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Abstract 

I 

 

Abstract 

 

Web spamming has tremendously subverted the ranking mechanism of information 

retrieval in Web search engines. It manipulates data source maliciously either by 

contents or links with the intention of contributing negative impacts to Web search 

results. The altering order of the search results by spammers has increased the 

difficulty level of searching and time consumption for Web users to retrieve relevant 

information. In order to improve the quality of Web search engines results, the design 

of anti-Web spam techniques are developed in this thesis to detect and demote Web 

spam via trust and distrust and Web spam classification.  

 

A comprehensive literature on existing anti-Web spam techniques emphasizing on 

trust and distrust model and machine learning model is presented. Furthermore, 

several experiments are conducted to show the vulnerability of ranking algorithm 

towards Web spam. Two public available Web spam datasets are used for the 

experiments throughout the thesis - WEBSPAM-UK2006 and WEBSPAM-UK2007.  

 

Two link-based trust and distrust model algorithms are presented subsequently: Trust 

Propagation Rank and Trust Propagation Spam Mass. Both algorithms semi 

automatically detect and demote Web spam based on limited human experts’ 

evaluation of non-spam and spam pages. In the experiments, the results for Trust 

Propagation Rank and Trust Propagation Spam Mass have achieved up to 10.88% and 

43.94% improvement over the benchmark algorithms.  

 

Thereafter, the weight properties which associated as the linkage between two Web 

hosts are introduced into the task of Web spam detection. In most studies, the weight 
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properties are involved in ranking mechanism; in this research work, the weight 

properties are incorporated into distrust based algorithms to detect more spam. The 

experiments have shown that the weight properties enhanced existing distrust based 

Web spam detection algorithms for up to 30.26% and 31.30% on both aforementioned 

datasets. 

 

Even though the integration of weight properties has shown significant results in 

detecting Web spam, the discussion on distrust seed set propagation algorithm is 

presented to further enhance the Web spam detection experience. Distrust seed set 

propagation algorithm propagates the distrust score in a wider range to estimate the 

probability of other unevaluated Web pages for being spam. The experimental results 

have shown that the algorithm improved the distrust based Web spam detection 

algorithms up to 19.47% and 25.17% on both datasets. 

 

An alternative machine learning classifier - multilayered perceptron neural network is 

proposed in the thesis to further improve the detection rate of Web spam. In the 

experiments, the detection rate of Web spam using multilayered perceptron neural 

network has increased up to 14.02% and 3.53% over the conventional classifier – 

support vector machines. At the same time, a mechanism to determine the number of 

hidden neurons for multilayered perceptron neural network is presented in this thesis 

to simplify the designing process of network structure.   
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Chapter 1 Introduction 

 

According to a survey conducted by an Internet service company - NetCraft, an 

estimation of 629,939,191 Web sites are scattered around in the World Wide Web 

(Netcraft 2013). Nowadays, the Web search engine has become default information 

retrieval tool to ease Web users’ needs to extract relevant information; however 

searching for relevant data in this information warehouse can be a challenging task 

since the World Wide Web is known to be the largest knowledge repository mankind 

ever created. 

 

Traditionally, Web search engines did not take the ranking order of Web documents 

into serious consideration. The search engines employed a computer program known 

as Web crawlers or Web spiders to find and download Web pages, and incorporate 

another program to arrange the documents based on some wordings such as domain 

name, headings of Web page, page title, anchor text and meta data (Kobayashi and 

Takeda 2000; Baeza-Yates and Ribeiro-Neto 1999). In recent years, Web search 

engines have incorporated hyperlinks into the ranking mechanism. Authors of Web 

pages created hyperlinks as references to link up with another Web page. These 

referrals provide valuable information between documents and records of user 

behaviour. The idea of studying these referrals in information retrieval is commonly 

known as link analysis (Henzinger 2000). 

  

Link analysis is an emerging technology that tries to comprehend the relationships 

between Web documents, thus providing an order of search results according to its 

importance and relevance based on users’ queries. This technology developed 

algorithms: The first link analysis algorithm was developed by Li YanHong, is the 

RankDex technology (Li 1998); It was incorporated in the search engine to measure 
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the quality of Websites ("About Rankdex"  1997). PageRank (Brin and Page 1998), 

developed by Sergey Brin and Larry Page, which was used in the famous Google 

search engine, modelled its algorithm based on probability of a random surfer for their 

search engine. Jon Kleinberg (Kleinberg 1999) proposed of hyperlink-induced topic 

search (HITS), which introduced the authorities and hubs of a Web page to rate Web 

pages. And lastly, stochastic approach for link-structure analysis (Lempel and Moran 

2001) also known as SALSA, proposed by Lempel and Moran, examined random 

walks on graphs derived from the link-structure to rank Web pages. Borodin et al. 

(Borodin et al. 2005) had already provided a detailed study on link analysis algorithms, 

including its background theory and experimental results. 

 

With exponential growth of the World Wide Web, retrieving the right information in a 

short time remains a challenging task. Web users only look at the top few pages of the 

search results (Jansen, Spink, and Saracevic 2000). This is one of the reasons the 

commercial industries are striving to have their Web sites appear at the top of search 

results. As more viewers visit, the more financial gain one would be generated. 

  

In recent times, there are a lot of indecent tricks used by the content providers to have 

their pages rank higher than they deserved. This is because the order of the results is 

highly correlated to the profit gain of one business model. The most efficient way is to 

manipulate the link analysis algorithms. This unethical way of affecting the ranking 

order of search engines has evolved into Web spamming, also known as spamdexing 

(Gyöngyi and Garcia-Molina 2005). 

  

In 2006, it was estimated that approximately one seventh of English webpages were 

spam, which became obstacles in users’ information-acquisition process (Wang, Ma, 

et al. 2007). In 2007, the cost of Web spam was estimated at US$ 100 billion globally 

and United States alone suffered an estimated cost of US$ 35 billion (Bauer, Eeten, 

and Wu 2008). The intention of Web spam is to mislead search engines by boosting 

one page to undeserved rank. Consequently, it leads Web user to the irrelevant 
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information. This kind of exploitation degrades the Web search engines by providing 

inappropriate or bias query results. Henzinger et al. (Henzinger, Motwani, and 

Silverstein 2002) have identified Web spam as one of the most important challenges in 

Web search engine industries. Many people become frustrated by constantly finding 

spam sites when they look for legitimate content. In addition, Web spam has an 

economic impact since a high ranking provides large free advertising and so an 

increase in the Web traffic volume (Araujo and Martinez-Romo 2010). Even worse, at 

least 1.3% of all search queries directed to the Google search engine contain results 

that link to malicious pages (Egele, Kolbitsch, and Platzer 2011). In addition, one 

consultancy estimated that Russian spammers earned roughly US$2–3M per year and 

one IBM representative claimed that a single spamming botnet was earning close to 

$2M per day (Kanich et al. 2011). Search engine companies generally employ human 

experts who specialized in detecting Web spam, constantly scanning the web looking 

for spamming activities. However, the spam detection process is time-consuming, 

expensive and difficult to automate. 

 

Gyongyi et al. (Gyöngyi and Garcia-Molina 2005) raised the interest of the anti-Web 

spam community by writing a comprehensive taxonomy of all spamming techniques 

including boosting and hiding techniques. Boosting techniques refer to methods that 

achieve high relevance or importance for one page; hiding techniques refer to methods 

that do not influences the ranking of search engine but assist boosting techniques from 

the view of the user, one example is to manipulate the color scheme of the anchor text. 

Boosting techniques can be further expanded into term spamming (which also refers as 

content spamming) and link spamming while hiding techniques can be expanded into 

content hiding, cloaking and redirection as shown in Figure 1.1. 

 

In addition, Wu and Davison (Wu and Davison 2005a) did a detailed research on 

cloaking and redirection. Cloaking can be explained by giving the Web user different 

content from what a search engine sees. Redirection on the other hand can be 

explained by sending the Web user to another URL (Uniform Resource Locator) while  
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Figure 1.1: Categorization of Web spamming techniques 

loading current URL. Content hiding refers to spam terms or links in a Web page that 

are invisible to the user. 

  

Understanding spamming techniques is important in order to propose the appropriate 

counter-measures. In Wu’s dissertation (Wu 2009), he mentioned different approaches 

to combat Web Spam (shown in Figure 1.2). 

 

Figure 1.2: Different approaches to combat Web spam 

 

Among the anti-Web spam techniques, trust or badness based method (or trust and 

distrust model) algorithms have shown significant results in eliminating Web spam 

(Zhang, Wang, et al. 2011). Initially the algorithms run a seed selection process, which 
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a portion of a large Web is selected and evaluated as spam or non-spam to form seed 

sets. Based on the evaluated seed sets, spam and non-spam are used to propagate 

distrust for detection and trust for demotion of Web spam. 

 

Trust and distrust model can be categorized into two types of algorithms: Web spam 

detection and Web spam demotion. Both detection and demotion of Web spam are 

equally important in combating Web spam. Demotion of Web spam can act as a 

counter-bias in reducing possible rank boosts from spam whereas detection of Web 

spam can help out in removing them at the earliest stage. 

Besides trust or badness based method, machine learning methods have been actively 

used for detection of Web spam in recent years. Machine learning approach in 

anti-Web spam community can be divided into two sections: feature and structure. A 

feature is an individual specification of an attribute whereas structure is a machine 

learning model that takes features for classification purpose. Some of the 

aforementioned trust or badness based algorithms are used as features to assist 

machines to learn the underlying patterns of Web spam. 

 

The research objectives of this thesis are to develop anti-Web spam algorithms based 

on trust and badness model for detection and demotion of Web spam and to propose an 

alternative machine learning model to assist human experts in the task of Web spam 

classification.  

 

The notion of content trust was first introduced by Gil et al. to solve the problem of 

reliability of the Web resource (Gil and Artz 2007). Trust is an integral component in 

many kinds of human interaction, allowing people to act under uncertainty and with 

the risk of negative consequences (Wang and Zeng 2007; Wang, Zeng, et al. 2007). 

Thus, trust is used to model the reliability of the information and solve the problem of 

Web spam detection. On the other hand, since spammers employ propagandistic 

techniques, it makes sense to design anti-propagandistic methods for defending them 

(Metaxas 2009b). These methods need to be user-initiated, that is the user decides 
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which Web site not to trust and then seeks to distrust those supporting the 

untrustworthy Web site (Metaxas 2009a). Furthermore, among the anti-Web spam 

techniques, link-based trust and distrust algorithms that propagate human experts’ 

judgments over a set of seed pages are the most promising, considering the 

effectiveness, efficiency and simplicity (Zhang, Wang, et al. 2011; Liu et al. 2013).  

 

The development of an automatic Web spam detection system is an interesting 

problem as it concerns massive amounts of data to be analysed, the involvement of 

multi-dimensional attribute space with potentially hundreds or thousands of 

dimensions, and the extremely dynamic nature for novel spamming techniques that 

emerge continuously (Sydow et al. 2007). Often, large amount of Web spam pages are 

generated using machines by stitching together grammatically from a large collection 

of sentences (Fetterly, Manasse, and Najork 2005). Thus, machine learning method 

provides an ideal solution due to its adaptive ability to learn the underlying patterns for 

classifying spam and non-spam (Erdélyi, Garzó, and Benczúr 2011).  

 

In this thesis, a proposed trust propagation algorithm is developed to assist in detection 

and demotion of Web spam. Subsequently, existing anti-Web spam algorithms 

combine with proposed extracted-host weight feature are developed to enhance the 

Web spam detection experience. Thereafter, a distrust seed set propagation algorithm 

also combining with anti-Web spam algorithms is proposed to increase the detection 

rate of Web spam. Lastly, the application of machine learning technique namely 

multilayered perceptrons neural network is proposed to classify Web pages into spam 

and non-spam. 

 

The thesis organization is stated in the following: 

 

In Chapter 2, the mathematical model for Web graph is presented to formulate the 

algorithms effectively. After that, two large public available datasets – 

WEBSPAM-UK2006 and WEBSPAM-UK2007 and their provided features vectors 
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which are used in machine learning are thoroughly described. The parameters setting 

and performance evaluation for all the algorithms end with this chapter. 

 

In Chapter 3, a comprehensive study on two anti-Web spam techniques is presented – 

trust and badness based method, and machine learning method. Firstly, a trust model 

link-based anti-Web spam algorithm – TrustRank (Gyöngyi, Garcia-Molina, and 

Pedersen 2004) is presented to show the effectiveness of the trust model. The 

weaknesses of TrustRank came up with the proposed of its derivatives. Thus, the 

derivatives of TrustRank which include Anti-TrustRank (Krishnan and Raj 2006), 

Topical TrustRank (Wu, Goel, and Davison 2006b), DiffusionRank (Yang, King, and 

Lyu 2007) and Link-Variable TrustRank (Qi, Song-Nian, and Sisi 2008) are presented. 

The experiments between TrustRank and HostRank  (Eiron, McCurley, and Tomlin 

2004) shows the vulnerability of link analysis algorithms towards spam. After that, 

other trust and distrust model based algorithms are briefly explained. Lastly, the 

machine learning techniques that are used in combating Web spam are further 

discussed.  

 

Chapter 4 covers the trust model algorithms – Trust Propagation Rank (TPRank) and 

Trust Propagation Spam Mass (TP Spam Mass). TrustRank (Gyöngyi, Garcia-Molina, 

and Pedersen 2004) and Spam Mass (Gyöngyi et al. 2006) offer the advantage of the 

trust evaluations and propagate trust to demote and detect Web spam. The proposed 

trust propagation algorithms further improve the aforementioned algorithms and the 

experiments have shown that the proposed trust propagation algorithms outperform 

both TrustRank and Spam Mass based on the same small amount of evaluated sites. 

 

Chapter 5 introduces weight properties feature extracted from Host graph to enhance 

the existing Web spam detection algorithms. Weight properties can be defined as the 

influences of one Web node towards another Web node. Weight properties had been 

investigated by other researchers (Xing and Ghorbani 2004; Nemirovsky and 

Avrachenkov 2008; Li, Shang, and Zhang 2002) to achieve better results for ranking 
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algorithms based on PageRank and their derivatives. However, there are no studies 

focusing on the incorporation of weight properties in detecting Web spam hence this 

method is implemented in this research.  It is found that the experimental results 

shows that the weight properties have improved the existing Web spam detection 

algorithms like Anti-TrustRank (Krishnan and Raj 2006), Wu et al. Distrust (Wu, Goel, 

and Davison 2006a) and Nie et al. Distrust (Nie, Wu, and Davison 2007). 

 

Chapter 6 presents a distrust seed set propagation (DSP) algorithm to enhance existing 

Web spam detection algorithms. The distrust seed set propagation algorithm calculates 

the likelihood of other Web pages of becoming spam based on some untrustworthy 

seeds. Three Web spam detection algorithms that are experimented in Chapter 5 are 

attached with DSP to compare with the original. The results show that DSP enhanced 

the baseline algorithms and detected 17.73% more spam hosts in 

WEBSPAM-UK2006 and detected 8.59% more spam hosts in WEBSPAM-UK2007. 

 

Chapter 7 proposes the application of machine learning technique to do Web spam 

detection. In this chapter, the structure for machine learning model is focused. C4.5 

decision tree (Quinlan 1993) and support vector machines (Chang and Lin 2011) are 

two well-known machine learning models used in Web spam detection. Some 

researchers (Yuchun et al. 2008; Abernethy, Chapelle, and Castillo 2010; Zhiyang et al. 

2012) have shown support vector machines outperforms decision trees. However, 

support vector machines have its own demerits (Biggio, Nelson, and Laskov 2012). 

Therefore, multilayered perceptrons neural network (Haykin 1998) is proposed for 

Web spam classification due to its flexible structure and non-linearity transformation 

to accommodate latest Web spam patterns. The experimental results have shown that 

multilayered perceptrons neural network has better web spam detection rate than 

support vector machines despite having the same features. 

 

Finally in Chapter 8, the results of all chapters are summarized and concluded with a 

couple of future directions.
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Chapter 2 Preliminaries 

 

In this chapter, a foundation on the Web graph mathematical model is presented as it is 

used for all solutions in the rest of the chapters. Nevertheless, two standard Web spam 

datasets and their provided features are also presented. Finally, the parameters settings 

for all algorithms and performance evaluation are introduced at the end of this chapter. 

 

2.1 WEB MODEL 

Let a graph where  is a set of vertices and  is a set of edges. If two 

vertices  and  form an edge, denoted as , thus  consist an ordered pairs 

 of vertices such that . The in-degrees of  is the number of edges 

towards  and out-degrees of  is the number of edges leaving . Therefore, the 

sum of in-degrees or out-degrees is equal to the number of edges as shown in Equation 

2.1. 
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Figure 2.1: Simple Web graph 
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Consider a direct Web graph where  FEDCBA ,,,,, showing in Figure 2.1, the 

in-degrees of  is equal to the out-degrees of   where: 

 

 
    6degdeg   

 

 

In a Web model, the vertices  and the edges  is denoted as Web pages and 

hyperlinks respectively. However, a Web graph can be decomposed into a host graph 

),( HHHG   where  denote as a set of host vertices and denote as a set of 

ordered pair of hosts. A host consists of a set of Web pages under the same domain 

name. Assume that there are two host vertices  and ,  and  are 

connected such that  if some pages under  are pointing to some 

pages under where , , and 

, , . Consider Figure 2.2 where host vertices 

and , there exist direct edges , 

,  and such that , thus and  

are connected. 

 

Figure 2.2: Sample host and page graph 
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The vertices can be partitioned into two categories where .  

denotes as a set of evaluated vertices while  denotes as an unevaluated vertex, such 

that  where  stands for unknown vertices. Evaluated vertices  can 

be assessed as non-spam vertices N  and spam vertices  where ESN  ,  in 

which   SN  thus
SNSNE   . 

 

A weighted directed host graph is a graph which each edge  has a weight 

function with each weight is a real number. A weighted directed 

host graph can be represented as ),,(  HHHG   where is the weight function of 

HG . 

  

Assume that there exists two element subset of such that , the weight 

function  of host a to host b written as , is denoted as the sum of number of 

pages in host a direct to the pages in host b where 
 
, , 

and ,  , . In other words, can 

be denoted as the sum of out-degree of host a direct to host b such that 
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 (2.2) 

 

Figure 2.3 illustrates two host vertices 1 and 2  where 1  consists of page vertices 

 131211 ,,  while 2  consists of page vertices 232221 ,,  . 
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Figure 2.3: Sample of weighted graph 

 

Assume  where some pages in host vertex are pointing to some pages 

in host vertex and the weight function of to can be written as: 
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The graph which is representing the Web model can be transformed into matrix form 

as follows: 

 

 Transition Matrix, T  

 



 


otherwise

abif
T

0

),(1 
 

 

 Inverse Transition Matrix, I  
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
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baif
I
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),(1 
 

Details on adjacency-matrix representations can refer to APPENDIX B – Adjacency 

-Matrix Representation. 
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Consider Figure 2.2, the Transition Matrix M is written as 

 

 

 

The Inverse Transition Matrix N is written as 

 

 

 

2.2 DATASETS AND FEATURES 

Two public available datasets are used throughout the whole thesis – 

WEBSPAM-UK2006 (Castillo et al. 2006) and WEBSPAM-UK2007 (Yahoo! 2007). 

Both datasets are downloaded from the Laboratory of Web Algorithmics, Università 

degli Studi di Milano, with the support of the DELIS EU - FET research project. The 

former dataset is also used in part of a Web Spam Challenge in 2007 (Castillo, 

Chellapilla, and Davison 2007; Castillo, Davison, et al. 2007) while the later dataset is 

used in Web Spam Challenge 2008 (Castillo, Chellapilla, and Denoyer 2008). 

 

WEBSPAM-UK2006 consists of 77,741,046 Web pages while WEBSPAM-UK2007 

consists of 105, 896,555 Web pages. Due to the large collection, host level is 

considered instead of page level. The former consists of 11,402 hosts whereas the later 
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one consists of 114,529 hosts. 

 

Both datasets provide evaluated sets, SET 1 for training and SET 2 for testing as the 

motivation behind the Web Spam Challenge Series is to provide solution to combat 

Web spam from machine learning perspective. For the link-based propagation 

algorithms, since no training and testing are required, both evaluated sets are sum to 

operate the experiments, as shown in Figure 2.4 and Table 2.1. 

 

 

 

Figure 2.4: The distribution of WEBSPAM-UK2006 and WEBSPAM-UK2007 

datasets 
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Table 2-1: Distributions of spam and non-spam in WEBSPAM-UK2006 and 

WEBSPAM-UK2007 

 WEBSPAM-UK2006 WEBSPAM-UK2007 

SET 1 SET 2 TOTAL SET 1 SET 2 * TOTAL 

Spam 674 1250 1924 222 122 157 501 

Non-spam 4948 601 5549 3776 1933 3271 8980 

*Additional Set from WEBSPAM-UK2006 

 

Furthermore, the standard feature vectors as given in the Web Spam Challenge Series 

are used in the experiments. The features can be categorized into link-based and 

content-based features. Table 2-2 shows the types of features vector: 

 

Table 2-2: Distributions of the feature vectors 

Notation Feature Set No. of Features 

A Content-based Features 24 

B Full Content-based Features 96 

C Link-based Features 41 

D Transformed Link-based Features 138 

 

Feature A denotes the content-based features. Most of these features are extracted from 

Ntoulas et al. (Ntoulas et al. 2006) and they comprise of the number of words in the 

page, number of words in the title, average word length, fraction of anchor text and 

visible text, compression rate, corpus precision and corpus recall, query precision and 

query recall, independent trigram likelihood, and entropy of trigrams. In total, there 

are 24 content-based features. 

 

Feature B denotes the full content-based features. Since feature A are based on page 

feature, the authors (Castillo, Donato, et al. 2007) aggregate the content-based features 

for pages in order to obtain content-based features for hosts. Therefore, in total there 
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are 96 content-based features (4 x feature A). 

 

Feature C denotes the link-based features. Most are computed on the home page and 

also the page with the maximum PageRank in each host. The link-based features 

include degree-related measures like in-degree, out-degree, edge-reciprocity and 

assortativity coefficient. Besides this degree related features, PageRank, TrustRank, 

truncated PageRank and estimation of supporters are also included in this link-based 

features. In total there are 41 link-based features. 

 

Feature D denotes the transformed link-based features. They are just simple numeric 

transformations and combinations of the link-based features. After transformation, 

there are 138 transformed link-based features. 

 

Details on the standard feature vectors can be found in (Castillo, Donato, et al. 2007). 

More details on the link-based features can be found in (Becchetti et al. 2006b) while 

the content-based features can be found in (Ntoulas et al. 2006). 

 

2.3 PARAMETERS SETTINGS AND PERFORMANCE EVALUATION 

In this section, the parameters settings that are used throughout the thesis are discussed 

and so as the performance evaluation so that all algorithms are standardized. 

 

For all propagation algorithms, the decay factor  is set as 0.85 for the reason that it 

has become a standard since the first paper is published (Brin and Page 1998). For the 

seed selection regardless of spam seeds or non-spam seeds, 50 seeds are used for 

WEBSPAM-UK2006 while 100 seeds are used for WEBSPAM-UK2007 since there 

are less spam hosts in later datasets. Lastly, all the algorithms throughout the thesis 

execute in 50 iterations as this iteration is more than enough for the algorithms to reach 

convergence. 

 

For the performance evaluation, there are three sections – trust propagation, distrust 
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propagation and machine learning approach: 

 

Trust propagation 

 Number of non-spam hosts in each bucket 

 Incremental summation of reputable hosts for all buckets 

 Average promotion level for non-spam hosts (compare to benchmark) 

 Number of non-spam hosts being promoted (compare to benchmark) 

 Evaluated hosts represented in pages level 

 Propagation coverage 

Distrust propagation  

 Number of spam hosts in each bucket 

 Incremental summation of spam hosts for all buckets 

 Average promotion level for spam hosts (compare to benchmark) 

 Number of spam hosts being promoted (compare to benchmark) 

 Evaluated hosts represented in pages level 

For Machine Learning 

 AUC (Area Under an Receiver Operating Characteristic Curve) 

 

For trust propagation and distrust propagation, the acquired results from the derived 

algorithms will be sorted in descending order and divided into 10 or 20 buckets for 

performance evaluation. The number of non-spam hosts or spam hosts in each bucket 

indicates how much the algorithms have detected non-spam hosts or spam hosts. It is 

important to see more non-spam hosts in Web spam demotion algorithms and more 

spam hosts in Web spam detection algorithms as it shows the effectiveness of the 

algorithms. The second evaluation is the incremental summation of non-spam or spam 

hosts from the first to the last bucket. This evaluation shows how much the proposed 

algorithms have improved over all buckets. Next is the average promotion level for 

non-spam or spam hosts. It is used to track the movement of the particular non-spam or 

spam host from one bucket to the other. Let be the bucket position for the )( iO SP
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non-spam or spam hosts of the benchmark algorithm and  be the bucket 

position for the non-spam or spam hosts of the proposed algorithm. For each bucket, 

let be the labelled non-spam or spam hosts of the benchmark algorithms at the  

bucket, the average promotion at  bucket, can be defined as: 

  (2.3) 

This evaluation metric tracks the improvements for each bucket over the baseline 

algorithms. The derived unit from the metric is called bucket per level. Moreover, the 

number of non-spam or spam hosts being promoted is shown, this evaluation is 

correlated with the previous measurement.  

 

Throughout all experiments in this thesis, the datasets are conducted at the host level 

for the reason that assumed that if one host is a spam host, most likely the pages under 

this host are all spams. For the next experiment, the number of pages represented from 

the evaluated hosts is also presented.  By achieving this, the number of spam and 

non-spam has been promoted or demoted at the page level are presented while 

preserving the computation on a host level. The last measurements for the trust 

propagation algorithms is the propagation coverage of the algorithms, this evaluation 

illustrates how much trust have reached other hosts, denoted as Sn  and the 

percentage of trust propagated to evaluated hosts, denoted as  , this measurement has 

been introduced and used by some researchers (Zhang et al. 2009). 

 

For machine learning approach, the area under the receiver operating characteristic 

curve, also known as AUC is emphasize and is used to evaluate the Web spam 

detection performance because it does not depend on any threshold (Erdélyi, Garzó, 

and Benczúr 2011) like precision and recall, and it aims at measuring the performance 

of the prediction of spamicity (Castillo, Chellapilla, and Denoyer 2008). 
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Chapter 3 Anti-Web Spam Techniques 

 

3.1 INTRODUCTION 

Various anti-Web spam techniques are constantly proposed to fight against Web spam. 

Among the techniques, trust and distrust model and machine learning model have 

shown significant results against Web spam. A comprehensive literature survey is 

provided on these models in this chapter. 

 

Firstly, a well-known trust based anti-Web spam algorithm – TrustRank (Gyöngyi, 

Garcia-Molina, and Pedersen 2004) is presented. However, there are few weaknesses 

on TrustRank, thus researchers (Krishnan and Raj 2006; Wu, Goel, and Davison 2006b; 

Yang, King, and Lyu 2007; Qi, Song-Nian, and Sisi 2008) come up with the 

derivatives for TrustRank which will be thoroughly explained. An experimental study 

is done on TrustRank and HostRank (Eiron, McCurley, and Tomlin 2004), and shows 

how vulnerable it is for spam to attack. Besides TrustRank and its derivatives, there are 

other trust and distrust model algorithms and these algorithms are briefly explained in 

this section. A table on trust and distrust model is provided for comparison. 

Subsequently, machine learning techniques in terms of features and structure are 

discussed for Web spam detection. 

 

3.2 TRUSTRANK AND ITS DERIVATIVES 

In this section, TrustRank and its derivatives which include Anti-TrustRank, Topical 

TrustRank, DiffusionRank and Link Variable TrustRank are presented. 

  

3.2.1 TrustRank 

Yang et al. (Yang, King, and Lyu 2007) mentioned that TrustRank has a strong 

theoretical relation with PageRank (Brinkmeier 2006). The algorithm 
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semi-automatically separate reputable good pages from spam, and trust flows from the 

link structure of the good pages to identify additional good pages. The intuition behind 

TrustRank is that good pages seldom point to bad pages. 

  

TrustRank starts by selecting seeds. Seed selection is done by applying inverse 

PageRank to the dataset in order to get pages that would be most useful to identify 

additional pages. The results are then ranked in descending order and choose the good 

pages from top L pages as good seed set because trust flows only from good seed set. 

