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ABSTRACT 

Hyperspectral remote sensing data of shallow water environments can be 

processed to provide bathymetry and benthic habitat maps through physics-based 

inversion models. However there is uncertainty inherent in the remote sensing 

reflectance that propagates to the derived products, and which limits the number and 

type of benthic classes that can be optically resolved. Notwithstanding the natural 

spectral variability that occurs in substrate reflectance and in absorption and 

backscattering coefficients of inherent optical properties; uncertainty also arises from 

sensor and environmental noise, the latter of which is introduced from imperfect 

atmospheric, sunglint and air-to-water interface corrections imposed on the at-sensor 

radiance. Estimating the confidence intervals or reliability of shallow water mapped 

products from image based uncertainty, can provide an understanding of the 

limitations of remote sensing for environmental monitoring. This research focuses on 

propagating uncertainty through a physics-based inversion model to assign confidence 

intervals to the bathymetry and benthic classification products derived from surface 

reflectance measurements. Subsequent processing techniques utilising these 

confidence intervals are also developed that aid in ecological interpretations and in 

understanding the potential of remote sensing for shallow water classification. 

The accuracy and precision of products generated from shallow water 

inversion models is dependent in part on the optimisation algorithm used. Global 

optimisation algorithms that converge on the solution with the global minimum in 

parameter space have increasingly been used in ocean colour inversions. However they 

are hampered by longer computational processing time when compared to local 

optimisation algorithms such the Levenberg Marquardt (LM) algorithm. In this work, 

the Update-Repeat LM (UR-LM) and Latin Hypercube Sampling LM (LHS-LM) 

routines are presented. These solution methods test the parameter space for the best 

‘local’ if not global minimum. The two methods are computationally faster than global 

optimisation algorithms, such as Simulated Annealing, particularly when propagating 

uncertainty through the inversion model. Our analysis showed that the LHS-LM and 

UR-LM methods improved the accuracy and precision of geophysical parameters 

derived from inversion models when compared to the standard LM. 

Detecting trend and seasonal variability of key environmental parameters is 

of core interest for resource managers. Previous studies have tended to neglect any 
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consideration of the uncertainty of remotely sensed products and whether detected 

temporal changes are indeed significant above the uncertainty inherent in the system. 

A temporal analysis processing scheme is presented for bathymetry images and 

exemplified using nine HICO images of Shark Bay, Western Australia, captured 

between November 2011 and August 2012. Here uncertainty was propagated through 

a shallow water inversion model using the UR-LM optimisation algorithm to generate 

HICO-derived images of bathymetry and its associated uncertainty. An image-based 

tide correction procedure was additionally developed to correct the bathymetric data 

for variations in depth due to tide. The resultant dataset was subsequently analysed for 

depth changes due to bottom sediment resuspension and deposition using a per-pixel 

t-test analysis. Analysis revealed that temporal changes in depth to as low as 0.4 m can 

be detected and considered significant at a 95% confidence interval. 

The limits of benthic classification from remotely sensed imagery was also 

analysed in this research through the ability to spectrally distinguish different benthic 

species above the inherent uncertainty. Here the uncertainty combined image-based 

sensor and environmental noise with the benthic species’ taxanomic spectral 

variability. Knowing the number and type of benthic classes that can be optically 

distinguished a priori can aid in the analysis of the potential of optical remote sensing 

for benthic classification – particularly matching deliverables with expectations. We 

present a new hierarchical clustering using linear discriminant coordinates, termed the 

HDC, which when combined with a semi-analytical shallow water model, quantitates 

the number and type of benthic classes that can be distinguished at any given water 

column optical property and depth. The HDC is novel in that it incorporates the total 

system noise into the clustering procedure, and terminates when all benthic classes 

have an inter-class spectral overlap above a user-defined threshold. The HDC 

procedure is demonstrated by assessing the conditions (clustering accuracy, sensor 

spectral resolution, water column optical properties and depth) that enable the spectral 

distinction of the seagrass Amphibolis antarctica from benthic algae. Such an analysis 

can provide a priori insights into what sensor, classification accuracy, water turbidity 

and depth enable the spectral distinction between ecologically important classes such 

as live versus dead coral, or coral versus algae. 
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CHAPTER 1  

 

GENERAL INTRODUCTION 

 

1.1 Overview 

This thesis examines the inherent uncertainty present in the remotely sensed 

products of bathymetry and benthic classification derived from hyperspectral imagery 

of shallow water environments. The main aim is to utilise knowledge of the uncertainty 

to ascertain the potential and limitations of bathymetry and benthic classification, that 

is, what is possible and what is not, for environmental monitoring. Outcomes as a result 

of this research may lead to an improved understanding of what optical remote sensing 

can offer with regard to these two important products and may help assess whether 

other methods are needed to meet the outcomes of the user. This chapter provides a 

general overview of the importance of bathymetry and benthic classification to 

environmental monitoring and remote sensing techniques that can aid in the 

monitoring. The thesis aims, significance and outline are also presented. 

 

1.2 Background 

Coastal and coral reef ecosystems exert a major influence on a nation’s social 

well-being and economy through recreational activities and by providing important 

commercial valuables (Costanza et al., 1997; Moberg & Folke, 1999). However, the 

ever increasing human-induced impact of over-fishing, spread of marine diseases, 

coastal development and influx of pollution from land-based activities can alter and 

even destroy these fragile and rapidly declining ecosystems (Fabricius, 2005; Aronson 

& Pretch, 2006; Halpern et al., 2008). Due to their sensitivity to disturbances and 

importance to human activities, conservation and sustainable resource development 

has being identified as a key outcome for improved management plans (Obura & 

Grimsditch, 2009). In this context conservation arises first through an inventory of the 

resources present and subsequent monitoring of changes (Nichols & Williams, 2006). 

Accurate monitoring, or at least an understanding of the accuracy of monitoring, is 

therefore crucial for the development of effective management plans that provide 
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trade-offs between human uses, protection of these ecosystems and the services that 

they provide (Halpern et al., 2008). 

Marine benthic Habitat Maps (MHMs) are spatial distribution datasets 

describing the habitat conditions that include bathymetry, water currents, sea bed 

morphology and substratum and benthic biota of a local or regional ecosystem. MHMs 

are utilised in research and managerial fields such as in habitat diversity assessments 

(Conroy & Noon, 1996; Gray, 1997; Barbera et al., 2012) and ecosystem-based 

management (Cendrero, 1989; Diaz, Solan, & Valente, 2004; Cogan, Todd, Lawton, 

& Noji, 2009). Temporal monitoring using MHMs allows ecosystem managers to 

determine the natural seasonal variation in structure and composition of a given 

ecosystem (Cogan et al., 2009). This can delineate changes caused by natural and 

human disturbances and can aid in the selection of appropriate recommendations and 

actions by managers (Cogan et al., 2009). Alternatively, MHMs can be used as a tool 

to provide advice on the sustainable management of these ecosystems (Bax & 

Williams, 2001), or the development of Marine Protected Areas (Ward, Vanderkleft, 

Nicholls, & Kenchington, 1999; Roff & Taylor, 2000; Roff, Taylor, & Laughren, 

2003; Dalleau et al., 2010). As such, the need for accurate and precise MHMs of 

coastal and coral reef environments, or at least an understanding of their accuracy and 

precision, is paramount for their management, conservation and sustainable use. 

Traditionally, aerial photography and diver surveys were methods used to 

derive MHMs. Diver surveys, although very accurate, can only provide information 

either at very specific locations (point data) or at most, transect data. Aerial 

photography on the other hand can be used to produce maps of much larger areas but 

requires trained interpreters to identify features such as vegetation beds or reef systems 

which are classified according to human interpretation of their edge smoothness, size 

and colour (e.g. Larkum & West, 1990; Remillard and Welch, 1992; Sotheran, Foster-

Smith, & Davis, 1997). The latter method is limited by: (a) the experience of the 

observer, and as such is subjective; (b) the excessive amount of time it takes an 

observer to classify an image "by eye", and; (c) the qualitative nature of the maps. In 

the last 30 years, these mapping techniques have evolved to utilise digitised aerial 

photographs and satellite imagery coupled with a type of computerised classification 

that includes supervised and unsupervised classification (e.g. Sotheran et al., 1997; 

Pasqualini, Pergent-Martini, Clabaut, & Pergent, 1998; Pasqualini et al., 2005; Fornes 
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et al., 2006), advanced image segmentation techniques (e.g. Kendrick et al., 2002), 

and; others such as neural networks (e.g. Calvo, Ciraolo, & Loggia, 2003). The 

limiting factors of these modern photography techniques are: (1) the need of a training 

dataset, which usually comprises some type of in situ data; (2) the subjective nature of 

class definition in unsupervised classification, and; (3) the in-ability to estimate the 

proportion of cover of each benthic substratum - particularly important, for instance, 

if a mixture of benthic vegetation and sand are present. 

 

1.3 Passive Remote Sensing 

Passive remote sensing is the act of measuring the radiant flux reflected or 

emitted by an object over a selected set of wavelengths. For remote sensing of the 

coastal ocean, spectral bands are typically in the visible to near-infrared (NIR) portion 

of the electromagnetic spectrum (Sathyendranath et al., 2000) and reflectance is the 

primary mechanism giving rise to the photons collected by the instrument. In the 

context of shallow water environments the “colour” of spectral radiance leaving the 

water’s surface is directly affected by the absorptive and scattering properties of the 

water column, the depth and the bottom substrate (Mobley, 1994) which modulate the 

incident solar irradiance into the “colour” observed. Hence measuring the spectral 

radiance using passive space-borne or airborne imaging sensors can offer a 

quantitative and efficient approach for mapping water column optical properties and 

bottom substrate properties. The development of remote sensing tools for ocean colour 

and that of bathymetry and benthic classification has followed different research 

objectives. Many of the differences in these approaches relate to the treatment of the 

water column effects; which for benthic classification are considered an impeding 

factor and research into their removal from the signal measured by a sensor has been 

extensive (Zoffoli, Frouin, & Kampel, 2014); for bathymetry the complex interactions 

between the water depth and water optical properties have resulted in mainly empirical 

algorithms; for ocean colour, the signal from the water column conveys information 

on the abundances of the major optically active constituents (the primary objective). 

These differences in objectives have thus resulted in the development of different 

empirical algorithms that may rely on different bio-optical assumptions. 

Ocean colour remote sensing has traditionally assumed that in the open ocean 

the spatial variability of the measured spectral radiance arises from variations in 
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phytoplankton pigment (mostly by Chlorophyll a) concentration, i.e. case 1 waters 

(Morel & Prieur, 1977; Morel, 1988). In addition the concentrations of other optically 

active in-water constituents such as coloured dissolved organic matter (CDOM) and 

suspended particulate matter (SPM) are assumed to be negligible or correlated with 

this pigment concentration (Morel, 1988; Sathyendranath et al., 2000). As a 

consequence of this simplified view, open ocean bio-optical algorithms typically used 

empirically tuned radiance ratios to compute the Chlorophyll a concentrations and 

diffuse attenuation coefficients (O’Reilly et al., 2000; Mueller, 2000). Under these bio-

optical assumptions (applicable to limited oceanic conditions) the number of spectral 

bands utilised by passive satellite sensors such as the Coastal Zone Color Scanner 

(CZCS), Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate 

Resolution Imaging Spectroradiometer (MODIS) were adequate to retrieve 

chlorophyll-a, CDOM and SPM (McClain, Hooker, Feldman, & Bontempi, 2006). 

In contrast, the shallow water marine environment is perhaps the most 

complex of ecosystems with regards to the physical processes that influence the 

propagation of light from the target to sensor. Here the depth, bottom substrate and the 

concentrations of phytoplankton pigments, CDOM and SPM influence the water 

leaving radiance (Maritorena, Morel, & Gentili, 1994; Lee et al., 1994; Lee, Carder, 

Mobley, Steward, & Patch, 1998). In addition, the concentrations of the optically 

active in-water constituents are not necessarily correlated (Sathyendranath et al., 2000; 

Siegel, Maritorena, Nelson, Behrenfeld, & McClain, 2005) and where CDOM, SPM 

and the bottom reflectance can greatly influence the water leaving radiance (Carder et 

al., 1991). As such the simplified bio-optic assumptions used for open ocean, case 1 

waters are typically not transferable to coastal shallow waters (Carder et al., 1991), 

where more spectral information is needed to separate the different constituents 

(McClain et al., 2006). 

A hyperspectral sensor measures the radiant flux across a large number of 

spectral bands each having narrow bandwidths (typically less than 10 nm). Given a 

high enough signal-to-noise ratio (SNR) a hyperspectral sensor is able to detect subtle 

changes in the radiant flux due to changes in the water column optical properties, depth 

and bottom type (Philpot et al., 2003). Lee et al. (1998) developed a semi-analytical 

model specifically for coastal shallow waters that delineates the impact each 

component has on the water leaving radiance. Further, by making assumptions on the 
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spectral shape of each component (excluding the depth) and by reducing the number 

of unknowns to solve; Lee, Carder, Mobley, Steward, and Patch (1999) were able to 

simultaneously retrieve the absorption by phytoplankton and by CDOM; 

backscattering by SPM, the depth and albedo from a single substrate solely from the 

reflectance derived by a hyperspectral sensor. This method of inverting the reflectance 

has led to the development of other physics-based inversion models that incorporate 

mixtures of bottom substrates (Klonowski, Fearns, & Lynch, 2007; Hedley, 

Roelfsema, & Phinn, 2009) and additional in-water constituents (Brando et al., 2009). 

The advantage of these shallow water inversion models is the potential of 

mapping the abundances of phytoplankton, CDOM, SPM, depth and benthic 

classification from airborne and satellite hyperspectral imagery (Lee, Carder, Chen, & 

Peacock, 2001; Lee et al., 2007; Klonowski et al., 2007; Brando et al., 2009; Hedley 

et al., 2009). As such, remote sensing techniques can offer the potential to monitor 

water quality, changes in bathymetry and bottom substrate through time and space. 

Empirical models can be used to relate the water column properties to meaningful 

geophysical parameters. For instance the chlorophyll concentration can be computed 

from the absorption of phytoplankton (Prieur & Sathyendranath, 1981), while the 

backscattering of suspended matter can be used to calculate SPM (Babin, Morel, 

Fournier-Sicre, Fell, & Stramski, 2003a; Volpe, Silvestri, & Marani, 2010). Inversion 

models however are typically applied to hyperspectral image data as they require the 

number of spectral bands to exceed the number of model parameters. Despite extensive 

research into new inversion models and their applicability (see Dekker et al., 2011) 

there has been very little analysis of the uncertainty of the results (with exceptions see 

Hedley, Roelfsema, & Phinn, 2010; Hedley, Roelfsema, Koetz, & Phinn, 2012a). 

Physics-based inversion models rely on the apparent optical property (AOP) 

of subsurface remote sensing reflectance, rrs. Satellite and airborne sensors however 

measure the at-sensor radiance. Several radiometric corrections are therefore needed 

to convert at-sensor radiance to rrs, the process of which can introduce varying 

magnitudes of uncertainty and spectral artefacts. In addition to inherent sensor noise, 

the combined radiometric uncertainty (termed sensor and environmental noise) can 

negatively impact the accuracy of outputs from physics-based inversion models, 

potentially limiting their use for subsequent ecological interpretations or temporal 

analysis. For example high uncertainties in benthic classification are unsuitable to 

establish baseline data and subsequent temporal monitoring to delineate changes from 
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natural and human induced changes – particularly as management decisions are based 

on statistical significance (Fairweather, 1991; Kirkman, 1996). As such, quantifying 

the uncertainty of these geophysical products can aid in quantifying the limitations and 

potential of shallow water remote sensing tools. 

 

1.4 Research Objectives and Significance 

The inherent uncertainty present in remote sensing derived inversion products 

such as bathymetry and benthic classification affects their confidence for any 

subsequent ecological interpretations. The overall theme of this thesis is to quantify 

the uncertainty and use it to explore the potential and limitation of bathymetry and 

benthic classification from a physics based optical reflectance model. The three 

general aims that are explored within individual self-contained chapters are to: 

1. Propagate uncertainty through an inversion model and to analyse the 

uncertainty associated with bathymetry derived from spaceborne 

hyperspectral data in an effort to detect statistical significant temporal 

changes in depth; 

2. Test the accuracy and precision of inversion model parameters from 

the standard implementation of the Levenberg-Marquardt (LM) 

optimisation algorithm, and to develop new approaches that provide 

improved results for bathymetry and benthic classification; 

3. To quantify the number and type of optically distinguishable benthic 

species above the total system noise and attenuating properties of a 

variable water column in an effort to quantify the potential of benthic 

classification from optical remote sensing. 

Modelling based sensitivity analysis to assess the impact the water column 

IOPs, depth and the sensor’s SNR on benthic class separability have been performed 

to understand the effectiveness of optical remote sensing for mapping coastal and coral 

reef ecosystems (e.g. Lubin, Dustan, Mazel, & Stammes, 2001; Hochberg, Atkinson, 

& Andrefouet, 2003; Vahtmae, Kutser, Martin, & Kotta, 2006; Kutser, Vahtmae, & 

Martin, 2006; Hedley, Roelfsema, Phinn, & Mumby, 2012b). However, with the 

exception of Hedley et al. (2010) and Hedley et al. (2012a) the impact of sensor and 

environmental noise on parameters derived from physics-based inversion models (that 

include benthic classification) has not been explored in great detail and has not been 
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extended to assess and quantify the potential of these products for ecological 

interpretations. This research presents new tools that aid such an assessment for 

bathymetry and benthic classification derived from physics-based inversion models. 

Furthermore new optimisation algorithms that give improved accuracies and precision 

of inversion model parameters are presented to maximise the potential of optical 

remote sensing. The following lists the outcomes and significance of this research: 

1. The development of a per-pixel statistical procedure to assess 

temporal changes in depth. This procedure can be extended to other 

parameters, such as water column optical properties, to highlight 

regions where temporal changes can or cannot be inferred. 

2. The development of an image-based tide normalisation procedure that 

can be used to remove the tidal influences from a time series of 

remotely sensed bathymetry. The advantage of this technique is that 

tide normalisation can be performed in the absence of reliable tide 

data. Such a methodology can be used to determine changes in depth 

(above uncertainty) that are due to bottom sediment resuspension, 

transportation and deposition; 

3. The development of two LM based optimisation algorithms that 

maximise the accuracy, precision and computational efficiency of 

parameters when sensor and environmental noise is propagated 

through the inversion model. Such optimisation techniques can be 

extended to operational ocean colour inversion models, and; 

4. The development of a clustering algorithm that models the number 

and type of benthic classes that can be optically distinguished a priori. 

This clustering methodology can aid in analysing the potential of 

optical remote sensing to benthic classification – particularly when 

considering the matching of deliverables with expectations. Such an 

analysis can determine if alternative benthic classification methods 

should be investigated. 

 

1.5 Thesis Outline 

This thesis comprises six chapters; a summary of each chapter is displayed in 

Table 1.1. Chapters 3, 4 and 5 are published manuscripts in peer-reviewed journals – 
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as described in Table 1.1. Firstly, Chapter 2 presents a literature critique of the theory 

and practice relevant to this research, with focus on remote sensing inversion 

algorithms and alternative image-based methods of bathymetry and benthic 

classification. Chapter 3 presents an analysis of the propagation of sensor and 

environmental noise through a physics-based inversion model to derive bathymetric 

imagery and its uncertainty from nine HICO images of Shark Bay, Western Australia, 

spanning 10 months. The aim was to determine if the bathymetry retrievals were 

precise enough to detect seasonal variability unrelated to tidal variations. With the aid 

of the uncertainty, a per-pixel statistical procedure was developed to explore the 

optical conditions that allowed or prohibited temporal changes in depth to be made. 

The accuracy and precision of bathymetry and benthic classification derived 

from physics-based inversion models are in-part affected by the optimisation 

algorithm used. Chapter 4 illustrates the effect the standard implementation of the LM 

algorithm has on the accuracy and precision of the retrievals and the overall 

computational efficiency when propagating sensor and environmental noise. In this 

chapter, two new optimisation algorithms based on the LM are proposed and are shown 

to improve accuracy, precision and efficiency. Chapter 5 explores the effect total 

system noise – which includes sensor and environmental noise and the spectral 

variability within benthic substrates – and the attenuating properties of a water column 

have on the optical separability of a set of benthic spectral endmembers. A new 

clustering procedure is proposed that predicts the number and type of benthic classes 

that are optically separable for a given set of water column optical properties, depth 

and the total system noise. An analysis is also performed to explore the conditions 

(sensor spectral resolution, clustering accuracy, depth, water column optical 

properties) that enable the optical distinction between seagrass and benthic algae. 

Finally, the research conclusions, implications and future avenues of investigation are 

presented in Chapter 6.  
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Table 1.1: Brief summaries of thesis chapters 

Chapter Title Summary 

1 Introduction 

General introduction to this research and 

its potential application for coastal and 

coral reef ecosystem monitoring. 

2 Literature Review 

A comprehensive literature review and 

critique of shallow water remote sensing 

and uncertainty propagation. 

3 

Challenges in detecting trend and 

seasonal changes in bathymetry 

derived from HICO imagery: A case 

study of Shark Bay, Western Australia 

Explores the effect sensor and 

environmental noise has on bathymetry 

products and whether it is precise 

enough for temporal analysis. Published 

in: Remote Sensing of Environment, 

2014, Vol. 147, p. 186-205. 

4 

Improving the optimisation solution 

for a semi-analytical shallow water 

inversion model in the presence of 

spectral noise 

Explores the effect the optimisation 

algorithm has on the accuracy and 

precision of the retrieved products, and 

proposes two new optimisation 

algorithms. Published in:  

Limnology and Oceanography: 

Methods, 2014, Vol. 12, p. 651-669. 

5 

A method to analyse the potential of 

optical remote sensing for benthic 

habitat mapping 

A new clustering method is proposed 

that determines the number and type of 

benthic classes that are optically distinct 

above total system noise for any given 

water column. Published in: Remote 

Sensing, 2015, Vol. 7, Issue 10, pp. 

13157-13189. 

6 Conclusion and Future work 

A concise discussion on the important 

findings, and recommendations for 

future research 
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CHAPTER 2  

 

LITERATURE REVIEW 

 

2.1 Overview 

This chapter begins with an overview of the key principles of passive remote 

sensing and the propagation of light in optically shallow water. This is followed by a 

literature critique of algorithms available to derive bathymetry and benthic 

classification from remote sensing. For bathymetry these include empirical algorithms 

trained by in situ depth, while for benthic classification, thematic mapping techniques 

are discussed. Physics based inversion models and look up table methods that are 

capable of the simultaneous retrieval of water column optical properties, bathymetry 

and benthic classification from hyperspectral imagery are also reviewed. Finally, 

methods of estimating the uncertainty from remotely sensed products and how it can 

be used to understand their limitations are presented. 

 

2.2 Theoretical considerations 

This section derives the equation for surface upwelling irradiance using the 

single scattering approximation. Here the propagation of light through an optically 

shallow water column with a substrate having an albedo is also described. The 

upwelling and downwelling hemispherical cosine irradiance, Eu and Ed respectively, 

are used extensively here and are defined as the radiant flux incident on a surface per 

unit area (W m-2). The irradiance reflectance (unit-less) is defined as, 

 𝑅 =
𝐸u

𝐸d
 (2.1) 

The water-leaving radiance (W m-2 sr-1), Lu, defined as the upwelling radiance just 

above the water’s surface is used to obtain the remote sensing reflectance, Rrs, 

 𝑅rs =
𝐿u

𝐸d
 , per sterdian (sr−1) (2.2) 
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Rrs essentially describes the irradiance reflectance just above the sea surface per unit 

solid angle. The subsurface remote sensing reflectance, rrs, is the irradiance reflectance 

just beneath the water’s surface per unit solid angle. 

 𝑟rs =
𝐿u(0 −)

𝐸d(0 −)
 , per sterdian (sr−1) (2.3) 

 

2.2.1 Propagation of light through optically shallow waters 

The interaction of radiation with matter as it propagates through the water 

column in optically shallow waters is described. We limit this description to radiation 

in the visible portion of the electromagnetic spectrum (400-750 nm) and in situations 

where radiation reflected from the sea bottom (referred to as substrate) is detectable 

by a sensor. Under these conditions the downwelling and upwelling irradiance in the 

water column is scattered and absorbed by water molecules, suspended algal and non-

algal particulates and coloured dissolved organic matter CDOM (Gordon, Smith, & 

Zaneveld, 1980). Molecular fluorescence (inelastic scattering of light) caused by algal 

pigments or from CDOM is not considered here. For optically shallow waters, 

according to the single scattering assumption, the total upwelling irradiance just below 

the water surface (at depth 0– meters) is the sum of the irradiance backscattered by the 

water column, Eu
C, and the irradiance from the bottom substrate, Eu

B, 

 𝐸u(0 −) =  𝐸u
C(0 −) + 𝐸u

B(0 −) (2.4) 

We begin with the derivation of Eu
C. At a given wavelength and solar angle, 

the downwelling irradiance incident on an infinitesimally thin water column layer dz 

at depth z is given by (Gordon, 1989; Zaneveld, 1989), 

 
𝐸d(𝑧) =   𝐸d(0 −) exp {−∫ 𝐾d(𝑧)d𝑧

𝑧

0

} 

𝐸d(𝑧) ≈   𝐸d(0 −) exp{−𝐾d
̅̅̅̅ 𝑧} 

(2.5a) 

(2.5b) 

Ed(0–) and Ed(z) are the downwelling solar irradiances just below the water’s surface 

and at depth z respectively. 𝐾d
̅̅̅̅  is the averaged downwelling diffuse attenuation 

coefficient describing the average rate of decay of Ed(0–) per unit length between the 

water’s surface and z. Kd is an apparent optical property (AOP) whose values vary with 

the solar geometry (Gordon, 1989) and is also depth dependent even in vertically 

homogeneous water columns (Zaneveld, 1989). At the dz layer a portion of Ed(z) is 

scattered back towards the water surface. This portion is governed by the diffuse 
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backscattering coefficient of downwelling light, bbd (Philpot, 1987; Kirk, 1989; 

Maritorena et al., 1994), 

 d𝐸u
C(𝑧) =  𝑏bd𝐸d(𝑧)d𝑧 (2.6) 

where dEu
C(z) is the upwelling irradiance created by the dz layer, which is then 

attenuated as it propagates towards the water surface, 

 d𝐸u
C(0 −) =   d𝐸u

C(𝑧) exp{−𝐾u
C̅̅ ̅̅ 𝑧} (2.7) 

𝐾u
C̅̅ ̅̅  is the averaged upwelling diffuse attenuation coefficient from depth z to 0 m. 

Substitution of 2.5b and 2.6 into 2.7 yields the contribution of dEu
C(0–) to the total 

Eu
C(0–) from the dz layer at depth z (Kirk, 1989), 

 d𝐸u
C(0 −) ≈   𝑏bd𝐸d(0 −) exp{−(𝐾u

C̅̅ ̅̅ + 𝐾d
̅̅̅̅ )𝑧}  𝑑𝑧 (2.8) 

Integrating over all infinitesimally small layers from depth z to just beneath the water 

surface gives (Philpot, 1987; Maritorena et al., 1994), 

 d𝐸u
C(0−, 𝑧) ≈  

𝑏bd

𝐾u
C̅̅ ̅̅ + 𝐾d

̅̅̅̅
𝐸d(0 −){1 − exp[−(𝐾u

C̅̅ ̅̅ + 𝐾d
̅̅̅̅ )𝑧]} (2.9) 

To simplify this equation further, the irradiance reflectance of an infinitely 

deep water column – derived by integrating equation 2.8 from 0 m depth to infinity – 

is defined as (Philpot, 1987; Kirk, 1989), 

 𝑅dp = 
𝑏bd

𝐾u
C̅̅ ̅̅ + 𝐾d

̅̅̅̅
 (2.10) 

and thus the first term in equation 2.9 can be substituted as Rdp to give, 

 𝐸u
C(0−, 𝑧) ≈  𝑅dp𝐸d(0 −){1 − exp[−(𝐾u

C̅̅ ̅̅ + 𝐾d
̅̅̅̅ )𝑧]} (2.11) 

Deriving the bottom contribution of the upwelling radiant flux, Eu
B(0–), first 

begins by assuming that the bottom substrate is a Lambertian reflector with a 

wavelength dependent albedo of ρ, located at depth z. The reflected flux transmitted 

through the water column to a depth of 0 m is given by (Maritorena et al., 1994), 

 𝐸u
B(0 −) ≈  𝜌𝐸d(0 −) exp{−(𝐾d

̅̅̅̅ + 𝐾u
B̅̅ ̅̅ )𝑧} (2.12) 

where 𝐾u
B̅̅ ̅̅  is the average upwelling diffuse attenuation for bottom reflected light. 

Summing equations 2.11 with 2.12 yields the total upwelling irradiance of optically 

shallow water columns, 

 
𝐸u(0−, 𝑧) ≈  𝑅dp𝐸d(0 −){1 − exp[−(𝐾d

̅̅̅̅ + 𝐾u
C̅̅ ̅̅ )𝑧]} 

                                   + 𝜌𝐸d(0 −) exp{−(𝐾d
̅̅̅̅ + 𝐾u

B̅̅ ̅̅ )𝑧} 
(2.13) 
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A more useful AOP that a remote sensing radiometer can derive is irradiance 

reflectance, which is obtained by dividing equation 2.13 by Ed(0–) (Maritorena et al., 

1994) to give, 

 
𝑅(0 −) ≈  𝑅dp{1 − exp[−(𝐾d

̅̅̅̅ + 𝐾u
C̅̅ ̅̅ )𝑧]} 

                             + 𝜌 exp{−(𝐾d
̅̅̅̅ +  𝐾u

B̅̅ ̅̅ )𝑧} 
(2.14) 

or alternatively subsurface remote sensing reflectance which is obtained by dividing 

equation 2.14 by π steradians – assuming a Lambertian upwelling radiance 

distribution. 

 𝑟rs ≈  𝑟rs
dp

{1 − exp[−(𝐾d
̅̅̅̅ + 𝐾u

C̅̅ ̅̅ )𝑧]} +
𝜌

𝜋
exp{−(𝐾d

̅̅̅̅ + 𝐾u
B̅̅ ̅̅ )𝑧} (2.15) 

Division by Ed(0–) also serves to partially normalise any variations in solar 

illumination conditions caused from varying sky and atmospheric conditions. For 

above water radiometers R(0–) will need to be propagated through the air-water 

interface. This can be performed by accounting for the transmission and internal 

reflection of light at the water-to-air interface (Lee et al., 1998; 1999), 

 𝑅rs(𝜆) =
𝜉𝑟rs

1 −  Γ𝑟rs
 (2.16) 

here ξ is a coefficient that accounts for the transmittance of both upwelling (water-to-

air) and downwelling (air-to-water) light, whilst the proportion of upwelling light that 

undergoes internal reflection at the water-to-air interface is taken into consideration by 

the denominator, 1 − Гrrs. Both ξ and Г vary with sensor view angles, however at nadir 

they can be approximated to values of 0.5 and 1.5 respectively (Lee et al., 1999). 

It should be noted that 𝐾u
C̅̅ ̅̅ > 𝐾d

̅̅̅̅  primarily because of the angular distribution 

of Eu
C where it is biased towards small angles from the horizontal – a property caused 

by the angular dependent phase function of water and suspended particles (Kirk, 1987). 

Due to these shallow angles, backscattered photons travel further along the horizontal 

axis than the vertical before they are absorbed, and as such undergo higher attenuation 

with respect to the vertical axis than downwelling photons (Kirk, 1987). The isotropic 

angular distribution of bottom reflected light also governs its rate of attenuation, where 

𝐾u
C̅̅ ̅̅ >  𝐾u

B̅̅ ̅̅ > 𝐾d
̅̅̅̅ , a consequence of assuming the substrate as a lambertian reflector. 

𝐾u
C̅̅ ̅̅ >  𝐾u

B̅̅ ̅̅  arises from the fact that the angular distribution of bottom reflected light 

does not have horizontal biases and are less attenuated vertically than the backscattered 

flux (Maritorena et al., 1994). 
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2.2.2 Assumptions 

The derivation of equation 2.15 uses depth averaged diffuse attenuation 

coefficients. For Case 1 waters Gordon (1989) showed that using 𝐾d
̅̅̅̅  satisfied the Beer-

Lambert law to within 5-10% for wavelengths between 440-550 nm. These accuracies 

can be transferred to case-2 waters, however the Beer-Lambert law will fail in 

situations when: (1) the angular distribution of the under-water light field is 

independent of the diffuse attenuation coefficient; (2) the water column is dominated 

by non-absorbing particles (that cause high scatter) that do not simultaneously occur 

with high concentrations of other light absorbing matter such as CDOM, and; (3) the 

phase functions of suspended matter in the water column are not significantly different 

from pure seawater (Gordon 1989). 

Equation 2.15 was also derived with a single scattering assumption where 

only one scattering term (bbd) is included. Here, it is assumed that downwelling 

photons are absorbed as they traverse downwards until a single scattering event occurs 

at a given depth that produces dEu
C(z). Absorption is now assumed the only physical 

process affecting the attenuation of the backscattered light as it travels upwards 

(Philpot, 1987). Thus, forward scattering of downwelling and upwelling light is not 

considered nor is the backscattering of upwelling light. However as equation 2.15 was 

derived using irradiances (as opposed to radiances), according to Philpot (1987) 

“multiple scattering events are included implicitly” and would reduce errors associated 

with this assumption. 

The bottom substrate is very rarely Lambertian and typically has a bi-

directional distribution function (BRDF) where the reflected upwelling radiance is 

dependent on the view and solar angular geometry. Mobley, Zhang and Voss (2003) 

showed that deviations of at most 10% occur for upwelling radiance when assuming 

isotropic reflectance rather than a BRDF for solar and view angles most widely 

encountered in remote sensing. Indeed the BRDF of seagrasses for instance can be 

relatively uniform away from the solar hotspot (Hedley & Enriquez, 2010). 

 

2.2.3 Relating AOPs to IOPs 

Up to this point equation 2.15 relates the AOP of reflectance to the AOPs of 

upwelling and downwelling diffuse attenuation coefficients. As the inherent optical 

properties (IOPs) of the water column are important to a fundamental understanding 

of the biogeophysical processes it is essential to relate Ku
C,B and Kd to the IOPs of 
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absorption, a, and backscattering, bb. For quasi-single scattering theory, the attenuation 

coefficient, κ, is given by, 

 𝜅(𝑧) = 𝑎(𝑧) + 𝑏b(𝑧) (2.17) 

κ(z) is solely dependent on depth and not on the angular distribution of the incident 

radiant flux. Intuitively it may seem that there is a direct, proportional relationship 

between κ and Ku
C,B and Kd in which the angular distribution of the incident light field 

is taken into account. For quasi-single scattering theory, the vertical diffuse attenuation 

coefficient can be related to κ by (Gordon et al., 1980, p.41), 

 𝐾x = 𝐷x𝜅 (2.18) 

where Dx is known as the distribution function and is defined as the ratio between the 

scalar irradiance to the cosine irradiance and hence is the reciprocal of the average 

cosine of the zenith of the radiant flux (Preisendorfer, 1976). In other words Dx 

describes the average path length of photons propagating through a water layer dz at a 

given angle (Philpot, 1987). Equation 2.18 can be applied to the three diffuse 

attenuation coefficients given in equation 2.15 to give (Lee et al., 1998), 

 𝑟rs ≈  𝑟rs
dp{1 − exp[−(𝐷d + 𝐷u

C)𝜅𝑧]} +
𝜌

𝜋
exp{−(𝐷d + 𝐷u

B)𝜅𝑧} (2.19) 

Equation 2.19 can therefore be used to model rrs for a given a and bb, or alternatively 

to invert the modelled rrs to solve for the absorption and backscattering coefficients of 

the water column. Inversion methods are discussed later in section 2.5.1. 

 

2.2.4 Inherent Optical Properties 

2.2.4.1 Modelling the absorption 

The spectral absorption coefficient of light in seawater is the fraction of the 

radiant flux absorbed per unit distance traversed in the medium (Gordon et al., 1980), 

and is the cumulative sum of the different absorptive constituents in the water column. 

These being the water molecules, CDOM and suspended algal and non-algal 

particulates, including phytoplankton pigments, and detritus and inorganic particulates 

(Prieur & Sathyendranath, 1981), 

 𝑎(𝜆) =  𝑎w(𝜆) + 𝑎phy(𝜆) + 𝑎CDOM(𝜆) + 𝑎NAP(𝜆) (2.20) 

the subscripts w, phy and NAP stand for water, phytoplankton pigments and non-algal 

particulates respectively. The magnitude of absorption of each component, ax, is 

determined by its concentration, Cx, and the specific absorption coefficient, ax', such 

that ax = Cxax'. Here, ax' has units of per metre per unit concentration (Morel & 
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Bricaud, 1981). Alternatively the absorption can be modelled by the absorption 

coefficient at a specific wavelength multiplied by its normalised spectral absorption 

coefficient (Prieur & Sathyendranath, 1981). We follow the latter parameterisation, 

such that, ax(λ) = ax(440nm)×ax
*(λ), where ax

* is the absorption coefficients 

normalised to a value of 1.0 at 440 nm (Prieur & Sathyendranath, 1981). 

The absorption of CDOM can be modelled using a decaying exponential 

curve of the form (Bricaud, Morel, & Prieur, 1981), 

 𝑎CDOM(𝜆) =  𝑎CDOM(440) exp{−𝑆CDOM(𝜆 − 440)} (2.21) 

The spectral slope, SCDOM, has been shown to typically vary between 0.010 – 0.020 

(Bricaud et al., 1981). The absorption of NAP, comprising detritus and inorganic 

particles, has also been shown to follow the same mathematical expression as equation 

2.21 (Carder, Steward, Harvey, & Ortner, 1989; Bowers, Harker, & Stepham, 1996; 

Babin et al., 2003b). Based on the spectral slopes of NAP obtained from Roesler, 

Perry, and Carder (1989), and the fact that they are similar in value, Carder et al. (1989) 

assume that they are spectrally inseparable and can thus be represented by a single 

absorption parameter corresponding to detritus and gelbstoff (dissolved organic) 

matter, adg, 

 𝑎dg(𝜆) =  𝑎CDOM(𝜆) + 𝑎NAP(𝜆) (2.22) 

The spectral absorption of phytoplankton can be modelled using either the 

averaged specific or normalised spectral absorption coefficients (Morel, 1980, Roesler 

& Perry, 1995). Both methods allow the calculation of aphy by the multiplication of the 

concentration or the absorption coefficient at a specific wavelength respectively. A 

limitation of these approaches is that the spectral shape of phytoplankton remains 

constant, which typically does not occur spatially or temporally. Lee et al. (1999), 

based on field data, modelled the absorption of phytoplankton as, 

 𝑎phy(𝜆) =  𝑎phy(440) [𝑎0(𝜆) + 𝑎1(𝜆) × ln (𝑎phy(440))]  (2.23) 

where a0 and a1 are empirical spectral coefficients. This formulation allows the 

spectral shape of phytoplankton to change with its magnitude. 

 

2.2.4.2 Modelling the backscattering 

In an analogous manner to absorption, the total backscattering of seawater is 

the summation of the backscattering by pure seawater, bbw, phytoplankton, bbphy and 

non-algal particulates, bbNAP (Sathyendranath, Prieur, & Morel, 1989), 
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 𝑏b(𝜆) =  𝑏bw(𝜆) + 𝑏bphy(𝜆) + 𝑏bNAP(𝜆) (2.24) 

The scattering of light by pure water is hypothesised to be caused by the random 

motion of the water molecules that in a small voxel causes fluctuations in density 

(Morel, 1974). The dissolved electrolytes in pure seawater cause it to scatter light 

approximately 1.30 times that of pure water (Morel, 1974). The main contribution to 

backscattered light in the coastal ocean is that caused from suspended particulate 

matter which in turn is dependent on its particle size distribution and the bulk refractive 

index (Twardowski et al., 2001). The backscattering coefficients of phytoplankton and 

NAP are generally combined into one spectral coefficient, bbp (Roesler & Perry, 1995; 

Morel & Maritorena, 2001). In oceanic waters where the phytoplankton dominates the 

scattering of light, bbp has typically been modelled with a strong dependency on the 

concentration of phytoplankton (Morel & Maritorena, 2001). However such an 

assumption may be not suitable for coastal ocean waters that typically have greater 

influx of terrigenous particles. In such cases bbp has typically been modelled with a 

power law (Smith & Baker, 1981; Babin et al., 2003a), 

 𝑏bp(𝜆) =  𝑏bp(𝜆0) (
𝜆0

𝜆
)
𝑌

 (2.25) 

where λ0 is the reference wavelength. Lee et al. (1994; 1999) used λ0 = 400 nm; 

Klonowski et al. (2007) used λ0 = 550 nm, whilst; Lee, Carder, and Arnone (2002) 

used λ0 = 555 nm. The parameterisation given by equation (2.25) assumes a non-

absorbing medium (Babin et al., 2003a). 

 

2.3 Empirically Deriving Bathymetry 

This section describes the many bathymetric empirical algorithms that have 

been developed since 1970. As one of the aims of this research is the limitations and 

potential of bathymetry derived from hyperspectral imagery using physics based 

inversion models, this brief section is included for completeness. 

 

2.3.1 Spectral Transformations 

A common approach to deriving bathymetry is through an index that is 

sensitive to changes in depth above changes due to varying bottom albedos and water 

clarities. Such indices typically constitute a ratio between two spectral bands, which 

form the independent variable of an empirically derived algorithm to calculate the 

water depth. One of the earliest spectral ratio transformations was proposed by 
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Polcyn, Brown, and Sattinger (1970) to derive water depth from airborne 

multispectral imagery. Polcyn et al. (1970), like other researchers, first assumed that 

the reflectance solely by the water column at any given pixel could be estimated and 

removed by subtracting the average reflectance over an imaged deep water region 

(Rdp). The variability in the resultant imagery (i.e. R(λi) – Rdp(λi)) was thus assumed 

to be due to changes in depth, bottom albedo (ρ) and water column attenuation (κ). 

Taking the ratio between two bands gives, 

 
𝑅(𝜆i) − 𝑅dp(𝜆i)

𝑅(𝜆j) − 𝑅dp(𝜆j)
=

𝜌(𝜆i)

𝜌(𝜆j)
𝑒−[𝜅(𝜆i)−𝜅(𝜆j)](sec𝜃v+sec𝜃w)𝑧   (2.26) 

θv and θw are the viewing and solar zeniths. Next a pair of wavelengths were found, 

typically in the blue and green portion of the visible domain, where κ(λi) – κ(λj) and 

Rb(λi)/Rb(λj) are constant for varying water types and bottom albedos respectively. In 

other words κ(λi) – κ(λj) and Rb(λi)/Rb(λj) are values derived from in situ 

measurements and allow equation (2.26) to be inverted to calculate the depth. 

Lyzenga (1978) noted that the pair of wavelengths that satisfy constant water 

attenuation may not satisfy constant bottom albedo ratio particularly if a scene has a 

wide range of water clarities and bottom substrates. Furthermore Polcyn et al. (1970) 

used an over simplified equation for estimating the radiance emanating from the 

water column, where according to equation 2.14, subtraction of Rdp
 would not cause 

its full removal from the right hand side, 

 𝑅 − 𝑅dp  = (𝜌 − 𝑅dp) exp[−(𝐷d + 𝐷u
C)𝜅𝑧] (2.27) 

Lyzenga (1978; 1985) proposed a linearised multiband bathymetry algorithm 

that reduces the effect of varying bottom albedo, 

 𝑋i = ln[𝑅(𝜆i) − 𝑅dp (𝜆i)] = −2𝐾𝑧 ∙ ln[𝜌(𝜆i) − 𝑅dp (𝜆i)]   (2.28) 

and 

 𝑧 =  𝑎0 + 𝑎1𝑋1 + 𝑎2𝑋2 (2.29) 

where ai are coefficients determined from a regression analysis using in situ water 

depths. In a comparison, Clark, Fay, and Walker (1987) showed that the linearised 

method by Lyzenga (1985) achieved improved bathymetric retrievals compared to the 

ratio algorithm of Polcyn et al. (1970). 

