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Abstract

In this thesis, we develop numerical methods for solving five nonstandard optimal control

problems. The main idea of each method is to reformulate the optimal control problem

as, or approximate it by, a nonlinear programming problem. The decision variables in

this nonlinear programming problem influence its cost function (and constraints, if it

has any) implicitly through the dynamic system. Hence, deriving the gradient of the

cost and the constraint functions is a difficult task. A major focus of this thesis is on

developing methods for computing these gradients. These methods can then be used in

conjunction with a gradient-based optimization technique to solve the optimal control

problem efficiently.

The first optimal control problem that we consider has nonlinear inequality constraints

that depend on the state at two or more discrete time points. These time points are de-

cision variables that, together with a control function, should be chosen in an optimal

manner. To tackle this problem, we first approximate the control by a piecewise con-

stant function whose values and switching times (the times at which it changes value)

are decision variables. We then apply a novel time-scaling transformation that maps the

switching times to fixed points in a new time horizon. This yields an approximate dy-

namic optimization problem with a finite number of decision variables. We develop a new

algorithm, which involves integrating an auxiliary dynamic system forward in time, for

computing the gradient of the cost and constraints in this approximate problem.

The second optimal control problem that we consider has nonlinear continuous in-

equality constraints. These constraints restrict both the state and the control at every

point in the time horizon. As with the first problem, we approximate the control by a

piecewise constant function and then transform the time variable. This yields an approx-

imate semi-infinite programming problem, which can be solved using a penalty function

algorithm. A solution of this problem immediately furnishes a suboptimal control for the

original optimal control problem. By repeatedly increasing the number of parameters

used in the approximation, we can generate a sequence of suboptimal controls. Our main

result shows that the cost of these suboptimal controls converges to the minimum cost.

The third optimal control problem that we consider is an applied problem from elec-

trical engineering. Its aim is to determine an optimal operating scheme for a switched-

capacitor DC-DC power converter—an electronic device that transforms one DC voltage

into another by periodically switching between several circuit topologies. Specifically, the
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optimal control problem is to choose the times at which the topology switches occur so

that the output voltage ripple is minimized and the load regulation is maximized. This

problem is governed by a switched system with linear subsystems (each subsystem models

one of the power converter’s topologies). Moreover, its cost function is non-smooth. By

introducing an auxiliary dynamic system and transforming the time variable (so that the

topology switching times become fixed), we derive an equivalent semi-infinite program-

ming problem. This semi-infinite programming problem, like the one that approximates

the continuously-constrained optimal control problem, can be solved using a penalty func-

tion algorithm.

The fourth optimal control problem that we consider involves a general switched sys-

tem, which includes the model of a switched-capacitor DC-DC power converter as a special

case. This switched system evolves by switching between several subsystems of nonlin-

ear ordinary differential equations. Furthermore, each subsystem switch is accompanied

by an instantaneous change in the state. These instantaneous changes—so-called state

jumps—are influenced by control variables that, together with the subsystem switching

times, should be selected in an optimal manner. As with the previous optimal control

problems, we tackle this problem by transforming the time variable to obtain an equiv-

alent problem in which the switching times are fixed. However, the functions governing

the state jumps in this new problem are discontinuous. To overcome this difficulty, we

introduce an approximate problem whose state jumps are governed by smooth functions.

This approximate problem can be solved using a nonlinear programming algorithm. We

prove an important convergence result that links the approximate problem’s solution with

the original problem’s solution.

The final optimal control problem that we consider is a parameter identification prob-

lem. The aim of this problem is to use given experimental data to identify unknown

state-delays in a nonlinear delay-differential system. More precisely, the optimal control

problem involves choosing the state-delays to minimize a cost function measuring the

discrepancy between predicted and observed system output. We show that the gradient

of this cost function can be computed by solving an auxiliary delay-differential system.

On the basis of this result, the optimal control problem can be formulated—and hence

solved—as a standard nonlinear programming problem.
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CHAPTER 1

Introduction

1.1 Motivation and background

A system is a set of interrelated components that interact according to some mechanism.

The size of a system can range from minuscule—an atom is a system consisting of pro-

tons, neutrons, and electrons—to gigantic—the solar system itself is a system consisting

of stars, planets, comets, astroids, and moons. Machines, computers, vehicles, the Inter-

net, transportation networks, and buildings are examples of man-made systems that are

ubiquitous in daily life.

Many systems can be influenced, to varying degrees, by human action. These include

practically all man-made systems, which are designed for a specific purpose and are useful

insofar as they can be manipulated to behave in a desired manner. Natural systems, on the

other hand, are not constructed by humans and may be impervious to human activity. The

earth’s orbit of the sun, for example, is not affected by what we do on its surface. Many

natural systems, however, can be influenced by human action. For example, a marine

ecosystem is affected by fishing and littering, which are human activities. Furthermore,

the behavior of the human body can be manipulated through medicines and devices such

as pacemakers and hemodialysis machines.

For any system, a natural question to ask is: how can we influence this system to

our advantage? In other words, what is the best strategy for manipulating or controlling

this system? This fundamental question has occupied human thought since the dawn of

mankind. Several thousand years ago, it mainly pertained to systems that provided food,

such as farms, and it was probably answered through trial and error. For example, over

many years of experimentation, humans learnt cultivation techniques that improved crop

quality. Today, the question applies to any of a diverse range of man-made systems—from

submarines to hovercrafts, from iPods to PlayStations, and from skyscrapers to open-pit

mines. Sophisticated techniques have been developed for determining the most efficient

ways of controlling these modern systems.

Since the advent of the digital computer, mathematical modeling has emerged as a

powerful technique for investigating systems. The main idea of mathematical modeling is
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2 Introduction

to encapsulate a system’s behavior in a model that can be implemented on a computer.

The model can then be used to simulate the system under different control strategies,

which enables the system designer to identify the best strategies. Furthermore, the model

can be analyzed using mathematical techniques to give insight into the system. The major

virtue of mathematical modeling is that the system’s response to any control strategy can

be predicted immediately by the model. Therefore, the system designer can determine a

satisfactory control strategy without operating the system. This eliminates the need for

expensive (and time-consuming) experiments that test numerous control strategies—some

of which may yield very poor results—on the real system.

Static systems—those that do not change with time—are typically modeled by alge-

braic equations and/or inequalities. For example, many systems can be modeled alge-

braically as follows:

Gi(σ) = 0, i = 1, . . . , l, (1.1)

and

Gi(σ) ≥ 0, i = l + 1, . . . , q, (1.2)

where σ ∈ R
r is a control vector and Gi : R

r → R, i = 1, . . . , q, are given functions.

The components of the control vector are called control variables or decision variables;

they represent quantities in the system that can be chosen by the system designer. The

equations (1.1) are called equality constraints, and the inequalities (1.2) are called inequal-

ity constraints. These constraints represent the natural limitations of the system; only

control vectors that satisfy them constitute valid control strategies. Accordingly, we say

that a control vector is feasible if it satisfies the constraints (1.1)-(1.2). The set of all

feasible control vectors is called the feasible region.

The feasible region usually comprises many control vectors. The key question is:

which is the best—or optimal—control vector? To answer this question, we must express

some indicator of the system’s performance, such as system cost or system efficiency, as

a function of the control vector. This function is called an objective function. If the

objective function measures a quantity that the system designer wishes to maximize (for

example, efficiency, revenue, or profit), then it is called a performance index. On the other

hand, if the objective function measures a quantity that the system designer wishes to

minimize (for example, cost or wastage), then it is called a cost function.

We say that a control vector is optimal if it is feasible and, in addition, it maxi-

mizes/minimizes the appropriate objective function over the entire feasible region. The

problem of determining an optimal control vector is stated formally below.

Problem P1. Find a feasible control vector—that is, a control vector satisfying the con-

straints (1.1)-(1.2)—that maximizes/minimizes a given objective function G0 : R
r → R.

When the objective and constraint functions (Gi, i = 0, . . . , q) are linear, Problem P1 is

called a linear programming problem or linear program. Otherwise, it is called a nonlinear



1.1 Motivation and background 3

programming problem. Nonlinear programming problems are also called nonlinear opti-

mization problems, mathematical programming problems, static optimization problems,

or parameter optimization problems. The linear and nonlinear programming problems

are classical and have been studied extensively over the past five decades. Many excellent

books are devoted entirely to these topics—see, for example, [7, 23, 76, 79, 113].

Because of their special structure, linear programming problems are easier to solve than

nonlinear programming problems. In fact, linear programming problems can be solved

globally using the well-known simplex algorithm. This means that applying the simplex

algorithm always yields a feasible control vector that optimizes the objective function

over the entire feasible region—a so-called global solution. In contrast, it is difficult in

general to solve nonlinear programming problems globally. The Karush-Kuhn-Tucker

conditions (KKT conditions), which are the most important theoretical tools in nonlinear

programming, furnish necessary conditions for a local solution—a feasible control vector

that is superior to its neighbouring control vectors, but is not necessarily the best in

the feasible region. Consequently, most nonlinear programming algorithms search for

a local solution, which may or may not be globally optimal. Nevertheless, nonlinear

programming is widely used in practice to solve complicated optimization problems that

arise in industry. Moreover, new algorithms have recently been proposed for solving

nonlinear programming problems globally—see, for example, [67, 128–130, 134] and the

references cited therein.

The KKT conditions provide the theoretical foundation for gradient-based nonlinear

programming algorithms (gradient-based NLP algorithms). These algorithms use the

gradient of the objective and constraint functions to compute a sequence of control vectors

that converges to a control vector satisfying the KKT conditions. Naturally, gradient-

based NLP algorithms are only applicable if the objective and constraint functions are

differentiable.

Most gradient-based NLP algorithms involve the following main steps. First, an initial

candidate control vector is chosen, and the objective and constraint functions and their

gradients are evaluated at this vector. Second, the information computed in the first step

is used to test whether the current control vector satisfies the KKT conditions. If it does,

then the algorithm stops; otherwise, the information computed in the first step is used

to construct a search direction, which points towards an improved control vector. If the

initial control vector is infeasible, then an improved control vector is one that is closer

to the feasible region. On the other hand, if the initial control vector is feasible, then

an improved control vector is one that is feasible and has an improved objective function

value. The final step in the algorithm involves calculating the step length—the distance

that must be travelled along the search direction to obtain an improved control vector.

These steps are then repeated with the initial control vector replaced by the new one.

The procedure described above generates a sequence of candidate control vectors re-
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cursively as follows:

σk = σk−1 + αkd
k, k ≥ 1,

where dk ∈ R
r is the search direction at the kth iteration; αk ∈ R is the step length at

the kth iteration; and σ0 ∈ R
r is the initial candidate control vector. Different algorithms

compute the search direction and step length in different ways; this must be done appro-

priately to ensure that the sequence {σk}∞k=0 converges to a control vector satisfying the

KKT conditions. Many high-quality implementations of gradient-based NLP algorithms

are available, including NLPQLP [92,93], FFSQP [135], and NPSOL [33].

In the previous two paragraphs, we briefly described an algorithmic framework for

solving Problem P1. This framework is also applicable to optimization problems involv-

ing dynamic systems. In fact, in this thesis, we will solve several complicated dynamic

optimization problems by either transforming them into, or approximating them by, non-

linear programming problems.

Dynamic systems change with time and are therefore more complicated than the static

system (1.1)-(1.2). They are represented mathematically by dynamic models, which con-

sist of difference equations, ordinary differential equations, differential-algebraic equations,

partial differential equations, delay-differential equations, stochastic differential equations,

or integro-differential equations. In addition to control variables, dynamic models also

have state variables, which describe the current state of the system. The state variables

are influenced by the control variables through the equations comprising the dynamic

model.

One of the most common dynamic models∗ is

ẋ(t) = f
(

t,x(t),u(t)
)

, t ∈ [0, T ], (1.3)

and

x(0) = x0, (1.4)

where T > 0 is a given time; x(t) ∈ R
n is the state vector (whose components are the

state variables) at time t; x0 ∈ R
n is a given initial state vector; u(t) ∈ R

r is the control

vector (whose components are the control variables) at time t; and f : R×R
n ×R

r → R
n

is a given function. In this model, the system starts in state x0 at time t = 0 and evolves

smoothly in accordance with (1.3) until time t = T . Thus, at each time, the state’s

instantaneous rate of change is a function of the time, the current state, and the current

value of the control variables. Many practical systems can be accurately modeled in this

way; examples include penicillin production systems [80], container cranes [91], the F-8

aircraft [28, 51], and batch crystallization systems [43, 87]. The time T in (1.3) is called

the terminal time, and the interval [0, T ] is called the time horizon.

∗It is customary to refer to both the system and the system’s model as “the system”. Thus, in the
sequel, we will often say “system” instead of the more precise term “dynamic model”.
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A control strategy for system (1.3)-(1.4) is a function u : [0, T ] → R
r that returns

the value of the control vector at each point in the time horizon. Such a control strategy

is also called a control function. In practice, there are often constraints on the control

function. For example, in the batch crystallization system described in [87], the value of

the control function cannot be increased arbitrarily because it represents the temperature

of a sodium aluminate solution. Accordingly, we normally assume that the range of the

control function is contained within some proper subset W of R
r. This set is called the

control restraint set, and a function u : [0, T ] → W is called an admissible control function.

The control function influences the evolution of the dynamic system through equa-

tion (1.3). The key question is: how should we choose this control function so that the

system evolves in the most optimal way? To answer this question, we must formulate

an appropriate objective function in terms of the system state and/or control function.

For example, consider a cruise missile whose mission is to hit a target with position vec-

tor x̂ ∈ R
3 at time t = T . If the state vector x(t) ∈ R

3 is the position vector of the

missile at time t, then an appropriate objective function is

G0 = (x1(T ) − x̂1)
2 + (x2(T ) − x̂2)

2 + (x3(T ) − x̂3)
2. (1.5)

This non-negative function measures the distance from the missile to the target at the

terminal time; it is equal to zero if and only if the missile strikes the target. Accordingly,

a suitable control strategy for the missile is one that minimizes (1.5).

Equation (1.5) is a special case of the following more general objective function:

G0 = Φ(x(T )) +

∫ T

0

L
(

t,x(t),u(t)
)

dt, (1.6)

where Φ : R
n → R and L : R × R

n × R
r → R are given functions.

We now state a classical optimal control problem.

Problem P2. Find an admissible control function that causes the system (1.3)-(1.4) to

evolve in such a way that the objective function (1.6) is minimized.

Problem P2 involves finding a vector-valued function (as opposed to just a vector) and is

therefore more complicated than Problem P1. Furthermore, Problem P2 is governed by a

dynamic system that changes with time (recall that Problem P1 is governed by a static

system comprised of equations and inequalities). If L = 0 in (1.6), then Problem P2 is

called a Mayer problem; if Φ = 0, then Problem P2 is called a Lagrange problem; and

if both L and Φ are non-zero, then Problem P2 is called a Bolza problem. The Mayer,

Lagrange, and Bolza problems are all equivalent: each can easily be transformed into

any of the others. There are two classical results that can be used to solve Problem P2:

Pontryagin’s minimum principle and Bellman’s principle of optimality. We discuss each

briefly, starting with the minimum principle.
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The Pontryagin minimum principle was developed by Pontryagin and his colleagues [83].

It is probably the most famous result in optimal control theory, and is discussed in most

books on the subject—see, for example, [1,2,53,96,133]. To state the minimum principle,

we must define the so-called Hamiltonian function H : R × R
n × R

n × R
r → R. This

function is defined as follows:

H(t,x,λ,u) , L(t,x,u) + λTf (t,x,u), (t,x,λ,u) ∈ R × R
n × R

n × R
r.

The essence of the minimum principle is that an optimal control for Problem P2 minimizes

the Hamiltonian at every point in the time horizon. More precisely, if u∗ : [0, T ] → W is

an optimal control and x∗ : [0, T ] → R
n is its corresponding state (defined via (1.3)-(1.4)),

then

H
(

t,x∗(t),λ∗(t),u∗(t)
)

= min
w∈W

H
(

t,x∗(t),λ∗(t),w
)

, t ∈ [0, T ], (1.7)

where λ∗ : [0, T ] → R
n is a function—called the costate—that satisfies

λ̇∗(t) = −
[

∂H
(

t,x∗(t),λ∗(t),u∗(t)
)

∂x

]T

, t ∈ [0, T ], (1.8)

and

λ∗(T ) =

[

∂Φ(x∗(T ))

∂x

]T

. (1.9)

How do these equations help determine an optimal control? The main idea is to rearrange

equation (1.7) so that the optimal control is expressed in terms of the time, the state, and

the costate. In other words, one attempts to construct a function ū : R × R
n × R

n → R
r

such that

u∗(t) = ū(t,x∗(t),λ∗(t)), t ∈ [0, T ]. (1.10)

If such a function exists, then in principle it may be substituted into equations (1.3)-(1.4)

and (1.8)-(1.9) to yield a two-point boundary-value problem in terms of the optimal state

and costate. Solving this boundary-value problem yields a candidate optimal control that

satisfies equations (1.7)-(1.9). There is no guarantee, however, that this control is optimal:

the minimum principle is a necessary condition for optimality, but it is not sufficient in

general.

A sufficient condition for optimality in Problem P2 can be derived using Bellman’s

principle of dynamic programming [8]. To state the major implication of Bellman’s prin-

ciple, we need to introduce the following dynamic system:

ẏ(s) = f
(

s,y(s),u(s)
)

, s ∈ [t, T ], (1.11)

and

y(t) = x, (1.12)
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where t ≥ 0 is an initial time and x ∈ R
n is an initial state. Notice that this system is

almost the same as (1.3)-(1.4). Here, however, the initial time and state are not fixed.

Let y(·|t,x) denote the solution of (1.11)-(1.12) corresponding to (t,x) ∈ [0, T ] × R
n.

We define the value function V : [0, T ] × R
n → R as follows:

V (t,x) , inf
u∈U

{

Φ(y(T |t,x)) +

∫ T

t

L
(

s,y(s|t,x),u(s)
)

ds

}

, (t,x) ∈ [0, T ] × R
n,

where U is the set consisting of all admissible control functions. It turns out that the

value function satisfies the partial differential equation

∂V (t,x)

∂t
+ inf

w∈W

{

∂V (t,x)

∂x
f (t,x,w) + L(t,x,w)

}

= 0, (t,x) ∈ [0, T ] × R
n, (1.13)

and the boundary condition

V (T,x) = Φ(x), x ∈ R
n. (1.14)

Equation (1.13) is known as the Hamilton-Jacobi-Bellman equation; it is established by

applying Bellman’s principle of dynamic programming to Problem P2 (see, for exam-

ple, [4]). If a solution of equations (1.13)-(1.14) exists, then it may be used to construct

an optimal control for Problem P2. Hence, equations (1.13)-(1.14) constitute a sufficient

condition for optimality in Problem P2.

Pontryagin’s minimum principle and the Hamilton-Jacobi-Bellman equation are pow-

erful tools. However, it is often difficult (if not impossible) to solve (1.7)-(1.9) or (1.13)-

(1.14) analytically. Consequently, numerical methods for solving optimal control problems

are indispensable. Many such methods have been proposed in the literature. Some of these

are based on finite-difference or finite-volume approximation schemes for the Hamilton-

Jacobi-Bellman equation—see, for example, [35,118,119] and the references cited therein.

Other methods are based on the minimum principle. For example, a numerical shooting

method can be used to solve the two-point boundary-value problem derived from the

minimum principle [1, 53]. Shooting methods, however, require an accurate initial esti-

mate of the costate, and it is usually difficult to obtain such an estimate. Nevertheless,

a new method has recently been proposed for determining the value of the costate at the

initial time [19, 20]. If the initial costate can be determined in advance, then the state

and costate systems can be solved simultaneously, which allows the optimal control to be

constructed forward in time using equation (1.10).

Control parameterization is another approach to solving optimal control problems nu-

merically [100]. The main idea of control parameterization is to approximate the control

function by a linear combination of basis functions, the coefficients of which are deci-

sion variables to be chosen optimally. In other words, the control is approximated by a
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function that is completely determined by a finite number of parameters. Applying this

approximation scheme yields an approximate optimization problem with a finite number

of decision variables. This approximate problem is much easier to solve than the original

optimal control problem.

The control parameterization technique is the basis of several optimal control soft-

wares, including MISER3 [47], and has been applied to a wide variety of practical optimal

control problems (see, for example, [24, 58, 66, 78, 87]). It is normally implemented with

piecewise constant basis functions. In this case, the time horizon is partitioned into fixed

subintervals, and the control is approximated by a constant function on each subinterval.

The problem is then to choose a value for the control on each subinterval so that the

objective function is maximized/minimized. This is a nonlinear programming problem

whose decision variables influence the objective function implicitly through the dynamic

system. Thus, it is very difficult to derive the gradient of the objective with respect

to the decision variables. Nevertheless, gradient formulae for an objective function in

canonical form are derived in [39,100]. These formulae can be used in conjunction with a

gradient-based NLP algorithm to solve the approximate problem, and thereby obtain an

approximate solution for the original optimal control problem.

The control parameterization technique described above involves partitioning the time

horizon in advance. As such, the times at which the approximate control changes its

value—the so-called switching times—are fixed. A better approach is to consider the

switching times, in addition to the control values, as decision variables. In other words,

the control is approximated by a piecewise constant function whose values and switching

times are decision variables to be selected optimally. Unfortunately, although the gradient

of the objective function with respect to the switching times does exist, the formulae for

computing it are very difficult to implement numerically [39, 100]. Furthermore, the

governing dynamic system is very difficult to integrate if the switching times are variable.

In particular, major problems can arise if consecutive switching times combine to form a

single switch.

To overcome these difficulties, a novel time-scaling transformation, originally called

the control parameterization enhancing technique (commonly abbreviated to CPET), was

developed in [60]. The main idea of this technique is to transform the time horizon

of an optimal control problem in such a way that the switching times become fixed.

More precisely, this time-scaling transformation introduces a new time variable s ∈ [0, p],

where p − 1 is the number of allowed control switches, and relates s to the original time

variable t ∈ [0, T ] through the differential equation

ṫ(s) = v(s), s ∈ [0, p], (1.15)
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and the boundary conditions

t(0) = 0 (1.16)

and

t(p) = T, (1.17)

where v : [0, p] → [0, T ] is a non-negative piecewise constant function with switching times

at the fixed points s = 1, . . . , p − 1. The values of v represent the duration between con-

secutive switching times in the original time horizon. Equations (1.15)-(1.17) can be used

to transform the optimal control problem into an equivalent problem that has switching

times at the fixed points s = 1, . . . , p − 1. Note that the time-scaling transformation can

easily be modified to transform the time horizon from [0, T ] into [0, 1] instead of [0, p].

In this case, the switching times are mapped to s = 1/p, . . . , (p − 1)/p. The key point,

however, is that the time-scaling transformation always maps the switching times to fixed

points, regardless of whether the new time horizon is [0, p] or [0, 1].

The time-scaling transformation was originally introduced in [60] to solve time-optimal

control problems. It was subsequently applied to many other classes of optimal con-

trol problems, including constrained optimal control problems [97,103], optimal discrete-

valued control problems [61], switched system optimal control problems [64, 89, 132], im-

pulsive optimal control problems [69, 125], optimal control problems involving multiple

coupled subsystems [22], and singular optimal control problems [95]. The time-scaling

transformation has also been used to solve practical problems involving sensors [59, 123],

hybrid power systems [90, 122], and submarines [12], and in areas as diverse as system

identification [127], differential equations [56], and mixed integer programming [57].

It is worth emphasizing that the control parameterization technique only discretizes the

control. Another numerical method—the so-called state discretization method—proceeds

by discretizing both the control and the state [36, 50, 114]. Applying this method yields

a set of difference equations—essentially equality constraints—that approximate the gov-

erning dynamic system. As with control parameterization, state-discretization yields an

approximate problem that can be solved using a gradient-based NLP algorithm. But

the approximate problem is usually much larger and contains more nonlinear equality

constraints than the one derived using control parameterization.

1.2 Overview of this thesis

In the previous section, we gave a brief introduction to nonlinear programming and op-

timal control. In particular, we introduced two problems: Problem P1 (a nonlinear pro-

gramming problem) and Problem P2 (an optimal control problem). These are standard

problems that have been studied extensively since the 1950s. The purpose of this thesis

is to present new algorithms for solving five nonstandard optimal control problems. We
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briefly describe these five problems below.

In Chapter 2, we consider an optimal control problem in which the governing dynamic

system is subject to constraints of the following type:

Φ
(

x(τ1), . . . ,x(τm)
)

+

∫ T

0

L
(

x(t),u(t)
)

≥ 0,

where Φ : R
mn → R and L : R

n × R
r → R are given functions and τj , j = 1, . . . , m, are

time points called characteristic times. Such constraints—which are called characteristic-

time inequality constraints—first appeared in optimal control problems concerned with

finding effective cancer treatment strategies [77, 78]. The problems in [77, 78] have fixed

characteristic times; we consider a more difficult problem in which the characteristic

times are actually control variables to be determined optimally. Thus, the characteristic-

time inequality constraints in Chapter 2 depend on the state at times that are initially

unknown. Such constraints are much more complicated than conventional inequality

constraints, which usually depend only on final state reached by the system.

In Chapter 3, we consider another type of constrained optimal control problem. The

constraints in this problem are of the form

h
(

x(t),u(t)
)

≥ 0, t ∈ [0, T ],

where h : R
n × R

r → R is a given function. Such constraints are called continuous

inequality constraints; they are imposed at every point in the time horizon. A single con-

tinuous inequality constraint can actually be viewed as an infinite number of inequality

constraints—one for each point in the time horizon. It is therefore not surprising that

continuous inequality constraints are very difficult to handle, both theoretically and com-

putationally. However, they are also one of the most common constraints in practice.

This is because many systems have requirements that must be satisfied at all times in the

time horizon, not just at several isolated times.

In Chapter 4, we consider the problem of controlling a switched-capacitor DC-DC

power converter. A switched-capacitor DC-DC power converter is an electronic device,

consisting primarily of capacitors and switches, that transforms one DC voltage (the in-

put) into another (the output) by repeatedly switching between different circuit topologies.

The output voltage of the power converter must be as steady as possible to ensure that

the attached appliance runs correctly. It should also be robust with respect to changes

and uncertainties in the load resistance and input voltage. In other words, changing the

attached appliance or the voltage source should not cause drastic changes in the output.

Hence, the times at which the circuit topologies are switched should be chosen so that

both the output voltage ripple (the difference between the maximum and minimum output

voltages) and the output voltage sensitivity (the derivative of the output voltage) are as
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small as possible. We formulate this problem as an optimal control problem in which the

switching times are chosen to minimize the following cost function:

G0 = α

{

sup
t∈[0,T ]

y(t) − inf
t∈[0,T ]

y(t)

}

+ β sup
t∈[0,T ]

∣

∣

∣

∣

∂y(t)

∂RL

∣

∣

∣

∣

+ γ sup
t∈[0,T ]

∣

∣

∣

∣

∂y(t)

∂σ

∣

∣

∣

∣

∞

, (1.18)

where T > 0 is a given terminal time; y(t) ∈ R is the output voltage at time t; RL ∈ R is

the resistance of the attached appliance; σ ∈ R
r is the DC input voltage; and α, β, and γ

are non-negative weights. Note that the first term in (1.18) penalizes the output voltage

ripple, while the second and third terms penalize the output voltage sensitivity. This op-

timal control problem is difficult to solve for two reasons. First, the cost function (1.18)

is non-smooth and thus cannot be minimized directly using a gradient-based NLP algo-

rithm. Second, the dynamic model of a switched-capacitor DC-DC power converter is

much more complicated than the systems considered in Chapters 2 and 3. In fact, the

model’s state variables—and the dynamics that govern them—change instantaneously at

each switching time. The dynamic model of a switched-capacitor DC-DC power converter

is actually a switched system of the following type:

ẋ(t) = Akx(t) + Bkσ, t ∈ (tk−1, tk), k = 1, . . . , m, (1.19)

y(t) = Ckx(t) + Dkσ, t ∈ [tk−1, tk), k = 1, . . . , m, (1.20)

and

x(t+k ) =

{

x0, if k = 0, (1.21a)

x(t−k ) + zk
(

x(t−k )
)

, if k ∈ {1, . . . , m − 1}, (1.21b)

where t0 = 0, tm = T , and tk, k = 1, . . . , m− 1, are the switching times; x(t) ∈ R
n is the

state voltage vector (whose components represent the voltages of the different capacitors)

at time t; Ak, Bk, Ck, and Dk, k = 1, . . . , m, are given matrices that depend on the load

resistance; and zk : R
n → R

n, k = 1, . . . , m − 1, are given functions. In this switched

system, the state voltage begins at x0 at time t = 0 and evolves smoothly according to

equation (1.19) with k = 1 until time t = t1. The circuit topology is then switched,

and this causes the state voltage to change instantaneously from x(t−1 ) to x(t+1 ); see

equation (1.21b). This instantaneous change is called a state jump; it models the energy

loss that occurs when the circuit topology is switched. Restarting from x(t+1 ), the state

voltage again evolves smoothly according to (1.19) with k = 2 until time t = t2, at which

time the circuit topology switches again, and the state voltage experiences another jump

from x(t−2 ) to x(t+2 ). The system continues in this way for the remainder of the time

horizon.

In Chapter 5, we consider an optimal control problem involving a more general switched
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system. This general switched system is of the following form:

ẋ(t) = f k
(

x(t),σ
)

, t ∈ (tk−1, tk), k = 1, . . . , m,

and

x(t+k ) =

{

x0, if k = 0,

x(t−k ) + zk
(

x(t−k ),σ
)

, if k ∈ {1, . . . , m − 1} and tk−1 < tk < T ,

where t0 = 0, tm = T , and T > 0 is a given terminal time; tk, k = 1, . . . , m − 1, are

switching times; σ ∈ R
r is a control vector; and f k : R

n × R
r → R

n, k = 1, . . . , m, and

zk : R
n × R

r → R
n, k = 1, . . . , m − 1, are given functions. This switched system has

nonlinear dynamics. Furthermore, its switching times are allowed to coincide if necessary.

This means that it may be beneficial to choose tk−1 = tk for some k ∈ {1, . . . , m}, which

would effectively delete the kth subsystem. Note though, that one (and only one) state

jump is applied at each distinct switching time—if two or more switching times coincide,

then only the state jump corresponding to the first one is applied. The optimal control

problem here is to choose the switching times and the control vector to minimize a given

cost function.

In Chapter 6, we consider the following delay-differential system:

ẋ(t) =
r

∑

i=1

f i
(

x(t),x(t − τi)
)

, t ∈ (0, T ], (1.23)

x(t) = z(t), t ∈ [−τ̄ , 0], (1.24)

and

y(t) = g(x(t)), t ∈ [−τ̄ , T ], (1.25)

where T > 0 and τ̄ > 0 are given real numbers; τi, i = 1, . . . , r, are unknown state-delays

that need to be identified; x(t) ∈ R
n is the system state at time t; y(t) ∈ R

m is the system

output at time t; and f i : R
n ×R

n → R
n, i = 1, . . . , r, z : R → R

n, and g : R
n → R

m are

given functions. Many real-life systems are of this type; examples include aircraft [112],

predator-prey systems [131], zinc production systems [116,117], and continuously-stirred

tank reactors [13]. We suppose that the system modeled by (1.23)-(1.25) has been ob-

served (via experimentation) at p points in the time horizon. Accordingly, we have a data

set

(t1, ŷ
1), (t2, ŷ

2), . . . , (tp, ŷ
p),

where, for each j = 1, . . . , p, ŷj is the output measured at time t = tj. Our goal is to

choose the state-delays so that the solution of (1.23)-(1.25) best fits the experimental

data. Hence, our optimal control problem is to choose the state-delays to minimize the
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cost function

G0 =

p
∑

j=1

∣

∣y(tj) − ŷj
∣

∣

2
.

The unusual aspect of this optimal control problem is that the control variables are the

state-delays themselves. Although many optimal control methods have been devised for

delay systems—see, for example, [49, 54, 55, 62, 107, 108,120,121] and the references cited

therein—none of them are applicable to this problem. This is because previous optimal

control methods assume that the control in the system does not affect the delay (the

delays are typically assumed to be given constants).

Finally, in Chapter 7, we summarize the main contributions of this thesis and discuss

some interesting directions for future research.

1.3 Notation

To conclude this chapter, we introduce some notation.

The symbol “,” is used throughout this thesis to denote a definition or assignment.

For example,

α , 0

means that α is being assigned the value of 0. Furthermore, ρi,j is used to denote the

well-known Kronecker delta (δ is reserved for small quantities). That is,

ρi,j ,







1, if i = j,

0, otherwise.

We use ρ̂i,j to denote the cumulative Kronecker delta. That is,

ρ̂i,j ,







1, if i ≤ j,

0, otherwise.

Clearly,

ρ̂i,j =

j
∑

k=1

ρi,k.

For each I ⊂ R, the corresponding indicator function χI : R → R is defined by

χI(t) ,







1, if t ∈ I,

0, otherwise.

Vectors in the n-dimensional Euclidean space R
n are written in boldface, and their com-

ponents are indexed with subscripts. Thus x1, . . . , xn are the components of x ∈ R
n.
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There is one exception: to avoid confusion, we denote a vector of switching times by ν

instead of t. Thus, if t1, . . . , tm−1, are switching times, then

ν = [t1, . . . , tm−1]
T ∈ R

m−1 (1.26)

is the corresponding switching-time vector.

All vectors are considered column vectors. Hence,









x1

...

xn









∈ R
n

and

[x1, . . . , xn]T ∈ R
n.

For each i = 1, . . . , n, we denote the ith standard unit basis vector in R
n by en,i. We also

denote a vector of zeros—the so-called zero vector or null vector—by 0 (its dimension

will be obvious from the context).

We denote the Euclidean norm by “| · |”. Thus, if x ∈ R
n, then

|x| =
√

x2
1 + · · ·+ x2

n.

In addition, we denote the infinity norm by “| · |∞”. Hence, if x ∈ R
n, then

|x|∞ = max
1≤i≤n

|xi|.

As is customary, we let R
n×m denote the set of all n × m real matrices. When working

with such matrices, we use “| · |” to denote the natural, or induced, matrix norm associated

with the Euclidean norms in R
n and R

m. More precisely, if A ∈ R
n×m, then

|A| = sup
{

|Ax| : x ∈ R
m, |x| = 1

}

.

Recall that

|Ax| ≤ |A| · |x|.

If f : R
n → R is a differentiable function, then

∂f(x)

∂x
,

[

∂f(x)

∂x1

, . . . ,
∂f(x)

∂xn

]

, x ∈ R
n.

Thus,
[

∂f(x)

∂x

]T

∈ R
n, x ∈ R

n.
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This vector is denoted by ∇f(x) and is called the gradient of the function f . Hence,

∇f(x) ,

[

∂f(x)

∂x

]T

=













∂f(x)

∂x1
...

