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A simple model for squirt-flow dispersion and attenuation

in fluid-saturated granular rocks

Boris Gurevich'?, Dina Makarynska', Osni Bastos de Paula'*, and Marina Pervukhina?

ABSTRACT

A major cause of seismic attenuation in fluid-saturated
rocks is the flow of the pore fluid induced by the passing
wave. At sonic and ultrasonic frequencies, attenuation ap-
pears to be dominated by the local (pore-scale) flow between
pores of different shapes and orientations. A simple squirt
flow model is developed in which all of the parameters can be
independently measured or estimated from measurements.
The pore space of the rock is assumed to consist of stiff poros-
ity and compliant (or soft) pores present at grain contacts.
The effect of isotropically distributed compliant pores is
modeled by considering pressure relaxation in a disk-shaped
gap between adjacent grains. This derivation gives the com-
plex and frequency-dependent effective bulk and shear mod-
uli of arock, in which the compliant pores are liquid saturated
and stiff pores are dry. The resulting squirt model is consis-
tent with Gassmann’s and Mavko-Jizba equations at low and
high frequencies, respectively. The magnitude of attenuation
and dispersion given by the model is directly related to the
variation of dry bulk modulus with pressure and is relatively
independent of fluid properties.

INTRODUCTION

A major cause of elastic wave attenuation in fluid-saturated rocks
is the flow of the pore fluid induced by the passing wave. When an
elastic wave propagates through a fluid-saturated medium, it creates
local pressure gradients within the fluid phase, resulting in fluid flow
and corresponding internal friction until the pore pressure is equili-
brated. The fluid flow can take place on various length scales.

Flow between mesoscopic (larger than the pore size but smaller
than the wavelength) patches of rock with different stiffness due to

rock heterogeneity (White et al., 1975; Pride et al., 2003) or spatial
variations in fluid saturation (White, 1975; Gist, 1994; Toms et al.,
2007) is believed to be significant at seismic frequencies. At sonic
and ultrasonic frequencies, attenuation appears to be dominated by
the local (pore-scale) flow between pores of different shapes and ori-
entations (Mavko and Nur, 1975, 1979; Jones, 1986). Mesoscopic
flow can be treated using all of the machinery of Biot’s theory of po-
roelasticity (Biot, 1956a, b, 1962; Bourbié et al., 1987) with spatially
varying coefficients (Dutta and Ode, 1979a, b; Lopatnikov and
Gurevich, 1988; Lopatnikov et al., 1990; Auriault and Boutin, 1994;
Gurevich and Lopatnikov, 1995; Pride et al., 2004; Miiller and
Gurevich, 2005; Johnson, 2001).

Modeling local flow, also known as squirt, cannot be done in a
similar manner because local flow depends on various parameters
describing pore shapes and orientations. Most theoretical models of
squirt-flow attenuation are based on the analysis of aspect ratio dis-
tributions (Mavko and Nur, 1979; O’Connell and Budiansky, 1977,
Palmer and Traviolia, 1980); a comprehensive review of these earli-
er studies is by Jones (1986). An alternative approach is based on the
recognition that the pore space of many rocks has a binary structure
(Walsh, 1965; Mavko and Jizba, 1991; Shapiro, 2003): relatively
stiff pores, which form most of the pore space, and relatively compli-
ant (or soft) pores, which are responsible for the pressure dependen-
cy of the elastic moduli (Murphy et al., 1986; Dvorkin et al., 1995;
Chapman et al., 2002). In particular, Dvorkin et al. (1995) model a
rock as a granular aggregate in which the grains themselves are as-
sumed porous. Intergranular pores are stiff, whereas the intragranu-
lar micropores are soft. This model was later reformulated and re-
fined by Pride et al. (2004). The advantage of the porous grain mod-
el, particularly in the formulation of Pride et al. (2004) over all other
squirt models is in the fact that the medium can be treated as po-
roelastic on the subpore scale and thus is amenable to treatment us-
ing Biot’s equations of poroelasticity with spatially varying coeffi-
cients (Pride and Berryman, 2003). This model is also consistent
with Mavko and Jizba’s (1991) predictions for the high-frequency
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limit of elastic moduli, which are known to be in good agreement
with laboratory measurements (Mavko and Jizba, 1994; Endres and
Knight, 1997; Wulff and Burkhardt, 1997). However, the concept of
porous grains is somewhat abstract, and interpretation of parameters
of this imaginary microporous grain in terms of rock properties is
difficult. Furthermore, application of Biot’s theory to microporous
grains assumes that compliant pores are small compared with the
grain size; this may not be the case for real rocks.

An appealing alternative is the approach of Murphy et al. (1986),
who consider compliant pores as gaps at contacts between adjacent
grains, see also Mayr and Burkhardt (2006). However, the model of
Murphy etal. (1986) is not consistent with the well-established high-
frequency predictions of Mavko and Jizba (1991); in fact, its high-
frequency prediction for the elastic moduli is unrealistically high.
This inconsistency stems from the fact that the particular formula-
tion of Murphy et al. (1986) is developed within the framework of
the Hertz—Mindlin grain contact theory (Digby, 1982; Winkler,
1983), in which grains themselves are assumed rigid and the compli-
ance of the rock is caused solely by weak grain contacts. In the high-
frequency limit, fluid pressure cannot relax between the intergranu-
lar gap and the surrounding (stiff) pore, making its compliance van-
ishingly small and rock unrealistically stiff.

In this paper, we propose a new model of squirt-flow attenuation
that uses a pressure relaxation approach of Murphy et al. (1986) in
conjunction with the discontinuity tensor formulation of Sayers and
Kachanov (1995). The resulting model is consistent with the Gas-
smann (1951) and Mavko-Jizba equations at low and high frequen-
cies, respectively, and with the piezosensitivity model of Shapiro
(2003). It can also be naturally incorporated into Biot’s theory of po-
roelasticity to obtain velocity and attenuation prediction in a broad
frequency range.