A major limitation to the linear method proposed by Lyzenga (1985) is the 

deep ocean reflectance subtraction in equation (2.28) which can result in negative 

values over dark seagrass or submerged vegetation pixels (Philpot, 1989; Stumpf, 
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Holderied, & Sinclair, 2003). This poses a problem as negative reflectance values are 

non-physical and the natural logarithm of negative values are undefined. In addition 

image segmentation would need to be performed when this technique is applied to a 

scene with regions of distinct water clarity (Philpot, 1989). To overcome these issues 

Stumpf et al. (2003) developed the linearised log ratio to derive depth, 

 depth (𝑚) = 𝑚0

ln{𝐺 × 𝑅w(𝐺𝑟𝑒𝑒𝑛)}

ln{𝐺 × 𝑅w(𝐵𝑙𝑢𝑒)}
− 𝑚1   (2.30) 

the coefficients m0 and m1 were tuned with depth soundings from a nautical chart. G 

is a scaling factor that is held fixed to a user defined value, and Rw is the total above 

water reflectance as sunglint correction was not performed. With a comparison to 

Lidar measurements, Stumpf et al. (2003) showed that the ratio algorithm (equation 

2.30), generally retrieved depths to 25 metres (for very clear waters), and had a 5 to 10 

m greater dynamic range than the linear method of Lyzenga (1985). However for both 

methods, the normalised RMSE between the predicted and measured depth increased 

with depth and would typically exceed 20% for depths greater than 10 m – though the 

ratio method typically achieved lower RMSE that the linear (Lyzenga) method. Both 

methods show a plateau forming for plots of the estimated against measured depths 

and represent situations where the attenuation properties of the water column preclude 

any bottom reflected signal reaching the water’s surface, a limitation of optical remote 

sensing. Ma et al. (2014) used a variant of equation 2.30 and obtained a RMSE between 

actual and predicted depths of less than 2 m for water depths less than 30 m. 

In a similar fashion Dierssen, Zimmerman, Leathers, Downes, and Davis 

(2003) and Mishra, Narumalani, Rundquist, Lawson, and Perk (2007) used a log ratio 

between two reflectance bands and applied that to a second order polynomial whose 

coefficients (mi) were optimised from in situ depth measurements. 

 

log(𝐷𝑒𝑝𝑡ℎ) = 𝑚0 + 𝑚1𝑥 + 𝑚2𝑥
2   

𝑥 = ln(
𝑅rs(𝜆1)

𝑅rs(𝜆2)
) 

(2.31) 

Dierssen et al. (2003) used λ1 = 555 nm and λ2 = 670 nm, whilst Mishra et al. 

(2007) used λ1 = 481 nm and λ2 = 553 nm. The algorithms given by Stumpf et al. 

(2003), Dierssen et al. (2003) and Mishra et al. (2007) all utilise the reflectance of the 

green band due its ability to penetrate further into the water column in coastal waters, 

and as such can be very sensitive to changes in depth. Inclusion of a second reflectance 

band serves to minimise the influence of different substrates, where the varying 
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albedos affect the reflectances of these two bands in a similar fashion. The 670 nm 

band used by Dierssen et al. (2003) corresponds to the chlorophyll-a absorption peak 

from phytoplankton (Bricaud, Babin, Morel, & Claustre, 1995) and combined with the 

high absorption of the water molecules at this wavelength could cause Rrs to be less 

sensitive to both depth and bottom albedo than bands below 500 nm. Despite this, 50% 

of the calibration depth measurements were within 3.3 cm from the predicted depth 

for both Dierssen et al. (2003) and Mishra et al. (2007), however an accuracy 

assessment was not performed. 

Principal Components Analysis on log transformed reflectance values from a 

single band have also been attempted to estimate water depth. The premise being that 

the variance in the water leaving radiance of an image is largely due to water depth 

and as such would be wholly contained in the first eigenvector of the PCA transform, 

whilst the second eigenvector contains variations due to bottom types (Khan, 

Fadlallah, & Al-Hinai, 1992; Liceaga-Correa, & Euan-Avila, 2002; Gholamalifard, 

Kutser, Esmaili-Sari, Abkar, & Naimi, 2013). Note that here the PCA eigenvectors are 

uncorrelated, orthogonal and correspond to transformed image bands. The first PCA 

eigenvector would then form the independent variable of a linear equation for depth, 

where the coefficients (gradient and intercept) are determined from regression analysis 

with in situ depth data. This approach however does not perform adequately for scenes 

with varying water clarities and bottom albedos (Ceyhun & Yalcin, 2010) and based 

on the results of Liceaga-Correa and Euan-Avila (2002) is less accurate than the linear 

model proposed by Lyzenga (1985). 

 

2.3.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) is a type of supervised learning that has 

been used successfully in making predictions from input variables that are contained 

in non-linear functions (Basheer & Hajmeer, 2000). Part of that success is the ability 

of ANNs to generalise complex numerical problems based solely on the input and 

expected output data. For the case of estimating bathymetry it is crucial for in situ 

water depths to be collected over a wide range of bottom substrates, water optical 

properties and solar/view angles so that the corresponding variability in the reflectance 

dataset trains the ANN (Sandidge & Holyer, 1998). The structure of an ANN contains 

several layers of nodes, where the nodes at one layer interconnect to all the nodes of 

the next layer. These connections allow information to be transferred forward (and 
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back) from one layer to the next (Basheer & Hajmeer, 2000). Each receiving node in 

a given layer individually weights the inputs from the previous layer. The weighted 

inputs are then passed through a non-linear function to form the output from that node. 

This process is continued until the output layer is reached. An iterative optimisation 

approach is needed to determine the weights of each node in each layer such that the 

RMSE between the predicted and actual outputs are minimised. 

For depth estimations using remote sensing reflectance the output layer 

consists of one node representing the desired depth whilst the input reflectance 

spectrum (either the entire spectral range or a subset) consists of the input layer with 

the number of nodes equalling the number of bands (Sandidge & Holyer, 1998; 

Ceyhun & Yalcin 2010; Liu, Gao, Zheng, & Li, 2015). The number of layers and inner 

nodes are user defined and are selected based on the combination that provides the best 

results (Freeman & Skapura, 1991); Sandidge and Hoyler (1998) used one inner layer 

with 21 nodes, with the input layer containing 41 nodes; Ceyhun and Yalcin (2010) 

used two inner layers each with four nodes; Liu et al. (2015) similarly used two inner 

layers having nine and three nodes; Gholamalifard et al. (2013) used one inner layer 

with six nodes. Sandidge and Holyer (1998) showed that the accuracy of the 

generalised ANN varied for the two AVIRIS scenes analysed, achieving an RMSE 

(between actual and predicted depth) of 0.83 m and 0.39 m for depths between 0-6 m. 

It should be noted that the plots of estimated versus actual depths described a non-

linear response (rather than a linear 1:1 line), and that the ANN substantially over-

estimated the depths (up to 3 m) for depths less than 2 m. The RMSE values reported 

by Sandidge and Holyer (1998) are similar to those produced by Corucci, Masini, and 

Cococcioni (2011) and Liu et al. (2015). Larger variability of the ANN estimated depth 

from the actual was observed by Ceyhun and Yalcin (2010), where the ANN 

consistently over-estimated the depth (refer to Fig.5 by Ceyhun and Yalcin, 2010). An 

independent analysis of the predicted and actual depths given in Table 1 by 

Gholamalifard et al. (2013) showed that for depths less than 10 m, the RMSE was 0.45 

m in line with Sandidge and Holyer (1998). In addition, biases of greater than 2 metres 

were observed, for example there were three instances where the actual depth was 5 

m, yet the ANN predicted 5.91-, 8.07- and 8.51-m. 
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2.3.3 Limitations 

The linear and ratio spectral transformations mentioned in sections 2.3.1 rely 

on finding a pair of spectral bands within a given scene where: (a) the ratio of the 

bottom albedos in these two bands are the same for all bottom types, and; (b) the 

difference between the water column attenuation coefficients at these bands is 

constant. Selecting a pair of bands that satisfy these criteria is difficult, troublesome 

and is a potential source of error in depth predictions when they are not met. 

Furthermore, spectral ratio transformation algorithms do not take into account the 

complete spectral shape of the water leaving reflectance, and using two bands is 

subject to non-uniqueness issues. Here non-uniqueness arises when different sets of 

IOPs, depth and substrate generate the same reflectance value at a given wavelength. 

Thus in the case of Dierssen et al. (2003), equation 2.31, deep sand can be confused 

with shallow seagrass solely using a ratio between 555 and 670 nm leading to 

inaccurate retrievals of bathymetry (Mobley, 2012). PCA has been shown to perform 

adequately for scenes with varying water clarities and bottom albedos but in some 

situations it is less accurate than the linear model proposed by Lyzenga (1985). 

Methods that utilise non-linear relationships such as ANNs and Manifold Coordinate 

Representations (Bachmann et al., 2009) have the potential to retrieve more accurate 

bathymetry. However, they (like the linear, ratio and PCA transformations) require in 

situ depth measurements as a means of tuning these algorithms, and as such limits their 

applicability temporally and to other regions. 

 

2.4 Benthic classification 

There has been a plethora of benthic habitat classification techniques 

published on mapping coastal and coral reef ecosystems. As one of the research 

outcomes of this thesis is a method to analyse the potential and limitations of benthic 

classification from hyperspectral imagery, a brief review of classification from 

multispectral sensors is given for completeness. Due to the limited number of spectral 

bands in the visible domain of moderate to high spatial resolution satellite imaging 

sensors such Landsat TM, SPOT, QuickBird and IKONOS; mapping typically has 

centred on supervised or unsupervised classification of image-derived spectra. Current 

classification techniques are, however, migrating towards object-based image analysis 

where the textual patterns of a group of pixels are used, in combination with the spectra 
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(i.e. colour), to classify pixels (e.g. Benfield, Guzman, Mair, & Young, 2007; Zhang 

et al., 2013; Roelfsema et al., 2014). Such approaches are not within the scope of this 

research and therefore excluded from this review. 

The most commonly used supervised method is the maximum likelihood 

classifier (MLC), where an image pixel is assigned to a class based on the highest 

posterior probability – i.e. the probability of a pixel belonging to class k given its 

spectral response (Atkinson & Lewis, 2000). MLC requires a representative imaged-

based training dataset for each class in order to estimate the spectral mean and 

variance-covariance. Vahtmae and Kutser (2013) illustrated that the resultant 

classification accuracy can be severely degraded if the representative training datasets 

are not selected with caution or some expert knowledge of the scene. Inappropriate 

selection of training regions can increase misclassification errors between classes. 

Unsupervised classification, in contrast, has similarities to clustering where image 

pixels are segmented into separate clusters based on the similarities of their spectral 

signatures (Richards & Jia, 2006). The advantage here is that selecting training regions 

a priori is not required. However, the number of clusters (i.e. classes) with which to 

terminate the classification must be known beforehand, and the resultant classes are 

arbitrary with regards to their habitat definition unless knowledge of the study site 

exists. Combinations of the two approaches have also been used employed. Maeder et 

al. (2002) used an unsupervised ISODATA classifier to produce 100 classes in an 

atmospherically corrected IKONOS image. Based on the spectra of these classes and 

that of a training dataset the supervised MLC was used to classify the image into nine 

classes. With a similar approach Pu, Bell, Meyer, Baggett, and Zhao (2012) used the 

unsupervised ISODATA classifier on depth invariant indices, and subsequent 

supervised MLC to reduce and classify the number of classes based on a training 

dataset. Table 2.1 lists the different classification techniques used in multispectral 

imagery of coral or coastal marine ecosystems, the number of classes mapped and the 

overall accuracy obtained. 

The early approaches to benthic classification typically neglected the impact 

of the water column contribution where classification was performed using the 

sensor’s digital numbers (Luczkovich, Wagner, Michalek, & Stoffle, 1993; Zainal, 

Dalby, & Robinson, 1993; Ferguson & Korfmacher, 1997) or atmospherically 

corrected reflectances (Mumby, Green, Clark, & Edwards, 1998b; Maeder et al., 2002; 

Andrefouet et al., 2003; Gullstrom et al., 2006). As a consequence the overall accuracy 
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of the resultant classification maps varied from approximately 20% to typically less 

than 70% (Table 2.1). It should be noted that classification accuracy is dependent on 

the number of classes mapped and the spatial and spectral resolution of the sensor. The 

general trend in these studies follows that the fewer the classes and the higher the 

spatial or spectral resolution of the sensor the higher the overall accuracy. Indeed Pu 

et al. (2012) analysed the classification accuracies obtained with three satellite sensors 

(Landsat TM, EO-1 ALI, and Hyperion) each having 30 m spatial resolution but 

different spectral resolutions. Landsat TM, EO-1 ALI and Hyperion had 3, 4 and 24 

spectral bands in the visible domain and obtained classification accuracies of 92%, 

95% and 96% respectively for a three class map. Here each class represented a 

proportion of seagrass cover of <25%, 25-74% and ≥75%. When the number of classes 

increased to five these accuracies reduced to 66%, 78% and 79% for Landsat, EO-1 

and Hyperion respectively (Pu et al., 2012). This trend of decreasing spectral 

resolution with decreasing classification accuracy was also observed by Hochberg and 

Atkinson (2003) and Karpouzli, Malthus and Place (2004). 

Unfortunately there has been no definitive or optimal number of classes (and 

the benthos that constitute them) that future users should use that would give a 

particular classification accuracy. Andrefouet et al. (2003) did plot the classification 

accuracy against the number of classes mapped using IKONOS and Landsat and, 

despite the different methodologies used, it followed a decreasing linear trend. 

However selecting the optimal number of classes to use is still a trial and error 

approach. This was demonstrated by Zapata-Ramirez, Blanchon, Olioso, Hernandez-

Nunez and Sobrino (2013) who initially mapped an IKONOS imaged coral reef scene 

with 12 classes based on field data. Using supervised classification the overall 

accuracy of the subsequent map was too low and thus Zapata-Ramirez et al. (2013) 

collapsed the number of classes into six relatively broad classes with an overall 

accuracy of 82%. This suggests the potential value of a technique that a priori 

describes the number and type of benthic classes that could be distinguished for the 

given scene and spectral resolution of the sensor. 
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Table 2.1: Benthic substrate classification methodology, number of classes and overall accuracy from a variety of imaging sensors in the literature. Note that in the 

Classification Method column, DII stands for Depth Invariant Indices from the method of Lyzenga (1981); MLC for Maximum Likelihood Classifier; SAM for 

Spectral Angle Mapper; UC for Unsupervised Classification; CE for Contextual Editing; DN for digital numbers. 

Reference Sensor Number of Classes Accuracy (%) Classification Method 

Gullstrom et al. (2006) Landsat-TM 2 Not Assessed Supervised MLC of at- atmosphere corrected spectra 

Zainal et al. (1993) Landsat-TM 8†, ‡ Not Assessed Supervised MLC of DN 

Ferguson & Korfmacher (1997) Landsat-TM 2 63.4-72.6 UC using DN and depth data 

Purkis & Pasterkamp (2004) Landsat-TM 7 76 Supervised MLC of derived bottom reflectances 

Call, Hardy, and Wallin, (2003) Landsat-TM 7*, †, ‡ 74 UC of DII 

Mumby et al. (1998a) Landsat-TM 

4 

~50 Supervised MLC of atmosphere corrected spectra 

~70 Supervised MLC of DII 

~75 Supervised MLC of DII followed by CE 

13 

~20 Supervised MLC of atmosphere corrected spectra 

~28 Supervised MLC of DII 

~31 Supervised MLC of DII followed by CE 

Mishra et al. (2006) QuickBird 6* 81.46 UC of derived bottom reflectances 

Vahtmae et al. (2011) QuickBird 7* 68 Supervised MLC of atmosphere corrected spectra 

Maeder et al. (2002) IKONOS 5* 89 UC of image spectra followed by supervised MLC 

* Deep water is included as a substrate mapped; 

† Includes classes of sand at different geomorphic zones, e.g. “sand at backreef”, “Sand at lagoon floor” or at different depths e.g. “Shallow Sand”, “Deep sand” 

‡ Includes classes of seagrass, algae or coral at different depths, e.g. “Shallow seagrass on lagoon floor”, “Deep seagrass on lagoon floor”  
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Table 2.1: continued  

Reference Sensor Number of Classes Accuracy (%) Classification Method 

Andrefouet et al. (2003) 

The following location and results were based on IKONOS imagery 

Shiraho, Nth Japan 

Glovers 

Boca Paila 

Addu 

Dubai 

Biscayne Bay 

Andros Island 

Heron Island 

Mayotte 

4 

5 

7† 

8† 

8‡, † 

8‡ 

8† 

13 

14† 

81 

77 

74 

66 

71 

84 

74 

42 

61 

UC of image spectra 

UC of DII followed by CE 

Supervised MLC of DII 

Supervised MLC 

Supervised MLC 

Supervised MLC 

Supervised MLC of DII 

Supervised MLC of DII 

Supervised MLC of image spectra 

Purkis (2005) IKONOS 8 69 Supervised MLC of derived bottom reflectances 

Zapata-Ramirez et al. (2013) IKONOS 6 82 Supervised MLC of atmosphere & sunglint corrected spectra 

Vahtmae & Kutser (2013) 
WV2 

CASI 

5* 

5* 

61.6 

77.5 
Supervised SAM of atmosphere & sunglint corrected spectra 

Mumby et al. (1998b) CASI 9 

~64 Supervised MLC of atmosphere corrected spectra 

~65 Supervised MLC followed by CE 

~77 Supervised MLC of DII 

~81 Supervised MLC of DII followed by CE 

* Deep water is included as a substrate mapped; 

† Includes classes of sand at different geomorphic zones, e.g. “sand at backreef”, “Sand at lagoon floor” or at different depths e.g. “Shallow Sand”, “Deep sand” 

‡ Includes classes of seagrass, algae or coral at different depths, e.g. “Shallow seagrass on lagoon floor”, “Deep seagrass on lagoon floor” 
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Not accounting for the attenuating effects of a variable water depth causes a 

higher level of misclassification between different classes at different depths, for 

example between seagrass and deep sand or seagrass and deep corals (Zainal, Dalby, 

& Robinson, 1993). As the water depth increases the difference in spectra (digital 

numbers or above water reflectance) between certain habitats at different depths 

become less than the variance within each class and the supervised or unsupervised 

classifier cannot separate them. Furthermore, supervised classification works best 

when the reflectance spectra of the classes have well defined variance-covariance. This 

poses issues for shallow water mapping as a class such as sand for example will exist 

at different depths with slightly varying water optical properties. This consequently 

increases the intra-class variability for the sand class thereby increasing spectral 

confusion between classes. Water column correction has therefore demonstrated 

improved benthic classification accuracies by increasing the spectral differences 

between classes to allow greater separation (Mumby, Clark, Green, & Edwards, 

1998a). Note that the exponential nature of light attenuation by depth means that a 

small spectral difference in the above water reflectances would constitute a larger 

difference in the spectra at the depth of the substrate. There will of course be a depth 

limit where water column correction no longer spectrally separates classes sufficiently. 

This limit would vary from scene to scene as it is dependent on the water column 

optical properties (Kutser, Dekker, & Skirving, 2003; Hedley, et al., 2012b). O’Neill 

and Costa (2013) estimated the depth limit a priori in order to mask out optically deep 

water pixels. This depth limit was optimised for eelgrass (the classification objective) 

and was defined when the above water reflectance of eelgrass could no longer be 

distinguished from that of deep water. Here the optical properties of the water column 

were based on field measurements. 

To date, analysis of spectral confusion is briefly analysed after classification, 

where for instance it has been noted that confusion between seagrass and different 

types of algae exist (Mumby, Green, Edwards, & Clark, 1997; Gullstrom et al., 2006; 

O’Neill & Costa, 2013) or between dense coral habitat and algae in deeper waters 

(Purkis, 2005; Zapata-Rameriez et al., 2013). A method that is able to describe which 

classes are spectrally distinguishable given the optical properties of a water column 

and the range of depths expected in a scene will aid in understanding the potential of 

spectral classification methodology to the particular scene and sensor a priori. 
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For multispectral sensors, the two most common approaches to removing the 

influence of the water column are the method by Lyzenga (1981) or by estimating the 

water column optical properties and water depth, and then using a bio-optical model 

to remove the influence of the water column from the image. Lyzenga (1981) 

illustrated that the image pixels of a single substrate at a variety of depths fall on a 

linear line on a bi-plot of two log transformed visible bands. Similarly, image pixels 

of different substrates would fall onto other parallel lines. The gradient is the ratio of 

the effective diffuse attenuation coefficient of the water column at these two bands and 

the y-intercept the depth invariant index – where pixels belonging to that substrate 

share the same value irrespective of their depth. Thus two spectral bands generate one 

depth invariant index (DII). Although this is a simple yet useful tool that does not 

require any in situ measurements, it does have several drawbacks. The first of which, 

as stated by Andrefouet et al. (2003), is that the spectral shape of the DII cannot be 

related to in situ substrate reflectances and thus (supervised or unsupervised) 

classification must still be performed with the aid of ground-truthed image pixels 

whose habitats are known. The second are errors arising from spatially heterogeneous 

water column optical properties (Tassan, 1996), and the third deals with the 

applicability of this method when benthos only occupy a limited depth range. The latter 

drawback is the reason why Andrefouet et al. (2003) could not use the Lyzenga method 

for all images analysed in an inter-comparison study into the standardising of 

methodologies. Zhang et al. (2013) also experienced this limitation over the shallow 

areas of Florida Keys where the key substrates only occurred in a narrow depth range. 

Despite these limitations classification using DII has shown improvements in 

accuracy, where Mumby et al. (1998a) showed on average a 16%, 11% and 7% 

accuracy improvement for classification maps with four, nine and 13 classes 

respectively. 

Correcting the water column radiance signal using a bio-optical model, to 

retrieve the bottom substrate reflectance does potentially alleviate all the drawbacks 

encountered by the Lyzenga (1981) method. However, knowledge of the water column 

optical properties for each pixel in the image is needed, which is not possible from 

field measurements. As such researchers have assumed that the water column optical 

attenuation across the imaged area is spatially homogeneous and represented by an 

effective diffuse attenuation coefficient (Mumby et al., 2004; Purkis & Pasterkamp, 

2004; Purkis, 2005; O’Neill & Costa, 2013). In these studies the depth across the scene 
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was estimated either by linear interpolation of discrete in situ depth measurements or 

boat-based bathymetry surveys using acoustics. Other researchers have attempted to 

estimate the depth and optical properties for each pixel using empirical relationships 

that utilise reflectance ratios (Mishra, Narumalani, Rundquist, & Lawson, 2006). 

Supervised or unsupervised classification of the retrieved substrate reflectances would 

then be performed. The resultant classification accuracies varied from 69% to 81.46% 

(Table 2.1), however given that the researchers did not perform a comparison without 

using water column correction, it can only be assumed that improved accuracy is 

afforded. Note that supervised classification in this context compares an image pixel 

to a library of benthic endmembers (Purkis, 2005). This represents a shift from the 

initial mapping of habitats that represented an assemblage of benthos (e.g. Mumby et 

al., 1998a; 1998b; Andrefouet et al., 2003) to mapping individual benthos. These 

studies did not take spectral mixing of the benthic components into account (e.g. 

Hedley & Mumby, 2003) and may have potentially reduced the classification accuracy 

for pixels that have a high level of benthic heterogeneity. Unmixing the substrate 

reflectance to the fractional coverage of benthic endmembers however does require 

more bands in the visible domain to achieve and is typically limited to hyperspectral 

remote sensing. 

 

2.5 Radiative Transfer Based Algorithms 

Methods that simultaneously solve for the optical properties of the water 

column, depth and bottom substrate from the water leaving reflectance are desirable 

for bathymetry and benthic classification. Such methods can be categorised into two 

groups: semianalytical (SA) inversion models that utilise spectral optimisation and 

look-up-table (LUT) routines, both of which circumvent the need for in situ data 

calibration. The SA models reviewed are an approximation to the Radiative Transfer 

Equation (RTE) as they utilise single-scattering theory, assume a homogeneous water 

column with vertically constant IOPs, a Lambertian bottom reflectance, and fixed 

spectral shapes to the IOPs. LUT methods in contrast utilise exact Radiative transfer 

numerical models, such as Hydrolight (Mobley & Sundman, 2000) or PlanarRad 

(Hedley, 2008), to generate a lookup table of reflectance spectra pertaining to different 

IOPs, depth and bottom substrate types. Thus SA models are approximations whilst 

LUT methods are exact but do not continuously sample the parameter space. Both have 
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advantages and disadvantages, as will be discussed in this section. SA and LUT 

methods have been primarily developed for hyperspectral sensors where the number 

of bands in the visible domain (with high enough SNR) can detect subtle spectral 

differences due to changes in depth, bottom substrate or magnitudes of in-water 

optically active constituents (Philpot et al., 2003). 

 

2.5.1 Physics Based Inversion Models 

2.5.1.1 Hyperspectral Optimisation Process Exemplar model (HOPE) 

The semi-analytical shallow water model developed by Lee et al. (1999) 

forms the basis of the other more complex physics-based inversion models such as 

BRUCE (Klonowski et al., 2007) and SAMBUCA (Brando et al., 2009). As such its 

parameterisation and spectral optimisation are discussed here in detail. The subsurface 

remote sensing reflectance model used by all semi analytical inversion techniques is 

given by (Lee et al., 1999), 

 

𝑟rs ≈ 𝑟rs
dp{1 − exp[−(𝐷d + 𝐷u

C)𝜅𝐻]}

+
𝜌

𝜋
exp{−(𝐷d + 𝐷u

B)𝜅𝐻} 
(2.32) 

where H is the depth. Section 2.2 outlines the derivation of this equation. Through 

Hydrolight (Mobley & Sundman, 2000) simulations, and using a Petzold phase 

function for the angular distribution of scattering of light by suspended particles, Lee 

et al. (1999) derived semi-analytical approximations for rrs
dp, Du

C and Du
B, 

  𝑟rs
dp

≈ [0.084 + 0.170𝑢(𝜆)]𝑢(𝜆) (2.33a) 

 𝐷u
C ≈

1.03√[1.0 + 2.4𝑢(𝜆)]

cos 𝜃v
 (2.33b) 

 𝐷u
B ≈

1.04√[1.0 + 5.4𝑢(𝜆)]

cos 𝜃v
 (2.33c) 

 𝐷𝑑 ≈
1

cos 𝜃w
 (2.33d) 

and, 

 𝑢(𝜆) =
𝑏𝑏(𝜆)

𝑎(𝜆) + 𝑏𝑏(𝜆) 
 (2.34) 

Note that from equations 2.33b and 2.33c, Du
C

 < Du
B which would mean that 

𝐾u
C̅̅ ̅̅ <  𝐾u

B̅̅ ̅̅ . This contradicts the results given by Kirk (1987) who states that 𝐾u
C̅̅ ̅̅ >  𝐾u

B̅̅ ̅̅ , 

as discussed in section 2.2.1. According to Lee et al. (1998) this contradiction is a 
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consequence of using the quasi-single scattering theory. By not including multiple 

scattering events in equation 2.32, which would require a more complicated 

expression, the best-fit values to the Hydrolight dataset for Du
C

 and Du
B are such that 

Du
C

 < Du
B. Here, the modelled optically deep water subsurface remote sensing 

reflectance, rrs
dp  (equation 2.33a), is independent of the solar and viewing zenith 

angles. This same parameter derived from first principles by Kirk (1989) and 

Maritorena et al. (1994) is inversely proportional to 𝐾d
̅̅̅̅  and 𝐾u

c̅̅̅̅ , see equation 2.10, 

which are themselves functions of the subsurface solar and viewing zenith angles 

respectively (Kirk, 1983). Despite this, the Rrs computed by the SA model given by 

Lee et al. (1999) on average deviated by ~6.3% from Hydrolight generated Rrs. 

Equation 2.32 states that if the absorption and backscattering coefficients of 

the water column are known along with the depth and bottom substrate reflectance, 

then the rrs can be modelled. However, of interest is inverting rrs to solve for a, bb, H 

and ρ. Given that a and bb can be decomposed into the summation of the various 

constituents as given by equations (2.20) and (2.24), the rrs derived from an n band 

sensor can then be represented by the following set of equations (Lee et al., 2001), 

 

𝑟rs(𝜆1) = f {
𝑎w(𝜆1), 𝑎phy(𝜆1), 𝑎dg(𝜆1),

𝑏bw(𝜆1), 𝑏bp(𝜆1), 𝜌(𝜆1),𝐻
} 

⋮ 

𝑟rs(𝜆n) = f {
𝑎w(𝜆n), 𝑎phy(𝜆n), 𝑎dg(𝜆n),

𝑏bw(𝜆n), 𝑏bp(𝜆n), 𝜌(𝜆n),𝐻
} 

(2.35) 

Given that aw and bbw are known (see Morel, 1974; Smith & Baker, 1981) the 

number of equations needed to analytically solve for aphy, adg, bbp, ρ and z are 4n + 1. 

Clearly this is not possible solely from the rrs which only provides n known values. 

Lee et al. (1999) parameterised aphy, adg, bbp and ρ such that each can be represented 

by a scalar variable that governs the magnitude of absorption or backscattering, 

 
𝑎(𝜆) =  𝑎w(𝜆) + 𝑃[𝑎0(𝜆) + 𝑎1(𝜆) ln(𝑃)]

+ 𝐺 exp[−0.015(𝜆 − 440)] 
(2.36a) 

 𝑏𝑏(𝜆) =  𝑏bw(𝜆) + 𝑋 (
400

𝜆
)

𝑌

 (2.36b) 

 𝑌 ≈ 3.44 [1 − 3.17 exp (−2.01
𝑅rs(440)

𝑅rs(490)
)] (2.36c) 

P and G are absorption coefficients at 440 nm, and are scalars designed to control the 

magnitude of the spectral shapes of aphy and adg, respectively.. X is the backscattering 
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coefficient of suspended particles (both algal and non-algal) at 400 nm and scales the 

magnitude of the spectral shape of bbp. The spectral slope of bbp is governed by the 

parameter Y which typically ranges from 0 to 2.5 (Lee et al., 1999). The bottom albedo 

is also parameterised such that, 

 𝜌(𝜆) = 𝐵𝜌sd
∗ (𝜆) (2.37) 

where B is the albedo at 550 nm and ρsd
* is the spectral diffuse reflectance of sediment 

normalised to a value of 1.0 at 550 nm. Hence B scales ρsd
* in order to account for the 

various benthic substrates that would have different diffuse reflectance spectra. The 

rationale here is that the spectral shape of ρ for different substrates between 450 and 

600 nm – the wavelength range that have the greatest transparency in water – are 

relatively minor and can be approximated by equation 2.37. 

From the parameterisation of the bottom reflectance and absorption and 

backscattering coefficients, rrs then becomes a function of P, G, X, B and H. In other 

words, this parameterisation now allows the measured remote sensing reflectance to 

be modelled by adjusting these five scalars. Finding the values of P, G, X, B and H that 

best matches the measured remote sensing reflectance forms the basis of the non-linear 

optimisation scheme proposed by Lee et al. (1999). This optimisation protocol is 

simply a predictor-corrector process in which initial guess values for P, G, X, B and H 

are inserted into the parameterised semi-analytical (SA) shallow water model to 

generate a modelled rrs. This is then compared with the measured reflectance spectrum 

using a difference measure such as normalised Euclidean distance. The initial guess 

values are adjusted until the difference between the modelled and measured reflectance 

spectrum reaches a minimum. When this occurs the values of P, G, X, B and H are 

considered to be derived. 

 

2.5.1.2 Bottom Reflectance Un-mixing Computation of the Environment model 

(BRUCE) 

The HOPE model proposed by Lee et al. (1999) is suited for retrieving the 

water depth and water optical properties over homogeneous substrates. This is due to 

the parameterisation of the bottom reflectance allowing the retrieval of the bottom 

albedo of one benthic class. The default benthic class is sand (Lee et al., 1999), 

however in later research an additional class of seagrass was added (Lee et al., 2001; 

Dekker et al., 2011). Here, a simple reflectance spectrum criteria was used to select 

the benthic class (seagrass or sand) for the inversion process. 
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Assuming a homogeneous substrate is very limiting, unless the hyperspectral 

sensor images a scene with very high spatial resolution (< 1 m), and may not reflect 

the spatial heterogeneity of coastal or coral reef environments (Lim, Hedley, LeDrew, 

Mumby, & Roelfsema, 2009; Hedley, Roelfsema, Koetz, & Phinn, 2012a). Often 

multiple substrate classes populate a given pixel producing a benthic reflectance 

spectrum that is a mixture of the substrate classes present. This is known as sub-pixel 

spectral mixing, the mechanism of which has been assumed to be linear (Hedley & 

Mumby, 2003; Hedley, Mumby, Joyce, & Phinn, 2004; Goodman & Ustin, 2007; 

Klonowski et al., 2007; Brando et al., 2009). Incorporation of linear unmixing to the 

benthic reflectance has been directly implemented in BRUCE (Klonowski et al., 2007) 

and SAMBUCA (Brando et al., 2009). 

The parameterisation of the SA shallow water model used in BRUCE follows 

that of HOPE (Lee et al., 1999) with the exception of the absorption of phytoplankton, 

backscattering of suspended particles and bottom reflectance, 

 𝑎phy(𝜆) =  𝑃𝑎phy
∗ (𝜆) (2.38a) 

 𝑏bp(𝜆) =  𝑋 (
550

𝜆
)

𝑌

 (2.38b) 

 𝜌(𝜆) = 𝐵1𝜌1
∗(𝜆) + 𝐵2𝜌2

∗(𝜆) + 𝐵3𝜌3
∗(𝜆) (2.38c) 

where ρi and Bi are the diffuse reflectance spectrum normalised at 550 nm and 

the albedo of benthic class i, respectively. aphy
* is the absorption coefficient for 

phytoplankton taken from Morel (1988) normalised to a value of 1.0 at 440 nm. Thus 

unlike in HOPE the spectral shape of phytoplankton is fixed. The spectral slope Y is 

set to a value of 1.0 to represent coastal waters. Babin et al. (2003a) showed that 

measured mineral particle backscattering coefficient was more properly modelled 

when Y = 0.4, and Lee et al. (2001) used a value of 0.5 to represent turbid waters. 

The Bi values effectively represent the 'light' contribution of benthic class i to 

the reflectance. These values do not necessarily add up to one as they represent the 

albedo not fractional cover, although the higher the albedo the higher the likelihood 

that that benthic class will dominate the fractional cover (Klonowski et al., 2007; 

Fearns, Klonowski, Babcock, England, & Phillips, 2011). Converting these values to 

proportional cover was initially done through scaling, such that each Bi value was 

divided by their total sum for that pixel. This however may not be the most appropriate 

scaling method as illustrated in the following example. Figure 5j presented by 

Klonowski et al. (2007) showed the Hydrolight modelled benthic albedo values at 550 
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nm of a pixel equally mixed with sand, Posidonia sp. and Sargassum sp., that is 

~33.3% coverage by each. The benthic albedo of these classes were 0.101, 0.017 and 

0.013 equating to 77%, 13.4% and 9.6% using the scaling method proposed by 

Klonowski et al. (2007) for sand, Posidonia sp. and Sargassum sp. respectively. This 

scaling approach clearly does not take into consideration the intrinsic albedo of each 

class (and would only work if each class has the same intrinsic albedo). Note the 

intrinsic albedo of benthic class i refers to its albedo value when it completely covers 

a pixel, which for sand, Posidonia and Sargassum are 0.305, 0.052 and 0.040 

respectively (see Table 2 in Klonowski et al. (2007)). Hence 0.101/0.305 = 0.331; 

0.017/0.052 = 0.327, and; 0.013/0.040 =0.325, which approximately represents the 

33% fractional coverage of each benthic substrate modelled. Thus the fractional cover 

of a given benthic class should therefore be calculated using, 

 Fract. Cover of Class 𝑖 =
𝐵i

𝐵in,i
  (2.39) 

where Bin, i is the intrinsic albedo of benthic class i. Finally, although Klonowski et al. 

(2007) and Fearns et al. (2011) parameterised the bottom reflectance as a linear 

combination of sediment, seagrass and brown algae it is possible to use other substrate 

reflectances. For instance, coral, bleached coral and algae, and even to iterate through 

endmembers of a spectral library selecting those three that give the best fit. 

 

2.5.1.3 Semi-Analytical Model for Bathymetry, Un-mixing, and Concentration 

Assessment (SAMBUCA) 

Another variant of HOPE (Lee et al., 1999) is SAMBUCA (Brando et al., 

2009). The main difference of this model compared to HOPE and BRUCE is the use 

of specific inherent optical properties and the way that the absorption and 

backscattering coefficients and bottom reflectances are parameterised. Specifically, 

the total absorption (a) and backscattering (bb) coefficients are extended to include the 

spectral signatures of non-algal and phytoplankton particulates respectively, 

 

𝑎(𝜆) =  𝑎w(𝜆) + 𝐶CHL𝑎phy
′ (𝜆)  

+ 𝐶CDOM𝑎CDOM′(440) exp[−0.0157(𝜆 − 440)]  

                        +  𝐶NAP𝑎NAP′(440) exp[−0.0106(𝜆 − 440)] 

(2.40) 

where CCHL, CCDOM and CNAP are the concentrations of chlorophyll bearing 

particles, CDOM and NAP respectively. ai'(440) is the specific absorption coefficient 

of component i at 440 nm; for CDOM, aCDOM' was set to 1.0. aphy' is the specific 
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absorption coefficient that remains fixed when processing a hyperspectral image. The 

parameterisation of aNAP follows that published by Babin et al. (2003b), and who 

showed that the relative contribution of the absorption of NAP to total absorption in 

coastal, case 2 waters typically varies from 11% to 28% on average at 443 nm. This 

small contribution is also conveyed by aNAP'(440) = 0.0048, obtained from field 

measurements by Brandro et al. (2009). Absorption of phytoplankton and CDOM 

however typically dominate at 443 nm. 

In Brando et al. (2009), the backscattering term (bb) is parameterised as, 

 𝑏bp(𝜆) = 𝑏bw(𝜆) + 𝐶CHL𝑏bphy

′(
548
𝜆

)
0.681

+ 𝐶NAP𝑏bNAP′ (
548

𝜆
)
0.681

 
(2.41a) 

 𝑏bp(𝜆) = 𝑏bw(𝜆) + [𝐶CHL𝑏bphy′ + 𝐶NAP𝑏bNAP′] (
548

𝜆
)
0.681

 (2.41b) 

bbphy' is the specific backscattering coefficient of phytoplankton particles at 542 nm. 

This backscattering term is modelled as a power law according to Voss (1992). During 

the optimisation process the values of aNAP', bbphy' and bbNAP' are fixed but are also 

scene-specific. Note that Babin et al. (2003a) showed that measured bb(λ) of suspended 

algal particles is not modelled well using a λ-1 power law. In fact measured bb(λ) were 

spectrally flatter than the λ-1 relationship and contained troughs (or minima) at 

wavelengths were absorption of algal pigments are high, particularly the chlorophyll-

a absorption band at 676 nm. The magnitude of these absorption troughs in bb(λ) was 

shown to be dependent on the concentration of phytoplankton, where in case 1 waters 

these troughs were more pronounced than in case 2 waters that were more mineral 

dominated. Thus, according to Babin et al. (2003a), the λ-1 law is only suitable when 

non-absorbing suspended particles populate the water column. 

SAMBUCA assumes that the bottom reflectance is a linear combination of 

two substrata, 

 𝜌(𝜆) = 𝑓i𝜌i(𝜆) + (1 − 𝑓i)𝜌i(𝜆)  (2.42) 

here ρi and ρj are the substrate diffuse reflectances of substratum i and j respectively, 

and fi represents the fractional cover of substratum i. To determine the type of 

substrate, SAMBUCA iterates through endmembers in a spectral library, keeping 

those two substrata and their fractional cover that give the best spectral fit. In this case 

the substrate reflectances are not normalised to 550 nm, as they are in HOPE and 

BRUCE, which allows SAMBUCA to solve for fractional coverage directly rather than 

retrieving the benthic albedo. In other words the albedos of the different substrate 
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reflectances are fixed. This has the advantage of readily interpretable results without 

the need of extra scaling as in BRUCE. Additionally, solving for the albedo is rather 

abstract since the albedo of a given substrates' diffuse reflectance should be constant 

for any given environmental conditions. For example, the albedo of a pixel solely 

composed of sand (or any other substrate for that matter) should not vary for varying 

depths or water clarity, and should only change if other substrate types populate the 

pixel. 

 

2.5.1.4 Optimisation 

In this section we describe the spectral optimisation used by HOPE, BRUCE 

and SAMBUCA, which are also different for these three inversion models. HOPE uses 

an error function that is analogous to a normalised Euclidean distance (or RMSE) of 

the modelled spectrum, 𝑅rŝ, from that measured, Rrs (Dekker et al., 2011), 

 
𝛥HOPE = 

 [∑ (𝑅𝑟𝑠 − 𝑅𝑟𝑠̂)
2675

400
+ ∑ (𝑅𝑟𝑠 − 𝑅𝑟𝑠̂)

2800

750
]

0.5

∑ (𝑅𝑟𝑠)
675
400 + ∑ (𝑅𝑟𝑠)

800
750

 

(2.43) 

Here the wavelengths relating to chlorophyll-a fluorescence (675-750 nm), 

which the SA shallow water models do not account for, are omitted from the 

determination of the error function. The goal here is to find the parameters that 

generates a 𝑅rŝ spectrum such that Δ = 0. The error function used by BRUCE is similar 

to equation 2.43 except that the denominator is equal to the number of spectral bands 

rather than the sum of the measured Rrs across all usable wavelengths (Klonowski et 

al., 2007). This effectively becomes the Euclidean distance between the modelled and 

measured Rrs, though as in equation 2.43, the lower the Δ the better the fit. Note that 

during spectral optimisation a set of parameters such that Δ=0 is almost never found. 

There are three reasons for this: (1) the semi-empirical formulation of the SA models 

were developed from a wide range of Hydrolight simulations and as such there is an 

error attributed to the forward modelled Rrs; (2) Atmospheric and sunglint corrections 

can be inaccurate or introduce spectral artefacts to the sensor-derived Rrs, or; (3) The 

spectral optimisation algorithm may converge to a solution that is a local minimum 

rather than a global minimum. 

In SAMBUCA, the error function combines the spectral angle presented by 

Kruse et al. (1993) and the least squares minimisation from equation 2.43. The spectral 

angle, α, between the modelled and measured Rrs is given by, 
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𝛼 = cos−1
∑ (𝑅rs × 𝑅rŝ)

800

400

[∑ 𝑅rŝ
2

800

400
]
0.5

∙ [∑ 𝑅rs
2

800

400
]
0.5 ,  

0 <  𝛼 < cos−1(0) 

(2.44) 

and is effectively a measure of the difference in spectral shape between the measured 

and modelled Rrs, and in which the magnitudes are disregarded. Thus combining α 

with the least squares distance creates an error function that takes into account the 

spectral shape and magnitudes such that (Brando et al., 2009), 

 
𝛥SAMBUCA =  𝛼 ×

 [∑ (𝑅𝑟𝑠 − 𝑅𝑟𝑠̂)
2800

400
]
0.5

∑ (𝑅𝑟𝑠)
800
400

 

(2.45) 

 

2.5.2 Look up tables (LUT) methods 

Look up table (LUT) and spectrum matching approaches to simulatenously 

retrieve the water depth, inherent optical properties and the benthic reflectance from 

input remote sensing reflectance was first proposed by Kutser and Jupp (2002) and 

later extended by Mobley et al. (2005). The LUT approach proposed by Mobley et al. 

(2005) was termed the Comprehensive Reflectance Inversion based on Spectrum 

matching And Table Lookup (CRISTAL). In these approaches a large database of 

modelled reflectance data (the LUT) are simulated using Hydrolight for varying water 

depths, IOPs and benthic endmembers. Spectral matching is then used to locate the 

simulated Rrs spectrum that best match the measured Rrs spectrum. The environmental 

conditions (i.e. depth, IOPs, and benthic substrata) of that simulated Rrs are then 

assumed to correspond to the conditions that formed the measured Rrs. Spectrally 

matching the measured Rrs for every pixel in a hyperspectral image is used to generate 

bathymetric, IOP and benthic habitat maps. 

The LUT of simulated Rrs can contain in excess of 10,000 spectra owing to 

the fact that the simulated Rrs must be modelled for a range of different water depths, 

backscattering coefficients and benthic reflectance spectra. Indeed Lesser and Mobley 

(2007) varied the values of the absorption and backscattering coefficients to generate 

28 IOP combinations, where for each IOP set the bottom reflectance was varied for 84 

depths that ranged from 0.25- to 15.0-m. 118 bottom reflectance spectra were used 

which included the spectra for sand, seagrass, turf algae, pavement, coral-sargassum 

and extensive mixtures of these bottom types. From these combinations more than 



2. Literature Review 

 

38 

277,000 simulated Rrs were modelled using HydroLight. Unlike the SA models of 

HOPE, BRUCE and SAMBUCA, which are approximations; the Radiative transfer 

model employed by HydroLight is numerically exact and in principle would generate 

more accurate retrievals in IOPs, depth and benthic substrate. 