∂f(x)

∂xn













, x ∈ R
n.

These concepts are easily generalized to vector-valued functions. Indeed, if f : R
m → R

n

is a differentiable function, then

∂f (x)

∂x
,













∂f1(x)

∂x1

· · · ∂f1(x)

∂xm
...

. . .
...

∂fn(x)

∂x1
· · · ∂fn(x)

∂xm













, x ∈ R
m.

When dealing with a function of only one variable, we use an overhead dot to denote

differentiation. Thus, if φ : R → R
n is a differentiable function, then φ̇ denotes its

derivative.

We will use “⌊·⌋” to denote the well-known floor function. That is, ⌊x⌋ is the greatest

integer less than or equal to x ∈ R. Furthermore, we will use an overhead bar to denote

set closure. Hence, Ā denotes the closure of the set A.

We use a positive superscript to denote the right limit, and a negative superscript to

denote the left limit. For example, if τ ∈ R and f : R → R
n, then

f (τ+) = lim
t→τ+

f (t)

and

f (τ−) = lim
t→τ−

f (t).

Finally, let f : R → R
n and g : R → R be two functions. We say that f is of order O(g(ǫ))

if there exists a real number α > 0 such that for all ǫ of sufficiently small magnitude,

∣

∣f (ǫ)
∣

∣ ≤ α
∣

∣g(ǫ)
∣

∣.

In this case, we write

f (ǫ) = O(g(ǫ)).





CHAPTER 2

Optimal control problems with

characteristic-time inequality constraints∗

2.1 Introduction

In this chapter, we consider an optimal control problem with inequality constraints that

depend on the state at two or more discrete time points. These time points are called

characteristic times, and the constraints themselves are called characteristic-time inequal-

ity constraints (CTI constraints). Optimal control problems with CTI constraints were

first introduced in a study of chemotherapy administration policies for cancer treat-

ment [77, 78]. In this study, an optimal control problem was formulated in which the

chemotherapy delivery rate is the control variable to be determined optimally. This

problem has conventional inequality constraints in addition to CTI constraints. The con-

ventional constraints arise because of restrictions on the amount of chemotherapy that

can be safely administered; the CTI constraints arise because of a requirement that the

size of the cancer tumor decrease at least as fast as a prescribed rate.

The method proposed in [77, 78] for solving optimal control problems with CTI con-

straints is based on the control parameterization technique (see Chapter 1). More specif-

ically, it involves approximating the control by a piecewise constant function, so that the

optimal control problem becomes a dynamic optimization problem with a finite number

of decision variables. An algorithm was developed in [77, 78] for computing the gradient

of the objective and constraint functions in this approximate problem. This algorithm

can be used in conjunction with a gradient-based nonlinear programming algorithm to

solve the approximate problem.

The algorithm proposed in [77, 78] for computing the gradient of the CTI constraints

has two main steps: first, the state system is integrated forward in time; second, an

auxiliary costate system with jumps is integrated backwards in time. The jumps make

the costate system difficult to integrate. Furthermore, since the state and costate systems

are integrated in opposite directions, it is impossible to ensure that their knot sets coincide

∗This chapter is based on [71, 72].
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(unless a crude integration technique with fixed step lengths is used). This is a major

problem, because the costate system actually depends on the solution of the state system.

It is therefore necessary to interpolate the state when the costate system is being solved,

which ultimately compromises the accuracy of the constraint gradients.

The characteristic times in the optimal control problem in [77, 78] are fixed. A more

difficult problem, in which the characteristic times are actually decision variables to be

determined optimally, is considered in [105]. The control parameterization technique,

together with the time-scaling transformation, can be used to approximate this problem

by a dynamic optimization problem with constraints that depend on the state at fixed

characteristic times. This approximate problem can be readily solved using the method

developed in [77, 78].

The optimal control problem that we consider in this chapter includes those formulated

in [77,78,105] as special cases. Although our approach to solving this problem is also based

on the control parameterization technique, we develop a new method for computing the

gradient of the CTI constraints. Our new method is inspired by those in [51, 113, 126];

it involves integrating an auxiliary dynamic system, which does not have instantaneous

jumps, forward in time. Accordingly, our new method has two important advantages

over those in [77,78,105]: the difficulties involved in dealing with a discontinuous costate

system are avoided; and, more importantly, no interpolation is required when solving the

differential equations comprising the auxiliary system.

2.2 Problem formulation

Consider the following dynamic system:

ẋ(t) = f
(

x(t),u(t)
)

, t ∈ [0, T ], (2.1)

and

x(0) = x0, (2.2)

where T > 0 is a given terminal time; x(t) ∈ R
n is the system state at time t; u(t) ∈ R

r

is the control function at time t; x0 ∈ R
n is a given initial state; and f : R

n × R
r → R

n

is a given function.

Define

W ,
{

w ∈ R
r : aς ≤ wς ≤ bς , ς = 1, . . . , r

}

,

where aς and bς , ς = 1, . . . , r, are given real numbers such that aς < bς . Any measurable

function u : [0, T ] → R
r such that u(t) ∈ W for almost all t ∈ [0, T ] is called an admissible

control. Let U denote the class of all such admissible controls.

We assume that the following conditions are satisfied.
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Assumption 2.1. The function f is continuously differentiable.

Assumption 2.2. There exists a real number L1 > 0 such that

∣

∣f (v,w)
∣

∣ ≤ L1(1 + |v|), (v,w) ∈ R
n ×W.

By Theorem 3.3.3 of [2], the system (2.1)-(2.2) has a unique solution corresponding to

each admissible control u ∈ U . We denote this solution by x(·|u).

We suppose that the dynamic system (2.1)-(2.2) is required to satisfy the following

inequality constraints:

Gi(u, τ ) , Φi

(

x(τ1|u), . . . ,x(τm|u)
)

+

∫ T

0

Li

(

x(t|u),u(t)
)

dt ≥ 0, i = 1, . . . , q, (2.3)

where Φi : R
mn → R and Li : R

n × R
r → R, i = 1, . . . , q, are given functions and τj ,

j = 1, . . . , m, are time points called characteristic times. Such constraints are called

characteristic-time inequality constraints (CTI constraints). Since the CTI constraints

depend on the state at intermediate points in the time horizon, they are more complicated

than conventional inequality constraints, which usually depend only on the final state

reached by the system.

The characteristic times are chosen by the system designer; we assume that they are

required to satisfy

cj ≤ τj ≤ dj, j = 1, . . . , m, (2.4)

where cj and dj, j = 1, . . . , m, are given real numbers such that

0 ≤ cj ≤ dj ≤ T, j = 1, . . . , m,

and

dj−1 ≤ cj , j = 2, . . . , m.

These conditions on cj and dj, j = 1, . . . , m, ensure that the characteristic times are

indexed in chronological order. That is,

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τm ≤ T.

Let T denote the set consisting of all vectors τ ∈ R
m that satisfy the constraints (2.4).

A pair (u, τ ) ∈ U × T is called a feasible control pair. Let F denote the set of all such

feasible control pairs.

We now define the following optimal control problem.
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Problem P. Find a feasible control pair (u, τ ) ∈ F that minimizes the cost function

G0(u, τ ) , Φ0

(

x(τ1|u), . . . ,x(τm|u)
)

+

∫ T

0

L0

(

x(t|u),u(t)
)

dt,

where Φ0 : R
mn → R and L0 : R

n × R
r → R are given functions, over F .

Recall that the optimal control problem considered in [77,78] has fixed characteristic times.

Problem P is far more general: its characteristic times are actually decision variables that,

together with the control function, should be determined optimally. It is clear, however,

that Problem P reduces to the optimal control problem in [77,78] when

cj = dj, j = 1, . . . , m.

Furthermore, there is no loss of generality in assuming that the functions f and Li,

i = 0, . . . , q, do not depend on time explicitly. This is because time may be replaced by

the state variable v whose dynamics are

v̇(t) = 1, t ∈ [0, T ],

and

v(0) = 0.

Before finishing this section, we make one further assumption.

Assumption 2.3. The functions Φi and Li, i = 0, . . . , q, are continuously differentiable.

2.3 Problem approximation

In general, Problem P is too complex to solve analytically. Thus, in this section, we

will approximate Problem P by a dynamic optimization problem with a finite number of

decision variables.

Let p ≥ 1 be a fixed integer and define

N , (m + 1)p.

We construct a piecewise constant approximation of the control as follows. First, let

the approximate control change its value at N − 1 locations in the time horizon. The

times at which these changes occur are called switching times ; they are denoted by tk,

k = 1, . . . , N − 1. Let ν ∈ R
N−1 denote the vector whose components are the switching

times. That is,

ν = [t1, . . . , tN−1]
T .
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This vector is called the switching-time vector.

The switching times are indexed in non-decreasing order. Hence,

0 , t0 ≤ t1 ≤ · · · ≤ tN−1 ≤ tN , T. (2.5)

Furthermore, we require that

tpj = τj , j = 1, . . . , m. (2.6)

This constraint ensures that every pth control switch occurs at a characteristic time. In

other words, there are p − 1 control switches between consecutive characteristic times.

Because of (2.4) and (2.6), the switching times are also subject to the following addi-

tional constraints:

cj ≤ tpj ≤ dj, j = 1, . . . , m. (2.7)

Now, define subintervals Ik ⊂ [0, T ], k = 1, . . . , N , as follows:

Ik ,







[tk−1, tk), if k ∈ {1, . . . , N − 1},
[tk−1, tk], if k = N.

On each subinterval Ik, k = 1, . . . , N , the approximate control assumes a constant value

of σk ∈ R
r. Therefore, we impose the constraint

σk ∈ W, k = 1, . . . , N. (2.8)

This constraint ensures that the approximate control is admissible.

Let

σ ,
[

(σ1)T , . . . , (σN)T
]T ∈ R

Nr.

This vector is called the control-value vector.

We can now express the approximate control as follows:

up(t) =
N

∑

k=1

σkχIk
(t), t ∈ [0, T ], (2.9)

where, for each I ⊂ R, the indicator function χI : R → R is defined by

χI(t) ,







1, if t ∈ I,

0, otherwise.
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Substituting (2.9) into the dynamic system (2.1)-(2.2) gives

ẋ(t) = f
(

x(t),σk
)

, t ∈ Ik, k = 1, . . . , N, (2.10)

and

x(0) = x0. (2.11)

Let xp(·|ν,σ) denote the solution of this system corresponding to the switching-time

vector ν ∈ R
N−1 and the control-value vector σ ∈ R

Nr. Then, by virtue of (2.6), the cost

and constraint functions Gi, i = 0, . . . , q, become

Gp
i (ν,σ) , Φi

(

xp(tp|ν,σ), . . . ,xp(tmp|ν,σ)
)

+

∫ T

0

L
(

xp(t|ν,σ),up(t)
)

dt, i = 0, . . . , q.

Thus, when equation (2.9) is used to approximate the control, Problem P becomes the

following optimization problem.

Problem Pp. Find a pair (ν,σ) ∈ R
N−1 × R

Nr that minimizes the cost function Gp
0

subject to the linear constraints (2.5)-(2.8) and the CTI constraints

Gp
i (ν,σ) ≥ 0, i = 1, . . . , q.

Since it has a finite number of decision variables, Problem Pp can be viewed as a nonlin-

ear programming problem. However, some of Problem Pp’s decision variables are control

switching times, and as we mentioned in Chapter 1, optimization problems with variable

switching times are very difficult to solve. Thus, we will use the time-scaling transfor-

mation mentioned in Chapter 1 to convert Problem Pp into a new optimization problem

that has fixed switching times.

First, define the set

Θ ,
{

θ ∈ R
N : θk ≥ 0, k = 1, . . . , N ; θ1 + · · ·+ θN = NT

}

.

That is, Θ consists of all vectors of length N whose components are non-negative and

sum together to give NT . For each θ ∈ Θ, we can define a transformation from [0, T ] to

a new time horizon [0, 1] through the differential equation

ṫ(s) = ṽp(s), s ∈ [0, 1], (2.12)

and the initial condition

t(0) = 0, (2.13)
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where

ṽp(s) ,

N
∑

k=1

θkχJk
(s), s ∈ [0, 1],

Jk ,







[

αk−1, αk

)

, if k ∈ {1, . . . , N − 1},
[

αk−1, αk

]

, if k = N ,

and

αk ,
k

N
, k = 0, . . . , N.

The relationship between t ∈ [0, T ] and the new time variable s ∈ [0, 1] is obtained by

integrating (2.12)-(2.13):

t(s) =

⌊Ns⌋
∑

l=1

θl

N
+

θ⌊Ns⌋+1

N
(Ns − ⌊Ns⌋), s ∈ [0, 1]. (2.14)

In terms of the new time variable s ∈ [0, 1], the approximate control (2.9) switches value

at the fixed times s = αk, k = 1, . . . , N − 1. Furthermore, the kth switching time in

the new time horizon [0, 1] corresponds to the kth switching time in [0, T ]. Hence, by

equation (2.14),

tk = t(αk) =
k

∑

l=1

θl

N
, k = 1, . . . , N − 1. (2.15)

This shows that the switching times in the original time horizon are controlled by θ ∈ Θ.

Equation (2.14) also shows that

t0 = t(0) = 0

and

tN = t(1) =

N
∑

l=1

θl

N
= T,

where the last equality follows from the definition of Θ. Thus, it is clear that equa-

tions (2.12)-(2.13) define a monotonic transformation from [0, T ] to [0, 1] in which the

control switching times tk, k = 1, . . . , N − 1, are mapped to the uniformly distributed

locations s = αk, k = 1, . . . , N − 1.

The approximate control in the new time horizon is

ũp(s) , up(t(s)) =

N
∑

k=1

σkχJk
(s), s ∈ [0, 1].

Since up maps [0, T ] into W, ũp must map [0, 1] into W. Therefore, we retain the
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constraints (2.8):

σk ∈ W, k = 1, . . . , N. (2.16)

Furthermore, recall that every pth control switch occurs at a characteristic time. Hence,

for each j = 1, . . . , m, the point s = αpj = pj/N in the new time horizon corresponds

to the characteristic time t = τj in the original time horizon. Using equation (2.15), we

obtain

τj = tpj =

pj
∑

l=1

θl

N
, j = 1, . . . , m.

Hence, in view of (2.7), we must have the constraints

cj ≤
pj

∑

l=1

θl

N
≤ dj , j = 1, . . . , m. (2.17)

Now, applying the time-scaling transformation defined by (2.12)-(2.13) to the original

dynamic system (2.1)-(2.2) gives

˙̃x(s) = ṽp(s)f
(

x̃(s), ũp(s)
)

, s ∈ [0, 1], (2.18)

and

x̃(0) = x0, (2.19)

where

x̃(s) , x(t(s)).

Let x̃p(·|θ,σ) denote the solution of (2.18)-(2.19) corresponding to (θ,σ) ∈ Θ × R
Nr.

Finally, applying the transformation defined by (2.12)-(2.13) to the cost and constraint

functions Gp
i , i = 0, . . . , q, gives

G̃p
i (θ,σ) , Φi

(

x̃p(αp|θ,σ), . . . , x̃p(αpm|θ,σ)
)

+

∫ 1

0

ṽp(s)Li

(

x̃p(s|θ,σ), ũp(s)
)

ds, i = 0, . . . , q. (2.20)

We now state the following optimization problem, which is equivalent to Problem Pp.

Problem P̃p. Find a pair (θ,σ) ∈ Θ × R
Nr that minimizes the cost function G̃p

0 subject

to the linear constraints (2.16)-(2.17) and the CTI constraints

G̃p
i (θ,σ) ≥ 0, i = 1, . . . , q.

Problem P̃p is derived by replacing the switching times tk, k = 1, . . . , N − 1, in Prob-

lem Pp with the new decision variables θk, k = 1, . . . , N . Its solution (θ∗,σ∗) ∈ Θ × R
Nr
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immediately furnishes the following suboptimal control for Problem P:

up,∗(t) =
N

∑

k=1

σk,∗χI∗

k
(t), t ∈ [0, T ],

where the subintervals I∗
k ⊂ [0, T ], k = 1, . . . , N , have endpoints

t∗k =

k
∑

l=1

θ∗l
N

, k = 0, . . . , N.

Furthermore, the optimal characteristic times are

τp,∗
j = t∗pj =

pj
∑

l=1

θ∗l
N

, j = 1, . . . , m.

It can be shown (see [77]) that the cost of (up,∗, τ p,∗) converges to the optimal cost of

Problem P as p → ∞. Indeed, if (u∗, τ ∗) ∈ F is an optimal solution of Problem P, then

lim
p→∞

G0(u
p,∗, τ p,∗) = G0(u

∗, τ ∗).

Furthermore, if the sequence {up,∗}∞p=1 converges almost everywhere on [0, T ] to an ad-

missible control û ∈ U , and if the sequence {τ p,∗}∞p=1 converges to a switching-time

vector τ̂ ∈ T , then the pair (û, τ̂ ) is optimal for Problem P.

Problem P̃p has fixed switching times and is therefore easier to solve than Problem Pp.

In the next section, we will show how to compute the gradient of its cost and constraint

functions with respect to the decision variables θk, k = 1, . . . , N , and σk
ς , k = 1, . . . , N ,

ς = 1, . . . , r.

2.4 Gradient computation

For each k = 1, . . . , N , consider the following auxiliary dynamic system:

ψ̇k(s) = ρ̂k,lθl

∂f
(

x̃p(s|θ,σ),σl
)

∂x
ψk(s)

+ ρk,lf
(

x̃p(s|θ,σ),σl
)

, s ∈ Jl, l = 1, . . . , N, (2.21)

and

ψk(0) = 0, (2.22)
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where (θ,σ) ∈ Θ × R
Nr and

ρk,l ,







1, if k = l,

0, otherwise,

and

ρ̂k,l ,







1, if k ≤ l,

0, otherwise.

Let ψk(·|θ,σ) denote the solution of (2.21)-(2.22). The following theorem shows that the

partial derivatives of G̃p
i , i = 0, . . . , q, with respect to θk, k = 1, . . . , N , can be expressed

in terms of ψk(·|θ,σ).

Theorem 2.1. Let (θ,σ) ∈ Θ × R
Nr. Then for each i = 0, . . . , q,

∂G̃p
i (θ,σ)

∂θk

=
m

∑

j=1

∂Φi

(

x̃p(αp|θ,σ), . . . , x̃p(αpm|θ,σ)
)

∂x(τj)
ψk(αpj|θ,σ)

+

N
∑

l=1

∫

Jl

θl

∂Li

(

x̃p(s|θ,σ),σl
)

∂x
ψk(s|θ,σ)ds

+

∫

Jk

Li

(

x̃p(s|θ,σ),σk
)

ds, k = 1, . . . , N.

Proof. Let (θ,σ) ∈ Θ × R
Nr, i ∈ {0, . . . , q}, and k ∈ {1, . . . , N} be arbitrary but fixed.

It is clear from equation (2.20) that G̃p
i can be expressed as

G̃p
i (θ,σ) = Φi

(

x̃p(αp|θ,σ), . . . , x̃p(αpm|θ,σ)
)

+

N
∑

l=1

∫

Jl

θlLi

(

x̃p(s|θ,σ),σl
)

ds. (2.23)

Differentiating (2.23) with respect to θk yields

∂G̃p
i (θ,σ)

∂θk
=

m
∑

j=1

∂Φi

(

x̃p(αp|θ,σ), . . . , x̃p(αpm|θ,σ)
)

∂x(τj)

∂x̃p(αpj|θ,σ)

∂θk

+
N

∑

l=1

∫

Jl

θl

∂Li

(

x̃p(s|θ,σ),σl
)

∂x

∂x̃p(s|θ,σ)

∂θk

ds

+

∫

Jk

Li

(

x̃p(s|θ,σ),σk
)

ds. (2.24)

Now, for each l = 1, . . . , N , it follows from (2.18)-(2.19) that

x̃p(s|θ,σ) = x̃p(αl−1|θ,σ) +

∫ s

αl−1

θlf
(

x̃p(η|θ,σ),σl
)

dη, s ∈ Jl. (2.25)
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If l > k, then differentiating (2.25) with respect to θk yields

∂x̃p(s|θ,σ)

∂θk
=

∂x̃p(αl−1|θ,σ)

∂θk

+

∫ s

αl−1

θl

∂f
(

x̃p(η|θ,σ),σl
)

∂x

∂x̃p(η|θ,σ)

∂θk
dη, s ∈ Jl. (2.26)

On the other hand, if l = k, then differentiating (2.25) with respect to θk yields

∂x̃p(s|θ,σ)

∂θk

=
∂x̃p(αl−1|θ,σ)

∂θk

+

∫ s

αl−1

θl

∂f
(

x̃p(η|θ,σ),σl
)

∂x

∂x̃p(η|θ,σ)

∂θk

dη

+

∫ s

αl−1

f
(

x̃p(η|θ,σ),σl
)

dη, s ∈ Jl. (2.27)

Since θk is the value of ṽp on the subinterval Jk, it does not affect the state at times

before Jk. Hence, if l < k, then

∂x̃p(s|θ,σ)

∂θk
= 0, s ∈ Jl. (2.28)

Using the Kronecker delta and the cumulative Kronecker delta, we can combine (2.26)-

(2.28) into one equation as follows:

∂x̃p(s|θ,σ)

∂θk

= ρ̂k,l
∂x̃p(αl−1|θ,σ)

∂θk

+

∫ s

αl−1

ρ̂k,lθl

∂f
(

x̃p(η|θ,σ),σl
)

∂x

∂x̃p(η|θ,σ)

∂θk

dη

+

∫ s

αl−1

ρk,lf
(

x̃p(η|θ,σ),σl
)

dη, s ∈ Jl, l = 1, . . . , N.

Differentiating this equation with respect to s gives

d

ds

{

∂x̃p(s|θ,σ)

∂θk

}

= ρ̂k,lθl

∂f
(

x̃p(s|θ,σ),σl
)

∂x

∂x̃p(s|θ,σ)

∂θk

+ ρk,lf
(

x̃p(s|θ,σ),σl
)

, s ∈ Jl, l = 1, . . . , N. (2.29)

Furthermore,
∂x̃p(0|θ,σ)

∂θk
=

∂

∂θk

{

x0
}

= 0. (2.30)

Equations (2.29)-(2.30) show that ∂x̃p(·|θ,σ)/∂θk is a solution of (2.21)-(2.22). By the

theory of differential equations (see [1, 2]), such a solution is unique. Therefore,

∂x̃p(s|θ,σ)

∂θk

= ψk(s|θ,σ), s ∈ [0, 1].

Substituting this equation into (2.24) completes the proof.
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We now present formulae for the partial derivatives of G̃p
i , i = 0, . . . , q, with respect to σk

ς ,

k = 1, . . . , N , ς = 1, . . . , r.

For each k = 1, . . . , N , and ς = 1, . . . , r, consider the following auxiliary dynamic

system:

φ̇k,ς(s) = ρ̂k,lθl

∂f
(

x̃p(s|θ,σ),σl
)

∂x
φk,ς(s)

+ ρk,lθl

∂f
(

x̃p(s|θ,σ),σl
)

∂uς
, s ∈ Jl, l = 1, . . . , N, (2.31)

and

φk,ς(0) = 0, (2.32)

where (θ,σ) ∈ Θ × R
Nr. Let φk,ς(·|θ,σ) denote the solution of (2.31)-(2.32).

We have the following important result.

Theorem 2.2. Let (θ,σ) ∈ Θ × R
Nr. Then for each i = 0, . . . , q,

∂G̃p
i (θ,σ)

∂σk
ς

=
m

∑

j=1

∂Φi

(

x̃p(αp|θ,σ), . . . , x̃p(αpm|θ,σ)
)

∂x(τj)
φk,ς(αpj|θ,σ)

+

N
∑

l=1

∫

Jl

θl

∂Li

(

x̃p(s|θ,σ),σl
)

∂x
φk,ς(s|θ,σ)ds

+

∫

Jk

θk

∂Li

(

x̃p(s|θ,σ),σk
)

∂uς
ds, k = 1, . . . , N, ς = 1, . . . , r.

Proof. The proof is similar to the proof of Theorem 2.1. First, let (θ,σ) ∈ Θ × R
Nr,

i ∈ {0, . . . , q}, k ∈ {1, . . . , N}, and ς ∈ {1, . . . , r} be arbitrary but fixed.

Recall equation (2.23) in the proof of Theorem 2.1:

G̃p
i (θ,σ) = Φi

(

x̃p(αp|θ,σ), . . . , x̃p(αpm|θ,σ)
)

+
N

∑

l=1

∫

Jl

θlLi

(

x̃p(s|θ,σ),σl
)

ds.

Differentiating this equation with respect to σk
ς yields

∂G̃p
i (θ,σ)

∂σk
ς

=
m

∑

j=1

∂Φi

(

x̃p(αp|θ,σ), . . . , x̃p(αpm|θ,σ)
)

∂x(τj)

∂x̃p(αpj|θ,σ)

∂σk
ς

+
N

∑

l=1

∫

Jl

θl

∂Li

(

x̃p(s|θ,σ),σl
)

∂x

∂x̃p(s|θ,σ)

∂σk
ς

ds

+

∫

Jk

θk

∂Li

(

x̃p(s|θ,σ),σk
)

∂uς
ds. (2.33)
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Also recall from the proof of Theorem 2.1 that for each l = 1, . . . , N ,

x̃p(s|θ,σ) = x̃p(αl−1|θ,σ) +

∫ s

αl−1

θlf
(

x̃p(η|θ,σ),σl
)

dη, s ∈ Jl. (2.34)

If l > k, then differentiating (2.34) with respect to σk
ς yields

∂x̃p(s|θ,σ)

∂σk
ς

=
∂x̃p(αl−1|θ,σ)

∂σk
ς

+

∫ s

αl−1

θl

∂f
(

x̃p(η|θ,σ),σl
)

∂x

∂x̃p(η|θ,σ)

∂σk
ς

dη, s ∈ Jl. (2.35)

On the other hand, if l = k, then differentiating (2.34) with respect to σk
ς yields

∂x̃p(s|θ,σ)

∂σk
ς

=
∂x̃p(αl−1|θ,σ)

∂σk
ς

+

∫ s

αl−1

θl

∂f
(

x̃p(η|θ,σ),σl
)

∂x

∂x̃p(η|θ,σ)

∂σk
ς

dη

+

∫ s

αl−1

θl

∂f
(

x̃p(η|θ,σ),σl
)

∂uς
dη, s ∈ Jl. (2.36)

It is obvious that if l < k, then

∂x̃p(s|θ,σ)

∂σk
ς

= 0, s ∈ Jl. (2.37)

Combining equations (2.35)-(2.37) gives

∂x̃p(s|θ,σ)

∂σk
ς

= ρ̂k,l
∂x̃p(αl−1|θ,σ)

∂σk
ς

+

∫ s

αl−1

ρ̂k,lθl

∂f
(

x̃p(η|θ,σ),σl
)

∂x

∂x̃p(η|θ,σ)

∂σk
ς

dη

+

∫ s

αl−1

ρk,lθl

∂f
(

x̃p(η|θ,σ),σl
)

∂uς

dη, s ∈ Jl, l = 1, . . . , N.

By differentiating this equation with respect to s, we obtain

d

ds

{

∂x̃p(s|θ,σ)

∂σk
ς

}

= ρ̂k,lθl

∂f
(

x̃p(s|θ,σ),σl
)

∂x

∂x̃p(s|θ,σ)

∂σk
ς

+ ρk,lθl

∂f
(

x̃p(s|θ,σ),σl
)

∂uς
, s ∈ Jl, l = 1, . . . , N. (2.38)

Moreover,
∂x̃p(0|θ,σ)

∂σk
ς

=
∂

∂σk
ς

{

x0
}

= 0. (2.39)

Equations (2.38)-(2.39) show that ∂x̃p(·|θ,σ)/∂σk
ς is the unique solution of (2.31)-(2.32).

Hence,
∂x̃p(s|θ,σ)

∂σk
ς

= φk,ς(s|θ,σ), s ∈ [0, 1].
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Substituting this equation into (2.33) completes the proof.

The formulae in Theorems 2.1 and 2.2 express the partial derivatives of G̃p
i , i = 0, . . . , q,

in terms of the solution of the state system (2.18)-(2.19) and the solutions of the aux-

iliary systems (2.21)-(2.22) and (2.31)-(2.32). The auxiliary systems cannot be solved

independently, because their right-hand sides depend on the state. Nevertheless, we can

combine the state system and the auxiliary systems to form an expanded initial value

problem, which can be solved using any numerical integration technique. This suggests

the following algorithm for computing the value and gradient of G̃p
i , i = 0, . . . , q, at a

given (θ,σ) ∈ Θ × R
Nr.

Algorithm 2.1. Input (θ,σ) ∈ Θ × R
Nr.

(i) Obtain x̃p(·|θ,σ), ψk(·|θ,σ), and φk,ς(·|θ,σ) by solving the initial value problem

consisting of (2.18)-(2.19), (2.21)-(2.22), and (2.31)-(2.32).

(ii) Use x̃p(·|θ,σ) to compute G̃p
i (θ,σ), i = 0, . . . , q.

(iii) Use x̃p(·|θ,σ), ψk(·|θ,σ), and φk,ς(·|θ,σ) to compute the derivatives ∂G̃p
i (θ,σ)/∂θk

and ∂G̃p
i (θ,σ)/∂σk

ς , i = 0, . . . , q, according to the formulae in Theorems 2.1 and 2.2.

By incorporating Algorithm 2.1 into a gradient descent algorithm, Problem P̃p can be

solved as a nonlinear programming problem. The solution of Problem P̃p then furnishes

a suboptimal control for Problem P (see the discussion at the end of Section 2.3). In the

next section, we apply this approach to two examples.

2.5 Numerical examples

In this section, we solve two example problems. The first example is an optimal control

problem whose characteristic times are decision variables. The second example is the

optimal cancer chemotherapy problem formulated in [78] (which has fixed characteristic

times).

2.5.1 Optimal observation times

Consider the following dynamic system:

ẋ1(t) = x2(t), t ∈ [0, 3], (2.40a)

ẋ2(t) = −u1(t)x2(t) − x1(t) + u2(t), t ∈ [0, 3], (2.40b)
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and

x1(0) = 4, (2.41a)

x2(0) = 1, (2.41b)

where x1 and x2 are state variables and u1 and u2 are control variables. Define a target

trajectory as follows:

w(t) , 3 + sin(2t) + exp(t/5), t ∈ [0, 3].

We suppose that the dynamic system (2.40)-(2.41) needs to be observed five times dur-

ing the interval [0, 3]. These observations should take place when x1 is near the target

trajectory w.

Let τj , j = 1, . . . , 5, denote the time at which the jth observation takes place. We

impose the following constraints:

5j − 2

10
≤ τj ≤

5j + 2

10
, j = 1, . . . , 5. (2.42)

We also impose the following constraints on the control functions:

−5 ≤ u1(t) ≤ 5, t ∈ [0, 3], (2.43)

and

−5 ≤ u2(t) ≤ 5, t ∈ [0, 3]. (2.44)

Our optimal control problem is to choose control functions u1 and u2 and observation

times τj , j = 1, . . . , 5, to minimize the cost function

G0 =

5
∑

j=1

(

x1(τj) − w(τj)
)2

(2.45)

subject to the dynamic system (2.40)-(2.41) and the constraints (2.42)-(2.44). Notice

that τj , j = 1, . . . , 5, are characteristic times in the cost function (2.45).

We discretized this optimal control problem using the approximation scheme described

in Section 2.3 (with p = 2). Problem P̃p was solved using Algorithm 2.1 in conjunction

with the nonlinear programming software NLPQLP (see [93]). The differential equations

were solved using the LSODA solver (see [41]). Note that LSODA does not use a fixed

step length; it instead varies the step length to curb local truncation error.

The results obtained are as follows. The optimal value of the cost function is

G∗
0 = 1.2071184 × 10−6.
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Figure 2.1: The target trajectory and optimal system state in Example 2.5.1.

The optimal observation times are

τ ∗
1 = 0.5890,

τ ∗
2 = 0.8186,

τ ∗
3 = 1.3971,

τ ∗
4 = 2.1349,

τ ∗
5 = 2.3000.

The optimal state is shown in Figure 2.1 along with the target trajectory. The optimal

controls are shown in Figures 2.2 and 2.3.

2.5.2 Optimal chemotherapy administration

We consider the optimal cancer chemotherapy problem formulated in [78]. This optimal

control problem has the following dynamics:

ẏ(t) = −λy(t) + κ(v(t) − vth)H(v(t) − vth), t ∈ [0, T ], (2.46a)

v̇(t) = u(t) − γv(t), t ∈ [0, T ], (2.46b)
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Figure 2.2: The optimal control u1 in Example 2.5.1.
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Figure 2.3: The optimal control u2 in Example 2.5.1.
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and

y(0) = ln(ω/C0), (2.47a)

v(0) = 0, (2.47b)

where T > 0 is the time at which the treatment ends; λ, κ, ω, C0, γ, and vth are model

parameters; y(t) = ln(ω/C(t)) and C(t) is the number of tumor cells alive at time t; v(t)

is the concentration of the chemotherapy drug at the cancer site at time t; u(t) is the

rate at which the chemotherapy drug is being delivered at time t; and H : R → R is the

Heaviside step function defined by

H(η) ,







1, if η ≥ 0,

0, if η < 0.

Since chemotherapy is highly toxic, there are restrictions on the amount that can be

administered to the patient. These restrictions give rise to the following constraints:

0 ≤ v(t) ≤ vmax, t ∈ [0, T ], (2.48)

and
∫ T

0

v(t)dt ≤ vacc, (2.49)

where vmax > 0 and vacc > 0 are given real numbers.

We choose fixed characteristic times τ1, τ2, and τ3 such that

0 , τ0 < τ1 < τ2 < τ3 < τ4 , T.

Furthermore, we choose p − 1 control switching times between each characteristic time.

These switching times are denoted by tk, k = 1, . . . , 4p, where

tpj = τj , j = 0, . . . , 4,

and

0 , t0 ≤ t1 ≤ · · · ≤ t4p−1 ≤ t4p , T.

For each k = 1, . . . , 4p, we approximate the drug delivery rate on the interval [tk−1, tk) by

the constant σk. It is shown in [78] that the constraints (2.48) then reduce to

v(tk) ≤ vmax, k = 1, . . . , 4p. (2.50)

The tumor size is required to decrease sufficiently between consecutive characteristic times.
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Figure 2.4: The optimal treatment regime and its corresponding drug concentration profile
in Example 2.5.2.

This requirement gives rise to the following CTI constraints:

y(τj) − y(τj−1) + ln(ε) ≥ 0, j = 1, 2, 3, (2.51)

where 0 < ε < 1.

