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ABSTRACT1

We study the effect of adding discrete structural mass on the linear stability of an otherwise homoge-2

nous cantilevered-free flexible plate immersed in uniform axial flow. The methods of Howell et al.3

(JFS 2009, 25:544-546) that mixed numerical simulation with eigenvalue analysis are simply extended4

for the present study. An ideal two-dimensional flow is assumed wherein the rotationality of the5

boundary-layers is modelled by vortex elements on the solid-fluid interface and the imposition of the6

Kutta condition at the plate’s trailing edge. The Euler-Bernoulli beam model is used for the structural7

dynamics. It is shown that addition of mass to the plate can be either stabilising or destabilising,8

depending upon the location of the added mass, and how its inclusion modifies the energy exchanges9

of the corresponding homogeneous structure. Our results therefore suggest a straightforward means10

by which the critical flow speed at which low-amplitude flutter sets in can be passively controlled in11

engineering applications.12

13
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1 INTRODUCTION16

This brief communication reports the effect of adding localised structural mass on the linear flutter17

bounds of a thin flexible plate that is exactly aligned with the direction of a uniform flow. A schematic18

of the two-dimensional system studied is depicted in Fig. 1. The added mass is assumed to be a line19

element of dense material that does not contribute to the flexural rigidity of the plate nor does it20

interfere with the fluid flow; for the latter assumption to hold perfectly the added mass would be21
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embedded within the plate material. Gravitational effects are neglected and thus in the unperturbed22

system state the plate is aligned with the x-axis. When subjected to a small-amplitude perturbation,23

the contour of the deformed plate causes it to become a lifting surface over which a non-uniform24

fluid pressure field acts. This further deforms the plate which, in turn, modifies the lift force and25

its associated pressure field. Thus, a fluid-structure interaction is established that may lead to either26

attenuating, neutrally-stable or amplifying oscillations of the structure. Of particular importance is27

the critical value of the flow speed at which fluid-loaded vibration first become unstable. While this28

system is of fundamental interest, its dynamics may be relevant to many physical systems ranging29

from fluttering flags, through to oscillations of the human soft-palate that create snoring noises, and to30

energy-harvesting devices that could extract fluid energy through its transfer to the plate in a process31

of controlled destabilisation.32

Kornecki et al. (1976) were the first to conduct comprehensive modelling and analysis of the33

problem at hand, although it has classical roots that date back to Lord Rayleigh and see, for example,34

the elegant experiments of Zhang et al. (2000) who investigated the oscillation of a filament in a35

soap-film flow. Using ideal flow Kornecki et al. studied the two-dimensional problem of flexible plate36

embedded in an infinite domain of fluid, as did the more recent work of Huang (1995), Yamaguchi et37

al. (2000), Watanabe et al. (2002), Argentina & Mahadevan (2005) and Tang & Päidoussis (2007).38

Eloy et al. (2007, 2008) incorporated the effects of finite aspect ratio showing that these principally39

served as a correction to the fundamentally two-dimensional dynamics of the problem. The flow-plate40

configuration has been extended to that of a flexible plate mounted in plane-channel flow; see Auregan41

& Dépollier (1995) and Guo & Paidoussis (2000). All of these studies predict that the plate loses its42

stability through flutter that sets in beyond a critical uniform flow speed or Reynolds number in the43

case of viscous channel flow; for the latter refinements see Balint & Lucey (2005) and Tetlow & Lucey44

(2009). For short plates the flutter mode is predicted to comprise mainly a combination of the first45

and second in-vacuo modes while for long plates, or plates with heavy fluid loading, the critical mode46

is dominated by higher-order mode content. The recent work of Howell et al. (2009) elucidated the47

instability mechanisms showing that ‘short’ plates succumb to single-mode flutter while ‘long’ plates48

are destabilised by modal-coalescence flutter of the Kelvin-Helmholtz type predicted exactly for fluid-49

loaded plates of infinite extent and discussed, for example, by Crighton & Oswell (1991) and Lucey50

(1998).51

In this brief communication we extend the work of Howell et al. (2009) to model and investigate the52

effect of adding localised mass for a range of values and at different locations along the flexible plate.53