The LUT technique proposed by Mobley et al. (2005) has two limitations: (1) 

the accuracy of the retrieved depth, IOP and benthic type is dependent on how well 

these parameters were represented when the LUT was constructed. For example, using 

IOP parameters for the LUT construction that did not occur during the time of 

acquisition of the hyperspectral image would severely degrade the accuracy not only 

of the retrieved IOPs but also the depth and benthic substrate. In other words it 

becomes necessary to roughly know the range of depths, IOPs and benthos endemic to 

the region of interest at the time of acquisition. This also implies that a LUT, 

constructed for a particular site or condition (e.g. clear waters), cannot be re-used for 

another site or condition (e.g. flood events that increase water turbidity); (2) the 

discretisation of the input parameters (such as depth, IOPs and benthic reflectance) can 

generate errors due to under-sampling of regions where a small change has a 

significant effect on Rrs. For example, the Rrs at a given wavelength decreases 

exponentially with increasing depth (see equation 2.32). Thus discretising the depth 

parameter by regular intervals would cause over-sampling at larger depths, where a 

large change in depth causes miniscule changes in Rrs that are typically overshadowed 

by noise from a sensor, and under-sampling at shallower depths where a small change 

in depth causes a significant change in Rrs (Hedley et al., 2009). 

Hedley et al. (2009) devised the Adaptive Look-Up-Tree (ALUT) technique 

where points1 in the automated table construction are chosen based on spectral 

differences of Rrs between successive points, rather than simply separating the points 

by regular intervals as in the case of Mobley et al. (2005). In other words the ALUT 

seeks an evenly sampled spectral space rather and an evenly sampled parameter space. 

Spectral matching of an input Rrs to its corresponding Rrs in the table is performed with 

binary space partitioning trees and allows a more efficient search than by comparing 

each individual Rrs. The ALUT method was extended in Dekker et al. (2011) to include 

                                                 

1 a point in the LUT represents a set of real value parameters (i.e. depth, absorption and backscattering 

coefficients, bottom reflectance)  
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the local linear gradient of each Rrs in the LUT (denoted Adaptive Linearised Look-

Up-Tree, ALLUT). The premise behind this is that the input Rrs will not perfectly 

match any of the Rrs in the table due to residual discretisation errors. Therefore the 

corresponding local linear gradient will pin point exactly where the input Rrs will lie 

in parameter space within the corresponding voxel of the table. The ALUT method 

shows improved accuracies in depth, IOP and bottom substrate retrievals over 

conventional LUT methodology. 
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Table 2.2: Comparison of pre-processing steps, parameterisations of shallow water models, optimisation cost functions for the HOPE, BRUCE, SAMBUCA inversion 

models and the ALLUT forward models as described in Dekker et al. (2011). 

 HOPE BRUCE SAMBUCA ALLUT 

Pre-processing 

𝑅rs
1 (𝜆) =  𝑅rs

𝑅𝑎𝑤(𝜆) − 𝑅rs
𝑅𝑎𝑤(750) 

𝑅rs
1 (750) = 0.02𝑅rs

1 (650) + 0.0001 

𝑅rs
corr(𝜆) = 𝑅rs

1 (𝜆) + 𝑅rs
1 (750) 

𝑅rs
1 (𝑁𝐼𝑅)

= median[𝑅rs
raw(650): 𝑅rs

raw(800)] 

𝑅rs
corr(𝜆) = 𝑅rs

raw(𝜆) + 𝑅rs
1 (𝑁𝐼𝑅) 

Substratum detectability index, 

𝑆𝐷𝐼 = 𝑚𝑎𝑥 (
|𝑟rs

model − 𝑟rs
dp

|

𝑁𝐸𝛥𝑟rs
) 

N/A 

water-to-air 

interface 
𝑅rs

corr(𝜆) =
0.5𝑟rs

1 − 1.5𝑟rs
 𝑅rs

corr(𝜆) =
0.5𝑟rs

1 − 1.5𝑟rs
 𝑅rs(𝜆) =

0.5𝑟rs
1 − 1.5𝑟rs

 𝑅rs(𝜆) =
0.55𝑟rs

1 − 1.5𝑟rs
 

rrs
dp(λ) ≈ (0.084 + 0.170𝑢)𝑢 (0.084 + 0.170𝑢)𝑢 (0.084 + 0.170𝑢)𝑢 (0.084 + 0.170𝑢)𝑢 

a(λ) = 𝑎w + 𝑃𝑎phy + 𝐺e−𝑆CDOM(𝜆−440) 𝑎w + 𝑃𝑎phy + 𝐺e−𝑆CDOM(𝜆−440) 

𝑎w + 𝐶CHL𝑎phy
′

+ 𝐶CDOM𝑎CDOM
′ (440)e−𝑆CDOM(𝜆−440)

+ 𝐶NAP𝑎NAP′(440)e−𝑆NAP(𝜆−440) 

As in HOPE 

bb(λ) = 𝑏bw + 𝑋 (
550

𝜆
)

𝑌

 𝑏bw + 𝑋 (
550

𝜆
)

𝑌

 

𝑏bw + 𝐶CHL𝑏bphy′ (
548

𝜆
)

𝑌_𝑝ℎ𝑦

+ 𝐶NAP𝑏bNAP′ (
548

𝜆
)

𝑌_𝑁𝐴𝑃

 

𝑏bw + 𝑋 (
440

𝜆
)

𝑌

 

ρ(λ)= 

𝜌 = 𝐵𝜌sand
∗  

If Rrs(550)>0.01 & Rrs(710)/Rrs(670)>1.2 

then 𝜌 = 𝐵𝜌seagrass
∗  

𝐵1𝜌1
∗ + 𝐵2𝜌2

∗ + 𝐵3𝜌3
∗ 𝑓i𝜌i + (1 − 𝑓i)𝜌i 𝑓i𝜌i + (1 − 𝑓i)𝜌i 
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Table 2.2: continued 

 HOPE BRUCE SAMBUCA ALLUT 

Cost functions 
√∑ (𝑅rs − 𝑅̂rs)

2675
400 + ∑ (𝑅rs − 𝑅̂rs)

800
750

2

[∑ 𝑅rs
675
400 ] + [∑ 𝑅rs

800
750 ]

 
√∑ (𝑅rs − 𝑅̂rs)

2800
400

𝑁
 

𝛼 = cos−1
∑ (𝑅rs × 𝑅̂rs)

800
400

[∑ (𝑅rs)
2800

400 ]0.5 [∑ (𝑅̂rs)
2800

400 ]
0.5

 

Δ = 𝛼 × 

[
 
 
 √∑ (𝑅rs − 𝑅̂rs)

2800
400

∑ 𝑅rs
800
400

]
 
 
 

 

N/A 

Optimisation 

scheme 

Estimate P, G, X, B, H using a corrector-

predictor optimisation procedure that 

minimises Δ 

Estimate P, G, X, B1, B2, B3, H that 

minimises Δ using Levenberg-

Marquardt optimisation 

Estimate CCHL, CCDOM, CNAP, f1, and H that 

minimises Δ using Downhill Simplex 

optimisation 

N/A 
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2.5.3 Inter comparison 

Dekker et al. (2011) compared the bathymetry and benthic habitat map 

products from the inversion and LUT routines outlined above. Table 2.2 compares the 

parameterisation of the HOPE, BRUCE, SAMBUCA and ALUT models, to illustrate 

the differences. The datasets on which these algorithms were applied were airborne 

hyperspectral imagery of Lee Stocking Island, Bahamas and Moreton Bay, Australia, 

captured using Ocean PHILLS and CASI-2 respectively. Results from Dekker et al. 

(2011) suggest that SA and LUT methods have comparatively high accuracies in 

bathymetry retrievals between 0 to 13 m depth with RMSE ranging from 0.86 m for 

BRUCE to 4.71 m using CRISTAL (Table 2.3). Here, the lower the RMSE the higher 

the bathymetry accuracy. Seagrass classification accuracy ranged from 59% using 

SAMBUCA to 84% with BRUCE. The overall benthic classification accuracy ranged 

from 52% using SAMBUCA to 79% using BRUCE (Table 2.3). 

 

Table 2.3: A comparison between bathymetry retrievals and benthic classification accuracy of the 

different algorithms tested by Dekker et al. (2011). The RMSE in bathymetry between actual and 

derived are presented for Lee Stocking Island (LSI) and Moreton Bay (MN) respectively. The 

classification accuracy was only assessed in MB between 0-3 m. 

Algorithm Model type 

Bathymetry Classification accuracy (%) 

RMSE (m) 

LSI, MB 

Seagrass 

Reference = 89% 

Overall 

Reference = 89% 

BRUCE SA 0.86, 2.11 84 79 

SAMBUCA* SA 1.30, 0.96 59 52 

HOPE SA 1.12, 3.17 N/A N/A 

CRISTAL LUT 1.14, 4.71 83 65 

ALLUT LUT 2.24, 2.36 79 78 

Lyzenga (1985) Empirical 1.68, 3.12 N/A N/A 

*Substratum Detectability Index (SDI) used – see text. 

 

The cause of the differences in bathymetry RMSE and benthic classifications 

accuracies (Table 2.3) are due to algorithm differences as well as the different pre-

processing steps and optimisation algorithms employed by the SA models. For SA 

models the accuracy in bathymetry and benthic classification is dependent on how 

suitable their assumptions to the RTE are, where in addition the total absorption and 

backscattering coefficients are decomposed into a limited set of optically active 

constituents. In contrast, the accuracy of the LUT methods is dependent on whether 
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the finite IOP, depth and bottom substrate combinations are representative of the 

imaged area. It should be noted that both SA and LUT methods must define the benthic 

endmembers and spectral shapes of the IOPs beforehand.  

The varying pre-processing steps performed by the inversion and LUT 

algorithms may have an impact on the accuracy of the retrievals. For instance the 

CRISTAL method did not correct for sunglint contamination, while HOPE and 

BRUCE did, but they used different correction algorithms (Table 2.2). It is unclear 

from Dekker et al. (2011) the sunglint correction algorithms (if any) performed by the 

SAMBUCA and ALUT methods. Also HOPE, BRUCE and SAMBUCA used 

different optimisation algorithms with different cost functions, which would likely 

create differences in the retrievals. Note that ALUT and CRISTAL are spectral 

matching techniques and as such do not perform spectral optimisation. Also included 

in SAMBUCA, and not used by other algorithms, is the substratum detectability index 

(SDI) to flag quasi-optically deep and optically deep pixels from the inversion process. 

Bathymetry retrievals from inversion and LUT methods are generally poor for such 

pixels as the proportion of bottom reflectance in the total reflectance signal is very 

small or non-existent. Hence quasi- to optically deep pixels typically act to increase 

the RMSE between retrieved and actual depths. Dekker et al. (2011) also showed that 

SA and LUT methods that accounted for the mixing of more than one benthic type 

retrieved more accurate water column corrected bottom reflectance – although lower 

classification accuracies were obtained in areas whose benthos were not represented 

in the spectral library. 

There are several advantages of physics-based inversions and LUT 

approaches to hyperspectral imagery such as minimising the non-uniqueness issues 

plagued by band ratio approaches for bathymetry retrieval, and the avoidance of in situ 

data calibration. The hyperspectral algorithms presented in this section also can 

provide water column corrected bottom reflectances leading to potentially improved 

benthic classification and the ability to assign fractional coverage of different classes. 

Such spectral matching and unmixing approaches therefore lead away from the 

limitations of supervised and unsupervised thematic mapping described in section 2.4. 
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2.6 Uncertainty Estimation and Future Directions 

As with all natural systems there is inherent undesired noise in the sensor-

derived Rrs spectrum. In the case of shallow water SA algorithms, such noise leads to 

uncertainties in the retrieved depth, IOPs and bottom substrate albedos (Hedley et al., 

2010). Uncertainty in Rrs can also lead to non-uniqueness issues. A noise-free Rrs 

corresponds to a unique combination of environmental parameters (Mobley et al., 

2005), however when uncertainty is added, a variety of different combinations of 

environmental parameters can form that particular Rrs within the error bounds (Hedley 

et al., 2010), hence being non-unique. Quantifying the uncertainty is therefore crucial 

to understanding the precision of the geophysical parameters, the level of optical 

closure, non-uniqueness and whether the level of precision is suitable for any 

subsequent ecological interpretation. In this section we focus on uncertainty due to 

sensor and environmental noise, and not due to SA model approximations or 

uncertainty caused when the modelled spectral shapes of the IOPs are varied as done 

by Wang, Boss, and Roesler (2005). Other forms of uncertainty assessments not 

considered in this research includes uncertainty in the methodology of field based 

radiometric measurements (Antoine et al., 2008). In remote sensing, uncertainty in the 

Rrs derived by satellite or airborne sensors is introduced mainly by the sensor and the 

environment conditions that processing steps, such as atmospheric, sunglint and air-

water interface corrections attempt to remove (Hedley et al., 2010). 

Any given hyperspectral imager has noise and offsets attributed to it; offsets 

are generally corrected for by the appropriate calibration. Sensor noise, a consequence 

of photon noise, dark current noise and digitisation noise (Moses, Bowles, Lucke, & 

Corson, 2012), is random and its magnitude typically varies over the spectral bands. 

The previous section illustrated that both SA and LUT methods require Rrs or rrs as 

input. Ignoring whitecaps, the radiance received by the sensor is a summation of the 

solar irradiance scattered by the atmosphere, sunglint, sky glint and water leaving 

radiances modulated by the absorptive and scattering properties of the atmosphere 

(Gordon & Wang, 1994); corrections need to be performed to extract the water leaving 

radiance from the at-sensor radiance. Physical based atmospheric correction 

algorithms such as Tafkaa (Gao, Montes, Ahmad, & Davis, 2000), FLAASH (Matthew 

et al., 2003) and HyCorr exist that are able to derive either the at-surface reflectance 

or sunglint-corrected Rrs. With the necessary spectral bands, these algorithms are able 
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to invert the at-sensor radiance to estimate the required atmospheric properties for 

atmospheric correction at each pixel in a hyperspectral image. The atmospheric 

inversion is typically performed from finite size lookup tables of atmospheric 

parameters for a set of solar and sensor angles. Interpolation is typically performed 

between the atmospheric parameters of the LUT to match the actual solar and sensor 

angles during image acquisition. Hence given the use of LUTs and interpolations, 

atmospheric correction approximates the atmospheric parameters encountered in the 

image. 

Atmospheric correction typically provides at-surface reflectance. Subsequent 

sunglint correction must then be performed to remove any contamination from 

specular reflection from the water’s surface. Sunglint algorithms such as those 

proposed by Hedley, Harborne, and Mumby (2005), Goodman, Lee, and Ustin (2008) 

and those in the pre-processing steps of HOPE and BRUCE (see Table 2.2) are image-

based rather than physics-based corrections. The reason being that sunglint is 

dependent on the slope statistics of the individual wave facets, wind speed and 

direction and the sun-sensor angular geometry at the time of the image acquisition 

(Kay, Hedley, & Lavender, 2009). The spatial resolution of the sensor is typically 

greater than an individual wave facet, and thus the wave facet slope distribution is not 

estimated directly per pixel but instead the Near Infra Red (NIR) reflectance is used as 

a glint indicator, based on the assumption the subsurface reflectance is zero in the NIR 

(Kay et al., 2009). 

Such approximations to these crucial radiometric corrections typically leave 

residual spatial noise in hyperspectral imagery as illustrated in Figure 1b in Hedley et 

al. (2005) and Figure 7 in Kay et al. (2009). Estimating the magnitude of such spatial 

noise arising from sensor and environmental noise is crucial in quantitating the 

uncertainty in the retrieved parameters from the SA models. Deriving the uncertainties 

of the various SA model parameters cannot be determined through analytical 

expressions as done in Lee, Arnone, Hu, Werdell and Lubac (2010). The reason for 

this is that the Rrs determined by a SA inversion algorithm never exactly matches the 

sensor-derived Rrs thus inhibiting a direct analytical expression of the uncertainty in 

Rrs to that of the derived parameters. Furthermore the Rrs computed is also dependent 

on whether a global or local minimum was converged to during the optimisation. 

Hedley et al. (2010) developed a simple numerical method for the propagation of 

uncertainty through the inversion process of a SA model. Here the combined sensor 
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and environmental noise is estimated from an imaged homogeneous deep water region 

where the assumption of constant IOPs is valid. The spectral covariance matrix of such 

a region is then used to compute a set of noise-perturbed Rrs spectra for any given pixel. 

Inverting these spectra allows the estimation of the range of IOPs, depth and bottom 

albedo that that pixel is likely to have due to sensor and environmental noise. This 

method is in line with Salama and Stein (2009) who determined the uncertainty in Rrs 

due to sensor noise and atmospheric correction variability due to fluctuations in the 

aerosol optical thickness. In Salama and Stein (2009) the probability distribution of 

the IOPs due to uncertainty in Rrs is determined solely from the upper and lower bounds 

of the variability of Rrs. Under the assumption that the IOPs follow a lognormal 

probability distribution a series of refinement steps and look up tables are used to 

determine the posterior probability from which the uncertainties in the IOPs are 

determined. The method by Hedley et al. (2010) follows a much simpler approach 

where the variability in Rrs is contained in the image spectral covariance matrix, and 

through a process of bootstrapping determines the uncertainty in the products. 

Hedley et al. (2010) and Hedley et al. (2012a) showed that uncertainty in the 

retrieved depth and proportion of benthic type from hyperspectral airborne imagery is 

quite variable, with the most precise retrievals occurring over shallow sand substrates 

with low water turbidity. Under these conditions the retrieved depth was shown to be 

quite precise up to 10 m depth. As the water turbidity is increased the uncertainty in 

the depth is shown to increase, particularly for depths greater than 5 m. The precision 

of the retrieved depth decreases even further when different (usually darker than sand) 

substrates are included in the analysis. Sand substrates produce the most precise 

retrievals because of their high albedo which increases the SNR. Such an analysis 

indicates that bathymetric precision is dependent on the SNR and sensor and 

environmental noise. Clearly the need to quantitate the uncertainty is crucial as it 

would vary from pixel to pixel in an image depending on the depth, substrate albedo 

and water turbidity. This is especially important if subsequent analysis is performed 

on the bathymetry product. For instance analysing the underlying geophysical 

processes that cause temporal changes in bathymetry would require the selection of 

those pixels that achieved high enough precision for statistical significance. Such an 

extension and application of these SA models with uncertainty propagation is 

exemplified with a time series of satellite hyperspectral imagery in Chapter 3 (Garcia, 

Fearns, & McKinna, 2014). 
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Hedley et al. (2010; 2012a) showed that in some pixels the variation in the 

proportion of benthic cover can exceed 100% of the actual value. Indeed the 

uncertainty in substrate cover was shown to be dependent on the number of benthic 

endmembers in the spectral library, the depth and spectral resolution of the sensor. 

Increasing the number of benthic endmembers by including spectra of individual 

species rather than using the averaged spectra for each genus, reduced the precision in 

benthic cover. This was attributed to larger degrees of freedom during spectral 

optimisation when more benthic endmembers were used. Furthermore, a more 

complex spectral library would contain endmembers that have very similar spectra, 

and would increase the spectral confusion between endmembers when sensor and 

environmental noise is propagated. A simplified spectral library containing only 

average spectra of the representative genera thereby produces lower inter-class 

confusion and hence lower uncertainty as shown in Hedley et al. (2010; 2012a). Note 

that using a simplified spectral library may not maximise the potential of remote 

sensing. Karpouzli, Malthus and Place (2004) showed that for high spectral resolution, 

clustering pure endmembers based on their genus to give a simplified library of 

average coral, seagrass, macroalgae and sand reduced subsequent classification 

accuracy. In this case higher classification accuracy was obtained with a more complex 

spectral library. To date, a method that clusters the endmembers in a complex library 

to produce a more simplified library that optimises the uncertainty and accuracy in 

benthic classification has not been described in the literature. A method that can 

potentially resolve this issue is proposed in Chapter 5 (Garcia, Hedley, Hoang, & 

Fearns, 2015). 

The SA models described in section 2.5.1 utilise a complex spectral library 

of endmembers as outlined in Dekker et al. (2011). Under such parameterisations, 

specific benthic classes would be obtained for a range of environmental conditions 

even in situations where it is unlikely that one benthic species can be distinguished 

from another. For instance at increased depth or decreased water clarities, certain 

benthic species may not be resolvable particularly when incorporating sensor and 

environmental noise – as illustrated by Hedley et al. (2012b). For remote sensing 

applications, being able to quantitate which benthic species are spectrally distinct for 

any environmental condition above sensor and environmental noise is key in assessing 

the potential and limitations in benthic classification. With the exception of Hedley et 

al. (2012b), research into the environmental conditions that enable the spectral 
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distinction of benthic substrates have been limited to a few different water types and 

mainly focused on the depth limits at which substrates are no longer detectable above 

the reflectance of deep water, as described below. 

Lubin, et al. (2001) compared the top-of-atmosphere (TOA) radiances of 

sand, coralline algae, green macroalgae, algal turf and four coral species. Clear oceanic 

waters with a flat air-water interface and an atmosphere with maritime aerosols were 

considered for the modelling of TOA radiances. Under these idealised conditions, the 

modelling showed that the differences in radiance between sand, coralline algae, and 

the corals are large enough to enable their spectral distinction using remote sensing at 

a given depth up to 20 m. Hochberg et al. (2003) investigated the depth at which a 

coral substrate was no longer observable for three water types (pure water and clear 

and turbid reef water) at depths ranging from 0-30 m. With the depth limit, zlim, set at 

where the coral substrate signal contributed 5% of the total Rrs, Hochberg et al. (2003) 

showed that zlim was wavelength dependent and decreased with increasing water 

turbidity. An analysis of whether coral is distinguishable from other substrates was not 

performed at any of the modelled depths and water types. In an analogous manner, 

Kutser et al. (2006) used a bio-optical model coupled with in-air spectral reflectances 

of several benthic macroalgae to determine the maximum depths where spectral 

differentiation is still possible. The optical properties of the water column used in the 

modelling were based on that typically encountered in the CDOM-dominated Estonian 

Archipelago. The depth limit was inferred when the spectral difference between the 

modelled Rrs of a benthic substrate and of optically deep water was less than the SNR 

of the sensor. 

Vahtmae et al. (2006) extended this analysis to include hyperspectral sensors 

and spectral distinction between algal species at different depths. Based on spectral 

differences above the SNR the following general trends were inferred: green 

macroalgae was detectable from sand to 10 m depth; red and brown macroalgae were 

distinguishable from sand to 11 m; brown and green macroalgae can be separated to 8 

m; green and red macroalgae are distinct to 8 m, and; brown and red macroalgae are 

separable to 4 m. This type of analysis however did not consider which benthic 

substrates are distinguishable at a given depth. For instance although green and red 

macroalgae are separable to 8 m, brown and red macroalgae are not distinguishable 

beyond 4 m. Thus at 5 m, sand, green algae and mixed brown/red macroalgae would 

likely be distinguishable. After 8 m, green algae is no longer distinguishable from 



Limitations & potential of remotely sensed shallow water bathymetry & benthic classification 

 

49 

brown or red macroalgae, and thus only sand would be separable from a 

green/brown/red macroalgae mixture. Beyond 11 m sand is no longer distinguishable 

from the mixed vegetation as the water column dominates the water leaving 

reflectance. 

Hedley et al. (2012b) developed a generic method to assess at what scenarios 

the above-surface reflectance of different benthic substrates become inseparable. Here 

scenarios relate to a set of environmental conditions typically encountered in coral reef 

ecosystems. A total of 4680 scenarios were modelled that encompassed a variety of 

sun elevations, wind speeds, water column IOPs, depths, sensor SNR’s and benthic 

substrates. Radiative transfer modelling was performed for each scenario to give a set 

of above-surface total reflectance, Rt, which incorporates specular reflection from the 

water’s surface. To account for sensor noise, each Rt was perturbed by the SNR to 

generate 30 new noise-perturbed spectra. Hierarchical class significance diagrams 

were used to show how the different scenarios affect the mean separability between a 

given pair of benthic endmembers (live coral, bleached coral, dead coral and algal turf, 

macroalgae). This extensive sensitivity analysis indicated the effect of the different 

environmental conditions on benthic separability. Some general conclusions are: (a) 

depth is the most influential factor governing benthic class distinction and dampens 

the effect of IOP variability, sun elevation, wind speed and SNR; (b) the variation in 

IOPs considered had minor impact on benthic class separability for depths up to 5 m; 

(c) higher solar zenith angles improves benthic class separability; and; (d) the influence 

of SNR on benthic class distinction is more pronounced at low solar zenith angles. 

These modelling results provide a generic outlook on optical remote sensing 

for mapping coastal and coral reef ecosystems with environmental parameters (i.e. 

water column IOPs, depth etc.) described in the literature. However, applying a per-

pixel procedure to predict the benthic classes that are optically separable given the 

IOPs, depth and total system noise of a given image has yet to be developed and a 

method is presented in Chapter 5 (Garcia et al., 2015). Such knowledge will potentially 

aid in what can be distinguishable and help guide the benthic classification from 

physics-based inversion models. 
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2.7 Summary 

There are many methods of deriving bathymetry from remote sensing 

imagery. Empirically based ratio transformations, though simple to implement, suffer 

either from coarse approximations such as the dark pixel subtraction in the Lyzenga 

(1981) method, or from non-uniqueness issues in the spectral ratio approaches 

(Dierrsen et al., 2003; Stumpf et al., 2003; Mishra et al., 2007). In this case non-

uniqueness arises as the full spectral information is not used and where the ratio of two 

spectral bands can generate the same value from reflectance spectra pertaining to a 

bright deep substrate to that of a darker substrate at a shallow depth. However, the far 

more limiting factor of such approaches, including those that use PCAs and ANNs are 

the need for in situ depth data calibration that often is not available concurrently or 

historically, particularly for very remote regions. 

Benthic classification historically started with the use of multispectral 

satellite imagery such as Landsat and SPOT and then extended to higher spatial 

resolution sensors including QuickBird, and IKONOS. The lack of sufficient visible 

spectral bands of these sensors resulted in the use of supervised and unsupervised 

image classification techniques to classify the benthos in an image. Initially the raw 

digital numbers or at-surface reflectances were used as the basis for the thematic 

mapping, where the number and type of classes selected were based on knowledge of 

the imaged area. For supervised classification, training regions are surveyed a priori 

to identify the type of benthos that they represent. In contrast, the classes produced 

from unsupervised classification are determined from local knowledge or subsequent 

field surveys. Furthermore, as spectral unmixing of benthic endmembers was never 

attempted (due to the low spectral resolution) the classes are generally comprised of 

benthic assemblages specific to the site under investigation. This makes comparison 

of benthic classification maps between regions difficult. Research showed that 

improved benthic classification accuracies are obtained when mapping water column 

corrected bottom reflectances. The Lyzenga (1985) method generates depth invariant 

indices; however the resultant images cannot be compared with actual benthic 

reflectance, prohibiting direct spectral matching. In addition, for the Lyzenga (1985) 

method to be effective the imaged benthos must occupy a wide range of depths, which 

may not always be the case as shown by Andrefouet et al. (2003) and thus limits its 
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application. Other research that performed water column correction did so using in situ 

optical measurements and mostly assumed spatially invariant water optical properties. 

Semi-analytical shallow water inversion models and lookup table approaches 

offer the ability to simultaneously retrieve the inherent optical properties, water depth 

and benthic substrate type and fractional cover. Such approaches are designed for 

hyperspectral imagery with sufficient number of bands and high enough SNR to detect 

subtle changes in the Rrs due to changes in depth, bottom substrate composition and 

IOPs. Although these methods do require some level of site-specific bio-optical model 

calibration such as the spectral shapes of adg, bbp and benthic endmembers, they are 

often assumed according to either expert knowledge of the region or from literature 

data. An additional advantage for benthic classification is that unmixing of the bottom 

substrate to derive the fractional cover of the various benthic classes can be performed. 

Hence only a spectral library of the representative benthic endmembers is needed, 

rather than knowledge of the benthic assemblages that the different training datasets 

represent. 

The accuracy of the SA models is partly dependent on the adequacy of the 

approximations to the RTE. For LUT methods the accuracy is dependent on how 

representative the finite database is to the scene in question, and whether the finite 

parameter steps are suitable. The ALUT developed by Hedley et al. (2009) and 

extended in Dekker et al. (2011) minimises this discretisation error. The accuracy of 

both SA and LUT methods are also dependent on whether the spectral shapes of the 

IOPs and benthic endmembers in the spectral library are suitable for the scene. Despite 

these limitations, SA and LUT methods have achieved moderate to high benthic 

classification accuracies and high bathymetry accuracies below 10 m depths. 

Propagating uncertainty through SA inversion models has seldom been performed, and 

as a consequence the potential and limitations of bathymetry and benthic classification 

derived using SA models from hyperspectral imagery has not been explored. This 

thesis attempts to utilise uncertainty arising from sensor and environmental noise to: 

(a) determine the conditions that enable and prohibit the derived bathymetry in 

detecting temporal changes in depth, and; (b) quantify the number and type of optically 

distinguishable benthic species above the total system noise and attenuating properties 

of a variable water column in an effort to quantify the limitations and potential of 

benthic classification from optical remote sensing. 
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CHAPTER 3  

 

CHALLENGES IN DETECTING TREND AND SEASONAL CHANGES IN 

BATHYMETRY DERIVED FROM HICO IMAGERY: A CASE STUDY OF 

SHARK BAY, WESTERN AUSTRALIA 

 

This chapter has been published in the journal: Remote Sensing of Environment 

Rodrigo A. Garcia, Peter R. C. S. Fearns, Lachlan I. W. McKinna. Detecting Trend 

and Seasonal Changes in Bathymetry derived from HICO imagery: A case 

study of Shark Bay, Western Australia. Remote Sensing of Environment, 147 

(2014), pp. 186-205. DOI: http://dx.doi.org/10.1016/j.rse.2014.03.010. 

http://www.sciencedirect.com/science/article/pii/S0034425714000819. 

 

3.1 Abstract 

The Hyperspectral Imager for the Coastal Ocean (HICO) aboard the 

International Space Station has offered for the first time a dedicated space-borne 

hyperspectral sensor specifically designed for remote sensing of the coastal 

environment. However, several processing steps are required to convert calibrated top-

of-atmosphere radiances to the desired geophysical parameter(s). These steps add 

various amounts of uncertainty that can cumulatively render the geophysical parameter 

imprecise and potentially unusable if the objective is to analyse trends and/or seasonal 

variability. This research presented here has focused on: (1) atmospheric correction of 

HICO imagery; (2) retrieval of bathymetry using an improved implementation of a 

shallow water inversion algorithm; (3) propagation of uncertainty due to 

environmental noise through the bathymetry retrieval process; (4) issues relating to 

consistent geo-location of HICO imagery necessary for time series analysis, and; (5) 

tide height corrections of the retrieved bathymetric dataset. The underlying question 

of whether a temporal change in depth is detectable above uncertainty is also 

addressed. To this end, nine HICO images spanning November 2011 to August 2012, 

over the Shark Bay World Heritage Area, Western Australia, were examined. The 

results presented indicate that precision of the bathymetric retrievals are dependent on 

the shallow water inversion algorithm used. Within this study, an average of 70% of 
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pixels for the entire HICO-derived bathymetry dataset achieved a relative uncertainty 

of less than ±20%. A per-pixel t-test analysis between derived bathymetry images at 

successive timestamps revealed observable changes in depth to as low as 0.4 m. 

However, the present geolocation accuracy of HICO is relatively poor and needs 

further improvements before extensive time series analysis can be performed. 

 

3.2 Introduction 

Detecting change in the near-shore coastal marine environment is necessary 

for understanding mechanisms that drive change in these dynamic systems. One 

important challenge for coastal marine managers is detecting change in bathymetry 

over large areas in a timely manner. With such information, informed decisions can be 

made for efficient and effective management of these fragile ecosystems (Fabbri, 

1998; Galparsoro et al., 2010). The bathymetry of the near-shore could change 

seasonally or in response to acute disturbances, such as storms and extreme weather 

events (Morton, 2002; Morton & Sallenger, 2003), or human induced disturbances 

such as dredging (Cooper et al., 2007). These changes can have flow-on impacts to the 

marine flora and fauna that resource managers are tasked to protect. As such, accurate 

bathymetric monitoring techniques that are time and cost effective are required to 

assess any residual geological and ecological impacts. 

Accurate bathymetry maps can be achieved using active remote sensing such 

as an airborne LiDAR system (Irish & Lillycrop, 1999; Guenther, Cunningham, 

LaRocque, & Reid, 2000). However, frequent long-term monitoring of large coastal 

areas can be costly even with airborne systems. Satellite-based passive remote sensing 

offers an even more cost effective means of obtaining bathymetry maps as it can 

repeatedly sample large areas (hundreds to thousands of square kilometres) frequently 

(Green, Mumby, Edwards, & Clark, 1996). The temporal resolution and large spatial 

coverage makes satellite remote sensing ideal for monitoring changes in bathymetry 

over large areas. 

One of the first quantitative methods of measuring bathymetry from 

multispectral imagery was proposed by Polcyn et al. (1970). This method manipulates 

the ratio of two spectral indices to generate a semi-empirical relationship for depth. 

This algorithm can remove the influence of varying water clarity and bottom 
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reflectance only in very specific conditions (see Polcyn et al., 1970) that are rarely 

encountered in the coastal ocean. 

Lyzenga (1978) proposed a linearised multiband bathymetry algorithm that 

corrects for bottom type variation. This algorithm however requires a depth calibration 

from in situ depth data and, as such, the approach is scene-specific (Paredes & Spero, 

1983; Lyzenga, 1985; Clark et al., 1987) though has been shown to give improved 

results over the band ratio algorithm of Polcyn et al. (1970) (Clark et al., 1987). 

Practical complications arise when a scene has varying water clarity and undefined 

depths when the water leaving reflectance of a shallow area is less than that over deep 

water (Philpot, 1989). Other algorithms that use in situ depth data for tuning empirical 

coefficients include Dierssen et al. (2003) and Stumpf et al. (2003), both of which use 

spectral band ratios. 

Although the algorithms proposed by Lyzenga (1978), Dierssen et al. (2003) 

and Stumpf et al. (2003) can be accurate with imagery that fit their empirical 

constraints, they still require in situ depth data which often is not available, historically 

or con-currently. Thus for the purposes of transferability between sensors and scenes, 

it is crucial to have bathymetric algorithms that circumvent the need for in situ data. 

Semi-analytical, physics-based shallow water inversion algorithms (HOPE in 

Lee et al., 1998; 1999; BRUCE in Klonowski et al., 2007; SAMBUCA in Wettle and 

Brando, 2006 and Brando et al., 2009) and Look-up-table (LUT) techniques 

(CRISTAL in Mobley et al., 2005; ALLUT in Hedley et al., 2009) designed for 

hyperspectral sensors, appear to be more suitable for retrieving bathymetry, water 

column inherent optical properties (IOPs) and for rudimentary benthic classification 

(Dekker et al., 2011). An advantage of semi-analytical algorithms is their non-reliance 

on possibly erroneous assumptions of uniform water IOPs or bottom reflectance, or 

crude corrections (e.g. the deep water radiance correction). Instead, semi-analytical 

algorithms are derived from radiative transfer theory making them more analytically 

exact with lower sources of model error. Consequently, they have been used to retrieve 

bathymetry with relatively high accuracy from airborne hyperspectral imagery 

captured over optically complex coastal marine environments (Mobley et al., 2005; 

Klonowski et al., 2007; Brando et al., 2009; Hedley et al., 2009; Dekker et al., 2011). 

Shallow water semi-analytical inversion algorithms rely on spectral matching 

and/or optimisation routines which require image data with enough spectral bands in 

the visible domain (typically: 400 – 800 nm) to resolve subtle optical signatures. 
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Hyperspectral image data with a modest signal-to-noise ratio (SNR) can achieve this 

(Philpot et al., 2003). Moreover, the spectral information provided by hyperspectral 

imagery minimises non-uniqueness issues, resulting in lower confidence interval 

limits of the retrieved parameters (Defoin-Platel & Chami, 2007; Mobley et al., 2005). 

The lack of accessible hyperspectral satellite imagery has limited the applicability of 

the physics-based semi-analytical algorithms to airborne hyperspectral imagery. 

However, there have been a few examples in the literature, such as Lee et al. (2007), 

who used HOPE to retrieve the spatial distribution of water absorption, depth and 

bottom reflectance from Hyperion imagery of Looe Key, Florida, USA. 

Although the Hyperion sensor has over 200 spectral bands between 430-2400 

nm, it was designed primarily for land-use applications and as such has a relatively 

low SNR that ranges from 50-150 (Ungar, 2003). Over dark targets, such as water, a 

low SNR effectively creates a ‘noisier’ signal and subtle changes in the reflectance 

spectrum may not be differentiated above the noise inherent to the sensor (Hu et al., 

2012). This confounds the remote sensing signal leading to non-uniqueness and hence 

higher uncertainty of the retrieved parameter(s). However, as stated by Lee et al. 

(2007), many shallow coastal areas are subject to high water turbidity resulting from 

suspended sediment run-off or where the water-leaving radiance signal has significant 

contribution from a bright bottom substrate, thus in such cases, Hyperion may have a 

high enough SNR to afford results with higher confidence. These represent a limited 

range of coastal environmental conditions suitable for Hyperion applications, as these 

waters may also be subject to highly absorbing waters (due to phytoplankton and/or 

coloured dissolved organic matter), dark bottom substrates (such as seagrass and 

algae), and large bathymetric ranges that requires higher SNR for more accurate 

assessments. 

The Hyperspectral Imager for the Coastal Ocean (HICO) is the first prototype, 

low cost sensor onboard the International Space Station designed with the necessary 

specifications for remote sensing of a diverse range of coastal marine environments 

(Lucke et al., 2011). HICO has a spatial resolution of 96 × 96 m at nadir with 87 

contiguous spectral bands between 400-900 nm. HICO's SNR varies spectrally but is 

generally greater than 200 between 400 and 600 nm, and ranges from 100-200 between 

600 and 700 nm (Lucke et al., 2011). These sensor attributes make HICO suitable for 

analysing the spectral and spatial complexity encountered in many coastal marine 

environments throughout the globe. 
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To date, there has been limited work reported on the routine monitoring of 

bathymetry using standardised processing of satellite hyperspectral imagery. In this 

chapter, the semi-analytical Bottom Reflectance Un-mixing Computation of the 

Environment inversion algorithm (BRUCE: Klonowski et al., 2007) is used to retrieve 

bathymetry from multi-temporal HICO imagery of the Shark Bay World Heritage 

Area, Western Australia. Of conservational interest and the focal point of the temporal 

analysis is the Faure Sill, a shallow water region within Shark Bay noted for its unique 

seascape and ecological features. This Chapter’s aims are: (1) to test whether a change 

in bathymetry is measurable above statistical uncertainty through time; (2) examine 

the robustness of the Tafkaa (Gao et al., 2000) atmospheric model when applied to 

HICO imagery whose spectral range does not extend beyond 900 nm; (3) to determine 

the precision of a HICO-derived bathymetric dataset using an improved 

implementation of the BRUCE model, specifically redesigned to allow uncertainty 

propagation; (4) compare tide correction techniques and; (5) to study the geolocation 

accuracy of HICO imagery and its implication to routine monitoring. 

 

3.3 Methodology 

3.3.1 Study area and HICO imagery 

Shark Bay is a World Heritage Area located in the northwest of Western 

Australia (Figure 3.1), covering an area of ~14 000 km2. This shallow coastal bay has 

two major sub-embayments orientated in a NW-SE direction; Freycinet Reach, located 

to the west of the Peron peninsula, and Hopeless Reach on the east. In this case study 

the analysis is limited to Hopeless Reach with focus on the Faure Sill; a shallow (1-2 

m in depth) region ~30 km long and ~15 km wide, containing several narrow water 

channels (5-6 m in depth) extending into Hamelin Pool and which run parallel to the 

tidal currents (Burling, Pattriaratchi, & Ivey, 2003; Walker, Kendrick, & McComb, 

1988). Shark Bay's seascape, ecology and corresponding hydrodynamics are inter-

related and unique. Semi-enclosed by three islands, Shark Bay experiences limited 

oceanic exchange and mixing, and combined with low annual rainfall (low land runoff) 

results in calm waters (Department of Environment and Conservation, no date). These 

are favourable conditions for seagrasses which cover ~4200 km2 of Shark Bay (Walker 

et al., 1988). These extensive seagrass meadows influence the sedimentation processes 

within Shark Bay and over time have created large sand banks (e.g. the Faure Sill) that 
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restrict water movement into Hamelin Pool, a unique hypersaline region inhabited by 

stromatolites (Logan & Cebulski, 1970).  

A total of nine HICO images, each with a central image coordinate of ~25.9 

°S/113.9 °E, were captured over Shark Bay, Western Australia, from 19 November 

2011 to 8 August 2012. Pseudo true colour imagery of the HICO dataset are displayed 

in Figure 3.2. Two different swath orientations of HICO were observed: NW-SE and 

SW-NE, with the Faure Sill captured within successive swaths. Though each swath 

had the same coverage/footprint, they often appeared to have a slight translational drift 

(illustrated in Figure 3.1). 

All HICO image data and geographic look-up-tables (GLTs) used in this 

study were accessed through the Oregon State University, College of Earth, Ocean, 

and Atmospheric Sciences, HICO web portal (hico.coas.oregonstate.edu). Note, the 

distributed HICO level-1B (L1B) calibrated radiance files had both spectral and 

radiometric vicarious calibrations (Gao et al., 2012) and, second order light effect 

corrections applied (Li, Lucke, Korwan, & Gao, 2012). 

 

Figure 3.1: Shark Bay, Western Australia, with the Faure Sill located between the two curved 

black dotted lines. The solid black and dot-dot-dashed grey rectangles show the different 

approximate orientations of the HICO swaths. The dashed black rectangle illustrates the 

translational drift in the HICO swath position. 
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Figure 3.2: pseudo true colour composites of the HICO-derived remote sensing reflectance 

imagery over Shark Bay, WA, on: (a) 19-Nov-2011; (b) 14-Dec-11; (c) 21-Jan-2012; (d) 07-Feb-

12; (e) 27-Feb-12; (f) 02-Apr-12; (g) 01-Jun-12; (h) 04-Jun-12, and; (i) 08-Aug-12. The apparent 

illumination variation between these images is due to the different scaling used to generate the 

pseudo true colour composites. 

 

3.3.2 Atmospheric Correction 

The Second Simulation of the Satellite Signal in the Solar Spectrum (6S) 

implementation of the Tafkaa algorithm (Gao et al., 2000) was used to atmospherically 

correct the level-1B, calibrated top-of-atmosphere radiance imagery. The standard 

Tafkaa 6S algorithm uses several bands greater than 900 nm to estimate key 

atmospheric parameters - namely, the aerosol model, the aerosol optical thickness, 

AOT, at 550 nm, the vertical column water vapour, ozone concentration and the 

atmospheric and aerosol models in a per-pixel basis (Gao et al., 2000). However, 

HICO lacks any SWIR and IR (> 900 nm) bands and thus limits the application of 

Tafkaa-6S. Previous research has highlighted the importance of selecting appropriate 

AOT values for Tafkaa when atmospherically correcting HICO scenes (Paterson & 

Lamela, 2011). Therefore, within this study, coincident MODerate resolution Imaging 

Spectroradiometer (MODIS) level-2 data of Shark Bay were used to estimate the AOT 



Limitations & potential of remotely sensed shallow water bathymetry & benthic classification 

 

59 

at 550 nm, vertical column water vapour, CLMVAP, and ozone concentration which 

were then used to parameterise the Tafkaa 6S algorithm. The MODIS imagery of Shark 

Bay, were downloaded from the Ocean Biology Processing Group data browse website 

(http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=am) and processed from raw 

radiance counts (level 0) to calibrated TOA radiance (level-1B). The standard MODIS 

ocean colour atmospheric correction algorithm (Ahmad et al., 2010; Bailey, Franz, & 

Werdell, 2010) implemented in SeaDAS 6.4 was then used to obtain the three 

atmospheric properties. 

Simplified at-nadir viewing geometry was assumed and the Tafkaa 6S aerosol 

and atmospheric model were fixed to “maritime” and “mid-latitude summer” 

respectively for all HICO scenes as these were deemed the most appropriate for Shark 

Bay. Hence Tafkaa 6S was not used to solve for any atmospheric properties using 

HICO’s NIR bands; rather it removed the atmospheric radiance signal based on 

predefined inputs. Note: (1) MODIS data were not used to select these Tafkaa 6S 

models, where the vertical pressure, temperature and relative humidity profiles are 

described; (2) given the atmospheric model and the atmospheric water vapour, Tafkaa 

6S then determines the vertical structure of the water vapour (Montes, Gao, & Davis, 

2004), and; (3) the aerosols in Tafkaa 6S all assume 70% relative humidity (Montes et 

al., 2004).  
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Table 3.1: MODIS-derived vertical column of water vapour (CLMVAP), aerosol optical thickness 

at 550 nm (AOT) and ozone concentration, with the solar-viewing geometries for each HICO 

overpass of Shark Bay, WA. The time presented is Australian Western Standard Time (WST; 

UTC +8 hours). Here θw, θv and φr are the solar zenith, viewing zenith and relative azimuth angles 

respectively. 

