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Multiuser Multi-Hop MIMO Relay Systems with
Correlated Fading Channels
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Abstract—In this letter, we address multiuser multi-hop
multiple-input multiple-output (MIMO) relay communication
systems with correlated MIMO fading channels. In particular,
we consider the practical scenario where the channel fading is
fast and thus the instantaneous channel state information (CSI)
is only available at the destination node, but unknown at all users
and all relay nodes. We derive the structure of the optimal user
precoding matrices and relay amplifying matrices that maximizes
the users-destination ergodic sum mutual information. Compared
with existing works, our results are more general, since we
address multiuser scenarios, consider MIMO relays with a finite
dimension, and take into account the noise vector at each relay
node.

Index Terms—Channel correlation, MIMO relay, Multi-hop
relay, Multiuser.

I. INTRODUCTION

Non-regenerative multiple-input multiple-output (MIMO)
relay communication systems have been recently investigated
under various assumptions on the availability of channel state
information (CSI) [1]-[8]. Given the instantaneous CSI of all
hops, the optimal source precoding matrix and relay ampli-
fying matrices of a single-user multi-hop relay system were
developed in [2] for a broad class of commonly used objective
functions in MIMO system design. A minimal mean-squared
error (MMSE)-based optimal two-hop multiuser MIMO relay
system has been recently proposed in [3] where the instan-
taneous CSI is known. In [4], the source and relay matrices
were optimized for a single-user two-hop relay system where
the instantaneous source-relay CSI is available, while only the
covariance matrix of the relay-destination channel is known
at the relay node. The ergodic mutual information (MI) of a
two-hop MIMO relay channel with a large number of antennas
has been analyzed in [5] and [6] using the information on the
covariance matrices of MIMO channels. The exact analytic
form of the ergodic capacity of a two-hop amplify-and-forward
MIMO relay channel with finite dimension has been recently
derived in [7]. In [8], by neglecting the noise at all the relay
nodes, Fawaz et al. derived the optimal source and relay
matrices of a single-user multi-hop MIMO relay system with
correlated fading channels.
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In this letter, we focus on multiaccess communication
through multi-hop linear non-regenerative relays. We consider
the practical scenario where the channel fading is fast and thus
the instantaneous CSI is only available at the destination node,
but unknown at other nodes. We assume that each MIMO
channel is correlated at both the transmit and the receive side,
each user knows the correlation matrix of the first hop channel,
and each relay node has the knowledge on the correlation
matrices of its direct backward and forward channel. Based on
the knowledge of the channel correlation matrices, we show
that to optimize the users-destination ergodic sum MI, the
optimal precoding matrix at each user is the product of the
eigenvector matrix of the transmit side correlation matrix of
the first-hop channel and a diagonal power loading matrix. And
the optimal amplifying matrix at each relay node is the product
of the eigenvector matrix of the transmit side correlation
matrix of the forward channel, a diagonal power loading
matrix, and Hermitian transpose of the eigenvector matrix of
the receive side correlation matrix of the backward channel.
Compared with existing works in this area (for example [5],
[6], [8]), our results in this letter are more general, since we
address multiuser scenarios, consider MIMO relays with a
finite dimension, and take into account the noise vector at
all relay nodes. Another advantage of our algorithm is that
power allocation is computed locally at each node based on
the local knowledge on the channel correlation.

The rest of this letter is organized as follows. In Section II,
we introduce the model of a multi-hop linear non-regenerative
multiaccess MIMO relay communication system. The pro-
posed user and relay matrices design algorithm is presented in
Section III. In Section IV, we show some numerical examples.
Conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a multiaccess system with Nu users simultane-
ously transmitting information to a common destination node
through L− 1 relay nodes as illustrated in Fig. 1. We assume
that the ith user has Mi antennas, i = 1, · · · , Nu, the lth relay
node is equipped with Nl antennas, l = 1, · · · , L− 1, and the
destination node has NL antennas. We denote N0 =

∑Nu

i=1 Mi

as the total number of independent data streams from all
users. For a linear non-regenerative MIMO relay system with
a linear receiver at the destination node, there should be
N0 ≤ min(N1, · · · , NL), since otherwise the system can
not support N0 active symbols in each transmission. This
condition establishes the upper-bound for the total number
of data streams that can be concurrently transmitted from all
users.
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Fig. 1. Block diagram of an Nu-user L-hop linear non-regenerative MIMO
relay communication system.