TrustRank then normalizes the distribution vector and applies measurement using 

Equation 3.1, similar to PageRank with some minor changes: 

 

   )1(TRTTR  (3.1) 

 

For the Equation 3.1, α is the decay factor, usually sets 0.85, T is the transition matrix, 

while   is the distribution vector after normalization. As similar to PageRank, this is 

an iterative algorithm and calculated in M iterations. 

 

 

Figure 3.1: Simple Web graph with PageRank and TrustRank results 

 

Assuming α decay factor is 0.85 running in M=50 iterations and set L = 3 with s
+
 = 

 F  and s
- 
= ED, ; Figure 3.1 illustrates the results from both PageRank (upper with 
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non-bold) and TrustRank (lower with bold). Good page F propagates trust to page A, B 

and C and therefore the pages are having high PageRank values while page D and E 

having low PageRank values. Page F is promoted since it is a good page while page D 

and E are punished for being a bad page. 

 

3.2.2 Derivatives of TrustRank 

In this section, the derivatives of TrustRank such as Anti-TrustRank (Krishnan and Raj 

2006), Topical TrustRank (Wu, Goel, and Davison 2006b), DiffusionRank(Yang, King, 

and Lyu 2007) and Link Variable TrustRank(Qi, Song-Nian, and Sisi 2008) are 

presented. 

 

3.2.2.1 Anti-TrustRank 

 

Figure 3.2: Simple Web graph with good pages (blue) and bad pages (red) 

 

Anti-TrustRank algorithm (Krishnan and Raj 2006) uses the same approximate 

isolation principle used by the TrustRank algorithm but Anti-Trust is propagated in the 

reverse direction along incoming links from a seed set of spam pages. A page is 

categorized as spam page if the Anti-TrustRank score of the page is more than a given 

threshold value. For example in Figure 3.2, assuming page A is a spam seed set, 

Anti-TrustRank would propagate to page B, and page B would propagate to page C and 

to page F if these pages are more than the threshold value. 

 

Firstly, Anti-TrustRank evaluates the dataset with PageRank algorithm and selects 
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spam pages seed set with high PageRank; Spam pages with high PageRank are most 

likely to be pointed by another spam pages with high PageRank. By achieving this, 

Anti-TrustRank able to detect another spam pages with high PageRank. After that, 

Anti-TrustRank runs the biased PageRank algorithm on the transpose matrix which 

represents the Web graph with the spam seed set. Finally, pages are ranked in 

descending order by their PageRank score to estimate the spam content. Pages with 

score greater than the threshold value given are marked as spam. 

 

Anti-TrustRank is able to report that the pages from which its seed set can be reached 

in short paths are untrustworthy. Also, the authors found that the average spam pages 

rank calculated by Anti-TrustRank is higher than the average spam pages rank 

calculated by TrustRank. In summary, Anti-TrustRank has the added benefit of 

returning spam pages with high precision. The intuition behind is that by starting with 

seed spam pages of high PageRank, it would expected that walking backward would 

lead to a good number of spam pages of high PageRank. 

 

Anti-TrustRank algorithm is written as: 
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Where ATR represent Anti-TrustRank,   is a decay factor, )(deg q is the number of 

incoming links of host q and B(p) is the spam vector. 

 

3.2.2.2 Topical TrustRank 

Selecting seed function in TrustRank algorithm has a bias towards communities. The 

Web consists of large repositories from different kinds of topic. In addition to this, the 

seed set coverage used by TrustRank does not cover every topic exist on the Web. To 

address these issues, inspired by Topic Sensitive PageRank (Haveliwala 2002), Wu et 
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al. (Wu, Goel, and Davison 2006b) proposed Topical TrustRank which uses topical 

information to partition the seed set and calculate the trust score for each topic 

separately. 

 

Given a seed set, Topical TrustRank divides the seed set into different partitions 

corresponding to the topics as given in Equation 3.3: 
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The equation is a version of the Linearity theorem proved by Jeh and Widom (Jeh and 

Widom 2003). Assume seed set T is given, it can be partitioned into n subsets, 

𝑇1, 𝑇2, … , 𝑇3 where each containing mi· (1 ≤ i ≤ n) seeds. TR  represents the TrustRank 

scores calculated by using T as the seed set and ti·(1 ≤ i ≤ n) represents the TrustRank 

scores calculated by using Ti as the seed set. It shows that product of TrustRank score 

and the total number of seeds equals the sum of products of the individual 

partition-specific scores and the number of seeds in that partition. The transformation 

of the equation is: 
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The authors introduced two techniques, which are called simple summation and 

quality bias to combine the generated topical trust score so as to present a single 

measure of trust for a page. Simple summation is calculated by adding up all trust 

scores by topic and applies on TrustRank, and then the Topical TrustRank score is 

generated. In the other hand, quality bias takes the average PageRank value of the seed 

pages of particular community into consideration. 

 

The authors also proposed three seed selection improvements for Topical TrustRank 
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algorithm. The improvements are seed weighting, seed filtering and finer topic 

hierarchy. In seed weighting, each node is assigned a constant value proportional to its 

quality; another way of saying is that some seed pages’ trust is generally higher than 

some other seed pages. In seed filtering, the quality of a page can be measured using 

PageRank or Topical TrustRank scores, low quality seed pages can be filtered out to 

improve the performance of the Topical TrustRank as low quality pages might include 

spam pages. For finer topic hierarchy, topic directories usually provide a tree structure 

for each topic and calculation is expensive to involve finer topics. However, finer topic 

hierarchy would be ideal to categories the Web. 

 

There is a trade-off for using simple summation. For that reason, the authors 

experiment using quality bias and the combination of seed weighting, seed filtering 

and finer topic hierarchy. The topical TrustRank results provided a reduction of 19% – 

43.1% in spam sites compare to TrustRank. 

 

3.2.2.3 DiffusionRank 

Motivated by the viewpoint of the Web structure and heat diffusion phenomena, Yang 

et al. (Yang, King, and Lyu 2007) proposed DiffusionRank, a generalization of 

PageRank which additionally has the ability to reduce the effect of link manipulations.  

Heat diffusion is a physical phenomenon in which heat always flow from high 

temperature position to low temperature position. 

 

The authors explained two points where PageRank is susceptible to Web spam. The 

two points are over-democratic and input-independent. The belief behind PageRank is 

that all pages are born equal; all pages have the right to vote in a summation of one for 

each page. Over-democratic can be explained when a large number of new pages are 

pointing to a page, since all new pages have the right to vote. For input-independent, 

PageRank is an iterative algorithm which it calculates until a point where it converged. 

Input-independent property makes it impossible to set an input to avoid Web spam, 

like large values for trusted pages and less or even negative value for spam sites. The 
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heat diffusion model has an advantage to avoid over-democratic and 

input-independent of PageRank. Therefore, the authors proposed DiffusionRank to 

view the Web from another perspective and calculate the ranking values. 

 

The DiffusionRank equation is defined in Equation 3.5: 
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Where h  is a diffusion score vector, M  is the number of iteration,   is thermal 

conductivity coefficient, N  is the number of elements where the elements refer to 

Web vertices and T  is the transition matrix. 

 

There are four advantages for DiffusionRank: two closed forms, group-group relations, 

graph cut and anti-manipulation. The two closed forms include discrete form and 

continuous form, the primary one has the advantage of fast computing while the 

secondary one has the advantage of being analysed easily from theoretical aspects. 

DiffusionRank is able to detect group-to-group relations easily because of the easy 

interpretation of the heat amount from one group to another. Another advantage is that 

it can partition the Web graph corresponding to the community by assigning positive 

and negative values among the communities. Lastly, DiffusionRank has the ability to 

reduce the effect of link manipulation as trusted Web pages are assigned with unit heat 

while all others are assigned with zero heat. The authors claimed manipulated Web 

pages will get lower rank until it is pointed by several good pages. 

 

3.2.2.4 Link Variable TrustRank 

Chen et al. (Qi, Song-Nian, and Sisi 2008) proposed Link Variable TrustRank 

algorithm (also known as LVTrustRank) based on the idea of using “bursts” of linking 

activity as a suspicious signal (Shen et al. 2006) with the combination of the original 
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TrustRank algorithm mentioned earlier. When there is a drastic change in the link 

structure of a spam site in a short period of time, LV TrustRank uses this opportunity to 

measure trust from the variance of the link structure and detect spam sites. 

 

Spammers intend to add links to pages which the intention of promoting particular 

page, Shen et al. (Shen et al. 2006) introduced in-link growth rate (IGR) to measure the 

ratio of the increased number of incoming links of a site to the number of original 

incoming links. The metrics is defined in Equation 3.6: 
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0  and 1  are two different timeline where )( 0inS is the set of in links of a site at 

time 0  and )( 1inS  is the set of in links of a site at time 1 . IGR is a good indicator 

to represent the variance of spam sites in link structure. 

 

LVTrustRank computes the TrustRank score )( 1TR  and )( 2TR  at different 

timeline and uses IGR to get the ratio of the variance of link structure. A joint formula 

to compute the final trust score for the timelines is defined in Equation 3.7: 
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LVTrustRank performs well on detecting Web spam based on the variance of the link 

structure. However, there exist some spam sites that do not change their link structure 

and it is not possible for LVTrustRank to detect. Nevertheless, Shen et al. (Shen et al. 

2006) introduced the idea of using variance of link structure to detect spam can be 

explored further. 
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3.2.3 Experiments 

The experiments are conducted on two datasets – WEBSPAM-UK2006 and 

WEBSPAM-UK2007. Firstly, HostRank and TrustRank are compared and 

experimented to see the vulnerability of HostRank towards Web spam. After that, 

different TrustRank algorithms with various seeds (see Chapter 2 Preliminaries for 

parameters settings) are discussed. In WEBSPAM-UK2006, the TrustRank algorithms 

with 50, 75 and 100 seeds are experimented while 100, 150 and 200 seeds are 

experimented in WEBSPAM-UK2007. 

 

Figure 3.3 and 3.5 show the comparison of HostRank and TrustRank on the ratio of 

non-spam sites and spam sites for each bucket in WEBSPAM-UK2006 and 

WEBSPAM-UK2007. The dark blue bar denotes the non-spam sites of HostRank 

while the light blue bar denotes the non-spam sites of TrustRank. The empty spaces 

above the bars represent the spam sites in each individual buckets. 

 

Figure 3.3: Percentage of non-spam hosts in HostRank and TrustRank (50 Seeds) 

buckets on WEBSPAM-UK2006. 

 

Figure 3.4 and Figure 3.6 show the percentages of non-spam hosts in TrustRank 

buckets on WEBSPAM-UK2006 and WEBSPAM-UK2007. 
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Figure 3.4: Percentage of non-spam hosts in TrustRank (50, 75 and 100 Seeds) buckets 

on WEBSPAM-UK2006. 

 

Figure 3.5: Percentage of non-spam hosts in HostRank and TrustRank (100 Seeds) 

buckets on WEBSPAM-UK2007. 

 

In Figure 3.3, TrustRank (50 seeds) able to achieve more than 90% of non-spam hosts 

in top 5 buckets whereas in HostRank, the 4
th

 bucket alone already consists more than 

50% of spam hosts. In Figure 3.5, TrustRank outperforms HostRank by having less 

spam hosts as much as 7 buckets in top 9 buckets. It is important to return results in 

early buckets because it shows the most trustworthy and relevant results. 
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Figure 3.6: Percentage of non-spam hosts in TrustRank (100, 150 and 200 Seeds) 

buckets on WEBSPAM-UK2007. 

 

 

Figure 3.7: Accumulation of non-spam hosts on top 10 buckets for HostRank and 

TrustRank (50 Seeds) in WEBSPAM-UK2006 

 

Figure 3.7 illustrates the accumulation of non-spam hosts on top 10 buckets for 

HostRank and TrustRank (50 Seeds) in WEBSPAM-UK2006. At the end of the 10
th

 

bucket, HostRank able to reach 3091 non-spam hosts whereas TrustRank with only 50 

seeds able to reach 3295 non-spam hosts. Furthermore, the figure also shows that 
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TrustRank able to detect more trustworthy hosts as early as possible compare to 

HostRank. 

 

Figure 3.8: Accumulation of non-spam hosts on Top 10 buckets for TrustRank (50, 75 

and 100 Seeds) in WEBSPAM-UK2006 

 

 

Figure 3.9: Number of non-spam hosts in TrustRank (100 Seeds) buckets over 

HostRank buckets in WEBSPAM-UK2007 
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Figure 3.10: Number of non-spam hosts in TrustRank (100, 150 and 200 Seeds) 

buckets over HostRank buckets in WEBSPAM-UK2007 

 

Figure 3.8 illustrates the accumulation of non-spam hosts on top 10 buckets on three 
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 bucket, TrustRank with 100 seeds 

has the highest accumulative sum of non-spam hosts with an amount of 3423 

non-spam hosts. Second is TrustRank with 75 seeds with an amount of 3367 non-spam 

hosts and finally, TrustRank with 50 seeds with an amount of 3295 non-spam hosts. 
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non-spam hosts in WEBSPAM-UK2006 and WEBSPAM-UK2007. The two figures 

indicate the improvement over HostRank buckets. On the other hand, figure 3.12 and 

3.14 show the numbers of non-spam hosts are being promoted in HostRank buckets in 

WEBSPAM-UK2006 and WEBSPAM-UK2007. 

 

 

Figure 3.11: Average promotion level for non-spam hosts in WEBSPAM-UK2006 for 

TrustRank (50, 75 and 100 Seeds) buckets over HostRank buckets 

 

 

Figure 3.12: Number of non-spam hosts being promoted in HostRank buckets from 

TrustRank (50, 75 and 100 Seeds). 
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Figure 3.13: Average promotion level for non-spam hosts in WEBSPAM-UK2007 for 

TrustRank (100, 150 and 200 Seeds) buckets over HostRank buckets 

 

 

Figure 3.14: Number of non-spam hosts being promoted in HostRank buckets from 

TrustRank (100, 150 and 200 Seeds). 
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with 2639 non-spam hosts. 

 

In Figure 3.13, TrustRank (100 seeds) has the highest average promotion of 3.57 

non-spam host per level. However, TrustRank (200 seeds) has the highest number of 

promoted non-spam host, a total of 3471 non-spam hosts being promoted even though 

the highest individual bucket being promoted goes to TrustRank (100 seeds) on 19
th

 

bucket with a number of 343 non-spam hosts being promoted. 

 

Table 3-1 and 3-2 show the number of non-spam Web pages represented from the 

non-spam hosts in WEBSPAM-UK2006 and WEBSPAM-UK2007. The non-spam 

hosts are based on the accumulation for top 5 buckets. 

 

Table 3-1: Web pages promoted for all algorithms in WEBSPAM-UK2006 

WEBSPAM-UK2006 

Bucket  

Index 

HostRank TrustRank   

(50 Seeds) 

TrustRank   

(75 Seeds) 

TrustRank  

(100 Seeds) 

1 4633746 5772732 5911439 6045772 

2 7878928 9405003 9538061 9339090 

3 10707594 12453809 12656345 12648555 

4 11860496 15018597 15006317 14940319 

5 14333206 17326257 17267232 17165337 

 

Table 3-2: Web pages promoted for all algorithms in WEBSPAM-UK2007 

 

 

 

 

 

WEBSPAM-UK2007 

Bucket  

Index 

HostRank TrustRank   

(100 Seeds) 

TrustRank   

(150 Seeds) 

TrustRank  

(200 Seeds) 

1 5433512 5762322 6048337 6221612 

2 9514864 9798875 10029708 9981872 
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(Table 3-2 continued) 

 

 

 

 

 

From both the table, it has clearly shown that all the TrustRank algorithms have 

detected more non-spam pages compare to HostRank algorithm. In Table 3-1, some 

TrustRank algorithm with more seeds might detect less non-spam pages than 

TrustRank with lesser seeds. This is due to more seeds might promote more spam 

pages too. Regardless of this, the TrustRank algorithms still outperforms the HostRank 

algorithm. 

 

Table 3-3: Propagation coverage in WEBSPAM-UK2006 and WEBSPAM-UK2007 

 

Datasets Algorithms )( ESn   )( NSn   )( SSn   N  S  

WEBSPAM- 

UK2006 

TrustRank (50 Seeds) 8564 4223 1374 86.20 13.80 

TrustRank (75 Seeds) 8766 4388 1381 90.01 9.99 

TrustRank (100 Seeds) 8922 4519 1384 92.84 7.16 

WEBSPAM- 

UK2007 

TrustRank (100 Seeds) 73790 6603 242 98.98 1.02 

TrustRank (150 Seeds) 75629 6780 249 99.15 0.85 

TrustRank (200 Seeds) 76759 6858 260 99.26 0.74 

 

Table 3-3 shows the propagation coverage from the TrustRank algorithms in 

WEBSPAM-UK2006 and WEBSPAM-UK2007. Observed from the table, the more 

seeds TrustRank has, the more non-spam and spam hosts able to reach. Even though 

more spam hosts are reached if more seeds are used, the trust propagation propagates 

to non-spam hosts is still more than spam hosts – in WEBSPAM-UK2006, TrustRank 

(100 Seeds) propagates 92.84% trust to non-spam hosts and 7.16% to spam hosts 

3 12113172 12601227 12790826 12721565 

4 14570132 15149195 15107725 15151087 

5 16374587 16952324 17088503 17095291 
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whereas in WEBSPAM-UK2007, TrustRank (200 Seeds) propagates 99.26% trust to 

non-spam hosts and 0.74% to spam hosts. The full results of all experiments in this 

chapter can refer to APPENDIX C - Chapter 3 Results. 

 

3.3 OTHER TRUST AND DISTRUST MODEL ALGORITHMS 

The very first algorithm to detect Web spam is the BadRank (Sobek 2002) algorithm. 

Based on the given spam seed set, distrust is propagated to measure the negative 

characteristics of one’s page and its principle is to link to bad neighbours. The formula 

of the algorithm is written as: 

 

 

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Where BR(p) stands for BadRank of page p, ):( qp  denotes there is a direct link 

from page p to page q. j is the jump probability and )(deg q
 is the number of 

incoming links of page q. According to (Sobek 2002), )( p is a special evaluation on 

page p which reflected whether this page is detected by a spam filter. 

 

Wu et al. (Wu and Davison 2005b) introduced a technique to identify link farm spam 

pages, this technique consists of three steps: Generating step, expansion step and 

ranking step. At first the algorithm generates a spam seed set by its common incoming 

and outgoing links. Then the authors use ParentPenalty to expand the seed set, the 

assumption is that if one page points to a bunch of bad pages, it is likely that the page is 

a bad page. Lastly, the authors rank the Web graph by down weighting the elements in 

the adjacency matrix. 

 

Gyongyi et al. (Gyöngyi et al. 2006) introduce the concept of spam mass to measure 

the impact of link spamming on PageRank (Brinkmeier 2006). Spam mass can identify 

pages that benefit from link spamming. Those pages which benefit from link 
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spamming is bias towards search engines, identifying them can help search engines 

remove them as early as possible. 

 

Wu et al. (Wu, Goel, and Davison 2006a) proposed two algorithms – one based one 

trust model and another based on distrust model. After calculating two algorithms 

individually, the authors totalled up the score to detect Web spam and experimented on 

three splitting methods: equal splitting, constant splitting and logarithm splitting, and 

three accumulation steps: simple summation, maximum share and maximum parent. 

Maximum share and logarithm splitting for trust and distrust model is concluded to be 

able to achieve the best results.  

 

Nie et al. (Nie, Wu, and Davison 2007) did similar research with Wu et al. (Wu, Goel, 

and Davison 2006a) which proposed one trust and one distrust model algorithms. Two 

splitting methods and two accumulation steps are experimented: equal splitting and 

constant splitting, and simple summation and maximum share. The difference between 

their researches is that Wu et al. algorithms have a constant value which can be adjust 

to detect the most spam or demote the most spam whereas Nie et al. algorithms have a 

weighting value at the summation of trust and distrust algorithms. Nie et al. concluded 

that simple summation with constant splitting for trust and maximum share with 

constant splitting for distrust have the best performance. 

 

Liang et al. (Liang, Ru, and Zhu 2007) proposed R-SpamRank, which stands for 

reverse spam rank, which initially uses blacklist as spam Web pages as seeds, then 

expand it by applying a formula similar to BadRank. The authors claimed that the 

algorithm ideally detect spam pages in a link farm. 

 

Zhao et al. (Li, Qiancheng, and Yan 2008) proposed QoC-QoL algorithm to select bad 

seeds based on good seeds to combat Web spam. The authors concluded that using 

large good seeds with bad seeds is the best choice. 
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Zhang et al. (Zhang et al. 2009) explore the bidirectional links and proposed two page 

value metrics, AVRank and HVRank to detect spam easier. AVRank and HVRank are 

inspired by TrustRank and HITS algorithm also to expand the seed set trust 

propagation. The authors also proved that automatically identified large seed set works 

better than human manual identified seed set. 

 

Lastly, Trust-Distrust Rank (Zhang, Wang, et al. 2011) proposed by Zhang et al. make 

good use of good seeds and bad seeds and also overcomes the disadvantages of both 

existing trust and distrust propagation algorithms which is either trust or distrust is 

propagating in a non-differential way. 

 

A comparative study on all link-based trust and distrust model algorithms is listed as: 

 

Table 3-4: List of link-based trust and distrust algorithms. 

 

Algorithms Year Good 

Seed 

Set 

Bad 

Seed 

Set 

Results 

Datasets Achieve 

BadRank  

(Sobek 2002) 

2002   - - 

TrustRank 

(Gyöngyi, 

Garcia-Molina, 

and Pedersen 

2004) 

2004   AltaVista Aug 03 

(31,003,946 sites) 

1000 sample sites; with 

178 good seeds, precision 

is 0.86 and recall is 0.55 

for top 10 buckets 

ParentPenalty 

(Wu and Davison 

2005b) 

2005   search.ch 

(350,000 sites) 

27,568 sites were 

expanded to additional 

42,833 spam sites 

Topical 

TrustRank  

(Wu, Goel, and 

Davison 2006b) 

2006   Web Base Jan 01 

(65,000,000 pages) 

search.ch 

(350,000 sites) 

Decrease spam by 19% - 

43.1% from the top ranked 

sites when compared with 

TrustRank 

Anti-TrustRank 

(Krishnan and Raj 

2006) 

2006   Web Graph 2002 

(18,500,000 pages) 

1.721% of spam pages found 

using Anti-TrustRank while 

0.28% spam pages found 

using PageRank for top 

100,000 pages 
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(Table 3-4 continued) 

Spam Mass 

(Gyöngyi et al. 

2006) 

2006   Yahoo! 2004 

(73,300,000 sites) 

Detected 10,000 link spam 

hosts 

Wu et al.  

(Wu, Goel, and 

Davison 2006a) 

2006   search.ch 

(350,000 sites) 

3,589 labelled spam sites; 

remove 80% of spam sites 

out of top 10 buckets 

DiffusionRank 

(Yang, King, and 

Lyu 2007) 

2007   Middle Size Graph 

(18,542 pages) 

Large Size Graph 

(607,170 pages) 

The anti-manipulation 

feature enables 

DiffusionRank to be a 

candidate as a penicillin for 

Web Spamming 

Nie et al. (Nie, 

Wu, and Davison 

2007) 

2007   WEBSPAM-UK2006 

(11,402 hosts) 

Moving 23.4 more normal 

host to top 10 buckets while 

moving out 5.7 spam hosts 

R-SpamRank 

(Liang, Ru, and 

Zhu 2007) 

2007   Sogou.com 

(5,000,000 pages) 

Precision of 99.1% for top 

10,000 pages being spam 

Link Variable 

TrustRank  

(Qi, Song-Nian, 

and Sisi 2008) 

2008   WEBSPAM-UK2007 

(114,529 hosts) 

By combining Inlink Growth 

Rate with TrustRank, the 

experiment shows the 

method is effective in 

detecting spam sites 

QoC-QoL 

algorithm 

(Li, Qiancheng, 

and Yan 2008) 

2008   13.3 million Web pages 

and 232 million links 

Mixed seed set is effective 

in identifying Web spam 

sites regardless of their way 

of combination. 

AVRank and 

HVRank  

(Zhang et al. 

2009) 

2009   Tianwang  

(358,245 hosts) 

By exploiting bidirectional 

links and large seed set, the 

algorithms able to achieve 

better performance. 

Trust-Distrust 

Rank  

(Zhang, Wang, et 

al. 2011) 

2011   WEBSPAM-UK2007 

(105,896,555 pages) 

TREC ClueWeb09 

(428,136,613 pages) 

Overcome the disadvantages 

of TrustRank and 

Anti-TrustRank and 

outperform them 

 

 

3.4 MACHINE LEARNING TECHNIQUES 

In recent year, researchers in the adversarial information retrieval community have 

moved towards machine learning approach to detect Web spam. Actually the Web 

spam problem can be viewed as a classification problem. Machine learning 
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constructed Web spam classifiers have shown positive results due to their adaptive 

ability to learn the underlying patterns for classifying spam and non-spam. Machine 

learning approach can be divided into two categories – features and structures. The 

former depicts as the input used for classification while the latter define the machine 

learning algorithm that is used for learning. Some aforementioned link-based trust and 

distrust model algorithms are used as features to assist the machine learning model. 

 

The WEBSPAM-UK datasets have made a leap in Web spam community for using 

various machine learning models. In fact, previously there are few Web spam 

challenge series – Web spam challenge track I (Castillo, Chellapilla, and Davison 

2007), II (Castillo, Davison, et al. 2007) and III (Castillo, Chellapilla, and Denoyer 

2008) which aim is to bring both machine learning and information retrieval 

community to solve the Web spam labelling problem.  

 

In this sub-section, a comprehensive literature review on machine learning models that 

have been proposed is given throughout the years. The features for machine learning 

model are reviewed first follow by the structures of the machine learning model.  

 

Becchetti et al. (Becchetti et al. 2006b) study several link-based metrics which include 

rank propagation for links and probabilistic counting to improve the Web spam 

detection techniques. Moreover, the authors conducted another similar research 

(Becchetti et al. 2006a) which include more link-based metrics such as degree 

correlation and number of neighbours, and as a result the metrics achieve 80.4% 

detection rate with 1.1% false positive on WEBSPAM-UK2002 dataset. 

 

Besides link-based features, some researchers (Ntoulas et al. 2006) propose several 

content-based features for Web spam detection. The content of Web pages can be 

modified in order to attract Web users, a technique known as keyword-stuffing. The 

authors experiment on 105 million Web pages and 86.2% spam pages detected. 
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Stacked graphical learning (Kou 2007), a meta-learning scheme, has shown positive 

results in Web spam detection (Castillo, Donato, et al. 2007). Some researchers 

(László and Siklósi 2007) take advantage of stacked graphical learning by generating 

features by averaging known and predicted labels for similar nodes of the graph. The 

authors achieve improvement of 0.01% F-measure for small graph and 0.111% 

F-measure for large graph. 

 

Gan and Suel (Gan and Suel 2007) propose 8 content features, 14 link-based features 

and 3 additional features which include number of hosts in the domain, ratio of pages 

in this host to pages in this domain and number of hosts on the same IP address. The 

overall features achieved more than 90% F-measure for spam and non-spam detection 

in Swiss dataset. 

 

Castillo et al. (Castillo, Donato, et al. 2007) use the combination of link-based features 

from (Becchetti et al. 2006a) and content-based features from (Ntoulas et al. 2006) and 

experiment on WEBSPAM-UK2006 dataset and result in 88.4% of spam hosts 

detected with 6.3% false positive. 

 

A preliminary study on using linguistic features for Web spam detection is conducted 

by Piskorski et al. (Piskorski, Sydow, and Weiss 2008) and concluded by providing 

several discriminating Corleone and General Inquirer attributes that are promising 

enough to discriminate spam and non-spam. 

 

Becchetti et al. (Becchetti, Castillo, Donato, Baeza-YATES, et al. 2008) perform a 

detailed statistical analysis that only consider link structure of the Web for Web spam 

detection. Their experiments show that the performance of all combined features is 

comparable with that state-of-the-art spam classifier that use content attributes. 

 

Becchetti et al. (Becchetti, Castillo, Donato, Leonardi, et al. 2008) later use both link 

and content features to classify spam and non-spam. In addition, the authors use graph 
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clustering algorithms, propagation of predicted labels and stacked graphical learning 

to improve the classification accuracy. As a result, their proposed methodology 

manages to detect up to 88% of spam pages. 

 

Linked latent Dirichlet allocation (LDA), an extension of LDA proposed by Bíró et al. 

is used for Web spam classification. The linked LDA technique consider linkage such 

as topics are propagated along links in such a way that the linked document directly 

influences the words in the linking Document. The authors concluded that linked LDA 

outperforms LDA and other baseline classifier about 3% to 8% in AUC performance. 

