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UTILISING COILED TUBE RIG FOR MINERAL EXPLORATION APPLICATION 

 

ABSTRACT 

 

Mineral exploration is in a race to employ drilling technology that can perform the exploration 

and drilling investigation in a fast and inexpensive manner. After an extensive study of the available 

drilling technologies in the market, coiled tubing was chosen as a tool to be employed for mineral 

exploration due to its flexible mobility and ease of operation with minimum number of personnel. Since 

coiled tubing technology is primarily used in oil and gas industry, it was important to re-design the coiled 

tube rig to drill hard rocks in a fast and feasible manner. The main requirements were to drill the smallest 

feasible hole diameter and go as deep in the ground as possible, in the shortest reasonable time. The drilled 

rock particles, cuttings, are to be collected and analysed at the surface for their metal mineral contents. The 

process also needs to be repeated multiple times at different locations for mapping, without the need to 

change the tube on the rig due to failure or potential failure. The focus of the new designed coiled tube, for 

drilling and mineral exploration, is three fold. First is to increase the rate of penetration (ROP) in drilling 

by designing a small high speed turbo motor. Second is to determine the controlling parameters of cuttings 

transport to effectively lift the cuttings to the surface for analysis and third is to minimize the overall 

weight of the rig for manoeuvring and to prolong the life span of the coiled tube string. In this paper, a 

small downhole turbo motor, 5cm outer diameter, is designed to achieve a rotation speed of up to 10,000 

rpm to fit on a small bit, coiled tube drilling assembly. The motor design utilised multiple finite volume 

and finite element analysis software for fluid flow study and fluid structural interaction analysis. The paper 

is also introducing the concept of flow slurry loop that is designed to lift the cutting particles to the surface 

for mineralisation analysis. The controlling parameters of the cuttings transportation are the particles 

physical properties such as size, density, concentration and shape, as well as the rheological properties of 

the carrying fluid, drilled hole angle, as well as the fluid flow rate and flow dynamics within the annulus 

gap between the coiled tube and drilled hole. Such parameters are addressed via experimental work as well 

as numerical analysis. The paper is also presenting the selection and testing procedure of the material type 

for the coiled tube string. The tube needs to be light in weight for rig transportation and to drill few dozens 

of drill investigations holes before failing due to fatigue. A fatigue bending machine is designed to test the 

endurance limit of candidate materials for coiled tube string and performance index methodology is 

followed for material selection of the optimum material.  The coiled tube rig is designed to be light in 

weight for transportation and relocation. It is also required to speed the drilling operation with the 

minimum foot print and will reclaim the drilled rock particles for mineral composition analysis at the 

surface.  
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INTRODUCTION 

 

Coil Tubing technology is primarily used in the oil and gas industry for work-over applications, 

well logging, drilling and other applications as described by Jaworsk (1992). In order to utilise coil tube 

technology for mineral exploration operations, it requires drilling multiple deep small size boreholes as fast 

as possible to reach a potential ore body. The drilled rock particles are to be collected at the surface for 

various analyses and most importantly for their mineral content. 

 

One of the attractive characteristic of coil tubing in drilling is its fast operation relative to other 

conventional drilling methods. The rig up is quick and the coil tubing system is mobile. Therefore, the cost 

per drill hole would be cheap and the exploration and mapping of an ore body will be feasible and 

relatively fast. However, the coiled tube rig needs to be re-designed for the mineral exploration 

applications. Drilling hard rocks in a fast manner, gathering the drilled particles for analysis, having a 

mobile, durable rig are the main parameters that are considered in this study to make the system feasible.  

 

The first objective for re-designing the coiled tube focuses on the drilling driving power. The 

input drilling power needs to achieve the highest possible rate of penetration. Therefore, a small high speed 

turbo motor is designed to attain a high revolution per minute with the smallest outer diameter that can fit 

on a small weight on bit coiled tube drilling assembly, as explained in more details later in this paper. 