The Mi × 1 modulated signal vector si at the ith user is
linearly precoded by the Mi ×Mi user precoding matrix Bi,
and the precoded signal vector ui = Bisi is transmitted to the
first relay node. The N1 × 1 signal vector y1 received at the
first relay node is given by

y1 =
Nu∑

i=1

Giui + v1 , H1x1 + v1 (1)

where Gi, i = 1, · · · , Nu, is the N1 × Mi MIMO channel
matrix between the first relay node and the ith user, v1 is the
N1× 1 independent and identically distributed (i.i.d.) additive
white Gaussian noise (AWGN) vector at the first relay node,
x1 = F1s, s ,

[
sT
1 , · · · , sT

Nu

]T , and

H1 , [G1, · · · ,GNu ], F1 , bd(B1, · · · ,BNu). (2)

Here H1 is the equivalent N1 ×N0 first-hop MIMO channel,
F1 is the equivalent N0 ×N0 block diagonal user precoding
matrix, s is an N0 × 1 vector containing source symbols
from all users, bd(·) stands for a block diagonal matrix,
and (·)T denotes matrix (vector) transpose. We assume that
E[ssH ] = IN0 , where E[·] stands for the statistical expectation,
(·)H denotes the Hermitian transpose, and In is an n × n
identity matrix.

Using a linear nonregenerative relay matrix at each relay as
in [1]-[8], the input-output relationship at the lth relay nodes
is

xl+1 = Fl+1yl, l = 1, · · · , L− 1 (3)

where Fl+1, l = 1, · · · , L − 1, is the Nl × Nl amplifying
matrix at the lth relay node, and yl, l = 1, · · · , L− 1, is the
Nl × 1 signal vector received at the lth relay node written as

yl = Hlxl + vl, l = 1, · · · , L− 1 (4)

where Hl, l = 1, · · · , L−1, is the Nl×Nl−1 MIMO channel
matrix of the lth hop, and vl is the i.i.d. AWGN vector at
the lth relay node. We assume that all noises are complex
circularly symmetric with zero mean and unit variance.

From (1)-(4), the received signal vector at the destination
node is given by

yL = As + v̄ (5)

where A is the equivalent MIMO channel matrix from all
users to the destination, and v̄ is the equivalent noise vector
at the destination node given by [2]

A =
1⊗

i=L

(HiFi), v̄ =
L∑

l=2

( l⊗

i=L

(HiFi)vl−1

)
+vL. (6)

Here for matrices Xi,
⊗k

i=l(Xi) , Xl · · ·Xk. The covariance
matrix of v̄ in (6) is given by

Cv̄ =
L∑

l=2

( l⊗

i=L

(HiFi)
L⊗

i=l

(FH
i HH

i )
)

+ INL .

We would like to mention that the system model (3)-(5) is
applicable for relays working in full-duplex mode as in [8] or
half-duplex mode as in [1]-[3].

We assume that the channel fading is fast and thus the
instantaneous CSI of A is only available at the destination
node, but unknown at all users and all relay nodes. We also
assume that each MIMO channel is correlated at both the
transmit and receive side. Let us introduce Θt,l and Θr,l as
the correlation matrix at the transmit and receive side of Hl,
l = 2, · · · , L, respectively, and Φt,i as the correlation matrix
at the transmit side of Gi, i = 1, · · · , Nu. We assume that the
correlation matrix Φr at the receive side of Gi, i = 1, · · · , Nu

are identical. Thus the instantaneous channel matrices can be
represented as

Gi = Φ
1
2
r Gw

i Φ
1
2
t,i, i = 1, · · · , Nu (7)

Hl = Θ
1
2
r,lH

w
l Θ

1
2
t,l, l = 2, · · · , L (8)

where Gw
i and Hw

l are Gaussian random matrices with i.i.d.
zero mean and unit variance entries and unknown to all users
and all relay nodes. We assume that each node only has the
local channel correlation knowledge. In particular, the ith user
knows Φi, i = 1, · · · , Nu, the first relay node knows Φr and
Θt,2, and the lth relay node has the knowledge of Θr,l and
Θt,l+1, l = 2, · · · , L − 1. Since channel correlation matrices
vary much slower than the instantaneous channel, they can be
estimated at the corresponding node with a reasonably high
precision. We also assume that channel correlation matrices
Θr,l, Θt,l, l = 2, · · · , L, Φr, and Φt,i, i = 1, · · · , Nu, are all
full rank.