 

Historical Web page information is important for Web spam classification. Dai et al. 

(Dai, Davison, and Qi 2009) propose 1270 temporal features to improve the 

performance of Web spam classifiers. The features are experimented on 

WEBSPAM-UK2007 and have shown that their approach improves the F-measure by 

30% compared to the baseline classifier which only considers current page content. 

 

Martinez-Romo and Araujo (Martinez-Romo and Araujo 2009) presented 42 language 

model features to represent a Web document that calculate disagreement between two 

Web pages. The authors experiment on WEBSPAM-UK2006 and 

WEBSPAM-UK2007 and show that the language model features improve the 

F-measure of the former dataset by 6% and latter dataset by 2%. 

 

Later on, the authors combined their language model features with 12 qualified link 

analysis features (Araujo and Martinez-Romo 2010) along with both content and 

link-based features, the overall features achieve 0.86 F-measure and 0.88 AUC 

performance in WEBSPAM-UK2006, and 0.40 F-measure and 0.76 AUC 

performance in WEBSPAM-UK2007. 

 

Abernethy et al. (Abernethy, Chapelle, and Castillo 2010) present WITCH (which 

stands for Web Identification Through Content and Hyperlinks) algorithm; not only 



Chapter 3 Anti-Web Spam Technqiues 

43 

the authors use content and link-based features, the authors also include slack features 

and graph regularization features. The authors achieve 0.928 for AUC 10% and 0.963 

for AUC 100% in WEBSPAM-Uk2006 using support vector machine. 

 

Li et al. (Li et al. 2011) generate 10 new features from link features based on genetic 

programming and show that the new features are well performed than 41 standardized 

link-based features and also 138 transformed link-based features. 

 

A table which shows a list of features from various scientific publications for 

classification are given as: 

 

Table 3-5: List of features for classification 

 

Features & 

Authors 

Structure Datasets Achieve 

163 Link-based 

Features (Becchetti et 

al. 2006a) 

Decision Tree with 

Boosting 

WEBSPAM-UK2002 80.4%% of detection 

rate with 1.1% false 

positive 

82 Link-based Features 

(Becchetti et al. 2006b) 

Decision Tree (Pruning 

with M = 5 and M = 10) 

WEBSPAM-UK2002 80% of spam pages 

detected with 2% false 

positive 

Content Features  

(Ntoulas et al. 2006) 

C4.5 Decision Tree MSN Search 105,484,446 Web 

pages 

86.2% spam pages 

detected 

Stack Graphical 

Learning (László and 

Siklósi 2007) 

C4.5 Decision Tree WEBSPAM-UK2006 0.01% F-measure 

improvement on small 

graph and 0.111% 

F-measure 

improvement on large 

graph 

8 Content Features, 14 

Link-based Features and 

3 Additional 

Features(Gan and Suel 

2007) 

C4.5 Decision Tree and 

Support Vector 

Machine 

Swiss ch 2005 (239272 hosts) More than 90% 

F-measure on Spam 

and Non-Spam 

detection 

 

 

(Continued Next Page) 
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(Table 3-5 continued) 

140 Link-based 

Features, 96 

Content-based Features 

(Castillo, Donato, et al. 

2007) 

C4.5 Decision Tree WEBSPAM-UK2006 88.4% of spam hosts 

detected with 6.3% 

false positive 

208 Linguistic Features 

(Piskorski, Sydow, and 

Weiss 2008)  

- WEBSPAM-UK2006/2007 Certain linguistic 

features are useful for 

Web spam detection 

when combined with 

features studied 

elsewhere 

163 Link-based Features 

(Becchetti, Castillo, 

Donato, Baeza-YATES, 

et al. 2008) 

C4.5 Decision Tree 

with Bagging 

WEBSPAM-UK2002/2006 87% for 

WEBSPAM-UK2002, 

63% for 

WEBSPAM-UK2006 

45 Link-based Features, 

18 Content based 

Features (Becchetti, 

Castillo, Donato, 

Leonardi, et al. 2008) 

 

C4.5 Decision Tree WEBSPAM-UK2006 Detected up to 88% of 

spam pages 

linked LDA Features 

(Bíró et al. 2009) 

Bayes Net, Support 

Vector Machine, C4.5 

Decision Tree 

WEBSPAM-UK2007 85.4% AUC (win 

84.8% Winner of Web 

Spam Challenge 2008) 

1270 Temporal Features 

(Dai, Davison, and Qi 

2009) 

Support Vector 

Machine 

WEBSPAM-UK2007 F-measure outperform 

by 30% 

42 Language Model 

Features 

(Martinez-Romo and 

Araujo 2009) 

Metacost (cost 

sensitive Decision Tree 

with bagging) 

WEBSPAM-UK2006/UK2007 Improve 6% 

F-measure in 

WEBSPAM-UK2006, 

Improve 2% 

F-measure in 

WEBSPAM-UK2007 

42 Language Model 

Features and 12 

Qualified Links 

Features  

(Araujo and 

Martinez-Romo 2010) 

C4.5 Decision Tree WEBSPAM-UK2006/UK2007 Combined with Link 

and Content Features 

achieve AUC 

performance of 0.88 

and 0.76 for 

WEBSPAM-UK2006 

and UK2007 

 

(Continued Next Page) 
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(Table 3-5 continued) 

Slack Features, Graph 

Regularization Features 

(Abernethy, Chapelle, 

and Castillo 2010) 

Support Vector 

Machine 

WEBSPAM-UK2006 0.928 of AUC 10% 

and 0.963 of AUC 

100% 

10 Genetic 

Programming Features 

(Li et al. 2011) 

Support Vector 

Machine and Genetic 

Programming 

WEBSPAM-UK2006 10 newly generated 

features are better than 

41 link features and 

138 transformed link 

features 

 

Besides features, the structure that is used to determine the machine to learn is also 

important. 

 

Noi et al. (Noi et al. 2010) present a spam detection approach based on probability 

mapping graph self-organizing maps (PM-GraphSOMs) for clustering Web pages 

and graph neural networks (GNNs) for classification. Their approaches achieved 

better results than those who participate in the Web spam challenge 2007 with 

F-measure of 0.9169 and AUC of 0.9301. However, using both unsupervised and 

supervised techniques are computationally expensive. 

 

A harmonic function based semi-supervised learning for Web spam detection is 

proposed by Zhang et al. (Zhang, Zhu, et al. 2011) and conducted the experiments by 

comparing with other semi-supervised learning methods and achieve the highest 

precision, recall and F-measure. 

 

Leon-Suematsu et al. (Leon-Suematsu et al. 2011) presented a Web spam detection 

algorithm that predicts the spamicity of subgraphs based on the bow-tie structure of 

Web graphs by a support vector machine. 0.83 precision, 0.94 recall and 0.88 

F-measure are achieved in WEBSPAM-UK2006. 

 

Zhiyang et al. (Zhiyang et al. 2012) compare three machine learning models for Web 

spam detection: rule-based classifier, decision tree based and support vector 
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machine. The results have shown that support vector machine outperform both 

rule-based and decision tree based by precision, recall and f1-value. 

 

Fake medical websites are increasing widespread in recent years. Abbasi et al. 

(Abbasi et al. 2012) propose recursive trust relabeling, an adaptive learning 

algorithm which uses underlying content and graph-based classifiers, coupled with a 

recursive labeling mechanism, for enhanced detection of fake medical websites.  

There are researchers (Al-Kabi et al. 2012; Wahsheh, Al-kabi, and Alsmadi 2012) 

focuses on combating Arabic Web spam. The authors conducted experiments on 

various machine learning models such as naïve bayes, decision tree, support vector 

machine, k-nearest neighbor and logitboost, and achieve spam detection with more 

than 90% accuracy. 

 

Below shows a list of structure from various scientific publications for Web spam 

detection: 

Table 3-6: List of structures for classification 

 

Authors Structure Datasets Achieve 

(Noi et al. 2010) PM-GraphSOMs and 

Graph Neural Network 

WEBSPAM-UK2006 F-measure 0.9169 and 

AUC 0.9301 

(Zhang, Zhu, et al. 2011) Harmonic Functions 

Based Semi-supervised 

Learning 

WEBSPAM-UK2006 83.8% Precision, 

93.1% Recall, 88.2% 

F-measure 

(Leon-Suematsu et al. 

2011) 

Support Vector Machine WEBSPAM-UK2006 83% Precision, 94% 

Recall, F-measure 

88% 

(Zhiyang et al. 2012) Soft margin classifier - 

Support Vector Machine, 

Rule Based, Decision 

Trees 

137640 Web pages - 9634 

(7%) and 128006 (93%) 

Support Vector 

Machine outperform 

Rule-based and 

Decision Tree-based 

(Abbasi et al. 2012) Recursive Trust Labelling 930,000 Websites over 90% accuracy on 

three test bed 

 

(Continue next page) 
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(Table 3-6 continued) 

(Al-Kabi et al. 2012) Naïve Bayes, Decision 

Tree, Support Vector 

Machine, K-Nearest 

Neighbour, LogitBoost 

Arabic 15,000 Web Pages Decision Tree is the 

best with 99.521% 

accuracy 

(Wahsheh, Al-kabi, and 

Alsmadi 2012) 

Decision Tree, Naïve 

Bayes 

Arabic Link Spam Corpus 

(3,000 Web Spam pages) 

91.4706% Accuracy 

for Decision Tree, 

81.17655% Accuracy 

for Naïve Bayes 

 

Some researchers proposed their own features and structures in assist of Web spam 

detection. 

  

Tian et al.  (Tian, Weiss, and Ma 2007) employ a combinatorial feature-fusion 

method for compressing enormous amount of word-based features and produce 200 

combinatorial feature-fusion features. The researchers experiment on three learning 

models - alternating decision tree, sequential minimal optimization based support 

vector machine and naïve bayes, and their alternating decision tree achieve the best 

result with 0.931 AUC, 0.716 F-measure, 0.797 precision and 0.649 recall. 

 

Tang et al. (Tang et al. 2007) extract features from link-based data and combine with 

text-based data and produce 4,924,007 features for Web spam detection. However, 

the authors only select 28,051 features out of 4,924,007 features due to the limit of 

computation. Random forest and support vector machine with radial basis function 

are used for host classification while linear support vector machine is used for page 

classification. The authors experiment on WEBSPAM-UK2006 and achieve 

F-measure of 75.46% and 95.11% AUC for small dataset, 90.20% F-measure and 

98.92% AUC for large dataset. 

 

Except for content features and page-level link analysis feature, Geng et al. (Geng, 

Zhu, and Wang 2009) extract host-level link analysis feature for Web spam 
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classification. The researchers have shown that by incorporating the three feature set, 

the best performance can be achieved. 

 

Erdélyi et al. (Erdélyi, Garzó, and Benczúr 2011) propose a new feature set - a bag of 

words derived from BM25 term weighting scheme to improve classification tasks. 

The researchers experimented using various machine learning models such as 

ensemble selection, logitboost and random forest, and show that these three machine 

learning models improve the accuracy results.  

 

Even though there are plenty of algorithms and machine learning techniques used to 

combat Web spam, content providers still try to think another way to manipulate the 

search engines, this field is known as “Adversarial Information Retrieval (Adversarial 

IR)”, a war between search engines and those who tries to manipulate them (Castillo 

and Davison 2011). 

 

A list of scientific publications that use features and structures are shown in a table in 

the next page: 

Table 3-7: List of features and structures for classification 

 

Features & 

Authors 

Structure Datasets Achieve 

200 Combinatorial 

Feature-Fusion Features 

(Tian, Weiss, and Ma 

2007) 

Alternating Decision 

Tree, Sequential 

Minimal Optimization 

(Support Vector 

Machine) and Naïve 

Bayes 

WEBSPAM-UK2006 Alternating Decision 

Tree is the best 

classifier among with 

0.931 AUC, 0.716 

F-measure, 0.797 

Precision and 0.649 

Recall after 

Semi-supervised 

learning and Fusion. 

 

(Continue next page) 
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(Table 3-7 continued) 

28,051 features  

(Tang et al. 2007) 

Support Vector 

Machine, Random 

Forest 

WEBSPAM-UK2006 (Small) 75.46% 

F-measure, 95.11% 

AUC  

(Large) 90.20% 

F-measure, 98.92% 

AUC 

40 Host Graph based 

features (Geng, Zhu, and 

Wang 2009) 

C4.5 Decision Tree with 

Bagging, Adaboost with 

Decision Stump 

WEBSPAM-UK2006 85.5% Precision, 

88.7% Recall, 87.1% 

F1-measure, 97.1 

AUC 

10,000 BM25 Features 

(Erdélyi, Garzó, and 

Benczúr 2011) 

Bagged and Boost 

Decision Tree, Logistic 

Regression, naïve 

Bayes, random forest, 

Support Vector Machine 

WEBSPAM-UK2007 & 

DC-2010 

All 10273 including 

link, content and 

BM25 Features 

achieve 0.902 AUC 

 

3.5 SUMMARY 

In this chapter, two anti-Web spam techniques are covered – trust and distrust based 

model and machine learning model. TrustRank, a trust based anti-Web spam 

algorithm is presented based on some initial trustworthy seeds, and propagate trust to 

detect other trustworthy pages. However, there are some flaws in TrustRank 

algorithm. Thus, other researchers propose the derivatives of TrustRank such as 

Anti-TrustRank , Topical TrustRank , DiffusionRank  and Link Variable TrustRank . 

The derivatives of TrustRank algorithms are thoroughly described. 

 

Experiments are conducted for HostRank and TrustRank on two large public 

available datasets – WEBSPAM-UK2006 and WEBSPAM-UK2007 to show how 

vulnerable it is for link analysis algorithms. As a result, TrustRank detect more 

trustworthy hosts and demote spam hosts. Furthermore, TrustRank has shown that 

more seeds eventually will lead to better performance. Other trust and distrust model 

algorithms are then briefly explained in this chapter. A comparison table for trust and 

distrust model algorithms is also presented. After that, machine learning approaches 

in Web spam detection are discussed which include features that assist machine to 

learn and structures that define the machine learning model.
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Chapter 4 Trust Propagation Algorithms 

 

4.1 INTRODUCTION 

The quantity and quality of the seed sets are the key factors for the success of trust and 

distrust based anti-Web spam algorithms. This kind of approach is simple and yet 

effective, but the manual evaluation of seed sets is very time-consuming. For this 

reason, the manual evaluation process becomes vital and valuable. 

  

In this chapter, Trust Propagation Rank (TPRank) is proposed with the idea of 

calculating trust scores for all pages based on limited evaluation of non-spam and 

spam seeds to demote Web spam. To enhance the proposed algorithm, “ugly” pages 

are underlined for the reason that the categorization of “ugly” pages and pure good 

pages can avoid promoting spam pages. Furthermore, spam pages are punished by 

giving them zero rank so that it would not affect the ranks of other pages. 

 

In addition to this proposed algorithm, Spam Mass (Gyöngyi et al. 2006) algorithm is 

modified with trust propagation into Trust Propagation Spam Mass (TP Spam Mass) to 

detect Web spam. Experiments are done on two available datasets 

WEBSPAM-UK2006 (Castillo et al. 2006) and WEBSPAM-UK2007 (Yahoo! 2007), 

and the results have shown that TPRank outperforms TrustRank in demotion of Web 

spam and TP Spam Mass outperforms Spam Mass in detection of Web spam. 

 

4.2 TRUST PROPAGATION 

In this section, the ugly vertices, a new trust score calculation and a way to handle 

spam vertices are introduced. Furthermore, two anti-Web spam algorithms are 

proposed – Trust Propagation Rank (TPRank) and Trust Propagation Spam Mass (TP 

Spam Mass). 
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4.2.1 Definition 

The definitions are provided for the ease of understanding the algorithms in the rest of 

the chapter. 

 

Unevaluated vertices, denoted as X , refer to unknown pages which are not evaluated. 

Non-spam vertices, denoted as 
N , refer to reputable pages that provide reliable 

content to the users. The opposite is spam pages, denoted as 
S , which refer to pages 

that deliberately provide unreliable content to the user. TrustRank follows the intuition 

that non-spam pages seldom point to spam pages and trust flows. However, it does not 

work in the real Web. Spammers can get lots of incoming links from non-spam pages 

using indecent ways (Qi, Song-Nian, and Sisi 2008). One way of doing this is by 

leaving comments on accessible pages, i.e. pages that can be edited by external like 

blog and Wikipedia. This kind of pages are distinguished as ugly pages 
U  which 

apart from the pure good pages 
G . Ugly pages refer to the aforementioned accessible 

pages or reputable pages that unintentionally link to spam pages. The ugly pages are 

one of the reasons that spam pages got promoted easily. On the other hand, pure good 

pages are reputable pages that there is no way that one would link to spam pages. 

 

For the assessment of ugly vertices 
U , this can be done after the evaluation of 

non-spam vertices N  and spam vertices 
S . For all non-spam vertices N , if any of 

the outgoing vertices of the non-spam vertex is a spam vertex, the non-spam vertex 

then categorize into set of ugly vertices 
U , otherwise set of pure good vertices 

G . 

 

4.2.2 Trust Score Calculation 

A new trust score calculator is introduced to calculate the trust score of the unknown 

vertices X . The ugly vertices that introduced earlier are used to enhance the new trust 

score calculation. The equation of the trust score calculator is written as 
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pt is the trust score for unknown vertex p. 
Gi is the number of pure good vertices while 

Xi is the number of unevaluated vertices. The vertices in 
Gi , 

Xi  and 
qt vertices refer 

to the incoming vertices. The new trust score of page p is calculated by the trust score 

of the incoming links. For all incoming links, spam vertices and ugly vertices are 

simply ignored for the reason that their trust is not trustworthy as the vertices might be 

pointing to spam pages. 

  

 

Figure 4.1: Three examples of trust score calculation 

 

Assume page A where it is pointed by two G  and two X  (showing in the left in 

Figure 4.1), the new trust score is calculated as: 
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Assume page B where it is pointed by one S , one U , one G  and one X (showing 

in the middle in Figure 4.1), the new trust score is calculated as: 
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Assume page C where it is pointed by one G , two X and one S  (showing in the 

right in Figure 4.1), the new trust score is calculated as: 
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4.3.3 Handling Spam Vertices 

During the assessment of the seed set, both non-spam seeds and spam seeds are 

evaluated. Often either one of the seed sets is used to propagate trust or distrust, for 

example TrustRank only uses non-spam seed set to propagate trust with the spam seed 

set remain unused. Seed sets are expensive to be evaluated and should therefore make 

good use of both non-spam and spam seed set. TrustRank has shown that non-spam 

vertices will receive high trust score while spam vertices receive low trust score. Even 

though it is low, spam vertices can work together and boost one target page. In other 

words, spam vertices can still affect other vertices. ParentPenalty (Wu and Davison 

2005b; Wu, Goel, and Davison 2006a) penalize non-spam vertices that point to spam 

vertices. However, non-spam vertices might unintentionally point to spam vertices; 

spammers might leave comments to make non-spam vertices point to them. In this 

research, the spam vertices are punished by giving them zero rank. By achieving this, 

the spam vertices have no chance of affecting non-spam vertices with low trust score 

and will not get ranked even though pointed by other vertices. 

 

4.3.4 Trust Propagation Rank (TP Rank) 

Trust Propagation Rank (TPRank), a Web spam demotion algorithm that works similar 

to TrustRank is proposed but propagates trust further based on the same limited set of 
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evaluation seeds. Unlike TrustRank, TPRank use both non-spam seed set and spam 

seed set to demote spam. The seeds are selected based on inverse PageRank for the 

reason that to choose the seeds that propagate the widest coverage (Gyöngyi, 

Garcia-Molina, and Pedersen 2004). The equation for inverse PageRank can be written 

as: 

 

 N
N

IPRIIPR 1
1

)1(    (4.2) 

 

Where IPR  is the inverse PageRank score,   is a decay factor usually set as 0.85, 

I is the inverse transition matrix of the Web graph and N  is the number of the 

vertices. During the process of seed selection, spam seeds are collected too. After the 

collection, both ugly vertices and pure good vertices can be extracted out of the 

non-spam vertices. 

  

Algorithm Trust Propagation Rank (TPRank) 

Input  

 T  Transition matrix 

 N  number of pages 

   decay factor  

 M  number of iterations 

 𝜎(𝑖)  i
th

 vertex 

 t  trust score 

 𝑡̅  trust score 

 𝑖𝐺  Number of incoming pure good vertices of page i 

 𝑖𝑋  Number of incoming unknown vertices of page i 

Output  

 TPR  TPRank scores 

Begin 

Assume that the seeds are evaluated as ugly vertices 
U , pure good vertices 

G  and spam vertices 
S . 

 

(See next page) 
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1) //calculate trust score for unknown pages 

 for i = 1 to N do 

         if 
Gi  )( and  Si  )( then 

 
)(

))((
))(:(

XG
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ii

t
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  

 end if 

 end for 

 

2) // normalize trust score vector 

||/ ttt   

3) // compute TPRank scores 

tTPR   

for i = 1 to M do 

  tTPRTTPR  )1(   

end for 

End 

 

Figure 4.2: Trust Propagation Rank (TPRank) Algorithm 

 

4.2.5 Trust Propagation Spam Mass (TP Spam Mass) 

In (Gyöngyi et al. 2006), the authors proposed the concept of Spam Mass, a measure 

for the impact of link spamming on PageRank. By estimating Spam Mass, it can help 

by identifying pages that significantly benefit from link-spamming. Spam Mass is 

built on top of PageRank and TrustRank, so the equation for Spam Mass is: 

 

 
PR

TRPR
SM


  (4.3) 

 

where SM  stands for Spam Mass, PR  stands for PageRank and TR  stands for 

TrustRank. A vertex’s Spam Mass is calculated based on its PageRank score minus 

TrustRank score and divided by its PageRank score. Note that both PageRank and 

TrustRank should be normalized first before proceed. 
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In this research, Trust Propagation Rank (TPRank) can be extended to Trust 

Propagation Spam Mass (TP Spam Mass) where the equation is written as: 

 
PR

TPPR
SMTP


_  (4.4) 

 

where SMTP _ stands for Trust Propagation Spam Mass and TP  stands for Trust 

Propagation Rank. It has shown that Spam Mass works more effective than 

Anti-TrustRank (Qureshi 2011). Equation 4.3 and Equation 4.4 are important to show 

the detection of Web spam. 

 

4.2.6 Example  

 

Figure 4.3: Sample Web graph 

 

Figure 4.3 illustrates a sample Web graph which contains 4 non-spam vertices 

(highlighted in white box) and 2 spam vertices (highlighted in black box). 

 

An example on the above figure is provided in this sub-section by executing 

TrustRank and TPRank. In addition, the results on Spam Mass and TP Spam Mass are 

also provided. 

 

Firstly, non-spam seeds are selected based on inverse PageRank (see Equation 4.2), 

this is similar to TrustRank (Gyöngyi, Garcia-Molina, and Pedersen 2004) seed 

selection method as the inverse PageRank selected seeds have the most widest 



Chapter 4 Trust Propagation Algorithms  

57 

propagation. In this example, top three seeds are selected and evaluate: 

 

  EBAE ,, ,  EAN , ,  BS 
 

 

Since  EAN ,  and vertex E is pointing to vertex B, a spam vertex, then N  can 

be further categorize into U , set of ugly vertices and G , set of good vertices such as 

 EU   and  AE  . N  is used in TrustRank  while S , U and G  are used 

in TPRank to find the trust score for the vertices. The trust scores are: 

 

In TrustRank,  

  05.00005.0t ; 

  

In TPRank,  

  33.033.000033.0t . 

 

After that, the results from both algorithms are used for Spam Mass (see Equation 4.3) 

and TP Spam Mass (see Equation 4.4). 

 

The results are shown below: 

 

Table 4-1: Results from various algorithms on sample Web graph 

Algorithms 
Vertices 

A B C D E F 

TrustRank 0.147 0.066 0.027 0.019 0.155 0.126 

TPRank 0.139 0 0.025 0.018 0.147 0.168 

Spam Mass -0.072 0.279 0.652 0.645 -0.109 0.082 

TP Spam Mass -0.201 0.322 0.675 0.667 -0.046 -0.229 
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As shown in Table 4-1, TPRank actually punishes vertex B for being a spam vertex. In 

TrustRank, spam vertex B is actually higher than vertex C and D for the reason that the 

unevaluated vertices are treated the same status even though spam vertices have 

various way to get rank higher than some innocent unknown vertices. In Spam Mass 

and TP Spam Mass comparison, the biggest difference is vertex F where it shows 

negative value in TP Spam Mass while Spam Mass is showing a positive value 

(negative value actually shows how trustworthy it is while positive value shows its 

spamicity). In TP Spam Mass, trust are propagated to vertex F as it is pointed to vertex 

A and E, thus it is most likely that this vertex is a non-spam vertex. 

 

4.3 EXPERIMENTAL RESULTS 

In the experiment, 50 non-spam seeds are used for WEBSPAM-UK2006 and 100 

non-spam seeds are used for WEBSPAM-UK2007. During the selection for the good 

seeds, 179 spam seeds are detect in WEBSPAM-UK2006 while in 

WEBSPAM-UK2007, 214 spam seeds are detected. For TPRank purpose, the ugly 

seeds are evaluated based on non-spam seeds and spam seeds. As a result, there are 20 

ugly vertices and 30 pure good vertices in non-spam seeds for WEBSPAM-UK2006 

and 24 ugly vertices and 76 pure good vertices in non-spam seeds for 

WEBSPAM-UK2007. 

 

Figure 4.4: Percentage of non-spam hosts in WEBSPAM-UK2006 
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Figure 4.5: Percentage of non-spam hosts in WEBSPAM-UK2007 

 

Figure 4.4 illustrates the percentage of non-spam hosts in WEBSPAM-UK2006 while 

Figure 4.5 illustrates the percentage of non-spam hosts in WEBSPAM-UK2007. 

TPRank able to detect more non-spam hosts than TrustRank for the first twelve 

buckets in WEBSPAM-UK2006 shown in Figure 4.4 and for the first seven buckets in 

WEBSPAM-UK2007 show in Figure 4.5. It is important to demote spam hosts as early 

as possible so that spam hosts do not appear much at the top results. 

  

 

Figure 4.6: Incremental summation of non-spam hosts in WEBSPAM-UK2006  

82.5%

85.0%

87.5%

90.0%

92.5%

95.0%

97.5%

100.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
er

ce
n

ta
g

e 
o

f 
N

o
n

-s
p

a
m

 H
o

st
s 

Bucket Index 

Percentage of Non-spam hosts in WEBSPAM-UK2007 

TrustRank

TPRank

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

er
 o

f 
N

o
n

-s
p

a
m

 H
o

st
s 

Bucket Index 

Incremental Summation of Non-spam Hosts  

in WEBSPAM-UK2006 

TrustRank

TPRank



Chapter 4 Trust Propagation Algorithms  

60 

 

Figure 4.7: Non-spam hosts gap in WEBSPAM-UK2007 

 

Observed from Figure 4.6, TrustRank detects 3799 non-spam hosts and TPRank 

detects 4201 non-spam host in the 12
th

 bucket in WEBSPAM-UK2006, it has the 

biggest improvement with 402 non-spam hosts detected. On the other hand for 

WEBSPAM-UK2007 showing in Figure 4.7, the 7
th

 bucket has the biggest 

improvement gap of 34 non-spam hosts detected. There is only a slight improvement 

for WEBSPAM-UK2007 dataset for the reason that the number of label spam hosts is 

small, thus it is relatively hard to see the improvement of the non-spam hosts. 

Nevertheless, it has shown that TPRank able to detect more non-spam hosts compare 

to TrustRank algorithm. 

 

Figure 4.8 to Figure 4.11 illustrate the average promotion for non-spam hosts and the 

number of non-spam hosts promoted from TPRank over TrustRank buckets in 

WEBSPAM-UK2006 and WEBSPAM-UK2007. 
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Figure 4.8: Number of non-spam hosts promoted in WEBSPAM-UK2006 

 

 

Figure 4.9: Average non-spam host promoted in WEBSPAM-UK2006 

 

Observed from Figure 4.8 and 4.9, the 18
th

 bucket has the highest improvement with 

an average non-spam hosts promotion of 8.388 bucket per level promoting 224 
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Figure 4.10: Number of non-spam hosts promoted in WEBSPAM-UK2007 

 

  

Figure 4.11: Average non-spam host promoted in WEBSPAM-UK2007 
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Figure 4.12: Percentage of spam hosts in WEBSPAM-UK2006 

 

Apart from Web spam demotion algorithm, two Web spam detection algorithm – Spam 

Mass and TP Spam Mass are discussed. Figure 4.12 and 4.13 illustrates the percentage 

of spam hosts and the summation of all spam hosts on WEBSPAM-UK2006. Figure 

4.14 and 4.15 illustrates the percentage of spam hosts and the summation of all spam 

hosts on WEBSPAM-UK2007. 

