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Summary

In this thesis we shall investigate the numerical solutions to several im-
portant practical static and dynamic optimization problems in engineering and
physics. The thesis is organized as follows.

In Chapter 1 a general literature review is presented, including motivation
and development of the problems, and existing results. Furthermore, some
existing computational methods for optimal control problems are also discussed.

In Chapter 2 the design of a semiconductor device is posed as an optimiza-
tion problem: given an ideal voltage-current (V' — I) characteristic, find one
or more physical and geometrical parameters so that the V-I characteristic of
the device matches the ideal one optimally with respect to a prescribed perfor-
mance criterion. The voltage—current characteristic of a semiconductor device
is governed by a set of nonlinear partial differential equations (PDE), and thus
a black-box approach is taken for the numerical solution to the PDEs. Vari-
ous existing numerical methods are proposed for the solution of the nonlinear
optimization problem. The Jacobian of the cost function is ill-conditioned and
a scaling technique is thus proposed to stabilize the resulting linear system.
Numerical experiments, performed to show the usefulness of this approach,
demonstrate that the approach always gives optimal or near-optimal solutions
to the test problems in both two and three dimensions.

In Chapter 3 we propose an efficient approach to numerical integration in
one and two dimensions, where a grid set with a fixed number of vertices is to be
chosen so that the error between the numerical integral and the exact integral
is minimized. For one dimensional problem two schemes are developed for suf-
ficiently smooth functions based on the mid-point rectangular quadrature rule
and the trapezoidal rule respectively, and another method is also developed for
integrands which are not sufficiently smooth. For two dimensional problems two
schemes are first developed for sufficiently smooth functions. One is based on
the barycenter rule on a rectangular partition, while the other is on a triangular

partition. A scheme for insufficiently smooth functions is also developed. For
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illustration, several examples are solved using the proposed schemes, and the
numerical results show the effectiveness of the approach.

Chapter 4 deals with optimal recharge and driving plans for a battery—
powered electric vehicle. A major problem facing battery—powered electric ve-
hicles is in their batteries: weight and charge capacity. Thus a battery—powered
electric vehicle only has a short driving range. To travel for a longer distance,
the batteries are required to be recharged frequently. In this chapter we con-
struct a model for a battery-powered electric vehicle, in which driving strat-
egy is to be obtained so that the total traveling time between two locations
is minimized. The problem is formulated as an unconventional optimization
problem. However, by using the control parameterization enhancing transfor-
mation (CPET)(see [100]) it is shown that this unconventional optimization is
equivalent to a conventional optimal parameter selection problem. Numerical
examples are solved using the proposed method.

In Chapter 5 we consider the numerical solution to a class of optimal con-
trol problems involving variable time points in their cost functions. The CPET
is first used to convert the optimal control problem with variable time points
into an equivalent optimal control problem with fixed multiple characteristic
times (MCT). Using the control parameterization technique, the time horizon
is partitioned into several subintervals. Let the partition points also be taken
as decision variables. The control functions are approximated by piecewise con-
stant or piecewise linear functions in accordance with these variable partition
points. We thus obtain a finite dimensional optimization problem. The CPET
transform is again used to convert approximate optimal control problems with
variable partition points into equivalent standard optimal control problems with
MCT, where the control functions are piecewise constant or piecewise linear
functions with pre-fixed partition points. The transformed problems are essen-
tially optimal parameter selection problems with MCT. The gradient formulae
are obtained for the objective function as well as the constraint functions with
respect to relevant decision variables. Numerical examples are solved using the

proposed method.
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A numerical approach is proposed in Chapter 6 for constructing an ap-
proximate optimal feedback control law of a class of nonlinear optimal control
problems. In this approach, the state space is partitioned into subdivisions,
and the controllers are approximated by a linear combination of the 3rd order
B-spline basis functions. Furthermore, the partition points are also taken as
decision variables in this formulation. To show the effectiveness of the proposed
approach, a two dimensional and a three dimensional examples are solved by
the approach. The numerical results demonstrate that the method is superior

to the existing methods with fixed partition points.



Chapter 1

Introduction

Static and dynamic optimization problems arise in many disciplines such as
engineering, economics, physics and the biomedical sciences. Although many
theoretical results are available in the literature for a large range of model op-
timization problems (see, for example, [114, 112]), most practical problems are
too complicated to be solved analytically. Thus numerical methods are essential
for solving these kind of practical problems. There are numerous computational
methods for solving various practical optimization problems. For details, see
[31, 85, 72, 77, 9, 115, 36, 48, 18, 26, 35, 39, 59, 79, 80, 87, 91, 99, 102, 100, 86,
103, 104, 105].

Some earlier computational methods for solving dynamic optimization or
optimal control problem are based on the solution of nonlinear two-point boundary-
value-problems. One important family of this approach which is comprised of
several variations is the neighboring extremal methods (cf [11]). However, there
is no guarantee of convergence even for relatively simple problems, though it
has been used successfully in solving a number of rather complex problems.

Another earlier method is called the extremal field method (cf. [11, 5, 6]).
It requires the solution of the Hamilton-Jacob-Bellman Partial differential equa-
tion in a domain of the state space containing the optimal solution. This method
can be used for solving relatively simple problems since it demands an exorbi-
tant amount of memory storage. Most of recent algorithms are found in the
family of gradient methods. In [19, 27, 52, 57, 93, 94], the differential equations

are discretized into difference equations, while in [38], the differential equation



is handled with a Lagrange multiplier while other constraints are treated ex-
plicitly. A straightforward transformation method is used in {40, 84}, and in
[35, 58, 62, 113], sequential gradient-restoration algorithms have been devel-
oped for the solution of different classes of optimal control problems. The latter
is further enhanced by the dual version (cf. [60, 61]).

More recently, the classical control technique is introduced in [98, 101, 99}
as a basis for solving various constrained optimal control problems in a unified
fashion. The technique is a flexible and efficient approach for a large class of
optimal control problems. The central idea of the method relies on a simple
approximation scheme, i.e., to approximate an optimal control problem by a
sequence of finite dimensional optimal parameter selection problems. Each of
these optimal parameter selection problem can be viewed as a mathematical
programming problem.

Despite the flexibility and the efficiency of the approach, there are sev-
eral numerical difficulties associated with it. The accuracy of method depends
greatly on the choice of knot distribution. For example, if the true optimal
control belongs to the class of piecewise continuous functions, and if one has no
insight of how the switching times of the true optimal control are distributed, a
set of dense and evenly distributed knots of the approximating control is usually
chosen in the hope that there would be a knot placed at each switching time.
Thus, the number of parameters in the approximate optimal parameter selection
problem is usually very large. As the number of parameters increases, the opti-
mization process becomes computational more expensive. It appears that one
may be able to reduce the overall number of parameters used if the switching
times are treated as decision variables. However, it is known that the gradients
of the cost functional and constraint functionals with respect to these switching
times are discontinuous. See Chapter 5 of [39] for details. Furthermore, in or-
der to obtain an accurate solution, the differential equation solver will need to
perform the integration with respect to time over the consequent subintervals
in the time horizon according to the particular partition. These subintervals

would be varying from one iteration to the next during the optimization process.



Finally, the number of the decision variables would change when two or more
switching times collapse. Thus, the task of integrating the differential equa-
tions accurately can be very involved. For these reasons, the gradient formulae
presented in Chapter 5 of [39] were never implemented. In [100, 50], a novel
problem transform, to be referred to as the control parameterization enhancing
transform (CPET), was first introduced to overcome these numerical difficulties
for time optimal control problems. The transformed optimal control problem
can be solved readily and accurately by the classical control parameterization
technique. In particular, the control parameterization technique, which can be
used to approximate the optimal control problem by a constrained non-linear
programming problem, has been developed from some recent research ( for de-
tail, see. [98, 101, 99]), while the control parameterization enhancing transform
is developed in [100, 50].

Software packages implementing computational algorithms for both static
and dynamic optimization problems are also available now. For example, FF-
SQP [116] was developed for solving general nonlinear programming problems,
and MINOS5.4 [73] was developed for solving large-scale optimization problems

expressed in the following standard form:

ming, F(z)+cz+d"y
subject to  f(x) + Ay = by,
Azz + A3y = b?!

1<(7) <q,
Y

where the vectors ¢, d, by, b, [, © and the matrixes A;, A;, Az are con-
stant. A general optimal control software package MISER3.2 [41, 43] was also
developed based on the method of the control parameterization and the control
parameterization enhancing transform.

In the following subsections we present a general literature review of several

important static and dynamic optimization problems arising in different arcas.



1.1 Semiconductor Device Design

The fundamental behavior of semiconductor devices is governed by a coupled
system of nonlinear second-order partial differential equations (PDEs) ([107]).
This system consists of a Poisson equation and two current continuity equa-
tions. Early work in the numerical solution of these PDEs includes Gummel
([37]) and De Mari ([23, 24]). Since the coefficient functions and the unknowns
of the equations vary by several orders of magnitude in some small subregions of
a device, the application of classical discretisation methods may cause unaccept-
able errors unless impractically, fine meshes which require an enormous amount
of computer resources are used. Numerical solution of the PDEs has become
practical since Scharfetter and Gummel (1969) proposed a one-dimensional dis-
cretisation method for these equations (cf.[88]). The method was also proposed
independently by Allen and Southwell (cf. [2]). The existence of the solution to
these PDEs is proved by Mock et al (cf. [70, 71, 55]) under some restrictions.
The proofs are based on Schauder’s fixed principle (c¢f. [30]). The uniqueness
of the solution to these PDEs is proved when the applied biases V' are suffi-
ciently small (cf. for example, [55]). To solve these nonlinear PDEs, a typical
way is to apply the Newton-like method (cf. [76]), or a modified Newton-like
method called the damped Newton method to this system. A popular de-
coupling method for solving these PDEs is Gummel’s method, introduced by
Gummel (cf. [37]), which also has a modification (cf. [90]). However, when
the recombination term R is sufficiently large Gummel’s method may fail to
converge. To overcome this difficulty, Seidman and Choo proposed their algo-
rithm (cf. [89]). Using Gummel’s method [37] and Newton’s method [76] we
can decouple and linearize these PDEs so that at each iteration step we have

to solve a set of three linear equations of the form

-V - (a(z)Vu) + G(z)u = F(z) in Q

ulan, = ¥(z), Vu-nlsgy =0



where @ C R™ (m = 1, 2, 3), 80 = 90p U 9y is the boundary of .
0Qp N 82y = 0, n denotes the unit outward normal vector on 8Q, G €
C°(QuHY (), F € L*(Q). Over the last twenty years, some efficient and stable
discretisation schemes (cf. [63, 65, 66, 67, 68, 69, 109, 110, 29]) and meshing
techniques (cf. [64]) have been developed for the above equations.

The conventional computer-aided design cycle of a semiconductor device
is as follows: given physical parameters and dimensions of a device, find the
voltage—current {V —I') characteristic curve of the device by numerically solving
the above set of nonlinear partial differential equations [110]. If the result does
not match the required characteristic curve well enough, modify the parameters
and resolve the problem. This design approach is time-consuming because the
choice of the parameters is empirical. In this thesis, we will address this problem
in a different way. More specifically the problem is posed as the following
optimization problem: Given an ideal V' — I characteristic curve I (v), find
physical and geometric parameters such that the V — I characteristic curve of
the device matches the ideal characteristic curve optimally with reference to a

specified performance criterion.

1.2 Numerical Integration

Integration plays a key role in many areas of science, engineering and eco-
nomics. Since most of the integrals encounted in real-world problems cannot
be evaluated exactly, numerical approximations of these integrations by some
quadrature or cubature rules are normally sought in practice. Thus, efficient nu-
merical methods are crucial. Numerical integration is one of the oldest problems
in mathematics which can be traced back to the era of Archimedes. It is used
to obtain approximate solutions of many real-world problems. Many results
on the construction of quadrature and cubature rules are now available in the
literature. For example, see {20} and [28]. Some quadrature rules with minimal
error norm have also been developed using interpolation (cf. [111]). In [21] and

[78], adaptive schemes are obtained for numerical integration, where a typical



approach is to initially evaluate the integral numerically by a quadrature rule on
a uniform partition. Then, estimate the error bound for the numerical integral
on each subinterval, use the maximum error to refine the partition uniformly,
and subsequently evaluate the integral numerically on the corresponding new
partition. This process is repeated until the maximum error is smaller than a
given tolerance. Although this approach is efficient, neither the initial mesh nor
each of the subsequent refined meshes is optimal. In this thesis, the partition
points of the numerical integration are taken to be decision variables, a grid set
with a fixed number of vertices is to be obtained such that the error between
the numerical integral using a given quadrature rule and the exact integral is

minimized.

1.3 Multiple Characteristic Time Constraints

Consider a process described by the following system of nonlinear differential

equations defined on [0,T].

2(t) = f(t, z(t), u(t) 2(2)), (1.3.1)
z(0) = z° (1.3.2)
where T is a fixed terminal time, & = [z, -+, Z,)T € R®, u = [uy, -+ ,um]? €

R™ and z = [z, - , %)’ € RP are, respectively, state, control, and system pa-
rameter, while f = [f1,---, fo]’ € R™ is a continuously differentiable function
with respect to all its arguments, and z° is a given vector.

Let g; and b;, i =1,---,8, cgand d;, i =1,---, m, be fixed constants. Define

Z={z=[n, 5T €R 1, <z <b,i=1,--+,r}

U:{u:[ul,..- ,Um]TERm:CiSU,;Sdh i:]_,-..’m}

Any Borel measurable function w : [0,7] — U is called an admissible con-
trol. Let & be the class of all admissible controls. For each (u,z) € U X

Z, letz(-|u, z) denote the corresponding solution of the system (1.3.1) —(1.3.2).

6



We now state the canonical optimal control problem as follows:
Given the system (1.3.1) —(1.3.2), find a (u,2) € U X Z such that the cost

function

ol 2) = dofe(Thu,2) + [ " Lot wltlu, 2), u(®)dt (133)

is minimized subject to the equality constraints:

gi(u, z) = ¢i(x(rlu, z)) + /: Lo(t,z(tu,2),u(t))dt =0, ¢=1,--- N,

and the inequality constraints:

T

gi(u, z) = ¢i(x(r|u, 2)) —|—f Lo(t, x(t|u, 2),u(t))dt =>0, i=N,---,N,

’ (1.3.5)
where ¢;, ¢ =0,1,--- ,N, and £;,7 = 0,1,--- , N, are given real valued func-
tions; and 7; < T is referred to as the characteristic time for the ith constraint
with 79 = T by convention. The terminal terms of the objective function (1.3.3)
and the constraints (1.3.4) and (1.3.5) depend only upon the state vector eval-
uated at single points 7;.

The concept of multiple characteristic time (MCT) constraints, which are
constraints that depend upon the state vector specified at two or more discrete
time—points, is introduced in [56].

MCT constraints are encounted in many real-world problems (see, [56]).
For example, the constraints g; = () — z(m) > 0, where 0 < 73 < 79, and 7y
and 7, are characteristic time, is a simple MCT constraint.

MCT constraints also arise through a technique called constraint transcrip-
tion (cf. Section 3.7 of [56], and {44]). This is a method for reducing a large
number of constraints to a single equivalent constraint.

In [56] the control parameterization technique is extended to problems that
have MCT constraints. Some convergence results are established, and the gra-
dient formulae are constructed for the MCT constraints. It is proved that the
constraint transcription technique can be applied to optimal control problems

that have a set of MCT constraints.



1.4 Optimal Feedback Control

For many optimal control problems in engineering, management and finance,
feedback controls are much preferred solutions in comparison with open—loop
solutions. This is because an optimal feedback control provides the optimal tra-
jectory from an arbitrary initial condition in a set, and is robust in the presence
of system noise and parameter variation. Because of its importance, construc-
tion of feedback controls has been discussed for many years. For problems with
a linear dynamical systems and a quadratic performance index, a genuine op-
timal control law can be derived [3, 46]. Techniques for constructing optimal
controls are also available in the literature for nonlinear problems with a spe-
cial structure (cf. [7, 97])). However, finding the optimal feedback control for a
general non-linear problem is extremely difficult.

Recently, several methods based on neural networks have been proposed
in [74, 33, 34] for approximating optimal feedback controllers. Although the
methods are promising, the performance of a feedback control obtained from
these method is very much dependent on the structure and the size of the neural
network used. The choice of network structure is by large through trial and error
experience, which can be rather time-consuming. More recently, an iterative
multivariate interpolation method is proposed in [49, 83]. In this approach,
several open-loop optimal control trajectories using different initial conditions
are first computed, and then a spline interpolation is constructed using these
scattered data to provide the optimal feedback control. One problem associated
with this approach is that although the initial conditions are chosen uniformly
in the state space, the trajectories of the open-loop solutions may shrink up as
time steps forward. Thus, extra open-loop control problems need to be solved
to cover the regions which have no or unpractically few data from the previous
iteration. The efficiency of this approach depends strongly on the problem
solved. Furthermore, the number of the partition points grows exponentially as
the number of dimensions of the state variables increases. Thus, this approach

is only applicable to problems of low dimensions.



In this thesis the optimal feedback control is approximated by a linear com-
bination of the 3rd order B-spline basis functions constructed on a partition in
state and time spaces. Furthermore, the partition points are also taken to be
decision variables. Once an initial condition is selected, the resulting optimal
control problem is an optimal parameter selection problem. The optimal control
obtained is represented by a linear combination of the 3rd order B-spline with
optimal coefficients and optimal partition points. This control is a function of

state and time.



Chapter 2

A Finite Dimensional Parameter
Estimation Problem in
Semiconductor Device Design

2.1 Introduction

The electrical behavior of a semiconductor device is governed by the following
system of nonlinear second-order elliptic equations ([90], [107], Chapter 2 of
[63], and Chapter 2 of [55])

V. (eVy) =g(n—p— N), (2.1.1)
7,

V-J,—- qa—? = qR(¢, n,p), (2.1.2)
o

V-Jdp+ qa—i = —gR(1, n,p), (2.1.3)

in @ C R™ (m = 1, 2, 3) with appropriate boundary conditions, where J, and

J, are, respectively, the electron and hole current densities, defined by

Jn = ¢(D,Vn — p,nVy), (2.1.4)

Jo = —9(DpVp + 1ppVe). (2.1.5)

Here 7 is the electrostatic potential, n is the electron concentration, p is the
hole concentration, N = Np — N, denotes the doping function where Np and
N4 are the donor and acceptor concentrations respectively, R denotes the re-
combination/generation rate which is assumed to be monotone with respect to

n and p, ¢ is the electronic charge, £ = gy&5 is the permittivity of the medium

10



which is positive and bounded away from zero, and ¢; is the relative permittivity
depending on materials. In (2.1.4)-(2.1.5), pn pp are electron and hole mobili-
ties respectively, and D, and D, are diffusion coeflicients of electron and hole
respectively. For these quantities, we assume that the Einstein’s relationship

holds:

kT kT
D,=—uy,, D,=—pu
RSyt T
where T is the absolute temperature and k is the Boltzmann’s constant.

In this thesis, we are only concerned with the stationary problem, z.e. 22 =0

ot
in (2.1.2-2.1.3).
We now derive the boundary conditions for (2.1.1-2.1.5). Assume that
the boundary 90 of the device region ) is polygonal or polyhedral, and let
9 p C I denote the union of all contacts (i.e. terminals of a device) and 90y

the part of boundary such that
p Uy =80, pndQy =0

On the boundary 9Qp, we assume that all the outward normal derivatives

vanish, i.e.
V¢-n=Vn-n=Vp-n=0 Vzedly

where 1 denotes the unit outward normal vector along the boundary 9y.
Under this assumption, there is no current flowing out of 9Qy. The current

flowing in or out of a terminal ¢ € 9€2p is given by
I= / (T + J,) - nds (2.1.6)

where n denotes the outward unit normal vector of 9{1p.

The portion 0€2p is usually composed of three kinds of contacts: ohmic
contact, Schottky contact and interface to insulation material.

For the sake of convenience, we only derive the boundary condition on the
ohmic contacts. For the boundary conditions of Schottky contacts and the

interfaces to insulation material, we refer to [90] and [55].

11



An ohmic contact has a negligible contact resistance relative to the bulk
or spreading resistance of the semiconductor. It does not perturb the device
performance significantly ([95]). Therefore, thermal equilibrium and charge
neutrality are usually assumed on an ohmic contact; 7.e. for any ohmic contact

C C 89p, we have

np = n (2.1.7)
n—p—N =0 (2.1.8)

for all x € C, where n; is the intrinsic density.
One formula of n; given by Alder et af (see. [1]) is

3
7.00; 10 )

There are some other formulas for n; such as Slothoom and De Graaff (see.

[92]). Solving (2.1.7-2.1.8) we get

n; = 3.88 x 101GT1'5exp( -

n|c=-12\£+ [(%)2+n2]% mc—%? ifN>0  (2.1.9)
ple = —%{ + [(%{)2 +n3]%, n|C = “?; ifN <0 (21.10)

If we introduce the quasi-Fermi potentials ¢, and ¢, such that

Y —¢n
“ kT ))

p = niexp(Q(¢’2;¢))

n = n,-exp(

then we have

%=+ Eln(n ) =5 - E‘fln(ﬁ). (2.1.11)

Since an ohmic contact supplies the required current with a voltage drop that is
sufficiently small compared with the drop across the active region of the device
(cf. p304, [95]), the quasi-Fermi potentials are assumed to be constant at an
ohmic contact and are equal to the bias applied on the contact (cf. p21 of [45]).
Therefore from (2.1.9), (2.1.10) and (2.1.11) we know that 1 is also constant at
any contact. Thus, at an ohmic contact C C 9€p we obtain

Yo =Ve+ Eln(fﬂf) Vo — -—-—1 (MC)

L5
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where Ve denotes the bias applied on C.
To summarize, the stationary behavior of semiconductor devices is governed

by the following system of PDEs:

V- (eVy) =¢g(n—p— N), (2.1.12)
V - (DpVn — ponVy = R(¢, 1, p), (2.1.13)
V - (DpVp + pppVep) = R(3,m, p) = 0, (2.1.14)

with boundary conditions

¢|BQD = 71(‘7:)’ nlaﬂu = 72(22), Planp = 73(3:)5 (2'1'15)

and
Vi nlagy = Vi -nlsn, = Vp-nlga, =0 (2.1.16)

where v;(x) (i = 1,2, 3) are known functions defined on 8Qp which are usually

piecewise constant.

2.1.1 The Physical Parameters

The mobilities u, and y, are usually functions of n, p, Na, Np and the electric
field E. For the sake of simplicity, we assume that the mobilities are constant
in 2 given by
T )—'rn
300K
_ o( T )-’fr
Ho = Fol300K

where p9, 19, -, and -y, are constants determined by experiment, and T is the

n=u2(

absolute temperature,
The recombination-generation R usually consists of three parts (cf [45, 71,
90]), i.e.

R = Rspy + Raug — G

The first term is Shockley—Read-Hall type recombination given by

np — n?

Ta(p + 1) (np — 1)

Rsru =

13



where 7, and 7, are the lifetimes for electrons and holes respectively, which
typically lie in the range from 100ns to 5us. The term R4,, is the net Auger

recombination rate given by
Rpug = (Can + Cpp) (np — 1)

where C, and C), are constants in 2. The last term G is the generation by the

impact ionisation and is of the form:
1
G= E(an[']n| + | )

where oy, «, are ionisation rates given by (cf. [45, 81]):

or = o] (BE°Y

o = a] - (7))

Here An, Ay, EJ®, E™, (3, and 8, are constants. Obviously an, and o
strongly depend on the electric field E.

Among the three types of recombination—generation rates, Rgzz is the most
fundamental one. R4,, becomes dominant as the carrier concentrations in-
crease. (G is assumed to be present only in a high electric field. In practice, we
take account of G if at least one junction is reversed biased. When the condition
of thermal equilibrium holds, we have R = 0. Therefore, we assume R = 0 when
conditions are close to thermal equilibrium.