Certain counter-intuitive results are obtained; for example, the addition of mass can be stabilising54

and these are explained in terms of the energy transfers between the fluid and the plate. These may55

be of particular relevance in the design of the flutter mill recently proposed and studied by Tang et56
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al. (2009) wherein instability of a flexibility plate is used to harvest the kinetic energy of the mean57

flow.58

2 THEORETICAL AND COMPUTATIONAL MODELS59

The essential modelling is described in detail in Howell et al. (2009) wherein the system of Fig. 160

was mounted symmetrically within a channel with its walls located at y = ±H; the present system61

is obtained by letting H → ∞. We also neglect the effects of the wake that were modelled in the62

precursor paper because these were shown to be significant only for very short panels; we will return63

to this below.64

For ease of reading, we first summarise the approach of Howell et al. (2009) as applied to the present65

investigation and then show how inertial inhomogeneity is readily incorporated in the model. The66

flow field is found using a linearised boundary-element method (BEM) with first-order vortex panels67

on the flexible plate because of the discontinuity of tangential fluid velocity across this surface that68

makes it a lifting surface; the distributed lift drives the motion of the flexible plate. The singularity69

strengths are determined by enforcing the no-flux boundary condition at every panel control point70

and continuity of the distributed vorticity between adjacent panels used to discretise the flexible plate.71

Thus the vector of singularity strengths is given by72

{Γm} =
[
IN
im

]−1 {U∞θm + η̇m} , (1)

where Γm contains the zero- and first-order order coefficients of the singularity distributions on the73

panels in the BEM.
[
IN
im

]−1 contains, in addition to the normal influence-coefficients of the singu-74

larities, the boundary conditions of: a) vortex strength continuity at panel end points; and b) zero75

vorticity at the plate’s trailing edge, thus enforcing the standard Kutta condition of zero pressure76

difference at the trailing edge for linear displacements. θm is the panel’s angle to the horizontal which77

in the linear framework is the streamwise spatial derivative of the boundary, ηm.78

The unsteady Bernoulli equation is used to determine the pressure distribution on the flexible79

plate. The transmural pressure is then used as the forcing term in the one-dimensional thin flexible-80

plate equation couched in finite-difference form. The motions of the plate and the fluid flow are fully81

coupled through deflection, vertical velocity and acceleration of the two media at their interface. This82

allows the following single system (matrix) equation to be written83

ρh [I] {η̈m}+ d [I] {η̇m}+ B [D4] {ηm} = 2ρfU2
∞(1/δx)

[
B+

1

]
{ηm}

+ ρfU∞(1/δx)
[
B+

2

]
{η̇m}+ ρfU∞

[
B−1

]
{η̇m}

+ ρf [B2] {η̈m} , (2)

where [B] are matrices of singularity influence coefficients, [D4] is a fourth-order spatial-differentiation84
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matrix and [I] is the identity matrix. ρ, h, d and B are respectively, the material density, thickness,85

dashpot-type damping coefficient and flexural rigidity of the plate, the dynamics of which appear on86

the left-hand side of the equation. Uniform discretisation of the plate length L into N collocation87

points defines δx = L/N . The pressure perturbation that drives the plate motion appears on the88

right-hand side, where ρf and U∞ are the fluid density and flow speed. The pressure terms in the line89

order of Eqn. 2 can be interpreted as the hydrodynamic stiffness, damping and inertia respectively.90

The formulation of Eqn. 2 is for a homogeneous flexible plate; Howell et al. (2009) briefly91

investigated the inhomogeneous case of spatially varying flexural rigidity, B. In the present study,92

we model inertial inhomogeneity by introducing a point mass at a specific plate location x̄p (where93

0 < xp < L); its value is given in quanta, n+, of total plate mass (per unit width), MT = ρhL. To94

effect this, the element (m,m) of the identity matrix, [I] in Eqn. 2 becomes (1 + n+(MT /δx)) where95

m = int[(xp/L)N ] is the collocation point closest to the location at which the point mass is added.96

We take two approaches to the solution of Eqn. 2. In the first we reduce the second-order ordinary97

differential equation in {η} to first-order using the state-space variables w1(t) = η(t) and w2(t) = η̇(t).98