HICO 

overpass 

MODIS 

overpass 

CLMVAP 

(cm) 

AOT  

(550 nm) 

Ozone 

(atm-cm) 
θw (°) θv (°) φr (°) 

19-Nov-11, 

1632 hrs 

19-Nov, 

1435 hrs 
1.8 0.08 0.28 60.02 21.4 -214.1 

14-Dec-11, 

1539 hrs 

14-Dec, 

1425 hrs 
2.0 0.1 0.27 45.25 6.3 -128.6 

21-Jan-12, 

1538 hrs 

21-Jan, 

1350 hrs 
2.7 0.15 0.26 42.45 23.2 -41.98 

07-Feb-12, 

1722 hrs 

07-Feb, 

1435 hrs 
3.0 0.15 0.25 66.50 36.6 -128.96 

27-Feb-12, 

0940 hrs 

27-Feb, 

1410 hrs 
3.0 0.35 0.25 45.47 13.4 58.35 

02-Apr-12, 

1035 hrs 

02-Apr, 

1440 hrs 
2.3 0.055 0.26 41.06 20.8 1.12 

01-Jun-12, 

1038 hrs 

01-Jun*, 

0005 hrs 
1.7 0.035 0.26 53.99 16.1 16.93 

04-Jun-12, 

0932 hrs 

04-Jun, 

1355 hrs 
1.0 0.035 0.26 63.31 4.09 2.25 

08-Aug-12, 

1625 hrs 

08-Aug, 

1440 hrs 
1.45 0.045 0.27 71.00 16.7 -165.56 

* MODIS Terra 

 

The lack of concurrent in situ above-water radiometry, photometry or 

AERONET data prevented a quantitative measure of the accuracy of the atmospheric 

correction. However, a cursory evaluation of the atmospheric correction was 

performed by examining the reflectance spectra for two locations representing: (i) 

bright shallow water (25.907 °S/113.934 °E), and (ii) quasi-deep water (25.718 

°S/113.978 °E), through time. It should be noted that atmospheric correction removes 

approximately 90% of the signal that any satellite sensor records. Thus under- or over-

corrections and spectral artefacts introduced to Rrs can be delineated from changes in 

the optical properties of the water column at these positions through time. 
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3.3.3 Retrieval of bathymetry using the BRUCE model 

According to Lee et al. (1998, 1999), the hyperspectral sub-surface remote 

sensing reflectance signal, rrs(λ), of a shallow water pixel can be modelled as a function 

of the total in-water spectral absorption and backscattering coefficients, a(λ) and bb(λ), 

the spectral benthic albedo, ρ(λ), the geometric depth (i.e. bathymetry), H, the sub-

surface solar zenith angle, θw, and the sub-surface viewing angle from nadir, θv. 

 𝑟𝑟𝑠(𝜆) = 𝑓(𝑎(𝜆), 𝑏b(𝜆), 𝐻, 𝜌(𝜆), 𝜃v, 𝜃w) (3.1) 

The view and solar geometries can be considered as fixed, or known. The 

total absorption coefficient is a function of the absorption of pure water, phytoplankton 

and colour dissolved organic and detrital matter (CDOM), and the total backscattering 

coefficient is function of the backscattering of pure water and suspended particulates, 

as given by, 

 

𝑎(𝜆) = 𝑎w(𝜆) + 𝑃 𝑎phy(𝜆) + 𝐺 𝑒−0.015(𝜆−440) 

𝑏b(𝜆) = 𝑏bw(𝜆) + 𝑋 (
550

𝜆
)
1.0

 

𝜌(𝜆) = ∑ 𝐵𝑖𝜌𝑖(𝜆)

𝑛=3

𝑖=1

 

(3.2) 

where aw and bbw are the spectral absorption and backscattering coefficients of pure 

water, respectively. aphy is the spectral absorption coefficient of phytoplankton 

normalised at 440 nm; Bi is the bottom albedo coefficient at 550 nm and i is spectral 

irradiance reflectance normalised at 550 nm of benthic class i, respectively. The scalars 

P and G are the magnitudes of the absorption coefficients of phytoplankton and 

CDOM respectively, whilst X is the magnitude of the particulate backscattering 

coefficient. Thus, the shallow water forward model can be expressed as: 

 𝑟rs(𝜆) = 𝑓(𝑃, 𝐺, 𝑋, 𝐻, 𝐵, 𝜃v, 𝜃w) (3.3) 

Though the spectral shapes and slopes of the optically active in-water 

constituents and benthic end-members were predefined and fixed, their magnitudes (P, 

G, X, Bi), including the depth, are solved using the Levenberg-Marquardt algorithm. 

This non-linear least-squares optimisation compares sensor-derived with modelled rrs 

values, and once the solution converges, the best fit values of P, G, X, Bi and H are 

deemed to have been solved. Further comprehensive detail of physics-based semi-

analytical shallow water inversion algorithms can be found in Dekker et al. (2011) and 

references therein. 
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In this study the BRUCE model, developed by Klonowski et al. (2007) is used 

to derive bathymetry. This semi-analytical shallow water model is a variant of the 

Hyperspectral Optimisation Process Exemplar model, HOPE, proposed by Lee et al. 

(1998; 1999). The difference arises in the parameterisation of the benthic albedo, ρ(λ). 

Unlike HOPE, which considers the net benthic albedo is due to only a single benthic 

substrate, BRUCE assumes it to be a spectral mixture of three benthic end-members. 

In this case study, the bottom albedo is expressed as a linear mix of two benthic classes, 

sand and mixed seagrass (50% Posidonia australis and 50% Amphibolis antartica). 

These two species of seagrass were previously recorded as the most dominant across 

Shark Bay (Walker et al., 1988). The irradiance reflectance spectra of sand, P. australis 

and A. antartica were measured using a handheld hyperspectral radiometer during a 

field campaign to Shark Bay. 

Tafkaa 6S outputs Rrs uncorrected for specular reflection of direct solar and 

sky radiance from the ocean surface (Montes et al., 2004). Thus before implementing 

the non-linear least squares optimisation, the Rrs spectra were corrected for sunglint 

contamination using a correction scheme based on Lee et al. (1999) and Goodman et 

al. (2008), 

 

𝑅𝑟𝑠(𝜆) =  𝑅𝑟𝑠
𝑟𝑎𝑤(𝜆) − 𝛾 + ∆ 

∆ = 1.9 × 10−5 + 0.1[𝑅𝑟𝑠
𝑟𝑎𝑤(640) − 𝛾] 

𝛾 = min(𝑅𝑟𝑠
𝑟𝑎𝑤(640): 𝑅𝑟𝑠

𝑟𝑎𝑤(750)) 

(3.4a) 

(3.4b) 

(3.4c) 

where γ is the lowest Rrs
raw value between 640 and 750 nm. Note that γ was included 

to avoid negative reflectances if Rrs
raw of a wavelength shorter than 750 nm was less 

than that at 750 nm. Whilst there are other sun-glint corrections in the literature (see 

Kay et al., 2009), Goodman et al. (2008), used a similar correction to equations (3.4) 

and obtained quite accurate depth retrievals for shallow waters of Kaneohe Bay, 

Hawaii. Sub-surface remote sensing reflectances were then computed using (Lee et al., 

1999; IOCCG, 2006), 

 𝑟𝑟𝑠(𝜆) =  
𝑅rs

(0.51 + 1.5𝑅rs)
 (3.5) 

A two-step inversion approach was used to retrieve depth that included: (1) a 

brief search of the parameter space for the optimal initial guess parameters used in the 

BRUCE model, and; (2) the uncertainty propagation scheme proposed by Hedley et 

al. (2010; 2012a). 
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As stated by Hedley et al. (2010), the uncertainty procedure begins with 

computing the spectral covariance matrix from a homogeneous deep water region of 

the image. The Cholesky decomposition matrix, L, is then calculated from the 

covariance matrix. The procedure then iterates through the rrs image where, for each 

pixel, the L matrix is used to compute 20 noise-perturbed rrs spectra, rrs+ δrrs. Each 

spectrally correlated noise term, δrrs, is generated by product multiplication of the L 

matrix by an n-band vector, whose values are normally distributed random numbers (μ 

= 0, σ = 1). The BRUCE model, through non-linear least squares optimisation provided 

by the Levenberg-Marquardt (LM) algorithm, then retrieves the values of P, G, X, H, 

Bsand and Bseagrass for each noise-perturbed rrs spectrum. The mean and standard 

deviation are then computed for each parameter set, where the former is taken to be 

the actual retrieved parameter value and the latter its uncertainty. 

In the standard implementation of BRUCE, the initial guess parameters used 

to initiate the LM optimisation routine are kept constant for all pixels in an image. 

However, analysis (see Chapter 4) has shown that different initial guess values lead to 

different local minima having different Euclidean distances. Here, the Euclidean 

distance is defined as, 

 𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √∑(𝑟𝑟𝑠,𝑖 − 𝑟̂𝑟𝑠,𝑖 )
2

𝑁

𝑖

 (3.6) 

where rrs,i and 𝑟̂rs,i are the sensor-derived and modelled subsurface remote sensing 

reflectance at waveband i, respectively. To assist the LM optimisation in locating the 

best local minimum, an update-repeat process was used. This procedure began by 

inverting the rrs spectrum of a given pixel to solve for the in-water optical parameters, 

depth and bottom albedo coefficients. If this initial inversion achieved a Euclidean 

distance of ≤ 1.0×10-4, the optimal set of model parameters were then used as initial 

guesses for inverting the set of noise perturbed spectra, rrs+ δrrs. If, however, the 

Euclidean distance of the initial LM fit was greater than this threshold, the procedure 

entered a ‘repeat’ stage, where the initial optimal set of model parameters were 

randomly perturbed by 10% of their value and used as the initial guess for the 

subsequent inversion attempt. This process was repeated until either the Euclidean 

distance fell below this threshold, or if this repetition occurred more than four times. 

In the latter case, the set of optimised values that generated the lowest Euclidean 

distance was used as the initial guess for inverting the set of noise perturbed spectra. 
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A comparison between this improved method and the standard approach is presented 

in Chapter 4. 

A simple pixel-by-pixel land masking procedure was also performed during 

the inversion process, whereby a pixel is identified as “land” if its Rrs(750 nm) > 

Rrs(400 nm). 

 

3.3.4 Smoothing techniques 

The most noticeable artefact in the retrieved bathymetry and bottom albedo 

images was the amount of impulse (i.e. salt-and-pepper speckling) noise present. Using 

a median filter would reduce this effect and replace the values of impulse noise pixels 

with a reasonable estimate; however it would also cause blurring of regions where 

impulse noise pixels are absent and thereby cause information loss. To limit the 

blurring of unaffected image regions, a three step smoothing approach was designed 

to eliminate impulse noise pixels, reduce the magnitude of random (systematic) noise 

as well as to preserve image sharpness. This smoothing approach is as follows: (1) An 

impulse noise detection algorithm was applied to the image, generating a binary, 

'impulse' - 'not impulse', image; (2) an adaptive median filter on these ‘impulse’ pixels 

was applied, and; (3) a second order binomial average kernel was applied to all pixels 

in the image. Steps (1) and (2) could be replaced by a LUM (Hardie & Boncelet, 1993) 

or centre weighted median filters (Ko & Lee, 1991), however for the bathymetry image 

a more manual and flexible definition of a impulse noise is desired – which can be 

changed according to the user’s prior knowledge. Additionally, step (2) allows the 

median filter to change size according to the number of other unwanted pixels in the 

kernel. 

For the impulse noise detection algorithm, a 3×3 square pixel region was 

created and centred on a given pixel of the raw image. The absolute differences 

between the value of the central pixel and the values of the eight surrounding pixels 

were then computed. The central pixel was then classified as ‘impulse noise’ if the 

differences are greater than a given threshold for more than four of its surrounding 

pixels. For bathymetry images, this threshold was set to a value of 2.0 m, whilst for 

the bottom albedos of sand and seagrass, thresholds of 0.1 and 0.01 were used 

respectively. Note that this kernel was not centred on pixels that were flagged such as 

land or clouds. 



Limitations & potential of remotely sensed shallow water bathymetry & benthic classification 

 

65 

Typically, a 3×3 median filter kernel is used to replace impulse noise pixels, 

as it finds an estimate from the most immediate surrounds; however each raw image 

also contained unwanted land, cloud or other impulse noise pixels. Such undesired 

pixels can heavily contaminate a 3×3 pixel neighbourhood, thereby reducing the 

number of pixels from which the median value is calculated. Thus an adaptive 

approach was implemented whereby the kernel size of the median filter is increased if 

more than 50% of its pixels are undesired (i.e. cloud, land or other impulse noise 

pixels). In this approach, the maximum kernel size was set to 15×15, whereby the 

kernel cannot increase past this size and the median value calculation is forced even if 

the condition was not met. 

The third step involved iterating a second order binomial smoother (Jahne, 

2005) through all pixels of the image (except the edges) given by, 

 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑟 =
1

16
[
1 2 1
2 4 2
1 2 1

] (3.7) 

Application of this kernel to a given pixel replaced its value with a centrally 

weighted average of its pixel neighbourhood. The uncertainty products (H, Bsand and 

Bseagrass) were also modified during the adaptive median filtering and binomial 

smoothing stages. In the former, the uncertainty of a given impulse noise pixel was 

replaced by that of the selected pixel, whilst in the latter the kernel of equation (3.7) 

was convolved through the resultant uncertainty image. 

 

3.3.5 Tide height correction of bathymetric products 

Delineating the changes in depth caused by resuspension and sedimentation 

from changes in tide heights is an important task in detecting trends and seasonal 

changes in bathymetry. Ideally, the retrieved bathymetric data are corrected for tidal 

influences to a common tidal datum such as lowest astronomical tide, LAT. However, 

water level data measured by in situ gauges was not available for the Faure Sill. This 

prevented direct correction of tidal influences observed in the set of bathymetry images 

through time (henceforth referred to as bathymetry time series). Two approaches to 

tide correction were investigated, the first consisting of harmonic tidal analysis and the 

second based on image analysis. 
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3.3.5.1 Harmonic Tidal Analysis 

Water height data, above LAT, at five minute intervals were obtained from 

the Carnarvon tide station (approximately 120 km NW of Faure Sill) from December 

2011 to November 2012 – courtesy of the Western Australian Department of 

Transport. In the harmonic analysis, we followed Burling et al. (2003) and assumed 

that the tide height is the summation of the M2, S2, K1 and O1 tidal constituents, 

 ℎ𝑒𝑖𝑔ℎ𝑡(𝑡) = ℎ̅  + ∑ 𝑎𝑖 cos(𝜎𝑖𝑡 + 𝑔𝑖)

𝑁

𝑖=1

 (3.8) 

where ℎ̅ is the mean sea height and ai, σi and gi are the amplitude (cm), frequency 

(radians/hour) and phase (radians) of tidal constituent i, respectively. The frequencies, 

σ, of each tidal constituent are known parameters and were obtained from Doodson 

and Warburg (1941). With ℎ̅ set as the mean sea height of the Carnarvon data, equation 

(3.8) was used to estimate the water heights at Monkey Mia and Hamelin Pool using: 

(a) the modelled amplitudes presented by Burling (1998), and; (b) phases derived from 

harmonic analysis of Monkey Mia and Hamelin Pool tide times. 2 hours and 2 minutes 

were added (+02:02 hrs) to the tide times of the Carnarvon water height data to 

estimate the Monkey Mia tide times, as recommended by the Australian Bureau of 

Meteorology. Thirty-two minutes were subtracted (-0:32 hrs) from the tide times of 

the Carnarvon dataset to approximate the Hamelin Pool tide times. Harmonic analysis, 

in this case, simply involved fitting equation (3.8) to the approximated tide times using 

LM least squares minimisation, over multiple time series - each being a three day 

interval with the HICO overpass being the central point. Finally, the average water 

height between these two locations (Monkey Mia and Hamelin Pool) was then used to 

correct for the tide over the Faure Sill. 

 

3.3.5.2 Image based empirical tidal corrections 

In the image based approach, an offset was added to each bathymetry image 

that normalises the bathymetry time series to an arbitrary reference depth (tidal datum). 

This method began by locating those pixels, P(i,j), in the bathymetry time series, 

H(i,j,t), that consistently had a depth of less than three metres through time, 

 𝐻(𝑖, 𝑗)  ∈ 𝑃(𝑖, 𝑗)   𝑖𝑓  𝐻(𝑖, 𝑗, 𝑡) <  3 𝑚𝑒𝑡𝑒𝑟𝑠    ∀ 𝑡 = 0, … . , 𝑁 (3.9) 

where i and j represent the spatial coordinates, t the time and N is the number of 

bathymetry images in the time series. This constraint effectively excluded any deep 
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water pixel that may have been incorrectly assigned a depth less than three metres 

through the inversion process at one or more instances in time. Thus the pixels of the 

set P(i, j) consisted of only shallow water pixels where the signal-to-noise ratio (SNR) 

was highest and where the retrieved depth was expected to be most accurate. Two 

medians were then computed: (1) 𝐻(𝑡)̃, the median depth of pixels P(i, j) in each 

bathymetry image, and; (2) 𝐻𝑟𝑒𝑓̃, the median depth of pixels P(i, j) taken across the 

entire bathymetry time series. This latter median was used as a reference depth to 

generate an offset value, ΔH(t), 

 
𝛥𝐻(𝑡) =  𝐻(𝑡)̃ − 𝐻𝑟𝑒𝑓̃ 

If 𝛥𝐻(𝑡) > min[𝐻(𝑖, 𝑗)] ;  then 𝛥𝐻(𝑡) =  min[𝐻(𝑖, 𝑗)] 
(3.10) 

adding ΔH(t) to its respective bathymetry image normalised it with respect to 𝐻𝑟𝑒𝑓̃, 

and in doing so minimised the tidal influence across the dataset. In some instances the 

value of ΔH(t) was greater than the minimum depth in the bathymetry image, and to 

avoid over-correction issues ΔH(t) was set to this minimum. 

 

3.3.6 Geo-registration 

For the purpose of time series analysis in detecting changes in depth, each 

HICO swath was overlaid on the same raster grid to ensure geospatial consistency 

through time. This was performed by first geo-referencing each HICO image with the 

provided geographic lookup tables (GLTs) where an additional rotation was added to 

orientate north as “up”. This was followed by geo-registration where the geo-

referenced image was warped by translation/scaling/rotation using at least thirteen 

ground control points selected from Google EarthTM imagery of Shark Bay. In the 

absence of accurately registered digital maps of the area, we have assumed the Google 

Earth imagery to be an accurate reference, noting that a relative, geospatial consistency 

through time was sought after, rather than absolute geolocation accuracy. 

Due to the lack of man-made features in the Shark Bay region, distinct and 

spatially invariant land features were chosen as ground control points (GCPs). The 

central position of nine different birridas (see Figure 3.3) - salty depressions that are 

either circular, oval or irregularly shaped (Department of Environment and 

Conservation, n.d) – and four other landscape features formed the 13 common GCPs 

(Figure 3.3) used in the geo-registration. Additional GCPs that corresponded to roads, 

distinct sections of rivers, dry inland lakes and tips of islands were also used. Note that 
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these additional GCPs were different for each HICO swath due to cloud cover and the 

changing swath orientation and translational drift (see Figure 3.1). 

 

Figure 3.3: The 13 common ground control points used in the geo-registering of HICO imagery 

of Shark Bay, Western Australia, and the four test locations for geospatial consistency. The HICO 

image (19 Nov 2011) displayed has been geo-referenced with the geographic lookup table. 

 

3.4 Results and Discussion 

3.4.1 Evaluation of Tafkaa-6S atmospheric correction 

Figure 3.4 shows the reflectance spectra of two separate pixels through time: 

a quasi-deep water and shallow submerged sand pixel. The left-hand panels (Figures 

3.4a and 3.4c) and right-hand panels (Figures 3.4b and 3.4d) show the Rrs before and 

after sun-glint correction, respectively. The reflectance spectra of the shallow 

submerged sand pixel (Figure 3.4a) exhibits three spectral artefacts: (1) an upward 

spectral shift occurring from 400 – 450 nm (e.g. 27 February- and 02 April 2012); (2) 

negative reflectance values from 400 – 420 nm (e.g. 08 August- and 04 June-2012), 

and; (3) negative reflectance values beyond 600 nm (e.g. 21 January- and 27 February-

2012). 

The first spectral artefact, according to Goodman et al. (2008), can be 

"considered a function of uncorrected sunglint effects" and "attributed to artefact 



Limitations & potential of remotely sensed shallow water bathymetry & benthic classification 

 

69 

suppression algorithms". The cause of the second spectral artefact is uncertain, 

however it could arise from an over-estimation of either the radiance of Rayleigh 

scattering or from the atmospheric aerosol model at the blue wavelength region. This 

particular artefact has been observed in Rrs of optically deep water pixels by other 

researchers (see Fig. 9c in Gao et al., 2000; and Fig. 6b and 7b in Goodman et al., 

2003), and noted specifically for HICO-derived Rrs by Moses et al. (2014). The latter 

authors recommended a very low AOT when applying Tafkaa 6S to circumvent this 

issue. Assuming the AOT, CLMVAP, and ozone values derived from MODIS are the 

best approximations for Shark Bay, the second spectral effect may then be due to the 

atmospheric and/or aerosol models used within Tafkaa 6S. It is likely these models 

used may be sub-optimal for the semi-arid coastal climate of Shark Bay however, 

improvements to these are beyond the scope of this work. Further, Goodman et al. 

(2008) noted that using the full geometry implementation of Tafkaa (i.e. with cross-

track pointing information) can reduce the magnitude of the spectral effects observed 

in the Rrs. The third artefact is more problematic with respect to accurate retrieval of 

geophysical parameters using the BRUCE model. 

When examining Figure 3.4a, the reflectance spectra of the quasi-deep water 

pixel on both 21 January 2012 and 27 February 2012 appear to have similar spectral 

shapes to those of the other dates, with the main difference being a vertical offset/shift. 

This implies an over-correction of the atmospheric signal that may be due to an over-

estimation of one or more MODIS-derived atmospheric parameter. Indeed, the vertical 

column water vapour and AOT for these two dates were amongst the highest (see Table 

3.1). After sun-glint correction, the third spectral artefact is removed but accentuates 

the second spectral artefact (see Figure 3.4b). 

Analysis of the reflectance spectra of the shallow water pixel (Figure 3.4c) 

also shows the occurrence of the three spectral artefacts. However, the magnitude of 

the reflectance spectra is significantly larger than the magnitude of these spectral 

artefacts. Moreover these artefacts have marginal impacts across the water penetrating 

bands between 450 and 600 nm, and as such are deemed less likely to dramatically 

impair depth retrievals. Negative reflectances at long wavelengths (third spectral 

artefact) after Tafkaa's atmospheric correction, was also observed by Goodman et al. 

(2008) over bright shallow water (sandy substrate) pixels. Goodman et al. (2008), 

illustrated that this spectral feature does not undermine accurate depth retrievals, as 
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the de-glinting procedure effectively normalises the reflectance at 750 to low positive 

values (see Figure 3.4d). 

 

 

Figure 3.4: The remote sensing reflectance of a quasi-deep water pixel (a), (25.718 °S/113.978 °E), 

and a shallow water pixel with a sandy bottom (c), (25.907 °S/113.934 °E), through time. (b) and 

(d) show the sun-glint corrected Rrs spectra of (a) and (c) respectively. Note that the wavelengths 

past 750-nm are not used in the inversion procedure and are not displayed in (b) and (d). 

 

This comparison has shown the addition of three anomalous spectral artefacts 

to the remote sensing reflectance spectra after Tafkaa-6S atmospheric correction. The 

magnitude of these spectral noise are comparable to that of the water-leaving 

reflectance for deep water pixels, which may lead to inaccurate IOP retrievals. 

However, as the purpose of this study was to retrieve water column depth, the Tafkaa-

derived HICO Rrs values over shallow water pixels were deemed suitable in 

accordance with Goodman et al. (2008). 

 

3.4.2 Bathymetry retrievals and smoothing techniques 

Figure 3.5 illustrates the step-wise modification of the HICO-derived water 

column depth product of Shark Bay, 19 November 2011, using the proposed 

smoothing algorithm. Two cross-sectional profiles are presented, each containing: the 
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raw HICO-derived depth (black curves); pixels classified as impulse noise (red 

triangles); (c) the depth after impulse noise removal (blue curves), and; the depth after 

subsequent application of the second order binomial spatial smoother (pink curves). 

Figure 3.5 also shows the depth uncertainty profile and its subsequent modification. 

The raw depth profiles (Figure 3.5) demonstrate how impulse noise pixels 

introduce unrealistic and abrupt changes in the depth product. These pixels were 

predominantly encountered when the depth of the immediate neighbourhood was 

greater than 4.0 m. Additionally, their uncertainties approached, and at times exceeded 

100%, of the actual retrieved depth value. Analysis showed that the Rrs spectra of 

impulse noise pixels whose depths have been estimated to over 7.0 m resembled that 

of quasi-optically deep water (e.g. Figure 3.4a). In such cases, the bottom contribution 

to the Rrs are either weak or non-existent where the geometric depth would be large or 

precluded by highly absorbing waters. The likely cause for the deeper impulse noise 

pixels is a low SNR (after atmospheric and sun-glint correction), and where the 

BRUCE model translates a change in the rrs to large changes in depth (this is explained 

further in the discussion of Figure 3.6). The BRUCE model can also compensate for a 

shallower depth by either increasing the water column turbidity or decreasing the 

benthic albedo coefficient (darker substrate). This phenomenon creates those impulse 

noise pixels whose depths are unexpectedly shallower than the surrounding pixels. 
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Figure 3.5: Illustration of the three stage smoothing technique applied to HICO derived depth 

product of Shark Bay on 19 November 2011. Cross-sectional profiles at row number 1604 (top 

two panels) and at 1686 (bottom two panels). (a) and (c) contain: the raw depth (black dot-dash); 

impulse pixels (red triangles); depth product after impulse noise pixel removal (solid blue curve), 

and; the subsequent smoothed depth product. (b) and (d) are the uncertainty profiles of (a) and 

(c) respectively, and contain: the initial uncertainty (black dot-dash); pixels identified as outliers 

(red triangles), and; the final modified uncertainty product (pink). 

 

As shown in Figure 3.5, the proposed impulse noise detection algorithm and 

subsequent adaptive median filter approach successfully identified impulse noise 

pixels and replaced their depth value with a reasonable estimate. Application of a 
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second order binomial smoothing kernel then afforded a reasonable spatial uniformity. 

The smoothed bathymetry images of Shark Bay from 19-Nov-11 to 08-Aug-12 are 

displayed in Figure 3.7, and show a high level of consistency in depth between 

different timestamps. In the uncertainty inversion approach, proposed by Hedley et al. 

(2010), the Cholesky decomposition matrix, L, was used to add spectral noise to the 

sensor-derived rrs spectra. During per-pixel inversion, the L matrix remained constant 

with only its magnitude randomly changed. This generated a spectral noise term, δrrs, 

that is absolute rather than relative to the magnitude of rrs, which thus formed an 

inverse relationship between ||rrs|| and its relative uncertainty. In other words, the 

relative uncertainty in rrs for dark or highly absorbing water pixels will be larger than 

for bright shallow water pixels. This is illustrated in Figure 3.6, which shows the 

pseudo SNR at 550 nm plotted against the relative uncertainty of the retrieved depth. 

Here, the pseudo SNR was: (a) derived from rrs spectra, i.e. HICO data that has 

undergone atmospheric, sunglint and air-to-water corrections, and; (b) computed for 

each pixel in a HICO scene by dividing the average, µ, of each set of 20 noise perturbed 

rrs spectra at 550 nm by the standard deviation, σ, at this water penetrating wavelength, 

 𝑆𝑁𝑅 (550 𝑛𝑚) =  
𝜇[{𝑟𝑟𝑠(550) +  𝛿𝑟𝑟𝑠(550)}𝑖=1….20]

𝜎[{𝑟𝑟𝑠(550) +  𝛿𝑟𝑟𝑠(550)}𝑖=1….20]
 (3.11) 
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Figure 3.6: Relative uncertainty of the retrieved depth vs. pseudo SNR at 550 nm, obtained from 

HICO images of Shark Bay on (a) 14-Dec-11; (b) 02-Apr-12; (c) 04-Jun-12, and; (d) 08-Aug-12. 

Note: (1) vertical axes are displayed in logarithmic form; (2) 35 000 random data points, with 

depth > 0.3 m, were presented for each panel, and; (3) the summed spectral variance, taken from 

the deep water region of the given HICO rrs
deglinted image are also presented. 

 

Figure 3.6 shows a non-linear relationship between the pseudo SNR and the 

relative uncertainty of the retrieved depth of four HICO scenes of Shark Bay. When 

the SNR is above 20 the relative uncertainty of the retrieved depth is less than 10% 

(Figure 3.6). This is an adequate outcome, and analysis of the entire HICO time series 

for Shark Bay showed that on average 89% of pixels with a retrieved depth less than 

5 m had a SNR greater than 20. This average decreases to 74% for pixels whose depths 

ranged between 5 and 10 m, and to 49% for pixels with a retrieved depth greater than 

10 m. Below a SNR of 20, the relative uncertainty in the retrieved depth drastically 

increases, in most cases to greater than 100%. Such high uncertainties mainly occur 

for pixels with a retrieved depth greater than 8 metres. 
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This behaviour can be attributed to the absolute noise term added during the 

inversion; where, as the SNR decreases below 20 the magnitude of δrrs becomes 

comparable to ||rrs||. Given the exponential relationship between rrs and depth in the 

shallow water model; the BRUCE model translates this perturbation of rrs to large 

changes in depth, and hence why the retrieved depth varies so greatly within the set of 

20 noise perturbed rrs spectra for low SNR pixels – e.g. the deeper impulse noise pixels 

observed in Figure 3.5. Conversely, over bright substrates where ‖𝛿𝑟rs(𝜆)‖  ≪

 ‖𝑟rs(𝜆)‖, δrrs is translated to smaller changes in depth. These relationships are 

demonstrated in Figure 3.5, where pixels with a modelled depth less than 6 m generally 

had a relative depth uncertainty of less than 10%, and where this relative uncertainty 

would at times increase with depth. 

Figure 3.6 also shows that when environmental noise is included, arising from 

atmospheric, sun-glint and water-to-air interface corrections, the SNR of HICO – 

which was initially estimated at approximately 200 at 550 nm (see Lucke et al., 2011) 

- drops to less than 150 for most cases. This corresponds to an increase in the noise 

component by a factor of ≥1.3. While this is a modest increase, it does illustrate the 

importance of accurately removing contaminating signals in a bid to avoid non-

uniqueness issues, which lead to higher uncertainties in the retrievals of depth. 
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Figure 3.7: Smoothed bathymetry images (before geo-referencing) derived from HICO imagery 

of the Shark Bay region, from 19-Nov-11 to 08-Aug-12. Note: for simplicity the bathymetry image 

of 02-Apr-12 is not displayed; black water pixels (e.g. 12-Jan-12 and 27-Feb-12) had Rrs(750) > 

Rrs(400) and were not processed, and; blue and white represent shallow and deeper areas 

respectively. 
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3.4.3 Tide corrections 

3.4.3.1 Harmonic Tidal Analysis 

Removing the influence of tide is an important task in delineating changes 

caused by resuspension and sedimentation from changes in tide heights, particularly 

since tides can form a significant portion of the variance observed in raw bathymetry 

products (Egbert and Erofeeva, 2002). 

The harmonic tidal analysis begins by extracting the phases of the major tidal 

constituents from time-adjusted (+02:02 Hrs and -0:32 Hrs) Carnarvon tide data 

(Figure 3.8a). The correlation coefficients of the curves in Figure 3.8a are given in 

Table 3.2 and with r2 > 0.96 for all dates, demonstrates high confidence in the values 

of the modelled phases. The slight differences between the observed and modelled tide 

heights in Figure 3.8a are likely due to wind induced waves, which do not affect the 

accuracy of the retrieved phases. Applying these phases with the respective amplitudes 

taken from Burling et al. (2003), generates modelled tide curves for Monkey Mia and 

Hamelin Pool as illustrated in Figure 3.8b for 14 December 2011. 

One and a half day intervals about the HICO overpass were used to compute 

the phases of the major tidal constituents as these produced higher correlation 

coefficients than an expanded time series. The modelled tide heights and their 

uncertainty at the time of each HICO overpass for Monkey Mia, Hamelin Pool and 

Faure Sill are given in Table 3.2. The Faure Sill, being a shallow water region 

containing several narrow water channels (of depths greater than 6 m) exhibits 

complex tidal harmonics (Burling et al., 2003). Modelling these harmonics are beyond 

the scope of this paper, however previous research has shown that the Faure Sill 

diminishes the amplitudes and creates lag in the phases of the tidal constituents 

(Burling et al., 2003). The net result is a lower tidal height and range in Hamelin Pool 

than in Monkey Mia. This is observed in the modelled tide data (Table 3.2), where the 

tide range at Monkey Mia and Hamelin Pool are 81.14 cm and 64.71 cm respectively. 

Additionally, Table 3.2 suggests little variation in the expected water level height 

between successive HICO overpasses; evident by the modelled tide ranges of less than 

1 m and a standard deviation of tide heights less than 30 cm for Monkey Mia and 

Hamelin Pool. Indeed a tide height range of approximately 1 m over Shark Bay has 

been noted by Walker et al. (1988) and modelled by Burling et al. (2003). 
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Figure 3.8: Harmonic tidal analysis for a 3 day interval centred on the HICO overpass of 14 

December 2011: (a) Time adjusted Carnarvon tide height data for Monkey Mia (+2:02 hrs - Black 

dots) and Hamelin Pool (-0:32 hrs - Grey dots) overlaid with the respective modelled tide curves 

using equation (3.8); (b) Modelled tide curves for Monkey Mia (Black line) and Hamelin Pool 

(Grey line). The triangles in (b) display the modelled water level height at the time of the HICO 

overpass at Monkey Mia and Hamelin Pool. 

 

Although the modelled tide heights at Monkey Mia and Hamelin Pool appear 

reasonable based on evidence from the literature, the estimated tide heights over the 

Faure Sill can be subject to large errors. These errors arise when averaging the tide 

height between Monkey Mia and Hamelin Pool, which may over simplify the 

complexity of the shallow water tidal harmonics present over the Faure Sill. In this 

region, shallow water tidal constituents may cause constructive or destructive 

interference with the M2, S2, K1, O1 harmonics, increasing or decreasing the tide height 

respectively (Doodson & Warburg, 1941). However, with the absence of accurate 

three-dimensional tide modelling (e.g. Burling et al., 2003) adopting the average is the 

most pragmatic approach.  
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Table 3.2: Modelled tide heights (cm), above LAT, during each HICO overpass time for Monkey 

Mia, Hamelin Pool and the Faure Sill. Also present are the: standard deviation and range of these 

tide heights, and , correlation coefficients of the tide height curves used to extract the M2, S2, K1, 

and O1 tide constituent phases from the time adjusted Carnarvon data. 

Date and 

Time (WST) 

Monkey Mia Hamelin Pool Faure Sill 

r2 
Modelled tide 

height (cm) 
r2 

Modelled tide 

height (cm) 

Modelled tide 

height (cm) 

19-Nov-2011, 

1632 hrs 
0.983 124.28 ± 0.01 0.978 114.06 ± 0.04 119.17 ± 0.05 

14-Dec-2011, 

1539 hrs 
0.991 135.21 ± 0.22 0.995 120.23 ± 0.18 127.72 ± 0.40 

21-Jan-2012, 

1538 hrs 
0.983 112.43 ± 0.35 0.991 132.98 ± 0.18 122.70 ± 0.54 

07-Feb-2012, 

1722 hrs 
0.988 115.25 ± 0.44 0.994 133.82 ± 0.19 124.54 ± 0.63 

27-Feb-2012, 

0940 hrs 
0.981 95.19 ± 0.02 0.991 121.92 ± 0.02 108.55 ± 0.05 

02-Apr-2012, 

1035 hrs 
0.966 125.91 ± 0.18 0.983 128.12 ± 0.22 127.01 ± 0.40 

01-Jun-2012, 

1038 hrs 
0.973 173.39 ± 0.18 0.990 127.11 ± 0.07 150.25 ± 0.25 

04-Jun-2012, 

0932 hrs 
0.990 165.61 ± 0.10 0.994 149.56 ± 0.06 157.58 ± 0.15 

08-Aug-2012, 

1625 hrs 
0.962 118.60 ± 0.31 0.988 92.99 ± 0.22 105.79 ± 0.54 

Standard 

deviation of 

tide heights 

(cm) 

N/A 26.55 N/A 19.30 20.24 

Tide range 

(cm) 
N/A 81.14 ± 0.20 N/A 64.71 ± 0.28 69.04 ± 0.69 

 

3.4.3.2 Image based tide correction 

To gauge if a tidal signal exists in the HICO derived bathymetry dataset, the 

predicted tide heights at Monkey Mia (taken from Table 3.2) were plotted against the 

median HICO derived depth of the shallow water region on the northern side of Faure 

Island (Figure 3.9). This island is approximately in line with Monkey Mia, and as 

modelled by Burling (1998) experiences very similar tidal harmonics. Figure 3.9 

shows a strong positive correlation (R2 = 0.90) between the predicted tide heights and 
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the HICO derived bathymetry prior to tide correction, that is, the bathymetry increases 

with the tide height. Note that a 1:1 line was not expected because: (a) the predicted 

tide heights are given above LAT; (b) Burling (1998) obtained a normalised RMS of 

7% between the predicted and observed tide heights at Monkey Mia with the modelled 

tidal amplitudes and phases, and; (c) potential random offsets in the bathymetry data 

caused by sub-optimal atmospheric/sun-glint/air-water interface corrections. Despite 

this Figure 3.9 implies that the variation in depth between HICO derived bathymetry 

images are related to tide, and not solely due to random offsets. 

The image based tide correction technique is illustrated in Figure 3.10a. This 

figure shows the median shallow water depth, 𝐻(𝑡)̃, computed for each HICO image 

of Shark Bay. The black horizontal line is the reference depth, 𝐻𝑟𝑒𝑓̃, from which the 

offset of each bathymetry image is calculated. The reference depth in this case is the 

median water depth computed from all nine HICO scenes. Note that if tide data of the 

region of interest is available, then the mean water level height or the lowest 

astronomical tide may instead be used as the reference depth. 

 

Figure 3.9: Predicted tide heights at Monkey Mia against the median depth of the shallow water 

pixels surrounding the northern section of Faure Island. The predicted tide heights were taken 

from Table 3.2, whilst the median shallow water depths were taken from HICO derived 

bathymetry prior to tide correction. The nine data points represent the nine HICO scenes. 
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How well the image based and harmonic analysis techniques minimise the 

tidal influence across the bathymetry time series was tested by computing the standard 

error in the means (SEM). Here, the mean represents the average depth of the shallow 

water pixels, <H(t)>, of each bathymetry image in the time series. Note that applying 

a tide correction technique to the bathymetry dataset would ideally correct water height 

variations to a reference depth, and hence yield a SEM near zero. Table 3.3, shows 

<H(t)> and the SEM for the uncorrected, image based and harmonic analysis corrected 

bathymetry images. 

 

Table 3.3: The mean depth of the shallow water pixels, <H(t)>, for each HICO derived bathymetry 

image. The standard error in the means (SEM) of the uncorrected, image based and harmonic 

tide correction techniques are also present. 
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SEM 

Uncorrected 0.91 0.91 1.13 1.41 0.80 1.02 1.42 1.38 1.34 0.24 

Image based 

correction 
1.26 1.20 1.26 1.56 1.20 1.24 1.13 1.20 1.17 0.12 

Harmonic 

analysis 

correction 

-0.29 -0.36 -0.10 0.16 -0.28 -0.25 -0.08 -0.20 0.28 0.22 

 

As indicated in Table 3.3, tidal influences over Shark Bay exhibit a SEM of 

24 cm with a tidal range of 62 cm. The tidal range is consistent to that modelled using 

the harmonic tidal analysis (Table 3.2). However, the harmonic analysis tide correction 

method did not significantly reduce the variability between the bathymetry images, 

having also overcorrected the depth of the shallow water pixels as noted by the 

negative averages (Table 3.3). These results suggest that tide correction based on 

harmonic analysis is inaccurate and does not adequately represent the tidal harmonics 

encountered over the Faure Sill. In contrast, the image based tide correction approach 

produces a bathymetry times series with an SEM of 12 cm, indicating that the 

variations due to tide have at least been minimised. Note that the reason the image 

based tide correction did not generate an SEM of zero is due to the inclusion of the 

constraint that forces ΔH(t) to equal the minimum depth (see equation 3.10) – for some 

images – to avoid overcorrection. Thus not all bathymetry images were fully 
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normalised to the imposed reference depth. Figures 3.10b and 3.10c show histograms 

of the depth of the shallow water pixels for each bathymetry image, before and after 

empirical tide correction, and illustrate the normalisation achieved by this method. It 

should be noted that the corrected depth values obtained from this empirical method 

are relative to an arbitrary reference depth, rather than an absolute tide datum such as 

LAT. 

These results suggest that unless the local tidal dynamics of the region of 

interest are well characterised, large errors can arise when using tide data recorded at 

distant tide stations. The lack of in situ tide data in close proximity to the region of 

interest is a constant issue faced for the majority of remote and inaccessible regions 

for remote sensing studies. Although global tide models are in existence (e.g. Finite 

Element Solution 2012, Lyard, Lefevre, Letellier, & Francis, 2006 ; Topex Poseidon 

crossover solution 7.2, Egbert & Erofeeva, 2002), their spatial resolutions are coarse 

(ranging from 1/16° to 1/4° longitude and latitude) and do not extend to semi-enclosed 

embayment's such as Shark Bay. The image based tide correction circumvents the need 

for a historic tide dataset and eliminates errors from tide models. Although this 

approach does require at least two bathymetry images of the region of interest at 

different times, it is the most pragmatic and easiest to implement. Future research 

would be to compare the empirical tide correction results with estimates obtained from 

a harmonic analysis whose tidal constituents are derived from high resolution remote 

sensing imagery, as presented by Mied et al. (2013).  
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Figure 3.10: (a) illustration of the empirical tide correction technique applied to the HICO dataset 

of Shark Bay. The horizontal black line represents the reference depth. Histograms of the depth 

of shallow water pixels (less than 3 m depth) before (b) and after tide correction (c). 

 

3.4.4 Geo-registration 

To test the geo-spatial consistency, the spatial ‘pixel drift’ of four test pixels 

was analysed between HICO images. Pixels A, B, C and D, displayed in Figure 3.3, 

correspond to different land and seascape features, specifically: A and B are pixels 

within the birradas (described in section 3.2.6) on the Peron peninsula (25.918 

°S/113.737 °E) and Faure Island (25.838 °S/113.862 °E), respectively; C is an 

intersection point of a distinct and seemingly invariant water channel on the Faure Sill 

(25.959 °S/113.779 °E) and; D is the southernmost tip of Pelican Island (23.854 

°S/114.019°E ). A seascape feature (pixel C) was also included because the majority 
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of GCPs were on the coastal regions surrounding the Faure Sill, and solely choosing 

test points near these GCPs may bias the result. Additionally, the area surrounding 

pixel C appeared in both true colour and bathymetry imagery to be invariant through 

time as expected by the qausi-stable nature of Shark Bay’s geology. 

The Euclidean distance was used to measure the drift of a given test pixel 

from its reference position, 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (°) =  √(𝜗(𝐴𝑟) − 𝜗(𝐴𝑖))
2
+ (𝜑(𝐴𝑟) − 𝜑(𝐴𝑖))

2
 

          𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑘𝑚) =   
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (°)

0.0009 °
×

100 𝑚

1000 𝑚 𝑝𝑒𝑟 𝑘𝑚
 

(3.12) 

where φ(Ar) and ϑ(Ar) are the latitude and longitude coordinates for test pixel A in an 

arbitrary reference image, and φ(Ai) and ϑ (Ai) are the latitude and longitude 

coordinates for test pixel A on subsequent HICO images. We set the HICO image of 

Shark Bay captured on 19 November 2011 as the reference image, and as such the 

Euclidean distances from equation (3.12) are relative measures but still illustrate geo-

spatial consistency through time. Note that these Euclidean distances were converted 

to kilometres for ease of interpretation, and are presented in Figure 3.11. 



Limitations & potential of remotely sensed shallow water bathymetry & benthic classification 

 

85 

 

Figure 3.11: Geo-spatial consistency of each HICO image of Shark Bay, relative to 19 November 

2011, after (a) Geo-referencing using the provided GLT files, and (b) subsequent Geo-registration 

using the ground control points. NW-SE and SW-NE refers to the HICO swath orientation. 

