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ABSTRACT

Farmers in the developing world frequently find themselves in uncertain and risky
environments, often having to make decisions based on very little information.
Functional models are needed to support farmers’ tactical decisions. In order to
develop an appropriate model, a comparison 1s carried out of potential modelling
approaches to address the question of what to grow where. A probabilistic GIS
model is identified in this research as a suitable model for this purpose. This model
is implemented as the stand-alone Spatial Decision Support System (SDSS)
CaNaSTA, based on trial data and expert knowledge available for Central America
and forage crops. The processes and methods used address many of the problems
encountered with other agricultural DSS and SDSS. CaNaSTA shows significant
overlap with recommendations from other sources. In addition, CaNaSTA provides
details on the likely adaptation distribution of each species at each location, as well
as measures of sensitivity and certainty. The combination of data and expert
knowledge in a spatial environment allows spatial and aspatial uncertainty to be
explicitly modelled. This is an original approach to the problem of helping farmers

decide what to plant where.
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A NOTE ON TERMINOLOGY

The acronym GIS refers both to Geographic Information Systems and Geographic

Information Sctence, depending on the context.

In some places the text refers to a farmer or an expert in the singular, followed by the
gender-neutral pronoun ‘they’ or possessive pronoun ‘their’. This is because the
author prefers to err in number rather than in gender, and finds the constructs ‘s’he’,
‘he or she’ or alternating between ‘he’ and ‘she’ cumbersome. Although arguably
the majority of farmers and forage experts are indeed male, using the singular

pronoun ‘he’ would render invisible those who are not.

The term ‘data’ is used throughout the text as a singular noun, similar to the.
uncountable noun ‘information’. ‘Data’ is used to refer to entries in databases,
usually directly observed from trials. ‘Knowledge’ is used to refer to knowledge in
the heads of some kind of experts, ‘Information’ is used to denote both data and

knowledge.
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TERMS AND ACRONYMS

Below are some terms and acronyms used in the thesis.

Accession
ACIAR
ANN
CaNaSTA
CART

Cl

CIAT

CPT
DEM
DSS
ES
FAO
Forage
GAM
Germplasm
GIS
GLM
GUI

manzana,
mz

mas]
NGO
PCA
RABAOC

RIEPT

SDSS
SoFT

Unique identification for entries in germplasm collections
Australian Centre for International Agricultural Research
Artificial Neural Networks

Crop Niche Selection in Tropical Agriculture
Classification and Regression Trees

Conditional Independence

International Center for Tropical Agriculture (in Spanish, Centro
Internacional de Agricultura Tropical)

Conditional Probability Table

Digital Elevation Model

Decision Support System

Expert System

Food and Agriculture Organisation

Field vegetation which can be used for pasture, hay and other uses
Generalised Additive Models

Genetic material of a plant

Geographical Information Systems or Science
Generalised Linear Models

Graphic User Interface

Unit of area commonly used in Central America, equivalent to 0.6988
ha

Metres above sea level
Non-Government Organisation
Principal Components Analysis

Network for Research on Livestock Feed in West and Central Africa
(in French, Réseau de Recherches en Alimentation du Beétail en Afrique
Occidentale et Centrale)

International Network for the Evaluation of Tropical Pastures (in
Spanish, Red Internacional de Evaluacion de Pastos Tropicales)

Spatial Decision Support System

Selection of Forages for the Tropics
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CHAPTER 1. INTRODUCTION

1.1 Introduction

Over 800 million of the world’s people, including 200 million children, suffer from
chronic undernutrition. While food production has more than kept pace with global
population growth in recent years, agriculture faces enormous challenges to meet the
food needs of a projected additional 1.7 billion people over the next 20 years (WRI,
2001). In the last 40 years, livestock production worldwide has more than doubled
(FAOSTAT, 2004) (Figure 1.1). Most of this is meat production in the developing
world, which has increased six-fold. Over the same time period, total meat exports
from the developing world only increased four-fold (FAOSTAT, 2004), confirming

that meat (and milk) consumption in the developing world is increasing.
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Figure 1.1 Total meat and milk production 1963 — 2003. Source: FAOSTAT, 2004.

Experience in Latin America and Asia has demonstrated the effectiveness of new
forage-based technologies for intensifying meat and milk production on small farms
(Peters et al., 2003a). Whilst forage grasses have been widely adopted in Latin
America for pasture improvement, adoption of forage legumes has been fairly
limited. This is because increased livestock production during recent decades has

been achieved by expanding the area used for cattle, rather than by intensifying
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production. In addition, many farmers do not recognise the long-term benefits that

forage legumes bring by enhancing the soil and making production more sustainable.

1.2 The Decision Problem

Although the potential benefits of forages have been demonstrated, uptake remains
low. Farmers in the developing world frequently find themselves in uncertain and
risky environments, often having to make decisions based on very little information.
In the developing world, risks for smallholder farmers are often critical because of
their poverty. In addition, in the tropics, the natural environment is spatially and
temporally variable and often harsh, thereby increasing the uncertainty faced by
these farmers. This thesis examines the nature of spatial decision support for
decision problems in tropical agriculture. Risky and uncertain decision problems,
such as those faced by smallholder farmers in the developing world, are investigated
using the example of the decision of what forage species to plant where. It is argued
here that farmers’ decision problems can be reduced by providing information and
that delivery of information can be improved through the use of computer tools and

Geographical Information Systems (GIS).

The decision problem is a complex spatial decision problem. A problem 1s
considered complex when it entails a web of related problems, covering many
disciplines and interacting on various scales (van Asselt, 2000). Spatial decision
problems refer to situations where location impacts on the problem in some way.
Examples of complex spatial decision-making include urban planning, landscape
planning, retail site selection and agricultural management. Uncertainty and risk are
integral components of complex decision-making. Spatial decision support can assist
in these types of decision problems by using appropriate modelling techniques to

handle complexity and uncertainty.

Poor farmers are necessarily risk-averse and require confidence that a potential
improvement will work in their situation. The decision of which forage species to
adopt contains a measure of uncertainty. Reducing this uncertainty provides
opportunities for forages to be targeted successfully. However, representing the

function of forages in farming systems is difficult, because livestock systems are
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complex and influenced by many factors, both biophysical and socio-economic. In

addition, there are issues surrounding data availability and data uncertainty.

Methods are required to represent the essential variations of farming systems and to
make available existing information on the system in a way that reduces uncertainty
and assists with robust decision-making. The objectives of this research support the
goal of improving forage adoption decisions for smallholder farmers in the
developing world, thereby increasing sustainable intensification and ultimately
contributing to increased sustainable world food production and the alleviation of

undernutntion.

1.3 Decision Support

Decision support can help reduce uncertainty and improve the decision-making
process. In the case of selecting forages, this can be achieved by combining diverse
biophysical and socio-economic data and knowledge. A formal way of offering
decision support is through a Decision Support System (DSS), providing access to

data, procedures and analytical capability.

Decision support in agriculture has a chequered history. While agricultural DSS
have been available to farmers for decades, the use of DSS in agriculture is declining
(McCown et al., 2002). Various barriers have been identified in the adoption of
agricultural DSS, in particular poor understanding among researchers of how
agricultural DSS are actually used by practitioners (Cox, 1996). If a DSS is designed
in conjunction with targeted users, then it is more likely to have a positive impact on
addressing agricultural decision problems (Cox, 1996; Stephens and Middleton,
2002; Walker, 2002).

Spatial Decision Support Systems (SDSS) work with explicitly spatial data, and
outputs usuvally include maps. Spatial decision support for tropical agriculture can
aid decision-making in a number of ways. Firstly, it can make information available
to farmers and their advisors that may otherwise not be accessible. Secondly,
through the use of GIS, inherent spatial uncertainties can be addressed. The use of

GIS also allows for visual interpretation of results through the use of maps. Thirdly,
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a well-designed SDSS will give reliable results in a consistent and timely manner,
which, over time, should allow farmers and their advisors to have confidence in the
results. Finally, if appropriate methods are used, farmer feedback and knowledge

can be incorporated, thereby making this knowledge available to other farmers.

1.4 Methodology

1.4.1 Research Methodology

In the ‘physical’ sciences, research is traditionally assumed to be a linear process.
Science is about creating new knowledge, through objective, experimental discovery

of facts. Scientific methods are assumed to be objective and value-free.

Even within ‘physical’ science, this positivist view has been challenged by various
philosophers, since facts can be shown to be theory-dependent and fallible, and
deriving theories from facts is not always straightforward (Chalmers, 1999).
Feyerabend (1975) went so far as to claim there is no such thing as a ‘scientific
method” and therefore ‘science’ is not necessarily superior to other forms of
knowledge. There is debate as to whether human and social sciences can in fact be
categorised as ‘science’ and whether the scientific methods of physical science can

be legittmately transferred to social sciences (Chalmers, 1999).

Research into decision-making in tropical agriculture is cross-disciplinary in nature,
drawing on both physical science (sometimes termed ‘hard’) and social science
(sometimes termed ‘soft’). Physical sciences tend to rely more on quantitative
research, while social science traditionally draws more on qualitative research.
Historically, qualitative research was defined within the positivist paradigm (Denzin
and Lincoln, 2000). More recently, a postpositivist perspective has emerged, arguing
that reality can only be approximated. Postpositivism uses multiple methods to
capture as much of reality as possible, including quantitative methods and qualitative
procedures that lend themselves to structured analysis. It is argued that positivist
methods are “just one way of telling storics about society”, and as such they are no

better or worse than other methods (Denzin and Lincoln, 2000).
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The distinction between hard and soft sciences is, in many cases, artificial. Many
research questions, such as global warming, poverty and world hunger, span both
hard and soft disciplines. Wilbanks (1986) states simply that, when it comes to
questions such as to how to assure that people get enough to eat, such subdivisions

become meaningless.

Debate on the nature of science, on the validity of the ‘scientific method’ and
difficulty in clearly distinguishing physical and social sciences suggest a more
holistic approach is warranted, particularly in cross-disciplinary research. Therefore,
the methodologies employed in this research draw on both physical and social
science research methods. Although the current research is largely quantitative, the
postpositivist perspective is accepted, and therefore both quantitative and qualitative
methods are incorporated in the research. These include data collection and analysis,
literature review, farmer interviews, questionnaires and participatory methods. The
main attribute of participatory research is shared ownership of research projects; it 1s
usually also community based, with an orientation towards community action

(Kemmis and McTaggart, 2000).

Literature was reviewed on decision support, tropical agriculture, tropical forages,
farmer technology adoption, risk and uncertainty in decision-making, knowledge
representation, expert knowledge, spatial habitat and classification models, DSS,
SDSS, and software development. Literature reviews for each topic are included in

the relevant chapters.

In the beginning of 2002, scientists, extension workers and farmers working with
tropical forages were visited in Honduras, Nicaragua and Costa Rica. Informal
interviews with some of these farmers are included as case studies in the research.
The purpose of the trip was also partly participatory in nature, with the aim of
attempting to recognize what farmers and researchers in the field required in order to

support their decision-making processes.

Throughout the project, potential users of an SDSS for tropical agriculture were
consulted, in particular forage experts associated with the International Center for

Tropical Agriculture (in Spanish, Centro Internacional de Agicultura Tropical
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[CIATY]) in Cali, Colombia. They were involved in all steps of the development, and
continue to guide the process in a participatory manner. Although this research is
perhaps not participatory m regards to farmers and extension workers, as they were
not involved in defining the research, it 1s, however, participatory with regards to

forage experts.

1.4.2 Modelling the Decision

The decision problem is illustrated by the selection of which forage species to plant,
on the assumption that a strategic decision has already been made, that is, identifying
the need for forage technology. The decision is informed by biophysical data, socio-
economic data and expert and farmer knowledge. The modelling of the decision-
making process is based on how an expert would be expected to make a deciston,
given information about the biophysical characteristics of the field and the purposes

for adopting the forage.

Models are representations of the real world, with the purpose of describing or
predicting attributes that are not directly observed. The modelling process introduces
a number of uncertainties. Reducing and describing these uncertainties allows risks
associated with the decision to be managed by the decision-maker. Therefore it is

necessary to select a suitable model to address the decision problem.

Models relevant to the decision problem are reviewed and compared, with the aim of
selecting a model that best reflects this process, whilst at the same time using
available data and knowledge, dealing with uncertainty and remaining as transparent
as possible. This process leads to development of a probabilistic GIS model to
support decision-making in tropical agriculture. Relevant data and knowledge are

then assembled, analysed and finally incorporated into the model.

1.4.3 Developing Spatial Decision Support Systems

The model is implemented as an SDSS, based on the probabilistic GIS model. The
data and knowledge identified form the inputs to the SDSS, along with direct inputs
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from the user. The outputs of the SDSS include maps, graphs and tables, designed to

support the decision-maker in selecting suitable species to trial.

The implementation allows for sparse and uncertain data, works with expert
knowledge and deals with uncertainty. The SDSS attempts to predict accurate results
in a structurally uncomplicated model, providing results that are straightforward in

their interpretation.

1.4.4 Testing and Validating Decision Support Systems

Testing and validation of the probabilistic GIS model is carried out using a number
of validation sources, including independent data and expert knowledge. Validation
of the model shows how well the SDSS works, that is, how accurate the results are.
Validation is also required to test the effectiveness of the SDSS and how it
contributes to addressing the decision problem. Because the SDSS developed has
not yet been released in the field at the time of writing, this validation is currently

limited to qualitative assessment by potential users.

1.4.5 Delivering Decision Support Systems

Effective delivery of DSS requires implementation that facilitates adoption and use
of the DSS by the intended audience. In the case of an SDSS for tropical agriculture,
the intended users are extension workers, Non-Govermnment Organizations (NGOs),
national research institutions, development agencies and international agricultural

research institutions involved in tropical agriculture.

Guiding principles for design include ease of use, flexibility and transparency.
Software was developed based on the model and data identified in the research. The
software is called CaNaSTA (Crop Niche Selection in Tropical Agriculture) (canasta
is Spanish for basket, and the tool aims to offer a basket of options to farmers,
primarily in Spanish-speaking Central America) and was developed using Borland
Delphi 6 (Borland Software Corporation, 2002) and ESRI MapObjects LT (ESRI,
2000).



1.5 Aims of the Thesis

The overall aim of the thesis is to investigate ways of providing decision support in
uncertain and risky environments. Tropical agriculture is such an environment,
particularly for smallholder beef and dairy farmers. Increasing demand for their
products in the developing world requires intensification, which in turn can be
achieved using forage-based technologies. However, the decision to adopt these

technologies is both uncertain and risky.

Decision support can facilitate the decision process by making available relevant data
and knowledge. In order to provide this decision support, an appropriate model
needs to be developed, and this is a supporting aim of the thesis. Implementation of
the model as a SDSS supports the aim of delivering decision support to smallholder

farmers in the tropics, and is evaluated in this context.

1.6 Conceptual Model and Thesis Structure

A conceptual model of the research process and thesis structure is presented in
Figure 1.2. The decision problem of what to grow where 1s influenced by
uncertainty and risk and also available data and knowledge. These subjects in turn
inform the model that is developed to address the decision problem. Subject to
validation, the model is implemented as an SDSS. The SDSS is then reviewed, and
feeds back into the decision problem. The entire process is illustrated using a case

study.

In Chapter 2, the decision problem is introduced, namely, which actions to take in the
face of uncertainty in tropical agriculture. In this chapter, the case study of tropical
forages in Central America is introduced, and the role of forages in tropical

agriculture is examined.

Chapter 3 examines the concepts identified as relevant to the decision-making
process, namely, uncertainty, risk, data and knowledge. Tactics for incorporating

these in models of decision-making are investigated.
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Figure 1.2 Conceptual model and structure of research.

Chapter 4 focuses on approaches to addressing the decision problem. In particular,
sources of uncertainty in tropical forage adoption by smallholder farmers are
examined. Concrete ways of reducing and describing these sources of uncertainty
are described. Finally, information sources related to the decision problem are

discussed.

The discussion in Chapter 5 builds on the previous chapters to put forward some

criteria for selecting an appropriate model.

Chapter 6 then compares models that could be adapted to address the decision
problem. Consideration is given to how each model could handle uncertainty and

knowledge and how they could be applied to the problem of tropical forage selection.

In Chapter 7, a probabilistic GIS model is selected from discussion in the previous
chapter, because of its potential to address the decision problem whilst dealing
effectively with uncertainty and expert knowledge. The model is developed in depth,

with a focus on the case study of forages in Central America.
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Chapter 8 discusses the data and information available for developing the SDSS,
incorporating the methods identified in the previous chapters. Variables and their
categories are defined based on statistical analysis, functional equations and expert

opinion.

Chapter 9 then discusses development of the SDSS, pulling together methods, data
and information discussed in the research so far. It is shown how prior and
conditional probability distributions can be derived from existing databases and

expert knowledge, as well as calculations to provide appropriate outputs for the

SDSS.

The implementation of the SDSS is continued with Chapter 10 describing the
software developed. The SDSS ‘CaNaSTA’ recommends species for a given
location and situation, and recommends locations for a given species. In addition,
users can update data interactively and examine results through maps, tables and

graphs. This process is described and illustrated.

Chapter 11 presents results and discussion, including model output and an analysis of
whether the aims of the SDSS were achieved. Accuracy of the model is checked by
comparing results from CaNaSTA with results from a number of other sources.
Spatial comparisons are also made for selected species by visually inspecting maps

produced from different sources.

The thesis concludes in Chapter 12 with a summary of the research, lessons learned

and conclusions.
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CHAPTER 2. THE DECISION PROBLEM

Tropical agriculture faces a unique set of problems defined by the biophysical and
socio-economic environment of the tropics. Poverty and sometimes harsh
biophysical conditions force many farmers to take risky actions in the face of
uncertainty. When risk is perceived as too great, it is often avoided completely, and
no action 1s taken. Some farmers therefore find themselves unable to act, and are not

able to leave the vicious cycle of poverty.

Agricultural development is an important factor in alleviating poverty in tropical
developing countries. Research in this area includes approaches to mitigating the
risks and reducing the uncertainties that farmers contend with. The decision problem
discussed here i1s what actions can and should be taken in the face of uncertainty in
tropical agriculture. A case study — that of forages in Central America — is then

introduced in general terms.

2.1 Agricultural Development

Agricultural development plays a significant role in the economies of developing
countries. Natsios (2001) stresses the importance of agricultural development as a
means to alleviating poverty in developing countries. A relatively large proportion
of the population in these countries is smallholder farmers. Before examining the
role of agricultural development in more depth, a general description 1s put forward

of developing countries in the tropics.

2.1.1 Developing Countries in the Tropics

The tropics may be defined in a number of ways, based on climatic values, maps of
plant geography and physiognomy, or economic and cultural criteria (Manshard,
1968). The most straightforward definition is geographic, with the tropics bounded
by the Tropics of Cancer (23° 27' N) and Capricorn (23° 27' 8). There are also no
established definitions of a “developing’ country, however, in general it is accepted

that most are within the tropics, although some developing nations do lie outside of
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the tropics (e.g., some countries of the former Soviet republic). Therefore mropical
agriculture is generally also developing agriculture, which means that the issues are

not just biophysical in nature but also socio-economic.

Biophysically, the tropics are often characterised by mean temperature, generally
limited by the 18°C isotherm of the coldest month (Kdéppen, 1923). The boundary
between the tropics and subtropics can be established in a number of ways. Koppen
{(1923) places the subtropics between 20° and 40° latitude. Other classifications
depend on average temperature of the coldest and warmest months, and therefore
subtropical climates can be found within the Tropics of Cancer and Capricorn.
Rainfall is also a distinguishing characteristic of the tropics and subtropics, with
considerably different patterns from those found in temperate climates. Quantity,
seasonal distribution, regional variability, temporal variability and intensity of
tropical rainfall are all of profound ecological importance in the tropics and
subtropics (Weischet and Caviedes, 1993). Another characteristic of the tropics 1s
the fact that the largest variations in temperature are found with elevation — not only
are elevation and temperature highly correlated, but elevation i1s often also a proxy

for other limiting factors in tropical agriculture.

Upton (1996) classifies the tropical environment into broad climatic regions, namely,
the humid tropics, the sub-humid tropics and semi-arid environments. In the humid
tropics close to the equator, the dry season is short (less than five months, and
usually between one and three months). In the sub-humid tropics, there is seasonal
rainfall, with either one longer dry season or two short dry seasons. Semi-arid
regions have long dry seasons. Therefore, there is great variation between the tropics

and the subtropics particularly in terms of humidity and aridity (Figure 2.1).
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Bimodal rainfall patterns (with two wet seasons and two dry seasons) typify some of
the tropics. As an example, in Nicaragua, while there is no bimodal rainfall pattern
in the central region or on the Atlantic coast, on the Pacific coast the pattern is quite
defined, and sometimes severe (Figure 2.2). In Central America, the bimodal rainfall
pattern is usually a long dry period from December to April and a short dry period in

August, known locally as the canicula.
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Figure 2.2 Bimodal rainfall patterns in Nicaragua. Source: Atlas Rural de
Nicaragua, MAGFOR et al. (2001). Title: Periodo Canicular is equivalent to
“Presence of Bimodal Rainfall Pattern”. Legend: (dark blue) none, (light blue)
benign, (light yellow) noticeable, (dark yellow) defined, (orange) severe (own

translation).
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This means that some locations with relatively low rainfall may in fact have multiple
short dry seasons, with a quite different impact on agriculture than the same total
rainfall at locations with one long dry season. Figure 2.3 shows average monthly
rainfall and temperature for two locations in Nicaragua, within 150km of each other,

but with markedly different rainfall patterns.
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Figure 2.3 Monthly average rainfall and temperature for two locations in Nicaragua.
A. Two dry seasons (November — April and July — August). B. One dry season
(December — April).

Tropical soils are also significantly different from their temperate counterparts. Well
into the 1930s, it was assumed that tropical lowlands were enormously fertile with
high potential for agricultural production (Weischet and Caviedes, 1993). However,
in the 1960s it was discovered that soil conditions in the tropics and subtropics were,
in fact, limiting factors for agricultural productivity, with many tropical soils (e.g.,
xanthic and orthic ferralsols) being extremely poor in nutrients. The Food and
Agriculture Organisation of the United Nations (FAO) publishes some statistics on
problem soils at continental level (FAO, 2004a). Low fertility acid soils are a
particular problem in Latin America, whereas in Africa infertile sandy soils are the
most represented problem soil. South and South East Asia has a lower percentage of
problem soils, but of those problem soils, acid and low-fertility calcareous soils

predominate (Figure 2.4).

Socio-economically speaking, developing countries tend to have higher levels of
food insecurity. As Figure 2.5 shows, food deprivation is, on the whole, both more
prevalent and deeper (meaning there is a higher degree of food deprivation) in

tropical countries. Other indicators of poverty and food insecurity, such as
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malnutrition, high infant mortality, low calorie consumption and insufficient grain

production versus demand, all typify tropical regions (FAO et al., 2004b).

Problem soils in three continents as percentage of total land area

B Acid soils
40% @ Steeplands
35% 4 @ Sandy soils
W Calcareous soils
i W Vertisols 1
25% - [ Salt affected soils .
@ Histosols
20% -

15%

10%

5%

0% -

South and C. America (63%) Africa (55%) South and SE Asia (44%)

Figure 2.4 Percentage of problem soils in three continents. Acid soils include
acrisols, ferralsols and podzols. Steeplands are classified as leptosols. Sandy soils
are arenosols. Calcareous soils are calcisols. Salt-affected soils include solanchaks

and solonetz. Source: FAO (2004a).

In Table 2.1, an analysis of all tropical developing countries shows that the
population is largely rural — between 21 percent rural (South America) and 69
percent rural (Asia) — and with low GDP per capita — between US$525 (Africa) and
US$4,980 (Central America). If Mexico’s relatively high GDP (US$6,144) is
excluded, then Central America’s GDP drops to US$1,898. A relatively large
proportion of the population survives on less than USS1 per day — between 12
percent (South America) and 46 percent (Africa) (United Nations, 2004). The same
figures are shown in Table 2.2 for North America, Western Europe and Australia, for
comparison purposes. In addition, in both tables agricultural land is presented as
percentage of total land, a statistic derived from FAO statistical databases
(FAOSTAT, 2004). As Table 2.1 shows, this statistic ranges from 31 percent in
South America to 64 percent in the Middle East.
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Region” % Rural GDP per % Pop < % Agricultural | % Agricultural

population” | capita® USS1 per population’ area’
day*

Africa 65% USS 525 46% 59% 34%

Asia 69% USS 603 28% 52% 36%

Central 31% LSS 4,980 | 13% 25% 52%

America (CA)

CA excluding 48% LSS 1,898 | 36% 32% 41%

Mexico

Middle East 40% USS 4,835 | 16% 27% 64%

South America | 21% US82,572 | 12% 18% 3%

Table 2.1 Selected socio-economic indicators in tropical developing regions. Source:

United Nations (2004} and FAOSTAT (2004).
* Only countries identified as developing by FAQ, and that fall at least partly within the tropics.
® United Nations 2001 figures.
¢ U'nited Nations 1989-2000 figures. Not all countries in region, only countries selected as
Millennium Indicators by United Nations.
¢ FAO 2002 figures.

Region % Rural GDP per % Pop < % Agricultural | % Agricultural
population” | capita® US$1 per population® area’
day
North America | 23% US$33,388 | No data 2% 235%
Western Europe | 20% US$21,657 4% 42%
Australia 8% US5%19,056 4% 59%

Table 2.2 Selected socio-economic indicators in developed regions. Source: United

_ Nations {2004) and FAOSTAT (2004).
b4 Agin Table 2.1.

Although percentage of agricultural land is similarly high in Western Europe,
Australia and USA (North America’s figure is lower because of the vast unpopulated
regions of Canada), the relatively much larger rural population in developing
countries means there are many more people sharing this agricultural land. Much of
the rural population is smallholder farmers and landless farm workers, as evidenced
by the relatively large agricultural population in developing countries, compared to

developed countries.

The majority of people in developing countries are poor (United Nations, 2004), and
many are rural. Those who work in agriculture need to be self-sufficient, and often a
large proportion of farm produce 1s destined for household consumption, with very
little income from sales to local markets. Although many farmers interact with
commercial markets, distance, poor road quality and lack of transport may make

access to these markets problematic.
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2.1.2  Agricultural Development in Developing Countries

In developing countries, farmers are often poor and farm very small areas using
rudimentary techniques. Solutions that have the potential to improve farmers’
situations are likely to be compiex, consisting of a mix of technology, improved crop

varieties, technical assistance, financial support and education.

In the past, it has been assumed that problems in tropical agriculture could be
ameliorated by the adoption of technological advances from developed countnes.
However, as Weischet and Caviedes (1993) point out, shifting cultivation and
field/fallow rotation practices are often necessary on tropical soils, and attempts to
impose other agricultural techniques from developed nations have often been

unsuccessful for this reason.

An example of an attempt to improve farmers’ situations is the so-called Green
Revolution, after high-yielding varieties of major cereal crops were developed in the
1960s. As a result, food production in many areas increased, although the
anticipated global decrease in poverty did not eventuate. However, Lipton and
Longhurst (1989) point out that modern plant science has mitigated what would have
been increased poverty brought about by increasing population, and Upton (1996)
claims the Green Revolution as a dramatic illustration of the benefits of new

technology.

FAOQO predicts that one of the challenges for agriculture as we move further into the
21% century will be the need for precision agriculture technology in the widest sense
of the phrase (Fresco, 2001). Research into site-specific development is needed,
alongside biotechnology, to address yield issues. Fresco asserts that the ultimate

challenge lies in two organising principles.

“First, to guarantee and facilitate access of poor countries and poor people to
markets, to technology and to knowledge... Second, to maintain and enhance
diversity options — diversity of products and production technology allows
consumers and producers to make informed choices rather than having a blueprint
approach pushed down their throats. In all this, openness about production
processes and their scientific underpinnings is essential” (Fresco, 2001).
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In order to alleviate poverty and improve food and income security in the developing
world, sustainable production systems are necessary, balancing environmental
protection with social and economic sustainability. Intensification of production may

be the only solution for resource-poor farmers (Peters et al, 2001).

An overview of a farm household system, adapted from Upton (1996), is presented
Figure 2.6. In general, labour is provided by the family, although income 1is

increasingly supplemented with off-farm work. Labour is also hired in some cases.

) The Farm Household
Hired
Labour — Family ot
Off-farm labour apita
Work
Consumption [nvestment

Farm
products

v
Natural Sales
Resources

Figure 2.6 A family farm system. Adapted from Upton (1996, p 21).

Agricultural research concerning the impacts of adopting new technologies (in the
sense of improved plant species and their management) on smallholder farmers,
should consider them not only as farmers, but also as potential consumers and
employees. Increased adoption of technology impacts on each role in different ways.
Farmers are affected, for example, by changes in seed prices, management
techniques, required inputs, yield, and, if the crop is sold, market prices. Consumers
are affected by changes in quantity, price and quality of crops and meat. Finally,

employees may be farm labourers, in which case changes in the economics of
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running a farm will affect their working conditions and pay. Technology adoption
means less labour 1s required,' which will affect farm labourers, but may also mean

family members are free to seek employment elsewhere (Upton, 1996).

The production environment for smallholder farmers in the tropics is characterised
by uncertainty and risk. It is clear that farming systems are complex, and decisions
are influenced by biophysical, social, economic and market factors. Furthermore,
any decisions made will, in turn, impact on biophysical, social, economic and market
factors. Lipton and Longhurst (1989) stress the need for applied agricultural research
to examine the effects of adoption in specific political and demographic
circumstances, rather than just concentrating on biophysical and, sometimes,

economic circumstances.

Much research in agricultural development is focussed on how to reduce uncertainty -
and mitigate risk. Seasonality of crop production, caused by rainfall fluctuations
(both within and between seasons), contributes to this uncertainty and risk. This, in
turn, contributes to labour excess and shortage at different times, as well as seasonal
food shortages for humans and livestock (Upton, 1996). Strategies to even out these
fluctuations could reduce uncertainty in the system and allow farmers to better

manage risk.

2.2 The Case Study

Central America, with a focus on Honduras and Nicaragua, has been chosen as the
case study region. For the remainder of this discussion, Central America 1s defined
as Central American countries wholly within the tropics, namely, Belize, Guatemala,
El Salvador, Honduras, Nicaragua, Costa Rica and Panama. Mexico is excluded
because it does not lie wholly within the tropics, and because it 1s significantly more
developed than the rest of Central America. Biophysically, Central America
encompasses a wide range of tropical and subtropical environments, representing a
fair subset of the developing world (see for example Figure 2.1). Of course, not all
biophysical environments in the tropics are represented in Central America, and
certainly not in the same proportions. Any methodology developed concentrating on

this area must be validated and adjusted for use in other environments. However, it
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is also the purpose of this research to show that information that exists for a certain
part of the world can, to a large extent, be extrapolated to other regions. If it is
known that a crop species thrives in certain conditions in Central America, then there
is no reason to believe it will perform differently in Sub-Saharan Africa or South
East Asia under similar conditions, if these conditions exist. There will, of course,
be other factors to take into account, such as vulnerability to disease and pests in a

new environment, differing management practices and cultural preferences.

Central America 18 also representative of the developing world socio-cconomically,
as was shown in Table 2.2. From Figure 2.7, it can be seen that Central America as a
whole has a higher GDP than the rest of the developing world, but also a higher
percentage of population living on less than USS1 per day. Within Central America
there is a wide range in both indicators, with Nicaragua and Honduras by far poorer
than Panama and Costa Rica. This pattern is repeated for other socio-economic
factors. In Latin America (Central America, South America and the Caribbean),
there is wider variation in farm sizes and systems than in other developing countries,
where most farmers are smallholders. Also, Latin America is less intensively
cultivated than Africa and Asia, but because of the wider variation many smaller
farmers are comparable to those in Africa and Asia (Upton, 1996). Soil degradation
1 also higher in Latin America. Socio-economic factors, and certainly management
factors, can be expected to show a greater spatial heterogeneity throughout the
developing world than biophysical factors (with the possible exception of soil, which
also is highly heterogeneous [Burrough et /., 1997]). Despite this spatial variability,
methods can still be extrapolated to other regions, if suitable conditions can be

identified.

In tropical agriculture, many strategies exist for development. One strategy is
improved forages to give livestock farmers better options for animal feed. As
livestock and dairy farming becomes more important in tropical agriculture, the
potential for forages increases (Peters ef al., 2003a). It has been shown that within a
given production system, livestock are particularly important for poorer households,
especially to those with limited access to land (FAQ, 2004b). In addition, a great
proportion of the rural poor in developing countries are livestock producers (Dixon,

2003).
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Figure 2.7 GDP per capita and percentage of population on less than US$1 per day
for Central American countries compared to the developing world. There is no
figure for Belize for % < $1. Source: United Nations (2004).

The importance of livestock farming in developing agriculture is underscored by
FAQO’s Pro-Poor Livestock Policy Initiative (FAO, 2003). In their first steering

committee report, they state that:

“livestock contribute to the livelihoods of an estimated 70% of the world’s rural
poor. For many of these rural poor, livestock provide a small but steady stream of
food and income, help raise whole farm productivity and are often the only way of
increasing assets and diversifying risks. In addition, livestock have an important
role in improving the nutritional status of low-income households, confer status,
are of cultural importance and create employment opportunities within and
beyond the immediate household” (FAO, 2003).

Therefore, while it could be argued that human food crops are a more efficient means
of addressing hunger, there are a number of reasons why livestock production is also
a valid strategy. In addition, in some areas, land that is unsuitable for food crops
may still be used for livestock grazing. As Upton (2004) points out, diversifying, by
adding livestock to cropping systems, adds to total farm production and household

income, and may also alleviate risk.
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The research presented here will focus on decisions surrounding the selection of
tropical forages as livestock feed, but the methodologies developed can easily be

extended to decisions on selection of other tropical crops.

2.3 Role of Forages in Tropical Agriculture

Despite the potential of improved forages, adoption has been slow, of legumes in
particular. One barrier to adoption is lack of information on which forage species are
suited to a farmer’s unique environment and why (Schultze-Kraft and Peters, 1997).
As with other tropical crops, many uncertainties exist in these environments, and

decision-making is often risky.

2.3.1 Benefits of Forages

Improved forages can have an important function in intensification of livestock
systems. Forages are grasses, herbaceous legumes and shrub or tree legumes that are
used primarily as animal feed (Horne and Stiir, 1999). Peters er al. (2001) report that
while adoption of all improved forages is low, this is particularly the case for
legumes. In addition they assert that legumes have the highest potential of forages to
improve smallholder farming systems. Forages play a central role in what Delgado
et al. (1999) term the Livestock Revolution, led by increasing worldwide demand for
livestock products. They contend that in the next 20 years, cattle and other livestock
will play an increasingly important role in agriculture, particularly in developing

countries.

Central America has 93.5 million ha of grazing land, supporting 41.4 million head of
cattle (FAOSTAT, 2004). It is estimated that in tropical America, 90 percent of
grazing lands are still in native pastures. The definition of smallholder farmer varies
from country to country, and in Central America may be taken as meaning a farmer
with around ten cows (Staal, 2003). Resource-poor livestock keepers form an
extremely diverse group. Aftempts to categorise them by the number of animals
owned may therefore be misleading (Chipeta er al., 2003), and other socio-economic
factors should be taken into account. With some exceptions, a high agricultural

population per km® of agricultural land indicates a large percentage of smallholder
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farmers and landless farm labourers. The agricultural population per km’ of
agricultural land is particularly high in Guatemala (126/km?), El Salvador (122/km”)
and Honduras (76/km”), with an overall figure of 59 agricultural population per km®
of agricultural land in Central America. This is lower than in Asia, and many
farmers do exist in Central America who are not smallholders. However, those who
are often have very small landholdings and are very poor. In Central America, the
percentage of rural population living below the poverty line ranges from 41 percent
(Costa Rica) to 76 percent (Nicaragua) (World Development Report 2000/2001, cited
in Thornton e a/., 2002). This translates to just under half of Central America’s
rural population of 43.4 million (2001 estimate (FAOSTAT, 2004)) living below the
poverty line. It is reasonable to expect that the majority of smallholder livestock

farmers will belong to this group.

As farmers move towards beef and dairy farming, flow-on benefits include increased
purchasing power for the poor, alleviation of protein and micronutrient deficiencies
in the community and increased fertiliser and draft power for the farmer. There are
also risks and adverse side effects, such as increased deforestation, soil erosion,
animal borne diseases and degradation of grazing areas. These benefits and risks are
all direct effects of a larger number and proportion of cattle in agriculture. However,
the selective introduction of forages into the agriculture system has additional

benefits and can mitigate some of the adverse effects mentioned above.

The primary use of forages is as animal feed, however, they can also be used for such
diverse purposes as human nutrition and natural resource management (Table 2.3).
The selective introduction of forages into smallholder farming systems can help
reduce soil erosion and aid sustainable intensification by regenerating degraded soils
and replenishing nitrogen through N-fixation. I[n addition, they can help control
weeds, allow the farmer to be less dependent on external inputs and are suited to
diverse production systems (Humphreys, 1994; Schultze-Kraft and Peters, 1997).
Furthermore, intensification may prevent deforestation in areas where farmers may
otherwise have been forced to clear trees to access more fertile land. Common
forage systems include cut and carry plots, grazed plots, living fences, hedgerows,

improved fallows, cover crops in annual crops and cover crops under trees, ground
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covers for erosion control, legume supplementation for the dry season and legume

leaf meal (Horne and Stiir, 1999).

Therefore the adoption of improved forages can improve a farming system in a
number of ways. Forages introduce diversity into the system, reducing the risk of the
impacts of crop failure. High nutritional value can increase the return on investment
for animal products. The additional benefits, such as N-fixation of many legumes
and weed control, can free up resources otherwise used for purchasing fertiliser and
herbicides and reduce labour input. The adoption of improved forages can increase
the farmer’s ability to maintain livestock, and in many cases livestock are the only

means of capital accumulation available to farmers.

Uses Examples

Human nutrition Root crops, pulses, fruits and leaves,
shoots, pods as vegetables

Animal nutrition Pasture, protein banks, hay

Technical uses Wood, fuel, paper, luxury timbers,

gumy/resin, fibre, dye, tannery
Improvement and maintenance | Mulch, green manure and planted fallows,

of soi1l productivity so1l cover, erosion control, soil
stabilisation, windbreaks, weed control
Other uses Folk medicine, fish poison, rat poison,

shade trees, living fences, ornamentals

Table 2.3 Potential forage uses. Source: Schultze-Kraft and Peters (1997).

2.3.2 Adoption of Improved Forages

In the tropics, and in particular in Central America, the adoption of improved
forages, especially legumes, has been low (Peters et al, 2001). Stiir et al (2002) and
Peters et al (2001) identify some reasons for limited and slow adoption of forages.
These include unfamiliarity with the technology, the fact that longer-term benefits
may not be immediately obvious, unavailability of planting material, unfavourable
policies and lack of participation by farmers in research and development. Adoption
may also be limited by restrictions imposed by climate, soil and other biophysical
factors. In addition, cultural traditions and preferences may also play a role.
Farmers may be risk-averse for a number of reasons, and uncertainty surrounding the

likelihood of a new forage species being successful will also be a factor. As both
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biophysical and socio-economic factors can be heterogeneous, even at very fine

scales, these uncertainties are inevitably site-specific,

Often farmers and extension workers are aware of constraints and opportunities in
their production system, but have limited access to information on potential
solutions.  This is particularly true as the poverty level increases, and in
environments far away from institutional support. In such a situation, adoption of a
new technology may be facilitated when an expert is called upon to recommend a
forage species. In a typical case, once a potential need for improved forages has
been identified, a farmer or their adviser will contact an extension worker, a seed
provider or an institution knowledgeable in forage technology, with a request for a
forage recommendation. The expert will attempt to identify constraints and
problems in the whole farming system to see where forages fit in the production
system. For example, i1ssues with production levels, erosion or degradation may all
call for a different approach. Once the need is identified, the niche, or site-specific
environment, is then considered and described in both biophysical and socio-
economic terms. For example, the niche may be constrained by climate and soils and
also by the current cropping system, farmer resources and management practices.
Suitable forage options can then be suggested, matched to the farmer’s unique niche.
The farmer may then choose to trial a number of forages. before making an adoption
decision. Experts able to make these recommendations may, however, be scarce and
hence not be easily accessible, particularly in remote rural areas. Adoption may also

occur when seed becomes available or is promoted and when neighbours adopt.

2.4 lliustrative Examples

As part of this research, a field trip was undertaken to Honduras, Nicaragua and
Costa Rica in early 2002. During the field trip, a number of farmers were visited and
some completed a short survey (see Appendix B) which, in conjunction with

informal discussions, form the basis of the illustrative examples described below.

As previously mentioned, the type of farmers and size of landholdings varies greatly
throughout Central America.  Biophysical, socio-economic and management

characteristics differ from farmer to farmer. Table 2.4 shows these characteristics for
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six farmers in Honduras and Nicaragua. Even though some of these farmers are
close to each other in both physical and biophysical space, their specific situation, or

niche, can still vary greatly.

2.4.1 Juan Gea Lopez

To illustrate the decision process involved in the selection of forages, two typical
smallholder farmers in Central America are described. The first, Juan Gea Lopez

(Farmer 5 in Table 2.4), lives near Esquipulas in the central region of Nicaragua
(Figure 2.8).

Legend
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Figure 2.8 Matagalpa district, Nicaragua and Yoro district, Honduras (stippled
areas). Background of map is length of dry season.



BY RRGUT() = ZW | CEDLIDWLY [BIIUIT) UL PISTI A[UOLUWIOD INSEIW JO HUN B “BURZUBW = ZW
‘SIQUIIEJ UBDLIOWY [BNUDD) QWIOS J0 SI0108) JUSUIdFeuel pue J1WoU0d3-0100s ‘Jedrsiydorg 7 o|qe L

+

¥ ¢ | suapuadaq
suomsod juauenad
¢ 01 1uareanba
1ms [erodura) ‘spurey moqe|
unej uauewad g WIIP| YD INPE ¢ Ajwey
§I810Y ¢ SAaUOp 7 Su3y SUdY G¢
S chiS dMed 741 aNed 77 SMODOET | 0T '$as1oy g oped ¢ | sfid ¢ *(nq [ 'sas10y ¢ S[BUIuY
sageioy
sagelo] paaosdun zwr ¢ (eamised aaneu
{s23e10] parordur (sa8et0] paaordu pasoidut zur z; | sage1og pasoxdun aurd pue pue nfits pruayLmdagy
i 3 ) amysed zwr g Zwi )] ) sanysed zur $g amsed zus ¢g ur 4,08 ‘armsed zw Of armsed 2ARRU ZW || ‘soan) oxmsed zur g sadr10g
(uondwnsucd
[euostad ‘Sunue)d
PUODDs) SUBd( 71 7
(Sumyuerd 297j00 7UI |
PU0aaR) UNWRIOS 7AI ¢ (uondumsuos
(Bunuryd [ruosiad ‘Bunuepd
1511)) Sueaq £l ¢ PUOD2s) SUBDQ ZW T
{uvonduwnsuod (Sunuepd SZIBWI ZUI g
[euosiad} azrew zw 7 QUON JSITJ) SZTCW ZW 'S 32]J03 Zur g sdory
_ ANTIIa) Y3ty ApoIay ysy ANnaIay sty STEEEY) ANJIIS) MO] “WIEO] Anasy
‘Ao ‘proe Apjelapoly | ‘wieo] ‘proe Afojetopopy | ‘wieo[ ‘proe A[d)eIspoly Uiy ‘weo| ‘proy Ke[a ‘proe A[2)BIOpOJN | MO] ‘WRO[ ABJD ‘JennIN] oy
syjuoul SUUOLL § SUUOUL £ SUON SOIUOW g sqiuow ¢ | uoseas i)
T1egures
WIgec| W9y | UL/ RE | g9z wugeg] wuwge] [enuuy
[SeW €€ [Sew 74 [set $¢¢ Seut g/ [SEW £16] [SBW 171G | UONRAD]H
M. 8EE8 NPT M. LP.SE N.OP.T1 M 1658 NPT M.SHel8 N9ESI M.DLoLB NZaSI M OTeL8 N.Zo51
engesediN engeIeoiN ENJRILIIN SEANPUOH SEINPUoH SRINPUOL]
‘ediedeiepy ‘Anjy Anpy | ‘edpeSejepy sepndinbsg ‘edjeSeiy ‘Insng ‘BPHUB[TY ‘S210[] JBIN ‘010 & ‘anSmbng ‘010 & ‘andinbn UONEd0T
0§ 1oue ¢ IouLe,| ¥ ISULIE ] ¢ puue, 7 1oulrg | dowieg

6C




30

Twenty years ago he owned one cow and seven ha of native pasture. Over time he
sold his old truck, bought more Ian.d and built a house. Now he owns 5%ha and 172
head of cattle {of which about 50 are descendants of his original cow), and a new
four wheel drive. He milks 24 cows, producing on average 8.71/cow/day, in a region
where the average is as low as 2.4Vcow/day. He has an artificial insemination
programme, sells a number of cattle each year and provides the equivalent of five
permanent farmhand positions. He has put his three children through university. He
is considering moving to two milkings a day, but at this stage cannot justify the cost

of mechanised milking, irrigation or electric fences.