The constants mentioned above are listed in Table 2.1.1

2.1.2 Scaling

The ranges of value of the solutions to (2.1.12-2.1.16) lie in a very large inter-
val. The solution n and p may change by many orders of magnitudes in a small
subregion of 2. Therefore, we usually scale (2.1.12-2.1.16) before solving them
numerically so that the solutions of the scaled equations behave more moder-

ately in §2. This procedure can be fulfilled by the following transformations:
1.z — %, z €}
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Constant, Value Constant Value
g 1.6 x 10710 Cn 7 x 107%2cm®s7!
€0 8.86 x 1071 F /cm Cp 10-32¢mbs—?
k 1.38x 1073J / K A, 10%cm™!
ud 1448 cm?V 15! Ay 1.5 x 10%m™!
I 437 cm?V 1571 Eet 1 14%x10°V [/ cm
Ta 2.33 Eerit 1.8 x 108V / em
Tp 2.33 Bn 1
Tn 4 x 107%s By 1
Ty 2 x 1075

Table 2.1.1: Typical values of physical constant

Quality | Symbol Value Quality | Symbol | Value
z b | VeFII@my | % | % | KT/
n, p, N, n No 7 D,, D, Dy lem?s™!
Hns Hp o Dy /40 R DoNo/13
Jn, Jp QDoNQ/lg /\2 1
Table 2.1.2: De Mari scaling factors
¥
2. ¥ — s
3.n—n, p—F%, N—I
Y

where lo, %9, Dp and o are scaling factors. De Mari ( cf. [23]) presented
a set of scaling factors as listed in Table 2.1.2. Another choice of the scaling
factors, called singular perturbation scaling factors, was introduced by Vasileva

and Butuzov (c¢f. [108]) and further developed by Markowich et al (cf. [54]).

Under this scaling the equations are singularly perturbed. These scaling factors

are listed in Table 2.1.3.

After scaling, (2.1.12)—(2.1.16) become the following set of equations:

ANV =n—p— N,

V- (Vn—nVy) = R(¥,n,p),
V- (Vp+pVY) = R(¥,n,p)

15
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Quality | Symbol Value
T Iy diameter (2)
P Yo kT'/q
n, p, N, n; No maxzen|N(z)|
Dy, Dy Dy maxzen(Dn(z), Dp(m))
Hny Hp Ho Dy [40
R DyNo/i3
Iny Jp gDoNo/ 13
A 3o/ (159 No)

Table 2.1.3: Singular perturbation scaling factors

with boundary conditions

Yloap =m(2), nloa, =n(e), Plon, = %), (2.1.20)
and
Vi - nlagy, = Vn-nlag, = Vp-njag, =0 (2.1.21)
where ¥(z) (¢ = 1,2, 3) are scaled forms of v;(z) (i = 1,2, 3) defined on dQp.

2.1.3 The Finite Dimensional Parameter Estimation
Problem

A typical 2D p-n diode with two ohmic contacts is depicted in Figure 2.1.1
where the interior curve, called the p-n junction, represents the interface of the
p and n regions. We denote this curve by C. In the rest of this chapter, we
assume that the doping function N is a step function of the form

N= {“ in p-region (2.1.22)
—b in n-region

where a and b are constants in the range from 10'° to 10%°. Note that NV is also
a function of the p-n junction C. Given N, the dimensions of a device and the
applied bias V, we can solve (2.1.17)—(2.1.21) numerically using an appropriate
numerical method and then evaluate the terminal current /(v) flowing in or out
of the device (cf. [65, 66]). The problem can be solved for various biases V to

obtain the V-I characteristic for a given device.
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ohmic contact

) / H i
p-n junction
L /

P

| ohmic contact

0O volt

Figure 2.1.1: A typical 2 dimensional diode

In the conventional design cycle of a device, the above process will be re-
peated using different doping functions N and different geometries until the
V-I characteristic matches the required one within a given error range. This
approach is time-consuming, because after each iteration in the design cycle,
the new values of the parameters to be used in the next iteration are chosen
empirically from previous experience which may be far away from the optimal
choice. In this chapter the problem is posed as the following optimization prob-
lem: given an ideal V-J characteristic curve I,(v), find some physical and/or
geometric parameters such that the V-I characteristic of the device matches
the ideal one optimally with respect to a specified performance criterion. This
problem is formulated as a nonlinear optimization problem, and the cost func-
tion of the problem consists of two competing quadratic terms with penalty
parameters. By a judicious choice of these parameters, one can balance the
competing costs. Various existing efficient numerical methods are proposed for
the numerical solution of this nonlinear optimization problem. Due to the large
variations in the parameters and in the solutions to the semiconductor device
equations, the Jacobian of the optimization problem is ill-conditioned. To over-
come this difficulty, a scaling technique is proposed to balance the entries of the

Jacobian so that the problem is numerically stable. This approach is applied to

17



some test problems and all the numerical results confirm the usefulness of the
approach. To our best knowledge, this approach has not been used in semicon-
ductor device design, though, in practice, it will dramatically reduce the time

required in the design cycle of a semiconductor device.

2.2 The Formulation of the Problem

We consider the formulation of the semiconductor device parameter design. For
simplicity we assume hereafter that the geometry of a device is rectangular or
brick, and thus the device region is & = [0, L,] x [0, L,] in two dimensions or
Q = [0,L;] x [0,L,] x [0,L,] in three dimensions. We also assume that the
p-n junction of the device consists of line segments or facets parallel to one of
the axes. In this case, the p-n junction is uniquely determined by its intercept
on each of the axes in the interval [0, L,), [0, L,] or [0, L,]. Let ¢, denote the
ratio of the intercept on the z-axis and L, ¢, the ratio of the intercept on the
y-axis and L,, and c, the ratio of the intercept on the z-axis and L,. Then,
the p-n junction is uniquely determined by ¢, ¢, and c;. Using this notation,
we formulate the above parameter selection problem in semiconductor design
as the following optimization problem:

Problem 2.1: given an ideal V-I characteristic function I,(v) on [0, Vi,a], find
the doping parameters a, b, end the geometrical parameters Ly, L, , L,, ¢, ¢y

and ¢, such that
Vmax
F(a,b,cs,cy, ¢ Ly, Ly, L) = f (I{v) — L(v)Y’dv + B(LZ + L2 + L2)
0

s minimized subject to the bound constraints
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10" < @ < 10%, (2.2.1)

101% < b < 10%, (2.2.2)
et < gy < PR (2.2.3)
c;“i“ < S, (2.2.4)
Mt < ¢, < P (2.2.5)
Loin < L, < Lo, (2.2.6)
Ly < L, < L, (2.2.7)
R R (2.2.8)

where Lz, L, and L, are the length, width and height of the device, c,, ¢, and
¢, are the ratios defined before, o, 3 are two positive constants, and I is the
terminal current.

This is a continuous least squares problem and the cost function F' contains
two competing performance criteria. This is because L; = L, = L, = 0 is the
obvious optimal solution for the second term of the cost. Thus, we need to
choose o and 3 properly to balance the two terms in F. In practice, Problem
2.1 can be approximated by taking a set of appropriate sampling points v;,1 =
1,2,-++ ,m, in [0, Vipay|, leading to
Problem 2.2: Given an ideal V-I characteristic function I,(v) on [0, Vipax],
find the doping parameters a, b, and the geometrical parameters ¢, Cy, C;, Ly,

Ly and L, such that
BO)=(I—-I,)TA(I-I,)+B(L:+ L2+ L2) (2.2.9)
is minimized subject to (2.2.1)-(2.2.8), where

I = (I{v1,0),1(vs,6),...,1(vm,8)),

Ig = (Iy(vl)sIg('UQ):--- rIy(UM))a
8 = (a7b,cwacyacz:La:aLy,Lz)

and A = diag(e;) is o diagonal matriz.
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Here o; >0 (¢ =1,2,.--,m) and 8 > 0 are weights to be chosen later.
Problem 2.2 is a nonlinear optimization problem with only bound con-
straints. The nonlinear differential equations (2.1.17)-(2.1.19) do not appear
explicitly in the formulation, but the current I depends on these equations
through the expression (2.1.6). The dependence of the cost function on the
parameter 6 and the applied bias v is complicated, and thus the solvability of
Problem 2.2 is theoretically difficult. (Even the solvability of the nonlinear PDE
system (2.1.17)-(2.1.19) is still an open problem unless under some restrictive
assumptions (cf., for example, [54])). However, from our computational expe-
rience, Problem 2.2 is computable, though local minima may exist, as will be

seen in Section 2.4.

2.3 The Numerical Methods

We now consider the numerical solution of Problem 2.2.
Starting from an initial guess 6, Problem 2.2 can be solved iteratively. At

each step an increment 86; is calculated such that
E(8; + 46;)

is minimized with respect to &6;, where #; and 66; are the i-th approximation

and i-th increment of & respectively. The iterative procedure continues until

the relative error %ﬂz and the change in (L,, Ly, L.) in the Euclidean norm
gll2

| L ||, between two consecutive iterations are smaller than a given tolerance.

The Gauss-Newton Method

To calculate the increment &8; at each step, the Gauss-Newton Method is used.

Let

~

I= (I(Uhe)!-{(v% 9)1 T !I(’U'm.: 9)) L:I::Ly: LZ)T$
I, = (I{v), I, (), - .., Li{(vm),0,0,0)7,
B = dia’g(ala e aamiﬁaﬁ} ﬁ)
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Then
E(8) = (f — fg)TB(ir — fg).

Let I' =17 (8;), then Taylor’s formula for vector valued functions gives

Y 1
I=1+7066+ §{593"(:15&, oo 60T G368} (2.3.1)
where
( alw) 8lw) oalw) olw) olw) alw) a8l@w) 8l@w)
da; ab; 8c,,-i 3':1!:' Bczi abz‘- BLW BLZ‘.
J = al (.vm) aI(:um) ol (.'um) 81-(.'0,”) BI(.vm) al (.vm) 81-(.vm) al (.vm)
i = da; Ob; Beg, Ocy; Beq,; L, ALy, 3L, H
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
\ 0 0 0 0 0 0 0 1)

and the matrix G; denotes the Hessian of I J‘ evaluated at 8;+réf; with0 < r < 1.

Omitting the second order term in {2.3.1), we have
I=1I i + J;60;
when 686; is small. Using this, E(6; + 66;) can be approximated by

BB +066) = (I'+ 460 — 1) B + 7,08, - I,)
= (F-1,)7B(I' - 1,)+ (I' - 1,)7BJ:¢6;
+ (J86)TB(I = I,) + (J:66,)T B(J:66,).

This is a quadratic form in 66;, and the minimum point 88} of this quadratic

function satisfies
VE(#; +46;) =0,
which leads to
(JEBJ,)60; = —JFB(I - 1,). (2.3.2)

The solution to (2.3.2) defines the i-th search direction called the Gauss-Newton

direction.
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logib} 2 =

Figure 2.3.1: The cost function against doping concentrations e and b.

The Levenberg-Marquardt Method

From computational studies we see that the partial derivatives of the cost func-
tion E with respect to the parameters a and b in the doping function are large
when a and b are close to their lower bounds and small when a and b are close
to their upper bound (see. Figure 2.3.1). Thus, initial guesses for a and b are
always chosen to be their lower bound 10, and at the first few iterations, we
also need to restrict the step size to avoid oscillations. Mathematically, this can

be formulated as

min  E(8; + 46;)
subject to  (36;)7(66;) < A,

where A is a positive constant. The above inequality constraint can be added

to the cost function to form
min E(0; + 66;) — AM{A — (595)71(69@)}

where A > 0 is a penalty parameter called the Marquardt parameter. The

optimal point 68} of this problem is given by
(JTBJ; + \)86r = —JTB(I - 1),
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where I denotes the unit matrix. This method is called the Levenberg-Marquardt
method (cf. [51, 53]) which is a combination of the Gauss-Newton Method and
the Steepest Descent Method (cf. [82]). The Marquardt parameter A can be
chosen properly to avoid unbounded oscillation in the re-estimation procedure.
The same technique can also be applied to the decision variables ¢ and b in the

original cost function (2.2.9). This yields a cost function
E(9) = (I — I)TA(I - I} + B(LL + L} + L?) + y(a® + b7)

corresponding to (2.2.9).
Let
I=(I(v1,6),1(v3,0), ... ,I(vm, ), Lo, Ly, Ly, 0, b),
I, = (I(v), I(v),. .., I(vm),0,0,0,0,0),
B

= diag(ah "t yamaﬂ’ ﬁaﬁa ’Yaf}/)

Then E(#) can be rewritten as

A

E() = (

P> >
b 3 >

- jy)TB(

L TH]

o)

The corresponding Levenberg-Marquardt correction ¢8* satisfies

(JTBJ; + M) - 68 = —JTB(I - 1), (2.3.3)
where
( alw) o8l 8Iw) o8lw) 8fw) 8lwm) &8l@w) 8l \
Ba; ab; deg; chi fe;, OLy,; Ly, BL.,;
af (.vm) sl (.'um) ol (-um] ol (.vm) al (.'um) ol (-'um y ol (‘um) ol (.vm )
. da; ab; 6c,l. Oey, Bcz'. 8Lmi 8Ly‘- ain
Ji = 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
\ o0 1 0 0 0 0 0 o )

Using the correction 46}, we update i by
I = I+Jse (2.3.4)
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The values of the elements in J; may differ from each other by several orders of
magnitudes. This may cause some stability problems in real computation. To
avoid this, we scale J; by a diagonal matrix M with positive diagonal entries so
that J; has more balanced entries. The scaled equation corresponding to (2.3.3)

is

where
Ji = JiM and 66 = M~\s;. (2.3.5)

The updating formula corresponding to (2.3.4) then becomes

.

Poay> >
h))

)

-

I =1+

~

We comment that all the partial derivatives in J; are approximated by

forward finite differences. More specifically,
BI(v,:,B) - I(v,-,l9+h-ej)~—1(vi,9)
o0; h ’

where e; is a unit vector and A is a small positive increment.

(2.3.6)

We also comment that the above method is based on the assumption that
the independent variables, v = {v;,1 < ¢ < m}, do not contain any observa-
tion errors. This is because these variables are normally not obtained from an
experimental observation. In the case that v = {v;,;1 < i < m} does contain
observation errors, the Orthogonal Distance Regression method may be used,
instead of the above Gauss-Newton or Levenberg-Marquardt method. For de-

tails of the Orthogonal Distance Regression method, we refer to [8].

Gummel’s Method

The solvability of the nonlinear system (2.1.17)-(2.1.19) in general is a long-
standing open problem, but in the case that the B = 0 and the applied bias
is close to zero, it can be shown that the system is uniquely solvable (cf., for
example, [54]). In practice, this nonlinear system can be solved iteratively by

Gummel’s method [37] defined as follows:
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1. Given an initial value (¢°, n?, p°) let & = 0.

2. Solve the following system sequentially for (y*+1, nk+l pk+l)

v2,¢k+1 — ,nk _pk m N,
v. (Vnk+1 _ nk+1v¢k+1) _ R(¢k+1,nk,pk) — 0,
V- (vpk+1 +pk+lv,¢k+l) _ R(¢k+l,nk+1,pk) = 0,

with appropriate boundary conditions.

3. Test for convergence. If failed, increase k and repeat step 2.
In step 2 of the above algorithm we deal with equations of the form

-V-(Vu—cu)+Gu=F inQ (2.3.7)
U |3QDZ 0, (VU — cu) N IaQNZ 0. (238)

This problem can be solved effectively by the exponentially fitted finite volume
method proposed in [66] and [67]. We now give a brief account of this method

in two dimensions.

The Exponentially Fitted Finite Volume Scheme

To discuss the exponential fitted finite volume scheme (cf. [65], [67]), we first
define some meshes on §2. Let T be any partition of Q by a set of triangles. Let
X = {z;}{' be the set of all vertices of T and E = {&;}} the set of edges of T
Without loss of generality we assume that the nodes in X and the edges in £
are numbered such that X’ = {z;}}" and E' = {e;}}! are respectively the set

of nodes in X not on 92p and the set of edges in E not on 9Qp .

DEFINITION 2.3.1. T is a Delaunay mesh if, for every ¢ € T, the circumcircle
of the element contains no other vertices in X (cf. [22]).

We assume henceforth that T is a Delaunay triangulation.

25



—_— mesh T
_ mesh D

Figure 2.3.2: Part of a Delaunay mesh T and dual Dirichlet tessellation D.

Lig

-]
L

Figure 2.3.3: Notation for edges and nodes.
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DEFINITION 2.3.2. The Dirichlet tessellation D, corresponding to the trian-
gulation T is defined by D = {d;}¥ where the tile

di={zecQ:|z—xz| <|v—2z|,2,€ Xj#1i}

for all z; € X ( cf. [25]).

We remark that for each z; € X, the boundary dd; of the tile d; is the
polygon having as its vertices the circumcentres of all triangles with common
vertex z;. Bach segment of Jd; is perpendicular to one of the edges sharing the
vertex z; (see Figure 2.3.2). The Dirichlet tessellation D is a polygonal mesh
dual to the Delaunay mesh 7. For each i = 1,2,--- , N', integrating (2.3.7) —
(2.3.8) over d; and applying Green’s formula to the first term we have

— | (Vu—cu) -nds+ | GudQ= / FdQ.
8d; d; d;
For i =1,2,---,N', let u; be the approximate value of u(z) at z;. Using the

one-point quadrature rule we have from the above
—/ (Vu — cu) - nds + Gyu;|d;| = Fi|d;| (2.3.9)
dd;

where G; = G(z;) and F; = F(z;). We now consider the approximation of the
first term in (2.3.9). Let I; = {j : e;; € E'} denote the index set of neighboring
nodes of z;, where e;; denotes the edge joining z; and z;, as shown in Figure
2.3.3. Since dd; is polygonal and each of its sides is perpendicular to one of the

edges joining x;, we have

‘/adi(Vu—-cu)‘nd:?:Z(

Jjel;

/ (Vu - cu) . Em‘ds) . (2.3.10)

I."J‘

where [; ; denotes the segment of dd; perpendicular to the edge e;; and is ori-
ented counterclockwise with respect to z; (see Figure 2.3.3) and e;; denotes
the unit vector from z; to z;. For any j € I; we now consider the two-point

boundary value problem
\Y% (Vu * € — c,;,ju) rEi = 0 on  €;; (2311)
u(z;) = ui,  w(z;) = uy (2.3.12)
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where c;; is a constant approximation to ¢ e;; on e;;. Solving this equation

analytically we obtain

fig =Vu-e; —ciju=——(Bleleisu; — B(—ciy | €5 Jui)  (2.3.13)

b
il
where B(z) is the Bernoulli function defined by

(2.3.14)

B)={=1 f270
1 if z =0.

Obviously f;; defines a constant approximation to the integrand on the right
side of (2.3.11). Furthermore the solution of (2.3.10) also defines a piecewise ex-
ponential approximation to the solution of (2.3.7) on e; ;. Substituting (2.3.13)
into (2.3.10) and the result into (2.3.9) we obtain
b
ﬁ(B(—Ci.ﬂei,jDui — Bleijleilus) + Givi = F (2.3.15)

o7 leilldis]

foralli=1,2,---, N'. In matrix form, we have
(E+DWU=F

where F and D denote the matrices corresponding to, respectively, the first and
second terms of (2.3.15), U = (u,ug, -+ ,un)T and F = (f1, fo, -+, fa)7T.
The matrix E 4 D is unsymmetric unless ¢;; =0 foralli=1,2,--- ,N' and all
j € I,. However, it is easy to verify that E is an M-matrix (cf. [66]).

We comment that the above method can be extended to three dimensions
easily. A detailed discussion of this can be found, for example, in [29]. We
also comment that using the numerical solution from the above discretization
scheme, we can evaluate the currents flowing in or out of a device, based on
(2.1.6). For detailed discussions of this, we refer to [65, 66, 29].

2.4 Numerical Experiments

The numerical methods described in the previous section are applied to some
two and three dimensional test problems. All computations were performed

in Fortran double precision on a Unix Workstation. In what follows, we use
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objective characteristic to denote the discrete I-V characteristic generated
by directly solving the equations (2.1.17)-(2.1.18) using a given parameter set.
This given parameter set is referred to as the ideal solution, and the solution
to Problem 2.2 using the objective characteristic is referred to as the optimal
solution. In all the examples below, the bounds in the constraints (2.2.6)-

(2.2.8) are chosen to be

Lg‘lln f— L;ﬂn‘l —_ Lzzmn — 2#m, L;:na.x — L;l'lﬂ.x — Ll:)ax — 15#m-

Also, the increment h in the finite difference approximation (2.3.6) is chosen
to be 10° for the doping parameters a and & and 10~%um for L,, L, and L,.
The units for the doping concentration parameters a and b and the geometric
parameters L., L, and L, are respectively 1/cm?® (or 1/em® in 3D) and um.

However, these are omitted below for brevity.

Example 2.1. A two dimensional diode

A two dimensional rectangular diode with width L; and height L, depicted
in Figure 2.4.1, is chosen to be our first test problem. The p-region of the
device is rectangular with width 3L, and height 3L, as shown in Figure
2.4.1. (Correspondingly, ¢; = ¢, = % in (2.2.3) and (2.2.4).) The parameters
a;, (i=1,---,m), B and vy are chosen to be 10%%, 10'°, and 108, respectively,
and the scaling matrix M in (2.3.5) is chosen to be diag(10%, 10°%, 1079, 1079).

This example is studied numerically in the following two different situations.
Case 1: Decision variables: a, b and L, = L,.

In this case, we assume that the device is a square and the doping function
is plecewise constant. Thus, we are to determine three parameters: a, b in
the doping function, and the dimension of the device L, = L,. Two different
discrete V-1 characteristics I,; and I, listed in Tables 2.4.1 and 2.4.2 respec-
tively, are used as the objective characteristics. These objective characteristics

are generated by solving the equations 2.1.17-2.1.19 using the parameter sets

(a = 1014, b= 1014,1’9: = 10, Ly = 10) and
(a=10"%b= 10", L, = 10, L, = 10)
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Anode

I Cathode

Figure 2.4.1: A 2 dimensional rectangular diode

0.2143 0.2857 0.3571 0.4286 0.5
6.490- 10711 | 8.771-10"19 [ 1.139-10-8 | 1.073-10"7 | 4.837 .10

~<

Table 2.4.1: The V-I Characteristic I,

respectively for the applied forward biases listed in Tables 2.4.1 and 2.4.2.
To solve the optimization problems, we choose the following stopping crite-

Tia:

1. The relative error ”fl'_IIIz’”z < 107* (107! for Case 1, using I, and 107°
g

for Case 2, using I, ;), and

2. The difference in (L2 + LS)U ? between two consecutive iterates is smaller

than 1072,

The solution procedure stops when both of the above criteria are satisfied. The
results obtained for various initial values are listed in Tables 2.4.3 and 2.4.4.
From the tables we see that the relative error is always smaller than 10~*. From
the table we also see that the optimal solutions are very accurate for I ;, and

are reasonably close to the ideal solution for Iy .
Case 2: Decision variables a, b, L; and L,.

This case differs from Case 1 in the way that we do not assume that L, = L,,.
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0.2143 0.2857 0.3571 0.4286 0.5
4.196-10" [ 6.618-10 12 | 1.042-10"° [ 1.640-10"9 | 2.575- 10~ ¢

~ <

Table 2.4.2: The V-I Characteristic I,

Initial Values Optimal Solution No.iter. | Rel.err.
a b Ly | L, |a b L | Ly
lel0 | 1e10 | 15 [ 15 | 1leld | 1le14 | 10 | 10 | 23 5.9e-13
lell | 1ell [ 15 | 15 | leld | 1e14 | 10 | 10 | 22 1.7e-13
lel2 | 1e12 | 15 | 15 | leld | 1e14 | 10 | 10 | 24 8.8e-14
lel3 | 1el3 | 15 [ 15 | 1leld | 1lel4 | 10 [ 10 | 21 7.9e-13
lel2 [1el2 |8 |8 |1leld|1el4 |10 |10 | 19 8.7e-12

Table 2.4.3: The results for Example 2.1, Case 1, using V-1 characteristic Iy

Thus, there are four independent parameters to be determined. The problem
is solved using the objective characteristics listed in Tables 2.4.1 and 2.4.2, the
same criterion as in Case 1 is used in this case, and the results are listed in

Tables 2.4.5 and 2.4.6.

