; r
[Proceedings of the IASTED International Conference

/

v

COMPUTER SCIENCE AND TECHNOLOGY
May 19-21, 2003, Cancun, Mexico

A RE-CONFIGURABLE COMPONENT-BASED SOFTWARE FRAMEWORK

Alex Talevski', Elizabeth Chang?, Tharam S. Dillon!

' Dept. of Computer Science and Computer Engineering,
La Trobe University, Bundoora, VIC, Australia 3083
Email: {alex, tharam}@cs.latrobe.edu.au

? School of Information Systems,
Cutrin University, WA, Australia 6845
Email: change@cbs.curtin.edu.au

ABSTRACT

Component-based software engineering is a way of raising

- the level of abstraction for software development so that

oftware can be built out of existing context-independent
software components that can be widely reused. Research
has shown component-based software engineering leads to
software that is of higher quality when a component is
reused between multiple projects, shorter time-to-market
due to the reduction of written source code. and therefore

lowers cost [1].

The ever-increasing changes in user requirements and
diverse user-bases are the reasons for developing software
that can be easily customised after it has been deployed by
the user at runtime as opposed to the developer. Using
current methods it is difficult to add, remove and/or modify
components and their interconnections within an
application without changing and recompiling the
application source code. Customisation and evolution of an
application is difficult to perform.

[n this paper we propose a plug and play dynamically
reconfigurable component-based framework and we
ppresent a prototype implementation. Component-based
plug and play software will allow the dynamic addition,
removal and modification of a components and
reconfiguration at runtime. The framework proposed will
allow for evolution and customisation of software

dynamically at run-time.
KEY WORDS

Software evolution, Software plug and play, Component-
based Software, Re-configurable Software.

1. INTRODUCTION

Considerable progress has been made in recent times in the
techniques available for the development of software
Systems. A variety of approaches have appeared which
include object-oriented and component-based techniques.

394-152

84

These techniques by and large emphasize important
principles of software development such as éncapsulation,
low coupling and reuse. The object-oriented approach has
been utilized in several different forms:

— Writing code from scratch using object-oriented
languages such as C++ and Java.

= Use of applications such as InfoPower and VisualAge,
which constitute elements of complete applications
that can be customised to meet your needs. such as
control the flow of interaction.

— The use of class libraries containing classes that can
create objects such as buttons, menus or sockets for
use with an application,

The important contribution of the object-oriented paradigm
is that it structures the system according to the items that
exist in the problem domain. This makes a more natural
solution to the problem. These items are normally very
stable and changes in the environment where they occur
can be easily identified with software constructs. The
changes occurring normally affect only one or a few such
items, which means that the changes made are usually
localised. From this perspective, object-oriented
development promotes understanding and maintainability
of the system to be developed. However, by reusing
existing classes at a higher level, less code is written and
productivity is improved but the extent of customisation
possible is limited. Current work on components has been
largely limited to the creation and static assembly of
components manually as the software system is being
constructed. Once the system has been developed any
further re-configuration, addition or replacement of
components requires re-coding of parts of the system

(Fig.1).
An Application]
DMu- anr_ssesj L Mulrr-hskg I Single platform I Single Language

Fig. | Application category in mid 1990s. [2]

In order to satisfactorily develop and deploy software that
must evolve and adapt to varying user requirements we
must look at developing cooperating applications that have
multiple processes, are multi-tasking, work across
platforms and are able to be implemented using multiple
languages. The schematic structure of such a system is

illustrated in (Fig.2).

LA Customised Applicanion]

i Plug and Play Interface

Application 2

Application 1

hilst several industrial applications of the category of
system shown in (Fig. 1) have been previously described in
the literature very few if any of those shown in (Fig. 2)
have been.

The IT industry must look at current technologies and
produce a hyper-linking model of computing where an

organization’ s collection of networks, data, applications,

clients, and servers can be dynamically connected and
disconnected in response to varying user requirements.

In this paper we propose a framework that forms the basis
for the development of more complex systems, as shown in
(Fig. 2). In the following section we define objects and
components. In sections three and four we discuss our
conceptual and architectural framework. Section five
demonstrates a sample implementation that has been
performed using the framework proposed. Section six
ludes the paper.