His farm is situated in a part of the country where the dry season lasts six or seven
months, and Hurricane Mitch destroyed a couple of hectares of his land in 1998. Gea
Loépez has created a thriving business (where other, more traditional, farmers have
failed) through good management, careful research and by chasing opportunities.
During the 1980s, when monetary assistance was by preference given to
cooperatives, he struggled as an independent farmer to gain access to loans and
technical assistance. S]owly but surely, he increased his land and his stock,
experimenting along the way with cattle breeds and fodder crops. Although he can
no longer be classed as a smallholder farmer, he certainly started out as one, and
improved forages played a part in his development. He planted the grasses Taiwan
(Pennisetum purpureum) and King Grass (Penniseium purpureum X Pennisetum
typhoides hybrid) and sugar cane (Saccharum officinarum), but decided the work
required to process these for cattle fodder could not be justified. In 1993 he was
offered Brachiaria brizantha seeds, an improved forage pasture introduced into
Central America by CIAT. He planted just a little in places where other pastures
were failing, gradually increasing to seven ha of Brachiaria brizantha mixed with
Arachis pintoi, a wild peanut providing quality protein, also introduced by CIAT.
The cattle graze the pastures in the wet season and are given hay cut from the
pastures in the dry season, supplemented with his own concentrate of chicken

manure, Mucuna pruriens (Velvet Bean) and mineral salt mixtures.

Although Gea Lopez’s success can mostly be attributed to good management
practices and a willingness to experiment, the introduction of improved forages into

his pastures played an important role in increasing both milk production and milk
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quality. He 1s planning on planting a larger area in improved forages, and would like
to know if there are other species able to be used for both grazing and hay that are
better adapted to the climate and soil conditions of his farm. Without ready access to
expert opinion, he is unlikely to find out about potentially excellent options for his

situation that could greatly increase his return on investment.

2.4.2 Tomas Banegas Rosales

Tomas Banegas Rosalés (Farmer 1 in Table 2.4) also lives in a region of Central
America with a long dry season. His 8.5 ha of pasture and forest, maize and coffee
lie in Luquigiie, in the Yoro district of Honduras (Figure 2.8). He had four cows, but
had to sell them when the coffee price dropped in 2001, to pay for his children’s
primary education. Four of his adult children work on the farm, and five of his
children are students. He has three horses, three pigs and 35 hens, which provide ten
eggs a day on average. He also still has a bull. Banegas’ paddocks consist of trees,
Hyparrhenia rufa (a pasture species naturalised in much of Latin America and
locally known as jaragua) and native pasture. His grazing land is not high quality,

but as he has no cows his resources are focused on production of maize and cofiee.

He would like to buy more cows to provide milk for household consumption. With
cows to feed, investment in improved pasture or legumes could pay off through
higher yields and less input requirements. Better quality milk production is not a
requirement in this case, because the milk 1s strictly for domestic consumption.
However, intensifying with improved forages could eventually allow Banegas to
purchase enough cows to also sell some milk. On the other hand, Banegas is risk-
averse, and he cannot afford to invest in a forage species, unless he knows for certain
the investment will pay off. The uncertainties in this case are related to the success
of selected forages in his farm’s environment, the monetary and labour costs in

planting them, the benefits received from feeding them to his current livestock.

2.4.3 Unique Biophysical, Socio-economic and Management Environments

Gea Lopez and Banegas’s situations are vastly different, yet they share the challenge

of making a living from the land in the dry region of Central America. Within the
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region, some farmers have twice-daily mechanised milking, irrigation, a large area of
improved forages and silage and hay production for the dry season. Others milk two
cows by hand for only part of the year, producing a couple of litres of milk for
household consumption. Some drive their cattle large distances to reach higher,
slightly greener pastures in the dry season; others build a second milking shed to
save the cows a walk of 1km. One farmer near Victoria in Yoro, Honduras, trained
as a veterinarian, has a lot of experience and good land near a river. Yet he recerves
a low price for his milk, therefore lacking incentive and means to make
improvements. In a pattern common to the region, this means he continues to milk
by hand and graze his cattle on native pastures, which in turn means that milk quality
and quantity remain the same. Therefore his income remains unchanged, even
though a small investment in improved forages, matched to his unique situation,
could improve his livelihood in a number of ways. He is mtelligent and
knowledgeable, but there are a number of barriers, including lack of confidence that

investment in improved forages will pay off.

This lack of confidence is often warranted in Central America, where improved
forage species may be offered based on seed availability or on latest releases, often
disregarding climatic and other pertinent factors. For example, in Armenia and La
Ceiba in the humid Atlantic region of Honduras, pastures such as Brachiaria
brizantha, which are purported to be widely adapted throughout Central America, are
considered poor quality in these locations because of problems with waterlogging. In
reality the problem is that B. brizantha has low tbolerance to poor drainage and hence

1s poorly adapted to this environment.

Just as biophysical conditions vary within Central America, so do socio-economic
factors and management factors. Poor farmers with small landholdings are less
likely to be able to take on risk than less poor farmers with slightly more land.
Farmers with only cattle are more likely to see benefits from adopting improved
forages, whilst farmers with a mixture of food crops and pasture are more likely to
make investments in their food crops. Farmers with good market access are more
likely to benefit from increase in milk quality (higher protein content due to
improved forages), as long as this is rewarded by the purchaser. For cheese-makers,

protein and fat content are especially important. Smallholder farmers with poor
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market access are more likely to produce milk for household consumption, therefore

low production cost may be more important.

Furthermore, different farmers prefer different management techniques. Some have
sufficient land in pasture to allow grazing and to produce hay for dry season feed.
Others prefer to plant smaller areas intensively in cut and carry forages, although this
may not be an option if labour is unavailable. Infertile soils may benefit from
legumes providing N-fixation, reducing the need for fertilisers. Hillsides may benefit
from legumes that help prevent soil erosion. These and the many other options for
forage use will also determine whether a farmer deems a forage crop a good
investment. Knowing which forages are suitable for which management purposes is

obviously valuable information for farmers selecting improved forages.

244 Selecting Suitable Forage Species

A large number of improved tropical forage species exist that are well suited to
Central America. CIAT and its partners have tested these species, evaluating
adaptability, establishment and production in various locations throughout Latin
America. One such location is at Las Minas, a few kilometres from Luquigiie,
Honduras. If Banegas decides he wants to try a forage species, he could visit this site
and see for himself how well these forages grow under conditions in the immediate
vicinity of his farm. He can evaluate the different possible uses of grasses, legumes
and shrubs, and he can receive technical advice on sowing and management
practices. Of course, farmers can only trial species if they have access to seed, which

1s not always the case.

The closest trial site to Gea Lopez is about 20 km away in San Dionisio. Over this
distance there is already variation in elevation, soils and rainfall patterns. Other
farmers live a great deal further from forage trial sites, making it difficult for them to
benefit from this research. Although CIAT has compiled a comprehensive database
with data from the trial sites (Barco et /., 2002), it is not an easy task to translate the

results to other locations.
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An approach to both generalising results to other locations and making this
information available is the development of a Decision Support System (DSS). The
process of selecting forage species consists of a series of decisions (Figure 2.9),
firstly deciding whether change is needed, if so, what type of change, and, if that type

of change is to plant a forage species, then which one.

Strategic Decision Tactical Decision
Is change | If YES || Type of if PLANT Which
needed? change? FORAGE forage?

Figure 2.9 Decision process for selecting a forage species.

At the strategic level, the decision on whether or not to plant an improved forage
species depends on whether or not a need for change is identified, and if so, what
type of change. This could be a number of options, one of which might be the
decision to plant an improved forage. This decision will depend on a number of
management and socio-economic factors, including current crops, current
management practices, number and type of animals, land availability, experience,
education, access to extension and other socio-economic factors, as well as
biophysical factors. Staal er a/. (2002) found, in the decision of Napier grass uptake
in Kenya, that Ievel of education, access to formal milk outlets, rainfall, temperature

and market access were particularly significant.

At the tactical level, the decision is which improved forage species to select, and
assumes the strategic decision has already been made. This decision depends mostly
on biophysical factors and management practices. However, some socio-economic
factors may still be important at this level of decision-making, in particular farmers’

level of risk-aversion.

In considering the development of a decision support system to aid the selection of
forages, it is assumed that an improved forage species is required and the problem is

to select which one(s), i.e. the decision at the tactical level. A DSS can assist the
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decision-making process by making information available to farmers (increasing
familiarity and describing long-term benefits) and by matching forage species to
unique biophysical and socio-economic niches. Decision support systems will be

discussed in more detail in subsequent chapters.

2.5 Summary
Agricultural development is an important means of poverty alleviation in tropical
developing countries. In tropical agriculture, many strategies exist for development,

and one strategy 1s the introduction of improved forages.

Improved forages are often a suitable option for smallholder farmers seeking to
sustainably improve livelihoods. However, for a number of reasons, forage adoption
1s low, particularly in the case of legumes. One of these reasons is uncertainty on the
part of the farmer about how these forages will perform in specific environments. |
Providing information on forages and their suitability to particular biophysical and
socio-economic niches can equip farmers with the ability to make better-informed

decisions.

The decision problem revolves around what information to provide and how to
provide it in order to best assist smallholder farmers. In particular, issues arise
around inherent uncertainty in many facets of the adoption process. It is important to
acknowledge and work with risk and uncertainty in developing solutions to the
decision problem. In addition, knowledge about the domain, and how this can be
incorporated in the solution, is important. These topics are examined in the

following chapter.
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CHAPTER 3. RISK, UNCERTAINTY AND KNOWLEDGE

The previous chapter introduced the decision problem, namely the problem of
supporting selected decisions made by smallholder farmers. It was shown that there
are many risks inherent in this process, specifically related to uncertainties about the
unique biophysical and socio-economic environment of farmers, as well as their
management practices. The role of information, and in particular knowledge, was

highlighted as a potential means of managing risk through reducing uncertainty.

3.1 Risk and Uncertainty

3.1.1 Definitions of Risk and Uncertainty

Risk and uncertainty are integral issues in agricultural decision-making. They are
distinct concepts, but they are related. Risk relates to the utility of the outcome of a
decision of uncertain outcome. In the case of agriculture, utility for the farmer may
be a function of multiple objectives, such as ability to provide food for household
consumption, profit, and providing employment for family members (Upton, 1996).
Hardaker et al. (1997) define uncertainty as imperfect knowledge and risk as

uncertain consequences.

Some researchers use the terms ‘uncertainty’ and ‘risk’ interchangeably (e.g., Pannell
et al., 2000). Norman and Shimer (1994), discussing complexity theory, claim that
some theorists insist there is no valid distinction between risk and uncertainty. Van
Asselt (2000) sees nisk and uncertainty as two sides of the same coin, both being a
consequence of limited predictability as a result of complexity. In this discussion, it
1s recognised that while they are interrelated, they should be understood as two

separate concepts.

Risk is usually defined as a function of two factors: the utility of an event and its
likelihood. Low risk could imply small probability of an event with negative utility
or large probability of an event with posttive utility. Conversely, a high risk implies

large probability of an event with negative outcome (high negative utility). The
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complete definition of risk includes all factors that define the likelihood of the event
and its utility to the decision-maker. Risk cannot always be defined objectively,
because in the context of decision-making, subjective (sometimes inaccurate) risk
estimates, as perceived by the decision-maker, may play a much greater role than

objective risk.

Uncertainty in the context of this discussion will be examined for its influence on the
decision-making process. If all conditions are certain, decision-making becomes an
optimisation problem — the algorithm can be complex, but the best solution is clearly
demonstrable. Since practical problems are often unbounded, decision-makers will

expand definition of the problem to include uncertain factors.

Uncertainty arises from ignorance or variability in the decision-making process
(Ferson and Ginzburg, 1996), where ignorance describes uncertainty caused by
factors that are not considered in a decision, and variability describes the uncertainty

that 1s caused by factors of undefined degree that are known to exist.

Rowe (1994) further classifies uncertainty and vanability into four main classes,
namely, metrical, temporal, structural and translational (Table 3.1). Metrical
uncertainty relates to uncertainty and variability in measurement. Temporal
uncertainty stems from uncertainty in future and past states. Structural uncertainty
involves complexity, including model structure, and translational uncertainty stems
from explaining uncertain results (Rowe, 1994). In this classification, risk 1s related
specifically to temporal uncertainty in the future. All four types stem from both
variability and ignorance, however, metrical and temporal uncertainties are,
arguably, more likely to have their sources in variability, and structural and

translational uncertainties are more likely to stem from ignorance.
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Source Type Description
Variability Metrical Variability in measurement
Temporal Uncertainty in future states
Uncertainty m past states
Structural Uncertainty in model structure due to
complexity
Ignorance Translational Unc;rtamty in explaining uncertain
results

Table 3.1 Classifications of uncertainty, adapted from Rowe (1994).

3.1.2 Spatial Uncertainty

The decision problem in agriculture is inherently spatial, since crops and forages are
produced within a spatially variable environment. The environment displays
heterogeneity at different scales, for example, soils tend to vary at a finer scale than
climate. Farmers are interested in species that will thrive in their particular location.
Hence much of the uncertainty surrounding the sclection of species is also spatial

(and in fact spatio-temporal) in nature.

Spatial information in the real world is complex, and in order to use it to facilitate
decision-making, it must be simplified in some way. This simplification can consist
of abstraction and discretisation, both spatially and in other dimensions. For
example, consider the problem of representing ecosystems. In the first place, the
classifications (such as ‘humid tropics’) are an abstraction of climatic factors,
grouped with potentially arbitrary cut-off points. Secondly, climate data is usually
summed and averaged over time, for example, average monthly rainfall. Finally,
when representing ecosystems spatially, the space itself is discretised into polygons
or rasters, each assigned an ecosystem classification. Spatial representations of data
are therefore models of reality, and uncertainty can be introduced during the

modelling process.

This simplification necessarily introduces an element of uncertainty. A body of
literature exists on spatial uncertainty and how to deal with it (see for example
Agumya and Hunter, 2002; Crosetto and Tarantola, 2001; Davis and Keller, 1997;
Heuvelink, 1998; Zhang and Goodchild, 2002).
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Error is a special case of spatial uncertainty, although some researchers (e.g. Crosetto
and Tarantola, 2001) claim they are equivalent. The term ‘error’ implies that true
values are definable and obtainable by removing inaccuracy and imprecision (Zhang
and Goodchild, 2002). This is only the case, however, with metrical spatial
uncertainty. Most spatial uncertainty is likely to be structural, introduced through
abstraction and discretisation. Uncertainty may result from lack of information and
also from vagueness, randomness, heterogeneity and spatial dependence inherent in

much geographical information (Zhang and Goodchild, 2002).

Spatial uncertainty can arise from a variety of sources (Table 3.2). Metrical
uncertainty can be caused by errors in positional accuracy during data acquisition.
Natural variation also impacts on metrical uncertainty, depending on data collection
techniques.  Spatial data is normally processed and reduced (e.g., through
classification), introducing structural uncertainty.  Temporal uncertainty is
introduced by dynamic change within biophysical and socio-economic dimensions.
Future temporal uncertainty can be exacerbated because of nature’s ability to change
over time (Davis and Keller, 1997). Elith ez al. (2002) also define linguistic

uncertainty, including vagueness, ambiguity, underspecificity and compounded

uncertainty.
Source Type Example
Positional inaccuracy | Metrical Rounding of latitude and longitude
Data acquisition Metrical Measurement accuracy of satellites
Natural variation Metrical Temperature ranges at a given location
Geoprocessing Structural Estimations of rainfall at locations with
no data collection '
Classification Structural Soil type classification
Currency Temporal Infrequent census collection
Climate change

Table 3.2 Types of spatial uncertainty. Sources: Zhang and Goodchild (2002); Davis
and Keller (1997).

Agumya and Hunter (2002) explore uncertainty in geographic data in light of how
this impacts on risk assessment. They recognise that the presence of uncertainty in
spatial data may increase the risks associated with using this data. Therefore, it is not
sufficient to simply describe and visualise uncertainty, and it is crucial to examine

the impacts of spatial uncertainty in a given decision-making task. The
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classifications of Rowe (1994) and of Ferson and Ginzburg (1996) provide a useful

framework for this.

3.2 Knowledge

3.2.1 Knowledge to Reduce Spatial Uncertainty

Decision-makers aim to reduce risk and improve the likelihood of return on
investment. They do so by removing the uncertainty associated with specific
decisions. Using the ignorance/variability classification of Ferson and Ginzburg
(1996), uncertainty that is introduced by ignorance may be reduced by increasing
knowledge, and uncertainty introduced by variation may be reduced through spatial

information describing spatial variability.

Spatial information can be classed as data, as in numerical databases, maps and
images, or as knowledge. Knowledge implies information that is meaningful in a
specific context, and it can be derived from formalised data, or from less tangible
sources, such as personal experience, ideas or impressions. Here, the discussion
focuses on knowledge and how it can be formalised and applied to the decision

problem.

3.2.2 Types of Knowledge

Expert knowledge is specialised knowledge about a specific domain, based on the
experience of the expert. Farmers are experts in the specific types of agnculture they
have experience in. In this discussion, farmer knowledge is treated separately to
other types of expert knowledge, generally relating to scientists. Hence the term
‘expert’ here means scientists and technicians with specialised knowledge about

forage selection.

A large amount of expert knowledge concerning tropical forages exists in aspatial
knowledge bases. Much knowledge appears in the literature, but it is often not easily
accessible to non-scientists, and therefore difficult to assemble and summarise. Even

more has never been recorded, and resides in the heads of experts. Trying to fit
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expert knowledge into a database format may be counterproductive and cause much
of the knowledge to be lost. It is important, however, to somehow capture the

existing knowledge about how forages respond to varying conditions.

Farmers possess a great deal of knowledge, but usunally very specific to conditions of
their own land. They are experts about their specific conditions. Chambers (1980)

states that:

“the most difficult thing for an educated expert to accept is that poor farmers
may often understand their situations better than he does... It is difficult for
some professions to accept that they have anything to learn from rural people. or
to recognise that there is a parallel system of knowledge to their own which is
complementary, that is usually valid and in some aspects superior”.

Studies where farmer knowledge is collected are often ad-hoc and difficult to collate.
When the decision-maker is a farmer, it is appropriate to incorporate that farmer’s
own knowledge into the decision process. Ideally, different farmers’ knowledge
should be incrementally incorporated into a decision support system, so that other
farmers can benefit from this knowledge. However, farmers themselves, and in
particular poor farmers in the developing world, often have limited access to

information and data from any sources.

3.2.3 Formalisation of Knowledge

Knowledge invariably includes an element of subjectivity. Arguably, human experts
will always possess more knowledge than a machine-based system is able to discover
(see Godel’s incompleteness theorem, which proved that every formal system is
incomplete [Jongeneel and Koppelaar, 1999]). Two different experts will never
completely agree on a decision, and often experts disagree vastly. This is because
experts make decisions under conditions of uncertainty and are biased In various
ways. In addition, experts sometimes make inconsistent decisions (Jungermann,
1983). When experts make decisions, they consciously or unconsciously do so based
on models of the real world. In this process, both structural and translational

uncertainty may be present.
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Uncertainty in decisions can arise from incomplete information or knowledge about a
situation or because the probability of occurrence of possible alternatives is
unknown. Uncertainty may be internally or externally attributed (Scholz, 1983), that
is, due to ignorance or due to variability. Shafer and Pearl (1990) point out that most

everyday decision-making is uncertain, with most actions based on guesses.

Many researchers (e.g., Shafer and Pearl, 1990; Tversky and Kahneman, 1974) havé
argued that decision-makers think in terms of the likelihood of different outcomes
occurring, and that therefore the mathematical theory of probability should be used
for the formulation of reasoning under uncertainty. Shafer and Pearl (1990) claim
that, historically, it has provided the most successful approach in a wide variety of
fields. Therefore much of the literature on the theory of expert knowledge and

decision-making refers to probabilistic decision-making.

Probability can be defined as either objective or subjective. Objective, or frequentist,
probability is the frequency with which an event occurs if an experiment 1s
performed repeatedly. Subjective probability is the degree of belief an expert has in
an outcome. Subjective probability may be based on objective probability, as when
an expert recalls previous occurrences of an event to estimate the probable outcome
of the event. Degrees of belief may, however, also be based on other processes, in

particular where no previous knowledge exists.

3.2.4 Eliciting Expert Knowledge

Knowledge elicitation refers to the process of obtaining knowledge from experts,
usually in order to address a decision problem. Girard and Hubert (1999) define
knowledge acquisition as the “collection, elicitation, and interpretation of data on the
functioning of expertise in some domain in order to design, build, extend, adapt or
modify” an expert system. Standard methods for eliciting knowledge are mterviews

and surveys.

A common difficulty encountered in knowledge elicitation is disagreement between
experts. Approaches range from taking the mean of experts’ responses (Seidel e al.,

2003) to sophisticated probabilistic risk assessment techniques (Edwards and Fasolo,
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2001). The Delphi method (Linstone and Turoff, 1975) facilitates the convergence

of expert knowledge from a number of sources.

Seidel er al. (2003) hypothesise that even for very narrow diagnostic problems,
different human experts will come to different conclusions. They conclude that in
creating a. knowledge base, as well as in validating an expert system, the knowledge

of several experts should be amalgamated, rather than depending on just one expert.

It is not always desirable to resolve conflicts, as this may cause information loss
(Messing, 1997). In particular, where two experts disagree completely, it may be
more useful to retain this conflicting information than to average their assessments.
Messing’s approach is to provide a formal framework that allows inconsistencies. In
essence, inconsistencies and uncertainties are preserved and remain transparent to the

decision-maker.

Expert knowledge elicitation can be facilitated through the use of appropriate tools.
Graphic User Interfaces (GUIs) can be instrumental in organising and displaying
knowledge. Where the knowledge is spatial, a G1S-based approach can be valuable
for quantitative knowledge elicitation and qualitative assessment (Yamada et al.,

2003).

3.2.5 [Issues with Expert Knowledge

A number of issues can arise when attempting to elicit expert knowledge in the form
of subjective probabilities. Tversky and Kahneman (1974) consider a number of
misconceptions and biases which can occur due to the subjective nature of belief
assessment.  Some of these are discussed below in the context of the decision

problem.

Consider a situation where an expert is asked to assess whether a species will thrive
under certain conditions. This is a purely subjective assessment — this species has
not been trialed under these conditions previously. However, the expert may be
aware of trials under slightly different conditions, or of similar species, and hence

can be expected to make an ‘educated guess’.
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The first bias discussed by Tversky and Kahneman (1974} is ‘insensitivity to prior
probability of outcomes’, which can have a major effect on probability assessments.
Prior probability is the same as the base-rate frequency, or the frequency with which
an outcome is expected to occur in the absence of any information. In the situation
described above, the base-rate frequency is the frequency with which the species
survives across all trials, regardless of conditions. If the species has a very high
probability overall of thriving, then conditions would have to be very poor to
significantly change the probability distribution. Bar-Hillel (1983) calls this the

base-rate fallacy.

Another bias is termed the ‘illusion of validity’, which is the unwarranted confidence
produced by a good fit between the predicted outcome and the input information
{Tversky and Kahneman, 1974). This bias can present itself when input information
is highly correlated. For example, if the location in question is in the humid tropics,
the expert may assess that the species is unlikely to thrive. If, in addition, they are
told that rainfall is very high, this might increase their confidence in their assessment,

even though humidity and high rainfall are obviously correlated.

A further bias is that due to the ‘retrievability of instances’ (Tversky and Kahneman,
1974). Instances which are easily recalled will appear more numerous than those
which are less easily recalled, even if they in fact occur with the same frequency. In
particular, recent occurrences are likely to be more easily retrieved. In the example
given above, trials on similar species may have been carried out over a period of
time. The expert is more likely to assess the likelihood of the new species thriving
based on the most easily recalled trials of the first species — either more recent trials

or trials with which the expert had direct involvement.

Another possible source of bias is “insufficient adjustment from anchoring’ (Tversky
and Kahneman, 1974). An assessment of probability may be made by starting from
an initial value and adjusting this value. Say the expert makes an initial guess that
the species has a 50 percent chance of thriving. Upon inspection, the conditions may
prove to be very favourable. However the principle of insufficient adjustment
suggests that the new estimate is likely to be much lower than if the expert had

started with an initial estimate of, say, 80 percent.
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Bar-Hillel (1983) also suggests that experts can make erroneous assessments when
they confuse predicﬁve accuracy and retrospective accuracy. Predictive accuracy
relates to the probability of an event based on a hypothesis, while retrospective
accuracy relates to the probability of a hypothesis being true, given that the event is
observed. Say most trial sites for a given species are at locations with acidic soils.
Therefore most instances where the species is known to thrive are characterised by
acidic soils, and the retrospective accuracy of acidic soils being present when the
species thrives is very high. This might be quite different from the predictive

accuracy of whether the species will thrive given acidic soils,

These examples of biases in expert knowledge illustrate some of the difficulties in
working with expert knowledge. In addition, there are considerations of how
uncertain expert knowledge is communicated. Although it may be convenient to
represent expert knowledge as numerical probabilities, people are much more likely
to assess relative qualities than absolute quantities (Pearl, 1988). Bordogna and Pasi
(2000) examine linguistic qualifiers of uncertainty, including vagueness of terms
such as ‘high” and linguistic qualifiers such as ‘fairly reliable’ and ‘almost certain’.
They show that it is possible to create mathematical models of the probability

distribution denoted by these qualifiers.

Despite these problems with expert knowledge potentially introducing greater
uncertainty, decisions based on qualitative and sometimes incomplete knowledge are

still better than making decisions based on no knowledge (Mackinson, 2001).

3.3 Models to Suppert Decision-Making

As shown in Table 3.1, structural uncertainty is the uncertainty introduced in the
model structure. A model is any representation of the real world, and structural
uncertainty will always be present to some extent. Models to support decision-
making describe and predict outcomes of various stages of the process. In the case
of deciding which forage species to adopt, a model is needed to describe the likely
performance of the species under certain conditions, without the need for the farmer

to actually trial all candidates.
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The reduction of uncertainty is an important component of suppotting decision-
making, although it is unrealistic, and usually 1mpossible, to remove all uncertainty
(Clark, 2002). Knowledge and appropriate modelling can reduce some uncertainty,
but it is expected that there will be a point where the addition of more knowledge

will no longer reduce uncertainty substantially, or possibly at all (Figure 3.1).
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Figure 3.1 Decrease in uncertainty as knowledge increases.

Similarly, the reduction of uncertainty will not have a linear relationship with the
ability to handle risk. As uncertainty is reduced, there will be a point at which
reducing further uncertainty does not necessarily increase the ability to handle risk
(Figure 3.2). Tt is important to attempt to define in the modelling process, the points
at which increasing knowledge and decreasing uncertainty are no longer beneficial to
the aim of the model, which is to support decision-making by making risk

manageable.

uncertainty

>
ability to manage risk

Figure 3.2 Relationship between decreasing uncertainty and increasing ability to
manage risk.
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Probability-based methods are not only useful for representing knowledge, but also
for dealing with uncertainty by addressing uncertainty in model quantities. However,
van Asselt (2000) points out that this approach still ignores uncertainty in model
structure.  Structural uncertainty is more challenging to address than metrical
uncertainty, but it is clearly important to attempt to describe the structural uncertainty

present in a model.

Decision support models are intended to represent the aspects of complex or vague
decision problems in formats that are useful to decision makers. Models of decision-

making simplify a complex process, making it easier to describe and analyse.

The purpose of a model may be descriptive, predictive, mechanistic or empirical.
Many theories exist on how decisions are made and how they should be made (see
for example Edwards and Fasolo, 2001). However, in the current research, the focus
is on investigating models of reality which support the decision-making process, in

addition to modelling the process of decision-making itself.

33.1 Steps in Decision-Making

The decision-making process can be divided into the decisions facing the farmer and
the decisions facing the expert. In Figure 2.9, the farmer’s decision was defined as a
strategic decision (whether a change is needed and, if so, what type of change)
followed by a tactical decision (what should be planted). Expert knowledge, either
directly or through modelling, can be used to inform different stages of the farmer’s

decision (Figure 3.3).

The role of the expert in this process is to provide advice and options to the farmer.
The knowledge and information available to the expert can be modelled to provide

suitable advice and options, both at the strategic level and the tactical level.

The ways in which the models are defined identifies concepts that explain factors
that are significant. Getting choice of model right reduces both structural and

translational uncertainties.
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Figure 3.3 Interaction between expert decision-making and farmer decision-making.

3.3.2 Functional Modelling

The purpose of functional modelling in this case is to predict the success of forage
species in specific locations with specific biophysical, socio-economic and

management characteristics.

A pertinent question is how to combine both data from databases and expert
knowledge in modelling. Although data may still be uncertain, it 1s likely to be more
objective than knowledge, and represented in different ways. Data is likely to be
directly measured, or derived from direct measurements, and lend itself more readily

to statistical analysis than knowledge.

Data can be used to inform knowledge, in particular where knowledge is lacking or
uncertain. Conversely, where data is missing or in error, knowledge can complement

and correct the data where necessary.

Functional modelling relies on information about variables to reduce metrical and
temporal uncertainty. A great deal of this information is spatial in the context of the

decision problem.
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3.3.3  Addressing Spatial Uncertainty

Recognising the spatial context of modelling is not only desirable, but also central to
effectively modelling processes which are spatially heterogenous. Spatial analyses
can discover otherwise undiscernible patterns in data, and spatial visualisation can

greatly assist in conveying model results.

The inclusion of spatial data can introduce uncertainty and sometimes error, as
discussed in Section 3.1.2 above. Crosetto and Tarantola (2001) point out that often
in spatial modelling, both the data and model are treated as error-free, and output
uncertainty is completely disregarded. It is important therefore to recognise these
sources of uncertainty, describing them and reducing them where possible. Davis
and Keller (1997), for example, explore ways of visualising spatially-variable

uncertainty.

However, the inclusion of spatial aspects in modelling can also reduce uncertainty.
If a spatial model better represents the real world than an aspatial model, then
structural uncertainty is reduced. In addition, translational uncertainty may be

greatly reduced by presenting results visually in the form of maps.

In the decision problem, spatial information and knowledge relate to how species
perform at different locations and the characteristics of those locations. In many
cases, approaches are available to reduce or remove uncertainty. However, the
incorporation of uncertainty measures allows data and knowledge to be utilised even

when uncertainty cannot effectively be removed.

3.4 Summary

Risk and uncertainty are factors in most decision-making, especially when the
decision-making process has spatial aspects. In the case of supporting farmers’
decisions about forage selection, there are a number of sources of nsk and

uncertainty.
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Approaches to reducing uncertainty depend on its source and its type. In order to
incorporate knowledge, uncertainty and risk in the modelling process, appropriate

forms of modelling must be selected.

Although many researchers have discussed uncertainty in spatial modelling, often
only metrical uncertainty is considered. However, almost all decision problems will
also contain temporal, structural and translational uncertainty. It is important

therefore to attempt to account for all types of uncertainty in the modelling process.

The following chapter will examine ways to address the decision problem, taking

into account sources of risk and uncertainty and sources of knowledge and data.
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CHAPTER 4. ADDRESSING THE DECISION PROBLEM

In the previous chapter, risk, uncertainty and knowledge were discussed in general
terms. This chapter explores ways of addressing the decision problem, taking into
account uncertainty and risk in the system. It also examines the information sources

available for the task of forage selection.

4.1 Risk and Uncertainty in Forage Selection

4.1.1 Decision-Making Under Risk and Uncertainty

Decision theory analyses human decision behaviour and draws on mathematics,
economics and philosophy, as well as on concepts from political and social sciences
(Scholz, 1983). Decision theory’s principal rule is to maximise expected utility
(Heckermann, 1995). Decision-making becomes a function of the decision-maker’s

alternatives, their beliefs and their preferences.

There are several alternative models of decision-making under risk, mcluding the
maximin decision criterion, maximising expected utility, minimising variation, and
trade-off between expected utility and variation (Upton, 1996). These can all be

applied to the problem of agricultural decision-making in the tropics.

In coming to a choice on how to deal with uncertainty in decision-making, the
implications of uncertainty need to be explored. Lindner (1987) describes the
possible outcomes of a decision (Table 4.1). The potential magnitude of the lost
opportunity, or the loss caused, will influence the need to reduce uncertainty around
the decision. Another important factor lies in defining how much uncertainty needs
to be reduced in a particular decision in order to select the correct action (or

inaction).
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Objective
Benefit occurs | No benefit occurs
Subjective | Adopt | Correct action Type LI error
Loss caused
Reject | Type I error Correct inaction
Lost opportunity

Table 4.1 Type I and II errors as possible outcomes of a decision. Adapted from
Lindner (1987) and Abadi Ghadim (2000},

4.1.2 Risk Perception

Decision-makers can be classed as risk-taking (sometimes termed risk-seeking), risk-
neutral or risk-averse, depending on the level of risk they are willing, or able, to
accept. Abadi Ghadim (2000) makes an important distinction between perceived
riskiness and attitudes to risk. Perceived riskiness is a subjective judgment about
how risky a decision is, whereas attitude to risk refers to the decision maker’s

personal preferences about how to handle risk (Abadi Ghadim, 2000).

Attitudes to risk affect adoption of new crops, technology and practices. The term
adoption refers to the process of deciding whether or not to use a new production
technique (Lindner, 1987). Depending on the research context, adoption may be
considered to have occurred based on different criteria. For example, this could be
as soon as a farmer starts using new production technologies or, alternatively, only

after a farmer has continuously used the tnnovation for a number of years.

Many researchers (Abadi Ghadim, 2000; Marra ef al., 2003; Pannell ez al., 2000)
argue that farmers want risk to be better defined so they can choose how to respond
to it. One way to better define risk is by reducing both spatial and aspatial
uncertainty in the decision to adopt. It is often assumed that farmers wish to avoid
risk, however, Pannell et a/. (2000) point out that farmers do not necessarily want to
avoid risk but rather to define the risk so they can respond tactically and

dynamically.

Farmers have a reputation for making type | errors (incorrect rejection) (see Table
4.1) due to risk aversion (Antle, 1987; Kingwell, 1994). However, type II errors

(incorrect adoption) also occur frequently in the developing world, for example,
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when farmers adopt land use changes that have severe environmental effects.
Information that identifies areas of likely benefit reduces type I errors, while

information that identifies where likely loss would occur reduces type Il errors.

Pannell et a/. (2000) found that whilst risk aversion is a factor in farm management,
it is only one of a number of factors that affect farm management decisions. For the
farmer, it is more important to “solve the whole problem roughly than to attempt to

solve part of the problem extremely well” (Pannell et af., 2000).

Studies have shown that farmers’ perceived risk is modified as more information is
acquired (Marra et al., 2003). Seemingly contradictory studies on the relationship
between risk-aversion and adoption can be explained as follows. A risk-averse
farmer will take the option with the lowest perceived risk. Sometimes this is
adoption and sometimes non-adoption. The idea that risk-seeking farmers will adopt
sooner than risk-averse farmers assumes that adoption is always subjectively riskier
than the status quo and that adoption is always the better option (Marra et af., 2003).

However, as the above analysis shows, this is not always the case.

Marra et al. (2003) review the role of uncertainty and risk in agricultural adoption.
They found that learning reduces uncertainties and tmproves decision-making and
that attitudes to risk affect adoption of new technologies. Risk-aversion does not
always mean that farmers will be slower to adopt, but generally that the farmer wants

more certainty around the benefits of adoption.

Abadi Ghadim (2000) investigated how risk perceptions and risk attitudes affect
adoption behaviour for farmers considering adopting chickpeas and other legumes in
Western Australia. He concluded that risk has an important influence on adoption
decisions and that learning is an integral part of adoption under risk and uncertainty.
While farmers in Western Australia vary widely in their levels of risk-aversion, for
all farmers it is important to reduce uncertainty about an innovation as quickly as

possible (Abadi Ghadim, 2000).

Although the preceding results come from studies in developed agriculture, it is

assumed that farmers in developing agriculture approach adoption decisions in a
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similar fashion. These farmers are, however, likely to be more risk-averse, because

one negative outcome could severely threaten their livelihood.

Cramb (2000) argues that the decision to adopt or not is really a range of responses,
depending on the farmer’s goals and circumstances. A number of authors have
researched adoption decisions in tropical agriculture, often from a farming systems
research or participatory research approach (e.g., Peters et al., 2003a; Staal ef al.,
2002; Stiir ef al., 1999; Thomas and Sumberg, 1995). These authors generally agree
that the decision to adopt is complex and that participatory, farmer-centred models
are needed to fully appreciate farmers’ decision-making practices. Neill and Lee
(2001) found levels of knowledge and understanding of the decision-makers to be
fundamental to adoption, along with agronomic characteristics and economic
contexts. Shively (1997) found risk to be an important factor in adoption decisions
for low-income farmers in the Philippines. Perceptions of risk in the adoption
decision are very important, and managing these risks appropriately is particularly

significant for resource-poor farmers in the developing world.

4.1.3 Sources of Uncertainty

Uncertainty in the decision problem comes from a number of sources. Firstly, there
is uncertainty for the farmer about which forage species exist, and what their
properties are. Furthermore, a farmer may be uncertain about how to obtain the
seeds and at what price — certainly availability and cost will be subject to variability.
Also, uncertainty exists about forage species’ management and environmental

requirements. This uncertainty is due both to variability and ignorance.

There will also be uncertainty due to climate variability and soil variability. Rainfall
and temperature values for a given location will exhibit both metrical and structural
uncertainty (see Table 3.2), but arguably the most difficult to manage is temporal
uncertainty caused by ignorance about future climate. In particular, extreme climate
events, such as droughts or hurricanes, expose farmers to greater risk. Soil
characteristics, such as fertility, may change over time, depending on which crops are

planted and how they are managed.
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Uncertainty may also be present regarding the impact of a forage species on livestock
and milk production. A final source of uncertainty is translational uncertainty,
introduced when an expert or extension worker communicates recommendations to a
farmer. Note that this uncertainty can exist on both sides of the communication, that
is, there may also be uncertainty for the expert regarding the farmer’s requirements

due to translational uncertainty.

Hardaker et al. (1997) classify the sources of risk in agriculture as financial risk,
resulting from the method of financing, and business risk. The latter is comprised of
production risk, market risk, institutional risk and personal risk. Production risk
relates to the sources of uncertainty outlined above, namely, the unpredictable nature
of weather and uncertainty about performance of crops and livestock (Hardaker ef
al., 1997). Institutional risk relates to government changes in laws and rules, and
personal risks are those that arise from major life crises or illness of the farmer or
their household. See Hardaker et al. (1997) for a comprehensive review of risk and

decision analysis in developing agriculture.

4.1.4 Reducing Uncertainty Through Knowledge

Some, but not all, of the uncertainty mentioned above can be reduced through
information. Uncertainty about forage characteristics and uses can be reduced by
providing information to the farmer via extension agents and publications.
Information on availability and cost can also be provided by local extension
agencies. Similarly, information on the impact of improved forages on livestock and

milk production can be provided in this way.

Temporal uncertainty relating to climate is more difficult to reduce. However,
information regarding which forages better withstand certain extreme events can help
farmers to manage the associated risk. Also, information on the likelihood of
extreme events occurring could be very useful. Various researchers have focussed
on the temporal uncertainty associated with future climate change in agriculture (e.g.,
Gu et al., 1996; Jones and Thornton, 2003), and deal with it using techniques ranging
from conventional simulation modelling to belief network approaches (Gu et al.,

1996).
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Trials play an important role in information gathering to reduce uncertainty. Farmers
typically use trials to decide whether to adopt or reject a new technology. Both
improved skills and information can be learned from trialing, both of which can

reduce uncertainty and therefore assist decision-making around adoption or rejection.

Translational uncertainty can be addressed by investigating how information 1s

provided to farmers and how information is gathered from farmers.

As previously discussed, where uncertainty cannot be reduced, it should be
described. Digital maps provide an excellent opportunity for visualising spatial

uncertainty.

4.2 Modelling the Forage Selection Decision

As discussed in the previous chapter, the purpose of modelling in this case is to
predict the success of forage species in specific niches, with particular biophysical,
socio-economic and management characteristics. Functional models support the

tactical decision of the farmer regarding which forage species to select.

A model is only useful to the degree that it represents reality in a way that supports
decision-making. Therefore a model needs to be consistent and accurate and, at the
same time, reduce the complexities of the decision-making process to make them

manageable.

Simply developing a model of species’ suitability is only part of the process. The
results of the mode] need to be made available to the decision-maker. An appropriate

way of delivering this information 1s by means of a Decision Support System (DSS).

4.3 Decision Support Systems

43,1 Types of Decision Support Systems

The purpose of a DSS 1s to provide data, procedures and analytical capability leading
to better-informed decisions. Typically, a DSS consists, therefore, of data, a rule-

base, algorithms for combining these and a user interface. A DSS is not necessarily
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computer-based, but in this discussion it 1s assumed a DSS is implemented in a

personal computer environment.

Spatial Decision Support Systems (SDSS) are a special case of DSS, with an

explicitly spatial component, usually formed by integrating GIS technology.

Expert Systems (ES) are a subset of DSS, developed in the field of Artificial
Intelligence (Al). An ES usually consists of a knowledge base and an inference
engine (Jennings and Wattam, 1994). An ES is usually not static, and new rules in

the knowledge base can be ‘learned’ by the system over time.

DSS may comprise a combination of data and knowledge as a hybrid of data-based
DSS and knowledge-based ES. The rule base and algorithms are developed in this

case to work with both sources of information.

4.3.2 Decision Support Systems in Agriculture

Agricultural DSS have been in existence since at least the mid 1970s (e.g.,
SIRATAC, a cotton production decision system, and EPIPRE, a European wheat
DSS, were both begun i 1976 [McCown et a/., 2002]). For farmers in the
developed world, there are hundreds of DSS available, covering production decisions

relating to crops such as cotton, wheat and pasture (McCown et al., 2002).

A body of research is emerging on the ‘crisis’ of DSS research in agriculture, that is,
DSS use in agriculture is declining and not living up to its apparent early promise
(see for example Cox, 1996; McCown ef al., 2002; Walker, 2002). The journal
‘Agricultural Systems’ devoted a special issue (Issue 74, 2002) to reviewing the low

adoption and frequent abandonment of DSS by farmers.

Barriers identified in the adoption of agricultural DSS in the developed world include
complex design and presentation of DSS, unrealistic requirements for monitoring
data and the need for the farmer to own a computer {Cox, 1996). Walker (2002)
adds urelevance and inflexibility of many DSS, lack of user confidence and

mstitutional and political barriers, among others.
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Less research has been done on the adoption of agricultural DSS in the developing
world, but it can be expected that issues related to data requirements and computer
ownership would be intensified. Hall ez af. (1997) researched the implementation of
GIS-based DSS for facility planning in developing countries, and found barriers
including inadequate computing skills, poor computing facilities and poor data
availability and quality. The same barriers would presumably exist for agricultural

DSS adoption in developing countries.

The development of a DSS therefore requires more than just the implementation of
the DSS itself. Walker (2002) lists six essential steps (Table 4.2), starting with needs
analysis and followed by design and implementation. Development often stops after
implementation, and, as Cox (1996) points out, there is poor understanding among
researchers of what an agricultural DSS does when farmers or other practitioners use
it. Walker's final three steps are capacity building, fostering uptake and monitoring
and evaluation. Cox (1996} also argues that for a DSS to be successful, it needs to be

embedded in a wider social process.

Fostering uptake
Monitoring and evaluation

1 Needs analysis

2 Design

3 Implementation

4 Capacity building
5

6

Table 4.2 Steps in DSS development.

4.3.3 Spatial Decision Support Systems

A spatially enabled DSS requires spatial input data, spatial analysis capabilities
and/or spatial output. Because a considerable amount of uncertainty stems from
spatial variation, a spatial DSS (SDSS) can provide the information necessary to
manage some of this uncertainty. The spatial component is usually implemented

using GIS technology.

A large number of SDSS exist within agriculture (see for example Berger, 2001;
Booth, 1995; Hill, 2000), and even more in wider fields that could be applied to
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agricultural decisions. As spatial data becomes more available and reliable in the
developing world, SDSS are emerging that are specifically targeted to these
environments, with encouraging results. Crossland e al. (1995) found unequivocal
evidence that addition of GIS technology to the decision environment for a spatially
referenced decision task reduced the decision time and increased the accuracy of

mdividual deciston-makers.

