variation being included in the model is the change in

the torsional mesh stiffness of the tecth in mesh over the complete tooth mesh cycle.
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Figure 6.4.1. The effect of different applied torques on the transmission error.

6.5 CONCLUSION

This chapter has presented a general finite element formulation of the static
transmission error of gears in mesh. The formulation has taken into account the
angular rotation of the gear blank caused by tooth bending, shearing and contact
deformation and has been calculated by FEA through use of non-linear contact
elements based on a Newton-Raphson algorithm and using the Frontal Solver
method for equation solution. A strategy for choosing an appropriate value of the
combined normal contact stiffness of contact elements at particular meshing
positions, over the whole mesh cycle, has been presented. The method has been
demonstrated to work well for two spur gears in mesh. The method involves the
creation of potential contact nodes and keypoints. The keypoints are used for
specifying the edge lengths of the elements and mesh sizes at the candidate contact
surfaces. The first potential contact node was restrained and the normal contact
stiffness at each particular meshing position over the gear mesh cycle was then
computed. The application of the technique to two gears in mesh appears to have
been successful, with the resulting combined torsional mesh stiffness being periodic
over each mesh cycle. Geometrical error effects such as profile inaccuracies, spacing
and runout errors have not been considered in the calculation. Furthermore, it has
been assumed that the physical contact between teeth occurs along the line of

contact. For localised damage to the tooth profile, the physical contact point between
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teeth in mesh may deviate from the line of action, necessitating a modification to the

FE model presented here.

The resulting static transmission errors are consistent with the results obtained in
other research publications. The slight variations in transmission error can cause
enhanced noise and vibration if the excitation frequency matches a resonance of the

gearbox.

The presence of a single cracked tooth has decreased the combined torsional mesh
stiffness of each gear and the resulting changes to the transmission error when a
single cracked tooth is in mesh can be clearly seen, with the largest effect occurring
as the single tooth contact changes to the double tooth contact. In the double pair
contact zone, the effect was less because other undamaged tooth pairs share the

torque load.

These results provide valuable insight into the effect a single tooth crack has on the
combined torsional mesh stiffness and on transmission error and should aid in the
development of gear dynamic models aimed at modelling the resulting gear

vibration where teeth cracks are present.
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CHAPTER 7

FINITE ELEMENT ANALYSIS OF GEARS
IN MESH: THE LOAD SHARING RATIO
ALONG THE PATH OF CONTACT

7.1 INTRODUCTION

For involute gears under normal operating conditions, the main source of vibration
excitation is from the periodic change in tooth stiffness due to non-uniform load
distributions over the double and single contact zone in each meshing cycle of the
mating teeth. Previous results have indicated that the variation in mesh stiffness can
significantly affect the vibration and dynamic loading (Nakada and Utagawa 1956;
Harris 1958; Utagawa and Harada 1962; Gregory et al. 1963) of gear teeth in mesh.
This chapter reports on the study of the load-sharing ratio of gears in mesh. In the
spur involute teeth gears being studied, the load was transmitted by one and two
pairs of teeth alternately. The torsional stiffness of the two spur gears in mesh varied
within the meshing cycle as the number and position of teeth in mesh changed from
two to ome tooth in contact. In general, the torsional stiffness decreased as the
meshing of the teeth changed from two to one in contact. If the gears were

absolutely rigid, devoid of all inaccuracies and changes in meshing geometry were
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ignored, the tooth load in the zone of the double tooth contact would be half that of
the single tooth contact. However, in reality the teeth become deformed under the
influence of the teeth bending and shear stresses, and the tooth flanks become
flattened at the points of contact as the mesh geometry changes, and these factors
alter the load variation along the path of contact. Furthermore, every gear contains
surface finishing and pitching errors, which alter the load variation yet again. Since
the teeth are comparatively stiff, even small errors have a notable influence. The
effect of the elastic tooth deformation can be shock loading. In order to avoid shock
loading as the gear teeth move into and out of mesh, the tooth flanks are generally
tip relieved. The tip relief is normally designed so that as the tooth passes through

the mesh zone, the load increases uniformly and then reduces back to zero again.
7.2 ANALYTICAL MODEL OF LOAD SHARING RATIO

The development of the static transmission error model of gears in mesh can be used
to determine the load sharing ratio throughout the mesh cycle. Consider the two
identical spur gears in mesh, as shown in Figure 7.2.1(a), where two gears are in
mesh at the start of the double tooth pair contact zone. As shown, two pair of teeth
are in the double contact zone AB and DE, and one pair of teeth are in the single
contact zone BD. The distance AD and BE corresponds to the transverse base pitch
of the gears. Point A indicates the initial contact where the addendum circle of the
output gear intersects the line of action. For involute gears the line of action is in the
common tangent line to the base circles. When the first tooth pair contacts at point
A, between the tooth tip of the output gear and the root of input gear, a second tooth
pair is already in contact at point D. As the gear rotates, the point of contact will
move along the line of action APE. When the first tooth pair reaches point B, the
second tooth pair disengages at point E leaving only the first tooth pair in the single
contact zone. When the first tooth pair rotates to point D the next tooth pair begins

engagement at point A, starting another tooth mesh cycle.

The meaning of load sharing ratio in this chapter is the ratio between the shared
force of one meshing tooth pair and the sum of the force contributions of each
meshing tooth pair. All normal contact forces considered here are in the direction of

the path of contact, as shown in force diagrams of Figure 7.2.1(b).
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Figure 7.2.1. (a) Start of meshing position for the double pair contact zone (b)

forces diagram.

In order to simplify the complexity of the problem, the load sharing compatibility

condition is based on the fact that the sum of the force contributions of each meshing
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tooth pair must equal the total applied force. Considering the two contact pairs at A

and D as shown in Figure 7.2.1(b), the force will then be given by,

for the pinion,

FAP = FA 4+ E° (7.2.1)

tot,np np np ?

and for the gear,

Fome = Fat+Fo, (7.2.2)

where F, F2. F2 FP denote the normal forces as a part of the total normal

np? Tnp? Tag® Tng

applied forces Ft’;’;)p, and F,’;:Eg , at the contact points A and D of the pinion and gear

respectively. While F*, F? F*

D . . . L.
@ Py Fyg» I, as shown in Figure 7.2.1(b) denote the friction

forces at the contact points A and D of the pinion and gear respectively. The normal

force equilibrium condition at each tooth pair in contact gives F:; = Fn’; and FnI; =

F,E, at the contact points A and D of the pinion and gear respectively.

The load sharing ratio between the gear teeth is dependent on the tooth torsional
mesh stiffness at each particular contact position A and D. Furthermore the load
sharing compatibility condition arises from the fact that the pinion and gear body
rotation, caused by the displacement of any tooth under load, is assumed to be the
same for all simultaneously meshing tooth pairs (see section 6.2). This includes the
effects of tooth bending deflection, shearing displacement and contact deformation.
The resultant load sharing ratio for the gear pair at A and the gear pair at D is then

given by,

for the pinion,

A _ ]
L, = == (7.2.3)

AD ?
Ftol,np
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L, = —, (7.2.4)
Ftut,,np
and
FA 3
A D — n 1] —
L, +L, = F—A;?; + FA;’ = 1.0. (7.2.5)
tot,np tat,np
and for the gear, this gives,
FA
L‘:g = —A‘%«w, (7.2.6)
Ftot,,ng
FD
L’ig = %, (7.2.7)
Ftot,,ng
and
FA F?
A D _ ng n =
Lng +Lng = FAD F”"i’ = 1.0, (7.2.8)
tot,ng tot ng

where 12 1P  [A

np? np ? ng ?

Lﬁg are the corresponding load sharing ratios.

7.3 FINITE ELEMENT MODEL OF LOAD SHARING RATIO

The finite element load sharing ratio model of spur gears in mesh is based upon the
same analytical model of the combined torsional mesh stiffness and the static
transmission error, as developed in chapter 5 and chapter 6. The gear arrangement is
stmilar to that which has been used in an experimental investigation with a ratio of
1:1, see appendix I (Sirichai et al. 1996), the major parameters of which are shown
in Table 5.2.1. The procedural steps involved are essentially the same as for the
model of the static transmission error, except that a processor solution is required to
calculate the load sharing ratio. The flow chart outline and step-by-step description
are described in section 7.6. A customised batch file program written in the ANSYS

Parametric Design Language was used to generate the load sharing ratio finite
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element model of the gears in mesh, as detailed in appendix D for the uncracked

gear and appendix E for the cracked gear.

The load sharing ratio of gears in mesh at particular meshing positions throughout
the mesh cycle was generated by rotating both solid gears, then creating a finite

element model in that particular position. In the postprocessor solution, the load

sharing ratio of each contact tooth in mesh, F:;’D , was obtained from the FEA model

by introducing a prescribed torque load to the master coupled nodes of the pinion

hub, while restraining all the nodes of the gear hub. Finally, the computed value of

the load sharing ratio, F,”, at each particular meshing position was used to

compute the full meshing cycle of the load sharing ratio, L, . A large number of

finite element models at different meshing positions, under different constant
applied torques of 38.1, 76.2, 114.3, and 152.4 N.m, were undertaken for this

investigation.
7.4 'FHE LOAD SHARING RATIO OF UNDAMAGED GEARS

The variable torsional mesh stiffness of the mating gears results in a varying load
share cycle on the teeth of the gears. The load share ratio is dependent largely upon
the effective torsional mesh stiffness of the revolving gears and the assumed load
sharing compatibility condition that the pinion and gear body rotation, caused by the
displacement of any tooth under load, must be the same for all simultaneously

meshing tooth pairs.

The load sharing ratio result of the pinion teeth at particular meshing positions under
different constant applied torques of 38.1, 76.2, 114.3, and 152.4 N.m, were
obtained using FEA and computed for the full meshing cycle as shown in Figure
7.4.1.

The variation of load sharing ratio along the path of contact shown in Figure 7.4.1 is
plotted against the travel of the engaged contact point, from right to left through one
completed meshing cycle. The region of unit load sharing ratio implies that a single

tooth pair carries the whole load, in the interval between B through D as expected.
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Figure 7.4.1. Variation of load sharing ratio along the path of contact for the

undamaged pinion tooth.

The above load sharing ratio result is similar to other published work (Chabert et al.
1974; Kuang and Yang 1992), where shared loads between tooth pairs in mesh are
not equally borne while two pairs of teeth are brought into contact, but rather the
loads vary throughout the double pair contact zone. As one tooth pair increases its
load share, the other tooth pair decreases load share linearly and vice-versa, etc.
Furthermore, within the elastic range, the load share ratio has been shown to be
aimost independent of the amount of applied torque. As shown in Figure 7.4.1 the
load sharing ratio result under different constant applied torques of 38.1 to 152.4

N.m, were collinear.
7.5 THE LOAD SHARING RATIO WITH/WITHOUT A CRACKED PINION TOOTH

A finite element model of the spur gears with the pinion having a single through
thickness crack of length 5 mm in the fillet region, was also developed for the
investigation. The crack was assumed to have been initiated at the point of the
highest fillet stress. The same procedure, as outlined in section 7.4, was followed for
the cracked pinion model, although the computed value of the combined normal
contact stiffness of the cracked pinion was used in the FE model. The result of the

load sharing ratio of the cracked pinion tooth for the entire meshing cycle under the
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different applied torques of 38.1, 76.2, 114.3, and 152.4 N.m, were obtained as
shown in Figure 7.5.1. The load sharing ratio result is similar to that shown in Figure
7.4.1 for the uncracked pinion, which varied throughout the double pair contact
zone. Apgain, within the elastic range the results are almost independent of the

amount of applied torque between 38.1 to 152.4 N.m, and were collinear.
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Figure 7.5.1. Variation of load sharing ratio along the path of contact for the

cracked pinion tooth.

The comparison of the load sharing ratio results along the path of contact of the
uncracked/cracked pinion tooth under constant applied torque of 76.2 N.m are
shown in Figure 7.5.2. As expected, the load sharing ratio for the pinion with the
cracked tooth, 76.2 N.m (C5), is smaller than the uncracked tooth, 76.2 N.m (C0). It
can be seen that the load sharing ratio for the cracked pinion starts reducing
gradually from A to B. This is because along the path of contact from A to B of the
double pair contact zone, the front tooth pair in contact is undamaged while the back

tooth pair in contact has the cracked tooth.