The paper is organized as follows. First, we develop a theoretical
model for the frequency dependence of elastic moduli due to pres-
sure relaxation in the intergranular contact area. We then analyze the
asymptotic behavior of this model in several limiting cases and
present a simplified formulation for the mostimportant case of liquid
saturation. Finally, we illustrate model prediction with a few labora-
tory data examples.

THEORETICAL MODEL

Following Walsh (1965), Mavko and Jizba (1991), and Shapiro
(2003), we assume that the pore space of the rock consists of stiff and
compliant pores, which form fully interconnected pore space. We as-
sume that the dry rock frame (skeleton) is homogeneous (i.e., con-
sists of a single isotropic mineral with bulk modulus K, and shear
modulus u,). The frame is also assumed isotropic on microscale
(pore scale) and macroscale (wavelength scale) and is characterized
by stiff porosity ¢,, compliant porosity ¢.< ¢, total porosity ¢
= ¢, + ¢d.~ ¢,, permeability «, and bulk and shear moduli K, and
Mary TESpectively.

The aim of this section is to derive expressions for frequency-de-
pendent moduli of our rock when it is fully saturated by a single fluid
with a bulk modulus K and dynamic viscosity 7. The frequency de-
pendency (dispersion) in our rock can be caused by two principal
mechanisms: global flow dispersion due to the flow of fluid relative
to the solid frame caused by the pressure gradients between peaks
and troughs of the wave, and squirt flow between compliant pores
and stiff pores. In this paper, we are principally concerned with
squirt flow. Therefore, to ensure that Biot’s dispersion is negligible,

we will, for the time being, assume that the characteristic frequency
SBio Of Biot’s dispersion is much higher than the squirt characteristic
frequency f, and the frequency of the propagating wave f. Both of
these conditions will later be lifted.

Low-frequency (relaxed) moduli

In the low-frequency limit, the bulk and shear moduli of our fluid-
saturated rock are given by Gassmann’s equations (Gassmann,
1951; White, 1983)

4
1 1 K K
- = — 4 f g (1)
Kow K, 11 11
1+ ¢l ——— —
Kf Kg Kdry Kg
and
Miow = /‘Ldry- (2)

Gassmann’s equations 1 and 2 are valid when < f,.. Physically, this
means that the wave frequency is sufficiently low so that fluid pres-
sure has enough time to equilibrate between stiff and compliant
pores during half-wave cycle. Thus, the moduli given by Gas-
smann’s equations 1 and 2 can be called “relaxed moduli.”

High-frequency (unrelaxed) moduli

When the frequency is higher than the squirt characteristic fre-
quency, > f., then the fluid pressure does not have enough time to
equilibrate between stiff and compliant pores during half-wave cy-
cle (so-called unrelaxed state). Then, compliant pores at the grain
contacts are effectively isolated from the stiff pores and hence be-
come stiffer with respect to normal (but not tangential) deformation.
To quantify this effect, Mavko and Jizba (1991) considered the so-
called modified frame — the rock in which only compliant pores are
filled with the fluid, whereas stiff pores are empty — and showed
that unrelaxed (high-frequency) bulk and shear moduli, K, and
respectively, of this modified frame are given by

1 1 11
K (P) =~ X, + (Z - Z,)d"‘(P) (3)
and
11 4 ( (. ) @
wuf(P)  pran(P)  15\Kg(P)  K,AP))

where K, is the dry bulk modulus of a hypothetical rock without the
compliant porosity (see also Berryman, 2007) and P is differential
pressure. Note that for most rocks, ¢.(P) is on the order of 1073 or
smaller (Mavko and Jizba, 1991; Shapiro, 2003). For typical reser-
voir liquids (not gases!), the bulk modulus K is on the order of one
tenth of the dry rock modulus and is much smaller than the mineral
modulus K,. Therefore, the second term in the right-hand side of
equation 3 is at most on the order of 0.01 of the first term and hence is
negligible for most liquids. This means that the bulk modulus of the
modified frame is almost independent of the pressure. However, the
shear modulus (and hence, compressional and shear velocities) still
depends on pressure through the pressure dependency of the dry
bulk and shear moduli K,(P) and gigr,( P).
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Equation 3 for the unrelaxed bulk modulus of the modified frame
was derived by Mavko and Jizba (1991) as a first-order expansion in
the powers of complaint porosity and implies that ¢.(K, !
- K; N« K, !. Indeed, as discussed above, if the saturating fluid is
liquid, this condition is usually satisfied. However, as will be seen
later in our derivation, this condition is too restrictive for our purpos-
es. A more general expression for the unrelaxed frame modulus
(without any restriction on the fluid compressibility) can be derived
using Sayers-Kachanov discontinuity formalism (Sayers and
Kachanov, 1995; Sayers and Han, 2002). The detailed derivation is
given in Gurevich et al. (2009a). The result reads

1 1 1
=—+
KAP) K, 1 N 1
L (L e
K4 (P) K, K, K,J"°

(5)

When the fluid is liquid, the term (K.} — K, ') ~! can be neglected
compared with the term [ ¢ (K; ' — K, ')]~!, and equation 5 yields
Mavko-Jizba equation 3. However, equation 5 is more general in
that it is free of any restriction on the fluid modulus. In particular, for
a dry rock K; = 0, the term gi)c(l(,?1 — K;‘)" vanishes and K, re-
duces to the dry modulus Ky, as it should.