The sum MI of the users-destination channel (5) for one
channel realization is given by

MI = log2

∣∣IN0 + AHC−1
v̄ A

∣∣

= log2

∣∣∣∣∣IN0 +
L⊗

i=1

(FH
i HH

i )

(
L∑

l=2

( l⊗

i=L

(HiFi)

L⊗

i=l

(FH
i HH

i )
)

+ INL

)−1 1⊗

i=L

(HiFi)

∣∣∣∣∣∣
(9)

where | · |, (·)−1 denote matrix determinant and inversion,
respectively.

III. OPTIMAL STRUCTURE OF USER AND RELAY
MATRICES

We consider a practical MIMO relay system where the pre-
coding/amplifying matrix is designed locally at each user/relay
node. Obviously, since the channel fading is fast and the
instantaneous CSI is unknown at users and relay nodes, it
is impossible to design {Bi} and {Fl} to maximize MI in
(9), where {Fl} , {Fl, l = 2, · · · , L}, and {Bi} , {Bi, i =
1, · · · , Nu}. In this letter, we aim at maximizing EH [MI] by
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exploiting the channel statistics, where the expectation EH is
over the realization of all channels. The maximal ergodic sum
MI-based optimal multiuser multi-hop MIMO relay design
problem is given as

max
{Fl},{Bi}

EH [MI] (10)

s.t. EH

[
tr

(
Fl+1

( l∑

j=1

( j⊗

i=l

(HiFi)
l⊗

i=j

(FH
i HH

i )
)

+INl

)
FH

l+1

)]
≤ pl+1, l = 1, · · · , L− 1 (11)

tr(BiBH
i ) ≤ qi, i = 1, · · · , Nu (12)

where tr(·) denotes matrix trace, (11) contains the averaged
transmission power constraint at each relay node, (12) includes
the transmission power constraint at each user, pl and qi are
the corresponding power budget.

Let us introduce the eigenvalue decompositions (EVDs) of

Θr,l =Vθ,lΛθ,lVH
θ,l, Θt,l =Uθ,lΣθ,lUH

θ,l, l = 2, · · · , L (13)

Φr =Vθ,1Λθ,1VH
θ,1, Φt,i =Uφ,iΣφ,iUH

φ,i, i = 1, · · · , Nu(14)

where the main diagonal elements of the eigenvalue matrices
are sorted in a decreasing order. The following Theorem
establishes the structure of the optimal user precoding matrices
and relay amplifying matrices.

THEOREM 1: The optimal structure of Bi and Fl in the
form of their singular value decompositions (SVDs) is given
by

Bi = Uφ,i∆b,i, i = 1, · · · , Nu, (15)
Fl = Uθ,l∆f,lVH

θ,l−1, l = 2, · · · , L. (16)

PROOF: See Appendix A. ¤
Interestingly, from (15) and (16) we find that the optimal

precoding matrix at each user is the product of the eigenvector
matrix of the transmit side correlation matrix of the first-hop
channel and a diagonal power loading matrix. And the optimal
amplifying matrix at each relay node is the product of the
eigenvector matrix of the transmit side correlation matrix of
the forward channel, a diagonal power loading matrix, and
Hermitian transpose of the eigenvector matrix of the receive
side correlation matrix of the backward channel. Compared
with [8], our result in (15)-(16) is more general, since it holds
for multiuser scenarios by considering MIMO relays with a
finite dimension, and taking into account the noise vector at all
relay nodes. Using (15)-(16), the optimal relay design problem
(10)-(12) is converted to the following power loading problem

max
{∆b,i},{∆f,l}

EH

[
log2

∣∣∣∣∣IN0+
L⊗

i=1

(
ΣiH̄H

i

)
(

L∑

l=2

l⊗

i=L

(H̄iΣi)

×Λ−1
θ,l−1

L⊗

i=l

(
ΣiH̄H

i

)
+Λ−1

θ,L

)−11⊗

i=L

(H̄iΣi)

∣∣∣∣∣


(17)

s.t. tr
(
∆2

f,l+1Λθ,l

) l∑

j=1

αjtr
(
Σ2

j Πj

)

+tr
(
∆2

f,l+1

) ≤ pl+1, l = 1, · · · , L− 1 (18)

tr
(
∆2

b,i

) ≤ qi, i = 1, · · · , Nu (19)

where the definitions of H̄l, αl, Πl, and Σl, l = 1, · · · , L,
are given in Appendix A.