2. OBJECTS AND COMPONENTS

The terms "component” and "object" are sometimes used
interchangeably however there are important differences.

Objects. The notions of instantiation, identity, and
encapsulation lead to the notion of objects. In contrast to
the properties characterizing components, the
characteristic properties of objects are:

= An object is a unit of instantiation; it has a unique
identity.

" An object has state; this state can be a persistent state.
An object encapsulates its state and behaviour.

Because an object is a unit of instantiation, objects cannot
be partially instantiated. Since an object has individual
State, it also has a unique identifier that suffices to identify
the object despite state changes for its entire lifetime.

85

As objects get instantiated, there needs to be a construction
plan that describes the state space, initial state, and
behavior of a new object. This plan exists before the
instantiation of the object. This plan is usually explicitly
available and is then called a class. Alternatively, it may be
implicitly available in the form of an object that already
exists, that is sufficiently close to the object to be created,
and that can be cloned. Whether using classes or prototype
objects, the newly instantiated object needs to be set to an
initial state. The code required to initialise the object can
be a static procedure and is usually called a constructor.
Alternatively, it can be an object of its own, which is called

an object factory.

Components. A component is a binary unit of
composition. It is possible to compose a component with
other components and integrate this composite component
with disparate systems through its interfaces. Composite
component architectures are formed form layered
components where components at the lower layers
provide services to the components above them through
middleware. The main notion of component-based
development is to provide the ability to inherently reuse
previously designed, implemented, composed and refined
business services.

The characteristic properties of components are:

— A component exposes its underlying functionality
through its exposed well-defined interfaces. Through
interfaces the client is completely isolated from the
server implementation.

— A component is a unit of independent production,
acquisition, and deployment :

— A component is a unit of third-party composition.

— A component has no persistent state.

— A component will never be deployed partially.
However, the possibility exists of utilising a
proportion of the services of a fully deployed
component.

Interfaces. An interface is defined as a collection of
operations that are used to specify a service of an object
or a component. Through its interfaces a component
exposes both its provided and required services. It is
possible to replace or modify a component’ s internals
without changing the interface or component
interconnections as long as the implementation adheres to
the interface contract. An interface contract specifies the
pre-conditions that must be met by a client prior to
invoking a server operation and the post-conditions that it
will receive as a return from the server. A component
interface should be standardised so that a component can
be widely reused.

3. CONCEPTUAL FRAMEWORK

A component meta-data model as illustrated in (Fig. 3) is
used to describe a component, its interfaces, state, post/pre
conditions and parameters. Here, for clanty, we have used
the Unified Modeling Language (UML) to illustrate our
framework. In future it may be necessary to define a
different notation system. The component META data
model is an explicit representation of a software
component, its interdependency, and its environmental
assumptions that forms the component specification. The
component specification identifies the component
interfaces or interface and pre and post conditions of
invoking the component. A component specification is
realized as a component implementation.

[E—
Cpsration ¥
1 0.~ i
0.1 Provdes | |
T it i
[Prowsed I
1 o)

,1 e i
| Component | .y [isectace — Atritnse :
e { P i
= ;
P =, | Reaueg 4 1
Aot ——— 7 |
1] iieriace | N\OQ1 e |

Permmissions | [1 —
] m‘ﬁi i
I’ﬂ-‘ﬁm |

v 0| Reque

i

¥ | ——

—_

o

y A
0./ a-f \ao- NG
| Pre l et | Cupa | | Pom |
| Condon Paramater | Parsmeler { Condtion |
\ 7
S >

Pacamater |

Fig 3. UML Meta model for component specifications

Interfaces. Components expose their functionality
through their interfaces. The interface provides access to
the exposed underlying properties and methods of the
component. The interfaces are seen as a provider and a
consumer [3, 4, 5]. In other words, the provider must
satisfy the requirements of the consumer. The concept of
required interfaces is essential to enabling software plug
and play. Each component will €Xpose one or more
provided interfaces and zero or more required interfaces.