Rearranging in companion-matrix form then yields the system equation99

ẇ = [H]w, where w = {w1, w2}T
. (3)

Single-frequency time-dependent response is assumed at ω which is a complex eigenvalue of [H].100

Positive ωI and ωR respectively represent the oscillatory and amplifying parts of the response.101

Alternatively, we perform a time-discretisation of Eqn. 2 and then numerically time-step, using102

a semi-implicit method, the equation to determine the system response to some form of initial per-103

turbation. In doing so we are able to study transient behaviour and reveal localised flow-structure104

dynamics that when summed contribute to the system response.105

3 RESULTS AND DISCUSSION106

All of our results are presented in non-dimensional form having used the scheme of Crighton & Oswell107

(1991), and derived more explicitly in Lucey et al. (2003), whereby108

t̄ = t [ρ2
fB

1
2 /(ρh)

5
2 ], Ū = U∞ [(ρh)

3
2 /(ρfB

1
2 )] and d̄ = d [(ρh)

3
2 /(ρ2

fB
1
2 )]. (4a, b, c)

The non-dimensional streamwise coordinate, the length (or mass ratio) of the flexible plate and109

the channel height are defined by110

x̄ = x/L, L̄ = L[ρf/(ρh)] and H̄ = H[1/L]. (5a, b, c)
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This scheme permits Ū and L̄ to be interpreted respectively as the physical flow speed and plate111

length for given fluid and plate properties.112

Howell et al. (2009) showed that when channel walls were present at y = ±H their effect was113

negligible for H̄ = 1; i.e. the fluid-structure system behaved as if it were in an infinite domain of fluid.114

We also use a perfectly elastic plate, hence d̄ = 0, in the present study. Howell et al. (2009) presented115

the effects of channel wall proximity, damping and an upstream splitter plate on the fundamental116

system studied here; the reader is therefore referred to that work for the details of these refinements.117

We discretise the flexible plate into N = 50 panels, following Howell et al. (2009) wherein the present118

methods were validated, and extract all 50 system eigenmodes. In summary, the non-dimensional119

control parameters of the system investigated are the flow speed Ū , the plate length L̄, the quantity120

of added mass n+, and its location x̄p.121

To understand the results of our numerical simulations, we consider the energy evolution of the122

system. Adapting the derivation of Balint & Lucey (2005), the plate energy changes with time123

according to124

d

dt

(
1
2
ρh

∫ L

0

η̇2dx︸ ︷︷ ︸
Ek

+
1
2
n+MT η̇2|x=xp︸ ︷︷ ︸

E+
k

+
1
2
B

∫ L

0

η2
,xxdx︸ ︷︷ ︸

Es

)
=

∫ L

0

(−∆p) η̇dx,︸ ︷︷ ︸
Ẇ

(6)

where the total plate energy, Et, is the sum of the kinetic energies of plate, Ek, and added mass,125

E+
k , plus the plate’s strain energy, Es. Equation 6 shows that the plate energy either grows or decays126

in time depending upon the rate of work done by the pressure loading, (−∆p) (determined by the127

right-hand side of Eqn. 2). If structural damping were present, then a further energy-dissipation term128

appears on the right-hand side; see Balint and Lucey (2005) and Howell et al. (2009) for a discussion129

of its effect. In our results we present energy records, W̄ (t), that represent the sum of pressure work130

done up to time t and therefore corresponds to the current value of total plate energy Et; these are131

non-dimensionalised by the initial strain energy of the plate due to the applied deflection.132

3.1 ‘Short’ plates - low mass ratio133

We first review the results for a homogenous, or ‘standard’, short plate at L̄ = 1 presented in Howell134

et al. (2009) for H̄ = 1. Figure 2a shows the variation of system eigenvalues with applied flow speed.135

Single-mode flutter of the second system mode is the critical instability at a non-dimensional flow speed136

Ū = Ūc = 5.452. Figure 2b shows the numerical simulation of the critical mode at this flow speed.137

The simulation was started by releasing the plate from an applied deformation - the thick black line138