The fully saturated unrelaxed moduli can be obtained from the

modified frame moduli using Gassmann’s equations

11
IR "*(I?f - 1?)
S ) )
K, K, K, P) K,
(6)
and
Mnigh(P) = py(P). (7)

The use of Gassmann’s equations for high frequencies may raise
some questions. Indeed, Gassmann’s equations assume that fluid
pressure is equalized within the representative volume (RV) of the
pore space. Pressure equilibration can be achieved if the pore space
is interconnected and the frequency is sufficiently low to allow
enough time for pressure to equilibrate within the wave’s half-cycle.
As previously discussed, higher frequency may prevent equilibra-
tion of pressure within a half-wave cycle, effectively making the
pores hydraulically isolated. However, the condition of intercon-
nected pore space is not a necessary condition for the validity of Gas-
smann’s or Biot’s equations. The key condition is the spatially uni-
form fluid pressure in the pores (within RV). In particular, Gas-
smann’s equations are exact for a material with a dilute concentra-
tion of randomly distributed isolated spherical pores because the in-
duced pressure is the same in all of these pores (for any frequency
below the characteristic frequency of scattering). Approximately,
this is also true for all “equant” pores (pores with aspect ratio on the
order O(1)) (Thomsen, 1985). Recently, Grechka (2009) showed
numerically that Gassmann’s equations are excellent approxima-
tions for isolated pores of aspect ratio larger than 0.1. Therefore, as
suggested by Mavko and Jizba (1991), Gassmann’s and Biot’s equa-
tions are applicable to the stiff pores of our system at seismic and ul-

trasonic frequencies. This is also consistent with the well-estab-
lished observation that the squirt-flow dispersion between seismic
and ultrasonic frequencies is caused mainly by compliant porosity
and is negligible at high effective stress, at which compliant porosity
is mostly closed and only stiff pores remain. Indeed, the characteris-
tic frequency of squirt-flow dispersion is usually written as

f.=aX, (8)
7

where a is the mean aspect ratio of the pores and K is the rock’s bulk
modulus (Jones, 1986). For stiff pores @ = O(1); thus, the squirt fre-
quency is much larger than 1 MHz even for fluids 1000 times more
viscous than water.

To summarize, the high-frequency moduli of the fully saturated
rock are given by Gassmann’s equations 6 and 7 with the modified
frame moduli given by equations 4 and 5.

Frequency-dependent (partially relaxed) moduli

Modified frame

Now we set out to derive expressions for the moduli of the rock at
intermediate frequencies, which represent some intermediate state
between the low- and high-frequency limits. Note that because com-
pliant porosity is always small, ¢, < ¢,, we have ¢,= ¢. Therefore,
saturated high-frequency moduli are given by the same Gassmann’s
equations 6 and 7 as the low-frequency moduli (equations 1 and 2),
except that for high frequencies the dry moduli K, and g, are re-
placed by the unrelaxed frame moduli K, and ;. Furthermore, we
note that the dry moduli Ky, and uq,, can also be considered as the
moduli of the modified frame (rock with empty stiff pores but fluid-
filled compliant pores) but in a relaxed state; that is, when compliant
pores are in full-pressure equilibrium with the stiff pores. Because in
the modified frame stiff pores are empty, the pressure in compliant
pores is zero. Thus, the relaxed moduli of the modified frame are
equal to the rock’s dry, or drained, moduli. In other words, the fully
saturated (undrained) moduli of the rock in the low- and high-fre-
quency limits are given by the same Gassmann’s equations

_
Ksa[(P’w)
-
I R —
\K; K, K,(P.0) K,
©)
and
Msat(P,Q)) = Mn’l_f(P’w)’ (10)

where the modified frame moduli X, and w,,, are to be taken at low-
and high-frequency limits, respectively. Furthermore, it is logical to
assume that moduli at the intermediate frequencies between these
limits are also given by Gassmann’s equations 9 and 10 with the
modified K, and u,, taken at the corresponding frequency. Thus,
the problem of finding the frequency-dependent moduli of the fully
saturated rock reduces to the problem of finding the frequency de-
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pendency of the moduli of the modified frame, where compliant
pores are fluid filled and stiff pores are dry.

Fluid relaxation in the area of grain contact

It is often the case with heterogeneity-related dispersion mecha-
nisms that the low- and high-frequency limits of elastic moduli are
independent of intricacies of geometry, but the shape of the frequen-
cy dependency of the moduli is defined by the particular geometrical
configuration. A good example is a porous rock saturated with patch-
es of two immiscible fluids (Johnson, 2001) in which the low- and
high-frequency moduli are uniquely defined by the properties of the
rock matrix, the properties of the two fluids, and their volume frac-
tions. In contrast, the frequency dependency of the moduli (and at-
tenuation) is controlled by the size and shape of the patches.

The squirt-flow dispersion has the same feature. The low-frequen-
cy moduli are given by the exact Gassmann’s equations, which in-
volve only one explicit parameter of the pore space-total porosity.
The high-frequency limit (ignoring Biot’s dispersion for a moment)
as given by equations 4—7 requires, additionally, the knowledge of
the compliant porosity. However, to model the frequency dependen-
cy of the moduli, we need to assume a particular geometrical config-
uration. Here we assume a particular geometry proposed by Murphy
etal. (1986): a compliant pore forms a disk-shaped gap between two
adjacent grains, and its edge opens into a toroidal stiff pore (Figure
1). It is assumed that the gap also has asperities; thus, its stiffness is
finite even when the gap is empty. However, these asperities are as-
sumed (somewhat arbitrarily) not to affect the geometry of the gap as
far as the fluid movement is concerned. The gap has radius a and
thickness /. The additional effective stiffness K* of the gap due to the
presence of fluid can be defined as a ratio of the force AF (acoustic
force) exerted by the fluid onto the gap wall to the uniaxial dynamic
loading (displacement) —Ah

AF
K¥=——. 11
~ AR (11)

The force is essentially the integral of pressure over the surface S, of
the gap,

AF=f p(r)dsS.
s

8

For sinusoidal loading, Al exp(iw?) with frequency w = 27 f, fluid
pressure p can be obtained as a solution of the ordinary differential
equation

d*>p ldp

—+

+k*p=C, 12
dr*  rdr P (12)

where ris the radial coordinate;

Grain

Stiff
Pore

h$ Complaint pore

a

Grain

Figure 1. Sketch of the model configuration (Murphy et al., 1986).
Soft pore forms a disc-shaped gap between two grains, and its edge
opens into a toroidal stiff pore.

k2 — LhOD, (1 3)
Ky
is the wavenumber of the pressure diffusion wave in the gap; D
=129/ h?) is the viscous resistance, C = iwDAh; and h, is the initial
thickness of the gap.

