Present-day stress orientations and tectonic provinces of the NW Borneo collisional margin

Rosalind C. King,1,2 Mark R. P. Tingay,2,3 Richard R. Hillis,1 Christopher K. Morley,4 and James Clark5

Received 23 September 2009; revised 17 May 2010; accepted 9 June 2010; published 16 October 2010.

1 Borehole failure observed on image and dipmeter logs from 55 petroleum wells across the NW Borneo collisional margin were used to determine maximum horizontal stress (σ_{H}) orientations; combined with seismic and outcrop data, they define seven tectonic provinces. The Baram Delta–Deepwater Fold–Thrust Belt exhibits three tectonic provinces: its inner shelf inverted province (σ_{H} is NW–SE, margin–normal), its outer shelf extension province (σ_{H} is NE–SW, margin–parallel), and its slope to basin floor compression province (σ_{H} is NW–SE, margin–normal). In the inverted province, σ_{H} reflects inversion of deltaic normal faults. The σ_{H} orientations in the extension and compression provinces reflect deltaic gravitational tectonics. The shale and minibasin provinces have been recognized in offshore Sabah. In the shale province, σ_{H} is N010°E, which aligns around the boundary of a massif of mobile shale. Currently, no data are available to determine σ_{H} in the minibasin province. In the Balingian province, σ_{H} is ESE–WNW, reflecting ESE absolute Sunda plate motions due to the absence of a thick detachment seen elsewhere in NW Borneo. The Central Luconia province demonstrates poorly constrained and variable σ_{H} orientations. These seven provinces result from the heterogeneous structural and stratigraphic development of the NW Borneo margin and formed due to complex collisional tectonics and the varied distribution and thicknesses of stratigraphic packages.

1. Introduction

In many regions worldwide maximum horizontal stress (σ_{H}) orientations are parallel or subparallel to absolute plate velocity vectors and ridge torques, e.g., North America, South America, and western Europe [Richardson, 1992; Zoback, 1992]. At the present-day, NW Borneo is situated in the center of the Sunda plate, which has an absolute motion of ~30 mm yr$^{-1}$ to the ESE (Figure 1a) [Michel et al., 2000; Simons et al., 2007]. However, σ_{H} orientations across the NW Borneo collisional margin are not parallel to Sunda plate motion directions [Tingay et al., 2010a]. Instead, σ_{H} orientations are predominantly consistent with the complex local tectonics across the margin.

[3] Intraplate stress patterns are a result of long-wavelength regional sources (e.g., ridge push, slab pull, buoyancy, and lithospheric flexure), as well as numerous short-wavelength local effects (e.g., sediment loading, glacial rebound, and lateral density contrasts). Long-wavelength effects give rise to first-order stress patterns, while short-wavelength effects produce second-order stress patterns [Zoback, 1992]. It is the relative magnitudes of the sources of stress that define the dominate stress regime in a given region [Zoback, 1992]. For example, a local stress source may induce large differential stresses that override the regional (far-field) stress source so that second-order stress patterns dominate in the area [e.g., Sonder, 1990]. Alternatively, a local stress source with low differential stresses may still affect stress orientations, where a layer with low shear strength (i.e., a detachment) prevents the transfer of regional far-field stresses into layers where measurements are taken [e.g., Tingay et al., 2010b]. Thus, a second-order stress pattern prevails.

[4] Previous authors have demonstrated that σ_{H} orientations across the Baram Delta–Deepwater Fold–Thrust Belt (DDWFTB), in the Sabah Basin, are strongly controlled by a combination of far-field stresses in the basement and gravitational tectonics associated with the DDWFTB [Tingay et al., 2005; Morley et al., 2008; King et al., 2009].
Margin-normal σ_{11} orientations in the delta toe are generated by the gravitationally driven margin-parallel σ_{11} orientations in the delta top [King et al., 2009]. However, σ_{11} orientations have not previously been determined beyond the Baram DDWFTB.

In this paper we present new σ_{11} orientations that have been derived from borehole failure observed in 39 petroleum wells from the NE region of the Sabah Basin and the Sarawak Basin (Figure 1). We demonstrate that σ_{11} orientations across the NW Borneo collisional margin are not simply aligned with the Sunda plate motions but are associated with the variable structural styles exhibited along the margin (Figure 1). Indeed, σ_{11} orientations (previously published and those presented herein) together with field and seismic data across the margin define seven discrete tectonic provinces controlled by the local sources of stress and not far-field sources of stress. These new insights of the NW Borneo collisional margin begin to elucidate the main controls on the initial development of mountain belts.

2. Geology of the Sarawak and Sabah Basins

Convergence between a proto-South China Sea plate and the Luconia “block”, and NW Borneo led to the Cenozoic development of a heterogeneous collisional margin: the NW Borneo collisional margin. The NW Borneo collisional margin is ~ 700 km long and 200–400 km wide and is bounded by the West Balingian Line at the SW and the Balacab Fault at the NE (Figure 1b).

The inland region of NW Borneo is dominated by the Crocker-Rajang accretionary complex (Figure 1b), which formed as a result of subduction of a proto–South China Sea plate below Borneo [e.g., Hamilton, 1979; Hinz and Schlüter, 1985]. Subduction ceased during the latest early Miocene due to jamming by the attenuated crust of the Dangerous Grounds [Tan and Lamy, 1990; Milson et al., 1997; Hall, 2002]. To the SW, the Luconia block collided and sutured to NW Borneo during the Eocene to early Miocene (Figure 2b) [James, 1984; Hazebroek et al., 1994], contemporary with subduction of the proto–South China Sea plate. The NW Borneo collisional margin is thus, both, diachronous (older to the SW, younger to the NE) and tectonically heterogeneous [Sandal, 1996].