These load sharing ratio results are an outcome of the load sharing compatibility
condition which arises from the fact that the gear body rotation, caused by the
effects of tooth bending deflection, shearing displacement and contact deformation
of any tooth under load, must be the same for all simultaneously meshing tooth
pairs, as discussed in section 6.2. Therefore the cracked tooth with the reduced

stiffness must carry less of the load in order to meet load sharing compatibility
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condition. Along the recessing path DE of the double pair contact zone, the front
pair of teeth has the cracked tooth while the back pair has the undamaged teeth. The
load sharing ratio of the cracked tooth is further reduced because the cracked tooth is

being loaded closer to its tip, so the tooth stiffness in further reduced.
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Figure 7.5.2. Comparison of load sharing ratio along the path of contact between

the uncracked/cracked pinion tooth.

7.6 THE PROCEDURE FOR MODELLING THE STATIC TRANSMISSION ERROR AND

THE LOAD-SHARING RATIO

The procedure for modelling the static transmission error and the load sharing ratio
with variable applied torques of 38.1, 76.2, 114.3, and 152.4 N.m, is outlined in the
flow chart below (Figure 7.6.1), followed by a step-by-step description. The
program was written using the ANSYS Parametric Design Language and is listed in
appendix D for the undamaged tooth model and in appendix E for the damaged tooth

model.
The step procedures for modelling the static transmission error and the load-sharing

ratio of gears in mesh with/without tooth damage are also described below. The

steps involved are essentially the same as for modelling the normal contact stiffness
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Figure 7.6.1. Procedure for modelling the static transmission error and the load

sharing ratio.
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of contact elements and the combined torsional mesh stiffness, except that a
postprocessor solution was required to calculate the transmission error and the load
sharing ratio. An additional do-loop was required to allow for a varying input load.
Thus, steps 1-28 are the same as for modelling the normal contact stiffness of the
contact elements and the combined torsional mesh stiffness. Steps 29 to 60 of the

procedure are thus described below.

Rotate the pinion hub: (preprocessor)

29. The procedure of how to compute the transmission error and load sharing ratio
is, firstly, restrain the gear hub from rotating then input a torque load into the
pinion hub.

30. Activate a cylindrical coordinate system of the pinion. Restraint all DOF of the
master coupled node of the gear hub and restrain all DOF in radian-axis of the
master coupled node of the pinion hub. Define initial pre-defined DOF
constraints of the master coupled node of the pinion hub and solve in a single
iteration.

31. Delete initial pre-defined DOF constraints of the master coupled node of the
pinion hub.

32. Apply a load to the pinion hub by specifying tangential forces of the master
coupled node of the pinion hub.

33. Specify optimized nonlinear solution and some enhanced internal solution

algorithms, such as number of substeps, etc.

Compute angular rotation of the pinion and the load sharing ratio:

(postprocessor)

34. Define the last data set to be read from the result file.

35. Sclect a subset of potential contact nodes on the first pinion tooth contact pair.

36. Retrieve sum force values, FXP1 () and FYPI (), of the contact nodal force in
global Cartesian coordinate system and sum moment values, MZP1, due to these
nodal forces.

37. Select a subset of potential contact nodes on the second pinion tooth contact pair.

38. Retrieve sum force values, FXP2( ) and FYP2( ), of the contact nodal force in
the global Cartesian coordinate system and sum moment values, MZP2, due to

these nodal forces.
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39. Select a subset of potential contact nodes on the first gear tooth contact pair.

40. Retrieve sum force values, FXG1( ) and FYG1( ), of the contact nodal force in
global Cartesian coordinate system and sum moment values, MZG1, due to these
nodal forces.

41. Select a subset of potential contact nodes on the second gear tooth contact pair.

42. Retrieve sum force values, FXG2 () and FYG2 (), of the contact nodal force in
the global Cartesian coordinate system and sum moment values, MZG2, due to
these nodal forces.

43. Compute the total pinion torque.

44. Compute the total gear torque.

45. Compute the equivalent tangential force at the gear hub.

46. Retrieve the displacement of the pinion hub then compute the angular rotation of

the pinion hub.

Restrain the pinion hub: (preprocessor)

47. In relation to the pinion reference frame, the angular rotation of the gear hub was
generated by restraining the pinion from rotating, while the gear has an input
load and the resulting angular rotation of the gear was computed.

48. Delete all DOF constraints.

49. Activate a local cylindrical coordinate system of the gear.

50. Restrain all DOF at the master coupled node of the pinion hub.

Rotate the gear hub: (preprocessor)

51. Define initial pre-defined DOF constraints at the master coupled node of the gear
hub and solve in a single iteration.

52. Delete initial pre-defined DOF constraints at the master coupled node of the gear
hub.

53. Define equivalent tangential force at master coupled node of the gear hub.

54. Specify optimized nonlinear solution and some enhanced internal solution

algorithms, such as number of substeps, etc.

Compute angular rotation of the gear and the static transmission error:
{postprocessor)

55. Define the last data set to be read from the result file.
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56. Retrieve a displacement value of the gear hub, UYG.
57. Compute angular rotation of the gear hub, ANGG( ).

58. Compute the transmission error at each particular meshing position, TE( ).

Complete cyclic mesh:
59. End a do-loop when each cyclic mesh is completed and start the variable load

loop.

Complete variable load:

60. End a do-loop when the variable load loop is completed and exit the program.

7.7 CONCLUSION

In spur gears, the load is transmitted by one pair and two pairs of teeth alternately.
Figure 7.7.1 shows the tooth load sharing ratio along the path of contact, MNHIOP.
Two pairs of teeth are in contact in the zones AB and DE and one pair only
throughout the zone BD. If the gears were absolutely rigid and devoid of all
inaccuracies, the tooth load in the zone of the double tooth contact would be exactly
half of that in the single tooth contact zone. This load variation is represented by the

curve AFGHIKLE.

However, in reality the teeth become deformed under the influence of the teeth
bending and shear stresses, and the tooth flanks become flattened at the points of
contact, and these factors alter the load variation along the path of contact, according

to the curve AMNHIOPE.

The effect of the elastic tooth deformation can be shock loading. In order to avoid
shock loading as the gear teeth move into and out of the mesh, the tooth flanks are
normally tip relieved. The tip relief being designed so that as the tooth passes
through the mesh zone, the load increases uniformly and then reduces back to zero

again.
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Figure 7.7.1. Load variation along the path of contact.

The load sharing diagram in Figure 7.7.1 shows that the abrupt load sharing changes
not only take place at the entry and exit points M and P, but also at the points N and
O, where the load share changes between two teeth to one tooth, and conversely,
from one tooth to two teeth. These sudden changes in load share can lead to the
generation of vibration and noise. This phenomena also occurs in the static
transmission error as shown in Figure 6.4.1 where abrupt changes of T.E. have been

shown to take place both when gear teeth move into and out of mesh and also
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between the double pair contact to single pair contact and vice-versa. The tip relief
must be so designed that the load increases as uniformly as possible, and gradually
sinks back to zero again. The desired theoretical load variation is shown in Figure

7.7.1, as the dotted line AHIE.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 GENERAL CONCLUSIONS

The main aims of this thesis have been to use a numerical approach to develop
theoretical models to predict the effect of gear tooth damage on torsional mesh
stiffness, transmitted load sharing ratio, and transmission error. The main focuses of
the study have been on the development of efficient and reliable solution techniques
as well as on the understanding of the penalty parameter of the contact element at
each contact position through the mesh cycle. The numerical approach enabled the
development of a software program based on the ANSYS FEA package to predict
the effect of gear tooth damage on torsional mesh stiffness, transmission error, and
the load sharing ratio of the gear mesh, provided that the tooth damage was outside

of the contact zone.
(i) Penalty Parameter of Contact Element
A new strategy for choosing an appropriate value of the normal contact stiffness of

the contact element has been presented. The results gave a clear picture of what

occurs when using different values of the normal contact stiffness of different
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contact elements which should prove to be particularly useful for all kinds of contact

elements and contact problems.

(i1) Torsional Mesh Stiffness

A strategy for obtaining the torsional mesh stiffness of gears in mesh was developed
by introducing a prescribed rotation of the input gear hub, while restraining the
output gear hub and vice-versa. The resulting combined torsional mesh stiffness of
the gear mesh at particular meshing positions was obtained by calculating the
gradient of the linear relationship between torque and angular displacement. Both
gears were then rotated to a new meshing position and in this manner the torsional
mesh stiffness of the input and the output gear over the entire meshing cycle was
obtained. The resulting combined torsional mesh stiffness of the gears in mesh was
shown to dramatically change throughout the meshing cycle, increasing and
decreasing as the number of teeth in mesh changes from two to one and then back to

two teeth in contact.

(ii1) Transmission Error

This thesis has presented a general formulation for obtaining the transmission error
which takes into account the different angular rotations of the gear blank caused by
tooth bending, shearing and contact deformation as calculated by FEA through the
use of non-linear contact elements. The geometrical effects of runout, profile and
pitch errors have not been included in this analysis. The presence of a single cracked
tooth was shown to have changed the results of the transmission error. When a
single cracked tooth is in mesh its effect can be clearly seen, with the largest effect
occurring as the single tooth contact changes to the double tooth contact. In the
double tooth pair contact, the effect was less because other undamaged tooth pairs
share the torque load. These results provide valuable insight into the effect a single
tooth crack has on the transmission error. The thesis also presented the effect of four
different values of input torque on the spur gear transmission error, the result of
which is in general agreement with measured gear transmission error as published
by many well known research workers (Gregory et al. 1963; Tordian and Geraldin

1967; Tordion and Gerardin 1967; Hayashi and Hayashi 1981; Houser and
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Blankenship 1989; Rebbechi et al. 1992; Vinayak and Houser 1992; Bard et al.
1994; Barnett and Yildrim 1994; Munro and Yildirim 1994; Velex et al. 1995;.
Houser et al. 1996; Sweeney and Randall 1996).

(iv)Load Sharing Ratio

The results of load sharing ratio shows that abrupt changes take place at both the
entry and exit points of the single and double tooth pairs in contact. However the
load sharing ratio within the elastic range has been shown to change an insignificant
amount when the input torque varies. The presence of a single cracked tooth has
changed the results of the load sharing ratio, in much the same way as it changed the

transmission error results.
8.2 THESIS CONTRIBUTION

The main contribution of the thesis work presented here can be summarised as

follows:

e Verification of contact clement stiffness of cylinders in contact, in

comparison with Hertzian theory.

¢ The development of a new numerical method for modelling the whole gear

body rotation in mesh including frictional contact.

e The development of a strategy to determine an appropriate value of the
penalty parameter of the contact elements as the gears rotate through the

mesh cycle.

¢ The development of a finite element method program written in ANSYS
Parametric Design Language for defining the torsional mesh stiffness of the

gear mesh with and without the presence of a cracked tooth.
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o The development of a finite element method program written in ANSYS
Parametric Design Language for modelling the static transmission error of

spur gears in mesh with and without a cracked tooth.

e The development of a finite element method program written in ANSYS
Parametric Design Language for defining the load-sharing ratio of the gear

mesh, with and without a cracked tooth.

8.3 FUTURE WORK

The following areas are noted as being worthy of further research, in the light of this

thesis.

o Further numerical method investigation and study should be conducted on
gears in mesh under dynamic situations with and without cracked teeth,

surface pitting and wear using the finite element method.

» Further numerical method investigation and study should be conducted on
the transmission error for all types of gears in mesh with and without tooth

damage. This could include helical, spiral bevel and other gear tooth forms.