 

The second objective is to understand the best operating conditions that would assist in collecting 

all the drilled particles to the surface. Since the drilling operation is meant to collect and analyse the drilled 

rocks (cuttings) for their mineral contents, a slurry flow loop is designed to understand and study the 

parameters that will affect the lifting and transportations process of the cuttings to the surface. Some of the 

parameters that would affect the performance of the flow loop are the particles physical properties, 

rheological behaviour of the cutting slurry as well as the drilled hole angle, mud flow rate and flow 

dynamics in the annulus gap between the coiled tube and the drilled hole. Rheological analysis of the 

drilling mud and percentages of cutting added to the mud are addressed in this paper. The design of the 

flow loop experimental setup is presented.  

 

Finally, to achieve a light rig that would be easy and cheap to relocate as well as a durable coiled 

tube string, a study is performed for an alternative coiled tube material. The current coiled tube strings are 

made of high strength low alloy (HSLA) steel. Besides its heavy weight, the coiled tube is known to have 

low fatigue life due to the multiple bend and flattening events during operation (Avakov, Foster, & Smith, 

1993). Therefore, Jaworsky and Wolliams (1993) investigated composite materials such as carbon fibre 

and glass fibre as options to replace the steel tube strings. Carbon fibre tubes are recently tested at the 

DET-CRC training facility (Fuller, 2012 & DET-CRC press release, 2012). In order to confirm that 

composite material is the optimum choice for the coil tube drill rig application, performance index method 

(Farag,, 2007) is used to assess possible material replacement for the HSLA steels and a fatigue testing 

machine is designed to test and evaluate the candidate materials.  

 

TURBINE DOWN-HOLE MOTOR DESIGN 

 

 Coiled tube cannot rotate and therefore a down-hole motor is needed to provide mechanical power 

and rotation to the bit. Mokaramian, Rasouli, and Cavanough, (2012) evaluated the available motors for 

deep mineral exploration and they concluded that high speed turbodrill (turbine motor) is the best choice 

for small size CT drilling for hard rocks.  The advantages of turbine motor are their high efficiency for a 

low weight on bit drilling system, high quality, smooth borehole because it encounters minimum vibration 

during drilling.  

 



 The down-hole turbine motor (Turbodrill) is composed of two sections: turbine motor section and 

bearing section which are thrust-bearing and radial support bearing. The turbine motor is a type of 

hydraulic axial turbo-machinery that has multistage rotors and stators. It converts the hydraulic power 

provided by a drilling fluid, which is pumped from the surface, to mechanical power as it is diverting the 

fluid flow from the stator vanes to the rotor vanes. The fluid runs through the turbodrill and the bit nozzles 

where it cools the bit and removes the cuttings generated under the bit. It finally carries the cuttings inside 

the annulus between CT and the hole to the surface. The energy required to change the rotational direction 

of the drilling fluid is transformed into rotational and axial (thrust) force. The energy transfer is seen as a 

pressure drop in the drilling fluid. The thrust is typically absorbed by thrust bearing. The rotational forces 

rotate the rotor relative to the housing. The bearings, both radial and axial thrust, maintain the appropriate 

turbine blade position which generates concentric rotation. In practice, multiple stages are coaxially 

stacked to achieve the desired power and torque. Other fluids that possess different rheological properties 

as non-Newtonian fluids are simulated by Mokaramian, Rasouli, and Cavanough (2013). 

 

Numerical Simulation of Fluid Flow through Turbodrill 

 

 In this study the fluid flow analysis through small diameter turbodrill, ANSYS TurboSystem tools 

together with ANSYS CFX for computational fluid dynamics (CFD) simulations were utilized to 

investigate the turbodrill performance. The flow field using CFD simulation is calculated based on the 

Reynolds-Averaged Navier–Stokes (RANS) equations which are derived from the governing Navier–

Stokes equations. For an incompressible Newtonian fluid such as pure water, the RANS equations are 

expressed in tensor notation as following: 
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Where, U is the velocity vector, ρ is the fluid density, fi is a vector representing external forces and δij is the 