Staal et al. (2002) found that the inclusion of spatial analysis improved their models
of technology uptake on smallholder dairy farms in Kenya. However, Hall ef al.
(1997) found that although in some developing countries (e.g., Chile and Costa Rica)
GIS infrastructure is in place, expertise had not yet evolved to the point where

practitioners had been able to develop their own DSS.

A number of SDSS have been developed for use in agriculture. GRAZPLAN
(Donnelly et al., 2002) was developed by Commonwealth Scientific and Industrial
Research Organisation (CSIRO) in Australia for consultants and farmers to improve
the profitability and environmental sustainability of grazing enterprises. KEOPS
(Girard and Hubert, 1999), a knowledge-based model to characterise the strategic
pattern of farms, is used for grazing management on French sheep farms. PROMOD
{Mummery and Battaglia, 2001) is a eucalyptus plantation growth model that can be
used to produce site productivity and suitability maps. Agri-FACTS (Thomas e/ al.,
1999} 1s a web-based spatial application providing data to support suitability analysis

of cropping systems alternatives.

FloraMap (Jones and Gladkov, 1999) was developed for predicting the distribution
of plants in the wild, but can been applied to agricultural contexts. GEOMOD?2
(Pontius et al, 2001) models the spatial pattern of land-use change over time and
was developed specifically for application in the tropics. ASSESS (Veitch and
Bowyer, 1996) is a system designed to select suitable sites for waste disposal
assessment, but could conceivably be used for other land use decisions. ILUDSS
(Zhu et al., 1996; 1998) 1s a knowledge-based spatial decision support system for
strategic land use planning in rural areas. The assumption is that spatial land-use

models could be adapted for agricultural decision-making.
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Many other non-spatial agricultural DSS exist. In most cases, incorporating spatial
analysis into non-spatial agricultural DSS would enhance these tools. White et al.
(2002) assessed the use of GIS in agronomic research and conclude that GIS is

under-utilised for analysing and presenting results.

4.3.4 Expert Systems

There is often an overlap between DSS and ES, with many DSS in reality depending
on expert knowledge. Some of the agricultural DSS mentioned above could
therefore also be classed as agricultural ES. A large number of ES exist, many for
medical diagnosis. Here, the focus is more on ES related to natural resources,

particularly those with a spatial component.

The Automated Land Evaluation System (ALES) is based on a decision tree built
using expert knowledge (Rossiter, 1996). PROSPECTOR (Hart er a/, 1978)
provides expert consultation on mineral exploration. The inference engine is based
on Bayesian probabilistic reasoning. PROSPECTOR has been converted into an
SDSS by coding the decision rules into a GIS framework (Katz, 1991). ArcWofE
(Desnoyers, 2001) is an add-on to ArcView (ESRI, 2001} designed to incorporate
weights of evidence (WofE), an essentially Bayesian approach in a spatial context.
Expector (Corner ef al., 2002) 1s a spatially enabled expert knowledge system used in

soil mapping.

Common evaluation criteria to compare expert systems have not yet been developed,
but Seidel er af. (2003) suggest examining criteria including .accuracy,
comprehensiveness, usefulness and user-friendliness. A method of validation often
applied is to validate cases where a group of experts have previously agreed upon a

diagnosis or outcome (Seidel ef al., 2003).

4.3.5 The Case for an SDSS for Selecting Forage Species

As reported in Chapter 2, barriers to adoption of forages include unfamiliarity, lack
of understanding of longer-term benefits, biophysical limitations and possibly

cultural and social limitations. An SDSS can address these barmers, firstly by
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making information available to farmers (increasing familiarity and describing long-
term benefits) and secondly by matching forage species to unique biophysical and

socio-economic niches.

A spatial forage DSS would therefore combine data, knowledge and appropriate
algorithms to provide recommendations (Figure 4.1). However, rather than just
providing recommendations, it is important that the SDSS support decisions
appropriately by providing as much relevant information as possible. This
information can include maps and graphs of species’ suitability and species
factsheets. In addition, uncertainties can be explicitly shown in both the maps and

the graphs.

Which forage?

v

Algorithms RecommendationsJ

Knowledge

Information

Extern 151
xternal factors : Decision

Figure 4.1 A spatial forage decision support system.

4.4 Information Sources for a Forages DSS
A substantial amount of data exists in trials databases, spatial databases and
literature, as well as expert knowledge which may or may not be formalised in

knowledge bases.



4.4.1 Forage Databases

Forage databases contain data on trials carried out on various species at various
locations over time. Information expected to be recorded for each trial would be a
measure of the success of the trial and characteristics of the trial conditions. Success
of a trial can be measured in a number of ways, such as how well the plants establish
and how much they produce. Information on the trial conditions could be as basic as
location coordinates, but could also include climate data, soil information and details

of the management of the trial site.

Databases also exist containing ‘passport data’ (Barco et al., 2002), that 1s, data on
the locations where species accessions have been collected in the wild. This
provides information on where a species can survive, however, passport data does

not allow any conclusions to be drawn about where the species will thrive.

Existing forage databases include the International Network for the Evaluation of
Tropical Pastures (in Spanish, Red Internacional de Evaluacion de Pastos Tropicales
[RIEPT]) and the Network for Research on Livestock Feed in West and Central
Africa (in French, Réseau de Recherches en Alimentation du Bétail en Afrigue

Occidentale et Centrale [RABAQC]), both maintained by CIAT (Barco et al., 2002).

4.4.2 Expert Knowledge

Most expert knowledge on forage species is not formalised. However, apart from the
experts (including farmers) themselves, a number of sources of expert forage
knowledge exist. Although many booklets aimed at assisting tropical forage
selection have been produced (e.g. Argel and Villareal, 1998; Argel et al., 2000;
Argel ef al., 2001; Lobo and Acufa, 2001; Sandoval et al., 2001), each publication

tends to focus on only one species.

Publications that cover a number of species are generally aimed at a specific
environment, such as Central America (Peters ef af., 2003b), Costa Rica (Lobo and
Solano, 1997} or South East Asia (PROSEA, 2001; Stir and Horne, 2001; Stiir et al.,

2002), or at a specific management system (Holmann and Lascano, 2001).
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There 1s inevitably overlap between databases and knowledge bases, as knowledge is
often derived from data. Publicly available databases and knowledge bases usually
both have mbuilt search mechanisms. The main distinction drawn here is that a
database contains objective, measurable data (hence usually from trials), whereas a
knowledge base contains more subjective data, often compiled from a number of
sources and experts. One of the benefits of a DSS is the ability to combine both data

and knowledge as input information.

The Tropical Grasslands Society of Australia has developed ‘Pasture Picker’
(Partridge, 2003), a knowledge base of tropical and subtropical grasses and legumes,
searchable by selecting average rainfall, soil type and tolerance to frost, drought,
waterlogging and heavy grazing. Fact sheets exist for each species, with further

information on adaptation and production, and on varieties within the species.

FAQ’s Ecocrop (FAQ, 2000) contains climate and soil requirements for 1,710 plant
species, and permits the identification of plant species for defined uses, including
some forages. The Amimal Feed Resources Information System (AFRIS) (FAO ef
al., 2004a) contains information on a variety of feed resources including grasses and

legumes.

The International Institute of Tropical Agriculture’s (IITA) database of legume
characteristics, LEXSYS, has been converted to Lexsys KBS (University of Wales,
2003), a decision support system for the integration of legumes into tropical farming
systems. It contains information on 91 parameters for 125 legume species, mcluding

detailed citations.

The CAB International compendia (CABI, 2003} include a forestry compendium and
a crop protection compendium, incorporating information on species and countries.

Some of the knowledge base in the compendia includes some tropical forage species.

NSW Agriculture’s (2001} ‘Pasture Planner’ includes detailed information on around
25 tropical grasses and legumes, alongside temperate pastures suitable for New

South Wales {Australia).



64

In addition, a number of other plant knowledge bases include some tropical forage
species, such the United States Department of Agriculture Plants Database (USDA,
2002).

A recent development is the Selection of Forages for the Tropics (SoFT) project, an
ACIAR-funded collaborative initiative between CSIRO, the Queensland Department
of Primary Industries (QDPI), the International Livestock Research Institute (ILRI)
and CIAT (Peters ef al., 2003a).

443 Spatial Reference Data

Spatial reference data is not necessarily used for modelling per se, but is useful in
referencing the location of other data. Biophysical data is any data on the biological
and physical components of the environment and socio-economic data is any data
involving social as well as economic factors. Both biophysical and socio-economic
data, as well as spatial reference data, are required to inform the decision support

system. To this end, existing sources of spatial data are examined here.

A number of sources exist for spatial data worldwide, at country level and at
subregional level. The spatial data used for this project has primarily been sourced
for Central America, with the caveat that it should be available for the entire
developing world. The data should also be ready to use for modelling purposes,

without a significant processing overhead.

A selection of spatial reference data readily available for Central America is
summarised in Table 4.3. Scale refers to the scale at which the data is intended to be
viewed or used. A scale of 1:1,000,000 means that lmm on a printed map
corresponds to 1,000,000mm, or 1km, on the ground. In digital mapping, view scale
is not statically confined, but the smaller the scale the less detailed the spatial data

will be.



Data Scale Extent Source

Country boundaries 1:1,000,000 Worldwide ESRI, 1992

Department, province, | 1:120,000 — Central America | Winograd ef al., 2000

municipality, district, | 1:1,500,000

canton

Roads 1:200,000 - Central America | Winograd ef a/., 2000
1:1,000,000

Rivers 1:1,000,000 Worldwide ESRI, 1992

Populated places Worldwide NGA, 2004

Table 4.3 Description of existing spatial reference data.

Administrative boundaries are readily available in GIS format. The Digital Chart of
the World (ESRI, 1992) comprises a number of thematic layers, including country
boundaries, roads and rivers. However, roads data is also available at larger scales
from the Indicadores de Sustentabilidad Rural CD-ROM (Winograd et al., 2000) for
Central America (hereafter referred to as the Indicadores Atlas). This CD-ROM is
also the source for department, province, municipality, district and canton boundaries
for Central American countries, compiled from a variety of sources. The US
National Geospatial-Intelligence Agency maintains a database of foreign geographic

feature names and locations, including all populated places (NGA, 2004).

4.4.4 Spatial Biophysical Data

Biophysical data (Table 4.4) includes lkm® resolution surfaces for elevation,
temperature and precipitation. At the time of commencing the project in 2001, this
was the smallest resolution available for all surfaces. More recently, 90x90m
resolution surfaces have become available, but have not yet been incorporated in this
rescarch. When data is presented in raster (grid) format, rather than vector format
(see for example Bonham-Carter [1994] for a discussion on vector and raster
formats), it 1s convenient to refer to resolution rather than scale. Resolution refers to
the size of one gridcell (or pixel) on the ground, and is commonly measured in km or
degrees (or subdivisions of these). The length of one degree varies with latitude, and
is around 111km at the equator. A 30 arc second grid is often referred to as a 1km®
grid, and 3 arc second resolution is approximately equivalent to 90m. As with scale,

grids can be visualised at larger resolution than intended but the level of detail will




remain at the original resolution.

distance units.
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In the following tables, resolution is given in

Data Resolution / Extent Source

Scale
Elevation (m) lkm x 1km Worldwide NOAA, 1999

100m x 100m | Central America | Jones, 2001

90m x 90m Worldwide USGS, 2003
Temperature lkm x 1km Central America | Jones, 2001
(monthly minimum, Worldwide Hijmans et al., 2004a
mean and maximum)
(degrees Celsius)
Rainfall (monthly lkm x 1km Central Amernica | Jones, 2001
mean), (mm) Worldwide Hijmans et a/., 2004a
Ecosystems 1:250,000 Central America | World Bank et al.,

2003

Holdridge lifezones® | 55km x 55km | Worldwide Leemans, 1990

(30 minute)
FAO soil units 1:1,000,000 Worldwide FAQ, 2002
Derived soil 55km x 55km | Worldwide Batjes, 1997
properties (30 minute)

Table 4.4 Description of existing spatial biophysical data.
* Holdridge lifezones are ecosystem classifications developed for the tropics and subtropics
{Holdridge. 1967).

The 1km® digital elevation model (DEM) was developed at CIAT, derived from the
US National Oceanic and Atmospheric Administration’s DEM at 30 arc seconds
(NOAA, 1999). Climate surfaces were also developed at CIAT, based on the DEM
and around 18,500.climate stations in the tropical world. These were produced at
various scales, including a 1km? surface for Central America (Jones, 2001). A 90 x
90m DEM has also recently become available (USGS, 2003). Hijmans et al. (2004a)
are developing worldwide 1km® grids of monthly total precipitation, monthly mean,

minimum and maximum temperature and 19 derived bioclimatic variables.

Various classifications of ecosystems are available. The World Bank ef a/. (2003)
have produced a dataset of 140 ecosystem classes for Central America. Holdridge
Lifezones (Holdridge, 1967) are ecosystem classifications developed for the tropics
and subtropics. A global spatial dataset exists for Holdridge Lifezones (Leemans,

1990).
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In addition, soil maps exist at various scales for various areas within Central
America. At a worldwide level, FAO publishes digital soil maps with derived soil
properties (FAO, 2002). They are based on the FAO/UNESCO soil map of the
world at an original scale of 1:5,000,000. The International Soil Reference and
Information Centre (ISRIC) has used these to derive 30 x 30 minute grids of soil

properties, including soil pH and soil organic carbon density (Bages, 1997).

Soil data is problematic for a number of reasons. Firstly, it is generally not available
at a large enough resolution to represent its heterogeneity. In the case of FAO data,
30 minute resolution equates to approximately 55km. Soils generally vary at a much
finer scale than this. In addition, deriving soil properties from soil types is not
always a straightforward process. Although various characteristics such as pH and
fertility have been derived, there is not necessarily always a direct correspondence
between soil type and soil characteristic. Finally, soils are often mixed types, and
therefore attempting to classify soil type at any given location will be a complex
process. The distribution of soils over space is complex and no single soil
classification can be used at all locations and at all levels of resolution (Burrough et

al., 1997),

Soil classifications can be derived with a number of different purposes in mind. If
the classification process has no relationship to plant growth variability, then it is
unlikely to be useful for the decision problem. Despite these issues with soil data, it
is clear that soils have a strong influence on forages, as with all plants, and soils must
be considered in any approach to recommending forages to farmers. Appropriate

ways of incorporating soils information are discussed in subsequent chapters.

4.4.5 Spatial Socio-Economic Data

Socio-economic data that could be useful includes population, market access and,
specifically where forages are concerned, other factors such as locations of milk
processing plants and livestock density (Table 4.5). Census data is available at
municipality level and has been summarised in a number of different digital
publications, including the /ndicadores Atlas (Winograd et ai., 2000), the Atlas de
Honduras (CIAT, 1999) and the Atlas Rural de Nicaragua (MAGFOR et al., 2001).
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Censuses vary from country to country (Table 4.6). The Center for International
Earth Science Information Network (CIESIN), the International Food Policy
Research Institute (IFPRI) and the World Resources Institute (WRI) have created a
Gridded Population of the World (GPW) spatial database (CIESIN er af., 2000)

based on censuses around the world.

Data Scale Extent Source
Population density | 2.5 x 2.5 minute | Worldwide CIESIN er al., 2000
Population census | Municipality Central America | Various, 1984 - 1995
Access to market 1:2,500,000 Central America | Winograd et al., 2000
Livestock density | Municipality Honduras CIAT, 1999
Nicaragua MAGFOR et al.,
2001

Table 4.5 Description of existing spatial socio-economic data.

Country Year Source

Costa Rica 1984 Ministerio de Economia, Industria y Comercio,
Direccion GGeneral de Estadisticas y Censos

El Salvador 1992 Ministerio de Economia, Direccion General de
Estadisticas vy Censos (DIGESTYC)

Guatemala 1994 Instituto Nacional de Estadistica (INE)

Honduras 1988 Direccion General de Estadisticas y Censos, Secretaria
de Coordinacion vy Presupuesto (SECPLAN)

Nicaragua 1995 Instituto Nacional de Estadisticas y Censos (INEC)

Panama 1990 Contraloria General de la Republica, Direccion de
Estadisticas y Censo

Table 4.6 Census Data for Central America. Source: Winograd ef al. (2000).

CIAT has developed a methodology for creating accessibility surfaces, based on a
cost-distance algorithm. Access to market for Central America was included in the
Indicadores Atlas (Winograd et al., 2000), and an ArcView add-on is now available
to create other accessibility surfaces (Eade ez a/., 2000). Access to market could be
useful information in determining the value of increasing milk and meat production
through forages. In particular, milk needs to be delivered to market quickly. In the
case of cash crops, access to market becomes even more relevant. Other market
information, such as market price over time, also exists that can be spatially

referenced (CIAT, 2003).
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FAQ’s Agriculture Department (2004) publishes maps and data at country level on
livestock population and production. However, country level data is not so useful for
analysis at subregional level. Some countries carry out agricultural censuses, so
some livestock data is available at municipality level. Two examples of this are the
data available in the Atas de Honduras (CIAT, 1999) and the Atlas Rural de
Nicaragua (MAGFOR et al., 2001).

4.4.6 Other Spatial Data

The two atlases mentioned above contain a wealth of GIS data, but, obviously, only
for Honduras and Nicaragua respectively. The Atlas de Honduras (CIAT, 1999)
contains biophysical, socio-economic and agricultural data at various scales, with the
aim of supporting analysis after Hurricane Mitch in 1998. This atlas also contams
digitised FAO-derived soils, as well as soils digitised from a Honduras soils map at
1:500,000. This classification includes more detail than the FAO-derived maps,
mncluding soil depth, drainage, pH, slope, colour, texture and soil name. The A#as
Rural de Nicaragua (MAGFOR et al., 2001) also contains biophysical and socio-
economic data, including soil data, climate, population, economic activity, illiteracy,

education, housing, water, sanitation and agriculture, all at municipality level.

The Indicadoves Atlas (Winograd ef af., 2000) contains environmental and
sustainability data for Latin America and the Caribbean, and includes datasets on
climate, soil, land use and population, to name a few. In total the Indicadores Atlas

covers over 100 indicators of sustainability.

4.5 Summary

This chapter has explored the various elements required to address the decision
problem.  Firstly, risk and uncertainty in agricultural decision-making were
discussed, concluding that risk is very important for farmers, and that attitudes to risk
can be affected by increasing knowledge and reducing uncertainty. Sources of
uncertainty in agricultural decision-making were then considered, as well as where

and how these uncertainties can be reduced and described.
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Functional models are needed to support farmers” tactical decisions, but the results of
the model also need to be made available to the decision-maker. A DSS, and in
particular an SDSS, was identified as a well developed method for achieving this
aim. Because information sources include not only data but also knowledge, it 1s

appropriate to develop an SDSS incorporating expert system concepts.

Examples have been given of available information for addressing the decision
problem, including trials databases, expert knowledge bases, literature and a wealth

of spatial data.

This thesis now turns to the problem of developing a functional model to address the
decision problem, concentrating on the issues of uncertainty and knowledge. The
availability and appropriateness of data mentioned above is also held in

consideration.
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CHAPTER 5. CRITERIA FOR MODEL SELECTION

In the previous chapters, the decision problem was described and explored. The
problem can be split into two components, namely, the strategic decision and the
tactical decision. In this and the following chapter, approaches to modelling the

tactical decision using functional models are discussed.

A number of significant issues have already been identified. These include the
importance of dealing appropriately with uncertainty and knowledge in developing a
functional model. Also key is the ability to present model output in such a way that

decisions are facilitated.

5.1 Modelling the Decision Problem

The question of which species are suitable where can be phrased in a number of ways
(Table 5.1). The problem can be interpreted from an ecology perspective (natural
occurrence of species) or from a niche modelling perspective (suitable cultivation of

species). FEssentially, all reduce to the same decision problem: “What is the

likelihood that species « is suitable at location 577

Ecological modelling Niche modelling

Will species o be found at location | Will species « be successful at location

ik Jils

What is the likelihood that species | What is the likelihood that species o will

« will be found at location /7 be successful at location 57?

Which species will be found at Which species are likely to be successful

location /77 at location /3?7

Where will species a be found? Where 1s species « likely to be
successful?

Table 5.1 Decision problem formulations.

If the characteristics of location  are denoted by biophysical vanables X, X>, ..., X,
and a measure of success of species a, or measure of whether species « is present, 1s

denoted by Y, then the relationship between these is given by:
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Yz.f(Xl'!XZ""’Xn) (51)

where f1s some function.

In terms of the decision problem, Y is called the response variable (also known as
dependent variable), and X, X, ..., X, are the predictor variables (also known as

independent variables).

Although the purpose of ecological modelling is different from that of niche
modelling, it is clear that there is significant overlap in their approaches. There is an
extensive body of literature on ecological modelling that examines the question of
where a plant or animal species might be found, based on environmental factors.
The resulting models are known as habitat models or distribution models, and they
relate the geographical distribution of species to their environment (Guisan and
Zimmermann, 2000). Clearly, the decision of what to plant where 1s related to

habitat modelling.

There i1s also some overlap with multivariate classification techniques, such as
techniques for classifying remotely sensed data. Remotely sensed data refers to
imagery acquired from terrestrial, aircraft and satellite sensors (Civco, 1993). The
techniques used in both types of modelling are largely similar; the distinction 1s
drawn here because there tend to be two separate bodies of literature. In subsequent
discussion, only habitat models will be referred to, but it is understood that the

discussion applies equally to classification techniques.

In this chapter, a number of selection criteria are proposed, against which models
may be evaluated. These include the input data requirements of the model, the type
of output and the complexity of the model. Critical for the decision problem is the
ability of the model to include both data and knowledge. Complexity of the model
affects both structural uncertainty and translational uncertainty. Complexity relates
directly to the model structure (structural uncertainty), and reducing complexity of
the model structure reduces associated uncertainty. Because the structure of the

model 1s then also easier to communicate, translational uncertainty is reduced.
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The types of data required for modelling are then discussed, followed by a discussion
on model validation. In the following chapter, a number of models will then be

reviewed, based on the criteria identified in this chapter.

5.2 Model Selection Criteria

As discussed in Chapter 3, the purpose of a model is to represent a complex real
world system. Models can improve understanding of systems and can be used to
predict or describe an outcome within a system. A model usually begins as a concept
of how a real world system functions (conceptual model) and is then developed mto
a structure (structural model). Once the structure of the model has been defined,
parameters are specified. The model specification process usually assumes that the
overall model structure is correct, and it attempts to calculate the best parameters for

the model.

Passioura (1996} distinguishes between two types of models in the field of
agronomy. ‘Scientific models’ aim to improve understanding of a system. In the
case of agronomy, this is an understanding of the physiology and environmental
interactions of crops. In contrast, ‘engineering models’ aim to be functional,
providing sound predictions and sound management advice to farmers. Passioura
argues that ‘scientific models’ are qualitative and chiefly educational in nature.
However, the aim of agronomic simulation models should be accurate prediction on
which to base sound advice. Models should be as simple as possible, require as little
data as possible and be based on simple robust empirical relationships between
vanables (Passioura, 1996). The approach is still scientific, but in order to be applied

to practical problems, it also needs to be functional.

Although the models considered here are not agronomic simulation models, the goal
1s for the model to be used by farmers and those advising them. Therefore, while the
model should be scientifically and statistically robust, it is clear that the approach
should lean towards ‘engineering models’, as defined by Passioura. Hence two of
the criteria for model selection are to keep model complexity low and to minimise

the amount of input data required, both in physical space and in attribute space.
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Guisan and Zimmermann (2000) point out that some models are better suited to
reflect theoretical findings and therefore model selection should not depend solely on
statistical considerations. They consider different types of models and, in particular,
the differences between empirical models and causal models. Empirical models are
also known as phenomenological or statistical models. Causal models have also
been termed mechanistic, physiological or process-based (Guisan and Zimmermann,
2000). Empirical models are statistical data-driven models. Conversely, causal
models base predictions on biologically functional relationships and are therefore

knowledge-driven.

Austin (2002) stresses the importance of ecological knowledge in habitat modelling.
When ecological theory is inadequate, incorrect assumptions can be made about the
structure of the model. In addition, when using spatial data in habitat modelling,
classical statistical methods are often inappropriate because of spatial uncertainties
and biases. According to Mugglin et al. (1999), spatial data is usually multivariate,
multilevel, misaligned and often non-randomly missing (i.e., systematically missing).
Both of these observations strengthen the case for requiring expert knowledge to be

able to be incorporated in the model.

Openshaw (1996) shows how different methods are needed depending on the
complexity of a system and scientific precision required (Figure 5.1). Recalling
Rowe’s (1994) classification of uncertainty, scientific precision relates to metrical
uncertainty and system complexity relates to s‘tructural uncertainty. Conventional
statistical and mathematical models are appropriate for simple systems with little
complexity or uncertainty. However, if complexity is high then structural
uncertainty will remain. Where a large amount of data is available but little i1s known
about the structure, ‘model-free’ methods can be more suitable. ‘Model-free’
methods include Artificial Neural Networks (ANN), genetic programming and
automated model-design systems (Openshaw, 1996). As complexity and imprecision
increase and less numerical data is available, fuzzy systems may be more
appropriate. These methods may not reduce metrical uncertainty as well as
mathematical models do, but by better reflecting system complexity, they may

reduce more structural uncertainty.
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Mathematical models

Model-free methods

Fuzzy systems

Scientific precision

System complexity

Figure 5.1 Openshaw’s (1996) model of system complexity vs. scientific precision.

Even though Openshaw (1996) applies the word ‘model’ to mathematical methods
only, ‘model-free’ methods and fuzzy systems are, arguably, still models, as they

attempt to model the real world.

Guisan and Zimmermann (2000) state that most ecological models need to find a
trade-off between precision (empirical models) and generality (causal models), a

view that agrees with Openshaw’s (1996) treatment.

The main criteria for model evaluation for this decision problem are summarised in

Table 5.2.

Ability to work with small datasets

Ability to work with expert knowledge
Ability to predict range of species’ responses
Low structural complexity

Easy to communicate

Easily implemented spatially

Table 5.2 Model evaluation criteria.

5.3 Data for Modelling

The types of data that are needed for modelling should be considered before the
modelling approach is chosen. All models require response and predictor variables,
but the nature of the variables, as well as quantity and quality of available data,

influence mode! selection.
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In GIS, representation of spatial data can be vector (points, lines and polygons) or
raster (uniformly sized grid cells). In the kinds of models under discussion here, the
area being modelled is generally raster-based, as this representation lends itself more
readily to map algebra, and is, as Tomlin (1990) puts it, “better suited to
mterpretations of where”. However, data may sometimes be represented by
polygons of varying shapes and sizes. Predictor variables are derived from the
characteristics of factors within each cell or polygon, and the response variable is a

value representing the predicted value or classification for that location.

Habitat and classification models are usually biophysical in nature, as opposed to
social or economic. Biophysical here indicates that the model describes a
biophysical outcome, but the system itself is not necessarily entirely biophysical.
For example, species’ habitats may be influenced by human activity, such as road
construction. In particular, in deciding what crop or forage to grow where, 1t 1s
evident that socio-economic factors become important, such as distance to market
and risk-aversion of the farmer. Therefore, in biophysical models the response
variables are biophysical in nature, but the predictor variables may also be social and

economic.

Data relating to the response variable in habitat modelling usually consists of a
number of geo-referenced locations where the species in question is known to exist,
1.e., presence data. In addition, sometimes data exists on where a species is known to
not exist, i.e., absence data. However, absence data is much less reliable than
presence data. In ecological habitat modelling, when a species is not found in a
location, it may be true absence or it may be that the species was present but not
found (false absence). It is also possible that the environmental conditions are
favourable for the species, but the species 1s not present for other reasons. In niche
modelling, absence of trials is often not because the species is unsuitable, but for any
one of a number of other reasons. It 1s critical, therefore, to discriminate between

absence of evidence and evidence of absence.

If the question 1s not only whether the species will survive but how well it will thrive,
then more is needed than binary presence/absence data. A gradient is needed ranging

from unsuitable, through marginally suitable and suitable, to highly suitable.
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Data for response variables may also be represented in a knowledge base, in addition
to, or instead of, geo-referenced data. In this case, information about conditions
under which the species will be present or thrive is known, usually formalised in a
rule base. This information may be based on geo-referenced data, but not necessarly
from the area under investigation. Although this implies extrapolation to locations
outside of the geographic area, the attributes (such as climate) of locations in the area

under investigation should lie within the range represented in the database.

Independent data is the data that is known, or suspected, to be related to the habitat
of a species (or the classification of land-use). Depending on the species these may
include climatic, topographical, geclogical, edaphic and hydrological factors, as well

as socio-economic factors.

5.4 Model Validation

An important step in model selection and development is model validation.
Validation is necessary to evaluate how well the model performs and to determine
where perhaps further investigation is necessary. Model validation is classically
performed by retaining a portion of the dependent data as a testing or validation set.
By applying the model to this data, an estimation can be made of how well the model

is performing.

When there is not enough data available to withhold a portion for validation,
techniques such as jack-knifing can be used. In a set of » data points, jack-knifing
uses # — /{ data points to predict the value of the remaining one point. This process 1s
iterated » times, resulting in a validation data set the same size as the original data

set.

In classical statistical analysis, model performance is usually measured with statistics
such as the correlation coefficient (R), the chi-squared statistic (x°), or, if sample
sizes are small, binomial probabilities (Anderson ef al., 2003). When the model
output is binary or discrete, other measures of performance are necessary. With
presence/absence data, model performance 1s often analysed using a confusion

matrix (Table 5.3).
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Observed
Predicted | Present Absent
Present True presence | False presence
Absent False absence | True absence

Table 5.3 Confusion matrix of predicted classification vs. observed classification.

The confusion matrix can be interpreted in a number of ways, including overall
performance (total correct classification rate), sensitivity (in the sense of percentage
where presence 1s correctly predicted), specificity (percentage where absence is
correctly predicted), omission error (false negative rate), commission index (false
positive rate), Cohen’s kappa statistic, the odds ratio and the normalised mutual

information statistic (NMI) (Anderson et a/., 2003; Manel e al., 2001).

The validation techniques described above assume that there is enough data to allow
robust statistical analysis. Guisan and Zimmermann (2000) suggest that in most
statistical modelling, for each predictor variable used there should be at least ten
observations in the least represented category of the response variable. Therefore, if
we consider a simple binary classification model with only two predictor variables,
then at least 40 observations are required for statistical robustness, and more if the

data is unbalanced.

When this is not the case, validation becomes problematic. Coenen et af. (2001)
recommend carrying out a number of test cases and comparing the results to those
suggested by a domain expert. In the decision problem, this is the situation
encountered. For each forage species, a limited amount of data is available for
model specification, and even less for validation. Development of a causal model
should reflect expert knowledge, so validating in this way will indicate whether this

is in fact the case.

It is important to bear in mind that the model that correctly classifies the largest
proportion of the test set is not necessarily the best model. In such a model, metrical
uncertainty may be reduced at the expense of structural uncertainty. Reducing some,
but not all, metrical uncertainty may be sufficient to allow the decision-maker to

reach a valid conclusion. Reducing structural uncertainty may be more valuable to
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the decision-maker, and this might be better achieved by considering a model that
draws on expert knowledge. Translational uncertainty may be reduced by ensuring

the model structure and output are transparent and easy to communicate.

5.5 Summary

In this chapter, criteria for model selection were introduced. For the functional
model, the decision problem can be stated as follows: “What is the likelihood that
species ¢ is suitable at location 7”7 In selecting a model to address the decision
problem, a number of criteria should be considered. The first criteria are the ability
to work with small datasets and expert knowledge and the ability to predict a range
of species” responses, rather than just ‘presence’ and ‘absence’. In addition, the
model must display low structural complexity and must be easy to communicate and

to implement spatially.

In the following chapter, a number of models will be considered that have been
applied to habitat distribution modelling and classification modelling. Each model
will be assessed based on the criteria given above. In addition, consideration will be
given to how the model can be validated and the applicability of the model to tropical

forage selection.
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CHAPTER 6 MODELLING APPROACHES

The previous chapter discussed the purpose of modelling and identified a number of

criteria to be considered in selecting a modelling approach.

The discussion will now turn to a description and comparison of potential modelling
approaches. Techniques discussed are those most commonly used in environmental
habitat modelling. Some methods are more empirical in nature and others are more
causal. Each method is described, followed by some examples of how the method
has been applied in the literature. Relative strengths and weaknesses are considered,
followed by a brief discussion of possible applicability of the method to forage (and

crop) selection.

6.1 Logistic Regression

6.1.1 Description

Traditional statistical approaches have been shown to be appropriate methods for
modelling habitat distribution in many cases, especially when a large amount of data
is available. However, it is generally recognised that environmental functions tend
not to be linear, and therefore multiple linear regression is not often used. As Austin
(2002) points out, agreement has not yet been reached on the expected shape of a

response curve to an environmental gradient, but the shape is unlikely to be linear.

Logistic regression, however, is a popular technique in habitat modelling and is
capable of producing good results, providing a number of assumptions are met.
Logistic regression is useful for predicting a binary response from either continuous
or categorical predictors. In the case of habitats, the binary response is typically

presence/absence.

The logistic regression equation is of the form:

logit(P) = B, +Y_ B, X, (6.1)
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where f3; are the regression constants and X; are the regression variables. Logir is the

natural logarithm of odds, written as:

logit(P) = 11{1 :D P] (6.2)

If ¥ = logit(P), then, from Equations 6.1 and 6.2, P can be written as:

¥

P (6.3)

1+e'

P is therefore a transformation of a multiple linear regression and is generally

interpreted as ‘presence’ if P> 0.5 and ‘absence’ if P < 0.5.

Examples of models that have been developed using logistic regression are the
distribution of otters (Barbosa et al., 2003), swamp antechinus (Gibson ef al., 2003},
wolves (Glenz et al., 2001), red-crown cranes (Li et al., 1997) and buzzard nests
(Austin et al., 1996). In addition, Aspinall (2002) used logistic regression to vahdate
classification of vegetation species from remotely sensed data, and Brooker ef al.
(2002) applied the technique to infectious disease prediction. The predictors used in
these studies range from two variables and 57 sites (Gibson et al., 2003) to 25
independent variables and 6,187 sites (Barbosa er al., 2003). Some of these methods
also employ discriminant analysis to develop thé predictive models. Some also use
Principal Components Analysis (PCA) to reduce the number of factors used as

dependent data (for example, L1 ef al., 1997).

6.1.2 Strengths and Weaknesses

Strengths of logistic regression are that the method is well defined and statistically
robust and various statistical measures exist for describing how well the model
performs. However, a drawback of statistical models is their dependence on a large

amount of data, both for specification and validation.
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As with all regression problems, variables must also be uncorrelated. Incomplete
attribute data cannot easily be accounted for in logistic regression, and instead,
techniques must be utilised to complete missing data. Schafer (1997), for example,
discusses various techniques  for estimating and imputing missing values in
databases. An additional weakness of logistic regression is that assumptions are

made about the statistical distribution of the data (/ogit transformation of linearity).

As the output of logistic regression models is binary, they are generally validated by
mterpreting the confusion matrix of observations correctly and falsely classified

(Table 5.3).

6.1.3 Applicability to Tropical Forage Selection

Although logistic regression 1s a robust method, it is dependent on relatively large
datasets. In selecting suitable species for farmers in the tropics, a method is needed
that works with relatively sparse datasets. The output of these models could feasibly
be interpreted as a continuum from unsuitable to suitable, rather than as binary
presence/absence. This would be necessary in a model used to predict species’

success in tropical agriculture.

6.2 Generalised Linear Models and Generalised Additive Models

6.2.1 Description

Generalised Linear Models (GLM) and Generalised Additive Models (GAM) were
first developed in the 1960s and have since been used extensively in ecological
research (Guisan er al., 2002). GLMs are extensions of linear models, allowing for
non-linearity and non-constant variance structures in data. GAMs are a further
extension of GLMs, where the only underlying assumption is that the functions are
additive and the components are smooth (Guisan et al., 2002). These models are
particularly useful in ecology modelling because underlying data 1s usually highly

non-linear and may take on many different distribution forms.

The equation for a GLM can be expressed as follows:
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EW)=LP=p,+3 B X, (6.4)

where f3; are the regression constants, X; are the regression variables and Y is the
response variable. LP is a linear predictor, £(Y) is the expected value of Yand gisa
link function. The distribution of ¥ may be any of the exponential family of
distributions, and the link function may be any monotonic differentiable function
(Guisan ef al., 2002). When a binomial distribution is used with a logistic link then

this approach is equivalent to logistic regression (Hirzel and Guisan, 2002).

(GAMs are data-driven rather than knowledge-driven, with the shape of the response
curve determined directly from the data (Lehmann, 1998). Therefore, they cannot be

easily described using equations, but in general take the form:
Yoo flX))+g(X,)+..+h(X)) (6.5)

where Y is the response variable, X; are the predictor variables and f g and 4 are

various functions.

Both GLM and GAM have been used successfully in habitat modelling for a number
of species. Laurance (1997) applied GLM with Poisson regression to predictions of
bettong abundance. Carey and Brown (1994) used GLM with a log link function to
identify suitable sites for a rare orchid in a future changed climate. Guisan er al.
(1999} used GLM to predict multiple plant distributions. Lehmann (1998) applied
GAM to submerged macrophyte distribution and Lehmann er al. (2002) used GAM
to predict natural distribution and species abundance of ferns. Seoane er af. (2003)

modelled the distribution of breeding birds with GAM.

6.2.2 Strengths and Weaknesses

GLMs and GAMSs have the advantage over logistic regression that assumptions on
the distribution of the data are relaxed, and ecologists tend to prefer them for this
reason. Higher-order interactions can be accounted for and, with GAM, any

response curve shape is possible. In addition, unlike regression models, GLM will
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always vield predictions within the limits of observed values (Guisan and
Zimmermann, 2000). However, these models still require relatively large amounts of
data for specification. Guisan et al. (1999) found that GLM performs well with large
amounts of data, but not so well for rare or uncommon species with only a small
number of ‘presence’ records. Welsh ez al. (1996) also found the fit to be poor for
GLM for rare. species. Some techniques have been developed to deal with this
problem, such as zero-inflated regression (Pearce and Ferrier, 2001; Welsh ef al.,

1996).

Elith et al. (2002) report that few ecological GLM present predictions with an
indication of the uncertainty involved. Where uncertainty is considered, the focus is
usually on metrical uncertainty. However, their work shows that attempts can be
made to deal with other types of uncertainty, such as considering multiple GLM

models to help describe and reduce structural uncertainty.

6.2.3 Applicability to Tropical Forage Selection

In essence, GLM and GAM are extensions of logistic regression and therefore face
many of the same issues regarding applicability to forage selection. The methods are
well suited to ecological presence/absence data, in particular where little is known
about the relationship between predictor variables and species’ presence. In the
current decision problem, expert knowledge is available to help define these
relationships and large amounts of species data often are not, making all data-driven

methods less likely to be suitable.

6.3 Artificial Neural Networks

6.3.1 Description

Artificial Neural Networks (ANN} is an artificial intelligence technique based on a
representation of the neural interactions in the human brain. Information is passed
through a number of nodes, resulting in values or classifications. The model 1s
initially assumed to be completely unspecified. The model learns how to classify

data based on a training data set. Information flow can be in both directions (feed
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forward and back propagation), and any number of levels of intermediate nodes can

be present, although in practice most models use one or two (Figure 6.1).

Input Hidden Output
nodes nodes nodes

Figure 6.1 ANN with four input nodes, three hidden nodes in one intermediate level
and two output nodes.

ANN has only recently been applied to the problem of ecological modelling.
Bradshaw e al. (2002) used an ANN to model suitability of habitats for fur seal
breeding and Drumm et al. (1999) modelled the habitat preference of the sea
cucumber using ANN. Neural nets are often used more successfully for automated
classification problems, for example, Skidmore ef a/. (1997) mapped forests using
GIS and remotely sensed data based on a neural network and Pijanowski ez af. (2002)
looked at land use change. De la Rosa ef al. (1999) evaluated land vulnerability
using decision trees and neural networks. Civeo (1993) used an ANN for land cover
classification and mapping and Mas ef a/. (2003) modelled tropical deforestation

using an ANN.

SPECIES (SPatial Evaluation of Climate Impact on the Envelope of Species)
(Pearson ef al., 2002) couples an ANN with a climate-hydrological process model,
and was used to model plant habitats under future climate scenarios in Great Britain.
Antonié er al. (2003) modeiled the spatial distribution of soil groups in Croatia, using

feed forward neural networks.
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6.3.2 Strengths and Weaknesses

Neural nets have been shown to deal well with non-linear dynamic systems,
discriminating between actual data and noise and processing previously
unencountered patterns (de la Rosa ef al., 1999). ANN can therefore be a good
approach when there is sufficient data for training and where little knowledge exists

about the biologically functional relationships in the data.

Mas et al. (2003) found that ANN can easily be overspecified, reducing
generalisation capabilities, and also that ANN tell us nothing about the functional

form of the relationships between variables.

Therefore, it can be problematic to interpret the results of ANN modelling, precisely
because of the lack of causal structure. The method offers no discernable benefits
over other methods when data is sparse and the system is biologically fairly well
understood. In fact, Manel et «/. (1999) found some clear disadvantages when
comparing ANN to conventional statistical methods, such as increased processing

time and lack of identification of causal relationships.

6.3.3 Applicability to Tropical Forage Selection

In tropical forage selection, sparseness of data and the requirement of being able to
incorporate expert knowledge make ANN a less promising method. For crops or
forages for which little 1s known about their ecological processes, but where a large
dataset is available, ANN could be useful, but this situation 1s unlikely to realistically

occur.

6.4 Classification and Regression Trees

6.4.1 Description

Classification and Regression Trees (CART) (Figure 6.2) are derived from the
concept of decision trees. A decision tree is a representation of all scenarios that can
occur, depending on a sequence of decisions (Pearl, 1988). The purpose of decision

trees is to analyse the utility of a given sequence of decisions, starting with a parent
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node, and choosing an option at each decision node. This leads to branch nodes,
where either new decisions are required or an outcome and its associated utility are
given. In the latter case, the node is known as a leaf node. CART are similar in that
a decision is taken at each node depending on the observation value. Leaves of the

tree represent resulting classifications.

Parent node

S

('\/ yifx>i
ifx<i Decision node Branch node
(Regression) Decision node

(Classification)
fy=j ) ify=17

v yJ l ify=k )

Leaf node Leaf node Leaf node Leaf node

Class A Class B Class A Class C

Figure 6.2 Classification and Regression Tree. x is continuous, ) is categorical.

Classification and Regression Trees are thus called because input data can be both
categorical (classification) and continuous (regression); the output however is always
categorical. When CART consists of only categorical data, it is sometimes referred
to as a Decision Tree, even though in reality classification is being carried out rather

than decision analysis.

When a decision node relates to a continuous variable, regression analysis is used to
define a rule that splits the dataset into two or more partitions. The rule is chosen,
based on the data, to provide the greatest homogeneity within groups and the greatest
heterogeneity between groups. When a decision node relates to a categorical

variable, the dataset 1s partitioned into single categories or groups of categories.

Splitting of data into branches continues until some predefined limit is reached, such

as number of data points in each leaf, total number of nodes or number of levels in
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the tree. Various algorithms exist to determine the optimal size of a tree and to

decide when to branch further and when to prune back.

Although decision node rules and the shape and size of the tree can be specified

based on expert knowledge, in practice CART are usually data-driven.

CART is a technique that has only recently been applied to ecological habitat
modelling. Debeljak et al. (2001) modelied red deer habitat suitability using
machine-learned regression tree modelling, with nine independent variables. The
output was presence/absence (inside home range / outside home range). They then
combined models for four animals into a generic model based on expert opinion.
Huettmann and Diamond (2001) predicted seabird distribution using both GLM and
CART. Their model used 18 independent variables with nine seabird species.
Kobler and Adamic (2000) identified brown bear habitat using automated machine
learning to create a decision tree knowledge base, using 37 independent variables.
They found that their decision tree mostly agreed with existing domain knowledge.
De’Ath and Fabricius (2000) evaluated CART to analyse abundance of soft coral.
Iverson et al. (1999) applied regression tree analysis to examine potential distribution
of tree species under future climate change. Andersen ef af. (2000) modelled desert

tortoise habitat using CART.

CART has also been used in determining physical properties. Summerell e al.
{2000) modelled clay distribution by buildin‘g a decision tree using recursive
partitioning. Lawrence and Wright (2001) applied CART to image classification
using remotely sensed data. Evans and Caccetta (2000) used a decision tree
classifier based on satellite images and landform data to identify areas at risk from

dryland salinity.

Other data-driven rule-based methods include Genetic Algorithm for Rule-Set
Prediction (GARP), an expert-system, machine learning approach to predictive
modelling. It iteratively uses rule selection, evaluation and testing to produce a rule-
set describing the species” habitat. The rules include environmental envelope
definitions, logistic regression and categorical rules (Stockwell and Peterson, 2002).