These equations have been presented by Murphy et al. (1986) to
obtain an undrained saturated modulus. Thus, their boundary condi-
tion at the edge of the gap is the equation of fluid mass conservation
between the gap and the annular pore. On the other hand, in the mod-
ified frame, only the intergranular gap is fully filled with the fluid,
whereas the stiff (toroidal) pore is drained. Thus, in contrast to Mur-
phy et al. (1986), our boundary condition (for equation 12) at the
edge of the gap (r = a) is that the fluid pressure p is zero

pl—a=0. (14)

Equation 12 is an inhomogeneous Bessel equation with a constant
right-hand side. Substitution of

C
P=q+p;

gives

d*q ldg
F-}—;;ﬁ-kzq:(), (15)

which is ahomogeneous Bessel equation of zero order (Abramowitz
and Stegun, 1964). The general solution of this equation is

q = CyJy(kr),

which gives
C
p = CJylkr) + 2

Substitution of this general solution into the boundary condition 14
gives

C

C = T 5,
: K2Jo(ka)

so that the pressure in the gap is given by

B 2{1 - Jo(kr)}
P=2l ™ k) |
Then the force AF is
C| a* 1
AF = ZWfp(r)rdr = 277; 5~ Jo(ka)JJo(kr)rdr
0 0

or
2J,(ka) |AhK
Ao _mz[l _M]_z.
ka.lo(ka) l’lo

Substitution of this force into equation 11 gives the following ex-
pression for the fluid-related gap stiffness:
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2J,(ka) } K, (6)

K*= WaZ{l - .
kaJO(ka) hO

Effective modulus of partially relaxed fluid

In the low-frequency limit, k— 0; thus, K* vanishes. This corre-
sponds to the fact that at the low frequencies the fluid poses no resis-
tance to gap deformation. At sufficiently low frequencies, the pres-
sure in the gap will be equilibrated and thus will be zero throughout
the gap. Conversely, in the limit of high frequency, equation 16 gives

’7T(12

ho
This is the gap resistance in the unrelaxed state, when fluid has no
time to escape from the gap within the half-period of the wave. Com-
parison of equations 16 and 17 shows that, at any given frequency,
the gap stiffness is the same as the unrelaxed stiffness computed for a
modified fluid with a bulk modulus

M}Kf (18

Kf (Prw) = {1 a kaJo(ka)

Substitution of K; for the fluid modulus K in equation 5 gives the fi-
nal expression for the partially relaxed modulus K, of the modified
frame.

1
K, [P, w)
1, !
K, 1 1
+
1 1 1 1
BN L P
Kay(P) Ky \K[(P.w) K,

(19)

Then, the corresponding partially relaxed shear modulus ., of the
modified frame can be obtained by substituting K, for K, in equa-
tion4

R [ L ]
IU/mf(P’w) Iu’dl’y(P) 15 Kdry(P) Kmf(P’w) '
(20)

Note that the wavenumber & of the pressure wave, as given by equa-
tion 13, is complex and frequency dependent

12iwn

- , 21
K 1)

K=

and so are the effective fluid modulus K* and partially relaxed frame
moduli K, and p,,s. This implies the presence of velocity dispersion
and attenuation.

Equations 19 and 20 provide closed-form expressions for bulk
and shear moduli of the modified frame (whereby soft pores are flu-
id-filled whereas stiff pores are dry). Once modified frame moduli
are obtained, the moduli of the fully saturated medium can be ob-
tained using Gassmann’s or Biot’s equations. If the frequency is
small compared to Biot’s characteristic frequency fg;q, then the bulk
modulus of the fully saturated medium can be computed using Gas-

N113

smann equation 9, whereas the shear modulus remains unchanged
(see equation 10). If the frequency is comparable to or larger than
[Bios then dispersion equations of the full Biot’s theory of poroelas-
ticity have to be used. This latter approach allows us to compute dis-
persion and attenuation due to both squirt and Biot’s mechanisms.

Asymptotes

Frequency dependency of the partially relaxed modified frame
moduli is controlled by the quantity

1 3 12
ka=—<— ”‘"’) , (22)
o Kf

which depends on two new parameters: fluid viscosity 7 and aspect
ratio of the gaps (or compliant pores) a = hy/2a. Its squared value
0 = |kal? is proportional to frequency and can be used as dimen-
sionless frequency. Figure 2a and b shows the predictions of the
model based on equation 19 combined with Gassmann’s equation 9
for the bulk modulus (real part) and inverse quality factor as func-
tions of frequency at different pressure levels for the sample of Berea
5-600 sandstone (Han et al., 1986) fully saturated with water (K
=2.2 GPa, p;= 1031 kg/m?, » =102 Pa-s). Figure 3a and b
shows the same dependencies for the same sample saturated with gas

a) 19 i i | i
| | ‘.‘,\--)-.u;_v-nﬂwm-
............. :;i _:/'I/ i
I I 1 I
)
< 18— r————- r———+pg—— T
5 LA
S T =7 I
» I I 1 I
El I I I I
S I I i I
8 A N T
1S 17— T | 77774,\ 77777 [PV
~ ! ! H P}(MPa)
>
3 e
1 1 Iy —-20
| | [ N 40
e Ry s S
| | ,’ | |
“““ S 1
10°  10® 10" 10° 10

10 10° 1
Frequency (Hz)

Figure 2. Predictions of (a) the real part of the bulk modulus and (b)
dimensionless attenuation for a range of frequencies and pressures
(shown by different line patterns) for a water-saturated sample of
Berea 5-600 sandstone. Solid lines show asymptotic frequency de-
pendencies of attenuation: ' at low frequencies, w ~! at intermedi-
ate frequencies, and w ~ 2 at high frequencies.