Kronecker delta function (δij=1 if i=j and δij=0 if i≠j). Also, Sij is the mean rate of strain tensor which is 
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 Designing a hydraulic multistage turbodirll, it is assumed that each turbodrill stage is identical. In 

other words, the flow rate, pressure drop, rotary speed, generated torque, power transmitted to the shaft are 

the same for each stage. Therefore, a complete design of one stage is performed and the Turbodrill 

performance is calculated for multiple identical stages, stacked and connected to the Turbodrill shaft. In 

this paper, only one Turbodrill stage model is considered with shroud (housing) and hub (shaft) diameters 

of 50 mm and 40 mm, respectively. Consequently, the span wise height will be 5 mm for this model. The 

number of blades on stator and rotor are 20 blades each, with no shroud tip between blade and housing, 

where the blades are connected to the housing. The drilling fluid is clean water, a Newtonian fluid. The 

default water properties are considered as per the CFX software.  

 

Simulation Results: 

 

 The results for one stage Turbodrill model with water flow rate of 4L/s is presented as power and 

torque versus rotation speed as shown in Figure 1. The maximum power and torque is achieved at 

approximately 6,000 rpm, which is equivalent to 725 W and 1,152 N.mm, respectively. The runaway 

turbine speed is almost over 11,000 rpm, and stalled torque is about 2,320 N.mm. Similar runs were 

performed on non-Newtonian fluid that followed the Hershel-Bulkley model, similar flow rate. Results 

showed the maximum stage efficiency at 5,000 rpm that is equivalent to 518W and 990 N.mm power and 

torque, respectively, (Mokaramian et. al., 2013). 

 



 

Figure 1 - CFD simulation results of Power and Torque versus rpm for one 

stage Turbodrill and water flow rate of 4 L/s. 

 

 Figure 2 shows the CFD simulation of the velocity profile at a rotation speed of 6,000 rpm which 

is close to the optimum rotation speed. The figure shows the velocity profile encircling the blades at the 

span surface, half way between the hub and the shroud. Some flow separations are visible on the leading 

and trailing edges of the blades. Figure 2 also shows the pressure and meridional velocity profiles at 

meridional surface. The meridional surface is the axial-symmetric surface between the hub and the shroud. 

The pressure and velocity profiles show the maximum velocity and minimum pressure is occurring near the 

stator blade trailing edge. The simulation results in this study showed that the turbodrill performance is 

highly dependent on the flow rate of the drilling fluid. As the flow rate increases the expected rotation 

speed of the turbodrill and consequently the output power and torque will increase, (Mokaramian et al., 

2013). 

 

Figure 2 - CFD simulation results for one stage of the Turbodrill model  

            with water flow rate of 4 L/s at 6,000 rpm rotation speed 



FLOW LOOP DESIGN 

 
 The coil tubing rig is mainly used by the oil and gas industry and the cuttings were transported to 

the surface and discarded. On the other hand, the application of coil tubing for mineral exploration would 

require careful cutting transport technique without losing any of the particles for proper logging and 

analysis. Cutting transport concerns at the petroleum industry are identified and addressed by Kamyab, M., 

Rasouli, V., Cavanough, G. and Mandal, S. ( 2012),  as well as the predicted issues of cutting transport in 

mineral exploration drilling. For mineral exploration, it is recommended to drill micro bore-hole size to 

achieve the objective of fast, cheap drilling and least environmental foot print. Micro bore-hole CT drilling 

was first introduced by the US Department of Energy (DOE) for better reservoir imaging (Lang, 2006).  A 

relative comparison between oil & gas and mineral exploration cutting transport operating conditions and 

criteria are presented in Table 1. For instance, the annulus space in mineral exploration drilling, the coiled 

tubing is very narrow, compared to the larger annulus space in conventional oil and gas drilling operation. 