- in the shape of the second in-vacuo mode. The critical mode, seen to contain strong contributions139

from the first and second in-vacuo modes, then evolves from the initial excitation. Howell et al.140

monitored the phase angle between the pressure loading and plate velocity in numerical simulations141
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showing that both the leading-edge singularity and the trailing-edge Kutta condition contribute to142

non-orthogonality of the pressure and plate velocity. The product of these terms yields the localised143

rate of work done (per unit area of plate) which is then non-zero when integrated over one period of144

oscillation. The plate-energy record for the simulation of Fig. 2b is shown in Fig. 2c. After transients145

due to mode adjustment have convected away, the total energy is constant. However, it is also seen146

that the energy exchanges between plate and flow are spatially dependent; thus for example, the third147

quarter from the leading edge of the flexible plate receives energy while the fourth quarter gives energy148

to the fluid flow. It is the sum of all the spatially dependent energy transfers that, in this case, yields149

the neutral stability of the system at this critical speed.150

We now show how the addition of a point mass changes the results of the standard case charac-151

terised by Fig. 2. Figures 3 and 4 show the effect of adding a point mass of n+ = 3 (three plate152

masses) at positions x̄p = 0.625 and x̄p = 0.875 respectively. In each figure the mode and energy153

plots are at the critical flow speed. Adding the mass at x̄p = 0.625 is stabilising because it increases154

Ūc to 6.609. This occurs because of the reduced energy transfer to the plate in the third quarter155

that principally drives single-mode flutter; see Fig. 2c. The energy transfer to the plate in its second156

quarter is increased and this is a typical feature of modal-coalescence flutter as will be seen in §3.2.157

However, this additional source of destabilisation is offset by an increased stabilising energy transfer158

to the fluid in the fourth quarter of the plate. The eigenvalue plot of Fig. 3a shows that the mass ad-159

dition causes coupling between Modes 1 and 2 and this interrupts the single-mode flutter mechanism160

of the standard case. This effect is clearly seen in the mode plot of Fig. 3b that strongly features161

a Mode-1 contribution whereas the homogeneous case of Fig. 2b is dominated by Mode 2 content.162

Thus, the addition of the mass effectively replaces the critical single-mode flutter mechanism with163

that of modal-coalescence.164

In contrast, the same point mass added at x̄p = 0.875 is destabilising with the critical flow speed165

reducing to 4.406 from the 5.452 of the standard case. The energy record of Fig. 4c shows that the166

added mass interrupts the stabilising effect of the fourth quarter of the plate that in the standard case167

of Fig. 2c transfers energy from plate to the fluid. However, the instability mechanism - single mode168

flutter - is unchanged as is evidenced by comparing the morphology of the corresponding eigenvalue169

plots, Figs. 2a and 4a. The critical mode plotted in Fig. 4b is more strongly dominated by Mode 2170

content as compared with Fig. 2b; this is evidence of a more potent single-mode flutter mechanism.171

Figure 5 summarises the effect of adding a point mass for the case L̄ = 1. Figure 5a shows the172

variation of critical flow speed with the amount of mass, n+, added at each of the positions x̄p = 0.375,173

0.625 and 0.875. Mass addition at x̄p = 0.625 yields modal-coalescence flutter (m-c), as shown in Fig.174

3a, and is stabilising throughout the range of n+ studied, whereas adding mass at x̄p = 0.375 and175

0.875 promotes, for the latter as demonstrated through Fig. 4, the single-mode flutter (smf) that is176
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the critical instability for the homogenous plate. Figure 5b shows how the critical speed varies with177

the position, x̄p, at which the added mass is located on the plate for three different quanta, n+ = 1,178

2 and 3. Note that we limit mass addition to a value of n+ = 3 (three times the plate mass) because179

to exceed this would be physically implausible. The features for the different amounts of added mass180

are similar. This demonstrates that its effect is critically dependent upon the location at which it is181

added and therefore adding mass can be used as a strategy to either increase or decrease the critical182

flow speed.183

3.2 ‘Long’ plates - high mass ratio184

Howell et al. (2009) showed that homogeneous plates with high L̄ are destabilised by modal-coalescence185

flutter as opposed to single-mode flutter that gives the critical condition for plates with low L̄. Figure186