¢ Further numerical method investigation and study should be conducted on a
whole gearbox with all elements in the system including the gear casing with

and without tooth damage.

o Further testing and analysis should be conducted on the effect of gear tooth

profile modifications, with and without artificial tooth cracks.
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APPENDIX A

LISTING OF AN AUTOCAD
PROGRAMMING LANGUAGE FOR
GENERATING INVOLUTE AND FILLET
PROFILES OF THE SPUR GEAR

AutoLisp File

; Firstly load AutoLisp files from Load Application in Tools of Main menu.
; Then type in command (t).
; Press Esc after trochoid curve (fillet curve) touch dedendum circle.
; Convert angle (degrees to radians)
(defun dtr (a)
(* pi (/ 2 180.0))
)

; Convert angle (radians to degrees)
(defun rtd (a)
(* 180 (/ api))
)
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; Start main program
(defunt ()
(expand 10)

; Input parameter

(setq module (getreal "tModule(mm) ? ")

)

radpit (getreal "\tPitch radius(mm) 7 ")

teenum (getint "\tNumber of teeth ? "j

angpre (getreal "tPressure angle(degrees) 7 ")

offset (getreal "Cutter offset for addendum modification is(usually 0) 7 ")
dist1 0.1

angpre (dtr angpre)

modadd {/ offset module);addendum modification factor
alpha 1.25

beta 1.00

gamma 0.25

addum (* alpha module);addendum gear rack

radadd (+ (/ (* teenum module) 2.0) (* {(+ 1 modadd) module));addendum radii
dedum (* beta module);dedendum gear rack

radded (- radpit (* module 1.25));dedendum radii

rc (* module gamma;tip radius

angset 0.0 ;increment angle

angjoi 0.0

angend 0.0

angsta 0.0

keypoint 0.0

angcal 0.0 ;test angle

anginc 0.01

; Generates Pitch, Addendum, and Dedendum circle
(command "circle" (list 0.0 0.0) radadd)
(command "circle" (list 0.0 0.0) radpit)

(command "circle" (list 0.0 0.0) (* radpit (cos angpre)))
(command "circle" (list 0.0 0.0) radded)
: Define centre line
{(command "line" (list 0.0 0.0) (list 0.0 138.0) "")
;:Calculate constant variable U and V

(setqU
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-0

(+
(/ p14.0)
(*
(- alpha gamma)
{/ (sin angpre) {cos angpre))
)
(/ gamma (cos angpre})
)
)
)
(setq V
(- gamma alpha)
) _
;Calculate minimum. involute angle,(angjoi),and maximum. involute angle,(angsta)
(setq angjoi
(*
(/ 2.0 teenum)
(+U
(* (+ V modadd)
(/ (cos angpre) (sin angpre))
)
)
)
)
(setq angsta
(-
(*
(/ 1 (* teenum (cos angpre)))
(sqrt
(-
{expt (+ 2.0 teenum (* 2.0 modadd)) 2.0)
(expt (* teenum (cos angpre)) 2.0)
)
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(*
(+ 1/ (* 2.0 modadd) teenum))
(/ (sin angpre) (cos angpre))

)

{(/ pi (* 2.0 teenum))

)

; Start generates loop of involute curve
(setq angset angsta)
(while (>= angset angjoi)
(setg
angcal angset
xinv
(*
(/ (* teenum module) 2.0)
(-
(sin angcal)
(*
(+
(*
(+ angcal (/ pi (* 2.0 teenum)))
{cos angpre)
)
(*
{/ (* 2.0 modadd) teenum)

(sin angpre)

)
(cos (+ angcal angpre))
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yinv

(*
(/ (* teenum module) 2.0)
(+
(cos angcal)
(*
(+
(*
(+ angcal (/ pi (* 2.0 teenum)))
(cos angpre)
)
(*
(/ (* 2.0 modadd) teenum)
(sin angpre)
)
)
(sin (+ angcal angpre))
)
)
)
ptl
(list xinv yinv)
)
(setq

angcal (- angset anginc)

Xinv
(*
{(/ (* teenum module) 2.0)
(-
(sin angcal)
(*
(+

(*
(+ angcal (/ pi (* 2.0 teenum)))
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(cos angpre)

)
(*
{/ (* 2.0 modadd) teenum)
(sin angpre)
)
)
(cos (+ angcal angpre))
)
)
)
yinv
(*
(/ (* teenum module) 2.0)
(+
(cos angeal)
(*
(+
*
(+ angcal (/ pi (* 2.0 teenum)})
(cos angpre)
)
(*
(/ (* 2.0 modadd) teenum)
(sin angpre)
)
)
(sin (+ angcal angpre))
)
)
)
pt2

(list xinv yinv)

dist2
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(distance ptl pt2)

)
(if (> dist2 distl)
(setq
anginc (* anginc 0.999)
)
(if (< dist2 (* distl 0.999))
(setq
anginc (* anginc 1.001)
)
(progn
(setq
angset
(- angset anginc)
keypoint
{1+ keypoint)
distl
dist2
)
(command "point" ptl)
)
)
)
)

;Calculate minimum trochoid angle,(angjoi),and
;maximum trochoid angle,(angend)
{setq angset angjoi)
(setq angend (/ (* 2.0 U) teenum))
;Start generate loop of trochoid curve
(while (<= angset angend)
(setq
angcal (+ angset anginc)
L
(sgrt
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(+1
(*4.0
(expt (/ (+ V modadd) (- (* 2.0 U) (* teenum angcal})) 2.0}

)
(setq P (+ (/ gamma L) (- U (/ (* teenum angcal) 2.0))))
{setq Q
(+
(*
{/ (* 2.0 gamma) L)
{/ (+ V modadd) (- (* 2.0 U) (* teenum angcal}))

)
v

{/ teenum 2.0)
modadd

)

(setq
xtroch

(* module (+ (* Q (sin angcal)) (* P (cos angcal))))
ytroch

(* module (- (* Q (cos angcal)) (* P (sin angcal))))
pt2

(list xtroch ytroch)

dist2

(distance ptl pt2)

(if (> dist2 dist1)
(setq

anginc (* anginc 0.99)

(if (< dist2 (* dist] 0.65))
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(setq

anginc (* anginc 1.1)

(progn

(setq
angset
(+ angset anginc)
keypoint
{1+ keypoint)
distl
dist2
ptl
pt2

)

(command "point” ptl)

)

(command "")

)
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APPENDIX B

LISTING OF AN ANSYS PARAMETRIC
DESIGN LANGUAGE FOR THE NORMAL
CONTACT STIFFNESS AND TORSIONAL
MESH STIFFNESS OF UNDAMAGED
GEARS IN MESH

/GST,ON ! Turns graphical solution tracking on

! *

*DIM,ROT, ,12,1,1, ! ROT(), TOR(), TA(), and AA() are array
*DIM, TOR, ,12,1,1, parameter for computing the combined
*DIM,TA, ,12,1,1, torsional mesh stiffness,

*DIM,AA, 12,11,

[*

*DIM,KMQG, ,69 I Pinion torsional mesh stiffness, KMG{).
*DIM,KFG, ,69 I Gear torsional mesh stiffness, KFG().

1*

*DIM,FGC, ,69 1 FGC( ) and MGC( ) are array parameter
*DIM,MGC, ,69 of master couple node number of gear
I* and pinion respectively

*DIM,KMG]1, ,69 I KMGI(), KMG2(), KFGI( ), and
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*DIM,KMG2, ,69

*DIM,KFG1, ,69

*DIM,KFG2, ,69

I

*DIM,KN, ,69

1*

*DIM,ANG, ,69
ANG(1)=0.0,1.1575,2.315,3.4725,3.6171875
ANG(6)=3.761875, 3.9065625,3.97890625
ANG(9)=4.015078125,4.033164063,4.05125
ANG(12)=4.1959375,4.340625,4.4853125,4.63
ANG(16)=4.7746875, 4,919375,5.0640625
ANG(19)=5.20875,5.226835937,5.244921875
ANG(22)=5.28109375,5.3534375,5.498125
ANG(25)=5.6428125,5.7875, 6.945,8.1025
ANG(29)=9.26,9.27,9.6595, 10.059,10.858,11.657
ANG(35)=12.456,13.255, 14.054,14.853,15.2525
ANG(40)=15.642, 15.652,16.8095,17.967,19.1245
ANG(45y=19.2691875,19.413875, 19.5585625
ANG(48)=19.63090625,19.66707813,19.63516406
ANG(51)=19.70325, 19.8479375,19.992625
ANG(54)=20.1373125,20.282,20.4266875
ANG(57)=20.571375,20.7160625,20.86075
ANG(60)=20.87883594,20 89692188, 20.93309375
ANG(63)=21.0054375,21.150125,21.2948125
ANG(66)=21.4395,22.597,23.7545,24.912
FNAM=1

PARSAV,ALL,ANGLE C0,,

:DOLOOP

RESUME,ml1c0,db,,

PARRES, ,ANGLE CO0,, ,,

/PREP7

TYPE, I,

MAT,!,

REAL,I1,

ESYS,0,

CSYS,1

PENN=1E-5

ASEL,S,LOC,X,0,.069

AGEN, ALL, ,, , ANG(%FNAM%), , , .1
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KFG2( ) are array parameter of the
keypoints number at the contact point of
the first pair and second pair of pinion
and gear respectively.

I KN() is combined normal contact
stiffness in each meshing position.

! Defines, ANG(), an array parameter and
its dimensions of meshing position.

! Angle array parameter of meshing
position in one complete cyclic mesh is
24912  degrees.

Actually, you can

analyse any meshing position within

cyclic mesh.

! Sets initial meshing position.

! Write all parameter to file

! :DOLOOP of meshing position in a
cyclic. Resumes the model and database
and replace current parameter set with all
scalar and array parameter from file then
enters the model creation preprocessor

! Sets the element type, element material,
real and element

element constant,

coordinate system

! PENN is Lagrange multiplier.
! Select a subset arcas of the pinion only

then rotate FE model through particular



ALLSEL,ALL

CSYS,11,
ASEL,S,L0C,X,0,.069
AGEN, ,ALL, ,, ,-ANG{%FNAM%), , ,,1
ALLSEL,ALL
*[F,FNAM,EQ,1, THEN
*G0,:LOOP1
*ELSEIF,FNAM,EQ,29
*GO,:LOOP3
*ELSEIF,FNAM,GE,30
*G0,:LOOP4
*ELSEIF,FNAM,GE,2
*GO,.LOOP2

*ENDIF

I* Start LOOP1 for initial double pair contact
:LOOP1

CSYS,1

ACLEAR.91

ACLEAR4

ACLEAR,90

ACLEAR,2
NUMSTR,KP,500,
KMGI1{%FNAM%)=500
NUMSTR,LINE,500,
LSBL,367,4, DELETE KEEP
LESIZE,500,0.001, , ,1,
LESIZE,501,0.001,,,1,
LCCAT,500,501

AMESH,91

LSEL.S, , ,500,501,
NSLL,S,1

CM,NMG1,NODE
ALLSEL,ALL
NUMSTR,KP,600,
KFG1(%FNAM%0)=600
NUMSTR,LINE, 600,
LSBL,184,4, DELETE,KEEP
LESIZE,600,0.001, , ,1,
LESIZE,601,0.001, , ,1,
LCCAT,600,601
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meshing position in degrees

| Select a subset areas of the gear only
then rotate FE model through particular

meshing position in degrees

I LOOP1 for initial double pair contact

! LOOP3 for recess double pair contact

! LOOP4 for single pair contact

! LOOP2 for double pair contact zone

! Delete nodes and elements associated
with selected areas of teeth in double pair

contact

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
first pair contact tooth of pinion then
mesh tooth area and groups potential
contact nodes of this tooth into
component for further generate contact

elements.

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
first pair contact tooth of gear then mesh
tooth area and groups potential contact
nodes of this tooth into component for

further generate contact elements



AMESH 4

LSEL,S, , ,600,601,
NSLL,S,1
CM,NFG1,NODE
ALLSEL,ALL
NUMSTR,KP,700,
KMG2(%FNAM%)=700
NUMSTR,LINE,700,
LSBL,1,4, DELETE,KEEP
LESIZE,700,0.001, , ,1,
LESIZE,7¢1,0.001, , .1,
LCCAT,700,701
AMESH,90

LSEL,S, ,,700,701,
NSLL,S,1
CM,NMG2,NODE
ALLSEL,ALL
KFG2(%FNAM%)=148
LESIZE,3,0.001,,,1,
AMESH,2

LSEL,S,, 3,

NSLL,§,1
CM,NFG2,NODE
ALLSEL,ALL
*GO,:MLOOP2

1* Start LOOP2 of double pair contact zone
:LOOP2

C8YS,1

ACLEAR,91
ACLEAR4
ACLEAR,90
ACLEAR,2
NUMSTR,KP,500,
EKMG1(2FNAM®%6)=500
NUMSTR,LINE,500,
LSBL,367,4, DELETE,KEEP
LESIZE,500,0.001, ,,1,
LESIZE,501,0.001,, ,1,
LCCAT,500,501
AMESH,91

164

! One of the most important criteria for
each meshing position was that the first
potential contact nodes of both particular
contact teeth must be created exactly on
the intersection point between the
pressure line and the involute curve.

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
second pair contact tooth of pinion then
mesh tooth area and groups potential
of this tooth

component for further generate contact

contact nodes into

elements.

! Defines contact keypoint number of
second pair of the gear. Specifies the
divisions and spacing ratio on unmeshed
lines of second pair contact tooth of gear
then mesh tooth area and groups potential
contact nodes of this tooth into
component for further generate contact

elements.