In addition, the down-hole turbo motor is expected to rotate the bit, therefore, it requires high flow rate of 

drilling fluid. The mud velocity is higher in the annulus space of the micro bore-hole CT drilling which in 

turn changes the flow regime to turbulent. Accordingly, it causes higher pressure loss in the micro bore 

hole CT drilling than the conventional oil & gas drilling. Another difference is in the cuttings sizes. Since 

impregnated diamond bit is used in drilling the mineral rocks, it generates micro-size cuttings. The last 

criterion compared is the unitless Stokes number which is used to identify how the particles follow and 

adapt themselves to the fluid stream in a slurry flow according equation (3): 
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Where    is the particles response time;    is Kolmogorov time scale defined as the ratio of the 

characteristic length (  ) of a swirl to its characteristic velocity (  );    is particles density,    is particles 

diameter; and   is fluid apparent viscosity. The Stokes number is unitless, the lower the value, the more the 

particles track fluid flow. Stokes number for micro bore-hole CT drilling is smaller than the petroleum 

cuttings transport. Therefore, the transportation of the particles in micro bore-hole CT drilling is easier. 

 

 

Table 1 - Comparison between Cutting Transport for Oil & Gas Industry  

and Mirco-Bore Hole for Mining Industry 

 

Criteria 
Conventional 

Oil & Gas 

Micro Bore Hole 

CT Drilling 

Annulus space 
 

 

Velocity 
 

 

Flow regime laminar Turbulent 

Annular pressure loss 
 

 

Cuttings size 
 

 

Stokes number 

(order of magnitude) 

 

       

 

 



 

Rheology Effect and Flow Loop Design 
 

Effect of Rheology 

 
 Experimental work indicated that hard rock drilling of small size cuttings significantly affects the 

drilling mud rheological properties. Contrary to oil & gas drilling applications where large size cuttings are 

produced and have no effect on drilling slurry rheology and is neglected. Therefore the cuttings and mud 

mixture viscosity is assumed to be equal to the raw mud viscosity (Doron et al, 1987; Doron and Barnea, 

1996; Naganawa and Nomura, 2006; Xiao-le et al, 2010). Experimental work is performed to understand 

hard rock drilling will behave similar to oil & gas drilling operation. Three mud samples were prepared and 

their rheological properties were measured using a Fann V-G Viscometer. Cuttings with different 

concentrations were added to the original mud and their rheological properties were measured. Herschel – 

Bulkley model was the best fit to the drilling mud rheology results. Later, a pressure loss model 

(Kelessidis, Dalamarinisa et al. 2011) was used to show the significance of rheological changes. The 

results of one of the mud are shown in Figure 3. The figure shows the effect of annular fluid velocity, 

cuttings concentration and annular clearance on the pressure loss. Increasing the flow velocity in the 

annulus space increased the pressure loss. As well as increasing the cuttings concentration from 0 to 5% 

and 10%, pressure losses considerably increased.  The cutting concentration is ignored in conventional oil 

and gas applications. The annular clearance significantly affects the pressure loss, where the smaller the 

annulus clearance, the higher the pressure loss. 

 

 

 

Figure 3 - Effect of annular velocity, cuttings concentration and annular clearance  

on the pressure loss in micro bore-hole CT drill 

 

 

Experimental Work: 

  

 Lack of adequate knowledge in the area of cutting transport for hard rock drilling motivates this 

study to perform both numerical simulations and experimental work. Figure 4 shows a schematic diagram 

of a slurry loop that is proposed to utilise for studying cutting transport in annular space. The controlling 

variables in this design include: fluid properties such as mud type, density and rheological parameters; 

cutting concentration which is function of the rate of penetration (ROP),  cutting size, bore-hole angle 

which ranges from horizontal (180
o
) and deviates (variable angles) to vertical (90

o
), flow rate and annulus 

space size between the hole and inner pipe. 



 

 

Figure 4 - Schematic of a proposed slurry loop for cuttings transport studies. 

 

 
COILED TUBE MATERIAL  

 

 To achieve the objective of utilising the coiled tube rig for mineral exploration, it requires the rig 

to be light in weight for safe and quick transportation to the drilling locations and needs to handle multiple 

bending events before failing due to fatigue. Coiled tubing is exposed to multiple mechanical stresses as 

tension, compression, creep, fatigue, erosion and corrosion. The main cause of failure of the tube string is 

the multiple bending events of the tube. The coiled tube is exposed to six different bending events during 

the drilling process, as illustrated Figure 5. 