 

 

Figure 4.13: Summation of spam hosts in WEBSPAM-UK2006 
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Figure 4.14: Percentage of spam hosts in WEBSPAM-UK2007 

 

 

Figure 4.15: Summation of spam hosts in WEBSPAM-UK2007 
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spam hosts for all buckets compare to Spam Mass algorithm. 

 

 

Figure 4.16: Average spam hosts promoted in WEBSPAM-UK2006 

In Figure 4.16 and Figure 4.17, TP Spam Mass promotes as much as 10.38 bucket per 

level for spam host with the 5
th

 bucket promoting 158 spam hosts which is an 

improvement of 42.36% on detection of Web Spam over Spam Mass algorithm in 

WEBSPAM-UK2006. For WEBSPAM-UK2007 showing in Figure 4.18 and Figure 

4.19, TP Spam Mass able to promote up to 5.875 bucket per level in the last bucket and 
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th

 bucket. 

 

Figure 4.17: Number of spam hosts promoted in WEBSPAM-UK2006 
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Figure 4.18: Average spam hosts promoted in WEBSPAM-UK2007 

 

 

Figure 4.19: Number of spam hosts promoted in WEBSPAM-UK2007 
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Table 4-2: Number of Web pages represented from evaluated hosts in 

WEBSPAM-UK2006 

 

WEBSPAM-UK2006 

Bucket 

Index 

Algorithms 

TrustRank TPRank Spam Mass TP Spam Mass 

1 5772732 5105405 151418 92751 

2 9405003 8617492 1548226 1545822 

3 12453809 11389610 2496185 3922350 

4 15018597 13548654 2963797 5340260 

5 17326257 15972170 3510497 6723305 

6 19436425 18080304 3701269 7640583 

7 21183616 19746985 4329449 8539854 

8 23057903 21699476 4854187 9318171 

9 24886572 23498479 5513986 9680861 

10 26594747 25371805 5962484 9929897 

 

Table 4-3: Number of Web pages represented from evaluated hosts in 

WEBSPAM-UK2007 

 

WEBSPAM-UK2007 

Bucket 

Index 

Algorithms 

TrustRank TPRank Spam Mass TP Spam Mass 

1 5762322 5893117 5278 5288 

2 9798875 9487775 6684 6436 

3 12601227 12041690 7385 7286 

4 15149195 14092532 8013 8866 

5 16952324 16163390 9342 9310 

6 18311165 17929892 9519 9532 

7 19565437 19312567 16486 19081 

8 20322920 20280246 19305 20145 

9 21056879 20846941 20188 155152 

10 21581252 21627362 63341 157259 
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Table 4-2 and 4-3 illustrate the number of Web pages represented from evaluated hosts 

in WEBSPAM-UK2006 and WEBSPAM-UK2007. The evaluated hosts are retrieved 

from Figure 4.13 and 4.15 where the summation of hosts is shown from the first bucket 

to the last bucket. However, only the top 10 buckets for evaluation are concerned. 

From the tables, it shows that TP Spam Mass actually detected more spam hosts than 

Spam Mass. However TPRank does not really outperform TrustRank in terms of 

number of Web pages represented from the evaluated hosts. It is believe that 

TrustRank choose the seeds with the largest propagation but TPRank propagates trust 

to the widest seeds, therefore TrustRank able to detect more Web pages compare to 

TPRank. However, TPRank still outperforms TrustRank in term of host level. 

 

Table 4-4 illustrates the propagation coverage denote as Sn  from the evaluated 

vertices E , non-spam vertices N  and spam seeds S ; In addition, the percentage 

of trust that have propagated to non-spam and spam hosts are in the table. 

 

Table 4-4: Propagation coverage in WEBSPAM-UK2006 and WEBSPAM-UK2007  

 

Datasets Algorithms )( ESn   )( NSn   )( SSn   N  S  

WEBSPAM-UK2006 TrustRank 8564 4223 1374 86.20% 13.80% 

TPRank 10183 5242 1553 98.02% 1.98% 

WEBSPAM-UK2007 TrustRank 73790 6603 242 98.98% 1.02% 

TPRank 95192 7900 353 99.54% 0.46% 

 

)( ESn   denotes the number of hosts that are covered from the seed set. )( NSn 

denotes the number of non-spam hosts while )( SSn  denotes the number of spam 

hosts propagated. N  denotes the percentage of trust propagated to non-spam hosts 

and S  denotes the percentage of trust propagated to spam hosts. From Table 4-4, it 

has shown that TPRank has propagated trust to more non-spam hosts just so as spam 

hosts over TrustRank algorithm. Even though spam hosts are propagated more in 
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TPRank, the trust propagated to spam hosts are relatively small compare to TrustRank, 

1.98% than 13.80% in WEBSPAM-UK2006 and 0.42% than 1.18% in 

WEBSPAM-UK2007 for the reason that TPRank actually propagate trust more 

towards non-spam hosts. The full results of all experiments in this chapter can refer to 

APPENDIX D - Chapter 4 Results. 

 

Aside from TrustRank and Spam Mass, TPRank outperform T-Rank (Zhang, Wang, et 

al. 2011) and TP Spam Mass outperform LVTrustRank (Qi, Song-Nian, and Sisi 2008) 

in detection and demotion of Web spam on WEBSPAM-UK2007. The parameter 

settings are similar to this thesis; in the T-Rank experiments, T-Rank obtained around 

100 spam sites but TPRank obtained 20 spam sites after demotion for the top five 

buckets; in the LVTrustRank experiments, the algorithm detects up to 6% for the first 

three buckets but TP Spam Mass detects at least 8% for the first three buckets with 2
nd

 

bucket detects 13% of spam sites. 

 

The proposed trust propagation algorithm can be further improves existing link-based 

trust model algorithms such as Topical TrustRank (Wu, Goel, and Davison 2006b), Wu 

et al. trust algorithm (Wu, Goel, and Davison 2006a), DiffusionRank (Yang, King, and 

Lyu 2007), Nie et al. trust algorithm (Nie, Wu, and Davison 2007), LVTrustRank (Qi, 

Song-Nian, and Sisi 2008), QoC-QoL algorithm (Li, Qiancheng, and Yan 2008), 

AVRank & HVRank (Zhang et al. 2009), and T-Rank (Zhang, Wang, et al. 2011). By 

incorporating the proposed trust propagation algorithm into existing link-based trust 

model algorithms, little computation is needed (prove in next section) while the 

enhancement of Web spam demotion is achieved. 

 

4.4 COMPUTATIONAL COMPLEXITY 

In terms of time complexity, assume a graph G  where it consists of vertices   and 

edges  . The new trust score calculation checks all the connected vertices of all 

vertices, thus the operation costs )(  O  . In TrustRank, the algorithm just assigns 
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the trust scores so therefore operate in of )(O time. The core operation in both 

algorithms is where for all vertices, all the incoming links of the vertices is checked; 

this operation cost )(  O  in both algorithms. So in total time, in worst case both 

algorithms still run in )(  O time. Details on Big O  notation can refer to 

APPENDIX A - Asymptotic Notation. For Spam Mass and TP Spam Mass, PageRank 

algorithm costs )(  O , similar to the core operation in TrustRank and TPRank, 

while both TrustRank and TPRank cost )(  O . So therefore for Spam Mass and TP 

Spam Mass, both algorithms in worst case operate in )(  O  time. 

 

4.5 SUMMARY 

Various link-based Anti-Web spam techniques are constantly proposed in recent years. 

Trust Propagation Rank (TPRank) is proposed to demote Web spam and Trust 

Propagation Spam Mass (TP Spam Mass) to detect Web spam. The proposed 

algorithms are experimented on two large public available dataset 

WEBSPAM-UK2006 and WEBSPAM-UK2007, and have shown that the proposed 

algorithms outperform both TrustRank and Spam Mass in various measurements. 

TPRank has improved the detection rate over TrustRank up to 10.88% in 

WEBSPAM-UK2006 and up to 1.08% in WEBSPAM-UK2007. TP Spam Mass has 

improved the detection rate over Spam Mass up to 43.94% in WEBSPAM-UK2006 

and up to 16.17% in WEBSPAM-UK2007. In terms of host to page level, TP Spam 

Mass has shown significant results compare to Spam Mass, for up to 106% 

improvement in WEBSPAM-UK2006 and 668% improvement in 

WEBSPAM-UK2007. In terms of propagation coverage, TPRank has also shown 

significant results as the algorithm has propagated to more trust scores to non-spam 

hosts compare to TrustRank. Even though it is slightly more computation in TPRank 

compare to TrustRank, the experiments have shown noteworthy results that both 

TPRank and TP Spam Mass are worthy in exchange for better performance
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Chapter 5 Incorporating Weight Properties 

 

5.1 INTRODUCTION 

The weight properties in the Web model indicate the value of linkage between two 

unknown Web vertices. These weight properties have been exploited by other 

researchers to achieve better relevancy in query results for link analysis algorithms 

such as weighted PageRank (Xing and Ghorbani 2004; Nemirovsky and Avrachenkov 

2008) and weighted HITS algorithm (Li, Shang, and Zhang 2002). Link spam, a broad 

class of Web spam on other hand, tries to attack link analysis algorithm by 

manipulating the linkages between vertices in the Web. Undoubtedly, there are some 

associates between weight properties in the Web model and link spamming. However, 

no research has been done correlating these two. 

 

In this chapter, a novel metric is proposed based on weight properties to enhance the 

detection rate for distrust based Web spam detection algorithms. This metric calculates 

the weights based on outgoing links of the vertices which indicate the relevancy 

linkage between two vertices. The weights are used along with distrust based Web 

spam detection algorithms such as Anti-TrustRank (Krishnan and Raj 2006), Wu et al. 

Distrust algorithm (Wu, Goel, and Davison 2006a) and Nie et al. Distrust algorithm 

(Nie, Wu, and Davison 2007) to detect more spams. The experimental results have 

shown that by incorporating weight properties, it enhanced the detection rate by 30.25% 

for Anti-TrustRank, 12.14% for Wu et al. Distrust algorithm and 10.92% for Nie et al. 

Distrust algorithm in WEBSPAM-UK2006, and 31.30% for Anti-TrustRank, 26.38% 

for Wu et al. Distrust algorithm and 20.31% for Nie et al. Distrust in 

WEBSPAM-UK2007. 

 

In most studies, the weight properties has been widely used to achieve better results for 
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link analysis algorithms based on PageRank (Brinkmeier 2006) and their derivative. 

However in this work, the weight properties are incorporated for the purpose of 

detecting Web spam. 

 

5.2 APPROACH 

In this section, the seed selection, weight function and some modified algorithms 

along with the new weight function are discussed. In addition, some examples are 

provided to give an insight on the new weight function. 

 

5.2.1 Seed Selection 

The seed selection process for trust and distrust model Web spam algorithms either 

select spam seeds to propagate distrust or select non-spam seeds to propagate trust to 

filter Web spam. 

 

In this research, Web spam detection algorithms are focused, in which spam seeds are 

crucial to propagate distrust to detect Web spam. According to Krishnan and Raj 

(Krishnan and Raj 2006), the seed selection algorithm that efficiently detects more 

spam with high PageRank is the PageRank algorithm (Brinkmeier 2006). High 

PageRank spam seeds travel in the reverse direction to detect additional high 

PageRank spam. Detection of high PageRank spam is important as the spam pages 

manipulate other Web pages easily. In this research, HostRank (Eiron, McCurley, and 

Tomlin 2004) is used rather than PageRank as the ranking mechanism is implemented 

at the host level. The HostRank algorithm is written as: 

 

  
Nq

qHR
pHR

pq

1
1

)(deg

)(
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



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
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



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 (5.1) 

 

Where HR(p) is the HostRank result on host p,   is a decay factor, )(q  is the 

number of outgoing links of host q. Top rank results are then evaluated as spam seed 

set and selected seeds are labelled as spam to form spam vector Β, where, 
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 (5.2) 

 

Spam vector Β then normalized by, 

 

 BBB /  (5.3) 

 

The normalized spam vector B  is used later in both the original and modified version 

of Web spam detection algorithms to propagate distrust to detect more spam. 

  

5.2.2 Weight Function 

Assume a weighted graph is given; a weighted graph associates a label with every edge 

in the graph. The weights denote as the number of outgoing links between one host 

towards another host. The computeOLweight metric is introduced which compute and 

normalize the weight, the metric is written as: 

 

 
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
),( qp

pqp  (5.4) 

 

Where   stands for the total weight for host p, ),( qp  denotes as there is a direct 

connection from host p to host q, 
pq  is a weight vector which denote as the number 

of pages from host p to host q of the weighted graph.  

 

Let T represents the transition weight matrix of the graph, such that 
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The row vector, 
ir  is then calculated where mi ,,2,1  such that 
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Then, let the sum of elements for each of the row, 
mr  in matrix T applied into 

Equation 5.4 where m is the row index such that 

 

 
mmnmm

m

j

mj qp  


21

1

),(  (5.6) 

 

Where   is a scalar value. 

 

 


pq

pqO   (5.7) 

 

pqO
 
is the new weight which indicates the normalized  

 

Note that, the transition matrix T  is basically a matrix form of representation on each 

of the weight function in a weighted graph. Hence, 

 

 
),( qpT  . (5.8) 

 

Each row vectors are multiplied with the corresponding reciprocal of the summation 

for each row respectively in order to normalize the transition weight matrix to a 

transition weight matrix. 
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For instance,  
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The weight matrix O which is the normalized matrix such that 
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Hence,  

 

 p

pq

qp
O


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  (5.10) 

 

This weight gives us valuable information on how much one host is affecting another 

host. This approach is similar to the act of Web spamming, which is boosting one 

targeted page or host. In later section, the weight features along with the Web spam 

detection algorithms are experimented.  

 

5.2.3 Algorithms 

Let weighted host graph represented as   ,,WG , where   is a set of vertices, 

  is a set of edges and   is a weight function that denotes the number of pages for 

each edge of the weighted directed graph WG . The weight function mentioned in the 
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previous sub-section is then applied onto the weighted host graph WG  to get the new 

weight O  which denote as the outgoing links of one host to another. The weight is 

used to modify existing Web spam detection algorithm to enhance the Web spam 

detection. The Web spam detection algorithms that are presented here to modify and 

show comparisons are Anti-TrustRank (Krishnan and Raj 2006), Wu et al. distrust 

algorithm (Wu, Goel, and Davison 2006a) and Nie et al. distrust algorithm (Nie, Wu, 

and Davison 2007). 

  

The principle of Anti-TrustRank is based on the intuition that pages that point to spam 

pages are likely to be spam pages themselves. Unlike TrustRank (Gyöngyi, 

Garcia-Molina, and Pedersen 2004), Anti-TrustRank travel in the reverse direction 

from a set of high PageRank spam seeds to detect more spam pages. The 

Anti-TrustRank algorithm can be seen in Equation 3.2. The algorithm is then modified 

by adding the weight and is written as: 
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Where WATR(p) is the result of the weighted Anti-TrustRank algorithm of host p,   

is a decay factor, )(deg q
 is the number of incoming links of host q, Opq is the new 

weight function from host p to host q and B(p) is the spam vector. 

 

Wu et al.  (Wu, Goel, and Davison 2006a) proposed the combination of both trust and 

distrust to demote Web spam and experimented on three types of summation steps and 

two types of splitting steps for both trust and distrust, the summation steps are simple 

summation, maximum share and maximum parent while the splitting steps are 

constant splitting and logarithm splitting. The authors have shown that by combining 

the two propagations, it will improve the overall performance score. However, only 

the distrust is concerned as it is used to detect Web spam. The authors have shown that 
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using maximum share for accumulation and logarithm splitting for splitting with 

constant c of 0.9 has the best performance for detecting Web spam. The Wu et al. 

distrust algorithm is written as: 
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Where DISTR stands for weighted Wu et al. distrust algorithm. MaxShare is a function 

that only takes the maximum distrust values from the children. 

  

The best performance of Wu et al. distrust algorithm is modified and the resulting 

algorithm is: 
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Where WDISTR stands for weighted Wu et al. distrust algorithm.  

 

The next Web spam detection algorithm is Nie et al. (Nie et al., 2007) algorithm. 

Similar with Wu et al. (Wu, Goel, and Davison 2006a), the authors use both trust and 

distrust propagation. The authors calculate the overall trust score by also including the 

subtraction of the distrust score. The authors found that using maximum share for 

accumulation and equal splitting for splitting actually achieves the best performance. 

The algorithm is written as: 
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 Where Distrust(p) represent Nie et al. Distrust algorithm. 
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The best performance of Nie et al. distrust algorithm is modified by including the 

weight for the experiments. The algorithm can be written as: 
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Where WDistrust stands for Nie et al. distrust algorithm.  

 

For the next sub-section, the algorithms are executed on a sample weighted Web graph 

as a simple example.  

 

5.2.4 Example 

 

Figure 5.1: Sample weighted Web graph 

 

Figure 5.1 illustrates a Web graph where  BAS ,  and },,,{ FEDCN  . Initially, 

HostRank is applied to select the spam hosts. Assume that the jumping probability j is 

0.85, running in 20 iterations, the HostRank results on Figure 5.1 are: 

 

 148.0271.0162.0071.0215.0133.0HR  

 

From the result, top HostRank hosts are selected to evaluate. Assume that top three 

hosts are evaluated; the evaluated hosts  EDBE ,,  where }{BS   and 



Chapter 5 Incorporating Weight Properties  

79 

},{ EDN  . The spam vector B would give 

 

 000010B  

 

The spam vector B  is now ready to apply into the Web spam detection algorithms. 

Before that, the new weight O  is calculated for the modified algorithms. Below are 

the step based on the graph in Figure 5.1. 

 

The transition weight matrix T of this figure is written as: 
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The row vectors of the matrix T can be written as: 

 

 0000301 r ;  3507052 r ;  0030003 r ; 

  

 0500004 r ;  2020205 r ;  0300026 r . 

 

Then the summation of each row can be written as: 

 

311 r ; 2022 r ; 333 r ; 

 

544 r ; 655 r ; 566 r . 
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The weight then can be computed as: 
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Figure 5.2: Sample weighted Web graph after computeOLweight metric 

 

The normalized weight is also shown in Figure 5.2. 

 

After the spam vector B and new weight O  are calculated, both spam vector and the 

new weight are applied into both original and weighted Web spam detection 

algorithms individually. Assume that the jumping probability is 0.85 and run in 20 

iterations, the results for the algorithms are: 
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Table 5-1: Host results on different Web spam detection algorithms 

Web Spam  

Detection Algorithms 

Hosts 

A B C D E F 

Anti-TrustRank 0.156 0.368 0.029 0.069 0.243 0.135 

Wu et al. Distrust 0.197 0.286 0.075 0.108 0.197 0.137 

Nie et al. Distrust 0.204 0.337 0.050 0.082 0.204 0.123 

Weighted Anti-TrustRank 0.268 0.363 0.049 0.066 0.135 0.119 

Weighted Wu et al. Distrust 0.305 0.287 0.091 0.085 0.101 0.131 

Weighted Nie et al. Distrust 0.312 0.367 0.050 0.059 0.104 0.108 

 

Table 5-1 shows the results of both the original and weighted Web spam detection 

algorithms. Observed from the table, all the algorithms gave host B the highest rank as 

it is a spam host. However, not all algorithms able to detect host A as a spam host. The 

closest original algorithms are Wu et al. distrust and Nie et al. distrust as both these 

algorithms gave the same rank values for host A and host E. With the computed weight, 

the modified version of the algorithms able to give a high rank to host A and host B for 

the reason that host A is performing link exchange with spam host B only. 

 

5.3 EXPERIMENTAL RESULTS 

In this section, the proposed algorithms are experimented on two public available 

datasets – WEBSPAM-UK2006 and WEBSPAM-UK2007 (See Chapter 2 for more 

details on datasets). The percentages of spam hosts, summation of spam hosts, average 

spam host promotion, number of spam hosts promoted and number of Web pages 

represented from the evaluated spam hosts are shown in the experiments.  

 

Figure 5.3 to Figure 5.8 illustrate the percentage of spam hosts for Anti-TrustRank 

versus Weighted Anti-TrustRank, Wu et al. Distrust versus weighted Wu et al. Distrust, 

Nie et al. Distrust vs. weighted Nie et al. Distrust in WEBSPAM-UK2006 and 

WEBSPAM-UK2007. 
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Figure 5.3: Percentage of spam hosts for Anti-TrustRank and weighted 

Anti-TrustRank in WEBSPAM-UK2006. 

 

 

Figure 5.4: Percentage of spam hosts for Anti-TrustRank and weighted 

Anti-TrustRank in WEBSPAM-UK2007. 
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Figure 5.5: Percentage of spam hosts for Wu et al. Distrust and weighted Wu et al. 

Distrust in WEBSPAM-UK2006. 

 

 

Figure 5.6: Percentage of spam hosts for Wu et al. Distrust and weighted Wu et al. 

Distrust in WEBSPAM-UK2007. 
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Figure 5.7: Percentage of spam hosts for Nie et al. Distrust vs weighted Nie et al. 

Distrust in WEBSPAM-UK2006. 

 

 

Figure 5.8: Percentage of spam hosts for Nie et al. Distrust vs weighted Nie et al. 

Distrust in WEBSPAM-UK2007. 
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weighted Anti-TrustRank managed to detect more spam host for the first five bucket 

than Anti-TrustRank. However, weighted Wu et al. Distrust and weighted Lan Nie et 

al Distrust algorithms managed to detect more spam host for the first three bucket than 

the benchmark. 

 

 

Figure 5.9: Summation of spam hosts for Anti-TrustRank and weighted 

Anti-TrustRank in WEBSPAM-UK2006. 

 

 

Figure 5.10: Summation of spam hosts for Anti-TrustRank and weighted 

Anti-TrustRank in WEBSPAM-UK2007. 
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Figure 5.9 to Figure 5.14 illustrate the summation of spam hosts for Anti-TrustRank 

versus weighted Anti-TrustRank, Wu et al. Distrust versus weighted Wu et al. 

Distrust, Nie et al. Distrust vs. weighted Nie et al. Distrust in WEBSPAM-UK2006 

and WEBSPAM-UK2007. 

 

Figure 5.11: Summation of spam hosts for Wu et al. Distrust and weighted Wu et al. 

Distrust in WEBSPAM-UK2006. 

 

 

Figure 5.12: Summation of spam hosts for Wu et al. Distrust and weighted Wu et al. 

Distrust in WEBSPAM-UK2007. 
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Figure 5.13: Summation of spam hosts for Nie et al. Distrust and weighted Nie et al. 

Distrust in WEBSPAM-UK2006. 

 

 

Figure 5.14: Summation of spam hosts for Nie et al. Distrust and weighted Nie et al. 

Distrust in WEBSPAM-UK2007. 
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algorithms accumulated more spam hosts until it reached the same point at 15
th

 bucket 

in WEBSPAM-UK2006 and 13
th

 bucket in WEBSPAM-UK2007. The biggest gap for 

the summation of spam hosts in WEBSPAM-UK2006 is Anti-TrustRank versus 

weighted Anti-TrustRank (showing in Figure 5.9) with 192 spam hosts difference in 

the 6
th

 bucket. On the other hand, the biggest gap for summation of spam hosts in 

WEBSPAM-UK2007 is also Anti-TrustRank versus weighted Anti-TrustRank 

(showing in Figure 5.10) with 44 spam hosts difference in the 5
th

 bucket. 

 

Figure 5.15 to Figure 5.18 show the average spam hosts promotion and number of 

spam hosts being promoted for weight Anti-TrustRank over Anti-TrustRank in the two 

datasets. 

 

 

Figure 5.15: Average spam hosts promotion for weighted Anti-TrustRank over 

Anti-TrustRank in WEBSPAM-UK2006. 
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Figure 5.16: Number of spam hosts promoted for weighted Anti-TrustRank over 

Anti-TrustRank in WEBSPAM-UK2006. 

 

Figure 5.17: Average spam hosts promotion for weighted Anti-TrustRank over 

Anti-TrustRank in WEBSPAM-UK2007. 
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Figure 5.18: Number of spam hosts promoted for weighted Anti-TrustRank over 

Anti-TrustRank in WEBSPAM-UK2007. 

 

 

Figure 5.19: Average spam hosts promotion for weighted Wu et al. Distrust over Wu et 

al. Distrust in WEBSPAM-UK2006. 

 

Figure 5.19 to Figure 5.22 illustrate the average spam hosts promotion and number of 
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Figure 5.20: Number of spam hosts promoted for weighted Wu et al. Distrust over Wu 

et al. Distrust in WEBSPAM-UK2006. 

 

 

Figure 5.21: Average spam hosts promotion for weighted Wu et al. Distrust over Wu et 

al. Distrust in WEBSPAM-UK2007. 
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6.55 bucket per level. The total sum of spam host being promoted in 

WEBSPAM-UK2007 by weighted Wu et al. Distrust is 101 spam hosts. 

 

 

Figure 5.22: Number of spam hosts promoted for weighted Wu et al. Distrust over Wu 

et al. Distrust in WEBSPAM-UK2007. 

 

  

Figure 5.23: Average spam hosts promotion for weighted Nie et al. Distrust over Nie et 

al. Distrust in WEBSPAM-UK2006. 
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in term of average spam hosts promotion and number of spam hosts promoted in 

WEBSPAM-UK2006 and WEBSPAM-UK2007. 

 

 

Figure 5.24: Number of spam hosts promoted for weighted Nie et al. Distrust over Nie 

et al. Distrust in WEBSPAM-UK2006. 

 

  

Figure 5.25: Average spam hosts promotion for weighted Nie et al. Distrust over Nie et 

al. Distrust in WEBSPAM-UK2007. 
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Figure 5.26: Number of spam hosts promoted for weighted Nie et al. Distrust over Nie 

et al. Distrust in WEBSPAM-UK2006. 
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Table 5-2: Number of Web pages represented from evaluated hosts in 
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WEBSPAM-UK2006 

Bucket 

Index 

Algorithms 

ATR WATR DISTR WDISTR Distrust WDistrust 

1 1313291 1349790 1622823 1295424 1653512 1273941 

2 2456555 2901785 2728892 2613922 2822220 2872809 
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(Table 5-2 continued) 

3 2841133 3780350 3336290 3681108 3438744 3821501 

4 3063894 4282150 3739390 4124931 3929221 4296223 

5 3204105 4461991 3945059 4454984 3995253 4448293 

6 3370887 4570601 4049277 4546177 4166130 4566529 

7 3508984 4615278 4094948 4632867 4282662 4639370 

8 3754869 4727802 4282774 4749903 4369946 4694204 

9 4061543 4792877 4506142 4806178 4445917 4797769 

10 4214193 4857809 4631553 4921995 4713938 4919528 

 

Table 5-3: Number of Web pages represented from evaluated hosts in 

WEBSPAM-UK2007 

WEBSPAM-UK2007 

Bucket 

Index 

Algorithms 

ATR WATR DISTR WDISTR Distrust WDistrust 

1 929200 970876 947715 892901 960910 910721 

2 1005378 1069127 1026238 1025691 1020807 1063244 

3 1012441 1101626 1058704 1077870 1057994 1079379 

4 1037990 1115851 1075044 1139643 1076417 1110244 

5 1064091 1120334 1112379 1181418 1117387 1116103 

6 1080294 1148771 1115044 1188373 1126445 1120537 

7 1099606 1149016 1115320 1190689 1134084 1130236 

8 1107402 1190866 1131098 1207496 1136708 1190857 

9 1139103 1191074 1164160 1207522 1184168 1206430 

10 1198849 1216639 1203615 1207579 1205119 1206584 

*ATR – Anti-TrustRank, , WATR – Weighted Anti-TrustRank,  

DISTR. – Wu et al. Distrust, WDISTR – Weighted Wu et al. Distrust,  

Distrust – Nie et al. Distrust, WDistrust – Weighted Nie et al. Distrust 
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Table 5-2 and 5-3 shows the number of Web pages represented from evaluated hosts in 

WEBSPAM-UK2006 and WEBSPAM-UK2007. The tables show each bucket with its 

accumulating Web pages. The evaluated hosts are retrieved from previous experiments 

in Figure 5.9 to Figure 5.14. However, only the top 10 buckets are shown for the 

reason that detection of Web spam in early buckets are more important. As shown in 

the tables, at the 10
th

 bucket, the weighted algorithms detect more spam Web pages 

than the benchmark algorithms. Both weighted Wu et al. Distrust and weighted Nie et 

al. Distrust did not managed to detect more spam pages at the first few buckets. 