 

Figure 3.11a shows that simply geo-referencing a HICO swath with the 

provided GLT can generate geo-spatial inconsistencies greater than 10 km. The largest 

geo-spatial inconsistency is encountered when the scene is imaged with different swath 

orientations. For example, the reference image had a NW-SE orientation whilst the 

images on the 14 December 2011, 7 February, 27 February, and 8 August 2012 had a 

SW-NE orientation and where the test pixels encountered drifts greater than 20 km 

from their reference positions (Figure 3.11a). In contrast, those dates that were imaged 

with the same swath orientation (21 January, 1 June, 4 June 2012) exhibited much 

lower geospatial inconsistencies (< 17 km). Such large relative geospatial 
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displacements will introduce significant errors into change detection analysis, where a 

change in the geophysical parameter of a pixel is likely due to an evaluation at different 

locations rather than a temporal change (Townshend, Justice, Gurney, & McManus, 

1992). By performing a series of misregistration simulations on Landsat imagery, Dai 

and Khorram (1998) showed that a geolocation accuracy of less one fifth (<0.20) of a 

pixel is needed to detect 90% of real temporal changes. For HICO this equates to 

achieving 20 m geolocation accuracy. 

Manual geo-registration using GCPs taken from Google EarthTM imagery 

significantly improved the geospatial consistency, where the test pixels were now 

within 300 m of the reference pixels (Figure 3.11b). However, this geospatial 

consistency is still relatively large compared to the 100 x 100 m HICO pixel footprint. 

Furthermore, this result is poor compared to other operational satellites, such as 

MODIS and MERIS both of which achieve sub-pixel geolocation accuracies of ~50 m 

(Wolfe et al., 2002) and 77 m (Bicheron et al., 2011), respectively and whose ground 

sampling distance are at least twice as much as that of HICO. This highlights the need 

for an improved HICO geolocation algorithm that will increase the geolocation 

accuracy of the resultant GLTs and/or an improved method of using GCPs for 

subsequent geo-registration. The manual geo-registration employed here has proved 

troublesome due to: (a) the slight translational drift of the HICO swath, which prohibits 

the use of a consistent set of GCPs; (b) the amount of GCPs needed to achieve a geo-

spatial consistency of less than 300 m, and; (c) cloud cover, which when present will 

compromise the accuracy of the geo-registration. 

Fortunately, since the commencement of this research, and as part of the 

transition of HICO data to NASA, the Naval Research Laboratory (NRL) has 

improved the geolocation accuracies of the provided GLTs to 200-300 m. This 

improved HICO data is now available through NASA’s Ocean Biology Processing 

Group’s data portal: 

(http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=hi). 

 

3.4.5 Change detection 

The ability to detect change in a geophysical parameter from multi-temporal 

remotely sensed imagery is a key outcome in ecosystem monitoring (Coppin, 

Jonckheere, Nackaerts, & Muys, 2004). However, literature on detecting change above 

the uncertainty of multi-temporal datasets is sparse, with exception of Shi and Ehlers 
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(1996) and Hester, Nelson, Cakir, Khorram, and Cheshire (2010). This section will 

assess this ability using the HICO-derived, tide corrected, bathymetry dataset. To this 

end, it is assumed that each geo-registered bathymetry image has sufficient geolocation 

accuracy to assess temporal change. A two sample, per-pixel, t-test was used to accept 

or reject the null hypotheses of equal depth (i.e. no change) between pixels (i, j, t1) and 

(i, j, t2). As described in section 3.2.3, the retrieved depth and its uncertainty were the 

average and standard deviation, respectively, calculated from a set of 20 noise-

perturbed spectra. This is analogous to performing a t-test on two independent sample 

means, assuming unequal variance, both with a sample size of 20. Here, the upper and 

lower tail of the Student's t cumulative distribution function at the calculated t statistic 

and degree of freedom are used to compute the p value. The null hypothesis of “no 

change in depth” is rejected for pixels with p < 0.05 (5% significance level). 

Figure 3.12 shows empirically tide corrected bathymetry profiles at row 

number 1686 for each geo-registered bathymetry image. The uncertainty of the 

retrieved depth is overlaid around the average depth. This figure illustrates that for 

shallow waters, of depth less than 6 m, the inversion routine presented can retrieve 

consistent depths through time – even in the presence of sub-optimal atmospheric 

correction. However, as the retrieved depth increases, so does its temporal variability, 

as illustrated by the quasi-deep water pixels of the Faure Sill channels A and B in 

Figure 3.12. This temporal variability is unlikely caused by natural phenomena, and is 

more likely the result of variable quality of atmospheric correction and shallow water 

model inversion. As noted in Section 3.3.1, the magnitude of spectral noise introduced 

to Rrs from atmospheric correction becomes comparable to the reflectance signal as the 

geometric depth increases. As such, this spectral noise coupled with sun-glint 

correction would decrease the accuracy in the retrieved depth over quasi-deep water 

more than it would for shallow water pixels and effectively creates the observed 

temporal variability in deep water pixels. 
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Figure 3.12: Cross-sectional depth profiles of the Faure Sill, at row 1686, taken from geo-registered HICO derived bathymetry images. The solid black line and grey 

envelope surrounding it represents the retrieved depth and its uncertainty respectively. Highlighted are two sets of deep water channels, A and B, located at column 

positions 950-1050 and 1280-1380 respectively. The depth of these channels show high temporal variability, the cause of which is discussed in the text.
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Despite the normalisation of the bathymetry dataset to a common depth; 

changes unrelated to tide are expected due to the frequent movement of tidal sandbanks 

across the Faure Sill. Figure 3.13 shows changes in the HICO-derived, tide corrected 

bathymetry across the Faure Sill between the dates of: (a) 14 December 2011 and 21 

January 2012; (b) 21 January- and 27 February-2012; (c) 27 February- and 04 June-

2012 and; (d) 04 June- and 08-August-2012. In this figure, pixels that observed a 

change had: (1) a difference in depth greater than the baseline variability, and; (2) a p 

value less than 0.05 (5% interval) at the calculated degree of freedom. Otherwise pixels 

were classified as having 'no change' and displayed as grey. Here, we define the 

baseline variability as the residual random fluctuations within the tide corrected 

bathymetry dataset. Recall that the SEM of the image-based tide corrected bathymetry 

dataset was 0.12 m (see Table 3.3). Hence, the bathymetry varied on average by 12 cm 

between each successive timestamp. We set the baseline variability to equal three 

times the SEM (i.e. 0.36 m), which would encompass: random offsets in depth due to 

imperfect atmospheric/sun-glint/air-to-water interface corrections, and; imperfect tide 

normalisation. Therefore any changes in depth greater than the baseline variability of 

0.36 m, which are statistically significant with regards to the uncertainty, are plausible 

and not due to random depth fluctuations caused by corrections performed in the 

processing. 

The change detection analysis shown in Figure 3.13 does not include the 

bathymetry images on 7th February and 2nd April 2012, as the bathymetry profiles of 

these dates (see Figure 3.12) appear inaccurate. This is evident from the derived depth 

values of channels A and B when compared to the other profiles. Furthermore these 

two bathymetry images were included (results not presented here), the change 

detection analysis afforded significant, yet unrealistic changes in depth across the 

Faure Sill. Additionally, deep-water pixels were flagged in Figure 3.13, due to their 

temporal variability as noted in Figure 3.12. 

For the purpose of change detection, separate image based tide corrections 

were performed for the different regions of Shark Bay, shown by the dashed magenta 

regions in Figure 3.13a. These regions were: (1) the eastern and western shallow areas 

of Hamelin Pool, and: (2) the Wooramel bank containing water channels orientated 

perpendicular to the coast. These two additional tide corrected subsets were merged to 

the tide corrected bathymetry dataset of the Faure Sill (Section 3.3.2) to form a 

complete tide corrected bathymetry image of lower Shark Bay for each HICO 
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overpass. This latter dataset was used to assess the temporal changes in depth with the 

method described above. 

Separate tide correction over Hamelin Pool and the Wooramel bank were 

performed to take into account the differing tidal variations across the Shark Bay 

region. For instance, the tidal regime at Hamelin Pool is particularly complex in which 

the astronomical tide accounts for only 15% of the variation in water height (Burne & 

Johnson, 2012). Over this enclosed embayment, the mean sea-level varies in an 

irregular manner due to seasonal winds. Specifically southerly winds, that during 

summer, when they are more persistent and strongest, act to reduce the mean sea level 

by approximately 50 cm compared to that in winter when the southerly winds subside 

(Burne & Johnson, 2012). 
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Figure 3.13: Change detection analysis of HICO-derived, tide corrected bathymetry of the Faure 

Sill between the dates of: (a) 14-Dec-2011 and 21-Jan-2012; (b) 21-Jan- and 27-Feb-2012; (c) 27-

Feb- and 04-Jun-2012 and; (d) 04-Jun- and 08-Aug-2012. Deep-water and land are presented as 

dark and black pixels respectively. The blue and green circles in (b) and (c) highlight regions of 

change discussed in the text. Separate image-based tide corrections were performed for the 

dashed magenta presented in (a). 
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The HICO-derived bathymetry dataset spans both summer and winter and 

thus it is likely that the Faure Sill, Hamelin Pool and the Wooramel bank have 

substantially different tide heights. The normalisation to a reference depth over the 

Faure Sill can therefore introduce large artificial depth changes at the other regions, 

and as such, separate image-based tide corrections were performed. It should be noted 

that separate regional tide correction and subsequent merging to a single bathymetric 

image can only be used to analyse temporal changes; as these images would contain 

steps in the depth between adjacent tide corrected regions. Tidal modelling would be 

necessary to interpolate (either linearly or non-linearly) the tide correction offsets for 

the different regions to generate a homogeneous tide corrected bathymetry image. 

However this is beyond the scope of this study. 

The change detection analysis (Figure 3.13) indicates constant bathymetry for 

the majority of the Faure Sill. Thought there are three regions that experience 

bathymetric fluctuations between the five successive dates. These regions are 

predominantly shallow water areas: (i) on the western and eastern sides of Hamelin 

Pool; (ii) on the southern Faure Sill (see blue circle in Figure 3.13b), and; (iii) on the 

Wooramel bank (green circle in Figure 3.13c). 

The extent of change observed ranged between approximately -1.6 m 

(shallower) and 1.6 m (deeper); this appears to be an unrealistic depth change in the 

timeframe of one month. For example on the western shallow regions of Hamelin Pool, 

the depth decreased by approximately 1 m from 27 February to 4 June 2012. This is 

unlikely to occur as the benthos of this region consists of hard microbial pavement that 

is not susceptible to erosion from water movement (Jahnert & Collins, 2011). Although 

the deposition of motile sediment and its subsequent removal is possible, the extent of 

change observed through the HICO-derived bathymetry is unlikely. However, we are 

encouraged by the spatial consistency of several features in this region, whose depth 

fluctuates through time. 

The change in depth detected on the southern Faure Sill between 21 January 

and 27 February 2012 (blue circle in Figure 3.13b) and 27 February and 4 June 2012 

(Figure 3.13c) appears to be due to a plume of turbid water at this location on the 27 

February (see red square in Figure 3.14). The true colour imagery on 27 February does 

indicate the formation of new water channels; however the change detection (Figure 

3.13) shows that the bathymetry at this date is approximately 1 m shallower than on 

21 January – contrary to the formation of new water channels. Additionally, Rrs spectra 
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of this region indicate higher absorption between 400 to 500 nm than the adjacent 

areas, suggestive of higher CDOM/phytoplankton. The retrieved model parameters 

over the plume on 27 February 2012 are: aϕ(440) = 0.11 m-1, adg(440) = 0.18 m-1, 

bbp(550) = 0.12 m-1, depth = 0.50 m, Bsand = 0.115, and Bseagrass = 0.005. The same 

region on the 21 January 2012 had lower IOP values, larger depth and a brighter 

substrate: aϕ(440) = 0.035 m-1, adg(440) = 0.07 m-1, bbp(550) = 0.035 m-1, depth = 3.5 

m, Bsand = 0.45, and Bseagrass = 0.02. Given the high IOPs, very shallow depth and low 

bottom albedo coefficients implies that the bottom contribution to Rrs is very low or 

non-existent over this plume, and as such the retrieved depth is unreliable. In 

operational satellite processing, such pixels should be flagged as deep-water pixels and 

not used in the change detection analysis. 

The shallow water region with water channels orientated perpendicular (green 

circle in Figure 3.13) appears to have undergone changes in depth due to resuspension 

and movement of sediment near the mouth of the Wooramel River. This was observed 

on the 14 December 2011, where the sediment plume appeared to enter the numerous 

channels and flow northward (Figure 3.14). It is possible that some sediment would 

have settled down, given that modelled tidal flow (Burling, 1998) is perpendicular to 

the channels’ orientation (i.e. trapping sediment) with a modelled speed of 

approximately 0.5 m/s at high and low tide (Burling, 1998). Retrieved bbp(550) 

imagery on 21 January 2012 revealed that the amount of suspended sediment in the 

water column was considerably less, and where the change detection analysis showed 

an increase in depth by approximately 1.2 m (Figure 3.13a). In other words, on the 14 

December the water channels were 1.2 m shallower, presumably due to the high 

sediment deposition that was subsequently eroded over 38 days until 21 January 2012. 

Note the fluctuating depth changes (shallower, then deeper) for these channels are 

observed in Figures 3.13b and 3.13c, due to more resuspension and movement of 

sediment from the mouth of the Wooramel River on 27 February 2012. 

The change detection analysis highlights that though some of the changes 

observed are feasible, the extent of change (approximately 1 m) is unlikely. The 

magnitude of detected change depends on the accuracy and precision of the depth 

retrievals and on the tide correction scheme. Firstly a relatively high precision is 

needed to detect change above the uncertainty. Here the low relative uncertainty in the 

retrieved depths of shallow water pixels (< 10%, see Figure 3.6) allowed the detection 

of subtle changes to as low as 40 cm (see Figure 3.13). Secondly, high accuracy in the 
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retrieved depth (prior to tide correction) is required to infer accurate magnitudes of 

change. This in turn necessitates adequate atmospheric correction and a robust 

optimisation scheme that converges to the global minimum. Here, the sub-optimal 

radiometric corrections have likely reduced the accuracy, particularly over the quasi-

deep water pixels, whilst the convergence to local minima is the likely cause of the 

inaccuracy in some shallow water pixels. Future improvements to atmospheric and 

sun-glint corrections and optimisation schemes will increase the accuracy in change 

detection analysis, however, this study has shown that even with sub-optimal 

corrections, it is possible to detect change above the uncertainty in the retrievals due 

to environmental and sensor noise. 

 

 

Figure 3.14: HICO derived pseudo true colour images of: the shallow water region parallel to the 

coast, north of the Wooramel River (top panels), and; the Faure Sill (bottom panels). The top 

panels show sediment flowing north from the Wooramel River, and through the seagrass channels 

orientated perpendicular to the coast, indicated by the red circle. The red square on 27-Feb-2012 

highlights a plume of turbid water on the southern Faure Sill (bottom panel). 

 

3.5 Conclusion 

The accuracy and precision of the HICO-derived bathymetry dataset was 

dependent on the quality of the atmospheric/sun-glint correction and on the BRUCE 
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shallow water semi-analytical inversion scheme respectively. For many atmospheric 

correction algorithms, such as Tafkaa (Gao et al., 2000), the lack of spectral bands past 

900 nm inhibits the selection of the appropriate atmospheric aerosol model and an 

estimation of vertical column water vapour in a per-pixel basis. To overcome this 

information gap, coincident MODIS level-2 products of the Shark Bay region were 

processed and used to obtain several of the input parameters that Tafkaa-6S required. 

This study has shown that the procedure introduced three spectral artefacts to the 

remote sensing reflectance spectra. Unfortunately, the high absorption of light in the 

water column throughout Shark Bay causes the magnitude of the water-leaving 

reflectance to become comparable to that of the spectral artefacts – particularly over 

quasi-deep and optically deep water pixels. This potentially leads to inaccurate depth 

retrievals over these pixels. Conversely, the accuracy of the depth retrievals for 

shallow water were shown to be not greatly affected as the magnitude of Rrs for these 

pixels were substantially higher relative to the spectral artefacts. 

Addition of spectral artefacts enhanced the complexity of the parameter space 

with the addition of more local minima. To increase the likelihood of the LM algorithm 

localising to a global minimum, a brief search of parameter space was performed to 

locate the parameter values that corresponds to a local minimum with the lowest 

Euclidean distance. These parameter values were then passed as the initial values to 

the uncertainty inversion scheme proposed by Hedley et al. (2010). This per-pixel 

parameter space ‘update-repeat’ search and uncertainty determination afforded 

improved retrievals of bathymetry, where the majority of the bathymetry image had a 

relative uncertainty of less than 20%. A per-pixel t-test analysis between bathymetry 

images at consecutive timestamps revealed the ability to detect changes in HICO-

derived depth to as low as 0.4 m. This reinforces the use of satellite-based 

hyperspectral remote sensing techniques in analysing time series datasets when 

uncertainty is taken into account. 

HICO’s ability to detect temporal change is not only dependent on precision 

of the bathymetric dataset but also on its geolocation accuracy. Thorough geo-

registration using ground control points taken from Google EarthTM imagery has 

increased the relative geolocation accuracy, from more than 30 km using the 

distributed geographic lookup tables, to better than 300 m (i.e. 3 pixels). However, 

despite this improvement, analysing temporal change from remotely sensed imagery 

requires sub-pixel geolocation accuracy, that is, less than 100 m for HICO. Thus 
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enabling time series analysis of HICO data requires further work in either creating 

automated geo-registration algorithms. 

Relating changes in bathymetry to factors such as sedimentation/erosion 

necessitates the removal of the tidal contribution to the retrieved water column depth. 

Correcting tide height over the Faure Sill has proved problematic. An empirical tide 

correction scheme is presented that corrects each bathymetry image in the time series 

to a reference depth. This reference depth is arbitrary and in this case was set to the 

median depth across the time series. However, this reference depth can be set to a 

datum such as lowest astronomical tide or mean water height if these values are known 

for the region. Even so, with this image based normalisation of depth, it was shown 

that detecting changes in depth due to sedimentation/deposition of as low as 0.4 m is 

possible. The fluctuating changes in depth (increasing then decreasing) of several 

spatially consistent features are particularly encouraging. Though the extent of change 

is at present over-estimated, improvements to atmospheric/sun-glint/air-to-water 

interface corrections would directly enhance the accuracy of the depth retrievals and 

hence extent of change.  

The issues faced here in regards to atmospheric and sun-glint corrections are 

by no means inherent to HICO, but to all ocean colour sensors. Though HICO was 

built as a prototype low cost sensor, its data can be manipulated to retrieve precise 

bathymetry. The development of future sensors that have: (1) higher SNR and SWIR 

bands in combination with more advanced atmospheric/sunglint correction and in 

water inversion algorithms could substantially improve bathymetry retrievals, and; (2) 

sophisticated geo-location and –registration algorithms to afford sub-pixel geolocation 

accuracies will also lead to the ability in monitoring changes in the bathymetry of key 

coastal regions. 
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CHAPTER 4  

 

IMPROVING THE OPTIMISATION SOLUTION FOR A SEMI-ANALYTICAL 

SHALLOW WATER INVERSION MODEL IN THE PRESENCE OF SPECTRAL 

NOISE 

 

This chapter and the associated appendices have been published in the journal: 

Limnology and Oceanography: Methods 

Rodrigo A. Garcia, Lachlan, I. W. McKinna, John D. Hedley, Peter R. C. S. Fearns. 

Improving the optimisation solution for a semi-analytical shallow water 

inversion model in the presence of spectrally correlated noise. Limnology and 

Oceanography: Methods, 12 (2014), pp. 651-669. DOI: 

10.4319/lom.2014.12.651. 

http://onlinelibrary.wiley.com/doi/10.4319/lom.2014.12.651/abstract 

 

4.1 Abstract 

In coastal regions, shallow water semi-analytical inversion algorithms may 

be used to derive geophysical parameters such as inherent optical properties (IOPs), 

water column depth and bottom albedo coefficients by inverting sensor-derived sub-

surface remote sensing reflectance, rrs. The uncertainties of these derived geophysical 

parameters due to instrumental and environmental noise can be estimated numerically 

via the addition of spectral noise to the sensor-derived rrs prior to inversion. Repeating 

this process multiple times allows the calculation of the standard error and average for 

each derived parameter. Apart from spectral non-uniqueness, the optimisation 

algorithm employed in the inversion must converge onto a single minimum to obtain 

a true representation of the uncertainty for a given set of noise-perturbed rrs. Failure to 

do so inflates the uncertainty and affects the average retrieved value (accuracy). We 

show that the standard approach of seeding the optimisation with an arbitrary, fixed 

initial guess, can lead to the convergence to multiple minima, each having substantially 

different centroids in multi-parameter solution space. We present the Update-Repeat 

Levenberg-Marquardt (UR-LM) and Latin Hypercube Sampling (LHS) routines that 

dynamically search the solution space for an optimal initial guess; that when applied 
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to the optimisation allows convergence to the best local minimum. We apply the UR-

LM and LHS methods on HICO-derived and simulated rrs, and demonstrate the 

improved computational efficiency, precision and accuracy afforded from these 

methods compared to the standard approach. Conceptually, these methods are 

applicable to remote sensing based, shallow water or oceanic semi-analytical inversion 

algorithms requiring non-linear least squares optimisation. 

 

4.2 Introduction 

The implicit inverse modelling approach is commonly used in optical 

remote sensing applications to derive geophysical parameters from sensor-observed 

radiometric data. A typical semi-analytical inversion algorithm comprises of three key 

components: (i) a forward semi-analytical model, (ii) a set of internal geophysical 

parameters, and (iii) an inverse spectral optimisation method (Werdell et al., 2013). In 

shallow waters, a forward semi-analytical model simulates the sub-surface remote 

sensing reflectance, rrs, as a function of the water column’s inherent optical properties 

(IOPs), depth and the bottom albedo coefficients (Maritorena et al., 1994; Lee et al., 

1998; Albert & Mobley, 2003; Klonowski et al., 2007; Brando et al., 2009). Using an 

optimisation method, the internal geophysical parameters (i.e. IOPs, depth, and bottom 

albedos) are iteratively varied until the modelled sub-surface remote sensing 

reflectance, rrs
M, best matches the sensor-derived rrs. At this point, the set of internal 

geophysical parameters are deemed the optimal solution. 

Two spectral optimisation methods implemented by semi-analytical ocean 

colour inversion models are the Levenberg-Marquardt (LM; Marquardt, 1963, e.g. 

Klonowski et al., 2007; Werdell et al., 2013) and Downhill simplex algorithms (Nelder 

& Mead, 1965, e.g. Brando et al., 2009). These optimisation algorithms iteratively 

change the model parameters in the direction of the lowest cost function; where the 

cost function is a measure of the similarity between the forward modelled rrs
M and the 

sensor-derived rrs. Thus the objective of these optimisation schemes is to find the 

global minimum, that is, the set of model parameters whose modelled rrs
M matches 

perfectly with rrs. Unfortunately such optimisation algorithms are understood to 

potentially converge to local minima – rather than the global minimum – particularly 

if the initial guess used to seed the optimisation is sufficiently close to a local minimum 

(Kirkpatrick, Gelatt, & Vecchi, 1983; Press, Teukolsky, Vetterling, & Flannery, 2007). 
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Several global optimisation algorithms have been implemented in the 

inversion of ocean colour data. Maritorena, Siegel, and Peterson (2002) used a 

downhill simplex-coupled simulated annealing procedure (see Kirkpatrick et al., 1983; 

Press et al., 2007) to retrieve chlorophyll concentration, absorption coefficient for 

dissolved and detrital material, adg(443), and the particulate backscattering coefficient, 

bbp(443), from ocean colour radiometry. Similarly, Salinas, Chang, and Liew (2007) 

used the native simulated annealing procedure (Kirkpatrick et al., 1983) to derive 

adg(440), bbp(550) and the absorption coefficient of phytoplankton, aphy(440). Slade, 

Ressom, Musavi, and Miller (2004) and Zhan, Lee, Shi, Chen, and Carder (2003) used 

particle swarm optimisation and genetic algorithms, respectively (both global 

optimisation methods) to derive aphy(440), adg(440) and bbp(550) from ocean colour 

radiometry of optically deep waters. 

The basis behind these global optimisation algorithms is a preliminary search 

of the multi-parameter solution space from which the global minimum is then located. 

The only disadvantage of these global optimisation techniques is the processing time 

required to invert a single reflectance spectrum. Processing time becomes particularly 

critical when propagating uncertainty through the inversion-optimisation procedure to 

derive the uncertainty for each retrieved parameter. Huang, Li, Shang, and Shang 

(2013) demonstrated the application of a hybrid simulated annealing-downhill simplex 

(HSADS) routine to derive aphy(440), adg(440) and bbp(440) from simulated and 

measured Rrs with high accuracy. In a comparison between different optimisation 

schemes, Huang et al. (2013) showed that the Levenberg-Marquardt (LM) algorithm 

was computationally faster (by a factor of 800) than HSADS, and both methods 

achieved similar inversion results. Indeed the standardised error and root mean square 

error between the actual and retrieved IOP values obtained from LM was comparable 

to that obtained from HSADS. However, HSADS produced 47 more valid retrievals 

(out of 500 retrievals) than the LM algorithm. 

An analysis of the propagation of noise caused from sensor and 

environmental conditions (e.g. atmospheric fluctuations, sea surface state), through the 

inversion process to the retrieved geophysical parameters has recently been applied to 

imagery from several satellite platforms (Garcia et al., 2014; Hedley et al., 2012a). In 

this method, the derived rrs is perturbed multiple times by the addition of spectrally 

correlated noise, of various magnitudes, and inverted to obtain a range of IOPs, depth 

and bottom albedo values from which the uncertainties are calculated. This is a 
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computationally demanding procedure where each derived rrs is perturbed, for 

example, twenty times by the sensor-environment spectral noise (e.g. Hedley et al., 

2012a). This effectively means that a given satellite image is inverted 20 times which, 

when combined with the iterative process of an optimisation algorithm, can result in 

potentially large processing times. Consequently, optimisation routines that offer high 

computational efficiency are desired. 

The inclusion of spectrally correlated noise taken from the spectral covariance 

matrix of an imaged homogeneous deep-water region, potentially introduces more 

local minima to the multi-parameter solution space. Such minima add more 

convergence points on which local optimisation algorithms may converge. Use of 

HSADS or any other global optimisation algorithms, though desirable, is 

computationally prohibitive. Thus in this paper we investigate two simple and 

computationally faster methods, the Update Repeat Levenberg-Marquardt (UR-LM) 

and Latin Hypercube Sampling (LHS), that guide the LM algorithm to the optimum 

(if not global) minimum. Here the optimum minimum refers to the minimum with the 

lowest cost function found during the initial search of parameter space. The UR-LM 

locates the optimum minimum by taking a finite step away from a local minimum and 

discerning whether the optimisation returns to the same minimum or one with a lower 

cost function. The UR-LM repeats this procedure if the latter occurs, until either the 

same minimum is converged to or the number of repeats exceeds ten. The LHS 

method, on the other hand, locates local minima from a wide variety of initial guesses. 

The local minimum with the lowest cost function is then defined as the optimum. We 

adopted the LM algorithm as implemented in MPFIT (in C language; Markwardt, 

2009) that allows for upper and lower bounding constraints. Unlike the LM algorithm 

employed by Huang et al. (2013), these constraints eliminate issues dealing with non-

physical retrievals. 

The UR-LM and LHS methods are in a sense a common tactic in finding the 

global minimum when using the LM algorithm (Press et al., 2007). Within this study 

we apply the UR-LM and LHS optimisations schemes, in combination with the semi-

analytical shallow water algorithm proposed by Klonowski et al. (2007), to invert a 

selection of rrs observed by the Hyperspectral Imager for the Coastal Ocean (HICO) 

and a set of simulated rrs spectra. Both the HICO-derived and simulated rrs were 

selected/simulated for coastal waters with varying benthic substrates, depths and in-

water optical properties. We show that these two methods: (1) are more 
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computationally efficient – requiring fewer LM iterations when inverting the noise-

perturbed rrs compared to the standard approach where the initial guesses are arbitrarily 

set and fixed; (2) provide lower uncertainties and high accuracies in the presence of 

spectrally correlated noise compared to the standard approach, and; (3) are not affected 

by changes to the lower bounds in the constrained LM algorithm, unlike the inversions 

from the standard approach. 

 

4.3 Methods and data 

4.3.1 Shallow water model 

The semi-analytical Bottom Reflectance Un-mixing Computation of the 

Environment algorithm, BRUCE (Klonowski et al., 2007), was used to retrieve water 

column inherent optical properties (IOPs), geometric depth and key benthic substrates 

from both simulated and satellite-derived hyperspectral rrs. Klonowski et al. (2007) 

and Fearns et al. (2011) extensively describe the forward model of the BRUCE 

algorithm; briefly the rrs is modelled as a function of the absorption (a) and 

backscattering coefficients (bb) of the water column, the geometric depth (H), the 

bottom reflectance (ρ) and the sun-sensor viewing geometries (Lee et al., 1999), 

𝑟𝑟𝑠(𝜆 ) ≈ (0.084 + 0.170𝑢)𝑢 (1 − exp {− [
1

cosθw
+

1.03(1 + 2.4𝑢)0.5

cosθv
] 𝜅𝐻}) 

 +
𝜌

𝜋
exp {− [

1

𝑐𝑜𝑠𝜃𝑤
+

1.04(1 + 5.4𝑢)0.5

𝑐𝑜𝑠𝜃𝑣
] 𝜅𝐻} (4.1) 

 

 

 

𝑢(𝜆) =  
𝑏b(𝜆)

𝑎(𝜆) + 𝑏b(𝜆)
 (4.2a) 

 𝜅(𝜆) =  𝑎(𝜆) + 𝑏b(𝜆) (4.2b) 

where θv and θw are the subsurface sensor-viewing zenith and solar zenith angles 

respectively. The spectral absorption and backscattering coefficients are themselves 

functions of the following: (1) the absorption coefficient of phytoplankton at 440 nm, 

P; (2) the absorption coefficient of coloured dissolved and detrital matter at 440 nm, 

G; and (3) the backscattering coefficient of suspended particles at 550 nm, X, as given 

by (Lee et al., 1999) 

 𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑃𝑎𝑝ℎ𝑦
∗ (𝜆) + 𝐺𝑒−0.015(𝜆−440) (4.3) 



Limitations & potential of remotely sensed shallow water bathymetry & benthic classification 

 

102 

 𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑋 (
550

𝜆
) (4.4) 

where aw(λ) and bbw(λ) are the spectral absorption and backscattering 

coefficients of pure water respectively, and a*phy(λ) is the specific absorption 

coefficient of phytoplankton normalised to a value of 1.0 at 440-nm. The exponent in 

equation (4.3) parameterises the spectral shape of the absorption coefficient of 

coloured dissolved and detrital matter, a*dg(λ). In BRUCE (Klonowski et al., 2007) the 

net benthic albedo, ρ(λ), is expressed as a linear combination of the albedos of three 

key benthic substrates (typically sediment, seagrass and brown algae), 

 𝜌(𝜆) = ∑𝐵𝑖(550 𝑛𝑚) 𝜌𝑖
∗(𝜆)

3

𝑖=1

 (4.5) 

where Bi is the albedo at 550 nm and *i(λ) is spectral irradiance reflectance 

normalised to a value of 1.0 at 550 nm for the ith benthic class respectively. Both i(λ) 

and the number of benthic classes can be varied depending on the likely benthos 

present in the region-of-interest. For HICO imagery of Shark Bay, Western Australia, 

the bottom albedo was expressed as a linear mix of sand and mixed seagrass (50% 

Posidonia australis and 50% Amphibolis antartica) whilst sand, Posidonia sp. 

(seagrass) and Sargassum sp. (brown macroalgae) were used for the simulated 

hyperspectral dataset. 

 

4.3.2 Hyperspectral data 

4.3.2.1 Hyperspectral satellite imagery 

The HICO sensor aboard the International Space Station captured a spectral 

image of Shark Bay (see Figure 4.1), Western Australia, on 14th December 2011. The 

HICO image data provided by the Oregon State University were at-sensor calibrated 

top-of-atmosphere radiances. These image data were atmospherically corrected using 

Tafkaa 6S (Gao et al., 2000) to obtain surface remote sensing reflectance (Rrs). Here, 

the aerosol and atmospheric models were set to “maritime” and “mid-latitude summer” 

respectively. The Tafkaa 6S inputs for aerosol optical thickness at 550 nm, vertical 

column water vapour and ozone concentrations were obtained from a coincident 

MODIS image of Shark Bay. Sun-glint and air-water interface corrections were 

performed on a per-pixel basis to obtain rrs imagery, from which the improved 

optimisations of the BRUCE algorithm (Klonowski et al., 2007) were tested and 

compared. Further details on the Shark Bay study site as well as atmospheric, sun-glint 
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and air-water corrections are given in section 3.3.2. Note that HICO imagery was 

obtained through the Oregon State University, College of Earth, Ocean, and 

Atmospheric Sciences, HICO web portal (hico.coas.oregonstate.edu). 

 

4.3.2.2 Simulated spectra from forward modelling 

A total of 4375 simulated hyperspectral rrs spectra of various IOP 

combinations, depths, bottom types and bottom type mixtures were generated via the 

BRUCE algorithm’s forward model (equation 4.1). These modelled rrs spectra were 

then convolved with HICO’s relative spectral response functions (SRF), using a full 

width at half maximum of 5.1 nm (Gao et al., 2012) for each band. The resultant 

simulated rrs dataset therefore had the same spectral resolution and wavelengths as the 

HICO sensor. The input parameters used to simulate the 4375 HICO rrs are displayed 

in Table 4.1 where the range of values shown are similar to those used by Klonowski 

et al. (2007) in validating the BRUCE algorithm. Here, however, the sensor viewing 

and solar zenith angles were kept constant at 6.3° and 45.2° respectively. These angles 

were used to match the sensor and solar angle geometries of the HICO Shark Bay 

image from which spectral noise was extracted and added to the simulated rrs spectra. 
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Figure 4.1: Map of Shark Bay, Western Australia, Australia, with HICO-derived Rrs pseudo true 

colour imagery captured on 14 December 2011.  
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Table 4.1: The set of input model parameters used to generate the 4375 simulated HICO rrs 

spectra via forward modelling. A view angle of 6.3° from nadir and a solar zenith angle of 45° 

were used. 

BRUCE model 

parameter 

Value 

aphy(440 nm), P (m-1) 0.01, 0.03, 0.05, 0.07, 0.10 

adg(440 nm), G (m-1) 0.01, 0.1, 0.25, 0.35, 0.50 

bbp(550 nm), X (m-1) 0.006, 0.010, 0.03, 0.07, 0.10 

Depth, H (m) 1, 3, 6, 11, 20 

Benthic substrate 

albedo, Bi (550 nm) 

Sand, Bsand = 0.227 

Posidonia sp., Bseagrass = 0.053 

Sargassum sp., Balgae = 0.033 

Mixture 1: 50% sand (Bsand = 0.113), 

                  50% Posidonia sp. (Bseagrass = 0.026) 

Mixture 2: 50% sand (Bsand = 0.113), 

                  50% Sargassum sp. (Balgae = 0.016) 

Mixture 3: 50% Posidonia (Bseagrass = 0.026); 

                  50% Sargassum sp. (Balgae = 0.016) 

Mixture 4: 33.3% sand (Bsand = 0.076), 

                  33.3% Posidonia sp. (Bseagrass = 0.018) and 

                  33.3% Sargassum sp. (Balgae = 0.011) 

 

One of the aims of this paper is to gauge the accuracy of the UR-LM and LHS 

methods in the presence of real environmental and sensor noise. Such noise not only 

should account for instrumental noise, but also environmental noise produced from 

atmospheric variability, sun-glint, sky radiance and the effects of the air-to-water 

interface present in image data of aquatic systems. To this end, an estimate of the 

magnitudes and spectral characteristics of such noise were obtained from the HICO rrs 

image of Shark Bay captured on 14 December 2011. The procedure of extracting 

spectrally correlated noise from the image data and adding it to the rrs (simulated or 

sensor-derived) is explained in the following section. Here, spectrally correlated noise 

of varying magnitudes and shapes where added to each simulated rrs spectrum to obtain 

100 noise-perturbed rrs spectra. These were then inverted using (i) the standard LM 

(SLM), (ii) UR-LM and (iii) LHS implementations of the BRUCE algorithm. 
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4.3.3 Optimisation and uncertainty propagation 

As alluded previously, two datasets were used within this study: (1) the 

HICO-derived rrs image data, and; (2) the simulated rrs dataset that mimics the spectral 

resolution of the HICO sensor (henceforth referred to as simulated rrs dataset). In both 

datasets, the constrained non-linear Levenberg-Marquardt (LM) algorithm 

(Marquardt, 1963; Markwardt, 2009) was used to derive the model parameters P, G, 

X, H, Bsand, and Bseagrass. For the simulated rrs dataset, Balgae was additionally derived. 

With this approach, we could observe the effect of the SLM, UR-LM, and LHS 

optimisation implementations on the ‘best case’ simulated rrs data and on ‘real world’ 

HICO-derived rrs data. To ensure spectral consistency between the forward modelled 

rrs
M and the HICO-derived and simulated rrs data, the optically active spectral 

coefficients within the BRUCE algorithm (apw, a*
dg, a*

phy, bpw, b*
bp, and *i) were 

convolved with HICO’s relative SRFs. 

The uncertainties of the derived geophysical parameters were estimated by 

the noise propagation technique developed by Hedley et al. (2010; 2012a) that takes 

into consideration both sensor and environmental noise. Note that this propagation 

technique does not take into account uncertainties caused by differing spectral shapes 

of IOPs as done in Wang et al. (2005). The uncertainty of each model parameter was 

determined in the following manner: (i) the spectral covariance matrix, Crrs, of a 

homogeneous deep-water region was computed from the HICO-derived rrs image of 

Shark Bay, 14 December 2011; (ii) the spectral noise term, δrrs, was then computed as 

the dot product between an n-band amplitude vector and the Cholesky decomposition 

matrix, Lrrs, of Crrs; (iii) δrrs was then added to the rrs to generate a noise-perturbed 

spectrum, rrs + δrrs; (iv) steps (ii) and (iii) were repeated to generate a set of m noise-

perturbed spectra that were inverted to obtain a set of m optimised model parameters 

(P, G, X, H, Bsand, etc.). The standard error and average from this set were taken as the 

uncertainty and retrieved value respectively. Note that: (a) the values of the n-band 

amplitude vector are normally distributed random numbers (μ = 0, σ = 1) and represent 

the magnitude of the spectrally correlated noise; (b) the Lrrs matrix, which was kept 

constant throughout the procedure, contains information on the spectral variance of 

each band and how the spectral bands covary, and; (c) the number of m noise-perturbed 

spectra varied for the two datasets. For the HICO-derived rrs image data m was set to 

3000, whilst m = 100 for the simulated rrs dataset. Recall that the HICO-derived rrs 

dataset underwent atmospheric/sun-glint/air-water interface corrections that add 
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spectral artefacts to rrs. These artefacts introduce more minima to the solution space, 

and thus m was set to 3000 to observe all the possible convergence points. 

The SLM, UR-LM and LHS implementations of the BRUCE model were 

tested on four pixels from the HICO-derived rrs image and the set of noise perturbed, 

simulated rrs spectra. The four pixels selected from the HICO image – based on pseudo 

true colour imagery and previous benthic surveys (Walker et al., 1988) – have the 

following geometric depths and benthic substrates: Pixels A and B are shallow water 

pixels whose substrates are dominated by bright sediment and seagrass respectively; 

C is a quasi-deep water pixel with a sandy bottom, and; D is an optically deep water 

pixel. The rrs of these four pixels underwent the uncertainty propagation technique 

described above using the three implementations of the BRUCE model. 

The lower bounds of the derived IOPs, geometric depth and bottom albedos 

were set to slightly negative values for the constrained LM optimisation. This concept 

follows Werdell et al. (2013) who allowed the range of valid IOP retrievals to be 

slightly negative in order to account for noise in the inverted rrs spectrum. Preliminary 

analysis showed that the bottom albedo coefficients typically produced uncertainties 

in excess of 40% and hence the need for more relaxed upper and lower bounds. 

 

−0.10 𝑎w(490 𝑛𝑚) < 𝑃 < 2 m-1 

−0.10 𝑎w(490 𝑛𝑚) < 𝐺 < 2 m-1 

−0.10 𝑏bw(550 𝑛𝑚) < 𝑋 < 2 m-1 

-0.05 m < H < 40 m 

-0.40i (550) < Bseagrass, Bsand, Balgae < 1.4i (550) 

(4.6) 

 

4.3.4 Optimising initial guess 

An initial guess for each model parameter is required to initiate the LM 

optimisation. Preliminary investigations showed that the LM algorithm converges to 

different local minima when the optimisation is seeded with different initial guesses. 

The LHS and UR-LM methods (see flowchart in Figure 4.2) that search for the initial 

guess that guides the LM to the optimum, if not global, minimum are presented. 

 

4.3.4.1 Latin hypercube sampling 

Latin hypercube sampling (LHS) is an efficient sampling strategy used to 

sample the parameter space for an optimal, yet minimal set of initial guess parameters. 

LHS is an alternative method to simple random sampling, and where the selected 
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samples are guaranteed to cover the full range of variability in the data. The LHS 

routine has been described extensively by Helton and Davis (2003), Huntington and 

Lyrintzis (1998) with a step-by-step implementation given by Wyss and Jorgensen 

(1998). Here, the LHS was used to obtain seven sets of initial guesses, 

 𝐿𝐻𝑆 𝐺𝑢𝑒𝑠𝑠 =  {

𝑃1 𝐺1 𝑋1

𝑃2 𝐺2 𝑋2

. . . . . .
    

𝐻1 𝐵𝑠𝑑1 𝐵𝑠𝑔1

𝐻2 𝐵𝑠𝑑2 𝐵𝑠𝑔2

. . . . . .
𝑃7 𝐺7 𝑋7   𝐻7 𝐵𝑠𝑑7 𝐵𝑠𝑔7

} (4.7) 

where each set was used to seed the inversion of the HICO-derived and simulated rrs 

spectrum. The set that generated the lowest Euclidean distance was used to seed the 

inversions of the noise perturbed rrs spectra. For a given spectral image or spectral 

dataset, obtaining the seven sets of initial guesses (equation 4.7) is only performed 

once at the start. These initial guesses are then reused throughout the processing to find 

the optimum initial guess. 

 

 

 

Figure 4.2: Flow chart of the Latin Hypercube Sampling (left panel) and Update-Repeat LM 

optimisation (right panel) techniques. 
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Although simple random sampling could have been used to sample the 

parameter space for initial guesses, it has the following drawbacks: (1) it can 

potentially exclude sub-ranges of model parameters that have low probability of 

occurring but have significant impacts on the model output, and; (2) would require a 

large number of samples to effectively sample all of the model parameters’ sub-ranges 

(Helton & Davis, 2003). LHS overcomes this by specifying the sub-ranges (or sub-

sets) of the model parameter from which one random sample is selected (Helton & 

Davis, 2003; Press et al., 2007, p. 410). The sub-ranges are selected based of equal 

probability of the parameters’ probability distribution function (PDF). Here, each 

model parameter was assumed to have a normal PDF bounded by the imposed 

optimisation constraints. With exception, the depth parameter was assumed to have a 

normal PDF whose mean and standard deviation were 9.5 m and 2.5 m respectively. 

The LHS routine of the model parameters in BRUCE followed the program created by 

Sandia National Laboratories (Wyss & Jorgensen, 1998).  

 

4.3.4.2 Update-Repeat LM optimisation (UR-LM) 

In the update-repeat LM method, the model parameters that are derived from 

the optimisation process, which represent the solution at a local or global minimum, 

are randomly perturbed by a finite amount and used to seed a subsequent optimisation. 

This process is continued until either the LM algorithm converges to a minimum with 

a Euclidean distance of ≤ 1.0×10-5 or a set number of perturbations have elapsed. This 

procedure is as follows: an initial inversion of the sensor-derived (or simulated) rrs 

spectrum is performed with the standard set of LM initial guess values (equation 4.8). 

If within the first inversion the LM optimisation achieved a Euclidean distance ≤ 

1.0×10-5, then the optimised values of the model parameters are used to seed the 

inversions of the (same) set of noise-perturbed rrs spectra. If, however, the Euclidean 

distance of the initial inversion was greater than 1.0×10-5, then the optimised values of 

the model parameters are randomly perturbed by 10% of their value and used as the 

initial guess for a subsequent inversion of rrs. This perturbation/inversion step is 

repeated until either the Euclidean distance falls below 1.0×10-5 or the number of 

repetitions occurs more than 10 times. In the latter case, the set of optimised values 

that generated the lowest Euclidean distance were used as the initial guess for the 

optimisation of the set of noise perturbed spectra. For ease of interpretation, a 

flowchart of both the LHS and UR-LM methods are presented in Figure 4.2. 
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4.4 Results and Discussion 

4.4.1 Inverting measured hyperspectral data 

Figure 4.3 (left panel) shows 3000 noise-perturbed rrs spectra for each of the 

four pixels (A, B, C and D) selected from HICO imagery of Shark Bay, 14 December 

2011. Each of these noise-perturbed spectra underwent inversion using the BRUCE 

algorithm with SLM optimisation to derive 3000 optimised values for each model 

parameter. In the standard algorithm as implemented by Klonowski et al. (2007), the 

initial guess values were arbitrarily set to 

 
𝑃 = 0.05; 𝐺 = 0.05; 𝑋 = 0.01;  𝐻 = 4.0; 

𝐵sediment = 0.02; 𝐵seagrass = 0.02 
(4.8) 

The results for this set of inversions, using these same seed values, are 

presented in Figure 4.4 which shows the five different retrieved model parameters P, 

G, X, Bsand and Bseagrass, as well as the Euclidean distance plotted against the retrieved 

depth, H, for the inversions of Pixel A (HICO image row 1082, column 317). 