For a multi-hop MIMO relay system with a finite dimension,
the analytic expression of (17) is still an open problem. Thus,
the problem (17)-(19) is very difficult to solve. In this letter,
we take a simple (but possibly) suboptimal solution such
that ∆2

f,l = γlINl−1 , l = 2, · · · , L, and ∆2
b,i = βiIMi

,
i = 1, · · · , Nu. From (33) in Appendix A, we obtain that
αj =

∏j+1
i=l γitr(Σθ,iΛθ,i−1), j = 1, · · · , l − 1, and thus we

have that
l∑

j=1

αjtr
(
Σ2

j Πj

)

=
l−1∑

j=1

αjtr
(
Σ2

j Πj

)
+ tr

(
Σ2

l Λ
−1
θ,l−1)

=
l−1∑

j=1

j+1∏

i=l

γitr(Σθ,iΛθ,i−1)tr(∆2
f,jΣθ,j) + tr(∆2

f,lΣθ,l)

=
l−1∑

j=1

j+1∏

i=l

γitr(Σθ,iΛθ,i−1)γjtr(Σθ,j)+γltr(Σθ,l), l ≥ 2 (20)

l∑

j=1

αjtr
(
Σ2

j Πj

)
=

Nu∑

i=1

βitr(Σφ,i), l = 1 (21)

where for simplicity, we define γ1tr(Σθ,1),
∑Nu

i=1βitr(Σφ,i).
From (18)-(21), we now obtain that

γl+1 =
pl+1

tr(Λθ,l)
∑l

j=1αjtr
(
Σ2

j Πj

)
+ Nl

, l = 1, · · · , L− 1

βi =
qi

Mi
, i = 1, · · · , Nu.

Finally, from (15)-(16), the user precoding matrices and relay
amplifying matrices are given by

Bi =
√

βiUφ,i, i = 1, · · · , Nu, (22)
Fl =

√
γlUθ,lVH

θ,l−1, l = 2, · · · , L. (23)

A distinct advantage of the user and relay matrices design
in (22)-(23) is that it is robust and very simple to implement. It
does not require any instantaneous CSI. In fact, each node only
needs the local knowledge on the channel correlation matrix,
performing the EVD and computing the power allocation
scaler locally. Such simple design is of great importance for
practical multiuser multi-hop MIMO relay systems. Interest-
ingly, in Section IV we will see that for a two-hop multiuser
MIMO relay system, the user and relay matrices design in
(22)-(23) only has a small performance degradation compared
with the optimal user and relay design using the instantaneous
CSI.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed
multiuser multi-hop MIMO relay design algorithm through
numerical simulations. For simplicity, we consider systems
where all users have the same number of antennas (i.e.,
Mi = M , i = 1, · · · , Nu), all relay nodes and the destination
node are equipped with the same number of antennas (i.e.,
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Nl = N , l = 1, · · · , NL), and MNu = N . We assume that
all users have an identical transmission power qi = P/Nu,
i = 1, · · · , Nu, and all relay nodes have the same transmission
power pl = P , l = 2, · · · , L. We also assume that the channel
correlation matrices have the commonly used exponential
Toeplitz structure [5], [8] such that [Θt,l]m,n = θ

|m−n|
t,l ,

[Θr,l]m,n = θ
|m−n|
r,l , [Φt,i]m,n = φ

|m−n|
t,i , and [Φr]m,n =

φ
|m−n|
r . The ergodic sum MI is obtained by averaging over

104 channel realizations. In the simulations, we compare the
proposed algorithm with the optimal user and relay matrices
design for multiuser multi-hop MIMO relay systems using the
instantaneous CSI (ICSI). The ICSI-based scheme uses the
iterative algorithm developed in [3] with the source-destination
MI as the objective function.

In our first example, we set L = 2, N = 4, and Nu = 2.
The channel correlation parameters are chosen as φt,1 = 0.5,
φt,2 = 0.6, φr = 0.2, θt,2 = 0.3, θr,2 = 0.5. Fig. 2 shows
the ergodic sum MI comparison between two algorithms. It
can be seen that the performance of the proposed algorithm is
very close to that of the optimal algorithm using the ICSI.
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Fig. 2. Ergodic sum MI versus P . L = 2, N = 4, and Nu = 2.