Methods and attributes are either provided or required by a
component.

= Attributes. An attribute is a named property value that
describes the characteristics of a component. Given
permission to do so, an attribute may be requested
from any other component.

— Operation. An operation is the implementation of a
service of a component and represents the dynamic
behaviour of that component. Given permission to do

86

SO, an operation can be requested from any other
component in order-to perform some task.

A component’ s provided and required interfaces can h
obtained by querying the component.

~ Provided Interfaces. The underlying provigeq
methods and properties that are exposed through 4
server component’ s interfaces represent the serviges
that a server component provides. Exposed interfaces
may be either methods or attributes and can be
accessed through the provided interface by the client.
The results of a call to a provided operation shoyld be
documented as post-conditions of that operation.

—~ Required Interfaces. A component may also request
a list of services that it requires in order to perform.
The services that a component requests through jts
interfaces may be either methods or attnibutes. The
requirements of a component whether attributes or
methods should be documented in the components
pre-conditions.

Configuration — Attribute glue

A component or composition may expose a set of required
properties that need to be satisfied. Therefore, each
component and composition may be customised.
Configurations may be preformed either dynamically or
statically. With dynamic mapping a required attribute is
glued to another component in the application. Two
dynamically mapped possibilities exist, either gluing a
required attribute to a provided attmibute or gluing a
required attribute to an operation return. A statically
mapped attribute is linked to a static value provided by the

user.

Attribute adaptors are used to glue required and provided
interfaces together [6]. Once glued, a required attribute
always requests the value it requires from the provided
attribute that it is glued to.

An adaptor can also convert a provided attribute that is of
the wrong type so that it satisfies the requirements of a
required attribute,

Composition - Operation glue

A collaboration defines elements that work together to
provide some cooperative behavior. Therefore,
collaborations have structural as well as behavioral
dimensions. A given class might participate in several
collaborations. Thus, compositions are groups of
interconnected components or other compositions that are
composed together using operation glue in order to
perform a particular task.

Identifying the clear decompositions in your architecture is
the key to developing a hierarchical architecture where an
application is built from context-independent building
blocks. Once the proper decomposition is performed,

components may change independently, without affecting
the components that they are connected to, as long as bot_h
components conform fo the contract specified by their
interfaces. In a similar fashion layered components and
composifions can be added, removed and replaced. Like
configurations, compositions may be preformed either
dynamically or statically. With dynamic mapping a
required operation is glued to another component in the
application. It is possible to either glue a required operation
to a provided operation or to statically map an attribute to a
static value provided by the user.

Operation adaptors are used to glue required and provided
interfaces together [6]. Once glued, a required operation
always calls the provided operation that it is glued to when
required. Operation adaptors may be used when a provided
operation has an incompatible return type or parameters
and needs conversion. If required an attribute adaptor may
be used to convert both the return type and operation

eters to what is required. Once the interface
irements of the required operation are satisfied an
operation adaptor is used to glue the interfaces,

Component/Composition Interaction

The interaction between client and server must be
predefined as an interaction protocol.

Two forms of communication are possible: direct and
indirect (Fig. 4).

— Direct communication (Synchronous) occurs when
the methods and/or properties of a component are
glued to another. Operation calls and information is
passed directly through these interfaces. This
represents component message passing.

- Indirect communication (Asynchronous) occurs
when a component broadcasts a message on the
whiteboard and other components intercept, parse and
eact to these messages.

COMPONENT COMMUNICATION

Indirect Communication

r.h--g.-* ==
[I’,?— 7

Required

Prenaded
lsterface Interface
COMPONENT | A e i ;()—‘ COMPONFNT 2

Fig 4. Component Communication

When a component invokes the methods of another
through its interface it can generally pass data in the
Standard fashion using parameters of the standard types.
However in order to maintain system independence,

87

complex data types must be sent in the form of a structured
document such as an XML file with a XML schema.

4. ARCHITECTURAL FRAMEWORK

The architecture outlined below realizes the abstract
conceptual plug and play model. The architecture consists
of three major components.