 

 

Figure 4.3: (a) Tafkaa-6S atmospherically corrected and deglinted, noise-perturbed rrs of pixels 

A (row 1082, col 317), B (row 1083, col 212), C (row 1031, col 210) and D (row 1200, col 445). Note 

that 3000 noise-perturbed rrs spectra were generated and shown for each of these four HICO 

pixels. (b) The ‘noise-free’ simulated HICO rrs dataset. 

 

The inversion results in Figure 4.4 show that two distinct solution groups exist 

at three very different retrieved depths. Group 1, highlighted red in Figure 4.4, 
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predominantly had Euclidean distances < 1.0×10-4 with retrieved depths between 0.59 

– 0.62 m, and Group 2, had an average Euclidean distance of 3.0×10-3 with retrieved 

depths between 10 – 13 m. Note, a small set of outliers were also retrieved existing at 

depths greater than 25 m (see Figure 4.4). Groups 1 and 2 represent very different 

retrieved IOPs, depth, Bsediment and Bseagrass. Table 4.2 provides an overview of the mean 

values and uncertainties of each parameter based on the results of the inversions 

displayed in Figures 4.4, 4.5 and 4.6. The points displayed in Figure 4.4 are presented 

in the column labelled “SLM BRUCE” in Table 4.2 for each of the four test pixels 

selected from the HICO image. Here SLM stands for the Standard Levenberg-

Marquardt implementation of BRUCE. The results of the SLM for HICO pixel A 

collectively produced high uncertainties including retrieved parameter averages that 

were larger relative to the UR-LM and LHS approaches (see Table 4.2). 

Arguably one might consider that a given rrs spectrum should have a unique 

point in retrieved parameter space that generates the lowest possible Euclidean 

distance. Thus for situations where non-uniqueness is not an issue, one would assume 

that adding spectral noise to the rrs spectrum would simply create dispersal about this 

unique point in parameter space rather than dispersals about two or more different 

minima. Note that in parameter space, the non-uniqueness of the rrs spectrum would 

represent a situation where two or more local minima exist that have very similar 

Euclidean distances but very different solutions. For HICO pixel A (Figure 4.4), each 

solution cluster has a substantially different Euclidean distance. Thus non-uniqueness 

was not deemed the cause, but rather the convergence onto two substantially different 

minima. 

Without ground truth data it is unknown which of the two minima in Figure 

4.4 is representative of the true environmental parameters. However, pragmatically we 

can assume the minimum with the most realistic solution being the one with the best 

model fit (i.e. lowest Euclidean distance). In the case of HICO pixel A (Figure 4.4) this 

would be Group 1 where the model parameters range between 0.0< P < 0.05 m-1, 0.17 

< G < 0.26 m-1, 0.03 < X < 0.08 m-1, 0.59 < H < 0.62 m, 0.28 < Bsediment < 0.31, and 

0.05 < Bseagrass < 0.07. The depth taken from the nautical chart of Shark Bay, Western 

Australia, at the approximate area of HICO pixel A ranged between 0.3 to 0.4 m (above 

lowest astronomical tide, LAT). We note that the retrieved depth of 0.6 m was the depth 

at the time of the HICO overpass, and was not corrected for tide to a chart datum such 

as LAT. Thus taken into consideration, the tide and possible depth offsets caused by 



Limitations & potential of remotely sensed shallow water bathymetry & benthic classification 

 

112 

atmospheric correction, a retrieved depth of 0.6 m is quite possible. 

A method that guides the LM optimisation is clearly needed to avoid multiple 

solution minima so that a true representation of the mean and standard deviation for 

each retrieved model parameter can be obtained. Although it is possible to perform a 

post-processing density based cluster analysis to isolate the solution group with the 

lowest Euclidean distance, it is more ideal (with regards to processing time) to have a 

robust method that only converges to one minimum. Figures 4.5 and 4.6 present the 

results of the inversions of HICO pixel A using the UR-LM and LHS implementation 

of the BRUCE model respectively. In these two methods the inversions show only one 

group of solutions indicative of the convergence to a single minimum. Moreover, this 

minimum is the same as Group 1 of Figure 4.4, and demonstrates that the UR-LM and 

LHS methods both guided the LM optimisation to the optimal solution (based on 

lowest Euclidean distance). Indeed the inversions using these methods were 

considerably more precise; for example, the retrieved depth from the SLM was 5.97 ± 

5.16 metres (5.97 m ± 87% - see Table 4.2) whilst through the UR-LM method the 

retrieved depth changed to 5.18 ± 0.16 metres for HICO pixel C (see Table 4.2). 

Additionally, the IOP retrievals for pixel A appear to have been improved with the UR-

LM and LHS methods relative to the SLM approach. Recall that pixel A is 

characterised as very shallow with a bright sand substrate, thus the majority of the 

magnitude of the rrs arises from bottom reflectance. Retrievals of the absorption and 

backscattering coefficients and the depth, using the SLM for HICO pixel A were 

considerably larger compared to values retrieved using the UR-LM and LHS methods. 

This implies that the SLM preferentially translates the magnitude of the rrs signal to a 

higher signal from the water column (i.e. higher backscattering coefficient), and 

therefore decreases the bottom reflectance signal by both increasing the depth and 

absorption coefficients. In contrast, the UR-LM and LHS methods avoided the over-

contribution of the water column reflectance, allowing both methods to retrieve a 

shallower, more realistic depth. 

Appendix A shows the inversion results of the other HICO pixels (B, C, and 

D). The basis behind the UR-LM and LHS methods is the selection of an optimised 

initial set of LM guess parameters that correspond to the lowest minimum found during 

the initial parameter search. Using this optimised guess to seed the inversion of the 

noise perturbed rrs spectra generally increases the computational efficiency of the 

inversions. Here, computational efficiency is defined as the total number of iterations 
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(Ti) that the LM algorithm performed. This enhanced efficiency is presented in Table 

4.2, which compares the retrieved model parameters, average Euclidean distance and 

number of iterations between the SLM, UR-LM and LHS BRUCE implementations. 

For the SLM, Ti accounts for the number of iterations incurred during 3000 spectral 

inversions, whilst for the UR-LM and LHS, Ti also includes the number of iterations 

incurred during the search for the optimised initial guess. The results shown in Table 

4.2 indicate that the UR-LM and LHS methods are comparable and at least twice more 

computationally efficient than the SLM. 

Although the UR-LM and LHS methods can yield improved optimisations 

for optically shallow to quasi-deep pixels, it does not improve the inversion of optically 

deep-water pixels (see Table 4.2, HICO pixel D). This, however, is due to the BRUCE 

model attempting to retrieve depth and bottom albedo coefficients from an rrs spectrum 

that has negligible bottom contribution. It is therefore important to have a method of 

determining whether a pixels’ rrs spectrum relates to deep-water or not (e.g. Brando et 

al., 2009) and to be able switch between ocean colour models such as the Generalized 

IOP algorithm (Werdell et al., 2013) and a shallow water model such as BRUCE.  
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Table 4.2: A comparison between the mean and relative standard deviations of the retrieved 

model parameters, average Euclidean distance and total number of iterations obtained from the 

SLM, UR-LM and LHS implementation of the BRUCE model. Presented are the retrieved model 

parameters from the four pixels in the HICO image of Shark Bay, 14th December 2011. 

Pixel type SLM BRUCE UR-LM BRUCE LHS BRUCE 

Shallow,  

sediment substrate (A) 
   

P (m-1) 0.223 ± 134.29% 0.012 ± 77.15% 0.012 ± 77.96% 

G (m-1) 0.288 ± 37.25% 0.212 ± 5.36% 0.213 ± 5.46% 

X (m-1) 0.203 ± 99.74% 0.060 ± 11.75% 0.061 ± 11.66% 

H (m) 4.37 ± 127.81% 0.60 ± 0.83% 0.60 ± 0.86% 

Bsediment 0.176 ± 94.5% 0.294 ± 1.11% 0.294 ± 1.08% 

Bseagrass 0.071 ± 18.56% 0.061 ± 4.27% 0.061 ± 4.28% 

Average Euclidean Dist. 1.11×10-3 9.05×10-5 9.04×10-5 

Total Number LM iterations 100,278 31,529 31,596 

Shallow,  

seagrass substrate (B) 
   

P (m-1) 0.020 ± 75.27% 0.025 ± 40.35% 0.026 ± 39.4% 

G (m-1) 0.254 ± 17.97% 0.269 ± 5.62% 0.269 ± 6.04% 

X (m-1) 0.080 ± 17.0% 0.084 ± 6.13% 0.084 ± 6.25% 

H (m) 1.81 ± 30.89% 2.06 ± 4.6% 2.06 ± 4.55% 

Bsediment 0.152 ± 15.69% 0.159 ± 12.64% 0.159 ± 13.64% 

Bseagrass 0.001 ± 1882.15% -0.003 ± 396.64% -0.003 ± 405.57% 

Average Euclidean Dist. 1.0×10-3 5.83×10-5 5.81×10-5 

Total Number LM iterations 63,764 33,990 33,735 

Quasi deep,  

sediment substrate (C) 
   

P (m-1) 0.015 ± 37.66% 0.015 ± 33.94% 0.015 ± 34.0% 

G (m-1) 0.106 ± 9.45% 0.105 ± 5.58% 0.105 ± 5.65% 

X (m-1) 0.027 ± 12.85% 0.027 ± 8.96% 0.027 ± 8.73% 

H (m) 5.97 ± 86.42% 5.18 ± 3.08% 5.18 ± 3.13% 

Bsediment 0.361 ± 10.61% 0.361 ± 9.69% 0.361 ± 9.82% 

Bseagrass 0.003 ± 792.87% 0.002 ± 1221.57% 0.002 ± 1148.18% 

Average Euclidean Dist. 5,74×10-5 4.44×10-5 4.43×10-5 

Total Number LM iterations 76,675 35,623 35,657 

Optically deep (D)    

P (m-1) 0.026 ± 72.51% 0.027 ± 70.78% 0.026 ± 70.32% 

G (m-1) 0.138 ± 15.1%  0.137 ± 15.42%  0.138 ± 15.3% 

X (m-1) 0.012 ± 15.97% 0.012 ± 15.69% 0.012 ± 15.75% 

H (m) 11.90 ± 50.69% 11.61 ± 44.89% 11.50 ± 45.08% 

Bsediment 0.054 ± 220.44% 0.056 ± 208.12% 0.055 ± 207.31% 

Bseagrass 0.021 ± 210.29% 0.020 ± 212.46% 0.021 ± 210.91% 

Average Euclidean Dist. 2.11×10-5 2.06×10-5 2.06×10-5 

Total Number LM iterations 66,383 57,425 57,196 
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Figure 4.4: Retrieved BRUCE model parameters vs. retrieved depth for the 3000 noise perturbed rrs spectra of HICO pixel A (row 1082, col 317) using SLM 

optimisation. The seed guess parameters were arbitrarily set. The red dot points are those retrievals whose inversion obtained a Euclidean distance < 1.0×10-4. 
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Figure 4.5: Retrieved BRUCE model parameters vs. retrieved depth for the 3000 noise perturbed rrs spectra of the HICO pixel A (row 1082, col 317). The optimised 

guess values used to seed the LM optimisation were dynamically chosen using the UR-LM method shown as grey diamonds. 
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Figure 4.6: Retrieved BRUCE model parameters vs. retrieved depth for the 3000 noise perturbed rrs spectra of the HICO pixel A (row 1082, col 317). The optimised 

guess values were dynamically chosen using the LHS method, shown as grey diamonds. 
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4.4.2 Inverting simulated hyperspectral data 

An assessment of the sensitivity to noise and accuracy of the retrieved 

geophysical parameters from the three optimisation approaches was carried out by 

inverting noise-perturbed, simulated rrs spectra. Specifically, the BRUCE model was 

implemented in a forward sense where a range of values for the model inputs (see 

Table 4.1) was used to obtain 4375 modelled rrs. For each of these modelled spectra, 

the uncertainty propagation technique produced 100 noise-perturbed rrs spectra (i.e. a 

total of 437,500 spectra) that were inverted to retrieve the uncertainty and average 

value of the model parameters. Note that we have chosen to use forward modelling 

rather than relying on Radiative transfer numerical models such as Hydrolight (Mobley 

& Sundman, 2000) or PlanarRad (Hedley, 2008) to exclude sources of uncertainty 

from the BRUCE model parameterisation. Such uncertainties arise from assumptions 

made regarding the bottom albedo, chlorophyll model, phase functions and sun-sensor 

viewing geometries. Thus in this context forward modelling is an ideal situation, 

because prior to the addition of spectrally correlated noise the optimisation procedures 

would be expected to produce 100% accuracy between the retrieved and input model 

parameters. 

Figures 4.7 to 4.9 compare the retrieved versus input BRUCE model 

parameters using the SLM, UR-LM and LHS optimisation methods. Table 4.2 presents 

the accuracy, average uncertainty, average retrieved value and root mean square error 

(RMSE) between the retrieved and input model parameter for these three methods. 

The accuracy of the three methods was assessed based on the proportion of retrievals 

that were within 1% of the input model parameter. Thus, the ideal scenario of 100% 

accuracy implies that all the retrievals were within 1% of the input model parameter. 

Here the average retrieved value (henceforth referred to as centroid) was used to assess 

how close the retrievals are to the input model value, whilst the RMSE was used as a 

measure of the scatter the retrievals have about the “true” value 

 𝑅𝑀𝑆𝐸 = [
∑ (𝑥𝑖,𝑗̂ − 𝑥𝑗)

2𝑀
𝑖=1

𝑀 − 1
]

1/2

 (4.9) 

where 𝑥̂𝑖,𝑗 is the ith retrieval of the jth BRUCE model parameter (P, G, X etc.), xj is the 

true value of the jth model parameter, and M being the number of retrievals. The 

normalised RMSE (equation 4.9 divided by the average retrieved value of the scatter) 

was not used as this tends to very large values as the average retrieved value 
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approaches zero. Here, the optimisation method that generated the lowest RMSE, 

relative uncertainty and highest accuracy was considered the most optimal. Note that 

the accuracies presented in Table 4.3 will be lower when inverting sensor-derived 

subsurface remote sensing reflectance due to uncertainty in the model 

parameterisation, and potentially erroneous radiometric corrections arising from 

atmospheric fluctuations and sea surface state (sun-glint and air-water interface).
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Table 4.3: An inter-comparison of the RMSE (scatter), percent accuracy, average relative uncertainty and average retrieved value for each BRUCE model parameter 

between the three optimisation approaches. Recall that 100% accuracy is ideal as all the retrievals would be with 1% of the input model parameter. 

Actual values Average retrieved value (centroid) Average uncertainty RMSE Accuracy (%) 

SLM URLM LHS SLM URLM LHS SLM URLM LHS SLM URLM LHS 

P (m-1)             

0.01 0.058 0.021 0.019 0.085 0.033 0.030 0.117 0.047 0.023 1.37 4.11 4.69 

0.03 0.067 0.034 0.034 0.097 0.038 0.036 0.115 0.037 0.021 1.83 7.77 9.26 

0.05 0.078 0.052 0.051 0.107 0.041 0.041 0.108 0.074 0.020 2.06 10.74 13.14 

0.07 0.087 0.071 0.067 0.113 0.048 0.045 0.103 0.081 0.018 3.09 13.71 16.11 

0.1 0.105 0.097 0.094 0.126 0.055 0.053 0.101 0.049 0.018 4.80 19.77 20.23 

G (m-1)             

0.01 0.120 0.054 0.008 0.078 0.031 0.007 0.250 0.172 0.004 1.37 7.66 10.63 

0.1 0.450 0.138 0.082 0.177 0.027 0.021 0.517 0.153 0.004 2.74 29.37 36.57 

0.25 0.669 0.218 0.215 0.362 0.046 0.045 0.544 0.059 0.010 4.57 40.00 40.00 

0.35 0.670 0.311 0.312 0.385 0.063 0.064 0.402 0.020 0.020 2.86 37.14 37.26 

0.5 0.643 0.475 0.475 0.328 0.093 0.093 0.231 0.040 0.040 5.60 29.71 29.71 

X (m-1)             

0.006 0.096 0.026 0.006 0.077 0.009 0.004 0.136 0.067 0.001 0.00 2.86 5.83 

0.01 0.108 0.030 0.010 0.074 0.009 0.004 0.144 0.070 0.001 0.23 4.34 7.77 

0.03 0.154 0.059 0.025 0.088 0.014 0.004 0.177 0.111 0.001 0.80 17.14 24.46 

0.07 0.163 0.050 0.050 0.084 0.004 0.004 0.121 0.001 0.001 4.23 46.51 46.51 

0.1 0.180 0.082 0.082 0.068 0.004 0.004 0.124 0.001 0.001 7.20 69.94 70.06 

H (m)             

1 0.98 0.98 1.00 0.18 0.05 0.04 0.15 0.10 0.01 47.89 85.03 88.69 

3 1.59 2.88 3.00 0.98 0.30 0.30 1.62 0.54 0.07 1.71 48.80 51.31 

6 2.44 4.58 5.30 2.01 1.37 1.42 3.83 2.00 0.50 0.00 6.63 11.89 

11 3.60 4.83 6.21 3.89 4.27 4.69 7.82 5.02 3.22 0.23 0.34 2.29 

20 3.75 4.99 6.46 4.35 5.28 6.25 16.55 11.75 9.76 0.00 0.46 0.80 

Bsand             

0 -0.011 0.017 0.023 0.060 0.056 0.061 0.043 0.054 0.052 0.00 0.00 0.00 

0.0757 0.009 0.055 0.067 0.069 0.060 0.065 0.087 0.053 0.034 2.08 12.00 13.44 

0.1135 0.018 0.072 0.089 0.073 0.061 0.065 0.116 0.065 0.036 4.48 14.88 17.44 

0.227 0.056 0.134 0.156 0.089 0.061 0.065 0.199 0.112 0.072 11.36 24.00 25.12 
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Bposidonia             

0 0.014 0.010 0.009 0.020 0.020 0.022 0.022 0.019 0.018 0.00 0.00 0.00 

0.0177 0.020 0.018 0.018 0.020 0.021 0.023 0.014 0.011 0.010 3.04 7.84 7.84 

0.0265 0.023 0.022 0.023 0.020 0.021 0.023 0.014 0.009 0.009 5.60 9.52 9.92 

0.053 0.031 0.034 0.036 0.020 0.021 0.023 0.029 0.019 0.017 8.00 12.48 12.80 

Bsargassum             

0 -0.003 0.003 0.004 0.013 0.014 0.015 0.007 0.008 0.007 0.00 0.00 0.00 

0.011 0.000 0.008 0.009 0.013 0.015 0.016 0.013 0.007 0.005 4.00 4.64 4.96 

0.0165 0.002 0.010 0.012 0.014 0.015 0.016 0.017 0.009 0.007 4.96 6.40 6.96 

0.033 0.007 0.017 0.019 0.015 0.015 0.016 0.029 0.017 0.016 6.56 10.88 12.32 

  Number of L-M iterations       

 SLM 42,380,282       

 UR-LM 13,150,908       

 LHS 11,132,485       
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Figures 4.7 to 4.9 show that in the presence of spectral noise the SLM leads 

to retrievals that have much greater scatter and variation about the actual (or true) 

parameter value. This is seen for example, in the retrievals of the phytoplankton 

absorption coefficient, P (Figure 4.7), where there appears to be little or no correlation 

between the retrieved and actual values for the SLM. In contrast the results for the UR-

LM and LHS show a much improved agreement between input and retrieved values 

for P. Indeed, the scatter (RMSE) for the majority of the model parameters were 

consistently greater than the input value for the SLM method. The LHS method has 

considerably lower RMSE than the SLM method; in fact the LHS method reduced the 

scatter on average by factors of 5, 56, 194 and 11 for parameters P, G, X and H 

respectively, when compared to the SLM. The UR-LM method on the other hand has 

only reduced the scatter, on average by factors of 2, 8, 78 and 1.9 for P, G, X and H 

respectively when compared to the SLM. In addition to the reduced RMSE, the UR-

LM and LHS methods have centroids for the IOPs and depth closer to the actual value 

than the SLM (see Table 4.3). 

Figure 4.10 displays density plots of the bias in the down-welling diffuse 

attenuation coefficient at 490 nm, Kd(490) plotted against bias in depth; and the bias 

in Bsand, Bseagrass and Balgae versus depth bias, for the SLM and LHS optimisation 

approaches. The bias was defined as the retrieved minus actual parameter value, thus 

negative bias represents under-estimation and vice-versa for a positive bias. Here, 

Kd(490) was computed by 

 𝐾d(490) =
a(490)  + 𝑏b(490)

cos(𝜃w)
 (4.10) 

where a(490) and bb(490) are the absorption and backscattering coefficients of the 

water column at 490 nm. The retrieved and true values of P, G and X were used as 

inputs to equations (4.3) and (4.4) to compute a(490) and bb(490) respectively. Also, 

θw was set to the sub-surface solar zenith angle at the time of the HICO overpass on 

14 December 2011. The bias in Kd(490) was thus computed by Kd, retrieved(490) - Kd, 

actual(490). The results in Figure 4.10 show that the SLM procedure, for the majority of 

the inversions, simultaneously over-estimated Kd(490) and under-estimated depth and 

the bottom albedo coefficients. This implies that the BRUCE model, when initiating 

the SLM optimisation with a fixed initial guess, preferentially under-estimates the 

depth by compensating for a more turbid water column and darker substrate. This is 

an example of the LM algorithms’ inability to move beyond local minima. In the SLM 
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approach the initial guess for depth was 4 m (see equation 4.8), thus as the LM 

algorithm increased or decreased the depth parameter in the direction of lowest 

Euclidean distance, it encountered and converged to a local minimum rather than 

continuing the optimisation process towards the global minimum. 

When comparing the bias in Kd(490) with the bias in depth (Figure 4.10a), 

the LHS method produced depth retrievals more centred on a bias of zero than the 

SLM approach. Indeed, the SLM had biases in depth up to -20 m where the Kd(490) 

bias predominantly ranged between 0 and 1.5 m-1. The LHS method in contrast, had 

Kd(490) bias ranging between -0.05 and 0.10 m-1, and a bias in depth that ranged 

between -15 and 10 m. It should be noted that these large biases in depth of the LHS 

method had: (i) a substantially lower frequency of occurrence (see the colour bar in 

Figure 4.10) compared to the SLM method; and (ii) were obtained for the inversions 

of simulated rrs whose input depths were greater than 10 metres – as illustrated by the 

large scatter about these retrieved depths in Figure 4.8. This latter result emphasises 

the optical depth limit of shallow-water inversion models. 

In the LHS method, the depth was still preferentially under-estimated though 

not the extent of the SLM. This is also observed by centroids of the depth retrievals 

(Table 4.3), which plateau to around 3 to 4 m for input depths greater than 6 m using 

the SLM method, whereas the centroids reach 6.48 m using the LHS method. 

Importantly, the LHS method has improved the bias of Kd(490), which in turn relates 

to improved accuracies of the retrieved IOPs over a range of depths – particularly over 

shallow water where the bottom reflectance can contribute more to the net water–

leaving signal than water column optics. 

The UR-LM and LHS methods have significantly increased the accuracy of 

the depth retrievals and indeed the other retrieved parameters. In the SLM approach, 

the accuracies of retrieved depths greater than or equal to 3 metres are less than 2%. 

This has increased to accuracies of 51.3%, 11.9%, 2.3% and 0.80% for retrieved depths 

of 3, 6, 11 and 20 m respectively using the LHS method. The rapid decline in accuracy 

and increased scatter about the true value with depth is associated with the exponential 

nature of light attenuation. At depths greater than 10 m, the bottom contribution to the 

rrs signal is typically very small, resulting in minor differences between an rrs spectrum 

at, say 15 metres to that at 20 m for the same set of optical conditions. Hence the 

BRUCE model can converge to a large range of depths (e.g. 15 – 25 m) without 

significantly affecting the model fit. Despite these increases in accuracies, the 
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accuracies of the retrieved depths, IOPs and benthic albedo coefficients are typically 

less than 50% using the UR-LM and LHS methods, which illustrate the sensitivity of 

these model parameters to the addition of spectral noise. 
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Figure 4.7: Inter-comparison between the SLM (left-hand panels), UR-LM (central panels) and LHS (right-hand panels) optimisation of the noise-added simulated 

rrs spectra using the BRUCE model. These graphs show the retrieved vs. actual model parameters for P, and G Note: (1) the uncertainty in each retrieval (grey 

diamonds) are represented as error bars; (2) the dashed line in each graph represents the ideal 1:1 ratio between retrieved and actual.  
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Figure 4.8: Inter-comparison between the SLM, UR-LM and LHS optimisation of the noise-added simulated rrs spectra using the BRUCE model. These graphs show 

the retrieved vs. actual model parameters for X, and H.  
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Figure 4.9: Inter-comparison between the SLM, UR-LM and LHS optimisation of the noise-added, simulated rrs spectra using the BRUCE model. These graphs show 

the retrieved vs. actual model parameters for Bsand (top), Bseagrass (middle), and Balgae (bottom). 
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Figure 4.10: Density plots of (a) Kd(490 nm) bias vs. depth bias; (b) Bsand bias vs. depth bias; (c) 

Bseagrass vs. depth bias, and; (d) Balgae bias vs. depth bias. Each pixel in the density plot has a 

frequency of occurrence, represented by its colour. The left- and right-hand panels show the bias 

obtained using the SLM and LHS optimisation methods respectively.  
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Retrievals of the bottom albedo parameters (Bsand, Bposidonia, Bsargassum) were 

only marginally improved with the UR-LM and LHS methods. These parameters 

suffer from very low accuracy (< 26%) and precision (> 40 % relative uncertainty). 

For these three methods, the highest accuracies were obtained for bright bottom 

substrates; where 100%, 50% and 33% benthic sediment mixtures obtained accuracies 

of 25%, 17% and 13%, respectively. These accuracies decreased as the substrate 

became darker, for instance the accuracy for Bsargassum was on average 2% less than that 

of Bposidonia. These low accuracies are likely due to the over-parameterisation of the 

BRUCE model where non-zero albedo coefficients are always retrieved even if only 

one benthic type was modelled (despite having set negative lower bounds (-0.4ρi, see 

equation 4.6) in the LM optimisation). Such accuracies have significant implications 

to benthic classification when total system noise is incorporated in the analysis. Further 

work is therefore necessary to improve the accuracies of these bottom albedo 

coefficients. 

We found that changing the lower bounds of the BRUCE model parameters 

can affect the accuracy, RMSE and uncertainty of the retrievals dramatically. So much 

so that when the lower bounds of the IOPs, depth and bottom albedo coefficients were 

set to zero, the inversion results using the SLM become similar to the UR-LM and 

LHS methods (see Appendix B). However, the UR-LM and LHS methods are still 

more computationally efficient with at least 3.9 times fewer LM iterations than the 

standard approach. Despite the changes in the quality of the retrievals using the SLM 

and somewhat the UR-LM method, the LHS technique produced consistent retrievals 

to that shown in Figures 4.7 to 4.9 and Table 4.3; and so illustrate the robustness and 

efficiency of this improved optimisation method. Setting the lower bounds to zero 

should be used with caution as it can underestimate the uncertainty and inflate the 

average retrieved value, particularly when the value of the model parameter is near 

zero (see Appendix B). As such, for operational satellite remote sensing we advise that 

the lower bounds of the LM algorithm to be set as slightly negative values. 

 

4.5 Conclusion 

Obtaining a true representation of the uncertainty is crucial for accurate 

interpretation of ocean colour data. The addition of spectral noise to the derived rrs 

adds more local minima to the solution space that compromises the convergence to the 
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“best” local if not global minimum. We have shown through the inversion of noise-

perturbed rrs (sensor-derived and simulated) that the standard approach to LM (SLM) 

optimisation, where the initial guesses are arbitrary and fixed, generated elevated 

uncertainties because of the convergence to multiple local minima that had different 

model parameter values. Two methods were presented that searched the multi-

parameter space of the BRUCE model, of a given rrs, for the set of parameter values 

that correspond to a local minimum with the lowest Euclidean distance. The search 

patterns of these methods differ; in the UR-LM, the optimised values of the inverted 

rrs were randomly perturbed by 10% of their value and used as the initial guess for a 

subsequent inversion attempt. This process was repeated until the Euclidean distance 

fell below 1.0×10-5 or if this repetition occurred more than 10 times. In the LHS 

method, seven sets of initial guesses sampled from the constrained parameter space 

using Latin Hypercube Sampling were inverted. The optimised values with the lowest 

Euclidean distance were then used as the initial guesses for the subsequent inversion 

of noise-perturbed rrs. 

Inversions of several HICO derived rrs spectra showed that the UR-LM and 

LHS method aided the convergence of the LM optimisation to one minimum rather 

than multiple. As a consequence, the estimated uncertainties of the derived IOPs, depth 

and bottom albedo decreased and obtained a more accurate representation of the 

dispersal about the minimum. To test the improvements in accuracy of these two 

methods (UR-LM and LHS) relative to the SLM approach, we applied these methods 

to a simulated dataset of rrs spectra whose spectral resolution matched that of HICO. 

These spectra were generated via forward modelling using the BRUCE model with a 

range of model parameter values typically encountered in the coastal ocean. Spectrally 

correlated noise obtained from HICO imagery was added to each simulated rrs to 

mimic the instrumental noise and imperfect radiometric corrections arising from 

atmospheric fluctuations and sea surface state. The results showed that the SLM 

solution approach had substantially lower accuracies, more scatter about true 

parameter values and higher uncertainties than the UR-LM and LHS methods. Indeed 

the UR-LM and LHS methods on average increased the accuracies of aphy(440), 

adg(440) and bbp(550) by factors of 4, 9 and 14 respectively. On average, the 

uncertainties for these model parameters were also reduced by factors of 2, 6 and 16 

respectively. The retrieved depth also displayed considerable improvement. The SLM 

method produced accuracies less than 2% for depths greater or equal to 3 metres, while 
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the LHS method provided accuracies of 51.3%, 11.9% and 2.3% for depths of 3, 6 and 

11 m respectively. The UR-LM and LHS methods however did not improve retrievals 

of the bottom albedo coefficients, which have very poor accuracies, high uncertainties 

and scatter about the true value. Further analysis revealed that the SLM approach is 

sensitive to the lower bounds used to constrain the solution space, whilst the LHS (and 

to a lesser degree, the UR-LM) are considerably more robust and computationally 

efficient. It should be noted that if spectrally correlated noise is not propagated, and 

instead just a single reflectance spectrum is to be inverted; then the LHS method would 

take approximately seven times longer than the SLM. This is due to the search for the 

optimum initial guess where the LM optimisation is performed seven times. 

The UR-LM and LHS methods, like the SLM, are susceptible to spectral non-

uniqueness as suggested through the set of inversions presented in Figure 4.11, where 

two groups (Groups 1 and 2) of different retrieved depths but similar IOP values are 

present. It is evident that the set of inversions that retrieved a depth greater than 6 m 

(Group 2, red data points) had negative Bsand and Bseagrass values, which are not 

physically possible. Negative bottom albedo values were retrieved as these model 

parameters were ‘pegged’ to the negative lower bounds of the constrained LM 

optimisation. Analysis showed (results not shown here) that when the lower bounds 

were set to zero, the Bsand and Bseagrass parameters of Group 2 only retrieved values of 

zero. The MPFIT algorithm used in this study (Markwardt, 2009, Markwardt person. 

comm. 2014) pegs a model parameter to an upper or lower bound when the cost 

function (Euclidean distance) exists beyond that boundary; which for this case implies 

that the minimum is not physically possible and the retrievals should be ignored or 

flagged. In the situation shown in Figure 4.11, it is possible to determine the correct 

local minima based on whether the optimisation retrieved any model parameters that 

‘bottomed out’. Situations where two or more minima have very similar Euclidean 

distances and physically possible model parameters are the limit of optimal remote 

sensing as Hedley et al. (2012b) describes. For example, from in situ radiometry it may 

be possible to identify (through a shallow water model) macroalgae at a shallow depth 

from sand/seagrass benthos at a deeper depth. However, the satellite/airborne derived 

rrs spectra of those benthos can contain sensor and environmental noise that can lead 

not only to indistinguishable spectra but also high uncertainty. These factors can cause 

the retrieved model parameters of these two benthos to overlap. Although this is an 

optical remote sensing limit it is still possible and useful to identify these pixels in the 



Limitations & potential of remotely sensed shallow water bathymetry & benthic classification 

 

132 

processing using, for example, a post-processing density based cluster analysis, such 

as DBSCAN (Ester, Kriegel, Sander, & Xu, 1996). 
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Figure 4.11: Non-uniqueness – retrieved BRUCE model parameters vs. retrieved depth, for the 3000 noise perturbed rrs spectra of quasi-deep HICO pixel 

at row 1107, column 226, Shark Bay 14-Decemeber-2011. The optimised guess values were dynamically chosen using the LHS method and are shown as 

grey diamonds. The red data points (Group 2) have negative Bsand and Bseagrass that are not physically possible. 
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4.6 Recommendations 

Based on the analysis presented we recommend the use of the Latin 

Hypercube Sampling (LHS) procedure to search for the optimal initial guess when 

implementing the LM optimisation routine within an optically shallow semi-analytical 

inversion algorithm. The LHS method is simple to implement, more computationally 

efficient when using the uncertainty propagation technique, and increases the 

likelihood of converging to the global minimum relative to the standard approach. 

Furthermore, the LHS (and to a lesser extent the UR-LM) method converges to a single 

minimum and affords true representation of the uncertainty caused by sensor and 

environmental noise. Here a complex shallow water algorithm that can have up to 

seven model parameters was used, and as such it is possible to use the LHS method 

with other ocean colour models (e.g. Generalized IOP model, Werdell et al., 2013) 

developed for different sensors. Here the number of noise-perturbed spectra to was set 

to 3000 per pixel when testing the UR-LM and LHS methods on the HICO spectral 

image data. For operational processing of satellite/airborne imagery, a recommend 50 

noise-perturbed spectra per pixel as illustrated in Figure A.10 (Appendix A), which in 

C language takes an average of 0.12 seconds per pixel using the LHS method on a 

standard PC without parallel/GPU processing. 
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CHAPTER 5  

 

A METHOD TO ANALYSE THE POTENTIAL OF OPTICAL REMOTE SENSING 

FOR BENTHIC HABITAT MAPPING 

 

This chapter has been published in the journal: Remote Sensing.  

Rodrigo A. Garcia, John D. Hedley, Hoang C. Tin, Peter R. C. S. Fearns. A method 

to analyse the potential of optical remote sensing for benthic habitat mapping. 

Remote Sensing, 7(10), (2015), pp. 13157-13189. DOI: 10.3390/rs71013157. 

http://www.mdpi.com/2072-4292/7/10/13157 

 

 

5.1 Abstract 

Quantifying the number and type of benthic classes that are able to be 

spectrally identified in shallow water remote sensing is important in understanding its 

potential for habitat mapping. Factors that impact the effectiveness of shallow water 

habitat mapping include water column turbidity, depth, sensor and environmental 

noise, spectral resolution of the sensor and spectral variability of the benthic classes. 

In this paper, we present a simple hierarchical clustering method coupled with a 

shallow water forward model to generate water-column specific spectral libraries. This 

technique requires no prior decision on the number of classes to output: the resultant 

classes are optically separable above the spectral noise introduced by the sensor, image 

based radiometric corrections, the benthos’ natural spectral variability and the 

attenuating properties of a variable water column at depth. The modelling reveals the 

effect reducing the spectral resolution has on the number and type of classes that are 

optically distinct. We illustrate the potential of this clustering algorithm in an analysis 

of the conditions, including clustering accuracy, sensor spectral resolution and water 

column optical properties and depth that enabled the spectral distinction of the seagrass 

Amphibolis antartica from benthic algae. 
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5.2 Introduction 

A fundamental issue with benthic classification of remotely imaged shallow 

water environments is determining the appropriate definition and number of benthic 

classes that: (i) optimizes the classification accuracy and precision (Andrefouet et al., 

2003); and (ii) standardizes classification maps for ease of inter-comparisons (Mumby 

& Harbone, 1999). The selection of classes and their descriptive resolution, i.e., 

biological detail (Mumby et al., 1997), for a spectral library or training dataset, along 

with the image classification method, have typically been scene and sensor specific 

(Mumby et al., 1998a). For multispectral imagery, the optimum spectral library could 

consist of image-derived or in situ spectra of pure endmembers (a discrete taxanomic 

unit i.e., high descriptive resolution) if the benthos in the scene is either homogeneous 

or was imaged with very high spatial resolution (Mumby et al., 1998b; Mumby et al., 

2004; Vahtmae & Kutser, 2007). For a scene with patchy or heterogeneous benthos or 

that was imaged with moderate to low spatial resolution, the spectral library could 

contain classes pertaining to merged endmembers (i.e., mixed benthic assemblages) 

and low descriptive resolution (Mumby et al., 1997; Mumby & Edwards, 2002; 

Vahtmae, Kutser, Kotta, & Parnoja, 2011). Due to the spectral characteristics of the 

sensors used (e.g., SPOT, Landsat 5–7, IKONOS; QuickBird), the above studies 

mostly utilized supervised classification schemes with or without water column 

correction to produce benthic habitat maps (additional examples include Purkis, 

Kenter, Oikonomou, & Robinson, 2002; Dekker, Brando, & Anstee, 2005; Gullstrom 

et al., 2006). 

Hyperspectral sensors, in contrast, have enough spectral resolution and bands 

to potentially facilitate the spectral unmixing of an image spectrum based on the 

fractional cover of a subset of pure endmembers (Hedley et al., 2004). This has often 

led to the implementation of a spectral library of pure endmembers which would be 

linearly mixed either to pre-defined proportions such as in look-up table methods (Mobley 

et al., 2005; Hedley et al., 2009) or during spectral optimization in shallow-water 

inversion methods (Lee et al., 1999; Klonowski et al., 2007; Brando et al., 2009). 

These methods have consequently achieved moderate to high benthic classification 

accuracies (Mobley et al., 2005; Fearns et al., 2011; Dekker et al., 2011; Kobryn, 

Wouters, Beckley, & Heege, 2013). 
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Previous studies with multispectral imagery have shown an inverse 

relationship between the number of benthic classes and the classification accuracy 

(Andrefouet et al., 2003; Mumby et al., 1997; Mumby & Edwards, 2002). This same 

relationship has also been shown for hyperspectral imagery, see (Kobryn et al., 2013; 

Harvey et al., 2007). This raises the question of how to optimize the class selection, or 

equivalently how to merge classes of higher descriptive resolution in order to achieve 

both accurate and useful maps. Karpouzli et al. (2004) observed that agglomerating 

pure endmembers based on their genera to obtain average spectra of coral, seagrass, 

macroalgae and sand, reduced the classification accuracy. Specifically high 

classification accuracy was obtained with more classes at finer descriptive resolution. 

This was attributed to the fact that the intra-class variability exceeded the inter-class 

separability – as it has been noted that some species of corals are spectrally similar to 

macroalgae and vice-versa (Hochberg & Atkinson, 2003). Clearly, averaging pure 

endmembers based on their genera, which seems a logical and ecologically meaningful 

step, may not maximise spectral separability between classes, and potentially leads to 

a higher probability of confusion during classification. 

Furthermore increasing the descriptive resolution of the benthic classes may 

lead to a decrease in the precision of the resultant classification, particularly if sensor 

and environmental noise is taken into account. Such noise is a component of remotely 

sensed imagery originating from the sensor and from atmospheric, sunglint and air–

water interface corrections that maybe imperfect at times (Brando & Dekker, 2003; 

Hedley et al., 2012b). The combined impact of sensor and environmental noise and 

spectral variability of a given taxonomic species observed in local and regional scales 

(Hochberg, Atkinson, Apprill, & Andrefouet, 2004; Stambler & Shashar, 2007) act to 

degrade the inter-class spectral separability as described in Hedley et al. (2012b). 

Minimising confusion or uncertainty arising from spectrally similar classes 

necessitates a procedure to re-define the spectral library of endmembers into more 

distinct classes. Clustering is an approach that can merge those spectrally similar 

classes thereby reducing the spectral confusion in a spectral library. A variety of 

indices can be used to define the spectral similarity between two classes including root 

mean square error, spectral angle mapper (Kruse et al., 1993) or spectral information 

divergence (Chang, 2000). Though clustering is a common procedure in unsupervised 

classification (Sohn and Rebello, 2002; Pu et al., 2012; Maeder et al., 2002; Call et al., 

2003), it is seldom performed on the endmember spectra that constitute the spectral 
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library (for exceptions see Minghelli-Roman, Chisholm, Marchioretti, Ripley, & 

Jaubert, 2002; Kutser & Jupp, 2006; Purkis & Pasterkamp, 2004). Particularly on 

benthic spectra that are further modulated by the physical processes occurring in an 

optically variable water column. In this study we present a hierarchical clustering 

algorithm, based on linear discriminant coordinates, tailored for shallow-water 

inversion models that uses the intra-class variability to merge those classes in the 

benthic spectral library that overlap, i.e., are optically indistinguishable. Here, the 

intra-class variability incorporates the individual benthos’ natural spectral variability 

plus image-based sensor and environmental noise. The hierarchical clustering ceases 

when there is no spectral overlap in the variance between groups; and thus outputs a 

set of classes that are spectrally distinguishable under actual operational conditions. In 

combination with a shallow water forward model this hierarchical procedure was used 

to develop depth and water-column specific spectral libraries. The endmembers of 

which are spectrally distinguishable above the attenuating properties of an optically 

variable water column at depth. In addition we investigate the effect spectral resolution 

has on benthic class separability by analysing the clustering from simulations using the 

following three sensors: Hyperspectral Imager for the Coastal Ocean (HICO); 

HyVista’s HyMap, and; Worldview-2 (WV2). Such information on the number and 

type (i.e., definition) of distinguishable classes at any given depth and water column 

optical properties helps to understand the potential of benthic classification from 

shallow water remote sensing imagery. 

 

5.3 Methodology 

The overall goal is the development of a procedure that can quantitate the 

number and type of classes that are spectrally distinct for any given water column 

optical properties and depth from a spectral library of representative benthic species. 

We begin in section 5.3.1 with a description of the benthic irradiance reflectance, ρb, 

library collected from the field and we then describe the hierarchical clustering 

algorithm in section 5.3.2. Using the measured ρb data, the clustering algorithm outputs 

a library of endmembers that are spectrally separable above the total system’s 

variability but only suitable just below the air-water interface as the attenuating effects 

of a water column were not modelled. Given an estimated or known range of depths 

and water column optical properties in a scene, a semi-analytical shallow water 
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forward model coupled with the clustering algorithm can be used to predict the benthic 

classes that are optically distinct. This procedure is detailed in section 5.3.3. 

 

5.3.1 Benthic reflectance library 

A spectral library of pure endmembers was derived from in-air irradiance 

reflectance measurements of 22 benthic species collected from the Point Peron 

(32.2715° S, 115.6865° E) study site, Western Australia, on 22 August 2014 (Table 

5.1). Benthic samples were collected with enough material to cover the 25° field of 

view of the ASD field spectrometer (1 nm resolution, 350–2500 nm coverage). 

However, the quantities of Posidonia sp. and Metagoniolithon stelliferum were too 

small to cover the field of view and these were placed over a substrate (sediment and 

rock/rubble respectively) that would normally be underneath. These samples were 

stored overnight in a tank that had aerated, flowing filtered seawater to minimize the 

effect of pigment degradation. The collected samples were then spectrally analysed 

the following day on a bench top set up outside on a flat roof. All samples were placed 

on top of a large flat, non-reflective black tray. The ASD fibre optic was held using a 

retort stand at a constant 30 cm above the sample and at a small angle off nadir (approx. 

10°) and a white reference plate was used to compute the reflectance for each spectral 

measurement at the same angular geometry. Furthermore, each benthic sample was 

stirred and mixed every three spectral measurements to capture the sub local-scale 

taxanomic spectral variability. With this setup approximately 30–40 in-air reflectance 

measurements were recorded for each (wet) benthos collected. At the time of sample 

collection (winter) the leaves of Posidonia sp. were in the dormant phases, and new 

leaves were not visible in the collection area. The leaves that were collected, however, 

were already detached and slightly senescent. 