Example 2.2, A three dimensional diode

The second test problem is chosen to be a three dimensional rectangu-
lar prismatic diode with width L, depth L, and height L,. The p-region
is also chosen to be a rectangular prism with width %Lm, depth 13—0Ly and
height 27,. (Correspondingly, the constraints (2.2.3)-(2.2.5) are replaced by
¢; = ¢y = ¢, = 7/10.) For simplicity, we assume that L, = L,. Thus the

decision variables are a, b in the doping function, and the dimensions of the

device L, = L, and L,. The parameters ¢;, (¢ =1,--- ,m), 8 and 7 are chosen
Initial Values Optimal Solution No.iter. Rel.err.
a b Ly | Ly |a b L, | L,
lel2 | 1e12 | 15 [ 15 | 9.8el5 | 1.0el6 | 9.4 | 9.4 | 57 5.5e-5
lel3 | 1e13 | 15 | 15 | 1.1el6 | 3.1el6 | 6.5 | 6.5 | 40 2.9e-5
lell | lell | 15 | 15 | 5.3el5 | 7.1el6 |12 |12 |65 1.5e-5
lel0 | 1e10 | 15 | 15 | 8.1el5 | 1.3e16 | 10.3 | 10.3 | 100 2.4e-5

Table 2.4.4: The results for Example 2.1, Case 1, using V-I characteristic I, o
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Initial Values Optimal Solution No.iter. | Rel.err.

a b L, | L,|a b Ly | L,

lel2 | 1el2 | 15 | 15 | leld | 1lel4 | 10 | 10 | 22 1.6e-8
lel0 | 1e10 | 15 | 15 | 1el4 | 1e14 | 10 | 10 | 19 8.2e-7
1lelQ | 1el0 {15 | 5 leld | leld | 10 | 10 | 40 2.6e-8
lel2 | 1e12 (15 | 5 | leld | 1el4 | 10 | 10 | 84 4.0e-8

Table 2.4.5: The results for Example 2.1, Case 2, using V-I characteristic I,

Initial Values Optimal Solution No.iter. | Rel.err.

@ b Ly | L, | a b L, | L,

lell | lell | 15 | 15 | 1.3el6 | 1.4el6 | 12.3 | 6.6 | 52 3.3e-5
lel2 | 1e12 | 15 | 15 | 1.4el16 | 1.4el6 | 12.2 | 6.4 | 53 5.5e-5
leld | 113 | 15 | 15 | 6.0el5 | 1.7e16 | 11.3 | 13.8 | 43 5.7e-H
lel2 | 1e12 |5 | 5 1.8e16 | 2.3e16 | 12.5 | 3.8 | 40 9.6e-5
leld | 1eld | 15 | &5 | 1.6el6 | 1.4el16 | 12.3 | 6.1 | 48 9.2e-5
1lel0 | 1e10 | 15 | 5 | 1.9el6 | 1.1e16 | 13.7 | 7.4 | 46 6.9e-5

Table 2.4.6: The results for Example 2.1, Case 2, using V-I characteristic /o

to be 1028, 10%, and 10718, respectively, and the scaling matrix M in (2.3.5) is
chosen to be diag(10°, 10°, 107, 10~®, 10~°). Two different V'-I characteristics
Iy 3 and Ig4, listed in Tables 2.4.7 and 2.4.8 respectively, are used as the ob-
jective characteristics. These objective characteristics are generated by solving

(2.1.17)-(2.1.19) using the parameter sets

(@ = 10",6= 10" L, = 10, L, = 10, L, = 10) and
(e =10",6=10"% L, =10,L, =10, L, = 10)

respectively for various applied forward biases. The solution procedure stops if

the following items are satisfied:

1. relative error ”ﬁ_I” 2 < 1.2 x 10~* (107° for the case using I,3) and
all2

2. the difference in (L2 + L2 + I2)/? between two consecutive iterates is

smaller than 1073,

Various initial values are used, and the results are listed in Tables 2.4.9 and

2.4.10 respectively. From the tables we see that the relative errors are always
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V| 0.2143 0.2857 0.3571 0.4286 0.5

I [3.205-107"" | 4.127-107"9 [ 5.220-107° | 4.575.107° | 1.894-10~"
Table 2.4.7: The V-I Characteristic ;3

V| 0.2143 0.2857 0.3571 0.4286 0.5

I [2116-107[3.341-107 [ 5.266- 10! | 8.284 - 10~1% | 1.299.107°

Table 2.4.8: The V-I Characteristic I, 4

smaller than 1.2 x 107, It is also seen that the optimal solutions are very
accurate for Jy 3, and are reasonably close to the ideal solution for I 4.

We remark that the optimal solutions for I,o and f;4 are harder to ob-
tain than for I,, and I, 3, since the partial derivatives of the cost function £
with respect to the doping parameter a and b are very small when the doping

parameters are close to their upper bounds {c¢f. Figure 2.3.1).

Example 2.3. A two dimensional diode with a variable p-n junction

The third test problem is chosen to be a two dimensional rectangular diode
with a variable p-n junction. The configuration of the device is the same as
that in Figure 2.4.1, but the p-region has the width (1 — ¢,)L, and the height
(1 — ¢,)L, where ¢, and ¢, are the ratios defined in Section 2. For simplicity,
we assume that L, = L, and ¢, = ¢,. Thus, the decision variables are a, b in
the doping function, the dimension parameter L, = L, and the parameter for

the p-n junction ¢; = ¢,. The penalty parameters ¢y, (i =1,--+,m}), and v

Initial Values Optimal Solution No. | Rel
a b L,=|L;|a b L,=| L, [{iter err
L, L

y
1lelQ | 1el0 | 15 15 | 9.9el13 | 9.7e13 | 10.2 | 12 | 19 4.3e-7
lel2 | 1el2 | 15 15 | 1.0el4 | 1.0el4 | 10.0 | 10 | 24 6.6e-8
lell | 1ell | 15 12 | 9.9e13 | 9.7e13 { 10.2 | 12 | 23 3.6e-7
lel2 | 1el2 | 15 10 | 1.0e14 | 1.0e14 { 10.0 | 10 | 19 2.2e-7
lell | 1el3 | 14 14 | 9.9el3 | 9.7¢13 | 10.2 | 12 | 27 6.0e-7

Table 2.4.9: The results for Example 2.2, using objective V-I characteristic I 3
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Initial Values Optimal Solution No. Rel.
a b L,=|L,|a b L,= | L, | iter err
L, L,
1el0 | 1e10 | 15 15 | 1.1e16 | 9.9e15 | 11.5 | 15 | 31 1.0e-4
1lel0 | 1e10 | 15 10 | 1.1e16 | 7.7e15 | 10.0 { 9.8 | 30 7.9e-5
lell | 1ell | 15 9 | 1.6el6 | 6.0el5 | 10.7 | 11 | 30 6.7e-5
lell | 1lell | 14 14 | 1.2e16 | 6.3e15 | 10.2 { 15 | 30 3.6e-5
lel3 | lell | 14 14 | 1.2e16 | 8.8¢15 | 11.4 | 15 | 30 8.9e-5

Table 2.4.10: The results for Example 2.2, using objective V-I characteristic
Iga -

are chosen to be 10%%, 10, and 107'8, respectively, and the scaling matrix M
in (2.3.5) is chosen to be diag(10%, 105, 109, 4.0 x 10~*). The bounds in (2.2.3)
and (2.2.4) are chosen to be

min __ _min __ max _ ., Jnax __
¢z =¢ =06 and ¥ = =075

The increment £ in (2.3.6) for ¢, is chosen to be 4 x 1072,

To solve the problem, we choose the V-I characteristic I, , listed in Table
2.4.7 as the objective characteristic, which is generated by solving (2.1.17)-
(2.1.19) using the parameter set

(e =10"6=10" L, =10,L, = 10,¢, = 0.7,¢, = 0.7).
The solution procedure stops when both of the conditions

1. the relative error "ﬁ"I” l2 < 1073, and
gll2

2. the difference in (L2 + Lﬁ)” ? between two consecutive iterates is smaller

than 10~2

are satisfied. Two initial guesses are used, and the results are listed in Table
2.4.11. From the table we see that the relative errors are always smaller than

6.0 x 1078,

2.5 Conclusion

In this chapter, we posed the parameter selection in semiconductor device de-

sign as an optimization problem with competing costs. Various existing efficient
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Initial Values Optimal Solution No. Rel.
a= |L,=|c=|0a b L,= Ce= iter err
b Ly |o Ly Cy
lelD | 15 0.72 | 9.98e13 | 1.0el4 | 10.002 | 0.7008 | 25 5.6e-6
lel0 | 15 0.68 | 1.07eld { 9.6e13 | 10.129 | 0.6773 | 22 5.5e-6

methods for nonlinear optimization, nonlinear partial differential equations were
discussed for the numerical solution of this problem. A scaling technique was
also proposed to avoid numerical instability in computation. Numerical ex-
periments for various model devices were performed and the numerical results

showed the effectiveness of the optimization approach to the semiconductor

device design.

Table 2.4.11: The results for Example 2.3
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Chapter 3

Optimization Approach to
Numerical Integration

3.1 Introduction

In this chapter, we propose an approach to numerical integration of functions of
one and two variables. In this approach, a grid set with a fixed number of ver-
tices is to be obtained such that the error between the numerical integral using
a given quadrature rule and the exact integral is minimized. A similar approach
was used in finding the numerical solution for a differential equation in [16]. In
this approach, the numerical integration is performed by using the quadrature
rule on variable partition nodes rather than on a uniform partition as in the
classical numerical integration schemes. These variable nodes are decision vari-
ables which are to be chosen such that the error between the numerical integral
and the exact integral is minimized. The rest of this Chapter is organized as
follows:

In Section 3.2, we shall discuss optimal grid construction for numerical
integration in one dimension. The method is based on the mid-point rectangular
and trapezoidal quadrature rules for sufficiently smooth integrand in Subsection
3.2.1, and trapezoidal rule with quadrature approximation of the integrand
functions in Subsection 3.2.2. In Subsection 3.2.3, the method developed in
Subsections 3.2.1 and 3.2.2 are used to solve several examples.

In Section 3.3, we consider optimal grid construction for numerical integra-

tion in two dimension. Two schemes for sufficiently smooth integrand will be
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developed in Subsection 3.3.1: one is based on the barycenter rule on a rect-
angular partitions while the other is on a triangular partition. A scheme for
non-sufficiently smooth functions is developed in Subsection 3.3.2. In Subsec-
tion 3.3.3, the methods developed in Subsections 3.3.1 and 3.3.2 are used to

solve several examples.

3.2 Optimal Grid Construction in Numerical
Integration of One Variable

Notation used in this section :
I{f) : integral of function f(z) on [a, b], where a, b € R with a < b,
Py : partition of [a, b] with N sub-intervals,
Ig(f) : mid-point rectangular quadrature rule on the partition Py,
Ir(f) : the trapezoidal quadrature rule on the partition Py,
R : the Lagrange remainder of Taylor’s expansion,

h; : step length x;.; — =z,

3.2.1 Method for sufficiently smooth integrands

Consider an integral of the form

1(f) = [ F(@)de, (3.2.1)

where a,b € R with a < b. We assume that f is sufficiently smooth. More
specifically, we assume that at least f"(r) is continuous on (a,b). (This as-
sumption will be relaxed in the next subsection.) Let Py be a partition with
N sub-divisions defined by

Pyia=xp<zmm<...<zy1<zy=0b (322)

Let h; = ;41 —z; for i = 0,1,... ,N — 1. In what follows we discuss the
mid-point rectangular quadrature rule and the trapezoidal quadrature rule sep-

arately.
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Mid-point rectangular gquadrature rule

The mid-point rectangular quadrature rule for (3.2.1) is defined by

Ir(f) = Z_ F(&)h (3.2.3)

i=0
where & = (z; + z441)/2. The following theorem gives a representation for

I(f) = Ir(f).

Theorem 3.2.1 If f"(z) is continuous on (a,b), then

N-1 Hig. il
10 -nn =3 (G 3 [ rroeye-eras) @24

where z < ni(x) < & or & < mi(x) < x. Furthermore, if f4 is continuous on
(a,b), then

I(f) = Ir(f) = Z_ (%@lhf + 21—4 /fm FO () (@ - E.;)4da:) (3.2.5)

i=0

where x < p;(x) < & or & < wi(z) < z.

PROOF. The proof is based on Taylor’s expansion. We consider the first
case. Since ™ is continuous on (a,b), for each 1 = 0,1,...,N — 1, f(x) can be

expanded into
£() = &)+ F1(6)(e - &) + o " (E@)a — &) + 5 /")) (e~ &),

where £ < 7;{x) < & or & < ni(z) < xz. The last term is the Lagrange remainder

of the Taylor’s expansion. Thus,

[ @ sten = [ (16 + e - )+ 36 - 6

+ 3N~ 6)°) da - (M
et [ oo - 6,

since z — &; is an odd function with respect to &. Summing both sides of the

above from ¢ = 0 to N — 1, we obtain (3.2.4).
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We now prove (3.2.5). Since f(¥(z) is continuous on (a,b), f(z) can be
expanded as

3

§() =3 2 fOE) &) + 5 /() z - &)

i=0
fori=0,1,...,N — 1. Notice that both z — & and (z — §)* are odd functions

with respect to & and the integrals of these on {z;, z;;1) vanish. We have

Tit1 "¢ Tit1
[ t@de = e =T 1 L [ rayutee - e
Summing this from ¢ = 0 to N — 1 gives (3.2.5). O

From Theorem 3.2.1, we see that the error in the approximate integral from
the mid-point rule is dominated by

N-1
ER(.’E]_, Ta,... ,.'IIN_l) = 21—4 Z f”(&)hf (326)

=0
when all h; < 1 (or f7(z) is almost constant if h; > 1). Thus, the partition Py
should be chosen such that |Eg| is minimized. Based on this, we propose an

optimization problem as follows:

min  g{zy,Z2,... ,Ex_1) = E?%(.'L'l,J?g,... ,EN—-1)
subject to
a—z <0, (3.2.7)
mi— i <0, i=1,...,N~2 (3.2.8)
Zy-1—b<0, (3.2.9)

where Ep is defined by (3.2.6). This problem is referred to as Problem P3.2.1.
This is a nonlinear mathematical programming problem with N linear inequality

constraints. The gradient of the cost function ¢ is given by

ag ]' 1 1! 1 I/
By T §f”’(€j—1)h§_1 +3f"(&-)hi, + é‘f"'(ﬁj)h? - 3f7(&;)h5

for j =1,2,...,N —1, where h; and ; are defined above. The selution to this

problem will yield the optimal partition Py.
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The trapezoidal quadrature rule

The trapezoidal quadrature rule on the partition Py defined by (3.2.2) is

Z  flzs +f(:c=+1) (3.2.10)

e=()
This is obtained from the approximation of f(z) on (z;,z;y1) by the linear
function f(x;) + (z — z;)(f(@:is1) — f(z:))/h;. The error for the trapezoidal rule

is given in the following theorem.

Theorem 3.2.2 If f”(x) is continuous in (a,b), then

N-1 Tit1
10 -k = 3 |-g5 @t - ERw) + [ R (211
where R(z) is defined by

R(z) = = f"(os(2))(z — x:)® (3.2.12)

with z; < 0;(z) < z.

PROOF. Since f” is continuous, we expand f on [z;, %;+1] as the following

Taylor’s series with a remainder:

(x — z;)" + R(z),

gM”

where the remainder is given by (3.2.12). From this we have

w () + fmen)

' n 1
e Ty - S
s [ Ry - L2 S,
= @R~ B (o) - (@)
vera@m s [ Ra)s
1 . ]’;.,'
= _ﬁf_ (z)hd — ER(%‘H)
+/ 1 R(z)dz.
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In the above, we used the Taylor’s expansion of f(z;4,) at ;. Finally, (3.2.11)
follows from summing the above from ¢ = 0 to N — 1. O
Obviously the above result is similar to that of Theorem 3.2.1. Again, from

Theorem 3.2.2, we see that the error in fp is dominated by

N-1
1
Er(z1,22,... ,2n-1) = - ; Ji(zo)hd (3.2.13)
when h; < 1. This motivates us to define the following optimization problem.

min  g{z1,Z3,... ,Zn-1) = Br(T1, %2, ... , Ty—1)

subject to the constraints (3.2.7), (3.2.8) and (3.2.9), where Er is the function
defined by (3.2.13). This problem is refereed to as Problem P3.2.2. Similar
to the case of mid-point rectangular rule, Problem P3.2.2 is also a nonlinear
mathematical programming problem with /V linear constraints and the gradient

of the cost function is given by

g 1
a_g = ¢ Br [3f"(2j-0)h3 s + f"(2;)h} = 3f"(z;)h]

for j =1,2,..., N — 1. The solution to the problem will give the optimal distri-

bution of vertices for the trapezoidal quadrature rule.

3.2.2 Method for not sufficiently smooth integrands

The techniques presented in the previous subsection require that at least f”(x)
is continuous on (e, b). Following the notation defined in subsection 3.2.1, we
now discuss a technique for the case that only f' is continuous on (a,b). This
is based on the idea of approximating the error in a quadrature rule by the
difference between the the quadrature rule and a higher order quadrature rule.
We will demonstrate it using the trapezoidal rule defined in (3.2.10) and a
quadrature rule obtained by interpolating f(z) on any [z;, z;+1] by a quadratic
function using the values f(x;}, f(&) and f(z;41) where §; is the mid-point of
[#i, %i41) as defined previously.

For any ¢ =0,1,... ,N — 1, the trapezoidal rule on [z;, z;11] is defined as
Tit1 1
[ tw)dn = 570 + b
ER
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As mentioned in the previous section, this is obtained by approximating f(z)
by the linear function L(z) = f(z;) + (z — z:)(f (zi+1) — f(z:))/hi on [z4, zipa].

Now we fit f(z) on {x;, z:11] by a quadratic function
Q(z) = A+ Bz + Cx?

such that

Qz:) = flz), Q&)= f(&) and Q(zip1) = f(ziy1)-

These yield three equations for A, B and €. To simplify the problem, we trans-
late the graph of Q(z) to the position such that (z;, f(z;)) coincides with the

origin (0,0). In this case A =0 and B and C satisfy

h h?
EB + IC = f(&) — fzi),

BB+KC = flzu) - f(z:).

Solving this system we obtain

Qola) = ~H (@) +4 J;(_&-) —f@i) | 2f(w) -4 f(f;) + 2 (@) 2

where z € [0, h;] and Qo denotes the translated quadratic form of Q. Similarly,

the linear approximation L(z) can also be translated into Ly = (f(xiy1) —
f(z:))x/h; for € [0,h;]. Since this translation does not change the value of
Q(x) — L{z), we have

/:M(Q(z) —L(z))dz = /Dhi(Qo(x) — Lo(z))dz
| = /Ohi (_3f($i) + 45 (&) — f(@i1)

h;
_f ($i+1)h : f (:r:,;)) zdz
M2 f(w) — 4F(&) + 2f (=i
+/0 flai) f(’i?)‘*‘ f@in) 2,

= (-2f(@) +41(&) — 26 (ow) 3

+(2f(z;) — 4F(&) + 2f(ﬂffi+1))‘31
— %(—Qf(a:,-) + 4f(&) — 2f{zit1))-

42



From this we define

N-1

Ear(n, @ ... ano) = 3 %(-2 F@s) +4f(6) — 2f (Tinr)). (3:2.14)

=0
Obviously this dominates the true error I{f) — Iz(f). Therefore we define the

following optimization problem.
min g(.’El,IEQ, N ,$N_1) = EéT(lEl,l'z, . ,IL‘N_I)

subject to the constraints (3.2.7), (3.2.8) and (3.2.9), where Egr is the function
defined by (3.2.14). This is a nonlinear mathematical programming problem
and is referred to as Problem P3.2.3.

We comment that in the case that f" is continuous on (a,bd), it is easy to
show that Egr reduces to Er defined by (3.2.13) if all terms on the right side

of (3.2.14) are expanded as (truncated) Taylor’s series.

3.2.3 Numerical Experiments

To demonstrate the effectiveness and usefulness of the above techniques, some
numerical experiments have been carried out. The package FESQP [116] for
solving general nonlinear mathematical programming problems is used as an
optimizer for Problems P3.2.1, P3.2.2 and P3.2.3. All computations are per-
formed in Fortran double precision on an Pentium PC under LINUX 2.0 envi-
ronment. For all the test problems solved, we use the uniform mesh (for a given
N) as the initial mesh and the numerical integral obtained from the mid-point
rectangular quadrature rule on the uniform mesh with 1000 subintervals as the

exact integral I(f).

Example 3.2.1.

b
1) = [ vew (~aa - 6 da.

This function often appears in statistics and it is not analytically integrable on
a finite interval [a,b]. We now choose a = 0, b =5, ¢ = =1 and v = 50.

The number of interior vertices is chosen to be 18, i.e., N = 19. Problems
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Grid 9(@init)  9(Tfina) Error  Error on U. Grid
MP on G1 1.1398e-1 7.2416e-12 1.3668e-3 1.0643e-1
TR on G2 5.6546e-2 7.1032e-16 4.6544e-3 2.1295e-1
TR on G3 4.5332e-2 3.6541e-8 2.0017e-3 2.1295e-1

Table 3.2.1: Results for Example 3.2.1 using different quadrature rules and grids

P3.21, P3.22 and P3.2.3 were used to construct three integral grids label
with G1, G2 and G3 respectively. Table 3.2.1 is a list of the initial and final
values (g(®iniz) and g(@ine)) of the cost functions and the absolute errors in
the numerical integrals computed respectively by the mid-point rule (MP) on
G1, the trapezoidal rule (TR) on G2 and G3. For comparison, the errors in the
numerical integrals from the mid-point and trapezoidal rules on the uniform
mesh are listed in the last column. From this table, we see that the results
on the optimal grids are about two orders of magnitudes more accurate than
that on the uniform mesh. Also, Problems P3.2.1 and P3.2.3 produce more
accurate results than that from Problem P3.2.2. To visualize the the grids
obtained from the solutions to Problems P3.2.1, P3.2.2 and P3.2.3, we plot the
results in Figure 3.2.1.

In what follows, we concentrate on Problems P3.2.1 andPP3.2.3, as Ep de-
fined by (3.2.13) can be obtained from Egr defined by expanding the functions
on the right side of (3.2.14) at each z;.

Example 3.2.2.

I(f):/” 1 sinxdw_

a+fz? x
The integrand is even and not analytically integrable. We choose a =0, & = 1,
o = 0.05 and 8 = 50. The number of subintervals is chosen to be 10, i.e., N =
10. Two optimal grids G1 and G3 were obtained by solving Problems P3.2.1
and P3.2.3 respectively and Table 3.2.2 is a list of the initial and final values of
the cost functions and the computed errors on G1, G3 and the uniform mesh.
From the table, we see that the result from Problems P3.2.1 and P3.2.2 are,

respectively, two orders and one order of magnitudes more accurate than those
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(a) MP rule on G1

50

J N '.w.%\

| I
m i

0 1 L 1 U i 1 1
0 1 2 3 4 5 ] 1 2 3 4 5
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Figure 3.2.1: Graphs of the numerical solutions of Example 3.2.1 using various
meshes
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Grid 9(@init) K Tfina) Error Error on U. Grid
MP on G1 6.9184e-2 2.9428e-6 1.0471e-3 2.4693e-1
TR on G3 1.3708e-1 1.6163e-3 3.6292¢-2 3.1575e-1

Table 3.2.2: Results for Example 3.2.2 using different quadrature rules and grids

Grid 9 Tinit) 9(Zfinal) Error  Error on U, Grid
MP on G1 1.1430e-7 5.4524e-21 2.6178e-6 3.3470e-4
TR on G3 4.4224e-7 8.0773e-19 2.3104e-6 6.6281e-4

Table 3.2.3: Results for Example 3.2.3 using different quadrature rules and grids

on the uniform grid. The numerical results using the mid-point rectangular and

trapezoidal rules on different grids are also plotted in Figure 3.2.2.