The coastal and offshore regions of the NW Borneo collisional margin are divided into two basins: the Sarawak and Sabah basins [Hall and Morley, 2004] (Figure 1b). The NW–SE trending West Baram Line, thought to be a transform fault related to the ancient subduction zone, divides the two basins [James, 1984; Agostinelli et al., 1990] (Figure 1b). The West Baram Line is considered to have separated the deposition of predominantly carbonate sediments in the Sarawak Basin and siliciclastic sediments in the Sabah Basin [Madon, 1999a; Madon et al., 1999]. Uplift and deformation of the inboard areas of the NW Borneo collisional margin continued to the latest Cenozoic and has significantly influenced the depositional systems and structure of the two basins [Madon, 1999a; Morley et al., 2003]. The West Baram Line presently divides active W–WW directed convergence in the Sabah Basin from smaller amounts of S–SW directed convergence in the Sarawak Basin, as demonstrated by recent Global Positioning System measurements [Simons et al., 2007] (Figure 1a).

2.1. Sarawak Basin

The Sarawak Basin is situated onshore and near coast regions from the West Baram Line ($\sim 115^\circ$E), east of Miri, to the western extent of the Malaysian province Sarawak ($\sim 110^\circ$E) and offshore for approximately 400 km ($\sim 7^\circ$N, Figure 1b). The Sarawak Basin is broadly divided into seven tectonostratigraphic areas: SW Sarawak, Tatau, Balingian, Tinjar, Central Luconia, West Luconia, and North Luconia [after Madon, 1999a]. Stress orientations, presented herein, have been determined for wells from the Central Luconia and Balingian areas (Figure 1b).

The Luconia block forms the northern parts of the Sarawak Basin. Collision of the Luconia block resulted in two wrench fault systems in the southern parts of the Sarawak Basin: a dextral system associated with the West Balingian Line and a sinistral system associated with strike-slip basement tectonics in East Balingian [Madon, 1999b; Madon and Abolins, 1999]. However, at present day, focal mechanisms demonstrate sinistral movement on the West Balingoin Line [Simons et al., 2007]. The Central Luconia and Balingian areas are located in these northern and southern parts of the Sarawak Basin, respectively (Figure 1b).

The Oligocene to early Miocene sequence in Central Luconia is dominantly shallow marine clastics with isolated carbonate buildups [Madon, 1999a]. The middle to late Miocene sequence is dominated by more than 200 carbonate buildups [Ali and Abolins, 1999]. Increased carbonate deposition during the middle Miocene resulted from the northeastward movement of clastic deposition into the Sabah Basin [Ali and Abolins, 1999]. Continued uplift of the Crocker–Rajang Accretionary Complex resulted in an influx of siliciclastic sediments during the late Miocene to Recent [Ali and Abolins, 1999]. The only structures observed in Central Luconia are normal faults at the fringes of the carbonate buildups, implying the Luconia block has been tectonically quiescent since its collision with NW Borneo in the...
Eocene to early Miocene (Figure 2b) [Ali and Abolins, 1999].

The Balingian area to the south is structurally more complex and is divided into two areas: East Balingian and West Balingian. The north-south trending Acis and Balingian subbasins separate the two areas [Madon, 1999a]. East Balingian is tectonically older than West Balingian [Madon and Abolins, 1999]. A WNW-ESE trending dextral wrench system was active during the late Oligocene to early Miocene associated to the NNW-SSE striking West Balingian Line, resulting in NW-SE trending folds and faults [Madon and Abolins, 1999]. East Balingian was stable throughout the middle to late Miocene with minor tectonic events occurring in the early Pliocene [Madon and Abolins, 1999]. In East Balingian a ENE-WSW sinistral wrench system resulted from strike-slip basin reactivation and was active during the late Miocene to Pliocene forming NE-SW trending folds [Madon, 1999b]. Deposition in the Balingian area was almost continuous from the Oligocene to Recent, with clastic sediments grading from fluvial to marine in the early Miocene [Madon and Abolins, 1999].

2.2. Sabah Basin

The Sabah Basin is located NE of the West Baram Line to the most northern tip of Borneo (~115°N to ~117°N), extending from onshore to approximately 200 km offshore, where it is bounded by the NW Borneo Trough (~8°N, Figure 1b). The Baram DDWFTB dominates the Sabah Basin (Figure 1b). The Baram DDWFTB is Miocene to Recent in age and is a clastic wedge composed of several small deltas [Sandal, 1996; Lambiase et al., 2002]. The deltas are sourced and have progressively built outward from the Crocker-Rajang Ranges in the hinterland [Hutchison, 2005]. Published stress analysis has demonstrated two tectonic provinces consistent with the present-day active DDWFTB on the outer shelf to basin floor: the extension province and the compression province [King et al., 2009; Tingay et al., 2009a]. The two provinces are consistent with the gravitationally driven deformation.
observed in a delta system [e.g., Mandl and Crans, 1981; Morley and Guerin, 1996], where extensional normal faults and margin-parallel σ_{H} orientations on the delta top (extension province) are coupled with the delta toe (or deepwater fold-thrust belt) that exhibits basinward verging thrust faults and margin-normal σ_{H} orientations (compression province [King et al., 2009]). A third tectonic province, the inverted province, has been described for the oldest, most proximal onshore and inner shelf regions of the Baram DDWFTB [Tingay et al., 2003, 2005; Morley et al., 2008; Tingay et al., 2009a].