Downloaded 12 Dec 2010 to 124.168.236.221. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



N114 Gurevichetal.

(K;=0.0022 GPa, p;=10.8 kg/m’, 7 =11X10"°Pa-s). The
workflow for estimation of K, and ¢, is described in Appendix A.

For the water-saturated rock (Figure 2a and b), the bulk modulus
shows a smooth transition from the low- to high-frequency limit.
Similar behavior is observed for the gas-saturated rock (Figure 3a
and b); however, not surprisingly the dispersion appears to be much
smaller in this case. Attenuation for the water-saturated rock shows
slightly more complex behavior, revealing existence of one addi-
tional asymptote at the intermediate frequencies (approximately
10°-10® Hz), and one additional transition frequency (approximate-
ly 10° Hz).

To understand the behavior of attenuation in the water-saturated
case, we consider three limiting cases.

1) Low frequencies. In this limit we have |ka|> < 1 and

8¢.(P)

(23)

|kaP<€i<

1 1 )K
Kyy(P) K, /

Then, Taylor expansion of Bessel functions in equation 18 in powers
of ka gives

a) 1 i i i ‘
I | BN R J
............. Lo hsssssase] ‘
1 1 1 1
[ [ [ T I
T 1 1 g — -
5 |- it pr= 1
S 13————— I [ I IR
» | | | |
=} | | | |
= l | | |
8 P(MPa) | 1 1
E 12r—r-—5 I I
X
3 —-20| | 1 1
B 40
MM }L ***** }L ***** }L:::::-J‘r‘:::===
| | S |
e N PERESL | |
1 1 1 1
10
10  10° 10" 10°  10® 10"

@

e

o,
5

| |

| |

| |

| |

| |

1 1
10 10 10 10 1
Frequency (Hz)

Figure 3. Predictions of (a) the real part of the bulk modulus and (b)
dimensionless attenuation for a range of frequencies and pressures
(shown by different line patterns) for a gas-saturated sample of Be-
rea 5-600 sandstone. Solid lines show asymptotic frequency depen-
dencies of attenuation: w' at low frequencies and w~!? at high fre-
quencies.

1
sk
K, = - g(ka)sz. (24)

Substitution of this expression into equation 19 gives

1 1 1
——=— . (@5
Kmf(Paw) Kh 1 . (ka)sz ( )
11 8¢(P)
Kdry(P) Kh

Under condition 23, equation 25 gives the following asymptote for
the modified frame modulus:

Kmf(Psw) = Kdry(P)

X|:1 M( ! L)ZKK P :|
T 36.P)\Kyu(P) k) KEP) |-

(26)

This shows that in the low-frequency limit, the modified frame mod-
ulus tends to the dry modulus. The corresponding asymptotic ex-
pression for the dimensionless attenuation is

- _1( 1 _L)dem(P)Kf )
Q (P’w) - 8 Kdry(P) Kh d)((P) |ka|

1 1

3 w?‘]Ker(P) (27)

2
B §<Kdry(P) - Kh> a?$.(P)

2) Intermediate frequencies.

( 18¢°'(P)1> < Jka)*< 1. (28)
f

Kyy(P) K,

In this case we can again use Taylor expansions 24 and 25. Under
condition 28, equation 25 reduces to

8@@)@] (9)

K, (P,w) =K, 1 +
nf(P-0) ’[ (ka)* K,

The corresponding asymptotic expression for dimensionless attenu-
ation is

8¢.(P)K, 8p.(P)a’K,

-1
P.w) = = 30
0" (Pw) |ka|2 K; 3w7 (30)
Note that for this regime to exist we must have
8¢ (P
Kdry(P) Kh

This means that the fluid modulus must not be too small (“liquid
case”). This explains why this regime is not observed in the gas case
(see Figure 3b). Note that in this intermediate regime, attenuation is
proportional to 1/ .

3) High frequencies:|ka|*>> 1. In this case equation 18 gives

* _ 2
K} = {1 + ka}Kf. (32)
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Substitution of expression 32 into equation 19 gives high-frequency
asymptotes for K,; and the corresponding attenuation factor. In par-
ticular, for the liquid case (condition 31), the expressions for these
asymptotes are given by

2 .
Ky (P.w) = Koy (P) + @(P)ﬁ(ﬁ)

Kf k(l
_ K, 2i¢C<P)>]
~Kh[1+Kf( . (33)
and
B _g(viqﬁc(m)_ a¢.(P)K,
Q (P’w)_Kf |kal _(3w77Kf/2)”2' (34)

Note that in this high-frequency limit, attenuation is proportional to
1w

Simplified model for the liquid case

As we have seen in the previous section, for the most important
case of liquid saturation, the attenuation exhibits three asymptotic
regimes. However, only two regimes are visible in the velocity dis-
persion. This may look strange, but can be easily understood if we
notice that the real parts of the modified frame moduli at intermedi-
ate and high frequencies are K, (high-pressure dry modulus) and K,
(unrelaxed modulus), respectively, as given by equations 29 and 33.
As discussed earlier, for liquid saturation, the difference between
these moduli is usually negligible (see equation 3 and corresponding
discussion). Thus, the transition of the real parts of the modified
frame moduli from the intermediate — to high-frequency regimes is
unnoticeable and can be ignored. Moreover, the same can be said
about attenuation. Indeed, attenuation corresponding to the high-fre-
quency regime is negligibly small (this can be understood from the
fact that in the intermediate regime the attenuation decays as 1/w
and rapidly becomes very small). We thus can conclude that the tran-
sition from intermediate — to high-frequency regimes is unimpor-
tant, and for all practical purposes the behavior described by equa-
tion 19 is accurately approximated by much simpler equation 25,
which describes a single dispersion transition. Equation 25 can also
be rewritten in the form