Example 3.2.3.

_ {"sin(10z)
I(f)—-/0 102 dz.

The problem is the same as Example 3.2.2, if we choose a =1, 8 =0,a =0
and b = 10, and then scale the integral interval by 10. This integral often
appears in signal processing and is not analytically integrable. The integrand
of this problem oscillates in the integral interval rather than a sharp pick as
in Example 3.2.2. We now choose N = 10. The computed costs and errors
corresponding to Problems P3.2.1 and P3.2.3 are listed in Table 3.2.3. From
the figure, it is seen that the results for both of the two methods are two orders
of magnitudes more accurate than that from the uniform mesh.

The numerical results are plotted in Figure 3.2.3. From Figure 3.2.3 and
Table 3.2.3, we see that although the grids G1 and G3 are close to the uniform
one, the numerical integrals on G1 and G3 are much more accurate than those

on the uniform grid.
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Figure 3.2.2: Graphs of the numerical solutions of Example 3.2.2 using various
meshes
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Figure 3.2.3: Graphs of the numerical solutions of Example 3.2.3 using various
meshes

3.3 Optimal Grid Construction in Numerical
Integration of Two variables

Notation used in this section :
2 : domain, on which function f(z,y) is integrated,
I(f) : integral of function f(z,y) on £,

wy; : rectangle with vertices (zq, y;), (Tit1,¥5), (@i, Yj+1), and (Ziv1, Y1),

wy; ¢ triangle with vertices (x;,v;), (%i41,%;), and (i, ¥j41),

wj; : triangle with vertices (@iy1,%;), (%is1, ¥j+1), and (&, yj+1),

iy
FPruxn @ partition of 2 with m X n rectangular elements w;;,

P« ¢ partition of Q with 2 x m x n triangular elements w}; or wf;

Ir(f) : the barycenter quadrature rule on the partition Ppyn,
IT(f) : the barycenter quadrature rule on the partition P},

Irr(f) : the trapezoidal rule on the partition Py, .,
R : the Lagrange remainder of Taylor’s expansion,

h; : step length z;,, — z;,
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k; : step length y;11 — ;.

3.3.1 Methods for sufficiently smooth integrands

Consider an integral of the form

=ff(x,y)d3:dy
2

where 2 = (a,b) x (¢,d) with a,b,c,d € R. In this subsection we assume that
at least the third order partial derivatives of the function f(z,y) are continuous

on £2. Let P, ., be a partition of Q with m x n sub-domains defined by

Pryn={wi;:i=0,1,2,--- ,;m—1; §=0,1,2,--- ,n -1} (3.3.1)

where
wiy = (@i, 3in1) % (U, Vi), (3:3.2)
Aa=2g<T1 < Ty << Ty = b, (3.3.3)
and
c=yp < <Y< <yp=d. (3.34)

Let by = 34y —aifori = 0,1,--- ,m—1, andk; = y;41 —y;forj =0,1,--- ,n—1.
Numerical schemes using the barycenter quadrature rule on rectangular parti-
tion and on triangular partition will be developed in the next two subsections,

respectively.

Barycenter quadrature rule on a rectangular partition

The barycenter quadrature rule on the partition Py, defined in (3.3.1) - (3.3.2)

is:

|—l

m—1 n—

f&mi)h (3.3.5)

i=0

s,
11
(=

where ¢ = ZEZHl and np; = Y The following theorem establishes the

error I(f) — Ir(f).
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Theorem 3.3.1 Let the third order partial derivatives of the function f(z,y)
be continuous on . If the absolute values of these third order partial derivatives
are bounded by M;; > 0 inwyj fori =0,1,--- ,m—1; andj =0,1,--- ,n—1,
where w;; is defined by (3.3.2), then there exist 0;; € [—M;;, M;;] such that

|_s

m—1n—

I(f) - 5 { g lfeel6ss 8K, + (65, ik

zm

i=0

1 1
0,15 htk; + hIkE + h2KS + —h,;kj]} (3.3.6)

- 2

8|*-‘

PROOF. Using Taylor’s formula for functions of two variables, we obtain

flz,y) = f(& )+ fol&m)(e — &) + ful&m)(y — )
+ %{fmm(&, 4 (ZU 5:)2 + 2fzy(§h 7?3)(-'5 - gz)(y - nj)
+fyy (€ m) (y — m5)%}
+ {85+ w-mlg ) 6+ e =@+l n)

where 0 <r<1,i=0,1,---,m~1,andj=0,1,--- ,n — 1. The last term in

the above is the Lagrange remainder of Taylor’s expansion. Clearly,

Yi+1 Ti41
/ f {f(ms y) - f(fuﬂy)}dwdy
Uy i
Ui+l Ti+1
= f f {fol&ym) (& — &) + Fy(&,m;)(y — my) }dzdy
Vi T

1 i+l Tit+l
+ 3 /yj j;i {f:rw(‘fu ni){x — ,fz.)2 + 2 fay (&) (2 — &)y — m4)
+ fuy &y i) (¥ — ??j)z}dl‘dy

1 Vit+1 Ti41 a a 3
wo [T emag rw-mg)

fl&+r(z — &)my +r(y — ) )dzdy. (3.3.7)

Since z — &; and y — 1; are, respectively, odd functions with respect to & and 7,

(3.3.7) can be written as:

/ " _[ anIH{J’ (z,9) — f(&. ;) }dzdy

Ui T

1
ﬂ{fm(&-, mihik; + fuy(Cm)hiki} + Ri+ R+ Rs+ Ry (3.3.8)
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where

Ry = }”/ o fona{&i +1(z — &)y +r(y —my)) (2 — &) dxdy,

f e / " eyl (e —

+r(y — n;))(z — &)*(y — n;)dzdy,
Wi+l Liget
R / Fogyl& 7@ — ),y

2 ¥i T
+r(y — n)) (& — &) (y — n;) dzdy,
Yi+l fTitl
Ry=~ / foy(& +r(z = &), + 7y — )y — ??J)Sdrdy.

We now estimate each of R, Ry, R3 and R,. For R;, we have

1 ¥+ fTi
ml < g [ [ et e
+r{y —m)) (@ — &)°|dedy
M‘tj ¥i+1 Tit1 3
< 6’/ f |(z — &)°| dzdy

Yi

1 1
= — . _Mhik;.
6 32 ¥ R ]
Similarly, we have

1 1
|Ra] < E-EM hfkf,
|Rs| < 1 1Mh2k3
Sho= g gttty
11 .
|Ry] < 6'3—2M,;jh,-kj.

Combining these four inequalities, we obtain
4 31,2 |, 1213 4
|Ri+ Ry + Ry + Ry| < 96{2h k; + W32+ 2R + 2hk } M.

Thus, there exists a 8;; € [—M;;, M;] such that

1 1 4 31.2 213
Ri+Ry+Ry+ Ry = 96{ hik; + h3K2 + h2ES +

1
§hik;‘}€i,-. (3.3.9)

Substituting (3.3.9) into (3.3.8) and summing both sides of the resulting equa-
tion, we obtain (3.3.6). This completes the proof. O
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From Theorem 3.3.1, it is clear that the error between the numerical integral
using the barycenter quadrature rule on a rectangular partition and the exact

integral is domained by

m—1n-—1
1
= e S { el )y + Fy 6Bk }
t=0 jF=0
where © = (21, -+ ,Zm-1), ¥ = (%1,"** ,¥n—1), and h; and k; are such that

hi <1, k; < 1. These conditions are satisfied unless f,,(z,y), and f,,(z,y) are
nearly constants. The corresponding numerical scheme may now be posed as

an optimization problem:

m—1mn—1
min g(z, y) {ZZ[ Foal(&, i) B3k + fu (&, 1) P k3]} (3.3.10)
=0 5=0
subject to
T — Ty <0, 1=0,1,---,m-1, (3.3.11)
Yi = Yj+1 < 0, j=01,---,n—1. (3.3.12)

Let this optimization problem be referred to as Problem P3.3.1. The gradient

of the cost function g is given by

dg
83;1-

= 2g2{ = Fazo (G ) I2k; — fm(f,-,nj)h,?k,-

3

§fxx(§i—1, nj)hg—lkj
1 1

+§fyyw (&, Wj)hikg - 'i;fyy(fi, Wj)kg?"

1 1
+§fyyw (-1, nj)hi—lk? + §fyy(§i—1: ﬂj)k_?}

+§fzzx(§i—1? nihi_1k; +
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dg _ =1l 3 1 o p3
ayj = 29 ; {Efma:y(funj)hi kj - §fmm(€u Tb)hi

1 1

+5 fary (&, ni-1)hikio1 + 5 e j-1)h
1 3

+'2"fyyy(§ia Tb‘)hikg - Efyy(fi,ﬂj)hik?
1

+§fyyy(§i—ls"?j—1)hikj_1

3
+"2“fyy(§i—1a7?j—l)hik?—1}
fori=1,2,.+-m—-1,andj=1,2,--- ,n— 1.
Barycenter quadrature rule on a triangular partition

Dividing each rectangle w;; = (i, Zi+1) X (¥4, ¥j+1) in the partition P, into
two triangles w] ; with vertices (2, y5), (Tit1,¥5), (i, Yj+1), and w?; with vertices
(Zit1,¥5)s (Zix1, Yir1)s (%0, Yj+1), we obtain a triangular partition P, defined
by

P*

mXn

={wijwi;: =012 ,m-1,7=012---,n—1} (3.3.13)

The barycenter quadrature rule on the partition P} ., is defined as (cf. Chapter

4 of [17).)

m—1n~1

Ir(f) = % Z Z {f(&'h 1) + (&, T?jz)}hz‘kj

i=0 j=0
_ 2xitry _ 2yi4ui4 _ zi+2z; _ uit2y; .
where §; = ZH5E ;) = UL £, = BISREL and g, = ¥EEMEL For this
quadrature rule, we have the following theorem.

Theorem 3.3.2 If all the third partial derivatives of the function f(z,y) are
continuous on S, and their absolute values are bounded by M;; in wi; for i =

0,1,---,m—1, andj=0,1,--- ,n — 1, then there exist 6;; € [—M;;, M;;] such
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that

m—1n~1

I(f) - IT(f) = = Z Zh,k {h [fma: &L 7?31 + fmm(&zZanﬂ)]

i=0 =0
hikj[fzy(fﬂ, 7?;'1) + fmy(§i2= 7?3'2)]
+k2'[fyy(f.z'1= 1) + fyy iz, 7?3'2)]}

i 91 91
hik; —h3k2 Z-h2k2 + 8hik!
+ 35“0 Z {s + L2k + S

i=0 F=0

PROOF. Using Taylor’s series expansion, we have

F@y) — FGmmie) = folis mied(z — &it) + Fy(Gates i) (5 — M)
+%{fxa:(§ik: 1) (z — &)’
+2 fay (&ik, M) (2 — &ar) (¥ — %)
+ Fuy (Gixs mie) (y — m'k)g} + R(&ik, Miks Tijk)

where (z,y) € wgfj and R(&x, 1k, Tijx) is the Lagrange remainder given by:

1 d g 3
R(&k, ik k) = g{(fﬂ - fz'k)a—x + (y ~ T}jk)'é'z}'}

Fl&ik + rizi(z — Eik)s ik + Ti5e(y — Nie))

with0 <y <1, 4=1,2,---,m, j =1,2,---,n, and k¥ = 1, 2. Integrating

over w U w?, we get

ijs

Tip1 pd{x)
/ /{f(-’f, y) — f(fil,ﬂjl)}dydﬂf
Tity ?J‘J+1
/ [ N £ (€ m32) Yy

1
= 75hikj{h?fm (&1 31) — hik; foy(Eir, mjn) + K Fyy(Eir, 1)
R fox(Eizy Nj2) — ik fay(£2,m52) + K3 fuy (G, T?jz)}

Ti41 6(:!:)
/ R Ezla’?glg szl)dydx
T

Titl y3+1
/ 5(a) R fm;"hmﬂ;,z)dydﬂ? (3314)

where §(z) = (1 — 555)k; + y;.
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We now estimate the integrals of each of these four terms in the remainders R

over w,; Uwf;. For the first term, we have

Tit+1 é(x)
/ feaz(€it + rija{z — &)y np + ripn(y — i)z — fﬂ)adyd:c

Zi+1 Yi+1 3
/ /( ) f:c:cm §t2 + TzJ'Z( - 51'2)3?7_7'1 + rij?(y - yj2))($ - ‘53'2) dydl‘

Tit1 6(:::) Tit1 y3+1
< Mm/ / (x — &) |dyd$+Mzgf / (x — fig)3|dyd:z
¥z)

AR hik;. (3.3.15)

5x3
For the other three terms, we have

Ti41 J(:l’.‘)
] {fazy(&ir + rij{x — &), i
it

vs

+rin(y — yi)) (@ — &1)*(y — njn) Hydz
Titl LY+
f »/; {fzmy Ez2 + 7':32(33 &2) 51

+mz(y yi2)) (@ — &2)2(y — 752) }dyda]|

91
< e Ma hk2, (3.3.16)

Li41 ()
/ { Fryy (&1 + i1z — &)y 11
i

¥j
+T1,31 Y- yjl))(x - gzl)(y 7?;1) }dyda:

Titl  PUiHL
/ / {f:ryy 512 +th'2( “fi?):njl

+ngz(y Y2)) (& — Ei2)(y — y52)° }dydz|

91 2,3
< . "
S Tox g tuliks (3.3.17)
and
Zi+1 () 3
f ./ {fon(&ar + rija( — &) mjs + risn(y — yn )y — mjn)” byde
E; Uy
Titl Ui+l 3
+/ /;( ) {fyyy(fiz + Tij2 (z — &), Ny + Tfj?(y - ng))(y - "?jz) }dydz
_ 4
= gt (3.3.18)
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From (3.3.15) - (3.3.18), we obtain

Tiv1  pilz) Titl Ui+
/ / ‘5@1: i1, Tij1 dyd:c + f R ‘512: iz, th?)dydx
i §{z)

{Sh‘*k + = h3k2 —h2k3+8h Jk3 } My (3.3.19)

35 x 10

‘Thus, there exists a 6;; € [—M;;, M;;] such that

Tiy1 pélx) Tit1 LY 41
/ / g‘ils i1, Tig1 dydx+/ R f%?’ﬂ]%TUZ)dydm

)
{8h4k + %h3k2 + gﬁlh‘*’ﬁ +8h; k4}9 (3.3.20)

35 x 10
The main result of the theorem follows by combining (3.3.14) and (3.3.20). O
From Theorem 3.3.2, we see that the error between the numerical integral

using the barycenter quadrature rule on triangular partition and the exact in-

tegral is dominated by

....
!
—

n

1

Erlz,y) = &

> by { B2 frait, 130) + fra(6i2, 0)]

—hik; foy (&1, 1) + fry(Eizs mj2)]
+k_? [fyy(f:‘l: ?7]1) + fyy (§i29 7?32)]}

i=0

a,
Il
=3

where all h; < 1, k; < 1 ( or otherwise fo.(z,y), and- Jyy(z,y) are nearly
constant ). Based on this, we can pose the corresponding numerical scheme as
an optimization problem.

m~1n—1

Min g(z,y) = { Z Z Rik; {12 faz(Eity M) + Foo(&ins 032))]

i=0 j=0
—hik:i[fzy(‘fu, 77;;1) + fmy(§i2: 7?3‘2)]
2
+k5 [ fuy (G, 1) + fyy Gz sz)]}}

subject to constraints (3.3.11) - (3.3.12). This optimization problem is referred
to as Problem P3.3.2. The gradient of the cost function g is given by
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dg
0z;

= 292{

3h k fm (&1, 7]31) +fzz(€z2:7732)]

+2hik3 [ fey (€1, 1) + foy(Einy 1y2)]

—k3 fyy Gy min) + Fiy(&2, mi2)]

+h?kj[%fwma: (G2, mj2) + ;fmx(fna mj1)]
~B2R2Lg Fape(€i2, ) + ey 6]
+h'k3'['1‘fyyx(§z‘2, Tj2) + 'z'fyya:('fils 1)}

+3h3_ ksl fow (E—1yr, min ) + feo(&(i-1)2, Mj2)]

— 2R 13 fay (§im1yt, Mi1) + Fay(Eimryz, 152)]
k3 [ fyy €1y M51) + Fuy(Eii—1y2, m72)]
+hg—1kj[%fxmm(§(i—l)ls M) + %fmmm(f(z’—l)?s 52)]
—h'?—lk_?[%fzym(‘f(i—l)h nir) + gfmym(f(z'—l)m nj2)]

1 2
+hi—1 kf[gfyyz (‘f(i—l)ly njl) + Efyy:c (f{i—l)?: 77j2)]}
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and

3 n—1
9 - 292{ — h[foa(&irm1) + Fra(Cizs mj2)]

6y5.- =0
+2h7 k5[ foy (Girs 1) + fay(Eizy mj2))]
—3hik3 [ fy (&iromit) + Fuy(Eizy ny2)]

+h?kj[%f zay(&iz, Mi2) + %f zay (i1, )]
"h?kf[%fmyy(&zs mj2) + gfzyy(fm 1))
AT Fn (6 12) + 3 o (G,

3 fra (€its Mg-11) + fea(€izy M5-1)2)]
—2hikj 3 [ fay(Eirs M—101) + fry(Ei2s Mg-132))
+3Rik3 o [fyy (€1, G—11) + Fu (i Ni—132))
+h?kj[§fwmy (&1, mgg-1y1) + gfmmy(fﬂs MG-12)]
"hfkf-—x[%fmyy(&l,?T(j—l)l) + %fzyy(&m N(j-1y2)]

1 2
+hik§,_1[§fyw(‘fﬂ: NG-11) + gfyyy(fizﬂ?(j—m)]}

fori =0,1,---,m—1,andj=0,1,--- ,n — 1, where &;,m;, h;, and %; are as

defined previously.

3.3.2 Method for not sufficiently smooth integrands

The technique presented in the previous section requires that the third order
partial derivatives of f(z,y) on £ are continuous. Following the notation defined
in Subsection 3.3.1, we now develop a numerical scheme for the case in which
only first order partial derivatives of f(z,y) are continuous on 2. This is based
on the idea of approximating the error in a quadrature rule by the difference
between the numerical integrals by the quadrature rule and a higher order
quadrature rule.

The trapezoidal rule on the triangle

wé,nz{(xay)|0<$<§,0<y<(1__

E)Ti}

08



is defined by

Wi o

which is obtained by approximating f(z,y) by the linear function

£&0) - 0.0,

L(may) =f(0?0)+ 3 1

f flz, y)dw

={(f(0,0) + f(&,0) + f(0,n)) }¢m,

f(&s Tf) -

Now we fit f(z,y) on wém by a quadratic function

Qlz,y) = a1 + asx + asy + a4z’ + aszy + asy’

such that

Q(0,0) = £(0,0) = fi,

En_ &
Q 5:'2-) —f(g yg) =
Let
Qﬂ(x$y)
Then, we have
fo— N1
h-h
fa—h
fﬁ'"fl
foe—fi

Solving the system (3.3.21) -

= f4s

= boz + bay + byx?® + bswy + by’ =

ba
bs
by
bs

be

Q(i,g) = f(§,

£ 3

0) = f?s

Q(O) TI) = f(Os 7?) = f5a

bg —|—b3 —|—b4 +b5

537? -+ bsﬂ
2

n 1
532+b64

(3.3.25), we have
—fs+4fa—3f1

£
—fs+4fs — 3f1

n
2(fs — 2fa + f1)
Iz
4(fi — fa+ fa— fo)

Q(:v,y) -

& . &n

&
2(fs — 2fs + f1)
,,?2
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Q(£,0) = f(£,0

4

on wé,ﬂ'

= f37

£(0,0) on w; ;.

3.3.21)
3.3.22)
3.3.23
3.3.24

P
R e I

3.3.25



Therefore

_f3+4f‘2_3f1$+_f5+4f6—3f1y 2(fs —2fo + f1) 22

Qo(.’E,y) = 5 n 62
+4(f1*f2+f4—f6)zy+ 2(f5—2;fe+f1)y
£n n
and
£ r(1-3) _
/f EﬂQo(:n,y)dyd:c — 3f1+f26+f4+f6£77
0 Jo
£ p1-2m _
W//‘e(@%w-bmwMWx= hrlidlhoh=h,
o Jo
Similarly, on
wh=1{@y) : 0<2<E (- gm<y<n},
we have
£ M — f — Fy —
[ [ @ty =2 hmho b,
o Ja-gm
where

f(‘f’ ) (! ) f(f:’?)“f(g)y
3 n ’

), fe=FEm, fo=FED).

L{z,y) = f(&,n) +

f7=f(g

Transforming w;, andwy, into the triangular elements w}; andw?, of the partition

P ..., respectively , we have

mxmn?
Titl YL
[ [ @@y - ey
Ti Yy
1
= 'G“hikj{f(fi: yi) + f(2m5) + fZien, ) + 25 (G my)
—f (@i y5) — 2£(Ziz1, ¥5) — 2F (@i Y1) — F(@ir1 Y1) }
Summing over ¢ =0,1,2,--- ,m—1,and j=0,1,2,--- ,n — 1, we obtain

{(Q(=z,y) - L(z,y) }dzdy

:;\

—

1 n—

= % Z hlkj{ 61»%) + f(:n.,, "?.7) + f(fu yJ-H) + f($z+11 7?3) + zf(fu"h)

i=0 5=0

L

—f(z, yj) - 2f(~’5z'+1,yj) — 2f(x;, yj+1) — f(ziy1, yj+1)}
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Let Itg(f) denote the trapezoidal rule on the partition Py,,,.. Then, the error
I(f) — Irp(f) is domained by

mlnl

EQTR T 'y) Z Z hik; { fn yj + f(xu'rb) + f(é.z: yJ+1) + f($:+1,'rh)

=0 j=0
+2f &, m5) — i yy) — 2f (Tig1, 45)

—2f(2s, ¥j41) — F(@i1, yj+1)}

This motivates us to define the following optimization problem:

m—1n-—1

min g{z,y) = { >0 " hakid £ (& w) + F(mim) + F(& yian) + F(@ig1,m5)

i=0 j=0
+2f(&,n;) — flzi, ¥5) — 2f (@ir1, 95)

=2f(zi, yj+1) — f (@i, yj+1)}}2

subject to (3.3.11) - (3.3.12). This problem is referred to as Problem P3.3.3.
The gradient of ¢ is given by

_9 = 2 E{ ki {F (& y3) + Fziym3) + (& i)

£ (@1, 1) + 2f () — Flwi,v7)

~2f (Zir1, 43) — 2f (%1, Y1) — f(@in1, y541) }
+ki{f (Gi-1,y5) + F(@ictmy) + f (&1, y501)

+f (@i, 15) + 2f (Gim1,m) — F(@im1,5)

=2f(zi,95) — 2f (i1, y541) — F@i y41)}
+hikj{%fm(§i:yj) + fel@i, m5) + %f;(&',yﬂl)

+fe(&ism5) = Fal@iy5) — 2fa(is i) }

_hi—lkj{%fm(fi-—layj) + %fz(&—l,yju) + fu(i,15)

halEir,m) — 260 35) — eloeyyen)} )

and
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Z { h {f 6“ y.?) + f(.'B“ 773) + f(é‘u y_7+1)

ByJ e

+f (@1, ) + 2 (&) — flzi,95)
=2f(Zis1,¥5) — 2F (@i Yj+1) — F(Zi1, Yj41)}
+hi{ f (& yi—1) + Flmiymi-1) + f(&, y5)
+f (@ir1,m5-1) + 2f (& mim1) — Fl@i, 45-1)
=2f (i1, yj-1) — 2f (20, 95) — f(@iv1,95)}
+hiki{ fy(€us) + %fy(ﬂ?nﬂj) + %fy(xﬂla 1)
+fy (&) = Folm ys) — 2fa(zin, 45)}
_hikjml{él"fy(&:nj-l) + fy(&sys) + %fy(mid-la Mj-1)
+Fy(&ismim1) — 2fy (20, y5) — fm(l‘iuyj)}}

3.3.3 Numerical Experiments

To demonstrate the effectiveness and usefulness of the above methods, some
numerical experiments are carried out. The package FFSQP [116] for solving
general nonlinear programming problems is used as the minimizer for Prob-
lems P3.3.1, P3.3.2, and P3.3.3. All computations are performed in Fortran
double precision on an SGI workstation. For all the test problems solved, we
use the uniform mesh (for given m and n ) as the initial mesh and numerical
integral obtained from the quadrature rule on the uniform triangle partition
with 2 x 1000 x 1000 sub-triangles as the exact integral I(f)}. For simplicity,
we use R, T, QTR denote the barycenter rule with rectangular partition, the
barycenter rule with triangular partition and the trapezoidal rule with quadra-

ture approximation of function f(x,y) on triangular partition, respectively.