Deepwater marine rocks largely comprise the north-east area of the Sabah Basin (outside of the Baram delta [Madon et al., 1999]). However, progradation of the shelf slope during the late middle Miocene resulted in deposition of shallower marine sediments in the inboard areas of the basin [Madon et al., 1999]. This northeast area of the Sabah Basin is structurally complex away from the delta, and is traditionally divided into three tectonically distinct areas; the inboard belt, the outboard belt and the thrust zone (Figure 1) [Hinz et al., 1989; Tan and Lamy, 1990; Hazebroek and Tan, 1993; Hutchison, 2005]. However, in this paper we follow a new interpretation, which is based on recent seismic data as discussed by J. Clark (NW Sabah deepwater delta tectonics: A genetic link between contrasting deepwater structural domains, paper presented at Petroleum Geology Conference and Exhibition, Kuala Lumpur, Malaysia, 2009). In this interpretation two regions are described: an inner shelf minibasin zone and an outer shelf thickened massif of mobile shale (Figure 1b). The minibasin zone is consistent with the inboard and outboard belts as described by previous authors. It consists of NNE-SSW trending tight anticlines separated by wide synclines that are a result of basement NE-SW sinistral wrench faulting during the late Miocene to early Pliocene [Bol and van Hoorn, 1980; Van Viet and Schwander, 1987; Hazebroek and Tan, 1993]. It is overlain by thin deltaic and shelfal successions demonstrating extensional and compressional structures [Madon, 1999b], probably consistent with gravitational collapse of a small delta system. These extensional and compressional structures form small “fill and spill” minibasins (J. Clark, NW Sabah deepwater delta tectonics: A genetic link between contrasting deepwater structural domains, paper presented at Petroleum Geology Conference and Exhibition, Kuala Lumpur, Malaysia, 2009) (Figure 1b).

![Figure 3](image-url)
(a) Cross section of a vertical well illustrating the orientation of borehole breakout and drilling-induced tensile fractures (DITFs) with respect to the maximum horizontal stress (σ_{H}) orientation. (b) Example caliper logs from a high-resolution dipmeter tool (HDT) demonstrating elongation of the borehole wall. (c) Formation Micro-Imager (FMI) log from well B2, illustrating dark, conductive borehole breakouts. (d) Oil-based microimager (OBMI) log from well S3, illustrating light, resistive borehole breakouts (mbsl, meters below sea level, modified from King et al. [2008]).
consistent with the chaotic seismic facies has been interpreted (Figure 1b).

3. Present-Day Maximum Horizontal Stress Orientations

[15] The orientation of \(\sigma_{H} \) can be determined from stress-induced compressive or tensile failure of the borehole wall, known as borehole breakout and drilling-induced tensile fractures (DITFs), respectively (Figure 3) [Bell, 1996a].

3.1. Location of Petroleum Wells Across NW Borneo

[16] Image logs and high-resolution dipmeter logs from 39 petroleum wells across NW Borneo were used to identify borehole failure, and thus, determine the orientation of \(\sigma_{H} \) (Figure 1b). Twenty-seven wells are located offshore from Sarawak and 12 wells are located offshore from Sabah (Figure 1b).

3.2. Log Interpretation

3.2.1. Borehole Failure

[17] Borehole breakouts are a stress-induced elongation of the borehole cross section (Figure 3a). The presence of an open wellbore causes a localized perturbation of stresses in the vicinity of the borehole [Kirsch, 1898]. Borehole breakouts form when the maximum stress at the borehole wall exceeds the compressive rock strength, resulting in compressive failure and spalling of the borehole wall (Figure 3a) [Bell, 1996a]. The circumferential stress is a function of the magnitude and anisotropy of \(\sigma_{H} \) and the minimum horizontal stress (\(\sigma_{h} \)) in vertical wells, with the maximum circumferential stress, and thus breakouts, developing perpendicular to the orientation of \(\sigma_{H} \) [e.g., Bell and Gough, 1979; Kirsch, 1898]. Drilling-induced tensile fractures form due to tensile failure at the borehole wall when the minimum circumferential stress exceeds (assuming negative notation) the tensile strength of the borehole wall. Drilling-induced tensile fractures form parallel to the present-day \(\sigma_{H} \) orientation in vertical wells (Figure 3a) [Bell, 1996a; Brudy and Zoback, 1999].

[18] Borehole breakouts and DITFs may not directly yield the tectonic stress orientation in highly deviated boreholes due to the complex stresses that form around a borehole that is not oriented parallel to a principal stress [Mastin, 1988; Peška and Zoback, 1995]. Hence, appropriate corrections to the orientations of borehole breakouts interpreted on the caliper or image logs were required in wells that were not vertical (Table 1) [after Peška and Zoback, 1995].

3.2.2. Borehole Imaging Tools

[19] Resistivity image logs were used to interpret borehole breakout and DITF orientations in 36 petroleum wells and high-resolution dipmeter logs were used to interpret borehole breakout from an additional 3 petroleum wells (Figure 3b and Table 1). Of the 36 wells with resistivity logs, nine wells had simultaneous acoustic and resistivity (STAR) imager logs, seven wells had formation microimage logs, nine wells had simultaneous acoustic and resistivity (FMI) logs and 20 wells had oil-based microimager (OBMI) logs (Table 1). STAR imager, FMI and OBMI tools produce images of resistivity contrasts at the borehole wall measured by four arms that maintain contact with the borehole wall as the drill string is pulled up the well (Figures 3c and 3d). Images are lost when the arms do not
The tool should rotate before and after the elongation; however, in zones of several small breakouts the rotation may terminate completely, (2) the difference recorded between the two arms of the calipers is > 6 mm, (3) the length (along the borehole axis) of the elongation is > 1.5 m, (4) the largest caliper should be extended greater than the drill bit size, and (5) the smallest caliper should not be significantly greater than the drill bit size.

[24] Care is required when analyzing caliper logs, so that borehole enlargements, not related to stress (e.g., washouts or key seating), are not confused with borehole breakouts [e.g., Hills and Williams, 1993]. Drilling-induced tensile fractures cannot be identified on caliper logs because they do not generally create borehole elongation.