In the second example, we set L = 4, N = 9, Nu =
3, and choose φt,1 = 0.5, φt,2 = 0.6, φt,3 = 0.4, φr =
0.2, θt,2 = 0.3, θt,3 = θt,4 = 0.4, θr,2 = 0.5, θr,3 = 0.3,
θr,4 = 0.4 as the channel correlation parameters. It can be seen
that with the increasing number of hops, the gap between the
proposed algorithm and the optimal algorithm using the ICSI
increases. However, the former algorithm has a much lower
computational complexity and signalling overhead compared
with the latter algorithm.

We investigate the ergodic sum MI of both algorithms versus
the number of users in our third example. We set L = 2,
M = 2, P = 20dB, φt,i = 0.5, i = 1, · · · , Nu, φr = 0.2,
θt,2 = 0.3, and θr,2 = 0.5. It can be seen from Fig. 4 that the
MI gap between the proposed algorithm and the ICSI-based
algorithm increases slightly as the number of users increases.

V. CONCLUSIONS

We developed the optimal structure of user precoding ma-
trices and relay amplifying matrices to optimize the ergodic
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Fig. 3. Ergodic sum MI versus P . L = 4, N = 9, and Nu = 3.
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Fig. 4. Ergodic sum MI versus Nu. L = 2, M = 2, and P = 20dB.

sum mutual information of multiuser multi-hop MIMO relay
communication systems. A simple power loading algorithm
was proposed. The proposed algorithm only has a small
performance degradation compared with the optimal user and
relay design using the instantaneous CSI, but greatly reduced
computational complexity and signalling overhead.

APPENDIX A
PROOF OF THEOREM 1

The proof is conducted in three steps: First, we show that
Bi in (15) minimizes the left-hand side of (12). Second, we
prove that Fl in (16) minimizes the left-hand side of (11). At
last, we show that (15)-(16) is also optimal for the objective
function (10).

Using (13) and (14), we can write the channel matrices in
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(7) and (8) as

Gi = Vθ,1Λ
1
2
θ,1V

H
θ,1G

w
i Uφ,iΣ

1
2
φ,iU

H
φ,i

= Vθ,1Λ
1
2
θ,1ḠiΣ

1
2
φ,iU

H
φ,i, i = 1, · · · , Nu (24)

Hl = Vθ,lΛ
1
2
θ,lV

H
θ,lH

w
l Uθ,lΣ

1
2
θ,lU

H
θ,l

= Vθ,lΛ
1
2
θ,lH̄lΣ

1
2
θ,lU

H
θ,l, l = 2, · · · , L (25)

where Ḡi , VH
θ,1G

w
i Uφ,i and H̄l , VH

θ,lH
w
l Uθ,l have the

same statistics as Gw
i and Hw

l , respectively. From (24) and
(25) we have

H1F1 = Vθ,1Λ
1
2
θ,1

[
Ḡ1, · · · , ḠNu

]

×bd
(
Σ

1
2
φ,1U

H
φ,1B1, · · · ,Σ

1
2
φ,Nu

UH
φ,Nu

BNu

)

HlFl = Vθ,lΛ
1
2
θ,lH̄lΣ

1
2
θ,lU

H
θ,lFl, l = 2, · · · , L.

Let us also introduce the following SVDs

Σ
1
2
φ,iU

H
φ,iBi = QiΛiPH

i , i = 1, · · · , Nu(26)

Σ
1
2
θ,lU

H
θ,lFlVθ,l−1Λ

1
2
θ,l−1 = UlΣlVH

l , l = 2, · · · , L (27)

where Qi and Pi are Mi×Mi unitary matrices, Ul and Vl are
Nl−1×Nl−1 unitary matrices, and the main diagonal elements
of Λi and Σl are sorted in a decreasing order. By using (26)
and (27) we have

1⊗

i=L

(HiFi) = Vθ,LΛ
1
2
θ,L

2⊗

i=L

(
H̄iΣ

1
2
θ,iU

H
θ,iFiVθ,i−1Λ

1
2
θ,i−1

)