We want to choose a value for the drug delivery rate in each subinterval so that the

final tumor size is minimized. Thus, our optimal control problem is as follows: find a

vector σ = [σ1, . . . , σ4p]
T ∈ R

4p that minimizes the cost function

G0 = −y(T ),

subject to the dynamics (2.46)-(2.47) and the constraints (2.49)-(2.51). The parameter

values here are: T = 84.0, λ = 9.9 × 10−4, γ = 0.27, κ = 8.4 × 10−3, vth = 10.0,

vmax = 50.0, vacc = 1100.0, ε = 0.5, ω = 1012, C0 = 1010, tk = kT/4p, k = 0, . . . , 4p, and

τj = jT/4, j = 0, . . . , 4.

We solved this optimal control problem using the method proposed in Sections 2.3

and 2.4. As in Example 2.5.1, we used NLPQLP to perform the optimization and LSODA

to solve the differential equations. The function values and gradients required by NLPQLP

were computed using Algorithm 2.1. Initially, we choose p = 4; the problem was sub-

sequently re-solved for p = 8, p = 16, and p = 32, using the previous solution as the

initial guess at each step. The optimal solution that we obtained has a final tumor cell

population of

C∗(T ) = 3.2492 × 107.

The optimal treatment regime and its corresponding drug concentration profile are shown

in Figure 2.4.
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2.6 Conclusion

In this chapter, we developed a numerical method for solving optimal control problems

with nonlinear CTI constraints. The main idea of this method is to use the control

parameterization technique and the time-scaling transformation to derive an approximate

optimization problem that has a finite number of decision variables. We developed a novel

scheme for computing the cost and constraint gradients in this approximate problem.

This scheme can be used in conjunction with a gradient-based nonlinear programming

algorithm to solve the approximate problem.

Our gradient computation scheme, like those in [77, 78, 105], involves integrating an

auxiliary dynamic system. This auxiliary system does not have any jumps, and is thus

quite different from the auxiliary systems used in [77,78,105]. Furthermore, our auxiliary

system has an initial condition instead of a final condition, which ensures that it can

be integrated forward in time in conjunction with the state system. This is a major

advantage because it eliminates the need for state interpolation.



CHAPTER 3

Optimal control problems with continuous

inequality constraints∗

3.1 Introduction

Dynamic systems typically have requirements that must be satisfied at all times. Such

requirements give rise to continuous constraints—constraints on the state and/or control

that are imposed at each point in the time horizon. Examples of continuously-constrained

systems include container cranes [91], batch crystallization systems [87], and solar-powered

vehicles [29]. In this chapter, we will develop a numerical method for solving optimal

control problems with continuous inequality constraints.

Finding an optimal control strategy for a continuously-constrained system is very chal-

lenging. This is because the continuous constraints restrict the system over the entire time

horizon, not just at several isolated times. One continuous constraint can therefore be

viewed as an infinite (actually, uncountable) number of conventional constraints. Sev-

eral versions of the Pontryagin minimum principle (see Chapter 1) have been derived for

continuously-constrained optimal control problems [38]. In addition, many reliable numer-

ical methods for solving continuously-constrained optimal control problems are available.

These include discretization methods [11, 15, 32], non-smooth Newton methods [30, 31],

feasible direction methods [84, 85], and control parameterization methods [34, 100, 101].

Control parameterization, in particular, is a versatile method that has been used

to solve a wide variety of practical optimal control problems. It was first applied to

continuously-constrained optimal control problems in [34]. The method proposed in [34]

uses a simple transcription, which is inspired by the one in [98], to convert the contin-

uous inequality constraints into a conventional inequality constraint. An approximate

nonlinear programming problem is obtained by first applying this transcription, and then

approximating the control by a piecewise constant function. Unfortunately, this approxi-

mate problem always violates the so-called Linear Independence Constraint Qualification

(LICQ)—a regularity condition requiring that the gradients of the active constraints be

∗This chapter is based on [75].

37



38 Optimal control problems with continuous inequality constraints

linearly independent (see [7, 79]). Nonlinear programming algorithms usually fail to con-

verge if the LICQ is violated. Therefore, it is very difficult to solve the approximate

problem in [34] using a nonlinear programming algorithm.

Subsequently, a new transcription method—the so-called ǫ-τ method—was introduced

in [100, 101]. The ǫ-τ method approximates each continuous inequality constraint by a

conventional inequality constraint. A solution of the original optimal control problem

is then obtained by solving a sequence of approximate optimization problems. These

approximate problems will generally not violate the LICQ, and thus they are much easier

to solve than those in [34]. This is a major advantage of the ǫ-τ method. Nevertheless,

the ǫ-τ method is only guaranteed to converge for optimal control problems with pure-

state continuous constraints—continuous constraints that depend explicitly on the state,

but not on the control. In fact, the proofs of the convergence results in [100,101] are not

valid if one of the continuous constraints depends explicitly on the control.

Thus, the methods discussed in [34, 100, 101], which are based on control parameter-

ization, have significant shortcomings. This motivates the work in this chapter. We will

develop a new control parameterization method that is capable of handling continuous

inequality constraints involving both the state and the control. We will also show that

this new method has very strong convergence properties. More specifically, we will de-

rive two key convergence results that hold whenever the optimal control problem satisfies

standard regularity conditions (see [34, 48, 100, 101, 106]). Furthermore, our new method

can be readily implemented using a gradient-based nonlinear programming algorithm. It

therefore preserves one of the greatest virtues of control parameterization—ease of imple-

mentation.

3.2 Problem formulation

Consider the following dynamic system:

ẋ(t) = f
(

x(t),u(t)
)

, t ∈ [0, T ], (3.1)

and

x(0) = x0, (3.2)

where T > 0 is a given terminal time; x(t) ∈ R
n is the system state at time t; u(t) ∈ R

r

is the control input at time t; x0 ∈ R
n is a given initial state; and f : R

n × R
r → R

n is a

given function.

Let

W ,
{

w ∈ R
r : aς ≤ wς ≤ bς , ς = 1, . . . , r

}

,

where aς and bς , ς = 1, . . . , r, are given real numbers such that aς < bς . Any piecewise
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continuous function u : [0, T ] → W that is continuous from the right is called an admissible

control. Let U denote the class of all such admissible controls.

We assume that the following conditions are satisfied.

Assumption 3.1. The function f is continuously differentiable.

Assumption 3.2. There exists a real number L1 > 0 such that

∣

∣f (v,w)
∣

∣ ≤ L1(1 + |v|), (v,w) ∈ R
n ×W.

By Theorem 3.3.3 of [2], the system (3.1)-(3.2) has a unique solution corresponding to

each admissible control u ∈ U . We denote this solution by x(·|u).

We suppose that the dynamic system (3.1)-(3.2) is subject to the following continuous

inequality constraints:

hi

(

x(t|u),u(t)
)

≥ 0, t ∈ [0, T ), i = 1, . . . , q, (3.3)

where hi : R
n × R

r → R, i = 1, . . . , q, are given functions. An admissible control u ∈ U
that satisfies the constraints (3.3) is called a feasible control. Let F denote the class of

all such feasible controls.

We now define the following optimal control problem.

Problem P. Find a feasible control u ∈ F that minimizes the cost function

G0(u) , Φ
(

x(T |u)
)

, (3.4)

where Φ : R
n → R is a given function, over F .

Recall from Section 2.2 that there is no loss of generality in assuming that f and hi,

i = 1, . . . , q, are not explicit functions of time.

The cost function (3.4) only depends on the final state reached by the system. Never-

theless, we can easily incorporate an integral cost of the form

∫ T

0

L
(

x(t|u),u(t)
)

dt, (3.5)

where L : R
n × R

r → R is a given function, into (3.4). This is done by augmenting the

state system with the auxiliary dynamics

v̇(t) = L
(

x(t),u(t)
)

, t ∈ [0, T ],

and

v(0) = 0.
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Clearly, the value of v at the terminal time is equal to the integral cost (3.5).

The continuous inequality constraints considered in [100,101] are of the form

gi

(

t,x(t|u)
)

≥ 0, t ∈ [0, T ), i = 1, . . . , q, (3.6)

where gi : R × R
n → R, i = 1, . . . , q, are given continuous functions. The continuous

inequality constraints considered in this chapter are more complicated: the left-hand

side of (3.3) may be an explicit function of both the state and the control, not just the

state. Furthermore, because it depends on the control function explicitly, the left-hand

side of (3.3) is usually a discontinuous function of time. In contrast, the left-hand side

of (3.6), considered as a function of time, is the composition of continuous functions and

is therefore continuous itself. This fact is exploited in [100,101] to prove several important

convergence results.

To conclude this section, we make one further assumption.

Assumption 3.3. The functions Φ and hi, i = 1, . . . , q, are continuously differentiable.

3.3 Problem approximation

In this section, we will derive an approximation of Problem P by restricting the admissible

controls to suitable piecewise constant functions. Convergence results relating a solution of

this approximate problem to a solution of Problem P will be presented later in Section 3.6.

First, let p ≥ 2 be a fixed integer. Furthermore, let Γ denote the set consisting of all

vectors ν = [t1, . . . , tp−1]
T ∈ R

p−1 that satisfy the constraints

tk−1 ≤ tk, k = 1, . . . , p, (3.7)

where t0 , 0 and tp , T .

For each ν = [t1, . . . , tp−1]
T ∈ Γ, define corresponding subintervals Ik(ν), k = 1, . . . , p,

as follows:

Ik(ν) ,







[tk−1, tk), if k ∈ {1, . . . , p − 1},
[tk−1, tk], if k = p.

It is clear that

I1(ν), . . . , Ip(ν),

constitutes a partition of the time horizon [0, T ]. That is,

p
⋃

k=1

Ik(ν) = [0, T ]
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and

Ik1(ν) ∩ Ik2(ν) = ∅, k1 6= k2.

Now, define

Ξ ,

p
∏

k=1

W.

In other words, Ξ is the set of all tuples (σ1, . . . ,σp) satisfying σk ∈ W, k = 1, . . . , p.

For each (ν,σ) ∈ Γ × Ξ, we define a corresponding function up(·|ν,σ) : [0, T ] → R
r

as follows:

up(t|ν,σ) ,

p
∑

k=1

σkχIk(ν)(t), t ∈ [0, T ], (3.8)

where, for each I ⊂ R, the indicator function χI : R → R is defined by

χI(t) ,







1, if t ∈ I,

0, otherwise.

Clearly,

up(t|ν,σ) = σk ∈ W, t ∈ Ik(ν), k = 1, . . . , p,

which shows that the range of up(·|ν,σ) is in W. Furthermore, it is clear that up(·|ν,σ)

is both piecewise continuous and continuous from the right. Hence, up(·|ν,σ) is an

admissible control for Problem P. Recall from Chapter 2 that the times tk, k = 1, . . . , p−1,

are called switching times. Accordingly, each ν ∈ Γ is called a switching-time vector.

We will approximate the control in Problem P by the piecewise constant function (3.8).

Substituting (3.8) into the dynamic system (3.1)-(3.2) gives

ẋ(t) = f
(

x(t),σk
)

, t ∈ Ik(ν), k = 1, . . . , p, (3.9)

and

x(0) = x0. (3.10)

Let xp(·|ν,σ) denote the solution of (3.9)-(3.10) corresponding to (ν,σ) ∈ Γ×Ξ. Clearly,

xp(·|ν,σ) = x(·|up(·|ν,σ)).

Substituting (3.8) into the continuous inequality constraints (3.3) gives

hi

(

xp(t|ν,σ),σk
)

≥ 0, t ∈ [tk−1, tk), k = 1, . . . , p, i = 1, . . . , q. (3.11)

Let Ω denote the set consisting of all pairs (ν,σ) ∈ Γ×Ξ that satisfy the constraints (3.11).
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Such pairs are called feasible pairs. Clearly,

Ω =
{

(ν,σ) ∈ Γ × Ξ : up(·|ν,σ) ∈ F
}

.

When the controls are restricted to those of the form (3.8), the cost function (3.4) becomes

Gp
0(ν,σ) , G0(u

p(·|ν,σ)) = Φ
(

xp(T |ν,σ)
)

.

We now define the following approximate optimization problem.

Problem Pp. Find a feasible pair (ν,σ) ∈ Ω that minimizes the cost function Gp
0 over Ω.

Remark 3.1. We emphasize that both the values and the switching times of the ap-

proximate control (3.8) are decision variables in Problem Pp. In contrast, the methods

in [34,100,101] use a coarse partition of the time horizon to pre-assign the switching times;

only the control values are determined optimally.

Remark 3.2. If (ν∗,σ∗) ∈ Ω is an optimal solution of Problem Pp, then up(·|ν∗,σ∗) is

a suboptimal control for Problem P.

3.4 Time-scaling transformation

The decision variables in Problem Pp are the values and switching times of a piecewise

constant control. As we mentioned in Chapters 1 and 2, it is very difficult to solve dynamic

optimization problems with variable switching times directly. Hence, in this section, we

will use the time-scaling transformation to convert Problem Pp into a new problem with

fixed switching times.

Let p ≥ 2 be a fixed integer. Define

Θ ,
{

θ ∈ R
p : θk ≥ 0, k = 1, . . . , p; θ1 + · · · + θp = T

}

.

For each θ ∈ Θ, define a corresponding function µ(·|θ) : [0, 1] → R as follows:

µ(s|θ) ,















⌊ps⌋
∑

l=1

θl + θ⌊ps⌋+1(ps − ⌊ps⌋), if s ∈ [0, 1),

T, if s = 1,

where ⌊·⌋ denotes the floor function. It is not difficult to show that µ(·|θ) is continuous,

non-negative, and non-decreasing.

Now, let

αk ,
k

p
, k = 0, . . . , p.
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For each θ ∈ Θ, let

ν̃(θ) =
[

ν̃1(θ), . . . , ν̃p−1(θ)
]T ∈ R

p−1

be the vector in R
p−1 whose kth component is equal to µ(αk|θ). Furthermore, define

ν̃0(θ) , µ(0|θ) = 0

and

ν̃p(θ) , µ(1|θ) = T.

Therefore,

ν̃k(θ) = µ(αk|θ) =

k
∑

l=1

θl, k = 0, . . . , p. (3.12)

Since the components of θ ∈ Θ are non-negative, equation (3.12) implies that

ν̃k−1(θ) ≤ ν̃k(θ), k = 1, . . . , p.

Thus, ν̃(θ) is a valid switching-time vector for Problem Pp. That is,

{

ν̃(θ) : θ ∈ Θ
}

⊂ Γ. (3.13)

It turns out that the reverse inclusion is also true. To see why, let ν ′ = [t′1, . . . , t
′
p−1]

T ∈ Γ

and define a corresponding vector θ′ ∈ R
p as follows:

θ′k , t′k − t′k−1, k = 1, . . . , p,

where t′0 , 0 and t′p , T . Since the components of ν ′ satisfy (3.7), the components of θ′

are non-negative. Furthermore,

p
∑

k=1

θ′k = t′p − t′0 = T.

Hence, θ′ ∈ Θ. Now, using equation (3.12), we obtain

µ(αk|θ′) =

k
∑

l=1

θ′l = t′k, k = 1, . . . , p − 1.

It then follows immediately that ν ′ = ν̃(θ′). Since ν ′ ∈ Γ was chosen arbitrarily, this

implies that

Γ ⊂
{

ν̃(θ) : θ ∈ Θ
}

. (3.14)

By combining inclusions (3.13) and (3.14), we obtain the following equation that links
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the sets Γ and Θ:

Γ =
{

ν̃(θ) : θ ∈ Θ
}

. (3.15)

Now, recall that for each θ ∈ Θ, the function µ(·|θ) is non-decreasing. Therefore,

0 = µ(0|θ) ≤ µ(s|θ) ≤ µ(1|θ) = T, s ∈ [0, 1]. (3.16)

Equation (3.15) and inequality (3.16) ensure that for each (θ,σ) ∈ Θ×Ξ, we may define

a corresponding function x̃(·|θ,σ) : [0, 1] → R
n as follows:

x̃p(s|θ,σ) , xp(µ(s|θ)|ν̃(θ),σ), s ∈ [0, 1]. (3.17)

The function x̃p(·|θ,σ) is a new state trajectory defined on the interval [0, 1].

Now, note that

µ̇(s|θ) = pθk, s ∈ Jk, k = 1, . . . , p, (3.18)

where

Jk ,



















[αk−1, αk), if k = 1,

(αk−1, αk), if k ∈ {2, . . . , p − 1},
(αk−1, αk], if k = p.

By differentiating (3.17) with respect to s, and then using equations (3.9) and (3.18), we

obtain
˙̃xp(s|θ,σ) = pθkf

(

x̃p(s|θ,σ),σk
)

, s ∈ Jk, k = 1, . . . , p. (3.19)

We also have

x̃p(αk|θ,σ) = lim
s→αk

x̃p(s|θ,σ), k = 1, . . . , p − 1, (3.20)

and

x̃p(0|θ,σ) = x0. (3.21)

The new dynamic system (3.19)-(3.21) is obtained by transforming the time variable

from t ∈ [0, T ] to s ∈ [0, 1]. It has switching times at the uniformly distributed loca-

tions s = αk, k = 1, . . . , p−1, and is therefore much easier to work with than (3.9)-(3.10).

Let Λ denote the set consisting of all pairs (θ,σ) ∈ Θ × Ξ that satisfy the following

continuous inequality constraints:

θkhi

(

x̃p(s|θ,σ),σk
)

≥ 0, s ∈ J̄k, k = 1, . . . , p, i = 1, . . . , q, (3.22)

where the overhead bar denotes set closure. These new constraints are equivalent, in

a sense, to the original constraints (3.11). This equivalence is stated precisely in the

following theorem.
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Theorem 3.1. Let (θ,σ) ∈ Θ × Ξ. Then (θ,σ) ∈ Λ if and only if (ν̃(θ),σ) ∈ Ω.

Proof. Let (θ,σ) ∈ Θ × Ξ be arbitrary but fixed. To simplify the notation, we write xp

instead of xp(·|ν̃(θ),σ) and x̃p instead of x̃p(·|θ,σ).

Define the index sets

G1 ,
{

k ∈ {1, . . . , p} : θk = 0
}

and

G2 , {1, . . . , p} \ G1.

Recall from equation (3.12) that

ν̃k(θ) =

k
∑

l=1

θl, k = 0, . . . , p.

Hence,

ν̃k(θ) − ν̃k−1(θ) = θk, k = 1, . . . , p.

From this equation, we obtain the following important implication:

ν̃k(θ) = ν̃k−1(θ) ⇐⇒ k ∈ G1. (3.23)

Now, suppose that (θ,σ) ∈ Λ. Then

θkhi

(

x̃p(s),σk
)

≥ 0, s ∈ J̄k, k = 1, . . . , p, i = 1, . . . , q. (3.24)

It follows from (3.23) that for each k ∈ G1,

[ν̃k−1(θ), ν̃k(θ)) = ∅.

Consequently, the constraints

hi

(

xp(t),σk
)

≥ 0, t ∈ [ν̃k−1(θ), ν̃k(θ)), k ∈ G1, i = 1, . . . , q, (3.25)

are satisfied vacuously.

On the other hand, if k ∈ G2, then we can divide both sides of (3.24) by θk to obtain

hi

(

x̃p(s),σk
)

≥ 0, s ∈ J̄k, k ∈ G2, i = 1, . . . , q. (3.26)

Let µk(·|θ) : J̄k → R denote the restriction of µ(·|θ) to the subinterval J̄k. It follows
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from the definition of µ(·|θ) that

µk(s|θ) =

k−1
∑

l=1

θl + θk(ps − k + 1), s ∈ J̄k.

Since θk > 0, µk(·|θ) is a bijection from J̄k onto [ν̃k−1(θ), ν̃k(θ)]. Hence, there exists an

inverse function µ−1
k : [ν̃k−1(θ), ν̃k(θ)] → J̄k such that

t = µk

(

µ−1
k (t|θ)

)

, t ∈ [ν̃k−1(θ), ν̃k(θ)]. (3.27)

Using (3.26) and (3.27), we obtain

hi

(

xp(t),σk
)

= hi

(

x̃p(µ−1
k (t|θ)),σk

)

≥ 0, t ∈ [ν̃k−1(θ), ν̃k(θ)),

k ∈ G2, i = 1, . . . , q. (3.28)

Inequalities (3.25) and (3.28) show that (ν̃(θ),σ) ∈ Ω.

Conversely, suppose that (ν̃(θ),σ) ∈ Ω. Then

hi

(

xp(t),σk
)

≥ 0, t ∈ [ν̃k−1(θ), ν̃k(θ)), k = 1, . . . , p, i = 1, . . . , q. (3.29)

If k ∈ G1, then θk = 0. Therefore,

θkhi

(

x̃p(s),σk
)

= 0, s ∈ J̄k, k ∈ G1, i = 1, . . . , q. (3.30)

On the other hand, if k ∈ G2, then µ(·|θ) is strictly increasing on J̄k. Hence,

µ(s|θ) ∈ [ν̃k−1(θ), ν̃k(θ)), s ∈ J̄k \ {αk}. (3.31)

Using (3.29) and (3.31), we obtain

θkhi

(

x̃p(s),σk
)

= θkhi

(

xp(µ(s|θ)),σk
)

≥ 0,

s ∈ J̄k \ {αk}, k ∈ G2, i = 1, . . . , q. (3.32)

Since x̃p and hi, i = 1, . . . , q, are continuous functions, (3.32) also holds at s = αk. Thus,

θkhi

(

x̃p(s),σk
)

≥ 0, s ∈ J̄k, k ∈ G2, i = 1, . . . , q. (3.33)

Equation (3.30) and inequality (3.33) show that (θ,σ) ∈ Λ.

We now define a new optimization problem.
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Problem P̃p. Find a pair (θ,σ) ∈ Λ that minimizes the cost function

G̃p
0(θ,σ) , Gp

0(ν̃(θ),σ) = Φ
(

x̃p(1|θ,σ)
)

over Λ.

Problems Pp and P̃p are equivalent. Indeed, (θ∗,σ∗) ∈ Λ is optimal for Problem P̃p if and

only if (ν̃(θ∗),σ∗) ∈ Ω is optimal for Problem Pp. To see why, suppose that (θ∗,σ∗) ∈ Λ

is an optimal solution of Problem P̃p and let (ν ′,σ′) ∈ Ω be arbitrary. Then by equa-

tion (3.15), there exists a vector θ′ ∈ Θ such that ν ′ = ν̃(θ′). It follows from Theorem 3.1

that (θ′,σ′) ∈ Λ and (ν̃(θ∗),σ∗) ∈ Ω. Hence,

Gp
0(ν̃(θ∗),σ∗) = G̃p

0(θ
∗,σ∗) ≤ G̃p

0(θ
′,σ′) = Gp

0(ν̃(θ′),σ′) = Gp
0(ν

′,σ′).

Since (ν ′,σ′) ∈ Ω was chosen arbitrarily, this inequality shows that (ν̃(θ∗),σ∗) is an

optimal solution of Problem Pp.

Conversely, let (θ∗,σ∗) ∈ Θ × Ξ be such that (ν̃(θ∗),σ∗) is an optimal solution of

Problem Pp. Furthermore, let (θ′,σ′) ∈ Λ be arbitrary but fixed. Then it follows from

Theorem 3.1 that (ν̃(θ′),σ′) ∈ Ω and (θ∗,σ∗) ∈ Λ. Thus,

G̃p
0(θ

∗,σ∗) = Gp
0(ν̃(θ∗),σ∗) ≤ Gp

0(ν̃(θ′),σ′) = G̃p
0(θ

′,σ′).

Since (θ′,σ′) ∈ Λ was chosen arbitrarily, this inequality shows that (θ∗,σ∗) is an optimal

solution of Problem P̃p.

Remark 3.3. If (θ∗,σ∗) ∈ Λ is an optimal solution of Problem P̃p, then (ν̃(θ∗),σ∗) ∈ Ω

is optimal for Problem Pp and up(·|ν̃(θ∗),σ∗) is a suboptimal control for Problem P (see

Remark 3.2).

3.5 Solving Problem P̃p

Notice that (3.22) defines an infinite number of constraints—one for each point in [0, 1].

Hence, Problem P̃p is an optimization problem with a finite number of decision variables,

but an infinite number of constraints. Optimization problems of this type are called

semi-infinite programming problems. Semi-infinite programming problems are more com-

plicated than nonlinear programming problems, which have at most a finite number of

constraints. Nevertheless, semi-infinite programming problems can be solved using the

penalty function algorithm developed in [106]. We now describe how this algorithm can

be used to solve Problem P̃p.
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First, define functions g̃p
i,k,ǫ : Θ × Ξ → R, k = 1, . . . , p, i = 1, . . . , q, as follows:

g̃p
i,k,ǫ(θ,σ) ,

∫

Jk

ϕǫ

(

θkhi(x̃
p(s|θ,σ),σk)

)

ds, k = 1, . . . , p, i = 1, . . . , q, (3.34)

where ǫ > 0 and ϕǫ : R → R is defined by

ϕǫ(η) ,



















η, if η < −ǫ,

−(η − ǫ)2/4ǫ, if −ǫ ≤ η ≤ ǫ,

0, otherwise.

Next, consider the following auxiliary optimization problem.

Problem P̃p,ǫ,ϑ. Find a pair (θ,σ) ∈ Θ × Ξ that minimizes the cost function

J̃p
ǫ,ϑ(θ,σ) , G̃p

0(θ,σ) − ϑ

q
∑

i=1

p
∑

k=1

g̃p
i,k,ǫ(θ,σ),

where ǫ > 0 and ϑ > 0, over Θ × Ξ.

Problem P̃p,ǫ,ϑ has a finite number of decision variables and a finite number of constraints

(the constraints consist of simple bounds on the decision variables and a linear equality

constraint). Furthermore, since ϕǫ is continuously differentiable, the partial derivatives

of J̃p
ǫ,ϑ can be computed using the standard formulae given in [100]. We state these

formulae below.

First, for each k = 1, . . . , p, define a corresponding function Hk : R×R
n×R

n×R
r → R

as follows:

Hk(θk,x,λ,σk) , −ϑ

q
∑

i=1

ϕǫ

(

θkhi(x,σk)
)

+ θkλ
Tf (x,σk),

(θk,x,λ,σk) ∈ R × R
n × R

n × R
r.

This function is called the Hamiltonian.

Next, define the following auxiliary dynamic system:

λ̇(s) = −
[

∂Hk

(

θk, x̃
p(s|θ,σ),λ(s),σk

)

∂x

]T

, s ∈ Jk, k = 1, . . . , p,

and

λ(1) =

[

∂Φ
(

x̃p(1|θ,σ)
)

∂x

]T

,

where (θ,σ) ∈ Θ × Ξ. This auxiliary dynamic system is called the costate system.

Let λ(·|θ,σ) denote the solution of the costate system corresponding to (θ,σ) ∈ Θ × Ξ.
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Then it follows from Theorem 5.2.1 of [100] that for each pair (θ,σ) ∈ Θ × Ξ,

∂J̃p
ǫ,ϑ(θ,σ)

∂θk
=

∫

Jk

∂Hk

(

θk, x̃
p(s|θ,σ),λ(s|θ,σ),σk

)

∂θk
, k = 1, . . . , p, (3.35)

and

∂J̃p
ǫ,ϑ(θ,σ)

∂σk
ς

=

∫

Jk

∂Hk

(

θk, x̃
p(s|θ,σ),λ(s|θ,σ),σk

)

∂σk
ς

,

k = 1, . . . , p, ς = 1, . . . , r. (3.36)

Equations (3.35) and (3.36) can be used in conjunction with a gradient-based nonlinear

programming algorithm to solve Problem P̃p,ǫ,ϑ. Problem P̃p,ǫ,ϑ can also be solved directly

using the optimal control software MISER3 [47].

What is the relationship between Problems P̃p and P̃p,ǫ,ϑ? First, notice that since hi,

i = 1, . . . , q, are continuous (see Assumption 3.3), the equality constraints

∫

Jk

min
{

θkhi(x̃
p(s|θ,σ),σk), 0

}

ds = 0, k = 1, . . . , p, i = 1, . . . , q, (3.37)

are actually equivalent to (3.22). However, the left-hand side of (3.37) is non-smooth, and

thus gradient-based nonlinear programming algorithms cannot handle such constraints

directly.

Now, we see from Figure 3.1 that ϕǫ is a smooth approximation of min{·, 0}. Thus,

when ǫ is small,

ϕǫ(η) ≈ min{η, 0}, η ∈ R,

and

g̃p
i,k,ǫ(θ,σ) ≈

∫

Jk

min
{

θkhi(x̃
p(s|θ,σ),σk), 0

}

ds.

It follows that we can approximate (3.37)—and therefore (3.22)—by the constraints

g̃p
i,k,ǫ(θ,σ) = 0, k = 1, . . . , p, i = 1, . . . , q. (3.38)

These approximate constraints are smooth because ϕǫ is continuously differentiable. Fur-

thermore, notice that violations of the approximate constraints (3.38) are penalized in

the cost function of Problem P̃p,ǫ,ϑ. Hence, we expect that Problem P̃p,ǫ,ϑ is a good ap-

proximation of Problem P̃p when ǫ is small and ϑ is large. More precisely, we have the

following two results, which are proved in [106].

Theorem 3.2. For each ǫ > 0, there exists a corresponding ϑ(ǫ) > 0 such that if ϑ > ϑ(ǫ),

then the optimal solution of Problem P̃p,ǫ,ϑ is feasible for Problem P̃p.

Theorem 3.3. Suppose that (θ∗,σ∗) ∈ Θ×Ξ is an optimal solution of Problem P̃p. For
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Figure 3.1: The smoothing function ϕǫ for ǫ = 0.4.

each ǫ > 0, let (θ∗ǫ,ϑ,σ
∗
ǫ,ϑ) denote the solution of Problem P̃p,ǫ,ϑ, where ϑ > 0 is chosen to

ensure that (θ∗ǫ,ϑ,σ
∗
ǫ,ϑ) ∈ Λ (Theorem 3.2 guarantees that this can always be done). Then

lim
ǫ→0

G̃p
0(θ

∗
ǫ,ϑ,σ

∗
ǫ,ϑ) = G̃p

0(θ
∗,σ∗).

Theorems 3.2 and 3.3 suggest the following method for solving Problem P̃p. First, choose

an initial positive value for ǫ. Second, repeatedly solve Problem P̃p,ǫ,ϑ for increasing values

of ϑ until the solution obtained is feasible for Problem P̃p. According to Theorem 3.2,

Problem P̃p only needs to be solved a finite number of times here. Next, decrease ǫ and

repeat this procedure, using the solution obtained in the previous step as the new starting

point. We terminate this loop when ǫ is sufficiently small. It follows from Theorem 3.3

that the solution of Problem P̃p,ǫ,ϑ at this stage is a good approximation for the solution

of Problem P̃p.

The method described above is summarized in the following algorithm.

Algorithm 3.1. Input ǫmin > 0, ǫ0 > ǫmin, ϑmax > 0, ϑ0 < ϑmax, and (θ0,σ0) ∈ Θ × Ξ.

(i) Initialize ǫ0 → ǫ and ϑ0 → ϑ.

(ii) Using (θ0,σ0) as the initial guess, solve Problem P̃p,ǫ,ϑ. Let (θǫ,ϑ,∗,σǫ,ϑ,∗) denote

the solution obtained.
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(iii) If (θǫ,ϑ,∗,σǫ,ϑ,∗) ∈ Λ, then go to Step (iv). Otherwise, go to Step (v).

(iv) If ǫ > ǫmin, then set ǫ/10 → ǫ and (θǫ,ϑ,∗,σǫ,ϑ,∗) → (θ0,σ0) and go to Step (ii).

Otherwise, stop; take (θǫ,ϑ,∗,σǫ,ϑ,∗) as the optimal solution of Problem P̃p.

(v) If ϑ < ϑmax, then set 10ϑ → ϑ and go to Step (ii). Otherwise, stop; ϑ is too large

(in this case, the feasible region of Problem P̃p is probably empty).

3.6 Convergence results

Problem P̃p can be solved using Algorithm 3.1, after which a suboptimal control for

Problem P can be constructed according to Remark 3.3. By repeating these steps for

increasing values of p, we obtain a sequence of suboptimal controls. A natural question

to ask is: does this sequence converge to an optimal control? This important question is

the focus of this section.

Since p is no longer fixed, we now denote Γ by Γp, Ξ by Ξp, Ω by Ωp, and Ik(ν)

by Ip
k(ν). Our first result is given below.

Theorem 3.4. Let u ∈ U be an admissible control for Problem P. Then there exists a

sequence {(νp,σp)}∞p=2, where (νp,σp) ∈ Γp × Ξp, such that up(·|νp,σp) → u uniformly

on [0, T ) as p → ∞.

Proof. Let u ∈ U be arbitrary but fixed. Furthermore, let {τl}d
l=0 ⊂ [0, T ] be a finite set

containing all of u’s discontinuities (such a set exists because u is piecewise continuous).

Without loss of generality, we assume that τ0 = 0, τd = T , and

τl−1 < τl, l = 1, . . . , d.

Now, let {νp}∞p=2 be a sequence of vectors with the following properties:

(i) For each p ≥ 2, νp = [tp1, . . . , t
p
p−1]

T ∈ Γp and tpk−1 < tpk, k = 1, . . . , p;∗

(ii) For each p ≥ d, there exists corresponding integers κ(p, l), l = 1, . . . , d − 1, such

that

τl = tpκ(p,l), l = 1, . . . , d − 1.

(iii) max
1≤k≤p

(tpk − tpk−1) → 0 as p → ∞.

It is easy to see that such a sequence exists. Note that when p ≥ d, each τl, l = 1, . . . , d−1,

coincides with one of the switching times in the vector νp (property (ii)).

∗Note that t
p

0
= 0 and tp

p
= T .
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Now, for each integer p ≥ 2, define

σp,k ,
1

tpk − tpk−1

∫ tp
k

tp
k−1

u(η)dη, k = 1, . . . , p,

and

σp , (σp,1, . . . ,σp,p).

Since u is an admissible control, σp ∈ Ξp for each p ≥ 2. Hence, (νp,σp) ∈ Γp × Ξp

for each p ≥ 2. By Lemma 6.4.1 of [100], up(·|νp,σp) → u almost everywhere on [0, T ]

as p → ∞. We will show that this convergence is actually uniform on [0, T ).

Let δ > 0 be arbitrary but fixed. Since u is continuous from the right, the re-

striction of u to [τl−1, τl), l = 1, . . . , d, is uniformly continuous. Thus, there exists a

real number ω > 0 such that the following implication holds uniformly with respect

to l ∈ {1, . . . , d}:

η1, η2 ∈ [τl−1, τl) and |η1 − η2| < ω =⇒
∣

∣u(η1) − u(η2)
∣

∣

r
< δ. (3.39)

Now, suppose that t ∈ [0, T ). Clearly, t ∈ [τl−1, τl) for some l ∈ {1, . . . , d}. Moreover, for

each integer p ≥ 2, there exists a corresponding k(p) ∈ {1, . . . , p} such that t ∈ Ip
k(p)(ν

p).