1 _L_’_ 1
K, AP.w) K, 1 3iony
11 8¢

Kyy(P) K,

. (35)

with the shear modulus given by equation 20. It is interesting that
dispersion and attenuation behavior predicted by this model does not
explicitly depend on fluid compressibility. However, we should keep
in mind that the fluid compressibility must be sufficiently small
(modulus large) to satisfy condition 31.

Equations 25 and 35 describe a simple transition of the modified
frame modulus from Ky, to K;,. The characteristic transition frequen-
cy can be obtained from the intersection of asymptotes given by
equations 27 and 30. This gives

0, kaf = M[;_ L}[L}
' K, [Kay(P) K, Kgy(P)]

(36)

In this equation, compliant porosity ¢, and dry modulus K, are
functions of pressure. Equation 36 can be simplified by noting that
pressure variation of dry modulus is caused by progressive closure
of compliant porosity. Indeed, according to Shapiro (2003), the dif-
ference between dry and high-stress compressibilities Kd’ry] — K, 'is
proportional to the compliant porosity ¢,

1 1 _¢.(P) 0

K, °

Kay(P) K, 57

where 6. is the parameter of stress sensitivity related to the compli-
ance of compliant pores (or their effective aspect ratio). This gives

0,= Ikl = SL{L} (38)
ach Kdry(P)

or

(39)

w;

_ 8afth|: Kh :|1/2
37706 Kdry(P)

For a small concentration of randomly oriented penny-shaped
cracks, parameter 6, can be related to their aspect ratio a by (seee.g.,
Mavko et al., 1998)
K,3K,+ 4
— M . (40)
Tap(3K, + u,)

Using equation 40, expression 39 for squirt characteristic frequency
can be written as

B
wl‘ = a3_9 (41)
n
where
8 3K, + K, |
_ (3K, /~Lh)|: h } (42)
33K, + 4uy) | Kary(P)

is a combination of the dry moduli of the rock, which have dimen-
sions of elastic moduli and are weakly dependent on pressure (in
equation 42, w, is dry shear modulus of the rock without compliant
pores).

Note that in bilogarithmic scale, asymptotes 27 and 30 have iden-
tical slopes. Thus, the attenuation peak given by equation 25 is sym-
metric about the transition frequency {2,, and maximum attenuation
occurs exactly at {2, (or ;). This maximum attenuation value can be
obtained by substituting equation 38 into 25 and taking imaginary
and real parts (note that (ka)> = — i|ka|?). This yields

ol 5 12,

Kdry(P )
Recall that K, is nothing more than Ky, in the limit of high pressure.
If the variation of dry bulk modulus with pressure is moderate, then
(Ky/ Kyry)"? = O(1) and thus the peak attenuation is equal to half of
the fractional variation of the dry bulk modulus with pressure. For
example, if the difference between Ky, and K}, is 20%, then Q will be
approximately 10.

-1 —
Q (P,(l)l) - Kh+Kdry(P)
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The theory presented here gives expressions for dispersion and at-
tenuation in the modified frame (whereby soft pores are fluid-filled
while stiff pores are dry). As mentioned earlier, the moduli of the ful-
ly saturated medium can be obtained using Gassmann’s or Biot’s
equations.

LABORATORY DATA EXAMPLES

In this section, we illustrate predictions of our squirt model on
several rocks and compare these predictions with laboratory mea-
surements. Our aim is to illustrate the behavior of the model on a few
samples. A comprehensive experimental validation of the model is
certainly in order but will be done in a separate study.

Figure 4a and b shows a comparison between measured (solid cir-
cles) and predicted by our model (solid lines) compressional and
shear velocities as functions of pressure for a water-saturated sample
of Berea 5-600 sandstone (Han et al., 1986). We also plot the mea-
surements carried out on a dry sample (empty circles) as well as the
predictions by the Mavko-Jizba model (dashed lines) and Gas-
smann’s (dotted lines) and Biot’s equations (dash-dot lines). The pa-
rameters of the grain material are taken to be density p,
= 2653 kg/m? and the grain bulk modulus K, = 39 GPa, which is
estimated by assuming that at the highest pressures the saturated
bulk modulus is given by Gassmann’s equation. The compliant po-

a) 4200 ‘ ‘ , , l
“““ )
4000
a
€ 1 @® Sat ]
€ 3800 o Dry
= Model:
s GASS
3600 *-___".,\B,:S; —]
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|
3400 ‘
0 10 20 30 40 50

Pressure (MPa)

b) 2800

2600

2400

VS (m/s)

2200

2000
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Figure 4. Velocities of (a) compressional and (b) shear waves in a
sample of Berea 5-600 sandstone as a function of pressure: ultrason-
ic laboratory measurements on dry (empty circles) and water-satu-
rated (solid circles) sample, predictions of the Mavko-Jizba (1991)
model (dashed line), Gassmann’s (dotted line) and Biot’s (dash-dot
line) theories, and predictions of the present model (solid line).

rosity is obtained from velocity in the dry sample using the theory of
Shapiro (2003). The aspect ratio of the grain contact & = 0.01 is ob-
tained by the best fit of the predictions to the experimental data. The
details of the parameter estimation are given in Appendix A. Figure
Sa and b and Figure 6a and b show the dispersion and attenuation of
compressional and shear velocities, respectively, as functions of
pressure and frequency. We observe the decrease of dispersion and
attenuation with increasing pressure. This is logical because pres-
sure increase causes closure of compliant porosity.

