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Abstract 

Centrifugal pumps perform an important role in many industries. They are 

classified as one of the most critical rotating machines which ensures the continuation 

of many production processes. During their operation, the centrifugal pumps may fail 

which will subsequently lead to the interruption of the production line. The capability 

to detect premature failure of the pump not only ensures the continuation of the 

production line but also prevents more severe damage to the pump. Therefore, 

monitoring the health status of centrifugal pumps is essential in order to avoid 

unwanted stoppage of the pump which may further lead to the breakdown of the whole 

production process.  

A reliable and low-cost maintenance system for the centrifugal pump is an 

important requirement for industries. This reason becomes the motivation for 

extensive research in searching for improved methods for the centrifugal pump fault 

diagnosis. There is a trend to utilise combinations of vibration signal processing and 

classification techniques to produce better and more reliable centrifugal pump fault 

diagnosis. The use of dimensionality reduction methods has also gained attention in 

past decades due to the increase in the number of monitored maintenance variables. 

The application of vibration signal processing, dimensionality reduction method and 

classification techniques is an open research area for further exploration in order to 

develop improved methods for centrifugal pump fault diagnosis.  

A literature review of vibration signal processing, statistical features extraction 

method, dimensionality reduction technique, wavelet transform and machine learning 

for classification technique in fault diagnosis is presented in this thesis. Based on the 

findings from the literature review, a new combined method is proposed for centrifugal 

pump fault diagnosis. The proposed method consists of the use of statistical features, 

Symlet wavelet transform, Principal Component Analysis (PCA) and k-Nearest 

Neighbors.  

Six statistical features (i.e., energy level, standard deviation, RMS, kurtosis, 

variance and crest factor) were extracted from the time domain vibration signal which 

were previously decomposed using Symlet wavelet transform. Three types of Symlet 
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wavelet: sym4, sym8 and sym12 were investigated. The decomposition process was 

up to 5 levels using multi resolution analysis (MRA) which produced approximation 

coefficient (cA) and detailed coefficient (cD) components. For the purpose of the 

statistical features extraction, only the low frequency part from the decomposition 

results were undertaken, thus the cA parts were used for further analysis. The six 

statistical features were extracted from the cA parts of each sym-n wavelet transform 

(up to 5 levels). The resulting 30 features obtained from the feature extraction process, 

after normalizing, were used to develop the PCA models.  

Once the PCA models were developed, they can then be used for dimensionality 

reduction and fault detection. The fault detection based on PCA models were 

performed by utilising T2 and Q statistics and subsequently fault classification and 

identification were carried out using score matrices and k-Nearest Neighbors 

respectively.  

Four accelerometers were mounted onto different locations of the centrifugal 

pump including the pump’s inlet, volute, outlet and bearing housing. The 

accelerometers were used to collect the vibration data from seven different pump fault 

conditions including cavitation, impeller fault, bearing fault, blockage, impeller fault-

cavitation, impeller fault-blockage and bearing fault-cavitation.  

The results demonstrated that the proposed wavelet-PCA based method can be 

used for multi-fault diagnosis for centrifugal pumps with high performance where the 

lowest misdetection rate was 0.3% and the highest identification accuracy was 99.2% 

and visible separation of faults was evident. Although, different PCA models have to 

be employed in order to achieve the best performance. 
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CHAPTER ONE 

1 Introduction 

A centrifugal pump is a type of rotating machinery that is commonly used in 

many industries such as chemical plants, wastewater treatment, power generation, 

sugar refining, food industries, oil and gas and many more. It is often located on the 

critical path of the production line which, during its operation, may experience failures 

that can potentially cause disruption to the production processes. The capability to 

detect those failures at an early stage not only assures the continuity of production 

processes but also promptly avoids more severe damage of the machines. A reliable 

maintenance system therefore plays a critical role to keep such industrial machinery in 

a good operational condition. 

Along with the increasing complexity of the industrial equipment due to 

technological development, the associated machinery requires a more advanced and 

reliable maintenance strategy in managing the production process. A high performance 

maintenance system is then required in order to ensure the reliability of both the 

production machines and the production process while keeping low maintenance cost, 

which eventually may increase the profitability and competitiveness of the companies.   

The need to maintain high level of operational safety, providing the reliability of 

production equipment, improving quality of product, and increasing productivity leads 

the industries to improve their existing maintenance system [1]. In addition, the 

maintenance system also ensures modern industries operate at low-risk impact to the 

environment while achieving maximum productivity. 

However, a considerable amount of money must be spent on the maintenance 

tasks in particular industries which have modern-intensive equipment. Furthermore, 

the application of automation and computerization in many modern plants, utilization 

of artificial intelligence and unmanned equipment has increased the maintenance cost 

significantly. As a consequence, the implementation of a reliable and efficient 

maintenance system is crucial so that the maintenance cost may be set at an optimum 

level.  
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Fault monitoring and diagnosis is an important part of the maintenance 

processes. This is needed to monitor and diagnose the operational condition of 

machines with rotating components and aims to prevent unscheduled breakdown of 

machines caused by the failure of rotating components. An effective and efficient fault 

diagnosis method which is able to detect a failure at an early stage would be very useful 

in designing a maintenance strategy. 