! Delete nodes and elements associated
with selected areas of teeth in double pair
contact

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratic on unmeshed lines of
first pair contact tooth of pinion and
concatenates multiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this

tooth into component for further generate



LSEL,S, , ,500,501,
NSLL,S, 1
CM,NMGI,NODE
ALLSEL,ALL
NUMSTR,KP,600,
KFG1{%FNAM%)=600
NUMSTR,LINE,600,
LSBL,184,4, DELETE,KEEP
LESIZE,600,0.001, , ,1,
LESIZE,601,0.001,, .1,
LCCAT,600,601
AMESH 4

LSEL,S, , ,600,601,
NSLL,S, 1
CM,NFGI,NODE
ALLSEL,ALL
NUMSTR,KP,700,
KMG2(%FNAM%)=700
NUMSTR,LINE, 700,
LSBL,1,4, DELETE KEEP
LESIZE,700,0.001, , 1,
LESIZE,701,0.001, , 1,
LCCAT,700,701
AMESH,90

LSEL,S, , ,700,701,
NSLL,S,1
CM,NMG2,NODE
ALLSEL,ALL
NUMSTR,KP, 800,
KFG2(%FNAM%)=800
NUMSTR,LINE,$00,
LSBL,3.4, ,DELETE,KEEP
LESIZE,800,0.001, , ,1,
LESIZE,801,0.001, , .1,
LCCAT,300,801
AMESH,?

LSEL.S, , ,800,801,
NSLL,S,1
CM,NFG2,NODE
ALLSEL,ALL
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contact elements.

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
first pair contact tooth of gear and
concatenates multiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this
tooth into component for further generate

contact elements

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
second pair contact tooth of pinion and
concatenates multiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this
tooth inte component for further generate

contact elements.

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
second pair contact tooth of gear and
concatenates multiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this
tooth into component for further gencrate

contact elements.



*GO,:MLOOP2

I* Start LOOP3 for recess double pair contact

:LOOP3

ALLSEL ALL

CSYS,1

ACLEAR,91
ACLEAR4
ACLEAR,90
ACLEAR,2
KMG1(%FNAM%0)=17
LESIZE,367,0.001,, .1,
AMESH,91

LSEL,S, , ,367,
NSLL,S, 1
CM,NMG1,NODE
ALLSEL.ALL
NUMSTR,KP,600,
KFG1{%FNAM%)}=600
NUMSTR,LINE,600,
LSBL,184,4, DELETE,KEEP
LESIZE,600,0.001, ,,1,
LESIZE,601,0.001,,,1,
LCCAT,600,601
AMESH 4

LSEL,S, , 600,501,
NSLL,S,1
CM,NFG1,NODE
ALLSEL,ALL
NUMSTR,KP,700,
KMGZ2(%FNAM%)=700
NUMSTR,LINE, 700,
LSBL,1,4, DELETE,KEEP
LESIZE,700,0.001, , .1,
LESIZE,701,0.001, , ,1,
LCCAT,700,701
AMESH,%0

LSEL,S, , 700,701,
NSLL,S,1

CM,NMG2 NODE
ALLSEL,ALL
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! Delete nodes and elements associated
with selected areas of teeth in double pair

contact

! Defines contact keypoint number of first
pair of the pinion. Specifies the divisions
and spacing ratic on unmeshed lines of
first pair contact tooth of pinion then
mesh tooth area and groups potential
contact nodes of this tooth into
component for further generate contact
elements. _

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
first pair contact tooth of gear and
concatenates multiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this
tooth into component for further generate

contact elements

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
second pair contact tooth of pinion and
concatenates multiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this
tooth into component for further generate

contact elements.



NUMSTR,KP,300,
KFG2%FNAMY%)=800
NUMSTR,LINE, 800,
LSBL,3,4, DELETE,KEEP
LESIZE,800,0.001, , ,1,
LESIZE,$01,0.001, , ,1,
LCCAT, 800,301
AMESH,2

LSEL,S, , ,800,801,
NSLL,S,1
CM,NFG2,NODE
ALLSEL,ALL
*GO,:MLOOP2

1* Start LOOP4 of single pair contact

:LOOP4

ALLSEL,ALL

CSYS,1

ACLEAR,90
ACLEAR;2
NUMSTR,KP,700,
KMG2(%FNAM%)=700
NUMSTR,LINE,700,

LSBL,1,4, ,DELETE,KEEP

LESIZE,700,0.001, , ,1,
LESIZE,701,0.001, , .1,
LCCAT,700,701
AMESH,90

LSEL,S, , 700,701,
NSLL,S,1
CM,NMG2,NODE
ALLSEL,ALL
NUMSTR,KP,800,
KFG2(%FNAM%)=800
NUMSTR,LINE,300,
LSBL,3,4, ,DELETE,KEEP
LESIZE,800,0.001, , ,1,
LESIZE,801,0.001, , ,1,
LCCAT,800,801
AMESH,2

LSEL,S, , ,800,801,
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! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
second pair contact tooth of gear and
concatenates multiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this
tooth into component for further generate

contact elements.

! Delete nodes and elements associated
with selected areas of teeth in single pair
contact

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines
contact of pinion tooth and concatenates
multiple lines into one line for mapped
meshing then mesh tooth area and groups
potential contact nodes of this tooth into
component for further generate contact

elements.

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines
contact of gear tooth and concatenates
multiple lines into one line for mapped
meshing then mesh tooth area and groups
potential contact nodes of this tooth into
component for further generate contact

elements.



NSLL,S, 1
CM,NFG2,NODE
ALLSEL,ALL

TYPE.2,

MAT,1,

REAL,3,

ESYS,0,
GCGEN,NMG2,NFG2,3, ,TOP,
TYPE,2,

MAT,1,

REAL 4,

ESYS,0,
GCGEN,NFG2,NMG2,3, ,TOP,
*GO,:MLOOPI1

! * Start at MLOOP2 generates contact element for

double pair contact zone.
:MLOOP2

TYPE,2,

MAT.]I,

REAL,I,

ESYS,0,
GCGEN,NMGI1,NFG1.3, ,TOP,
TYPE,2,

MAT,1,

REAL,2,

ESYS,0,
GCGEN,NFG1,NMGL,3, . TOP,
TYPE,2,

MAT,1,

REAL,3,

ESYS,0,
GCGEN,NMG2,NFG2,3, ,TOP,
TYPE,?2,

MAT,],

REAL 4,

ESYS.0,
GCGEN,NFG2,NMG2,3, ,TOP,

! *Start at MLOOP] generates contact element for

single pair contact zone.
‘MLOOPI
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! Sets the contact element type 2, element
material, element real constant set 3, and
element coordinate system then generates
2-D symmetric contact elements on
pinion tooth as contact surface and on
gear tooth as target surface.

! Sets the contact element type 2, element
material, element real constant set 4, and
element coordinate system then generates
2-D symmetric contact elements on gear
tooth as contact surface and on pinion

tooth as target surface.

| Sets the contact element, material, real
constant, and coordinate system then
generates symmetric contact elements on
first pair pinion tooth as contact surface
and on gear tooth as target surface.

! Sets the contact element, material, real
constant, and coordinate system then
generates symmetric contact elements on
first pair gear tooth as contact surface and
on pinion tooth as target surface.

| Sets the contact element, material, real
constant, and coordinate system then
generates symmetric contact elements on
second pair pinion tooth as contact
surface and on gear tooth as target
surface.

! Sets the contact element, material, real
constant, and coordinate systemn then
generates symmetric contact elements on
second pair gear tooth as contact surface

and on pinion tooth as target surface.



CPDELE,ALL,, ANY

CS5YS,1,

NSEL,S,LOC,X,0,.013

NROTAT,ALL ! Generates the coupled subset of nodes at
CP,1,UY ALL pinion hub and gear hub

CP,2,UX,ALL

ALLSEL,ALL

CSYS,11,

NSEL,S,LOC,X,0,.013

NROTAT,ALL

CPLIST,ALL, ,ANY

CP,3,UY ALL

CP,4,UX,ALL

ALLSEL ALL

NSEL,S,CP,.1

CSYS,1

NROTAT,ALL I Get master node number of coupled set
*GET,MGC(%FNAM%),NODE,0,NUM,MIN, of pinion hub.

ALLSEL,ALL

NSEL,S,CP,,3

CSYS,11

NROTAT,ALL ! Get master node number of coupled set
*GET,FGC(%FNAM%),NODE,0,NUM,MIN, of gear hub.

ALLSEL,ALL

CSYS,1 ! Defines pears material property
MP,EX,1,69E9

MP,DENS,1,2770

MP,ALPX,1,2.27E-5

MP,NUXY,1,.33

MP,MU, 1,.06

MP,KXX,1,190

MP,C,1,963

MP,EMIS, 1,1

FINISH

I* Start main loop, MLOOP3, for compute combine

normal contact stiffness.

:MLOOP3

/SOLU

ANTYPE,STATIC NEW ! Restraints all DOF at contact keypoints.
DK, KMG1(%FNAM®%), ,0, ,0,ALL
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DK,KFG1(%FNAM®%), .0, ,0,ALL
DK, KMG2(%FNAM%), .0, ,0,ALL

DK, KFG2(%FNAM%), ,0, ,0,ALL
D,FGC(%FNAM%), 0, , , ,UX
D,FGC(%FNAM%), ,7.3E-5, , , ,UY
D,MGC(%FNAM%), .0, , , ,UX
D,MGC(%FNAM%), , 7.3E-5, , , ,UY
TIME,0

AUTOTS, 1

NSUBST, 1,1,1,0

KBC,0

NEQIT, 1,

SOLVE

FINISH

/POST26

RFORCE,2, MGC(%FNAM%),F,Y,
RFORCE,3,FGC(%FNAM%),F,Y,
PRODA.2,, K1, ,0127*0127/7.3E-5,1,1,
PROD,53,, K2, , ,.0127*0127/7.3E-5,1,1,
PROD,6,4,5, K1*K2, , ,1,1,1,

ADD,74,5, K1+K2,, 1,11,

QUOTZ8,6,7, KN, , 1,1,
*GET,KN(%FNAM%),VARL8,RTIME, 1,
{OUTPUT KN%FNAMY%,txt,,
PRVARA4,58, ,,,

/OUTPUT, TERM

FINISH

1* Start main loop, MLOQOP4, deletes DOF restraints
at contact keypotnt, sets element key options, and

defines the element real constants with Lagrange

multiplier.

:MLOOP4

/PREP7
DKDELE,KMG1(%FNAM®%),ALL
DKDELE,KFG1{*tFNAM?%),ALL
DKDELE,KMG2(%FNAM%),ALL
DKDELE,KFG2{%FNAM%).ALL
KEYOPT.,1,1,0

KEYOPT,1,2,0

KEYOPT,1,3,2
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! Defines DQOF constraints at master

couple nodes of pinion hub and gear hub

! Applying load to both gear hubs in a

single-iteration analysis.

! Specifies the total reaction tangent force

at pinion hub and gear hub

! Computed the input torque at pinion and
gear hub then calculated the combine
normal contact stiffness. The result also
redirects save to a file in specific

directory.

! Deletes DOF restraints at contact

keypoint.

! Sets element key options.



KEYOPT,1,5,0

KEYOPT,1,6,0

KEYOPT,2,1,0

KEYOPT,2,2,1

KEYOPT,2,3,1

KEYOPT2,7,0
R,1,KN(%%FNAM%),0,PENN,0,0,0,
R,2, KN(%FNAM%),0, PENN,0,0,0,
R,3,KN(%FNAM%),0, PENN,0,0,0,
R,4, KN(%FNAM%),0, PENN,0,0,0,
FINISH

*Define the combined torsional mesh stiffness of
the pinion.

:MLOOGP5

/SOLU

ANTYPE,STATIC

NROPT,AUTQ, ,
EQSLV,FRONT,1e-008,0,
TOFFST,0, _
D,FGC(®¢FNAMY%0), ,0,, , ,ALL
OUTRES,BASIC,ALL,

AUTOTS,1

NSUBST,20,100,11,0

KBC,0

SOLVE

FINISH

/POST26

NSOL,2, MGC(%FNAM%0),U.Y,
RFORCE,3,MGC(%FNAM%),F,Y,
QUOTA4,2, , angtwist, , ,1,.0127,
PRQOD,5,3, , torque, , ,.0127,.0151,
PROD,6,5,4, tor*ang, ,,,,,
PROD,7.,4.4, ang**2, ., ,,,
VGET,ROT(1).4,

VGET, TOR(1),5,

VGET,TA(1),6,

VGET,AA(1),7,
*VSCFUN,TORSUM,SUM,TOR(4)
*VSCFUN,ROTSUM,SUM,ROT(4)
*VSCFUN, TASUM,SUM,TA(4)
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! Defines the element real constants with

Lagrange multiplier.

! The combined torsional mesh stiffness
of pinion is defined as the ratio between
the torsional ioad and the angular rotation
of the gear body. At each particular
meshing position, the angular rotation of
the pinion due to tooth bending, shearing
and contact displacement is calculated in
the gear reference frame by restrained the
gear from rotating, with the pinion having
a torque input load.