.  

 

Figure 5 - Schematic of the Coiled Tubing Bending events when running In   

           & Out of the Wellbore, After Jaworsky and Williams (1993) 

  
 Three bend events occur while transporting the CT into the drill hole. One bend is wrapped 

around the reel, and then the tube is pulled off the reel by the injector head. The reel resists the pull of the 

tube, creating tension load that straightens the bent tube. The second bend event occurs around the tubing 

guide. The tube is then pulled towards the injector head, where it is straightened, facing the ground to start 

the drilling process. When the drilling job is finished, similar three bend events occur in reverse. The six 

bend events are considered to be a one industrial cycle, which is equivalent to drilling one hole. If a 

deviated angled drilling operation is required that would add two more bend events to the drilling process.  



 During operation the coil tube is also exposed to internal pressure due to the drilling fluid. The 

bent section of the tube is exposed to tri-axial stress, the internal pressure from the fluid, tensile stress and 

compressive stress at both sides of the tube circumference, as illustrated in Figure 6. Stresses on the bent 

section of the tube, along with the internal pressure, exposes the tube to wall thinning and localised plastic 

deformation. The uneven deformation along the tube leads to burst failure. Jaworsky and Williams (1993) 

collected data from field testing and their empirical  evaluation showed that when the OD of the tube 

increases by 3%, the wall thickness decreases by 7.5%, which leads to an increase of burst and collapse 

pressure rate by about 10%. Jaworsky, A. and Williams, J, (1993) added that yield strength of tubing 

samples, acquired from field services, decreased.  

 

 

 

 

 

 

 

 
Figure 6- Schematic Diagram of Stress distribution on Coil Tubing 

Material Selection Procedure 

 
 Performance index is utilised in this study to select the optimum material for the coiled tube 

drilling string. Initial stage of material selection is to list all the requirements of the application and the 

equivalent material property that will satisfy such requirements. A list of possible candidate materials that 

will convey the requirements are chosen. Requirements can be categorised as rigid and soft. Rigid 

requirements are the ones that no compromise is allowed, while the soft requirements are usually ignored 

in the selection process (Farag, 2007). Initial selection procedures are addressed by Ashby (1997) 

developed materials selection charts based on performance indices of two rigid property requirements. 

Dargie, Parmeshwar, & Wilson (1982) compiled a mathematical model to assist in the initial selection 

procedure. Initial selection using rigid parameters is considered an elimination process rather than 

selection. Therefore, initial selection would lead to multiple possible candidate materials which all will 

execute the job. However, one of the candidate materials would be a better choice if the soft properties 

were quantitatively evaluated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Material Selection Flow Chart 
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 Performance index method is a practical quantitative method that can be used to evaluate the soft 

properties. The selection process is split into three main steps. The first step prioritises the material 

properties required to perform the job using the digital logic method and weighting factor. The second step 

evaluates the candidate materials and their properties relative to each other. The third and last step relates 

the required priorities to the candidate materials’ properties as per the flow chart shown in  

 

Figure 7.  

 

For coiled tube selection, the rigid properties would be ductility and weight. The tubes need to be 

ductile to bend around the reel and light for safe mobility and fast productivity. The suggested materials 

would be any material excluding high strength brittle material such as high carbon steels or thermoset 

polymers or ceramics. Therefore, ranking the soft properties was essential to reach a quantitative and 

knowledgeable decision. A material selection analysis is carried out by Roufail & Rasouli (2012) on a 

variety of candidate material for coiled tube rig using performance index method. The performance indices 

are evaluated based on the candidate materials’ unit weight, bend-ability, load carrying capacity, specific 

stiffness, fracture toughness and corrosion resistance. The candidate material chosen for this analysis were 

two types of high strength-low-alloy steel, GT90 and GT100, respectively, 63% carbon fibre, 56% E-class 

glass fibre, 73% e-class fibre and 6061 aluminium alloy. The results suggested that composite materials 

which are two glass fibres and carbon fibre would score the highest performance indices that were 62.2, 

51.4 and 48.2, respectively. The highest performance index value is scored by the 56% glass fibre 

composite.  