×H̄1bd
(
Σ

1
2
φ,1U

H
φ,1B1, · · · ,Σ

1
2
φ,Nu

UH
φ,Nu

BNu

)

= Vθ,LΛ
1
2
θ,L

1⊗

i=L

(
H̄iUiΣiVH

i

)
(28)

where for the notational simplicity, we define H̄1 ,
[
Ḡ1, · · · ,

ḠNu

]
, U1 , bd(Q1, · · · ,QNu), Σ1 , bd(Λ1, · · · ,ΛNu),

and V1 , bd(P1, · · · ,PNu). From (26) and (27), we can
also obtain that for l = 2, · · · , L,

l⊗

i=L

(HiFi)
L⊗

i=l

(
FH

i HH
i

)
= Vθ,LΛ

1
2
θ,L

l⊗

i=L

(
H̄iUiΣiVH

i

)

×Λ−1
θ,l−1

L⊗

i=l

(
ViΣiUH

i H̄H
i

)
Λ

1
2
θ,LVH

θ,L. (29)

Now we consider the constraints in (11) and (12). From
(26), the power consumed at each user is given by

tr(BiBH
i ) = tr

(
Σ− 1

2
φ,i QiΛ2

i Q
H
i Σ− 1

2
φ,i

)
, i = 1, · · · , Nu. (30)

It can be seen from [9, 9.H.1.h] that tr(BiBH
i ) ≥ tr

(
Σ−1

φ,iΛ
2
i

)
,

where the equality holds if and only if Qi is an Mi × Mi

diagonal matrix with unit-norm main diagonal elements, i.e.,
|[Qi]m,m| = 1, [Qi]m,n = 0,m, n = 1, · · · ,Mi,m 6= n. For
the sake of simplicity, we choose Qi = IMi , and from (26), we
have Bi = Uφ,iΣ

− 1
2

φ,i ΛiPH
i . Since the objective function (10)

is invariant to Pi, for simplicity, we also choose Pi = IMi .
We will show later that such structure of Bi is also optimal
for the objective function (10).

Using (26) and (27), the averaged power consumption at
the lth relay node in (11), l = 1, · · · , L− 1, can be written as

EH


tr

(
Fl+1

( l∑

j=1

( j⊗

i=l

(HiFi)
l⊗

i=j

(FH
i HH

i )
)
+INl

)
FH

l+1

)


= EH


tr

(
Fl+1

( l∑

j=1

(
Vθ,lΛ

1
2
θ,l

j⊗

i=l

(
H̄iUiΣiVH

i

)
Πj

l⊗

i=j

(
ViΣiUH

i H̄H
i

)
Λ

1
2
θ,lV

H
θ,l

)
+ INl

)
FH

l+1

)


= EH


tr

(
Σ− 1

2
θ,l+1Ul+1Σl+1

( l∑

j=1

j⊗

i=l

(H̃iΣi)VH
j ΠjVj

l⊗

i=j

(
ΣiH̃H

i

)
+VH

l+1Λ
−1
θ,l Vl+1

)
Σl+1UH

l+1Σ
− 1

2
θ,l+1

)
 (31)

where H̃l , VH
l+1H̄lUl, l = 1, · · · , L− 1 and

Πl ,
{

IN0 , l = 1;
Λ−1

θ,l−1, l = 2, · · · , L.

From [10], we know that for an N × N Gaussian random
matrix H with i.i.d. zero mean and unit variance entries, there
is EH [HAHH ] = tr(A)IN . Thus we have

EH




j⊗

i=l

(H̃iΣi)VH
j ΠjVj

l⊗

i=j

(
ΣiH̃H

i

)



= αjtr
(
ΣjVH

j ΠjVjΣj

)
INl

, j = 1, · · · , l (32)

where

αj ,
{

1, j = l;∏j+1
i=l tr(Σ2

i ), j = 1, · · · , l − 1, (l ≥ 2).
(33)

Using (32), (31) can be rewritten as

tr
(
Σ− 1

2
θ,l+1Ul+1Σ2

l+1U
H
l+1Σ

− 1
2

θ,l+1

) l∑

j=1

αjtr
(
ΣjVH

j ΠjVjΣj

)

+tr
(
Σ− 1

2
θ,l+1Ul+1Σl+1VH

l+1Λ
−1
θ,l Vl+1Σl+1UH

l+1Σ
− 1

2
θ,l+1

)
.(34)

Similar to (30), (34) is minimized if and only if Ul+1 is
an Nl × Nl diagonal matrix with unit-norm main diagonal
elements, and Vj is an Nj−1×Nj−1, j = 1, · · · , l+1, diagonal
matrix with unit-norm main diagonal elements. For simplicity,
we choose Ul+1 = INl

and Vj = INj−1 , j = 1, · · · , l + 1.