! Restraints all DOF at master couple
node of the gear hub. Applying load to
pinion hub by defines DOF constraints to
master couple node of the pinion hub.
Then specifies optimized nonlinear
solution and some enhanced internal
solution algorithms, such as number of
substeps, etc.

! Computes the angle of rotation and
torque in each substeps of the gear. Then
compute the combined torsional meshes
stiffness of the gear by defines the
gradient of relationship between torque
and angle of rotation. The result also
redirects save to a file in specific
directory. The further analysis of gradient
of the combined torsional mesh stiffness

is done in Microsoft Excel.



*VSCFUN,AASUM,SUM,AA(4)

KMG(%FNAMY%)=((ROTSUM*TORSUM)/9)-

TASUMY(((ROTSUM**2)/9)-A ASUM)
/OUTPUT,KMG%FNAMY%, txt,,
PRVARA,S, ,,,,

/OUTPUT, TERM

FINISH

*Define the combined torsional mesh stiffness of

the gear

:MLOOP6

/SOLU

ANTYPE,STATIC

NROPT,AUTO, ,
EQSLV,FRONT,1e-008.0,
TOFFST,0,

D,MGC(%FNAM%), ,0, , , ,ALL
D,FGC(%FNAM%), .0, ,, ,UX

D, FGC(%FNAM%), ,7.3E-5, ., ,UY
OUTRES,BASIC,ALL,

AUTOTS,1

NSUBST,20,100,11,0

KBC.0

SOLVE

/POST26
NSOL,2,FGC(%FNAM%),U.,Y,
RFORCE,3,FGC(%FNAM%),F.Y,
QUOT4,2, , ,angtwist, , ,1,.0127,
PROD,S.3, , torque, , ,.0127,.015,1,
PROD,6,54, tor*ang, ,,,,,
PROD,74.4, ang**2, ., ,,,
VGET,ROT(1).4,

VGET,TOR(1),3,

VGET,TA(1),6,

VGET,AA(1),7,

*VSCFUN, TORSUM,SUM,TOR(4)
*VSCFUN,ROTSUM,SUM,ROT(4)
*VSCFUN, TASUM,SUM, TA(4)
*VSCFUN,AASUM,SUM,AA(4)

KFG(%FNAMS)=((ROTSUM*TORSUM)/9}-

TASUMY/({((ROTSUM**2)/9)-AASUM)

! In relation to the pinion reference frame,
the combined torsional mesh stiffness of
gear is generated by restrained the pinion
from rotating, while the gear having the
input load and the resulting angular
rotation of the gear and torque is

computed.

I Restraints all DOF at master couple
node of the pinion hub. Applying load to
gear hub by defines DOF constraints to
master couple node of the gear hub. Then
specifies optimized nonlinear solution
and some enhanced internal solution
algorithms, such as number of substeps,

etc.

! Computes the angle of rotation and
torque in each substeps of the gear. Then
compute the combined torsional meshes
stiffness of the gear by defines the
gradient of relationship between torque
and angle of rotation. The result also
redirects save to a file in specific
directory. The further analysis of gradient
of the combined torsional mesh stiffness

is done in Microsoft Excel.



/OUTPUT, KFG%FNAM%,txt,,
PRVARA,S,,,,,

/OUTPUT, TERM

FINISH

FNAM=FNAM+1
*IF,FNAM,EQ,41,:ENDLOOP
PARSAV,ALL,ANGLE C0,,
*GO,:DOLOOP

:ENDLOOP

FINISH

!* End of program
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! Write all parameter to file.
! Go back to: DOLOOP line action.

! End a do-loop when completed a cyclic

mesh,



APPENDIX C

LISTING OF AN ANSYS PARAMETRIC
DESIGN LANGUAGE PROGRAM FOR THE
NORMAL CONTACT STIFFNESS AND
TORSIONAL MESH STIFFNESS OF

DAMAGED GEARS IN MESH

/GST,ON ! Turns graphical solution tracking on

!*

*DIM,ROT, ,12,1,1, ! ROTQ,TOR(), TA(), and AA() are array
*DIM, TOR, ,12,1,1, parameter for computing the combined
*DIM,TA, ,12,1.1, torsional mesh stiffness.

“DIM,AA, ,12,1,1,

I %

*DIM,KMG, ,69 ! Pinion torsional mesh stiffness, KMG().
*DIM,KFG, ,69 ! Gear torsional mesh stiffness, KFG().

! *

*DIM,FGC, ,69 1 FGC( ) and MGC( } are array parameter
*DIM,MGC, ,69 of master couple node number of gear and

1* pinion respectively

*DIM,KMG1, 69 1 KMG1(), KMG2(), KFG1( ), and KFG2(

174



*DIM,KMG2, ,69

*DIM,KFG1, ,69

*DIM,KFG2, ,69

! o

*DIM,KN, ,69

! *

*DIM,ANG, ,69
ANG(1)=0.0,1.1575,2.315,3.4725,3.6171875
ANG(6)=3.761875, 3.9065625,3.97890625
ANG(9)=4.015078125,4.033164063,4.05125

ANG(12)=4.1959375,4.340625,4.4853125 4.63

ANG{16)=4.7746875, 4.919375,5.0640625

ANG(19)=5.20875,5226835937,5.244921875

ANG{(22)=5.28109375,5.3534375,5.498125
ANG(25)=5.6428125,5.7875, 6.945,8,1025

ANG(29)=9.26,9.27,9.6595, 10.059,10.858,11.657
ANG(35)=12.456,13.255, 14.054,14.853,15.2525
ANG(40)=15.642, 15.652,16.8095,17.967,19.1245

ANG(45)=19.2691875,19.413875, 19.5585625

ANG(48)=19.63090625,19.66707813,19.68516406

ANG(51)=19.70325, 19.8479375,19.992625
ANG(54)=20.1373125,20.282,20.4266875
ANG(57)=20.571375,20.7160625,20.86075

ANG(60)=20.87883594,20.89692188, 20.93309375

ANG(63)=21.0054375,21.150125,21.2948125

ANG(66)=21.4395,22.597,23.7545,24.912
FNAM=1

PARSAV,ALL,ANGLE C5,,

:‘DOLOOP

RESUME,m!¢5,db,,

PARRES, ,ANGLE C5,, ,,

/PREP7

TYPE,I,

MAT, 1,

REAL,1,

ESYS.0,

CSYS,1

PENN=1E-5

ASEL,S,LOC,X.0,.069

AGEN, ALL, , , ANG(%FNAM%), , . ,1
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) are array parameter of the keypoints
number at the contact point of the first pair
and second pair of pinion and gear
respectively.
! KN() is combined normal contact
stiffness in each meshing position.

! Defines, ANG(), an array parameter and
its dimensions of meshing position.

! Angle array parameter of meshing
position in one complete cyclic mesh is
24912 degrees. Actually, you can
analyses any meshing position within

cyclic mesh.

I Sets initial meshing position.

! Write all parameter to file

I :DOLOOP of meshing position in a
cyclic. Resumes the model and database
and replace current parameter set with all
scalar and array parameter from file then
enters the model creation preprocessor.

! Sets the element type, element material,
constant, and element

element real

coordinate system

I PENN is Lagrange multipliers.
I Select a subset areas of the pinion only

then rotate FE model through particular



ALLSEL,ALL
CSYS,11,
ASEL,S,LOC,X,0,.069
AGEN, ,ALL, ,, ,-ANG(%FNAMY), , , .1
ALLSEL,ALL
*[F,FNAM,EQ,1, THEN
*GO,:.LOCP1
*ELSEIF,FNAM,EQ41
*GO,:LOCP5
*ELSEIF,FNAM.EQ,69
*GO,:LOOP7
*ELSEIF,FNAM,EQ,29%
*(G0,:LOO0P3
*ELSEIF,FNAM,GE.42
*GO,:.LOOPS
*ELSEIF,FNAM,GE,30
*GO,:LO0OP4
*ELSEIF,FNAM,GE,2
*GO,.LOOP2

*ENDIF

!* Start LOOP1 for initial double pair contact
:LOOP1

*G0O, MLOOP2
!* Start LOOP2 for double pair contact zone
:LOOP2

*GO,:MLOOP2

I* Start LOOP3 for recess double pair contact

:LOOP3

*G0,:MLOOP2
!* Start LOOP4 for single pair contact
:LOOP4

meshing position in degrees

! Select a subset areas of the gear only

then rotate FE model through particular

meshing position in degrees

! LOQP! for initial double pair contact

! loop5 for meshing geometry as loopl.

! loop7 for recess of cracked pinion tooth.

1 LOGP3 for recess double pair contact

11.OOP6 for double pair contact zone

! LOOP4 for single pair contact

! LOOP2 for double pair contact zone.

! See LOOP1 of Appendix B

! See LOOP2 of Appendix B

! See LOOP] of Appendix B



*GO,: MLOOPI

I* Start LOOPS5 for other pair come into double pair
contact zone like meshing position 1.
:LOOPS

CSYS,1

ACLEAR,90

ACLEAR,2

ACLEAR,52

ACLEAR. 46
NUMSTR,KP,500,
KMG1(%FNAM%)=500
NUMSTR,LINE, 500,
LSBL,1,4, DELETE,KEEP
LESIZE,500,0.001, , ,1,
LESIZE,501,0.001, ,,1,
LCCAT,500,501
AMESH,90

LSEL,S, , ,500,501,
NSLL,S,1

‘CM,nmgl NODE
ALLSEL,ALL
NUMSTR,KP,600,
KFG1(%FNAM%)=600
NUMSTR,LINE, 600,
LSBL,3.4, ,DELETE.KEEP
LESIZE,600,0.001, , .1,
LESIZE,601,0.001, , ,1,
LCCAT, 600,601
AMESH,2

LSEL,S, , 600,601,
NSLL,S,1

CM,nfgl NODE
ALLSEL,ALL
NUMSTR,KP,700,
KMG2(%FNAM?%5)=700
NUMSTR,LINE,700,
LSBL,370,4, DELETE,KEEP
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! See LOOP4 of Appendix B

! Delete nodes and elements associated
with selected areas of teeth in double pair

contact

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
first pair contact tooth of pinion then mesh
tooth area and groups potential contact
nodes.

! One of the most important criteria for
each meshing position was that the first
potential contact nodes of both particular
contact tooth must be created exactly on
the intersection point between the pressure
line and the involute curve.

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
first pair contact tooth of gear then mesh
tooth area and groups potential contact
nodes of this tooth into component for

further generate contact elements

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of

second pair contact tooth of pinion then



LESIZE,700,0.001, , .1,
LESIZE,701,0.001, , ,1,
LCCAT, 700,701
AMESH,52

LSEL,S, , ,700,701,
NSLL,S,1

CM,nmg2 NODE
ALLSEL,ALL
KFG2(%FNAM%:)=280
LESIZE,380,0.001,, ,1,
AMESH,46

LSEL,S, , ,380,
NSLL,S,1

CM,nfg2, NODE
ALLSEL,ALL
*GO,:MLOOP2

I* Start LOOP6 for double pair contact zone like

meshing position 2-28.
:LOOPs

C8YS,1

ACLEAR,20
ACLEAR,2
ACLEAR.92
ACLEAR,46
NUMSTR,KP,500,
KMG1(%FNAM%)=500
NUMSTR,LINE,500,
LSBL,14, . DELETE KEEP
LESIZE,500,0.001,, .1,
LLESIZE,501,0.001,, ,1,
LCCAT,500,501
AMESH,90

LSEL,S, , ,500,501,
NSLL,S,1

CM,nmgl NODE
ALLSEL ALL
NUMSTR,KP,600,
KFG1(%FNAM%)=600
NUMSTR,LINE,600,
L.SBL,3,4, ,DELETE,KEEP
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mesh tooth area and groups potential
contact nodes of this tooth into component

for further generate contact elements.

! Defines contact keypoint number of
second pair of the gear. Specifies the
divisions and spacing ratic on unmeshed
lines of second pair contact tooth of gear
then mesh tooth area and groups potential
contact nodes of this tooth into component

for further generate contact elements.

! Delete nodes and elements associated
with selected areas of teeth in double pair

contact

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
first pair contact tooth of pinion and
concatenates multiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this
tooth into component for further generate

contact elements.