 

Fatigue Testing Machine 

 

 The critical parameter, which causes most of the catastrophic failures during drilling operation 

using coiled tube, is the fatigue endurance limit for bend loading. The second important parameter is the 

weight of the rig, which is mostly dictated by the type of tube material. A bending fixture machine that will 

evaluate the fatigue bend strength of the available tubes is designed and manufactured as shown in Figure 

8. The machine will pull the tube to a bent form with an adjustable radius of 40 - 60 inch. Then the tube is 

pushed back to flat position using a hydraulic piston. The force required to bend the tube will be measure 

via a load cell as well as the number of cycles of bend/flatten events and an extensometer will be mounted 

on the tube to measure local strain on the tube outer diameter. Data will be recorded using a data 

acquisition system. Fatigued tubes can be further tested either using a non-destructive method for any 

initiation of cracks at intervals of bend events and/or will be evaluated for its possible mechanical 

properties deterioration using a tensile or burst test.  Data collected from experimental work will be used 

as input to the materials performance index for material selection.  

 

 

 
 

Figure 8 – Schematic Diagram of  the Bending Testing Machine  



CONCLUSIONS 

 

 Utilising coiled tube rig for mineral exploration requires drilling multiple micro bore-holes and 

collects the drilled rocks at the surface for mineral analysis. The re-design of the rig is approached on three 

main components. First component is the driving drilling power that achieves high rate of penetration 

(ROP); second the collection of the drilled particles to the surface for analysis; third is sustaining the drill 

rig string for multiple drilling events without failure as well as decreasing the overall weight of the rig for 

transportation and handling.  

 

 The first component is achieved by designing a turbo motor and was evaluated using finite 

element analysis (FEA) volume method (FVM) and computational fluid dynamics (CFD). This paper 

reported a few simulation results for small diameter Turbodrill design optimization for minimum drilling 

fluid flow rate, while generating required power and speed. The motor is evaluated using water as a 

Newtonian fluid and non-Newtonian fluid as primary driving fluids. The fluid is used as a carrying fluid 

for the cuttings and as a cooling agent. The second phase is to manufacture a prototype of the motor for 

field test.  

 

 The second component is the flow loop design which transports the cuttings to the surface for 

mineral composition analysis. Since coiled tube rig are originally used in oil and gas industry, a 

comparison of the flow criteria between the application in conventional oil & gas industry and the micro 

bore-hole for mineral exploration is made. Also effect of the cutting mud type and the amount of cuttings 

(drilled particles) created during drilling on the fluid’s rheological properties are analysed. The increase of 

the flow velocity as well as increasing the percent of cutting and a small annular clearance, the pressure 

loss increases considerably.  The increase of the pressure loss in the system decreases the carrying capacity 

of the fluid. The second phase in this study is to experimentally prove the theoretical findings using a 

proposed experimental set up for flow loop analysis. The flow loop will also study the effect of the angle of 

drilling on the carrying efficiency of the cuttings to the surface.   

 

 The third component is the choice of coil tube material that will perform the drilling operation 

multiple times without failing. The material that will be chosen needs to be light in weight to safely 

transport the rig to the drilling locations in a fast manner. A performance index method is suggested for 

material selection of the tube string. The rigid parameters were ductility and weight. A theoretical selection 

model is performed and it suggested composite materials either carbon or glass fibre are the best choices. 

The highest performance index value was the 56% glass fibre. The different manufacturing techniques of 

composites such as the number of fibre layers and their angles will dictate the mechanical properties of the 

tube strings. Since fatigue is one of the most critical parameters that would cause failure during operation 

and shortens the life span of the tube, the second phase is planned. In the second phase of this study a 

fatigue testing machine is designed and manufactured to evaluate the fatigue endurance limits of the 

different pre-fabricated composite coil tubes.  
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