Example 3.3.1.

100sin(10z 4+ 9
)= [ 2R Wy
Q Y

This function is not analytically integrable on the region

Q={(z,y) : 0.1<z<086, 0.1 <y<06}.
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Grid (T init) 9(®finat) Error  Err on Unif Grid

R on G1 -46.20904 -45.82094 1.54e-2 4.85e-1
T on G2 -46.04443 -45.81842 3.91e-3 2.30e-1
QTR on G3 -45.48281 -45.81509 5.88e-4 3.31e-1

Table 3.3.1: Results for Example 3.3.1 using different quadrature rules and grids

We now divide 2 into 16 x 16 uniform subregions and use Problem P3.3.1,
P3.3.2, P3.3.3 to construct three integral grids labeled with G1, G2 and G3,
respectively. Table 3.3.1 contain a list of the initial and final values of the
cost function (g(®€iny) and g(& ina)) and the absolute errors in the numerical
integrals computed, respectively, by the barycenter quadrature rule with rect-
angular partition, the barycenter quadrature rule with triangular partition and
the trapezoidal rule with quadrature approximation of function f(z,y) on tri-
angular partition. For comparison, the errors in the numerical integrals from
the above methods on the uniform mesh are listed in the last column. From
this table we see that the results obtained by using the optimal grids are at
least one order of magnitude more accurate than those based on the uniform
grids. Also Problems P3.3.2 and P3.3.3 produce more accurate results than
those obtained from Problem P3.3.1. To visualize the grids obtained from the
solutions of Problems P3.3.1, P3.3.2 and P3.3.3, see Figures 3.3.1 - 3.3.4

Example 3.3.2,
I(f) = mf exp{ — 0.2(z — 2.0)*(y — 3.0)°}d©2
Q

where ¥ = {{z,y) : 0 <z <5, 1<y < 6}, which is partitioned into 16 x 16
subregions. Problems P3.3.1, P3.3.2, P3.3.3 are used to construct three integral
grids, labeled by G1, G2, G3 respectively. Table 3.3.2 contains a list of the initial
and final values of the cost function. From this table we see that the results
obtained by using the optimal grid is at least two orders of magnitudes more
accurate than that based on the uniform grid. Figures 3.3.5 and 3.3.6 show
the difference between optimal grid and uniform grid for trapezoidal rule on

partition P

mxn*
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Figure 3.3.1: Graphs of the numerical solution of Example 3.3.1 using R rule
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Figure 3.3.2: Graphs of the numerical solution of Example 3.3.1 using T rule
on G2

Grid g (a:im't)

g (m ﬁna.:)

Error  Err on Unif.Grid

R on G1 156.1982
T on G2 156.2460
QTR on G3 155.8580

156.08733 1.52e-3
156.08538 4.38e-4
156.08246 3.35e-3

1.12e-1
1.60e-1
2.20e-1

Table 3.3.2: Results for test2 using different quadrature rules and grids
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Figure 3.3.6: trapezoidal rule on Uniform Grid.
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3.4 Conclusion

In this chapter, we present some numerical methods for constructing optimal
grids for numerical integrations in one and two dimensions by some well-known
quadrature rules. In this approach, a conventional numerical integration prob-
lem is posed as an optimization problem so that the solution of the latter yields
the optimal grid. Numerical experiments are performed to verify the effective-
ness of the approach. The numerical results show that, for a fixed number of
mesh nodes, the numerical integrals on a grid from the present method is at
least one order of magnitudes more accurate than that on the uniform grid.
We comment that an optimal solution of the problems in this chapter may
not exist, since the feasible region constrained by z;—z;4, <0, i =0,1,--+ ,m—
1 and/or y; ~ yj41 < 0, 7 =0,1,---,n — 1 is an open set. To overcome this
problem, in practice the above constraints are replaced by z; — z;11 < ¢ and
Y; — Yi+1 < &;, where ¢; and §; are user’s chosen small positive numbers. If the
integrand is continuous in 2, then the above problem has at least one solution,

though multiple solutions may exist.
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Chapter 4

Optimal Recharge and Driving
Strategies for a Battery —
Powered Electric Vehicle

4.1 Introduction

Due to the advancement in the battery technology, there is a great revival of
interest among the researchers to return to work on the development of battery-
powered electric vehicles over the past decade. For details, see [12], [75], [96]
and [106].

The main components of an electric vehicle are: (i) battery cells which
are energy storage system; (ii) a traction system which consists of an electric
motor, a steeling wheel and motor controller; and (iii) a friction system which
is a mechanical braking device. The driver can control the power applied to
the traction system as well as to the mechanical braking system. The major
problem associated with a battery- powered electric vehicle is in its batteries.
The total weight of the batteries is directly related to the charging capacity
of the electric vehicle. Due to the limited charging capacity, the vehicle can
only travel for a relatively short distance when compared with a conventional
gasoline-powered vehicle. It needs to be recharged much more frequently.

In this chapter, we consider a situation in which an electric vehicle is to
be driven on an even road or an undulating road connecting two given cities.

The distance between the two cities is beyond the driving range of the vehicle
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without recharging its batteries. In other words, the batteries are required to be
recharged before completing the journal. The rest of this chapter is organized
as follows:

We construct a model for the battery - powered electric vehicle in Section
4.2. In Section 4.3, we formulate an optimization problem in which the vehicle
is to be driven on an even road. The recharge points, and the speed of the
vehicle are considered as decision variables. The objective is to minimize the
completion tirne of the journey with respect to these decision-variables. The
distance between the two cities, the maximum allowable power to be applied to
the motor, and the number of battery cells are assumed fixed. In this optimiza-
tion problem, the capacity of each of the battery cells is regarded as the state.
Clearly, the state will exhibit a jump at each switching time. We further assume
that the maximum allowable number of recharge points is fixed. A challenging
task is to remove this assumption in that theoretical results are obtained for
determining this maximum number of recharge points. To solve this optimiza-
tion problem, we first fix a number of recharge points . This leads to a simpler
problem in which only the switching times and the vehicle speed are to be cho-
sen optimally. The control parameterization enhancing transform (CPET) (see
[100] for details) is then used to transform the problem into a standard optimal
control problem solvable by MISER3.2 (cf. [41] and [42]). We then increase the
number of the recharge points and solve the corresponding standard optimal
control problem. This process is repeated by gradually increasing the number
of the recharge points until the maximum allowable number is reached. In Sec-
tion 4.4, we formulate an optimization problem in which the recharge points
are to be chosen from several fixed points rather than free as in Section 4.3.
A computational method similar to that given in Section 4.3 is developed for
solving this optimization problem. Note that in both Sections 4.3 and 4.4 the
vehicle is driven on an even road, and we do not consider acceleration and de-
celeration effects in each of the time intervals. Thus, we construct a new model
in Section 4.5. This new model takes into account of acceleration effects. In

Sections 4.6 and 4.7, we consider the case in which the vehicle is driven on an
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undulating road. In Section 4.6, we formulate an optimization problem in which
the recharge points are fixed, and the switching times and the corresponding
speed of the vehicle are considered as decision variables. In Section 4.7, recharge
points as well as the switching times and the corresponding speed of the vehicle
are taken as decision variables. In Section 4.8, five examples are constructed

and solved by using the methods developed in the previous sections.

4.2 Battery-Powered Electric Car Model

Let ¢ denote the time, and p the power being applied to the motor. The power

p, which is a function of £, is a control variable. It is assumed that
0 < p(t) < P, forallt € [O,tﬁ,mg]

where %4 is the specified time for completing the journey, and P is the maxi-
mum allowable power to be applied to the motor. The electric power is directly
applied to the motor. We assume that the control force at the wheel of the

vehicle is:
P
== 4.2.1
L, (2.1

where v = v(f) is the speed of the vehicle. We also assume that the resistance

on the vehicle due to the friction and air is:

r(v) = m{bs + byv), (4.2.2)

where b, and b, are known positive constants, and m is the mass of the vehicle.
The dynamics of the vehicle is described by the following system of differential

equations.

dz

= =y (4.2.3)
dv _ p .
mey = a—r(v)—mgsm(ﬁ') (4.2.4)

70



with initial conditions

v(0) = 0, (4.2.5)
z(0) = 0 (4.2.6)

where f = 8(z) is the angle of slope of the road at location z = z(¢), and g is
the acceleration due to gravity. The speed of the vehicle is assumed to satisfy

the following obvious constraint.
v(t) = 0.

For each battery cell, the recharge-discharge rate at time t is:

@ | —ap., discharge (4.2.7)
dt q—fc; — exp{cy — ¢st}, recharge e

with initial condition :

¢(0) = o,

where ¢;, 1 = 1,---, 5, are given positive constants, and p; is the power flowing
out from each battery cell. The function g is required to satisfy the following

constraint.

Imin < 9(t) < gmax.

4.3 The Problem on An Even Road

In this section, the road connecting two given cities is assumed to be even. The
distance between the two cities, the maximum allowable power to be applied to

the motor, and the number of battery cells are assumed to be fixed.

4.3.1 Problem Formulation

Let [0, ¢ fina] be the total driving time, and let {;}, ¢ =0,1,- -, 2[, be switching

times, which satisfy

0=ty <t < <ty <tuy1 = tina
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where [ is the number of recharge points , [ty;i_1, ty], ¢ = 1, ,l, are the
time intervals at which the vehicle stops for recharging its batteries, while
[t2i—2, t2i-1], ¢ = 1,---,1l + 1, are the time intervals at which the vehicle is
driven at a constant speed.

We ignore the times taken for acceleration (respectively, deceleration) at the
beginning (respectively, ending) of each of the time intervals. Thus, in each

time interval, we obtain

dv

= = 3.1
= =0 (4.3.1)
From (4.2.2), (4.2.4), and (4.3.1), we obtain

p = vxr(v) (4.3.2)

= v X m(bl + bg’v)

and the power flowing out from each of the n parallel battery cells is:

b +b
§=vX w (4.3.3)
From (4.2.7) and ( 4.3.3), we have
dg — Wm, t € [tzi-2, toic1)
prili & —exples — o5t —taim1)}, € [tair, i)
v '11'2 -Im
—61Mf—*}—, t € [tar, torq]
here i=1,+-,1 (4.3.4)
with initial condition
q(0) = go- (4.3.5)

Define
T={t=(, - ,ta): LER, ti.y<t,i=1,---,2], l e N}

where R, and N are the set of all real numbers and the set of all natural

numbers, respectively.

72



N\ -

A Borel measurable function v : [0,7] — R is called an admissible control.
Let V be the set of all such admissible controls. For each (¢,v,1) € T x V x N,
let ¢(-|¢,v,!) denote the corresponding solution of system (4.3.4)-(4.3.5).

We may now specify the corresponding optimization problem formally as
follows:
given the dynamical system (4.3.4)-(4.3.5), find a (£,v,) € 7 x V x N such

that the cost function

gl(tt v, l) = tfinal (t: v, l) (436)

is minimized subject to the constraints

Imin < ¢(t) < gmax, (4.3.7)
0 < p=mlav +b?) < P, (4.3.8)
0<t;—ty, i=1,- 241, (4.3.9)
/ It = S, (4.3.10)
<L (4.3.11)

where n, [ and v are, respectively, the number of battery cells, number of
recharge points, and the corresponding speed. tginat = 2141 is the required time
for completing the journey, S is the total distance traveled, and L is the upper
bound of the number of the recharge points. Let this problem be referred to as
Problem Pj.

4.3.2 Transformation

To solve Problem P, we need to determine the optimal number of recharge
points [, the optimal switching time points ¢ = (¢1,--- ,ty), and the optimal
speed v. Let us initially set the number of recharge points to be £. Then only
the optimal switching time points with a fixed number of recharge points, and
the corresponding optimal speed are to be determined. This simplified problem

is referred to as Problem PfF.
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We now apply the Control Parameterization Enhancing Transform (CPET)
[100, 50] to Problem P¥. Let s € [0, 2k + 1] be a new time variable, and define

2k+1

n(s) = Z NiXfi-17)(8)

where x};_1,iy($) is the characteristic function on the interval [i-1,i), and the #;s
are nonnegative constants. Clearly, n(s), which is called an enhancing control,
is a nonnegative piecewise constant function defined on [0,2k+1] with fixed

switching points {1,2,---,2k}. The CPET:

2 = (s
t(0) = 0
maps t € [0, % ina] to s € [0, 2k + 1], where
n(s) = t; — t;_1, seft—-1,9), i=1,2,---,2k+1,
satisfying

2k+1
/ ??(S)ds = tfz'nal-
0

Let © denote the class of all such enhancing controls. Under the CPET, the
system dynarmics (4.3.4) and (4.3.5) becomes

—¢, itbi)ym s€2%—22—-1)
a ( g(s) ) _ | 74 755 —exp{es—cs(t — 20+ 1)}, s €[2i — 1,2i)
ds \ t(s) ¢, {atbatym s € [2k, 2k + 1]
n(s)
(4.3.12)

with initial condition

( f((g)) ) = ( g" ) (4.3.13)

where §(s) = q(t(s)), 9(s) = v(t(s)), s € [0,2k+ 1] and ¢ =1,---,k, while
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the constraints (4.3.7) - (4.3.11) reduce to

Gmin S Q(S) S Omaz; (4.3.14)
0 < p=m(bd + byt?) < P, (4.3.15)
0<m i=1,,2k+1, (4.3.16)
2k+1
f bds = S, (4.3.17)
0
[ < L. (4.3.18)

Lemma 4.3.1 The all-time state constraint (4.8.14) is equivalent to the fol-

lowing terminal state inequality constraints:

IA

§(2i — 1) i=1--,k+1, (4.3.19)

Gmin

4(21) £ gmax i=1,-,k (4.3.20)

PROOF. Obviously: (4.3.14) == (4.3.19) and (4.3.20}.

Conversely, suppose that (4.3.19) and (4.3.20) exist. Then:
For each i=1 Jk+1, ¢(s), s €[2i-2, 2i-1], is monotonically decreasing, since
the vehicle is driven at a constant speed and no battery recharge has taken

place in this sub-interval. Thus
Gmin S é(?%-l) S Q(S) S 6(2?’_2) S Omac-

For each i=1, --- , &, ¢(s), s €[2i-1, 2i], is monotonically increasing, since the

vehicle stops for recharging the batteries in this sub-interval. Thus
Gmin < @(27’_1) < @(S) < @(22) < Qmaz-

Therefore, the condition (4.3.14) is satisfied, and the results follows. O
Let V; be the set of all those feasible #(s), such that the conditions (4.3.15)-

(4.3.20) are satisfied. Problem P! is now transformed into the following optimal

control problem:

given the dynamical system (4.3.12)—(4.3.13), find a (17,9) € © x V; such that

the cost function
2k+1

1(n,8) = Z i (4.3.21)

i=1
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is minimized subject to the constraints (4.3.15)-(4.3.20).

This problem is referred to as Problem Pf“.

Definition 4.3.1 (n,%) € © x V; (respectively, (f,v)) is said to be a feasible
element if the constraints (4.3.15)-(4.3.20) (respectively, constraints (4.3.7)-
(4.3.11)) are satisfied.

Theorem 4.3.1 Problem (Pf) is equivalent to Problem (PF) in the sense that
(n*,0*) is a solution of Problem (P} if and only if (£*,v*) is a solution of
problem (PF), and G1(n*,9*) = q1(t*,v*), where n*(s) = t§ — 1, s € [i —
1,4), i=1,2,--+,2k + 1, and 9*(s) = v(t*(s)), s € [0, 2k + 1].

PROOF. Let (t',v') € T x V be a feasible element of Problem (Pf), and let
(n,9) € © x V) be the corresponding feasible element of Problem (P"’) Then
it is easy to check that ¢(¢) is the solution of (4.3.4)-(4.3.5)(with { = %) if and
only if §(s) is the solution of (4.3.12)-(4.3.13), and

2k+1 2k+1

gl(t,'u) = tfina!(ta ) Z t - tz 1 Z: ™= gl ??,

i=1
Hence, the results follow readily. m)

In Problem (PF) the cost function (4.3.6) is minimized with respect to
(t,v) € T x V where t = ({1,1,--- ,#2) is the vector of switching time points.
On the other hand, the cost function (4.3.21) in Problem (PF) is minimized with
respect to (1, 0) € © x V; where n(t) is a nonnegative piecewise constant fune-
tion. Problem (PF) is equivalent to Problem (P¥). However, Problem (PF) is
numerically much more tractable, because it does not involve variable switching
times.

Let us now address the question of finding the optimal number [ of the
recharge points. Let t = (¢;,+-- ,fy) be the optimal solution of Problem (P¥)

corresponding to the positive integer k. We propose the following algorithm.

Algorithm A.

1. Choose an initial guess & = kg.
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2. Let ty = 0, fop41 = ¢fina, and solve Problem (Pf) to obtain ¢ = (¢1,- - - , tax).

Let §f be the corresponding optimal cost.

3. If k = L, stop, find k* such that §¥ < gl foralll € {ko,---, L}, k* is the
optimal number of the recharge points. Otherwise, let £ = k£ + 1 and go
to step 2.

4.4 Fixed Recharge Locations

Following the notation defined before consider again the situation in which the
road is even. However, We assume that the vehicle can only be recharged at a
given set of locations T = {r,--- , 7}, satisfying 0 < m < < ++- <1, < §,
where § is the maximum distance the vehicle is expected to travel as defined
in the previous section. We assume that h is fixed. We also assume that the
number of recharge points [ = k. The problem can then be formulated as the
following optimization problem:

given the dynamical system (4.3.4)-(4.3.5) (with { = h), find a (t,v) € T x V

such that the cost function
92(t,v) = tginar(t, v) (4.4.1)

is minirnized subject to the constraints

Gmin < (t) < Gmas, (4.4.2)

0 < p=mlav+b?) <P, (4.4.3)

0<t;—t 4 i=1,---,2h+1,  (4.4.4)

/ It = S, (4.4.5)
o

/0 v(t)dt =7 i=1,---,h (4.4.6)

This problem is referred to as Problem P.
To begin, we choose the number of recharge points to be h. However, the
exact optimal number of recharge points is equal to 4 minus the number of

those recharge points corresponding to the occurrence of redundancies.
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Under the CPET, the constraints (4.4.2)—(4.4.6) reduce to

dmin S @(27» - 1) 1= ]_, e, h + 1, (447)
d(21) < Gmaz i=1,---,h, (4.4.8)
O<p= m(blﬁ + bg’ﬁz) < P, (4.4.9)
0<n i=1,-- ,2h+1, (4.4.10)
2h+1
f pds = S, (4.4.11)
021,-1
/ v(s)ds =7 i=0,-,h. (4.4.12)
0

Let V; be the set of all those 9(s), such that the conditions (4.4.7)—(4.4.12)
are satisfied. Problem P, is now transformed into the following optimal control
problem:

given the dynamical system (4.3.12)—(4.3.13) (with & = A}, find an admissible
element (n, %) € © x V, such that the cost function

2h+1

2(n, %) = Z ™ (4.4.13)

is minimized subject to the constraints (4.4.7)-(4.4.12).

This problem is referred to as Problem PJ.

Theorem 4.4.1 Problem (PY) is equivalent to Problem (P,) in the sense that
(n*,0*) is a solution of Problem (PY) if and only if (£*,v*) is a solution of
problem (Py), and §2(n*,9*) = go(t*,v*), where n*(s) = tf — &1y, s € [{ —
1,4), 1=1,2,---,2h + 1, and *(s5) = v(t*(s)), s € [0,2h + 1].

PROOF. The proof is similar to the proof for Theorem 4.3.1. O

4.5 With Acceleration

In this section, we construct a model, involving the acceleration at each interval
at which the vehicle is driven. The distance between two cities, the maximum
allowable power to be applied to the motor, the number of the battery cells, the

number of recharge points, and the recharge locations are assumed to be fixed.
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4.5.1 Problem Formulation

Since the force for acceleration is
Fi = ma, (4.5.1)

where a is the acceleration a = a(t).

From 4.2.1, 4.2.2, and 4.5.1, we obtain

p = vx(r(v)+ F)
= v x m{b + byv + a)

and for each battery cells, the power flowing out is
m
pr=vx (b + by +a). (4.5.2)

The charge stored in each battery cell is governed by the following differential

equation:
( —QMI%M, t € [tai—2, C2i-2)
dq “Clgb—lzﬂfj——zm, t € [Caio, toi1)
rril ¢ 7 —exp{es — o5t —tai1)}, € [faion, t2i)
t € [tar, Cur)
{ —Clmﬁwzms t € [Cory tary1]
here i=1,--,1 (4.5.3)

with initial condition

q(0) = qo, (4.5.4)

where (3;_o are switching times at which the acceleration varies from a positive
constant to zero, and { is the number of recharge points, which is given.

Define

ti:Ci € Rﬂ
T =<t =(to,Co 1,80, oy, Cor) 0 timy < Gim1 <ty < liga,
herei=1,---,2l, leN

The problem can be formulated as:
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given the dynamical system (4.5.3) - (4.5.4), find a (£,v) € T* x V such that

the cost function

/5] (t: t') = tfz'nal (t, U)

is minimized subject to the constraints

Gmin S Q(t) S Jmaz)

0<p=m(b1v+b2'u2+a)<P,

0<t;—t, i=1,---,2l4+1,
t_final

/ vdt = S,
0
tai—1

f v(t)ydt = 7; t=1,---,1,
0

where 7;, i = 1,-- -, [, are recharge points, which are given.

Let this problem be referred to as Problem Pj.

4.5.2 Transformation

(4.5.5)

(4.5.6)
(4.5.7)
(4.5.8)
(4.5.9)

(4.5.10)

To find the optimal solution of Problem P;, we need to find the optimal switch-

ing times ¢, and the corresponding optimal speed v.