However, both the algorithms managed to detect more in later buckets. For example , 

weighted Wu et al. Distrust move close to the bench algorithm at the 2
nd

 bucket and 

catch up in 3
rd

 bucket and so on in both Web spam datasets. Weighted Nie et al. 

Distrust algorithm manages to detect more spam pages at the 2
nd

 bucket onwards. The 

full results of all experiments in this chapter can refer to APPENDIX E - Chapter 5 

Results. 

 

Aside from the aforementioned Web spam detection algorithms, the weighted 

algorithms (i.e. weighted Anti-TrustRank, weighted Wu et al. Distrust and weighted 

Nie et al. Distrust) outperform LVTrustRank (Qi, Song-Nian, and Sisi 2008) by the 

average detection of spam sites for the top five buckets in WEBSPAM-UK2007. 

LVTrustRank has an average detection of 4% while the weighted algorithms achieve 

average demotion of 7.8%, 7.7% and 7.4% individually for the top five buckets. 

 

The weight properties can further improve the Web spam detection experience of other 

link-based distrust model algorithms such as ParentPenalty (Wu and Davison 2005b), 

R-SpamRank (Liang, Ru, and Zhu 2007), QoC-QoL (Li, Qiancheng, and Yan 2008), 

AVRank & HVRank (Zhang et al. 2009), and also Trust-Distrust Rank (Zhang, Wang, 

et al. 2011). 
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5.4 COMPUTATIONAL COMPLEXITY 

Consider a weighted directed host graph   ,,WG , with   as a set of vertices,   

as a set of edges and   is the weight of the edges. Initially, Equation 5.4 sums the out 

degree weights for each vertex of the graph. This operation can be divided into two 

steps which are one, )(O   time for summation of weights, shown in Equation 5.5 

and two, )(O time for performing on all vertices, shown in Equation 5.6. Thus the 

total time devoted for this operation is )(  O . The weight is calculated by 

multiplying every weight of the edges with the reciprocal of the summation weight for 

every vertex, shown in Equation 5.7. The time spent on visiting all edges is )(O  

while )(O  for all vertices. Therefore, this operation costs )(  O . To summarize, 

the total operations for performing weight function is )(  O time. The weight is an 

important feature for detection of Web spam; this method is definitely worthy in 

exchange of better performances. Details on Big O  notation can refer to APPENDIX 

A - Asymptotic Notation. 

  

5.6 SUMMARY 

Many unethical ways have been adopted by the commercial industries to make their 

website appear at the top of the search results and thus undermining the web users’ 

interests. Many anti-link spam techniques have been constantly proposed. In this 

chapter, the incorporation of weight properties is proposed to enhance the Web spam 

detection algorithms. In the experiment section, three well known Web spam detection 

algorithms are modified and compared with the original algorithms. The results have 

shown that based on the same quantity of spam seeds, the weight has greatly improved 

the baseline algorithm up to 30.25% at the host level and 39.76% at the page level in 

detection of Web spam for WEBSPAM-UK2006 while up to 31.30% at the host level 

and 8.81% at the page level for WEBSPAM-UK2007 dataset. 
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Chapter 6 Distrust Seed Set Propagation Algorithm 

 

6.1 INTRODUCTION 

The process of carefully choosing pages for propagation purpose is known as seed 

selection process. The seed selection process is crucial in terms of quality and quantity 

towards the performance of these trust and distrust models (Zhang, Han, and Liang 

2009). For trust propagation, seeds are selected based on their outgoing links to 

identify pages that give the broadest propagation, as that of how HITS is calculating 

the hub score. Conversely, for distrust propagation, seeds are selected based on their 

incoming links, as that of PageRank is calculating the authority score. Krishnan and 

Raj (Krishnan and Raj 2006) use high PageRank spam seeds to detect more spam sites 

because high PageRank spam seeds are likely to detect other spam sites with relatively 

high PageRank. Despite the quality of the seeds, the quantity is still a problem. Manual 

evaluation for the seed set is tremendously expensive in terms of both cost and also in 

not be enough to cover the Web. 

 

These problems have been noticed by few researchers (Zhang, Han, and Liang 2009; 

Wu, Goel, and Davison 2006b; Jiang et al. 2008). Automatic seed set expansion 

algorithm proposed by Zhang et al. (Zhang, Han, and Liang 2009) follows the intuition 

that if one page is pointed by many trustworthy pages, then that page can be trusted. 

Wu et al. (Wu and Davison 2005b) proposed Parent Penalty which follows the 

intuition that if one page is pointing to many spam pages, it is likely that this page is a 

spam page. These algorithms are the only two that expand the seed set to combat Web 

spam. Both however, use threshold to separate spam and non-spam. Due to the 

enormity of the Web, threshold is very hard to determine. 

 

In this chapter, the purpose is to detect more spam pages which are more concern to 
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Web search engines. The distrust seed set propagation algorithm (DSP) is proposed 

which act as an extension to the spam seed set to calculate the distrust score for 

unevaluated pages. Unlike the expand seed set algorithms that mentioned earlier, the 

intention is to assist the manual evaluation by calculating the likelihood of other pages 

becoming spam based on the seed set. The experiments are done on 

WEBSPAM-UK2006 (Castillo et al. 2006) and WEBSPAM-UK2007 (Yahoo! 2007) 

and have shown that DSP algorithm works well with existing Web spam detection 

algorithms. 

 

6.2 DISTRUST SEED SET PROPAGATION 

In this section, a detailed explanation is given on distrust seed set propagation 

algorithm (DSP) and in addition, some examples are provided on the proposed 

algorithm. 

 

6.2.1 Algorithm 

Web spam detection is more effective at host level rather than page level for the reason 

that if one page is a spam host, it can be assumed that all pages under this host are all 

spams. A host is denoted as a set of Web pages under the same domain name. 

Consequently, algorithms are all done at the host level. 

 

The seed selection process for trust and distrust model Web spam algorithms either 

select spam seeds to propagate distrust or select trustworthy seeds to propagate trust to 

filter Web spam. Since distrust seed set propagation algorithm is correlated to Web 

spam detection algorithm, the seed selection process for DSP therefore select spam 

seeds to propagate distrust to detect Web spam.  

 

According to Krishnan and Raj (Krishnan and Raj 2006), the seed selection algorithm 

that efficiently detects more high PageRank spam vertices is the PageRank algorithm 

(Brinkmeier 2006). Actually it is HostRank (Eiron, McCurley, and Tomlin 2004) since 

the experiments are done at the host level.  
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The HostRank algorithm can be written as: 
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Where HR(p) is the HostRank score on host p,   is a decay factor, )(deg q
 is the 

number of outgoing links of host q. 

 

Assume that a host graph ),( HHHG  where H  is a set of host vertices and H  is 

a set of ordered pair of hosts. Initially HostRank are executed on the host graph H and 

top selected HostRank vertices are evaluated and assigned with an initial distrust score 

1d . The initial distrust score 1d  is calculated such that 
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
otherwise

p
pd

S
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,1
)(1


 (6.2) 

 

where the initial distrust score of host p 1d  is 1 if host p is a spam host, 0 otherwise. 

The distrust score then normalized where the normalized distrust score id  by, 

 

 i

i
i

d

d
d   (6.3) 

Such that 

 
  1 Hid   (6.4) 

 

 

Note that the initial distrust score is similar to the results from the evaluation process 

for the Web spam detection algorithms. The difference is that the distrust score 

calculated by the distrust seed set propagation algorithm is an iterative process. Thus, 



Chapter 6 Distrust Seed Set Propagation Algorithm 

101 

at the next iteration, while the distrust score of evaluated vertices remains, the distrust 

scores for the unevaluated vertices are calculated as. 

 

 
)(deg

)(
)(

),( 1

q

qd
pd

qp i

i 

 



 (6.5) 

 

where )( pdi  is the new distrust score of page p at i
th 

iteration; (p,q) denotes as there 

is a hyperlink from page p to page q; )(deg p
denotes the number of outgoing links of 

page p. After the distrust scores for the unevaluated vertices are calculated, the distrust 

scores then again normalized using Equation 6.3 and 6.4. The distrust seed set 

propagation algorithm is an iterative process where the iteration is dependent to the 

size of the Web graph, the iteration will reach until one point where it start to converge. 

The equivalent matrix equation form of Equation 6.5 is: 

 

 1 ii dIsd  (6.6) 

 

where id  is the distrust score vector, I is an inverse adjacent matrix represent the Web 

structure, in which T(p,q) is 1 if page p is pointing to page q, otherwise 0. s is a vector 

which represent )(deg1 p
 where )(deg p

 is the number of outgoing links of page 

p. Figure 6.1 illustrates the distrust seed set propagation algorithm.  

 

In this experiment, three well-known Web spam detection algorithms are chosen and 

compared with those along with the distrust seed set propagation algorithm – 

Anti-TrustRank (Krishnan and Raj 2006) refer to Equation 3.2, Wu et al. (Wu, Goel, 

and Davison 2006a) distrust algorithm refer to Equation 5.12 and Nie et al. (Nie, Wu, 

and Davison 2007) distrust algorithm refer to Equation 5.14. 
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Figure 6.1: The distrust seed set propagation (DSP) algorithm. 

 

6.2.2 Example 

Consider Figure 6.2 as shown below. 

 

Figure 6.2: Sample Web graph. 
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A sample of inverse adjacent matrix on Figure 2 is shown as: 
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The vectors on Figure 2 would be: 

 



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


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1

3

1

2

1
s

 

 

The distrust seed set propagation algorithms would run in an iterative computation to 

assure the propagation spread further. Assume that Page B is a spam seed; at the first 

iteration where Equation 6.2 is applied, the distrust score vector d is given: 

 

 0000101 d  

 

After that, the distrust score vector d is applied onto Equation 6.5 iteratively to assure 

that the distrust is propagating. The intention of the distrust seed set propagation 

algorithm is to find the probability of other unevaluated pages being spam. Table 6-1 

illustrates the distrust score vector on Figure 6.2 for 10 iterations. 

 

In Table 6-1, assume page A is a spam seed; the likelihood for the unevaluated pages 

becoming a spam is counted iteratively where each iteration is normalized to the sum 

of 1. A page will only become dishonest if it points to spam seeds. While observing the 

2
nd

 iteration, since page A and page C pointing to page B, there is a possibility that both 

page A and page C are spam. Distrust is propagated further as more iteration is done.  

The distrust distribution in Table 6-1 is applied into Anti-TrustRank algorithm with 
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DSP in Equation 6.6, the decay factor   is set to 0.85 and run in 20 iterations; the 

results are shown in Table 6-2. 

Table 6-1: Distribution of distrust propagation 

Distrust 

Score 

Pages 

A B C D E F 

𝑑1
̅̅ ̅ 0 1 0 0 0 0 

𝑑2
̅̅ ̅ 0.25 0.50 0.25 0 0 0 

𝑑3
̅̅ ̅ 0.20 0.40 0.20 0.20 0 0 

𝑑4
̅̅ ̅ 0.167 0.333 0.167 0.167 0.167 0 

𝑑5
̅̅ ̅ 0.143 0.285 0.143 0.143 0.143 0.143 

𝑑6
̅̅ ̅ 0.187 0.25 0.187 0.125 0.125 0.125 

𝑑7
̅̅ ̅ 0.177 0.235 0.176 0.176 0.118 0.118 

𝑑8
̅̅ ̅ 0.167 0.222 0.167 0.167 0.167 0.111 

𝑑9
̅̅ ̅ 0.158 0.211 0.158 0.158 0.158 0.158 

𝑑10
̅̅ ̅̅  0.175 0.200 0.175 0.150 0.150 0.150 

 

Table 6-2: Results of Anti-TrustRank with Distrust Seed Set Propagation algorithm 

Distrust 

Score 

Pages 

A B C D E F 

𝑑1
̅̅ ̅ 0.164 0.359 0.164 0.141 0.125 0.053 

𝑑2
̅̅ ̅ 0.180 0.312 0.180 0.164 0.133 0.059 

𝑑3
̅̅ ̅ 0.164 0.281 0.164 0.180 0.148 0.066 

𝑑4
̅̅ ̅ 0.172 0.297 0.172 0.172 0.172 0.070 

𝑑5
̅̅ ̅ 0.164 0.281 0.164 0.164 0.164 0.094 

𝑑6
̅̅ ̅ 0.164 0.297 0.164 0.180 0.148 0.090 

𝑑7
̅̅ ̅ 0.156 0.281 0.156 0.172 0.148 0.090 

𝑑8
̅̅ ̅ 0.156 0.281 0.156 0.18 0.156 0.090 

𝑑9
̅̅ ̅ 0.156 0.281 0.156 0.172 0.156 0.098 

𝑑10
̅̅ ̅̅  0.164 0.266 0.164 0.164 0.164 0.094 
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Observed from Table 6-2, note that 𝑑1
̅̅ ̅

 actually is the original algorithm. When 

applied the distrust seed set algorithm, the distrust values are propagating around, this 

enhanced the Web spam detection algorithms. The experiments are done in a large 

dataset namely WEBSPAM-UK2006 and WEBSPAM-UK2007 that the algorithms 

work well with distrust seed set algorithm and reached convergence after the 5
th

 

distrust score vector. 

 

6.3 EXPERIMENTAL RESULTS 

In the experiments, distrust seed set propagation is performed for 10 iterations on 

well-known three Web spam detection algorithms – Anti-TrustRank (Krishnan and 

Raj 2006), Wu et al. Distrust (Wu, Goel, and Davison 2006a) and Nie et al. Distrust 

(Nie, Wu, and Davison 2007) in WEBSPAM-UK2006 and WEBSPAM-UK2007 (See 

Chapter 2 for more details on datasets). Even though the results are distributed in 20 

buckets, only the top 10 buckets are concerned because early buckets is crucial for 

Web spam detection. 

 

 

Figure 6.3: Number of spam hosts summing to the 10th bucket for Anti-TrustRank and 

Anti-TrustRank DSP in WEBSPAM-UK2006. 
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Figure 6.3 to Figure 6.8 illustrate number of spam hosts summing to the 10
th

 bucket in 

WEBSPAM-UK2006 and spam hosts gap in top 10 buckets in WEBSPAM-UK2007 

for Anti-TrustRank, Wu et al. Distrust and Nie et al. Distrust versus the DSP 

algorithms at the 2
nd

 iteration. 

 

Figure 6.4: Spam hosts gap in Top 10 buckets for Anti-TrustRank DSP over 

Anti-TrustRank in WEBSPAM-UK2007. 

 

 

Figure 6.5: Number of spam hosts summing to the 10th bucket for Wu et al. Distrust 

and Wu et al. Distrust DSP in WEBSPAM-UK2006. 
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Figure 6.6: Spam hosts gap in Top 10 buckets for Wu et al. Distrust DSP over Wu et al. 

Distrust in WEBSPAM-UK2007. 

 

 

Figure 6.7: Number of spam hosts summing to the 10th bucket for Nie et al. Distrust 

and Nie et al. Distrust DSP in WEBSPAM-UK2006. 
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Figure 6.8: Spam hosts gap in Top 10 buckets for Nie et al. Distrust DSP over Nie et al. 

Distrust in WEBSPAM-UK2007. 

To summarize, the DSP 2
nd

 iteration improve Anti-TrustRank up to 5.57%, Wu et al. 

Distrust up to 3.54% and Nie et al. Distrust up to 4.21% in WEBSPAM-UK2006. For 

WEBSPAM-UK2007 on the other hand, the DSP 2
nd

 iteration improve Anti-TrustRank 

up to 3.7%, Wu et al. Distrust up to 11.83% and Nie et al. Distrust up to 10.26%. Even 

though it is a small improvement, the distrust seed set algorithm did improve the 

baseline algorithms. In later experiments, the results on summation of 10 buckets of 

spam hosts are presented for these algorithms along with 10 iterations DSP. 

Table 6-3: Summation of 10 buckets of spam hosts for DSP  

on 10 iterations in WEBSPAM-UK2006 

WEBSPAM-UK2006 

 Iteration 

1
st 

2
nd 

3
rd 

4
th 

5
th 

6
th 

7
th 

8
th 

9
th 

10
th 

ATR 762 

- 

775 

1.71% 

825 

8.27% 

865 

13.52% 

880 

15.49% 

887 

16.40% 

887 

16.40% 

888 

16.54% 

887 

16.40% 

886 

16.27% 

Wu 841 

- 

867 

3.09% 

863 

2.62% 

871 

3.57% 

877 

4.28% 

882 

4.88% 

883 

4.99% 

884 

5.11% 

884 

5.11% 

884 

5.11% 

Nie 861 

- 

878 

1.97% 

884 

2.67% 

901 

4.65% 

937 

8.83% 

941 

9.29% 

943 

9.52% 

944 

9.64% 

941 

9.29% 

941 

9.29% 

*ATR – Anti-TrustRank, Wu – Wu et al. Distrust, Nie – Nie et al. Distrust 
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Table 6-4: Summation of 10 buckets of spam hosts for DSP  

on 10 iterations in WEBSPAM-UK2007 

WEBSPAM-UK2007 

 Iteration 

1
st 

2
nd 

3
rd 

4
th 

5
th 

6
th 

7
th 

8
th 

9
th 

10
th 

ATR 204 

- 

205 

0.49% 

205 

0.49% 

213 

4.41% 

216 

5.88% 

216 

5.88% 

215 

5.39% 

215 

5.39% 

217 

6.37% 

216 

5.88% 

Wu 208 

- 

211 

1.44% 

213 

2.40% 

214 

2.88% 

216 

3.85% 

216 

3.85% 

217 

4.33% 

217 

4.33% 

217 

4.33% 

217 

4.33% 

Nie 209 

- 

211 

0.96% 

214 

2.39% 

221 

5.74% 

226 

8.13% 

228 

9.09% 

229 

9.57% 

229 

9.57% 

230 

10.05% 

230 

10.05% 

*ATR – Anti-TrustRank, Wu – Wu et al. Distrust, Nie – Nie et al. Distrust 

 

Table 6-3 and 6.4 show the summation of spam hosts for 10 buckets for the baseline 

algorithms along with the distrust seed set algorithm from 2
nd

 iteration to 10
th

 iteration 

for WEBSPAM-UK2006 and WEBSPAM-UK2007. The percentages of improvement 

over the baseline algorithms are also shown in the tables. Note that the 1
st
 iteration 

DSP is the standard propagation for all trust and distrust algorithms. In 

WEBSPAM-UK2006, all algorithms with DSP managed to detect the most spam hosts 

at the 8
th

 iteration while reaching convergence at the 5
th

 iteration. The biggest 

improvement goes to Anti-TrustRank on 8
th

 iteration DSP with an improvement of 

16.54% detecting 888 spam hosts. Despite of this, the most spam hosts detected is Nie 

et al. Distrust on 8
th

 iteration DSP with 944 spam hosts detected at the 10th bucket. 

For WEBSPAM-UK2007, both Anti-TrustRank and Nie et al. Distrust detect the most 

spam hosts with 9
th

 iteration DSP while Wu et al. Distrust detect the most spam hosts 

with 7
th

 iteration DSP. Regardless of this, the three algorithms reach convergence after 

the 5
th

 iteration. The most spam hosts detected and also the biggest improvement goes 

to Nie et al. Distrust at 9
th

 iteration DSP with an improvement of 10.05% detecting 230 

spam hosts. 

 

Figure 6.9 to Figure 6.12 illustrate the average spam hosts promotion and number of 

spam hosts promoted for Anti-Trustrank on 8
th

 iteration DSP in WEBSPAM-UK2006 
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and on 9
th

 iteration DSP WEBSPAM-UK2007 over its benchmark algorithm – 

Anti-TrustRank. 

 

  

Figure 6.9: Average spam hosts promotion for Anti-TrustRank on 8th iteration DSP 

over Anti-TrustRank in WEBSPAM-UK2006. 

 

 

Figure 6.10: Number of spam hosts promoted for Anti-TrustRank on 8th iteration DSP 

over Anti-TrustRank in WEBSPAM-UK2006. 
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Figure 6.11: Average spam hosts promotion for Anti-TrustRank on 9th iteration DSP 

over Anti-TrustRank in WEBSPAM-UK2007. 

 

 

Figure 6.12: Number of spam hosts promoted for Anti-TrustRank on 9th iteration DSP 

over Anti-TrustRank in WEBSPAM-UK2007. 
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benchmark algorithm, the highest average spam hosts promotion is the 13
th

 bucket 

with 4.25 bucket per level. 

 

  

Figure 6.13: Average spam hosts promotion for Wu et al. Distrust on 8th iteration DSP 

over Wu et al. Distrust in WEBSPAM-UK2006. 

 

 

Figure 6.14: Number of spam hosts promoted for Wu et al. Distrust on 8th iteration 

DSP over Wu et al. Distrust in WEBSPAM-UK2006. 
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Figure 6.15: Average spam hosts promotion for Wu et al. Distrust on 7th iteration DSP 

over Wu et al. Distrust in WEBSPAM-UK2007. 

 

 

Figure 6.16: Number of spam hosts promoted for Wu et al. Distrust on 7th iteration 

DSP over Wu et al. Distrust in WEBSPAM-UK2007. 
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benchmark algorithm – Wu et al. Distrust. From the figures, the highest bucket per 

level in WEBSPAM-UK2006 is the 11
th

 bucket where it promotes 7.1 bucket per level 

for the spam hosts. Still, the bucket that promotes the most spam hosts is the 2
nd

 bucket 

promoting 45 spam hosts. WEBSPAM-UK2007 on the other hand, the highest bucket 

per level is 4.75 bucket per level for the spam hosts while the highest number of spam 

hosts promoted is the 11
th

 bucket promoting 13 spam hosts. 

 

Figure 6.17: Average spam hosts promotion for Nie et al. Distrust on 8th iteration DSP 

over Nie et al. Distrust in WEBSPAM-UK2006. 

 

Figure 6.18: Number of spam hosts promoted for Nie et al. Distrust on 8th iteration 

DSP over Nie et al. Distrust in WEBSPAM-UK2006. 
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Figure 6.19: Average spam hosts promotion for Nie et al. Distrust on 9th iteration DSP 

over Nie et al. Distrust in WEBSPAM-UK2007. 

 

 

Figure 6.20: Number of spam hosts promoted for Nie et al. Distrust on 9th iteration 

DSP over Nie et al. Distrust in WEBSPAM-UK2007. 
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The highest bucket per level in WEBSPAM-UK2006 is the 13
th

 bucket as high as 7.21 

bucket per level for spam hosts while the bucket with the biggest number of spam 

hosts promoted is the 2
nd

 bucket with 73 spam hosts promoted. For 

WEBSPAM-UK2007, the highest average spam hosts promotion is the 15
th

 bucket 

with 8.5 bucket per level for spam hosts. The total sum of spam hosts being promoted 

by Nie et al. Distrust with 9
th

 iteration DSP over Nie et al. Distrust in 

WEBSPAM-UK2007 is 108 spam hosts. 

 

Table 6-5: Number of Web pages represented from evaluated hosts in 

WEBSPAM-UK2006 

WEBSPAM-UK2006 

Bucket 

Index 

Algorithms 

ATR 

ATR  

8
th

 DSP DISTR 

DISTR 

8
th

 DSP 

 

Distrust 

Distrust 

8
th

 DSP 

1 1313291 1298996 1622823 1588293 1653314 1539283 

2 2456555 2694632 2728892 2856597 2832581 3003471 

3 2841133 3535509 3336290 3841061 3438744 4171748 

4 3063894 3845866 3739390 4132319 3929393 4619347 

5 3204105 4024198 3945059 4279553 3995253 4944029 

6 3370887 4316557 4049277 4488813 4166130 5240632 

7 3508984 4448721 4094948 4591742 4282662 5284677 

8 3754869 4529346 4282774 4676556 4369946 5352723 

9 4061543 4832617 4506142 4780965 4440319 5536531 

10 4214193 5004972 4631553 4939534 4713938 5540404 
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Table 6-6: Number of Web pages represented from evaluated hosts in 

WEBSPAM-UK2007 

WEBSPAM-UK2007 

Bucket 

Index 

Algorithms 

ATR 

ATR  

9
th

 DSP DISTR 

DISTR 

7
th

 DSP 

 

Distrust 

Distrust 

9
th

 DSP 

1 937106 932239 973094 995268 1005285 1003788 

2 1009426 1032782 1027670 1064206 1022486 1068011 

3 1014809 1034819 1079967 1064527 1079508 1120374 

4 1039525 1060942 1096300 1078740 1112970 1193032 

5 1065252 1078895 1133635 1148592 1138692 1195269 

6 1084178 1085877 1136315 1158840 1150000 1220140 

7 1103333 1087342 1139671 1168950 1155144 1228255 

8 1147566 1169866 1153311 1185852 1157171 1258372 

9 1163808 1225869 1183984 1228032 1189461 1258837 

10 1200058 1226594 1194601 1242814 1205620 1309149 

 

Table 5 and 6 depicts number of Web pages represented from evaluated hosts in 

WEBSPAM-UK2006 and WEBSPAM-UK2007. At the 10
th

 bucket, both tables have 

shown that the algorithms with distrust seed set propagation have detected more spam 

pages than the benchmark algorithms. Some DSP algorithms in different datasets are 

not able to detect more spam pages at the first bucket, but the algorithms have shown 

that more spam pages are detected in later buckets. The algorithm that performs the 

best in both tables is Nie et al. Distrust with DSP which detect 17.73% more spam 

hosts in WEBSPAM-UK2006 and detected 8.59% more spam hosts in 

WEBSPAM-UK2007. The full results of all experiments in this chapter can refer to 

APPENDIX F - Chapter 6 Results. 

 

In the experiments, DSP algorithm has improved the Web spam detection experience 
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of Anti-TrustRank, Wu et al. Distrust and Nie et al. Distrust. Besides the 

aforementioned algorithms, DSP able to enhanced existing link-based distrust model 

algorithms such as ParentPenalty (Wu and Davison 2005b), R-SpamRank (Liang, Ru, 

and Zhu 2007), QoC-QoL (Li, Qiancheng, and Yan 2008), AVRank & HVRank 

(Zhang et al. 2009), and also Trust-Distrust Rank (Zhang, Wang, et al. 2011). 

 

6.4 COMPUTATIONAL COMPLEXITY 

In terms of computational complexity, assume that a Web graph G consists of a set of 

vertices   and a set of edges  . The most effective seed selection process for spam 

detection is to select seeds using HostRank algorithm which cost O(   ) time. Then 

the seeds are moved to the propagation phase where in the baseline algorithm, it runs 

for O( ) time. In DSP however, the algorithm went through all vertices and checks the 

edges that are connected to the particular vertices. Therefore in the worst case scenario, 

the algorithm run in O(   ) time. Overall, the running time complexity is O(   ) 

time. In previous experiments, distrust seed set propagation algorithm significantly 

improved the performance of the baseline algorithms. Details on Big O  notation can 

refer to APPENDIX A - Asymptotic Notation. 

 

6.5 SUMMARY 

In this chapter, distrust seed set propagation algorithm (DSP) is proposed to propagate 

distrust further in order to detect more spam. In the experiment section, three modified 

Web spam detection algorithms are applied with DSP and shown that it enhanced the 

baseline algorithms and detected up to 17.73% more spam hosts in 

WEBSPAM-UK2006 and up to 8.59% more spam hosts in WEBSPAM-UK2007 at the 

host level, up to 5.33% more spam pages in WEBSPAM-UK2006 and up to 8.75% 

more spam pages in WEBSPAM-UK2007. The impact of this proposed algorithm in 

practical can increase the number of spam pages detected in order to clean them as 

soon as possible. 
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Chapter 7 Neural Network based Application 

 

7.1 INTRODUCTION 

The application of machine learning method in Web spam classification has shown 

positive results due to their adaptive ability to learn the underlying patterns for 

classifying spam and non-spam data. Even though the Web spam features are highly 

correlated with the success for Web spam detection, the structure of classifiers also 

play an important role. C4.5 decision tree (DT) (Quinlan 1993) and support vector 

machine (SVM) (Cortes and Vapnik 1995) are two commonly used machine learning 

approaches among the adversarial information retrieval community. However, there 

were some evidences showing that SVM actually outperforms DT. Abernethy et al. 