The application generator is used to construct and tailor
component-based plug and play applications. The
application generator holds a repository of components that
have been discovered and are available to the plug and play
application building process. From the component list the
user is able to create, modify, save, load and use
configured compositions, components, modules and
solutions and assign security permissions.

The communications server or whiteboard is used by
components to post messages about changes in their
internal state that may be of concern to others that are not
directly connected to them. Messages are in the form of
structured XML documents with an XML schema so that
they can be easily parsed for relevant information by other
components. The message board buffers all messages that
have been posted as a sequence of events since its
instantiation so that components entering the application
after this time are able to synchronise with the current
application state.

The solution server holds pointers to both the application
and solution databases.

Application database holds the typical underlying
database schema and data using a Relational Database
Management System (RDBMS). The database is wrapped
using the framework so that it also acts as a component.
The reason for using the wrapping the application database
is so that a more structured and restricted form of access to
the database is enforced and a more diverse set of plug-in
components can be used. Interface methods are exposed

for:

- Modifying the schema such as describe the current
schema, create a database, create a table and alter a

table.

- Interacting with the database such as querying the
database, inserting records, updating records and
deleting records.

Solution database holds currently available configurations
and compositions of components, modules and solutions

and their user privileges.

The plug and play framework is broken down into four
major constructs: solutions, modules, compositions and

components.

Application solutions represent completely composed
and configured plug and play applications that can be
used by a number of users. Application solutions
consist of many modules, compositions and
components that are configured and composed

completely (Fig. 5).

APPLICATION SOLUTION

APPLICATION

l MODULEN ,

Fig. 5 Application solution with multiple modules

- Modules represent groups of components and
compositions that usually perform a single business
process. A module represents an independent entity
that is able to run with no further composition and
configuration. A module typically (but not necessarily)
has a user interface and several interconnected
components and compositions (Fig. 6). Modules can
be removed and added at anytime because they do not
impact other modules, compositions or components
they simply add and remove independent functions to
the application.

MODU
soners "—L Foiea

COMPONENT
COMPOSITION N~ |

COMPONENT
COMPOSITION &

COMPOSITION |

_____ /A\ — b R

COMPONENT LAYER | COMPONENT |] EO'“maT:T'-' | rD\ﬂ'ﬂ\‘ETr\'m_I cnw?o.\i\‘n_’

Fig 6. Module with multiple component compositions

Components. A component exposes selected underlying
parameters and methods though provided interfaces. Other
components can utilise these provided parameters and
methods to satisfy their own requirements. [n this way it is
possible to add and remove components from an
application dynamically at run-time (Fig. 7).

L i f PATIENT AGE
__________ - <3 .]
PATIENT DETAILS
MANAGER COMPONENT ORTHODONTIC ANAL vsig
\.. COMPOMENT
LW
f——————— >3 ———
| CHANGE PATIENT STaTuY A A Giice manoe STaTLY
________ iy (kb omiibalon.
V REQUIRED METHOD

Fig 7. Plug-in a component

Components expose information such as:

- Class identifier (CLSID — A unique string consisting of
numbers and letters that distinguishes one component
from the rest). The CLSID is used to invoke Components
wherever they reside, whether on a local computer of
distributed over the network.

- The component name represents the name that the user
will see to identify the component.

- The component type is used so that components can be
found easily and grouped with others of a common type
and functionality.

- The component description is used to outline the major
functions of a component and any other information that
the component programmer would like to provide.

- A Querylnterface gives detailed information about the
required and provided interfaces, the graphical user
interface (GUT) and how they are used.

- A GUlInterface points to the displayable graphic user
interface (GUI) that can be instantiated within a separate
window or as a part of a composition.

- A pre-condition specifies a constraint that must hold
before the invocation of an operation. A pre-condition is
the condition under which the operation guarantees that
the post-condition will be true.

- A post-condition specifies a constraint that must hold
after the invocation of an operation.

We have classified components into four different types:

Active Components are those that trigger actions or events
to occur without being glued to another action or event. An
alarm clock can be considered to be an Active Component
where it triggers the ninging action after continually polling
the time-checker component for a pre-specified time to
occur.