3.3. Results

[25] Image logs and high-resolution dipmeter logs from 39 petroleum wells have been used to determine σ_{11} orientations across NW Borneo (Figure 1b). Two-hundred and twenty-one borehole breakouts and ten DITFs were identified in 22 wells, while no stress-induced borehole failure was observed in the remaining 17 wells (Table 1). Thirteen of the 22 wells demonstrating borehole breakout and DITFs are vertical wells; the remaining nine wells are deviated from vertical, with a maximum deviation of 45° (Table 1).

[26] The σ_{11} orientation for each well analyzed in this study has been quality ranked in accordance with the standard World Stress Map quality ranking system (Tables 1 and 2) [Heidbach et al., 2010]. The ranking system is based on the total number, the standard deviation and the total length of the stress indicators observed (Table 2). The ranks are from A to E, with A being the highest quality and E the lowest (Table 2). Ten of the 39 wells analyzed have an σ_{11} orientation that ranks A to C for borehole breakout (Table 1), and are considered as reliable stress orientations under the World Stress Map ranking scheme [Heidbach et al., 2010]. Twelve of the 39 wells resulted in D quality σ_{11} orientations and the remaining 17 wells gave E quality σ_{11} orientations (no results). However, several studies argue that D quality orientations can also provide reliable and useful data from small-scale analysis of the stress field in sedimentary basins, particularly in areas containing several consistently oriented D quality data points [Yassir and Zerwer, 1997; Tingay et al., 2010a].

3.3.1. Sarawak

[27] Twenty-seven petroleum wells have been analyzed from the offshore Sarawak Basin (Figure 1b). In total, 148 borehole breakouts and ten DITFs were identified. The mean σ_{11} orientation from borehole breakouts in seven wells are ranked A–C quality and those from another six are ranked D quality; the remaining 14 wells are E quality (Table 1). The mean σ_{11} orientation from DITFs observed in two wells are ranked D quality, those from the remaining 25 wells are E quality.

[28] Thirteen of the 27 wells analyzed in the Sarawak Basin are located in the Balingian tectonostratigraphic region [i.e., Madon, 1999a], in the southern Sarawak Basin. In ten of these wells, 142 borehole breakouts and eight DITFs were identified. The mean σ_{11} orientation of each well give a mean regional σ_{11} orientation of N112°E (with a standard deviation of 19°, Table 3). Fourteen wells are located in Central Luconia and four of these contain six borehole breakouts and
two DITFs. The regional mean \(\sigma_{1H} \) orientation of N003°E (with a standard deviation of 43°) is derived from the mean \(\sigma_{1H} \) orientations in each well (Table 3).

[30] The mean \(\sigma_{1H} \) orientation of N112°E for the Balingian region is based on two A quality, two B quality, two C quality and five D quality stress indicators (Table 1). The mean \(\sigma_{1H} \) orientation of only A–C quality indicators is N113°E (with a standard deviation of 14°, Table 3). The mean \(\sigma_{1H} \) orientation for Central Luconia is derived from four D quality stress indicators. However, the large standard deviation reflects high uncertainty of the measurement and not necessarily the true \(\sigma_{1H} \) orientations across the region.

3.3.2. Northern Sabah

[31] Eleven petroleum wells have been analyzed from the northern part of the offshore Sabah Basin and one from the southern end of the Sabah Basin (Figure 1b). In total, 55 borehole breakouts were identified in wells in the northern Sabah Basin. The mean \(\sigma_{1H} \) orientation of each well gives a mean regional \(\sigma_{1H} \) orientation of N010°E (with a standard deviation of 21°, Table 3). Three wells are ranked A–C quality and four are D quality for \(\sigma_{1H} \) orientations from borehole breakouts; the remaining four wells are E quality (Table 1). No DITFs were identified; therefore, all wells on the northern part of the Sabah Basin are ranked E quality for DITFs (Table 1).

[32] The mean \(\sigma_{1H} \) orientation of N010°E in the northern Sabah Basin is based on two B quality, one C quality and four D quality stress indicators (Table 1). The mean regional \(\sigma_{1H} \) orientation of A–C quality indicators only is N006°E (with a standard deviation of 9°, Table 3). Well S4 demonstrates an anomalous mean \(\sigma_{1H} \) orientation of N142°E compared with mean \(\sigma_{1H} \) orientations in adjacent wells (Figure 1). However, the \(\sigma_{1H} \) orientation was determined from image log at the same interval as \(\sigma_{1H} \) orientations in adjacent wells so the origin of this diverse orientation is unclear.

[33] The one well in the southern part of the Sabah Basin is located in the inverted province at the SW edge of the Baram DDWFTB. Fifteen borehole breakouts were identified in the well, giving a mean \(\sigma_{1H} \) orientation of N151°E, consistent with published NW–SE \(\sigma_{1H} \) orientations in the province (Figure 1b and Tables 1 and 3) [after Tingay et al., 2005; King et al., 2010a]. This \(\sigma_{1H} \) orientation is ranked B quality according to the World Stress Map ranking system (Tables 1 and 2). No DITFs were observed in the well, thus, it is ranked E quality for DITFs.

4. Discussion: Stress Provinces Across NW Borneo

[34] Maximum horizontal stress orientations determined from 39 petroleum wells presented herein have been combined with published \(\sigma_{1H} \) orientations from onshore and offshore Brunei (Figure 1b) [Tingay et al., 2005; King et al., 2009, 2010a; King and Backé, 2010; Tingay et al., 2009a]. In total, 102 petroleum wells have been analyzed for \(\sigma_{1H} \) orientations across the NW Borneo collisional margin, with 55 petroleum wells yielding \(\sigma_{1H} \) orientations. The \(\sigma_{1H} \) orientations are varied and the majority are not parallel or subparallel to the direction of absolute plate motion (Figure 1b). In NW Borneo, stress orientations are considered to be detached from the tectonic plate below, such as is often due to the presence of a thick detachment layer, such as salt or overpressured shale [e.g., Bell, 1996b], reflecting the variable structural styles and stratigraphy along the NW Borneo margin. Seven tectonic provinces are described across NW Borneo and are based on observed \(\sigma_{1H} \) orientations and seismic and field outcrop data (Figure 1b). The Balingian, inverted and compression provinces are the only regions to demonstrate \(\sigma_{1H} \) orientations that parallel plate motion. However, orientations in the compression province are not derived from absolute plate motion but are intimately linked with the extension province due to the gravitational deformation of the Baram DDWFTB.