We now apply the Control Parameterization Enhancing Transform (CPET)
[100, 50] to Problem P;. Let s € [0, 3] + 2] be a new time variable, and let 7(s)

be defined by

3142

n(s) = Z mX[i—l,z')(S)

where xji—1,)(s) is the indicate function of the interval [i-1,i), and the 7js are

nonnegative constants. The enhancing control 7(s) is defined on [0, 3! + 2] with

fixed switching times, located at {1,2,---,3{+1}. The CPET maps ¢ € [0, tfinai]

to s € [0, 31 + 2] as follows:

dt
ds n(s)

t0) = 0



where

toio — (o2 S € [31—3,3i—2),
Coimz —toimy SE[3i—2,3i—1)
n(s) = toim1 — toi s € [3i-1,3i6) i=1,2,---,1
o — Cu s € 13,31+ 1)
tatr —tape S € [31+ 1,31+ 2]

which satisfies

342
[ n(8)ds = & inais
0

3i—1
and / n(s)ds = 7, i=1,---,1L
0

Let ©* denote the class of all such enhancing controls. Under the CPET, the

system dynamics changes to

4 {b104-bat%4a)-m
([ el
_Cl gblv+bgv !m

n

, s € [3i—3,3i - 2)
s€[3i-23-1)

d{ds)_| 78 7% —exp{04—c5(t—33+1)}, s € [3i—1,30)
ds \ t(s) J — ﬂmm, s € [31,30 + 1)

—-Cy Sblu+bzv )m

with initial condition

€3 +1,31+2]

where §(s) = ¢(t(s)), @(s) = v(t(s)), and s € [0,31 +2]i=1,--- .
5.6) -

The constraints (4

~

(4.5.10) reduce to

Omin S Q(S) S Oz

0<p=mdd+bit*+a) <P

0<n i=1,

31+2
f tds = S.
0

tai—
and f v(tidt =7
0

3L+ 2,
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Let V3 be the set of all such function 9(s), satisfy the conditions (4.5.14) -
(4.5.18), and the Problem P is now transformed into the following optimal
control problem:

given the dynamical system (4.5.11) - (4.5.13), find an admissible element
(n,9) € ©* x V3 such that the cost function

342
gs(m0) =) m (4.5.19)
i=1

is minimized subject to the constraints (4.5.14) - (4.5.18).
This problem is referred to as Problem (P?.) It can be shown that the Problem
(P?) is equivalent to Problem (P;). For the same reason as pointed out in

Sections 4.3 and 4.4, we choose to solve Problem {PJ) rather than to solve

Problem (P;).

Theorem 4.5.1 Problem {P}) is equivalent to Problem (Ps) in the sense that
(n*,0%) is a solution of Problem (P?) if and only if (t*,v*) is a solution of
problem (P3), and §s(n*, 0*) = gs(t*,v*), where

b2~ Chig SE[3—3,3i-2),
Gig— 13- SE[B—2,3i—1)

() =14 . .-t  s€&l[3-1,3) i=1,2,--,1
3w — G s€[3,3l+1)
and
*(s) = v(t*(8)), s € 0,20 + 1]
PROOQF. The proof is similar to the proof for the Theorem 4.3.1. m]

Remark : (y;_; is related to the speed v and the acceleration a. If a is constant,

(2i—2 is decided by v.

4.6 Undulating Road

In this section, the road connecting the two cities is assumed to be undulating.

The distance between the two cities, the maximum allowable power to be applied
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to the motor, and the number of battery cells are again assumed to be fixed.
T={n, - ,mn}, satisfying 0 <7, < 1 < --- < 7y < S, are recharge locations
at which the vehicle can be recharged. These recharge locations include the
turning points ¥ = (¥, , ¥m) of undulating road. The number ! of recharge

points is assumed to be fixed.

4.6.1 Problem Formulation

Since the road connecting the two cities is undulating, the power being applied

to the motor (see (4.3.2)) becomes

p = vxr(v)

= v X m(b) + byv + gsinb),

and the power flowing out from each of the n parallel battery cells (see (4.3.3))

becomes
m(b + bav + gsin )
=1 X ; 4.6.1
PL=1v n ( )
From (4.2.7) and ( 4.6.1), we have
dq —¢ (bl’v-l-bgvz:gsinﬂ)-m’ t e [t2i—-23 t2i——l)
pril i — exp{es — o5t — tai-1)}, € [toi, fi)
2 -
- {(hrv+bsw :ysme)'m’ te [t2h t2t+1]
here i=1,-.-,1 (4.6.2)
with initial condition
q(0) = qo, (4.6.3)

We may now specify the corresponding optimization problem formally as
follows:

find a (¢,v} € T x V such that the cost function

94(t: v) = tfinal (t: v) (4.6.4)
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is minimized subject to the system (4.6.2) - (4.6.3) and the following constraints.

Gmin < ¢(f) < gmax, (4.6.5)

0 < p=m(av+bv’ + gsinf) < P, (4.6.6)

0<t;—ti, i=1,---,20+1, (4.6.7)

f Tt = 8, (4.6.8)
o

A v(t)dt =7 i=1,---,1, (4.6.9)

where S is the total distance traveled, n and ! are, respectively, the number of
battery cells and number of recharge times, v is the speed, and 7 = {r, -+ , 7}

is the vector of recharge points. Let this problem be referred to as Problem Pj.

4.6.2 Transformation

To find the optimal solution of Problem P4, we need to determine the optimal
time points ¢t = (1, - , 5}, and the optimal speed v.

We now apply the CPET [100, 50] to Problem Py. Let s € [0,2{ + 1] be a
new time variable, and let 5(s) be defined by

2041

n(s) = Z'f?::X[s—l,i)(S),
i=1

where Xji_14(s) is the characteristic function on the interval [i-1,i), and the
7is are nonnegative constants. Clearly, %(s), which is called the enhancing
control, is a nonnegative piecewise constant function defined on [0,2{4+1] with

fixed switching points {1,2,---,2{}. The CPET:

% = 7n(s),
#0) = 0

maps t € [0, ina] into s € [0, 2 + 1], where
n(s) = t: — tiy, seli—14), i=1,2---,20+1,
satisfying

2i+1
] n(s)ds = tfinai-
0
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Let © denote the class of all such enhancing controls. Under the CPET, the
system dynamics (4.6.2)-(4.6.3) becomes

(blv+b2v2+gsm9) m s € [2z 2,2 — 1)
d(ds) _ | 7§ 2 —exp{c4—c5(t—21+1)} s € [2@—1 2i)
£(s) o (blﬂ+bzv2+gsm9} s € [Ql 20 + 1]
(S)

(4.6.10)

5(0) o
() - () -
where §(s) = q(t(s)), 2(s) = v(t(s)), s € [0,2{+ 1], andi=1,--- L
The constraints (4.6.5)-(4.6.9) reduce to

with initial condition

Omin < G(2i — 1) i=1,---,14+1, (4.6.12)
(21) < Guaz i=1,--+,1, (4.6.13)
0 < p=m(b19+ byt + gsin8) < P, (4.6.14)
0<n i=1,--+,20+1, (4.6.15)
20+1
] ods = S, (4.6.16)
02%—1
f v(s)ds = 7; i=0,---,L (4.6.17)
0

Let V; be the set of all those 9(s), such that the conditions (4.6.12)—(4.6.17)
are satisfied. Problem P, is now transformed into the following optimal control
problem:

given the dynamical system (4.6.10)—(4.6.11), find a (n,9) € © x V, such that

the cost function
k+1

0) = m (4.6.18)
i=1

is minimized subject to the constraints (4.6.12)-(4.6.17). This problem is re-

ferred to as Problem PJ.

Theorem 4.6.1 Problem (P)) is equivalent to Problem (P;) in the sense that
(m*,0*) is a solution of Problem (P?) if and only if (£*,v*) is o solution of

85



problem (Py), and jq(n*,o*) = gs(8*,v*), where n*(s) = ¢ —tf.,, s € [i —
1,i), i=1,2,-++,20 + 1, and 9*(s) = v(t*(s)), s € [0,20 + 1.

PROOF. The proof is similar to the proof for the Theorem 4.3.1. O

Note that the recharge points are fixed. However there may exist coalescence
of the switching times. Thus, the exact optimal number of recharge points is
equal to [ minus the number of recharge points corresponding to the occurrence

of redundancies.

4.7 Free Recharge Locations

With the notation defined in Section 4.5, we consider the situation in which the
recharge location for a traveling vehicle are free to be optimized. The problem
can be formulated as the following optimization problem:

given the dynamical system (4.6.2)—(4.6.3), find a (t,v,{) € T x V x N such

that the cost function
gS(ts v, l) = tfina.l (tg v, l) (471)

is minimized subject to the constraints

Imin < 4(t) < Gnaas (4.7.2)
0 < p=m(av + bv? + gsinb) < P, (4.7.3)
0<t;—tiy i=1,-,20+1, (4.7.4)
j(; Tt = 8, C@415)
f " (@)t = j=1,---,m, and t; €1, (4.7.6)
105 L, (4.7.7)

where S is the total distance traveled, L is the the upper bound of the number
of the recharge points, n and! are, respectively, the number of battery cells and
the number of recharge points, v is the speed, and v = {7, -+, ¥} is the
vector of the turning points of the undulated road. Let this problem be referred

to as Problem P;.
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4.7.1 Transformation

To solve Problem P, we need to determine the optimal number ! of recharge
points, the optimal time points £ = (#1,-- 1), and the optimal speed v. Let
us initially choose the optimal number of recharge points to be & > m. These
recharge points include the turning points 4 = (1, ,¥m). Then, only the
optimal switching time points with a fixed number of recharge points, and the
corresponding optimal speed are to be determined optimally. This simplified
problem is referred to as Problem PF.

We now apply the CPET [100, 50] to Problem P¥f. Let s € [0,2k + 1] be a

new time variable, and define
2k+1

= Z NiXli-1,5)(8)
i=1
where Xi_1,5(s) is the characteristic function on the interval [i-1,i), and the 7js
are nonnegative constants. Clearly, (s), which is called the enhancing control,

is a nonnegative piecewise constant function defined on [0,2k+1] with fixed

switching times {1,2,---,2k}. The CPET:

L= i)
0) = 0

maps t € [0, {pinq] into s € [0, 2k + 1], where
n(s) =t; — ti_1, s€li—1,9), i=12-+,2%+1,
satisfying

2%k+1
/ n(s)ds = tsinal-
0

Let © denote the class of all such enhancing controls. Under the CPET, the
system dynamics (4.6.2)-(4.6.3)(with ! = k) becomes

(b]‘b‘-!-bzv +gsm9) s€ [21, —2,% — 1)
4 ( 4(s) ) _| 7y 7= o exp{es — os(t — 2+ 1)}, s € [2i — 1,2i)
ds t(s) (b1v+bzv :gsm #)-m , se [Zk, % 4+ 1]
n(s)
(4.7.8)
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with initial condition

(1) - (5)

Gmin < §(28— 1) i=1,---,k+1, (4.7.10)
4(21) < Gmar i=1,-,k (4.7.11)
0 < p=m(bd+ by9* + gsinf) < P, (4.7.12)
0<% i=1,---,2k+1, (4.7.13)
2k+1
f ods = , (4.7.14)
0
ij
f o(f)dt=~;  j=1l,,m, andi; € {L,--- 2k — 1}(4.7.15)
0

Let V5 be the set of all those ©(s) such that the conditions (4.7.10)-(4.7.15)
are satisfied. Problem PF is now transformed into the following optimal control
problem:

given the dynamical system (4.7.8)—(4.7.9), find a (1, 9) € © x V, such that the

cost function

2k+1
ACEDI (4.7.16)
i=1

is minimized subject to the constraints (4.7.11)-(4.7.15). This problem is re-

ferred to as Problem Pg“.

Theorem 4.7.1 Problem (PF) is equivalent to Problem (P¥) in the sense thot
(n*,0*) is a solution of Problem (Pg“) if and only if (t*,v*) is a solution of
Problem (PF), and g5(n*,7*) = gs(t*,v*), where n*(s) = &1 -t} ,, s € [i —
1,4), 1=1,2,--+,2k + 1, and *(s) = v(t*(s)), s € [0,2k + 1].

PROOF. The proof is similar to the proof for the Theorem 4.3.1. |
The recharge points, besides the m turning points, can be located in any

intervals of the undulated road. Let ¢ = (t1,- - ,t9) be the optimal solution of
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Problem (PF) for a fixed positive integer k, which denotes the number of the
recharge points in the intervals of the undulated road. The optimal number of
recharge points can be obtained by using the Algorithin A proposed in Section
4.3.

4.8 Numerical Experiments

We now consider some numerical examples of the problems formulated in Sec-
tions 4.3, 4.4, 4.5, 4.6 and 4.7. All the examples below were solved using MISER
3.2 ([41, 42]) in Fortran double precision on a Unix Workstation.

In Examples 4.1, 4.2, and 4.3, the road connecting the two cities is assumed

to be even.
Example 4.1. Choose S = 600, P = 50, m; = 1400, L = 5, and n = 80 in

Problem (P;). The dynamical system is

w2

dg —ﬁgﬁ'—%‘?ﬂ@, t € [taiz, t2i1)
E = -3%%% - exp{2.5 - 3.0(t2§2— tzi_l)(t - t2i—1)}a t e [tgi_l,tzi)
LY ).1400
_T%'ﬁ'( s 30) y te [t2bt2!+1]
here i=1,.-,1 (4.8.1)
with initial condition
g(0) = 60. (4.8.2)

Then, Problem P; becomes:
given the dynamical system (4.8.1)-(4.8.2), find t = {¢1,¢2, -+ ,fxu}, v, I, such
that

Gt v, ) = tenalt, v, )
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(b) Optimal driving speed

(a) Optimal recharge plan

Figure 4.8.1: The optimal driving strategy for Example 4.1

is minimized subject to the constraints
20 < qft) < 80,
0 <p< il
0<t;—tig i=1,---,20+1,
tfinal
/ vdt = 600,
0

[ <5.

We choose kg = 2 in Algorithm A. Consider the case in which k = 4.
Under the CPET given in Section 4.3, we have:

given the dynamical system

{2 +125)-1400

Don..ﬂﬁ..._.lzﬂﬂ_ LS [2’&-2,23—1)
dg _ ¢ nE3% - exp{2 5—3. Ong,,(s -2 +1)}, s€[2i-1,2)
- =
5 1t i) 1490 s € [8,9]
ere i=1,--,4,
with initial condition
¢(0) = 60,

find parameter vectors n and ¥ such that

9
gi(m, ) =Z77i

i=1
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1|1 2 3 4 5
t; | 3.2000 | 5.4852 | 9.1523 | 11.094 | 14.275
z; | 191. 08 | 191. 08 | 410.06 | 410. 06 | 600

Table 4.8.1: The optimal switching times and recharge points for Example 4.1

is minimized subject to

20 < g(2i - 1) i=1,---,5,
d(24) < 80 i=1,-,4,
0 < p <50,

0 < t=1,---,9

The optimal switching times and recharge points are listed in Table 4.8.1,
in which the optimal switching times are 3.200, 5.485, 9.153, and 11.09, while
the optimal recharge points are 191.08 and 410.06. The corresponding optimal
speed is 59.71 with minimum traveling time 14.275.

Figure 4.8.1 contains the optimal recharge plan, the optimal switching times

and the optimal driving speed.

Example 4.2. In Problem £, choose § =600, P = 50, m = 1470 and n = 87.
The recharge locations are restricted at 130, 240, 300, 420, and 490. The

dynamical system is:

22

2 1470
dg 2000 _T'éﬁ(_gﬂi"%%o)_s t € [t2i-2,t2i-1)
c—f{ = 256 — exp{2.5 - 3.0(t21§ - tgi_l)(t — tgi_l}, tE [tgi_l, tgi)
v w2 5
"Wlo(_+ 37)1470= t € [tg, tpy1]
here i=1,---,5 (4.8.3)

with initial condition
¢(0) = 60, (4.8.4)

Problem (£,) becomes:
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(a} Optimal recharge plan (b) Optimal driving speed

Figure 4.8.2: The optimal driving strategy for Example 4.2

given the dynamical system (4.8.3)-(4.8.4), find £ = {t;,¢,--- , {11}, and v such
that

ga(t,v) = f final (2, v)

is minimized subject to the constraints

20 < g(t) <80

0 < p <50,

0<ti—ti_1 ?:=1,'°',1].,
t11

f vdt = 600,
0
ta—1

/ vdt = T, i=1,2,-+,5,
0

where (1q,---,75) = (130, 240, 300, 420, 490).
Under the CPET transform, we have the following problem:

given the dynamics

6, 2
IS (as Ry s € [2—2,2 1)
dg _ ¢ 2% - exp{2.5 3. Omi(s—2i+1)}, s €[2-1,2)
ds + i) 70
100"( 37) — s € [10,11]
here z’=1,---,5.
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i |1 2 3 4 5 6 7 8 9 10 11

t; 1224 | 3.33 | 523 | 5.23 | 6.26 | 8.09 | 10.16 | 10.16 | 11.37 | 12.39 | 14.29

z; | 130. | 130. | 240. | 240. | 300. | 300. | 418.7 | 418.7 | 488.4 | 488.4 | 600.

Table 4.8.2: The optimal switching times and recharge points for Example 4.2
with initial condition
d(0) = 60,
find parameter vectors n, and ¢ such that
11
92(n, 0) = Z U
i=1

is minimized subject to

20 < G(2¢ - 1) i=1--+,6,
§(2) < 80 i=1,-,5
0 <p=<50
0<mn i=1,---,11,
11
f tds = 600,
0
2i-1
f d(s)ds=m; 1=1,2,---,5
0

The optimal switching times and recharge points, listed in Table 4.8.2, show
that there are four redundancies t3 = ¢4, t7 = t3. The lengths of the recharge
intervals [t3,t4], and [t7,ts] are all equal to zero. Thus, the actual recharge
intervals are [t;,t2], [f5,%s) and [tg, t10). The optimal switching times are 2.242,
3.330, 6.262, 8.089, 11.36, and 12.39, while the optimal recharge points are
130, 300, and 488. The corresponding optimal speed is 57.76 with minimum
traveling times 14.292.

Figure 4.8.2 contains the optimal recharge plan, the optimal switching times

and the optimal driving speed.

Example 4.3. In Problem (P;), we choose S = 600, P = 50, m = 1410, n = 81
recharge locations are (130, 300, 490), a=12000.
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Figure 4.8.3: The optimal driving strategy for Example 4.3

The dynamic system is chosen to be

240v+8v2+12000v)-1410
( —6001000( _ +l w1 t € [tai2, (2i-2)
(240v+8u2)1410 ‘e [Czi 0, b 1)
d 00000 _ -
2= A% exp{25 — 3.0(tss =t 1)t —ti s}, L€ [ty 020
1 {2400+8v2+12000v)-1410
_tsooooo1 cdoriae t € [t ()
(4 )/ B
\ ~ 600000 81 ; t € [Cary tai1)
here 1=1,---,3. (4.8.5)

with initial condition

q(0) = g, (4.8.6)

where (s;_9 are switching times at each of which the speed from zero monoton-
ically increases from zero to a positive constant.

Problem (P;) then becomes

given dynamics (4.8.5) - (4.8.6), find the switching times ¢, and corresponding
speed v, such that

93(t,v) = trina(t, v) (4.8.7)
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is minimized subject to the constraints

20 < q(t) < 80, (4.8.8)

0 < p < 50, (4.8.9)

0 <t —ti1 i=1,-,3, (4.8.10)

/ Tt = 600, (4.8.11)
Otgl_

fo =7 i=1,---,3, (4.8.12)

where the (11,1, 73) = (130, 300,490).
Under the CPET transformation, defined in Section 4.5, the above problem
becomes:

given dynamics

240948624 12000v)-1410 : )
r — gm00 ( :;0 :; 2) 1:1)0 s€[3—3,3-2)
& Lk . .

) o000 so0ao0 7 LRSS [32 — 2,3 — 1)
di _ S Meyse — exp{2 5— 3. Ong,,(s - 3z +1)}, s€[3i—1,3i%)
ds 1 (240~u+3u2+12000u} 1410 s € [9,10)

6030001 (2409+852) 1410 s €[10,11]
\ 800000 81 ’ ;
here i=1,---,3.

with initial condition ¢{0) = 60,

find the parameter vectors 7, and @, such that

11
i=1
is minimized subject to

20 < 4(s) < 80,

0<p=<50
0<"?:‘ i=1:"'1113
11
f tds = 600,
0
3i-1
/ t(s)ds =~ i=1,--+,3.
0

The optimal switching times are 2.359, 3.292, 6.377, 8.055, 11.50, 12.39,
the optimal speed is 55.15 with minimum traveling times 14.3836. The optimal
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i |1 2 3 4 5 6 7
t; | 2.359 | 3.292 | 6.377 | 8.055 | 11.50 | 12.39 | 14.38
z; | 130 | 130 | 300 |300 |[490 |49 | 600

Table 4.8.3: The optimal switching times and recharge points for Example 4.3

switching times and recharge points are listed in Table 4.8.3. Figure 4.8.3 show
the optimal switching times and optimal driving speed.

In Examples 4.4 and 4.5, the road connecting the two cities is assumed
to be undulated with two tuning points located at 350 and 550, respectively.
Therefore v = (350, 550). The angles of slope of the road on the intervals (0,
350), (350, 550), and (550, 600) are 4.4°,174°, and 5.86°, respectively.

Example 4.4. In Problem (P}, choose P = 50, m = 1440, and n = 84. The
recharge locations are restricted at 150, 250, 350, and 470. All turning points
of the undulated road are included in the recharge points. Thus, the recharge

points are 150, 250, 350, 470, and 550. The dynamic system is

2
AP+ gsind) 1380
_ 1 (g5tsogtesind) te [tzi—2, t2i—1)

d 100 78 )
d_g = % —exp{2.5 — 3.0(tg; — taic1)(t — t2im1}, T € [tai1,te)
24 v® L ocing).1380
SERCL R £ € [t o
here i=1,---,4 (4.8.13)
with initial condition
g(0) = 60, (4.8.14)

Problem (P,) then becomes:
given the dynamical system (4.8.13)-(4.8.14), find ¢ = {¢1,t,--- , %o}, and v
such that

ga(t,v) = tsinai(t,v)
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(a) Optimal recharge plan (b) Optimal driving speed

Figure 4.8.4: The optimal driving strategy for Example 4.4

is minimized subject to the constraints

20 < q(t) < 80,

0<p<bl,

0<t—ti i=1,---,10,
t1p

f vdt = 600,

0

t2i—1

f vdt = 75 i=1,---,5,
0

where (71, -+ ,7s) = (150, 250, 350, 470, 550).
Under the CPET given in Section 4.6, we have:

given the dynamics

— Lplot puten )15 s€[2%-22—1)
g _ nZ55 — exp{2.5 -23.0772;(3 —2+1)}, s€[2i-1,2)
ERE LIy
ds _ﬁn(40+1200—|;gsm8) 1380, s€ [8, 10]
here t=1,---,4
with initial condition
G(0) = 60,
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i [1 2 3 4 5 6 7 8 9 10
t; [ 2.78 501686686 |8.71|11.26 | 13.02 | 13.02 | 14.20 | 15.17
z; [ 180 [ 150 | 250 | 250 | 350 | 350 | 470.1 | 470.1 | 550.1 | 600

Table 4.8.4: The optimal switching times and recharge points for Example 4.4

find parameter vectors 7, and ¥ such that
10
4(7?1 ﬁ) = Z L
i=1

is minimized subject to

20 < (i) i=1,3,5,7,9,10,
Q(Q)SSO 7::1;"'54’
0 < p=<50,
0<n i=1,...,10,
10
f ds = 600,
0
2i—1
/ (s)ds = 7 i=1,---,b.
0

The optimal switching times and recharge points, listed in Table 4.8.4, show
that there exist redundancies: #3 = t4, t7 = tg. The lengths of the recharge
intervals [t3,%4] and [t7,ts] are all equal to zero. The actual recharge intervals
are [t1,ts] and [ts,fs]. Therefore, the optimal recharge locations are 150, and
350. The optimal switching times are 2.778, 5.010, 8.714, 11.256, and 14.204.
The corresponding optimal speeds are 54.0, 67.8, and 51.8. The minimum
traveling time is 15.170.

Figure 4.8.4 contains the optimal recharge plan, the optimal switching times,

and the optimal driving speed.