By property (ii) above,

I̊p
k(p)(ν

p) ⊂ [τl−1, τl), p ≥ d, (3.40)

where I̊p
k(p)(ν

p) is the interior of Ip
k(p)(ν

p).

Furthermore, for each integer p ≥ 2,

∣

∣up(t|νp,σp) − u(t)
∣

∣ =
∣

∣σp,k(p) − u(t)
∣

∣

≤ 1

tpk(p) − tpk(p)−1

∫ tp
k(p)

tp
k(p)−1

∣

∣u(η) − u(t)
∣

∣dη

=
1

tpk(p) − tpk(p)−1

∫

I̊p

k(p)
(νp)

∣

∣u(η) − u(t)
∣

∣dη. (3.41)

By property (iii), there exists an integer p′ ≥ 2 such that

max
1≤k≤p

(tpk − tpk−1) < ω, p ≥ p′, (3.42)

where ω is as defined in (3.39). Define

p′′ , max{p′, d, 2}.
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Then it follows from (3.42) that for each integer p ≥ p′′,

|η − t| ≤ tpk(p) − tpk(p)−1 < ω, η ∈ I̊p
k(p)(ν

p). (3.43)

In view of (3.40) and (3.43), we can invoke implication (3.39) to obtain

∣

∣u(η) − u(t)
∣

∣ < δ, η ∈ I̊p
k(p), p ≥ p′′.

Substituting this inequality into (3.41) gives

∣

∣up(t|νp,σp) − u(t)
∣

∣ <
1

tpk(p) − tpk(p)−1

∫

I̊p

k(p)
(νp)

δdη = δ, p ≥ p′′. (3.44)

Since p′′ is independent of t ∈ [0, T ), and δ was chosen arbitrarily, inequality (3.44) shows

that up(·|νp,σp) → u uniformly on [0, T ) as p → ∞.

Before continuing, we recall the following two results from Chapter 6 of [100].

Lemma 3.1. There exists a constant L2 > 0 such that

∣

∣x(t|u)
∣

∣ ≤ L2, t ∈ [0, T ], u ∈ U .

Lemma 3.2. Let {up}∞p=2 be a sequence of admissible controls converging to u ∈ U almost

everywhere on [0, T ]. Then the following two results hold:

(i) x(·|up) → x(·|u) uniformly on [0, T ] as p → ∞; and

(ii) G0(u
p) → G0(u) as p → ∞.

Define the set

Ψ ,
{

v ∈ R
n : |v| ≤ L2

}

,

where L2 is the constant from Lemma 3.1. Furthermore, let F̊ denote the set consisting

of all admissible controls u ∈ U such that

inf
t∈[0,T )

hi

(

x(t|u),u(t)
)

> 0, i = 1, . . . , q.

Clearly, F̊ ⊂ F .

We assume that the following regularity condition is satisfied.

Assumption 3.4. If u∗ ∈ F is an optimal control for Problem P, then there exists a

corresponding ū ∈ F̊ such that

ζū+ (1 − ζ)u∗ ∈ F̊ , ζ ∈ (0, 1].
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Similar assumptions are made in [48,100,101,106]. We are now ready to prove the following

important convergence result.

Theorem 3.5. Suppose that u∗ is an optimal control for Problem P. Furthermore, for

each integer p ≥ 2, let up,∗ denote the suboptimal control constructed from the solution of

Problem Pp according to Remark 3.2. Then

lim
p→∞

G0(u
p,∗) = G0(u

∗).

Proof. By Assumption 3.4, there exists a ū ∈ F̊ such that

ūj , u∗ +
1

j
(ū− u∗) ∈ F̊ , j ≥ 1. (3.45)

Hence, for each integer j ≥ 1, there is a corresponding real number υj > 0 such that

hi

(

x(t|ūj), ūj(t)
)

≥ υj, t ∈ [0, T ), i = 1, . . . , q. (3.46)

We now temporarily fix j. Let {(ν̄j,p, σ̄j,p)}∞p=2 denote the sequence from Theorem 3.4

corresponding to the admissible control ūj. For convenience, we will write ūj,p instead

of up(·|ν̄j,p, σ̄j,p). Observe the following:

(i) ūj,p(t) ∈ W and ūj(t) ∈ W for each t ∈ [0, T ] (definition of U);

(ii) x(t|ūj,p) ∈ Ψ and x(t|ūj) ∈ Ψ for each t ∈ [0, T ] (Lemma 3.1);

(iii) ūj,p → ūj uniformly on [0, T ) as p → ∞ (Theorem 3.4);

(iv) x(·|ūj,p) → x(·|ūj) uniformly on [0, T ] as p → ∞ (part (i) of Lemma 3.2); and

(v) The functions hi, i = 1, . . . , q, are uniformly continuous on the compact set Ψ ×W
(Assumption 3.3).

These facts imply the existence an integer p′j ≥ 2 such that for each p ≥ p′j,

∣

∣hi(x(t|ūj,p), ūj,p(t)) − hi(x(t|ūj), ūj(t))
∣

∣ <
υj

2
, t ∈ [0, T ), i = 1, . . . , q. (3.47)

It follows from inequalities (3.46) and (3.47) that for each integer p ≥ p′j,

hi

(

x(t|ūj,p), ūj,p(t)
)

>
υj

2
, t ∈ [0, T ), i = 1, . . . , q. (3.48)

Furthermore, by part (ii) of Lemma 3.2, there exists another integer p′′j ≥ 2 such that

∣

∣G0(ū
j,p) − G0(ū

j)
∣

∣ <
1

j
, p ≥ p′′j , (3.49)
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Define

pj , max{p′j, p′′j}.

Inequality (3.48) shows that ūj,pj ∈ F . Hence, (ν̄j,pj , σ̄j,pj) ∈ Ωpj .

Now, let δ > 0. We see from (3.45) that ūj → u∗ pointwise on [0, T ] as j → ∞.

Hence, by part (ii) of Lemma 3.2, there exists an integer j′ ≥ 1 such that

∣

∣G0(ū
j) − G0(u

∗)
∣

∣ <
δ

2
, j ≥ j′. (3.50)

Choose a fixed integer j ≥ max{j′, 2/δ}. Then it follows from (3.49) and (3.50) that

∣

∣G
pj

0 (ν̄j,pj , σ̄j,pj) − G0(u
∗)

∣

∣ =
∣

∣G0(ū
j,pj) − G0(u

∗)
∣

∣

≤
∣

∣G0(ū
j,pj) − G0(ū

j)
∣

∣ +
∣

∣G0(ū
j) − G0(u

∗)
∣

∣

< δ. (3.51)

Now, suppose that p ≥ pj. Clearly,

G0(u
∗) ≤ G0(u

p,∗) ≤ G0(u
pj,∗).

Hence,

G0(u
∗) ≤ Gp

0(ν
p,∗,σp,∗) ≤ G

pj

0 (νpj ,∗,σpj ,∗), (3.52)

where (νp,∗,σp,∗) and (νpj ,∗,σpj ,∗) are optimal solutions of Problems Pp and Ppj
, respec-

tively. Since (ν̄j,pj , σ̄j,pj) ∈ Ωpj , inequality (3.52) gives

G0(u
∗) ≤ G0(u

p,∗) ≤ G
pj

0 (ν̄j,pj , σ̄j,pj). (3.53)

Finally, combining (3.51) and (3.53) yields

G0(u
∗) ≤ G0(u

p,∗) ≤ G
pj

0 (ν̄j,pj , σ̄j,pj) < G0(u
∗) + δ.

Since δ > 0 was chosen arbitrarily, this inequality shows that G0(u
p,∗) → G0(u

∗) as

p → ∞.

Theorem 3.5 states that the costs of the suboptimal controls converge to the minimum

cost as p → ∞. Although there is no guarantee that the controls themselves converge,

we do have the following result.

Theorem 3.6. Let u∗ and up,∗ be as defined in Theorem 3.5, and suppose that {up,∗}∞p=2

converges almost everywhere on [0, T ] to an admissible control û. Then û is an optimal

control for Problem P.
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Proof. From part (ii) of Lemma 3.2, we have

lim
p→∞

G0(u
p,∗) = G0(û).

Therefore, by Theorem 3.5,

G0(û) = G0(u
∗).

It remains to show that û is a feasible control. Suppose, to the contrary, that û is

infeasible. Then there exists an integer ι ∈ {1, . . . , q} and a time point η ∈ [0, T ) such

that

hι

(

x(η|û), û(η)
)

< 0.

Since û is continuous from the right, there exists an ω > 0 such that

hι

(

x(t|û), û(t)
)

< 0, t ∈ [η, η + ω). (3.54)

For each integer j ≥ 1, define

Aj ,
{

t ∈ [0, T ) : hι

(

x(t|û), û(t)
)

≤ −1/j
}

.

Clearly, {Aj}∞j=1 is an increasing sequence of measurable sets. Thus, by Theorem D in

Section 9 of [37],

ML

{ ∞
⋃

j=1

Aj

}

= lim
j→∞

ML(Aj), (3.55)

where ML(·) denotes the Lebesgue measure.

Now, it follows from (3.54) that

[η, η + ω) ⊂
∞
⋃

j=1

Aj. (3.56)

By combining (3.55) and (3.56), we obtain

ω ≤ lim
j→∞

ML(Aj).

Hence, there exists an integer j′ ≥ 1 such that

0 <
ω

2
≤ ML(Aj′). (3.57)

It follows immediately from the definition of Aj′ that

hι

(

x(t|û), û(t)
)

≤ − 1

j′
, t ∈ Aj′. (3.58)
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Observe the following:

(i) up,∗(t) ∈ W and û(t) ∈ W for each t ∈ [0, T ] (definition of U);

(ii) x(t|up,∗) ∈ Ψ and x(t|û) ∈ Ψ for each t ∈ [0, T ] (Lemma 3.1);

(iii) There exists a set C ⊂ [0, T ] of measure ML(C) < ML(Aj′)/2 such that up,∗ → û

uniformly on [0, T ] \ C as p → ∞ (Egoroff’s Theorem [5, 37]);

(iv) x(·|up,∗) → x(·|û) uniformly on [0, T ] as p → ∞ (part (i) of Lemma 3.2); and

(v) hι is uniformly continuous on Ψ ×W.

These facts imply that there exists an integer p′ ≥ 2 such that

∣

∣hι(x(t|up′,∗),up′,∗(t)) − hι(x(t|û), û(t))
∣

∣ <
1

2j′
, t ∈ [0, T ] \ C. (3.59)

Combining (3.58) and (3.59) gives

hι

(

x(t|up′,∗),up′,∗(t)
)

< − 1

2j′
, t ∈ Aj′ \ C. (3.60)

We now show that Aj′ \ C is non-empty. Indeed,

ML(Aj′ \ C) = ML(Aj′) − ML(Aj′ ∩ C) ≥ ML(Aj′) − ML(C) > ML(Aj′)/2 > 0,

where the last inequality follows from (3.57). Hence, Aj′\C is a set of positive measure, and

therefore cannot be empty. This means that inequality (3.60) contradicts the feasibility

of up′,∗. Thus, û ∈ F as required.

Remark 3.4. Theorems 3.5 and 3.6 suggest the following method for solving Problem P.

First, choose an integer p ≥ 2 and solve Problem P̃p using Algorithm 3.1. Then, double p

and re-solve Problem P̃p, using the optimal solution from the previous step as the initial

guess. Repeat this step until the change in the optimal value of the cost function is

within a desired tolerance. A suboptimal control for Problem P can then be constructed

according to Remark 3.3.

3.7 Numerical examples

For illustration, we consider two numerical examples.
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3.7.1 Rayleigh’s optimal control problem

The following optimal control problem appears in [31]: find a control u : [0, 4.5] → R that

minimizes the cost function
∫ 4.5

0

{

u2(t) + x2
1(t)

}

dt

subject to the dynamics

ẋ1(t) = x2(t), t ∈ [0, 4.5],

ẋ2(t) = −x1(t) + x2(t)
(

1.4 − 0.14x2
2(t)

)

+ 4u(t), t ∈ [0, 4.5],

and

x1(0) = −5,

x2(0) = −5,

and the continuous inequality constraint

−u(t) − 1

6
x1(t) ≥ 0, t ∈ [0, 4.5].

To solve this problem, we applied the discretization procedure described in Sections 3.3

and 3.4 (with p = 10). We then solved the resulting Problem P̃p via Algorithm 3.1, with

MISER3 used to solve Problem P̃p,ǫ,ϑ in Step (ii). Note that MISER3 invokes NLPQLP

(see [93]) to solve Problem P̃p,ǫ,ϑ as a nonlinear programming problem. The gradients

required by NLPQLP are generated automatically by MISER3 using the gradient formulae

in Section 3.5 (see equations (3.35) and (3.36)).

The smoothing and penalty parameters in Algorithm 3.1 were initially selected as

ǫ = 0.1 and ϑ = 10.0, respectively. They were subsequently adjusted according to

Steps (iii)-(v) of Algorithm 3.1. Recall that for each value of ǫ, the penalty parameter is

increased until the solution of Problem P̃p,ǫ,ϑ is feasible for Problem P̃p. We terminated

Algorithm 3.1 when ǫ = 1.0 × 10−6 and ϑ = 1.0 × 105. The initial ǫ (ǫ = 0.1) required a

large value of ϑ to ensure feasibility, but after that ϑ hardly changed as ǫ was decreased.

The suboptimal control constructed from the final solution of Problem P̃p,ǫ,ϑ is shown,

along with the state variables and the continuous inequality constraint, in Figure 3.2.

Note that the continuous inequality constraint is satisfied everywhere. Also note that

only a small improvement (less than 1%) was obtained by re-solving the problem with

p = 20.
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Figure 3.2: The optimal control in Example 3.7.1 and the corresponding state variables
and constraint profile.

3.7.2 Optimal control of a container crane

The following optimal control problem is a modified version of the one in [91]: find control

functions u1 : [0, 10] → R and u2 : [0, 10] → R that minimize

1

2

∫ 10

0

{

x2
3(t) + x2

6(t)
}

dt + (x1(10) − 10)2 + (x2(10) − 14)2 + x2
3(10)

+ (x4(10) − 2)2 + x2
5(10) + x2

6(10)

subject to the dynamics

ẋ1(t) = x4(t), t ∈ [0, 10],

ẋ2(t) = x5(t), t ∈ [0, 10],

ẋ3(t) = x6(t), t ∈ [0, 10],

ẋ4(t) = u1(t) + 17.27x3(t), t ∈ [0, 10],

ẋ5(t) = u2(t), t ∈ [0, 10],

ẋ6(t) = − 1

x2(t)

(

u1(t) + 27.08x3(t) + 2x5(t)x6(t)
)

, t ∈ [0, 10],
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and

x1(0) = 0,

x2(0) = 22,

x3(0) = 0,

x4(0) = 0,

x5(0) = −0.85,

x6(0) = 0,

and the continuous inequality constraints

−u1(t) − 17.27x3(t) + 10
(

2 − x4(t)
)

≥ 0, t ∈ [0, 10],

u1(t) + 17.27x3(t) + 10
(

2 + x4(t)
)

≥ 0, t ∈ [0, 10],

−u2(t) + 10
(

0.85 + x5(t)
)

≥ 0, t ∈ [0, 10],

u2(t) + 10
(

0.85 − x5(t)
)

≥ 0, t ∈ [0, 10],

and the control constraints

−2.83 ≤ u1(t) ≤ 2.83, t ∈ [0, 10],

−0.20 ≤ u2(t) ≤ 0.71, t ∈ [0, 10].

The dynamics in this problem model the motion of a sea container as it is transported

via crane from a cargo ship to a truck (or vice versa). The cost function penalizes the

container swing angle (large container swings are dangerous).

As in Example 3.7.1, we discretized this optimal control problem to obtain Problem P̃p

(with p = 10). We then solved Problem P̃p via Algorithm 3.1, with MISER3 used to solve

Problem P̃p,ǫ,ϑ in Step (ii). Initially, ǫ = 0.1 and ϑ = 1.0; Algorithm 3.1 was terminated

when ǫ = 1.0× 10−5 and ϑ = 1.0× 104. A large value of ϑ was required initially, but once

feasibility was attained, ϑ did not change as ǫ was decreased. The optimal control and

optimal state variables are shown in Figures 3.3 and 3.4, respectively.

3.8 Conclusion

In this chapter, we developed a new computational method for solving nonlinear optimal

control problems with continuous inequality constraints. This method has several major

advantages over the ǫ-τ algorithm discussed in [100, 101]. In particular, it is capable of

handling continuous inequality constraints that include the control function explicitly.



3.8 Conclusion 61

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  2  4  6  8  10

x 1
(t

)

t

 14

 15

 16

 17

 18

 19

 20

 21

 22

 0  2  4  6  8  10

x 2
(t

)

t

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0  2  4  6  8  10

x 3
(t

)

t

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  2  4  6  8  10

x 4
(t

)

t

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  2  4  6  8  10

x 5
(t

)

t

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0  2  4  6  8  10

x 6
(t

)

t

Figure 3.3: The optimal state variables for Example 3.7.2.
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Since the constraint functions (3.3) are potentially discontinuous in time, deriving the

convergence results in Section 3.6 was difficult (continuity is exploited in [100, 101] to

prove that the ǫ-τ algorithm converges). Nevertheless, Theorem 3.5 guarantees that the

costs of the suboptimal controls converge to the optimal cost. Furthermore, Theorem 3.6

ensures that if the sequence of suboptimal controls converges to an admissible control

almost everywhere, then this admissible control is optimal.

We point out that the admissible controls in this chapter are restricted to piecewise

continuous functions. In [100, 101] (and also in Chapter 2), the controls are selected

from a larger class of bounded measurable functions. The arguments used to establish

Theorem 6.1 are not valid in this more general setting. Nevertheless, realistic control

inputs are invariably piecewise continuous.



CHAPTER 4

Optimal control of a switched-capacitor

DC-DC power converter∗

4.1 Introduction

A DC-DC power converter is an electrical circuit that transforms a DC input voltage,

which is supplied by a battery, into a different DC output voltage. In this chapter, we

will consider switched-capacitor DC-DC power converters, which are constructed primarily

from capacitors and switches [17,18,46]. Because of their small size and high power density,

switched-capacitor DC-DC power converters are ideal voltage transformers for mobile

electronic appliances such as laptop computers, cellular phones, and portable gaming

consoles. As such, their popularity has soared over the past decade.

The capacitors in a switched-capacitor DC-DC power converter are capable of both

storing and supplying energy. Whether a particular capacitor absorbs energy from the

source or delivers energy to the load depends on the switch configuration. The switch

configuration—and therefore the circuit topology—is actually changed periodically while

the power converter operates. This ensures that each capacitor alternates between energy

absorb mode and energy supply mode. To explain further, at any given time, some of the

capacitors are supplying energy to the load, while the others are absorbing energy from

the source. When the circuit topology is changed (via the switch configuration), these

roles are reversed: the capacitors that were previously supplying energy begin to charge

up, and the capacitors that were previously absorbing energy begin to discharge.

If a particular circuit topology is active for too long, then the capacitors connected

to the load will run out of energy, and the power converter’s output voltage will drop

considerably. This must be avoided, because large variations in the output voltage can

damage the devices attached to the power converter. Hence, the circuit topology should

be changed frequently. However, because each topology switch causes an energy leak,

excessive switching is very inefficient [3]. It is therefore imperative that the topology

switching times be chosen judiciously, so that switching energy losses and output voltage

∗This chapter is based on [74].
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variation are curbed.

Many methods have been proposed for controlling the switching mechanism in a

switched-capacitor DC-DC power converter—see, for example, [16,27,52,63] and the ref-

erences cited therein. Most of these methods are based on a linear time-invariant dynamic

model, which is derived via averaging and/or linearization. However, although its indi-

vidual topologies are linear, a switched-capacitor DC-DC power converter is actually a

strongly nonlinear system. This is because it does not remain in one particular topology,

but rather switches between several of them. Moreover, the voltage across each of its

capacitors drops suddenly when the topology is changed. Conventional control methods

ignore such behavior, and consequently their performance is only guaranteed under a

so-called small signal assumption.

The problem of determining the topology switching times a priori was recently for-

mulated in [42] as an optimal control problem. This optimal control problem can be

solved using the software package MISER3 [47]. The major advantage of this approach

is that it avoids averaging and linearization. In fact, the power converter is modeled as a

switched system that switches between several subsystems of differential equations—one

for each topology—during the time horizon. The optimization and control of switched

systems is currently an active research area with a multitude of interesting applica-

tions [9, 14, 40, 94, 115, 132]. In Chapter 5 we will consider another important optimal

control problem in this area.

The optimal control problem formulated in [42] has a cost function that penalizes two

quantities: (i) the output voltage variation; and (ii) the output voltage sensitivity with

respect to uncertainties and disturbances. The output voltage sensitivity is calculated

via several complex formulae (one of which stretches over ten lines). To evaluate these

formulae, the eigenvalues of certain matrices in the governing switched system need to

be derived analytically as functions of the load resistance. This is usually a very difficult

task; in fact, it is impossible if the matrices have dimension greater than four. This is

a serious restriction, and hence it is imperative that a superior method be developed for

solving the optimal control problem formulated in [42]. The purpose of this chapter is to

develop such a method.

4.2 Problem formulation

We consider a switched-capacitor DC-DC power converter with n capacitors and m ≥ 2

distinct circuit topologies. Each of these topologies is active once during the operating

period [0, T ], where T > 0 is a given terminal time.

Let tk, k = 1, . . . , m − 1, denote the times at which the power converter changes its

topology. These times are called switching times. We assume that the difference between

each pair of consecutive switching times is at least τ > 0 (the power converter cannot
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switch arbitrarily fast). Consequently, the switching times must satisfy the following

constraints:

tk−1 + τ ≤ tk, k = 1, . . . , m, (4.1)

where t0 , 0 and tm , T . Let Γ denote the set of all vectors ν = [t1, . . . , tm−1]
T ∈ R

m−1

that satisfy (4.1). Each element of Γ is called a switching-time vector.

For each i = 1, . . . , n, let xi(t) denote the voltage across the ith capacitor at time t.

The vector x(t) ∈ R
n, whose ith component is xi(t), is called the state voltage vector.

Since each capacitor’s initial voltage is fixed,

x(0) = x(0+) = x0, (4.2)

where x0 ∈ R
n is a given vector.

Topology switches are accompanied by sudden energy losses. Consequently, the state

voltage vector changes instantaneously at each switching time:

x(tk) = x(t+k ) = x(t−k ) + zk
(

x(t−k )
)

, k = 1, . . . , m − 1, (4.3)

where zk : R
n → R

n, k = 1, . . . , m − 1, are given functions.

The kth circuit topology is active from t = tk−1 to t = tk. During this period, the

state voltage is governed by the following dynamic system:

ẋ(t) = Ak(RL)x(t) + Bk(RL)σ, t ∈ (tk−1, tk), (4.4)

where σ ∈ R
r is the input voltage vector (whose components are the DC input voltages);

RL ∈ R is the load resistance; and Ak : R → R
n×n and Bk : R → R

n×r are given functions

of the load resistance. These functions are derived using Kirchhoff’s voltage laws.

The power converter’s output voltage at time t is given by

y(t) = Ck(RL)x(t) + Dk(RL)σ, t ∈ Ik, k = 1, . . . , m, (4.5)

where Ck : R → R
1×n and Dk : R → R

1×r are given functions of the load resistance and

the subintervals Ik, k = 1, . . . , m, are defined as

Ik ,







[tk−1, tk), if k ∈ {1, . . . , m − 1},
[tk−1, tk], if k = m.

Equations (4.2)-(4.5) can be combined to form the following switched system with m
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subsystems:

ẋ(t) = Ak(RL)x(t) + Bk(RL)σ, t ∈ (tk−1, tk), k = 1, . . . , m, (4.6)

y(t) = Ck(RL)x(t) + Dk(RL)σ, t ∈ Ik, k = 1, . . . , m, (4.7)

and

x(tk) = x(t+k ) =

{

x0, if k = 0, (4.8a)

x(t−k ) + zk
(

x(t−k )
)

, if k ∈ {1, . . . , m − 1}. (4.8b)

Let x(·|ν) and y(·|ν) denote the solution of (4.6)-(4.8) corresponding to the switching-

time vector ν = [t1, . . . , tm−1]
T ∈ Γ.

The state voltage x(·|ν) evolves as follows. It starts at x0 at time t = 0 and is governed

by equation (4.6) with k = 1 until time t = t1. The power converter then switches to

the second topology, which causes the state voltage to change instantaneously from x(t−1 )

to x(t+1 )—see equation (4.8b). Restarting from x(t+1 ), the state voltage evolves smoothly

according to equation (4.6) with k = 2 until t = t2, at which time the power converter

switches to the third topology and the state voltage jumps once more. The state voltage

continues to evolve in this way for the remainder of the time horizon.

We define the output voltage ripple as the difference between the maximum and min-

imum output voltage. That is, for each switching-time vector ν ∈ Γ, the output voltage

ripple is

sup
t∈[0,T ]

y(t|ν) − inf
t∈[0,T ]

y(t|ν). (4.9)

Obviously, a small ripple indicates that the power converter’s output voltage is steady.

Hence, the switching times should be chosen to minimize (4.9).

The output voltage should also be robust with respect to variations in the input voltage

and/or load resistance; otherwise, changing the devices attached to the power converter

could cause the output voltage to fluctuate. Accordingly, the switching times should be

chosen to minimize

sup
t∈[0,T ]

∣

∣

∣

∣

∂y(t|ν)

∂RL

∣

∣

∣

∣

(4.10)

and

sup
t∈[0,T ]

∣

∣

∣

∣

∂y(t|ν)

∂σ

∣

∣

∣

∣

∞

, (4.11)

where | · |∞ denotes the infinity norm in R
r.

We now define the following optimal control problem, whose cost function is the

weighted sum of (4.9)-(4.11).
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Problem P. Find a switching-time vector ν ∈ Γ that minimizes the cost function

G0(ν) , α

{

sup
t∈[0,T ]

y(t|ν) − inf
t∈[0,T ]

y(t|ν)

}

+ β sup
t∈[0,T ]

∣

∣

∣

∣

∂y(t|ν)

∂RL

∣

∣

∣

∣

+ γ sup
t∈[0,T ]

∣

∣

∣

∣

∂y(t|ν)

∂σ

∣

∣

∣

∣

∞

,

where α ≥ 0, β ≥ 0, and γ ≥ 0 are given real numbers, over Γ.

The constants α, β, and γ in Problem P are weights used to adjust the relative importance

of each term in G0. Before finishing this section, we make the following assumption.

Assumption 4.1. The given functions Ak, Bk, Ck, and Dk, k = 1, . . . , m, and zk,

k = 1, . . . , m − 1, are continuously differentiable.

4.3 Problem transformation

The cost function in Problem P is very unusual; it involves infimums, supremums, and the

derivative of the output with respect to the load resistance and input voltage. Computing

this function is extremely difficult. Furthermore, because it involves norms, it is a non-

smooth function. Hence, Problem P cannot be solved using a gradient-based nonlinear

programming algorithm. The aim of this section is to transform Problem P into an

equivalent problem that is easier to solve.

Consider the following auxiliary switched system:

ψ̇(t) =
∂Ak(RL)

∂RL

x(t|ν) + Ak(RL)ψ(t) +
∂Bk(RL)

∂RL

σ,

t ∈ (tk−1, tk), k = 1, . . . , m, (4.12)

and

ψ(tk) = ψ(t+k ) =







0, if k = 0, (4.13a)

ψ(t−k ) +
∂zk

(

x(t−k |ν)
)

∂x
ψ(t−k ), if k ∈ {1, . . . , m − 1}, (4.13b)

where ν = [t1, . . . , tm−1]
T ∈ Γ. Let ψ(·|ν) denote the solution of (4.12)-(4.13).

We now prove the following important result.

Theorem 4.1. For each switching-time vector ν ∈ Γ,

∂x(t|ν)

∂RL
= ψ(t|ν), t ∈ [0, T ].

Proof. Let ν = [t1, . . . , tm−1]
T ∈ Γ be arbitrary but fixed. It follows from (4.6) that for

each k = 1, . . . , m,

x(t|ν) = x(t+k−1|ν) +

∫ t

tk−1

(

Ak(RL)x(η|ν) + Bk(RL)σ
)

dη, t ∈ (tk−1, tk). (4.14)
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Differentiating this equation with respect to RL gives

∂x(t|ν)

∂RL

=
∂x(t+k−1|ν)

∂RL

+

∫ t

tk−1

∂Ak(RL)

∂RL

x(η|ν)dη

+

∫ t

tk−1

{

Ak(RL)
∂x(η|ν)

∂RL

+
∂Bk(RL)

∂RL

σ

}

dη, t ∈ (tk−1, tk).

By differentiating this equation with respect to time, we obtain

d

dt

{

∂x(t|ν)

∂RL

}

=
∂Ak(RL)

∂RL
x(t|ν)+Ak(RL)

∂x(t|ν)

∂RL
+

∂Bk(RL)

∂RL
σ, t ∈ (tk−1, tk). (4.15)

Now, differentiating (4.8b) with respect to RL gives

∂x(tk|ν)

∂RL

=
∂x(t+k |ν)

∂RL

=
∂x(t−k |ν)

∂RL

+
∂zk

(

x(t−k |ν)
)

∂x

∂x(t−k |ν)

∂RL

, k = 1, . . . , m−1. (4.16)

Furthermore, from (4.8a) we have

∂x(0|ν)

∂RL
=

∂x(0+|ν)

∂RL
=

∂

∂RL

{

x0
}

= 0. (4.17)

Equations (4.15)-(4.17) show that ∂x(·|ν)/∂RL is a solution of (4.12)-(4.13). Since such

a solution is unique (see [1, 2]), we must have

∂x(t|ν)

∂RL
= ψ(t|ν), t ∈ [0, T ],

as required.

For each j = 1, . . . , r, consider another auxiliary switched system as follows:

φ̇j(t) = Ak(RL)φj(t) + Bk,j(RL), t ∈ (tk−1, tk), k = 1, . . . , m, (4.18)

and

φj(tk) = φj(t+k ) =







0, if k = 0, (4.19a)

φj(t−k ) +
∂zk

(

x(t−k |ν)
)

∂x
φj(t−k ), if k ∈ {1, . . . , m − 1}, (4.19b)

where ν = [t1, . . . , tm−1]
T ∈ Γ and Bk,j(RL) denotes the jth column of the matrix Bk(RL).

Let φj(·|ν) denote the solution of (4.18)-(4.19).

The following result is the analogue of Theorem 4.1 for the derivative of the state

voltage with respect to σ.
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Theorem 4.2. For each switching-time vector ν ∈ Γ,

∂x(t|ν)

∂σj
= φj(t|ν), t ∈ [0, T ], j = 1, . . . , r.

Proof. Let ν = [t1, . . . , tm−1]
T ∈ Γ and j ∈ {1, . . . , r} be arbitrary but fixed. Recall

equation (4.14) from the proof of Theorem 4.1:

x(t|ν) = x(t+k−1|ν) +

∫ t

tk−1

(

Ak(RL)x(η|ν) + Bk(RL)σ
)

dη, t ∈ (tk−1, tk),

where k = 1, . . . , m. Differentiating this equation with respect to σj gives

∂x(t|ν)

∂σj
=

∂x(t+k−1|ν)

∂σj
+

∫ t

tk−1

{

Ak(RL)
∂x(η|ν)

∂σj
+ Bk,j(RL)

}

dη, t ∈ (tk−1, tk).

By differentiating this equation with respect to time, we obtain

d

dt

{

∂x(t|ν)

∂σj

}

= Ak(RL)
∂x(t|ν)

∂σj

+ Bk,j(RL), t ∈ (tk−1, tk). (4.20)

Now, differentiating (4.8b) with respect to σj gives

∂x(tk|ν)

∂σj
=

∂x(t+k |ν)

∂σj
=

∂x(t−k |ν)

∂σj
+

∂zk
(

x(t−k |ν)
)

∂x

∂x(t−k |ν)

∂σj
, k = 1, . . . , m−1. (4.21)

Furthermore, from (4.8a) we have

∂x(0|ν)

∂σj
=

∂x(0+|ν)

∂σj
=

∂

∂σj

{

x0
}

= 0. (4.22)

Equations (4.20)-(4.22) show that ∂x(·|ν)/∂σj is the unique solution of (4.18)-(4.19).

Hence,
∂x(t|ν)

∂σj
= φj(t|ν), t ∈ [0, T ].

This completes the proof.

For each switching-time vector ν ∈ Γ, define corresponding functions u(·|ν) : [0, T ] → R

and wj(·|ν) : [0, T ] → R, j = 1, . . . , r, as follows:

u(t|ν) ,
∂Ck(RL)

∂RL
x(t|ν)+Ck(RL)ψ(t|ν)+

∂Dk(RL)

∂RL
σ, t ∈ Ik, k = 1, . . . , m, (4.23)

and

wj(t|ν) , Ck(RL)φj(t|ν) + Dk,j(RL), t ∈ Ik, k = 1, . . . , m, (4.24)

where Dk,j(RL) denotes the jth column of the matrix Dk(RL).
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Now, differentiating (4.7) with respect to RL gives

∂y(t|ν)

∂RL
=

∂Ck(RL)

∂RL
x(t|ν) + Ck(RL)

∂x(t|ν)

∂RL
+

∂Dk(RL)

∂RL
σ,

t ∈ Ik, k = 1, . . . , m.

By substituting the result of Theorem 4.1 into this equation and then comparing it with

equation (4.23), we see that

∂y(t|ν)

∂RL
= u(t|ν), t ∈ [0, T ]. (4.25)

Similarly, by Theorem 4.2,

∂y(t|ν)

∂σj

= wj(t|ν), t ∈ [0, T ], j = 1, . . . , r. (4.26)

Hence, we can readily calculate the derivative of the output with respect to the load

resistance and input voltage by solving the auxiliary systems (4.12)-(4.13) and (4.18)-

(4.19). These auxiliary systems must be solved simultaneously with (4.6)-(4.8), because

the state voltage vector appears in their right-hand sides. Thus, to calculate the output

voltage sensitivity, we first integrate the expanded switched system consisting of (4.6)-

(4.8), (4.12)-(4.13), (4.18)-(4.19), and then substitute the solution into (4.23)-(4.24). This

method is very convenient and straightforward. In contrast, the method proposed in [42]

is extremely tedious: it uses several complicated formulas, one of which has five nested

summations stretching over ten lines.

We now define a new optimization problem as follows.