According to Anderson et al. (2003), GARP has proven successtul in predicting
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species’ distribution in a wide variety of situations. It is especially useful with

presence-only occurrence data.

6.4.2 Strengths and Weaknesses

Researchers have found that CART can deal with non-linear relationships, high-order
interactions and missing values, whilst being simple to understand and yielding

interpretable results (De’ Ath and Fabricius, 2000).

Decision trees require a large amount of data to yield robust results, and can be
sensitive to unbalanced data (i.e., discrepancy in the number of observations in each
class) (Lawrence and Wright, 2001). However, where there is sufficient training

data, CART generally performs well.

McKenny and Pedlar (2003) point out that the level of precision suggested by the
splits at each node is probably not realised in the natural world. Because CART
works by deciding a classification locally at each node, uncertainty surrounding the

classification decision is not easily dealt with.

Although decision trees are usually built using machine-based learning, expert
opinion can be incorporated in the decision rules (Debeljak ef af., 2001). Decision
trees can also be useful for discovering patterns that can then be used to define a
knowledge base. Decision trees are usually designed to predict presence/absence,

although with enough data they can be used to classify multiple discrete states.

De’Ath and Fabricius (2000) found CART to be superior to linear models in their
application.  Andersen er al. (2000) found that CART facilitated clear and

interpretable analysis.

Pontius er al. (2001) demonstrated that data-driven rule-based systems can be
designed to work with data which varies in completeness, precision, currency and
accuracy. Stockwell and Peterson (2002) found that genetic rule-based approaches

such as GARP can develop accurate models based on relatively few data points.
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As with other presence/absence models, decision trees are usually validated by
counting true and false presences and absences. As the output of decision trees 1s
always categorical, multi-state models can be validated by comparing correctly and

incorrectly classified training data.

6.4.3  Applicability to Tfopical Forage Selection

The amount of data required to specify robust trees is a drawback in the case of
predicting species success for smallholder farmers in the tropics. However, the fact
that expert opinion can be incorporated relatively easily is beneficial. In addition,
trees can be easily interpreted for biological meaning. 1t is not clear, however, how
to deal effectively with uncertainty in decision trees. CART could be a useful tool
for organising data and incorporating expert knowledge. However, unless large
amounts of data are available, other more knowledge-driven approaches are probably

more appropriate for tropical forage selection.

6.5 Environmental Envelopes

6.5.1 Description

Environmental envelopes, or habitat envelopes, define an envelope in multi-
dimensional attribute space within which the species is expected to be found. A
number of different algorithms have been used to define these envelopes. A
rectilinear envelope is equivalent to a very simple classification tree, and this concept
of simple classification rules has long been used to derive classifications of

vegetation and ecosystems (see for example Holdridge lifezones [Holdridge, 1967]).

With environmental envelopes, the response variable tends to be presence/absence,
with responses classified as ‘present’ (or ‘suitable’) if they fall within a given
percentile for all variables. An additional class of ‘marginal’ is often added for
responses that fall within that percentile for some factors but outside for others

(Figure 6.3).
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Figure 6.3 Environmental envelope for two factors, after Skidmore ez al. (1996).

The most basic environmental envelopes are rectilinear. However, more
sophisticated algorithms have been developed for defining environmental envelopes,
including minimum bounding polygons and fuzzy clouds. In some cases, a habitat
may be comprised of multiple, non-adjacent envelopes (e.g., FloraMap {Jones and

Gladkov, 19991).

Environmental envelopes are often formalised in specialised software packages with
built-in GIS functionality. BIOCLIM (Busby, 1991) uses climate variables to form a
multi-dimensional rectilinear environmental envelope for specific species.
HABITAT (Walker and Cocks, 1991) extends the concepts of BIOCLIM, using
convex polytope (multi-dimensional polygon) envelopes rather than rectilinear
envelopes. BIOCLIM and HABITAT create continuous envelopes in multi-
dimensional attribute space, including all data points (or all points within a given
percentile). Therefore, any new location will be classified as ‘suitable’ if all its
attributes” values fall within the given range. DOMAIN (Carpenter et al., 1993)
creates envelopes based on a point-to-point similarity metric known as the Gower
metric, which indicates the degree of similarity between a new location and the most

similar location in the database.

Booth and Jones (1998) used climatic mapping to define environmental envelopes

for trees in Latin America. Booth (1995; 1999) combined climatic mapping with
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growth simulation models to predict where trees will grow and how well. The main
difference between BIOCLIM-like models and climatic mapping is that BIOCLIM
was designed to study natural distributions, whereas climatic mapping programs are

designed to assist plant introductions (Booth, 1999).

FloraMap (Jones and Gladkov, 1999) computes a climate probability model based on
a set of species’ collection points (known presence). PCA is used to produce a
probability distribution in multiple dimensions. FloraMap also allows disjoint
habitats to be defined for a single species (for example, native and naturalised
populations of a species may have different distributions). In essence, FloraMap
produces sophisticated fuzzy environmental envelopes, based only on species’

occurrence locations.

Biomapper {Hirzel et al., 2001) is software implementing Ecological Niche Factor
Analysis (ENFA) to compute species’ habitat suitability based on presence only data.
ENFA is similar to PCA 1n that it reduces predictor vanables to a few uncorrelated
factors. Hirzel ef ai. (2001) explain that with ENFA, however, these factors retain

ecological meaning.

6.5.2 Strengths and Weaknesses

A major advantage of environmental envelopes is the fact they can readily be
interpreted in biological terms. This also means that where data is lacking, expert

opinion can be used to delineate envelopes.

Environmental envelopes are usually validated using data not employed in the
specification process. However, as with other methods reviewed, problems can arise
when the data is only presence data, although some methods (e.g., Biomapper) claim

to overcome these.

6.5.3 Applicability to Tropical Forage Selection

Environmental envelopes have already been used extensively for crop selection in

tropical agriculture. Most databases on crop adaptation store environmental data in
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formats that lend themselves to mapping using envelopes, even if this approach was
not initially intended. For example, EcoCrop (FAQO, 2000) lists minimum and
maximum environmental criteria for various crops, sometimes including marginal
boundaries. Therefore, environmental envelopes are a highly suitable method for use

in tropical forage selection.

6.6 Fuzzy Rule-Based Methods

6.6.1 Description

Fuzzy logic (Zadeh, 1965) seeks to relax the crisp and deterministic classifications
imposed by Boolean logic. Fuzzy membership generalises Boolean logic by
assigning the value 1 to the state ‘true’, 0 to the state ‘false’ and allowing values

between these two numbers. An example of a fuzzy membership function 1s given

0 x<a
H(x)= 1—a as<x<h (6.6)
b—a
1 x>b

where a is the limit below which x does not belong to the set and 5 is the limit above
which x does belong to the set. All values of x between a and b are said to have
fuzzy membership of the set and z(x) is known as the fuzzy membership function.
The shape of the function in Equation 6.6 is constant when x is less than a or greater
than b (0 and 1 respectively) and linear when x lies between these values. Other
function shapes are possible, including, but not limited to, triangular, trapezoidal,
power, exponential and Gaussian functions (McBratney and Odeh, 1997). The only

requirement is that x [0, 1].

Methods are needed to combine multiple predictor variables X;. In Boolean logic,
two operators exist, namely, AND and OR. Fuzzy logic extends these concepts to
fuzzy AND and fuzzy OR and adds the operators fuzzy algebraic product, fuzzy
algebraic sum and fuzzy gamma operator (Bonham-Carter, 1994). Fuzzy AND and
fuzzy OR are defined in Equations 6.7 and 6.8 respectively:
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XX gy X)) = MINCUCX), 1Ko (X)) (6.7)
#(XI st:--‘an) = M(ﬂ(Xl ),M(Xg),---,,u(X,,)) (68)

Fuzzy AND is defined by the smallest fuzzy membership of all variables and fuzzy
OR is defined by the largest fuzzy membership of all variables. Fuzzy algebraic

product is calculated from the product of all fuzzy memberships:

(X, X s X)) = ]‘[ (X)) (6.9)

i=l

Fuzzy algebraic sum is defined by:

w(X,, X, X)) :1—1’—?[(1—;1()([)) (6.10)

i=l

The two operators above both take information from all variables, but fuzzy
algebraic product is always ‘decreasive’ (i.e., the result is always less than or equal to
the smallest fuzzy membership) and fuzzy algebraic sum is always ‘increasive’ (i.e.,
the result is always greater than or equal to largest fuzzy membership). Gamma

operation (Equation 6.11) is a combination of these two operators:

1=y

X Xy X,) =[1‘[ ,u(X,-)} *(hﬁ(l—mxa)} 6.1

where v is parameter between 0 and 1.

Numerous applications of fuzzy logic to soil science are found in the literature,
including soil mapping (Assimakopoulos ez al., 2003), salinity changes (Metternicht,
2001) and soil classification and fuzzy measures of imprecisely defined soil
phenomena (McBratney and Odeh, 1997). Sui (1992) applied fuzzy logic to land
evaluation in China. Sasikala and Petrou (2001) assessed the risk of desertification

after a forest fire using fuzzy logic. Mackinson (2000} describes CLUPEX, a fuzzy
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logic expert system. MacMillan ef al. (2000) applied a fuzzy logic rule-based system

for automated landform classification.

6.6.2 Strengths and Weaknesses

GIS modellers have long argued that traditional Boolean logic is too deterministic to
satisfactorily represent imprecisions and uncertainties in spatial data (see for example
Sui, 1992; Zhang and Goodchild, 2002). Fuzzy logic allows both spatial uncertainty
and attribute uncertainty to be explicitly modelled. Fuzzy logic also allows the

inclusion of imprecise or vague expert knowledge.

However, one drawback is that the choice of which fuzzy operator to use is
subjective. In addition, if inadequate expert knowledge is available, then rule
definition may become problematic. Nevertheless, Mackinson (2000) successfully
combined knowledge from a variety of sources in the knowledge base for CLUPEX.

He points out that when knowledge is incomplete, rules can still be applied.

MacMillan ez al. (2000) highlight the advantage of knowledge-based classifications
over data-driven classifications for fuzzy rule bases, namely, that with a data-driven
approach, the classification rules will be optimised for a particular site and
knowledge-driven models will apply more generally. This observation applies for all

data-driven and knowledge-driven models.

6.6.3 Applicability to Tropical Forage Selection

Fuzzy theory could be a valuable tool for forage selection. The many uncertainties,
both in geographical and attribute space, could be addressed using fuzzy
classification. Fuzzy logic provides a many-valued alternative to the binary nature of
traditional Boolean logic, where values are true/false or presence/absence. This
allows for classifications of ‘marginally suitable’, in addition to classifications of

‘not suitable’ and ‘suitable’.
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6.7 Bayesian Probability Models

6.7.1 Description

Bayesian methods provide a “formalism for reasoning under conditions of
uncertainty, with degrees of belief coded as numerical parameters, which are then
combined according to rules of probability theory” (Pearl, 1990). The term
*Bayesian’ derives from Thomas Bayes, whose essay Towards Solving a Problem in
the Doctrine of Chances was published in 1763 (reprinted in 1958). A Bayesian
network consists of a Directed Acyclic Graph {DAG), linking nodes and rules for
propagating probabilities from a parent node to its child nodes (Figure 6.4). DAG
means that all links between nodes are directed (usually a cause-effect link) and that
no loops exist within the network (acyclic). Each node represents a predictor or

response variable.

Y

Figure 6.4 Typical node in a Bayesian schema, after Stassopoulou ef al. (1998).

A simple Bayesian model defines prior and conditional probability distributions for
each node and then uses combination rules to propagate conditional probability
distributions through the network. The probability distributions may be derived from
data, set by experts or defined from a combination of data and expert opinion. This
process of combining probabilities produces conditional probabilities for each
possible outcome. Where a node has multiple parents, a conditional probability table
(CPT) is defined, defining probability distributions for each possible combination of

parent node states.
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The three basic axioms of probability theory for an event X are defined as follows:

0<P(X)=1
P(X)=11f X is certain (6.12)
P(X,or X,)=P(X))+P(X,)if X, and X, are mutnally exclusive

where P(X) is the probability of event X occurring.

A ‘prior probability’ is an initial estimate that may be modified once more
information becomes available. If Y is a response variable, then the prior probability
of Y is denoted P(Y). ‘Joint probability” refers to the probability of two events
occurring together, such as a trial site with low rainfall having a trial with a species
that thrives. This is denoted by P(X, Y), where X is a predictor variable (e.g.,
rainfall) and Y is a response variable. ‘Conditional probability’ is the probability of a
response variable being in a given state, given that a predictor variable is in a

particular state, and is denoted P(Y | X).
Conditional probability can be calculated from prior probability and joint probability:

_P(Y,X)

PY | X) PO (6.13)
From Equation 6.13, Bayes’ inversion formula can be derived:

p(y/m% (6.14)
Probability decomposition 1s given by:

P(Y):ZP(Y!X;.)P(X!.) (6.15)

These equations form the basis for combining and updating probabilities in a
Bayesian network. Further discussion on Bayesian networks can be found in Jensen

(1996) and Pearl (1988), amongst others.
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Bayesian modelling does not seek to predict exact outcomes, but rather the
probabilities of various outcomes, given the effects of the input factors on each
outcome. Therefore, if two variables strongly support a given outcome, then the
combined effect of these two variables will produce a high probability for that
outcome. Conversely, if one variable strongly supports an outcome but another
variable does not, then the probability of that outcome occurring will be lessened.
Uncertain data can be accounted for by reducing the probability that the data will

support a given outcome.

If enough data is available, a Bayesian network can be learned from a database. This
learning consists of both constructing an appropriate structure and calibrating
parameters. Heckerman er al. (1995) suggest approaches to learning networks,

finding high-scoring networks and evaluating leaming algorithms.

‘Weights of evidence’ is a special case of Bayesian modelling, using natural
logarithms of odds, or /ogits (Bonham-Carter, 1994). From Equation 6.2, the logit of
Y given X is defined by:

(6.16)

logit(Y | X)) = ZH[MJ

P(Y | X)

where P(Y | X) is the conditional probability of ¥ given X, as defined above.
Y denotes NOT ¥, and P(Y )= 1 - P(Y).

Based on the odds formulation, the concepts ‘sufficiency ratio” and ‘necessity ratio’
are developed, also known as ‘likelihood ratios’. Taking the natural logarithms of
these ratios yields weights of evidence (Bonham-Carter, 1994). The advantage of
this formulation is that the likelihood ratios, and hence weights of evidence, can be
interpreted to determine the relative importance of evidence, which may be easier for
experts to estimate than probabilities. In addition, the /ogit formulation means that

weights of evidence are additive, which simplifies computation.
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Davis and Hall (2003) discuss the concepts of necessity, sufficiency and relevance,
which are useful concepts in analysing the importance of predictor variables. These
are defined as follows:
PY | X)L, P(Y| X)=0 [necessary condition]
P(Y|X)=1,P(Y|X)<1 [sufficient condition]
PY | X)=1P(Y| ?) =0  [necessaryand sufficient condition]-
O0<P(Y | X)LLO0LSP(Y| }) < I [relevant or partially sufficient condition]

(6.17)

Dempster-Shafer belief models are an extension of Bayesian probability models,
rejecting the Bayesian rule of additivity, in favour of a less restrictive formulation
{Ducey, 2001). In Bayesian methods, ignorance in prior probability distributions 1s
denoted with equal probability assignments. The Dempster-Shafer technigue
introduces the concepts of ‘belief” and ‘plausibility’. The idea is that the true
probability value will lie somewhere between these two values, and the level of
uncertainty is embodied in these values. ‘Belief’ and ‘plausibility’ adhere to the

following relation:

Bel(Y | X)< P(Y | X) < PI(Y | X) (6.18)

where Bel denotes belief and P/ denotes plausibility.

Bayesian probability modelling and related methods have been used in a number of
habitat problems. Aspinall (1992) and Aspinall and Veitch (1993) applied Bayesian
methods to modelling red deer habitats and curlew distributions in Scotland.
Skidmore and Gauld (1996) compared a Bayesian technique with CART and
environmental envelopes. Gu er al. (1996) used a belief network approach to
examine the impact of climate change on faba bean production in Scotland. Asadi

and Hale (2001) applied weights of evidence to map potential gold deposits in Iran.

Ducey (2001) applied Dempster-Shafer theory to forest management decisions. He
found Dempster-Shafer a promising alternative for decision-making in environments
with limited data and considerable uncertainty, where the goal is to select the best

decision from a number of management alternatives. The main strength of the



100

Dempster-Shafer approach is in the way uncertainty ts represented. Belief and
plausibility can be interpreted as lower and upper limits on the possible values of a

probability in any given situation.

Bayesian approaches have also been implemented in conjunction with other
modelling techniques. For example, Mac Nally er a/. (2003) used Poisson regression
together with Bayesian modelling to predict butterfly species richness. Hooten et al.
(2003) modelled plant species distribution using a generalised linear mixed model in

a hierarchical Bayesian framework.

6.7.2 Strengths and Weaknesses

A major strength of probabilistic modelling is the ability to deal with uncertainty.
Because Bayesian methods work with probabilities rather than absolute values,
uncertainties can be explicitly included in the probabihity distributions and
propagated through the model. Another strength is the ability to easily incorporate
expert knowledge. Most people find Bayesian networks easy to construct and

interpret (Heckerman, 1995).

Aspinall (1992) found a number of advantages in using Bayesian methods over
alternatives, including statistical robustness of the methed and the ability to quantify

error and variation.

Seidel et af. (2003) compared rule-based heuristic decision support with Bayesian-
based decision support. They claim that multiplying probabilities better represents

the methods human experts apply than adding values in a rule-based system.

A Bayesian network can also be completely data-driven, with structure and
probability distributions learned from the data. Because the represeptation has
formal probabilistic semantics, it is suitable for statistical manipulation (Heckerman,

1995).
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Proponents of Dempster-Shafer theory criticise Bayesian approaches because of
difficulties expressing incomplete information or partial belief (Ducey, 2001).

Dempster-Shater models overcome this problem.

6.7.3 Applicability to Tropical Forage Selection

The decision problem is characterised by uncertainty, and probability-based methods
are well equipped to incorporate uncertainty. In addition, the ability to incorporate
both data and expert | knowledge makes probability-based modelling appealing.
Bayesian models can have varying degrees of complexity, but even complex models
have clear biological meaning. Probability-based modelling is a promising approach

to the problem of selecting tropical forages.

6. 8 Other Methods

6.8.1 Description

Other methods that have been applied to ecological modelling include Boolean

overlay, Canonical Correspondence Analysis (CCA) and cellular automata.

Boolean overlay is a very simple rule-based method, which is very easily
implemented in GIS packages (see for example Bonham-Carter, 1994). CCA is an
ordination techniqué based on reciprocal averaging of species and site scores (Guisan

and Zimmermann, 2000).

In systems using cellular automata (for example PANTHER [Cramer and Portier,
2001]), the evaluation of a cell may have a direct impact on the evaluation of a
neighbouring cell. This type of system is usually used to define the habitats of
animals that are highly mobile over time, such as panthers (Cramer and Portier,

2001) and brown bears (Kobler and Adamic, 2000).

In the current decision problem, these methods appear less useful than those already

discussed, and hence are not analysed here in further detail.
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6.9 Conclusions
The main models considered were logistic regression, GLM, GAM, ANN, CART,

environmental envelopes, fuzzy rule-based methods and Bayesian probability
models. Some of these methods are empirical, data-driven methods and others are
causal, knowledge-driven methods. Some techniques can be either, or a combination
of both. The criteria of working with small datasets and expert knowledge
simultaneously dictate that models that can be at least partly knowledge-based are
preferable. Models depending mostly on expert knowledge will generally display

low structural complexity and ease of communication.

For the decision problem of selecting forages, environmental envelopes are
promising, and have already been spatially implemented in many habitat distribution
problems. Fuzzy rule-based methods deal well with uncertainty and expert
knowledge. Finally, Bayesian probability methods allow the combination of both
data and knowledge and handle uncertainty well. It is proposed that a simple
Bayesian probability model is well suited to the decision problem. It is envisaged
that environmental envelope concepts and fuzzy rule-based methods display some
overlap with a spatial implementation of a simple Bayesian model. Therefore, in the
following chapter, fuzzy environmental envelopes are discussed, followed by a
discussion on Bayesian modelling, before proceeding to the specification of a

functional model to address the decision problem.

6. 10 Summary

The purpose of this chapter was to review functional models which could be applied
to the decision problem, that is, deciding which species are suitable in which
locations. A number of criteria for selecting an appropriate model were defined,
namely, ability to work with small datasets, ability to work with expert knowledge,
ability to predict the full range of species’ responses, low structural complexity, ease

of communication and ease of spatial implementation.

This review contributes greatly to the process of selecting suitable models for
problems similar to the decision problem discussed in this research. Often, models

are selected and applied with little consideration to alternative models. A number of
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review papers do exist which compare models (see for example Austin, 2002;
Kriticos and Randall, 2001; Guisan and Zimmermann, 2000; Guisan ef al., 1999; Hill
et al., 1997; Manel et al., 1997; Skidmore and Gauid, 1996). The majority of these
only compare two or three techniques, although admittedly this is usually empirical
comparison, and comparing more techniques is likely to be intractable. Only a
handful of papers, however, present a theoretical comparison of a larger number of

methods (¢.g., Kriticos and Randall. 2001; Guisan and Zimmermann, 2000).

The following chapter proposes a probabilistic GIS model to address the decision

problem.
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CHAPTER 7. PROBABILISTIC GIS MODEL

In the previous chapter, a number of models were described which could potentially
be applied to the decision problem. A number of criteria were suggested, and the
most promising models for further investigation were environmental envelopes,
fuzzy rule-based models and Bayesian probability models. Therefore, these
approaches will now be discussed in more depth, and a probabilistic GIS method will

be proposed as a model to adequately address the decision problem.

7.1 Fuzzy Envelopes

Environmental envelopes and rule-base methods were introduced in the previous
chapter. Envelopes are defined in multi-dimensional variable space within which a
species is expected to be found or expected to succeed. Fuzzy rule-based methods
use fuzzy logic to produce a rule-base for classification. Here, a combination of

these two methods 1s considered, which can be termed ‘fuzzy envelopes’.

Consider the forage species Stylosanthes guianensis, for which Ecocrop (FAQO, 2000)
publishes an optimal annual rainfall range of 900-2000mm, an absolute annual
rainfall range of 500-4000mm, optimal soil pH of 4.5 — 6, and absolute soil pH of 4 —
7.7. Recalling Figure 6.3, this information can be graphically displayed (Figure 7.1).
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Figure 7.1 Environmental envelope for S. guianensis related to soil pH and rainfall.



105

The information on where the species is suitable can be written as a series of rules,

namely:

IF soil pH e [4.5,6] AND rainfall € [900,2000]
THEN SUITABLE, (7.1)
ELSE NOT SUITABLE

where the square brackets denote a closed interval, that is, 4.5 < soil pH < 6 and 900

< rainfall € 2000.

In order to generalise the notation, let X be the first predictor variable and X° the
second predictor variable (in the example above, soil pH and rainfall respectively).
and let x’, and x', be the lower and upper limits of X , and let x°, and x°, be the lower
and upper limits of X°. Let S denote suitability of a species, where § = 1 means the °
species is suitable and S = 0 means the species is not suitable. Then the statement

above can be rewritten as:

IF X' e[x),x,]AND X~ e[x},x; ]
THEN § =1 (7.2)
ELSES =0

This can be expanded for # vartables to:

IF X' e[x!,x)JAND X e[x,x; ]AND..AND X" e[x/,x] ]

a7

THEN § =1 (7.3)
ELSES =0

However, as also discussed in the previous chapter, the addition of marginal classes,
where the species is neither wholly suitable nor wholly unsuitable, is often desirable.
This is displayed graphically in Figure 7.1, where S. guignensis will be marginally
suitable if pH is between 4 and 4.5 or between 6 and 7.7, and if rainfall 1s between
500 and 900mm or between 2000 and 4000mm, with the other variable remaining

between the “suitable” bounds. Equation 7.2 then becomes:
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IFX' e[x!,x,JAND X° e[x],x;]

THEN § =1
ELSEIF(X' e[x),x)]OR X' E[XEI),XL.,])ANDXE efx?,x]]
THEN S = (7.4)
ELSETF X' e[x!,x; ] AND (X7 elx,x]]JOR X7 e[x;,x;])
THEN S = s
ELSES=0

where subscript « and £ denote the lower and upper limit of absolute values, and s 1s
some value between 0 and 1 denoting marginal suitability. Expanding this to the

case of n variables, 7.4 can now be written:

IF X' e[x,x,]Vi

THEN § =1

ELSE IF (X’ €[x,,x,]OR X' e[x},x; ) AND X/ efx/,x{ |V}, #i (7.5)
THEN S =s

ELSE S =0

In essence, Equation 7.5 states that if all variables are suitable, then the species 1s
suitable. If all variables bar one are suitable, and one variable is marginal, then
suitability is marginal. In all other cases the species is not suitable. It may better
reflect reality to state that suitability is also marginal if more than one variable is

marginal. This requires only a slight variation to Equation 7.5, namely:

IF X' efx!, x| Vi
THEN § =1

ELSEIF (X' e[x,,x,]JOR X' [x},x,JAND X' e[x],x/ VX' e {X'}, X’ e {X'}
THEN S =

ELSES =0

(7.6)

where {X’! and {X’} are two exhaustive and mutually exclusive sets of all predictor

variables. The suitability value § is therefore set to s when all predictor variables are
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either between optimal and absolute limits (X') or within optimal limits ('), but none

are outside of optimal limats.

If the three categories ‘suitable’, ‘marginal’ and ‘not suitable® are adequate, then
Equation 7.6 is satisfactory to model the suitability of a species. However, in reality,
suitability is likely to be more of a gradient. For example, in Equation 7.6, the
modeller may wish to differentiate between cases where most variables are suitable
and cases where most variables are marginal (but all variables are either marginal or
suitable, that is, § = 5). In this case, § could take two values: 5! meaning marginal
but tending towards unsuitable and s° meaning marginal but tending towards

suitable. Equation 7.6 would then have the added clauses:

IF { X'} > (X))
THEN S=s’

ELSEIF { X' < (X}
THEN S$=5"

It is easy to imagine how this could be extended to multiple values of S. It is also
clear that the meanings of the values of S become linguistically more difficult to
define the more partitions there are of S. Even if it is only an estimate, there 1s merit
in assigning numerical values to S. Rather than assigning discrete values to S, it can
also be assigned a linear function, where the value of S varies between 0 and 1. This
differs from standard linear regression in that above a certain threshold, S is set to a
constant of 1 and, similarly, below a certain threshold, S'is set to a constant of 0. The
function where values vary between 0 and 1 only applies to values within marginal
thresholds. Therefore, the model is constrained to producing values within the

desired range, namely [0,1].

This concept is derived from the theory of fuzzy sets (Zadeh, 1965). Fuzzy logic was

discussed in Section 6.6 1n the previous chapter.
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Fuzzy logic focuses on ambiguities in describing events. In the previous equations,
the value of s is ambiguous. The only information known is that it lies somewhere
between 0 (‘unsuitable’) and 1 (‘suitable’). This information is displayed graphically
in Figure 7.2, with S as a linear function when conditions are marginal. If soil pH is

4.4, say, then suitability 1s 0.8.

A
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0 . oo >

4 4.5 6 7.7 soil pH

Figure 7.2 Fuzzy suitability of soil pH.

For » variables, each with fuzzy marginal suitability, the problem then arises of how
to combine these assignments of suitability. Five fuzzy operators were described in
Equations 6.7 — 6.11. Each of these combines fuzzy values in slightly different

ways, and the choice of which fuzzy operator to use is subjective.

Returning, however, to the idea of discrete values of S, Figure 7.2 can be simplified
into a stepped function where S is marginal (Figure 7.3). The purpose of this
simplification is to facilitate the calculation of suitability when multiple variables are
present. Rather than calculating suitability along multiple continuous gradients, it

need only be calculated for a finite number of cases.

The question still remains of how exactly the values of S should be interpreted.

From Figure 7.3, if soil pH is 6.5, then S=0.75. This can be interpreted as:

o Conditions are 75% suitable (fairly suitablie) for the species

¢ Conditions are 75% likely to be suitable for the species
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¢ Conditions will be suitable for the species 75% of the time

—

suitability

_ _ >
4 45 6 7.7  soil pH

Figure 7.3 Stepped suitability of soil pH.

The first statement creates a new classification (*75% suitable’). The second
statement maintains there are only two classifications (‘suitable’ and ‘not suitable’),
and it assigns a probability value of 75 percent to the class of “suitable’ (implying the
conditions are 25 percent likely to be ‘unsuitable”). The final statement differs from
the second only in that it is now cast in frequentist terms, namely, if 100 instances of
the species are observed with soil pH 6.5, then 75 of them will thrive and 25 of them

will not.

[t may be desirable to extend the model by creating both new classifications and
assigning probabilities to these classifications. Hence, the question may be: “If soil
pH is 6.5, what is the probability that the species will thrive (i.e., conditions are
‘suitable”), what is the probability that the species will survive (i.e., conditions are
‘marginally suitable’), and what is the probability that the species will not survive
(i.e., conditions are ‘unsuitable’)?” Rather than assigning a single probability value
to each possible value of pH, a distribution of probabilities needs to be specified,
specifying the probability that a species will be ‘suitable’, ‘marginally suitable’ or

‘unsuitable” for each value of pH.
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The discussion will now turn to Bayesian models. At the end of the chapter, a
method will be proposed based on the discussion of fuzzy envelopes and the

discussion on Bayesian modelling.

7.2 Bayesian Models

Bayesian models were introduced in the previous chapter, and identified as a good
candidate for modelling the decision problem. The specification of the model
structure is discussed here. The discussion and formulation is drawn from a number

of sources, including Bonham-Carter (1994), Comer ef a/. (2002) and Pearl (1988).

7.2.1 Formulation

Let X be an independent (predictor) variable and ¥ be a dependent (response)
variable, and let y; be a possible state of ¥ and x; be a possible state of X. If ¥ has »

possible states and X has m possible states, then by the total probability rule:

ZP(Y =y)=1

- (7.7)
> P(X=x)=1

i=l

where P(Y = y;} denotes the probability that Y is in state v;.

P(Y) is the probability distribution over all possible states y;. Say ¥ can take three
different states: ‘not suitable’, ‘marginally suitable’ and ‘suitable’. Then the
probability distribution could be written P(Y) = (0.2, 0.3, 0.5), meaning that there 15 a
20 percent probability that the species is not suitable, a 30 percent probability that the
species is marginally suitable and a 50 percent probability that the species is suitable.
Note that the three probabilities sum to 1. This distribution can be displayed
graphically (Figure 7.4).

Note that this has a different meaning from the suitability distribution in Figure 7.3.
Fuzzy sets describe a degree of membership; in the example in Figure 7.3 this is the

degree of membership in a set called ‘suitability’. In Figure 7.4 the interpretation is
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probability of occurrence. It is also possible to define the response variable (and the
predictor variables) as a continuous function, in which case the probability
distribution is characterised by an integral. However, the discussion here will only

consider distributions over discrete states.

———————— —= 50%
———————— F== 40%
- == 30%
- F—= 20%
- == 10%
>

probability l

suitability

Figure 7.4 Probability distribution with three states. N="not suitable’,
M="marginally suitable’, S=’suitable’.

The conditional probability P(¥ = y; | X = x;) denotes the probability of y; being the
state of ¥ given that x; is the state of X. For simplicity this can be written as P(y; | x;).

From Equation 6.13, this can be wrnitten:

P(y,ix,)= ﬁ%’_—x)ﬁ (7.8)

Similarly, the probability of x; given y; can be written:

_ P(x;'ayf)

P(x, |J’i)——}%:_‘;— (7.9)

By definition, the probability of both x; and y; occurring is equal to the probability of

both y; and x; occurring:
Px,,y,)=P(y,x,) (7.10)

From 7.8, 7.9 and 7.10, the following equality can be derived:
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ICALOAED.

P, |3 =—— 5o (7.11)
and similarly:
- POIPE )
P(y, x,) = 2O 1) (7.12)

P(x,)

Now consider a variable X which has m mutually exclusive and exhaustive states,

{x1, x2,..., X}, then Equation 7.13 holds.

P(y)=P(yix)+ Py, )+t P(y,x, ) = Zm:P(.V,-,X,-) (7.13)

J=l

Substituting Equation 7.8 into the right-hand side of 7.13 gives:
P(y)=2 P(x)P(y,|x;) (7.14)
4=l

Substituting Equation 7.14 intc Equation 7.11 gives:

P(x;|y)= ”;P(x"')P(yf | x,)
ZP(JCJ.)P(J;;_ |x,-)

(7.15)

Assuming ¥ has » mutually exclusive and exhaustive states, {v, ¥ ...V., then

Equation 7.16 can be derived in a similar fashion.

PRIV ALEARD 716

> PvP(x; | 3)

Equations 7.15 and 7.16 provide mechanisms for inverting causality. [f the

probability that y; causes x; is known (i.e., the probability of x; given y;), then the
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probability can be calculated that if x; is observed, then y, is the cause, and vice versa.
Framing this in the context of the decision problem, P(y;| x;} is the probability that a
species will succeed under certain conditions (say, rainfall > 800mm). Conversely,
P(x; | ;) is the probability that if a species succeeds, it is because it receives more

than 800mm of rain in that location.

7.2.2  Calculating Posterior Probabilities Under Conditional Independence

The discussion will now consider the problem of calculating the posterior probability
of a response based on multiple predictor variables. Suppose there are / independent
variables denoted X, X°, ..., X' Say each variable can take on m different states,
then let these states be denoted by xﬁ,- where ;=1 tomand k=1 to /. Note, however,
that each variable X* need not have the same number of states m. For example, it
might be convenient to split soil pH into three classes (say ‘acid’, ‘neutral’ and
‘alkaline’) and rainfall into five classes. Therefore, the number of states that variabie
X can take is denoted by m,. Then their possible states can be denoted x";,-k, forjir=1
to my and k = 1 to /. Then substituting a combination of states xA:,-k into Equation 7.16

yields:

P(y)P(X x5, x| 1)
POy s = o P S ey

i

12 [
ZP(yi)P('leasz,-..,xﬂ,
i=l

(7.17)

¥:)

In order to proceed, an assumption of conditional independence (Cl) of the

independent variables X" is made. Independence of variables is defined by:

P(x 50 X)) = P(x3)P(x,) PO = T [ 2D (7.18)
k
and conditional independence can be thus be written:

i
Py XXy | 1) = [ PG5 1 2) (7.19)
k=1
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Substituting 7.19 into the numerator and substituting 7.11 into the denominator of

7.17 gives:
l' k
O TP 1)
Plv.|x x5 x )= ko) . 7.20
s ZTZP(U P(x};, %5, X PO XX e X)) 720
Py}

Simplifying the denominator and substituting with 7.18 gives:

P(yi)n P(x% | y)
LX) = (7.21)

Z{HP(‘M)P(V |le, JERTE sx;/))

P(v,| x|

HER ,15

The product term in the denominator may be moved outside the summation, as it is

independent of i, and rewriting this term in the numerator gives:

P(x,.i.ly;
P(y )1’[[ P ]
Py, |xﬂ, i ,x‘;.f): - - all

1 2 !
Z P(y,|x,, Xigseres xﬂ)
=l

(7.22)

It can be seen that the denominator is a normalising factor and is the same for all 7.

Therefore, it 1s sufficient to compute:

PGS |y
P(y, | x5 2,...,x;,.)ocP(yf)H(g(’+lj;)} (7.23)

for all states y; of Y and then normalise across all values of 7.

If P(_x"‘}k | y;) is known for all 7, j, k then Equation 7.23 can be used to calculate
posterior probabilities under the assumption of conditional independence. However,

it, instead, P(v; xf‘;,-;() is known, then 7.23 can be rewritten using 7.11 to yield:
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/ 3
P2, | X} X ey X)) o P(yi)n {f%_l)ﬂ‘)} (7.24)

We now have methods for calculating posterior probabilities depending on which
conditional probabilities are known. Values of y; denote probability distribution over
variable Y. Given all possible combinations of P(y; | xkjk), for all i, j, k, a full

conditional probability table (CPT) can be created (Figure 7.5).

axs[ Py | LAY [ 48

- P(Y]X8
e

| POYIXT X, X5X0) |

Figure 7.5 Populating a CPT for 6 conditionally independent variables X" with 5
states each and a dependent variable Y with 4 states.

As an illustrative example, consider a case with two predictor variables, each of
which has two possible states (‘high’ and ‘low’), and a response variable, also with
two possible states (‘suitable’ and ‘not suitable’). A full CPT, derived using

Equation 7.24, will provide a value for each conditional probability, namely:

P(y = suitable| x' = high,x* = high) P(y = notsuitable | x' = high,x* = high)
P(y = suitable| x' = high,x* = low) P(y = notsuitable | x' = high, x* =low)
P(y = suitable| x' = low,x’ = high) P(y = notsuitable| x' =low,x* = high)
P(y = suitable| x' = low,x” =low) P(y = notsuitable | x' =low,x” =low)

The dimension of the full CPT will be / + 1 (in the example above, the CPT is three-
dimensional), where / is the number of predictor of variables. If the response
variable has # possible states and each predictor variable »’ has k; possible states, then

the number of entries inthe CPT isn x k; x kax...x k.
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7.2.3 Testing for Conditional Independence

The main assumption in the above approach is that of conditional independence (CI).
If two variables are conditionally independent, then knowing the state of one variable
has no bearing on the probability distribution of another variable once the state of the
response variable 1s known. As Aspinall {1992) points out, the requirement of CI 1s

often not met when dealing with environmental data.

The probability of datasets being conditionally dependent can be lessened by using
fewer datasets. In addition, some authors (Corner et al., 2002; Aspinall, 1992)
question whether CI is operationally important. Corner ef al. (2002) opine that
functtonal independence is more critical. Even if two datasets are statistically
dependent (for example, because they are derived from a common source), if they
have different meanings in the model then it may still be valid to include them both.
Pear] (1988) points out that in human reasoning, dependencies can usually be easily

detected, even 1f this 1s difficult to ascertain numerically.

It may still be important however to consider CI. Various tests can be employed to
check whether data is conditionally independent, including y°, entropy and Cohen’s
kappa (Bonham-Carter, 1994). These tests can also be used to simply compare two
datasets, for example, to check correlation between two maps. Low values mean that
the maps are not correlated and high values imply correlation. This is a different, but
related, concept to conditional independence.. With CI, the aim is to examine
whether the calculated (expected) values for joint probabilitics are close to what

would be observed if the full CPT for two variables X' and X° were known. -

The chi-squared statistic compares expected values with observed values. In testing

for conditional independence between two variables, the observed value is given by:

Obs = P(y, | x},.x3) (7.25)

and the expected value is given by:

Exp=P(y, | x;l)P(yi | x?z) (7.26)
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if X' and X are conditionally independent. Chi-square related to y; is then given by:

ST (P, | x5 = POy )P 1)) 727
” I ‘ Py, |x|,1)P(y|x,22)

Because the values being compared here are probabilities, the value of s
independent of unit of measurement and can be compared with tabled values to test
for conditional independence (Bonham-Carter, 1994). Degrees of freedom in this
test are determined by the number of categories for each variable. A low ¥ (less than
tabled ,(’ at a given level of confidence) means that observed and expected values are
close, and the assumption of Cl holds. A value of y° above tabled ¥ means that the

assumption of CI may be violated.

Testing for conditional independence requires the calculation of observed and
expected probabilities for each pair of variables, using Equations 7.26 and 7.27. Ina
sparse database this calculation may be problematic. In addition, the y° statistic
becomes unstable with low expected counts, as in a sparse database. Where
Py | xi_,-;, x"_,-g) is observable, then the most meaningful indication of CI may be to
simply calculate expected value as a percentage of observed value for all
combinations of ¥, X" and X°. Where P(y; | x"ﬂ, x{,-g) is not observable due to
sparseness of the database or where no data exists, then CI cannot be assessed
numerically. In this case, judgement is necessary to assess whether vanables are
conditionally independent or not. As mentioned above, using judgment to assess

functional independence is considered a valid alternative (Comer ef al., 2002).

Although it has been stated that correlation is not the same as conditional
independence, when correlation between two datasets is low, then the chances of
conditional independence being violated are also low. Therefore, when CI cannot be
empirically tested, testing for correlation may give an indication of whether CI could
be violated. Correlation can be tested using a slightly different formulation of .
Here, the two entities being compared are not observed and predicted values for ¥,

but simply values of X’ and X” independent of ¥. The formula for ¥ then becomes:
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. < (P -PED)
42— J J o)
P 2} s (7.28)

In this case, ¥° does depend on unit of measure and therefore is not the best measure
of correlation. Another possible measure of correlation is the joint information
uncertainty measure (Press ef al., 1986). This is derived from the entropy of the two

variables, defined as:

Entropy( X'y == P(x))In P(x})

7.29
Entropy(X?) = —Z P(sz.)ln P(x,z-) 7

where P(x;') can be interpreted in frequentist terms, namely, the proportion of entries

in a database, or cells in a map, with value x; for variable X

Joint entropy of the two variables 1s then given by:

Entropy(X',X*)=="> P(x/.x )In P(x],x}) (7.30)
i

Joint information uncertainty {/1s then given by:

U= Entropy(X")+ Entropy(X ") — Entropy(X', X7)
Entropy(X") + Entropy(X )

(7.31)
It can be shown that the value of U lies between 0 and 1. The value of
Entropy(X'. X°) is equal to Entropy(X')+Entropy(X°) when the proportions are
perfectly balanced. Conversely, Entropy(X’, X°) tends towards zero when at least
one joint probability Pfx/’, sz ) tends towards zero or tends towards one, that is, the
proportions are unbalanced. Therefore, when U is close to 1, X and X are
correlated and the assumption of CI is likely to be violated. When U/ is close to 0, X’

and X’ are uncorrelated and the assumption of CI is likely io hold.
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A third possibility for measuring correlation between two variables is Cohen’s kappa
(Cohen, 1960), which measures the amount of agreement between two sets of

categorised data. Cohen’s kappa k is given by:

P,=3% P(x].x])

P =3 P(x})P(x) (7.32)
£ -F

K=——
1-F,

where P, is the observed agreement between the two sets and P, is the agreement
expected by chance. The weighted kappa coefficient (Fleiss, 1981) is a
generalisation of the simple kappa coefficient and takes account of classifications

that do not agree through weighting coefficients. Weighted kappa 15 given by:

Wy = ] _(C;' - C_,')z /(C( ‘C})z

})mr = sz,ijp(x:vxi)
i i

P, =2 2w, P(xP(x]) (7.33)
i

— })U\I‘ " ew

" l - }::?'H‘
where C; is the score for column / (usually equal to i} and ¢ 1s the number of
columns. P, is the weighted observed agreement between the two sets and P, 1s
the weighted agreement expected by chance. The weights are constructed following
Fleiss and Cohen (1973) so that 0 < wy < | where i #j and w; = 1 for all /. The

weights are also symmetrical.

However, kappa is only meaningful if the two variables are categorised into the same
number of classes and if each class for one variable corresponds directly to a class
for another variable. Cohen’s kappa was developed for measuring agreement of the
same classification from two different sources, and hence is not so useful in this

situation.
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Chi-squared, joint information uncertainty and kappa are all potential measures
where data is available in discrete categories. When the two datasets being

compared are continuous, then the correlation coefficient R can be used to test for

correlation.

7.2.4 Dealing with Violations of Conditional Independence

If in the set of variables there are two variables X' and X where conditional

independence does not hold, then Equation 7.18 does not hold and it is not true that:
P(x_lflvxj'z V) :P(x,lu ‘}’i)P(xiz | %) (7.34)
which is the two variable case of Equation 7.19.

The product rule of probability states that:

P(xl,x2 | y) =P, | X,y )Pxl ) (7.35)

or equivalently:

Py, x5, L) = Py | x5, v PO, | v) (7.36)

J

It is clear that these are equivalent to Equation 7.34 if and only if:

PGy [0 3,) = PGy |y and P(xy 15, v,) = P(x | 3)) (7.37)
That is, X° is independent of X conditioned on ¥, and X’ is independent of X
conditioned on ¥. It should be pointed out that even when X and X° are dependent,
they may still be independent when conditioned on Y, and conversely X and X

could be independent, yet conditionally dependent with regards to Y.