(Abernethy, Chapelle, and Castillo 2010) obtained the best result in Web Spam 

Challenge 2007 with the AUC performance of 0.963 using SVM compared to C4.5 DT 

with the AUC performance of 0.935. Yuchun et al. (Yuchun et al. 2008) obtained 

higher AUC results with less time and space using SVM than DT in spam senders 

behaviour analysis. Zhiyang et al. (Zhiyang et al. 2012) did some simulation research 

on machine learning models for Web spam detection and their results showed that 

SVM outperformed both rule-based classifier and decision tree classifier in terms of 

precision, recall and F1-value. 

 

In spite of this, researchers have shown that the outcome of SVM is easily manipulated 

in adversarial classification tasks like spam filtering (Biggio, Nelson, and Laskov 

2011). Furthermore, recent scientific researches (Biggio, Nelson, and Laskov 2012; 

Xiao, Xiao, and Eckert 2012) indicated that by injecting contaminated training data, 

the accuracy of the SVM will be significantly degraded. 

 

Aside from SVM and DT, neural networks have emerged as a vital classification tool 
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and have been demonstrated to be a competitive alternative to traditional classifiers 

(Zhang 2000). There are few researchers using neural networks for Web spam 

classification. Both Ntoulas et al. (Ntoulas et al. 2006) and Mahmoudi et al. 

(Mahmoudi, Yari, and Khadivi 2010) used neural networks but the authors did not 

mention the architecture of the neural networks. Closest to this chapter research in this 

chapter is Noi et al. (Noi et al. 2010) who use probability mapping graph 

self-organizing maps for clustering, and then graph neural network for classifying task. 

However, the training time for a mixture of unsupervised and supervised network is 

computational expensive. 

 

In this chapter, a multilayer perceptrons (MLP) neural network is proposed for Web 

spam classification due to its flexible structure and non-linearity transformation to 

accommodate latest Web spam patterns. Using the right learning algorithm and 

selecting the right number of hidden neurons are crucial to obtain the optimal results. 

Therefore, scaled conjugate gradient (Møller 1993) algorithm is selected to supervise 

MLP network’s weight because it could offer faster learning speed and better 

performances than other standard back propagation algorithms. The experiments are 

done on two public available Web spam datasets – WEBSPAM-UK2006 (Castillo, 

Chellapilla, and Davison 2007; Castillo, Davison, et al. 2007) and 

WEBSPAM-UK2007 (Castillo, Chellapilla, and Denoyer 2008). The experimental 

results have shown that MLP has improved the AUC performance up to 14.02% over 

SVM on former dataset and up to 3.53%% over SVM on later dataset. In addition, 

based on the experimental results, 3 fixed number of hidden neurons are concluded as 

parameters that are close to optimal results. 

 

7.1 MULTILAYERED PERCEPTRONS NEURAL NETWORK 

For the machine learning model, multilayered perceptrons neural network is used for 

the role of Web spam detection. MLP neural network is a non-linear feed-forward 

network model which maps a set of inputs x  onto a set of outputs y  using multi 
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weights connections. A basic structure of MLP is illustrated in Figure 7.1. It consists of 

an input layer, an output layer and one hidden layer. The input layer has p  number of 

neurons relying on the input features. The output layer has r  number of neurons 

depending on the number of classifying task. The hidden layer has q  number of 

hidden neurons and the number of hidden neurons is varied from  ,2  (Haykin 

1998). It depends on the linearity of the mapping data. 

 

 

Figure 7.1: The structure of multilayer perceptrons neural network 

 

Let x  be the input which comprising of a column vector  T
p21 xxx ,,,   while the 

superscript T denotes as matrix transpose. Let m
w  be the weight where the superscript 

denotes as the layer between the input layer and hidden layer. The summation of input 

and weights is denoted as 

 qjwxa
p

i

m

ijii ,2,1;
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

  (7.1) 
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Where i  and j  are the iterative variable for input and hidden neurons respectively, 

  is a bias term that regulates the degree of an activation to induce firing. The 

resultant value a , acts as the input to q  number of hidden neurons. 

 

The activation functions  .F  and  .H  are implemented onto all weighted sum inputs 

for all neurons in the input layer and hidden layer or hidden layer and output layer. It 

usually refers to a sigmoid function due to the reason that it is a strictly increasing 

function that exhibits smoothness and has the desired asymptotic properties (Jain, 

Jianchang, and Mohiuddin 1996). Thus, the output of the hidden neurons denoted by 

b  associated with hidden neuron q  is written as: 

 

  
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1

1
jajj aFb





e

  (7.2) 

 

The input c  for the neuron r  in the output layers is calculated by multiplying the 

output of the hidden neurons b  with the weight n
w  (the superscript n  denotes as 

the nodes between the hidden layer and the output layer) and k is the iterative variable 

for output neurons, where 
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The output y  in the third layer transforms the input c  using the sigmoid function, 

expressed by: 
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 (7.4) 

The output y  from the output layer is also known as the actual output. The notation 
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d , on the other hand, denotes the desired output. The performance of MLP is 

evaluated by computing the difference between the actual output and the desire output. 

The difference is also known as error, which is denoted as  . The errors are then 

passed to the weight adaption rules, to adaptively update all weights in order to 

increase the performance of MLP by recognizing spam and non-spam. Scaled 

conjugate gradient algorithm is used as the weight adaption rule in this research; it will 

be thoroughly explained in the next section. 

 

7.3 SCALED CONJUGATE GRADIENT 

Weights updating algorithm is highly required to obtain an optimum solution for 

classifying a particular task. In this context, the task refers to web spam detection. One 

output neuron is set in the Web spam classification, where the output '0' indicates 

non-spam and the output '1' indicates spam. A set of training data with its relatively 

desired outputs is inserted to MLP neural network to iteratively adjust the weights 

based on the back propagated errors. Various weight updating techniques have been 

reviewed in (Levenberg 1944; Riedmiller 1994). 

 

A supervised learning algorithm namely scaled conjugate gradient (SCG) (Møller 

1993) is used for the reason that it has a faster learning speed and better performance 

than the standard back propagation algorithm (BP) (Rumelhart, Hinton, and Williams 

1988), conjugate gradient algorithm with line search (CGL) (Johansson, Dowla, and 

Goodman 1991) and the one-step Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

memoriless quasi-Newton algorithm (Battiti and Masulli 1990). 

  

The notations and variables that are used throughout the algorithm descriptions are: w  

denotes the weight vector,   denotes a scaling value which set between 0 and 10
-4

, 

  and   denote another scaling values which are set between 0 and 10
-6

,   denotes 

the conjugate gradient direction,   denotes the steepest descent direction,  E  
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denotes the global error function,  E  denotes the gradient to global error function, 

 E   denotes the Hessian Matrix to global error function, u  denotes the iterations, 

  denotes the second order information, o  denotes the step size, u  denotes the 

comparison parameter and   denotes the total number of weights linkage. Note that 

superscript T  is denoted as transpose. 

 

Assume the inputs 1w , ,   are given and   is set as 0, at the first iteration sets 

1u  where, 

 

  )( uuu E w
 (7.5) 

 

Initially, the algorithm calculates the second order information u  where, 

 

 uu    (7.6) 
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T
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 (7.7) 

 

After u  is calculated, the u  is then scaled where, 

 

 

2
)( uuuuu    (7.8) 

 

If the u  is less or equal to 0, then the algorithm make the Hessian matrix positive 

definite such as, 
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2

uuuu  
 (7.10) 

 

 uu  
 (7.11) 

 

After that the step size uo  and the comparison parameter u  are calculated where, 
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The comparison parameter u  is used to check whether a reduction in error can be 

made, thus if u  is greater or equal to 0, then the new weight vector is, 

 

 uuuu o ww 1  (7.14) 
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At this point, if the number of iteration u  is equal to the number of weights  , then 

the algorithm is restarted with 

 

 11   uu    (7.17) 
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Even if the comparison parameter u  is greater or equal to 0, if the comparison 

parameter u  has a big value that is greater or equal to 0.75, the scale parameter    

is reduced, where 

 

 4uu  
 (7.19) 

 

On the other hand, if the comparison parameter u  is less than 0, then 

 

 uu  
 (7.20) 

 

If the comparison parameter u  has a small value that is lesser than 0.25, the scale 

parameter is increased where, 

 

 )/)1((
2

uuuuu  
 (7.21) 

 

After all these calculations, if the steepest descent direction   is not equal to 0, the 

iteration u  is increment with 1 and goes back to Equation 7.6. Otherwise, the desired 

weight w  is given.  

 

The SCG algorithm outperforms the BP algorithms as it does not need any user 

dependent parameters. Furthermore, the algorithm does not compute the expensive 

line search per learning iteration by using a step size scaling mechanism which makes 

SCG perform faster than CGL and BFGS. 

 

7.4 EXPERIMENTAL RESULTS 

In this section, an open source machine learning tool namely Weka (Hall et al. 2009), 
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version 3.6 is used to conduct the experiments. The feature sets from two datasets - 

WEBSPAM-UK2006 and WEBSPAM-UK2007 are provided for this experiments. 

The feature sets are based on content-based such as Feature A and B, and link-based 

such as Feature C and D (Refer to Chapter 2 for more details on datasets and features). 

These features were fed into machine learning methods to evaluate the performance of 

web spam classification. The measurement unit in this section is AUC for the reason 

that it does not depend on any threshold like precision and recall (Erdélyi, Garzó, and 

Benczúr 2011).  

 

Two machine learning methods were compared in the experiment, i.e. SVM and MLP. 

In SVM network structure, radial basis function (RBF) kernel is used for its promising 

performance as it non-linearly maps samples to a higher dimensional space. The sigma 

value of RBF is varied from 1 to 50 to obtain the optimal results. Besides RBF sigma, 

the scalar value are tweaked for soft margin to find a hyper plane that splits the 

examples as clean as possible; the range of the scalar value is set between 1 to 50. For 

MLP, the aforementioned scaled conjugate gradient algorithm is incorporated as a 

supervised learning algorithm. The weights between the neurons are randomly set 

between 0 and 1. Assume the datasets have K  number of features; the model is 

executed based on 1000 epoch from 1 to K  number of features. Since the weights 

between neurons are randomly generated, the process is executed 20 times to get the 

average for every epoch. 

 

After gathering all experimental results, the main result in SVM is selected based on 

the best parameters given. As for MLP, the main result is calculated by averaging 

every single hidden neuron results of particular feature set. 
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Table 7-1: AUC results on WEBSPAM-UK2006 

WEBSPAM-UK2006 

Feature  

Set 

Features SVM MLP Improvement 

AUC AUC 

A 24 0.7511 0.7987 6.34 

B 96 0.8084 0.8704 7.67 

C 41 0.7280 0.8301 14.02 

D 138 0.7988 0.8276 3.61 

A + C 65 0.8051 0.8688 7.91 

B + D 234 0.8387 0.8869 5.75 

 

Table 7-2: AUC results on WEBSPAM-UK2007 

 WEBSPAM-UK2007 

Feature  

Set 

Features SVM MLP Improvement 

AUC AUC 

A 24 0.6782 0.7025 3.53 

B 96 0.7420 0.7470 0.67 

C 41 0.6218 0.6236 0.29 

D 138 0.6613 0.6691 1.18 

A + C 65 0.7234 0.7352 1.63 

B + D 234 0.7524 0.7685 2.13 

 

The performance comparison of SVM and MLP network was tabulated in Table 7-1 

and Table 7-2 using extracted features from WEBSPAM-UK2006 and 

WEBSPAM-UK2007 respectively In Table 7-1, it was obviously shown that MLP 

outperformed SVM for all features. Of all features classification performance, the 

greatest improvement comes from Feature C where MLP improve SVM for 14.02% on 

the AUC performance. For single set features (Feature A, B, C and D), the AUC 

results generated from SVM range from 0.73 to 0.81 whereas the AUC results 
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generated from MLP range from 0.80 to 0.87. Regardless of this, the best AUC results 

come from the combination of Feature B and D as it gives 0.87 in SVM and 0.89 in 

MLP. 

 

In Table 7-2, Feature A has the biggest improvement among all feature sets where 

MLP improved 3.53% over SVM on the AUC performance. Feature C in this dataset 

does not give much improvement unlike the one in Table 7-1. In spite of everything, 

the best AUC results come from the combination of Feature B and D as it gives 0.75 in 

SVM and 0.77 in MLP, a 2.13% Improvement. 

 

From the observation of both Table 7-1 and 7-2, it showed that content-based features 

contributed higher AUC performance than link-based features. However, the best 

AUC performance comes from the combination of both content and link-based 

features. 

 

Note that the AUC results for MLP in Table 7-1 and Table 7-2 are based on the average 

of all results from various hidden neurons number. In later experiments, all the AUC 

performances from various numbers of hidden neurons are presented based on 

different feature sets. 

 

Figure 7.2 to Figure 7.7 shows the number of hidden neurons contributed to the varied 

of AUC performance in a certain pattern on various feature sets. Due to the variation of 

the results, quadratic function was used to model the AUC curve to a better 

representation. The highest performance point of each AUC curve was marked in a 

relative to its number of hidden neurons used in MLP network. 
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Figure 7.2: Feature set A AUC performance in WEBSPAM-UK2006 and 

WEBSPAM-UK2007 

 

 

Figure 7.3: Feature set B AUC performance in WEBSPAM-UK2006 and 

WEBSPAM-UK2007 

 

  

Figure 7.4: Feature set C AUC performance in WEBSPAM-UK2006 and 

WEBSPAM-UK2007 
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Figure 7.5: Feature set D AUC performance in WEBSPAM-UK2006 

 

  

 

 

 

 

 

 

Figure 7.6: Feature set A + C AUC performance in WEBSPAM-UK2006 and 

WEBSPAM-UK2007 

 

 

Figure 7.7: Feature set B + D AUC performance in WEBSPAM-UK2006 and 

WEBSPAM-UK2007 
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From the observation of Figure 7.2 to Figure 7.7, at most of the times, the highest plots 

either fall at the start or the end of the quadratic curves. In other cases, it falls slightly 

after the middle of the curve where the points reach convergences such as Feature B + 

D in WEBSPAM-UK2006, Feature B and Feature D in WEBSPAM-UK2007. Based 

on this observation and assume that there are K  number of features, the convergences 

are estimated at K6.0  of the curve.  

 

Table 7-3: The AUC results on average, 2 neurons, K6.0  neurons and K  neurons 

from MLP in WEBSPAM-UK2006 and WEBSPAM-UK2007. 

 

 WEBSPAM-UK2006 WEBSPAM-UK2007 

 Average 2 K6.0  K  Average 2 K6.0  K  

A 0.7987 0.7953 0.7996 0.8003 0.7025 0.6590 0.7033 0.7144 

B 0.8704 0.8597 0.8722 0.8730 0.7470 0.6695 0.7612 0.7532 

C 0.8301 0.8353 0.8276 0.8272 0.6236 0.6247 0.6216 0.6229 

D 0.8276 0.8380 0.8297 0.8291 0.6691 0.6583 0.6762 0.6628 

A + C 0.8688 0.8688 0.8673 0.8677 0.7352 0.7451 0.7371 0.7423 

B + D 0.8869 0.8847 0.8881 0.8878 0.7685 0.7843 0.7514 0.7194 

 

Table 7-3 illustrates the AUC results on average AUC, 2 neurons, K6.0  neurons 

and K  neurons from MLP on WEBSPAM-UK2006 and WEBSPAM-UK2007. The 

highlighted bold results in Table 7-3 indicate the highest AUC performances among 

the results generated from the three fixed hidden neurons. As shown in Table 7-3, all 

highlighted bold results are actually having higher AUC than the average AUC which 

is shown in Table 7-1 and Table 7-2. This is a very significant finding for the reason 

that the computation becomes much slower when more features and more neurons are 

used. However, by plotting these three fixed number of hidden neurons – 2 neurons, 

K6.0  neurons and K  neurons, optimal AUC performance is achieved from MLP 

on Web spam detection. The full results of all experiments in this chapter can refer to 

APPENDIX G - Chapter 7 Results. 
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Abernethy et al. (Abernethy, Chapelle, and Castillo 2010) achieved 0.963 AUC using 

their proposed Web spam features while Li et al. (Li et al. 2011) have developed 10 

new features generated by genetic programming that work better than 41 link-based 

features and 138 transformed link features. The authors’ results are obtained on 

WEBSPAM-UK2006 using support vector machines. As it is indicated earlier in this 

chapter, the outcome of SVM is easily manipulated filtering (Biggio, Nelson, and 

Laskov 2011). Thus, an alternative classifier – MLP neural network is suggested for 

Web spam classification. Furthermore, the experiments have shown that MLP able to 

achieve better AUC performance than SVM in various feature sets.  

 

Other features such as language models and qualified links achieved 0.88 and 0.76 for 

WEBSPAM-UK2006 and WEBSPAM-UK2007 using C4.5 Decision Tree (Araujo 

and Martinez-Romo 2010). In recent years, some researchers have shown that SVM 

works better than C4.5 Decision Tree (Yuchun et al. 2008; Abernethy, Chapelle, and 

Castillo 2010; Zhiyang et al. 2012); while in this chapter, it has shown that MLP works 

better than SVM. Using the standard feature sets, MLP achieved 0.8881 on 

WEBSPAM-UK2006 and 0.7842 on WEBSPAM-UK2007, it is suggested that the 

AUC performance using language models and qualified links features can be further 

improved using MLP network. 

 

7.5 SUMMARY 

An alternative classification tool – MLP neural network is proposed in this chapter for 

Web spam classification. Scaled conjugate gradient algorithm is used to train MLP 

network for its fast learning speed and better performance than other supervised 

learning algorithm. Experimental results have shown that MLP network improve the 

AUC performance up to 14.02% on WEBSPAM-UK2006 and up to 3.53% on 

WEBSPAM-UK2007 over SVM based on various set of feature. 

  

Determining the number of hidden neurons in MLP network is always a computational 

task as different number of input size requires a change in MLP hidden layer, which 
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dramatically affects the performance of classification. Therefore, a mechanism of 

determining a MLP network structure has been proposed in this chapter. Instead of 

monitoring the AUC curve varied with the number of hidden neuron, the optimal 

performance for Web spam detection could actually be obtained by evaluating three 

types of hidden neuron numbers, i.e. 2 neurons, K6.0  neurons and K  neurons. 

The experiment has proved that one of these neuron numbers could achieve a 

promising performance with the highest point.  

 

With the amount of Web spam features given, choosing the appropriate machine 

learning model is significant in order to perform the optimal detection rate for the 

classification task. 
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Chapter 8 Conclusion 

 

Web spam has been heavily deteriorated the quality of Web search engines such as 

providing unrelated information to mislead Web users, and thus this disrupt the quality 

of search results provided by the search engines. In solving the aforementioned 

problem, this research involved the implementation of the link-based techniques to 

reduce or eliminate the problem arises by Web spam. 

 

In Chapter 3, a comprehensive literature review on trust and distrust model algorithms 

and machine learning model are presented. TrustRank and its derivatives are selected 

as the model algorithms as TrustRank has provided more advantages in eliminating 

Web spam. The investigation of TrustRank and HostRank on WEBSPAM-UK2006 

and WEBSPAM-UK2007 shows the vulnerability of HostRank in Web spam. The 

comparison of TrustRank and HostRank with 50, 75 and 100 non-spam seeds in 

WEBSPAM-UK2006 and with 100, 150 and 200 non-spam seeds in 

WEBSPAM-UK2007 are made to show the vulnerability of link-analysis algorithms 

when it comes to Web spam. Experimental results from TrustRank shows that it 

promoted up to 22.45% non-spam hosts based on 50 non-spam seeds in 

WEBSPAM-UK2006 and up to 1.08% based on 100 non-spam seeds in 

WEBSPAM-UK2007. In terms of non-spam Web pages promotion, TrustRank has 

promoted up to 26.63% non-spam Web pages over HostRank based on 50 non-spam 

seeds in WEBSPAM-UK2006 and up to 6.05% based on 100 non-spam seeds in 

WEBSPAM-UK2007. It is evident that TrustRank is able to achieve better 

performance when more seeds are used. TrustRank from WEBSPAM-UK2006 based 

on 100 non-spam seeds has improved HostRank up to 24.13%  by promoting 

non-spam hosts and 30.47% by promoting Non-spam Web pages. It is found that for 

WEBSPAM-UK2007 based on 200 non-spam seeds, the non-spam host improvement 
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over HostRank is the same as the one with 100 non-spam seeds. However, TrustRank 

with 200 non-spam seeds is able to achieve up to 14.50% in terms of non-spam Web 

pages promotion instead of 6.05% with 100 non-spam seeds. 

 

In Chapter 4, two trust propagation algorithms namely Trust Propagation Rank 

(TPRank) and Trust Propagation Spam Mass (TP Spam Mass) are presented. The trust 

score for other unevaluated vertices are calculated based on the current evaluated 

vertices to both demote and detect Web spam. The sets of ugly vertices are introduced 

as a subset of non-spam vertices to assist in the algorithms. For the experiments, 

TPRank is compared with TrustRank while TP Spam Mass is compared with Spam 

Mass based on limited evaluated seeds in WEBSPAM-UK2006 and 

WEBSPAM-UK2007 datasets. As a result, TPRank outperforms TrustRank up to 

10.88% on promoting non-spam hosts and achieves average promotion of 8.39 bucket 

per level for non-spam hosts in WEBSPAM-UK2006, and up to 1.08% on promoting 

non-spam hosts and achieves average promotion of 2.75 bucket per level for non-spam 

hosts in WEBSPAM-UK2007. In terms of non-spam Web pages, TPRank improves 

the promotion up to 2.14% in WEBSPAM-UK2006 and 2.27% in 

WEBSPAM-UK2007 over TrustRank. On the other hand, TP Spam Mass outperforms 

with Spam Mass up to 43.94% in WEBSPAM-UK2006 and up to 16.17% in 

WEBSPAM-UK2007 on detection of Web spam. In term of spam pages detection, TP 

Spam Mass has achieved up to 106.43% improvement in WEBSPAM-UK2006 and up 

to 668.54% improvement in WEBSPAM-UK2007. 

 

In Chapter 5, a novel metric based on weight properties to enhance the detection rate of 

distrust based Web spam detection algorithms is presented. The novel metric 

calculates the weights based on the outgoing links of the vertices which indicate the 

relevancy linkage between two vertices. The weights used along with several distrust 

based Web spam detection algorithms such as Anti-TrustRank (Krishnan and Raj 

2006), Wu et al. Distrust algorithm (Wu, Goel, and Davison 2006a) and Nie et al. 

Distrust algorithm (Nie, Wu, and Davison 2007) to detect additional Web spam. The 
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results have shown the improvement on the detection of spam hosts up to 30.26% in 

Anti-TrustRank, 12.14% in Wu et al. Distrust and 10.92% in Nie et al. Distrust in 

WEBSPAM-UK2006, up to 31.30% in Anti-TrustRank, 26.38% in Wu et al. Distrust 

and 20.31% in Nie et al. Distrust in WEBSPAM-UK2007. In terms of Web spam pages, 

the weight properties have increased the detection rate for up to 39.76%, 13.14% and 

11.34% in WEBSPAM-UK2006, and 8.81%, 6.76% and 4.76% in 

WEBSPAM-UK2007 on Anti-TrustRank, Wu et al. Distrust and Nie et al. Distrust 

algorithms. 

 

In Chapter 6, distrust seed set propagation algorithm (DSP) which act as an extension 

to the spam seed set to calculate the distrust score for unevaluated vertices are 

introduced. There are several iterations derived from DSP. In the experiments, 10 

iterations DSP are conducted on several Web spam detection algorithms, similarly to 

the experiments conducted as in Chapter 5. The results have shown that all 10 

iterations of DSP have improved the detection of Web spam over the baseline 

algorithms. Furthermore, the results from DSP in WEBSPAM-UK2006 has improved 

up to 18.6%, 7.95% and 19.47%, and 6.94%, 24.78% and 25.17% in 

WEBSPAM-UK2007 on Anti-TrustRank, Wu et al. Distrust algorithm and Nie et al. 

Distrust algorithm respectively. In terms of Spam pages detection, DSP in 

WEBSPAM-UK2006 has made improvement up to 28.05%, 15.13% and 25.79% , and 

5.33%, 4.04 and 8.75% in WEBSPAM-UK2007 on Anti-TrustRank, Wu et al. Distrust 

algorithm and Nie et al. Distrust algorithm respectively. 

 

In Chapter 7, MLP neural network is proposed for Web spam classification due to its 

flexible structure and non-linearity transformation which can accommodate the latest 

Web spam patterns. From the experimental results, MLP is compared with the 

state-of-the-art SVM for Web spam classification. Scaled conjugate gradient training 

algorithm is applied to adaptively adjust the weight parameters in MLP network. As a 

result, MLP improve the AUC performance of SVM up to 14.02% in 

WEBSPAM-UK2006 and up to 3.53% in WEBSPAM-UK2007. Computing every 
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single hidden neurons in MLP is computationally expensive. Thus assuming there are 

K  number of features, it is found that 3 fixed numbers of hidden neurons as 

parameters are close to the optimal results – 2 neurons, K  neurons and K6.0  

neurons.  

 

For future work, it would be recommended to investigate the combination of the trust 

and distrust model techniques mentioned in above chapters (Chapter 3 to Chapter 6) to 

both detect and demote Web spam. The accumulation and splitting steps in this model 

are also crucial for the success of the algorithms, since limited studies are carried out in 

this area. Over the years, machine learning has grown rapidly and more Web spam 

features are constantly proposed for detection. In addition, finding alternatives for 

further enhancements and improvements on the multilayered perceptrons neural 

network can be incorporated into the link based technique which could increase the 

learning rate and detection rate. 
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APPENDIX A - ASYMPTOTIC NOTATION 

 

 -notation 

For a given function )(ng , we denote by ))(( ng  the set of functions if there exist 

positive constant 1c , 2c , and 0n  such that )()()(0 21 ngcnfngc   for all 

0nn  . 

We say that )(ng  is an asymptotic tight bound for )(nf . 

 

O -notation 

For a given function )(ng , we denote by ))(( ngO  the set of functions if there exist 

positive constant c  and 0n  such that )()(0 ncgnf   for all 0nn  . 

We say that )(ng  is an asymptotic upper bound for )(nf . 

 

 -notation 

For a given function )(ng , we denote by ))(( ng  the set of functions if there exist 

positive constant c  and 0n  such that )()(0 nfncg   for all 0nn  . 

We say that )(ng  is an asymptotic lower bound for )(nf . 

 

Graphic examples of the  , O , and   notations. 

 

Taken from Cormen et al., Introduction to Algorithms (Cormen et al. 2001). 
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APPENDIX B – ADJACENCY -MATRIX REPRESENTATION 

 

For the adjacency-matrix representation of a graph ),( G , we assume that the 

vertices are numbered ,...,2,1  in some arbitrary manner. Then the adjacency-matrix 

representation of a graph G  consists of a    matrix )( ijaA   such that 

 



 


otherwise

jiif
aij

0

),(1 
 

 

An adjacency matrix can represent a weighted graph. If ),( G  is a weighted 

graph with edge-weight function  , we can simply store the weight ),( vu  of the 

edge Evu ),(  as the entry in row u  and column v  of the adjacency matrix. If an 

edge does not exist, we can store a NIL value as its corresponding matrix entry, though 

for many problems it is convenient to use a value such as 0 or  . 