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of

first pair contact tooth of gear and



LESIZE,600,0.001, , .1,
LESIZE,601,0.001, , ,1,
LCCAT,600,601
AMESH,2

LSEL,S, , ,600,601,
NSLL,S, 1
CM,nfg1,NODE
ALLSEL,ALL
NUMSTR,KP,700,
KMG2(%FNAM%)=700
NUMSTR,LINE, 700,
LSBL,370,4, DELETE,KEEP
LESIZE,700,0.001, , ,1,
LESIZE,701,0.001, , ,1,
LCCAT,700,701
AMESH,92

LSEL,S, , 700,701,
NSLL,S,1

CM,nmg2, NODE
ALLSEL,ALL
NUMSTR,KP,800,
KFG2(%FNAM%)=800
NUMSTR,LINE, 00,
LSBL,380,4, DELETE KEEP
LESIZE,800,0.001, , .1,
LESIZE,801,0.001, , ,1,
LCCAT,800,801
AMESH, 46

LSEL,S, , ,800,801,
NSLL,S.1

CM,nfg2, NODE
ALLSEL,ALL
*GO,:MLOOP2

I* Start LOOP7 for recess of damage pinion tooth

like meshing position 29.
:LOOP7

CSYS,1

ACLEAR,90
ACLEAR,2
ACLEAR,92
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concatenates multiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this
tooth into component for further generate

contact elements

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratic on unmeshed lines of
second pair contact tooth of pinion and
concatenates multiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this
tooth into component for further generate

contact elements.

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
second pair contact tooth of gear and
concatenates multiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this
tooth into component for further generate

contact elements.

! Delete nodes and elements associated
with selected areas of teeth in double pair

contact



ACLEAR,46
KMGI{%FNAM%)=3
LESIZE,1,0.001, , ,1,
AMESH,%0
LSELSS,,,l,

NSLL,S,1

CM,nmgl ,NODE
ALLSEL,ALL
NUMSTR,KP,600,
KFG1{%FNAMY%)=600
NUMSTR,LINE,600,
LSBL,3.,4, ,DELETE,KEEP
LESIZE,600,0.001, , .1,
LESIZE,601,0.001, . .1,
LCCAT,600,601
AMESH,2

LSEL,S, , ,600,601,
NSLL,S,1

CM,nfg | NODE
ALLSEL ALL
NUMSTR,KP,700,
KMG2(%FNAM%)=700
NUMSTR,LINE,700,
LSBL,370,4, DELETE ,KEEP
LESIZE,704,0.001, , .1,
LESIZE,701,0.001,,,1,
LCCAT,700,701
AMESH.92

LSEL,S, , ,700,701,
NSLL,S,1

CM,nmg2 NODE
ALLSEL,ALL
NUMSTR,KP,800,
KFG2(%FNAM%)=800
NUMSTR,LINE,800,
LSBL,380,4, .DELETE, KEEP
LESIZE,800,0.001, , .1,
LESIZE,801,0.001, , ,1,
LCCAT,800,801
AMESH. 46
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! Defines contact keypoint number of first
pair of the pinion. Specifies the divisions
and spacing ratio on unmeshed lines of
first pair contact tooth of pinion then mesh
tooth area and groups potential contact
nodes of this tooth into component for
further generate contact elements.

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
first pair contact tooth of gear and
concatenates multiple lines into one line
for mapped meshing then mesh tooth arca
and groups potential contact nodes of this
tooth into component for further generate

contact elements

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
second pair contact tooth of pinion and
concatenates muitiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this
tooth into component for further generate

contact elements.

! Establishes starting numbers of keypoint
and line number. Specifies the divisions
and spacing ratio on unmeshed lines of
second pair contact tooth of gear and
concatenates multiple lines into one line
for mapped meshing then mesh tooth area
and groups potential contact nodes of this

tooth into component for further generate



LSEL,S, , ,800,801,

NSLL,S,1

CM,nfp2 NODE

ALLSEL,ALL

*GO,:MLOOP2

1*Start of MLOOP2 generates contact element for
double pair contact zone.

:MLOOP2

1*Start at MLOOP] generates contact element for
single pair contact zone.
:MLOOP1

!*Start main loop, MLOOPS3, for compute combine
normal contact stiffness.

MLOOP3

1* Start main loop, MLOOP4, deletes DOF
restraints at contact keypoint, sets element key
options, and defines the element real constants with
Lagrange multiplier.

:MLOOP4

1*Define the combined torsional mesh stiffness of
the pinion.
:MLOOPS5

1*Define the combined torsional mesh stiffness of
the gear
:MLOOP6
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contact elements.

! See MLLOOP2 of Appendix B

! See MLOOPI of Appendix B

! See ML.OOP3 of Appendix B

! See MLOOP4 of Appendix B

! See MLOOPS of Appendix B



.......................................................................... ! See MLOOPS6 of Appendix B

FINISH

FNAM=FNAM+1 ! Sets next meshing position.
*IF,FNAM,EQ,70,:ENDLQOP

PARSAV,ALLANGLE C5,, ! Write all parameter to file.
*GO,:DOLOOP ! Go back to :DOLLOP line action.
:ENDLOOP ! End a do-loop when compileted a cyclic
FINISH mesh.

* End of program
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APPENDIX D

LISTING OF AN ANSYS PARAMETRIC
DESIGN LANGUAGE PROGRAM FOR THE
STATIC TRANSMISSION ERROR AND
LOAD SHARING RATIO OF UNDAMAGED
GEARS IN MESH

/GST,ON I Turns graphical solution tracking on
*DIM,ANG, ,69 I Defines an array parameter and its
ANG(1)=0.0,1.1575,2.315,3.4725,3.6171875 dimensions of meshing position.
ANG(6)=3.761875, 3.9065625,3.97890625 | Angle array parameter of meshing
ANG(9)=4.015078125,4.033164063,4,05125 position in one complete cyclic mesh is
ANG(12)=4.1959375,4.340625,4.4853125,4.63 24.912 degrees. Actually, you can analyse
ANG(16)=4.7746875, 4.919375,5.0640625 any meshing position within the cyclic
ANG(19)=5.20875,5.226835937,5.244921875 mesh.

ANG(22)=5.28109375,5.3534375,5.498125
ANG(25)=5.6428125,5.7875, 6.945,8.1025
ANG(29)=9.26,9.27,9.6595, 10.059,10.858,11.657
ANG(35)=12.456,13.255, 14.054,14.853,15.2525
ANG(40)=15.642, 15.652,16.8095,17.967,19.1245
ANG(45)=19.2691875,19.413875, 19.5585625
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ANG(48)=19.63090625,19.66707813,19.68516406

ANG(51)=19.70325, 19.8479375,159.952625

ANG(54)=20.1373125,20.282,20.4266875
ANG(57)=20.571375,20.7160625,20.86075

ANG(60)=20.87883594,20.80692 188, 20.93309375

ANG(63)=21.0054375,21.150125,21.2948125

ANG(66)=21.4395,22.597,23.7545.24.912
*DIM,FGC, ,69
*DIM,MGC, ,69

[*

*DIM,KMG, ,69
*DIM,KMG2, ,69
*DIM,KFGI, 69
*DIM,KFG2, ,69

!*

*DIM,TE, 69,4,
*DIM,FXP1,,69,4,1
*DIM,FYP1,,69,4,1
*DIM,FXP2,,69.4,1
*DIM,FYP2,,69,4,1
*DIM,FXG1,,69,4,1
*DIM,FYGI,,69,4, 1
*DIM,FXG2,,69,4,1
*DIM,FYG2,,69,4,1
*DIM,FNP1,,69,4,1
*DIM,FNP2,,69.4,1
*
*DIM,FN_T1,,69,4,1
*DIM,FN_T2,,69,4,1
1*

*DIM,KN, ,69

!*
*DIM,MZP,,69,4,1
*DIM,MZG, 69,4, 1
1
*DIM,ANGP,,69,4. 1
*DIM,ANGG,,69,4,1
!*

COL=1

FNAM=1
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! FGC( ) and MGC( ) are array parameter
of master couple node number of gear
and pinion respectively

! KMGI{ ), KMG2( ), KFGI( ), and
KFG2( ) are array parameter of the
keypoints number at the contact point of
the first pair and second pair of pinion
and gear respectively.

! TE( ) is the transmission error, rad.

! FXPI( ), FYP1( ), FXP2( ), FYP2( )
FXGI( }, FYGI( ), FXG2( ), and FYG2()
are reaction force in global Cartesian
coordinate system at contact nodes of
pinion and gear for first and second pair

contact respectively, N.

! FNP1{) and FNP2() are normal reaction
forces of first and second pinion pair
contact respectively, N.

' FN_TI() and FN_T2(} are load sharing
ratio of the first and second pair contact
respectively, N,

! KN() is combined normal contact
stiffness in each meshing position.

! MZP( ), MZG( ) are the total applied
torque of the pinion and gear
respectively, N.m.

! ANGP( ), ANGG( ) are The transverse
plane angular rotation of the pinion and
gear body respectively, rad.

! Sets initial varying load and meshing

position,



PARSAV ALL,TE C0,,
:DOLOQP
RESUME,m1¢0,db,,
PARRES,TE C0,,,,
UYI=1E-10
FYP=200000*COL
PENN=1E-5

/PREP7

TYPE,1,

MAT,1,

REAL,1,

ESYS.0,

C8YS,1
ASEL,8,L0OC,X,0,.069
AGEN, ,ALL,,, ,ANG(%FNAM%), , , ,1
ALLSEL,ALL
CSYS,11,
ASEL,S,LOC,X,0,.069
AGEN, ,ALL, ,, ,-ANG(%FNAM%), , , ,]
ALLSEL,ALL
*1IF,FNAM,EQ,1,THEN
*GO,:LOOP1
*ELSEIF,FNAM,EQ,29
*GO, LOOP3
*ELSEIF,FNAM,GE,30
*GO,:.LOOP4
*ELSEIF,FNAM,GE,2
*GO,: LOOP2

*ENDIF

t* Start LOOP1 for initial double pair contact
:LOOP1

*GO,:MLOOP2
1* Start LOOP2 of double pair contact zone
:LOOP2
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! Write all parameter to file

! :\DOLOOP of meshing position.

! Resumes the model and database.

! Replaces current parameter set.

! UYT is nonzero initial pre-displacement.
FYP is force loads at master couple node

of pinion, PENN is Lagrange multipliers.

! Sets the element type, element material,

element real constant, and element

coordinate system

! Select a subset areas of the pinion only
then rotate FE model through particular
meshing position in degrees

! Select a subset areas of the gear only
then rotate FE model through particular
meshing position in degrees

I LOOPI for initial double pair contact

I LOOP3 for recess double pair contact

! LOOP4 for single pair contact

! LOOP2 for double pair contact zone

! See LOOP1 of Appendix B

! See LOOP2 of Appendix B



*GO,:MLOOP2
1* Start LOOP3 for recess double pair contact
:LOOP3

*GO,:MLOOP2
1* Start LOOP4 of single pair contact
:LOOP4

*GO,:MLOOP1

1*Start main loop 1 and 2 for generates contact
element. For double pair contact zone use MLOOP2.
:MLOOP2

1*Start MLOOP1 generates contact element for
single pair contact zone. -

:MLOOPI

1*Start main loop, MLOOP3, for compute combine
normal contact stiffness.

:MLOOP3

I* Start main loop, MLOOP4, deletes DOF restraints
at contact keypoint, sets element key options, and
defines the element real constants with Lagrange
multiplier.
:MLOOP4

186

! See LOOP3 of Appendix B

! See LOOP4 of Appendix B

I See MLOOP2 of Appendix B

! See MLOOPI1 of Appendix B

! See MLOOP3 of Appendix B

I See MLOOP4 of Appendix B



FINISH

*Start main loop, MLOOPS, for compute angular
rotation of the pinion hub and the load sharing ratio.
:MLOOP5

/SOLU

CS8YS,1

ANTYPE,STATIC

D,FGC(%FNAM%), .0, , . ,ALL

D MGC{%FNAM%), ,0, ,, ,UX
DMGC(%FNAM%), UYL, ,, UY
SOLCON,ON

OUTRES,ALL,ALL,

NSUBST,L,,.0

SOLVE

DDELE ,MGC(%FNAM%),UY,
F,MGC(%FNAM%).FY.FYP,

NSUBST,20,,,0

SOLVE

FINISH

/POSTI

SET,LAST

RS8YS,1

ESLA,S

*IF,FNAM,GE,30,THEN
*IF,FNAM,LE40,THEN

*GO,:MLOGPP2

*ENDIF

*ENDIF

CMBSEL,S,NMG1

FSUM
*GET,FXP1(FNAM,COL,1),FSUM,0,ITEM,FX
*GET,FYP1{FNAM,COL,1),FSUM,0,ITEM,FY
*GET,MZP1,FSUM,0,ITEM,MZ

ALLSEL,ALL

ESLA.S

*AFUN,DEG
FNP1(FNAM,COL,1)=ABS(FXP1{(FNAM,COL,1)*
COS(20)+ABS(FYPL{FNAM,COL,1y*COS(70))
*AFUN,RAD

‘MLOOPP2
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! The procedure of how to computed
transmission error and load sharing ratio
is, firstly, restrained the gear hub from
rotating then input load to pinion hub.