The benthic irradiance reflectance spectra, ρb, between 400 and 680 nm were 

then convolved with the spectral response functions (SRF) of the HICO, WV2 and 

HyMap sensors to generate three spectral libraries (Figure 5.1). The clustering 

algorithm was used on these spectral libraries to assess the impact of reducing spectral 

resolution. Here, wavelengths past 680 nm were not considered due the high 

absorption of light in the water column. This reduced the number of bands of HICO 

and HyMap to 49 and 16 respectively. For WV2 the five spectral bands between 400 

and 680 nm were used. 
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Table 5.1: List of the benthic species collected from the Point Peron study site. 

Genera Species 

Brown alga (BA) 

Sargassum linearifolium 

Sargassum spinuligerum 

Ecklonia radiata 

Colpomenia sinuosa 

Red alga (RA) 

Asparagopsis armata 

Hypnea ramentacea 

Ballia sp. 

Amphiroa anceps 

Euptilota articulata 

Ballia callitrichia 

Metagoniolithon stelliferum on rubble 

Green alga (GA) 

Ulva australis 

Entermorpha sp. 

Codium duthieae 

Caulerpa germinata 

Caulerpa flexis 

Bryopsis vestita 

Seagrass (SG) 
Amphibolis antartica 

Posidonia sp. on sediment 

Sand/sediment (SD) 

Sediment 

Sediment/Rubble 

Rocks with encrusting red coralline algae 
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5.3.2 Clustering 

5.3.2.1 Measure of interclass overlap 

A measure of the degree of overlap or misclassification between a pair of 

classes was used in the clustering algorithm to identify which classes to merge per 

iteration. Specifically, the closest (most similar) pair of classes whose 

misclassification proportion, τm, exceeded a user-defined amount were combined. We 

have defined τm between two classes i and j as the proportion of misclassified spectra 

in Linear Discriminant (LD) coordinates as given by Rencher and Christensen (2012, 

p. 288-319), 

 𝜏𝑚 = 
𝑛𝑚𝑖 + 𝑛𝑚𝑗

𝑛𝑖 + 𝑛𝑗

 × 100% (5.1) 

where ni and nj are the number of LD points (i.e. spectra) in classes i and j, whilst nmi 

and nmj are the number of misclassified LD points from those respective classes. We 

consider a point misclassified if it is closer or equal in distance to the mean of a 

different class than to its own class mean (exemplified in Figure C.4, Appendix C). 

Here the straight line distance between a point and a class mean in LD coordinates is 

computed using the RMSE, where similar spectra have low RMSE. This approach is 

equivalent to inserting a separating plane between two classes and counting the 

number of spectra on their incorrect side as done in Hedley et al. (2012b). This per-

point per-class comparison was performed for all possible pairs of benthic classes in 

the clustering procedure per iteration. 

 

5.3.2.2 Linear Discriminant Hierarchical Clustering (LDHC) algorithm 

The measured ρb spectra (initial spectral library) may contain many benthos 

that are indistinguishable in terms of their reflectance when sensor and environmental 

noise NEΔrrs (Brando et al., 2009) and the species natural spectral variability are taken 

into account. To assess this, an agglomerative centroid hierarchical clustering 

algorithm based on linear discriminant coordinates (hereafter referred to as HDC) was 

developed. Here classes were merged that had a misclassification proportion (τm) 

greater than a user-specified threshold. This threshold, set at 5% in this study, is 

inversely proportional to the number of benthic classes generated from the HDC 

algorithm. We define the class-merging (or clustering) accuracy as 100 – τm, and thus 

would allow a user to set a threshold for the level of class separability. This is a more 

quantitative and intuitive approach than predetermining, arbitrarily, the number of 
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classes that the clustering should output. The HDC algorithm can be summarized in 

the following three steps (flowchart A, Figure 5.2): (1) the addition of NEΔrrs to the 

measured ρb spectra; (2) the transformation from spectral space to LD coordinates; and 

(3) subsequent hierarchical clustering. The advantage of this approach is that no prior 

decision on the number of resultant clusters to output is needed. This is a common 

issue faced by conventional hierarchical clustering (Holden & LeDrew, 1998; 

Anderberg, 1973, p.15). Here the number of output clusters is dependent on the 

following: (a) the magnitude of the error given by the covariance matrices—pertaining 

to NEΔrrs and the taxanomic spectral variability; (b) the spectral resolution of the 

sensor; and (c) the τm threshold. Note an extended description of the HDC procedure 

with accompanying figures are given in Appendix C. 

To account for the total noise in the system just below the air–water interface 

in step (1), we perturb the measured ρb spectra with NEΔrrs using the procedure 

developed by Hedley et al. (2010; 2012a). As such spectral noise caused from the 

sensor and any spatial noise from atmospheric, sunglint and air-to-water interface 

corrections were included. Briefly, the spectral covariance matrix, CSE, was extracted 

from an imaged homogeneous deep-water region of subsurface remote sensing 

reflectance (rrs) imagery. A set of pseudo-random spectral noise terms, δρSE, were 

computed from CSE and were added to a single ρb spectrum to generate a number of 

noise-perturbed spectra, ρb ± δρSE. This number varied for a given class but was such 

that it would generate 2000 noise-perturbed benthic reflectance spectra (Figure C.1 in 

Appendix C). A total of 44,000 spectra from the 22 classes were consequently 

produced. A detailed description of the computation of δSE (presented as δrrs) is given 

in section 4.3.3. 

In this developmental study, we estimated the spectral shape and magnitude 

of NEΔrrs from an imaged homogeneous deep-water region of the HICO-derived rrs 

image of Shark Bay 14th December 2011. Interpolation to the wavelength centres of 

HyMap and WV2 were performed to keep the magnitude and spectral shapes of NEΔrrs 

consistent between sensors. The spectral covariance matrices CSE
WV2 and CSE

HyMap 

were then computed and used in the HDC algorithm for the respective sensors. The 

atmospheric, sunglint and air-to-water interface corrections used on the HICO image 

of Shark Bay to convert top-of-atmosphere calibrated radiances to rrs are described in 

section 3.3.2. 
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In step (2) the Linear Discriminant Analysis (LDA) procedure for the case of 

several classes was implemented (Rencher & Christensen, 2012, p. 288-319) to 

convert the 44,000 ρb spectra into LD coordinates. The optimal number of 

eigenvectors, s, of the resultant LD points was chosen through an iterative approach, 

where s was successively increased to maximise the number of classes, k, generated 

from the subsequent clustering. If k remained constant with increasing s for more than 

three successive increments of s then the iteration was ceased and the eigenvector that 

produced the last improvement in k was selected. 
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Figure 5.1: The average irradiance reflectance spectra of the benthos collected, convolved to the spectral resolutions of (a) HICO (b) HyMap and (c) WV2.
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For a given eigenvector number an iterative centroid-based hierarchical 

clustering procedure was implemented to merge overlapping benthic classes. Here a 

single pair of classes was merged per iteration with τm set to 5%. The iterative 

clustering begins with the computation of the RMSE between all possible pairs of class 

means, and τm between those pairs. The pair of classes that had the lowest RMSE and 

whose τm > 5% were merged to form a single class. In this step the LD coordinates of 

the two merging classes remain unchanged only that they are labelled as one. The ρb 

spectra of these two classes were used to compute the weighted average of the newly 

merged class. This iteration continues until the remaining classes all have a τm ≤ 5%; 

in other words the clustering ceases when there is a 95% accuracy that all classes are 

optically separable above the sensor and environmental noise and the benthos’ natural 

spectral variability. This clustering accuracy can be reduced (with a corresponding 

increase in the number of “separable” classes) according to the desire of the user or 

application. The output of this entire procedure is a spectral library that contains the 

optimum set of endmembers for classifying the set of substrates of interest. 

We compare the resultant classes from the HDC algorithm with an 

agglomerative centroid-based hierarchical clustering procedure taken from Everitt, 

Landau, Leese, and Stahl (2011, p.76) using only bottom reflectances. For simplicity 

in this text we refer to this type of clustering as the standard hierarchical clustering. In 

this standard hierarchical clustering the pair of classes with the lowest RMSE were 

merged per iteration. Note, the mean class ρb spectra were used to compute the RMSE 

between all possible pairs, and the weighted average spectrum was computed for a 

newly merged group. The merging continues until all groups have clustered into one 

class. We estimate the appropriate number of clusters by locating the knee from a bi-

plot of the linkage distance against the number of clusters (Salvador & Chan, 2004). 

Here, the linkage distance is simply the RMSE between the pair of groups that are 

merged at a given cluster iteration. We utilize the definition of “knee of the plot” as 

the point that experiences an abrupt change in the RMSE as done by Torrecilla, 

Stramski, Reynolds, Millan-Nunez and Piera (2011). 

 



Limitations & potential of remotely sensed shallow water bathymetry & benthic classification 

 

146 

 

Figure 5.2: The LDHC algorithm using the basic bottom reflectances (flowchart A) and coupled 

with a shallow water forward model to include a water column (flowchart B). 

 

5.3.2.3 Depth and water column specific spectral libraries 

Without incorporating the attenuating properties of a water column to ρb the 

HDC generated spectral library would only be suitable just below the water’s surface. 

Employing such a spectral library into a physics-based inversion, for instance, may 

not give a realistic representation of benthic classification at increased depth and/or 

turbidity (discussed in Section 5.4.4) as fewer classes would be optically separable 

(Hedley et al., 2012b; Botha, Brando, Anstee, Dekker, & Sagar, 2013). To include the 

attenuating properties of a water column and water depth we used the semi-analytical 

(SA) shallow water forward model given by Lee et al. (1999). This model estimates 

rrs from the following scalars: (a) the absorption coefficient of phytoplankton at 440 

nm, P (m−1); (b) the absorption coefficient of dissolved and detrital matter at 440 nm, 

G (m−1); (c) the backscattering coefficient of suspended particles at 550 nm, X (m−1); 

(d) depth, H (m); (e) and the bottom reflectance, ρ. This SA model was used to 

compute rrs over each measured ρb spectrum described Section 2.1 from a given set of 
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P, G, X and depth. The set of rrs spectra were then passed through the HDC (flowchart 

B in Figure 5.2) to merge those classes that were optically indistinguishable above the 

total system’s noise and attenuating water column. After the clustering based on rrs, 

the corresponding benthic reflectances (ρb) were merged to produce the mean bottom 

endmember spectra. Note that in this SA model the phytoplankton spectral absorption 

shape is almost fixed. Though in reality this spectral shape is likely to change with the 

presence of different phytoplankton functional groups (spatially and temporally); 

benthic classification from remote sensing, which this algorithm is tailored towards, is 

typically performed in relatively clear shallow waters with relatively low chlorophyll 

concentrations. In these conditions, the shape of the phytoplankton absorption 

spectrum would likely have very minor impact to the clustering outputs. 

The impact of water column depth and optical properties on the classes 

produced from the HDC algorithm was modelled by selecting specific depths between 

0.5 and 20 m for the following water column optical properties: (1) P = 0.01 m−1, G = 

0.01 m−1, X = 0.001 m−1 (κ = 0.03 m−1; ZSD = 48 m); (2) P = 0.05 m−1, G = 0.1 m−1, X 

= 0.01 m−1 (κ = 0.11 m−1; ZSD = 13 m); (3) P = 0.1 m−1, G = 0.2 m−1, X = 0.02 m−1 (κ 

= 0.21 m−1; ZSD = 6.8 m); and (4) P = 0.5 m−1, G = 0.5 m−1, X = 0.05 m−1 (κ = 0.68 m−1; 

ZSD = 2 m). κ and ZSD are the attenuation coefficient at 490 nm and the estimated 

Secchi depth respectively, κZSD = 1.44 (Holmes, 1970). Here, ZSD was used as a 

qualitative and readily interpretable measure of water clarity. An analysis of the 

conditions (clustering accuracy, spectral resolution, water column depth and optical 

properties) where the seagrass species A. antartica is spectrally resolvable against 

benthic algae was performed. For this analysis the clustering was run iteratively over 

a range of depths (0.25 to 25 m at 0.25 m increments) at the four water clarities 

mentioned above for eight different clustering accuracies (60% to 95% at 5% 

increments). 

 

5.4 Results and Discussion 

5.4.1 Hierarchical clustering of benthic irradiance reflectance spectra 

The HDC-derived dendrogram using the basic ρb spectra at HICO bands 

describes which benthic classes merge and the RMSE of that union (Figure 5.3a). The 

respective dendrogram generated from the standard hierarchical clustering is presented 

in Figure 5.3b. Here, the RMSE refers to the spectral difference (in LD coordinates) 
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between one class mean and another, where the larger the value the larger the spectral 

difference. Based on the simulated spectral variability, occurring just below the air–

water interface, the clustering output 18 classes for HICO (Figure 3a) and HyMap 

(Figure 5.4) and 14 classes using WV2 bands (Figure 5.5). The clusters that were 

formed using HICO and HyMap bands were identical except that the merging of the 

clusters occurred at lower RMSE for HyMap (Figure 5.4). For example the merging 

of C. sinuosa with the cluster S. linearifolium/S. spinuligerum occurred at an RMSE 

of ~0.035 for HICO and ~0.032 for HyMap. This slight decrease in RMSE is likely 

due to the lower spectral resolution of the HyMap sensor or due to the lack of spectral 

bands below 450 nm (i.e., less spectral bands to facilitate separation). The dendrogram 

for HICO (Figure 5.3a) and HyMap (Figure 5.4) show the formation of two green algae 

clusters (C. germinata/C. flexis and B. vestita/C. duthieae) and a brown algae cluster 

(C. sinuosa/S. linearifolium/S. spinuligerum) with the other benthic classes remaining 

optically separable. The dendrogram produced from the standard hierarchical 

clustering (Everitt et al., 2011, p.76) (Figure 5.3b) illustrates the potential indecision 

of what RMSE to cut the dendrogram and extract the relevant clusters. Here clustering 

continues to a single class with no indication of the optimum number of classes. At 

~0.003 RMSE, 18 classes were extracted with the following clusters: (a) seagrass-

green algae A. antartica/C. germinata/C. flexis; (b) mixed brown algae E. radiata/S. 

spinuligerum; and (c) brown-green algae S. linearifolium/B. vestita. A post clustering 

approach was utilized to estimate the appropriate number of classes from the standard 

hierarchical clustering (Figure 5.3b). Here, nine classes was chosen as the optimum 

number, where the following general clusters remained: (a) two separate green algae 

species (Entromorpha sp. and U. australis); (b) two separate sediment classes 

(sediment/rubble and sediment); (c) mixed red/brown algae; (d) mixed brown, red, 

green algae and seagrass; and (e) a mixed red algae class. The number of classes 

selected by this post-clustering approach is much lower than that selected by the HDC. 

Moreover the HDC preferentially merges classes of the same genera first. For example 

the centroid hierarchical clustering merges the seagrass Posidonia sp. with the mixed 

C. germinata/C. flexis algae green class at the second iteration (Figure 5.3b, RMSE 

~0.0135), whereas the HDC considers these two classes optically distinct. 

These two clustering algorithms generate different classes because the HDC 

first identifies pairs of classes with τm > 5% (the user defined threshold) and then 

merges the pair with the lowest RMSE (Mahalanobis distance in spectral space). The 
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centroid based hierarchical clustering (Figure 5.3b) instead merges the most similar 

class pairs regardless of whether their variance overlap or not. In other words a pair of 

classes may be grouped even if they could be considered optically distinct. An added 

advantage of the HDC is that the number of classes selected is imbedded inside the 

clustering, where the merging of clusters ceases when the variance overlap between 

groups is below a user defined threshold. Thus the criterion for stopping is statistically 

meaningful and aligns with the sensor and environmentally limited system of remote 

sensing as described and illustrated in Hedley et al. (2012b) (see Figure 1 in Hedley et 

al., 2012b). The user defined threshold describes the proportion of misclassification 

that a pair of classes should have before they are considered optically indistinguishable 

and hence merged. For example using HICO bands, the two classes C. germinata and 

C. flexis had a τm of 20%, i.e., 20% of the total spectra of these two classes were located 

in the overlap region and hence inseparable. Given that τm > 5% and proximity of the 

class means the HDC clustered these C. germinata and C. flexis after the second 

iteration. 

The much lower spectral resolution and fewer wavebands of the WV2 sensor 

only facilitated the separation of 14 classes with the HDC. The dendrogram (Figure 

5.5) shows the formation of the following clusters: (1) all the brown algae classes; (2) 

the green alga cluster Entermorpha sp./U. australis; (3) the mixed seagrass-green algae 

class of Posidonia sp./C. germinata/C. flexis/B. vestita; and (4) the red alga cluster E. 

articulata/M. stelliferum. Thus out of the seagrass species, only A. antartica was 

spectrally separable using WV2 bands. At the time of collection the seagrass Posidonia 

sp. samples were senescent and less spectrally distinct (using WV2 bands at least), 

which likely lead to its inclusion into the green algae cluster. Fyfe (2003) compared 

the in-air reflectance of several unfouled and fouled seagrass species and showed that 

the latter had broader and less reflective peaks between 520–580 nm compared to the 

unfouled case. It is likely that this seagrass species can be optically separated if their 

reflectance spectra are collected during their growing season. 
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Figure 5.3a: HDC dendrogram of b spectra using HICO’s spectral bands. The iterative selection of eigenvectors chose the first six that produced 18 classes.  
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Figure 5.3b: Centroid hierarchical clustering dendrogram of b spectra using HICO’s spectral bands. The top right panel shows the linkage distance vs. number of 

clusters, where nine classes were selected as the optimal based on the location of the knee of the curve. 
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Figure 5.4: HDC dendrogram of b spectra using HyMap spectral bands. The iterative selection of eigenvectors chose the first seven that produced 18 classes.  
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Figure 5.5: HDC dendrogam of b spectra using WV2’s spectral bands. The iterative selection of eigenvectors chose the first four that produced 14 classes. 
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5.4.2 Water-column specific benthic spectral libraries 

Two spectrally distinct benthic classes remain at a modelled water depth and 

optical properties of 15.0 m, P = 0.05 m−1, G = 0.10 m−1 and X = 0.010 m−1 using 

HICO bands (Figure 5.6). Here the HDC has merged all benthic vegetation species 

into a mixed vegetation class and merged the remaining two sediment classes. Thus at 

this water column optical property and depth it is not possible to distinguish between 

any of the initial benthic vegetation species above the total system noise, and only a 

bright (i.e., sediment) and dark (i.e., vegetation) substrate can be distinguished, 

assuming completely filled pixels of each type. Figure 5.6 shows the possibility of 

determining a priori which benthic classes are separable in a single image pixel at a 

fixed depth and optical property. Thus for an image with varying depths and water 

column optical properties the HDC clustering will need to be applied per-pixel. 

Physics-based inversion methods can be used to derive the depth and water column 

optical properties as will be discussed in Section 5.4.3. 

The decrease in the number of optically separable benthic classes for 

increasing depth and water column turbidity at HICO, HyMap and WV2 bands was 

quantified with the HDC clustering (Figure 5.7). Clear to turbid water columns (Figure 

5.7, water types 1 and 4 respectively) were modelled to assess their impact on benthic 

class optical separation. For a given water clarity the number of optically 

distinguishable benthic classes decreased in a near exponential manner with increasing 

depth, as has been described in the literature (Hedley et al., 2012b; Botha et al., 2013). 

Increasing the water turbidity also reduces the number of separable classes 

dramatically with increasing depth. With HICO spectral bands, 13 classes can be 

optically distinguished at 5 m depth for water type 1 (48 m Secchi depth, Figure 5.7a), 

whereas only 11, 6 and 2 classes are separable for water types 2, 3 and 4 (Secchi depths 

of 13, 6.2 and 2 m) respectively at that depth. The water column saturation point, that 

is, where the water column contributes to nearly all of the water leaving radiance, is 

located when none of the benthic classes can be distinguished (i.e., number of classes 

= 1). For water types 2, 3 and 4 these occur at depths 20 m, 12 m and 5.5 m respectively 

using HICO bands. 

Decreasing the number of spectral bands also increases the slope of the 

exponential curve as illustrated when comparing Figures 5.7a (HICO) and 5.7c (WV2). 

For water type 3 at 3 m depth the HICO, HyMap and WV2 wavebands, according to 

the HDC, can distinguish 12, 11 and 5 classes respectively. Increasing the depth to 5 
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m reduced the number of classes to 6, 6 and 3 respectively. For depths less than the 

water column saturation point, the five WV2 bands between 400 and 680 nm can 

generally separate half as many benthic classes as HICO. Based on the modelling 

shown in Figure 5.7 and a comparison between the exponential slopes, there appears 

to be minor differences in the number of classes distinguishable at depth between 

HICO and HyMap wavebands. In this analysis, wavelengths between 400 and 680 nm 

were used which reduced the number of bands to 49 and 16 for HICO and HyMap 

respectively. This may seem like a large reduction of wavebands without greatly 

affecting the benthic separability. We should note that unlike HICO, HyMap does not 

have bands below 450 nm (Kruse, Broadman, Lefkoff, Young, & Kierein-Young, 

2000), hence both sensors have wavebands that emphasize the spectral differences 

between the benthic classes analysed. The literature has shown that specific 

wavelength ranges predominantly within 520–680 nm are useful for identifying 

substrate types, such as healthy coral, bleached coral, seagrass, sand and algae (Call et 

al., 2003; Holden & LeDrew, 1998; Fyfe, 2003; Clark, Mumby, Chisholm, Jaubert, & 

Andrefouet, 2000; Hochberg & Atkinson, 2000). Therefore, it is likely that the 

difference in bandwidth is the cause where the spectral resolution of HICO and HyMap 

are 5.7 and 15 nm (Kruse et al., 2000) respectively. This is in line with what Hochberg 

and Atkinson (2003) showed where the separation of coral, algae and sand using LDA 

were nearly identical for spectra at 10, 5.5 and 1 nm spectral resolutions. 
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Figure 5.6: Dendrogram from the LDHC of modelled rrs spectra using HICO’s spectral bands. The water column was modelled with depth 15 m and P=0.05, G=0.1 

and X=0.010 m-1. Here the iterative selection of eigenvectors chose only one eigenvector. 
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Figure 5.7: Number of optically separable classes vs. depth using the spectral bands and resolutions for (a) HICO; (b) HyMap, and; (c) WV2. Four water-columns 

were modelled with varying water turbidity representing very clear to turbid waters. The exponential curves were derived through a least squares fit.  
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Table 5.2: The classes from the HICO spectral libraries at depths 3-6 m using water column optical properties of P = 0.01 m-1, G = 0.01 m-1, and X = 

0.001 m-1. The superscripts represent the number of species that form that cluster, for example mixed brown algae4 means that four brown algae 

species were merged to form one mixed brown algae class. The spectral libraries at 5 and 6 m depth are identical. 

Depth (m) 3 4 5 6 

No. Eigenvectors 6 7 6 7 

No. Classes 13 13 13 13 

Clusters 1. Brown algae4/seagrass2/green 

algae4 class; 

 

 

2.  Sediment; 

3.  Sediment-Rubble; 

4.  Rock-red coralline algae; 

5.   Entermorpha sp. (GA); 

6.   U. australis (GA); 

7.   E. articulata (RA); 

8.   M. stelliferum (RA); 

9.   Ballia sp. (RA); 

10. H. ramentacea (RA); 

11. A. armata (RA); 

12. B. callitrichia (RA); 

13. A. anceps (RA). 

1. Brown algae4/seagrass2/ 

green algae4 class; 

 

 

2.  Sediment;  

3.  Sediment-Rubble; 

4.  Rock-red coralline algae; 

5.   Entermorpha sp. (GA); 

6.   U. australis (GA); 

7.   E. articulata (RA); 

8.   M. stelliferum (RA); 

9.   Ballia sp. (RA); 

10. H. ramentacea (RA); 

11. A. armata (RA); 

12. B. callitrichia (RA); 

13. A. anceps (RA). 

1. Brown algae2/seagrass2/green 

algae4 class; 

2. E. radiata/C. sinusoa brown 

algae class; 

3.   Sediment; 

4.   Sediment-Rubble; 

5.   Rock-red coralline algae; 

6.   Entermorpha sp. (GA); 

7.   U. australis (GA); 

8.   E. articulata/M. stelliferum 

red algae class; 

9.   Ballia sp. (RA); 

10. H. ramentacea (RA); 

11. A. armata (RA); 

12. B. callitrichia (RA); 

13. A. anceps (RA) 

1.  Brown algae2/seagrass2/green 

algae4 class; 

2.  E. radiata/C. sinusoa brown 

algae class; 

3.   Sediment; 

4.   Sediment-Rubble; 

5.   Rock-red coralline algae; 

6.   Entermorpha sp. (GA); 

7.   U. australis (GA); 

8.   E. articulata/M. stelliferum 

red algae class; 

9.   Ballia sp. (RA); 

10. H. ramentacea (RA); 

11. A. armata (RA); 

12. B. callitrichia (RA); 

13. A. anceps (RA) 
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Table 5.3: The classes from the HyMap spectral libraries at depths 3-6 m using water column optical properties of P = 0.01 m-1, G = 0.01 m-1, and X = 0.001 m-1. 

Depth (m) 3 4 5 6 

No Eigenvectors 4 4* 5 5 

No Classes 12 11 12 12 

Clusters 1. E. articulata/M. stelliferum red 

algae class; 

2. Mixed brown algae4; 

 

3. Mixed seagrass2/green 

algae4; 

 

4. Sediment-Rubble/Sediment; 

 

5. Entermorpha sp.; 

6.  U. australis; 

7.  Rock-red coralline algae; 

8.   Ballia sp.; 

9.   H. ramentacea; 

10. A. armata; 

11. B. callitrichia; 

12. A. anceps 

1.  E. articulata/M. stelliferum red 

algae class; 

2. E. radiata/C. sinusoa brown 

algae class; 

3. Brown algae2/seagrass2/green 

algae4 class; 

 

4.  Sediment-Rubble/Sediment;  

 

5.  Entermorpha sp./U. australis 

green algae class; 

6.   Rock-red coralline algae; 

7.   Ballia sp.; 

8.  H. ramentacea; 

9.  A. armata; 

10. B. callitrichia; 

11. A. anceps 

1. E. articulata/M. stelliferum 

red algae class; 

2. E. radiata/C. sinusoa brown 

algae class; 

3. Brown algae2/seagrass2/green 

algae4 class; 

 

4. Sediment-Rubble; 

5. Sediment; 

6. Entermorpha sp./U. australis 

green algae class; 

7.  Rock-red coralline algae; 

8.  Ballia sp.; 

9.  H. ramentacea; 

10. A. armata; 

11. B. callitrichia; 

12. A. anceps 

1. E. articulata/M. stelliferum red 

algae class; 

2. E. radiata/C. sinusoa brown algae 

class; 

3. Brown algae2/ seagrass2/green 

algae4 class; 

 

4. Sediment-Rubble; 

5. Sediment; 

6. Entermorpha sp./U. australis 

green algae class; 

7.  Rock-red coralline algae; 

8.  Ballia sp.; 

9.  H. ramentacea; 

10. A. armata; 

11. B. callitrichia; 

12. A. anceps 

*six eigenvectors generated 12 classes identical to those at 5 and 6 m. 
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The number of classes within a spectral library can be stratified with depth, 

for instance using water type 1, the spectral library for WV2 (Figure 5.7c) has the same 

number of classes from 5 m to 15 m. Stratification in the number of classes is expected 

as they are integer values and hence more emphasized in slowly decreasing curves and 

less observed in areas of rapid change (e.g., 0–3 m depth of Figure 5.7b for water type 

3). Analyses of the spectral libraries from all three sensors within the stratified regions 

of a given water type indicate that at >5 m the output classes produced are identical 

though subtle differences exist in the RMSE of when classes merge. At shallower 

depths, however, the spectral libraries in the stratified regions have minor differences 

in the classes that merge and thus in the output classes. For HICO spectral bands 13 

classes were generated in the stratified region between 3 and 6 m depth with water 

type 1. The spectral libraries at 3 and 4 m are identical as are the spectral libraries at 5 

and 6 m (Table 5.2). Between these two sets of spectral libraries the following 

differences occur: (1) the brown alga E. radiata and C. sinusoa from the mixed 

vegetation class (at 3 m) split to form an individual mixed brown algae class; and (2) 

the union of E. articulata and M. stelliferum (Table 5.2). 

The classes from the HyMap spectral libraries for depths 3 to 6 m with water 

type 1 are given in Table 5.3. A stratified region (Figure 5.7b) is formed in this depth 

range and water type, where 12 classes are optically separable at 3, 5 and 6 m depth. 

At 3 m depth four species of brown algae merge to form one cluster, however at 4, 5 

and 6 m two of those brown algae species (E. radiata and C. sinusoa) form a separate 

mixed class and the other two merge into a mixed brown algae/green algae/seagrass 

class (Table 5.3). Other differences include: (1) the separation of the Sediment-

Rubble/Sediment class (3 and 4 m) to their individual class at 5 and 6 m; and (2) the 

union of the green alga Entermorpha sp. and U. australis at >3 m depth. Some clusters 

are consistently generated within this depth range which include Rock-red coralline 

algae and six red algae classes E. articulata/M. stelliferum, Ballia sp., H. ramentacea; 

A. armata; B. callitrichia, and A. anceps. Indeed each spectral library between 3 and 6 

m has six red algae classes, >1 sediment class, >1 green algae class and a mixed 

vegetation class. At 4 m depth the HDC procedure generated 11 classes using three 

eigenvectors, analysis has shown that using six eigenvectors facilitates the separation 

of 12 classes identical to that produced at 5 and 6 m (Table 5.3). Here six eigenvectors 

were not used because the fourth and fifth eigenvectors did not increase the number of 

clusters generated and thus the iterative eigenvector selection procedure chose the first 



5. A Method to Analyse the Potential of Remote Sensing for Benthic Habitat Mapping 

 

 161 

three. Like for HICO (Table 5.2) there are minor differences between spectral libraries 

in these stratified regions, as such we propose the use of a single spectral library for 

such regions. 

 

5.4.3 Resolving seagrass species from algae 

An important ecological application of optical remote sensing is mapping 

seagrass meadows (Roelfsema et al., 2013). Using the HDC algorithm, we consider 

the clustering accuracy, sensor spectral resolution, water column depth and optical 

properties that enable the optical distinction of the seagrass species A. antartica from 

green and brown alga. Figure 5.8 shows the modelled depth at which we can no longer 

resolve A. antartica from the green algae species (Table 5.1) for clear to turbid water 

clarities (water types 1 to 4 respectively) using the different sensors. Thus for HICO 

bands A. antartica is optically distinguishable from green algae to a depth of 

approximately 4.25 m at 90% clustering accuracy for a clear water column (water type 

1, Figure 5.8a). Beyond this depth at 90% accuracy A. antartica cannot be spectrally 

distinguished. Note that the results for WV2 in Figure 5.8c relates to the ability of 

distinguishing A. antartica from the Posidonia sp./green algae cluster, as the latter 

seagrass species could not be resolved using bottom reflectances (Figure 5.8). 

 



 

 

 

 

 

Limitations & potential of remotely sensed shallow water bathymetry & benthic classification 

 

162 

 

Figure 5.8: The estimated modelled depth (m) at which A. antartica can no longer be distinguished from green algae at various clustering accuracies for (a) HICO; 

(b) HyMap, and; (c) WV2 wavebands. Clear (water type 1) to turbid (water type 4) water clarities were modelled. The depths given here are estimates as the 

clustering at every 0.25 m depth increment were analysed. 
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For a given water type, decreasing the clustering accuracy enables the ability 

to spectrally resolve seagrass from green algae to greater depths. The reason being that 

the HDC allows for greater misclassification proportion between pairs of classes 

before they are considered “indistinguishable”. For example, using HyMap bands A. 

antartica can be distinguished at 2.5 and 3.75 m for water type 2 at 85% and 75% 

clustering accuracies respectively (Figure 5.8b). Therefore if the user desires the 

ability to map A. antartica up to a depth of 4 m with HyMap, then 75% clustering 

accuracy should be used for water columns with Secchi depths greater than 13 m. A 

reduction of the water clarity also decreases the ability to resolve species at depth, as 

observed by the ability of WV2 to distinguish A. antartica to 2 m and 0.75 m for water 

types with Secchi depths 48 and 2 m (Figure 5.8c) respectively at 80% accuracy. 

Therefore as the modelled water depth or turbidity is increased the distances between 

classes decreases such that neighbouring classes experience more overlap (Hedley et 

al., 2012b). Hence a greater τm accounts for the decrease in the inter-class distance, 

where classes are considered optically distinct despite their increase in overlap. We 

have low confidence for results that used clustering accuracies less than 70% as, for 

example, HyMap bands can distinguish A. antartica to 2.25 m for water type 4 (Figure 

5.8b) that has an estimated Secchi depth of 2 m. 

The advantage of using hyperspectral sensors is clearly demonstrated in 

Figure 5.8, where HICO and HyMap have the ability to resolve seagrass from green 

algae to much greater depths for a given clustering accuracy and water clarity 

compared to WV2. Indeed at 85% clustering accuracy, HICO and HyMap spectral 

bands can distinguish A. antartica to an estimated depth of 6.5 and 3.75 m respectively 

for water type 1 (48 m Secchi Depth), whilst WV2 can only resolve it to a depth of 1.5 

m. On average HICO bands can detect A. antartica to depths 2.7 times greater than 

WV2 bands across the clustering accuracies and water types. In most conditions 

analysed there is close similarity in the depth limits at which A. antartica can be 

resolved using HICO and HyMap bands, where on average HICO can detect this 

species to depths 1.2 times greater than HyMap. 

The ability to spectrally resolve mixed seagrass/green algae from brown algae 

was analysed for the same conditions presented in Figure 5.8. However, a direct 

comparison between seagrass and brown algae was not possible for HICO, HyMap 

and WV2 at any of the water column conditions presented. The reason being that 

Posidonia sp. and A. antartica both merge with a mixed green algae class. This 
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seagrass/green algae mix then clusters with a mixed brown algae class at deeper 

depths. The distinction between mixed seagrass/green algae and brown algae 

(effectively between green and brown coloured benthic species) follows the same trend 

as that presented in Figure 5.8 expect that they can be distinguished to much deeper 

depths. 

 

5.4.4 Implications to shallow water habitat mapping 

Modelling for a variety of water turbidities and depth as displayed in Figure 

5.7 enables predictions on the number and type of benthic classes that can be expected 

from a hyperspectral or multispectral image at a constant clustering accuracy. The 

level of accuracy can be changed according to the needs of the user or application with 

corresponding changes to the number and type of benthic classes defined by the HDC. 

Figure 5.9 illustrates that the number of optically separable classes increases as the 

clustering accuracy decreases for a constant set of water column optical properties at 

HICO wavebands. These results are similar to those produced by Andrefouet et al. 

(2003) where the thematic accuracy decreased with increasing number of habitat 

classes used in the benthic classification scheme. Although thematic and clustering 

accuracy are applied in different contexts, Figure 5.9 does imply that if a benthic 

habitat map at a constant classification accuracy is required, then the number of classes 

used in the classification scheme must change with the range of depths and water 

column optical properties within an image. Prior knowledge of the depth and optical 

properties in a given scene therefore becomes a requisite in applying the HDC 

algorithm. Note the depth, P, G, and X can be determined by applying a shallow water 

inversion model for sensors with enough spectral bands in the visible (Lee et al., 1999; 

Klonowski et al., 2007). Here the full benthic spectral library could be used solely to 

optimize these parameters. 
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Figure 5.9: Number of optically separable classes vs. depth at three different clustering accuracies 

using the spectral bands and resolutions for HICO. The water column was modelled with P=0.05, 

G=0.1 and X=0.010 m-1. 

 

Benthic classifications of remotely sensed imagery using physics-based 

inversion models to date have used a spectral library of representative benthic 

species (fine descriptive resolution, see Dekker et al., 2011). Depending on the 

shallow water model used, the inversion process iterates through unique 

combinations of benthic mixtures and optimizes for their fractional coverage, water 

column optical properties and depth. The benthic combination and fractional 

coverage that generated the best fit to the input reflectance are assigned. Therefore 

distinct benthic species would be assigned to image pixels at any given depth and 

water column optical property, no matter if it were unlikely to distinguish one 

benthic species from another. 

The research presented here indicates that this type of benthic classification 

may not be appropriate, particularly when mapping regions of varying water depths or 

when propagating sensor and environmental noise in the inversion scheme (Hedley et 

al., 2010; Hedley et al., 2012a; Hedley, 2013). This can be illustrated by the 

dendrogram presented in Figure 5.6, where the at-surface spectral differences between 

the benthic vegetation species do not make observable differences to rrs above the total 
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system noise at the depth and P, G and X modelled. Clearly if a spectral library 

consisting of the initial 22 benthic classes were used for an inversion of say a pixel 

having 100% coverage of E. radiata with P, G, X and depth used in Figure 5.6; then 

accordingly a shallow water inversion model would likely not be able to distinguish 

the forward modelled rrs derived from E. radiata from any other benthic vegetation 

species when NEΔrrs is incorporated. In this situation it is likely that equal probability 

of assignment across the benthic vegetation classes will result. This was illustrated in 

Figure 5 by Hedley et al. (2012a) where the uncertainty of the bottom type increased 

with depth and increasing number of endmembers in the spectral library. Furthermore, 

the assignment of a specific benthic species (even correctly identified E. radiata) 

cannot be made with sufficient certainty, and a classification assignment of “mixed 

vegetation” would be more appropriate for these optical properties and depth. In fact 

such a class name would convey that level of uncertainty and lack of spectral 

separability. Indeed, analysis of HDC-derived output classes has showed that as the 

water column becomes more turbid or deeper, the ability to distinguish distinct benthic 

species is lost, where resultant classes consist of mixed clusters. Again in these 

situations, assigning the appropriate mixed cluster would help convey the level of 

certainty and optical separability into the classification scheme. 

Presently the HDC algorithm assumes 100% substrate coverage of a pixel and 

as a post-inversion tool would be suited for high spatial resolution image data. In 

addition, its application would be more appropriate towards constraining the benthic 

classification of the HOPE inversion model (Lee et al., 1999), if the endmembers of a 

high descriptive resolution spectral library were cycled through during the 

optimization process. Note that the HOPE model considers one substrate endmember 

rather than a linear mixture of two (Brando et al., 2009) or three (Klonowski et al., 

2007). The requirement of moderate to high spatial resolution image data does limit 

the applicability of the HDC algorithm as a post-inversion tool to mostly airborne 

sensors such as AISA Eagle, HyVista’s HyMap, CASI-2, AVIRIS and Ocean PHILLS. 

From the current and planned satellite sensors, WV2, Sentinel-2 and VENμS SSC 

(Crebassol et al., 2010) possess high spatial resolution (≤10 m) and enough spectral 

bands in the visible domain to facilitate optimization using current shallow water 

inversion models (e.g., Hedley et al., 2012a; Lee, Weidermann, & Arnone, 2013). 

Analysis has showed that the HDC-derived water column specific libraries 

are sensor and scene specific. Sensor specific because the number and type of HDC-
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derived benthic classes depend on the sensor’s spectral resolution and signal to noise 

ratio. Scene specific because: (1) the environmental noise in the imagery, such as 

sunglint which even if corrected (Hedley et al., 2005) leaves residual spatial noise; and 

(2) The number and type of output classes are dependent on the representative benthic 

species present. The latter is implied by the clustering of the seagrass Posidonia sp. 

and the green algae C. germinata, C. flexis and B. vestita at WV2 bands (Figure 5.5). 

If none of the green algae species were present in the scene then Posidonia sp. would 

be spectrally distinct, and would lead to different benthic class mixtures. 

As the clustering is based on LD coordinates the ability to distinguish 

individual classes potentially decreases when the number of initial classes increase. 

This is illustrated in Figure 5.10, which shows the LD coordinates of the four brown 

algae E. radiata, S. linearifolium, S. spinuligerum and C. sinuosa. Three clusters 

resulted when the ρb spectra (at HICO bands) of these four brown algae species were 

passed through the HDC algorithm (see Figure 5.10). Recall that two brown algae 

clusters were considered distinct (S. linearifolium/S. spinuligerum/C. sinuosa and E. 

radiata) when the initial spectral library of 22 classes where passed through the HDC 

(see dendrogram in Figure 5.3a). The reason for this is that the LDA seeks a projection 

that maximises the distance between classes whilst minimising the within-class 

variance (Lachenbruch, Sneeringer, & Revo, 1973; Hastie, Tibshirani, & Friedman, 

2009). Thus in the case of Figure 5.10, an optimal projection was found that enabled 

the distinction of three brown algae clusters. These results imply that only a minimal 

set of initial benthic classes should be used in the clustering. 
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Figure 5.10: LD coordinates of the four brown algae species using HICO wavebands. The HDC-

derived dendrogram is shown on the top left corner. Here one eigenvector (z1) allowed the optimal 

distinction of the following three clusters: (1) S. linearifolium/S. spinuligerum; (2) E. radiata, and 

(3) C. sinuosa. 

 

Although a sensor’s spectral characteristics, total system noise and water 

column attenuation affect substrate separability; spatial resolution, not accounted by 

the HDC algorithm, also plays a significant role. Particularly since coastal and coral 

reefs can be spatially heterogeneous, where a diverse array of spectrally distinct 

substrates can occur at sub-meter scales (Hedley, 2013). Previous research involving 

thematic mapping and Object-Based Image Analysis of coral reefs has shown 

improved benthic classification using imaging platforms with high spatial resolution 

(<10 m) compared to those with moderate resolution (30 m) (Benfield et al., 2007). 

Thus although a sensor, such as HICO, with high spectral resolution can spectrally 

discriminate between many benthos to deeper depths, its spatial resolution (~90 m) 
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will significantly affect the ability to resolve individual substrates compared to HyMap 

or even WV2 with resolutions less than 10 m. For moderate spatial resolution sensors 

broad classification of pixels into key substrate components would be a more feasible 

approach (e.g. Klonowski et al., 2007; Goodman & Ustin, 2007). 

As a final note, a sensor’s radiometric calibration and the atmospheric 

correction can significantly affect the accuracy of the retrievals from inversion models 

(Dekker et al., 2011), and hence on subsequent results from the HDC-algorithm as a 

post-inversion tool. Image pre-processing steps have been used, prior to shallow water 

inversion models, to minimise the effect of residual under- or over-atmospheric 

correction (Klonowski et al., 2007; Lee et al., 2001). In Klonowski et al. (2007) the Rrs 

of an image were vertically shifted to make Rrs(750) = 0, this approach was later 

modified where the Rrs were subtracted by the median value between 650 and 800 nm 

(Dekker et al., 2011). In Lee et al. (2001) the Rrs were adjusted by setting the Rrs(750) 

to a value computed from an empirical relationship. These approaches are therefore 

useful if the atmospheric parameters were assumed constant for an image and the 

atmospheric correction produced a systematic offset. Atmospheric correction that 

deduce atmospheric parameters per-pixel can potentially use different aerosol models 

in an image and thereby cause variation in the spectral shape of the derived Rrs. If 

imprecise the pre-processing steps will not be able to account for an incorrect spectral 

shape of the Rrs. Radiometric sensor calibration can also significantly affect both the 

shape and offset of sensor-derived Rrs. Indeed, Lewis, Gould, Weidemann, Ladner, and 

Lee (2013) showed substantial improvement in match ups between in situ and HICO-

derived water leaving radiance after vicarious calibration. Minimising errors from 

calibration and atmospheric correction is particularly crucial over dark targets such as 

deep water or submerged aquatic vegetation. This is due to a reduced signal-to-noise ratio 

and where a higher proportion of the at-sensor radiance is contaminated by the 

atmospheric path radiance compared to bright shallow targets. Hence small errors in 

the calibration or deviations of the actual atmospheric parameters compared to what is 

used during atmospheric correction can produce negative reflectances (Richter, 1990; 

Jacobsen, Heidebrecht, & Goetz, 2000; Moses, Bowles, & Corson, 2015). 

Improvements to a sensor’s SNR, accurate calibration and atmospheric correction will 

lead to improved benthic classification from shallow water inversion models. We note 

that the use of the HDC algorithm to examine the ability of spectrally resolving a set 
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of representative substrates for various environmental conditions takes into account 

noise introduced from inaccurate atmospheric or sunglint correction. 

 

5.5 Conclusions and future work 

We have presented an agglomerative hierarchical clustering using linear 

discriminant coordinates (HDC), which when used on a spectral library of benthic 

endmembers outputs those classes that are optically distinguishable above the total 

system’s variability. The HDC clustering differs from other hierarchical clustering 

schemes by the inclusion of the system’s total variability onto each data point and the 

clustering based on pairwise distance and misclassification proportions. The iterative 

merging of classes in the HDC ceases when the remaining classes have a 

misclassification rate below a user specified threshold. Thus the user does not need to 

decide beforehand or post-clustering the number of classes to output – a common 

problem faced in the application of clustering procedures. Rather the total system’s 

variability controls this outcome where a noisier system would lead to fewer output 

classes for a given misclassification threshold and vice-versa. In the context of benthic 

classification from shallow water remote sensing, variability arises from the sensor 

and environment (imperfect atmospheric, sunglint and air–water interface corrections) 

and the spectral variability observed within a given benthic species. Both sources 

degrade the spectral separability between benthic classes. 