From the above, it follows that if CI is violated, then Equations 7.20 — 7.24 do not
hold either, and other methods are required to populate the CPT. One approach
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would be to identify where the assumption of CI is violated, and, in these cases only,
specify P(v; | x]_ il xzj-g) instead. With / variables of m classes each (i.e., where each
variable has the same number of classes) and a response variable with » possible
states, if the entire CPT is to be calculated, the number of values required 1s 7 x m™ L.
If the assumption of CI is satisfied, then the number of values is reduced to 7 x m x [.
If CI is violated for one pair of variables, then the number of values is # x (m x (/- 2)
+m?). To illustrate numerically, if there are six variables of five classes each and ¥
has four possible states, then if Cl is satisfied, the number of values to be specitied 1s
120. If Cl is violated for one pair of variables, then the number rises to 180. If Cl 1s
violated for all variables, then the number of values to be specified is 62,500 (Table

7.1).

Situation Values required Numerical example
All vaniables satisfy CI n¥m*! 4*5%6=120

One pair violates CI w*(m*(1-2)+m") 4*(5%4+57)=180
Two distinct pairs violate | #*(m*(/-4)+2%m") 4*(5%2+2%5%)=240
CI

One triplet violates Cl w*(m*(1-3)+nr) 4*(5%3+5 =560
Two triplets violate CI w* (m*(1-6)+2%m) 4*(2*5)=1,000

All variables violate CI n*m' 4*5°=62 500

Table 7.1 Number of values required to populate the full CPT.
The situations described in Table 7.1 are displayed graphically in Figure 7.6.

Another approach is to combine the two variables in some other way. Bonham-
Carter (1994) suggests Boolean operators, principal components and multiple
regression. These methods will generally be more tractable than populating the CPT
for conditionally dependent variables. If a biologically meaningful relationship is
known to exist between two variables, then often equations already exist to allow
them to be combined. For example, it is known that organic matter and phosphorus
both have bearing on soil fertility. Rather than treat them as separate variables, they

could be combined using this known relationship.
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Figure 7.6 Populating a CPT for 6 independent variables X* with 5 states each and a
dependent variable ¥ with 4 states.
A: Clis satisfied for all variables
B: One pair (X°, X*) violates CI
C: One triplet (¥°, X°, X°) violates CI
D: All variables violate Cl and the CPT must be directly populated

Although PCA effectively removes correlation, resulting variables are difficult to
interpret. PCA is therefore only an option if a relatively large amount of data exists

and probabilities will never need to be estimated using expert opinion.

7.2.5 Causality

Causality refers to the direction of flow in a directed acyclic graph (see Section 6.7).
The relationship between two nodes in a graph can be interpreted as ‘causal’, from
cause to effect, or ‘diagnostic’, from effect to cause. Pearl (1988) points out that
rules expressed in causal form are usually assessed more reliably, although many
expert systems, especially medical ones, use diagnostic reasoning. Essentially,
P(Y | X), the probability of ¥ given X, is only meaningful if either X causes Y or X is
caused by Y. Causality is usually temporal, that 1s, if X causes ¥, then X usually
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occurs before Y. If there is no causal relationship, then the model cannot be
ecologically meaningful, even though relationships may exist in the data. In the case
described above, success of a species is in part caused by rainfall being above
800mm annually. Expert knowledge can be very powerful in defining causal

relationships in a Bayesian network.

A database conveys no knowledge of causality, and probabilities derived from a
database are simply frequency counts. However, an expert does think in terms of
causality. In formulating the structure of the model, it is important to consider how
the expert interprets these relationships. This is linked to the concept of belief, in
that an expert’s belief in an event happening is related to the probability of the event
happening. Pearl {1988) stresses that, since beliefs are formed from experiences, it 1s

valid to treat beliefs as frequentist probabilities.

A less intuitive approach in the decision problem is the diagnostic formulation
P(X | 1), that is, the probability that rainfall is above 800mm given that the species is
successful. Obviously, the fact that the species is successful does not cause rainfall
to be above 800mm. However, when an expert is asked to define where a species
will thrive, they will usually give ranges for various vanables. Say an expert states
that a species will thrive when rainfall is between 800 and 1200mm. This is
equivalent to stating that if the species is successful, then rainfall is most probably
between 800 and 1200mm. If the species is not successful, then rainfall 1s most
probably outside this range. This is a diagnostié relationship, therefore, the expert’s
beliefs can be represented by P(X | ¥). Seidel ef a/. (2003), in their analysis of using
experts to specify a Bayesian system, found little difference between asking

questions in the causal direction and asking questions in the diagnostic direction.

7.2.6 Uncertainty Measures

Defining the model in terms of probabilities gives some measure of certainty. For
example, the probability distribution in Figure 7.4 states that the species 1s most
likely to be suitable, but relays considerable uncertainty about this statement (only 50
percent probability). However, it would also be useful to know something about the

certainty of the probability distribution itself. In the case where probability
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distributions are derived from frequency counts in a trials database, if there are many
different trials for a species under the same conditions (but at different locations),
then a high certainty can be associated with the probability distribution. Conversely,
if only a few trials have been recorded, then the probability distribution is very

uncertain.

When probability distributions are elicited using expert knowledge, these measures
can also be applied, depending on how much certainty the expert associates with

their judgement.

This is a fairly simplistic approach to assessing certainty of probability distributions.
For example, Dempster and Shafer’s concepts of plausibility and belief (see Section
6.7) could be applied to define intervals around each probability value. However, the
approach described above provides a sufficient measure of uncertainty, whilst at the
same time not requiring any considerable amount of extra information from the

database or the expert.

7.2.7 Sensitivity Analysis

There are various methods available to determine the sensitivity of the model to
changes in states of the predictor variables. One method suggested by Dittmer and
Jensen (1997) is ‘what-if* analysis, which analyses the change in outcomes if the
state of one variable is changed. A species may be suitable under a given set of
circumstances, but may become less suitable if rainfall decreases or if soil 15 more
acidic. Having information on how quickly suitability might change, especially

when climatic changes occur, is important in the context of the decision problem.

In addition, sensitivity analysis indicates which variables are important in a particular
case. If the response is highly sensitive to one predictor variable, and that particular

predictor variable is very uncertain, then this could affect the decision.
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7.3 Modelling in a GIS Context

An important facet of the model being developed is its ability to be implemented
spatially. GIS modelling provides a means of scaling from local to regional

predictions.

Environmental envelopes are generally straightforward to implement using GIS. In
many cases, no other information is needed apart from presence data and chimate
data (for example, BIOCLIM [Busby, 1991] and FloraMap [Jones and Gladkov,
1999]). It is a straightforward process to include other variables, such as soil

characteristics, as long as they can be mapped.

Fuzzy envelopes take even more advantage of the capabilities of GIS. Rather than
simply displaying envelopes as simple presence/absence values on a map, fuzziness
can be displayed using colours and shades to denote level of fuzzy membership.

Probabilities calculated using Bayesian modelling can similarly be displayed.

Another advantage of spatial implementation is the increased capability to deal with
and visualise spatial uncertainty. Almost all types of uncertainty associated with
decision problem are spatially heterogeneous and, therefore, simply mapping
uncertainty increases the decision-maker’s ability to manage the impacts of

uncertainty.

GIS is not only useful for visualisation of outputs, but also for processing and
analysing spatial inputs. The variables used as predictor variables in the decision
problem are all spatial in nature. GIS techniques such as map algebra allow
equations, such as Bayesian joint probability calenlation, to be implemented across

all locations in space simultaneously.

Some of the uncertainty in the decision problem is introduced because of metrical
and temporal uncertainty in the predictor variables. This uncertainty will vary for
each variable and for each state of the variable. For example, DEMs are generally
fairly accurate, depending on their resolution, because elevation values are directly

calculated from satellite capture data. Conversely, soil maps are likely to contain a
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great deal of uncertainty due to uncertainty in measurement techniques, classification

techniques and due to high spatial heterogeneity of soil characteristics.

Corner et al. (2002) term this uncertainty in input data ‘map purity’. Map purity can
be defined as the probability that a classification is the true classification on the
ground and can be derived directly from experts, or, if such information exists, from
metadata. In a Bayesian modelling context, map purity can be propagated through

the network using Equation 7.38:

P{Y [x,)= Y P(Y | %)P(x, |x) (738)

where x; are possible states of variable X. In the above equation, P(x; | x;) is the

probability that the true classification is x; given that the mapped classification is x;

7.4 Proposed Modelling Approach

In Chapter 4, a number of information sources were discussed, including forage
databases, expert knowledge and spatial data. The purpose of the functional model s
to determine where a given forage species will succeed, or which forage species will
succeed in a given location. A measure of success needs to be derived from data in
forage databases and/or from expert knowledge. Although multiple measures of
success could be defined (such as how quickly a species establishes and the size of
the species’ yield is after a defined period of time), in this model it is proposed to use
just one measure of success as the dependent variable Y in the model. This variable
may be a function of other variables. Because the concern is how well a species will
perform, the response variable needs to be discrete over a number of classes, rather

than binary.

The independent variables X* will be drawn from the sources of information
previously discussed. The requirement is that there is some known functional
relationship between the predictor variables and the dependent variable. This
relationship should also be evident in the database — if it is not, then the validity of

either the data or the relationship comes mnto question.
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The proposed method is essentially to combine these predictor variables to define
probabilistic environmental envelopes based on Bayesian modelling techniques. The
response variable ¥ will be characterised by a probability distribution function, that
is, the likelihood of occurrence for each possible outcome of the response variable.
In addition, the level of certainty associated with the probability distribution is

analogous to fuzzy membership.

The Bayesian model employed will be the most simple Bayesian network possible,
with all input variables at one level, feeding simultaneously into the output variable

(Figure 7.7).

Inputs

Output

Figure 7.7 Simple Bayesian network.

It is not necessarily the case that all variables act simultaneously — for example, in
reality, elevation may affect both temperature and soil characteristics, and
temperature itself may affect soil characteristics, so that a more complicated network
could be more valid. However, sparse datasets make defining such a structure more
problematic. In addition, a simple structure makes both implementation and

explanation of the model much more straightforward.

If information is available relating to map purity, then each of the input nodes
receives this information (Figure 7.8). While the model being developed will allow
for this eventuality, it is unlikely that such information will be available across large
arcas, especially when the input data may already be derived from a combination of

SOuUrces.
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Figure 7.8 Simple Bayesian network with map purity.

The structure of the simple Bayesian network (Figure 7.7) allows one single
calculation to be made for each possible combination of variables. This is analogous
to defining environmental envelopes and to applying rules defined in a knowledge
base. Depending on whether CI holds for all variables, joint probability is calculated
according to the situations displayed in Figure 7.6. Where CT does not hold, experts
are required to define the CPT for two or more variables simultaneously. Because,
as shown in Table 7.1, the size of the CPT grows exponentially with number of
variables and number of classes in each variable, this option would only be made

available for pairs of variables.

For some variables, their relationship to success is not probabilistic in nature. Some
forage species have very low tolerance to certain variables, such as drought, salinity
or waterlogging. If one of these conditions is present, then it is valid to assign zero
probability to the success of such a species, which is equivalent to excluding the

species from consideration.

In the case of selecting forage species for a specific niche, the problem is not just to
predict the success of one species, but of many species simultaneously at one
location, in order to identify the most promising species. Therefore, the model needs
to apply some sort of ranking or filter to identify a subset of species for consideration
at any one location. Filters can be applied by removing from consideration any

species which do not meet tolerance or use requirements, if these are defined.
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Ranking can be applied once posterior probabilities have been derived for each

variable for the conditions at the location under consideration.

From posterior probabilitics, a ranked ‘basket of options’ can be selected for the
location in question. At the same time, uncertainty information is retained, based on
the database, expert knowledge and probability combinations. Sensitivity analysis
can also be performed by inspecting how much probability distributions change,
depending on changes in variable states. Posterior probability distributions,
uncertainty information and sensitivity information can all be communicated using

maps and graphs. This implementation is outlined in Figure 7.9.

7.5 Summary

The approach outlined above is based on a combination of fuzzy envelopes and
Bayesian probability modelling. Rather than defining any state in a multi-state
envelope as wholly ‘suitable’ or ‘unsuitable’, each state is assigned a probability

distribution.

The model allows information from diverse sources on success of forages to be
combined to predict success distributions for any combination of variables. The
model incorporates uncertainty, retaining uncertainty information throughout the
model and allowing this information to be displayed and interrogated in a GIS
environment. The next step is to formalize this model as a spatial decision support

system. This is described in the following chapters.
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CHAPTER 8. DATA AND KNOWLEDGE SELECTION

In Chapter 4, Decision Support Systems (DSS) were introduced, with particular
focus on DSS in agriculture and spatial DSS (SDSS). Although a number of issues
were identified which need to be overcome for successful DSS development, an
SDSS for forage selection has been identified as a potential method to provide

information to agricultural decision-makers.

In the previous chapters, potential models were reviewed and a probabilistic GIS
model was selected to functionally model forage species’ success spatially. In this
chapter, the sources of data and knowledge discussed in Chapter 4 will be analysed.
Bearing in mind the probabilistic GIS model developed in Chapter 7, suitable
predictor and response variables will be identified and processed to produce input

data required for the SDSS discussed in the following chapter.

8.1 Predictor Variables

Predictor and response variables are used to specify a model, and predictor variables
are also used in the implementation of the model in order to predict the values of
response variables in situations where the response variable value is not already
known. In the model specification stage, predictor and response variables need to be
calculated from databases and knowledge bases containing information that relates
predictor variables to response variables. In the implementation stage, predictor
variables are drawn from spatial data, allowing the response variables to be spatially

interpolated.

In the probabilistic model presented in the previous chapter, it was shown that all
predictor variables feed simultancously into the medel. This does not mean,
however, that all variables have equal weighting. If for a particular species a
predictor variable has no impact, then the associated conditional probability
distribution £(Y | X) will simply be the same as the prior probability P(¥). Therefore,
the task here is to identify a suitable set of predictor variables which may impact on

the suitability of any forage species.
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8.1.1 RIEPT database

A major source of information, both for predictor and response variables for model
specification, is the RIEPT database. In this section, the RIEPT database is analysed
and issues are highlighted. The following chapter will discuss how these issues are
dealt with in this research. This database contains adaptation, production and
establishment data for forage trials mainly throughout Latin America (Central and
South America), spanning 1979 — 1992 (and unofficially continuing at present). The
purpose of the RIEPT database 1s to record information on forage trials under various
environmental and management conditions. Initially, a large number of species were
evaluated at a relatively small number of locations to assess adaptation of grasses and
legumes in locations representative of major tropical ecosystems (‘Adaptation’
database). Further trials were then undertaken to evaluate productivity under cutting
of certain species, selected from the adaptation trials but in different ecosystems
(‘Establishment’ and ‘Production’ databases) (Barco et al., 2002). The
Establishment and Production databases contain records for countries in Africa, Asia
{China) and the Caribbean, as well as the Latin American countries included in the

Adaptation database.

Throughout the planning and development of the RIEPT database, a number of
meetings were held and manuals of methodology produced, defining standardised
methodologies for germplasm evaluation, analytical methods and procedures for soil
and plant material evaluation (CIAT, 1980). Methodologies were produced, amongst
others, for dealing with agronomic evaluation to determine germplasm adaptation to
edaphic, climatic and biotic factors, and to determine seasonal dry matter yields
(Lascano and Spain, 1992). Therefore, it 1s expected that there i1s a reasonable level

of consistency across sites and years in the RIEPT database.

In total, the database records data on 11,211 trials of 1,798 accessions in 314
locations in the tropics. Of these, 2,539 trials of 929 accessions are in 28 locations in
Central America (Figure 8.1). In Central America, there are 1,694 trials in the
Adaptation database, 436 in the Establishment database and 409 in the Production

database.
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Figure 8.1 RIEPT trial locations in Central America.

Plants can be identified by genus, species and accession, and each species may have
a number of accessions with unique characteristics. In RIEPT, accessions are
identified by a unique CIAT number. ‘Passport’ data is also available for 824 of the
accessions, namely, those which are held in CIAT’s germplasm bank. Passport data

gives details of the location where the accession was originally collected.

The Adaptation database covers trials in Latin America only. Examination of the
locations of these trials and how many trials are carried out at each location shows
bias in spatial distribution as well as in species distribution. Figure 8.2 shows the

number of adaptation trials for all species in RIEPT.

Figure 8.3 gives an example of species bias, showing number of trials at each

location for five selected species. This illustrates that locations with a large number
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of trials may in fact be dominated by trials of a single species. While this may
increase confidence in predicting the performance of the species under the conditions
at the trial site, it does not add substantial information on the species’ performance,
as each trial at the site has exactly the same environmental characteristics. Although
climate varies at a single site between seasons and between years, information on

climate variability is not included in the RIEPT database.

40V

P

Adaptation trials
for all species

(10N

equ atay

108

Figure 8.2 Adaptation trials for all species in RIEPT.

In the previous chapter it was shown that in order to specify the probabilistic GIS
model the full CPT must be derived. One of the steps is to calculate the prior and
joint probability distribution of the response variable, which will be a measure of
success derived from the RIEPT database. It is therefore necessary to count the
frequency of trial results under different conditions. The number of trials for each
species and the spatial distribution of trials can, however, bias the probability

distributions.
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Figure 8.3 Adaptation trials for selected species in RIEPT. Size of circles denotes
number of trials for the five species combined.

In the RIEPT database, trial results are given for multiple trials for multiple species
at multiple locations. At some locations, dozens of trials have been carried out on a
single species, while other locations may only have a single trial for that species.
This has the potential to strongly bias the database towards conditions at locations
with a larger number of trials. It is important that information from all trials be taken
into account, while attempting to mitigate this bias. The approach chosen in this
research is to treat each trial site as a single observation and record the results of each
trial as a proportion of one observation. If a trial is carried out at a different location
with the same conditions, then this is treated as a new observation. This approach
removes the bias introduced by multiple trials of a single species at a location.
However, it also reduces the number of observations in the database, for any one

species, to the number of trial locations rather than the number of trials.

Climatic bias will still exist in the database. Sites with certain combinations of
environmental characteristics will be absent from the database, but these missing
values are not missing at random. Values are more likely to be missing because

researchers had already decided not to trial under those conditions. The reasons
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could be because the likely outcome of the trial is already sufficiently known (either
known to be very gobd or very poor), because of inaccessibility (e.g., high elevations
or remote locations) or because the locations of trial sites are determined in part by
other non-random factors (e.g., locations of collaborators). If the trial sites are

interpreted as samples, then it is clear that the sampling strategy is far from random.

Data recorded includes level of adaptation, percent cover, insect resistance, disease
resistance, height and dry matter weight. Values are recorded at different times
during a trial, but the timing is not the same for all trials, and not all values are
recorded (i.c., missing attribute values). Trial locations have elevation, climate and

soil data recorded, but there are gaps and inconsistencies in the data.

8.1.2 Representativeness of RIEPT Database

Location variables recorded in RIEPT are listed in Table 8.1. As part of the current
research, statistical analyses were carried out on these variables in order to test the
representativeness of the database. The analysis was intended to determine patterns
in the data and correlations between variables. Firstly, the distribution of recorded
elevation, rainfall, soil pH, soil texture and soil fertility in the database were
compared with distributions across Central America, derived from GIS databases.
For spatial variables represented as rasters, each 1km’ raster cell is counted as a
location, so there are around 600,000 data points for Central Amernca. The
Indicadores Atlas (Winograd et al, 2000) estimates agricultural land use in Central
America (33 percent of total land area), allowing distributions to be calculated for
agricultural land only. This 1s assumed to be broadly representative of forage-
growing land. Figure 8.4 compares cumulative frequency of elevation at locations
for all of Central America, agricultural land in Central America, the entire RIEPT

database and the RIEPT Adaptation database.



Table 8.1 Variables relating to location included in the RIEPT database.

Latitude

Longitude

Elevation

Ecosystem

Mean monthly temperature

Minimum monthly temperature

Maximum monthly temperature

Solar radiation

Relative humidity

Hours of sun

Wind speed

Mean monthly precipitation

Number of dry months

Percentage sand 0-20cm and 20-40cm

Percentage silt 0-20cm and 20-40cm

Percentage clay 0-20cm and 20-40cm

Apparent density 0-20cm and 20-40cm

Field capacity 0-20cm and 20-40cm

Soil pH 0-20cm and 20-40cm

Organic matter 0-20cm and 20-40cm

Phosphorus 0-20cm and 20-40cm

Calcium 0-20cm and 20-40cm

Magnesium 0-20cm and 20-40cm

Potassium 0-20cm and 20-40cm

Sodium 0-20cm and 20-40cm

Aluminium 0-20cm and 20-40cm

Aluminium saturation 0-20cm and 20-40cm

Cumulative frequency
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Figure 8.4 Comparison of cumulative frequency of location elevations.
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Locations with lower elevation are over-represented in the RIEPT database,
particularly in the Adaptation database. CIAT’s Forage project mandate areas are the
humid and subhumid tropics and subtropics, and at higher elevations (above
approximately 2000 masl) conditions become temperate. In addition, most
smallholder farmers are located in the lowlands in Central America. Also,
agricultural activity generally diminishes at higher elevations, and this is reflected in
the difference between the curves for all Central America and for agricultural land
only. In the RIEPT Adaptation database, 78 percent of locations lie below 300m,
whereas in Central America only 54 percent of all land lies below 300m (57 percent

of agricultural land).

Cumulative frequency of annual rainfall is shown in Figure 8.5, comparing the same
sources of data. Agricultural land in Central America does not appear to favour any
particular ranges of rainfall. The RIEPT database slightly over-represents drier
locations. The RIEPT Adaptation database under-represents some classes of rainfall

and over-represents others.

100%
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— RIEPT Adaptation
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Annual Rainfall (mm)

Figure 8.5 Comparison of cumulative frequency of rainfall.

Soil characteristics were derived for Central America and for agricultural land in
Central America based on FAO soil maps and classifications used in the /ndicadores
Atlas (Winograd et al., 2000). Because of the nature of soil maps and the processes
used to derive soil properties (discussed in Chapter 4), the classifications for GIS

data may not be accurate. Figure 8.6 shows soil pH for the sources of data discussed
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above. The majority of RIEPT trials are in locations with acidic to moderately acidic

soils (pH between 4.5 and 6).

|
| 70%
60% "] Central America |
50% -
@ Central America
40% agricultural area
30% m RIEPT (all)
20% - @ RIEPT Adaptation
10%
0%
<4.5 45-6 >6
Soil pH
\

Figure 8.6 Comparison of percentage of area or locations with soil pH in classes
shown.

Figure 8.7 shows percentage of area and percentage of RIEPT locations with soil
texture classed as clay, loam or sand. For the RIEPT data, these classifications were
derived from percentage sand, clay and silt at 0-20cm depth and converted to these
three classes based on an FAO soil scheme (Verheye and Ameryckx, 1984) (Figure
8.8).

The majority of land (both agricultural and non-agricultural) in Central America is
clay (fine texture). However, the RIEPT database has more locations in areas with

loamy soil (medium texture).
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Figure 8.7 Comparison of percentage of area or locations with soil texture in classes
shown.
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Figure 8.8 FAO soil classification. Source: Verheye and Ameryckx (1984).

Classification of soil fertility is shown in Figure 8.9. Soil fertility can be calculated
from values for organic matter and phosphorus in the RIEPT database. This process
is described later (see Table 8.8). Central America has a fairly even distribution of
soil fertility, although agricultural land favours soils with higher fertility. However,
the RIEPT database markedly over-represents low-fertility soils because most

smallholder farmers are located on marginal land, which is usually less fertile. When
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farmers do have more fertile land available, it is often reserved for crops, and forages

are mostly planted on less fertile soils.
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Figure 8.9 Comparison of percentage of area or location with soil fertility in classes
shown.

The analysis presented thus far illustrates both the spatial and attribute biases present
in the RIEPT database. The database is moderately biased spatially and also in
relation to number of forage species. However, climatic and edaphic attributes are
relatively well represented, compared with the distribution of these attributes across
Central America as a whole and agricultural land in Central America. Where the
distribution varies, it is generally by design in the RIEPT database. This needs to be

taken into account when calculating prior and joint probabilities.

8.1.3 Accuracy of RIEPT Attribute Data

In order to check the accuracy of RIEPT attribute data, these values were compared
with corresponding mapped values at the same locations, and the coefficient of
determination R’ was calculated (Table 8.2). The coefficient of determination is the
square of the correlation coefficient R, and can be interpreted as the proportion of
variance explained by the regression. Correlation was not as high as would be
expected for attributes representing the same information. This could be for a

number of reasons, including errors in the spatial data, uncertainties in the spatial
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data (introduced at various stages during spatial processing), positional errors in the
RIEPT database (incorrect latitude and longitude recorded), measurement errors in

the RIEPT database and data entry errors.

Elevation Mean temp | Rainfall Dry months
0.56 0.38 0.55 0.34

Table 8.2 R” between RIEPT data and GIS data.

The low correlation values mean that care must be taken when using values derived
from RIEPT and from spatial data in the same calculation. As discussed earlier,
uncertainty can be spatial (location uncertainty) or aspatial (attribute uncertainty).
Inspection of the RIEPT database suggested that errors are most likely to be present
because latitude and longitude were inaccurately recorded — most trials were
recorded before widespread use of global positioning systems (GPS). It is possible
that some sites were identified by name, and that latitude and longitude values were
added later. Also trials may have been recorded with an identical location
description, although in reality the trials have differing edaphic and possibly climatic
characteristics. Therefore, the values for the other variables may well be correct, but
will appear incorrect when compared with mapped values. For this reason, it was
decided to use values from the RIEPT database (and not the corresponding mapped

values) in order to specify the CPT.

Soil characteristics were not directly compared between the RIEPT database and
spatial data. Uncertainties in the spatial soils data mean that characteristics identified
for point locations are unlikely to be a true representation, and therefore comparisons

are not expected to be useful in assessing the quality of the RIEPT soils data.

Despite these biases and inaccuracies in the RIEPT database, it is still a valuable
source of data as input to the probabilistic model, in defining conditional probability
distributions. Also, data from RIEPT is only one source of information used as input
to the model, and will be supplemented with expert knowledge, particularly where
RIEPT data 1s uncertain, Once prior probabilities have been defined, these

discrepancies will not adversely bias the calculations.
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8.1.4 Correlation Analysis of Potential Predictor Variables

As a first step 1n selecting suitable variables as predictor variables, correlation
analysis was carried out between all pairs of variables in the RIEPT database across
all locations (Appendix A). The climatic variables sourced from GIS data for
Central America were also analysed for correlation. This gives an indication of
which variables are correlated in general and, also, which variables in RIEPT display
more correlation than would be expected from a random sample of locations n
Central America. Even though data (both spatial and RIEPT) exists for mean
temperature, minimum temperature and maximum temperature, as it is already
known that these are highly correlated, for simplicity, only mean temperature is
considered here. Results of correlation analysis for four climatic variables are shown

in Table 8.3.

R Elevation | Mean Annual Drv

Y

temperature | rainfall months

Elevation 1/1
Mean temperature | 0.86/0.50 | 1/1
Annual rainfall 0.04/70.00 | 0.02/0.00 1/1
Dry months 0.05/0.04 | 0.02/0.02 056/044 |1/1

Table 8.3 R’ values for all Central America / all RIEPT locations.

As expected in the tropics, elevation and mean temperature are strongly correlated.
Mean annual rainfgll and number of dry months are also correlated. However, the
RIEPT database tends to show less correlation than Central America as a whole.
This suggests that RIEPT locations may not be climatically representative of Central

America.

Although number of dry months is a variable included in the RIEPT database, this
was a late addition to the database (i.e., not recorded at the time of the trial) and the
source of the data is often unknown (Franco, pers. comm., 2002). However, because
monthly rainfall is recorded for most locations, the dry season length can be derived
in an altemative manner. A dry month can be defined in various ways, and a ‘dry
month’ in the tropics may be different to a ‘dry month’ in a temperate zone. Davis
(2000) defines a dry month as the month in which total rainfall (in mm) is less than

twice the mean temperature (in degrees C). Bonan (2002) defines a dry month as a
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month with less than 60mm of rain. In the tropics, these definitions are roughly
equivalent. Therefore, in the current research, the latter definition 1s used. The
largest number of consecutive dry months in a 12 month period is then counted. As a
check, the correlation coefficient has been calculated between number of dry months
recorded in the database and length of dry season derived using this method. The
result is R” = 0.62, indicating high correlation, but not as high as would be expected
for data supposedly conveying the same information. From these considerations. it
was decided that length of dry season derived from rainfall data is likely to be more
reliable. An additional benefit is that the same method can be used to derive dry
season length from GIS data. Comparing the length of dry season derived in the
same way from both GIS data and RIEPT locations, R’ is calculated at 0.44 (an

increase from 0.34 in Table 8.2).

Other variables in the RIEPT database that show strong cross-correlation are all soil
properties at 0-20cm depth with their corresponding properties at 20-40cm (R’
between 0.55 and 0.94). Percentages of sand, silt and clay are also strongly
correlated. Other notable correlations are between; field capacity, organic matter and
apparent density; magnesium and calcium; potassium and sodium; pH, calcium and

aluminium saturation; and aluminium and aluminium saturation {see Appendix A).

Because ecosystem is a categorical variable and cannot be transformed to a linear
scale, standard correlation analysis could not be carried out for comparison with

other variables without first transforming these variables.

Some values in the RIEPT database are more reliable and complete than others.
There are 314 unique locations in the database of which only four have entries for all
fields. The number of complete entries in each field ranges from 30 (field capacity
20-40cm depth) to 304 (elevation and dry months). Variables with limited data (less
than half the records complete) are solar radiation, hours of sun, wind speed,
aluminium saturation and most soil variables at 20-40cm depth (excluding potassium

and pH).
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8.1.5 Specifying Predictor Variables

It is clear that there are too many variables in the RIEPT database, with too many
correlations and gaps to incorporate them all directly in the functional model. Valid
values of predictor variables must be available at all locations, not just at those in the
RIEPT database. Therefore, variables in the model must either be available as spatial
data for Central America or they must be variables that a farmer can be expected to
know the value of at their specific location. However, because uncertainty can be
explicitly modelled, it is permissible for some variables to be undefined in some
cases. The discussion will now explore which variables to use as predictor variables

in the model and how to define categories for the selected variables.

Techniques exist to combine a large number of variables into a smaller number of
variables while retaining most of the relevant information from all variables. PCA 1s
one such technique. However, PCA can also obscure the biological meaning of the
data when variables are combined. Another approach is to use biologically or

ecologically meaningful formulae to transform the data.

It was therefore decided to use well-defined process-based methods to combine
variables where necessary and to split each resulting variable into five classes. This
was an iterative process involving expert consultation, and some variables were
initially split into fewer classes. Five classes emerged as being the optimal number
of classes for experts to consider in this case study. Four classes do not always
capture as much variation as experts would like, and more than five classes
complicate the knowledge elicitation task unnecessarily. It was also found that
constraining all variables to the same number of classes simplified the model, both

conceptually and from the point of view of software implementation.

Elevation data is well represented in RIEPT, with values recorded for almost all
locations. In addition, spatial Digital Elevation Models (DEMs) are generally of
high accuracy. At Lkm’ resolution, each gridcell represents an average of elevation
within the area covered by the gridcell. In many locations, elevation varies at a
smaller resolution, and a better representation of reality could be obtained by using

90x90m elevation and climate surfaces, where available. Temperature obviously has
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a more direct refationship with forage species’ success than elevation, but is less well
represented in RIEPT and likely to be slightly less accurate than elevation data.
Because temperature and elevation are highly correlated in the tropics, elevation can
be seen as a proxy for temperature. Therefore, elevation has been chosen as the first

variable for inclusion in the model.

Other important climatic drivers of forage success are rainfall patterns. Although
monthly rainfall data is available both in the RIEPT database and as spatial data,
including 12 separate variables on rainfall (one for each month) is unfeasible in a
knowledge-driven model. Therefore, two variables were derived from these, namely,
annual rainfall and length of dry season (discussed above). Although there is some
correlation between the two, they provide different information in the modelling

context and therefore can be classed as functionally independent (see Section 7.2.3).

Ecosystem is also considered an important climatic driver of forage success. Various
methods exist to calculate ecosystem classifications from climatic variables. The
ecosystem classification used in RIEPT consists of five categories, defined as in

Table 8.4 below.

Ecosystem WSPE WS WSMT
Isohyperthermic 901-1060 mm | 6-8 months | >23.5C
savannahs

I[sothermic 901-1060 mm | 6-8 months | <23.5C
savannahs

Seasonal semi- 1061-1300 mm | 8-9 months | >23.5C
gvergreen forests

Humid tropical > 1300 mm >9months | >235C
forests

Poorly drained Not defined in terms of WSPE, WS and
tropical savannah | WSMT

Table 8.4 Ecosystem classification used in RIEPT. WSPE = wet season potential
evaporation. WS = wet scason. WSMT = wet season monthly temperature.

In these calculations, wet season is defined as the months where the monthly
availability index (MAI) is greater than 0.33. MALI is the ratio of dependable
precipitation to potential evapotranspiration. Dependable precipitation 1s

precipitation that is equalled or exceeded in three out of four years. Monthly
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potential evaporation can be calculated by the reduced Penman method after Linacre
(1977). This calculation is based on temperature, diurnal temperature range, latitude

and elevation. The above is the method used in RIEPT to define ecosystems.

In the current research, problems were encountered in trying to recreate these
ecosystems for Central America, mostly because of the classification not covering all
possible eventualities (the definitions only account for 51 percent of the area of
Central America) and the lack of definition for poorly drained tropical savannahs. In
addition, this ecosystem classitication was shown by Schmidt (2001) to have little

relationship to variation in forage success.

An alternative ecosystem classification is Holdridge lifezones. Holdridge (1967)
classified 38 zones based on mean annual temperature and annual precipitation. Of

these, 17 are represented in Central America {(Table 8.5).

Mean Femperature (degrees C)
Annual <1.5 1.5-3 3-6 6-12 12-18 18-24 >24
Rainfall (mm)
<125 Polar Dry wndra Borceal desert Cool Warm Subtropical | Tropical desert
temperate temperate desert
desert desert
125-250 Moist Dry sernb Cool Warm Subtropical | Tropical desert
tundra temperate temperate desert scrub | scrub
descrt scrub desert scrub
250-500 Wettundra | Moist forest Steppe Thorn
{puno) sicppe
500-1000 Rain tundra | Wet forest
{paramo)
1000-2000 Rain forest
{rain parama)
2000-4000
4000-8000
> 8000 T Tropical
rainforcst

Table 8.5 Holdridge lifezones. Shaded cells are Holdridge lifezones represented in
Central America.

In consultation with forage experts, it was decided to discard the RIEPT ecosystem
classification and instead create a classification based on Holdridge lifezones. This

classification is summarised in Table §.6.
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Name Definition

Tropical and subtropical wet and rain T > 24 C and R > 4000 mm; or

forest T 18-24 C and R > 2000mm

Tropical and subtropical moist forest T > 24 C and R 2000-4000 mm; or
T 18-24 C and R 1000-2000 mm

Tropical and subtropical dry forest T > 24 C and R 1000-2000 mm; or

T 18-24 C and R 500-1000 mm

Tropical and subtropical very dry forest | T > 24 C and R < 1000 mm; or
and thorn woodland T 18-24 C and R < 500 mm

Temperate T<I18C

Table 8.6 Ecosystem classification based on Holdridge lifezones. T = mean annual
temperature, R = annual rainfall.

Holdridge lifezones were also calculated from the RIEPT data using the same
calculations. Analysis was then carried out to measure the level of agreement
between RIEPT classifications and classifications at the same locations according to
GIS data. It was found that 51 percent of classifications agreed and 41 percent were
one class different over two-dimensional space. Cohen’s kappa (k) measures the
amount of agreement between two datasets. Applying this to the above data, k =
(.33, suggesting weak agreement. This is analogous to the low correlations in Table
8.2 and again suggests poor agreement between the RIEPT database and mapped

data.

The remaining climate variables listed in Table 8.1 are solar radiation, relative
humidity, hours of sun and wind speed. Of these, relative humidity is the only
variable with more than half the records complete, and none were considered to add

sufficient information to be included as predictor variables in the model.

Sand, silt and clay percentages can be combined to form texture categories. Soil
texture classes in RIEPT are defined in agreement with USDA definitions, i.e., clay <
0.002mm particle size, silt 0.002 ~ 0.05mm and sand 0.05 — 2.0mm (USDA, 1993).
The 12 classes found in the USDA texture triangle can be reclassified into five
classes shown in Table 8.7. Figure 8.10 shows the relationship between percentage

clay, silt and sand, and the categories.
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Category USDA Definition

Clay (Very fine) Clay, silty clay, sandy clay

Clay loam (Fine) Clay loam, sitty clay loam, sandy clay loam
Loam (Medium) Loam, silt loam, silt

Sandy loam (Coarse) Sandy Joam

Sand (Very coarse) Sand, loamy sand

Table 8.7 Soil texture classification based on USDA texture triangle.

00 ap 80 FO 60 S50 490 30 20 10 O
sand

Figure 8.10 Soil texture classification based on USDA triangle. Thin black lines
denote original USDA boundaries, bold black lines denote classification boundaries
as in Table 8.7. Source: USDA, 1993.

Soil fertility depends on acidity (pH), organic matter (OM), phosphorus (P) and
potassium (K), as well as on other minerals such as calcium (Ca), magnesium (Mg)
and alumimium (Al). In the RIEPT database, Ca, Mg and Al are all correlated with
pH. However, pH, OM, P and K show no correlations. The majority of sites have
high potassium (K > 0.15 meq/100g). Therefore it was decided that pH should be
retained as a separate variable, and that OM and P combined give a reasonable

measure of soil fertility (Amezquita, pers. comm., 2003) (Table 8.8).
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Fertility Organic matter

Phosphorus | < 2% 2-3% 3-5% 5-6% > 6%
<2% Very low | Very low | Very low | Very low | Very low
2-15% Low Low Low Low Low
15-25% Medium Medium | Medium | High High
25-30% Medium High High High Very high
>30% High High High Very high | Very high

Table 8.8 Soil fertility classification based on organic matter and phosphorus.

Additional edaphic variables listed in Table 8.1 are apparent density, field capacity,
sodium and aluminium saturation. Apparent density and field capacity are both
somewhat correlated with organic matter, and sodium is highly correlated with
potassium. In addition these variables all have less than half their records complete,

therefore 1t was considered irrelevant to include them as variables in the model.

The variables identified thus far for inclusion in the model are elevation, annual
rainfall, length of dry season, Holdridge lifezones, soil pH, soil texture and sotl
fertility. These variables are incorporated into the SDSS which is described in the
following chapters. A part of this process is eliciting expert knowledge relating these
variables to the success of various forage species. During an iteration of this expert
knowledge elicitation, issues arose regarding Holdridge lifezones. Although experts
had helped identify the classification presented in Table 8.6, they did not intuitively
relate these classifications to forage success when defining conditional probabilities.
Instead, they consistently referred back to the definition of the ecosystem in terms of
temperature and rainfall. As both of these are already accounted for (temperature
with the proxy elevation), it was decided that Holdridge lifezones are probably not
functionally independent from elevation and rainfall. Therefore, including Holdridge
lifezones as a variable in the model would not add more information and, moreover,
could cause the assumption of conditional independence to be violated. Instead, the

underlying variables of elevation and annual rainfall are used.

In the discussion to date, only biophysical variables have been considered. This 1s
primarily because the RIEPT database only includes biophysical wvariables.
However, socio-economic data is available as GIS data and can therefore be
associated with locations in the RIEPT database. Socio-economic variables that

could mnfluence forage selection were discussed in Chapter 4, namely, population
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density, access to market and livestock density, as well as other variables derived
from population censuses. However, whilst socio-economic variables have direct
bearing on the strategic decision of whether to adopt forages, they have less bearing
on the decision of which forages to trial, once it has already been decided to adopt

forages.

Another issue with socio-economic data is that, by its nature, it 1s almost always
aggregated. Census data, for example, is usually published at a level comprising a
large number of households (such as district level). The data can be used to
characterise the population of the entire district, but it is impossible to say anything

about the socio-economic characteristics of a household at a single location.

For these reasons, socio-economic data has not been included directly as a variable in
the functional model. However, it is recognised that socio-economic data may be
useful at a regional level, when deciding for example where to target certain forages.
In addition, as discussed in Chapter 4, socio-economic data may be of more value
when applying the model to cash crops (e.g., distance to market becomes critical).
Therefore, the possibility remains for socio-economic data to be included as

variables in the model implementation in the future.

In consultation with forage experts, the selected variables were partitioned into five
categories each (Table 8.9). This was an iterative process throughout the
development of the SDSS and the resulting categories are believed by experts to best

represent the expected variation in forage species’ responses.

Variable Class 1 Class 2 Class 3 Class 4 Class §
Elevation 0-500m 500-1000m 1000-1500m 1500-2000m >2000m
Rainfall 0-500mm 500-800mm 800-1200mm | 1200-1800mm | >1300mm
Dry months | 0-2 3-4 5-6 7-8 >8
Soil pH Very acid Acid (4.5-5.5) | Moderately Neutral (6.5- Alkaline
{<4.5) acid (5.53-6.5) | 7.5) {>7.5)
Seil texture | Clay Clay loam Loam Sandy loam Sand
Soil fertility Very low Low Medium High Very high

Table 8.9 Variable categories selected for SDSS development.
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Now that the predictor variables have been categorised into discrete classes, the joint
information uncertainty measure U/ defined in Equation 7.31 can be calculated to
check for correlation between variables and hence potential violation of the
assumption of Cl. The calculated values for GIS data (elevation, rainfall and dry

months) and RIEPT data (all variables) are shown in Table 8.10.

U Elevation | Rainfall | Dry Soil pH | Soil Soil
months texture fertility

Elevation 1/1

Rainfall 0.06/0.03 171

Dry months | 0.03 /0.05 0.26/0.17 | 1/1

Soil pH 0.02 0.05 0.04 1

Soil texture | 0.03 0.04 0.02 0.04 1

Soil fertility 0.03 0.04 0.03 0.06 0.04 l

Table 8.10 Joint information uncertainty for GIS data / RIEPT data (RIEPT data only
for soil factors),

All values of U are low, indicating independence, except for rainfall compared with
number of dry months. Therefore, these two variables are somewhat correlated.
However, as previously discussed, these two variables are functionally independent
in this decision problem. Even though it 1s possible that conditional independence is
violated for this variable pair, they are both retained in the model as independent

variables.

In addition, the agreement between RIEPT data and categorised mapped data can be
assessed using Cohen’s kappa on the variable categories. The results are shown n

Table 8.11.

Elevation Rainfall Dry months
0.72 0.69 0.81

Table 8.11 Cohen’s kappa comparing RIEPT and GIS data for three variables.

The kappa values suggest that there is very good agreement between classitications
for RIEPT and GIS data. Therefore. despite the low correlations shown in Table &.3,

once categorised, the variables agree more closely between the two data sources.




8.1.6 Expert Knowledge

Expert knowledge has been identified as an important source of information for the
model. Expert knowledge can be incorporated into the model in two ways. The first
is to use published expert knowledge, such as the SoFT database, and derive ways of
translating this to the variable classes described above. The second way is as an ad-
hoc process, allowing experts to directly mtroduce knowledge for each variable for

selected species.

The SoFT database 1s still in development and will not be available to the public until
mid 2005, However, some preliminary data has been made available for use in this
project. This data is discussed here with the caveat that classifications and data are

preliminary and subject to change.

The expert knowledge in SoFT is formalised as a series of rules describing each
forage species and its optimal conditions {Table 8.12). SoFT currently contains data
on 155 forage species, and this number is increasing as further information is
collected from forage experts around the world. Apart from the data listed in Table
8.12, fact sheets also exist (or are in development) for each species, with more

detailed information and recommendations.

Both descriptions and optimal conditions are important in selecting forage species.
Intended forage use is clearly an important management variable and should be
included in the model as an initial filter. Other descriptive variables are not selected

for inclusion in the model at this stage.

A number of the variables describing optimal conditions can be related to the
variables identified as predictor variables, namely, latitude x altitude, rainfall,
months without rain, soil texture, soil fertility and soil pH. In addition, a number of
variables have been selected as filtering variables, namely, soil salinity, drought
tolerance, seasonal waterlogging, frost tolerance and shade tolerance. These
variables will be referred to as ‘filter’ variables in the discussion on model
implementation, as they are used to filter out unsuitable species (i.e., species which

do not match required level of tolerance to stresses).
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SoFT variable Type _
Family Plant description
Life cycle

Intended forage use
Growth form

Habit

Production potential
Time to flowering
Latitude x Altitude Growing conditions
Rainfall

Months without rain

Soil texture

Soil fertility

Soil pH

Level of available soil AI/Mn

Soil salinity

Soil drainage

Ability to grow in cool growing season
temperatures

Photoperiod (day length)

Drought tolerance

Seasonal waterlogging

Frost tolerance (foliage damage)

Light (shade tolerance)

Grazing pressure

Tolerance to cutting

Table 8.12 Varnables im SoFT database.