! Activates a cylindrical coordinate
system of the pinion.

! Restraints all DOF at FGC().

! Restraints DOF in radian-axis at MGC()
! Defines DOF

constraints at master couple node of the

initial pre-defines

pinicn hub and solve in single iteration.

! Deletes initial pre-defines DOF
constraints at master couple node of the
pinion hub then defines tangential force at

master couple node of the pinion hub.

! Defines the last data set to be read from
the results file,
commands to

1 Conditionally skips

:MLOOPP2 for single pair contact zone.

! Selects a subset of potential nodes on
the pinion tooth of first pair contact.

! Retrieves sum force values, FXP1( ) and
FYPL({ ),

global Cartesian coordinate system and

of the contact nodal force in

sum moment values, MZPI, due to these

nodal forces.

! Computes the normal forces to the tooth

surface.



CMSEL,S,NMG2
FSUM
*GET,FXP2(FNAM,COL,1),FSUM,0,ITEM,FX
*GET,FYP2(FNAM,COL,1),FSUM,0,ITEM,FY
*GET,MZP2,FSUM,0,ITEM,MZ

ALLSEL,ALL

*AFUN,DEG

FNP2(FNAM,COL, 1 )=ABS(FXP2(FNAM,COL, 1 )*
COS(20)+ABS(FYP2(FNAM,COL, 1 )*COS(70))
*AFUN,RAD
FN_TOTAL=FNPI(FNAM,COL,1)+ENP2(FNAM,
COL,1)
FN_T1(FNAM,COL,1)=FNP1(FNAM,COL,1)/FN_
TOTAL
FN_T2(FNAM,COL,1)=FNP2(FNAM,COL,1}/FN_
TOTAL

RSYS,11

ESLA,S

*IF,FNAM,GE,30,THEN

*IF,FNAM,LE, 40, THEN

*GO,:MLOOPG2

*ENDIF

*ENDIF

CMSEL,S,NFG1

SPOINT, ,0,.138,0,

FSUM
*GET,FXG1(FNAM,COL,1),FSUM,0,ITEM,FX
*GET,FYG1(FNAM,COL,1),FSUM,0,ITEM,FY
*GET,MZG1,FSUM,0,ITEM,MZ

ALLSEL ALL

ESLA,S

:MLOOPG2

CMSEL,S,NFG2

FSUM

*GET,FXG2(FNAM,COL, 1),FSUM,0,ITEM,FX
*GET,FYG2(FNAM,COL,1),FSUM,0,ITEM,FY
*GET,MZG2,FSUM,0,ITEM,MZ

ALLSEL,ALL

RESET

MZP(FNAM,COL,1)=MZP1+MZP2
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! Selects a subset of potential nodes on
the pinion tooth of second pair contact.

! Retrieves sum force values, FXP2( ) and
FYP2( ),

global Cartesian coordinate system and

of the contact nodal force in

sum moment values, MZP2, due to these
nodal forces.
! Computes the normal forces to the tooth

surface.

! Computes total of the normal forces.

! Computes load sharing ratio on the first
pair.
! Computes load sharing ratio on the

second pair.

! Conditionally skips commands to

‘MLOOPG?2 for single pair contact zone.

! Selects a subset of potential nodes on
the gear tooth of first pair contact.

! Retrieves sum force values, FXGI{ )
and FYGI1( ), of the contact nodal force
in global Cartesian coordinate system and
sum moment values, MZG1, due to these

nodal forces.

! Selects a subset of potential nodes on
the gear tooth of second pair contact,

! Retrieves sum force values, FXG2( )
and FYG2( ), of the contact nodal force
in global Cartesian coordinate system and
sum moment values, MZG2, due to these
nodal forces.

! Computes total pinion torque.



MZG{FNAM,COL,1)=-MZGI1+MZG2
FYG=MZG(FNAM,COL,1)/0.0127

RSYS,1

*GET,UYP,NODE, MGC(%FNAM%:),U,SUM
ANGP(FNAM,COL,1)=UYP/.0127

FINISH

1*Start main loop, MLOOPS, for compute angular

rotation of the gear hub and the static transmission

error of gear mesh.

p*

:MLOOP6

/SOLU

DDELE,ALL,ALL

C8YS,11

ANTYPE,STATIC

D, MGC(%FNAM%), ,0. , , ,ALL
D, FGC(%FNAM%), .0, , , ,UX
D.FGC(%FNAM%), UYL, ,, UY
OUTRES,BASIC,ALL,
SOLCON,ON
OUTRES,ALL,ALL,
NSUBST,L,,,0

SOLVE

DDELE, FGC(%FNAM%),UY,
F,FGC(%FNAM%),FY FYG,
NSUBST,20,,,0

SOLVE

FINISH

/POST!

SET,LAST

RSYS,11
*GET,UYG,NODE,FGC(%FNAM%),U,SUM
ANGG(FNAM,COL,1)=UYG/.0127
AG=ANGG(FNAM,COL,1)
AP=ANGP(FNAM,COL,1)
TE(FNAM,COL,1)=(AG+AP)/2
FINISH

FNAM=FNAM+]
*IF,FNAM,EQ,70,THEN
FNAM=1
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! Computes total gear torque.

! Computes equivalent tangential force at
the gear hub.

! Refrieves displacement of the pinion
hub then computes angular rotation of the
pinion hub.

! In relation to the pinion reference frame,
the angular rotation of the pear hub is
generated by restrained the pinion from
rotating, while the gear having the input
load and the resulting angular rotation of
the gear is computed.

I Deletes all DOF constraints.

! Activates a local cylindrical coordinate
system of the gear.

! Restraints all DOF at MGC().

! Restraints DOF in radian-axis at FGC().
! Defines initial pre-defines DOF
constraints at master couple node of the

gear hub and solve in single iteration.

! Deletes initial pre-defines DOF
constraints at master couple node of the
gear hub then defines equivalent
tangential force at master couple node of

the gear hub.

! Defines the last data set to be read from
the result file.

! Retrieves a displacement value of the
gear hub, UYG, then computed angular
rotation of the gear hub, ANGG ().

! Computed the transmission error at each

particular meshing position, TE ().

! Sets next meshing position.

! If completed cyclic mesh.



COL=COL+1

*ENDIF
*IF,COL,EQ,5,;ENDLOOP
PARSAV ALL,TE C0,,
*GO,:DOLOOP
:ENDLOOP

FINISH

'* End of program
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! Sets different input value load.

! If completed varying load end program.
! Write all parameter to file.

! Go back to :DOLOQOP line action.

! End a do-loop when completed a cyclic

mesh.



APPENDIX E

LISTING OF AN ANSYS PARAMETRIC
DESIGN LANGUAGE PROGRAM FOR THE
STATIC TRANSMISSION ERROR AND
LOAD SHARING RATIO OF A DAMAGED
TOOTH IN MESH

/GST,ON ! Turns graphical solution tracking on
*DIM,ANG, ,69 ! Defines an array parameter and its
ANG(1)=0.0,1.1575,2.315,3.4725,3.6171875 dimensions of meshing position.
ANG(6)=3.761875, 3.9065625,3.97890625 ! Angle array parameter of meshing
ANG(9)=4.015078125,4.033164063,4.05125 position in one complete cyclic mesh is
ANG(12)=4.1959375,4.340625,4.4853125,4.63 24912 degrees. Actually, you can
ANG(16)=4.7746875, 4.919375,5.0640625 analyse: any meshing position within
ANG(19)=5.20875,5.226835937,5.244921875 cyclic mesh.

ANG(22)=5.28109375,5.3534375,5.498125
ANG(25)=5.6428125,5.7875, 6.945,8.1025
ANG(29)=9.26,9.27,9.6595, 10.059,10.858,11.657
ANG(35)=12.456,13.255, 14.054,14.853,15.2525
ANG(40)=15.642, 15.652,16.8095,17.967,19.1245
ANG(45)=19.2691875,19.413875, 19.5585625
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ANG(48)=19.63090625,19.66707813,19.68516406

ANG(51)=19.70325, 19.8479375,19.992625
ANG(54)=20.1373125,20.282,20.4266875
ANG(57y20.571375,20.7160625,20.86075

ANG(60)=20.87883594,20.89692188, 20.93309375

ANG(63)=21.0054375,21.150125,21.2948125

ANG(66)=21.4395.22.597,23.7545 24.912
+DIM,FGC, ,69
*DIM,MGC, ,69

!*

*DIM,KMGH, ,69
*DIM,KMG?2, ,69
*DIM,KFGI, ,69
*DIM,KFG2, ,69

1+

*DIM,TE,,69,4,1
*DIM,FXP1,,69,4,1
*DIM,FYP1,,69,4,1
*DIM,FXP2,,69,4,1
*DIM,FYP2,,69,4,1
*DIM,FXG1,,69,4,1
*DIM,FYG1,,69,4,1
*DIM,FXG2,,69,4,1
*DIM,FYG2,,69,4,1
*DIM,FNP1,,69,4, 1
*DIM,FNP2,,69,4,1
!*
*DIM,FN_T1,,69.4,1
*DIM,FN_T2,,69,4,1

1%

*DIM,KN, ,69

!*
*DIM,MZP,,69,4,1
*DIM,MZG,.69,4,1

! *
*DIM,ANGP,,69,4,1
*DIM,ANGG,,69,4,1
[*

COL=1

FNAM=1
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! FGC( ) and MGC( ) are array parameter
of master couple node number of gear and
pinion respectively

! KMGI( ), KMG2( ), KFGI( ), and
KFG2( ) are array parameter of the
keypoints number at the contact point of
the first pair and second pair of pinion and
gear respectively.

! TE() is the transmission error, rad.

! FXPI( ), FYPI( ), FXP2( ), FYP2( )
FXGI( ), FYGI( ), FXG2(), and FYG2()
are reaction force in global Cartesian
coordinate system at contact nodes of
pinion and gear for first and second pair

contact respectively, N.

! FNP1() and FNP2() are normal reaction
forces of first and second pinion pair
contact respectively, N.

! FN_T1(} and FN_T2() are load sharing
ratio of the first and second pair contact
respectively, N.

KN() is combined nermal contact stiffness
in each meshing position.

! MZP( ), MZG( ) are the total applied
torque of the pinion and gear respectively,
N.m.

I ANGP( ), ANGG( ) are The transverse
plane angular rotation of the pinion and
gear body respectively, rad.

! Sets initial varying load and meshing

position.



PARSAV,ALL,TE C5,,
:DOLOOP
RESUME,m1c0,db,,
PARRES,,TE C5,, .
UYI=1E-10
FYP=200000*COL
PENN=1E-5

/PREP7

TYPE,1,

MAT,1,

REAL,1,

ESYS,0,

CSYS, 1
ASEL,S,LOC,X,0,.069
AGEN, ALL, , , ANG(%FNAM%), , , 1
ALLSEL,ALL
CSYS,11,
ASEL,S,LOC,X,0,.069
AGEN, ALL, , , ~ANG(%FNAM%),,, 1
ALLSEL,ALL
*IF,FNAM,EQ,1,THEN
*GO,:.LOOPI
*ELSEIF,FNAM,EQ,41
*GO,:.LOOPS
*ELSEIF,FNAM,EQ,69
*GO,:LOOP7
*ELSEIF,FNAM,EQ,29
*GO,:LOOP3
*ELSEIF,FNAM,GE, 42
*GO,:LOOP6
*ELSEIF,FNAM,GE,30
*GO,:.LOOP4
*ELSEIF,FNAM,GE,2
*GO,:.LOOP2

*ENDIF

I* Start LOOP1 for initial double pair contact

:LOOP1
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! Write all parameter to file

! :DOLOOP of meshing position.

! Resumes the model and database.

! Replaces current parameter set.

! UYT is nonzero initial pre-displacement.
FYP is force loads at master couple node

of pinion. PENN is Lagrange multipliers.

! Sets the element type, element material,

element real constant, and element

coordinate system

! Select a subset areas of the pinion only
then rotate FE model through particular
meshing posttion in degrees

! Select a subset arcas of the gear only
then rotate FE model through particular
meshing position in degrees

! LOOPI for initial double pair contact

! loop5 for meshing geometry as loopl.

! loop7 for recess of cracked pinion tooth.

! LOOP3 for recess double pair contact

1 LOOP6 for double pair contact zone

1 LOOP4 for single pair contact

! LOOP2 for double pair contact zone.