Problem Q. Find a pair (ν, ζ) ∈ Γ × R
4 that minimizes the cost function

J0(ζ) , αζ1 + αζ2 + βζ3 + γζ4,

where α ≥ 0, β ≥ 0, and γ ≥ 0, are given real numbers, subject to the constraints

y(t|ν) ≤ ζ1, t ∈ [0, T ], (4.27a)

−y(t|ν) ≤ ζ2, t ∈ [0, T ], (4.27b)

−ζ3 ≤ u(t|ν) ≤ ζ3, t ∈ [0, T ], (4.27c)

−ζ4 ≤ wj(t|ν) ≤ ζ4, t ∈ [0, T ], j = 1, . . . , r. (4.27d)

It turns out that Problem Q is equivalent to Problem P. We state this formally as the

following theorem.
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Theorem 4.3. Let ν∗ ∈ Γ be a switching-time vector and define

ζ∗
1 , sup

t∈[0,T ]

y(t|ν∗), (4.28a)

ζ∗
2 , − inf

t∈[0,T ]
y(t|ν∗), (4.28b)

ζ∗
3 , sup

t∈[0,T ]

∣

∣

∣

∣

∂y(t|ν∗)

∂RL

∣

∣

∣

∣

, (4.28c)

ζ∗
4 , sup

t∈[0,T ]

∣

∣

∣

∣

∂y(t|ν∗)

∂σ

∣

∣

∣

∣

∞

. (4.28d)

Then (ν∗, ζ∗) is optimal for Problem Q if and only if ν∗ is optimal for Problem P.

Proof. First, note that

J0(ζ
∗) = G0(ν

∗). (4.29)

Now, suppose that ν∗ ∈ Γ is an optimal solution of Problem P. By equations (4.25),

(4.26), and (4.28),

y(t|ν∗) ≤ ζ∗
1 , t ∈ [0, T ],

−y(t|ν∗) ≤ ζ∗
2 , t ∈ [0, T ],

−ζ∗
3 ≤ u(t|ν∗) =

∂y(t|ν∗)

∂RL
≤ ζ∗

3 , t ∈ [0, T ],

−ζ∗
4 ≤ wj(t|ν∗) =

∂y(t|ν∗)

∂σj
≤ ζ∗

4 , t ∈ [0, T ], j = 1, . . . , r.

These inequalities show that (ν∗, ζ∗) satisfies the constraints (4.27), and is therefore

feasible for Problem Q. We will show that it is optimal.

Let (ν, ζ) ∈ Γ × R
4 be an arbitrary feasible pair for Problem Q. Then

y(t|ν) ≤ ζ1, t ∈ [0, T ],

−y(t|ν) ≤ ζ2, t ∈ [0, T ],

−ζ3 ≤ u(t|ν) =
∂y(t|ν)

∂RL
≤ ζ3, t ∈ [0, T ],

−ζ4 ≤ wj(t|ν) =
∂y(t|ν)

∂σj

≤ ζ4, t ∈ [0, T ], j = 1, . . . , r.

These inequalities show that y(t|ν) is bounded above by ζ1; y(t|ν) is bounded below

by −ζ2; |∂y(t|ν)/∂RL| is bounded above by ζ3; and |∂y(t|ν)/∂σ|∞ is bounded above
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by ζ4. Hence,

G0(ν) = α

{

sup
t∈[0,T ]

y(t|ν) − inf
t∈[0,T ]

y(t|ν)

}

+ β sup
t∈[0,T ]

∣

∣

∣

∣

∂y(t|ν)

∂RL

∣

∣

∣

∣

+ γ sup
t∈[0,T ]

∣

∣

∣

∣

∂y(t|ν)

∂σ

∣

∣

∣

∣

∞

≤ αζ1 + αζ2 + βζ3 + γζ4.

Since ν∗ is optimal for Problem P,

G0(ν
∗) ≤ G0(ν) ≤ αζ1 + αζ2 + βζ3 + γζ4 = J0(ζ). (4.30)

Combining equation (4.29) and inequality (4.30) gives

J0(ζ
∗) ≤ J0(ζ).

Since (ν, ζ) ∈ Γ×R
4 was chosen arbitrarily, this inequality shows that (ν∗, ζ∗) is optimal

for Problem Q.

Conversely, let (ν∗, ζ∗) ∈ Γ × R
4 be an optimal solution for Problem Q and suppose

that ν∗ is not optimal for Problem P. Then there exists a ν ′ ∈ Γ such that

G0(ν
′) < G0(ν

∗). (4.31)

Define a vector ζ ′ ∈ R
4 as follows:

ζ ′
1 , sup

t∈[0,T ]

y(t|ν ′),

ζ ′
2 , − inf

t∈[0,T ]
y(t|ν ′),

ζ ′
3 , sup

t∈[0,T ]

∣

∣

∣

∣

∂y(t|ν ′)

∂RL

∣

∣

∣

∣

,

ζ ′
4 , sup

t∈[0,T ]

∣

∣

∣

∣

∂y(t|ν ′)

∂σ

∣

∣

∣

∣

∞

.

Clearly,

J0(ζ
′) = G0(ν

′). (4.33)

Furthermore, similar arguments to those used in the first part of the proof show that (ν ′, ζ ′)

is feasible for Problem Q. Combining equations (4.29) and (4.33) with inequality (4.31)

gives

J0(ζ
′) < J0(ζ

∗).

Since (ν ′, ζ ′) is feasible for Problem Q, this contradicts the optimality of (ν∗, ζ∗). Hence, ν∗

must be an optimal switching-time vector for Problem P.

In contrast with Problem P, Problem Q has a very simple cost function. However, Prob-
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lem Q is still difficult to solve for two reasons: (i) its switching times are decision variables;

and (ii) its constraints (4.27) must be satisfied at every point in the time horizon. Recall

from Chapter 3 that such constraints are called continuous inequality constraints.

We now apply the time-scaling transformation to Problem Q. As in Chapters 2 and 3,

the time-scaling transformation maps the variable switching times to fixed points in a new

time horizon, thereby eliminating the first difficulty mentioned in the previous paragraph.

First, let

Θ ,
{

θ ∈ R
m : θk ≥ τ, k = 1, . . . , m; θ1 + · · · + θm = T

}

.

For each θ ∈ Θ, define a corresponding function µ(·|θ) : [0, m] → R by

µ(s|θ) ,















⌊s⌋
∑

l=1

θl + θ⌊s⌋+1(s − ⌊s⌋), if s ∈ [0, m),

T, if s = m,

where ⌊·⌋ denotes the floor function.

It is easy to see that µ(·|θ) is continuous and strictly increasing on [0, m]. Moreover,

µ(0|θ) = 0

and

µ(m|θ) = T.

Hence, µ(·|θ) is a bijection from [0, m] onto [0, T ]. The time-scaling transformation in-

volves making the following change of variable:

t = µ(s|θ). (4.34)

In the new time horizon [0, m], the switching times occur at the fixed points s = k,

k = 1, . . . , m. Hence,

tk = µ(k|θ) =

k
∑

l=1

θl, k = 0, . . . , m. (4.35)

Clearly,
[

µ(1|θ), . . . , µ(m − 1|θ)
]T ∈ Γ.

Moreover, every switching-time vector in Γ is generated by an element of Θ in this way.
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Let

x̃(s) , x(µ(s|θ)),
ψ̃(s) , ψ(µ(s|θ)),
φ̃j(s) , φj(µ(s|θ)), j = 1, . . . , r.

By differentiating these equations with respect to s, and using (4.6), (4.12), and (4.18),

we obtain

˙̃x(s) = θkAk(RL)x̃(s) + θkBk(RL)σ

˙̃
ψ(s) = θk

∂Ak(RL)

∂RL
x̃(s) + θkAk(RL)ψ̃(s) + θk

∂Bk(RL)

∂RL
σ

˙̃
φj(s) = θkAk(RL)φ̃j(s) + θkBk,j(RL), j = 1, . . . , r,



























s ∈ (k − 1, k), (4.36)

where k = 1, . . . , m.

It follows from (4.8b), (4.13b), and (4.19b) that

x̃(k+) = x̃(k−) + zk(x̃(k−)),

ψ̃(k+) = ψ̃(k−) +
∂zk(x̃(k−))

∂x
ψ̃(k−),

φ̃j(k+) = φ̃j(k−) +
∂zk(x̃(k−))

∂x
φ̃j(k−), j = 1, . . . , r.































k = 1, . . . , m − 1. (4.37)

Using (4.8a), (4.13a), and (4.19a), we obtain the initial conditions

x̃(0) = x0,

ψ̃(0) = 0,

φ̃j(0) = 0, j = 1, . . . , r.











(4.38)

Let x̃(·|θ), ψ̃(·|θ), and φ̃j(·|θ), j = 1, . . . , r, denote the solutions of (4.36)-(4.38) corre-

sponding to θ ∈ Θ. We also define

ỹ(s|θ) , y(µ(s|θ)),
ũ(s|θ) , u(µ(s|θ)),

w̃j(s|θ) , wj(µ(s|θ)), j = 1, . . . , r.
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Hence,

ỹ(s|θ) = Ck(RL)x̃(s|θ) + Dk(RL)σ,

ũ(s|θ) =
∂Ck(RL)

∂RL
x̃(s|θ) + Ck(RL)ψ̃(s|θ) +

∂Dk(RL)

∂RL
σ,

w̃j(s|θ) = Ck(RL)φ̃j(s|θ) + Dk,j(RL),



























s ∈ [k− 1, k), ∗ (4.39)

where k = 1, . . . , m.

The constraints (4.27) become

ỹ(s|θ) ≤ ζ1,

−ỹ(s|θ) ≤ ζ2,

−ζ3 ≤ ũ(s|θ) ≤ ζ3,

−ζ4 ≤ w̃j(s|θ) ≤ ζ4, j = 1, . . . , r,







































s ∈ [0, m]. (4.40)

We now define the following optimal control problem, which is equivalent to Problem Q.

Problem Q̃. Find a pair (θ, ζ) ∈ Θ × R
4 that minimizes the cost function

J0(ζ) = αζ1 + αζ2 + βζ3 + γζ4

subject to the continuous inequality constraints (4.40).

Problem Q̃ is a semi-infinite programming problem with a linear cost function. Its solu-

tion (θ∗, ζ∗) ∈ Θ × R
4 immediately furnishes the following optimal switching times for

Problem Q:

t∗k = µ(k|θ∗) =
k

∑

l=1

θ∗l , k = 1, . . . , m − 1.

In the next section, we will discuss a method for solving Problem Q̃.

4.4 Solving Problem Q̃

Notice that the constraints (4.40) are similar to the continuous inequality constraints

considered in Chapter 3. In this section, we will see that the method used to solve

Problem P̃p in Chapter 3 is also applicable to Problem Q̃.

We first rewrite (4.40) as follows:

hi(s|θ, ζ) ≥ 0, s ∈ [0, m], i = 1, . . . , 2r + 4, (4.41)

∗When k = m, this interval is [m − 1, m].
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where

h1(s|θ, ζ) , −ỹ(s|θ) + ζ1,

h2(s|θ, ζ) , ỹ(s|θ) + ζ2,

h3(s|θ, ζ) , −ũ(s|θ) + ζ3,

h4(s|θ, ζ) , ũ(s|θ) + ζ3,

h2j+3(s|θ, ζ) , −w̃j(s|θ) + ζ4, j = 1, . . . , r,

h2j+4(s|θ, ζ) , w̃j(s|θ) + ζ4, j = 1, . . . , r.

Next, we define the following optimization problem.

Problem Q̃
ǫ,ϑ. Find a pair (θ, ζ) ∈ Θ × R

4 that minimizes the cost function

J̃ǫ,ϑ(θ, ζ) , J0(ζ) − ϑ

2r+4
∑

i=1

∫ m

0

ϕǫ

(

hi(s|θ, ζ)
)

ds,

where ǫ > 0, ϑ > 0, and ϕǫ : R → R is defined by

ϕǫ(η) ,



















η, if η < −ǫ,

−(η − ǫ)2/4ǫ, if −ǫ ≤ η ≤ ǫ,

0, otherwise.

Problem Q̃ǫ,ϑ is a nonlinear programming problem with simple bounds on the variables

and a linear equality constraint (recall the definition of the set Θ). Computing the gradient

of each of these constraints is straightforward. Computing the gradient of J̃ǫ,ϑ is more

difficult, but it can be done using the formulae reported in [47,69,125]. For completeness,

we state these formulae below.

First, note that the dynamic system (4.36)-(4.38) can be written in the following form:

v̇(s) = θkÂk(RL)v(s) + θkB̂k(RL)σ + θkÔk(RL), s ∈ (k − 1, k), k = 1, . . . , m,

and

v(k) = v(k+) =







v0, if k = 0,

gk
(

v(k−)
)

, if k ∈ {1, . . . , m − 1},

where Âk(RL) ∈ R
(2+r)n×(2+r)n, B̂k(RL) ∈ R

(2+r)n×r, Ôk(RL) ∈ R
(2+r)n, and

v(s) ,

[

x̃(s), ψ̃(s), φ̃1(s), . . . , φ̃r(s)
]T

∈ R
(2+r)n
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and

v0 =
[

(

x0
)T

, 0, . . . , 0
]T

∈ R
(2+r)n.

Let v(·|θ) denote the solution of this system corresponding to θ ∈ Θ. Hence,

v(s|θ) =
[

x̃(s|θ), ψ̃(s|θ), φ̃1(s|θ), . . . , φ̃r(s|θ)
]T

, s ∈ [0, m].

Define the Hamiltonian function H : R × R
n × R

n × R
m × R

4 → R as follows:

H(s,v,λ, θ, ζ) , −ϑ

2r+4
∑

i=1

ϕǫ

(

hi(s|θ, ζ)
)

+ λT
(

θkÂk(RL)v + θkB̂k(RL)σ + θkÔk(RL)
)

,

s ∈ [k − 1, k), k = 1, . . . , m.

Furthermore, define the following auxiliary dynamic system:

λ̇(s) = −
[

∂H
(

s,v(s|θ),λ(s), θ, ζ
)

∂v

]T

, s ∈ [0, m],

and

λ(k−) =











0, if k = m,
[

∂gk(v(k−|θ))
∂v

]T

λ(k+), if k ∈ {1, . . . , m − 1},

where (θ, ζ) ∈ Θ × R
4. This auxiliary system is called the costate system. Let λ(·|θ, ζ)

denote the solution of the costate system corresponding to (θ, ζ) ∈ Θ × R
4.

Now, it follows from Appendix C of [47] that for each (θ, ζ) ∈ Θ × R
4,

∂J̃ǫ,ϑ(θ, ζ)

∂θk
=

∫ m

0

∂H
(

s,v(s|θ),λ(s|θ, ζ), θ, ζ
)

∂θk
, k = 1, . . . , m,

and

∂J̃ǫ,ϑ(θ, ζ)

∂ζι
=

∂J0(ζ)

∂ζι
+

∫ m

0

∂H
(

s,v(s|θ),λ(s|θ, ζ), θ, ζ
)

∂ζι
ds, ι = 1, 2, 3, 4.

These formulae can be used in conjunction with a gradient-based nonlinear programming

algorithm to solve Problem Q̃ǫ,ϑ.

The relationship between Problems Q̃ǫ,ϑ and Q̃ is the same as the relationship between

Problems P̃p,ǫ,ϑ and P̃p in Chapter 3. Thus, Problem Q̃ǫ,ϑ is a good approximation of

Problem Q̃ when ǫ is small and ϑ is large. More precisely, the following analogues of

Theorems 3.2 and 3.3 hold:

• For each ǫ > 0, there exists a corresponding ϑ(ǫ) > 0 such that if ϑ > ϑ(ǫ), then

the solution of Problem Q̃ǫ,ϑ is feasible for Problem Q̃.
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• If (θ∗, ζ∗) is a solution of Problem Q̃ and (θǫ,ϑ,∗, ζǫ,ϑ,∗) is a solution of Problem Q̃ǫ,ϑ,

then

J0(ζ
ǫ,ϑ,∗) → J0(ζ

∗) as ǫ → 0,

provided that for each ǫ, (θǫ,ϑ,∗, ζǫ,ϑ,∗) is feasible for Problem Q̃ (that is, for each ǫ,

the penalty parameter ϑ is sufficiently large).

By virtue of these results, we can solve Problem Q̃ by repeatedly solving Problem Q̃ǫ,ϑ

for decreasing values of ǫ. See Section 3.5 for more details.

4.5 Existence of an optimal solution

Thus far, we have tacitly assumed that Problem P has an optimal solution. In this section,

we will vindicate this assumption.

First, we present two preliminary lemmas, which follow readily from Assumption 4.1

and Lemmas 6.4.2 and 6.4.3 in [100].

Lemma 4.1. There exists a real number L1 > 0 such that

∣

∣ỹ(s|θ)
∣

∣ ≤ L1,
∣

∣ũ(s|θ)
∣

∣ ≤ L1,
∣

∣w̃j(s|θ)
∣

∣ ≤ L1, j = 1, . . . , r,











s ∈ [0, m], θ ∈ Θ.

Lemma 4.2. Suppose that {θp}∞p=1 ⊂ Θ is a sequence converging to θ ∈ Θ. Then

lim
p→∞

ỹ(s|θp) = ỹ(s|θ),
lim
p→∞

ũ(s|θp) = ũ(s|θ),
lim
p→∞

w̃j(s|θp) = w̃j(s|θ), j = 1, . . . , r,



















s ∈ [0, m].

We now state and prove the main result of this section.

Theorem 4.4. Problem P has an optimal solution.

Proof. Recall that Problems P and Q̃ are equivalent. Hence, it is sufficient to prove that

Problem Q̃ has an optimal solution.

Let F be the set consisting of all pairs (θ, ζ) ∈ Θ×R
4 that satisfy the constraints (4.40).

In other words, F is the feasible region for Problem Q̃.

Now, let η ∈ [0, m] and κ ∈ {1, . . . , r} be arbitrary. For each pair (θ, ζ) ∈ F ,

J0(ζ) = αζ1 + αζ2 + βζ3 + γζ4 ≥ αỹ(η|θ) − αỹ(η|θ) + β
∣

∣ũ(η|θ)
∣

∣ + γ
∣

∣w̃κ(η|θ)
∣

∣ ≥ 0.

This shows that the set

{ J0(ζ) : (θ, ζ) ∈ F
}

⊂ R



4.5 Existence of an optimal solution 79

is bounded below by zero. Hence, we can find a real number ω ≥ 0 that satisfies

ω = inf
{

J0(ζ) : (θ, ζ) ∈ F
}

.

Therefore, for each integer p ≥ 1, there exists a corresponding pair (θp, ζp) ∈ F such that

J0(ζ
p) < ω +

1

p
.

Clearly,

lim
p→∞

J0(ζ
p) = ω. (4.42)

Now, for each integer p ≥ 1, define another vector ζ̄p ∈ R
4 as follows:

ζ̄p
1 , sup

s∈[0,m]

ỹ(s|θp),

ζ̄p
2 , − inf

s∈[0,m]
ỹ(s|θp),

ζ̄p
3 , sup

s∈[0,m]

∣

∣ũ(s|θp)
∣

∣,

ζ̄p
4 , sup

s∈[0,m]

max
1≤j≤r

∣

∣w̃j(s|θp)
∣

∣.

It is easy to see that

(θp, ζ̄p) ∈ F , p ≥ 1. (4.43)

Furthermore, it follows from (4.40) that ζp
1 is an upper bound for ỹ(s|θp), −ζp

2 is a

lower bound for ỹ(s|θp), ζp
3 is an upper bound for |ũ(s|θp)|, and ζp

4 is an upper bound

for max1≤j≤r |w̃j(s|θp)|. Hence,

J0(ζ̄
p) ≤ J0(ζ

p), p ≥ 1. (4.44)

By (4.43) and (4.44), we have

ω ≤ J0(ζ̄
p) ≤ J0(ζ

p), p ≥ 1.

Thus, by applying the well-known Squeeze Theorem and using equation (4.42), we obtain

lim
p→∞

J0(ζ̄
p) = ω. (4.45)

Now, it is clear that

0 ≤ θp
k ≤ T, k = 1, . . . , m, p ≥ 1. (4.46)



80 Optimal control of a switched-capacitor DC-DC power converter

In addition, by Lemma 4.1,

−L1 ≤ ζ̄p
ι ≤ L1, ι = 1, 2, 3, 4, p ≥ 1. (4.47)

Inequalities (4.46) and (4.47) show that the sequence of pairs {(θp, ζ̄p)}∞p=1 ⊂ F is bounded

in R
m × R

4. Hence, by the Bolzano-Weierstrass Theorem (see Chapter 3 of [6]), there

exists a subsequence, which we denote by the original sequence, that converges to a

pair (θ∗, ζ∗) ∈ Θ × R
4. Inclusion (4.43) and Lemma 4.2 imply that

(θ∗, ζ∗) ∈ F . (4.48)

Furthermore, by (4.45),

ω = lim
p→∞

J0(ζ̄
p) = αζ∗

1 + αζ∗
2 + βζ∗

3 + γζ∗
4 = J0(ζ

∗). (4.49)

Inclusion (4.48) and equation (4.49) show that (θ∗, ζ∗) is optimal for Problem Q̃.

4.6 A numerical example

Consider the switched-capacitor DC-DC power converter discussed in [110]. This switched-

capacitor DC-DC power converter has three primary capacitors and four circuit topologies.

A circuit schematic for each topology is shown in Figure 4.1. The circuit parameters are

as follows:

C1 = C2 = C3 = 30.0 × 10−6 F,

R1 = R2 = R3 = 0.02 Ω,

RS = 0.01 Ω,

RL = 75.0 Ω.

The matrices Ak, Bk, Ck, and Dk, k = 1, 2, 3, 4, for this power converter can be derived

readily using Kirchhoff’s laws. For reference, they are listed in Section 4.A.

We assume that the terminal time here is T = 2.0 × 10−5 seconds and that the

minimum duration of each topology is τ = 1.0 × 10−6 seconds. We also assume that

topology switches are accompanied by a 5% voltage leak. Hence,

zk
(

x(t−k )
)

= −0.05x(t−k ), k = 1, 2, 3.

We wrote a Fortran 90 program to solve Problem Q̃ corresponding to this switched-

capacitor DC-DC power converter. This program uses NLPQLP (see [93]) to perform the

optimization and LSODA (see [41]) to solve the differential equations.
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Topology 1 Topology 2

3.6V

3.6V

R1

C1

C2

RL

R3
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C1 C2

C3

Topology 3

R2

R3

RL

Topology 4

3.6V

C1 C2

C3

R2

R3

RL

3.6V

C2R2

RS

RS

C3

R3

C1

R1

RL

Figure 4.1: The circuit topologies for the switched-capacitor DC-DC power converter in
Section 4.6.

We first solved Problem Q̃ by assuming that the power converter starts from rest

(x0 = 0). We then solved Problem Q̃ for subsequent operating periods, using the final

state from the previous problem as the initial state for the next. This was repeated until

it was evident that the power converter had reached its steady state. Figure 4.2 shows

the evolution of the power converter’s output voltage under the optimal switching regime.

Figures 4.3-4.5 show the voltage across each of the capacitors.

As expected, the power converter acts as a voltage halver at the steady state. The optimal

steady state switching instants are

t∗1 = 6.8853 × 10−6,

t∗2 = 7.8853 × 10−6,

t∗3 = 8.8853 × 10−6.
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Figure 4.2: Output voltage profile under the optimal switching regime.
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Figure 4.3: Voltage across capacitor 1.



4.6 A numerical example 83

 0

 0.5

 1

 1.5

 2

0.0 2.0×10-5 4.0×10-5 6.0×10-5 8.0×10-5 1.0×10-4

V
ol

ta
ge

 (
V

)

Time (s)

Figure 4.4: Voltage across capacitor 2.
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Figure 4.5: Voltage across capacitor 3.
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Furthermore, the sensitivities of the output voltage with respect to the load resistance

and input are 1.7927 × 10−4 and 6.6595 × 10−1, respectively. These values, in particular

the sensitivity with respect to the load resistance, are very small and thus the output

generated by the optimal switching regime is insensitive to changes in the load and input.

Also note that the output voltage ripple is 1.1260 × 10−1 V at the steady state.

4.7 Conclusion

In this chapter, we considered the problem of determining optimal switching times for a

switched-capacitor DC-DC power converter. Inspired by the work in [42], we first for-

mulated this problem as a switched system optimal control problem, and then developed

a new computational method for solving it. We also proved that this optimal control

problem has a solution. The main advantage of our new method is that it computes the

output voltage sensitivity via an auxiliary switched system, which can be solved simulta-

neously with the state system. Computing the output voltage sensitivity in this way is

much easier than applying the complex procedure given in [42].
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4.A System matrices in Section 4.6

Let

R0 , 2RS + R1.

Furthermore, define

υ1 = υ3 , R2RLR0 + R2R3R0 + R2RLR3 + R3RLR0

and

υ2 = υ4 , R2RL + R2R3 + RLR3.

The matrices in the dynamic model in Section 4.6 are listed below.

A1(RL) =

















−R2RL − R2R3 − R3RL

C1υ1

RLR3

C1υ1

−R2RL

C1υ1

R3RL

C2υ1

−RLR0 − R3R0 − R3RL

C2υ1

−RLR0

C2υ1

−R2RL

C3υ1

−R0RL

C3υ1

−R2RL − R2R0 − R0RL

C3υ1

















A2(RL) =













0 0 0

0
−RL − R3

C2υ2

−RL

C2υ2

0
−RL

C3υ2

−R2 − RL

C3υ2













A3(RL) =

















−R2RL − R2R3 − R3RL

C1υ3

−R3RL

C1υ3

R2RL

C1υ3

−R3RL

C2υ3

−RLR0 − R3R0 − R3RL

C2υ3

−RLR0

C2υ3

R2RL

C3υ3

−RLR0

C3υ3

−R2R0 − RLR0 − R2RL

C3υ3

















A4(RL) =













0 0 0

0
−RL − R3

C2υ4

−RL

C2υ4

0
−RL

C3υ4

−R2 − RL

C3υ4
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B1(RL) =

[

R2RL + R2R3

C1υ1

RLR0 + R3R0

C2υ1

R2RL + RLR0

C3υ1

]

B2(RL) =

[

0
RL + R3

C2υ2

RL

C3υ2

]

B3(RL) =

[

R3RL

C1υ3

RLR0 + R3R0 + R3RL

C2υ3

RLR0

C3υ3

]

B4(RL) =

[

0
RL + R3

C2υ4

RL

C3υ4

]

C1(RL) =

[−R2R3RL

υ1

−R3RLR0

υ1

R2RLR0

υ1

]

C2(RL) =

[

0
−R3RL

υ2

R2RL

υ2

]

C3(RL) =

[

R2R3RL

υ3

−R3RLR0

υ3

R2R0RL

υ3

]

C4(RL) =

[

0
−R3RL

υ4

R2RL

υ4

]

D1(RL) =
R2R3RL + R3RLR0

υ1

D2(RL) =
R3RL

υ2

D3(RL) =
R3RLR0

υ3

D4(RL) =
R3RL

υ4



CHAPTER 5

Optimal control of a switched system∗

5.1 Introduction

Many systems operate by switching between different subsystems or modes. Such systems

are called switched systems. An example of a switched system is the switched-capacitor

DC-DC power converter considered in Chapter 4, which operates by switching between

several circuit topologies. Other examples of switched systems include robots [10], loco-

motives [44,45], bioconversion reactors [25,26], and hybrid power generators [90,122,124].

The switched system in Chapter 4, which models a switched-capacitor DC-DC power

converter, has linear subsystems. In this chapter, we consider a more general switched

system whose subsystems are nonlinear. Each state jump in this switched system (the

abrupt change in the state that accompanies a subsystem switch) depends not only on

the state immediately before the switch, but also on a set of control variables. These

control variables, and the times at which the subsystem switches occur, should be chosen

to minimize a given cost function.

We saw in Chapter 4 that the time-scaling transformation proposed in [60] is a useful

tool for determining the optimal switching times in a switched system. This transforma-

tion is discussed in detail in [64, 89, 132], where it is applied to switched systems without

state jumps, and in [68,69,125], where it is applied to switched systems with state jumps.

Its main virtue is that it yields a new optimal control problem whose switching times are

fixed points, not decision variables. This new problem is equivalent to, but much easier

to solve than, the original optimal control problem.

In Chapter 4 and [68, 69, 125], the difference between consecutive switching times is

assumed to be strictly positive. In other words, the switching times are distinct. This

requirement is necessary to ensure that the time-scaling transformation does not introduce

“fictitious” state jumps—a situation that occurs when two or more consecutive switching

times coincide. For example, if t1 and t2 coincide, then the state jump at time t = t1 = t2

corresponds to state jumps at both s = 1 and s = 2 in the new time horizon. In this case,

the time-scaling transformation converts a single state jump into two separate state jumps,

∗This chapter is based on [73].
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and therefore does not preserve the structure of the system. Note that this situation only

occurs in switched systems with state jumps; there is no need to assume that the switching

times are distinct if the state trajectory is continuous (see [64, 89, 132]).

In practice, excessive switching between subsystems can adversely affect the overall

system. We already saw in Chapter 4 that changing the circuit topology in a switched-

capacitor DC-DC power converter causes a voltage leak. Thus, it is usually not optimal

to control a switched system by applying every available switch; the optimal strategy

may instead involve “deleting” switches by merging two or more switching times into a

single switch. In this case, some of the optimal switching times coincide, and the methods

discussed in [68, 69, 125] (and Chapter 4) are not appropriate. The aim of this chapter is

to develop a new method that is capable of handling this case.

5.2 Problem formulation

Consider the following switched system with m ≥ 2 subsystems:

ẋ(t) = f k
(

x(t),σ
)

, t ∈ (tk−1, tk), k = 1, . . . , m, (5.1)

and

x(t+k ) =

{

x0, if k = 0, (5.2a)

x(t−k ) + zk
(

x(t−k ),σ
)

, if k ∈ {1, . . . , m − 1} and tk−1 < tk < T , (5.2b)

where t0 , 0, tm , T , and T > 0 is a given terminal time; tk, k = 1, . . . , m − 1, are the

subsystem switching times; x(t) ∈ R
n is the system state at time t; x0 ∈ R

n is a given

initial state; σ ∈ R
r is a vector of control variables; and f k : R

n×R
r → R

n, k = 1, . . . , m,

and zk : R
n × R

r → R
n, k = 1, . . . , m − 1, are given functions.

The subsystem switching times, which are chosen by the system designer, must satisfy

the following constraints:

tk−1 ≤ tk, k = 1, . . . , m. (5.3)

A vector ν = [t1, . . . , tm−1]
T ∈ R

m−1 that satisfies (5.3) is called a switching-time vector.

Let Γ denote the set of all such switching-time vectors.

The control variables are also chosen by the system designer. They are subject to the

following constraints:

aς ≤ σς ≤ bς , ς = 1, . . . , r, (5.4)

where aς and bς , ς = 1, . . . , r, are given real numbers such that aς < bς . A vector σ ∈ R
r

that satisfies (5.4) is called a control vector. Let Ξ denote the set of all such control

vectors. A pair (ν,σ) ∈ Γ × Ξ is called a control pair.

We assume that the following conditions are satisfied.
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Assumption 5.1. The functions f k, k = 1, . . . , m, and zk, k = 1, . . . , m− 1, are contin-

uously differentiable.

Assumption 5.2. There exists a real number L1 > 0 such that

∣

∣f k(v,σ)
∣

∣ ≤ L1(1 + |v|), k = 1, . . . , m, (v,σ) ∈ R
n × Ξ.

The switched system (5.1)-(5.2) is considerably more general than the one in Chapter 4. In

particular, its subsytems are described by nonlinear differential equations, and its state

jumps depend explicitly on the control variables. Furthermore, consecutive switching

times in (5.1)-(5.2) may coincide if necessary (constraint (5.3) is still satisfied if tk−1 = tk).

Notice that if the switching times tk−1 and tk coincide, then (tk−1, tk) = ∅ and the kth

subsystem in (5.1) is effectively deleted. This does not occur in the switched system

in Chapter 4, because inequality (4.1) ensures that the difference between consecutive

switching times is strictly positive (and thus every subsystem is active for a nontrivial

duration of the time horizon).

By merging two or more consecutive switching times into a single switch, the system

designer can remove inefficient/redundant subsystems. This is particularly useful when

the number of switches in the model is an overestimate of the optimal number of switches,

which is often the case in optimal discrete-valued control problems (see [61, 86, 90]).

Given a control pair (ν,σ) ∈ Γ × Ξ, the switched system (5.1)-(5.2) evolves in the

following manner. It begins in state x0 at time t = 0 with subsystem ι(1), where

ι(1) , min
{

k ∈ {1, . . . , m} : tk > 0
}

.

Subsystem ι(1) runs smoothly according to equation (5.1) with k = ι(1) until time t = tι(1).

If tι(1) = T , then the system stops. Otherwise, the state jumps from x(t−ι(1)) to a new

point x(t+ι(1)), which is given by equation (5.2b) with k = ι(1). The system then activates

subsystem ι(2), where

ι(2) , min
{

k ∈ {ι(1) + 1, . . . , m} : tk > tι(1)
}

.

Subsystem ι(2) runs smoothly according to (5.1) with k = ι(2) until t = tι(2), at which

time the state experiences another jump from x(t−ι(2)) to x(t+ι(2)). The system continues

to evolve in this way for the remainder of the time horizon.

Let x(·|ν,σ) denote the solution of the switched system (5.1)-(5.2) corresponding to

the control pair (ν,σ) ∈ Γ × Ξ. Without loss of generality, we assume that this solution

is continuous from the right. Thus,

x(tk|ν,σ) = x(t+k |ν,σ), k = 0, . . . , m − 1.
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Our optimal control problem is defined below.

Problem P. Find a control pair (ν,σ) ∈ Γ × Ξ that minimizes the cost function

G0(ν,σ) ,

m
∑

k=1

∫ tk

tk−1

Lk

(

x(t|ν,σ),σ
)

dt,

where Lk : R
n × R

r → R, k = 1, . . . , m, are given functions, over Γ × Ξ.

To conclude this section, we make the following assumption.

Assumption 5.3. The functions Lk : R
n × R

r → R, k = 1, . . . , m, are continuously

differentiable.

5.3 Time-scaling transformation

Our first step in tackling Problem P is to apply the time-scaling transformation, so that

the subsystem switching times become fixed points in a new time horizon.

Let

Θ ,
{

θ ∈ R
m : θk ≥ 0, k = 1, . . . , m; θ1 + · · · + θm = T

}

.