4.1. Quality Ranking the Stress Provinces in NW Borneo

[35] The Rayleigh test was applied to \(\sigma_{1H} \) orientations observed in each tectonic province to establish if the preferred orientation is significant [Mardia, 1972] (Table 4). The provinces are ranked from 1 to 6 [e.g., Hillis and Reynolds, 2000; Tingay et al., 2010a], where 1 indicates a province with \(\sigma_{1H} \) orientations that indicate the null hypothesis that stress orientations are random can be rejected with 99.9% confidence, 2 at 99.0% confidence, 3 at 97.5% confidence, 4 at 95.0% confidence, and 5 at 90.0% confidence. A province ranked 6 indicates that the null
hypothesis that the stress orientations are random cannot be rejected at the 90% confidence level.

[35] Tingay et al. [2010a] have undertaken this analysis for the inverted, extension, and compression provinces of the Baram DDWFTB (Table 4). The inverted and compression provinces are ranked 1, demonstrating that the observed preferred σ_{11} orientations indicate that null hypothesis can be rejected with 99.9% confidence [Tingay et al., 2010a]. The extension province in ranked 3 exhibiting that the observed preferred σ_{11} orientations indicate that null hypothesis can be rejected with 97.5% confidence [Tingay et al., 2010a]. Here we have carried out the Rayleigh test for the Balingian, Central Luconia and shale provinces. The Balingian and shale provinces are ranked 1 and 3, respectively, while the Central Luconia province is ranked 6. Thus, demonstrating that the mean σ_{11} orientations calculated for the inverted, extension, compression, Balingian and shale provinces are statistically significant. The mean σ_{11} orientation in the Central Luconia province is not statistically significant.

4.2. Baram Delta and Deepwater Fold-Thrust Belt

[36] Published σ_{11} orientations from 63 petroleum wells onshore and offshore from Brunei define three tectonic provinces across the Baram DDWFTB: an inverted province, an extension province, and a compression province (Table 3 and Figure 1b) [Tingay et al., 2005; King et al., 2009, 2010a; Tingay et al., 2009a]. The three provinces have previously been termed neotectonic provinces due to the associated present-day tectonic activity [King et al., 2009].

[37] The inverted province is located onshore Brunei to ~60 km offshore (Figure 1b). Forty-seven petroleum wells have been analyzed (one presented herein, Table 1) in the inverted province, 24 wells demonstrate stress-induced borehole failure that give a mean σ_{11} orientation of N128°E (with a standard deviation of 24°, Table 3 [Tingay et al., 2005; King et al., 2010a]). These margin-normal σ_{11} orientations are consistent with NE-SW and N-S striking, inverted, seismic scale, normal faults, many with associated fault bend folds or fault propagation folds (Figure 4a) [Morley et al., 2003; Tingay et al., 2005; Morley et al., 2008; King et al., 2009]. These NE-SW and N-S striking faults were once normal faults forming part of the active DDWFTB and have since been inverted.

[38] Inversion occurred due to continued shortening across the margin [e.g., Morley et al., 2003, 2008]. Mid-Miocene deltaic extension resulted in E-W and NE-SW striking normal faults, and mid-Miocene to Pliocene transpression resulted in N-S and NE-SW trending folds [Morley et al., 1998, 2003, 2008]. Shale dikes of different ages in the Jerudong Anticline, NE Brunei, demonstrate two strike directions, indicating the two phases of deformation [Morley et al., 1998; Tingay et al., 2005]. Shale dikes observed in Miocene sediments strike NE-SW indicating that σ_{11} orientations were margin-parallel during the Miocene consistent with deltaic extension [Tingay et al., 2005]. Shale dikes in Pliocene sediments strike NW-SE indicating that the orientation of σ_{11} had rotated to margin-normal by the Pliocene, a result of ongoing convergence, hinterland uplift and subsequent inversion [e.g., Morley et al., 1998, 2003, 2008]). Recent GPS (Global Positioning System) measurements show that at present-day far-field convergence (relative to Sunda) continues across the NW Borneo margin [Michel et al., 2000; Simons et al., 2007]. This convergence is parallel to the absolute Sunda plate motion. Therefore, the present-day σ_{11} orientations that reflect far-field convergence in the inverted province are only coincident with the orientation of absolute plate motion of Sunda.

[39] The present-day active delta top, forming the extension province, is observed at the outer shelf, 60–90 km offshore (Figure 1b), due to forced progradation of the system, a consequence of inversion of the proximal delta [Tingay et al., 2003, 2005]. Eight wells from the extension province have been analyzed to determine σ_{11} orientations [Tingay et al., 2005]; four wells demonstrate a mean σ_{11} orientation of N033°E (with a standard deviation of 21°, Table 3 [Tingay et al., 2005]). The province demonstrates seismic scale normal growth faults, with strike lengths ranging from kilometers to 10s of kilometers [Sandul, 1996]. These faults strike NE-SW (margin-parallel) and have moderate to steep basinward NW dips [Hiscott, 2001]. The present-day margin-parallel σ_{11} orientations are con-

Table 4. Quality of Tectonic Provinces Defined Across the NW Borneo Collisional Margin*