Reactive Components are ones that perform a task only
after a particular action or event message has been received
from the main application or another component. A stop-
alarm component would be considered a reactive
component. The stop-alarm component will stop the
ringing sound only when the user or the main system has
triggered the stop action.

Active and Reactive Components are components that
perform both as active and reactive types of components as
described above.

Passive Components are considered neither active nor
reactive. They can be considered to be tools of the
application that can be used by other components to
perform their tasks. A time-checker can be considered a

passive component. A time-checker will return the time
when asked to by another component.

5. DESIGN AND IMPLEMENTATION

Qur previous work concentrated on the addition and
removal of module plug-ins into an application to
add/remove functionality and was heavily based on the
Microsoft Component Object Model (COM) [7, 8]. This
work is aimed at providing a more robust and powerful
plug and play framework that supports the notion of
collaborative components that are hierarchically composed.
The plug and play framework is also general enough to be
able to be programmed in any of the major component

technologies.

Implementation
The current software prototype is implemented using
crosoft’ s Component Object Model (COM). The
odontic application has been broken down into
components and the plug and play framework has been
implemented with the features mentioned above.

Fig 8. Orthodontic Analysis Module Plug-in

Container. Active document containment is used to
mwplement the application generator. As with OLE
s¥cuments, active document containment uses a container
that provides the display space for Active documents, and
servers that provide the user interface and manipulation
capabilities for the active documents themselves [4]. Once
embedded within a container the module is initialised and
is free to access the database and interact with other
modules, components and compositions.

Plug-ins. Each plug-in in the orthodontic application is a
COM Component that resides in an OleContainer. The
application generator dynamically maintains each
OleContainer. Each plug-in component can access the
central database and communicate with other plug-ins that
are connected to it.

Database. The database is a Microsoft Access database
Wrapped as a COM automation server that exposes one
interface per database table. Each interface exposes
properties and methods that can be used to modify the
schema, query, insert and update the database.

89

6. CONCLUSION

Benefits such as reduced time-to-market, increased
reusability, increased quality and reduced cost can be
experienced by reusing components [I]. However,
improperly defined component interfaces and incorrect
component decomposition results in components that are
difficult to add to diverse application environments. It is
also difficult to rearrange, add and remove components
dynamically at runtime: This paper presents an overview of
a plug and play dynamically re-configurable component
based framework. This framework defines a component
communication protocol and encourages proper component
decomposition, reuse and composition. It also makes it
possible to rearrange, reconfigure, add and remove
components dynamically at runtime.

The framework has been utilized to construct an
orthodontic application to demonstrate the feasibility of the

approach.

REFERENCES

[1] M. Aoyama, New Age of Software Development: How
Component-Based Software Engineering Changes the Way
of Software Development, Proceedings of the
International Workshop on Component-Based
Engineering, Kyoto, Japan, April 1998

[2] E. Chang, D. Annal, F. Grunta, Dynamic Plug and Play
GUI Architecture, Proceedings of the [8th IASTED
International Conference on Applied Informatics, A12000,
Innsbruck, Austria, February 2000

[3] 1. Holland, Specifying Reusable Components Using
Contracts, Proceedings of ECOOP, March 1993

[4] N. Medvidovic, R. Taylor, Separating Fact from Fiction
in Software Architecture, Proceedings of the International
Software Architecture Workshop, Orlando, Florida, USA,

November 1-2 1998

[5] D. Linthicum, Enterprise Application Integration
(Addison Wesley Longman, Inc., 1999).

[6] D. Rine, N. Nada, K. Jaber, Using Adapters to Reduce
Interaction Complexity in Reusable Component-Based
Software Development, Proceedings of the Symposium on
Software Reusability, Los Angeles, CA, USA, May 1999

[7] A. Talevski, E. Chang, A dynamically re-configurable
component-based architecture, [nternational Journal of
Engineering and Intelligent Systems, 10(1), 2002

[8] A. Talevski, E. Chang, A dynamically re-configurable
GUI architecture, World Multiconference on Systemics,
Cybemnetics and Informatics, Orlando, Florida, USA, July

2001

_—