Furthermore, for each θ ∈ Θ, define a corresponding function µ(·|θ) : [0, m] → R as

follows:

µ(s|θ) ,











⌊s⌋
∑

l=1

θl + θ⌊s⌋+1(s − ⌊s⌋), if s ∈ [0, m),

T, if s = m,

where ⌊·⌋ denotes the floor function. Clearly,

µ(k|θ) =

k
∑

l=1

θl, k = 0, . . . , m. (5.5)

It is easy to see that µ(·|θ) has the following properties:

(a) µ(0|θ) = 0, µ(m|θ) = T , and µ(s|θ) ∈ [0, T ] for each s ∈ [0, m];

(b) µ(·|θ) is a continuous function;

(c) For each k = 1, . . . , m, µ(·|θ) is constant on [k − 1, k] if and only if θk = 0; and

(d) For each k = 1, . . . , m, µ(·|θ) is strictly increasing on [k− 1, k] if and only if θk > 0.

Properties (c) and (d) imply that µ(·|θ) is non-decreasing on each subinterval [k − 1, k],

k = 1, . . . , m. Hence, for each θ ∈ Θ,

µ(k − 1|θ) ≤ µ(k|θ), k = 1, . . . , m.
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By comparing this inequality with (5.3), we see that

ν̃(θ) ,
[

µ(1|θ), . . . , µ(m − 1|θ)
]T ∈ R

m−1 (5.6)

is a valid switching-time vector for Problem P. Thus,

{

ν̃(θ) : θ ∈ Θ
}

⊂ Γ. (5.7)

The reverse inclusion also holds. To see why, let ν ′ = [t′1, . . . , t
′
m−1]

T ∈ Γ and define a

corresponding vector θ′ ∈ R
m as follows:

θ′k = t′k − t′k−1, k = 1, . . . , m,

where t′0 , 0 and t′m , T . Since the components of ν ′ satisfy (5.3), the components of θ′

are non-negative. Moreover,

m
∑

k=1

θ′k =
m

∑

k=1

(t′k − t′k−1) = t′m − t′0 = T.

Hence, θ′ ∈ Θ. Now, by equation (5.5),

µ(k|θ′) =
k

∑

l=1

θ′l =
k

∑

l=1

(t′l − t′l−1) = t′k − t′0 = t′k, k = 1, . . . , m − 1.

It follows immediately that ν ′ = ν̃(θ′). Since ν ′ ∈ Γ was chosen arbitrarily, this implies

that

Γ ⊂
{

ν̃(θ) : θ ∈ Θ
}

. (5.8)

Combining inclusions (5.7) and (5.8) gives

Γ =
{

ν̃(θ) : θ ∈ Θ
}

. (5.9)

This is an important equation; it shows that each switching-time vector is generated by

a corresponding vector in Θ.

Now, for each (θ,σ) ∈ Θ × Ξ, define a new state variable x̃(·|θ,σ) : [0, m] → R
n as

follows:

x̃(s|θ,σ) , x(µ(s|θ)|ν̃(θ),σ), s ∈ [0, m]. (5.10)

Note that equation (5.9) and property (a) of µ(·|θ) ensure that this definition is valid.

We will now derive the dynamics governing the behavior of the new state x̃(·|θ,σ).

To this end, note that

µ̇(s|θ) = θk, s ∈ (k − 1, k), k = 1, . . . , m. (5.11)



92 Optimal control of a switched system

By differentiating (5.10) with respect to s, and then using equations (5.1) and (5.11) and

properties (c) and (d) of µ(·|θ), we obtain

˙̃x(s|θ,σ) = θkf
k
(

x̃(s|θ,σ),σ
)

, s ∈ (k − 1, k), k = 1, . . . , m. (5.12)

Furthermore, it follows from equation (5.2) and property (b) of µ(·|θ) that for each integer

k = 0, . . . , m − 1,

x̃(k+|θ,σ) =











x0, if k = 0, (5.13a)

x̃(k−|θ,σ) + zk
(

x̃(k−|θ,σ),σ
)

, if µ(k − 1|θ) < µ(k|θ) < T , (5.13b)

x̃(k−|θ,σ), otherwise. (5.13c)

We define a new optimal control problem as follows.

Problem P̃. Find a pair (θ,σ) ∈ Θ × Ξ that minimizes the cost function

G̃0(θ,σ) , G0(ν̃(θ),σ) =
m

∑

k=1

∫ k

k−1

θkLk

(

x̃(s|θ,σ),σ
)

ds

over Θ × Ξ.

Problems P and P̃ are equivalent. Indeed, (θ∗,σ∗) ∈ Θ × Ξ is optimal for Problem P̃ if

and only if (ν̃(θ∗),σ∗) ∈ Γ×Ξ is optimal for Problem P. To see why, let (θ∗,σ∗) ∈ Θ×Ξ

be an optimal pair for Problem P̃, and let (ν ′,σ′) ∈ Γ × Ξ be arbitrary but fixed. Then

by equation (5.9), there exists a θ′ ∈ Θ such that ν ′ = ν̃(θ′). We have

G0(ν̃(θ∗),σ∗) = G̃0(θ
∗,σ∗) ≤ G̃0(θ

′,σ′) = G0(ν̃(θ′),σ′) = G0(ν
′,σ′).

Since (ν ′,σ′) ∈ Γ × Ξ was chosen arbitrarily, this inequality shows that (ν̃(θ∗),σ∗) is

optimal for Problem P.

On the other hand, suppose that (ν̃(θ∗),σ∗), where (θ∗,σ∗) ∈ Θ × Ξ, is an optimal

control pair for Problem P. Furthermore, let (θ′,σ′) ∈ Θ×Ξ be arbitrary but fixed. Then

by equation (5.9), ν̃(θ′) ∈ Γ. Therefore,

G̃0(θ
∗,σ∗) = G0(ν̃(θ∗),σ∗) ≤ G0(ν̃(θ′),σ′) = G̃0(θ

′,σ′),

which shows that (θ∗,σ∗) is optimal for Problem P̃.

5.4 Problem approximation

We expect that Problem P̃, having fixed switching times, is easier to solve than Problem P.

However, we will see in this section that Problem P̃ still cannot be solved directly using
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a conventional optimization method.

We first simplify the state jump conditions (5.13). In fact, it turns out that the

condition µ(k|θ) < T in (5.13b) is unnecessary and can be removed. To see why, suppose

that (θ,σ) ∈ Θ × Ξ satisfies

µ(k|θ) = T = µ(m|θ)

for some k ∈ {1, . . . , m − 1}. Then it follows from equation (5.5) that

θl = 0, l = k + 1, . . . , m.

Therefore,

G̃0(θ,σ) =
k

∑

l=1

∫ l

l−1

θlLl

(

x̃(s|θ,σ),σ
)

ds,

which shows that the cost of the pair (θ,σ) does not depend on x̃(s|θ,σ), s ∈ [k, m].

In particular, G̃0(θ,σ) does not depend on whether x̃(k+|θ,σ) is calculated via equa-

tion (5.13b) or via equation (5.13c). Hence, we may remove the condition µ(k|θ) < T

from (5.13b); the state jump conditions (5.13) then become

x̃(k+|θ,σ) =











x0, if k = 0, (5.14a)

x̃(k−|θ,σ) + zk
(

x̃(k−|θ,σ),σ
)

, if µ(k − 1|θ) < µ(k|θ), (5.14b)

x̃(k−|θ,σ), otherwise. (5.14c)

Now, it follows from equation (5.5) that for each k = 1, . . . , m,

µ(k − 1|θ) = µ(k|θ) ⇐⇒ θk = 0.

This implication is clearly equivalent to

µ(k − 1|θ) < µ(k|θ) ⇐⇒ θk > 0.

By using these two implications, we can express (5.14) in the following compact form:

x̃(k+|θ,σ) =

{

x0, if k = 0, (5.15a)

x̃(k−|θ,σ) + ϕ(θk)z
k
(

x̃(k−|θ,σ),σ
)

, if k ∈ {1, . . . , m − 1}, (5.15b)

where ϕ : R → R is defined by

ϕ(η) ,







1, if η > 0,

0, if η = 0.

Henceforth, we will use (5.15) instead of (5.13) and (5.14). Thus, for the remainder of this

chapter, x̃(·|θ,σ) denotes a solution of the switched system consisting of (5.12) and (5.15).
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Equation (5.15) involves ϕ, a discontinuous function. Consequently, the gradient of G̃0

does not exist, and Problem P̃ cannot be solved using a gradient-based nonlinear pro-

gramming algorithm. Note that the gradient formulae in [47, 69, 125], which we used in

Chapter 4 to derive the gradient of Problem Q̃ǫ,ϑ’s cost function, are only applicable when

the state jump conditions are governed by smooth functions.

To proceed, we approximate (5.15) by

x̃(k+|θ,σ) =

{

x0, if k = 0, (5.16a)

x̃(k−|θ,σ) + ϕǫ(θk)z
k
(

x̃(k−|θ,σ),σ
)

, if k ∈ {1, . . . , m − 1}, (5.16b)

where ǫ > 0 and ϕǫ : R → R is defined by

ϕǫ(η) ,







− 2
ǫ3

η3 + 3
ǫ2

η2, if 0 ≤ η ≤ ǫ,

1, if η > ǫ.

Note that ϕǫ is continuously differentiable and

ϕǫ(η) = ϕ(η), η /∈ (0, ǫ).

This smoothing function is illustrated in Figure 5.1.

Let x̃ǫ(·|θ,σ) denote the solution of (5.12) and (5.16) corresponding to (θ,σ) ∈ Θ×Ξ

and ǫ > 0. Furthermore, define

G̃ǫ
0(θ,σ) ,

m
∑

k=1

∫ k

k−1

θkLk

(

x̃ǫ(s|θ,σ),σ
)

ds.

Consider the following optimization problem.

Problem P̃ǫ,ϑ. Find a pair (θ,σ) ∈ Θ × Ξ that minimizes the cost function

J̃ǫ,ϑ(θ,σ) , G̃ǫ
0(θ,σ) + ϑ

m−1
∑

k=1

ϕǫ(θk)
(

1 − ϕǫ(θk)
)

,

where ǫ > 0 and ϑ > 0 are given real numbers, over Θ × Ξ.

Unlike ϕ, the continuous function ϕǫ can assume intermediate values in (0, 1). Hence,

the state jump conditions in Problem P̃ǫ,ϑ do not always reflect the state jump conditions

in Problem P̃. The last term in J̃ǫ,ϑ penalizes “fractional jumps”, so that (5.16) is a

good approximation of (5.15) at the optimal solution of Problem P̃ǫ,ϑ. It is also evident

that ϕǫ → ϕ pointwise on [0,∞) as ǫ → 0. We therefore expect that Problem P̃ǫ,ϑ is

a good approximation for Problem P̃ when ǫ is small and ϑ is large. The relationship

between Problems P̃ and P̃ǫ,ϑ is examined in more detail in Section 5.5.

Since all functions in (5.16) are smooth, the partial derivatives of J̃ǫ,ϑ exist. We now
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Figure 5.1: The smoothing function ϕǫ.

derive the formulae for computing these partial derivatives.

First, for each k = 1, . . . , m, define the Hamiltonian Hk : R × R
n × R

n × Ξ → R as

follows:

Hk(θk,x,λ,σ) , θkLk(x,σ) + θkλ
Tf k(x,σ), (θk,x,λ,σ) ∈ R × R

n × R
n × Ξ.

Now, consider the following auxiliary switched system:

λ̇(s) = −
[

∂Hk

(

θk, x̃
ǫ(s|θ,σ),λ(s),σ

)

∂x

]T

, s ∈ (k − 1, k), k = 1, . . . , m, (5.17)

and

λ(k−) =



















0, if k = m, (5.18a)

λ(k+) + ϕǫ(θk)

[

∂zk
(

x̃ǫ(k−|θ,σ),σ
)

∂x

]T

λ(k+),

if k ∈ {1, . . . , m − 1}, (5.18b)

where (θ,σ) ∈ Θ × Ξ and ǫ > 0. This auxiliary switched system is called the costate

system. Let λǫ(·|θ,σ) denote the solution of the costate system corresponding to the

pair (θ,σ) ∈ Θ × Ξ.

The partial derivatives of J̃ǫ,ϑ are given in the following two theorems.
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Theorem 5.1. For each (θ,σ) ∈ Θ × Ξ,

∂J̃ǫ,ϑ(θ,σ)

∂θk
= ρ̂k,m−1

{

ϕ̇ǫ(θk)
[

λǫ(k+|θ,σ)
]T
zk

(

x̃ǫ(k−|θ,σ),σ
)

+ ϑϕ̇ǫ(θk) − 2ϑϕǫ(θk)ϕ̇ǫ(θk)
}

+

∫ k

k−1

∂Hk

(

θk, x̃
ǫ(s|θ,σ),λǫ(s|θ,σ),σ

)

∂θk
ds, k = 1, . . . , m,

where λǫ(m+|θ,σ) , 0, zm , 0, and

ρ̂k,m−1 ,







1, if k ≤ m − 1,

0, otherwise.

Proof. Let (θ,σ) ∈ Θ×Ξ be arbitrary but fixed. Furthermore, let v : [0, m] → R
n be an

arbitrary piecewise continuous function that is differentiable on (k − 1, k), k = 1, . . . , m.

We will simplify the notation in this proof by writing x̃ǫ(·) instead of x̃ǫ(·|θ,σ).

Using the Hamiltonian, we can write J̃ǫ,ϑ(θ,σ) as

J̃ǫ,ϑ(θ,σ) =
m

∑

l=1

∫ l

l−1

{

Hl

(

θl, x̃
ǫ(s),v(s),σ

)

−
[

v(s)
]T ˙̃xǫ(s)

}

ds + ϑ
m−1
∑

l=1

ϕǫ(θl)
(

1 − ϕǫ(θl)
)

.

Applying integration by parts to the last term in the integrand yields

J̃ǫ,ϑ(θ,σ) =
m

∑

l=1

∫ l

l−1

{

Hl

(

θl, x̃
ǫ(s),v(s),σ

)

+
[

v̇(s)
]T
x̃ǫ(s)

}

ds

+
m−1
∑

l=1

[

v(l+)
]T
x̃ǫ(l+) −

m−1
∑

l=1

[

v(l−)
]T
x̃ǫ(l−) +

[

v(0+)
]T
x0

−
[

v(m−)
]T
x̃ǫ(m−) + ϑ

m−1
∑

l=1

ϕǫ(θl)
(

1 − ϕǫ(θl)
)

.

Substituting the state jump conditions (5.16b) into the above equation gives

J̃ǫ,ϑ(θ,σ) =
m

∑

l=1

∫ l

l−1

{

Hl

(

θl, x̃
ǫ(s),v(s),σ

)

+
[

v̇(s)
]T
x̃ǫ(s)

}

ds

+
m−1
∑

l=1

[

v(l+)
]T

{

x̃ǫ(l−) + ϕǫ(θl)z
l
(

x̃ǫ(l−),σ
)

}

−
m−1
∑

l=1

[

v(l−)
]T
x̃ǫ(l−)

+
[

v(0+)
]T
x0 −

[

v(m−)
]T
x̃ǫ(m−) + ϑ

m−1
∑

l=1

ϕǫ(θl)
(

1 − ϕǫ(θl)
)

. (5.19)
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Now, using the cumulative Kronecker delta ρ̂l,m−1, we can rewrite this equation as follows:

J̃ǫ,ϑ(θ,σ) =

m
∑

l=1

∫ l

l−1

{

Hl

(

θl, x̃
ǫ(s),v(s),σ

)

+
[

v̇(s)
]T
x̃ǫ(s)

}

ds

+

m
∑

l=1

ρ̂l,m−1

[

v(l+)
]T

{

x̃ǫ(l−) + ϕǫ(θl)z
l
(

x̃ǫ(l−),σ
)

}

−
m

∑

l=1

ρ̂l,m−1

[

v(l−)
]T
x̃ǫ(l−) +

[

v(0+)
]T
x0 −

[

v(m−)
]T
x̃ǫ(m−),

+ ϑ
m

∑

l=1

ρ̂l,m−1ϕǫ(θl)
(

1 − ϕǫ(θl)
)

, (5.20)

where v(m+) , v(m). Differentiating equation (5.20) with respect to θk, k = 1, . . . , m,

yields

∂J̃ǫ,ϑ(θ,σ)

∂θk
=

m
∑

l=1

∫ l

l−1

{

∂Hl

(

θl, x̃
ǫ(s),v(s),σ

)

∂x

∂x̃ǫ(s)

∂θk
+

[

v̇(s)
]T ∂x̃ǫ(s)

∂θk

}

ds

+

∫ k

k−1

∂Hk

(

θk, x̃
ǫ(s),v(s),σ

)

∂θk
ds −

m
∑

l=1

ρ̂l,m−1

[

v(l−)
]T ∂x̃ǫ(l−)

∂θk

+
m

∑

l=1

ρ̂l,m−1

[

v(l+)
]T

{

∂x̃ǫ(l−)

∂θk

+ ϕǫ(θl)
∂zl

(

x̃ǫ(l−),σ
)

∂x

∂x̃ǫ(l−)

∂θk

}

+ ρ̂k,m−1ϕ̇ǫ(θk)
[

v(k+)
]T
zk

(

x̃ǫ(k−),σ
)

−
[

v(m−)
]T ∂x̃ǫ(m−)

∂θk

+ ρ̂k,m−1

{

ϑϕ̇ǫ(θk)
(

1 − ϕǫ(θk)
)

− ϑϕǫ(θk)ϕ̇ǫ(θk)
}

. (5.21)

Since v was chosen arbitrarily, we can set v = λǫ(·|θ,σ). Substituting the costate equa-

tions (5.17)-(5.18) into equation (5.21) completes the proof.

Theorem 5.2. For each (θ,σ) ∈ Θ × Ξ,

∂J̃ǫ,ϑ(θ,σ)

∂σς
=

m−1
∑

k=1

ϕǫ(θk)
[

λǫ(k+|θ,σ)
]T ∂zk

(

x̃ǫ(k−|θ,σ),σ
)

∂σς

+

m
∑

k=1

∫ k

k−1

∂Hk

(

θk, x̃
ǫ(s|θ,σ),λǫ(s|θ,σ),σ

)

∂σς
ds, ς = 1, . . . , r.

Proof. Let (θ,σ) ∈ Θ×Ξ be arbitrary but fixed, and let v : [0, m] → R
n be an arbitrary

piecewise continuous function that is differentiable on (k − 1, k), k = 1, . . . , m. As in the

proof of Theorem 5.1, we simplify the notation by writing x̃ǫ(·) instead of x̃ǫ(·|θ,σ).
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First, recall equation (5.19) from the proof of Theorem 5.1:

J̃ǫ,ϑ(θ,σ) =
m

∑

k=1

∫ k

k−1

{

Hk

(

θk, x̃
ǫ(s),v(s),σ

)

+
[

v̇(s)
]T
x̃ǫ(s)

}

ds

+
m−1
∑

k=1

[

v(k+)
]T

{

x̃ǫ(k−) + ϕǫ(θk)z
k
(

x̃ǫ(k−),σ
)

}

−
m−1
∑

k=1

[

v(k−)
]T
x̃ǫ(k−)

+
[

v(0+)
]T
x0 −

[

v(m−)
]T
x̃ǫ(m−) + ϑ

m−1
∑

k=1

ϕǫ(θk)
(

1 − ϕǫ(θk)
)

.

Differentiating this equation with respect to σς , ς = 1, . . . , r, gives

∂J̃ǫ,ϑ(θ,σ)

∂σς
=

m
∑

k=1

∫ k

k−1

{

∂Hk

(

θk, x̃
ǫ(s),v(s),σ

)

∂x

∂x̃ǫ(s)

∂σς
+

[

v̇(s)
]T ∂x̃ǫ(s)

∂σς

}

ds

+
m

∑

k=1

∫ k

k−1

∂Hk

(

θk, x̃
ǫ(s),v(s),σ

)

∂σς
ds −

m−1
∑

k=1

[

v(k−)
]T ∂x̃ǫ(k−)

∂σς

+
m−1
∑

k=1

[

v(k+)
]T

{

∂x̃ǫ(k−)

∂σς
+ ϕǫ(θk)

∂zk
(

x̃ǫ(k−),σ
)

∂x

∂x̃ǫ(k−)

∂σς

}

−
[

v(m−)
]T ∂x̃ǫ(m−)

∂σς
+

m−1
∑

k=1

ϕǫ(θk)
[

v(k+)
]T ∂zk

(

x̃ǫ(k−),σ
)

∂σς
. (5.22)

Setting v = λǫ(·|θ,σ) and substituting the costate equations (5.17)-(5.18) into equa-

tion (5.22) establishes the result.

Theorems 5.1 and 5.2 show that the partial derivatives of J̃ǫ,ϑ can be computed by solving

the state and costate systems. Note that the state system must be solved first, because

its solution appears on the right-hand side of (5.17)-(5.18).

The following algorithm can be used to compute the value and gradient of J̃ǫ,ϑ for a

given pair (θ,σ) ∈ Θ × Ξ.

Algorithm 5.1. Input (θ,σ) ∈ Θ × Ξ.

(i) Obtain x̃ǫ(·|θ,σ) by solving the switched system consisting of (5.12) and (5.16).

(ii) Use x̃ǫ(·|θ,σ) to compute J̃ǫ,ϑ(θ,σ).

(iii) Obtain λǫ(·|θ,σ) by solving the costate system (5.17)-(5.18).

(iv) Use x̃ǫ(·|θ,σ) and λǫ(·|θ,σ) to compute the partial derivatives ∂J̃ǫ,ϑ(θ,σ)/∂θk,

k = 1, . . . , m, and ∂J̃ǫ,ϑ(θ,σ)/∂σς , ς = 1, . . . , r, according to the formulae in Theo-

rems 5.1 and 5.2.

Algorithm 5.1 can be used in conjunction with a gradient-based global optimization tech-

nique, such as the filled function method (see [67, 128–130, 134]), to solve Problem P̃ǫ,ϑ.
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Alternatively, Problem P̃ǫ,ϑ can be solved by repeatedly applying a nonlinear program-

ming algorithm from different starting points, and selecting the best local solution that

is obtained.

It is important to note that J̃ǫ,ϑ is non-convex in general. In fact, since J̃ǫ,ϑ contains a

penalty term that approximates a discontinuous function, Problem P̃ǫ,ϑ likely has many

local solutions. Accordingly, it is imperative that a global optimization strategy, such as

those suggested above, be used to solve Problem P̃ǫ,ϑ.

5.5 Convergence results and algorithm

In the previous section, we introduced Problem P̃ǫ,ϑ and showed that it can be solved

using existing optimization techniques. We will now investigate the relationship between

Problems P̃ and P̃ǫ,ϑ.

We begin by establishing some preliminary results.

Lemma 5.1. There exists a real number L2 > 0 such that

∣

∣x̃ǫ(s|θ,σ)
∣

∣ ≤ L2, s ∈ [0, m], (θ,σ) ∈ Θ × Ξ, ǫ > 0, (5.23)

and
∣

∣λǫ(s|θ,σ)
∣

∣ ≤ L2, s ∈ [0, m], (θ,σ) ∈ Θ × Ξ, ǫ > 0. (5.24)

Proof. Let ǫ > 0 and (θ,σ) ∈ Θ × Ξ be arbitrary but fixed. It follows from (5.12)

and (5.16a) that

x̃ǫ(s|θ,σ) = x0 +

∫ s

0

θ1f
1
(

x̃ǫ(η|θ,σ),σ
)

dη, s ∈ [0, 1).

Taking the norm of both sides gives

∣

∣x̃ǫ(s|θ,σ)
∣

∣ ≤
∣

∣x0
∣

∣ +

∫ s

0

T
∣

∣f 1(x̃ǫ(η|θ,σ),σ)
∣

∣dη, s ∈ [0, 1).

By using Assumption 5.2, we obtain

∣

∣x̃ǫ(s|θ,σ)
∣

∣ ≤
∣

∣x0
∣

∣ + L1T +

∫ s

0

L1T
∣

∣x̃ǫ(η|θ,σ)
∣

∣dη, s ∈ [0, 1).

Thus, by Gronwall’s Lemma,

∣

∣x̃ǫ(s|θ,σ)
∣

∣ ≤ α1 exp(L1T ), s ∈ [0, 1), (5.25)

where

α1 ,
∣

∣x0
∣

∣ + L1T.
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In particular,
∣

∣x̃ǫ(1−|θ,σ)
∣

∣ ≤ α1 exp(L1T ). (5.26)

Now, define the set

A ,
{

v ∈ R
n : |v| ≤ α1 exp(L1T )

}

.

Since A and Ξ are compact sets, it follows from Assumption 5.1 that there exists a real

number α2 > 0 such that

sup
(v,w)∈A×Ξ

∣

∣z1(v,w)
∣

∣ ≤ α2.

By taking the norm of both sides of (5.16b) (with k = 1) and then using (5.26), we obtain

∣

∣x̃ǫ(1|θ,σ)
∣

∣ =
∣

∣x̃ǫ(1+|θ,σ)
∣

∣ ≤
∣

∣x̃ǫ(1−|θ,σ)
∣

∣ +
∣

∣ϕǫ(θ1)
∣

∣ ·
∣

∣z1(x̃ǫ(1−|θ,σ),σ)
∣

∣

≤ α1 exp(L1T ) + α2. (5.27)

Since ǫ > 0 and (θ,σ) ∈ Θ×Ξ were chosen arbitrarily, inequalities (5.25) and (5.27) show

that

∣

∣x̃ǫ(s|θ,σ)
∣

∣ ≤ α1 exp(L1T ) + α2, s ∈ [0, 1], (θ,σ) ∈ Θ × Ξ, ǫ > 0.

The arguments used to establish this inequality can be repeated for s ∈ [1, 2], s ∈ [2, 3],

and so on for the remainder of the time horizon, which ultimately proves inequality (5.23).

Inequality (5.24) is proved in a similar manner.

Note that Lemma 5.1 can be restated as follows: the family of functions

{

x̃ǫ(·|θ,σ), λǫ(·|θ,σ) : (θ,σ) ∈ Θ × Ξ, ǫ > 0
}

is equibounded on [0, m].

Our next result is proved below.

Lemma 5.2. There exists a function γ : (0,∞) → (0,∞) with the following properties:

(i) γ is of order O(1/ǫ); and

(ii) For all θ′, θ′′ ∈ Θ and σ ∈ Ξ,

∣

∣G̃ǫ
0(θ

′,σ) − G̃ǫ
0(θ

′′,σ)
∣

∣ ≤ γ(ǫ)
∣

∣θ′ − θ′′
∣

∣.

Proof. Let

Ψ ,
{

v ∈ R
n : |v| ≤ L2

}

,

where L2 is as defined in Lemma 5.1. It follows from Assumptions 5.1 and 5.3 that we
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can find two real numbers β1 > 0 and β2 > 0 such that

sup
{

∣

∣Lk(v,σ) + λTf k(v,σ)
∣

∣ : (v,λ,σ) ∈ Ψ × Ψ × Ξ, k ∈ {1, . . . , m}
}

≤ β1 (5.28)

and

sup
{

∣

∣zk(v,σ)
∣

∣ : (v,σ) ∈ Ψ × Ξ, k ∈ {1, . . . , m − 1}
}

≤ β2. (5.29)

Define the function γ : (0,∞) → (0,∞) as follows:

γ(ǫ) ,
√

m

[

β1 +
3β2L2

2ǫ

]

, ǫ > 0.

Clearly, γ is of order O(1/ǫ). It remains to show that γ also satisfies property (ii).

Let θ′, θ′′ ∈ Θ, σ ∈ Ξ, and ǫ > 0 be arbitrary but fixed. By Taylor’s Theorem, there

exists a θ̄ ∈ Θ such that

G̃ǫ
0(θ

′,σ) − G̃ǫ
0(θ

′′,σ) =
∂G̃ǫ

0(θ̄,σ)

∂θ
(θ′ − θ′′). (5.30)

By Theorem 5.1, we have

∂G̃ǫ
0(θ̄,σ)

∂θk
= ρ̂k,m−1ϕ̇ǫ(θ̄k)

[

λǫ(k+|θ̄,σ)
]T
zk

(

x̃ǫ(k−|θ̄,σ),σ
)

+

∫ k

k−1

∂Hk

(

θ̄k, x̃
ǫ(s|θ̄,σ),λǫ(s|θ̄,σ),σ

)

∂θk
ds, k = 1, . . . , m. (5.31)

Taking the norm of both sides in (5.31) yields

∣

∣

∣

∣

∂G̃ǫ
0(θ̄,σ)

∂θk

∣

∣

∣

∣

≤
∣

∣ϕ̇ǫ(θ̄k)
∣

∣ ·
∣

∣λǫ(k+|θ̄,σ)
∣

∣ ·
∣

∣zk(x̃ǫ(k−|θ̄,σ),σ)
∣

∣

+

∫ k

k−1

∣

∣

∣

∣

∂Hk

(

θ̄k, x̃
ǫ(s|θ̄,σ),λǫ(s|θ̄,σ),σ

)

∂θk

∣

∣

∣

∣

ds, k = 1, . . . , m.

Therefore, by Lemma 5.1 and (5.28)-(5.29),

∣

∣

∣

∣

∂G̃ǫ
0(θ̄,σ)

∂θk

∣

∣

∣

∣

≤ β1 + β2L2

∣

∣ϕ̇ǫ(θ̄k)
∣

∣, k = 1, . . . , m. (5.32)

It is easy to see that
∣

∣ϕ̇ǫ(η)
∣

∣ = ϕ̇ǫ(η) ≤ 3

2ǫ
, η ≥ 0.

Hence, (5.32) becomes

∣

∣

∣

∣

∂G̃ǫ
0(θ̄,σ)

∂θk

∣

∣

∣

∣

≤ β1 +
3β2L2

2ǫ
, k = 1, . . . , m.



102 Optimal control of a switched system

Therefore,
∣

∣

∣

∣

∂G̃ǫ
0(θ̄,σ)

∂θ

∣

∣

∣

∣

≤
√

m

[

β1 +
3β2L2

2ǫ

]

= γ(ǫ). (5.33)

Finally, by taking the norm of (5.30) and then using (5.33), we obtain

∣

∣G̃ǫ
0(θ

′,σ) − G̃ǫ
0(θ

′′,σ)
∣

∣ ≤ γ(ǫ)
∣

∣θ′ − θ′′
∣

∣,

as required.

Now, define

ǫ̂ , min
{

1, T/m2
}

.

For the remainder of this section, (θǫ,ϑ,∗,σǫ,ϑ,∗) ∈ Θ × Ξ denotes an optimal solution of

Problem P̃ǫ,ϑ.

Theorem 5.3. For each ǫ ∈ (0, ǫ̂), there exists a corresponding real number ϑ(ǫ) > 0 such

that if ϑ > ϑ(ǫ), then

θǫ,ϑ,∗
k <

ǫ3/2

2
or θǫ,ϑ,∗

k > ǫ − ǫ3/2

2
, k = 1, . . . , m − 1. (5.34)

Proof. Let ǫ ∈ (0, ǫ̂). Furthermore, let (θǫ,∗,σǫ,∗) ∈ Θ × Ξ denote a minimizer of G̃ǫ
0

on Θ × Ξ. Then

G̃ǫ
0(θ

ǫ,∗,σǫ,∗) ≤ G̃ǫ
0(θ

ǫ,ϑ,∗,σǫ,ϑ,∗), ϑ > 0.

By appending the penalty term in J̃ǫ,ϑ to both sides of this inequality, we obtain

G̃ǫ
0(θ

ǫ,∗,σǫ,∗) + ϑ
m−1
∑

k=1

ϕǫ(θ
ǫ,ϑ,∗
k )

(

1 − ϕǫ(θ
ǫ,ϑ,∗
k )

)

≤ J̃ǫ,ϑ(θ
ǫ,ϑ,∗,σǫ,ϑ,∗), ϑ > 0.

Thus,

G̃ǫ
0(θ

ǫ,∗,σǫ,∗) + ϑ

m−1
∑

k=1

ϕǫ(θ
ǫ,ϑ,∗
k )

(

1 − ϕǫ(θ
ǫ,ϑ,∗
k )

)

≤ J̃ǫ,ϑ(θ̄, σ̄), ϑ > 0, (5.35)

where σ̄ ∈ Ξ and

θ̄k ,
T

m
, k = 1, . . . , m.

Since ǫ < ǫ̂ < T/m,

ϕǫ(θ̄k) = 1, k = 1, . . . , m − 1.

Thus, the penalty term in J̃ǫ,ϑ(θ̄, σ̄) vanishes and so inequality (5.35) becomes

G̃ǫ
0(θ

ǫ,∗,σǫ,∗) + ϑ

m−1
∑

k=1

ϕǫ(θ
ǫ,ϑ,∗
k )

(

1 − ϕǫ(θ
ǫ,ϑ,∗
k )

)

≤ G̃ǫ
0(θ̄, σ̄), ϑ > 0.
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Rearranging this inequality gives

ϕǫ(θ
ǫ,ϑ,∗
k )

(

1− ϕǫ(θ
ǫ,ϑ,∗
k )

)

≤ G̃ǫ
0(θ̄, σ̄) − G̃ǫ

0(θ
ǫ,∗,σǫ,∗)

ϑ
, k = 1, . . . , m− 1, ϑ > 0. (5.36)

Since (θǫ,∗,σǫ,∗) is a minimizer of G̃ǫ
0, the right-hand side of (5.36) is non-negative. Hence,

it is clear that increasing ϑ forces the penalty term on the left-hand side to approach zero.

Thus, it follows that (5.34) is satisfied when ϑ is sufficiently large.

Theorem 5.4. Let ǫ ∈ (0, ǫ̂) and ϑ > ϑ(ǫ), where ϑ(ǫ) is as defined in Theorem 5.3.

Then there exists a corresponding vector θ̂ǫ,ϑ ∈ Θ such that

∣

∣θ̂ǫ,ϑ − θǫ,ϑ,∗
∣

∣ ≤ (m − 1)ǫ3/2 (5.37)

and

ϕǫ(θ̂
ǫ,ϑ
k ) = ϕ(θ̂ǫ,ϑ

k ), k = 1, . . . , m − 1. (5.38)

Proof. Define

Gǫ,ϑ
1 ,

{

k ∈ {1, . . . , m − 1} : 0 ≤ θǫ,ϑ,∗
k < ǫ3/2/2

}

(5.39)

and

Gǫ,ϑ
2 ,

{

k ∈ {1, . . . , m − 1} : ǫ − ǫ3/2/2 < θǫ,ϑ,∗
k ≤ ǫ

}

. (5.40)

Since ǫ < ǫ̂ ≤ 1,
ǫ3/2

2
< ǫ − ǫ3/2

2
.

Thus, the index sets Gǫ,ϑ
1 and Gǫ,ϑ

2 are disjoint.

Now, let κ(ǫ, ϑ) ∈ {1, . . . , m} be such that

θǫ,ϑ,∗
κ(ǫ,ϑ) = max

1≤k≤m
θǫ,ϑ,∗

k .

Since θǫ,ϑ,∗ ∈ Θ,

θǫ,ϑ,∗
κ(ǫ,ϑ) ≥

T

m
> ǫ̂ > ǫ. (5.41)

Therefore,

κ(ǫ, ϑ) /∈ Gǫ,ϑ
1 ∪ Gǫ,ϑ

2 .