Figure 7a and b shows a comparison between measured and pre-
dicted velocities as functions of pressure for a water-saturated car-
bonate sample S1 (Agersborg et al., 2008). The model parameters
for the carbonate sample are taken to be p, = 2670 kg/m* and K,
= 82 GPa. The aspect ratio of the grain contacts obtained by the best
fit of the prediction to the experimental data is & = 0.01. We see that
for the sandstone and carbonate samples our model describes the ob-
served shape of the pressure dependency reasonably well.

DISCUSSION

In this paper, we have developed a simple model of elastic wave
attenuation and dispersion due to squirt flow between stiff and soft
pores in a granular rock. The model applicability is shown on a cou-

a
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Figure 5. Predictions of (a) velocity and (b) attenuation of P-wave in
a water-saturated sample of Berea 5-600 sandstone as a function of
frequency and pressure.
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ple of illustrative examples. By construction, the model is exactly
consistent with Gassmann’s theory in the low-frequency limit and
with the Mavko-Jizba model in the high-frequency limit. The ex-
pression for the characteristic frequency w,, equation 41, is the same
as the commonly used expression for squirt frequency (Jones, 1986),
except that in our model the bulk modulus of the rock is replaced by a
combination of bulk and shear moduli. Furthermore, for liquid-satu-
rated rocks the attenuation and dispersion curves are symmetric
about w, inlog-log scale. Attenuation 1/Q is proportional to w at low
frequencies, and to 1/ w at high frequencies. The magnitude of atten-
uation and dispersion is directly related to the variation of dry bulk
modulus with pressure. All of these features are also characteristic of
the double-porosity model of Pride et al. (2004). The model present-
ed here is designed to describe the same physical processes as the
double-porosity model but uses a very different theoretical approach
and is much simpler. An important advantage of our model is that it
gives closed-form expressions for velocity and attenuation as func-
tions of frequency and pressure. The model is particularly simple for
the most important and rather general case of liquid-saturated rocks.
In this case the dispersion and attenuation is given by equation 35,
which corresponds to a viscoelastic model known as a standard lin-
ear solid (Zener, 1948; Mavko et al., 1998). This makes the model
easy to implement in viscoelastic and poroviscoelastic forward
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Figure 6. Predictions of (a) velocity and (b) attenuation of S-wave in
a water-saturated sample of Berea 5-600 sandstone as a function of
frequency and pressure.

modeling using finite element and finite difference methods (Car-
cione, 2007).

The model contains one adjustable parameter — the aspect ratio
of compliant pores. All other parameters can be measured or estimat-
ed from measurements of ultrasonic velocities and strains versus
confining pressure on dry samples. The workflow for estimation of
these parameters is described in Appendix A. One assumption in this
workflow is that all compliant pores are closed at the upper limit of
the pressure range of the measurements; hence, ultrasonic velocities
become independent of pressure. Therefore, there is no squirt at
these pressures and the saturated and dry velocities should approxi-
mately satisfy Gassmann’s (or Biot’s) equations. This is the case in
the example given in Figure 4a and b. However, in many other cases
the compliant pores will not be completely closed at the pressure of
50 or even 100 MPa. This can be seen by the fact that in many cases
the dry velocities at these pressures continue to increase with the
pressure increase. This closure of remaining compliant porosity is
responsible for the linear term in the velocity-pressure relationship
of Eberhart-Phillips et al. (1989), which is based on the analysis of
measurements on a large set of sandstone samples from different ar-
eas of the world (Han et al., 1986). The significance of this term has
been recently demonstrated by Vernik and Hamman (2009) and
Gurevich et al. (2009b). If the compliant pores close at higher pres-
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Figure 7. Velocities of (a) compressional and (b) shear waves in a
sample of S1 carbonate as a function of pressure: ultrasonic labora-
tory measurements on dry (empty circles) and water-saturated (solid
circles) sample, predictions of the Mavko—Jizba (1991) model
(dashed line), Gassmann’s (dotted line) and Biot’s (dash-dot line)
theories, and predictions of the model presented here (solid line). In
this case, Gassmann’s and Biot’s predictions coincide.
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sures than the available range of experimental data, then the modu-
lus K, cannot be estimated directly from the measurements. Instead,
K, should be estimated using some effective medium theory assum-
ing a typical aspect ratio of stiff pores in a particular rock (see e.g.,
Xu and White, 1995).

The particular frequency dependency of velocity and attenuation
described by our theoretical model is a consequence of using soft po-
rosity with a single aspect ratio. Many experimental studies show
much more gradual variation of Q with frequency, or even constant
Q. In the context of squirt flow models, such frequency dependency
is often explained by assuming a broad distribution of aspect ratios
(O’Connell and Budiansky, 1977). A broad distribution of aspect ra-
tios is also often invoked to explain the exponential stress dependen-
cy of elastic moduli. However, recent analysis based on the theoreti-
cal model of Shapiro (2003) suggests that such stress dependencies
can be explained by a combination of only two aspect ratios: one for
stiff pores and one for soft pores (Pervukhina et al., 2010). As noted
above, this analysis is based on the dependency of elastic moduli in
the range of confining stress up to 50—70 MPa. One can speculate
that the stress dependency of elastic moduli in a broader range of
stresses may reveal the presence of a broader range of pore aspect ra-
tios. This in turn can affect the frequency dependency of velocity and
attenuation caused by squirt. This issue requires further investiga-
tion.