From (27), we obtain Fl = Uθ,lΣ
− 1

2
θ,l ΣlΛ

− 1
2

θ,l−1V
H
θ,l−1.

Now we start to consider the objective function. Since
H̄LUL has the same distribution as H̄L, and VH

l+1H̄lUl

has an identical distribution as H̄l, l = 1, · · · , L − 1, by
substituting (28) and (29) back into (10), the objective function
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(10) can be equivalently rewritten as

EH [MI]=EH

[
log2

∣∣∣∣∣IN0+
L⊗

i=1

(
ΣiH̄H

i

)
(

L∑

l=2

l⊗

i=L

(H̄iΣi)

×VH
l Λ−1

θ,l−1Vl

L⊗

i=l

(
ΣiH̄H

i

)
+Λ−1

θ,L

)−11⊗

i=L

(H̄iΣi)

∣∣∣∣∣


. (35)

It can be seen from (35) that the objective function is irrelevant
to Pi, Qi, i = 1, · · · , Nu, and Ul, l = 2, · · · , L. Thus, the
optimal Bi is indeed Bi = Uφ,i∆b,i with ∆b,i = Σ− 1

2
φ,i Λi,

i = 1, · · · , Nu.
Let us introduce the EVD of

ΣlVH
l Λ−1

θ,l−1VlΣl = SlΓlSH
l , l = 2, · · · , L (36)

where Sl is an Nl−1 × Nl−1 unitary matrix, and Γl is the
Nl−1×Nl−1 diagonal eigenvalue matrix. We can rewrite (35)
as

EH [MI] = EH

[
log2

∣∣∣∣∣IN0 + MH

×
(
Λ−1

θ,L +
L∑

l=2

TlH̆lΓlH̆H
l TH

l

)−1

M

∣∣∣∣∣

]
(37)

where for notational simplicity, we define M,
⊗1

i=L(H̄iΣi),
H̆l , H̄lSl, l = 2, · · · , L, TL , INL , and Tl ,⊗l+1

i=L(H̄iΣi), l = 2, · · · , L− 1. It can be seen that M does
not depend on Vl, l = 2, · · · , L, thus M does not affect the
structure of the user and relay matrices.

Due to the contribution of the noise at all relay nodes to
the destination node (which is ignored in [8]), the closed-form
expression of the optimal Γl that maximizes (37) by satisfying
(36) is very difficult to obtain. On the other hand, it can be
shown from [11] that log2|I + X−1| is a convex function of
X, and from Jensen’s inequality we have E

[
log2|I+X−1|] ≥

log2

∣∣I + (E[X])−1
∣∣. Thus (37) can be lower-bounded by

EH [MI] ≥

EH

[
log2

∣∣∣∣∣IN0+MH
(
Λ−1

θ,L+
L∑

l=2

TlEH̆l

[
H̆lΓlH̆H

l

]
TH

l

)−1

M

∣∣∣∣∣

]

= EH

[
log2

∣∣∣∣∣IN0 + MH
(
Λ−1

θ,L +
L∑

l=2

tr(Γl)TlTH
l

)−1

M

∣∣∣∣∣

]
(38)

where we applied Jensen’s inequality to matrix variables
H̆lΓlH̆H

l , l = 2, · · · , L. Obviously, to maximize (38), tr(Γl)
should be minimized. From [9, 9.H.1.h] and (36), we know
that tr(Γl) ≥ tr(Σ2

l Λ
−1
θ,l−1), where the equality holds if and

only if Vl is an Nl−1 × Nl−1 diagonal matrix with unit-
norm main diagonal elements. Therefore, we prove the optimal
structure of Bi and Fl in (15) and (16) with ∆b,i , Σ− 1

2
φ,i Λi,

i = 1, · · · , Nu, and ∆f,l , Σ− 1
2

θ,l ΣlΛ
− 1

2
θ,l−1, l = 2, · · · , L.
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