6, adapted from Howell et al. (2009) for H̄ = 1, shows results for a homogeneous plate corresponding187

to those of Fig. 2 but with L̄ = 10. Instability is caused by the coalescence of Modes 2 and 3188

as evidenced by Figs. 5a and 5b. The energy plot of Fig. 5c shows that the main destabilising189

energy transfer occurs in the second quarter of the plate. This is in contrast to the dominance of the190

third-quarter in providing the destabilising energy transfer of single-mode flutter as shown in §3.1.191

Adding a point mass with n+ = 2 at locations x̄p = 0.625 and x̄p = 0.875 gives the results of Figs.192

7 and 8 respectively. At both locations the effect is destabilising, the critical speed dropping from 0.63193

to 0.47 and 0.21 respectively. Thus, the greatest effect occurs when the added mass is placed nearest194

to the trailing edge of the plate. However, the increased instability of the system occurs through very195

different mechanisms for these two cases.196

Figure 7, when compared with the corresponding results of Fig. 6, shows that the modal-197

coalescence mechanism continues to yield the critical speed and, indeed, is promoted because the198

added mass reduces the difference between oscillatory frequencies of the interacting Modes 2 and 3.199

The critical mode shape and energy budgets are similar to those of the homogeneous case except that200

energy transfer in the third quarter of the plate becomes a marginal contributor to unstable behaviour.201

When the same mass is added nearer the trailing edge of the plate at x̄p = 0.875, Fig. 8 shows202

that single-mode flutter becomes the critical instability. This is evidenced by the critical mode of Fig.203

8b and the fact that the main destabilising energy transfer occurs in the third quarter of the plate as204

seen in Fig. 8c; both of these features bear similarity to the typical single-mode flutter results for a205

homogenous short plate presented in Figs. 2b and 2c. The effect of the added mass at this location206

is to increase the difference between the oscillation frequencies of Modes 2 and 3, seen most notably207

at Ū = 0 in Fig. 8a. This sufficiently decouples Modes 2 and 3 so that modal-coalescence does not208

occur and instead Mode 2 succumbs to single-mode flutter at the lower flow speed associated with209
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that destabilisation mechanism.210

For L̄ = 10 the effect of different amounts of added mass and its location are quantified in Fig.211

9. Throughout the range of n+ and x̄p investigated the addition of mass is seen to be destabilising.212

The kinks in Figs. 9a and 9b for n+ = 1 and x̄p = 0.875 are accounted for by the switch from a213

modal-coalescence flutter mechanism to that of single-mode flutter characterised by the results and214

discussion of Fig. 8.215

4 CONCLUDING REMARKS216

We have presented a simple adaptation of the model of Howell et al. (2009) that enables the effect of217

inertial inhomogeneity on the linear stability of flexible plate in a uniform flow to be studied through218

both an eigen-analysis and numerical simulation. Our results show that the addition of mass at a219

discrete location can be either stabilising or destabilising for short plates (or low mass ratios) whereas220

it is always destabilising for long plates (or high mass ratios). These results can be understood in the221

destabilisation framework of Howell et al. They showed that the finiteness effects embodied in the222

leading-edge singularity and the Kutta condition cause short plates to be destabilised by single-mode223

flutter whereas long plates succumb to modal-coalescence flutter brought about by the relative (to224

structural forces) magnitude of the fluid loading at higher flow speeds. For short plates the present225

study shows that the addition of mass can promote modal coupling which causes the single-mode226

flutter to be replaced by modal-coalescence flutter as the critical instability at a higher critical speed.227

Alternatively, the single-mode flutter mechanism that is critical for homogeneous short plates can be228

promoted leading to a lower critical speed. Which of these two effects occurs depends critically upon229

the location of the added mass. In contrast, long homogenous plates are only destabilised by the230

addition of mass because either the modal-coalescence mechanism is promoted or because it can be231

replaced by single-mode flutter giving a much lower critical flow speed. Again, the location of the232

added mass determines which form of increased destabilisation occurs.233

A limitation of the present study is that the effect of the wake was omitted. Howell et al. (2009)234

studied this via numerical simulation and broadly showed that it inhibited the single-mode flutter of235

short plates and promoted the modal-coalescence flutter of long plates thereby increasing the critical236

flow speed of the former and lowering it for the latter. The interplay between the two types of237

instability caused by the addition of mass is therefore likely to be quantitatively modified when wake238

effects are included. However it would be reasonable to speculate that those cases for which modal-239

coalescence flutter was the critical instability would have a slightly lower critical flow speed while the240

opposite would hold where added mass promoted single-mode flutter. While the methods of Howell241

et al. could be modified to generate numerical simulations with both inertial inhomogeneity and wake242
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effects, their extension so as to permit the extraction of system eigenmodes is not so straightforward;243

this next step is a more complex piece of work that is underway.244
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6 FIGURE CAPTIONS301