Experimental validation of our model requires a comparison of its
predictions against measurements of fluid-saturated velocities and
attenuation factors versus frequency and pressure. The frequency
range of ultrasonic measurements is usually quite narrow (e.g.,
0.25—1 MHz) which makes it difficult to observe the velocity dis-
persion. One way to overcome this difficulty is to look at variations
of velocity (and attenuation) with fluid viscosity. This can be done by
saturating the same sample with several different fluids (e.g., Best
and McCann, 1995; Adam et al., 2009) or using a fluid (e.g., glycer-
ol) for which the viscosity can be varied by changing temperature
(Jones, 1986). Alternatively, frequency dependency can be obtained
from resonant bar (Born, 1941; Gardner, 1962; Wyllie et al., 1962,
McCann and Sothcott, 2009) or forced-oscillation measurements
(Batzle et al., 2006; Adam et al., 2009). A comprehensive compari-
son of model predictions with laboratory data will be a subject of a
separate study.

CONCLUSIONS

We have developed a simple model of squirt-flow relaxation in
granular fluid-saturated media. The model gives closed-form ex-
pressions for velocity and attenuation as functions of frequency and
pressure. The results are exactly consistent with Gassmann’s theory
in the low-frequency limit and with Mavko—Jizba unrelaxed moduli
in the high-frequency limit. For liquid-saturated rocks, the attenua-
tion and dispersion correspond to the model of standard linear solid,
with coefficients directly related to the elastic and hydraulic proper-
ties of the medium. Attenuation factor 1/Q is proportional to w at
low frequencies and to 1/ at high frequencies. The magnitude of
attenuation and dispersion is directly related to the variation of the
dry bulk modulus with pressure and is relatively independent of fluid
properties. The model contains one adjustable parameter — the as-
pect ratio of compliant pores (grain contacts). All other parameters
can be measured or estimated from measurements of ultrasonic ve-
locities and strains versus confining pressure on dry samples.
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APPENDIX A

ESTIMATION OF MODEL PARAMETERS

Our model given by equations 35 and 20 predicts modified frame
moduli and, when combined with Gassmann’s or Biot’s theory, com-
pressional and shear wave moduli, velocities, and attenuation coeffi-
cients of a fully saturated rock as a function of frequency and materi-
al properties (of the rock frame and pore fluid). Because the model
contains several parameters, it is always possible to fit it to data suffi-
ciently well by varying the unknown parameters. It is therefore criti-
cal to measure or estimate independently as many parameters as pos-
sible (i.e., to perform a controlled experiment). In a typical laborato-
ry setup, compressional and shear ultrasonic velocities are measured
on dry and fluid-saturated rock samples as a function of pressure.
Thus, parameters Ky, and uyy, as functions of pressure can be ob-
tained from the ultrasonic measurements using standard equations
Ky = [V — (4/3)V3]p and pyy = Vip. Below we describe how the
other parameters of the model can be estimated from the laboratory
measurements.

High-pressure modulus

High-pressure modulus K, can be taken as K, at the highest pres-
sure available. Note that this approach assumes that at this pressure
all of the compliant porosity is closed and corresponds to the fact that
Ky as function of pressure has leveled off at this pressure value.

Compliant porosity

Compliant porosity ¢, cannot be directly measured; however, it
can be estimated from the variation of total porosity with pressure.
For instance, this variation can be estimated by measuring volumet-
ric strain as a function of pressure using strain gauges. Once the total
porosity variation is known, stiff porosity can be estimated by fitting
alinear trend to total porosity in the high-pressure range where com-
pliant porosity is assumed closed (and thus total porosity equals stiff
porosity) (Figure A-1). Compliant porosity can be obtained as a dif-
ference between total porosity and the linear trend of stiff porosity
extrapolated to the lower pressures (Walsh, 1965; Mavko and Jizba,
1991; Pervukhina et al., 2010). However, note that because compli-
ant porosities are usually 0.001 or less, high-accuracy measurements
of total porosity variations with pressure are required.

If such precise porosity measurements are not available, compli-
ant porosity can be estimated from the stress dependency of dry elas-
tic moduli obtained from ultrasonic measurements as suggested by
Pervukhina et al. (2010). Stress dependency of the dry bulk modulus
can be approximated as follows (Shapiro, 2003)

VK aey(P) = 1/K}, = (eo/ Pp)exp(—P/Py),  (44)

where ¢, is compliant porosity at zero pressure and P, is a charac-
teristic pressure at which compliant porosity closes. The parameters
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Figure A-1. Porosity versus confining pressure. Compliant porosity
(dash-dot line) at a given pressure is estimated as the difference be-
tween the total porosity (solid line) and the extrapolation of the high-
pressure porosity versus pressure trend (dashed line).

¢/ P, and P, can be obtained by fitting of the stress dependency of
bulk moduli using equation 44 and ¢, can be estimated as a ratio of
these fitting parameters. Then the pressure variation of compliant
porosity can be written as

¢c(P) = ¢ exp[P/P,]. (45)

Note that neither of the two compliant porosity estimation ap-
proaches utilizes the velocity or attenuation measurements on satu-
rated samples. Therefore, these estimates are independent of disper-
sion/attenuation data.

Aspect ratio of the contact gap

Like compliant porosity, aspect ratio « of the grain contact gap
cannot be directly measured. It is tempting to estimate the gap aspect
ratio from the variation of, say, dry moduli with compliant porosity
(e.g., using elastic effective medium theory; Kiister and Toksoz,
1974; Berryman, 1980). However, the aspect ratio that controls fluid
pressure relaxation in the flat intergranular gap may not be related to
the aspect ratio of penny-shaped cracks that control the pressure
variation of the effective elastic moduli of the dry rock. In this study,
we use gap aspectratio « as a free-fitting parameter and estimate it as
the value that provides the best fit for modulus-pressure dependency
on saturated samples (Figures 4 and 7).
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