Now, for each k = 1, . . . , m, define

θ̂ǫ,ϑ
k ,































0, if k ∈ Gǫ,ϑ
1 ,

ǫ, if k ∈ Gǫ,ϑ
2 ,

θǫ,ϑ,∗
k − αǫ,ϑ, if k = κ(ǫ, ϑ),

θǫ,ϑ,∗
k , otherwise,
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where

αǫ,ϑ ,
∑

k∈Gǫ,ϑ
2

(

ǫ − θǫ,ϑ,∗
k

)

−
∑

k∈Gǫ,ϑ
1

θǫ,ϑ,∗
k .

We will show that

θ̂ǫ,ϑ =
[

θ̂ǫ,ϑ
1 , . . . , θ̂ǫ,ϑ

m

]T ∈ R
m

is an element of Θ that satisfies (5.37) and (5.38).

First, it follows from (5.39) and (5.40) that

|αǫ,ϑ| <
(m − 1)ǫ3/2

2
. (5.42)

By using (5.41) and (5.42), we obtain

θ̂ǫ,ϑ
κ(ǫ,ϑ) = θǫ,ϑ,∗

κ(ǫ,ϑ) − αǫ,ϑ >
T

m
− (m − 1)ǫ3/2

2
>

T

m
− (m − 1)ǫ3/2. (5.43)

Since ǫ < ǫ̂,

mǫ <
T

m
. (5.44)

Substituting (5.44) into (5.43) gives

θ̂ǫ,ϑ
κ(ǫ,ϑ) > mǫ − (m − 1)ǫ3/2 = ǫ + (m − 1)(ǫ − ǫ3/2) > ǫ, (5.45)

which shows that θ̂ǫ,ϑ
κ(ǫ,ϑ) is non-negative. The other components of θ̂ǫ,ϑ are clearly non-

negative. Moreover,

m
∑

k=1

θ̂ǫ,ϑ
k =

∑

k∈Gǫ,ϑ
2

ǫ + θǫ,ϑ,∗
κ(ǫ,ϑ) − αǫ,ϑ +

∑

k/∈Gǫ,ϑ
1 ∪Gǫ,ϑ

2
k 6=κ(ǫ,ϑ)

θǫ,ϑ,∗
k =

m
∑

k=1

θǫ,ϑ,∗
k = T. (5.46)

Thus, θ̂ǫ,ϑ ∈ Θ.

Now,
∣

∣θ̂ǫ,ϑ − θǫ,ϑ,∗
∣

∣

2
= α2

ǫ,ϑ +
∑

k∈Gǫ,ϑ
1

(

θǫ,ϑ,∗
k

)2
+

∑

k∈Gǫ,ϑ
2

(

ǫ − θǫ,ϑ,∗
k

)2
.

Hence, using (5.39), (5.40), and (5.42), we obtain

∣

∣θ̂ǫ,ϑ − θǫ,ϑ,∗
∣

∣

2
<

(m − 1)2ǫ3

4
+

∑

k∈Gǫ,ϑ
1 ∪Gǫ,ϑ

2

ǫ3

4
≤ (m − 1)2ǫ3

4
+

(m − 1)ǫ3

4
< (m − 1)2ǫ3,

which proves (5.37).

Clearly,

ϕǫ(θ̂
ǫ,ϑ
k ) = ϕ(θ̂ǫ,ϑ

k ), k ∈ Gǫ,ϑ
1 ∪ Gǫ,ϑ

2 . (5.47)
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Furthermore, by inequality (5.45),

ϕǫ(θ̂
ǫ,ϑ
k ) = ϕ(θ̂ǫ,ϑ

k ), k = κ(ǫ, ϑ). (5.48)

Finally, since ϑ was chosen to ensure that (5.34) holds,

θǫ,ϑ,∗
k > ǫ, k ∈ {1, . . . , m − 1} \

(

Gǫ,ϑ
1 ∪ Gǫ,ϑ

2

)

.

Therefore,

ϕǫ(θ̂
ǫ,ϑ
k ) = ϕǫ(θ

ǫ,ϑ,∗
k ) = 1 = ϕ(θ̂ǫ,ϑ

k ), k ∈ {1, . . . , m − 1} \ Ĝǫ,ϑ, (5.49)

where

Ĝǫ,ϑ , {κ(ǫ, ϑ)} ∪ Gǫ,ϑ
1 ∪ Gǫ,ϑ

2 .

Equations (5.47)-(5.49) prove equation (5.38).

Note that the proof of Theorem 5.4 is constructive: the vector θ̂ǫ,ϑ =
[

θ̂ǫ,ϑ
1 , . . . , θ̂ǫ,ϑ

m

]T
can

be computed from a solution of Problem P̃ǫ,ϑ via the following formula:

θ̂ǫ,ϑ
k ,































0, if k ∈ Gǫ,ϑ
1 ,

ǫ, if k ∈ Gǫ,ϑ
2 ,

θǫ,ϑ,∗
k − αǫ,ϑ, if k = κ(ǫ, ϑ),

θǫ,ϑ,∗
k , otherwise,

(5.50)

where

Gǫ,ϑ
1 =

{

k ∈ {1, . . . , m − 1} : 0 ≤ θǫ,ϑ,∗
k < ǫ3/2/2

}

,

Gǫ,ϑ
2 =

{

k ∈ {1, . . . , m − 1} : ǫ − ǫ3/2/2 < θǫ,ϑ,∗
k ≤ ǫ

}

,

κ(ǫ, ϑ) = arg max
1≤k≤m

θǫ,ϑ,∗
k ,

and

αǫ,ϑ =
∑

k∈Gǫ,ϑ
2

(

ǫ − θǫ,ϑ,∗
k

)

−
∑

k∈Gǫ,ϑ
1

θǫ,ϑ,∗
k .

(Recall that Gǫ,ϑ
1 and Gǫ,ϑ

2 are disjoint and κ(ǫ, ϑ) /∈ Gǫ,ϑ
1 ∪ Gǫ,ϑ

2 .)

The next theorem is the main result of this section.

Theorem 5.5. Suppose that (θ∗,σ∗) ∈ Θ × Ξ is an optimal solution of Problem P̃. For

each ǫ ∈ (0, ǫ̂), let ϑ be sufficiently large so that (5.34) is satisfied (Theorem 5.3 guarantees

that this can always be done), and let θ̂ǫ,ϑ be as defined in Theorem 5.4. Then

lim
ǫ→0

G̃0(θ̂
ǫ,ϑ,σǫ,ϑ,∗) = G̃0(θ

∗,σ∗).
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Proof. Define

ǭ , min
1≤k≤m−1

{ θ∗k : θ∗k > 0 }.

Let ǫ < min(ǫ̂, ǭ) be arbitrary. Then for each k = 1, . . . , m − 1, either

θ∗k > ǫ

or

θ∗k = 0.

Hence,

ϕǫ(θ
∗
k) = ϕ(θ∗k), k = 1, . . . , m − 1. (5.51)

Consequently, when (θ,σ) = (θ∗,σ∗), equations (5.15) and (5.16) coincide. This implies

that

x̃(s|θ∗,σ∗) = x̃ǫ(s|θ∗,σ∗), s ∈ [0, m],

and

G̃0(θ
∗,σ∗) = G̃ǫ

0(θ
∗,σ∗). (5.52)

Equation (5.51) also shows that

ϕǫ(θ
∗
k) ∈ {0, 1}, k = 1, . . . , m − 1. (5.53)

From equations (5.52) and (5.53), we obtain

J̃ǫ,ϑ(θ
∗,σ∗) = G̃ǫ

0(θ
∗,σ∗) = G̃0(θ

∗,σ∗). (5.54)

Now, since the penalty term in J̃ǫ,ϑ is non-negative and the pair (θǫ,ϑ,∗,σǫ,ϑ,∗) is optimal

for Problem P̃ǫ,ϑ, we have

G̃ǫ
0(θ

ǫ,ϑ,∗,σǫ,ϑ,∗) ≤ J̃ǫ,ϑ(θ
ǫ,ϑ,∗,σǫ,ϑ,∗) ≤ J̃ǫ,ϑ(θ

∗,σ∗).

Thus, by (5.54),

G̃ǫ
0(θ

ǫ,ϑ,∗,σǫ,ϑ,∗) ≤ J̃ǫ,ϑ(θ
∗,σ∗) = G̃0(θ

∗,σ∗). (5.55)

Furthermore, it follows from equation (5.38) that

x̃(s|θ̂ǫ,ϑ,σǫ,ϑ,∗) = x̃ǫ(s|θ̂ǫ,ϑ,σǫ,ϑ,∗), s ∈ [0, m],

and

G̃0(θ̂
ǫ,ϑ,σǫ,ϑ,∗) = G̃ǫ

0(θ̂
ǫ,ϑ,σǫ,ϑ,∗). (5.56)
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We now combine inequality (5.55) with equation (5.56) to obtain

0 ≤ G̃0(θ̂
ǫ,ϑ,σǫ,ϑ,∗) − G̃0(θ

∗,σ∗) ≤ G̃ǫ
0(θ̂

ǫ,ϑ,σǫ,ϑ,∗) − G̃ǫ
0(θ

ǫ,ϑ,∗,σǫ,ϑ,∗).

(The lower bound is zero here because (θ∗,σ∗) is a minimizer of G̃0.) Thus, by Lemma 5.2,

0 ≤ G̃0(θ̂
ǫ,ϑ,σǫ,ϑ,∗) − G̃0(θ

∗,σ∗) ≤ γ(ǫ)
∣

∣θ̂ǫ,ϑ − θǫ,ϑ,∗
∣

∣.

Applying inequality (5.37) yields

0 ≤ G̃0(θ̂
ǫ,ϑ,σǫ,ϑ,∗) − G̃0(θ

∗,σ∗) ≤ (m − 1)ǫ3/2γ(ǫ), (5.57)

Since γ is of order O(1/ǫ), inequality (5.57) implies that

G̃0(θ̂
ǫ,ϑ,σǫ,ϑ,∗) − G̃0(θ

∗,σ∗) = O(
√

ǫ).

Thus,

lim
ǫ→0

G̃0(θ̂
ǫ,ϑ,σǫ,ϑ,∗) = G̃0(θ

∗,σ∗),

as required.

Theorem 5.5 suggests the following method for solving Problem P̃. First, choose an

initial ǫ ∈ (0, ǫ̂) and solve Problem P̃ǫ,ϑ for increasing values of ϑ > 0 until (5.34) is

satisfied (Theorem 5.3 ensures that Problem P̃ǫ,ϑ only needs to be solved a finite number

of times here). Second, construct θ̂ǫ,ϑ from θǫ,ϑ,∗ using equation (5.50). Third, decrease ǫ

and repeat the first two steps. We eventually terminate this loop when ǫ is sufficiently

small, taking (θ̂ǫ,ϑ,σǫ,ϑ,∗) as an approximate solution of Problem P̃.

The method described above is summarized in the following algorithm.

Algorithm 5.2. Input ǫmin ∈ (0, ǫ̂), ǫ0 ∈ (ǫmin, ǫ̂), ϑmax > 0, ϑ0 ∈ (0, ϑmax), and a

pair (θ0,σ0) ∈ Θ × Ξ.

(i) Initialize ǫ0 → ǫ and ϑ0 → ϑ.

(ii) Using (θ0,σ0) as the initial guess, solve Problem P̃ǫ,ϑ. Let (θǫ,ϑ,∗,σǫ,ϑ,∗) denote the

solution obtained.

(iii) If θǫ,ϑ,∗ satisfies condition (5.34), then construct θ̂ǫ,ϑ using equation (5.50) and go

to Step (iv). Otherwise, go to Step (v).

(iv) If ǫ > ǫmin, then set ǫ/10 → ǫ and (θ̂ǫ,ϑ,σǫ,ϑ,∗) → (θ0,σ0) and go to Step (ii).

Otherwise, stop; take (θ̂ǫ,ϑ,σǫ,ϑ,∗) as the optimal solution of Problem P̃.

(v) If ϑ < ϑmax, then set 10ϑ → ϑ and go to Step (ii). Otherwise, stop; ϑ is too large

(in this case, Problem P̃ is probably ill-posed).
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5.6 A numerical example

Consider the switched-capacitor DC-DC power converter discussed in Section 4.6. Recall

that this switched-capacitor DC-DC power converter has three capacitors and four circuit

topologies. For each i = 1, 2, 3, let xi(t) denote the voltage across the ith capacitor at

time t. Furthermore, let y(t) denote the output voltage at time t. We assume that the

DC input voltage is 3.6 V and the load resistance is 75 Ω. The other circuit parameters

are as follows:

R1 = R2 = R3 = 0.02 Ω,

RS = 0.01 Ω,

C1 = 30 × 10−5 F,

C2 = 45 × 10−5 F,

C3 = 60 × 10−5 F.

This power converter only has three distinct circuit topologies (topologies 2 and 4 are the

same). For each k = 1, 2, 3, the kth circuit topology is modeled by the following dynamics:

ẋ(t) = Akx(t) + 3.6Bk,

y(t) = Ckx(t) + 3.6Dk,

where Ak ∈ R
3×3, Bk ∈ R

3×1, Ck ∈ R
1×3, and Dk ∈ R are given in Section 4.A. The

output voltage is regulated to the desired 1.8 V (half of the 3.6 V input) by switching

between these topologies in an appropriate manner.

An operating schedule for the power converter specifies the order in which the topolo-

gies are operated (the switching sequence) and the times at which the topologies are

switched (the switching times). Since the ideal output is 1.8 V, the operating schedule

should be chosen to minimize
∫ T

0

(y(t) − 1.8)2dt, (5.58)

where T , 1.0 × 10−4 is the terminal time.

We use the method suggested in [89] and model the power converter by the following

dynamics:

ẋ(t) = Aιkx(t) + 3.6Bιk , t ∈ (tk−1, tk), k = 1, . . . , 9, (5.59)

y(t) = Cιkx(t) + 3.6Dιk , t ∈ [tk−1, tk), k = 1, . . . , 9, (5.60)

where t0 , 0, t9 , 1.0×10−4, and tk, k = 1, . . . , 8, are switching times such that tk−1 ≤ tk;
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and

ιk , mod(k − 1, 3) + 1, k = 1, . . . , 9.

Equations (5.59)-(5.60) can replicate any operating schedule. For example, if

0 = t0 = t1 < t2 = t3 < t4 = t5 < t6 = t7 = t8 = t9 = 1.0 × 10−4,

then the switching sequence is {2, 1, 3} (that is, operate Topology 2, then Topology 1,

then Topology 3) and the switching times are t2 = t3 and t4 = t5. Thus, it is clear

that unnecessary subsystems in (5.59)-(5.60) can be removed by combining some of the

switches.

We assume that each capacitor loses 10% of its voltage when the circuit topology is

changed. Hence, we have the following state jump conditions:

x(t+k ) =

{

[0, 0, 0]T , if k = 0, (5.61a)

0.9x(t−k ), if k ∈ {1, . . . , 8} and tk−1 < tk < 1.0 × 10−4. (5.61b)

The optimal control problem is as follows: choose the switching times tk, k = 1, . . . , 8,

to minimize (5.58) subject to the switched system (5.59)-(5.61). We solved this problem

by implementing Algorithm 5.2 in Fortran 90. In this implementation, Problem P̃ǫ,ϑ is

solved by starting NLPQLP (see [93]) from ten random points, where Algorithm 5.1 is

used to construct the required gradients. LSODA (see [41]) is used to solve the governing

switched system numerically. Initially, ǫ = 0.9ǫ̂ (where m = 9 and T = 1.0 × 10−4)

and ϑ = 2.0. We terminate Algorithm 5.2 when ǫ < 9ǫ̂/104.

The optimal switching times in (5.59)-(5.61) are

t∗0 = t∗1 = 0.0,

t∗2 = t∗3 = t∗4 = 1.0122 × 10−6,

t∗5 = t∗6 = 9.4824 × 10−6,

t∗7 = 1.9633 × 10−5,

t∗8 = t∗9 = 1.0 × 10−4.

This solution eliminates subsystems {1, 3, 4, 6, 9}. Hence, the optimal switching sequence

is {2, 1, 2}. Figure 5.2 shows the voltage across the load and the capacitors when the

optimal operating schedule is applied.

5.7 Conclusion

In this chapter, we considered an optimal control problem involving a nonlinear switched

system with state jumps. The most interesting aspect of this problem is that apply-
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Figure 5.2: The output and state voltages corresponding to the optimal operating sched-
ule.

ing the time-scaling transformation yields an optimal control problem with discontinuous

state jump conditions. These discontinuities prevent the direct use of a gradient-based

optimization method. Instead, we proposed an approximation scheme whereby the discon-

tinuous state jumps are approximated by smooth ones. This yields a class of approximate

optimization problems, each of which can be solved using a gradient-based optimization

method. We also proved rigorously that this approximation scheme converges.



CHAPTER 6

State-delay identification via optimal control

techniques∗

6.1 Introduction

A mathematical model for a system is typically constructed as follows. First, the system

is embedded within a family of systems having a common structure, and a general model

is designed to encapsulate this structure. Second, the general model is tailored to the

specific system of interest by choosing appropriate values for the model parameters. This

second step is called parameter identification. Parameter identification is usually done by

comparing the system output observed in practice with the system output predicted by

the model, and then adjusting the parameters accordingly.

In this chapter, we consider a parameter identification problem for a nonlinear delay-

differential system. This system is quite different from the dynamic systems considered

in Chapters 2-5: at each time t, its instantaneous rate of change depends not only on its

current state, but also on its state at times t− τi, i = 1, . . . , r, where each τi is a so-called

state-delay. These state-delays are model parameters that need to be identified.

Many systems—for example, predator-prey systems [131], continuously-stirred tank

reactors [13], zinc production systems [116,117], and aerospace systems [112]—have delays

in their dynamics. Such delays are usually not known exactly and therefore need to be

estimated. The estimates of the delays should be chosen so that the discrepancy between

predicted and observed system output is as small as possible. Accordingly, in this chapter,

we formulate the problem of identifying state-delays as an optimal control problem in

which the state-delays are control variables and the cost function penalizes the squared

difference between predicted and observed system output.

This optimal control problem is very unusual: the state-delays in its governing delay-

differential system are not known in advance, and are instead control variables to be

determined optimally. Furthermore, the state-delays influence the problem’s cost function

implicitly through the delay-differential system. Thus, determining the gradient of the

∗This chapter is based on [70].
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cost function is a very difficult task. In this chapter, we will show that the cost function’s

gradient can be computed by solving a set of auxiliary delay-differential systems. This is

a fundamental result; it enables one to solve the optimal control problem using a standard

nonlinear programming algorithm, and thereby obtain accurate estimates for the state-

delays.

We emphasize that this approach to state-delay identification is applicable to both

linear and nonlinear delay-differential systems. In contrast, most previous work on delay

identification has focussed on linear systems—see, for example, [81,82,109] and the refer-

ences cited therein. Indeed, we are not aware of any existing identification methods that

are capable of dealing with the broad class of nonlinear delay systems considered here.

Thus, this chapter demonstrates that optimal control techniques can be powerful tools for

tackling parameter identification problems—especially those with nonlinear dynamics.

6.2 Problem formulation

Consider the following dynamic model:

ẋ(t) =

r
∑

i=1

f i
(

x(t),x(t − τi)
)

, t ∈ (0, T ], (6.1)

x(t) = z(t), t ∈ [−τ̄ , 0], (6.2)

and

y(t) = g(x(t)), t ∈ [−τ̄ , T ], (6.3)

where T > 0 and τ̄ > 0 are given real numbers; x(t) ∈ R
n is the system state at

time t; y(t) ∈ R
m is the system output at time t; τi, i = 1, . . . , r, are unknown state-

delays that need to be identified; and f i : R
n × R

n → R
n, i = 1, . . . , r, z : R → R

n,

and g : R
n → R

m are given functions.

We assume that the following conditions are satisfied.

Assumption 6.1. The functions f i, i = 1, . . . , r, and g are continuously differentiable.

Assumption 6.2. The function z is twice continuously differentiable.

Assumption 6.3. There exists a real number L1 > 0 such that

∣

∣f i(v,w)
∣

∣ ≤ L1(1 + |v| + |w|), (v,w) ∈ R
n × R

n, i = 1, . . . , r.

Suppose that the system modeled by (6.1)-(6.3) has been observed (for example, in an

experiment) at times tj , j = 1, . . . , p. For each j = 1, . . . , p, let ŷj ∈ R
m denote the system

output measured at time t = tj. Our goal is to use the experimental data {(tj, ŷj)}p
j=1 to

estimate the state-delays in (6.1)-(6.3).
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We assume that each state-delay is non-negative. Thus,

τi ≥ 0, i = 1, . . . , r. (6.4)

We also assume that each state-delay is bounded above by τ̄ :

τi ≤ τ̄ , i = 1, . . . , r. (6.5)

A vector τ ∈ R
r that satisfies inequalities (6.4) and (6.5) is called a candidate state-delay

vector. Let T denote the set consisting of all candidate state-delay vectors.

By Theorem 3.3.3 of [2], the dynamic system (6.1)-(6.2) has a unique solution corre-

sponding to each candidate state-delay vector τ ∈ T . We denote this solution by x(·|τ ).

Substituting x(·|τ ) into equation (6.3) gives y(·|τ ), the predicted system output corre-

sponding to τ ∈ T . That is, for each τ ∈ T ,

y(t|τ ) , g(x(t|τ )), t ∈ [−τ̄ , T ].

We now state the following optimal control problem, which involves choosing estimates

for the state-delays so that the predicted output best fits the experimental data.

Problem P. Find a candidate state-delay vector τ ∈ T that minimizes the cost function

G0(τ ) ,

p
∑

j=1

∣

∣y(tj|τ ) − ŷj
∣

∣

2

over T .

Notice that the times tj , j = 1, . . . , p, are characteristic times in the cost function G0 (see

Chapter 2). Also notice that the state-delays in the delay-differential system (6.1)-(6.3)

are actually the control variables in Problem P. Thus, Problem P is quite different to

the standard time-delay optimal control problems considered in Chapter 5 of [39] and

Chapter 12 of [100]. These standard problems are governed by delay systems of the

following type:

ẋ(t) = f
(

x(t),x(t− h),u(t)
)

, t ∈ (0, T ],

and

x(t) = z(t), t ∈ [−h, 0],

where h > 0 is given and u is a control function to be determined optimally.

If the output function g does not provide enough information about the state vari-

ables, then a solution of Problem P may not yield good estimates of the state-delays. For

example, if g is a constant function, then every vector in T is a solution of Problem P. In

this case, Problem P is not a sensible mathematical formulation of the state-delay iden-
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tification problem. Thus, throughout this chapter, we assume that the output function g

provides enough system information so that Problem P is a sensible formulation of the

state-delay identification problem. This is usually the case in practice. In fact, many

systems have g , x (that is, the system’s output is just its state).

6.3 Preliminary results

For each (k, τ ) ∈ {1, . . . , r} × T , define

S(k, τ ) ,
{

ǫ ∈ R : τ + ǫer,k ∈ T
}

,

where er,k is the kth standard unit basis vector in R
r. Clearly,

S(k, τ ) = [−τk, τ̄ − τk],

which shows that S(k, τ ) is a closed interval of positive measure. Moreover, 0 ∈ S(k, τ ).

Let V denote the set of all triples (k, τ , ǫ) ∈ {1, . . . , r} × T × R such that ǫ ∈ S(k, τ ).

For each (k, τ , ǫ) ∈ V, define the following R
n-valued functions on [−τ̄ , T ]:

ξ(t|k, τ , ǫ) , x(t|τ + ǫer,k) − x(t|τ ),

and

φ(t|k, τ , ǫ) ,















ż(t), if t ∈ [−τ̄ , 0],
r

∑

i=1

f i
(

x(t|τ + ǫer,k),x(t − τi − ǫρk,i|τ + ǫer,k)
)

, if t ∈ (0, T ],

where ρk,i denotes the Kronecker delta.

Furthermore, for each (k, τ , ǫ) ∈ V, define corresponding functions γi : [0, T ] → R
n,

i = 1, . . . , r, as follows:

γi(t|k, τ , ǫ) , x(t − τi − ǫρk,i|τ + ǫer,k) − x(t − τi|τ ), i = 1, . . . , r.

We immediately see that

γi(t|k, τ , ǫ) = ξ(t − τi|k, τ , ǫ), t ∈ [0, T ], i 6= k, (6.6)

and

ξ(t|k, τ , ǫ) = 0, t ∈ [−τ̄ , 0]. (6.7)
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Furthermore, if (k′, τ ′, ǫ′), (k′′, τ ′′, ǫ′′) ∈ V, then

φ(t|k′, τ ′, ǫ′) − φ(t|k′′, τ ′′, ǫ′′) = 0, t ∈ [−τ̄ , 0]. (6.8)

It is also clear that for almost all t ∈ [−τ̄ , T ],

ẋ(t|τ + ǫer,k) = φ(t|k, τ , ǫ).

Thus, if t1 and t2 are two points in [−τ̄ , T ], then

x(t2|τ + ǫer,k) − x(t1|τ + ǫer,k) =

∫ t2

t1

φ(t|k, τ , ǫ)dt. (6.9)

Notice that k does not influence φ(t|k, τ , 0). Hence, where appropriate, we will simplify

the notation by writing φ(·|τ ) instead of φ(·|k, τ , 0). It follows immediately from (6.8)

that for each (k, τ , ǫ) ∈ V,

φ(t|k, τ , ǫ) − φ(t|τ ) = 0, t ∈ [−τ̄ , 0]. (6.10)

We now prove the following result.

Lemma 6.1. There exists a real number L2 > 0 such that

∣

∣x(t|τ )
∣

∣ ≤ L2, t ∈ [−τ̄ , T ], τ ∈ T .

Proof. Let τ ∈ T be arbitrary but fixed. By Assumption 6.2, there exists a real num-

ber α1 > 0 such that

sup
{

|z(t)| : t ∈ [−τ̄ , 0]
}

≤ α1.

Hence,
∣

∣x(t|τ )
∣

∣ =
∣

∣z(t)
∣

∣ ≤ α1, t ∈ [−τ̄ , 0]. (6.11)

On the other hand, if t ∈ (0, T ], then

x(t|τ ) = z(0) +
r

∑

i=1

∫ t

0

f i
(

x(s|τ ),x(s − τi|τ )
)

ds.
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Applying Assumption 6.3 gives

∣

∣x(t|τ )
∣

∣ ≤ α1 + rL1T +

∫ t

0

rL1

∣

∣x(s|τ )
∣

∣ds +

r
∑

i=1

∫ t

0

L1

∣

∣x(s − τi|τ )
∣

∣ds

= α1 + rL1T +

∫ t

0

rL1

∣

∣x(s|τ )
∣

∣ds +
r

∑

i=1

∫ t−τi

−τi

L1

∣

∣x(s|τ )
∣

∣ds

≤ α1 + rL1T +

∫ t

0

rL1

∣

∣x(s|τ )
∣

∣ds +

∫ t

−τ̄

rL1

∣

∣x(s|τ )
∣

∣ds

≤ α1 + rL1T + rL1α1τ̄ +

∫ t

0

2rL1

∣

∣x(s|τ )
∣

∣ds.

Thus, by Gronwall’s Lemma,

∣

∣x(t|τ )
∣

∣ ≤ α2 exp(2rL1T ), t ∈ (0, T ], (6.12)

where

α2 , α1 + rL1T + rL1α1τ̄ .

Since τ ∈ T was chosen arbitrarily, the result follows from (6.11) and (6.12).

Define

Ψ ,
{

v ∈ R
n : |v| ≤ L2

}

,

where L2 is as defined in Lemma 6.1. Clearly,

x(t|τ ) ∈ Ψ, t ∈ [−τ̄ , T ], τ ∈ T .

Hence, by Assumptions 6.1 and 6.2, we immediately obtain the following result.

Lemma 6.2. There exists a real number L3 > 0 such that

∣

∣φ(t|k, τ , ǫ)
∣

∣ ≤ L3, t ∈ [−τ̄ , T ], (k, τ , ǫ) ∈ V.

We also have the following important result.

Lemma 6.3. There exists a real number L4 > 0 such that for each (k, τ , ǫ) ∈ V,

max
{

∣

∣ξ(t|k, τ , ǫ)
∣

∣,
∣

∣γk(t|k, τ , ǫ)
∣

∣,
∣

∣φ(t|k, τ , ǫ) − φ(t|τ )
∣

∣

}

≤ L4|ǫ|, t ∈ [0, T ].

Proof. Let (k, τ , ǫ) ∈ V be arbitrary but fixed. To simplify the notation, we write xǫ

instead of x(·|τ + ǫer,k) and x instead of x(·|τ ).

It is easy to see that

∣

∣γk(s|k, τ , ǫ)
∣

∣ ≤
∣

∣xǫ(s − τk − ǫ) − xǫ(s − τk)
∣

∣ +
∣

∣ξ(s − τk|k, τ , ǫ)
∣

∣, s ∈ [0, T ].



6.3 Preliminary results 117

Hence, by (6.9),

∣

∣γk(s|k, τ , ǫ)
∣

∣ ≤
∫ b(s)

a(s)

∣

∣φ(η|k, τ , ǫ)
∣

∣dη +
∣

∣ξ(s − τk|k, τ , ǫ)
∣

∣, s ∈ [0, T ], (6.13)

where

a(s) , min{s − τk, s − τk − ǫ}

and

b(s) , max{s − τk, s − τk − ǫ}.

Clearly,

b(s) − a(s) = |ǫ|, s ∈ [0, T ].

Hence, inequality (6.13) becomes

∣

∣γk(s|k, τ , ǫ)
∣

∣ ≤ L3|ǫ| +
∣

∣ξ(s − τk|k, τ , ǫ)
∣

∣, s ∈ [0, T ], (6.14)

where L3 is as defined in Lemma 6.2.

Now,

∣

∣φ(s|k, τ , ǫ)−φ(s|τ )
∣

∣ ≤
r

∑

i=1

∣

∣f i(xǫ(s),xǫ(s− τi − ǫρk,i))−f i(x(s),x(s− τi))
∣

∣, s ∈ (0, T ].

(Equation (6.10) shows that this inequality also holds at s = 0.) Assumption 6.1 implies

that the functions f i, i = 1, . . . , r, are Lipschitz continuous on Ψ × Ψ. Consequently,

there exists a real number α1 > 0 such that

∣

∣φ(s|k, τ , ǫ) − φ(s|τ )
∣

∣ ≤ rα1

∣

∣ξ(s|k, τ , ǫ)
∣

∣ +

r
∑

i=1

α1

∣

∣γi(s|k, τ , ǫ)
∣

∣, s ∈ [0, T ].

Thus, by identity (6.6),

∣

∣φ(s|k, τ , ǫ) − φ(s|τ )
∣

∣ ≤ rα1

∣

∣ξ(s|k, τ , ǫ)
∣

∣ + α1

∣

∣γk(s|k, τ , ǫ)
∣

∣

+
r

∑

i=1
i6=k

α1

∣

∣ξ(s − τi|k, τ , ǫ)
∣

∣, s ∈ [0, T ]. (6.15)

Substituting (6.14) into (6.15) gives

∣

∣φ(s|k, τ , ǫ) − φ(s|τ )
∣

∣ ≤ α1L3|ǫ| + rα1

∣

∣ξ(s|k, τ , ǫ)
∣

∣

+

r
∑

i=1

α1

∣

∣ξ(s − τi|k, τ , ǫ)
∣

∣, s ∈ [0, T ]. (6.16)
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Now, if t ∈ [0, T ], then it follows from (6.9) that

xǫ(t) = z(0) +

∫ t

0

φ(s|k, τ , ǫ)ds

and

x(t) = z(0) +

∫ t

0

φ(s|τ )ds.

Hence,
∣

∣ξ(t|k, τ , ǫ)
∣

∣ =
∣

∣xǫ(t) − x(t)
∣

∣ ≤
∫ t

0

∣

∣φ(s|k, τ , ǫ) − φ(s|τ )
∣

∣ds.

Applying inequality (6.16) yields

∣

∣ξ(t|k, τ , ǫ)
∣

∣ ≤ α1L3T |ǫ| +
∫ t

0

rα1

∣

∣ξ(s|k, τ , ǫ)
∣

∣ds +

r
∑

i=1

∫ t

0

α1

∣

∣ξ(s − τi|k, τ , ǫ)
∣

∣ds

= α1L3T |ǫ| +
∫ t

0

rα1

∣

∣ξ(s|k, τ , ǫ)
∣

∣ds +
r

∑

i=1

∫ t−τi

−τi

α1

∣

∣ξ(s|k, τ , ǫ)
∣

∣ds

≤ α1L3T |ǫ| +
∫ t

0

rα1

∣

∣ξ(s|k, τ , ǫ)
∣

∣ds +

∫ t

−τ̄

rα1

∣

∣ξ(s|k, τ , ǫ)
∣

∣ds.

Thus, by (6.7),
∣

∣ξ(t|k, τ , ǫ)
∣

∣ ≤ α1L3T |ǫ| +
∫ t

0

2rα1

∣

∣ξ(s|k, τ , ǫ)
∣

∣ds.

Applying Gronwall’s Lemma gives

∣

∣ξ(t|k, τ , ǫ)
∣

∣ ≤ α2|ǫ|, t ∈ [0, T ], (6.17)

where

α2 , α1L3T exp(2rα1T ).

We now write (6.7) and (6.17) collectively as

∣

∣ξ(t|k, τ , ǫ)
∣

∣ ≤ α2|ǫ|, t ∈ [−τ̄ , T ], (6.18)

The result is finally established by substituting (6.18) into (6.14) and (6.16).

Lemma 6.3 implies that for each fixed (k, τ ) ∈ {1, . . . , r} × T ,

x(·|τ + ǫer,k) → x(·|τ ),

γk(·|k, τ , ǫ) → 0,

and

φ(·|k, τ , ǫ) → φ(·|τ )
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uniformly on [0, T ] as ǫ → 0.∗

We see from equations (6.7) and (6.10) that ξ(·|k, τ , ǫ) and φ(·|k, τ , ǫ) − φ(·|τ ) also

satisfy the inequality in Lemma 6.3 for t ∈ [−τ̄ , 0]. Therefore,

max
{

∣

∣ξ(t|k, τ , ǫ)
∣

∣,
∣

∣φ(t|k, τ , ǫ) − φ(t|τ )
∣

∣

}

≤ L4|ǫ|, t ∈ [−τ̄ , T ]. (6.19)

By combining Lemma 6.3, equation (6.6), and inequality (6.19), we obtain

∣

∣γi(t|k, τ , ǫ)
∣

∣ ≤ L4|ǫ|, t ∈ [0, T ], i = 1, . . . , r. (6.20)

We now prove our final preliminary result.