 

Taken from Cormen et al., Introduction to Algorithms (Cormen et al. 2001) . 
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APPENDIX C - CHAPTER 3 RESULTS 

 

WEBSPAM-UK2006 

*HR – HostRank, TR50 – TrustRank 50, TR75 – TrustRank 75, TR100 – TrustRank 

100, NS – Non-spam, S – spam 

A. Number of non-spam and spam hosts in each bucket 

 

Index 
HR TR50 TR75 TR100 

NS S NS S NS S NS S 

1 354 19 373 0 373 0 373 0 

2 362 11 368 5 369 4 373 0 

3 297 76 364 9 372 1 368 5 

4 185 188 362 11 364 9 373 0 

5 315 58 347 26 359 14 359 14 

6 338 35 320 53 352 21 357 16 

7 310 63 311 62 321 52 352 21 

8 313 60 293 80 301 72 307 66 

9 310 63 271 102 278 95 302 71 

10 307 66 286 87 278 95 259 114 

11 301 72 262 111 270 103 265 108 

12 306 67 242 131 237 136 252 121 

13 292 81 237 136 223 150 216 157 

14 275 98 221 152 221 152 207 166 

15 253 120 194 179 201 172 214 159 

16 219 154 205 168 170 203 159 214 

17 167 206 201 172 208 165 182 191 

18 157 216 252 121 246 127 226 147 

19 198 175 219 154 191 182 191 182 

20 290 96 221 165 215 171 214 172 
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B. Incremental summation of non-spam hosts for all buckets 

 

Index HR TR50 TR75 TR100 

1 354 373 373 373 

2 716 741 742 746 

3 1013 1105 1114 1114 

4 1198 1467 1478 1487 

5 1513 1814 1837 1846 

6 1851 2134 2189 2203 

7 2161 2445 2510 2555 

8 2474 2738 2811 2862 

9 2784 3009 3089 3164 

10 3091 3295 3367 3423 

11 3392 3557 3637 3688 

12 3698 3799 3874 3940 

13 3990 4036 4097 4156 

14 4265 4257 4318 4363 

15 4518 4451 4519 4577 

16 4737 4656 4689 4736 

17 4904 4857 4897 4918 

18 5061 5109 5143 5144 

19 5259 5328 5334 5335 

20 5549 5549 5549 5549 

 

 

  

 

 

 



Appendix C 

155 

 

C. Average promotion level for non-spam hosts and number of non-spam hosts 

being promoted over HostRank 

 

 Average promotion level for 

non-spam hosts 

Number of non-spam hosts being 

promoted 

Index TR50 TR75 TR100 TR50 TR75 TR100 

1 0.000 0.000 0.000 0 0 0 

2 1.000 1.000 1.000 21 16 12 

3 1.320 1.179 1.171 25 28 41 

4 1.150 1.140 1.146 40 43 41 

5 1.189 1.193 1.245 212 218 220 

6 1.364 1.392 1.396 231 240 240 

7 1.471 1.498 1.569 225 241 239 

8 1.609 1.783 1.878 233 240 237 

9 1.682 1.841 1.991 214 233 235 

10 1.886 2.034 2.287 219 236 247 

11 1.884 2.050 2.286 164 200 213 

12 2.011 2.164 2.387 183 220 235 

13 2.543 2.532 2.639 175 205 227 

14 2.543 2.659 2.617 127 170 201 

15 5.183 4.504 3.988 109 131 165 

16 4.000 3.526 3.081 81 97 124 

17 2.415 2.528 2.394 53 53 66 

18 3.746 3.492 3.409 63 65 66 

19 2.698 2.655 2.490 149 148 149 

20 2.330 2.387 1.950 115 119 119 
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D. Evaluated non-spam host represented in pages level 

 

Index HR TR50 TR75 TR100 

1 4633746 5772732 5911439 6045772 

2 7878928 9405003 9538061 9339090 

3 10707594 12453809 12656345 12648555 

4 11860496 15018597 15006317 14940319 

5 14333206 17326257 17267232 17165337 

 

E. Propagation coverage 

 

 TR 50 TR 75 TR 100 

)( ESn   8564.00 8766.00 8922.00 

)( NSn   4223.00 4388.00 4519.00 

)( SSn   1374.00 1381.00 1384.00 

N  86.20 90.01 92.84 

S  13.80 9.99 7.16 
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WEBSPAM-UK2007 

*HR – HostRank, TR100 – TrustRank 100, TR150 – TrustRank 150, TR200 – 

TrustRank 200, NS – Non-spam, S – spam 

 

A. Number of non-spam and spam hosts in each bucket 

 

 HR TR100 TR150 TR200 

Index NS S NS S NS S NS S 

1 465 9 470 4 466 8 470 4 

2 467 8 469 6 469 6 467 7 

3 466 10 465 9 471 3 468 7 

4 460 14 468 7 469 6 469 5 

5 466 8 457 17 461 14 461 15 

6 447 27 460 16 455 20 460 15 

7 447 28 453 21 451 23 451 23 

8 450 24 460 14 453 21 447 27 

9 444 30 448 26 458 16 450 24 

10 451 24 437 37 443 31 452 22 

11 445 29 438 36 434 40 441 33 

12 448 26 437 37 438 37 432 43 

13 449 26 446 29 439 35 434 40 

14 449 25 443 31 442 32 445 29 

15 440 34 452 22 450 24 452 22 

16 441 33 445 29 449 25 450 24 

17 444 30 446 28 443 31 443 31 

18 435 39 446 28 445 29 443 31 

19 445 29 422 53 424 51 427 48 

20 421 48 418 51 420 49 418 51 
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B. Incremental summation of non-spam hosts for all buckets 

 

Index HR TR100 TR150 TR200 

1 465 470 466 470 

2 932 939 935 937 

3 1398 1404 1406 1405 

4 1858 1872 1875 1874 

5 2324 2329 2336 2335 

6 2771 2789 2791 2795 

7 3218 3242 3242 3246 

8 3668 3702 3695 3693 

9 4112 4150 4153 4143 

10 4563 4587 4596 4595 

11 5008 5025 5030 5036 

12 5456 5462 5468 5468 

13 5905 5908 5907 5902 

14 6354 6351 6349 6347 

15 6794 6803 6799 6799 

16 7235 7248 7248 7249 

17 7679 7694 7691 7692 

18 8114 8140 8136 8135 

19 8559 8562 8560 8562 

20 8980 8980 8980 8980 
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C. Average promotion level for non-spam hosts and number of non-spam hosts 

being promoted over HostRank 

 

 Average promotion level for 

non-spam hosts 

Number of non-spam hosts being 

promoted 

Index TR100 TR150 TR200 TR100 TR150 TR200 

1 0.000 0.000 0.000 0 0 0 

2 1.000 1.000 1.000 57 56 57 

3 1.067 1.115 1.159 89 78 82 

4 1.177 1.193 1.282 124 119 124 

5 1.319 1.343 1.468 182 181 173 

6 1.472 1.560 1.673 161 159 156 

7 1.674 1.779 1.873 175 172 173 

8 1.871 1.957 2.139 178 188 180 

9 2.078 2.105 2.163 167 172 172 

10 2.175 2.220 2.283 177 182 180 

11 2.469 2.493 2.581 194 207 210 

12 2.605 2.536 2.602 177 192 206 

13 2.887 2.809 2.787 204 215 221 

14 2.927 2.850 2.709 206 214 220 

15 3.014 3.221 3.063 209 208 222 

16 2.870 2.859 2.773 247 241 247 

17 2.668 2.663 2.486 238 249 253 

18 3.567 3.054 3.083 217 222 206 

19 1.548 1.431 1.475 343 288 280 

20 1.000 1.000 1.000 109 109 109 
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D. Evaluated non-spam host represented in pages level 

 

Index HR TR100 TR150 TR200 

1 5433512 5762322 6048337 6221612 

2 9514864 9798875 10029708 9981872 

3 12113172 12601227 12790826 12721565 

4 14570132 15149195 15107725 15151087 

5 16374587 16952324 17088503 17095291 

 

E. Propagation coverage 

 

 TR100 TR150 TR200 

)( ESn   73790 75629 76759 

)( NSn   6603 6780 6858 

)( SSn   242 249 260 

N  98.98 99.15 99.26 

S  1.02 0.85 0.74 
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APPENDIX D - CHAPTER 4 RESULTS 

 

WEBSPAM-UK2006 

*TR50 – TrustRank 50, TP50 – TPRank 50, SM – Spam Mass 50, TPSM – TP Spam 

Mass 50 

A. Number of non-spam and spam hosts in each bucket 

 

Index 
TR50 TP50 SM50 TPSM50 

NS S NS S NS S NS S 

1 373 0 372 1 204 169 194 179 

2 368 5 370 3 142 231 127 246 

3 364 9 369 4 213 160 78 295 

4 362 11 364 9 232 141 84 289 

5 347 26 363 10 189 184 153 220 

6 320 53 364 9 264 109 178 195 

7 311 62 364 9 215 158 210 163 

8 293 80 366 7 222 151 253 120 

9 271 102 357 16 254 119 300 73 

10 286 87 345 28 297 76 339 34 

11 262 111 310 63 325 48 364 9 

12 242 131 257 116 340 33 361 12 

13 237 136 215 158 355 18 365 8 

14 221 152 211 162 338 35 369 4 

15 194 179 181 192 344 29 367 6 

16 205 168 189 184 341 32 360 13 

17 201 172 134 239 345 28 362 11 

18 252 121 85 288 319 54 356 17 

19 219 154 123 250 324 49 355 18 

20 221 165 210 176 286 100 374 12 
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B. Incremental summation of non-spam hosts for TR50 and TP50 and spam hosts 

for SM50 and TPSM50 for all buckets. 

 

 Non-spam Spam 

Index TR50 TP50 SM50 TPSM50 

1 373 372 169 179 

2 741 742 400 425 

3 1105 1111 560 720 

4 1467 1475 701 1009 

5 1814 1838 885 1229 

6 2134 2202 994 1424 

7 2445 2566 1152 1587 

8 2738 2932 1303 1707 

9 3009 3289 1422 1780 

10 3295 3634 1498 1814 

11 3557 3944 1546 1823 

12 3799 4201 1579 1835 

13 4036 4416 1597 1843 

14 4257 4627 1632 1847 

15 4451 4808 1661 1853 

16 4656 4997 1693 1866 

17 4857 5131 1721 1877 

18 5109 5216 1775 1894 

19 5328 5339 1824 1912 

20 5549 5549 1924 1924 
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C. Average promotion level for non-spam hosts and spam hosts,  and number of 

non-spam and spam hosts being promoted  

 

TP50 over TR50 

Index Average promotion level 

 for non-spam hosts 

Number of non-spam hosts 

being promoted 

1 0.000 0 

2 1.000 14 

3 1.040 25 

4 1.217 23 

5 1.308 13 

6 1.455 22 

7 1.760 25 

8 1.786 42 

9 1.836 55 

10 2.034 89 

11 2.733 101 

12 3.233 103 

13 3.371 116 

14 3.430 142 

15 4.617 133 

16 5.874 175 

17 7.228 171 

18 8.388 224 

19 2.705 139 

20 1.900 20 
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TPSM50 over SM50 

Index Average promotion level  

for spam hosts 

Number of spam hosts  

being promoted 

1 0.000 44 

2 1.000 22 

3 1.000 23 

4 1.000 19 

5 1.462 17 

6 1.906 17 

7 2.496 12 

8 2.959 7 

9 3.021 11 

10 3.826 6 

11 3.804 2 

12 4.871 2 

13 6.000 3 

14 6.886 0 

15 8.125 5 

16 8.417 5 

17 8.286 0 

18 10.038 1 

19 10.383 0 

20 9.959 0 
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D. Evaluated host represented in pages level 

 

Index TR50 TP50 SM50 TPSM50 

1 5772732 5105405 151418 92751 

2 9405003 8617492 1548226 1545822 

3 12453809 11389610 2496185 3922350 

4 15018597 13548654 2963797 5340260 

5 17326257 15972170 3510497 6723305 

6 19436425 18080304 3701269 7640583 

7 21183616 19746985 4329449 8539854 

8 23057903 21699476 4854187 9318171 

9 24886572 23498479 5513986 9680861 

10 26594747 25371805 5962484 9929897 

 

E. Propagation coverage 

 

 TR50 TP50 

𝑆𝑛(𝑆) 8564.00 10183.00 

𝑆𝑛(𝑆𝐺) 4223.00 5242.00 

𝑆𝑛(𝑆𝐵) 1374.00 1553.00 

𝜂𝐺  86.20 98.02 

𝜂𝐵 13.80 1.98 
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WEBSPAM-UK2007 

* TR100 – TrustRank 100, TP100 – TPRank 100, SM100 – Spam Mass 100, 

TPSM100 – TP Spam Mass 100 

 

A. Number of non-spam and spam hosts in each bucket 

 

Index 
TR100 TP100 SM100 TPSM100 

NS S NS S NS S NS S 

1 470 4 474 0 423 51 421 53 

2 469 6 472 2 415 60 432 43 

3 465 9 472 3 443 31 431 43 

4 468 7 469 5 454 20 444 30 

5 457 17 465 10 442 32 450 24 

6 460 16 467 7 452 22 445 29 

7 453 21 457 18 440 34 436 38 

8 460 14 449 26 442 33 433 41 

9 448 26 445 29 454 20 424 51 

10 437 37 439 35 435 39 444 31 

11 438 36 444 30 428 47 440 34 

12 437 37 438 37 445 29 436 38 

13 446 29 430 44 446 28 457 17 

14 443 31 438 36 462 13 463 14 

15 452 22 444 30 470 5 469 5 

16 445 29 445 29 470 4 471 3 

17 446 28 444 30 471 4 471 3 

18 446 28 438 36 466 8 474 0 

19 422 53 434 41 469 5 470 4 

20 418 51 416 53 453 16 469 0 
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B. Incremental summation of non-spam hosts for TR100 and TP100 and spam 

hosts for SM100 and TPSM100 for all buckets. 

 

 Non-spam Spam 

Index TR100 TP100 SM100 TPSM100 

1 470 474 51 53 

2 939 946 111 96 

3 1404 1418 142 139 

4 1872 1887 162 169 

5 2329 2352 194 193 

6 2789 2819 216 222 

7 3242 3276 250 260 

8 3702 3725 283 301 

9 4150 4170 303 352 

10 4587 4609 342 383 

11 5025 5053 389 417 

12 5462 5491 418 455 

13 5908 5921 446 472 

14 6351 6359 459 486 

15 6803 6803 464 491 

16 7248 7248 468 494 

17 7694 7692 472 497 

18 8140 8130 480 497 

19 8562 8564 485 501 

20 8980 8980 501 501 
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C. Average promotion level for non-spam hosts and spam hosts,  and number of 

non-spam and spam hosts being promoted  

 

TP 100 over TR 100 

Index Average promotion level 

 for non-spam hosts 

Number of non-spam hosts 

being promoted 

1 0.000 0 

2 1.000 27 

3 1.075 53 

4 1.220 59 

5 1.273 77 

6 1.688 109 

7 2.022 139 

8 2.654 153 

9 2.746 138 

10 2.110 154 

11 1.973 186 

12 1.643 210 

13 1.796 230 

14 1.644 222 

15 1.547 201 

16 1.743 237 

17 1.746 130 

18 1.078 77 

19 1.386 210 

20 1.421 19 
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TPSM50 over SM50 

Index Average promotion level  

for spam hosts 

Number of spam hosts  

being promoted 

1 0.000 0 

2 1.000 5 

3 1.000 21 

4 1.000 7 

5 1.583 12 

6 1.100 10 

7 1.500 14 

8 1.364 11 

9 2.000 8 

10 2.138 29 

11 2.161 31 

12 2.714 21 

13 2.957 23 

14 2.556 9 

15 3.200 5 

16 3.250 4 

17 4.750 4 

18 4.375 8 

19 5.600 5 

20 5.875 16 
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D. Evaluated host represented in pages level 

 

 Non-spam Spam 

Index TR100 TP100 SM100 TPSM100 

1 5762322 5893117 5278 5288 

2 9798875 9487775 6684 6436 

3 12601227 12041690 7385 7286 

4 15149195 14092532 8013 8866 

5 16952324 16163390 9342 9310 

6 18311165 17929892 9519 9532 

7 19565437 19312567 16486 19081 

8 20322920 20280246 19305 20145 

9 21056879 20846941 20188 155152 

10 21581252 21627362 63341 157259 

 

E. Propagation coverage 

 

 TR100 TP100 

𝑆𝑛(𝑆) 73790 95192 

𝑆𝑛(𝑆𝐺) 6603 7900 

𝑆𝑛(𝑆𝐵) 242 353 

𝜂𝐺  98.981 99.536 

𝜂𝐵 1.019 0.464 
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APPENDIX E - CHAPTER 5 RESULTS  

 

WEBSPAM-UK2006 

*ATR – Anti-TrustRank, WATR – Weighted Anti-TrustRank, WU – Wu et al. Distrust, 

WWU – Weighted Wu et al. Distrust, NIE – Nie et al. Distrust, WNIE – Weighted Nie 

et al. Distrust 

A. Number of spam hosts in each bucket 

Index 
ATR WATR WU WWU NIE WNIE 

NS S NS S NS S NS S NS S NS S 

1 30 343 45 328 31 342 52 321 32 341 45 328 

2 193 180 97 276 152 221 110 263 135 238 106 267 

3 311 62 258 115 282 91 244 129 292 81 256 117 

4 345 28 313 60 329 44 326 47 319 54 306 67 

5 358 15 334 39 346 27 320 53 346 27 331 42 

6 351 22 349 24 331 42 354 19 354 19 351 22 

7 351 22 360 13 365 8 354 19 329 44 360 13 

8 341 32 363 10 359 14 359 14 362 11 361 12 

9 346 27 362 11 341 32 360 13 350 23 360 13 

10 342 31 358 15 353 20 358 15 350 23 361 12 

11 343 30 362 11 350 23 358 15 354 19 360 13 

12 342 31 360 13 346 27 364 9 354 19 360 13 

13 311 62 355 18 344 29 354 19 352 21 359 14 

14 335 38 356 17 349 24 341 32 345 28 354 19 

15 297 76 331 42 327 46 334 39 331 42 334 39 

16 194 179 220 153 202 171 236 137 202 171 219 154 

17 163 210 130 243 146 227 129 244 146 227 130 243 

18 210 163 210 163 210 163 210 163 210 163 210 163 

19 192 181 192 181 192 181 192 181 192 181 192 181 

20 194 192 194 192 194 192 194 192 194 192 194 192 
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B. Incremental summation of spam hosts for all buckets. 

 

Index ATR WATR WU WWU NIE WNIE 

1 343 328 342 321 341 328 

2 523 604 563 584 579 595 

3 585 719 654 713 660 712 

4 613 779 698 760 714 779 

5 628 818 725 813 741 821 

6 650 842 767 832 760 843 

7 672 855 775 851 804 856 

8 704 865 789 865 815 868 

9 731 876 821 878 838 881 

10 762 891 841 893 861 893 

11 792 902 864 908 880 906 

12 823 915 891 917 899 919 

13 885 933 920 936 920 933 

14 923 950 944 968 948 952 

15 999 992 990 1007 990 991 

16 1178 1145 1161 1144 1161 1145 

17 1388 1388 1388 1388 1388 1388 

18 1551 1551 1551 1551 1551 1551 

19 1732 1732 1732 1732 1732 1732 

20 1924 1924 1924 1924 1924 1924 
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C. Average promotion level for spam hosts,  and number of spam hosts being 

promoted  

 

 Average promotion level for 

non-spam hosts 

Number of non-spam hosts being 

promoted 

Index WATR 

over ATR 

WWU 

over WU 

WNIE 

over NIE 

WATR 

over ATR 

WWU 

over WU 

WNIE 

over NIE 

1 0.000 0.000 0.000 0 0 0 

2 1.000 1.000 1.000 85 76 88 

3 1.578 1.510 1.093 45 49 43 

4 1.833 1.897 1.457 18 29 35 

5 1.929 2.095 2.000 14 21 13 

6 3.381 1.528 2.182 21 36 11 

7 3.944 2.667 2.500 18 3 42 

8 5.033 4.429 4.300 30 7 10 

9 5.708 4.600 3.733 24 25 15 

10 6.407 5.067 6.176 27 15 17 

11 6.160 7.474 4.462 25 19 13 

12 7.667 5.450 4.714 27 20 14 

13 7.153 4.150 4.417 59 20 12 

14 6.250 5.500 3.765 28 10 17 

15 4.107 5.800 3.421 28 30 19 

16 2.750 2.444 1.231 24 36 13 

17 1.000 1.000 1.000 48 48 48 

18 0.000 0.000 0.000 0 0 0 

19 0.000 0.000 0.000 0 0 0 

20 0.000 0.000 0.000 0 0 0 
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D. Evaluated host represented in pages level 

 

Index ATR WATR WU WWU NIE WNIE 

1 1313291 1349790 1622823 1295424 1653512 1273941 

2 2456555 2901785 2728892 2613922 2822220 2872809 

3 2841133 3780350 3336290 3681108 3438744 3821501 

4 3063894 4282150 3739390 4124931 3929221 4296223 

5 3204105 4461991 3945059 4454984 3995253 4448293 

6 3370887 4570601 4049277 4546177 4166130 4566529 

7 3508984 4615278 4094948 4632867 4282662 4639370 

8 3754869 4727802 4282774 4749903 4369946 4694204 

9 4061543 4792877 4506142 4806178 4445917 4797769 

10 4214193 4857809 4631553 4921995 4713938 4919528 
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WEBSPAM-UK2007 

*ATR – Anti-TrustRank, WATR – Weighted Anti-TrustRank, WU – Wu et al. Distrust, 

WWU – Weighted Wu et al. Distrust, NIE – Nie et al. Distrust, WNIE – Weighted Nie 

et al. Distrust 

 

A. Number of spam hosts in each bucket 

Index 
ATR WATR WU WWU NIE WNIE 

NS S NS S NS S NS S NS S NS S 

1 384 89 369 104 377 96 370 103 376 97 372 101 

2 448 25 441 32 456 17 444 29 454 19 440 33 

3 462 11 453 20 454 20 448 25 462 12 453 20 

4 468 6 458 16 456 18 459 16 455 19 460 15 

5 460 13 458 16 466 7 460 14 455 18 462 11 

6 459 15 466 7 470 3 465 8 465 8 462 11 

7 460 13 471 2 471 2 462 11 466 7 467 6 

8 465 8 465 8 455 18 464 9 460 13 467 6 

9 460 13 471 3 456 17 470 3 467 6 469 5 

10 463 10 466 7 465 8 469 4 462 11 465 8 

11 462 11 462 11 461 12 469 4 466 7 462 11 

12 466 7 464 9 463 10 467 6 464 9 464 9 

13 455 19 469 4 464 10 464 9 460 14 471 2 

14 452 21 451 22 450 23 453 20 452 21 450 23 

15 439 34 439 34 439 34 439 34 439 34 439 34 

16 430 43 430 43 430 43 430 43 430 43 430 43 

17 433 40 433 40 433 40 433 40 433 40 433 40 

18 430 43 430 43 430 43 430 43 430 43 430 43 

19 436 38 436 38 436 38 436 38 436 38 436 38 

20 448 42 448 42 448 42 448 42 448 42 448 42 
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B. Incremental summation of spam hosts for all buckets. 

 

Index ATR WATR WU WWU NIE WNIE 

1 89 104 96 103 97 101 

2 114 136 113 132 116 134 

3 125 156 133 157 128 154 

4 131 172 151 173 147 169 

5 144 188 158 187 165 180 

6 159 195 161 195 173 191 

7 172 197 163 206 180 197 

8 180 205 181 215 193 203 

9 193 208 198 218 199 208 

10 203 215 206 222 210 216 

11 214 226 218 226 217 227 

12 221 235 228 232 226 236 

13 240 239 238 241 240 238 

14 261 261 261 261 261 261 

15 295 295 295 295 295 295 

16 338 338 338 338 338 338 

17 378 378 378 378 378 378 

18 421 421 421 421 421 421 

19 459 459 459 459 459 459 

20 501 501 501 501 501 501 
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C. Average promotion level for spam hosts,  and number of spam hosts being 

promoted  

 

 Average promotion level for 

non-spam hosts 

Number of non-spam hosts being 

promoted 

Index WATR 

over ATR 

WWU 

over WU 

WNIE 

over NIE 

WATR 

over ATR 

WWU 

over WU 

WNIE 

over NIE 

1 0.000 0.000 0.000 0 0 0 

2 1.000 1.000 1.000 14 9 10 

3 1.500 1.273 1.125 8 11 8 

4 2.167 1.625 1.750 6 8 12 

5 2.800 2.500 2.500 10 6 10 

6 2.929 1.000 2.833 14 1 6 

7 2.583 3.000 2.800 12 2 5 

8 4.250 4.059 3.615 4 17 13 

9 5.077 5.000 2.000 13 16 4 

10 4.400 6.000 3.500 5 3 8 

11 5.000 3.857 3.250 7 7 4 

12 5.333 3.125 2.000 3 8 7 

13 2.800 6.556 2.600 15 9 10 

14 2.500 2.500 2.000 2 4 2 

15 0.000 0.000 0.000 0 0 0 

16 0.000 0.000 0.000 0 0 0 

17 0.000 0.000 0.000 0 0 0 

18 0.000 0.000 0.000 0 0 0 

19 0.000 0.000 0.000 0 0 0 

20 0.000 0.000 0.000 0 0 0 
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D. Evaluated host represented in pages level 

 

Index ATR WATR WU WWU NIE WNIE 

1 929200 970876 947715 892901 960910 910721 

2 1005378 1069127 1026238 1025691 1020807 1063244 

3 1012441 1101626 1058704 1077870 1057994 1079379 

4 1037990 1115851 1075044 1139643 1076417 1110244 

5 1064091 1120334 1112379 1181418 1117387 1116103 

6 1080294 1148771 1115044 1188373 1126445 1120537 

7 1099606 1149016 1115320 1190689 1134084 1130236 

8 1107402 1190866 1131098 1207496 1136708 1190857 

9 1139103 1191074 1164160 1207522 1184168 1206430 

10 1198849 1216639 1203615 1207579 1205119 1206584 
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APPENDIX F - CHAPTER 6 RESULTS 

 

WEBSPAM-UK2006 

*ATR – Anti-TrustRank, ATR8 – Anti-TrustRank 8
th

 iteration DSP, WU – Wu et al. 

Distrust, WU8 – Wu et al. Distrust 8
th

 iteration DSP, NIE – Nie et al. Distrust, NIE8 – 

Nie et al. Distrust 8
th

 iteration DSP 

A. Number of spam hosts in each bucket 

Index 
ATR ATR8 WU WU8 NIE NIE8 

NS S NS S NS S NS S NS S NS S 

1 30 343 27 346 31 342 37 336 33 340 48 325 

2 193 180 153 220 152 221 134 239 133 240 97 276 

3 311 62 268 105 282 91 242 131 293 80 215 158 

4 345 28 338 35 329 44 331 42 318 55 285 88 

5 358 15 341 32 346 27 353 20 347 26 338 35 

6 351 22 341 32 331 42 348 25 354 19 347 26 

7 351 22 346 27 365 8 335 38 329 44 363 10 

8 341 32 349 24 359 14 353 20 362 11 364 9 

9 346 27 342 31 341 32 357 16 351 22 362 11 

10 342 31 337 36 353 20 356 17 349 24 367 6 

11 343 30 355 18 350 23 366 7 354 19 367 6 

12 342 31 354 19 346 27 350 23 354 19 362 11 

13 311 62 354 19 344 29 354 19 352 21 365 8 

14 335 38 351 22 349 24 349 24 345 28 370 3 

15 297 76 348 25 327 46 338 35 331 42 351 22 

16 194 179 186 187 202 171 204 169 202 171 206 167 

17 244 129 244 129 227 146 227 146 227 146 227 146 

18 242 131 242 131 242 131 242 131 242 131 242 131 

19 138 235 138 235 138 235 138 235 138 235 138 235 

20 135 251 135 251 135 251 135 251 135 251 135 251 
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B. Incremental summation of spam hosts for all buckets. 

 

Index ATR ATR8 WU WU8 NIE NIE8 

1 343 346 342 336 340 325 

2 523 566 563 575 580 601 

3 585 671 654 706 660 759 

4 613 706 698 748 715 847 

5 628 738 725 768 741 882 

6 650 770 767 793 760 908 

7 672 797 775 831 804 918 

8 704 821 789 851 815 927 

9 731 852 821 867 837 938 

10 762 888 841 884 861 944 

11 792 906 864 891 880 950 

12 823 925 891 914 899 961 

13 885 944 920 933 920 969 

14 923 966 944 957 948 972 

15 999 991 990 992 990 994 

16 1178 1178 1161 1161 1161 1161 

17 1307 1307 1307 1307 1307 1307 

18 1438 1438 1438 1438 1438 1438 

19 1673 1673 1673 1673 1673 1673 

20 1924 1924 1924 1924 1924 1924 
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C. Average promotion level for spam hosts,  and number of spam hosts being 

promoted  

 

 Average promotion level for 

non-spam hosts 

Number of non-spam hosts being 

promoted 

Index ATR8 

over ATR 

WU8 

over WU 

NIE8 

over NIE 

ATR8 

over ATR 

WU8 

over WU 

NIE8 

over NIE 

1 0.000 0.000 0.000 0 0 0 

2 1.000 1.000 1.000 32 45 73 

3 1.074 1.524 1.244 27 42 41 

4 1.417 1.313 1.472 12 32 36 

5 2.000 1.550 2.200 7 20 20 

6 2.900 1.333 2.722 20 6 18 

7 3.063 6.000 3.048 16 1 42 

8 4.087 3.250 5.000 23 8 10 

9 4.700 4.500 4.864 20 22 22 

10 5.333 3.091 6.500 24 11 22 

11 4.304 7.105 5.278 23 19 18 

12 6.040 3.895 5.167 25 19 18 

13 4.768 2.400 7.211 56 15 19 

14 5.065 1.900 6.550 31 10 20 

15 3.486 4.100 6.185 35 20 27 

16 3.375 1.500 2.765 24 4 17 

17 1.000 0.000 0.000 1 0 0 

18 0.000 0.000 0.000 0 0 0 

19 0.000 0.000 0.000 0 0 0 

20 0.000 0.000 0.000 0 0 0 
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D. Evaluated host represented in pages level 

 

Index ATR ATR8 WU WU8 NIE NIE8 

1 1313291 1298996 1622823 1588293 1653314 1539283 

2 2456555 2694632 2728892 2856597 2832581 3003471 

3 2841133 3535509 3336290 3841061 3438744 4171748 

4 3063894 3845866 3739390 4132319 3929393 4619347 

5 3204105 4024198 3945059 4279553 3995253 4944029 

6 3370887 4316557 4049277 4488813 4166130 5240632 

7 3508984 4448721 4094948 4591742 4282662 5284677 

8 3754869 4529346 4282774 4676556 4369946 5352723 

9 4061543 4832617 4506142 4780965 4440319 5536531 

10 4214193 5004972 4631553 4939534 4713938 5540404 
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WEBSPAM-UK2007 

 

*ATR – Anti-TrustRank, ATR9 – Anti-TrustRank 9
th

 iteration DSP, WU – Wu et al. 