Example 4.5. In Problem (F;), choose S = 600, P = 50, m; = 1440, L =
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5, and n = 84. The dynamical system is:

uZ

dy _ﬁ%ﬁ?&a t € [tai2,t2i1)
-(-i—t— = %% — exp{2.5 — 3.0('623' - tg.,'_l)(t — tg,;_l}, te [tgz'_l, tgz')
24 2y 1440
_ﬁ( +_.mn__84) - ) t € [t tore1]
here i=1,--,1 (4.8.15)
with initial condition
4(0) = 60. (4.8.16)

Problem (P5) becomes:
given the dynamical system (4.8.15)—(4.8.16), find ¢t = {¢1,%3, -+ ,ta}, v, [, such
that

gs (t7 v, l) = tfina.l (t: v, l)
is minimized subject to the constraints

20 < q(t) < 80,

0<p <50,
0<t;—tiy i=1,--,20+1,
L final
f vdt = 600,
0
t'-j
/ v(t)dt =, j=1,2, and ¢;; € ¢,
0
1< 10,

where v = (350, 550).
We choose ky = 3 in Algorithm B. Consider the case in which & = 5.
Under the CPET given in Section 4.7, the problem becomes:

given the dynamical system

92

— bt ) 10 s€[2—2,2%— 1)
dg _ ¢ n2% —exp{25-30mi(s—2i+1)}, s€[2i—1,2i)
ds A4 22 ).1440
s — b Gt T 140 s € [10,11]
here t=1,---,d
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i |1 2 3 4 9 6
t; | 3.3600 | 5.2944 | 8.6227 | 11.018 | 14.028 | 15.026
z; { 175.83 | 175.83 | 350.00 | 350.00 | 550.00 | 600

Table 4.8.5: The optimal switching times and recharge points for Example 4.5

with initial condition

find parameter vectors 5 and ¥, such that
11
damo)=>) n
i=1

is minimized subject to

20 < 4(2i - 1) i=1,---,6,
¢(24) < 80 i=1,---,5,

0 <p<50,

0 <7 i=1,---,11,
‘[jv(t)dt=fyj j=1,2, and i; € {1,3,5,7,9},,

11
f dds = 600.
0

The optimal switching times and recharge points are listed in Table 4.8.5.
The optimal switching times are 3.360, 5.294, 8.623, 11.02, and 14.03, the opti-
mal recharge locations are 175.8, and 350.0. The corresponding optimal speeds
are 52.06, 66.22, and 49.79, respectively. The minimum traveling time is 15.026.

Figure 4.8.5 contains the optimal recharge plan, the optimal switching times

and the optimal driving speed.

4.9 Conclusion

In this chapter, we construct a battery—powered electric vehicle model, in which

driving strategy is to be obtained such that the total traveling time between
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6 %z 4 & & w 1= w
(a) optimal recharge plan (b) optimal driving speed

Figure 4.8.5: The optimal driving strategy for Example 4.5

two locations is minimized. We show that the recharge and driving plan for this
battery—powered electrical vehicle model can be formulated as unconventional
constrained optimal control problem, and the problem can be converted into
conventional optimal control problem by using CPET. Numerical examples are
solved using the proposed method.

From the above examples, it can be seen that the car traveling at a high
speed will use more power per kilometer than traveling at a low speed, since
the relationship between the rate of power used and the speed is a quadratic
function. High speed will eventually increase the battery recharge time and
result in the increase in the total traveling time. It is clear too that the low
speed will increase the total running time and result in the increase in the total
traveling time. The optimal speed will balance the battery recharge time and
the driving time, and thus reduce the total traveling time. It can also be seen
that the optimal speed on an uphill road will lower than on an even road, and
the optimal speed on a downhill road is higher than on an even road, because
of the effect of gravity. From the above examples, it can also be found that
every recharge will cause some time delay. Therefore, the more the recharge
time, the more the delay will be. On the other hand, the recharge rate will

be lower, when the battery contains more power, and thus the recharge will
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be slower when the battery close to the full capacity. The optimal number of
recharge and optimal recharge times will balance the loss of time on the delay
of recharges and the loss of time on the lower recharge rate when the battery is

close to the full capacity and eventually reduce the total traveling time.
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Chapter 5

Optimal Control Problem With
Variable Time Points in the
Objective Functions

5.1 Introduction

In this chapter, we consider the numerical solution of an optimal control problem
involving variable time points. Its motivation comes from a situation in which
a target is moving as a function of time in the space. A space-craft is launched
into space, and its trajectory is maneuvered by certain control actions. The
mission of the space-craft is to take measurements at various time points over
a given mission period which is divided into a number of time subintervals.
Each of the time points is to be selected from the respective time subinterval.
Suppose, we wish to take the measurement in each time subinterval at the time
point at which the distance between the moving target and the space-craft is a
minimum. Let the sum of these distances be the cost function. Then, we have
an optimal control problem, where the control actions of the space-craft and
the variable time points are to be chosen optimally with respect to the given
cost function. A different problem, also involving variable time points, has been
discussed in {14] and [15] from the theoretical point of view. In that problem,
each equation in the dynamical system is defined on an interval with variable
initial and terminal time points which are decision variables. The dynamical

system of the problem considered here has fixed initial and terminal time points,
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but has some variable observation time points within the time interval. Also,
the main focus of this chapter is to present some efficient numerical techniques
for solving these optimal control problems with variable time points, while [14]
and [15] are only concerned with the theory of necessary optimality conditions
for their problems. The rest of this Chapter is organized as follows:

A general class of optimal control problems containing the situation just
mentioned above as an example is formulated in Section 5.2, where the cost
function includes multiple variable time points. The control parameterization
enhancing technique is used to transform the problem into a form solvable by
the control parameterization technique in Section 5.3. More specifically, the
control parameterization enhancing transform [100] is first used to convert the
optimal control problem with variable time points to an equivalent optimal
control problem with fixed multiple characteristic time (MCT) (cf. {56]). The
transformed problems are essentially optimal parameter selection problems with
MCT. The gradient formulae for the objective function as well as the constraint
functions with respect to relevant decision variables are derived in Section 5.4.
With these gradient formulae, each of the transformed optimal control problems
is solvable as an optimal parameter selection problem, and the software MISER
3.2 [42] can be modified for solving these optimal parameter selection problems.
In Section 5.5, two examples are solved using the proposed method. Section 5.6

concludes this chapter.

5.2 Problem Formulation

Consider a process described by the following system of differential equations

defined on [0,T].

&(t) = f(t, z(t), u(t), 2(t)), (5.2.1)
x(0) = (5.2.2)
where T is a fixed terminal time, & =[5, ,Z,]T € R", u = [u1,- -+, Un]’ €
RE™ and z = {2, -- ,zp]T € RP are , respectively, state, control, and system pa-
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rameter, while f = [fi,---, fa]¥ € R" is a continuously differentiable function
with respect to all its arguments, and z° is a given vector.
Let 7; and 7, ¢ = 0,1,---, k, be constants in the time interval [0,T] such

that

Furthermore, let a; and b;, i = 1,---,s, ¢; and d;, ¢ = 1,---, m, be fixed

constants. Define

V={t=lt, .t  €eR:t;€[5,7],i=1,-,k}
Z={z:[zl,...,zr]T€R’" ra; <z < by, i:]_,...,rr}

U={u=[u1,..-,um]T€Rm:ciSuiSdi, i:lj...}m}

Any Borel measurable function w : [0,7] — U is called an admissible control.
Let 24 be the class of all admissible controls. For each (u, z) € Ux Z, letz(-|u, 2)
denote the corresponding solution of the system (5.2.1) ~(5.2.2).

QOur optimal control problem may now be formally stated as:
given the dynamical system (5.2.1) —(5.2.2), find a (f,u,z) € V x U x Z such

that the cost function

k
gt u,z) = Z ®,;(t;, 2(t;|u, 2)) (5.2.4)

i=1

is minimized subject to the constraints

gj(tiam(ti|us Z),Z) < 0: .? =1, 1= 1)"' :k (5'2'5)

a3 S 25 S bi, i= 1,2, MR i (526)
g <u(t)<d; i=12,---,m t€][0,T] (5.2.7)
It_stlgﬁ 2'21323"',’6, (528)

where ®;(t;,x), ¢ =1,2--- ,k, and g;(t;,2,2) j =1, ,q,i=1,--- Kk, are
continuously differentiable real valued functions on [0, 7] x R* and [0, T] x R* x

R", respectively. Let this optimal control problem be referred to as Problem P.
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5.3 Transformation

Let s € [0,k + 1] be a new time variable, and let v(s) be defined by

E+1

v(s) = Z'Ui * Xfi-1,3(8) (5.3.1)

where Xji—1,;) is the indicator function of the interval [i-1,i), and the vs are non-
negative constants. Clearly, v(s) is a nonnegative piecewise constant function,
which is called the enhancing control, defined on [0,k+1] with fixed switching
points located at {1,2,--- , k}.

The control parameterization enhancing transform (CPET) maps ¢t € [0,7]

to s € [0, k + 1] as follows:

& = v(s)
tH0) =0
where

v(s) = ti—ti1 s€[i—1,4) i=12---,k
S\ T-t%  selkk+]]

which satisfies
I_:_S f U(S)dSSﬁ', § = 11"' 7k3 (53‘2)
k+1 ’
and / v(s)ds =T. (5.3.3)
0

Such a function is called an enhancing control, let V* denote the class of all
such enhancing controls.

Under the CPET, the system dynamics changes to

_gg ( ty(gs)) ) = v(s) ( f(t(S),y(s),lw(s),z) ) se0k+1]  (534)

with initial condition
y(O) _ Zo
(%) = (¢) (032)



where y(s) = z(t(s)) and w(s) = u(t(s)).

The constraints

e <u{t)<d;, i=1,2,---,m, tel0,T] (5.3.6)

reduce to
; <wi(s) <d; i=1,2,---,m, s€[0,k+1]. (5.3.7)
Define w(s) = (wi(s), wa(s), -+, wn(s)) where w;, ¢ = 1,---,m, satisfy the

constraints (5.3.7). Let W be the set of all such functions w(s), and the Problem
P is now transformed into the following optimal control preblem:

given the dynamical system (5.3.4)—(5.3.5), find an admissible element (v, w, 2) €
V* x W x Z such that the cost function:

k i
o(v, w, 2) Z Zvy, ilw, z), z) (5.3.8)

is minimized subject to the constraints:

i
ﬁj(Zvj,y(i),z) <0, j=1,-, i=1,---,k, (5.3.9)

a; <z < bi, 1= 1,2, AR (5310)
o < wils) < dj, i=12,---,m, s€[0,k+1] (5.3.11)
v(s) € V* (5.3.12)

This problem is referred to as Problem P*.
An admissible element (v, w, 2) € V* x W x Z (respectively, (¢, u, z)) is
called a feasible element of Problem P* (respectively, Problem P) if the con-

straints (5.3.9)—(5.3.12) (respectively constraints (5.2.5) — (5.2.8)) are satisfied.

Theorem 5.3.1 Problem P, is equivalent to Problem P in the sense that (v*, w*, 2*)
is a solution of problem (P,) if and only if (t*,u*, z*) is a solution of problem

(P), and

* *

.‘jO(v W, 2 ) - gﬂ(t 7u*sz*)
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PROOF. Let (£, u;, 21) € (VxU x Z) be a feasible element of Problem (P), and
let (vq, w1, 21) € V* x W x Z be the corresponding feasible element of problem
(P,). Then it is easy to check that @(t) is the solution of (5.2.1)-(5.2.2) if and
only if y(s) is the solution of (5.3.4)—(5.3.5), and

go(t, u1,21) = Z D(t;, o(ti|ui, 21))

k
= Z‘f’i(zvg, y(ilwi, z1), z1) = go(v1, w1, 21)

=1 =1
Hence, the results follows readily. O

In Problem {P) the cost function (5.2.4) is to be minimized with respect to
(t,u,2) € (VXU x Z) where t = [ty, - ,tx]andt;, i = 1,-- -, k, are switching
times. On the other hand, the cost function (5.3.8) in Problem P* is to be
minimized with respect to (v, w, 2} € V* x W x Z, where v(t) is a nonnegative
piecewise constant function. Since Problem P is equivalent to Problem (P*), we
choose to solve Problem P* which is an optimal control problem with multiple
characteristic times ( see [56]). The main reason Problem P* is numerically
more tractable, is that it does not involve variable switching times.

In the classical control parameterization technique, each control function
w;(s) is approximated by a zeroth order or first order spline function ( that is,
a piecewise constant function or a piecewise linear continuous function) defined
on a set of knots {0 = s, s%,--+,st. = (k+ 1)}. Note that each component
may have a different set of knots and the knots are not necessarily equally
spaced. For the case of piecewise constant basis functions, we write the i-th

control function as the sum of basis functions with coefficients or parameters

{Jijsj = 1:23' v 5pi} :

ZO’,JB(O)

where Bg] )(s) is the indicator function for the j-th interval of the i-th set of
knots defined by
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@y _f 1 sii<s<s,
Bij'(s) = { 0, otherwise

For piecewise linear continuous basis functions, we write the i-th control function

as:

Z O',JB(I)

where Bf; )(s) are the witch’s hat functions defined by

BS)(S) — { (s — 3'1)/(35 - Sg), s € [S:llssi]:

0 otherwise,

gy [ E7 R s o)
Bij (S) = (3 - SJ-I—].)/( 7 j+1) s € [3_1? SJ+1]
0 otherwise,

B(l}( ) (5 - 5?:,-—1)/(32,» - Si,——l)! 5 € [Sp,—la p._]
0 otherwise,

Thus, w(s) can be uniquely identified with a control parameter vector o and

vice verses with:

i_ T
o = [01?,1,01:,2, Te }Ji,p,‘]

which satisfy conditions:

C‘igaijsdi: i=1a25"':m: j:1:25°'°:pi (5313)

Let X denote the set of all such controls parameter vector o.
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We now apply the Control Parameterization Enhancing Transform (CPET)
to Problem P*. Let q be the second new time scale which varies from 0 to k+1,
the transformation from s € [0,k + 1] tog € [0,k + 1] can be defined by the

differential equation:

dg
s(0)=0

where the scaling function 1(g) is called the enhancing control. It is a piecewise
constant function with possible discontinuities at the pre-fixed knots &g, - - - , €ar,

ie.

M
n{g) = Z 7ix:(a),

where x;(g) is the indicator function defined by

xila) = { 1, ifg € 61,6

0, otherwise

Clearly,

s(g) = /Oq n{v)dv = Z_:m(fj = &) +mlg— &)

Let © denote the class of all such enhancing controls 7(g) satisfying

n(i):fin(v)dr/:i i=1,---,k+1 (5.3.14)
0
Under the CPET, the system dynamics changes to :
d ( #(q) ) _ ( v(s(g))f(t(s(a)), ¥(q), o, 2) )
= n(q) :

v(s(q))
here g€ [0,k+1] (5.3.15)
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with initial condition

( 3’0 ) (5.3.16)

where §(s) = (t(s)g))).

The constraint (5.3.7) is reduced to (5.3.13). Problem (P*} is now transformed

into the following optimal control problem:

given the dynamical system (5.3.15) — (5.3.16) find an admissible element (v, n, o, 2) €
V* x @ x X x Z such that the cost function

i

k ~
g[} v,n 0o, Z Z(I)i(z Uj,fl(il”?: O',Z)Z) (5317)
i=1 i=1

is minimized subject to the constraints:

ZUJ’ in,o,2),2) <0, j=1,---,i=1,---,k, (5.3.18)

a; S z < b, i=1,2,--4,1, (5.3.19)
¢ <oy < d; i=1,---,k, j=1,---,p (5.3.20)
v(s) € V* | (5.3.21)
n(g) €© (5.3.22)

This problem is referred to as Problem (P**). Problem (P**) is an optimal
control problem with MCT, where the control functions are piecewise constant
or piecewise linear continuous functions with pre-fixed partition points. Hence,

it can be viewed as an optimal parameter selection problem with MCT.

5.4 Gradient Formulae

To solve Problem (P**), we need to derive the gradient formulae of the cost
function as well as the constraint functions .53'(2, VLB, 0,2),2), § =
0,1,---,¢, ¢ = 1,--- k, (5.3.18). For simplicity, we simplify the notation,
and hence the notation used in this section is applicable only to this section.
For example, 7 = (1,79, ++ , 7 is used to denote the vector of multiple char-

acteristic times. The parameter set (v, 1, o, 2) is replaced by z, and the cost
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functional is reduced to
o(u, 2) = Z%, z(r;|u, ), z), (5.4.1)
where Q=15 <7 < ... <7 <Tey1 = 7. The state differential equation is

&(t) = £(t, =(t), u(t), 2) (5.4.2)

with the initial conditions
z(0) = 2%(2). (5.4.3)

Let U, and Z be as defined in Section 2. The optimal control problem is to
find an admissible element (u, z) € U x Z such that the cost functional (5.4.1)

is minimized subject to the constraints:

k
gi(u,2) =) &;i(z(rlu, ), 2), (5.4.4)

i=1
where j=1,---,¢.

Define a costate system given by following differential equations:

5\?() AJTaf( a(m)(;):,(t),z) =01, ,q, (5.4.5)

where t € (7;-1,7), t=1,2,---,k+1,

subject to the internal jumps:

AT(rt) + L 9%ii=(m),2) _ M(r7)  i=1,---,k  (5.4.6)

AN(T) =0 (5.4.7)

Theorem 5.4.1 The gradient of the cost functional (5.4.1) or constraints (5.4.4)

with respect to control u is

af ,
V’U, gj(u) Z) A 4 audt J 0: H » @

PROOF. The main reference for this theorem is [56].
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Let du be a small variation in w. Then dg; is the corresponding change in g;,

and dx is the corresponding change in @. Thus,

k
Z 0%, :(z(r;|u, 2), z)é:c(ri)

09, = oz
=1
k k+1 _
_ 0%;i(2(7|u, 2), 2) N T i=T;
— 21: = sz(r;) ;[)\j(sm(t)]t:(ﬂ_l)+
k41 Bf
T —
+; f { -+ AT )5m(t) auau} dt

Since z(t) is continuous in ¢ € [0, T], we have

k+1 - k+1

So[Ne] " = SNl - AT )om ()

iil
= 2 ANE) = X ())oe(n)

=7 (7h)62(10) + Aj{7i 1) 0% (Ths1)
= i{’\f (77) = A} (1)} (m)
- —AT(0%)62(0) + A;(T)8x(T)
= Zk:{'\f () = A () }om(n)
- +A7 (T7)62(T) — A7 (0*)62(0)

Therefore,

k
593‘ — Z {a@j,i(m(Tilu!‘z)) _ Ag( )-l-AT( )}53:(7.%)

i=1 o
k+1
T T.f r9f
—XT( 6mT)+§fﬁ-l{ + A7 5=)02(t) + A 5 du }dt

From the definition of the costate system (5.4.5) — (5.4.7), all variations in

dx and dz(7;) vanish, yielding

k+1
9 3
Vu g;(u, 2) = Z/ faidt fAJTa::

eS| Ti-1
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The proof is complete. O
For the gradient of cost functional with respect to system parameters z, we

have the following theorem:

Theorem 5.4.2 The gradient of the cost functional (5.4.1) or constraints (5.4.4)

with respect to system parameters z is

o 9 : 0;i(m, z(ni|u, 2), 2
Vz gj(u$ z) = f ATafdt + AT({}) i z) + Z B (7 3(z| ) )
0 i=1

be J ::05'.'5q

PROOF. Similar to the proof given for Theorem 5.4.1, let 4z be a small
variation in z and let the corresponding variations in z and g; be as in Theorem

5.4.1. Then,

Sg; = Z {8@3, z(1|u, 2), )J:c(n) N 0%, ;(x(r|u, 2), 2) Jz}

py Oz
k
_ Z {8@,,( (;'iu 2, Z) s2(rs) + 6<I)j‘,-(a:(;2|:u, z),z) Jz}
i=1
k+1 f,:‘r._
. T
Z [A 53( )] t=(r—1)t
k+1 of of
+Z/ {(.\ AT 5-)0% ()+AJTaz5z}d

Since x(t) is continuous in ¢ € [0, 7], we have

k+1 - k+1

o [e] = S0 - X )senn)

t=r_,

k
= () - AT(R)Yee(n)

= A7 (382 (10) + Aj(T5y1 )0 (Th41)
= i{)\f (1) = Aj (7)) }om(m)
" —XI(0%)62(0) + N (T7)62(T)
Y ) - ¥ Noe(r)
B +A7 (T7)d2(T) — A7 (0%)8x(0)

114



Therefore,

k
sy = > {B(I)j,i(in(’filu,z)az) —N(r) + ;\}*(T;)} Sa(7;)

i=1 3:1:

w(TiIu’a Z), Z)
9z bz

k
—AI(T)62(T) + AT (0F)oz(0%) + ) Ol

i=1
k+1
Zf { ATaf)a +)\Tgf }dt

From the definition of the costate system (5.4.5) — (5.4.7), all terms involving

variation in & vanish, yielding

k41

k
Vzgi(u,2) = Z / ATaf dt + AT (0) wa(;ﬁ) +za®"’*(“’(giu’z)’z)

B rOf T(o 0z (z) k 09, (2 (7i|u, 2), 2)
_f,x 5 4t + X (0)— = +; .

The proof is complete. m|

5.5 Numerical Experiments
Example 5.1. Let zy be a function of time given by
zo(t) = sin(4t) + 2¢.

Consider a process described by the following differential equations

.'13'2 = —'?.Ll(t).’ﬂz -1+ ’sz(t) (552)

with initial conditions
z1(0) = 0.1 (5.5.3)
z2(0) = 0.2 (5.5.4)



Suppose T, Tk, ¢ = 1,---,5, are given by ; = 5;—;22", T = %%QT, i =
1,---,5and T = 3.
Our objective is to find observation times ¢;, ¢ = 1,--- , k, and the controls

u1(t) and uz(t) such that the cost function

S {(sind; + 2t — 2o(t:))?) (5.5.5)

is minimized subject to the constraints:

Define the CPET transform which maps t to s:

dt
ds v(s)

Let

v(s) = Z ViX[i-1,)(8)

i=1
where v;, 1 = 1, ,6, are collectively referred to as the parameter vector v.

The equivalent transformed problem is:

given the dynamical system

T = VY
g2 = v(—w1 (s)ye — y1 + wals))
with initial condition

1

y1(0)

1 0.

find a parameter vector v and control functions wi(s) = ui(t(s)), wa(s) =

uy(t(s)) such that the cost function

Z{(sindthj + 22%- — 0(1))?}

i=1
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Figure 5.5.1: The target trajectory zo(t) and the optimal trajectory z}(t).

is minimized subject to

—-3.0<wy(s) £4.0 Vs € [0, 6)
—3.0< wy(s) <115 Vs e€[0,6)

Using the CPET transform again, which maps from s to q, with pre-fixed
knots 60) El: e }510:

where
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Figure 5.5.2: The optimal control {(uf(t), u3(t))
10
n(g) = > mixig)
i=1
=31 g € [§i-1,&) i=12,---,10
xu(a) = { 0 otherwise
Clearly
] n(g)dg =1 i=1,2--,6 (5.5.6)
0

We thus obtain the optimal control problem with MCT : given the dynamical

system

i = nuy

¥o = 7?”(—0'1!72 —in+ 0'2)

with initial condition
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find a (v, o, 1) such

7n(0) = 0.1
92(0) = 0.2

that the cost function

)

=1

Z{(sinélZ'uj +2 Z v; — 20(3))?}

is minimized subject to

Tj .7:1:25
o i=1

6

ZU,;ZED

i=1

—“30<0'1,j<40 J=1,' ,11,
~30< 09, <115 j=1,---,11

This is an optimal control problem with MCT cost function. Using the

gradient formulae obtained in Section 5.4, the optimal control software package

MISER 3.2 can be adapted to solve this optimal control problem. Figure 5.5.1

shows the optimal trajectory of z}(t) and the trajectory for zo(t) = sin(4t)

+2t. The optimal observation times are £, = 0.7,{; = 0.8,f3 = 1.67,t4 =
1.81,¢5 = 2.59, tg = 2.75 with minimum cost function value of 0.027889, Figure

5.5.2 shows the optimal control functions uj(¢) and u}(¢).