<table>
<thead>
<tr>
<th>Tectonic Province</th>
<th>Total Number of Wells</th>
<th>Stress Indicators</th>
<th>Number of Wells Ranked According to Quality</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BO DITF</td>
<td>BO A B C D E</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean SD R C (%)</td>
<td></td>
</tr>
<tr>
<td>Inverted</td>
<td>46</td>
<td>BO: 351 DITF: 7</td>
<td>1 7 5 10 23 0 0 0 4 20</td>
<td>128 24 0.695 99.9 1</td>
</tr>
<tr>
<td>Extension</td>
<td>4</td>
<td>BO: 12 W: 23 DITF: 1</td>
<td>0 0 0 4 0 0 0 0 1 3</td>
<td>033 21 0.868 97.5 2</td>
</tr>
<tr>
<td>Compression</td>
<td>9</td>
<td>BO: 88 W: 8 DITF: 0</td>
<td>0 2 1 5 1 0 0 0 0 9</td>
<td>118 17 0.873 99.9 1</td>
</tr>
<tr>
<td>Shale</td>
<td>11</td>
<td>BO: 55 W: 7 DITF: 0</td>
<td>0 2 1 4 4 0 0 0 0 11</td>
<td>100 27 0.781 97.5 2</td>
</tr>
<tr>
<td>Minibasin</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balingian</td>
<td>13</td>
<td>BO: 142 W: 10 DITF: 8</td>
<td>2 2 2 4 3 0 0 0 1 12</td>
<td>112 19 0.833 99.9 1</td>
</tr>
<tr>
<td>Central Luconia</td>
<td>14</td>
<td>BO: 6 W: 3 DITF: 2</td>
<td>0 0 0 3 11 0 0 0 1 13</td>
<td>003 43 0.865 <90.0 6</td>
</tr>
</tbody>
</table>

*Maximum horizontal stress orientations indicated by number of borehole breakouts (BO) and drilling-induced tensile fractures (DITF) from n wells (W), standard deviation of σ_{11} azimuths (SD), the length of the mean resultant vector of σ_{11} orientations (R) within a province [Mardia, 1972], and the confidence level (C).
sistent with the observed active normal faulting in the extension province (Figure 1b). There is little or no sedimentary healing/growth strata across the faults indicating that slip has been recent in this environment of high sedimentation rates (Figure 4b) [McGilvery and Cook, 2003; Hiscott, 2001]. The observed margin-parallel σ_{II} orientations and margin-parallel active normal faults are consistent with the extensional province of a DDWFTB (Figure 5) [King et al., 2009]. The observed σ_{II} orientations do not reflect the absolute plate motion due to the dominant gravitational stresses and also the presence of the thick over-pressured prodelta shale unit that forms a detachment [Tingay et al., 2007, 2009b].

40 The compression province extends from \sim90 to \sim150 km offshore Brunei at the delta toe (Figure 1b). Nine petroleum wells have been analyzed for stress-induced

Figure 4. (a) Cross section illustrating the Jerudong Anticline in the inverted province [from Morley et al., 2003]. (b) Seismic lines illustrating active normal faults in the extension province [from Hiscott, 2001]. (c) Basinward verging thrust sheets with associated faults propagation folds in the compression province [from Hinz et al., 1989]. Locations of cross section and seismic lines are displayed on Figure 1.
The generally expected structure of a delta system, where margin-parallel maximum horizontal stress orientations are reflected by listric, normal faults in the delta top (extension), and margin-normal maximum horizontal stress orientations correspond to basinward verging thrust sheets and associated fault propagation folds in the delta toe (deepwater fold-thrust belt, compression from King and Backé [2010]).

borehole failure; eight wells demonstrate a mean regional σ_{H} orientation of N118°E (with a standard deviation of 17°, Table 3 [King et al., 2009]). Seismic scale thrust faults are observed in the delta toe compression province, striking NE-SW and dipping shallowly to the SE (landward), forming an imbricate thrust sheet system [James, 1984; Hinz et al., 1989; Ingram et al., 2004]. Each thrust fault is associated with a fault propagation fold (Figure 4c). Deformation of the thrust sheets began in the mid-Miocene and continued to Recent [Hinz et al., 1989; Franke et al., 2003]. The identified NW-SE σ_{H} orientations are consistent with these thrust sheets being active at present-day. Seismic lines across the thrust sheets demonstrate that the fault propagation folds have developed significant seafloor topography (Figure 4c) [McGilvery and Cook, 2003; Morley, 2007]. There is relatively little sedimentary healing of the most distal folds, suggesting that there has been recent deformation of the most distal thrust sheets (Figure 4c). Some thrust faults dissect the basin floor [Hinz et al., 1989; Ingram et al., 2004]. The observed margin-normal σ_{H} orientations and margin-parallel thrust faults are consistent with the compression province of a DDWFTB (Figure 5) [King et al., 2009].

The σ_{H} orientations in the compression and extension provinces demonstrate that σ_{H} orientations across a delta rotate from margin-parallel in the extension province to margin-normal in the compression province (Figure 5) [King et al., 2009]. These orientations are consistent with gravitationally driven and coupled extension and compression in DDWFTBs [e.g., Mandl and Crans, 1981; Morley and Guerin, 1996; Morley, 2003]. However, the delta toe stresses do appear to be consistent with the orientation of absolute Sunda plate motion and the orientation of present-day far-field convergence [e.g., Simons et al., 2007]. Two-dimensional modeling suggests that delta toe stresses may reflect that a component of WNW-ESE far-field compression is accommodated, and reoriented, by the dominant NW–SE gravitationally driven deepwater fold-thrust belt [King et al., 2010b].