Lemma 6.4. If (k, τ ) ∈ {1, . . . , r} × T , then for almost all t ∈ [0, T ],

lim
ǫ→0

γk(t|k, τ , ǫ) − ξ(t − τk|k, τ , ǫ)

ǫ
= −φ(t − τk|τ ).

Proof. Let (k, τ ) ∈ {1, . . . , r} × T be arbitrary but fixed. To prove Lemma 6.4, it is

sufficient to show that

lim
ǫ→0

γk(t|k, τ , ǫ) − ξ(t − τk|k, τ , ǫ)

ǫ
= −φ(t − τk|τ ), t ∈ [0, T ] \ {τk}. (6.21)

We thus focus our attention on proving equation (6.21).

Let t ∈ [0, T ] \ {τk} be arbitrary but fixed. Then for each ǫ ∈ S(k, τ ) \ {0},

γk(t|k, τ , ǫ) − ξ(t − τk|k, τ , ǫ) = x(t − τk − ǫ|τ + ǫer,k) − x(t − τk|τ + ǫer,k).

Hence, by (6.9),

γk(t|k, τ , ǫ) − ξ(t − τk|k, τ , ǫ)

ǫ
= ǫ−1

∫ t−τk−ǫ

t−τk

φ(s|k, τ , ǫ)ds.

We rewrite this equation as follows:

γk(t|k, τ , ǫ) − ξ(t − τk|k, τ , ǫ)

ǫ
= −φ(t − τk|τ ) + ω(ǫ), (6.22)

where

ω(ǫ) , ǫ−1

∫ t−τk−ǫ

t−τk

{

φ(s|k, τ , ǫ) − φ(t − τk|τ )
}

ds.

We will prove equation (6.21) by showing that ω(ǫ) = O(ǫ) (then ω(ǫ) → 0 as ǫ → 0 and

equation (6.21) follows immediately from equation (6.22)).

∗It makes sense to consider these limits because zero is a limit point of S(k, τ ).
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By the triangle inequality,

∣

∣ω(ǫ)
∣

∣ ≤ |ǫ|−1

∫ bǫ

aǫ

∣

∣φ(s|k, τ , ǫ) − φ(s|τ )
∣

∣ds

+ |ǫ|−1

∫ bǫ

aǫ

∣

∣φ(s|τ ) − φ(t − τk|τ )
∣

∣ds, (6.23)

where

aǫ , min{t − τk − ǫ, t − τk}

and

bǫ , max{t − τk − ǫ, t − τk}.

It is clear that

bǫ − aǫ = |ǫ|. (6.24)

Furthermore,

−τ̄ ≤ aǫ ≤ bǫ ≤ T. (6.25)

In view of (6.25), we may use (6.19) to simplify the first integral in (6.23), giving

∣

∣ω(ǫ)
∣

∣ ≤ L4(bǫ − aǫ) + |ǫ|−1

∫ bǫ

aǫ

∣

∣φ(s|τ ) − φ(t − τk|τ )
∣

∣ds.

Thus, by (6.24),

∣

∣ω(ǫ)
∣

∣ ≤ L4|ǫ| + |ǫ|−1

∫ bǫ

aǫ

∣

∣φ(s|τ ) − φ(t − τk|τ )
∣

∣ds. (6.26)

Note that inequality (6.26) holds for every ǫ ∈ S(k, τ ) \ {0}.
Now, since t 6= τk, we consider two cases: t > τk (Case 1) and t < τk (Case 2). For

each case, we will show that ω(ǫ) = O(ǫ), from which equation (6.21) follows.

A Case 1: t > τk

In this case, it is easy to verify the following implication:

ǫ ∈ S(k, τ ), |ǫ| < t − τk =⇒ [aǫ, bǫ] ⊂ (0, T ]. (6.27)

By using similar arguments to those given in the proof of Lemma 6.3, we can show that

φ(·|τ ) is Lipschitz continuous on (0, T ]. Hence, there exists a real number α1 > 0 such

that
∣

∣φ(s|τ ) − φ(t − τk|τ )
∣

∣ ≤ α1|s − t + τk|, s ∈ (0, T ]. (6.28)
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It follows from (6.27) and (6.28) that when ǫ ∈ S(k, τ ) is of sufficiently small magnitude,

∣

∣φ(s|τ ) − φ(t − τk|τ )
∣

∣ ≤ α1|s − t + τk| ≤ α1(bǫ − aǫ) = α1|ǫ|, s ∈ [aǫ, bǫ].

By substituting this inequality into the second term of (6.26), we obtain

∣

∣ω(ǫ)
∣

∣ ≤ (L4 + α1)|ǫ|,

which holds whenever ǫ ∈ S(k, τ ) \ {0} is of sufficiently small magnitude. Therefore,

ω(ǫ) = O(ǫ) as required.

B Case 2: t < τk

We readily verify the following implication:

ǫ ∈ S(k, τ ), |ǫ| < τk − t =⇒ [aǫ, bǫ] ⊂ [−τ̄ , 0]. (6.29)

It follows from Assumption 6.2 that φ(·|τ ) is Lipschitz continuous on [−τ̄ , 0]. Conse-

quently, there exists a real number α2 > 0 such that

∣

∣φ(s|τ ) − φ(t − τk|τ )
∣

∣ ≤ α2|s − t + τk|, s ∈ [−τ̄ , 0]. (6.30)

It follows from (6.29) and (6.30) that when ǫ ∈ S(k, τ ) is of sufficiently small magnitude,

∣

∣φ(s|τ ) − φ(t − τk|τ )
∣

∣ ≤ α2|s − t + τk| ≤ α2(bǫ − aǫ) = α2|ǫ|, s ∈ [aǫ, bǫ].

Thus, we see from (6.26) that the inequality

∣

∣ω(ǫ)
∣

∣ ≤ (L4 + α2)|ǫ|

is satisfied for every ǫ ∈ S(k, τ ) \ {0} of sufficiently small magnitude. This shows

that ω(ǫ) = O(ǫ), thereby completing the proof.

6.4 The main result

For each τ ∈ T , the corresponding state trajectory, x(·|τ ), is a function of time. In other

words, if the candidate state-delay vector is fixed, then the solution of (6.1)-(6.2) is a

function defined on the time horizon [−τ̄ , T ]. Alternatively, we can fix t ∈ [−τ̄ , T ] and

consider the function x(t|·) : T → R
n whose value at τ ∈ T is x(t|τ ). We will show in

this section that x(t|·) is differentiable on T . This is a significant result; it is used later

to answer several important questions pertaining to Problem P.

To begin, consider the following auxiliary delay-differential system corresponding to
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each k = 1, . . . , r:

ψ̇k(t) =

r
∑

i=1

{

∂f i
(

x(t|τ ),x(t − τi|τ )
)

∂x
ψk(t) +

∂f i
(

x(t|τ ),x(t− τi|τ )
)

∂x−
ψk(t − τi)

}

− ∂f k
(

x(t|τ ),x(t − τk|τ )
)

∂x−
φ(t − τk|τ ), t ∈ (0, T ], (6.31)

and

ψk(t) = 0, t ∈ [−τ̄ , 0], (6.32)

where τ ∈ T and ∂/∂x− denotes partial differentiation with respect to the delayed

argument. Let ψk(·|τ ) denote the solution of (6.31)-(6.32).

The next theorem is the main result in this chapter.

Theorem 6.1. For each t ∈ (0, T ], the function x(t|·) is differentiable on T . Further-

more,
∂x(t|τ )

∂τk
= ψk(t|τ ), k = 1, . . . , r, τ ∈ T ,

Proof. Let k ∈ {1, . . . , r} and τ ∈ T be arbitrary but fixed. To prove the result, it is

sufficient to show that

lim
ǫ→0

x(t|τ + ǫer,k) − x(t|τ )

ǫ
= lim

ǫ→0
ǫ−1ξ(t|k, τ , ǫ) = ψk(t|τ ), t ∈ (0, T ]. (6.33)

We prove (6.33) in three steps.

A Notation

For simplicity, we will write xǫ instead of x(·|τ + ǫer,k) and x instead of x(·|τ ). We will

also write ξǫ instead of ξ(·|k, τ , ǫ), γǫ,i instead of γi(·|k, τ , ǫ), and φ instead of φ(·|τ ).

Since k and τ are fixed, these simplifications do not cause confusion.

For each ǫ ∈ S(k, τ ), define three corresponding R
n-valued functions on [0, T ] as

follows:

υ1,ǫ(t) ,

r
∑

i=1

∫ 1

0

{

∂f i
(

x(t) + ηξǫ(t),x(t− τi) + ηγǫ,i(t)
)

∂x
−∂f i

(

x(t),x(t − τi)
)

∂x

}

ξǫ(t)dη,

υ2,ǫ(t) ,

r
∑

i=1

∫ 1

0

{

∂f i
(

x(t) + ηξǫ(t),x(t− τi) + ηγǫ,i(t)
)

∂x−
−∂f i

(

x(t),x(t − τi)
)

∂x−

}

γǫ,i(t)dη,

and

υ3,ǫ(t) ,
∂f k

(

x(t),x(t− τk)
)

∂x−

(

γǫ,k(t) − ξǫ(t − τk) + ǫφ(t − τk)
)

.

Furthermore, define a function β : S(k, τ ) \ {0} → R by

β(ǫ) , |ǫ|−1

∫ T

0

{

∣

∣υ1,ǫ(t)
∣

∣ +
∣

∣υ2,ǫ(t)
∣

∣ +
∣

∣υ3,ǫ(t)
∣

∣

}

dt.
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Finally, in view of Assumption 6.1, we can find two real numbers α1 > 0 and α2 > 0 such

that

sup
{

|∂f i(v,w)/∂x| : (v,w) ∈ Ψ × Ψ, i ∈ {1, . . . , r}
}

≤ α1

and

sup
{

|∂f i(v,w)/∂x−| : (v,w) ∈ Ψ × Ψ, i ∈ {1, . . . , r}
}

≤ α2,

where Ψ is as defined in Section 6.3.

B Behaviour of β as ǫ approaches zero

We now show that β → 0 as ǫ → 0. By Lebesgue’s Dominated Convergence Theorem [5],

it is sufficient to prove the following two results:

(i) The family of functions

{

|ǫ−1υ1,ǫ| + |ǫ−1υ2,ǫ| + |ǫ−1υ3,ǫ| : ǫ ∈ S(k, τ ) \ {0}
}

is equibounded on [0, T ]; and

(ii) For almost all t ∈ [0, T ],

∣

∣ǫ−1υ1,ǫ(t)
∣

∣ +
∣

∣ǫ−1υ2,ǫ(t)
∣

∣ +
∣

∣ǫ−1υ3,ǫ(t)
∣

∣ → 0 as ǫ → 0.

We prove (i)-(ii) below.

First, note that Ψ is convex. Hence, for each ǫ ∈ S(k, τ ),

x(t) + ηξǫ(t) ∈ Ψ, η ∈ [0, 1], t ∈ [0, T ], (6.34)

and

x(t − τi) + ηγǫ,i(t) ∈ Ψ, η ∈ [0, 1], t ∈ [0, T ], i = 1, . . . , r. (6.35)

Therefore, by inequalities (6.19) and (6.20),

∣

∣ǫ−1υ1,ǫ(t)
∣

∣ ≤ 2rα1L4, t ∈ [0, T ], ǫ ∈ S(k, τ ) \ {0}, (6.36)

and
∣

∣ǫ−1υ2,ǫ(t)
∣

∣ ≤ 2rα2L4, t ∈ [0, T ], ǫ ∈ S(k, τ ) \ {0}. (6.37)

Similarly, by inequalities (6.19) and (6.20) and Lemma 6.2,

∣

∣ǫ−1υ3,ǫ(t)
∣

∣ ≤ α2(2L4 + L3), t ∈ [0, T ], ǫ ∈ S(k, τ ) \ {0}. (6.38)

Result (i) follows immediately from (6.36)-(6.38).
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Now, it is clear from inequalities (6.19) and (6.20) that the following limits exist

uniformly with respect to η ∈ [0, 1] and t ∈ [0, T ]:

x(t) + ηξǫ(t) → x(t) as ǫ → 0

and

x(t − τi) + ηγǫ,i(t) → x(t − τi) as ǫ → 0, i = 1, . . . , r.

Moreover, this convergence takes place inside the closed ball Ψ—see inclusions (6.34)

and (6.35). Also note from Assumption 6.1 that the functions ∂f i/∂x and ∂f i/∂x−,

i = 1, . . . , r, are uniformly continuous on Ψ×Ψ. Hence, the following limits exist uniformly

with respect to η ∈ [0, 1] and t ∈ [0, T ]:

lim
ǫ→0

∂f i
(

x(t) + ηξǫ(t),x(t − τi) + ηγǫ,i(t)
)

∂x
=

∂f i
(

x(t),x(t− τi)
)

∂x
, i = 1, . . . , r,

and

lim
ǫ→0

∂f i
(

x(t) + ηξǫ(t),x(t − τi) + ηγǫ,i(t)
)

∂x−
=

∂f i
(

x(t),x(t− τi)
)

∂x−
, i = 1, . . . , r.

These limits, together with inequalities (6.19) and (6.20), imply that ǫ−1υ1,ǫ and ǫ−1υ2,ǫ

converge to zero uniformly on [0, T ] as ǫ → 0. Furthermore, Lemma 6.4 implies that ǫ−1υ3,ǫ

converges to zero almost everywhere on [0, T ] as ǫ → 0. Result (ii) follows immediately.

Thus, since both (i) and (ii) hold, we conclude that

lim
ǫ→0

β(ǫ) = 0. (6.39)

C Comparing ǫ−1ξǫ with ψk(·|τ )

Let ǫ ∈ S(k, τ ) \ {0} be arbitrary but fixed. By (6.9), we have

ξǫ(t) =

∫ t

0

{

φ(s|k, τ , ǫ) − φ(s|τ )
}

ds

=
r

∑

i=1

∫ t

0

{

f i
(

xǫ(s),xǫ(s − τi − ǫρk,i)
)

− f i
(

x(s),x(s − τi)
)

}

ds, t ∈ (0, T ].
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Thus, by the mean value theorem,

ξǫ(t) =

r
∑

i=1

∫ t

0

∫ 1

0

{

∂f i
(

x(s) + ηξǫ(s),x(s − τi) + ηγǫ,i(s)
)

∂x
ξǫ(s)

+
∂f i

(

x(s) + ηξǫ(s),x(s − τi) + ηγǫ,i(s)
)

∂x−
γǫ,i(s)

}

dηds

=
r

∑

i=1

∫ t

0

{

∂f i
(

x(s),x(s − τi)
)

∂x
ξǫ(s) +

∂f i
(

x(s),x(s − τi)
)

∂x−
γǫ,i(s)

}

ds

+

∫ t

0

{

υ1,ǫ(s) + υ2,ǫ(s)
}

ds, t ∈ (0, T ]. (6.40)

Substituting equation (6.6) into equation (6.40) gives

ξǫ(t) =

r
∑

i=1

∫ t

0

{

∂f i
(

x(s),x(s − τi)
)

∂x
ξǫ(s) +

∂f i
(

x(s),x(s − τi)
)

∂x−
ξǫ(s − τi)

}

ds

+

∫ t

0

∂f k
(

x(s),x(s − τk)
)

∂x−

(

γǫ,k(s) − ξǫ(s − τk)
)

ds

+

∫ t

0

{

υ1,ǫ(s) + υ2,ǫ(s)
}

ds, t ∈ (0, T ]. (6.41)

Now, integrating the auxiliary system (6.31)-(6.32) yields

ψk(t|τ ) =
r

∑

i=1

∫ t

0

{

∂f i
(

x(s),x(s − τi)
)

∂x
ψk(s|τ ) +

∂f i
(

x(s),x(s− τi)
)

∂x−
ψk(s − τi|τ )

}

ds

−
∫ t

0

∂f k
(

x(s),x(s− τk)
)

∂x−
φ(s − τk)ds, t ∈ (0, T ]. (6.42)

Combining equations (6.41) and (6.42), we obtain

∣

∣ǫ−1ξǫ(t) −ψk(t|τ )
∣

∣ ≤ β(ǫ) +

∫ t

0

rα1

∣

∣ǫ−1ξǫ(s) −ψk(s|τ )
∣

∣ds

+

r
∑

i=1

∫ t

0

α2

∣

∣ǫ−1ξǫ(s − τi) −ψk(s − τi|τ )
∣

∣ds, t ∈ (0, T ].

In view of (6.7) and (6.32), this inequality simplifies to

∣

∣ǫ−1ξǫ(t) −ψk(t|τ )
∣

∣ ≤ β(ǫ) +

∫ t

0

r(α1 + α2)
∣

∣ǫ−1ξǫ(s) −ψk(s|τ )
∣

∣ds, t ∈ (0, T ].

Applying Gronwall’s Lemma gives

∣

∣ǫ−1ξǫ(t) −ψk(t|τ )
∣

∣ ≤ β(ǫ) exp
[

r(α1 + α2)T
]

, t ∈ (0, T ].
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Now, since ǫ was chosen arbitrarily, we can take the limit as ǫ → 0 to obtain

∣

∣ǫ−1ξǫ(t) −ψk(t|τ )
∣

∣ ≤ exp
[

r(α1 + α2)T
]

lim
ǫ→0

β(ǫ), t ∈ (0, T ].

Since β → 0 as ǫ → 0 (recall equation (6.39)), this proves equation (6.33).

Remark 6.1. If t ∈ [−τ̄ , 0] and (k, τ ) ∈ {1, . . . , r} × T , then

∂x(t|τ )

∂τk
= lim

ǫ→0

x(t|τ + ǫer,k) − x(t|τ )

ǫ
= lim

ǫ→0

z(t) − z(t)
ǫ

= 0 = ψk(t|τ ).

Hence, Theorem 6.1 actually holds at every point in the time horizon [−τ̄ , T ].

6.5 Gradient computation

Recall our state-delay identification problem from Section 6.2: For the model (6.1)-(6.3),

choose values for the unknown state-delays τi, i = 1, . . . , r, such that the discrepancy be-

tween predicted and measured output is minimized. This problem was formulated mathe-

matically as Problem P, an optimal control problem involving a nonlinear delay-differential

system. The control variables τi, i = 1, . . . , r, in Problem P influence its cost function G0

implicitly through the governing delay-differential system. Hence, three important ques-

tions arise:

• Is G0 continuous?

• If G0 is continuous, is it also differentiable?

• If G0 is differentiable, is there a viable method for computing its gradient?

The next result, which follows readily from Theorem 6.1, shows that G0 is indeed differ-

entiable (and therefore continuous) on T .

Theorem 6.2. For each τ ∈ T ,

∂G0(τ )

∂τk
= 2

p
∑

j=1

[

y(tj|τ ) − ŷj
]T ∂g(x(tj |τ ))

∂x
ψk(tj |τ ), k = 1, . . . , r. (6.43)

Proof. According to Theorem 6.1, the functions x(tj |·), j = 1, . . . , p, are differentiable

at τ ∈ T . Furthermore,

∂x(tj |τ )

∂τk
= ψk(tj |τ ), k = 1, . . . , r, j = 1, . . . , p. (6.44)

Now, we have

G0(τ ) =

p
∑

j=1

m
∑

l=1

[

gl(x(tj |τ )) − ŷj
l

]2
.
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Differentiating this equation with respect to τk, k = 1, . . . , r, gives

∂G0(τ )

∂τk
= 2

p
∑

j=1

m
∑

l=1

[

gl(x(tj|τ )) − ŷj
l

]∂gl(x(tj |τ ))

∂x

∂x(tj |τ )

∂τk
, k = 1, . . . , r.

Therefore, by equation (6.44),

∂G0(τ )

∂τk

= 2

p
∑

j=1

m
∑

l=1

[

yl(tj |τ ) − ŷj
l

]∂gl(x(tj |τ ))

∂x
ψk(tj |τ ), k = 1, . . . , r.

Equation (6.43) then follows readily.

Theorem 6.2 shows that the partial derivatives of G0 can be expressed in terms of the

solution of the state system (6.1)-(6.2) and the solutions of the auxiliary systems (6.31)-

(6.32). Note that these systems can be combined to form an expanded system of delay-

differential equations. On this basis, we propose the following algorithm for computing

the value of G0 and its gradient.

Algorithm 6.1. Input τ ∈ T .

(i) Obtain x(·|τ ) and ψk(·|τ ), k = 1, . . . , r, by solving the delay-differential system

consisting of (6.1)-(6.2) and (6.31)-(6.32).

(ii) Use x(·|τ ) to compute y(·|τ ).

(iii) Use y(tj|τ ), j = 1, . . . , p, to compute G0(τ ).

(iv) Use x(tj|τ ), y(tj|τ ), and ψk(tj |τ ), j = 1, . . . , p, to compute the partial deriva-

tives ∂G0(τ )/∂τk, k = 1, . . . , r, according to the formula in Theorem 6.2.

6.6 Numerical examples

Problem P can be solved using Algorithm 6.1 in conjunction with a gradient-based non-

linear programming software such as NLPQLP (see [93]). We illustrate this approach by

considering two examples: a predator-prey model from [131], and a continuously-stirred

tank reactor model from [13].
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6.6.1 A predator-prey model

The following predator-prey model appears in [131]:

ẋ1(t) = x1(t)

[

1 − 2x1(t) −
x3(t)

x3(t) + x1(t)

]

+ 0.5(x2(t) − x1(t)), t ∈ [0, 5], (6.45a)

ẋ2(t) = x2(t)(1 − 2x2(t)) + 0.5(x1(t) − x2(t)), t ∈ [0, 5], (6.45b)

ẋ3(t) = x3(t)

[

− 3 +
10x1(t − τ)

x3(t − τ) + x1(t − τ)

]

, t ∈ [0, 5], (6.45c)

and

x1(t) = 1, x2(t) = 1, x3(t) = 1, t ≤ 0, (6.46)

where x1(t) and x2(t) are the prey population sizes at time t, x3(t) is the predator popu-

lation size at time t, and τ is an unknown state-delay that needs to be identified.

We assume that each of the state variables can be measured directly. Therefore, the

system output is identical to the state:

y(t) =
[

x1(t), x2(t), x3(t)
]T

.

To generate the observed output in Problem P, we simulated the system (6.45)-(6.46)

with τ = 0.5 and recorded the state at fifty equidistant time points in [0, 5]. This data is

used as the observed data. Hence,

x̂j , x(tj|0.5), j = 1, . . . , 50,

where

tj =
j

10
, j = 1, . . . , 50.

Our state-delay identification problem is as follows: choose τ to minimize the cost function

50
∑

j=1

∣

∣x(tj|τ) − x̂j
∣

∣

2

subject to the dynamics (6.45)-(6.46).

We wrote a Fortran program, which combines Algorithm 6.1 with NLPQLP and the

differential equation solver LSODA (see [41]), to solve this state-delay identification prob-

lem. The program was run several times with the following initial values for the state-

delay: τ = 0.1, τ = 0.3, τ = 0.7, and τ = 0.9. In each case, the program recovered the

optimal state-delay τ = 0.5 in less than eleven iterations. States 1 and 3 corresponding

to the different initial state-delays are plotted with the observed data in Figures 6.1-6.2.

State 2 is insensitive to changes in the state-delay and is therefore not plotted. Notice that



6.6 Numerical examples 129

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5

x 1
(t

)

t

τ = 0.3
τ = 0.7
τ = 0.9

Observed data

Figure 6.1: State 1 in Example 6.6.1, simulated using different values for the delay. The
observed data corresponds to τ = 0.5.

some of the initial state trajectories differ significantly from the observed data. Despite

this, our program always converged quickly to the optimal state-delay.

6.6.2 A continuously stirred tank reactor model

The following model of a continuously-stirred tank reactor appears in [13]:

ẋ1(t) = −2x1(t) + 0.1(1 − x1(t)) exp

[

x2(t)

1 + 0.05x2(t)

]

+ x1(t − τ), t ∈ [0, 10], (6.47a)

ẋ2(t) = −2.5x2(t) + 0.8(1 − x1(t)) exp

[

x2(t)

1 + 0.05x2(t)

]

+ x2(t − τ), t ∈ [0, 10], (6.47b)

and

x1(t) = 1, x2(t) = 1, t ≤ 0, (6.48)

where x1(t) is the dimensionless concentration at time t, x2(t) is the dimensionless tem-

perature at time t, and τ is an unknown state-delay that needs to be identified.

We assume that only the temperature can be measured. Hence,

y(t) = x2(t). (6.49)

We generated the observed data by simulating (6.47)-(6.49) with τ = 2 and recording the
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Figure 6.2: State 3 in Example 6.6.1, simulated using different values for the delay. The
observed data corresponds to τ = 0.5.

output (that is, the temperature) at twenty equidistant points in [0, 10]. Therefore,

ŷj , y(tj|2), j = 1, . . . , 20,

where

tj =
j

2
, j = 1, . . . , 20.

Our state-delay identification problem is as follows: choose τ to minimize the cost function

20
∑

j=1

∣

∣y(tj|τ) − ŷj
∣

∣

2

subject to the dynamics (6.47)-(6.49). As in Example 6.6.1, a Fortran program was

written to solve this problem. The program was run with the following initial guesses

for the unknown state-delay: τ = 1.6, τ = 1.8, τ = 2.2, and τ = 2.4. In each case, the

program recovered the optimal solution of τ = 2 successfully in less than seven iterations.
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Figure 6.3: Output of the system in Example 6.6.2, simulated using different values for
the delay. The observed data corresponds to τ = 2.

6.7 Conclusion

In this chapter, we considered a nonlinear delay-differential system whose state-delays are

unknown parameters that need to be identified. We formulated the problem of identifying

these state-delays as an optimal control problem in which the state-delays are control

variables and the cost function measures the discrepancy between predicted and observed

system output. This optimal control problem differs considerably from standard time-

delay optimal control problems, because its control variables are the delays themselves.

Our main result shows that the gradient of its cost function can be computed by solving a

set of auxiliary delay-differential systems. On this basis, we can use a standard nonlinear

programming software, such as NLPQLP, to solve the optimal control problem. Our

numerical results in Section 6.6 indicate that this approach is very fast; it is therefore

ideal for online applications in which efficiency is paramount.





CHAPTER 7

Summary and future research directions

7.1 Main contributions of this thesis

In this thesis, we considered five nonstandard optimal control problems. We developed

new methods, which are based on nonlinear programming, for solving these problems

numerically. This involved a variety of novel techniques, including the time-scaling trans-

formation and several model transcriptions, as well as complex gradient derivation and

detailed convergence analysis. We summarize our main contributions below.

In Chapter 2, we developed a new control parameterization method for solving opti-

mal control problems with characteristic-time inequality constraints. The main idea of

this method is to approximate the control by a piecewise constant function whose values

and switching times are decision variables to be determined optimally. The approximate

control is allowed to change its value at each characteristic time, and also at p − 1 lo-

cations between consecutive characteristic times (p is a fixed integer). This ensures that

the order in which the switching times and the characteristic times occur is known in ad-

vance (every pth switching time is a characteristic time). Consequently, the time-scaling

transformation is able to simultaneously map the switching times and the characteristic

times to fixed points in a new time horizon. As such, our new method is much easier

to implement than the one in [105], which applies the time-scaling transformation twice

in succession—once to transform the characteristic times, and once more to transform

the switching times (in [105], the characteristic times and the switching times do not

coincide). The methods in [77, 78], meanwhile, do not allow the switching times or char-

acteristic times to vary at all; they instead pre-assign them and only choose the control

values optimally. In Chapter 2, we also developed a new algorithm for computing the

gradient of the characteristic-time inequality constraints. This algorithm involves inte-

grating a set of auxiliary dynamic systems forward in time, simultaneously with the state

system. In contrast, the auxiliary systems in [77, 78, 105] are integrated backwards in

time, and thus the state needs to be interpolated as they are being solved (the auxiliary

systems depend on the state). Consequently, our new gradient computation algorithm in

Chapter 2 is easier to implement than the ones in [77, 78, 105]. Furthermore, because it

133
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avoids interpolating the state, the algorithm in Chapter 2 is also more accurate.

In Chapter 3, we developed another control parameterization method, this time for

optimal control problems with continuous inequality constraints. This new method has

two major advantages over its predecessors in [100, 101]: it incorporates the time-scaling

transformation so that the control switching times, in addition to the control values, are

chosen optimally; and it is guaranteed to converge even when the continuous inequality

constraints are explicit functions of the control. In particular, we proved under very mild

assumptions that the cost of the suboptimal controls generated by this method converges

to the minimum cost (Theorem 3.5). Furthermore, if the suboptimal controls converge

almost everywhere to a piecewise continuous function, then this function is an optimal

control (Theorem 3.6). The corresponding convergence results in [100,101] are only valid

for optimal control problems with continuous inequality constraints that do not depend

on the control function explicitly. To handle the continuous constraints in Chapter 3,

we applied the constraint transcription introduced in [48,106]. This transcription is also

used in [100, 101], but in a different way—one that is invalid if the continuous inequality

constraints depend explicitly on the control. Our new approach in Chapter 3 is therefore

applicable to a much broader class of optimal control problems.

In Chapter 4, we considered the problem of determining an optimal operating schedule

for a switched-capacitor DC-DC power converter. The optimal control problem that we

formulated is similar to the one in [42]—it involves choosing the topology switching times

so that the output voltage ripple and the output voltage sensitivity are minimized. The

method proposed in [42] for solving this problem requires that each eigenvalue of the

system coefficient matrix be expressed analytically in terms of the load resistance. Such

expressions are usually very difficult to obtain—in fact, they can only be derived when the

dimension of the system coefficient matrix is less than five. We developed an alternative

method that is much easier to use. We also proved that the optimal control problem

has a solution. To the best of our knowledge, Chapter 4 and [42] are the first attempts

at modeling a switched-capacitor DC-DC power converter as a switched system. This

model is much more accurate than the linear time-invariant models typically used in

the literature, which do not reflect the highly nonlinear and time-varying nature of a

switched-capacitor DC-DC power converter.

In Chapter 5, we considered the optimal control of a switched system with nonlinear

subsystems and nonlinear state jump conditions. We showed that applying the time-

scaling transformation to this problem yields a new optimal control problem that is gov-

erned by a switched system with discontinuous state jump conditions. The discontinu-

ities arise because the time-scaling transformation maps each switching time to a distinct

integer, even if some of the switching times coincide. For example, the time-scaling trans-

formation always maps t = t1 to s = 1 and t = t2 to s = 2, regardless of whether t1 < t2

or t1 = t2. But if t1 = t2, then s = 1 and s = 2 correspond to the same switching time
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in the original time horizon, and thus a state jump should be applied at either s = 1

or s = 2, but not both. This subtlety was neglected in previous work (see [68,69,125]). In

Chapter 5, we proposed a new computational approach to address this important issue.

In Chapter 6, we considered the problem of identifying unknown state-delays in a

nonlinear delay-differential system. This problem was formulated as an unusual optimal

control problem in which the control variables are the state-delays themselves. We showed

that the gradient of the cost function in this optimal control problem can be computed by

solving an auxiliary delay-differential system. On this basis, the optimal control problem

can be solved as a nonlinear programming problem using any gradient-based optimization

algorithm. The major advantage of this approach is that it is applicable to a very broad

class of nonlinear delay systems; most other delay identification methods are only appli-

cable to linear systems. Furthermore, since this method is based on efficient nonlinear

programming techniques, it has excellent potential for real-time applications.

7.2 Future research directions

The work in this thesis has opened several interesting new avenues for future research.

We discuss some of them below.

Recall that the admissible controls in Chapter 2 are bounded measurable functions,

while the admissible controls in Chapter 3 are restricted to piecewise continuous functions.

This restriction is deliberate—the proofs of the convergence results in Section 3.6 are only

valid when the controls are piecewise continuous. A question of considerable theoretical

interest is whether these convergence results still hold when the class of admissible con-

trols is enlarged to include functions that are not necessarily piecewise continuous, such

as functions of bounded variation or even bounded measurable functions. Similar results

have been proved in [102] and Chapter 10 of [100] for optimal control problems in which

the controls consist of functions of bounded variation and the continuous inequality con-

straints only restrict the state. The objective function in these problems has a term that

penalizes the total variation of the control. The reason for including this term is that in

practice there is always some cost associated with changing the input to a system, and

thus a control that fluctuates wildly is probably not suitable for implementation. We are

currently investigating extending the techniques developed in Chapter 3 to this interesting

class of optimal control problems.

The switched systems considered in Chapters 4 and 5 are called externally-forced

switched systems because their switching mechanisms are under the direct control of

the system operator [132]. Internally-forced switched systems are very different: their

switching times are not chosen beforehand, and are instead determined implicitly by the

state trajectory. More specifically, the subsystem switches occur when a given switching

criterion—usually an equation depending on the system state—is satisfied. Many systems,
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including robots [10] and hybrid power systems [90], are of this type. Internally-forced

switched systems are more complicated than externally-forced switched systems because

their switching times are not known in advance. They can be viewed as an extension of

the so-called free terminal time dynamic system (see [65, 99, 104]), whose terminal time

is determined by a stopping condition that depends on the state. Extending the optimal

control methods developed in Chapters 4 and 5 to internally-forced switched systems is

an interesting topic for future research.

The governing dynamic system in the time-delay optimal control problem considered

in Chapter 6 is an example of a so-called input-dependent delay system—a delay system

whose delays are influenced by the control variables. The optimal control of such systems is

a difficult topic that has been neglected by the research community [88]. Many important

industrial processes, however, can be modeled by input-dependent delay systems. An

example is the crushing process described in [88]. In this process, raw material is taken

from a repository and delivered to a crusher via a conveyer belt. After crushing, some of

the processed material is returned, via another conveyor belt, to the repository, where it

is stored before being delivered to the crusher once again. Recycling the output in this

way ensures that most of the material undergoes several rounds of crushing (the number

of rounds required depends on the desired consistency of the material). Obviously, the

recycling mechanism is not instantaneous; there is a delay while the crushed material is

transported from the crusher back to the repository. The system controller can influence

this delay by varying the speed of the conveyor belts.

Another example of an input-dependent delay system is the continuously-stirred tank

reactor described in [21]. This system consists of a water tank with an impeller, an inlet

for adding salt, and a conductivity probe for measuring salt concentration. Since salt does

not dissolve instantaneously, there is a delay between the time at which the salt is added

and the time at which it is detected by the probe. The system controller can influence

this delay by varying the speed of the impeller (the faster the impeller rotates, the quicker

the salt dissolves and is subsequently detected by the probe).

The computational method developed in Chapter 6 is only applicable to the state-delay

identification problem, an optimal control problem governed by an input-dependent delay

system with time-invariant delays. More research is needed to extend this method to

optimal control problems governed by more complicated input-dependent delay systems,

such as the crushing system and the continuously-stirred tank reactor described above,

whose delays are time-varying. Some systems even have delays that depend on the state

(see [111]). We are currently investigating optimal control methods for such systems.
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