In the SoFT database, the rules are logical IF... THEN rules, classifying each species
as either suitable or unsuitable. In the case of rainfall, marginal limits are also
sometimes given, meaning that rainfall in these ranges is marginally, but not
optimally, suitable. From these rules environmental envelopes can be constructed, as

in Figure 7.1.

The classifications in the SoFT database need to be translated to the variable
categories in Table 8.9. This process is not always straightforward and causes some
loss of information. The processes developed to achieve the translation are described

in the following chapter.

Expert knowledge also exists apart from that formalised in the SoFT database.

Forage experts at CIAT provided knowledge for certain species on an ad-hoc basis.
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The benefit of this is that knowledge can be directly elicited to relate to the
categories defined for each variable, whereas with SoFT data the process is
somewhat convoluted and inaccurate. The concept is that RIEPT and SoFT data are
automatically incorporated in the model, and additional expert knowledge can be
included where necessary (where there is insufficient data from the databases or

where considerable uncertainty is present).

8.2 Response Variables

As previously reported, the trial data in RIEPT is in three main databases, namely,
Adaptation, Establishment and Production. For each species in the database, location
is recorded, along with a number of measurements relating to how the species

performed in the trial (Table 8.13).

Adaptation database Classification
Adaptation Poor, adequate, good, excellent
Cover Percentage
Dry matter Weight
Number of plants Numeric
Resistance to insects Yes/No
Resistance to diseases Yes /No
Establishment database | Classification
Height at 9 weeks Height

Cover at 9 weeks Percentage
Insects at 9 weeks Yes /No
Diseases at @ weeks Yes /No
Production database Classification
Dry weight at 12 weeks Weight

Cover at 12 weeks Percentage
Height at 12 weeks Height

Table 8.13 Trial variables in the RIEPT database.

From these, response variables must be selected. Although it is possible to model
multiple response variables, it was decided to initially select just one. Some of the

measurements are correlated and some are problematic for other reasons.
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In the Adaptation database, correlation was found between adaptation and percent
cover (R’ = 0.46). Multiple evaluations are held during each trial, over a period of up
to 24 weeks. Initial evaluation is defined as the evaluation at 4 weeks, or the closest
record, and final evaluation is the one at 10 weeks, or closest record. Analysis
showed strong correlation for adaptation, cover, number of plants and dry matter

weight, between initial evaluation and final evaluation (see Appendix A).

In the Establishment and Production databases, no significant correlations were
found. Correlation analysis between Adaptation, Establishment and Production

databases cannot be directly performed because they relate to separate trials.

The measures relating to dry matter weight, number of plants and plant height are all
problematic because of wvariation between different forage species.  The
measurements could conceivably be transformed to a common scale for all species,
but there could be problems in defining the maximum for each individual species. In
addition, plant height, for example, might not have the same significance for

different species.

Percent cover has the potential to be a valid measurement which has the same
meaning across all species. As percent cover is included in all three databases, it
could be a way of utilising the larger number of species present in the Adaptation
database, along with the larger number of locations present in the Establishment and
Production databases. However, because percent cover is measured at different

times for trials in the different databases, the measures are not directly comparable.

As percent cover and level of adaptation are positively correlated, albeit weakly, it is
reasonable then to select the latter as the response variable. In addition, as this is a
variable in the Adaptation database, it applies to a larger number of species than the
other two databases. However, as discussed above, fewer trial sites are included in

the Adaptation database.

Resistance to insects and diseases is also very important in forage selection.

Although this information is included in RIEPT, it is considered as secondary to
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level of adaptation. As just one response variable is being selected, resistance to

diseases and insects is not considered at this point.

8.3 Summary of Predictor and Response Variables

Six predictor variables were identified from an analysis of the RIEPT database, GIS
data and in consultation with forage experts. In addition, the SoFT database provides
information on potential uses and tolerances, which are included as filter variables.

These are summarised in Table 8.14.

Data RIEPT GIS SoFT

Elevation Raw value 1km grid (Jones, Latitude x Altitude
2001)

Annual rainfall | Derived from Derived from Rainfall

monthly rainfall

monthly lkm grid
(Jones, 2001)

Length of dry | Derived from Derived from Months without rain
season monthly rainfall | monthly lkm grid

(Jones, 2001)
Soil pH Raw value FAO-derived Soil pH

coverage 55km grid
(Batjes, 1996)

Soil texture

Derived from %
clay and sand at
0-20cm

FAO-derived
coverage S5km grid
(Batjes, 1996)

Soil texture

Soil fertility

Dertved from
OM and P at 0-
20cm

FAO-derived
coverage 55km grid
{Batjes, 1996)

Soil fertility

Filter variables

Intended forage use
Soil salinity

Drought tolerance
Seasonal waterlogging
Shade tolerance

Frost tolerance

Table 8.14 Predictor variables and filter variables for SDSS implementation.

Figure 8.11 shows how data from the RIEPT database was combined to derive the

six predictor variables identified for use in the model.

One single response variable has been identified, namely, level of adaptation from

the Adaptation database. In the database, the leve] is identified as one of four values;
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in Spanish these are ‘Malo’, ‘Regular’, ‘Bueno’ and ‘Excelente’. These can be

translated as ‘Poor’, ‘Adequate, ‘Good’ and ‘Excellent’.

Monthly Soil
Mean Monthiy )
Temperature Rainfall Organic

. Matter

“Annual Consecutive

Rainfatl

Holdridge %
Lifezones £

- Variables: M

Figure 8.11 RIEPT data in model. Modified data is shaded, unmodified data is
white.

8.4 Summary

In this chapter, the derivation of six predictor variables, six filter variables and one
response variable was described. A large amount of data and information is
available, and so a process was needed in order to select the most useful data and
reduce it to a manageable and valid subset of variables. Variables and their
categories were defined based on statistical analysis, functional equations and expert

opinion,

The resulting variables will be incorporated into the probabilistic GIS model which
in turn is implemented as an SDSS. The next chapter turns to the specification of the

SDSS, the implementation of which is described in the subsequent chapter.
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CHAPTER 9. SPATIAL DECISION SUPPORT SYSTEM

In Chapter 4, the necessary steps in DSS development were identified as needs
analysis, design, implementation, capacity-building, fostering uptake and evaluation.
The need for an SDSS for selecting forages was identified in Chapter 2, and the
requirements for an SDSS to address the decision problem were analysed in
subsequent chapters. The functional model design was developed in Chapters 5, 6
and 7. In this chapter, the discussion turns to design of the SDSS itself, based on a

probabilistic GIS modelling approach and using the variables identified in Chapter 8.

The steps in implementing the SDSS are presented and, in the subsequent chapter,
the SDSS that was consequently implemented is described and discussed. The SDSS
is called ‘CaNaSTA’ (Crop Niche Selection in Tropical Agriculture) (canasta is
Spanish for basket, and the tool aims to offer a basket of options to farmers,

particularly in Spanish-speaking Central America).

The design and implementation of the SDSS are discussed with reference to the case

study of selecting forage species in Central America.

9.1 Overcoming Potential Barriers to Uptake

A number of barriers to the successful uptake of DSS in agriculture, particularly the
developing world, were discussed in Chapter 4. Those relating to design
considerations include complex design and presentation of DSS, unrealistic
requirements for monitoring data, the irrelevance and inflexibility of many DSS, lack

of user confidence and poor data availability and quality.

The problem of poor data availability and quality is overcome partly by allowing
uncertainty to be explicit in the structure of the model itself. Also, the incorporation

of expert knowledge supplements unavailable data.

There are no requirements for the farmer to provide monitoring data as input to the

DSS. The SDSS will be implemented as a stand-alone piece of software, meaning



160

there is no requirement for other software to be present on the user’s computer (such

as proprietary GIS or database software).

The design and presentation of the SDSS 1s intended to be simple and functional. At
the most basic level, users need only be able to interpret maps in order to select their
location.  Displaying information in a number of ways (maps, graphs and
numerically)} should assist the user with understanding the outputs of the model

order to make better-informed decisions.

Lack of user confidence can be addressed by reducing and describing all sources of
uncertainty in the model and by allowing the user’s own knowledge to be

incorporated.

9.2 Conceptual Model

92.1 Nomenclature

When the response variable is discussed generally, it is denoted ¥ and its possible
states are denoted y;, meaning that variable y is in state /. Specifically, the response
variable ‘adaptation level’ is denoted by A and its possible states “poor’, ‘adequate’,

‘good’ and ‘excellent’ are denoted by a,, a,, a,, and a, respectively.

The prior probability distribution of adaptation for a species 15 written P{4) and the
single prior probability value that adaptation is excellent, for example, is written
P(a.). The values of the prior distribution may be written (F,, P., Pe, P.), Which 15

shorthand for writing P(a,)= P,, P(a.)= P, Pla,)= P, and P(a.)= P..

In the previous chapter, six predictor variables were identified. Where predictor
variables are discussed in general, they are written X' (j = 1 to 6), with potential
classes that X' can belong to denoted as ¥'; (k = 1 to 5). Where they are discussed
specifically, they will be denoted as shown in Table 9.1, where the classes are those

defined in Table 8.9.



161

VYariable Notation Classes
Elevation =~ | E ey, €, €3, €4, €5
Rainfall R Fi, ¥, ¥y, Fq b3
Dlty months | D dj’, dg, dj, d4, d5
Soil pH H hi, b, hs by, hs
Soil texture | T 1y, 15 83, 0a 15
Soil fertility | F fu. o [ fs

Table 9.1 Notations for predictor variables.

The full matrix of conditional probability distributions (the CPT) of adaptation, given

the above variables, is written:

P(A|E.R,D,H,T F} (9.1)

The conditional probability distribution of adaptation, given that elevation is between
500 and 1000m (class 2), rainfall is between 800 and 1200mm (class 3), the length of
the dry season is 5-6 months (class 3), soil pH 1s acid (class 2), soil texture is clay

(class 1) and soil fertility is medium (class 3), is written:

P(Alelﬂr3’d3sh2:tla.f3) (92)

The single conditional probability value that adaptation is excellent, based on the

same nformation, is given by:

Pla, |e,,ry,dy hast, 1) (9.3)

9.2.2 SDSS Design

The SDSS was designed as two related stand-alone components. The main
component carries out posterior distribution calculations to produce species
recommendations and maps as required. This component assumes prior and joint
probabilities have already been defined, either from data or expert knowledge or a
combination of both. In addition, suitable uses and level of tolerance to stresses are
also assumed to have been defined. The secondary component allows for data entry

and manipulation, and its main purpose is in building the knowledge base.
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The modelling processes, i.e., selecting suitable species for a location and selecting
suitable locations for a species, are carried out entirely within the main component.
Posterior probability calculations are performed as required, based on prior and joint
probability distributions stored in the knowledge base, along with spatial data and
user inputs. The main component is the only component that most users will need to
access. Spatial data for elevation, annual rainfall and number of dry months is stored
in a format accessible to the SDSS, as a 1km grid for the extent of Central America.
The knowledge base consists of prior and joint probabilities for each species related
to each response variable, as well as filter varable thresholds for each species. User
input is also required, to define locations and/or species of interest and to specify

information such as local soil characteristics and desired forage use.

The following sections describe the steps in the modelling process and consider how

they may be implemented within an SDSS.

9.3 Building the Knowledge Base

9.3.1 Joint and Conditional Probability Distributions

The primary model inputs are the prior and conditional adaptation distributions for
each species. Joint probabilities are derived from the RIEPT database, from the
SoFT knowledge base and from additional expert knowledge. These three sources
complement each other, filling in gaps and often providing higher certainty regarding
probabihty distributions. From these sources, conditional and prior probability
distributions can be calculated. Probabilities are specified for all species in RIEPT
and in SoFT. Expert knowledge can either update these probabilities or define

probabilities for a completely new species.

In the case of RIEPT, the values in the database can be translated directly from
counts to joint probabilities. The relationship between counts, joint probabilities and

prior probabilities are represented in a numerical example in Table 9.2 below.
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Adaptation
Rainfall Poor Adequate | Good Excellent | Total / Prior
¥ 0/000 ¢ 1/0.02 0/0.00 0/0.00 1/0.02
¥ 0/0.00 [ 2/0.04 1/0.02 0/0.00 3/0.06
¥; 2/004 | 5/0.10 2/0.04 1/0.02 [10/0.20
ry 1/0.02 | 2/0.04 3/006 [10/0.20 |16/0.32
¥s 0/0.00 { 0/0.00 6/0.12 [14/028 |20/040
Total / Prior | 3/0.06 | 10/020 |12/0.24 [25/0.50 |50/1.00

Table 9.2 Frequency counts / joint probability values for rainfall class against
adaptation class.

In the case of SoFT, a number of manipulations need to be carried out to translate the
information in the SoFT knowledge base to adaptation probability distributions. This

process is described in detail in Section 9.3.5 below.

Defining probability distributions from expert knowledge involves directly eliciting
conditional probability distributions for each predictor variable for each species.
When the conditional probabilities are defined using expert knowledge, the expert

also assesses how certain they are in their probability definitions.

0.3.2 Potential Uses and Filter Variable Thresholds

Potential use and tolerances to environmental stresses (such as drought or frost) are
Boolean in nature, that is, a species either meets the requirements or it does not.
These are not used in the probability distribution calculations but are used to filter

out unsuitable species.

Potential forage uses were initially identified in conjunction with forage experts at
CIAT. The SoFT database also lists potential forage uses, and these are categorised
slightly differently to those identified at CIAT. Because SoFT is the most
comprehensive source of information relating forage uses to each individual forage
species, it is reasonable to use the definitions from SoFT. The original list compiled

at CIAT is compared below with the classifications defined in SoFT (Table 9.3).



164

Defined at CIAT Defined in SoFT

Pasture Long term pasture (>4 years)
Improved fallow Short term pasture (phase / ley /
Cut and carry improved fallow) (<3 years)
Hay Cut and carry

Silage Conservation (hay/silage/leaf meal)
Live barriers Intercropping

Living fences Green manure / mulch

Green manure Ground cover (erosion control)
Cover or erosion control Agroforestry

Dry season supplement Hedgerows

Short term rapid use Living fences

Long term rapid use Ponded pasture

Concentrate Irrigated pasture

Agroforestry

Soil recuperation

Intercropping

Ponded pasture

Feed for monogastrics

Feed for fish

Table 9.3 Potential forage uses defined at CIAT (left) and in SoFT (right).

There is a many-to-many relationship between forages and potential uses — that 1s, a
selected forage can be multi-use, and for a selected use multiple forages may be
suitable. The definition of use is binary — either a species is suitable or not suitable.
If a species in not suitable for the intended use accorded it in SoFT’s knowledge
base, it is filtered out of the selection set. Using the list of potential uses defined at
CIAT would require experts to individually identify potential uses for each forage
species. Therefore, it is more straightforward to use the potential uses defined in
SoFT. For species which are in RIEPT, but not in SoFT, potential uses need to be

defined on a case-by-case basis from expert knowledge or literature.

The other filter variables (tolerances to stresses) are not binary, however, but multi-
state. These variables are also defined in SoFT, and their possible states are listed in

Table 9.4 below.



Variable States

Soil salinity Low

Medium

High

Drought tolerance Persists

Stays green
Continues to grow
Seasonal waterlogging < I week

< | month

> | month

Frost tolerance (foliage | Persists, but burnt off
damage) by frost

Stays green
Continues to grow
Light (shade tolerance) Full sun

Light shade
Heavy shade

Table 9.4 Filter variables in SoFT.

These states are interpreted as follows. The user of the SDSS can identify four
different levels of tolerance, namely ‘none’, ‘low’, ‘moderate’ and ‘high’. Taking
the example of drought tolerance, if the user indicates the level of tolerance required
as ‘none’, then the filter variable 1s not activated and no species are filtered out. This
means that species may be selected that would die if there 1s a drought, but if drought
tolerance 1s 1dentified as ‘none’, this means drought conditions are not expected to be
an issue. If the user selects ‘low’ tolerance to drought required, then all species
which persist, stay green or continue to grow are included. If the user indicates that
‘moderate’ tolerance is required, then only species which stay green or continue to
grow are included. Finally, if tolerance required is ‘high’, then only species which
continue to grow are included and all others are filtered out. The process is the same

for the other filter variables.

9.3.3 Joint and Conditional Probabilities from RIEPT

Joint probabilities can be read directly from the RIEPT database, as shown in Table
9.2. Calculating conditional probabilities is then a matter of applying Equation 7.8
or 7.9. For example, the conditional probability that adaptation is good, given that

rainfall is in class 3, is given by:
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Pla, |1y =) 0124 4,
<Py 040

{9.4)
Similarly, the conditional probability that rainfall is in class 5, given that adaptation

is good, is given by:

_ Pls,a,) 012

P(r;|a,) = Pl 024 =0.50 (9.5)

The conditional probability distribution of adaptation, given a certain rainfall class,
can therefore be calculated by normalising across a row, and the conditional
probability distribution of rainfall, given a certain adaptation class, can be calculated

by normalising down a column in Table 9.2.

In addition, certainty values need to be assigned to the conditional probability
distribution for each class of each variable for each species. When the conditional
probabilities are calculated from RIEPT, the level of certainty depends on how many
trials exist for the species for that variable class. If less than two trials exist,
certainty 1s ‘low’. If up to five trials exist, certainty is ‘medium’ and otherwise

certainty 1s ‘high’.

Recall from Equation 7.12 that causality for conditional probabilities can be inverted.
In the example above, the conditional probability in Equation 9.4 can be derived

from the conditional probability in Equation 9.5 as follows:

Pla. ir)= Pla,)P(r;|a,) 0.24-0.50
£ P(r) T 040

=0.30 (9.6)

9.3.4 Prior Probability Distributions

Prior probability distributions are required both for predictor and response variables.

For predictor variables, prior probability is denoted P(X) and for the response
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variable (adaptation), prior probability is denoted P(A). Recall that the prior
probability is equal to the sum of joint probabilities (see Equation 7.13), that 1s:

Pla)=> Pla,x,) (9.7)

and

P(x,)=> P(a,x,) (9.8)

Therefore, in most cases, once joint probabilities are known, prior probabilities can
be calculated. For example, from Table 9.2, the prior probability distribution for

rainfall 1s given by:
P(R) =(0.02, 0.06, 0.20, 0.32, 0.40)

and the prior probability distribution for adaptation is given by:
P(4)=(0.06,0.20, 0.24, 0.50)

Note that » P(r,)=1and ) P(a)=1.
i i

However, prior probability distributions for the predictor variables must be the same
across all species, and prior probability distributions for the response variable
(adaptation) must be the same across all variables, for a given species. The approach

for ensuring these equalities is discussed in Section 9.3.8 below.

935 Joint and Conditional Probabilities from SoFT

The SoFT database was described in the previous chapter. The variables in SoFT

that relate to the predictor variables are listed below, along with the categories

defined in SoFT (Table 9.5).
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Predictor SoFT variable | SoFT Classification
variable

Elevation Latitude x Tropics, 0-1000m
Altitude Tropics, 1000-2000m
Tropics, 2000-2500m
Tropics, 2500m+
Subtropics, 0-1000m
Subtropics, 1000-2000m
Subtropics, 2000-2500m
Subtropics, 2500m+

Rainfall Rainfall Range (defined by absolute lower limit, optimal
lower limit, optimal upper limit and absolute
upper limit)

Dry months | Length of dry | <1 month
period up to 3 months
up to 6 months
up to 9 months
> 9 months

Soil pH Soil pH Strongly acidic (< 5.0)
Mildly acidic (5.0 - 6.5)
Neutral

Alkaline (> 7.5)

Soil texture | Soil texture Sand / sandy loam (light)
Loam / clay loam (medium)
Heavy clay (heavy)

Soil fertility | Soil fertility Low
Medium
High

Table 9.5 SoFT variables related to predictor variables.

The first task, therefore, is to relate the categories in SoFT to the categories already
defined for predictor variables. These relationships are a mixture of one-to-one, one-

to-many, many-to-one and many-to-many, and are shown in Table 9.6 below.

Recall that SoF T uses binary rules to classify species as either suitable for the given
environment or not suitable, except in the case of rainfall where both optimal and
absolute limits are given. In order to convert these judgements to adaptation
probability distributions, the following assumptions were made, in consultation with

CIAT forage experts (who are also involved in the SoFT project).
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Variable SoFT classes Defined classes
Elevation Tropics 0-1000m 0-500m
Subtropics 0-1000m 500-1000m
Tropics 1000-2000m 1000-1500m
Subtropics 1000-2000m 1500-2000m
Tropics 2000-2500m >2000m
Tropics 2500m+
Subtropics 2000-2500m
Subtropics 2500m+
Rainfall Ranges Linear transformation
Dry months <1 month (-2 months
up to 3 months
up to 6 months 3-4 months
5-6 months
up to 9 months 7-8 months
> 9 months > § months
Soil pH Strongly acidie (< 5.0) Very acid (<4.5)

Acid (4.5-5.5)
Moderately acid (5.5-6.5)

Mildly acidic {5.0 — 6.5)

Neutral Neutral (6.5-7.5)
Alkaline (> 7.5) Alkaline (>7.5)
Soil texture Heavy clay (heavy) Clay
Loam / clay loam (medium) Clay loam
Loam
Sand / sandy loam (light) Sandy loam
Sand
Soil fertility Low Very low
Low
Medium Medium
High High
Very high

Table 9.6 Transforming SoFT categories to predictor variable categories.

9.3.6 Transforming SoFT Categories to CaNaSTA Categories

The process to transform SoFT categories to CaNaSTA categories consists of two
steps. The first step transforms a SoFT evaluation of ‘suitable’ or ‘not suitable’ to
probability distributions. The second step then translates these distributions to the
categories defined for the predictor variables. In the first step, the probabilities are
set for ‘poor’, ‘adequate’, ‘good’ and ‘excellent” adaptation. If SoFT data indicates
suitability for a given species, then the probability distribution is set to
{0, 0, 0.5,0.5), that is, adaptation is either ‘good’ or ‘excellent’, with equal

probability. Certainty is flagged as ‘high’. If SoFT data does not indicate suitability,
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then this does not necessarily mean that conditions are unsuitable. Therefore, while

the distribution is set to (0.5, 0.5, 0, 0), certainty is flagged as ‘low’.

In the next step, SoFT ranges need to be transformed to CaNaSTA ranges. The
simplest case is a one-to-one relationship, such as ‘Heavy clay (heavy) > ‘Clay’,
where the probability distribution and certainty value are simply copied. With a one-
to-many relationship, such as ‘Loam / clay loam (medium)’ = ‘Clay loam’ and
‘Loam’, the probability distribution and certainty value are simply copied for both

categories.

In the case of a many-to-one relationship, such as ‘< 1 month” and “up to 3 months’
= ‘0-2 months’, the distributions and certainty values are averaged. Therefore, if the
probability distribution for *< 1 month” is (0, 0, 0.5, 0.5) with certainty ‘high’ and the
probability distribution for ‘up to 3 months’ is (0.5, 0.5, 0, 0) with certainty ‘low’,
then the probability distribution for ‘0-2 months’ is set to (0.25,0.25, 0.25, 0.25)

with certainty ‘medium’.

The case of many-to-many (as occurs for elevation) is simply an extension of these
methods.  The distribution values are averaged for ‘Tropics 0-1000m’ and
‘Subtropics 0-1000m’ and the averaged distribution is applied to both ‘0-500m’ and
500-1000m’.

Rainfall is treated differently because, rather than being categorised, optimal and
absolute limits are given (although in some cases only optimal limits are given, or
only one of the absolute limits are given). The probability distribution for the range
within the optimal limits is set to (0, 0, 0.5, 0.5) with certainty ‘high’. The
probability distribution for the range within the absolute limits (but outside the
optimal limits) is set to (0, 0.1, 0.8, 0.1) with certainty ‘medium’ and the probability
distribution for the range outside of the absolute limits is set to (0.5, 0.5, 0, 0) with
certainty ‘low’. These distributions are then combined proportionately to calculate
probability distributions for the predefined classes. Certainty values are similarly

combined proportionately, with the dominating certainty value being carmied over.
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To illustrate, consider a rainfall range in SoFT giifen as (600-)1200-2500(-4500), that
is, the optimal rainfall range is 1200-2500mm and the absolute rainfall range is 600-

4500mm. Probability distributions are then set as follows (Table 9.7).

Range Suitability | Adaptation Distribution | Certainty
¢-600mm Unsuitable | (0.5,0.5,0, 0) Low
600-1200mm Marginal {0.0.1,0.8,0.1) Medium
1200-2500mm | Suitable (0,0,0.5,0.5) High
2500-4500mm | Marginal (0,0.1,0.8,0.1) Medium
>4500mm | Unsuitable | (0.5,0.5,0,0) Low

Table 9.7 Probability distributions and certainty values for rainfall ranges in SoFT.

The next step is to distribute these proportionally across the predefined rainfall

classes, as shown in Table 9.8 below. In order to define proportions relating to the

uppermost range (>>2500mm), a practical upper limit of 5000mm rainfall is defined.

Class Ranges in Calculation Adaptation Certainty
SoFT Distribution
< 500mm 0-600mm 1*{0.5, 0.5, 0, 0) (0.5,0.5,0,0) Low
500-800mm 0-600mm 0.33*%(0.5,0.5,0,0) + (0.17,0.23, 0.53,0.07) | Medium
600-1200mm 0.67*%(0, 0.1, 0.8, 0.1)
800-1200mm 600-1200mm 1*%{0,0.1, 0.8, 0.1) {0,0.1,0.8,0.1} Medium
1200-1800mm 1200-2500mm | 1*(0, 0, 0.5, 0.5) (0,0,0.5,0.5) High
>1800mm 1200-2500mm | 0.22*(0, 0, 0.5, 0.5) + {0.08,0.14, 0.61,0.17) | Medium
2300-4500mm | 0.62*(0,0.1,0.8,0.1) +
4500-5000mm | 0.16*(0.5,0.5,0,0)

Table 9.8 Transforming SoFT rainfall probability distributions to predefined classes.

9.3.7 Calculating Prior Probabilities for Adaptation

As discussed above, prior probabilities can be calculated directly from joint
probabilities. However, problems arise where zero counts are encountered for row or
column totals, that is, prior probabilities are zero. This situation arises when there
are no trials in the database for either a particular variable class or for a particular

adaptation class.

The probability distribution that ultimately needs to be calculated (from Equation
7.24) 1s:
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P(A|E,R,D.HT.I)=
P(A)P(A\E)P(AIR)P(AID)P(AIH)P(A\T)P(AW) (9.9)
P(4) P(A) P(4) P(4) PA) P4

The above equation assumes that causal conditional probabilities are known; when
frequency counts are being directly read from a database, then the equation can be

written using diagnostic conditional probabilities.

When joint probabilities are known rather than conditional probabilities (as 1s in fact
the case when reading directly from a database), then from Equation 7.8, Equation

9.9 is equivalent to:

P(4iE.R,D.H.T,F)=
POA) P(A.E) P(AR) PAD) PAH) PAT) Par) (910
P(AYP(E) P(A)P(R) P(AYP(D) P(A)P(H) P(AP(T) P(A)P(F)

Hence it should be clear that if any prior probability value is zero, then problems will
ensue through attempting to divide by zero. The case where adaptation priors are
zero 1s treated slightly differently to the case where predictor variable priors are zero,
but in both cases the approach in this research is to replace the priors with a

reascnable non-zero estimate.

In the case where adaptation priors are zero, two distinct situations can occur. The
first 1s where P(a;)} = 0 across all predictor variables. This situation can occur when
there are no entries in the database of trials of a species where adaptation 1s, say,
‘poor’. In this case, the approach is to simply set P(a) = o, where ¢ is a very small
positive number. Joint probabilities P(a,, x;) are set to ¢/5. Setting joint probabilities
to an equal distribution implies, correctly, that no information is known about the

distribution {(complete ignorance).

The second situation can occur when there are fewer entries in the database for one

variable than for another. For a given species, sayZP(a »-€;)=0.01, which might
j
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equate to just one frequency count for poor adaptation. If this one record in the

database is missing information for soil fertility, thenZP(a o/ )=0.
j

However, the prior probability distribution must be equal for all variables, that is, the

following equality must hold:

P(ay=Y Pla,e,)=Y Pla,r)=> Pla.d,)=

' .11
S Plahy) = 3 Plant )= X P(as ) o

Therefore, the above situation can be remedied by setting P(a,) = 0.01 and setting
each joint probability P(a,, f;) = 0.002, again under conditions of complete ignorance.
Incidentally, these adjustments need to be made whenever prior adaptation
probabilities are not equal across variables. In non-zero cases, adjustments are made
so that priors agree, and the joint probability distributions stay as close to their

original distributions as possible.

For species which are only present in SoFT, prior probability distributions for
adaptation could be defined under complete ignorance, that 1s, set to
(0.25, 0.25, 0.25, 0.25). However, for each predictor variable, the following equality

must be satisfied (see Equation 6.15):

P(4)=) P(4|x,)P(x)) (9.12)

To illustrate, consider the information in SoFT for Stviosanthes guianensis.
Transforming the information given using the methods described above, the
following conditional probability distributions are defined for elevation, rainfall and

dry months, shown in Table 9.9 below.
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Yariable Class 1 Class 2 Class 3 Class 4 Class 5
Elevation | (0.0,05,0.5) | (0,0,0.5.0.5) | (0,0,0.5,0.5) [(0,0,03,0.5) |(0.5,05,0,0)
Rainfall (0.5,0.5,0,0) | (0.17,0.23, (0, 0.1, 0.8, (0,0,0.5,0.5) | (0.08,0.14,

0.53, 0.07) 0.1) 0.61,0.17)
Drv (0.25, 0.25, (0,0,0.5,0.5) |(0,0,05,0.5) |(0,0,05,03) |(0.505,0,0)
months 0.25,0.25)

Table 9.9 Conditional probabilities P(A | x;) for S. guianensis.

Calculating P(4) based on conditional probabilities and prior probabilities for each

variable separately, from Equation 9.10 above, gives:

P(4)= P(4]e,)P(e,) = (0.0,0.5,0.5)-0.69+(0,0,0.5,0.5)-0.19+
J

(0,0,0.5,0.5)-0.07 +(0,0,0.5,0.5)-0.02 +(0.5,0.5,0,0) - 0.03
=(0.015,0.015,0.485,0.485)

P(A)= Z_P(A |7, )P(r;)=(0.5,0.5,0,0)-0.02+(0.17,0.23,0.53,0.07) - 0.06 +
;

{0,0.1,0.8,0.1)-0.19+(0,0,0.5,0.5)-0.32+(0.08,0.14,0.61,0.17)-0.41
=(0.053,0.100,0.594,0.253)

P(4)="P(4|d,)P(d,)=(0.25,0.250.25,0.25)-0.15+(0,0,0.5,0.5)-0.13+
/

(0,0,0.5,0.5)-0.29+(0,0,0.5,0.5)-0.42 + (0,0,0.5,0.5)-0.01
= (0.038,0.038,0.463,0.463)

The method employed in this research is to average the values of P(A) over all
variables. In the case with three variables above, P(4) becomes (0.033,0.051, 0.513,
0.400). The example above considers just three variables, however, in practice all
six predictor variables are considered. Conditional probability values are then
adjusted so that Equation 9.10 holds for each variable. This is done in an iterative
process. In the first iteration, the joint probabilities are multiplied by a constant so
that they sum to the calculated P(4) (down columns in Table 9.2). However, now
the joint probabilities will no longer sum to the desired priors for the variables, so
they are again multiplied by a constant so they sum to the desired P(X) (across rows

in Table 9.2). These steps are repeated until the sum down columns is close to P(4)
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and the sum across rows is close to P(X). This process attempts to retain the relative

proportions in the conditional distributions whilst satisfying equations 9.7 and 9.8.

9.3.8 Calculating Prior Probabilities for Predictor Variables

When predictor variable prior probabilities are zero, this is because no records are
found in the database in a particular class of the variable. For example, if P(r;) = 0
for a particular species, this means that there are no trials for the species where
rainfall is less than 500mm. However, there could still be a location under
consideration where rainfall is in fact in this class. In this case, the best assumption
to make is to set prior probability distributions to the same distribution that is found
in the area under consideration, in this case Central America. Distributions for each
predictor variable have been calculated from spatial data for agricultural land only,

and are displayed in Table 9.10.

Note that for soil variables, these percentages are derived from the classifications
applied to FAO soil maps, where soil pH, soil texture and soil fertility are split into
three classes each. In order to distribute these over five classes, the top and bottom
classes are each divided by two. This is equivalent to saying that where soil fertility
1s classed as ‘low’ from the FAO classification, there is equal probability that it

could, in fact, be ‘very low’ or ‘low’ in the classification in Table 9.10.

Class
Variable 1 2 3 4 5
Elevation 0.69 {0.19 {0.07 |0.02 | 0.03

Rainfall 0.02 10.06 |0.19 1032 {04l
Drymonths | 0.15 [0.13 1 0.29 [0.42 | 0.01
Soil pH 0.19 10.19 | 038 [0.12 | 0.12

Soil texture | 0.36 | 0.36 [ 0.10 | 0.09 | 0.09
Soil fertility | 0.15 1 0.16 [ 045 [0.12 | 0.12

Table 9.10 Prior probabilities derived from spatial data for predictor variables across
all agricultural land in Central America.
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RIEPT and SoFT contain information on different forage species, but there is

substantial overlap. In addition, experts may update probability distributions for a

species already in the database or may define distributions for new species.

Ultimately, however, one unique ‘master’ set of prior and conditional probability

distributions is required for each species.

A number of update rules are possible. The rule set implemented is as follows:

1. If only one source of data exists, use it

2. If expert knowledge is one of the sources, use it

3. If sources of data have different certainty levels, use the source of data with

the highest certainty

4. If sources of data have the same certainty levels, use data averages.

The process for defining conditional probability distributions, using the update rules,

is conceptualised in Figure 9.1 below

Elevation 0-500m

Elevation 500-1000m
Elevation 1000-1500m

Elevation 1500-2000m

Elevation >2000m

RIEPT
I ) B
SoFT l

Log

| Soil fertility
| Soil texture
| Soil pH
[ Dry Months
| Rainfall

Elevation

r=Class 1 _.;l
™ Class 2 {.
*Class 3 i:l

= Class 4 {.
> Class 5 ﬂ

Figure 9.1 Defining conditional probability distributions.
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9.4 Model Calculations

9.4.1 Calculating Posterior Probability Distributions

Once conditional and prior probability distributions have been defined, the full CPT
can be calculated using Equation 9.9. The suitability value is calculated directly
from the posterior probability distribution P(4 | e, #, d, h, t, f) using Equation 9.4,
The certainty value is calculated from the individual certainty values associated with
each P(4 | x). Representing ‘High’ certainty with the value ‘2°, ‘Medium’ with ‘1’

and ‘Low’ with ‘0’, these values are simply averaged.

The conditional and prior probability distributions in the ‘master’ file are then
combined using Equation 7.24, to define a full CPT for each species. In addition,
potential uses and thresholds for filter variables are stored for each species (Figure
9.2).

| Soil fertility
| Soil texture
| Soil pH
| Dry Months
| Rainfall

268 mays

Elevation

Class 1 _:I
Class 2 ,[.
Class 3 {L

Class4 TTig
Class 5 ﬂ

Aeschynomene ameticana

Acacia melanoxylum

Acacia decurrens

B-dimensional matrix
of probability distributions
for each combination of
classes
Uses

Tolerances

Figure 9.2 Defining CPT for each species.
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9.4.2  Suitability and Sensitivity

In order to rank species, one value is required rather than the full adaptation
probability distribution — note that this is only for ranking purposes, and full
distribution information is retained. The ranking value is the suitability score and is

determined using the following equation.

_ Vo Pla) 9.13
Score [(P(ae)+P(ag))+ P(aﬁ,)+P(ag)}2 (9.13)

This is the average of the probability of adaptation being ‘excellent’ or ‘goed’, and
the proportion of that probability value that is ‘excellent’. In this way, the score
reflects the nature of the adaptation distribution more comprehensively than if only
probability ‘excellent’, or probability ‘good’ or ‘excellent’ were used. Table 9.11
shows an example of ranking calculation for five species based on the score

calculated in Equation 9.13.

Species | Pa,) | P(a,) | Score ank
0.86 | 0.07 |[0.93

R
1
0.61 |0.28 | 0.86 2
3
4
5

0.00 {092 |0.46
0.11 10.10 |0.37
0.01 {0.45 |0.23

by [t | e [

Table 9.11 Ranking calculation example for five species based on the score value.

Although species C has an overall probability of 0.92 that adaptation will be ‘good’
or ‘excellent’, the fact that probability of ‘excellent’ adaptation is 0.00 reduces the
overall score. Conversely, species D’s score is increased from 0.11 (probability
‘excellent’) and 0.21 (probability ‘good’ or ‘excellent’) to 0.37, because of the
relatively large proportion of probability ‘excellent’. As the score ignores the
probability values for ‘poor’ and ‘adequate’, it is not a complete summary of the
probability distribution. However, for the purposes of ranking it reflects the essential

characteristics of the probability distribution.

Another value associated with the posterior probability distribution is sensitivity, as

described in Section 7.2.7. Sensitivity is evaluated from changes in the adaptation
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distribution as the states of predictor variables change. Some variables may be more
sensitive than others, for a given species. Sensitivity is computed by calculating in
how many instances the adaptation distribution changes significantly if only one

variable changes into an adjacent state.

As with the suitability ranking, a single value of sensitivity is needed, even though
full sensitivity information is retained and can be queried by the user. Firstly, the
difference in suitability score is calculated when one variable changes to an adjacent
class. This vields 12 values (six variables in two directions each). Two measures
can be combined to determine a measure of sensitivity, namely, the maximum

difference in suitability score and the average of all difference scores:
Sensitivity =| max(d,) —ave(d,) | (9.14)

where d; is the difference in suitability scores between the i™ value and the original

value.

9.5 Model Inputs and Outputs

9.5.1 User Inputs

Recalling Figure 7.8, the first input required from the user is selection of a location.
Elevation, annual rainfall and number of dry nionths can then be determined from
spatial data, both for the selected location and for the surrounding area. The size and
resolution of the surrounding area depends on the scale and extent chosen by the
user, as discussed further in Chapter 10. The process of selecting a location can
make full use of the spatial capabilities of an SDSS. Firstly, roads, rivers, towns and
administrative boundaries can be displayed in order to help the user find the location
of interest. Secondly, standard GIS procedures can be used to navigate around the
map, including zooming, panning and identifying location attributes. Lastly, as all
spatial data is geographically referenced, locations can be identified by latitude and

longitude.
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Because soil information is not included as spatial data, information on soil pH,
texture and fertility need to be provided by the user. However, if any of these values
are unknown, this simply means that this variable has no influence on the posterior

probability calculations.

Other information required from the user is the intended use(s) of the selected forage,
any tolerances required and the level of risk-aversion of the farmer in question.
Based on this information, it is a straightforward process to filter out any forage

species that do not match intended uses or required tolerances.

Based on these inputs, posterior probability distributions are calculated for each
species not already filtered out. Probability distributions are calculated for the

combination of variables at the location of interest.

9.5.2 Model Outputs

There are a number of outputs possible, depending on which information the user
requires. The first is a ranked list of suitable species for a location, with various
associated measures. These are posterior adaptation distribution, suitability score,
level of certainty, sensitivity of each variable for a selected species and a combined
sensitivity score. The process for calculating suitability and sensitivity is described

n Section 9.4.2.

At the same time, the certainty value associated with the posterior probability 1s
calculated based on the certainty values of each joint probability distribution. If risk-
aversion is identified as low, then species are ranked purely by the ranking value. If
risk-aversion 1s identified as high, then species where the probability distribution 1s
associated with low certainty are excluded, and those with medium certainty are
ranked lower. If risk-aversion is medium, then those with low certainty are not
excluded, but ranked lower. In this way, if the farmer is identified as risk-averse,
then species with lower certainty will be penalised, even if the probability score 1s
high. Level of risk-aversion is used to rank all potentially suitable species. If risk-
aversion is low, then the species with the highest probability of adaptation 1s ranked

first. If risk-aversion is high, then probability of adaptation is traded off against
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certainty, and certainty must be high before a species is recommended. If risk-
aversion is medium, then species with low certainty for the given combination of

factors are excluded.

In order to display a map of species’ adaptation, posterior probability distributions
are required, not just for the location identified but also for the surrounding area. To
produce these maps the full CPT must be specified, rather than just for the states of
the variables at the selected location. In the first instance, the full CPT is calculated
only for the top five ranked species. However, the user may select a species further
down the list, at which point the necessary calculations are performed. The full CPT
initially need only be calculated for the three variables that have associated spatial
data, namely, elevation, rainfall and dry months. This requires 4x5x5x5 = 500

values to be specified for each species, so in total 2,500 values (top five species).

Each cell on the map is then assigned a posterior probability distribution and the
associated certainty value. This information can be displayed spatially in a number
of ways, including most likely adaptation class, probability of adaptation being

‘good’ or ‘excellent’ and by the suitability score.

The spatial variation of soil variables is undefined in this implementation of the
SDSS because soil maps are not being used. Therefore, all probability distributions
across the map can be updated using a constant probability distribution for each soil
variable. If the user wishes to examine the effect of a soil variable changing, then the
entire map is simply updated using the new probability distribution. This allows the
user to examine the effect of certain soil characteristics whilst retaining the spatial

variability of elevation and climate data.

A user may also wish to know where a certain forage species will be suitable. In this
case, the process is much more straightforward than the one described above. Once
the user has selected the species, the full CPT is calculated for that species. The
results can then be displayed in the same manner as described above. If the user
selects a small enough scale, then it is valid to include spatial soil data, in which case

this is also included in the display. In addition, population density data and access to
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market can be displayed, although in this implementation they are not incorporated in

the probability calculations.

9.6 Summary

A decision support system can aid in the decision making process of which forage
species to adopt. Decision support systems in agriculture have been available for
decades, but uptake is poor. Ways to overcome potential issues were discussed in

the first section of this chapter.

Sources of information to develop the SDSS were discussed in the previous chapter.
In this chapter, it was shown how prior and conditional probability distributions can
be derived from these sources. When data is sparse or missing, it can be difficult to
specify some probability distributions. Methods have been devised to overcome this
difficulty, including defining prior probability distributions from spatial data. In.
addition, information from SoFT is extracted, including potential forage use and a

number of filter variables.

By allowing multiple data sources to be used, the model is strengthened, as it is not
reliant on a single database or a single expert. Where certainty in a probability
distribution is low, this is flagged, and the information 1s retained throughout the

modelling process.

This implementation therefore allows for sparse and uncertain data, works with
expert knowledge and deals with uncertainty. In addition, the concept of the
modelling process is fairly intuitive to follow, without the need for the user to
understand the equations. Therefore, a user can decide how much faith to put in the
information, because the entire process is transparent. In supporting decision-
making, it has been suggested earlier in this research that reduction of structural and
translational uncertainty may be more important than reduction of metrical
uncertainty. This implementation attempts to present accurate results (low metrical
uncertainty), but at the same time concentrates on delivering a structurally
uncomplicated model and providing results that are straightforward in their

nterpretation.
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This process therefore addresses most of the problems encountered with other

agricultural DSS and SDSS.

The following chapter describes the implementation of CaNaSTA, software designed
for Crop Niche Selection in Tropical Agriculture, based on the methods described in

this chapter and in the research as a whole.
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CHAPTER 10. IMPLEMENTATION

The previous chapters described the model selected to support decision-making for
tropical forage adoption. In order to make the model accessible to its intended users,
it has been implemented as stand-alone software, called CaNaSTA (Crop Niche
Selection in Tropical Agriculture). The approach and software design are described

in this chapter.

The current implementation of CaNaSTA is for the case study of tropical forage

species in Central America.

10. 1 Approach and Objectives

The design of the tool is based on the research described in the previous chapters.
The guiding principles for design of the software include ease of use, flexibility and
transparency. The tool must be simple to navigate and intuitive to use, and the
results must be easy to interpret. Minimal training should be required for the tool to
be used effectively. Transparency means that the user should be able to clearly see

where the results come from and how much confidence can be placed in them.

As previously identified, intended users are extension workers, NGOs, development
projects, and scientists from national research and international research institutions
involved in tropical agriculture. To a limited extent, the product may also be useful

for educational purposes.

10. 2 Software Design

Software has been developed based on the conceptual model presented in the
previous chapter. The software is called CaNaSTA and has been developed using
Borland Delphi 6 (Borland Software Corporation, 2002) and ESRI MapObjects LT
(ESRI, 2000).

As discussed in the previous chapter, the SDSS consists of the decision support

component itself, a number of databases and a spatial GUI which accepts user mput
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and provides output. In addition to the CaNaSTA SDSS, a program called
‘CaNaSTA Managér’ has been developed, which allows direct interaction with the

data in the databases. An overview of the SDSS is shown in Figure 10.1.