4.3. Northern Sabah

Maximum horizontal stress orientations from 11 petroleum wells define a province representing the most eastern parts of the deepwater fold-thrust belt and the thickened massif of mobile shale (or thrust zone). The deepwater fold-thrust belt consists of NW verging imbricate thrust sheets and associated fault propagation folds [Ingram et al., 2004; Hutchison, 2005; Franke et al., 2008; Hesse et al., 2009]. The mean σ_{H} orientations for wells in this region is N010°E, which is not consistent with NE-SW striking thrusts in the deepwater fold-thrust belt. The complex interaction between the deepwater fold-thrust belt and the adjacent minibasin zone and mobile shale massif may result in variable σ_{H} orientations. However, σ_{H} orientations identified in this region demonstrate a clockwise rotation between wells in the SW and wells in the NE (Figure 1b). The σ_{H} orientations approximately align parallel to the boundary of the thickened massif of mobile shale (thrust zone). The tectonic nature of this region is an area of great debate among geologists working in NW Borneo. It is an area of anomalously high seismic velocities and displays chaotic seismic facies [Franke et al., 2008]. A number of interpretations of the tectonics of the region may account for the clockwise rotation of σ_{H} orientations from SW to NE.

The region was defined as an allochthon transported by gravity gliding, which resulted in two stacked series of thrust sheets [Hinz et al., 1989; Tan and Lamy, 1990; Hazebroek and Tan, 1993]. If the gravitational tectonics associated with the thrust zone continued at present-day then a change in the tectonic regime from thrust faulting, in the lowlands, to normal faulting, in the highlands, would be
observed. However, we do not observe this in our results (Figure 1b).

Franke et al. [2008] suggested the high seismic velocities in the region were consistent with an area of carbonate material or Paleogene sediments surrounded by ophiolites. Therefore, the region may exhibit a contrast of geomechanical properties (e.g., Poisson’s ratio and Young’s modulus) between adjacent materials (e.g., carbonate material surrounded by clastic material), which may result in the deflection of the stress field [Zhang et al., 1994]. In this case, σ_{11} orientations would align perpendicular to the boundary, depending on the volume of contrasting material and sharpness of boundary, between the high-velocity “stiff” region and the surrounding “soft” fold-thrust belt [i.e., Bell, 1996b] (Figure 6a). However, this is not what we observed in our results (Figure 1b).

More recently, the region has been interpreted as a thickened massif of mobile shale separating an on-shelf region of extensional minibasins from the slope to basin floor fold-thrust belt (J. Clark, NW Sabah deepwater delta tectonics: A genetic link between contrasting deepwater structural domains, paper presented at Petroleum Geology Conference and Exhibition, Kuala Lumpur, Malaysia, 2009). In this case, σ_{11} orientations would align parallel or subparallel to the boundary, depending on the volume of contrasting material and sharpness of boundary, between the relatively soft thickened massif of mobile shale and the surrounding stiff fold-thrust belt [i.e., Bell, 1996b] (Figure 6b). The strong parallel alignment of σ_{11} orientations determined in this region are a result of geomechanical property contrasts (e.g., Poisson’s ratio and Young’s modulus) between the soft thickened massif of mobile shale and surrounding stiffer material [i.e., Bell, 1996b; Zhang et al., 1994] (Figure 6b). Thus, we define the most eastern parts of the deepwater fold-thrust belt and the thickened region of mobile shale as the shale province. A second tectonic province exists in Sabah. It is consistent with the minibasin zone, and is hence, termed the minibasin province. However, it is only defined by seismic interpretation from recent data; no stress orientations are yet available for this province. The presence of preexisting faults may also deflect the stress field so that σ_{11} orientations are perpendicular or parallel to normal or reverse faults [Yale, 2003; Yale et al., 1994; Townend and Zoback, 2004]. Therefore, the presence of the preexisting late Miocene–early Pliocene compressional and wrench faults and associated local structures may deflect the present-day stress field, as is suggested by the almost perpendicular σ_{11} orientations in wells S4 and S5 (white square, Figure 1b, see Table 1). These different σ_{11} orientations do not appear to be consistent with the regional strike of the thrust faults but may be consistent with small jogs along strike or intersecting faults.

4.4. Sarawak

Maximum horizontal stress orientations have been determined from wells located in the Balingian and Central Luconia regions of the Sarawak Basin (Figure 1b). The Balingian region is situated immediately offshore from the Sarawak coastline, it is a region consisting of two wrench systems: a NW-SE dextral wrench system in the west that was active from late Oligocene to early Miocene and a NE-SW sinistral wrench system in the east, which was active during the late Miocene to Pliocene [Madon and Abolins, 1999]. Maximum horizontal stress orientations in the Balingian region were obtained from wells located in the central parts of the basin close to the Acis and Balingian subbasins that separate the two wrench systems. The observed ESE-WNW σ_{11} orientations are not consistent with these wrench system being active at present day. The mean σ_{11} orientation of N112°E is parallel to subparallel to the ESE Sunda plate motion. The absence of a thick overpressured shale or salt unit in the underlying fluvial to marine clastic sequence in the Balingian region suggests that the stresses are not detached [i.e., Bell, 1996b] and may indeed reflect the direction of absolute plate motion to which they are parallel.

These ESE-WNW σ_{11} orientations are also consistent with strike-slip movement observed on the adjacent West Baram Line, resolved from a recent focal plane mechanism solution [e.g., Michel et al., 2000] and the West Balingian Line (Figure 1b). The West Baram Line divides relative E-W to WNW-ESE convergence in the Sabah Basin to the NE from smaller amounts of NE-SW convergence in the Sarawak Basin to the SW [e.g., Simons et al., 2007]. Resolved strike-slip motion along the West Baram Line and West Balingian Line is consistent with absolute ESE Sunda plate motions (Figure 1b).

Maximum horizontal stress orientations determined from wells situated in the Central Luconia region are all low-quality indicators, with a large standard deviation (43°).
of the mean orientation (N003°E, Table 4). In the Rayleigh test
the province ranked 6, suggesting that the σII orientations
are random and have no systematic pattern (Table 4).