Example5.2. A three dimensional optimal control problem with variable char-

acteristic times in the cost function.

Consider the dynamical system

with initial condition

T = I3+
352 = T3+ 23
.'17l3 = X1+ 22+ 25%3
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z1(0) = 0.1 (5.5.10)
£2(0) = 0.2 (5.5.11)
z3(0) = 0.1 (5.5.12)

Let the target trajectory be specified as follows:

zo1(t) = sin(4t) + 2t

zoa(t) = 28— 324+ 3t

Let &, = %Ta = 5?6211", t=1,---,5, and T = 3. Then, we formulate

the following problem:
given the dynamic system (5.5.7)-(5.5.12), find observation timest; ,i = 1,---,5,

and system parameters z;,¢ = 1,---,5, such that the cost function

5
Z{(Sin 4t3' + Qt,: - .'Em(ti))z + (t,;s - 3t,'2 + 3?5,; - mgg(ti))2} (5513)

i=1

is minimized subject to the constraints:

-1.0< % <100
-1.0<23<1.0
-1.0< <10
—40<2,<1.0
Use the CPET transform to map t to s
% = v(s):

Let
[
v(s) = > gixgi-1,5(5)
i=1
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Figure 5.5.3: The optimal trajectory (z}(¢),z3(f)) and target trajectory
(%01(2), zo2(t)).
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Figure 5.5.4: The projections of trajectories depicted in Figure 5.5.3 onto the
planes
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where ¢;, ¢ = 1,---,6, are collectively referred to as the parameter vector
o. Furthermore, let z;, i = 1,---,5, be collectively referred to as the system
parameter z. The equivalent transformed problem is:

given the dynamical system

1 = v(ys + 21) 71(0) = 0.1
Y2 = v(zays + 23) y2(0) = 0.2
Y3 = v(24th + Y2 + 25Y3) y3(0) = 0.1

find a (v 2) such that
5 i i

> {inaY vy +23 0 - a0 @)+ (v -3 w)

i=1 i= ' i=1
i
+3Z’Uj - .’f.'og (t,;))2}
j=1
is minimized, subject to

j
TjSZUiST_j j:1121"'15
=1

6
Su=s

i=1
-10<2 <20
—1.0 < 2z, <10.0
—1.0< 2 < 1.0
-1.0< % <1.0

—40< 25 < 1.0

The gradient formulae obtained in Section 5.4 are applicable. Thus, MISER
3.2 can be adapted to solve this optimal control problem with MCT cost func-
tion. Figure 5.5.3 shows the optimal trajectory of (z}(t), z3(¢)) and the trajec-
tory for zo;(¢) = sin{4t) + 2t and zgy(¢) = 3 — 3t* + 3¢, and Figure 5.5.4 shows
the projections of Figure 5.5.3 onto the planes X; x[0,7] and X;x[0,7]. The
optimal observation times are ¢; = 0.7, = 0.8,¢{3 = 1.544678,{y = 2.2,15 = 2.3
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with the minimum cost function value of 0.1915, and the optimal system pa-
rameters are z; = 1.32478, zo = 2.13784, z3 = —0.43432, 2, = —0.00573633, z5 =
0.073166.

5.6 Conclusion

In this chapter, a computational method was obtained for solving the optimal
control problem with multiple variables time points in objective function. The
method is based on the combination of the control enhancing transform and the
control parameterization technique. The method is efficient and supported by
rigorous mathematical analysis. Two numerical examples are solved using the

method.
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Chapter 6

Solving a Class of Nonlinear
Optimal Feedback Control
Problems Using 3rd Order
B-Splines with Optimal
Partition Points

6.1 Introduction

In this chapter, we propose an approach to the approximation of an optimal
feedback control law for a general nonlinear optimal control problem. In this
approach, a control function is approximated by a linear combination of a 3rd
order B-spline basis function constructed on a partition in state and time spaces.
This approximation is then used to substitute the control to form an approxi-
mate feedback control problem. In this approximate optimal feedback control
problem, the mesh points and the coefficients in the linear combination of the
3rd order B-spline basis functions are all decision variables. Once the initial
condition is given, the resulting optimal control problem becomes an optimal
parameter selection problem. The optimal control obtained is represented by
a linear combination of the 3rd order B-splines with optimal coefficients and
optimal partition points. This control is a function of the state and time. Thus,
it is more robust in the presence of the system noise and parameter variation.

The rest of the Chapter is organized as follows:
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In Section 6.2, we state the optimal feedback control problem. The approx-
imate optimal feedback control problem is discussed in Section 6.3. In Section

6.4, some examples are solved using the proposed approach.

6.2 The optimal feedback control problem

Consider a process described by the following system of differential equations

defined on [0,T).

&(t) = f(t, 2(t), u(e, ), 2(t)), (6.2.1)
:B(O) - fo (6.2.2)
where T is a fixed terminal time, & = [z}, - ,Z,]T € R®, u = [ug, -+ ,un)T €
R™ and z = [z;,---,2,)7 € RP are , respectively, state, control, and system pa-
rameter, while f = [f1,---, f.]* € B" is a continuously differentiable function

with respect to &, 4 and z and piecewise continuous with respect to £, and &
is assumed to be randomly distributed according to a fixed probability density
distribution p(£y) defined on some compact set I' C R". Let the compact sets
X CR*, Z CRP and U C R™ be defined by

X = {:c = [-'L'lv e ;mn]T eR": Timin Lz < xi,mam}
Z = {z=[za, -,z €k : Zigmin < 2 < Zigmaz )
U = {u' = ['U;l, s )um]T e R™: Ui, min <wu; < ui,nw.m}

For a given u and z, @(t) is determined by the {6.2.1) and (6.2.2). The control
u(x,t) in (6.2.1) is a feedback control obtained from the process of the system
and is added to the process in order to improve the robustness in the presence
of the noise and parameter variation. Any function u : X x [0,T] — U is
called an admissible control if it is continuously differentiable with respect to
x and piecewise continuous with respect to . Let f be the class of all such

admissible controls.

125



Qur optimal feedback control problem may now be formally stated as: given
the dynamic system (6.2.1) —(6.2.2), find a (u,2) € U x Z such that the cost

function

Go(&o, v, 2) = do(=(T)) + /OT go(t, &(t), u(z(t)), z)dt (6.2.3)

is minimized subject to the constraints

gj(U('),Z) S 0: .7 = 15 M / (624)

where ¢o(x) and g;, 7 =0,1,--- g, are continuously differentiable real valued
functions on R* and [0, T] x R™ x R™ x R?, respectively. Let this optimal control

problem be referred to as Problem Fg.

6.3 Approximation of the optimal feedback
control

We now consider the approximation of the control by a linear combination of the
3rd order spline basis functions. For simplicity, we restrict our consideration to
the case in which the control function # in Problem P is independent of time,
i.e., u = u(zx). Furthermore, for brevity, we also assume that n = 2 and m =
1, 7.e., the state is 2 dimensional and the control is a scalar. Now, the state
region is chosen to be X = [¢}, di] X [cg, do] with constants ¢, ¢z, di and ds
satisfying ¢; < d; and ¢; < ds.

For: = 1,2 let v; = {:c,-,j}ﬁf_fo be a set of partition points satisfying
G = Ty <xy < -0+ < ziN, TiN+ = di. The 3rd order B-spline basis
function (see. [47]), B;;(x), associated with z;;, 7 = 1,2,.-- ,N;, 1 = 1,2, is
defined by

{g—zj1)> N
hi,j—l(hi.('—1+hi),£) ( 2 z € ["I"m—l?zi,j)
— — i _ _Zmgn o
Bij(-’r) = L Rig(higthizr)  higlhii—1+heg) RS [Zz,:u -Tz,J+1)
’ (i j42—2) % € (@ 5110 T 522]
higyr(higthign) i,j+1s Tij+2

otherwise
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-—../

where h;; = ;41 — Zij. These basis functions are globally smooth. Now, we
approximate the control u(z) by a linear combination of the tensor products of

the basis functions, i.e.,

Ni+1 Na+1

U~ ub(:v, Uy, Vg, b) = Z Z b,‘,jBl,,'(:L'l)Bg,j(l'g) (631)

i=—1 j=-1
where b denotes the coefficient vector {;;}. Note that in the above expres-
sion we have introduced a few auxiliary mesh points ; _3, z;_1, Tin;+2, and
ZTin+3, ¢ = 1,2. (Mesh node z;_, does not appear in the above explicitly,
but it is needed for the construction of B; _;.) With this set of functions, the
above approximation preserves constants and first and second order polynomi-
als within the range [¢y,d1] X [e2,ds]. Replacing u in Problem Fg by u, given
above, we have the following approximate optimal feedback control problem:

given N1, and Ny, find v,, vy, b and the system parameter 2, such that

GO(‘EO: Up) Z) = ¢0 (m(T)) + A o (t: :B(t), Ub(m? U, Uz, b)7 Z)dt (632)

is minimized subject to

m(t) = f(t’w(t)aub(:c,'vl: 'U2$b)sz(t)): (633)
2(0) = & (6.3.4)
and
gj(ubnz)so? J=1 4 izl:"'ak (6'3'5)
Tio = Ci Zi N, = by, (6.3.6)
Tij < Zij41, 7=12,.- )Nj-h 1= ]-3 2 (63.7)

Let this optimal control problem be referred to as Problem Fg. This is an
approximate optimal feedback control problem using 3rd order B-splines with
variable partition points as controllers. The gradient of the function gy is given

by
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v

Bgo.
Bbk,l
dg0
65[:1;,1

where

BB,-,J- (I)

OTsj1

633',3' (.’L‘ )

83:,;,,-

BB,-,J- (.’.U)

O%; 541

835,3' (.’E)

O%i 42

Withhi,j=$i,j—

ag[) BB ago
e = = By (1) Bay (22 and
OB Obyy oB ( ) ( ) ?
Bgo OB
JB Bzck;
N1 No
agg BB“ .’E] aBQ (IL' )
Y JAL2
Z Z m{ —=—"DBy ;(z2) + B1,:‘(:t:1)$—}
=1 j=1 k0
(__—2z—mi-1) (z-zig-a)f  ,  (e-—wmig0)?
hij—1(hij—1+hiz) T BT, _j(hig—athig) T hoi-i(hij-1+hi )E?
Z € [Tijj1, Tiy)
- (Ei ‘+1_m)2 P .
< hij{hs;—1+hi )% x e ["Emaxmﬂ)
0, T € [Tijy1, Tigra)
L 0, otherwise
( —- (I—:Ei’j_l)z o o
lh?.j—l(hi.j—1+hi,j)’ S [mt,J—lsxz,j)
(z—ai ) - (I-—.’B"‘j)z _ (.‘17—.‘]:,"")2
B (i +hiis1) BT (hij+higr1)  hog(hij+higa)?
(-"31 jr1—2) o
< (h’lj 1+hl_7)’ T E ["L"l",J’ 'T‘h.?"l'].)
(:L.' J+2_$) .. P
Bi i1 (hig+higi1)?? z € [-'Cw+1a m1,3+2]
L 0, otherwise
f (z-mi,J_1)2 . . . .
T hij_1(hij_1+hig)2? S [mm—l’mm)
(z—2i,4) (zij+1—2) + {zi,41—2)2
ki (h(* athiga) T highigo1thig) RT (hi g1 +hiz)
< m‘ +1_m) v . el
+hw(hu 1+h.,)2’ S {Iz,gp-'17w+1)
{zi, J+2_$ . o
hf ;o1 (his+hig41)’ T € [‘T*J+1’$m+2]
. 0, otherwise
(0, ) T € [%ij-1,Ti ;)
(m_zl -) P -
hij(hij+hi;41)2? z € [wmaxm-f-l)
[ g (®ij+2—2) (@2 —2)* (zige2—2)?
Rigr1Chegthigen) BTy (hegth G41) Pijei(hijthige1)e?
T € [Tij41, Tijya)
L 0, otherwise

Tij—1 as defined above. Obviously, Problem Fy is an approx-

imation of the problem (Fs). The accuracy of this approximation depends on

the partition of the state region.

We comment that for a given initial value & of interest, the space region

X is chosen properly so that the optimal trajectory &* corresponding to &; is

contained in X, i.e. *(t) € X for all ¢ € (0, T]. Then, Problem P;} becomes an
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Figure 6.4.1: The trajectories of z;(t)

optimal parameter selection problem, which can be viewed as a finite dimen-
sional optimization problem. The solution to this optimal parameter selection
problem gives rise to an optimal control defined at every point of X. It is thus
a feedback control defined on X. The initial point &; is sometimes referred to
as an operating point.

For a large space region, we may choose a number of operating points dis-
tributed uniformly in the region, and then choose a sub-region associated with
each of the operating points, so that the union of the sub-regions is equal to
the original space region. Problem Py can be solved for each operating point
and the combination of all the controls obtained using these operating points

will form a global feedback control.

6.4 Numerical Experiments

The numerical approach described in the previous section is applied to two and
three dimensional state dependent examples. All computations were performed

in Fortran double precision on a Unix workstation.

Example 6.1. The Duffing Equation
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Consider the following optimal control problem

10
Minimize Go(u) = z2(10) + z2(10) + / (22 + 23 + u?)dt
0

subject to

.’bl = T2 (641)
dy = 0.2z —z; —0.123 +u (6.4.2)
with initial condition
582(0) = 0

The space region associated with this initial point is chosen to be X =
[—0.5,2] x [-1.5,0.5], and the control is approximated in this region X by
(6.3.1) with 6 and 5 partition points along z; and z, axes, respectively. The
corresponding optimal feedback control problem is essentially an optimal pa-
rameter selection problem. The solution of this problem using the previous
method yields an approximate optimal feedback control on X, as depicted in
Figure 6.4.5.

For comparison, the minimum costs obtained from our method with both
fixed and variable partition points are listed in Table 6.4.1. The optimal con-
trol problem (Fs) with the control w taken as only a function of time, £, is a
conventional open - loop optimal control problem. Let this problem be referred
to as problem P;. The control obtained by solving P, with initial condition
(21(0), 22(0)) = (2,0) is called the optimal control, and the corresponding tra-
jectories and the cost are referred to the optimal trajectories and the optimal
cost. The optimal cost is also listed in the Table 6.4.1. It is clear that the
solution using variable partition points is much more accurate than that using
fixed partition points. The trajectories corresponding to the feedback control

with variable points and the optimal trajectories are plotted in Figures 6.4.1
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Approximate optimal | Approximate optimal | Optimal control
feedback control feedback control (obtained by
with fixed with variable solving of
partition points partition points corresponding P )
Cost 10.795 9.140 9.112
values
Relative | 0.1847 0.0030
error

Table 6.4.1: Cost values and their relative errors

and 6.4.2. From these figures it is seen that the corresponding trajectories are
very close to each other. However, the feedback control is defined on the whole
space region X, while the open-loop control is only a function of time.

To demonstrate the robustness of the computed approximate optimal feed-
back control depicted in Figure 6.4.3, we choose another initial condition
(21(0), z2(0)) =
solve the dynamic system ({6.4.1) - (6.4.2) (without solving the original opti-

(1,-0.1) € X and use this computed feedback control to

mization problem). The computed trajectories for z; and z, are plotted in
Figures 6.4.4 and 6.4.5, respectively. Furthermore, the problem P, with the
new initial condition (z1(0), z2(0)) = (1,-0.1) is solved by using MISER3.2 to
give the corresponding optimal open - loop control. The corresponding tra-
jectories are used as nominal trajectories. These nominal trajectories for z;
and zs are also depicted in Figures 6.4.3 and 6.4.4, respectively. From these
figures, we see that the trajectories obtained using our method are very close
to the reference trajectories. For further comparison, the costs evaluated using
the feedback control solution and the true optimal cost, i.e. by solving the cor-
responding problem P; with the initial condition (z1(0),z2(0)) = (1,-0.1) are
listed in Table 6.4.2. Again, the two results are very close each other with a

relative error of around 3%.

Example 6.2. Maximum Rocket Height
In this example, we consider the vertical ascent of a rocket. The system

dynarmics are governed by:
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Figure 6.4.5: The trajectories of z5(t) after perturbation

Approximate | Optimal cost (obtained by solving

optimal the corresponding problem B;

feedback in that the change of initial

control value is taken into account )
Cost 2.140 2.073

Relative Error | 0.0323

Table 6.4.2: Robustness test of the approximate optimal feedback control
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Approximate optimal | Optimal cost ( obtained by solving
feedback control the corresponding problem Py )
Cost -28.25 -28.56

Relative Error | 0.01080

Table 6.4.3: The cost for applying the optimal feedback without perturbation

.'ﬁg = I3 (644)
_ 2
b = 001+ 2u — 0.05 e;cp(O.leg):r?, (6.4.5)
1

with initial condition

I (0) = 0
s (O) = 0

where z;(-) is the rocket’s mass , z2(:) is the rocket’s altitude in km above the
earth’s surface, z3(-) is the rocket’s vertical velocity and u(-) is the mass flow
rate of the rocket’s fuel. The terminal time T is 50, and the control is bounded
by 0 < u(-) € 0.04. The objective of the problem is to minimize the cost

function

Gg(’u.) = —T3
subject to the constraint

The space region associated with this initial point is chosen to be X =
[0.2,1.1] x [-5,30] x [0,0.8], and the control is approximated in this region by
(6.3.1) with 4, 10, and 4 partition points along z; ,zy and z3 axes, respec-
tively. The solution of this approximated optimal control problem yields an

approximate optimal feedback control, defined on the region X.
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Figure 6.4.8: The trajectories of x3(f)

Approximate | Optimal cost ( obtained by solving
optimal the corresponding problem B
feedback in that the change of the initial
control value is taken into account)

Cost -27.89 -27.53

Relative Error | 0.00228

Table 6.4.4: The cost for applying the approximate optimal feedback after per-

turbation
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The optimal control problem P with the control u taken as only a function
of time, t, is a conventional open - loop optimal control problem. Let this
problem be referred to as problem Pj.

For comparison, problem P with the initial condition (z1(0), z2(0), z3(0))
= (1.1,0,0} is solved using MISER3.2. The trajectories for z;, z; and z3 ob-
tained, and those obtained by using the approximate optimal feedback control
are plotted in Figures 6.4.5 and 6.4.6. The cost obtained is to be referred to as
the optimal cost. From these figures, it is seen that the corresponding trajec-
tories are very close. The cost corresponding to the feedback control and the
optimal cost are listed in Table 6.4.3. We note that the relative error is around
1%. However, the feedback control is defined on the whole region X, while the
optimal open - loop control is only a function of time, ¢.

To demonstrate the robustness of the computed approximate optimal feed-
back control, we choose a new initial condition (z(0), z2(0), z3(0)) = (1, -1,
0.1) € X and use this computed feedback control to solve the dynamic system
(6.4.3) - (6.4.5) ( without solving the Problem 2 as an optimal parameter selec-
tion problem). The computed trajectories for z; and z, are plotted in Figures
6.4.9 and 6.4.10, respectively. For comparison, the corresponding problem Py
with the new initial condition (z;(0}, z2(0),z3(0)) = (1, -1, 0.1) is solved as a
conventional optimal control problem by using MISER3.2. The control obtained
is an optimal control corresponding to this new initial condition, and hence is
referred to as the optimal control. The corresponding optimal trajectories are
plotted in Figures 6.4.9 and 6.4.10. From these figures we see that the trajec-
tories corresponding to the optimal feedback control are still very close to the
optimal open - loop trajectories. For further comparison, the cost correspond-
ing to the optimal feedback control and the optimal open - loop cost are listed
in Table 6.4.4. The relative error is around 0.23%.

Remark: When the initial values are changed, the constraint 2.0 —z; < 0 may
have some minor violation. In this case, we let the mass flow rate of fuel u turn

to zero, when the state value of z; becomes 2.0. This is reasonable in practice,

138



since ; = 2.0 implies that the fuel runs out. In this case the mass flow rate of

fuel will automatically turn to zero.

6.5 Conclusion

In this Chapter, the optimal feedback control for a general nonlinear optimal
feedback control was approximated by a linear combination of the 3rd order
B-spline basis functions in a neighborhood of an operating point. Both the co-
efficients and partition points of the B-splines are taken to be decision variables.
Numerical experiments for two and three dimensional examples were performed,
and the numerical results showed that the approximate optimal feedback control

possesses a useful robustness property.
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Chapter 7

Conclusion and Further Studies

7.1 Conclusion

In this thesis, we have developed efficient numerical methods for several real
world problems arising from different areas. These real world problems are for-
mulated as either static or dynamic optimization problems. For the problem of
semiconductor device design, finding various parameters is time-consuming in
the conventional design cycle, but in this thesis this problem is converted into
a static optimization problem. Numerical examples illustrate that the methods
used in this problem are efficient. For the problem of numerical integration,
the variable partition points are introduced in numerical integration, and the
problem is converted into a static optimization problem too, which produces
much more accurate results than those from the uniform grid with the same
number of partition points. As for the problem of planning recharge and driv-
ing strategies to minimize the total traveling time between two locations, the
problem is formulated as an unconventional optimal control problem based on
a battery-powered electric vehicle model, and furthermore the problem is trans-
formed into a conventional optimal control problem. The solutions of the above
problems demonstrate the usefulness of the approaches proposed in this thesis.

The optimization problem with variable time points in the objective func-
tion arises from many application areas. This is not a conventional optimal
control problem. The problem is transformed into a conventional optimal con-

trol problem with multiple characteristic time by control parameterization en-
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hancing transform (CPET). The gradients of the cost function and constraints
are derived. The control parameterization with variable partition points com-
bined with CPET are used again to convert the optimal control problem into
an optimal parameter selection problem. Numerical experiments demonstrate
the efficiency of this approach.

Feedback control is more suitable than open - loop control for many engi-
neering applications, as a feedback control is dependent on both the state and
time variables, while an open - loop control is a function of time only. Thus,
feedback control is more robust in the presence of the system noise and param-
eter variation. However, to find an optimal feedback control law for a general
non-linear problem is extremely difficult. In this thesis the optimal feedback
control for a general nonlinear optimal control problem is approximated by a
linear combination of the 3rd order B-spline basis functions constructed on a
partition in state and time spaces. The partition points and coefficients of the
B-spline are taken to be decision variables. Numerical experiments demon-
strate the effectiveness of this method. Compared to the methods proposed in

(33, 34, 49, 83], our method is simpler and much more efficient.

7.2 Further Studies

There are a number of difficult mathematical problems that remain. For the
semiconductor device design, the problem is computable as seen in Chapter 2,
but the solvability of the problem is theoretically difficult, since the dependence
of the cost function on parameter § and the applied bias v is complicated, and
the solvability of the nonlinear PDE system (2.1.17)-(2.1.19) is still an open
problem. The partial derivatives in the Jacobian for the Levenberg-Marquardt
algorithm are approximated by forward finite differences in this thesis, but the
exact formulas of these partial derivatives are still unknown and remain an open
problem. Therefore, these problems can be further research topics.

The ideas of variable and optimal partition points are introduced in this

thesis, and are applied to the problems in Chapters 3 - 6. As demonstrated
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in these Chapters, the numerical results using the ideas improved on those
without using the optimal partition points to a large extent. More specifically,
to achieve a required accuracy our method needs much fewer partition points
than those with fixed partition points. Thus, it has a much better chance of
being applicable to high dimensional optimal control problems in which the
optimal feedback control is taken as a function of both the time as well as the
state variables. This is a challenging research direction. The results obtained
will enhance the applicability of optimal control theory in solving practical

engineering problems.
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