! See LOOPI1 of Appendix B



*GO,:MLOOP2
* Start LOOP2 for double pair contact zone
:LOOP2

! See LOOP2 of Appendix B

*G0,:MLOOP2
* Start LOOP3 for recess double pair contact
:LOOP3

.......................................................................... ! See LOOP3 of Appendix B

*GO,:MLOOP2
T* Start LOOP4 for single pair contact
:LOOP4

.......................................................................... ! See LOOPA of Appendix D
*(G0,:MLOOP1

1* Start LOOPS for other pair come into double pair

contact zone like meshing position 1.

:LOOPS

.......................................................................... ! See LOOPS of Appendix C
*G0,:MLOOP2

I* Start LOOP6 for double pair contact zone like

meshing position 2-28.

:LOOP6

.......................................................................... ! See LOOPG6 of Appendix C
*GO,:MLOOP2

t* Start EOOP7 for recess of damage pinion tooth

like meshing position 29,

:LOOP7

.......................................................................... ! See LOOP7 of Appendix C

*GO,:MLOOP2
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1*Start main loop 1 and 2 for generates contact

element. For double pair contact zone use LOOP2.

:MLOOP2

.......................................................................... ! See MLLOOP2 of Appendix B
1*Start MLOOP1 for single pair contact zone. ’

:MLOOP]

.......................................................................... ! See MLOOP1 of Appendix B
I*Start main loop, MLOOP3, for compute combine

normal contact stiffness.

MLOOP3

.......................................................................... ! See MLOOP3 of Appendix B
1* Start main loop, MLOOP4, deletes DOF

restraints at contact keypoint, sets element key

options, and defines the element real constants with

Lagrange multiplier.

:MLOOP4

.......................................................................... ! See MLOOP4 of Appendix B
FINISH

I*Start main loop, MLOOPS5, for compute angular

rotation of the pinion and load sharing ratio.

:MLOOP5

.......................................................................... ! See MLOOPS of Appendix D
I*Start main loop, MLOOPS, for compute angular

rotation of the gear and the static transmission error

of gear mesh.

:MLOOP6

.......................................................................... ! See MLOOPG6 of Appendix D
FINISH
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FNAM=FNAM+1
*IF,FNAM,EQ,70,THEN
FNAM=1

COL=COL+1

*ENDIF
*IF,COL,EQ,5,;ENDLOOP
PARSAV,ALL,TE C5,,
*GO,:DOLOOP
:ENDLOOP

FINISH

* End of program
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! Sets next meshing position.

! If completed cyclic mesh.

! Sets different input value load.

! If completed varying load end program.

! Write all parameter to file.

! Go back to :DOLOOP line action.

! End a do-loop when completed a cyclic

mesh.



APPENDIX F

MEASUREMENT OF THE COMBINED
TORSIONAL MESH STIFFNESS

F.1 INTRODUCTION

This appendix presents data measured from a static gear test rig, (Aguilera 1995;
Sirichai et al. 1996), which was designed to create a pure torque transmitted to a
spur gear pair in mesh. Once the gears were pre-loaded, the known torque load was
increased while the angular deflection of the spur gears was measured by a pair of
optical auto-collimators. The same procedure was followed for a variety of different
loads allowing a graph of torque versus angular displacement to be obtained. The
relationship between torque and angular displacement was linear within the elastic
range as expected. From the measurements, the static combined torsional mesh
stiffness of the gear mesh at particular positions was obtained by calculating the
gradient from the corresponding torque versus angular displacement relationship. By
changing the meshing positions, the combined torsional mesh stiffness of the input

gear during the entire meshing cycle was obtained.

In the spur involute teeth gears being studied, the load was transmitted by one and

two pairs of teeth alternatively. The combined torsional mesh stiffness of the two
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spur gears in mesh varied within the meshing cycle as the number and position of
teeth in mesh changed from two to one tooth in contact. In general, the combined
torsional mesh stiffness decreased as the meshing of the teeth changed from two to
one in contact. If the gears were absolutely rigid, devoid of all inaccuracies and
changes in meshing geometry were ignored, the tooth load in the zone of the double
tooth contact would be half that of the single tooth contact. However, in reality the
teeth become deformed under the influence of the teeth bending and shear stresses as
the mesh geometry changes, and these factors alter the load variation along the path
of contact. Furthermore every gear contains surface finishing and pitching errors,
which alter the load variation yet again. Since the teeth are comparatively stiff, even
small errors have a notable influence. The effect of the elastic tooth deformation can
be shock loading. In order to avoid shock loading as the gear teeth move into and out
of mesh, the tooth flanks are tip relieved. The tip reliefs are designed so that as the
tooth passes through the mesh zone, the load increases uniformly and then reduces

back to zero again.

The combined torsional mesh stiffness of gears is the ratio between the torsional
load and the total elastic angular deflection of the gear body. Total angular
deflection is defined as the angle through which a gear body turns due to bending
deflection, shearing displacement and contact deformation of the gear teeth when
under load. The angular deflection depends on the contacting load vector and the
transverse plane contact radius vector which both factors are vary along the path of
contact. Therefore the angular deflection and hence the combined torsional mesh

stiffness, varies at different positions through the meshing cycle.

It appears that the gear combined torsional mesh stiffness variation has not been
experimentally investigated in great detail. The primary purpose of this appendix
was to measure the cyclic combined torsional mesh stiffness of the input gear of
gear teeth in mesh. The static torsional test rig is presented and initial results from a
test spur gear pair arc discussed. A simple analytical model of the combined

torsional mesh stiffness variation is also given.
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k.2 ANALYTICAL MODEL

Figure F.2.1 illustrates two gears whilst in mesh along the path of contact. Two pair
of teeth are in the double contact zone AB and DE, and one pair of teeth are in the
single zone contact BD. The distance AD and BE corresponds to the transverse base
pitch of the gears. The pinion and gear denote the driving gear and the driven gear
respectively. Point A indicates the initial contact where the addendum circle of the
gear (the driven gear) intersects the line of action. For involute gears the line of
action is in the common tangent line to the base circles. When the first tooth pair
contacts at point A, between the tooth tip of the gear and the root of the pinion, a
second tooth pair is already in contact at point D. As the gear rotates, the point of
contact will move along the line of action APE. When the first tooth pair reaches
point B, the second tooth pair disengages at point E leaving only the first tooth pair
in the single contact zone. When this first tooth pair rotates to point D the next tooth

pair begins engagement at point A and starts another mesh cycle.
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Figure F.2.1. Illustration of one complete meshing cycle.
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In order to simplify the complexity of the problem, the load sharing compatibility

condition is based on the fact that:

The driving and driven gear rotation caused by the angular displacement in the
transverse plane of any tooth under load must be the same for all simultaneously

meshing tooth pairs: This condition will lead to the following equations,

For pinion:
A -
0, = 6, (F2.1)
And gear:
A -
O, = 6y (F2.2)

Where Bg and (—)E are the transverse plane angular rotation of the pinion body
caused by bending deflection, shearing displacement and contact deformation of the
single tooth pair A and D while the gear stays put. Where 0; and 6, are the

transverse plane angular rotation of the gear body caused by bending deflection,
shearing displacement and contact deformation of the single tooth pair A and D

while the pinion stays put.

The sum of the torque contribution of each meshing tooth pair must equal the total
applied torque. Considering the two contacts at A and D, see Figure F.2.1(a), the

torque will then be given by,

For pinion:
bt = T'+T,
= Ry *F )R *FD) (F2.3)
And gear:
b = T} +T,
= (RA*FA)+ (R *F?) (F.2.4)
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Where T, T, T}, T, are the torque vectorial contributions to the total applied

torque of tooth pairs at A and D of the pinion and gear respectively and T&’E , and

T, are the total applied torque vectors of the pinion and gear respectively. The

transverse plane contact radius vectors on the pinion and gear tooth pair A and D are

A

givenby R%, R?, R?, R? and the load share vectors F;', F,”, F, F, are part of

the total applied force vector F2” and F2P, at the contact points A and D of the

tot,p tot,g *

pinion and gear respectively.
FE.3 APPARATUS AND PROCEDURES

The static torsional test rig is shown in Figure F.3.1 which demonstrates the overall
equipment set up which was used for measuring the combined torsional mesh

stiffness of the gears in mesh.

Table F.3.1 shows the test gear parameters. The test gears were identical spur gears
with a ratio of 1:1. One of the test gears, the output gear, was fixed and attached to
the rotary table. The second gear, the input gear, was loaded with a pure torque as

shown in the test rig layout of Figure F.3.2.

Table F.3.1. Test Gear Parameters

e gear type standard involute, full-depth teeth
s material aluminum

* maodulus of elasticity, E 69 Gpa,

e Poisson’s ratio, v 0.33

o face width 0.015 m.

¢ module, m 6 mm.

» number of teeth 23

* pressure angle 20 degrees

» theoretical contact ratio 1.59

¢ theoretical angle of meshing cycle 24.912 degrees
¢ addendum 1.00m
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o dedendum 1.25m

Figure F.3.1. The combined torsional mesh stiffness test rig.

The combined torsional mesh stiffness of the input gear at particular meshing
positions was obtained by rotating both gears using the rotary head. The rotary head
was then locked in position and pre-load masses were placed on the hook at the end
of the loading bar. On the other end of the loading bar the same upward force was
applied by turning the nut on the top of the stand bar and using the strain-load
relationship which was found when the gauge was calibrated. Once the gears were
pre-loaded, the known torque load was increased while the angular deflection of the
spur gears was measured by a pair of optical auto-collimators. The same procedure
was followed for a variety of different loads allowing a graph of torque versus

angular displacement to be obtained as shown in Figure F.3.3.
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Figure F.3.2. Test rig lay out.
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Figure ¥.3.3. The combined torsional mesh stiffness at one meshing position.

From the results as shown in Figure F.3.3, the combined torsional mesh stiffness of
the input gear at particular meshing positions was obtained by calculating the
gradient of the linear relationship between torque and angular displacement. The
meshing position was then changed, by rotating the rotary head through increments
of 0.5 degrees. At each position, the torsional mesh stiffness of the gear was
measured and in this manner the combined torsional mesh stiffness of the input gear

over the entire meshing cycle was obtained. Many different meshing positions
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covering more than one completed meshing cycle were investigated as shown in

Figure F.3.4.
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Figure F.3.4. Cycle of combined torsional mesh stiffness.

F.4 RESULT AND CONCLUSION

From each graph, such as shown in Figure F.3.4, the combined torsional mesh
stiffness of the gear mesh of the input gear at particular positions was obtained by
calculating the gradient from the corresponding torque versus angular displacement
relationship. By changing the meshing positions, the combined torsional mesh
stiffness of the gear during the entire meshing cycle was obtained. All together 58
meshing positions were investigated, each mesh position differing by 0.5 degrees.
The meshing measurements started at reference 0 degree on the rotary head and
finished at 28.5 degrees. However, one complete meshing cycle is 24.912 degrees.
The path length contact of one complete meshing cycle, by calculation is 28.19 mm.
The total length of the double contact zone (distance AB+DE of Figure F.2.1) is
20.96 mm. (18.52 degrees) and the length of single contact zone (distance BD) is
7.23 mm, (6.39 degrees). The graph of the combined torsional mesh stiffness versus
meshing position indicates that the combined torsional mesh stiffness changes
according to the actual meshing position of the gears. When the meshing position
was subjected to double teeth pair in contact, the combined torsional mesh stiffness

increased and then decreased as the meshing approached one tooth pair in contact.
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When the meshing position was subjected to two teeth in contact, the torsional

stiffness was higher than when a single tooth pair was in contact.

This test rig has dealt with the initial investigation of the static combined torsional
mesh stiffness of gear in mesh. Many measurements have already been taken, and
many more tests are still to be done and analysed, so these results can only present
preliminary findings of the static cyclic combined torsional mesh stiffness. The
results give an initial investigation of what is happening to the combined torsional
mesh stiffness. It should be particularly useful for ongoing dynamic analysis and
modelling of gearmesh vibration. Further testing and analysis will be conducted on

more accurate gears, with and without artificial teeth cracks.

The main reason why the experimental results of the combined torsional mesh
stiffness are very different to the FEA results is because the transverse plane angular
rotation of the each spur gears was measured by a pair of optical auto-collimators
where the auto-collimator mirror was clamped to the gear body. Therefore the
measurement results were obtained from the angular deflection of the gear body in
the particular position on the gear body where the auto-collimator mirror was
clamped. On the other hand the FEA results have been obtained from the angular
rotation of the gear hub. The FEA results have also shown that the actual location of

the measurement point on the gear blank will affect the results.

Ongoing research using a new experimental arrangement where the auto-collimators
are located on the shaft near the gear hub is under consideration. By locating the
auto-collimators on the shaft near the gear hub, the angular deflection of the input

and output gear hubs should be able to be measured.
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