The Central Luconia region is tectonically quiescent and has
been since the collision of the Luconia block with NW Borneo in
the Eocene to early Miocene [James, 1984; Hazebroek et al., 1994].
The region is dominated by more than 200 carbonate reefs/build ups of
middle to late Miocene age [Ali and Abolins, 1999]. Provided the scatter in σII ori-
entations of the four D quality stress indicators reflects the
observed stress pattern correctly, one could speculate that
the far-field stress sources have little control. This control is
maybe due to a low horizontal differential stress (σII − σIII)
from the far field. Given this, local structures (e.g., sub-
seismic normal faults at the fringes of the carbonate reefs/
build ups) could control the σII orientations resulting in reorien-
tation of the σII orientation on a short wavelength. Low
horizontal differential stresses may be due to the
presence of an efficient detachment underlying the carbon-
ate sequences, e.g., the thick sequence of deep marine clastics (i.e., shale [Ali and Abolins, 1999]). The absence of
pronounced neotectonics or neotectonic structures is con-
istent with a low anisotropy stress field.

5. Conclusions

[50] The vast majority of σII orientations determined from
102 wells across the NW Borneo collisional margin are not
generated by the ESE absolute Sunda plate motion, though
many are parallel or subparallel to it, e.g., those in the in-
verted and compression provinces. Instead, σII orientations
reflect the complex local tectonics of the margin. Seven
tectonic provinces have been described.

[51] The Baram DDWFTB consists of three tectonic
provinces. The inverted province demonstrates a margin-
normal (NW-SE) σII orientation consistent with the
observed NE-SW striking inverted deltaic structures.
The extension province displays a margin–parallel (NE-SW) σII orientation consistent with the observed NW-SE striking listric, normal faults. The compression province with a margin-normal (NW-SE) σII orientation is consistent with the observed NW-SE striking, top to NW, thrust faults and associated fault propagation folds. The extension and com-
pression provinces form the present-day active DDWFTB,
demonstrating coupled extension and compression [King et al., 2009].

[52] Two new provinces are defined in Sabah, the mini-
basin province and the shale province. The minibasin province
is characterized only by recent seismic interpreta-
dation, and data are not yet available to determine a σIII ori-
entation at present. In the shale province, σII orientations are
oriented approximately N-S with a clockwise rotation
between wells in the SW and wells in the NE, broadly paral-
lelling the margins of the thickened massif of mobile
shale. Wells are located at the eastern limits of the deep-
water fold-thrust belt adjacent to the complex area, here
temed, the thickened massif of mobile shale. Contrasting
geomechanical properties of a soft, thickened massif of
mobile shale and surrounding stiffer sediments in the
deepwater fold-thrust belt and minibasin province may
result in the alignment of σII orientations parallel to the
boundary of the thickened massif of mobile shale.

[53] Two provinces are described in Sarawak, the Balingian
province and the Central Luconia province. The ESE-NW
σII orientations observed in the Balingian province may reflect
the ESE absolute Sunda plate motions. The absence of any
thick detachment layer between the basement and basin fill
and the lack of significant local neotectonics may result in σII orientations that are controlled by plate boundary forces. In
the Central Luconia province σII orientations are low quality
and variable. They do not parallel plate motion. Deep marine
shales form a thick detachment between the basement and
overlying sediments. The variable and low-quality nature of
the σII orientations imply local not far-field control in sedi-
ments overlying these deep marine shales.

[54] The NW Borneo collisional margin is not simply an
accratory wedge homogeneously deformed above a
subducted plate. The complex interactions between
the ancient subduction zone, the Luconia block, sedimentation
and the interactions of plate stresses and gravitational
stresses has given rise to the formation of many variable
structures during the evolution of this margin. The nature of
the margin is highly variable along tectonic strike and seven
tectonic provinces across the NW Borneo collisional margin
demonstrate the heterogeneous structural styles we observe.
The varied sedimentary sequence deposited across the margin significantly affects the influence of Sunda plate
stresses on the tectonic processes observed across the mar-
gin. For example, gravitational stresses observed in the
Baram DDWFTB are detached from stresses in the under-
lying plate by the thick overpressured prodelta shale,
whereas stress observed in the Balingian province closely
parallel absolute Sunda plate motion due to the lack of a
significant detachment in the thick Balingian sequence of
fluvial to marine clastic deposits. Thus, there are a number of
factors identified herein that contribute to the evolution of
a collisional margin: (1) far-field stresses, which can be
generated by any number of collisional blocks along the
margin, (2) deflection of stresses around developing struc-
tures, and (3) distribution and variable thicknesses of
different lithologies (rheologies), which may form detachments
and/or result in geomechanical property contrasts, which
may lead to stress rotations.

[55] Acknowledgments. The authors gratefully thank Petronas, Shell Malaysia and Murphy Oil Corporation for their support and willingness to publish these new data, and the authors take sole responsibility for the tech-
nical contents of this article. The authors would like to thank the Australian
Research Council for their financial support. The authors would also like to
thank JRS Petroleum Research for the use of their image log software and
their technical support throughout the duration of this study. This paper forms TRAx record 80.

References

Agostinelli, E., M. R. A. Tajuddin, E. Antolielli, and M. M. Aris (1990),
Miocene-Pliocene palaeogeographic evolution of a tract of Sarawak off-
Ali, M. Y. B., and P. Abolins (1999), Central Luconia Province, in The
Petroleum Geology and Resources of Malaysia, pp. 369–392, PETRO-
NAS, Kuala Lumpur, Malaysia.
Characterising the full stress tensor based on observations of drilling-
duced wellbore failures in vertical and inclined boreholes leading to
improved wellbore stability and permeability prediction, APEA J., 38,
467–487.
Bell, J. S. (1996a), In situ stresses in sedimentary rocks (part 1), Measure-
ment techniques, Geosci. Can., 23, 85–100.