Figure 1 Schematic of the flexible plate with an added mass embedded in a uniform flow.302

303

Figure 2 System dynamics for L̄ = 1: (a) Variation of eigenvalues with flow speed (oscillatory304

and growth/decay parts represented by broken and full lines respectively), (b) time-sequence of in-305

stantaneous plate position at critical speed Ūc = 5.452 (of Mode 2 in (a), the thick line being the306

initial deflection), and (c) time series of cumulative energy transferred from flow to plate in —— first,307

–◦– second, –•– third, and · · · fourth quarters of the plate while —— (thick) is the total of these.308

Adapted from Howell et al. (2009).309

310

Figure 3 The effect of added mass on the fluid structure interaction at L̄ = 1: system giving Fig.311

2 modified by added mass n+ = 3 at x̄p = 0.625 giving Ūc = 6.609. The black dot on the initial312

deflection in (b) signifies the position where the added mass is applied. (Sub-figure titles and legends313

as in Fig. 2.)314

315

Figure 4 The effect of added mass on the fluid structure interaction at L̄ = 1: system giving Fig.316

2 modified by added mass n+ = 3 at x̄p = 0.875 giving Ūc = 4.406. The black dot on the initial317

deflection in (b) signifies the position where the added mass is applied. (Sub-figure titles and legends318

as in Fig. 2.)319

320

Figure 5 Summary of the effect of added mass for L̄ = 1: variation of critical flow speed, Ūc with321

(a) n+ for mass added at 4 x̄p = 0.375, × x̄p = 0.625, and ◦ x̄p = 0.875, and (b) the location on the322

plate, x̄p at which the mass is added for the values ∗ n+ = 1, + n+ = 2, and � n+ = 3. The labels323

smf and m-c denote single-mode and modal coalescence flutter respectively as the type of flutter that324

yields the critical flow speed and the dashed line indicates its value for no added mass.325

326

Figure 6 System dynamics for L̄ = 10: (a) Variation of eigenvalues with flow speed (oscillatory327

and growth/decay parts represented by broken and full lines respectively), (b) time-sequence of in-328

stantaneous plate position at critical speed Ūc = 0.63 (of Mode 2 in (a), the thick line being the329

initial deflection), and (c) time series of cumulative energy transferred from flow to plate in —— first,330

–◦– second, –•– third, and · · · fourth quarters of the plate while —— (thick) is the total of these.331

Adapted from Howell et al. (2009).332

333

Figure 7 The effect of added mass on the fluid structure interaction at L̄ = 10: system giving334

Fig. 6 modified by added mass n+ = 2 at x̄p = 0.625 giving Ūc = 0.47. The black dot on the initial335

11



deflection in (b) signifies the position where the added mass is applied. (Sub-figure titles and legends336

as in Fig. 6.)337

338

Figure 8 The effect of added mass on the fluid structure interaction at L̄ = 10: system giving339

Fig. 6 modified by added mass n+ = 2 at x̄p = 0.875 giving Ūc = 0.21. The black dot on the initial340

deflection in (b) signifies the position where the added mass is applied. (Sub-figure titles and legends341

as in Fig. 6.)342

343

Figure 9 Summary of the effect of added mass for L̄ = 10: variation of critical flow speed, Ūc344

with (a) n+ for mass added at 4 x̄p = 0.375, × x̄p = 0.625, and ◦ x̄p = 0.875, and (b) the location on345

the plate, x̄p at which the mass is added for the values ∗ n+ = 1, + n+ = 2, and � n+ = 3. The labels346

smf and m-c denote single-mode and modal coalescence flutter respectively as the type of flutter that347

yields the critical flow speed and the dashed line indicates its value for no added mass.348
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