CaNaSTA
Databases P Qutputs
Forage species Manager Recommended specics
Prior ang Maps

CaNaSTA | "
conditional SDSS Graphs
probability
Spatial data ¢

Spatial GUI l

Userinput ™ — Decision

Figure 10.1 Overview of CaNaSTA.

CaNaSTA consists of three main modules. In the first module, the user selects a
location and defines some additional characteristics. The primary output is a ranked
list of suitable forage species. The second module allows the user to select a species,
and the primary output is a map showing where the species is suitable. The third

module allows for interactive updating of data (Figure 10.2).

Select forages Select location for Interactive data
for a location a forage species updating
Spatial data (maps)
11 [ ]

Prior and conditional probability distributions

[T
Filter variables

[ 1

Figure 10.2 Three main modules in CaNaSTA.

Each module employs common routines, and at relevant stages output is available in
map form, numerically and graphically. The routines are grouped into libraries

depending on their function. The main libraries are the map routines library, the grid



186

routines library and the probability routines library. The main screens are the
location selection screen, the location characteristics screen, the data updating screen
and various results screens. These main libraries and screens are briefly described
below. These screens are presented here as an overview and are discussed in more

detail in the context of using CaNaSTA 1n Section 10.3.

Additional software has been developed for the uploading of new data and for
manual alteration and deletion. This software (CaNaSTA Manager) is intended for

use by those who maintain the data for CaNaSTA.

10. 3 Libraries

10.3.1 Map Routine Library

The map routine library contains procedures for loading, displaying and navigating
spatial data. Spatial data format is the ESRI shapefile format for vector data
(administrative boundaries, roads, rivers and towns) and DIVA GRD format (see
Grid Routine Library) for grid data (climate data and adaptation probability output
maps). This format was chosen because MapObjects LT does not work with ESRI
grid formats, and because the DIVA format had already been implemented using the
combination of Borland Delphi and MapObjects LT (see Hijmans er al., 2004b).
Routines are also stored here for converting continuous grid data into classes and, in
conjunction with the probability library, converting multiple class grids into

combined adaptation grids.

10.3.2 Grid Routine Library

DIVA GRD format was developed by Hijmans ef a/. (2004b) for use with the DIV A-
GIS software. DIVA-GIS is free software for mapping and analysing natural
species’ distribution and biological diversity. There are four files associated with
each grid layer: a bitmap file for display, a ‘world’ file associated with the bitmap, an
‘info’ file containing the parameters and filenames associated with the gnd and a

sequential file containing the actual data (for more details see Hijmans ef af., 2001).



187

The grid routine library contains procedures for reading, writing and manipulating

the grid files.

10.3.3 Probability Routine Library

The probability routine library defines structures for storing prior and joint
probability distributions for each variable and provides routines for calculating and
storing posterior probability distributions, following the methods described in the

previous chapters.

10. 4 Screens

10.4.1 Location Selection Screen

The location selection screen shows a map of Central America with various options
for navigating the map. An area of interest can be chosen by zooming, panning or

selecting a predefined scale. Six scales have been defined (Table 10.1).

Scale | Extent Output cell size
! 1920 x 1920 km (full extent) | 32 x 32 km
2 960 x 960 km 16 x 16 km
3 480 x 480 km 8x Bkm
4 240 x 240 km 4x 4km
5 120 x 120 km 2x 2km
6 60 x 60 km 1x | km

Table 10.1 Predefined scales in location selection screen in CaNaSTA.

Views of Central America at these six scales are shown in Figure 10.3 below.

When zooming in is selected with a user-defined rectangle (by dragging and clicking
the mouse), scale is snapped to next largest predefined scale. Upon processing, cells
arc amalgamated to the required output cell size. This ensures that the output grid is
always a standard 60 x 60 cells. Subsequent map processing is greatly simplified and

resulting data files associated with the grids are kept small.
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Figure 10.3 Views at six scales implemented in CaNaSTA. A: 1920x1920 km (full
extent). B: 960x960km. C: 480x480km. D: 240x240km. E: 120x120km. F:
60x60km.

The area of interest can also be defined by entering the desired latitude and longitude

or by repositioning the focus box. The focus box is a square which is always at the
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centre of the screen and highlights the cell for which data is reported in some
screens. In addition, identifying features can be displayed and queried, including
roads, rivers, department names and municipality names. Elevation is antomatically
displayed, as are administrative boundaries. Although databases exist with populated
places, these are too numerous to effectively display without a substantial amount of
processing to determine which populated places to display at which scale. In
addition, too many labels can clutter the display unnecessarily. Therefore, althoughr
the intention is to show towns as identifying features, at this stage this has not yet

been implemented.

10.4.2 Location Characteristics Screen

This screen shows characteristics for a selected location (Figure 10.4), namely, the
location highlighted by the focus box in the location selection screen. Elevation,
annual rainfall and length of dry season are displayed as classes and are derived from
GIS data. The user has the option to select soil pH, soil texture and soil fertility,
where known. The user is also provided with tools to calculate soil texture and soil
fertility, from percent sand and clay, and levels of organic matter and phosphorus,

respectively.

The user also has the option to identify whether any tolerances are required n the
selected species. The tolerance options are shade, waterlogging, drought, frost and

salinity.

Intended use of the forage species must be identified by the user. This can be a
single use or multiple uses. Finally, the user is prompted for the farmer’s level of

risk aversion, being ‘low’, *‘medium’ or *high’.



Figure 10.4 Locations characteristics screen.

10.4.3 Data Updating Screen

This is the mechanism for updating data using expert knowledge. When this screen
(Figure 10.5) is shown, a species and a variable have already been selected. The
probability distribution is shown broken down by class, both numerically and
graphically. Numerically, a table is displayed where the column headers are the
adaptation categories (‘poor’, ‘adequate’, ‘good’ and ‘excellent’) and the row
headers are the variable classes (e.g., in the case of elevation ‘0-500m’, *500-
1000m’, <1000-1500m’, “1500-2000m’ and ‘> 2000m’). These same figures are
represented in a graph where each set of bars represents one variable class. Clicking
on one set of bars displays a graph where the individual bars can be manipulated by

dragging them up or down. This, in turn, updates all probabilities in the table.
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Figure 10.5 Data updating screen.

In addition, the level of certainty for each probability distribution is displayed as

either ‘high’, ‘medium’ or ‘low’, and this level can also be updated by the expert.

10.4.4 Results Screens

Results screens differ slightly, depending on which module is being used. However
they all contain a map, a legend and some identifying data (Figure 10.6). The map is
static in extent but dynamic in content. That is, the spatial extent and resolution have

already been defined by the user in the location selection screen.
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Figure 10.6 Results screen.

Data is reported for the cell in the focus box. In Figure 10.6, this is the text in the
white box in the lower left corner of the screen. This data includes latitude,
longitude, country, department, municipality, elevation, rainfall and dry months. If
adaptation has been calculated, then it will also display the posterior probability of
adaptation being ‘poor’, ‘adequate’, ‘good’ or ‘excellent’, the most likely adaptation
class, the score calculated from the adaptation distribution and the certainty level
associated with the adaptation calculation in each location. The map in Figure 10.6
shows most likely adaptation class for the species Desmodium heterocarpon based

on elevation alone.

10.4.5 CaNaSTA Manager Tool

This tool is a separate application, allowing an administrator to manage users,
variable data, species data and probabilities. The tool shares libraries with
CaNaSTA, namely, read, write and storage routines. It does not access probability
calculation routines, map display routines or grid handling routines. In each of the

screens, data can be added, changed or deleted.
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10. 5 Using CaNaSTA

10.5.1 Selecting Species for a Location

When CaNaSTA is first launched, a screen is shown with an empty map and a button
to select a location. At this point the ‘Select Species for Location’ tab is selected, but
the other tabs (‘Select Location for a Species’, ‘Update Species Data’ and ‘Tutorial’)
are available (Figure 10.7).

Clicking on ‘Select Location’ displays the location selection screen, displaying a
map of Central America with elevation and country boundaries (Figure 10.8). Using

the map navigation tools, an area of interest can then be selected.

Figure 10.7 Empty map when CaNaSTA is first launched.
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Figure 10.8 Initial ‘Select Location’ screen.

In Figure 10.9, a location near Luquigiie in Honduras (see Figure 2.8) has been
selected where the elevation is 1517m, annual rainfall is 1146mm and the length of
the dry season is five months. The labels shown in this figure are not town names

but municipality labels.

Selecting the ‘OK’ button returns the user to the ‘Select Species for a Location’
screen, with the map now displaying data for the extent chosen in the previous screen
(Figure 10.10). The user can choose to display maps for elevation, rainfall or dry
months, each of which is categorised according to the predefined classification.
Although in the display the variables are categorised into classes, clicking anywhere
on the map will show the actual figures for elevation, rainfall and dry months in a

separate popup box.
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Figure 10.9 ‘Select Location’ screen with a location near Luquigiie selected.

Selecting ‘Define Characteristics’ brings up the location characteristics screen
(Figure 10.11). Elevation, rainfall and dry months classes are shown. The user can
select drop down lists to choose soil pH, soil texture and soil fertility classes. In this
example, soil pH has been chosen as ‘Acid (4.5 — 5.5)" and soil texture is being
calculated based on percentage sand and percentage clay. Any of the soil
characteristics can be left as ‘unknown’. No tolerance levels have been selected.
‘Cut and carry’ has been selected as the intended use of the forage; risk aversion has
been identified as ‘low’. Clicking on OK returns the user to the Select Species for a

Location screen.
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Figure 10.11 Location characteristics.
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A new button now appears, namely, ‘Calculate Suitable Species’. Selecting this
button performs the necessary calculations and returns a ranked list of suitable
species for the location (Figure 10.12). The ranking is determined by calculating the

score value defined in Equation 9.13.
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Figure 10.12 Ranked list of suitable species.

Selecting the ‘Details’ button returns suitability, certainty and stability details for the
top five species (Figure 10.13). ‘Stability’ represents the value calculated in the
sensitivity Equation 9.14.
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Figure 10.13 Suitability, certainty and stability values for top five species.

Selecting the ‘Map’ button for a species displays the suitability map for the chosen

species for the previously selected location and its surrounding region (Figure 10.14).

Selecting the graph button displays additional information for the selected species,
including adaptation distribution and stability rating broken down by variable (Figure
10.15). This screen summarises the available information for one species, showing
the selected variable classes and the posterior adaptation distribution for the selected
location. The stability display on the right hand side shows the amount by which the
adaptation score would change, if each variable changes one class down or one class
up. The size of the change is reflected in the size of the bars, with the colour of the

bars showing whether the change in score is negative (red) or positive (green).
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Figure 10.14 Combined suitability score for top selected species.

ol x

Figure 10.15 Suitability and stability details.

10.5.2 Selecting Locations for a Species

The ‘Select Location for a Species’ tab allows the user to select or change the
location of interest in the same way as in the ‘Select Species for a Location’ tab.

Once an extent has been chosen, elevation classes are displayed. The user selects a
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species from the drop down list and then selects which variables to use in the

posterior probability calculations (Figure 10.16).

Selecting the ‘Calculate probabilities’ button calculates the posterior adaptation

distribution for the selected species in the selected location (Figure 10.17).

Figure 10.16 Selecting locations for a species.

In addition, access to market and population density can be displayed (Figure 10.13).
These maps are currently not incorporated in the analysis but may be useful in the

decision of where a species is suitable.



Figure 10.18 Access to market.
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10.5.3 Updating Species Data

The ‘Update Species Data’ (Figure 10.19) screen allows conditional probability
values to be adjusted for individual species. These updates are reflected in the maps
that are displayed when the user selects a location, and therefore the impact of the
updates can be immediately assessed. In this screen a password is required. The
reason for this is to be able to log changes made to probability data. Passwords are

stored with weak encryption and new user accounts are easily created.

Once a user has logged in, they are prompted to select genus, species and predictor
variable from drop down boxes (Figure 10.20). Clicking on ‘Update’ takes the user
to the ‘Update Data’ screen (Figure 10.21). Here, the user can adjust individual
probability values by clicking and dragging on the bar chart displayed in the lower

right corner. They can also update the certainty value for each class.

Figure 10.19 New user prompt.
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Figure 10.20 Species and variable selection.

Figure 10.21 Updating probabilities.
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Selecting ‘Show Map’ returns the user to the ‘Update Species Data’ tab, but this time
with the map displaying adaptation values for the selected location (Figure 10.22).

Figure 10.22 Most likely adaptation for S. guianensis based on rainfall.

Clicking on ‘Combine with other Factor’ brings up a box which allows the user to
select multiple variables from which joint probabilities will be calculated (Figure
10.23). Although in most cases a user is expected to want to use all available
variables, it is possible to select any combination of any number of variables. The
posterior probability distribution is then calculated based only on data for the

variables selected.
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Figure 10.23 Combining multiple variables.

If soil variables are chosen, then initially they are set to unknown and the map is
displayed for the combination of climate variables selected. Clicking on ‘Change

Value’ allows a value to be chosen for the selected soil variable (Figure 10.24).

Figure 10.24 Changing value for soil pH.

The adaptation map is then redisplayed with the assumption that the selected soil
property holds for the entire displayed area. The effects of changing any variable can

be examined by the user.

With all results screens, the user can choose to display different views, namely,
‘probability poor’, ‘probability adequate’, ‘probability good’, ‘probability excellent’,
‘probability good or excellent’, ‘most likely adaptation’, ‘score’ and ‘certainty’
(Figure 10.25).
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Figure 10.25 Different views of adaptation distributions. A. Probability of poor
adaptation. B. Probability of adequate adaptation. C. Probability of good adaptation.
D. Probability of excellent adaptation. E. Probability of good or excellent
adaptation. F. Most likely adaptation class. G. Score calculated from adaptation
distribution. H. Level of certainty.

10. 6 Using CaNaSTA Manager
CaNaSTA Manager allows the edition, updating and deletion of data in each of

CaNaSTA’s databases. User accounts can be modified and passwords can be

updated.

Screens for managing variable and species data allow these to be added, changed or

deleted. A variable can only be deleted if there is no associated joint probability
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distribution data for any species. A species can only be deleted if there 1s no

associated joint probability distribution data for that species.

Joint probability distribution data can also be added, updated or deleted. Utilities are
available to load both RIEPT and SoFT data into the appropriate formats and to
manipulate the data to fit the requirements discussed in the previous chapter.
Probability values and certainty values can be updated manually. This functionality
is especially useful when small errors are known to exist in RIEPT or SoFT, such as

typographical errors.

Forage uses and tolerances to stresses can also be added, updated or deleted. Where
available, they are read directly from the SoFT knowledge base. For species present
in CaNaSTA but not in SoFT, this information needs to be added manually, and this

can be done here.

10. 7 Summary

CaNaSTA software has been developed as an implementation of the modelling
approach described in this research. CaNaSTA recommends species for a given
location and situation and recommends locations for a given species. In addition,
users can update data interactively and examine results through maps, tables and

graphs.

CaNaSTA is implemented as a standalone software package using Borland Delphi
and ESRI MapObjects LT. Because it is standalone, the user does not need to have

any GIS or database programs installed in order to run CaNaSTA.

Incorporating spatial capabilities into an agricultural DSS, as in CaNaSTA, facilitates
data input, allows more informative output of results and allows spatial variability to

be made explicit, both of results and of uncertainties related to the results.

The next chapter will compare some of the outputs of CaNaSTA with other methods
for recommending forage species for niche locations. This will assess the accuracy

of the methods used.
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CHAPTER 11. RESULTS AND DISCUSSION

In the previous chapter, the SDSS ‘CaNaSTA’ was described. CaNaSTA 1s an
implementation of the concepts and methods developed throughout this thesis. In
this chapter, output from CaNaSTA is presented and discussed. The discussion will
then turn to the stated objectives in developing CaNaSTA and to what extent these

were achieved.

The main objective of this research was not to develop the software tool itself, but
rather to investigate ways of providing decision support in uncertain and risky
environments. A supporting objective was to develop an appropriate model for
providing this decision support. The development of CaNaSTA serves to illustrate
the implementation of the model. However, the fully fledged production of
CaNaSTA is outside of the scope of this research. CaNaSTA nevertheless provides a
viable test bed for the method. At the time of writing, CaNaSTA has been developed
to the stage of functionality for most intended tasks, and all RIEPT data and

preliminary SoFT data available at time of writing are included.

The model can be assessed in a number of ways. The first is to check the accuracy of
the functional model by comparing results from the SDSS with results from other
sources. A second assessment is the comparison of the process of decision-making
using the SDSS with other methods of addressing the decision problem. Finally, an

assessment is needed of how well the SDSS meets the stated objectives.

11.1 Accuracy of Model

To check the accuracy of the functional model, results are compared with results
from a number of sources (Table 11.1). Each of these sources can be used for
different approaches to validation. SoF T, EcoCrop, Lexsys and direct elicitation can
all supply a list of suitable species, given a number of requirements, but their
knowledge bases have been defined independently. There may, however, be some
overlap in the experts used to define the knowledge bases. FloraMap can produce

maps for a single species at a time, based on location data for wild accessions. The
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output from the other sources can also be used to produce single-species maps, based

on environmental characteristics.

QOutput from FloraMap based on wild accessions

SoFT output

EcoCrop output

Lexsys output

Direct elicitation from forage experts

Table 11.1 Data and knowledge for functional model assessment.

11.1.1 Selecting Species for a Location

Five locations in Central America have been chosen for validation, with different

predictor variable values.

In addition, an intended forage use was chosen for a

hypothetical farmer at each location and at a particular level of risk-aversion. The

locations are summarised in Table 11.2.

Luquigiie | San El Corozo | Near Esparza
Dionisio- Flores
Wibuse
Country Honduras Nicaragua | Nicaragua | Honduras Costa Rica
Department | Yoro Matagalpa | Matagalpa | Atlantida Puntarenas
Municipality | Y orito San San Esparta Esparza
Dionisio Dionisio
Lat 15°02°N 12°45°N 12°47°N 15°36’N 9°59°'N
Lon 87°10°W 85°49°W 85°54°W 87°15'W 84°40°W
Elevation 1514m 430m 650m 70m 145m
Rainfall 1146mm 900mm 800mm 2606mm 2277mm
Dry months | 5 5 6 0 5 :
Soil pH Neutral Moderately | Moderately | Acid Moderately
acid acid acid
Soil texture | Clay loam | Clay Sandy loam | Loam Sandy loam
Soil fertility | Low Medium High High Very high
Intended use | Cut and Pasture Cut and Pasture Cut and
carry carry carry, living
barriers
Risk level Risk Risk neutral | Risk averse | Risk averse | Risk neutral
neutral

Table 11.2 Summary of selected locations.
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In order to elicit expert knowledge, the situations above were described in a
questionnaire sent to a number of forage experts (Appendix C). They were asked to
suggest appropriate forage species for different intended uses, given their experience.
The results from this questionnaire can be compared to results from CaNaSTA,
indicating how well CaNaSTA mmitates expert opinion. The questionnaire was sent
to ten forage experts, five of whom replied. Four of these work, or have worked, m
Central America, In the case of tropical forages, it is of note that the number of
experts worldwide is small (probably less than 200 with international experience
[Peters, pers. comm., 2004]). In addition, SoFT, EcoCrop and Lexsys were queried,
based on the climatic and edaphic variables listed in Table 11.3, as well as intended

usc,

CaNaSTA | SoFT EcoCrop Lexsys

Elevation Altitude Altitude Altitude

Rainfall Rainfall Rainfall range | Precipitation

Dry months | Dry season

Soil pH Soil pH pH range pH range

Soil texture | Soil texture | Soil texture Soil type

Soil fertility | Soil fertility | Soil fertility Fertility
requirement

Intended Intended Main use

use use

Table 11.3 Comparison of query variables for different sources.

Each source suggests a number of species for each set of criteria. The top ten species
recommended by CaNaSTA for each situation are listed in Tables 11.4 — 11.8 below.
Because the knowledge base of CaNaSTA is partly based on the SoF1 knowledge
base, a high level of agreement is expected between CaNaSTA and SoFT. EcoCrop
and Lexsys give an independent comparison, although it is likely that some of the
information in the different databases are sourced from the same forage agronomists
in some cases. However, not all species included in CaNaSTA are present in
EcoCrop and Lexsys, and vice versa. This is particularly the case for Lexsys, as 1t
contains only legumes. When SoFT, EcoCrop or Lexsys are queried, they return a
list of all species matching the query criteria. In the case of EcoCrop, the user can

choose to return a certain number of species, but these are simply the first species the

query finds in the database, and not necessarily the best.
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The fact that none of the experts listed a particular species as suitable does not mean
it is not suitable in their opinion. It could be that the expert is unfamiliar with the
species or simply did not recall it at the time of completing the questionnaire.
However, it is useful to compare the species recommended by the experts with the

ranking given to the species by CaNaSTA.

Table 11.4 shows the species recommended for the farmer in Luquigiie under the

conditions listed in Table 11.2.

A | Score | Species ranking in CaNaSTA | SoFT | EcoCrop | Lexsys | Experts
1 [ 098 | Macroptylium atropurpureum | Yes | Yes Yes No
2 1095 | Swlosanthes hamata Yes | Yes No No
3 | 0.90 | Panicum coloratum Yes | Yes N/A No
4 | 0.88 | Calliandra calothyrsus No Yes /A No
5 | 0.88 | Centrosema macrocarpum Yes | Yes N/A Yes
6 [0.87 | Cajanus cajan Yes | Yes Yes No
7 | 0.87 | Digitaria milanjiara Yes | No /A Yes
8 |0.86 | Chioris gayana Yes | No N/A No
9 | 0.84 | Tripsacum andersonii Yes | No N/A No
10 | 0.84 | Dichanthium annulatum Yes | No N/A No

B | Score | Species ranking in CaNaSTA | SoFT | EcoCrop | Lexsys | Experts

12 | 0.82 | Macrotylioma axillare Yes | No No Yes
15 | 0.78 | Lablab purpureus Yes | Yes Yes Yes
17 | 0.75 | Cratvlia argentea Yes /A N/A Yes
19 | 0.72 | Leucaena leucocephala No Yes Yes Yes
21 | 0.69 | Andropogon gayanus No No N/A Yes
22 10.62 | Panicum maximum No Yes N/A Yes
23 | 0.58 | Pennisetum purpureum No Yes N/A Yes
0.90 | Bothriochloa insculpta No Yes N/A Yes
0.81 | Vigna unguicalata No No No Yes
0.77 | Clitoria ternatea No Yes Yes Yes
0.50 | Desmodium velutinum No N/A N/A Yes
0.48 | Brachiaria brizantha No No N/A Yes
0.03 | Axonopus scoparius No No N/A Yes

Table 11.4 Species suggested for farmer in Luquigiie. A: Top ten. B: Ranking
{(within top 50) of additional species suggested by experts. N/A means the species 18
not present in the database.

Of the top ten species recommended for Luquigiie by CaNaSTA, only one (C.
calothyrsus) is not listed as suitable by SoFT. Examination shows that, according to

SoFT, the amount of rain is too low at this location for this species to be suitable.
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However, as it is only just below the threshold, it is appropriate that the species is

included by CaNaSTA.

Of the species recommended by the experts, nine were selected by CaNaSTA and six

were not. B. insculpta is excluded because it is listed as not suitable for ‘cut and

carry’ in SoFT, but would otherwise have been ranked highly. A. scoparius is

excluded because, according to SoFT, the number of dry months is too high and the

soil fertility too low for the species to be suitable in this location. The others are all

excluded because for one of the variables the selected category has certainty ‘Low’,

but, of these, V. unguicalaia and C. ternaeta score otherwise well. Species excluded

by CaNaSTA are reflections of exclusions in the SoFT knowledge base.

Table 11.5 lists the species recommended by CaNaSTA for San Dionisio-Wibuse.

A | Score | Species ranking in CaNaSTA | SoFT | EcoCrop | Lexsys | Experts
I |0.99 | Macroptilivm atropurpureumn | Yes | Yes Yes No
2 | 098 | Guasuma ulmifolia Yes | Yes N/A No
3 [ 0.97 | Dichanthium aristatum Yes | Yes N/A Yes
4 1096 | Bothriochloa pertusa Yes | No N/A No
5 1095 | Chioris gavana Yes | Yes N/A No
6 |0.95 | Canavalia brasiliensis Yes /A N/A No
7 1092 | Sylosanthes hamaia Yes | No No Yes
8 |0.92 | Centrosema macrocarpum Yes | No N/A No
9 1091 | Macroptilivm bracteatum Yes | Yes N/A No
10 | 091 | Desmanthus virgatus Yes | Yes N/A No
B | Score | Species ranking in CaNaSTA | SoFT | EcoCrop | Lexsys | Experts
11 | 0.90 | Urochloa mosambicensis Yes | No N/A Yes
18 | 0.86 | Panicum maximum Yes | Yes N/A Yes
24 1 0.82 | Clitoria terneata Yes | Yes No Yes
40 10.76 | Leucaena leucocephala Yes | Yes Yes Yes
47 10.71 | Stvlosanthes seabrana Yes | N/A N/A Yes
49 | 0.65 | Cenchrus ciliaris Yes | Yes N/A Yes
0.66 | Cratvlia argentea No N/A N/A Yes
0.56 ! Brachiaria decumbens No No N/A Yes
0.45 | Brachiaria brizantha No Yes N/A Yes
0.28 | Arachis pintoi No No N/A Yes

Table 11.5 Species suggested for farmer in San Dionisio — Wibuse. A: Top ten. B:
Ranking (within top 50) of additional species suggested by experts. N/A means the
species 1s not present in the database.
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Of the top ten species, all are recommended by SoFT. Of the species recommended
by the experts, eight are in the top 50 recommended by CaNaSTA and four are not.
C. argentea is excluded because of insufficient certainty, relative to the farmer’s risk
profile, when soil texture is clay, but otherwise would have been included with a
score of 0.66. B. decumbens’ score is reduced because, according to SoFT, the
species is not adapted to clay soils. B. brizantha scores 0.45, which is still feasible,
but the lower rainfall is detrimental for this species. A. pinfoi scores 0.28, the low

rainfall again reducing the overall score.

Table 11.6 shows species recommended for the farmer in El Corozo.

A | Score | Species ranking in CaNaSTA | SoFT | EcoCrop | Lexsys | Experts
1 | 098 | Macroptilium atropurpureum | Yes | Yes Yes No
2 | 0.95 | Stvlosanthes hamata Yes | No No No
3 10.92 | Centrosema macrocarpum Yes | No N/A Yes
4 | 0.91 | Macroptilium bracteatum Yes | Yes N/A No
5 10.90 | Panicum coloratum Yes | No N/A No
6 | 0.88 | Medicago sativa Yes | Yes No No
7 | 0.87 | Cajanus cajan Yes | No Yes No
8 | 0.87 | Digitaria milanjiana Yes | No N/A Yes
9 | 0.86 | Chloris gavana Yes | Yes N/A No
10 | 0.85 | Panicum maximum No Yes N/A Yes

B | Score | Species ranking in CaNaSTA | SoFT | EcoCrop | Lexsys | Experts

17 | 0.78 | Lablab purpureus Yes | Yes Yes Yes
20 | 0.77 | Pennisetum purpureum Yes | No N/A Yes
23 | 0.75 | Cratvlia argentea No N/A N/A Yes
26 | 0.73 | Leucaena leucocephala No Yes N/A Yes
27 10.72 | Saccharum officinarum Yes | No N/A Yes
28 | 0.51 | Brachiaria brizantha Yes | Yes N/A Yes
0.81 | Vigna unguicalata No Yes Yes Yes
0.72 | Macrotyloma daltonii Yes | N/A N/A Yes
0.65 | Cenchrus ciliaris Yes | Yes N/A Yes

Table 11.6 Species suggested for farmer in El Corozo. A: Top ten. B: Ranking
(within top 50) of additional species suggested by experts. N/A means the species 18
not present in the database.

Of the top ten species recommended by CaNaSTA, nine are selected by SoFT and
eight are selected by at least one other source. Of the species recommended by

experts, nine are selected by CaNaSTA and three are not. C. cifigris and M. daltonii
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are excluded because they are not listed as suitable for ‘cut and carry’. Otherwise
they would score well, with 0.65 and 0.72 respectively. V. unguicalata scores 0.81
but certainty is low for the variable ‘dry months’. Had the farmer been classed as
risk-taking (low risk-aversion) then this species would have been included in the
recommendations. Of the top ten specics, all are recommended by SoFT except for
P. maximuym, which is not suitable for sandy loam soils. However, as all other
variables are favourable, CaNaSTA assigns a high score. It is notable that experts

also suggested this species.

Table 11.7 lists species recommended by CaNaSTA for the farmer near Flores.

A | Score | Species ranking in CaNaSTA | SoFT | EcoCrop | Lexsys | Experts
1 | 0.87 | Brachiaria brizantha Yes | Yes N/A Yes
2 | 0.85 | Panicum maximum Yes | Yes N/A Yes
3 | 0.85 | Axonopus scoparius Yes | Yes N/A No
4 | 0.83 | Cratvlia argentea Yes | N/A N/A No
5 | 0.83 | Lotus spp. No N/A N/A No
6 | 0.83 | Cenchrus ciliaris No No N/A No
7 | 0.83 | Secale cereale No No N/A No
8 | 0.82 | Clitoria ternatea No Yes No No
9 | 0.80 | Codariocalyx gyvroides Yes | N/A N/A No
10 | 0.80 | Macroptilium atropurpureum | No Yes Yes No

B | Score | Species ranking in CaNaSTA | SoFT | EcoCrop | Lexsys | Experts

14 | 0.78 | Centrosema macrocarpum Yes | No N/A Yes
17 | 0.76 | Centrosema pubescens Yes | Yes No Yes
19 | 0.76 | Paspalum atratum Yes | N/A N/A Yes
0.64 | Desmodium ovalifolium No No N/A Yes
0.52 | Arachis pintoi Yes | Yes N/A Yes
0.50 | Brachiaria decumbens No No N/A Yes

Table 11.7 Species suggested for farmer near Flores. A: Top ten. B: Ranking
(within top 50) of additional species suggested by experts. N/A means the species 18
not present in the database.

Only five of the top ten species are also recommended by SoFT. The remainder of
the top ten species are not selected in SoFT, although they agree on all variables
except for rainfall, which at over 2500mm is too high for most species. CaNaSTA
ranks these species lower, but still includes them for consideration. Of the species
suggested by the experts, five are recommended by CaNaSTA and three are not. A.

pintoi scores 0.52 and only just misses out on the top 50. B. decumbens scores 0.50
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and D. ovalifolium scores 0.64, and these are excluded because of low certainty when

soil fertility is high.

Table 11.8 lists the species recommended for the farmer in Esparza, where a species

is required for both ‘cut and carry” and *living fences’.

A | Score | Species ranking in CaNaSTA | SoFT | EcoCrop | Lexsys | Experts
1 1 0.89 | Brachiaria brizantha Yes | Yes N/A Yes
2 1083 | Cratylia argentea () Yes | N/A N/A Yes
3 1 0.82 | Clitoria ternatea No Yes No No
4 | 0.80 | Macroptilium atropurpureum | No Yes Yes No
5 | 0.79 | Parnicum maximum Yes | Yes /A Yes
6 | 0.77 | Seshania grandiflora Yes | Yes N/A No
7 1077 | Centrosema macrocarpum Yes | No N/A Yes
8 1 0.76 | Paspalum atratum Yes | N/A N/A No
9 10.76 | Paspalum guenoarum Yes | N/A N/A No
10 { 0.76 | Andropogon gayanus Yes | No N/A No

B | Score | Species ranking in CaNaSTA | SoFT | EcoCrop | Lexsys | Experts

15 [ 0.74 | Gliricidia sepium Yes | Yes No Yes
20 | 0.73 | Saccharum officinarum Yes | Yes N/A Yes
28 | 0.60 | Pennisetum purpureum (*) Yes | Yes N/A Yes
29 1 0.60 | Codariocalyx gyroides No N/A N/A Yes
38 | 042 | Leucaena leucocephala (*) Yes | Yes Yes Yes
39 | 0.36 | Cajanus cajan () Yes | Yes Yes Yes

0.52 | Desmodium velutinum No N/A N/A Yes

0.24 | Desmodium cinereum No N/A N/A Yes

Table 11.8 Species suggested for farmer in Esparza. A: Top ten. B: Ranking (within
top 50) of additional species suggested by experts. Species marked with (*) are also
suitable as living fences. N/A means the species is not present in the database.

All species in the top ten are recommended by at least one other source. Of the
species recommended by the experts, ten are listed by CaNaSTA and two are not. ).
velutinum scores 0.52 and D. cinerium scores 0.24. In both cases, certainty 1s low
when soil fertility 1s very high. Two of the species in the top ten, C. ternatea and M.
atropurpureum, are not recommended by SoFT because rainfall is too high in this
location for these species. However, because rainfall is only marginally too high
(both species have absolute rainfall limits of 2000mm) and all other variables are
favourable, CaNaSTA ranks them highly.
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M. atropurpureum 1s consistently selected across all situations. This is mostly
because SoFT shows the species to be widely adapted, except for locations with very
low or very high rainfall or moderately to very acidic soils. Despite the fact that the
tocation near Flores has both acidic soils and high rainfall, the species is still in the
top ten with a high score. This is due to the fact that the species has a prior
adaptation distribution (derived from RIEPT) biased towards ‘good’ and ‘excellent’.
This highlights the impact that prior probability distributions have on the final
distributton. In this case, it means that the species overall has good adaptation, and

conditions need to be quite poor to reduce the level of adaptation.

Similarly, other species which appear suitable in multiple situations are widely
adapted, particularly where edaphic characteristics are concerned. They also tend to
have prior adaptation distributions biased towards ‘good’ and ‘excellent’. This is
valid, because it reflects the fact that these species adapted well in most trials.
However, this also highlights an area of further research, as these distributions may

also be artefacts of biases in the database,

Because the knowledge base for CaNaSTA is partly reliant on information from
SoFT, it would be expected that the two sources would show a high level of
agreement. Where CaNaSTA recommends a species and SoFT does not, it is usually
because the situation is favourable for all variables bar one. This highlights a
strength of CaNaSTA. Rather than excluding a species, if all other variables are

highly suitable then the species will still be included for consideration.

SoFT, EcoCrop and Lexsys recommend many more species than have been listed in
the tables above. Each of these simply recommends all species which fit the criteria,
and m some cases hundreds of species may be listed. This again highlights a benefit
of CaNaSTA, namely the score and ranking system, which allows the most suitable

species to be considered first.

Experts recommended a number of species which they considered suitable in each
situation. They were not asked to comment on the species recommended by
CaNaSTA, therefore no conclusions can be drawn when CaNaSTA lists a species

and the experts do not. However, of the species recommended by experts, 69 percent
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were ranked highly by CaNaSTA (Table 11.9). Of the remaining species, 56 percent
were excluded from CaNaSTA because of low certainty and a further 17 percent

because the species was designated unsuitable for the intended use.

Recommended | Low certainty | Unsuitable for | Not
intended use recommended
41 (69%) 10 (17%) 3 (5%) 5 (8%)

Table 11.9 Recommendations by CaNaSTA for species recommended by expetts.

11.1.2 Selecting Locations for a Species

Five species are considered here, namely, Arachis pintoi, Brachiaria brizantha,

Cratlia argentea, Centrosema pubescens' and Stvlosanthes guianensis. The
purpose of the comparison is to evaluate how closely CaNaSTA agrees with experts
and other sources when concentrating on a selected species. Each species has’
between five and 263 records in the RIEPT Adaptation database, spread over a
number of trial sites (Table 11.10). CaNaSTA scores are based on a combination of

this data and the SoFT knowledge base.

Species Records | Trial sites
A. pintoi 10 4

B. brizantha 263 5

C. pubescens | 111 32

C. argented 5 5

S. guianensis | 121 14

Table 11.10 Records in RIEPT Adaptation for selected species.

Experts were asked to select whether each species 1s ‘suitable’, ‘margmal’ or ‘not
suitable’ under the conditions described. The expert opinion did not necessarily
agree. Variations in expert opinion were expected, as the experts have different

levels of experience with the species and have worked in different locations.

' Centrosema pubescens was renamed at the end of 2003 to Centrosema molle, therefore there may be
some inconsistencies between information in the databases, knowledge bases and expert knowledge

(Peters, pers. comm., 2004).
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There are methods available, such as the Delphi method (Linstone and Turoff, 1975),
to facilitate the convergence of expert opinion from a number of sources. In this
case, however, no effort has been made to seek agreement between experts. Five
species were considered at five locations each, giving 25 sitnations in total. Cohen’s
weighted kappa was calculated to measure the level of agreement between each pair
of experts for the 25 situations. The results are given in Table 11.11 below, showing

that overall agreement was relatively low between experts.

Experts 1 2 3 4 5
1 1
2 0.28 1
3 028 | 0.21 1
4 0.21 0.19 | 0.21 1
5 0.33 0.09 [ 0.19 1024 1

Table 11.11 Weighted kappa (k) for each pair of experts.

In order to compare expert knowledge with other sources, the expert knowledge
assessments are amalgamated by recording the most common classification given by
the five experts. The suitability of each of these species is aiso calculated using
CaNaSTA and the score is recorded. The suitability is also read directly from the
knowledge bases in SoFT, EcoCrop and Lexsys, where information is available.
Suitability is calculated based on the same variables mentioned in Table 11.3 above.

This information is summarised in Tables 11.12 — 11.16 below.

Table 11.12 shows the suitability of these five species for Luguigiie, ignoring

intended use.

Species CaNaSTA | SoFT EcoCrop | Lexsys | Experts
C. argentea | 0.75 Yes N/A N/A Yes
B. brizantha | 0.48 No Marginal | N/A Yes
S. guianensis | 0.46 Marginal | Marginal | Marginal | Marginal
A. pintoi 0.25 No No N/A Marginal
C. pubescens | 0.00 No No No Yes

Table 11.12 Suitability of selected species for Luqguigiie. For CaNaSTA, the score
value is given.
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The scores calculated by CaNaSTA agree with expert assessment, except in the case
of C. pubescens. The reason this species is excluded by SoFT is because of the high
elevation of Luquigiie. This translates to the very low score in CaNaSTA, since the
probability distribution and hence score are partly derived from the SoFT knowledge

base.

Table 11.13 shows the suitability of these five species for San Dionisio-Wibuse,
again ignoring intended use. None of the scores calculated by CaNaSTA are very

high, but the higher scores correspond to species selected by experts as suitable.

Species CaNaSTA | SoFT EcoCrop | Lexsys | Experts
C. argentea | 0.66 No N/A N/A Yes
S. guianensis | 0.55 Marginal | Marginal | No Yes
C. pubescens | 0.49 No Marginal | Yes Yes
B. brizantha | 0.45 No Yes /A Yes
A. pintoi 0.28 No No N/A No

Table 11.13 Suitability of selected species for San Dionisio-Wibuse. For CaNaSTA,
the score value is given.

Table 11.14 shows the suitability of the five species for El Corozo. The highest two

scores given by CaNaSTA correspond to the species selected as suitable by the

experts.
Species CaNaSTA | SoeFT EcoCrop | Lexsys | Experts
C. argentea | 0.75 No N/A N/A Yes
C. pubescens | 0.58 No Marginal | Marginal | Yes
B. brizantha | 0.5] Marginal | Yes N/A Marginal
A. pintoi 0.26 No No N/A No
S. guianensis | 0.26 No Marginal | No Marginal

Table 11.14 Suitability of selected species for El Corozo. For CaNaSTA, the score
value is given.

Table 11.15 shows suitability of the five species for the farmer near Flores. All five
species score relatively high in CaNaSTA. A. pintoi scores relatively low, even
though the species is recommended as suitable by all other sources. Although this

score does not mean adaptation is poor (adaptation distribution shows 21 percent
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‘good’ and 27 percent ‘excellent’ adaptation), the final distribution is affected by the

prior adaptation distﬁbution, which favours ‘adequate’ adaptation.

Species CaNaSTA | SoFT EcoCrop | Lexsys | Experts
B. brizantha | 0.87 Marginal | Marginal | N/A Yes
C. argentea | 0.83 Marginal | N/A N/A Marginal
C. pubescens | 0.76 Yes Marginal | No Marginal
S. guianensis | 0.59 No Marginal | No Marginal
A. pintoi 0.52 Yes Marginal | N/A Yes

Table 11.15 Suitability of selected species for near Flores. For CaNaSTA, the score
value is given.

Table 11.16 shows the scores calculated by CaNaSTA for the five species in Esparza.
The two species chosen as suitable by the experts score highly in CaNaSTA.

Species CaNaSTA | SoFT EcoCrop | Lexsys | Experts
B. brizantha | 0.89 Yes Yes N/A Yes
C. argentea | .83 No N/A N/A Yes
C. pubescens | 0.76 No Marginal | No Marginal
A. pintoi 0.52 Marginal | Marginal | N/A No
S. guianensis | 0.33 No Marginal | No Marginal

Table 11.16 Suitability of selected species for Esparza. For CaNaSTA, the score
value is given.

The CaNaSTA scores can be interpreted as ‘suitable’ (score > 0.66), ‘marginal’ (0.33
< score < 0.66) and ‘not suitable’ (score < (.33). Analysis can then be carried out on
the agreement between CaNaSTA and expert opinion. Table 11.17 shows the

confusion matrix for expert opinion versus suitability as assessed by CaNASTA.

Experts
CaNaSTA | Not suitable | Marginal | Suitable
Not suitable | 2 2 0
Marginal 1 4 6
Suitable 0 3 6

Table 11.17 Confusion matrix for expert assessment vs. CaNaSTA.

From this, Cohen’s weighted kappa can be calculated, giving x,, = 0.41, which
indicates moderate agreement. In addition, x,, can be calculated for each expert

separately compared to the CaNaSTA results (Table 11.18). In some instances, these
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agreements are substantially higher than between individual expert pairs (Table

11.11 above).

Expert 3
0.34

Expert 4
0.49

Expert 5
0.42

Expert 1
0.18

Expert 2
0.09

CaNaSTA

Table 11.18 Weighted kappa for CaNaSTA recommendations against individual
experts.

In order to compare all sources of information, weighted kappa is calculated, again
for the three classes of ‘suitable’, ‘marginal’ and ‘not suitable’. Lexsys 18 not
included in this analysis. The results are shown in Table 11.19 below. CaNaSTA

shows reasonable levels of agreement with all three sources, and agrees highest with

EcoCrop.
CaNaSTA | SoFT | EcoCrop | Experts
CaNaSTA |1
SoFT 0.34 1
EcoCrop 0.58 0.34 1
Experts 0.41 0.06 0.34 1

Table 11.19 Weighted kappa (x,,) for recommendations from all sources.

One of the strengths of CaNaSTA is the ability to display maps showing species’
suitability over a region. The output of knowledge-based systems can also be used to
produce maps on an ad-hoc basis. Maps for these five species have been created for
Central America and San Dionisio-Wibuse / El Corozo region using CaNaSTA and,
as a comparison, the rule base of EcoCrop (except for C. argentea, which 1s not
present in EcoCrop). The CaNaSTA maps were created based on elevation, rainfall
and number of dry months, and are displayed showing the score value. The EcoCrop
maps are created based on elevation and both optimal and absolute limits for rainfall
and temperature. In addition, FloraMap, coupled with accession data, was used to
produce suitability maps for S. guianensis, A. pintoi and C. argentea. These maps
are based on 422 accessions in Latin America (21 in Central America) for S.
guianensis, 132 accessions in Brazil for 4. pintoi and 52 accessions in Brazil and

Bolivia for C. argentea.
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Figure 11.1 shows elevation, annual rainfall and length of dry season maps for
Central America and for the San Dionisio-Wibuse / El Corozo region, for

comparison purposes.

Figure 11.2 compares suitability of S. guianensis throughout Central America and in
the San Dionisio region based on information in FloraMap, EcoCrop and CaNaSTA.
At the regional level, all three sources show overlap, with the species predicted to do
well in northern Guatemala, most of Honduras and the western part of Nicaragua.
Costa Rica is marginally suitable. CaNaSTA appears to agree quite well with
EcoCrop, except in El Salvador where both EcoCrop and FloraMap predict better
suitability than CaNaSTA. At the local level, CaNaSTA and EcoCrop roughly agree,
but FloraMap gives markedly different results.

Figure 11.3 compares suitability of 4. pintoi throughout Central America and in the
San Dionisio region based on information in FloraMap, EcoCrop and CaNaSTA.
Both FloraMap and EcoCrop show low suitability throughout most of Central
America, but do not show agreement on where suitability is higher. CaNaSTA
shows agreement with FloraMap in most of Honduras, with low suitability in the
central region and higher towards the border with Nicaragua. At the local scale, both
FloraMap and EcoCrop show only slight suitability around Muy Muy. CaNaSTA
shows high suitability in a much larger region, with suitability dropping markedly

with the lower rainfall in the west of the region.