Distrust, WU7 – Wu et al. Distrust 7
th

 iteration DSP, NIE – Nie et al. Distrust, NIE9 – 

Nie et al. Distrust 9
th

 iteration DSP 

A. Number of spam hosts in each bucket 

Index 
ATR ATR9 WU WU7 NIE NIE9 

NS S NS S NS S NS S NS S NS S 

1 382 92 377 97 376 98 371 103 373 101 367 107 

2 449 25 453 21 459 15 437 38 458 16 437 37 

3 465 9 461 13 453 22 472 2 458 17 453 21 

4 467 8 466 9 458 17 463 11 458 17 452 24 

5 464 10 460 14 467 7 455 19 458 16 465 9 

6 457 18 458 17 470 4 463 12 466 8 462 12 

7 460 14 464 10 468 6 467 7 467 7 471 4 

8 466 8 460 14 457 17 465 9 462 12 466 8 

9 462 12 462 13 461 13 468 7 465 9 470 4 

10 466 8 465 9 465 9 465 9 468 6 470 4 

11 464 10 466 8 464 10 472 2 464 10 473 1 

12 466 8 465 9 464 10 462 12 465 9 471 3 

13 456 19 468 6 463 12 465 9 461 14 469 5 

14 453 21 452 22 452 22 452 22 454 20 451 23 

15 439 35 439 35 439 35 439 35 439 35 439 35 

16 431 43 431 43 431 43 431 43 431 43 431 43 

17 435 39 435 39 435 39 435 39 435 39 435 39 

18 432 42 432 42 432 42 432 42 432 42 432 42 

19 436 39 436 39 436 39 436 39 436 39 436 39 

20 430 41 430 41 430 41 430 41 430 41 430 41 
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B. Incremental summation of spam hosts for all buckets. 

 

Index ATR ATR9 WU WU7 NIE NIE9 

1 92 97 98 103 101 107 

2 117 118 113 141 117 144 

3 126 131 135 143 134 165 

4 134 140 152 154 151 189 

5 144 154 159 173 167 198 

6 162 171 163 185 175 210 

7 176 181 169 192 182 214 

8 184 195 186 201 194 222 

9 196 208 199 208 203 226 

10 204 217 208 217 209 230 

11 214 225 218 219 219 231 

12 222 234 228 231 228 234 

13 241 240 240 240 242 239 

14 262 262 262 262 262 262 

15 297 297 297 297 297 297 

16 340 340 340 340 340 340 

17 379 379 379 379 379 379 

18 421 421 421 421 421 421 

19 460 460 460 460 460 460 

20 501 501 501 501 501 501 
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C. Average promotion level for spam hosts,  and number of spam hosts being 

promoted  

 

 Average promotion level for 

non-spam hosts 

Number of non-spam hosts being 

promoted 

Index ATR9 

over ATR 

WU7 

over WU 

NIE9 

over NIE 

ATR9 

over ATR 

WU7 

over WU 

NIE9 

over NIE 

1 0.000 0.000 0.000 0 0 0 

2 1.000 1.000 1.000 4 7 11 

3 1.000 1.222 1.143 4 9 7 

4 1.000 1.667 1.714 2 3 7 

5 1.333 2.000 2.625 3 7 8 

6 2.000 3.333 2.300 5 3 10 

7 1.000 4.000 4.400 3 1 5 

8 1.600 2.000 4.000 5 1 4 

9 1.800 2.167 4.833 5 6 6 

10 1.000 4.500 5.125 1 12 8 

11 3.000 4.154 2.500 4 13 2 

12 2.500 4.750 8.333 6 4 6 

13 4.250 3.000 6.400 4 4 5 

14 3.600 1.500 5.375 5 2 8 

15 2.000 3.000 8.500 1 1 2 

16 3.167 4.250 7.556 6 4 9 

17 3.455 3.333 8.143 11 6 7 

18 1.333 1.000 2.000 3 1 3 

19 0.000 0.000 0.000 0 0 0 

20 0.000 0.000 0.000 0 0 0 
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D. Evaluated host represented in pages level 

 

Index ATR ATR9 WU WU7 NIE NIE9 

1 937106 932239 973094 995268 1005285 1003788 

2 1009426 1032782 1027670 1064206 1022486 1068011 

3 1014809 1034819 1079967 1064527 1079508 1120374 

4 1039525 1060942 1096300 1078740 1112970 1193032 

5 1065252 1078895 1133635 1148592 1138692 1195269 

6 1084178 1085877 1136315 1158840 1150000 1220140 

7 1103333 1087342 1139671 1168950 1155144 1228255 

8 1147566 1169866 1153311 1185852 1157171 1258372 

9 1163808 1225869 1183984 1228032 1189461 1258837 

10 1200058 1226594 1194601 1242814 1205620 1309149 
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APPENDIX G - CHAPTER 7 RESULTS 

 

WEBSPAM-UK2006 

*HD - Number of hidden neurons, AUC - Area under the receiver operating 

characteristic curve 

 

Feature Set A (24 Content Features) 

HD AUC HD AUC HD AUC 

2 0.7953 11 0.7975 20 0.8000 

3 0.7972 12 0.7993 21 0.8004 

4 0.7953 13 0.7987 22 0.8006 

5 0.7967 14 0.7996 23 0.8003 

6 0.7972 15 0.8006 

7 0.7970 16 0.7997 

8 0.7978 17 0.7987 

9 0.7986 18 0.8003 

10 0.7993 19 0.7999 

 

Feature Set B (96 Full Content Features) 

HD AUC HD AUC HD AUC HD AUC HD AUC 

2 0.7953 21 0.8688 40 0.8718 59 0.8704 78 0.8710 

3 0.7972 22 0.8705 41 0.8714 60 0.8689 79 0.8734 

4 0.7953 23 0.8691 42 0.8705 61 0.8730 80 0.8710 

5 0.7967 24 0.8704 43 0.8708 62 0.8721 81 0.8740 

6 0.7972 25 0.8706 44 0.8713 63 0.8716 82 0.8719 

7 0.7970 26 0.8686 45 0.8708 64 0.8719 83 0.8738 

8 0.7978 27 0.8694 46 0.8707 65 0.8715 84 0.8721 

9 0.7986 28 0.8699 47 0.8693 66 0.8723 85 0.8728 

10 0.7993 29 0.8705 48 0.8708 67 0.8710 86 0.8730 

11 0.8677 30 0.8698 49 0.8692 68 0.8654 87 0.8740 

12 0.8674 31 0.8705 50 0.8726 69 0.8690 88 0.8733 

13 0.8681 32 0.8699 51 0.8709 70 0.8728 89 0.8711 

14 0.8687 33 0.8698 52 0.8705 71 0.8717 90 0.8720 

15 0.8694 34 0.8712 53 0.8733 72 0.8713 91 0.8722 

16 0.8684 35 0.8702 54 0.8700 73 0.8736 92 0.8761 

17 0.8675 36 0.8692 55 0.8702 74 0.8726 93 0.8715 

18 0.8692 37 0.8695 56 0.8700 75 0.8723 94 0.8736 

19 0.8684 38 0.8710 57 0.8715 76 0.8695 95 0.8707 

20 0.8689 39 0.8708 58 0.8722 77 0.8737 96 0.8730 
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Feature Set C (41 Link-based Features) 

HD AUC HD AUC HD AUC HD AUC HD AUC 

2 0.8353 11 0.8321 20 0.8314 29 0.8284 38 0.8273 

3 0.8333 12 0.8316 21 0.8315 30 0.8289 39 0.8274 

4 0.8346 13 0.8325 22 0.8314 31 0.8264 40 0.8272 

5 0.8329 14 0.8317 23 0.8301 32 0.8275 41 0.8272 

6 0.8336 15 0.8310 24 0.8278 33 0.8288   

7 0.8336 16 0.8299 25 0.8276 34 0.8273   

8 0.8320 17 0.8301 26 0.8282 35 0.8273   

9 0.8318 18 0.8319 27 0.8305 36 0.8276   

10 0.8327 19 0.8314 28 0.8278 37 0.8282   

Feature Set D (138 Transformed Link-based Features) 

HD AUC HD AUC HD AUC HD AUC HD AUC 

2 0.8380 30 0.8270 58 0.8265 85 0.8262 113 0.8288 

3 0.8276 31 0.8281 59 0.8282 86 0.8268 114 0.8264 

4 0.8267 32 0.8270 60 0.8253 87 0.8301 115 0.8283 

5 0.8282 33 0.8234 61 0.8285 88 0.8257 116 0.8296 

6 0.8275 34 0.8245 62 0.8275 89 0.8294 117 0.8279 

7 0.8257 35 0.8271 63 0.8281 90 0.8298 118 0.8267 

8 0.8279 36 0.8249 64 0.8300 91 0.8304 119 0.8263 

9 0.8266 37 0.8274 65 0.8280 92 0.8277 120 0.8318 

10 0.8213 38 0.8289 66 0.8285 93 0.8284 121 0.8309 

11 0.8269 39 0.8261 67 0.8285 94 0.8277 122 0.8280 

12 0.8246 40 0.8327 68 0.8291 95 0.8270 123 0.8271 

13 0.8254 41 0.8245 69 0.8292 96 0.8295 124 0.8275 

14 0.8268 42 0.8239 70 0.8322 97 0.8280 125 0.8284 

15 0.8216 43 0.8259 71 0.8283 98 0.8277 126 0.8299 

16 0.8302 44 0.8249 72 0.8239 99 0.8263 127 0.8270 

17 0.8228 45 0.8250 73 0.8264 100 0.8287 128 0.8320 

18 0.8236 46 0.8242 74 0.8264 101 0.8271 129 0.8291 

19 0.8256 47 0.8254 75 0.8255 102 0.8289 130 0.8271 

20 0.8212 48 0.8261 76 0.8275 103 0.8277 131 0.8311 

21 0.8240 49 0.8291 77 0.8272 104 0.8297 132 0.8281 

22 0.8290 50 0.8278 78 0.8309 105 0.8290 133 0.8278 

23 0.8264 51 0.8248 79 0.8283 106 0.8277 134 0.8261 

24 0.8259 52 0.8261 80 0.8325 107 0.8269 135 0.8316 

25 0.8249 53 0.8277 81 0.8278 108 0.8262 136 0.8282 

26 0.8247 54 0.8282 82 0.8263 109 0.8293 137 0.8314 

27 0.8289 55 0.8297 82 0.8297 110 0.8289 138 0.8291 

28 0.8237 56 0.8290 83 0.8267 111 0.8323   

29 0.8255 57 0.8306 84 0.8265 112 0.8289   
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Feature Set A + C (65 Features) 

HD AUC HD AUC HD AUC HD AUC HD AUC 

2 0.8688 15 0.8693 28 0.8690 41 0.8676 54 0.8686 

3 0.8745 16 0.8706 29 0.8684 42 0.8676 55 0.8666 

4 0.8773 17 0.8694 30 0.8689 43 0.8682 56 0.8671 

5 0.8760 18 0.8682 31 0.8690 44 0.8673 57 0.8675 

6 0.8754 19 0.8673 32 0.8663 45 0.8674 58 0.8666 

7 0.8735 20 0.8672 33 0.8663 46 0.8680 59 0.8689 

8 0.8716 21 0.8676 34 0.8660 47 0.8688 60 0.8688 

9 0.8715 22 0.8680 35 0.8677 48 0.8675 61 0.8670 

10 0.8724 23 0.8691 36 0.8675 49 0.8676 62 0.8684 

11 0.8716 24 0.8675 37 0.8669 50 0.8669 63 0.8678 

12 0.8706 25 0.8676 38 0.8664 51 0.8679 64 0.8677 

13 0.8711 26 0.8676 39 0.8673 52 0.8678 65 0.8677 

14 0.8700 27 0.8691 40 0.8671 53 0.8674   

 

Feature Set B + D (234 Features) 

HD AUC HD AUC HD AUC HD AUC HD AUC 

2 0.8847 49 0.8871 96 0.8863 143 0.8889 190 0.8868 

3 0.8894 50 0.8864 97 0.8899 144 0.8863 191 0.8878 

4 0.8878 51 0.8850 98 0.8876 145 0.8874 192 0.8887 

5 0.8798 52 0.8899 99 0.8870 146 0.8864 193 0.8874 

6 0.8770 53 0.8868 100 0.8885 147 0.8888 194 0.8876 

7 0.8816 54 0.8870 101 0.8879 148 0.8869 195 0.8871 

8 0.8798 55 0.8880 102 0.8858 149 0.8897 196 0.8869 

9 0.8831 56 0.8881 103 0.8870 150 0.8854 197 0.8892 

10 0.8775 57 0.8882 104 0.8844 151 0.8888 198 0.8894 

11 0.8787 58 0.8864 105 0.8866 152 0.8867 199 0.8886 

12 0.8828 59 0.8901 106 0.8902 153 0.8905 200 0.8897 

13 0.8803 60 0.8883 107 0.8885 154 0.8878 201 0.8876 

14 0.8817 61 0.8869 108 0.8854 155 0.8872 202 0.8884 

15 0.8855 62 0.8875 109 0.8868 156 0.8889 203 0.8878 

16 0.8827 63 0.8854 110 0.8880 157 0.8885 204 0.8893 

17 0.8842 64 0.8886 111 0.8872 158 0.8885 205 0.8871 

18 0.8836 65 0.8861 112 0.8880 159 0.8880 206 0.8874 

19 0.8859 66 0.8879 113 0.8845 160 0.8870 207 0.8870 

20 0.8846 67 0.8848 114 0.8878 161 0.8885 208 0.8858 

21 0.8854 68 0.8874 115 0.8902 162 0.8877 209 0.8868 

22 0.8880 69 0.8861 116 0.8874 163 0.8878 210 0.8900 

23 0.8814 70 0.8873 117 0.8855 164 0.8871 211 0.8876 

24 0.8837 71 0.8886 118 0.8883 165 0.8878 212 0.8869 



Appendix G 

190 

25 0.8866 72 0.8853 119 0.8866 166 0.8875 213 0.8891 

26 0.8829 73 0.8861 120 0.8894 167 0.8879 214 0.8893 

27 0.8856 74 0.8865 121 0.8890 168 0.8880 215 0.8890 

28 0.8836 75 0.8863 122 0.8892 169 0.8885 216 0.8861 

29 0.8875 76 0.8878 123 0.8896 170 0.8865 217 0.8885 

30 0.8881 77 0.8880 124 0.8880 171 0.8891 218 0.8873 

31 0.8851 78 0.8869 125 0.8878 172 0.8886 219 0.8898 

32 0.8866 79 0.8889 126 0.8856 173 0.8874 220 0.8888 

33 0.8824 80 0.8843 127 0.8867 174 0.8870 221 0.8854 

34 0.8865 81 0.8870 128 0.8864 175 0.8851 222 0.8872 

35 0.8875 82 0.8863 129 0.8879 176 0.8883 223 0.8909 

36 0.8867 83 0.8882 130 0.8874 177 0.8873 224 0.8870 

37 0.8869 84 0.8851 131 0.8867 178 0.8870 225 0.8881 

38 0.8844 85 0.8882 132 0.8869 179 0.8866 226 0.8861 

39 0.8876 86 0.8879 133 0.8869 180 0.8887 227 0.8882 

40 0.8897 87 0.8877 134 0.8903 181 0.8896 228 0.8884 

41 0.8861 88 0.8872 135 0.8870 182 0.8904 229 0.8867 

42 0.8848 89 0.8862 136 0.8885 183 0.8881 230 0.8887 

43 0.8841 90 0.8870 137 0.8873 184 0.8889 231 0.8881 

44 0.8888 91 0.8863 138 0.8880 185 0.8855 232 0.8898 

45 0.8844 92 0.8849 139 0.8876 186 0.8881 233 0.8870 

46 0.8856 93 0.8887 140 0.8881 187 0.8883 234 0.8878 

47 0.8858 94 0.8872 141 0.8874 188 0.8881   

48 0.8851 95 0.8867 142 0.8883 189 0.8864   
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WEBSPAM-UK2007 

*HD - Number of hidden neurons, AUC - Area under the receiver operating 

characteristic curve 

 

Feature Set A (24 Content Features) 

HD AUC HD AUC HD AUC 

2 0.6590 11 0.7083 20 0.7087 

3 0.6730 12 0.7047 21 0.7200 

4 0.6796 13 0.7106 22 0.7127 

5 0.6888 14 0.7033 23 0.7078 

6 0.6862 15 0.7153 

7 0.6936 16 0.7154 

8 0.6995 17 0.7137 

9 0.7012 18 0.7137 

10 0.7055 19 0.7188 

 

Feature Set B (96 Full Content Features) 

HD AUC HD AUC HD AUC HD AUC HD AUC 

2 0.6695 21 0.7514 40 0.7557 59 0.7547 78 0.7533 

3 0.6806 22 0.7498 41 0.7546 60 0.7459 79 0.7552 

4 0.6854 23 0.7440 42 0.7416 61 0.7502 80 0.7537 

5 0.6914 24 0.7471 43 0.7494 62 0.7623 81 0.7503 

6 0.7341 25 0.7475 44 0.7596 63 0.7532 82 0.7438 

7 0.7224 26 0.7565 45 0.7543 64 0.7534 83 0.7598 

8 0.7297 27 0.7453 46 0.7515 65 0.7502 84 0.7485 

9 0.7419 28 0.7454 47 0.7561 66 0.7517 85 0.7638 

10 0.7399 29 0.7491 48 0.7535 67 0.7636 86 0.7567 

11 0.7440 30 0.7410 49 0.7537 68 0.7293 87 0.7543 

12 0.7415 31 0.7429 50 0.7514 69 0.7551 88 0.7503 

13 0.7508 32 0.7596 51 0.7542 70 0.7532 89 0.7518 

14 0.7383 33 0.7525 52 0.7514 71 0.7402 90 0.7507 

15 0.7495 34 0.7521 53 0.7561 72 0.7548 91 0.7498 

16 0.7361 35 0.7503 54 0.7480 73 0.7639 92 0.7571 

17 0.7339 36 0.7535 55 0.7586 74 0.7482 93 0.7461 

18 0.7427 37 0.7548 56 0.7487 75 0.7566 94 0.7413 

19 0.7482 38 0.7579 57 0.7587 76 0.7525 95 0.7531 

20 0.7438 39 0.7457 58 0.7612 77 0.7477 96 0.7532 

 

Feature Set C (41 Link-based Features) 
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HD AUC HD AUC HD AUC HD AUC HD AUC 

2 0.6247 11 0.6162 20 0.6233 29 0.6195 38 0.6248 

3 0.6218 12 0.6142 21 0.6236 30 0.6192 39 0.6234 

4 0.6087 13 0.6143 22 0.6196 31 0.6242 40 0.6229 

5 0.6025 14 0.6184 23 0.6224 32 0.6206 41 0.6229 

6 0.6103 15 0.6191 24 0.6164 33 0.6191   

7 0.6027 16 0.6193 25 0.6216 34 0.6218   

8 0.6125 17 0.6180 26 0.6242 35 0.6191   

9 0.6149 18 0.6130 27 0.6212 36 0.6226   

10 0.6169 19 0.6193 28 0.6226 37 0.6240   

 

Feature Set D (138 Transformed Link-based Features) 

HD AUC HD AUC HD AUC HD AUC HD AUC 

2 0.6583 30 0.6536 58 0.6641 85 0.6690 113 0.6663 

3 0.6553 31 0.6549 59 0.6637 86 0.6686 114 0.6679 

4 0.6561 32 0.6539 60 0.6673 87 0.6599 115 0.6701 

5 0.6602 33 0.6559 61 0.6724 88 0.6650 116 0.6741 

6 0.6280 34 0.6575 62 0.6614 89 0.6630 117 0.6696 

7 0.6258 35 0.6583 63 0.6594 90 0.6713 118 0.6720 

8 0.6394 36 0.6513 64 0.6679 91 0.6684 119 0.6715 

9 0.6256 37 0.6498 65 0.6639 92 0.6687 120 0.6671 

10 0.6384 38 0.6325 66 0.6678 93 0.6692 121 0.6660 

11 0.6371 39 0.6330 67 0.6657 94 0.6604 122 0.6709 

12 0.6290 40 0.6549 68 0.6632 95 0.6691 123 0.6740 

13 0.6330 41 0.6524 69 0.6603 96 0.6699 124 0.6671 

14 0.6352 42 0.6612 70 0.6607 97 0.6685 125 0.6674 

15 0.6407 43 0.6610 71 0.6580 98 0.6669 126 0.6695 

16 0.6400 44 0.6609 72 0.6658 99 0.6740 127 0.6682 

17 0.6458 45 0.6630 73 0.6665 100 0.6680 128 0.6643 

18 0.6491 46 0.6527 74 0.6697 101 0.6639 129 0.6698 

19 0.6430 47 0.6672 75 0.6642 102 0.6664 130 0.6696 

20 0.6411 48 0.6677 76 0.6568 103 0.6690 131 0.6720 

21 0.6467 49 0.6629 77 0.6696 104 0.6632 132 0.6561 

22 0.6442 50 0.6566 78 0.6700 105 0.6660 133 0.6699 

23 0.6517 51 0.6560 79 0.6654 106 0.6720 134 0.6699 

24 0.6523 52 0.6616 80 0.6620 107 0.6669 135 0.6661 

25 0.6492 53 0.6642 81 0.6615 108 0.6658 136 0.6677 

26 0.6534 54 0.6587 82 0.6596 109 0.6708 137 0.6678 

27 0.6502 55 0.6532 82 0.6762 110 0.6652 138 0.6624 

28 0.6550 56 0.6724 83 0.6628 111 0.6630   

29 0.6559 57 0.6581 84 0.6641 112 0.6722   
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Feature Set A + C (65 Features) 

HD AUC HD AUC HD AUC HD AUC HD AUC 

2 0.7451 15 0.7536 28 0.7290 41 0.7298 54 0.7179 

3 0.7343 16 0.7526 29 0.7442 42 0.7246 55 0.7388 

4 0.7220 17 0.7411 30 0.7328 43 0.7337 56 0.7481 

5 0.7374 18 0.7447 31 0.7361 44 0.7275 57 0.7424 

6 0.7464 19 0.7464 32 0.7305 45 0.7463 58 0.7347 

7 0.7375 20 0.7234 33 0.7336 46 0.7470 59 0.7304 

8 0.7229 21 0.7506 34 0.7257 47 0.7532 60 0.7364 

9 0.7248 22 0.7436 35 0.7299 48 0.7306 61 0.7416 

10 0.7255 23 0.7356 36 0.7345 49 0.7521 62 0.7274 

11 0.7326 24 0.7402 37 0.7272 50 0.7166 63 0.7249 

12 0.7302 25 0.7397 38 0.7367 51 0.7289 64 0.7331 

13 0.7340 26 0.7226 39 0.7371 52 0.7193 65 0.7423 

14 0.7325 27 0.7375 40 0.7457 53 0.7275   

 

Feature Set B + D (234 Features) 

HD AUC HD AUC HD AUC HD AUC HD AUC 

2 0.7843 49 0.7545 96 0.7440 143 0.7516 190 0.7421 

3 0.7807 50 0.7625 97 0.7548 144 0.7374 191 0.7256 

4 0.7640 51 0.7572 98 0.7441 145 0.7401 192 0.7325 

5 0.7648 52 0.7503 99 0.7433 146 0.7516 193 0.7412 

6 0.7722 53 0.7392 100 0.7447 147 0.7378 194 0.7419 

7 0.7627 54 0.7406 101 0.7547 148 0.7273 195 0.7445 

8 0.7631 55 0.7479 102 0.7339 149 0.7320 196 0.7229 

9 0.7574 56 0.7375 103 0.7355 150 0.7433 197 0.7373 

10 0.7561 57 0.7473 104 0.7386 151 0.7159 198 0.7270 

11 0.7539 58 0.7399 105 0.7591 152 0.7437 199 0.7412 

12 0.7698 59 0.7359 106 0.7534 153 0.7302 200 0.7443 

13 0.7634 60 0.7465 107 0.7358 154 0.7451 201 0.7368 

14 0.7624 61 0.7549 108 0.7406 155 0.7406 202 0.7346 

15 0.7740 62 0.7551 109 0.7381 156 0.7267 203 0.7491 

16 0.7537 63 0.7377 110 0.7368 157 0.7292 204 0.7230 

17 0.7635 64 0.7495 111 0.7337 158 0.7308 205 0.7383 

18 0.7574 65 0.7532 112 0.7352 159 0.7361 206 0.7341 

19 0.7731 66 0.7362 113 0.7538 160 0.7385 207 0.7376 

20 0.7624 67 0.7435 114 0.7390 161 0.7340 208 0.7396 

21 0.7538 68 0.7409 115 0.7512 162 0.7452 209 0.7256 

22 0.7643 69 0.7418 116 0.7326 163 0.7345 210 0.7340 

23 0.7597 70 0.7511 117 0.7511 164 0.7537 211 0.7377 

24 0.7661 71 0.7510 118 0.7400 165 0.7492 212 0.7383 
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25 0.7448 72 0.7474 119 0.7437 166 0.7280 213 0.7452 

26 0.7558 73 0.7493 120 0.7451 167 0.7442 214 0.7344 

27 0.7727 74 0.7429 121 0.7536 168 0.7488 215 0.7340 

28 0.7637 75 0.7728 122 0.7421 169 0.7315 216 0.7458 

29 0.7629 76 0.7532 123 0.7429 170 0.7448 217 0.7344 

30 0.7583 77 0.7397 124 0.7366 171 0.7474 218 0.7186 

31 0.7560 78 0.7518 125 0.7460 172 0.7307 219 0.7391 

32 0.7545 79 0.7422 126 0.7388 173 0.7436 220 0.7467 

33 0.7503 80 0.7545 127 0.7427 174 0.7290 221 0.7426 

34 0.7628 81 0.7332 128 0.7611 175 0.7423 222 0.7323 

35 0.7482 82 0.7414 129 0.7417 176 0.7310 223 0.7340 

36 0.7725 83 0.7314 130 0.7500 177 0.7449 224 0.7415 

37 0.7590 84 0.7399 131 0.7423 178 0.7480 225 0.7252 

38 0.7646 85 0.7411 132 0.7409 179 0.7432 226 0.7463 

39 0.7509 86 0.7393 133 0.7418 180 0.7353 227 0.7157 

40 0.7546 87 0.7375 134 0.7325 181 0.7609 228 0.7433 

41 0.7506 88 0.7336 135 0.7265 182 0.7327 229 0.7375 

42 0.7606 89 0.7369 136 0.7566 183 0.7495 230 0.7330 

43 0.7684 90 0.7486 137 0.7400 184 0.7430 231 0.7421 

44 0.7544 91 0.7285 138 0.7460 185 0.7218 232 0.7249 

45 0.7580 92 0.7369 139 0.7377 186 0.7546 233 0.7291 

46 0.7533 93 0.7403 140 0.7514 187 0.7440 234 0.7194 

47 0.7583 94 0.7373 141 0.7309 188 0.7302   

48 0.7665 95 0.7322 142 0.7435 189 0.7739   

 

 

 

 