The HDC was applied to a set of measured reflectance spectra of 22 benthic 

classes collected from the Point Peron study site, Western Australia. This initial 

spectral library contained the sub-local scale spectral variability of each benthic class 

and with the addition of sensor and environmental noise taken from a HICO image, 

accounted for the total system’s variability. Analysis of the clustering on datasets 

convolved to the wavebands of WV2, HyVista’s HyMap and HICO sensors showed a 

reduction in spectral resolution reduced the spectral separability between classes and 

hence reduced the number of distinct classes. For instance, at WV2 and HICO 

wavebands 14 and 18 classes were spectrally separable just below the water’s surface 

respectively, from the initial 22. Dendrograms from the HDC have showed that benthic 

species from a given genera preferentially merge first before clustering with species 

of other genera. 
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Depth and water column turbidity have been demonstrated in the literature as 

the most influential factor inhibiting benthic classification, where fewer classes are 

optically separable with increasing depth and/or turbidity. Using the measured benthic 

reflectance spectra, a shallow water forward model was used to simulate the water-

leaving subsurface reflectance at any specified depth and water column optical 

property. Combined with the HDC, depth and water column specific spectral libraries 

were generated and subsequent analysis have quantified that the number of benthic 

classes decreases with increasing depth and water column turbidity at a constant 

clustering accuracy. Furthermore, the clustering analysis identifies those benthic 

classes that merge as a consequence of water column attenuation and the total system’s 

noise. 

If the irradiance reflectance spectra of the representative benthos in a scene of 

interest are known, then the HDC algorithm offers the ability to explore the potential 

of benthic classification from shallow water remote sensing, where the number and 

type of classes can be quantified for any given sensor, clustering accuracy, water 

column optical property and depth. From a management perspective, the HDC can be 

used to pre-determine which sensor to use so that the mapping requirements match the 

expected outcomes from the resultant benthic classification map. This was illustrated 

through the analysis of conditions that include clustering accuracy, water clarity and 

depth and spectral resolution that enable A. antartica to be spectrally resolved from 

benthic algae. Such an analysis can aid in an assessment of the feasibility of detecting 

phase shifts in seagrass meadows, for example, from a variety of sensors; but does not 

incorporate the effect of spatial resolution, which can decrease spectral distinctions. In 

situations where local knowledge of the spectral library is absent then the algorithm 

presented here cannot be applied, as the derived class names are scene specific. 

Further research includes the validation of the HDC algorithm with vertical 

profiling optical measurements and above water radiometry. Such studies would 

include a comparative analysis of the clustering algorithm to optical measurement 

based cluster dendrograms using the rand index (Rand, 1971) or cophenetic correlation 

(Sokal and Rohlf, 1962), in an analogous manner to Torrecilla et al. (2011). Further 

development includes the application of the HDC-derived spectral libraries into 

physics-based shallow water inversion models. The purpose of which would be to 

obtain a benthic classification map with more appropriate class names that help convey 

the level of certainty and optical separability. It is likely that the resultant benthic 
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classification map will be depth dependent (and hence layered), as the class names 

(and numbers) change with depth. Change detection is also an avenue of future 

research, particularly in assessing the amount of temporal change of a benthic species 

when it is not spectrally distinct at depth. In other words, assessing which benthic 

species/clusters we can detect temporal changes in. Mixed benthic assemblages 

typically occur at spatial resolutions greater than 2 m, how this affects benthic 

classification using HDC-derived spectral libraries should be investigated. 
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CHAPTER 6  

 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

The overall aims were to utilise uncertainty to examine the potential and 

limitations of bathymetry and benthic classification from hyperspectral remote sensing 

of shallow waters. In particular to (1) test the accuracy and precision of inversion 

model parameters including bathymetry, water column optical properties and benthic 

classification using the standard implementation of the Levenberg-Marquardt 

optimisation algorithm; (2) analyse bathymetry and its uncertainty to ascertain the 

potential and limitations of remote sensing in detecting temporal changes, and; (3) 

quantify the number and type of optically distinguishable benthic species above the 

total system noise and attenuating properties of a variable water column at depth in an 

effort to assess the limitations of benthic classification from remote sensing. 

Bathymetry and benthic classification are typically derived through physics-

based inversion models that utilise an optimisation procedure. Propagating uncertainty 

due to noise caused from the sensor and imperfect radiometric, sunglint and air-water 

interface corrections (environmental noise) is crucial in assigning confidence intervals 

to water column optical properties, bathymetry and benthic classifications. Thus the 

first aim was to test the accuracy and precision of inversion model parameters derived 

with the standard Levenberg-Marquardt optimisation when propagating sensor and 

environmental noise (NEΔrrs). 

Obtaining a true representation of the variability caused by NEΔrrs in 

parameter space is crucial in acquiring accurate and precise estimates of the desired 

geophysical parameter. Maximising the accuracy and correctly estimating the 

uncertainty is crucial for the correct ecological interpretation of remote sensing data. 

The research presented here shows that propagating sensor and environmental noise 

through a physics-based inversion model can cause low precision and accuracy 

(greater spread in parameter space) when a local optimisation procedure such as the 

Levenberg-Marquardt (LM) algorithm is used. This phenomenon was attributed to the 
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presence of local minima in the parameter space which local optimisation algorithms 

may converge. 

Although global optimisation routines could be used to converge to the best 

'local' if not global minimum in the constrained parameter space, they are often 

hampered by slow processing speeds compared to local optimisation procedures such 

as the LM algorithm. Computational efficiency is especially important with the added 

overhead of propagating uncertainty through the reflectance perturbation and inversion 

procedure used in this research. We present two new optimisation routines; the 

Update-Repeat Levenberg-Marquardt (UR-LM) and Latin Hypercube Sampling 

Levenberg-Marquardt (LHS-LM) algorithms. These two procedures dynamically 

search the parameter space for the optimal initial guess (i.e. starting point) that when 

used by the LM optimisation allows the convergence to the best 'local' or global 

minimum during the perturbation-inversion procedure. We have shown that the UR-

LM and LHS-LM algorithms display improved computational speed, accuracy and 

precision in the derivation of bathymetry, and water column optical properties 

compared to the standard implementation of the LM algorithm. 

Using the UR-LM, bathymetric imagery and associated uncertainty were 

computed from a time series of HICO imagery of Shark Bay, Western Australia, 

spanning nine months from November 2011 to August 2012. The overall goal was to 

assess the potential and limitations of remote sensing to detect temporal changes in 

depth that were the result of bottom sediment resuspension, transport and deposition. 

We focus on the Faure Sill, an ecologically important region within the Shark Bay 

World Heritage Area. Here the bathymetric uncertainty was used to statistically 

determine whether a change in depth was significant at the 95% confidence interval. 

Through this statistical analysis we have shown that temporal changes in depth as low 

as 0.40 m can be detected in shallow waters above the uncertainty and potential 

random offsets caused by imperfect radiometric corrections and tide normalisation. 

This analysis also indicated that detecting temporal changes in depth is only viable for 

shallow waters less than 6 m depth. At greater depths the magnitude of the reflectance 

signal becomes comparable to the spectral noise and as such bathymetric uncertainty 

becomes too large to detect temporal changes. 

In addition to the temporal analysis, an image-based tide normalisation was 

developed specifically for a time series of bathymetric imagery. This algorithm 

minimises the bathymetric variability due to tide in depth in a multi-image dataset and 



6. Conclusions and Future Work 

 

 175 

was shown to perform well in shallow water environments experiencing complex tidal 

oscillations. A per-pixel temporal statistical procedure was also developed to assess 

whether a change in depth is statistically significant above the uncertainty at two 

consecutive time stamps. This statistical analysis could potentially be applied to any 

ocean colour geophysical parameter and its uncertainty. 

Quantifying the number and type of optically resolvable benthic classes above 

the total system uncertainty and attenuating properties of a water column at depth is 

crucial in assessing the a priori limitations and potential of remotely sensed benthic 

classification. Here the total system noise includes image-based sensor and 

environmental noise and the taxanomic spectral variability of individual benthic 

species. In this research a new hierarchical clustering procedure that uses linear 

discriminant coordinates (termed HDC) was developed that incorporates the total 

system noise to merge unresolvable benthic species, i.e. merge classes of higher 

descriptive resolution in order to obtain a spectral library of separable endmembers. A 

measure of separability between a pair of benthic classes based on misclassification 

proportions was used to identify which classes to merge. The clustering ceases when 

all benthic classes have a misclassification proportion above a user-defined threshold. 

Choosing such a threshold is a more intuitive approach rather than arbitrarily selecting 

the number of classes that the clustering should terminate – a common problem faced 

in current clustering algorithms. 

For a given sensor's spectral resolution, the most influential factor prohibiting 

the optical distinction of benthic classes is the water column. As such we have 

incorporated a semi-analytical shallow water model to the HDC algorithm to account 

for the attenuating properties of a water column and depth on the ability to resolve 

benthic species. This coupled system enables the ability to determine a priori the 

limitations of benthic classification from remote sensing. This was demonstrated with 

an analysis of the conditions (i.e. clustering accuracy, depth, water column optical 

properties, sensor spectral resolution and total system noise) that enable the optical 

distinction of the seagrass A. antartica from benthic algae. Such an analysis is 

important to match expectations with realistic deliverables based on the limitations of 

the remote sensing system. 

We reiterate that the HDC algorithm is mainly suitable for either high spatial 

resolution imagery or sites whose benthos are spatially homogeneous and imaged with 

low spatial resolution. In both cases a given pixel would likely have low benthic 
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species variability. Thus although this research used the spectral resolution of HICO 

to exemplify the impact of high spectral resolution on the optical separability of 

benthic species; its 90 m spatial resolution will reduce HICO’s ability to resolve 

benthic species for sites with high spatial heterogeneity. There are exceptions such as 

analysing whether it is possible to distinguish different seagrass species for sites that 

have extensive seagrass meadows e.g. Shark Bay, Western Australia, Florida Bay, 

USA and the Great Bahama Bank, Bahamas. Future hyperspectral satellite missions 

such as the EnMAP imager and HyspIRI with higher spatial resolutions may extend 

the applicability of more refined operational and routine benthic classification of 

shallow water ecosystems. Such sensors may have the necessary SNR and atmospheric 

bands that elicit improved benthic classifications, and a re-analysis of their capabilities 

should be investigated. 

 

6.2 Future work and recommendations 

This research reinforces the assumption that accuracy and precision of all 

parameters derived from physics-based inversion models, including bathymetry and 

benthic classification, are dependent, in part, on the quality of the radiometric 

corrections imposed on the at-sensor radiance. These corrections, if not performed 

adequately, can introduce spectral artefacts and/or offsets to the derived reflectance 

that are subsequently propagated through to the inversion products and manifest as a 

decrease in accuracy. We note that imperfect atmospheric and sunglint corrections add 

spatial noise (Hedley et al., 2005) to remote sensing imagery, from which NEΔrrs is 

derived. Thus, inaccurate corrections potentially introduce higher variability to the 

spatial noise, which would generate higher uncertainties in the inversion products. 

Analysis of the retrieved model parameters (P, G, X, H, B1, B2, B3) shows that 

their accuracy was degraded to typically less than 50% when propagating NEΔrrs 

through the inversion model (Table 4.3). This analysis utilised a dataset of forward 

modelled rrs spectra, which prior to the addition of NEΔrrs did not contain any spectral 

artefacts that would affect accuracies of any retrieved parameter. The reduction in 

accuracy is attributed to the dispersal of inversion points in parameter space due to 

NEΔrrs (e.g. Figures 4.5 and 4.6) where the centroid (taken as the retrieved value) can 

be subsequently offset from the true parameter value. It follows that the larger the 

dispersal the more offset the centroid would be. Although a sensitivity analysis on how 
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the magnitude of NEΔrrs affects the accuracy of the retrieved model parameters was 

not performed, it is likely that reducing its magnitude would obtain more accurate 

retrievals. Given that the magnitude of NEΔrrs is computed from spatial noise caused 

by atmospheric and sunglint corrections. Future work should therefore focus on 

improving these correction algorithms particularly for HICO imagery that does not 

have any SWIR to IR bands to facilitate a per-pixel AOT retrieval. 

To atmospherically correct HICO imagery with Tafkaa-6S (Chapter 3), the 

average AOT, ozone concentration and vertical column water vapour were computed 

from coincident MODIS overpasses. The HICO-derived remote sensing reflectances 

typically suffered from one of the following three spectral artefacts introduced from 

this atmospheric correction: (1) an increase in reflectance from 450 to 400 nm; (2) 

negative reflectances below 420 nm, or; (3) negative reflectances beyond 600 nm. The 

first two artefacts were likely caused from the wrong aerosol model or poor sensor 

radiometric calibration, where atmospheric correction gives negative reflectances. The 

third artefact was caused from over-estimating the AOT which has the effect of 

vertically shifting the aerosol reflectance. This latter artefact however was 

compensated by the sunglint correction algorithm specifically developed for the HICO 

dataset (see equation 3.4). This however is not ideal as sunglint and atmospheric 

correction are independent and their removal should be uncoupled. Further 

atmospheric algorithm development is therefore required for HICO and other 

hyperspectral sensors such as the AISA Eagle that do not have bands in the SWIR to 

IR. Validation with in situ radiometry for multiple sensors and sun-senor viewing 

geometries using different atmospheric correction software – such as Tafkaa (Gao et 

al., 2000), FLAASH (Matthew et al., 2003) and HyCorr – coupled with the different 

sunglint corrections will give an understanding of which algorithm combination works 

best and why. An issue not dicussed in this thesis is land adjacency effects and its 

correction. This phenomena is the result of multiple atmospheric scattering events 

where the upwelling radiance from land are scattered into the viewing angle of 

adjacent shallow water pixels causing contamination (Santer and Schmechtig, 2000). 

Sterckx, Knaeps and Ruddick (2011) showed that detectable land adjacency 

contamination to shallow water pixels can extend to more than 1 km from the shore 

using airborne hyperspectral imagery. This can represent a substantial amount of 

ecologically important pixels, and as such further methods of correcting for this effect 

should be investigated. 
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Methods for the application of the HDC-derived water specific benthic 

libraries to guide the classification of physics-based inversion models should also be 

pursued. To date, benthic classification from inversion models utilise a fine descriptive 

spectral library of benthic endmembers (see Dekker et al., 2011). The endmember or 

combination of endmembers that affords the best match to the input reflectance are 

assigned, regardless of whether the water column obscures the ability to distinguish 

between such classes. The HDC algorithm could therefore be used, in a post inversion 

analysis, to provide more appropriate benthic classification tuned to the water column 

optical properties and depth of each pixel. Specifically the retrieved depth and water 

column optical properties would be used to generate a list of optically separable 

benthic classes, which can appropriately modify the classification afforded by the 

inversion model. In this context appropriate benthic classification refers to the 

designation of class names such as ‘mixed vegetation’ or ‘mixed brown algae’ etc., 

and would convey to the user the limitation of physics-based inversion models with 

regards to benthic classification. 

Analysis of the HDC-derived spectral libraries indicates that at certain depths 

and water clarities seagrass cannot be spectrally distinguished from green algae. 

However, most species of benthic algae preferentially grow on rock or hard substrates, 

whereas seagrass exclusively grow on soft sediment substrates. As such these two 

genera may not exist in the same region of the image, and this information may aid in 

distinguishing these two spectrally confused classes. Contextual editing has been used 

in coral reef mapping (see Mumby et al., 1997; Mumby et al., 1998; Benfield et al., 

2007) to change the classification produced by per-pixel spectral analysis using a set 

of rules that are based on environmental variables such as depth, wave exposure, 

distance to land etc. In a comparison between Landsat and QuickBird sensors, Benfield 

et al. (2007) showed that contextual editing can improve the classification accuracy of 

those habitats for which rules are developed. Object-based image analysis (OBIA) in 

contrast has shown significant improvement in classification accuracy on both high 

and coarse spatial resolution imagery (Benfield et al., 2007). OBIA first segments the 

image into fine scale objects, and then pairs of neighbouring objects that produce the 

lowest increase in spatial heterogeneity are merged. Once a user defined threshold is 

met – which is scene, sensor and object specific (Benfield et al., 2007; Phinn et al., 

2012) – the merging stops. The colour, size and shape of the objects are then used to 

assign them a classification using fuzzy logic and a set of predefined membership rules 
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(Benfield et al., 2007; Phinn et al., 2012). Combination of OBIA or contextual editing 

with benthic classification afforded from physics-based inversion models as a means 

of including spatial information to further the potential of optical remote sensing has 

yet to be analysed and should be studied. 

This research has quantified that the type and number of optically 

distinguishable classes changes with both depth and water turbidity. As such it is likely 

that applying the HDC algorithm to an image that has varying depth and IOPs would 

result in a depth and water turbidity layered benthic classification map. Figure 5.7 

showed that for a given IOP the spectral library can be stratified with depth, in other 

words the same list of optically distinguishable classes are produced for a range of 

depths. Hence the depth-layering can be discretised, where one layer could represent 

the benthic classification for the 4-7 m depth range for instance. Including a water 

turbidity layer as well could be providing too much information. Figure 5.7 suggested 

that for a given depth the changes in the number of optically separable benthic classes 

vary slowly with IOPs. Using HICO bands at 5.5 m depth, 12 and 8 classes were 

optically separable for water columns with Secchi Depths of 48 m and 13 m 

respectively (see Figure 5.7a). This large reduction in water clarity only reduced the 

number of classes by four. This implies that when modelling the number of optically 

distinguishable classes a single set of IOPs could be used – for instance the averaged 

derived IOPs from an image – thus avoiding a water turbidity layer. Future work 

should investigate the feasibility of this approach with the amount of information 

obtained and the usefulness of the resultant benthic classification, from a management 

perspective, on high spatial resolution hyperspectral imagery of shallow water 

environments. Focus should be placed on whether such benthic classification is 

suitable for managing and monitoring shallow water environments, and whether other 

forms of classification can be used in conjunction to provide management deliverables. 
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APPENDIX A 

 

Figures A.1 to A.9 presents the inversion results, using the SLM, UR-LM and 

LHS methods for the HICO-derived rrs spectra at pixel positions B (row 1083, col 212), 

C (row 1031, col 210) and D (row 1200, col 445). Figure A.10 illustrates how the 

uncertainties of the retrieved parameters (P, G, X, H, Bsand, Bseagrass) change when using 

the LHS method, as the number of noise-perturbed rrs spectra increase for seven 

selected HICO pixels. Figure A.10 shows that the uncertainty of each model parameter 

plateaus when the number of noise-perturbed spectra exceeds 100. However, this may 

be too large a number for operational satellite/airborne imagery, especially because the 

difference in uncertainty from 50 to 100 noise-perturbed spectra is quite small. We 

therefore suggest setting the number of noise-perturbed spectra to 50. Using the 

MPFIT LM algorithm in C language, processing 50 noise-perturbed spectra per pixel 

takes an average of 0.12 seconds using a standard PC (quad-core, 8 GB RAM, without 

parallel processing).
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Figures for HICO pixel B: 

 

Figure A.1: Retrieved BRUCE model parameters vs. retrieved depth for the 3000 noise perturbed rrs spectra of HICO pixel B (row 1083, col 212) using SLM 

optimization. The fixed guess model parameters were arbitrarily set. The red dot points are the retrieved values that converged onto the group with the lowest 

Euclidean distance.  
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Figure A.2: Retrieved BRUCE model parameters vs. retrieved depth, for the 3000 noise perturbed rrs spectra of the HICO pixel B (row 1083, col 212). The 

optimized guess values were dynamically chosen using the UR-LM method and are shown as grey diamonds.  
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Figure A.3: Retrieved BRUCE model parameters vs. retrieved depth, for the 3000 noise perturbed rrs spectra of the HICO pixel B (row 1083, col 212). The 

optimized guess values were dynamically chosen using the LHS method and are shown as grey diamonds.  
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Figures for HICO pixel C: 

 

Figure A.4: Retrieved BRUCE model parameters vs. retrieved depth for the 3000 noise perturbed rrs spectra of HICO pixel C (row 1031, col 210) using SLM 

optimization. The fixed guess model parameters were arbitrarily set. The red dot points are the retrieved values that converged onto the group with the lowest 

Euclidean distance.  
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Figure A.5: Retrieved BRUCE model parameters vs. retrieved depth, for the 3000 noise perturbed rrs spectra of the HICO pixel C (row 1031, col 210). The 

optimized guess values were dynamically chosen using the UR-LM method and are shown as grey diamonds.  
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Figure A.6: Retrieved BRUCE model parameters vs. retrieved depth, for the 3000 noise perturbed rrs spectra of the HICO pixel C (row 1031, col 210). The 

optimized guess values were dynamically chosen using the LHS method and are shown as grey diamonds.  
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Figures for HICO pixel D: 

 

Figure A.7: Retrieved BRUCE model parameters vs. retrieved depth for the 3000 noise perturbed rrs spectra of HICO pixel D (row 1200, col 445) using SLM 

optimization. The fixed guess model parameters were arbitrarily set. The red dot points are the retrieved values that converged onto the group with the lowest 

Euclidean distance.  
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Figure A.8: Retrieved BRUCE model parameters vs. retrieved depth, for the 3000 noise perturbed rrs spectra of the HICO pixel D (row 1200, col 445). The 

optimized guess values were dynamically chosen using the UR-LM method and are shown as grey diamonds.  
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Figure A.9: Retrieved BRUCE model parameters vs. retrieved depth, for the 3000 noise perturbed rrs spectra of the HICO pixel D (row 1200, col 445). The 

optimized guess values were dynamically chosen using the LHS method and are shown as grey diamonds.
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Figure A.10: The uncertainties of the BRUCE model parameters vs. number of noise-perturbed rrs spectra for seven pixels selected from the HICO image of Shark 

Bay, 14 December 2011. Here the LHS implementation of the BRUCE model was used
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APPENDIX B 

 

Table B.1 and Figures B.1 to B.3 compare the inversions of the simulated rrs 

dataset using the SLM, UR-LM and LHS implementation of the BRUCE model with 

the model constraints set as 0.0 < P < 2.0 m-1, 0.0 < G < 2.0 m-1, 0.0 < X < 2 m-1, 0.0 

< H < 40 m, 0.0 < Bsand, Bseagrass, Balgae < 1.4×ρi(550 nm). 

Although the SLM approach is comparable to the UR-LM and LHS methods, 

it is less efficient, having performed 55,525,786 (approximately 4 times more) 

iterations compared to 14,261,286 and 13,905,756 for the UR-LM and LHS methods 

respectively. In the presence of noise, setting the lower bounds to zero can 

underestimate the uncertainty of a model parameter if its value is near zero (or the 

boundary). This is illustrated in Figure B.4, which shows the different model 

parameters, including the Euclidean distance, plotted against the retrieved depth for 

the inversions of a simulated rrs spectrum. Here, the simulated rrs spectrum was 

obtained by forward modelling of the BRUCE model using two benthic end-members 

of sand and Possidonia sp., where the model parameters were set to P = 0.10 m-1, G = 

0.005 m-1, X = 0.05 m-1, H = 4.0 m, Bsand = 0.1589, Bpossidonia = 0.0159. The latter two 

model parameters represent a pixel that has 70% sand and 30% seagrass. Spectral noise 

extracted from the HICO image of Shark Bay on 14 December 2014, was added to the 

simulated rrs, in the same way as described in forward modelling section, to generate 

3000 noise-perturbed rrs spectra. Inversions that had a retrieved value equal to the 

lower bound were not included in the calculation of the average retrieved value and 

standard error, as the global or local minima of these inversions exist beyond the 

imposed constraints and are therefore not physically possible. However these 

inversions are shown in Figures B.4 and B.5. 

The only notable difference between the two sets of inversions in Table B.2 

is the retrieved value of Bpossidonia, and its relative uncertainty. When the lower bounds 

are set to zero the uncertainty is 24% lower than when the lower bounds are set to 

negative values. This reduced uncertainty is the result of the existence of minima 

located beyond the imposed boundary, which causes the optimized value to have the 

value of this boundary – as shown in Figure B.4. In contrast, when the lower bound is 

set to a negative value, the optimization is able to find these minima and hence produce 

a more correct representation of the scatter of retrievals and hence a better 
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representation of the uncertainty (Figure B.5). Additionally, when the lower bounds 

are set to negative values the average retrieved value for Bseagrass is 0.0154, compared 

to 0.0213 when the lower bounds are set to zero – noting that the input was 0.0159. 

This effect of over-estimating the retrieved value whilst over-estimating the 

uncertainty is heightened as the input value approaches zero. 
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Table B.1: An inter-comparison of the RMSE (scatter), percent accuracy and average relative uncertainty for each BRUCE model parameter between the three 

optimization approaches. Here, the lower bounds of each model parameter were set to zero. 

Actual 

values 

Average retrieved value (centroid) Average uncertainty RMSE Accuracy (%) 

SLM UR-LM LHS SLM UR-LM LHS SLM UR-LM LHS SLM UR-LM LHS 

P (m-1)             

0.01 0.018 0.018 0.018 0.021 0.021 0.021 0.019 0.019 0.019 2.86 3.09 3.09 

0.03 0.035 0.035 0.035 0.027 0.027 0.027 0.018 0.018 0.018 5.83 6.06 6.06 

0.05 0.053 0.053 0.053 0.032 0.032 0.032 0.016 0.017 0.017 8.23 8.11 8.11 

0.07 0.072 0.072 0.072 0.037 0.037 0.037 0.016 0.016 0.016 9.94 10.97 10.97 

0.1 0.100 0.101 0.101 0.043 0.043 0.043 0.017 0.016 0.016 12.80 13.94 13.94 

G (m-1)             

0.01 0.010 0.010 0.010 0.004 0.004 0.004 0.002 0.002 0.002 15.09 15.77 15.77 

0.10 0.100 0.099 0.099 0.015 0.015 0.015 0.005 0.005 0.005 39.43 39.09 39.09 

0.25 0.244 0.244 0.244 0.035 0.036 0.036 0.012 0.013 0.013 48.00 47.31 47.31 

0.35 0.335 0.335 0.335 0.052 0.053 0.053 0.026 0.026 0.026 38.40 38.97 38.97 

0.50 0.467 0.468 0.468 0.082 0.084 0.084 0.053 0.050 0.050 24.69 25.49 25.49 

X (m-1)             

0.006 0.008 0.005 0.005 0.010 0.003 0.003 0.005 0.001 0.001 4.57 4.46 4.46 

0.010 0.009 0.009 0.009 0.004 0.004 0.004 0.001 0.001 0.001 6.97 6.74 6.74 

0.030 0.029 0.029 0.029 0.004 0.003 0.003 0.005 0.001 0.001 26.29 27.20 27.20 

0.070 0.069 0.069 0.069 0.003 0.003 0.003 0.001 0.001 0.001 62.74 63.31 63.31 

0.100 0.100 0.100 0.100 0.003 0.003 0.003 0.001 0.001 0.001 79.43 80.00 80.00 

H (m)             
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1 1.00 1.00 1.00 0.04 0.04 0.04 0.018 0.011 0.011 72.91 72.91 72.91 

3 2.95 2.95 2.95 0.28 0.28 0.28 0.103 0.103 0.103 37.26 37.37 37.37 

6 5.55 5.62 5.62 1.24 1.44 1.44 0.592 0.559 0.559 9.83 9.94 9.94 

11 8.67 9.51 9.51 4.57 5.86 5.86 3.622 3.405 3.406 1.83 1.94 1.94 

20 10.23 11.48 11.48 6.01 7.50 7.50 11.156 10.314 10.314 0.46 0.69 0.69 

Bsand             

0 0.049 0.048 0.048 0.052 0.053 0.053 0.077 0.075 0.075 0.00 0.00 0.00 

0.0757 0.086 0.085 0.085 0.061 0.061 0.061 0.044 0.043 0.043 11.36 11.52 11.52 

0.1135 0.107 0.106 0.106 0.062 0.063 0.063 0.040 0.039 0.039 13.68 13.76 13.76 

0.2270 0.174 0.174 0.174 0.064 0.065 0.065 0.077 0.077 0.077 12.16 12.48 12.48 

Bposidonia             

0 0.017 0.016 0.016 0.017 0.018 0.018 0.023 0.023 0.023 0.00 0.00 0.00 

0.0177 0.023 0.023 0.023 0.020 0.020 0.020 0.013 0.012 0.012 7.20 6.88 6.88 

0.0265 0.027 0.027 0.027 0.020 0.020 0.020 0.011 0.010 0.010 4.08 4.40 4.40 

0.0530 0.038 0.038 0.038 0.019 0.020 0.020 0.020 0.020 0.020 5.92 6.24 6.24 

Bsargassum             

0 0.009 0.009 0.009 0.011 0.011 0.011 0.012 0.011 0.011 0.00 0.00 0.00 

0.011 0.013 0.013 0.013 0.013 0.013 0.013 0.006 0.006 0.006 5.76 5.76 5.76 

0.0165 0.014 0.014 0.014 0.012 0.012 0.012 0.007 0.006 0.006 2.16 2.16 2.16 

0.0330 0.019 0.019 0.019 0.012 0.012 0.012 0.017 0.016 0.016 0.00 0.00 0.00 

  Number of L-M iterations       

 SLM 55,525,786       

 UR-LM 14,261,286       

 LHS 13,905,756       
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Table B.2: Comparison between the inversions (using the UR-LM optimization) that had the 

lower bounds set to zero and negative values. Here, inversions that had a retrieved value equal to 

the lower bound were not included in the calculation of the average retrieved value and standard 

error (uncertainty). 

Model parameters 
Actual parameter 

value 

Retrieved parameter value 

(Lower bounds set to zero) 

Retrieved parameter 

value (Lower bounds 

set to negative values) 

P         [m-1] 0.1 0.0981 ± 0.0047 0.0992 ± 0.0049 

G         [m-1] 0.005 0.0046 ± 0.0025 0.0047 ± 0.0025 

X         [m-1] 0.05 0.0492 ± 0.003 0.0496 ± 0.003 

H         [m] 4.0 3.91 ± 0.27 3.95 ± 0.27 

Bsand     [unitless] 0.1589 0.1551 ± 0.0258 0.1603 ± 0.028 

Bpossidonia  [unitless] 0.0159 0.0213 ± 0.0126 0.0154 ± 0.017 
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Figure B.1: Inter-comparison between the SLM (left-hand panels), UR-LM (central panels) and LHS (right-hand panels) optimization of the noise-added, simulated 

rrs spectra using the BRUCE forward model. These graphs show the retrieved vs. actual model parameters for P and G. Here the lower bounds for the constrained 

LM optimization were set to zero.  
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Figure B.2: Inter-comparison between the SLM, UR-LM and LHS optimization of the noise-added, simulated rrs spectra using the BRUCE forward model. These 

graphs show the retrieved vs. actual model parameters for X and H. Here the lower bounds for the constrained LM optimization were set to zero.  
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Figure B.3: Inter-comparison between the SLM, UR-LM and LHS optimization of the noise-added, simulated rrs spectra using the BRUCE forward model. These 

graphs show the retrieved vs. actual model parameters for Bsand, Bseagrass, and Balgae. Here the lower bounds for the constrained LM optimization were set to zero.
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Figure B.4: Retrieved BRUCE model parameters vs. retrieved depth, for the 3000 noise perturbed rrs spectra. Here the UR-LM method was used and the lower 

bounds for each model parameter were set to zero.  
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Figure B.5: Retrieved BRUCE model parameters vs retrieved depth, for the 3000 noise perturbed rrs spectra. Here the UR-LM method was used and the lower bounds 

set to negative values. 
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APPENDIX C 

This appendix describes in detail the mathematical steps employed in the HDC 

algorithm given in section 5.3.2.2; provides additional figures for the case of the 

HyMap spectral bands, and; describes the limitations and possible improvements to 

the HDC algorithm. Figure C.1a shows the measured 29 ρb spectra of Possidonia sp. 

that were convolved from the ASD spectrometer to HyMap spectral bands. Each 

spectrum were perturbed by NEΔrrs to generate 69 noise perturbed, ρb ± δρSE spectra. 

This produced a total of 2001 noise perturbed spectra from which 2000 were randomly 

selected (Figure C.1b). Figures C.1a and C.1b also illustrates the non-normality of the 

reflectance values at a given waveband (LDA variable). 

 

 

Figure C.1: (a) The measured benthic irradiance reflectance spectrum of Possidonia sp. convolved 

to HyMap wavelengths; (b) After the addition of sensor and environmental noise to each spectrum 

in (a).  

 

The inclusion of NEΔrrs resulted in a spectral library of 44,000 ρb spectra over 

22 benthic classes. These spectra were then transformed to their corresponding LD 

coordinates following the LDA procedure given by Rencher and Christensen (2012, p. 

288-290). LDA seeks to find a set of linear functions of the variables (the wavebands) 
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that maximise the distance between class means while minimising the within-class 

scatter. The coefficients for these linear functions are the eigenvectors that are 

computed from the between-class (H) and within-class (E) scatter matrices. The H 

matrix was computed using the ith class mean b spectrum, 𝜌b,i̅̅ ̅̅ , and the population 

average b, 𝜌b,pop̅̅ ̅̅ ̅̅ ̅̅  (Rencher & Christensen, 2012, p. 173), 

 

𝜌𝑚𝑐i = 𝜌b,i̅̅ ̅̅ −  𝜌b,pop̅̅ ̅̅ ̅̅ ̅̅  

𝐇 = ∑𝑚i(𝜌𝑚𝑐i ∙ 𝜌𝑚𝑐i
T)

𝑘

𝑖=1

 

(C.1a) 

(C.1b) 

mci is the mean centred b spectrum for class i, and mi and k are the number 

of spectra (=2000) and number of classes (=22) respectively. The n×n E matrix was 

computed using the spectral covariance matrices from each benthic class, Cbi, 

 𝐄 =  ∑(𝑚i − 1)𝐂𝐛𝐢

𝑘

𝑖=1

 (C.2) 

where, Cbi was calculated from the 2000 b ± δSE spectra of each class, and 

contains the total system’s spectral variability. The n×n eigenvector matrix, a, were 

then determined from E-1H (see Rencher & Christensen 2012, p. 289-290). Finally, 

the transformation from n band spectral space to LD coordinates was calculated by, 

 𝒛𝐢 = 𝑹𝐢 ∙ 𝒂 (C.3) 

Here zi and Ri are the 2000×n LD coordinates and noise-perturbed b spectra 

matrices respectively. Figure C.2 shows a plot of the LD points using the first two 

eigenvectors, z1 and z2, which give the greatest separation of the means in a multi-class 

situation. Although some classes appear to overlap additional separability is afforded 

with additional dimensions. 
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Figure C.2: An example of a LD plot generated from the HyMap b spectral library. Here each point represents an individual spectrum, where each class 

(a total of 22) has 2000 points. The colours of the LD points represent their genera, such that yellow, red, grey, light green and dark green represent sediment, 

red algae, brown algae, seagrass and green algae respectively. 



Limitations & potential of remotely sensed shallow water bathymetry & benthic classification 

 

204 

The eigenvalues of the matrix a give the proportional contribution of each 

eigenvector to the optimal separation of the class means. Preliminary results have 

shown that using all n eigenvectors from the matrix a does not necessarily maximise 

the number of classes remaining from the hierarchical clustering (step 3 – see section 

5.3.2.2). As such we first exclude those eigenvectors whose eigenvalues contribute 

less than 1% to the separation. From the remaining eigenvectors, an iterative approach 

was implemented where the number of eigenvectors, s, were successively increased to 

maximise the number of separable classes, k, generated from step (3), (Figure C.3). If 

k remained constant with increasing s for more than three successive increments of s 

then the iteration was ceased and the s that produced the last improvement in k was 

selected. To reduce the amount of computer processing we set the initial s as that which 

constituted 80% of the separation. The iterative eigenvector approach to 

dimensionality reduction effectively crops each zi matrix from a 2000×n to a 2000×s 

matrix where s < n. 

The importance of the subsequent iterative eigenvector selection step is 

presented in Figure C.3. This figure plots the number of separable benthic classes 

derived from the HDC against the cumulative proportional contribution of successive 

eigenvectors at different depths of a modelled water column. Computing the number 

of separable benthic classes from a given water column at depth is describe in section 

5.3.2.3. The blue at-surface curve (Figure C.3) has no modelled water column and was 

derived using ρb spectra. The highlighted circles on the at-surface, 0.5-, 1.5-, and 3.0-

m curves are the location (i.e. number of eigenvectors) selected by the iterative 

eigenvector procedure. For the HyMap at-surface ρb spectral library the iterative 

eigenvector selection step selected the first seven eigenvalues, thus the dimensionality 

of the spectra were reduced from n = 16 to s = 7. 
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Figure C.3: The number of classes output from the LDHC vs. the cumulative proportional 

contribution of successive eigenvectors for different depths for a modelled water column. Here 

the IOPs were set to P = 0.01 m-1, G = 0.01 m-1 and X = 0.001 m-1. 

 

Step 3 of the HDC procedure consists of an iterative centroid-based 

hierarchical clustering to merge benthic classes whose variance overlap exceed a user-

defined misclassification proportion threshold, τm. Here τm was set to 5%. The iterative 

clustering begins with the computation of the RMSE between all possible pairs of class 

means, and τm between those pairs. The pair of classes that had the lowest RMSE and 

whose τm >5% were merged to form a single class. In this step the LD coordinates of 

the two merging classes remain unchanged only that they are labelled as one. The b 

spectra, however, of these two classes were computed using the appropriate weighted 

average, 

 
𝜌C =

𝑁i𝜌i + 𝑁j𝜌j

𝑁i + 𝑁j
  

𝑁C = 𝑁i + 𝑁j 

(C.4a) 

(C.4b) 
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where C is the irradiance reflectance spectrum of the newly merged class 

formed from the preceding classes i and j. Ni and Nj are the number of spectra measured 

to create the averaged i and j for benthic classes i and j, respectively. This iteration 

continues until the remaining classes all have a τm ≤5%; in other words the clustering 

ceases when there is a 95% clustering accuracy that all classes are optically separable 

above the sensor and environmental noise and the benthos’ natural spectral variability. 

This clustering accuracy can be reduced (with a corresponding increase in number of 

‘separable’ classes) according to the desire of the user or application. The output of 

this entire procedure is a spectral library that contains the optimum set of endmembers 

for classifying the set of substrates of interest  

The ability to separate between classes is given by the misclassification 

proportion, τm, calculated from the number of LD points in a given class that are closer 

or equal in distance to the mean of another class via the RMSE. To illustrate, consider 

a hypothetical point A1 from class A with a LD coordinate of A1 = < z1A1, z2A1, …, zsA1 

>. The LD coordinates of the class means 𝐴̅ and 𝐵̅ are then used to compute the RMSE 

between (i) A1 and 𝐴̅ and; (ii) A1 and 𝐵̅, 

 

𝑅𝑀𝑆𝐸(𝐴1, 𝐴̅)

= √(𝑧1𝐴1 − 𝑧1𝐴̅̅ ̅̅ )2 + (𝑧2𝐴1 − 𝑧2𝐴̅̅ ̅̅ )2+. . +(𝑧𝑠𝐴1 − 𝑧𝑠𝐴̅̅ ̅̅ )2 

𝑅𝑀𝑆𝐸(𝐴1, 𝐵̅)

= √(𝑧1𝐴1 − 𝑧1𝐵̅̅ ̅̅ )2 + (𝑧2𝐴1 − 𝑧2𝐵̅̅ ̅̅ )2+. . +(𝑧𝑠𝐴1 − 𝑧𝑠𝐵̅̅ ̅̅ )2 

(C.5) 

 

if 𝑅𝑀𝑆𝐸(𝐴1, 𝐴̅) ≥ 𝑅𝑀𝑆𝐸(𝐴1, 𝐵̅) then the point A1 would be labelled as 

misclassified. This is exemplified in Figure C.4, which displays the merging of two 

optically indistinguishable green algae classes Caulerpa germinata and Caulerpa 

flexis. This figure highlights a misclassified C. germinata point that is closer to mean 

of C. flexis (via RMSE) than to its own mean. The dendrogram for the HDC using b 

spectra at HyMap’s spectral bands is presented in Figure C.5. 
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Figure C.4: An example of two optically indistinguishable green algae classes, C. germinata (green 

dots) and C. flexis (green triangles) using LD coordinates. Here, the blue circle highlights the 

misclassified C. germinata point, and the larger green circle and triangle represent the position of 

the two class means. 
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Figure C.5: HDC Dendrogram of the b spectra using HyMap’s spectral bands. The iterative selection of eigenvectors chose the first seven, and consequently produced 

18 classes 
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Limitations and improvements 

The HDC procedure relies on linear discriminant functions (LDFs) that elicit 

optimal separability when all classes have equal variance-covariance and normally 

distributed within-class scatter. Though these conditions affect accuracies of 

subsequent classification they need not be met when a projection to lower dimensional 

space is sought that maximise the between-group distance (the H matrix, equation 

C.1b) while reducing within-class scatter (the E matrix, equation C.2). There are 

fundamental differences between classification and clustering. The former would aim 

at labelling a newly measured ρb spectrum into one of the 22 initial benthic classes 

based on the LDFs, whereas clustering aims at merging groups into clusters based on 

similarity measures (Hastie et al., 2009). Thus the lower dimensional space that best 

separates the groups is an appropriate platform for hierarchical (or any type of) 

clustering. 

Unequal variance-covariance between groups is perhaps the greatest factor 

that influences the computation of the misclassification proportion, τm, between group 

pairs. In the HDC a misclassified point is one where its RMSE is closer to the mean of 

another group than to its own. This is equivalent to having a separating plane at equal 

distance between two group means and counting the number of points on their 

incorrect side. Thus if two groups do not have equal variance-covariance then the 

location of the separating plane will not be optimal and τm will be overestimated. 

Figure C.6a illustrates that although two groups do not overlap, the unequal variance-

covariance causes an unjustified τm >5% and hence their amalgamation. Figure C.6b 

shows that when a water column is modelled the distributions become normal with 

either increasing depth or water turbidity. Indeed the distributions of A. anceps and H. 

ramentacea are multimodal at 0 m depth (Figure C.6a) but then become normal at 3 m 

(Figure C.6b) and as a consequence τm decreases. Note as the water column’s 

depth/turbidity increase, the distance between groups decreases relative to the within-

class scatter. The reason for this is that NEΔrrs has remained constant, however the 

attenuating properties of a water column reduce the bottom reflected signal such that 

its influence on rrs diminishes exponentially with increasing water depth and turbidity. 

As such the difference in rrs between classes eventually becomes less than the 

uncertainty and thus the LDA becomes less effective. This suboptimal projection is 

demonstrated in Figure C.6b where the distributions are normal and separate yet with 
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τm >5%. Thus the lack of separation is not necessarily a consequence of the LDA 

method rather due to the attenuating properties of a water column. 

Equations (C.1a) and (C.1b) states that the between class scatter is effectively 

calculated via the RMSE between the class means and population mean, and therefore 

influenced by the magnitude (brightness) and shape of the ρb spectra. For this reason 

we have found that bright sediment substrates that are already distinct from the other 

benthic vegetation classes in spectral space (see Figure 5.1) are also distinct in LD 

space. This can be detrimental as Loog, Duin, and Haeb-Umbach (2001) demonstrated 

that the presence of an outlying class (or classes) reduces the separability of the 

remaining classes in LD space. This has been attributed to the LDA seeking a 

projection that maximises the distances between groups; in this case one that 

maximally separates the outlier class from the others (Loog et al., 2001). As such the 

LDA maintains the distances of existing distinct classes at the cost of higher overlap 

between the remaining classes. To overcome this Loog et al. (2001) incorporated a 

weighting scheme to the LDA model that dampened the effect of outlying classes and 

resulted in a decrease in the overall misclassification rate. In the context of this 

research, applying such a weighting scheme will likely increase (though slightly) the 

number of benthic vegetation species able to be discriminated at a given depth and 

turbidity and thus forms a potential improvement to the HDC algorithm. 
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Figure C.6: Effect of non-normality and unequal variance-covariance on the merging of red alga 

A. anceps (squares) and H. ramentacea (+) in LD space with WV2 bands. The group means are 

shown in bold along with the separating plane. (a) ρb spectra with no modelled water column, τm 

= 11.7%; (b) ρb with a modelled water column at 3 m depth and IOP type 1 (P=0.01, G=0.01, 

X=0.001), τm = 5.2%. The circle in (a) highlights the misclassified A. anceps spectra. 

 

Quadratic discriminant analysis (QDA) allows the assumption of unequal 

variances, however this approach was not taken because we are interested in 

hierarchical clustering rather than improved supervised classification and that QDA 

performs poorly in the presence of non-normality compared to LDA (Lachenbruch et 

al., 1973). Furthermore in assigning a group a particular classification the QDA uses 

the covariance matrix of the individual group. Issues will arise when merging two 

groups (via averaging) during the hierarchical clustering and then estimating the 

covariance matrix of this newly formed group. Analysis (results not shown here) have 
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demonstrated that computing the covariance matrix from the combined ρb spectra of 

two classes dramatically increases the variance of the merged class and subsequent 

merging eventually leads to all groups clustering together. 
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