Figure 11.4 compares suitability of C. argentea throughout Central America and in
the San Dionisio region based on information in FloraMap and CaNaSTA. EcoCrop
does not hold any information for this species. At the regional level, CaNaSTA
shows much higher suitability than FloraMap. At the local level, both sources agree
with higher suitability in the western portion of the region, but CaNaSTA assigns

higher suitability to the entire region than FloraMap.

Figure 11.5 compares suitability of C. pubescens throughout Central America and in
the San Dionisio region based on information in EcoCrop and CaNaSTA. FloraMap
outputs have not been produced for this species. At the regional level, both sources

agree with low suitability in central Guatemala, central Honduras and central Costa
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Rica and higher suitability in northern Guatemala. At the local level, both sources
agree with higher suitability in the eastern portion of the region and lower suitability

in the west.

Figure 11.6 compares suitability of B. brizantha throughout Central America and in
the San Dionisio region based on information in EcoCrop and CaNaSTA. FloraMap
outputs have not been produced for this species. Both sources agree that the species
is widely suitable throughout Central America and particularly in the north of
Guatemala, the west of Nicaragua and most of Honduras. At the local level, both
sources again agree that the species is suitable throughout the region, although

CaNaSTA once again divides along the boundary between two rainfall classes.

In order to carry out statistical comparison, 904 evenly spaced points (0.2 degrees
spacing) were selected in Central America, and the values at these points recorded
for CaNaSTA, FloraMap and EcoCrop suitability maps. The values reflected in each
map do not necessarily reflect the same levels suitability, as both source of data and
method of assigning probabilities differ. However, for the purpose of analysis, the

values in each map were divided into three classes, shown in Table 11.20 below.

Class 1 Class 2 Class 3
CaNaSTA | Score <0.33 | Score 0.33-0.67 | Score >= 0.67
FloraMap | Prob < 0.33 Prob 0.33 —0.67 | Prob >= 0.67
EcoCrop | Not suitable | Marginal Suitable

Table 11.20 Classes for maps from different sources.

Based on these classifications, the joint information uncertainty statistic (Equation
7.31) was calculated for each map pair for each species (Table 11.21). The only
moderate agreement is between CaNaSTA and EcoCrop for C. pubescens. All other
comparisons show very low levels of agreement, although the agreement between

CaNaSTA and EcoCrop tends to be slightly higher than agreements with FloraMap.



224

CaNaSTA | FloraMap | EcoCrop
CaNaSTA | S. guianensis | | 0.05 0.09
A. pintoi 1 0.02 0.07
C. argentea 1 0.01 N/A
C. pubescens | | N/A 0.17
B. brizantha |1 /A 0.08
FloraMap | S. guianensis 1 0.04
A. pintoi 1 0.02

Table 11.21 Joint information uncertainty for map comparisons.

CaNaSTA shows low to moderate agreement spatially with FloraMap and EcoCrop
for the species selected, but agreement between FloraMap and EcoCrop is also poor.
The maps for CaNaSTA and EcoCrop are based on different spatial variables, with
CaNaSTA considering elevation, annual rainfall and length of dry season and
EcoCrop considering elevation, rainfall and mean annual temperature. FloraMap
maps are not based on a knowledge base, but purely on locations of known
accessions in the wild. Therefore, FloraMap may misrepresent the adaptation of a
species spatially, although it gives a good indication of where species may be found

in the wild.

The comparison of maps is a useful exercise, but as no ‘ground truth” maps exist of
where species adapt well, it is difficult to draw strong conclusions from the
comparison. This comparison draws attention to the fact that between different
sources, there is low agreement as to where a species adapts well spatially. Although
various publications, knowledge bases and databases exist, as outlined in Chapter 4,
very few maps exist showing which locations are suitable for which species. Even
though validation of these maps is inconclusive, it provides a starting point in the

assessment of which species are suitable where.
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11.2 Appropriateness of Method

11.2.1 Comparison with Other Models

Alternative software systems exist that were designed to assist with the decision of
what forages to plant where. Most of these systems are not spatially implemented,
and are simply in the form of a Boolean rule-base. If species fit all criteria, they are
included in the list of suitable species. EcoCrop provides both optimal and absolute
limits for temperature, rainfall, latitude, soil pH, light intensity, soil depth, soil
texture, soil fertility, soil aluminium toxicity, soil salinity and soil drainage. In this
way, species could be classified along a gradient of ‘not suitable’ to ‘suitable’,
depending on the number of variables within optimal and absolute limits. As
described in Chapter 9, SoFT defines a binary rule base, except in the case of rainfall
where both optimal and absolute limits are given. SoFT is still in development at
time of writing, and is subject to change. However, at present, SoFT simply retumns a .
list of suitable species, without any kind of ranking. EcoCrop similarly returns all
suitable species. EcoCrop also has an option to return only a set number of species,
but these are simply the first species encountered in the database, and not necessarily

the highest ranked.

The information in EcoCrop and SoFT could be used to create fuzzy envelopes of
species suitability. This is the approach taken in the figures above to create the
EcoCrop maps of species’ suitability. However, as these systems do not have
inherent spatial functionality, maps can only be produced on an ad-hoc basis.

FloraMap, on the other hand, 1s a spatially enabled tool, but does not work with a
rule base or attribute data of any kind that directly relates species success to
environmental variables. Instead these linkages are made through spatial data, that
is, known climate at locations where a species is known to exist. FloraMap is
designed precisely to function well in situations where location data 1s known

{‘presence’), but little else.

CaNaSTA lists suitable species, as with SoFT, EcoCrop and Lexsys, but, in addition,
it ranks these species and provides dynamic maps of where the species is likely to

adapt. Other expert systems often contain more variables for querying and provide
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more information on the species’ management and use. Although CaNaSTA is
currently implemented to take account of six predictor variables, more variables can
easily be added if information is available. It 1s hoped that rather than duplicating
information on species’ management and use, CaNaSTA and SoFT can be linked in
the future, providing CaNaSTA with this information. In turn, SoFT can benefit

from the maps, probability distributions and ranking system developed in CaNaSTA.

In an optimal situation, CaNaSTA would be tested by using it to recommend species
for hundreds of farmers in varying conditions. Each farmer would adopt a few of the
species suggested, and after two or three seasons adaptation would be assessed and
compared with the recommendation of the tool. This approach 1s unrealistic for a
number of reasons. Firstly, the sheer scale of such an assessment is impracticable. It
15 also unrealistic to wait for years to validate the output. In addition, the need to
validate ‘poor” adaptation would require species to be planted in environments where
they are not expected to thrive. Finally, inherent uncertainties in the environment
mean that multiple trials would need to be carried out for each species under each set

of conditions in order to test the predicted adaptation distribution.

11.2.2 Feedback from Users

As CaNaSTA is still in development at the time of writing, it has not yet been
released to users. However, a number of forage experts have either been involved in
the development or have been exposed to the project at various stages. A
questionnaire was sent to these experts soliciting their opinion on CaNaSTA as a tool

for forage selection.

Four experts responded to this questionnaire and all thought that CaNaSTA would be
useful in their research. They agreed that CaNaSTA would also be useful for NGOs,
extension agents and scientists at international and national research centres. In
addition, it was suggested that the tool may be useful for national government, better-
off farmers, universities and consultants. They agreed that there is a need for this
type of software and that an SDSS is an appropriate way to deliver information to

forage professionals, but only to farmers through an intermediary.
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CD-ROM and Internet were identified as appropriate delivery mechanisms, and
possibly hard copy print outs of maps and information. Finally, it was agreed that
CaNaSTA should work well with crops other than forages as long as input data is

available.

Issues raised in the questionnaire responses include questions about species
management, access to irrigation and fertilizer and presence of pests, and how these
impact on which species should be recommended. I[n addition, the importance of
subspecies and varieties was raised, i.e., in some cases it is important to distinguish
between varieties when making a recommendation. The problem of seed availability
and its impact on forage adoption was also raised. All these factors impact on forage

adoption and need to be considered when making decisions about species selection.

11.3 Achievement of Stated Aims

The objectives of this research were to investigate ways of providing decision
support in risky and uncertain environments and to develop an appropriate model to
facilitate the decision process. The model criteria, as developed in Chapter 5, are the
ability to work with small datasets and expert knowledge, the ability to predict a
range of species’ responses, low structural complexity, ease of communication and

ability to implement spatially.

In Chapter 9, some of the attributes required for a successful SDSS were presented.
These include the requirement of the SDSS to be stand-alone, with simple and
functional design and presentation. Incorporating users’ knowledge 1s important, as

is explicitly dealing with sources of uncertainty.

11.3.1 Ability to Work with Small Datasets

CaNaSTA attempts to use all available data, even when 1t 1s sparse or uncertain. In
the RIEPT database, in some cases very few trials exist for a given species. Even
where no information exists from other sources (i.e., SOFT or expert knowledge), this
data is still included in the model but certainty in the results is flagged as ‘low’. This

in turn determines, in part, whether the species is recommended in a given situation.



234
11.3.2 Ability to Work with Expert Knowledge |

Expert and farmer knowledge are incorporated alongside data from a trials database.
Combming information from various sources increases the strength of the model and
allows for the inclusion of a larger amount of information. The SDSS is
implemented so that information can be added continuously, as new data or expert

knowledge becomes available.

Currently, farmer knowledge is only added as information on local soil
characteristics. However, it is also possible for users to update species’ probability
distributions, if they consider they have the expertise to do so. In the future, the
SDSS will have the ability to accept farmers’ descriptions of forage suitability in

their situation and to add this to the database as an additional data point.

11.3.3 Ability to Predict a Range of Species Responses

The model chosen is probabilistic, and it predicts species responses as the probability
of the response being in certain states. This modelling approach addresses metrical
and temporal uncertainty by utilising probability distributions rather than single
values. The number of states has been set at four (adaptation classes), but could
easily be changed to a different number if required. Bayesian calculus can also be
applied to continuous gradients rather than discrete classes, and it is therefore
theoretically possible to produce continuous probability surfaces. However, in the

current implementation of CaNaSTA, the response is limited to discrete classes.

11.3.4 Low Structural Complexity

The model chosen is relatively straightforward and can be seen as a summary of
available data and knowledge. This approach reduces structural uncertainty, thereby
reducing overall uncertainty and allowing the user to have greater confidence in the

model.



11.3.5 Ease of Communication

By implementing the model as an SDSS, the information 18 expected to reach its
intended audience more readily. The low complexity model, the design of the GUI,
the spatial aspect of CaNaSTA and the overall design of the SDSS are all intended to
allow for more efficient communication of the results, In addition, the mere
existence of the tool should assist with communication of trials results from the

scientific community to farmers’ advisors.

11.3.6 Ability to Implement Spatially

All the models considered in Chapter 6 can be implemented spatially. The
challenges were to select appropriate spatial data and to implement a standalone
SDSS. The spatial implementation of the model helps to reduce and describe all

sources of uncertainty.

11.3.7 Appropriateness of Agricultural SDSS

The SDSS developed addresses the obstacles encountered by some agricultural DSS.
CaNaSTA is standalone, and it has simple and functional design and presentation.
Users’ knowledge is incorporated to a certain extent, and uncertainty 1s dealt with
explicitly. CaNaSTA has the ability to aid decision-making in tropical agnculture
effectively.

11.4 Summary

In this chapter, the results of the research were presented and discussed. Accuracy of
the model was checked by comparing results from CaNaSTA with results from a
number of other sources. CaNaSTA showed reasonable agreement with these
sources when recommending species for a given location. For five selected species,
CaNaSTA showed moderate agreement with experts regarding suitability in selected
locations. Spatial comparisons were also made for selected species by visually
inspecting maps produced from different sources, and CaNaSTA showed moderate

agreement spatially with other sources.



236

CaNaSTA provides some benefits over existing systems for determining which
forage species are suitable where, CaNaSTA provides adaptation distributions, ranks

suitable species and produces dynamic maps of species’ suitability.

The development of the probabilistic GIS model and its development as an SDSS
meet the objective of providing decision support in risky and uncertain
environments. The appropriate reduction and description of different types of
uncertainty allow farmers to better manage the risks associated with decision-making

in uncertain environments. This is achieved in the implementation of CaNaSTA.

The final chapter of this thesis will summarise the conclusions of the research.
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CHAPTER 12. CONCLUSIONS

This research has explored the nature of spatial decision problems and put forward an
approach to supporting decision-making in tropical agriculture. It has been shown
that farmers’ decision problems can be supported by providing information and that

delivery of information is improved through the use of computer tools and GIS.

The combination of data and expert knowledge in a spatial environment allows
spatial and aspatial uncertainty to be explicitly modelled. This is an original

approach to the problem of helping farmers decide what to plant where.

12. 1 The Decision Problem

Improved forages are often a suitable option for smallholder farmers seeking to
sustainably improve livelihoods. However, for a number of reasons, forage adoption
15 low, particularly in the case of legumes. One of these reasons is uncertainty on the
part of the farmer about how particular forage species will perform in specific
environments. Providing information on forages and their suitability to particular
biophysical and socio-economic niches can equip farmers with the ability to make

better-informed decisions.

Risk and uncertainty are factors in most decision-making, especially when the
decision-making process has spatial aspects. In the case of supporting farmers’
decisions about forage selecticn, there are a number of sources of risk and
uncertainty. Decision makers in tropical agriculture include farmers, extension
workers, NGOs, development agencies and national and international agricultural

research institutions involved in tropical agriculture.

12.2 Addressing the Decision Problem
Functional models are needed to support farmers’ tactical decisions, but the results of
the mode!l also need to be made available to the decision maker. A DSS, and in

particular an SDSS, was identified as a well developed methed for achieving this
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aim. Because information sources include not only data but also knowledge, it is

appropriate to develop an SDSS Incorporating expert system concepts.

In selecting a model to address the decision problem, a number of criteria should be
considered. The first criteria are the ability to work with small datasets and expert
knowledge and the ability to predict a range of species’ responses. In addition, the
model must display low structural complexity and must be easy to communicate and

to implement spatially.

A probabilistic GIS model was identified as a suitable model and was developed
based on data and knowledge available for Central America and forage crops. The
model allows information from diverse sources on success of forages to be combined
to predict success distributions for any combination of variables. The model
incorporates uncertainty, retaining uncertainty information throughout the model and -

allowing this information to be displayed and interrogated in a GIS environment.

12.3 SDSS Development and Implementation

This model was implemented as the stand-alone software CaNaSTA. The processes
and methods used address many of the problems encountered with other agricultural
DSS and SDSS. CaNaSTA recommends species for a given location and situation,
and recommends locations for a given species. In addition, users can update data
interactively and examine results through maps, tables and graphs. Incorporating
spatial capabilities into an agricultural DSS, as in CaNaSTA, facilitates data input,
allows more informative output of results and allows spatial variability to be made

explicit, both of results and of uncertainties related to the results.

Many of the issues encountered with other agricultural DSS and SDSS were
overcome 1in this implementation. The spatial implementation assists with
interpretation of the information and explicitly shows spatial varation and
uncertainty. The design and presentation of the SDSS i1s intended to be simple and
functional. The user does not need to provide monitoring data or to have access to

any additional proprietary software,
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The software has not yet been released to users, but a number of forage experts have
been involved in the development of CaNaSTA. Their input has guided the
development and implementation of the tool. Limited testing has been carried out by
comparing expert recommendations and recommendations from other knowledge
bases with those made by CaNaSTA for specific farmers’ situations. CaNaSTA
shows considerable overlap with recommendations from other sources. In addition,
CaNaSTA provides details on the likely adaptation distribution of each species at
each location, as well as measures of sensitivity and certainty. Rather than simply
classify each species as either suitable or unsuitable for each niche, more detailed

information is given, allowing the user to make a better-informed decision.

12. 4 Further Research and Development

Further research is needed in order to validate the model once the final SoFT
knowledge base is available. Adaptation distributions and maps need to be assessed
for accuracy by experts, and the knowledge base updated where necessary. This
validation process also provides an alternative way for experts to express their
knowledge regarding species’ spatial adaptation. The validity of the outscaling to

regions outside of Central America can also be tested in this way.

Further work is required to validate the use of the tool in the field. This research
should follow two strands. The first is to further validate the accuracy of the
software output in terms of species recommended for locations and locations
suggested for species. This validation should be implemented on an ongoing basis as
more trials are completed in different locations (including on-farm trials and
adoption). The second strand of research should assess adoption and use of the
completed software in order to validate the chosen form of delivery. Results from
this research will inform future versions of the software and reveal whether other
modes of delivery might be more appropriate. Participatory research methodology
was briefly described in the introductory chapter. Further development of the tool
should be along participatory guidelines, with shared ownership of research and a
community focus. In addition, more effort is needed to incorporate farmers’ own

knowledge in the tool and in the wider research.
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This development is needed on a continual basis in order to maintain CaNaSTA (and
any successors and derivatives) as a useful and accurate tool. The fact that such

updates can easily be accommodated is an advantage of the method.

Two steps in the DSS development process that have not yet been addressed are
capacity building and fostering uptake. It is hoped that use of the software will be
largely intuitive and that little training will be necessary. Both help files and a user
manual are in production. However, this process will be monitored and adjusted to
provide appropriate capacity building. Uptake can be primarily fostered by making
potential users aware of the tool and its utility. The tasks of capacity building,
fostering uptake and maintaining the software will ultimately be the responsibility of

CIAT.

Further research 1s needed to successfully incorporate socio-economic data. Market
access and market price information could be valuable, particularly where cash crops
are concerned. The incorporation of market information adds a temporal dimension
to the decision problem, with market access and market prices potentially impacting
on decisions of not only what to plant, but also when to plant and how to manage the

crop.

A number of issues have beeuo ratsed in the course of this research which should be
investigated or analysed further. With regard to predictor variables, additional
variables such as aspect, slope and temperature could prove beneficial. Because
temperature is highly correlated with elevation, the addition of this variable would
nced to be carefully handled. In addition, distinguishing subtropical and tropical
environments could be helpful. The temporal dimension could also be addressed 1n
regards to seasonality of rainfall and other climatic factors, which could be important
for species with short growing periods. The potential impact of extreme climate
events is also of importance when selecting species, and this should also be

considered.

Further research is also warranted on the implementation of the probabilistic GIS
model. Sensitivity to prior distributions should be analysed, as well as the impacts of

biases in databases and in expert knowledge. The possibility of implementing
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continuous probability distributions (rather than-stepped) could improve the mapped
outputs. Also, methods for ‘smoothing’ adaptation scores across categories (to avoid
sudden ‘jumps’ when changing from one variable category to another) could be

investigated.

12.5 Applicability to Other Fields

Within tropical agriculture, the research is clearly applicable to any new crops or
forages. It is particularly relevant to niche crops that are not as widely adopted as
could be expected, such as tropical fruits, nuts and coffee. For many of these crops
only limited data is available. CaNaSTA can function with expert knowledge alone,

where data is missing,

In a broader sense, the functionality of the model implemented in CaNaSTA could be
applied to any situation where a mixture of sparse data and expert knowledge is
available about the location of an entity given spatial characteristics of the location.
This could include animal habitats, land use planning and site selection. This model
is not appropriate to all spatial decision problems, however, where there is

uncertainty, sparse data and expert knowledge, the approach could prove beneficial.

12. 6 Lessons Learned

The development of a fully functioning computer tool, even just as a proof of
concept, is a complex task. Ideally, it should be undertaken by a team of developers
in conjunction with stakeholders. Although some stakeholders were involved in the
development of CaNaSTA, the fact that the sole developer was also the researcher
raised a number of issues. Aside from time constraints, the focus of the researcher
on software development made objectivity in its assessment problematic. Ideally, a
much larger team of people should have been involved in all stages from software

development to GUI design to testing and debugging.

Tropical agriculture is a complex but well-researched field. Researchers in tropical
developing agriculture include plant biologists, entomologists, bio-technicians,
economists, anthropologists and geographers, to name just a few. In addition,

farmers themselves are custodians of vast amounts of knowledge, which is only just
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beginning to be tapped by researchers. Although many of these people were
involved at various stages of the research, in hindsight, better use could have been

made of their accumulated knowledge and expertence.

12.7 Summary

The research reported in this thesis addresses the problem of making tactical
decisions about land use under uncertainty. A model has been proposed and
implemented as a software tool for use by those advising smallholder farmers in

forage adoption.

Providing information to farmers to support their decision-making in uncertain
environments is a meaningful goal. Farmers want more and better information and
extension workers want to find ways to provide this information. Scientists often
have this information and want to find meaningful and consistent ways of providing

it to those who could benefit from it. This research has contributed to these goals.

The research shows that even with limited data and knowledge, results can be
obtained that support the farmers’ decision-making process. When uncertainties are
made explicit, farmers can then make less risky decisions by taking these

uncertainties into account.

Providing access to decision support through a Spatial Decision Support System,
such as CaNaSTA, ensures that the information is delivered in a consistent and
robust manner. Trial data and expert knowledge previously inaccessible to farmers

are made available so that decisions taken are better informed.

These decisions will increase the adoption of appropriate forages, contributing
towards sustainability, improving meat and milk quality, combating food problems
and, ultimately, improving the livelihoods of smallholder farmers and their

communities in the developing tropics.
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APPENDIX A

FORAGE DATABASE ANALYSIS



LOCATION CHARACTERISTICS ANALYSIS

Coefficient of determination R° and number of observations » for location

characteristics in the CIAT Forages database.

Key:

Elev;

Tave:

Tmin:

Tmax:

SR:

RH:

HS:

WS:

Rain:

%20 (8%40):
1920 (L%40):
C%20 (C%40):
AD20 (ADA40):
FC20 (FC40).
pH20 (pH40):
OM20 {OM40}:
P20 (P40):
Ca20 (Cad0):
Mg20 (Mg40):
K20 (K40);
Na20 (Na40):
AL20 (Al40):

Al%20 (A1%40):

Elevation (masl)

Mean average temperature (averaged over 12 months) (°C)
Minimum annual temperature (min. monthly minimum) (°C)
Maximum annual temperature (max. monthly maximum) (°C)
Solar radiation (averaged over 12 months) (Langleys/day)
Relative humidity (averaged over 12 months) (%)

Hours of sunshine (summed over 12 months)

Wind speed (averaged over 12 months) (km/hour)

Mean annual rainfall {summed over 12 months) (rmm)
Percentage of sand 0-20cm (20-40cm)

Percentage of silt 0-20cm {20-40cm)

Percentage of clay 0-20cm (20-40cm)

Apparent density 0-20cm (20-40cm) (g/cc)

Field capacity 0-20cm (20-40cm) (% humidity)

pH in H-O 1:1 0-20cm (20-40cm)

Organic matter 0-20cm (20-40cm) (%)

Phosphorus 0-20cm (20-40cm) (ppm)

Calcium 0-20cm (20-40cm)

Magnesium §-20cm (20-40cm)

Potassium 0-20cm (20-40cm)

Sodium 0-20cm (20-40¢m)

Aluminium 0-20cm (20-40cm)

Aluminium saturation 0-20cm (20-40cm) (%)

R Elev Tave Tmin | Tmax | SR RH HS WS Rain DryM
n
Elev 1
Tave 0.50 ]
236
Tmin 0.09 0.43 1
165 165
Tmax | (.49 0.55 0.02 1
184 184 165
SR 0.01 0.05 0.04 0.04 1
120 124} 23 84
RH 0.00 0.00 0.08 0.04 0.01 1
175 175 131 132 105
HS 0.00 0.00 0.02 0.01 0.02 0.21 1
101 101 89 90 66 98
WS 0.01 0.01 0.01 0.04 G.00 0.00 0.04 i
93 93 77 77 57 920 73
Rain 0.01 0.01 0.02 0.05 0.04 0.16 0.10 0.01 1
263 242 166 167 121 175 101 93
DryM | 0.04 0.02 0.01 0.08 0.03 0.07 0.00 0.01 0.43 1
299 261 181 182 136 192 114 107 283
S%20 | 0.00 0.00 0.02 0.00 0.01 0.01 0.01 0.00 0.03 0.00
223 200 140 140 100 149 92 88 216 233




R Elev Tave | Tmin | Tmax | SR RH HS WS Rain DryM
"
L%20 | 0.00 0.00 0.01 0.00 0.00 0.05 0.00 0.00 0.02 0.00
223 200 140 140 100 149 92 88 216 233
C%20 | 0.00 0.00 0.00 0.00 .01 0.00 0.00 0.00 0.01 0.00
223 200 140 140 100 149 92 88 216 233
AD20 | 0.23 0.00 0.02 023 0.11 0.06 0.06 (.08 0.02 0.10
35 35 46 46 36 46 37 35 33 59
FC20 | (.20 0.12 0.00 0.07 0.18 0.04 0.10 0.00 0.14 0.12
38 37 32 32 24 31 29 24 37 41
pH20 | 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.03 0.06
257 230 161 162 117 171 98 94 249 267
OM20 | 0.14 0.07 0.00 0.08 0.01 0.04 0.12 0.00 0.12 0.05
225 205 146 146 101 152 90 84 220 234
P20 0.00 .01 0.00 0.01 0.00 0.01 0.01 0.00 .01 0.00
249 221 157 158 111 166 ) 91 240 256
Ca20 0.02 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.04 0.06
231 206 148 148 103 154 835 85 225 238
Mg20 | 0.01 0.01 0.0 0.02 0.00 0.00 0.00 0.00 0.05 0.04
231 206 148 148 103 153 79 85 225 238
K20 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 (.01 0.00
246 220 156 156 113 165 96 92 239 255
Na20 | 0.0l 0.00 0.01 0.02 0.01 0.01 0.02 0.05 0.01 0.01
74 72 50 50 35 58 3l 34 74 76
Al20 0.00 0.01 0.02 0.04 0.01 0.08 0.04 0.01 0.09 0.05
196 172 129 130 100 135 81 76 189 195
Al%20 1 0.00 0.05 0.07 0.04 0.03 0.01 0.00 0.02 0.07 0.02
176 156 121 121 89 128 78 73 172 176
S5%40 | 0.01 0.00 0.02 0.00 0.00 0.01 0.02 0.02 0.06 0.03
150 134 103 104 64 103 75 73 146 150
L%40 | 0.00 0.00 0.01 (.00 0.00 0.01 0.01 0.01 0.01 0.01
150 134 103 104 64 103 75 73 146 150
Ch%40 | 0.02 0.01 0.00 0.02 0.01 0.00 0.00 0.05 0.05 0.08
150 134 103 104 64 103 75 73 146 150
ADAG | 042 0.22 0.01 0.35 0.19 0.02 .07 0.07 0.10 0.25
48 48 42 42 30 39 34 32 48 48
FC40 | 0.12 0.04 0.01 0.04 0.01 0.01 0.07 0.10 0.12 0.05
30 30 27 27 18 24 23 19 30 30
pH40 | 0.01 0.00 (104 0.05 0.00 .00 .00 0.10 0.05 0.06
168 151 114 114 71 116 79 77 164 168
OM40 | 0.29 0.15 0.01 0.12 0.02 .00 .04 0.00 0.04 0.03
148 134 101 101 62 103 71 68 145 148
P40 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.05 0.00 0.00
161 144 108 108 70 11 74 72 157 161
Cad0 0.01 0.01 0.00 0.03 0.00 0.00 0.01 0.03 0.04 0.07
153 135 102 102 6l 104 69 67 149 153
Mg4d | 0.02 0.02 0.00 0.03 (.00 0.02 0.04 0.02 0.04 0.02
149 131 99 99 59 101 67 65 145 149
K40 0.01 0.00 0.01 0.01 0.25 0.00 0.02 0.05 0.05 0.07
162 144 110 110 70 112 77 75 158 162
Na40 0.01 0.01 0.03 0.05 0.00 0.05 0.02 .01 0.02 0.02
50 49 43 43 23 39 26 28 50 50
Al40 0.01 0.04 0.04 0.08 0.02 0.06 0.02 0.0 0.13 0.06
121 104 84 84 58 87 60 55 117 121
Al%40 | 0.00 0.07 0.17 0.02 (.00 0.01 0.00 0.07 011 0.04
111 97 79 79 50 83 36 52 109 1i1




R 5%20 | L%20 | C%20 | AD20 | FC20 | pH20 | OMZ0 | P20 Ca20 [ Mg20
H
5%20 1
L%:20 (.29 1
223
C%20 0.66 0.03 1
223 223
AD20 0.03 0.00 0.03 |
54 54 54
FC20 0.15 0.20 0.15 0.35 1
36 36 36 34
pH20 0.00 (.00 0.00 0.00 0.03 1
222 222 222 35 37
OM20 (.04 (.04 0.00 0.29 (.50 0.01 1
203 203 203 52 36 225
P20 0.00 0.00 0.00 0.00 0.00 0.09 0.01 1
215 215 215 55 37 247 218
Ca20 0.03 0.03 0.01 6.00 0.01 0.40 0.01 0.05 1
206 206 206 49 33 230 205 224
Mg20 0.02 0.00 0.02 0.01 0.01 0.27 0.00 0.04 0.51 1
207 207 207 50 34 230 206 223 228
K20 0.00 0.00 0.00 0.00 0.01 0.0t 0.00 0.02 0.00 0.03
219 219 219 53 37 243 217 236 230 230
Naz( 0.06 0.00 0.11 0.01 0.01 0.16 0.01 0.01 .04 0.29
68 68 68 29 18 73 70 67 72 74
Al20 Q.10 0.02 0.07 .10 0.00 017 .01 0.00 .01 0.04
173 173 173 40 30 195 168 191 181 182
Al%%20 0.08 0.00 0.07 0.03 0.08 0.40 0.00 0.03 0.19 .21
136 156 156 40 31 175 133 172 167 164
S5%40 0.90 0.25 0.57 0.06 0.07 0.00 0.06 0.00 0.03 (.04
147 147 147 47 32 149 132 146 136 136
L9%40 0.33 0.61 0.01 0.00 0.07 0.01 0.02 0.02 0.13 0.01
147 147 147 47 32 149 132 146 136 136
C%40 0.55 0.05 0.83 0.05 0.10 0.00 0.01 0.00 0.00 0.04
147 147 147 47 32 149 132 146 136 136
AD40 0.03 0.01 0.07 0.83 0.28 0.00 (.32 0.00 0.00 0.01
47 47 47 48 30 48 45 48 43 44
FC40 0.44 0.03 .09 0.25 0.35 0.02 0.33 0.07 0.07 0.09
29 29 29 28 30 30 29 30 27 28
pH40 0.00 0.02 0.01 0.01 0.00 0.72 0.01 0.09 0.33 0.22
154 134 154 47 32 167 149 164 150 150
OM40 0.03 0.01 0.01 0.31 (.43 .03 0.82 0.00 0.02 0.01
136 136 136 43 3l 147 146 145 133 134
P40 0.01 0.00 0.01 0.02 0.12 0.09 0.00 0.77 0.02 0.01
147 147 147 435 3l 160 143 160 145 145
Cad0 0.03 0.05 0.00 0.00 0.02 0.31 0.01 0.03 0.93 0.44
141 141 141 41 28 152 136 151 130 149
Mg40 .02 .00 0.04 0.00 0.00 0.10 0.00 0.01 0.27 0.65
138 138 138 40 27 148 133 147 145 148
K40 0.00 0.01 0.00 0.03 0.02 0.28 0.01 0.02 0.23 0.16
150 150 150 43 30 161 144 159 150 150
Na40 0.08 0.01 .19 0.01 0.06 0.22 .00 0.02 0.01 0.32
43 45 43 26 16 49 47 48 48 49
Ald0 0.12 0.02 0.08 0.07 (.06 0.10 0.00 0.00 0.00 0.00
112 112 112 33 23 120 104 119 109 130
Al%40 0.12 0.00 0.08 0.07 .21 043 0.01 0.06 0.21 0.18
101 101 101 3l 22 110 94 110 103 100
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i

R K20 | Na20 | AI20 | Al%20 | S%40 | L%40 | C%40 | AD40 | FC40 | pH40
n
K20 1
Na20 063 |1
74
A120 001 | 001 |1
192 | 46
Al%20 | 012 | 005 |04l |1
175 | 45 171
S%40 1002 | 008 | 019 |012 |1
146 | 44 108 |99
L%40 | 0.01 001 | 007 |004 |034 |1
146 | 44 108 |99 150
Co%d0 | 0.01 017 |011 |007 |064 000 |1
146 | 44 108 |99 150 | 150
AD40 | 000 | 009 |008 |004 |004 | 003 |00%8 |1
46 26 32 32 46 46 46
FC40 002 | 0.04 |000 |005 |040 |0.10 |0.18 |022 |1
30 16 21 22 29 29 29 28
pH140 022 | 022 |010 |034 |000 |003 |00l |003 001 |I
161 |50 119 | 109 150|150 150 |46 29
OM40 | 0.00 |0.00 |002 000 |003 |002 |000 |034 |028 |00l
142 |48 102 |92 131 | 131 131 |44 29 147
P40 0.00 |00l |001 |005 |00l |001 |000 |005 |026 |008
154 |47 116 | 107 143|143 1143 |44 28 158
Cad0 0.10 | 001 | 000 016 |003 |0.14 |000 |000 |007 | 029
152 | 49 110 | 102 137|137 137 |4 26 152
Mgd0 | 0.01 | 001 |002 |013 |004 |000 |004 |001 |008 |008
148 | 49 109 98 134|134 [134 |40 25 148
K40 0.79 | 0.63 |000 |0.16 |002 |003 |000 |002 |002 |025
161 |50 116 | 107 143|143 143 |42 27 158
Nad0 081 [ 094 |000 |025 |013 [000 |019 |003 [019 [024
49 49 27 26 45 45 45 26 26 50
Al40 000 |000 |074 [0.17 |0.14 |003 |010 |009 | 001 |011
117 |29 118 | 101 110|110 110 |32 20 120
Al%40 | 0.18 | 0.12 | 040 | 082 | 011 |00l |008 |007 {005 |044
108 | 28 100|106 |99 99 99 30 20 109
R OM40 | P40 | Cad0 | MgdD | K40 | Nad0 | A0 | Al%40
i)
OM40 | |
P40 002 |1
141
Cad0 003 1002 |1
135 146
Mg40 000 | 001 |032 |1
132 142 | 148
K40 001 | 001 [022 |002 |1t
139|151 | 150 | 147
Nad0 0.00 | 001 |00I |0.0I |066 |1
48 46 49 49 50
Al40 0.00 | 001 |001 |000 |001 |011 |1
103 116 | 112|111 115 |29
Al%d0  [0.01 1008 |020 |012 019 |004 |030 |1
92 107|103 |99 106 |28 102
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ADAPTATION CHARACTERISTICS ANALYSIS

Coefficient of determination R’ and number of observations » for adaptation

characteristics in the CIAT Forages Adaptation database.

Key:
Adap ini: : Adaptation {initial evaluation)
Cov ini: Percent cover (initial evaluation)
NPI ini: Number of plants (initial evaluation)
DM 1ni: Dry matter weight (initial evaluation)
Adap fin: Adaptation (final evaluation)
Cov fin: Percent cover {final evaluation)
NP1 fin: Number of plants (final evaluation)
DM fin: Dry matter weight (final evaluation)
Ins: Resistance to insects
Dis: Resistance to diseases
R Adap [Cov [NPI | DM | Adap [Cov |[NPI |DM |Ins Dis
7 ini mi ini ini fin fin fin fin
Adapini | 1
Cov ini 0.44 1
2,045
NPI ini 6.07 .19 1
845 792

DM ini 0.03 0.14 0.19 !
739 745 153

Adap fin | 0.30 0.28 0.00 0.03 1
2,014 | 1,523 | 403 739

Cov fin 0.24 0.57 0.08 0.06 0.55 1
1,542 | 1,512 [ 346 636 1,746

NP1 fin 0.00 0.14 0.33 0.13 0.06 0.45 1
300 239 277 143 305 260

DM fin 0.02 0.07 0.08 0.59 0.06 0.08 0.22 I
732 758 170 573 818 863 136

Ins 0.00 0.00 0.01 0.07 0.03 0.01 0.00 0.21 1
3,024 12248 | §70 873 2,224 | 1767 | 313 930
Dis 0.01 0.03 0.00 0.10 0.13 0.12 (.01 0.23 0.15 1

3,024 | 2248 [ 870 873 2,224 | 1767 | 313 930 3,467
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APPENDIX B

FARMER SURVEYS
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Dear colleague,

I am contacting you in your capacity as a tropical forage expert, and would greatly
appreciate it if you could spend a few minutes on the following questionnaire. As
you may be aware, [ am currently working on my PhD, in conjunction with CIAT
(International Center for Tropical Agriculture) in Cali, Colombia, and Curtin
University of Technology in Perth, Western Australia. As part of my research, I am
developing a software tool CaNaSTA (Crop Niche Selection in Tropical
Agriculture). Please read the attached document for an overview of CaNaSTA.

There are two main sections to this survey. Firstly I would like your expert opinion
on which crops would be suitable under different conditions. Please note this is
different from the expert opinion gathered for SoFT (Selection of Forages for the
Tropics). In this case | will describe a farmer’s environment, and you are asked to
recommend suitable species based on all information. I am not trying to gather
comprehensive data, but rather a small amount of case studies with which to validate
CaNaSTA.

In the second section [ would like to gather your opinion on the potential of
CaNaSTA, once it is fully developed and functioning. If you do not have time to
complete the whole questionnaire, then I would still appreciate a partially completed
questionnaire.

This is an electronic form. Please enter information electronically, save the
completed form, and return it to me by email. [ would greatly appreciate your
cooperation in returning the completed survey to me by Thursday 18 March 2004.
If you know of another forage expert who may be able to help, please pass on these
documents.

Thank you for your time. Please contact me with any questions or additional
comments.

Rachel O’Brien
r.obriendicptar.org
10 March 2004

1 GENERAL INFORMATION

Name:

Position:

Company:

Field(s) of expertise:

Countries / regions of expertise:

Years of experience in forages (approx.):

Today’s date:
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Email:
Please tick: 1 give permission for this information to be used for the purposes of
research and development of CaNaSTA and to be anonymously quoted in the thesis

corresponding to this research.

2 PART I EXPERT OPINION - FORAGE RECOMMENDATION

Five farmers’ situations in Central America will be described. You are asked, in your
capacity as a forage expert, to recommend suitable forage species. If you have access
to trials data for any of these sites, please do not refer to them. If you are completely
unfamiliar with the site, it does not matter, [ would still like to know what you would
recommend based on the available information.

Please note this information will not be used as data input for CaNaSTA, but rather
for comparison and validation purposes only.

Case 1: Farmer in Luquigiie, Honduras. 15°2°N, 87°10°W. Elevation is 1514m,
annual rainfall is 1146mm, length of dry season is 5 months. Soil pH is neutral, soil
texture is clay loam and soil fertility is low. Farmer would like a species suitable for
cut and carry. The farmer is able to accept some risk.

A. Please list up to five forage species you would recommend in this situation:

SRl

ormrments:

B. Of the following species, would you recommend any of them in this situation
(ignoring intended use)? Please indicate whether each species would be suitable,
marginally suitable, or not suitable.

Species Suitable Marginally suitable | Not suitable

Arachis pintoi []

Brachiaria brizantha []

Cratylia argentea L]

L] L]

[ Ll

Centrosema pubescens | || [ ] [ ]
L] L1

[]

Stvlosanthes guianensis | ||

Comments:

C. Please indicate your familiarity with location:
[] Very familiar [] Somewhat familiar [] Not familiar
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Case 2: Farmer in San Dionisio-Wibuse, Nicaragua. 12°45°3"N, 85°49°8”"W.
Elevation is 430m, annual rainfall is 900mm, and the dry season is 5 months. Soil pH
is moderately acid, soil texture is clay and soil fertility is medium. Farmer would like
a forage species for pasture. The farmer is able to accept some risk.

A. Please list up to five forage species you would recommend in this situation:

QbW =

omments:

B. Of the following species, would you recommend any of them in this situation
(ignoring intended use)? Please indicate whether each species would be suitable,
marginally suitable, or not suitable.

Species Suitable Marginally suitable | Not suitable

Arachis pintoi

Brachiaria brizantha

Cratylia argentea

L] [] L]
] [l ]
Centrosema pubescens [] D ]j
L] [ L]
Ll L] L]

Stvlosanthes guianensis

Comments:

C. Please indicate your familiarity with location:
[l Very familiar [] Somewhat familiar [ ] Not familiar

Case 3: Farmer in El Corozo, Nicaragua, 12°46°42”N, 85°53°36”"W. Elevation is
650m, annual rainfall is 800mm, and dry season is 6 months. Soil pH is moderately
acid, soil texture is sandy loam and soil fertility is high. Farmer would like a forage
species for cut and carry. The farmer is risk averse.

A. Please list up to five forage species you would recommend in this situation:

1.
2
3.
4.
5.
C

omments:
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B. Of the following species, would you recommend any of them in this situation
(ignoring intended use)? Please indicate whether each species would be suitable,
marginally suitable, or not suitable.

Species Suitable Marginally suitable | Not suitable

Arachis pintoi [

Brachiaria brizantha ]

Cratylia argentea L]

L] L]
[] ]
Centrosema pubescens | [ ] [ ] L]
L] L]
L] []

Stvlosanthes guianensis | ||

Comments:

C. Please indicate your familiarity with location:
[ Very familiar [ ] Somewhat familiar [ ] Not familiar

Case 4: Farmer near Flores, Honduras. 15°36°N, 87°15’W. Elevation is 70m, annual
rainfalt 18 2606mm, and there is no dry season. Soil pH is acid, soil texture i1s loam
and soil fertility is high. Farmer would like a species for pasture. The farmer 1s risk
averse.

A. Please list up to five forage species you would recommend in this situation:
1.
2.
3.
4.
5.
Comments:

B. Of the following species, would you recommend any of them in this situation

(ignoring intended use)? Please indicate whether each species would be suitable,
marginally suitable, or not suitable.

Species | Suitable Marginally suitable | Not suitable

Arachis pintoi

Brachiaria brizantha

Cratvlia argentea

AEEEN

L L]
L] [
Centrosema pubescens [ ] L]
L] [
L] Ll

Stylosanthes guianensis

Comments:

C. Please indicate your familiarity with location:
[ ] very familiar [ ] Somewhat familiar [ ] Not familiar

Case 5: Farmer in Esparza, Costa Rica. 9°59°N, 84°40°W. Elevation is 145m, annual
rainfall is 2277mm, length of dry season 1s 5 months. Soil pH is moderately acid, soil
texture 1s sandy loam and soil fertility is very high. Farmer would like a forage
species for cut and carry and potentially live barriers. The farmer is able to accept
some risk.
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Please list up to five forage species you would recommend in this situation:

A,
1.
2.
3
4

Lh

Comments:

B. Of the following species, would you recommend any of them in this situation
(ignoring intended use)? Please indicate whether each species would be suitable,
marginally suitable, or not suitable.

Cratviia argentea

Species Suitable Marginally suitable | Not suitable
Arachis pintoi [ ] D L]
Brachiaria brizantha D D L
Centrosema pubescens lj [ ] L]

L] L] L]

L] L] L]

Styvlosanthes guianensis

Comments:

C. Please indicate your familiarity with location:
[] Very familiar [_] Somewhat familiar [] Not familiar

2.1 For all cases

Did vou refer to any literature in making the above recommendations?
L] Yes. Please specify:

|:]N0

3 PART Il EXPERT OPINION — CANASTA-FORAGES

Please read the accompanving outline of ‘CaNaSTA. You may have seen
presentations or [ may have discussed this work with you at some time (note;
previously called GEMS). CaNaSTA-Forages is still under development and not yet
available for user testing. However [ would like to gather some opinions on the
potential of CaNaSTA-Forages. Assuming CaNaSTA-Forages is fully developed and
functioning as intended, please answer the following questions:

1. How familiar are you with CaNaSTA-Forages?

[} Involved in development D Seen presentations
[ 1 Discussed development [ ] Not familiar
Comments:

2. CaNaSTA-Forages will be expanded to the entire tropical world. Do you think
CaNaSTA-Forages would be useful in your research?
[ ]Yes ] Maybe ] No

Comments:




3. Do you think CaNaSTA-Forages will be used by the following people?

[ ] Scientists at international research centres [INGOs

[] Scientists at national research centres [ ] National government
[ Extension agents [ | Farmers

[] Others. Please specify:

Comments:

4. Do you think there is a need for this type of software?
D Yes [ ] Don’t know D No
Comments:

5. Do you think a spatial decision support system is an appropriate way to deliver
forage information to farmers in the tropics?

[]Yes [ ] Don’t know []No

Comments:

6. Which of the following do you think are necessary delivery modes?

[ ]CD-ROM [ ] Internet [] Print outs (maps and text)
[] Other. Please specify:
Comments:

7. Do you think CaNaSTA could work well with crops other than forages?

[] Yes. Give some examples:
[] Don’t know [INo
Comments:

8. Any other comments?