In conjunction with the importance of fault diagnosis in the maintenance scheme, 

the research in the fault diagnosis area becomes more attractive and challenging. Many 

diagnosis approaches have been proposed which aims to establish a more accurate and 

efficient fault diagnosis scheme. 

In the following section, a brief discussion of maintenance techniques is 

presented to put the thesis in context.   

1.1 Maintenance Techniques 

In general, maintenance techniques may be divided into three major categories: 

Breakdown Maintenance, Preventive Maintenance, and Condition Based Maintenance 

(CBM) [2]. 

1.1.1 Breakdown Maintenance 

The earliest maintenance technique is breakdown maintenance, where 

maintenance action will be taken only after equipment failure. With this technique, 

unscheduled maintenance will often occur which can cause high maintenance cost and 

unpredictable breakdown of machinery [3]. As a result, a scheduled interruption of 

production is not possible. 

1.1.2 Preventive Maintenance 

The concept of preventive maintenance consists of maintenance activities prior 

to the failure of the components [4]. Preventive maintenance is time-based 

maintenance where periodic time intervals are used to perform maintenance regardless 

of condition of the components being monitored. Periodic machine inspection and 

maintenance may include oil replacement, lubrication, component replacement at 
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regular time intervals, and calibration, without considering the health status of 

machinery. 

Preventive maintenance aims to reduce the frequency of machine downtime. 

This technique decreases the failure cost and production loss, and increases product 

quality [5]. 

In the industrial application, preventive maintenance can be applied either based 

on experience or original equipment manufacturer (OEM) recommendations. 

Preventive maintenance based on experience is a traditional practice which is usually 

conducted in a regular time interval [6]. With this approach, no standard procedures 

are followed. Appropriate maintenance actions are taken based on the previous 

experience of technicians and engineers. The main drawback of this approach is its 

high dependency on the experienced person.  

Preventive maintenance based on OEM recommendation is performed at a fixed 

time by following manual instructions. This approach, however, is not suitable if one 

wants to minimise the operation cost and maximise machine performance [7]. 

Moreover, the preventive maintenance technique potentially does unnecessary 

maintenance actions to the components that makes the maintenance cost higher. 

Eventually, it becomes an extensive expense for many industries [2].  

1.1.3 Condition Based Maintenance 

Condition based maintenance (CBM) is considered a more efficient approach 

than the two previous techniques. CBM is a maintenance system based on condition 

monitoring. This technique avoids unnecessary maintenance actions by only 

undertaking maintenance works if there are indications of abnormal behaviour of the 

components being monitored. If implemented properly, CBM can significantly reduce 

maintenance costs since it prevents unnecessary scheduled preventive maintenance 

tasks. 

The implementation of an effective CBM consists of three stages [2]: 

1. Data acquisition; collect and store health condition data from system 

being monitored 
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2. Data processing;  include pre-processing, filtering and features 

extraction of data collected from stage 1 

3. Maintenance decision-making; provide efficient maintenance 

recommendation based on the machine health condition assessment.  

Data acquisition is an essential step in CBM implementation. This step acquires 

useful data related to the system health. In a CBM approach, there are two categories 

of data: condition monitoring data and event data. Condition monitoring data is a 

collection of the information about the health status of the system, while event data 

provides information surrounding events such as a minor repair, breakdown, spare part 

change, oil change, and installation. 

Condition monitoring data are available in various forms such as electric current, 

acoustic emission, vibration, temperature, pressure, and oil analysis data. Various 

sensors, such as acoustic emission sensors, accelerometers, temperature transducers, 

and pressure transducers have been developed to acquire different types of data [8].  

There are two essential steps in data processing namely data cleaning and data 

analysis. For the event data category, data cleaning is a crucial step since this step 

ensures the event data is error-free for further analysis. Many factors cause data errors 

including human factor and sensor faults. 

Data analysis is the next step of data processing. Various techniques, models, 

and algorithms are available to interpret the data. The techniques, models and 

algorithms being chosen for a particular case depend on the characteristics of the data. 

Maintenance decision making is the final step of CBM. Diagnostic and 

prognostic aspects are two categories in the maintenance decision. Diagnostics is 

associated with detection, isolation and identification of a fault [2]. Fault detection is 

a scheme to identify the presence of a fault in the system, fault isolation is a method to 

pinpoint the location of a fault, and fault identification is a procedure to decide a fault 

type. Meanwhile prognostics is a method for fault prediction before the fault actually 

occurs within the system being monitored. It uses systematic steps to predict 

impending failure and the remaining useful life of components.  



Chapter 1− Introduction 

5 

1.2 Condition Monitoring 

Condition monitoring (CM) is the core of CBM. Generally speaking, condition 

monitoring is a process of gathering or collecting information/signals related to the 

machine’s health status. Information/signals can be continuously or periodically 

monitored using appropriate sensors or indicators [9]. Thus, maintenance actions such 

as repairs or replacements are immediately taken before failure occurs.  

The CM process may be carried out in two methods: on-line and off-line [5]. On-

line monitoring is implemented simultaneously with the data collection, while off-line 

monitoring is performed after the data collection process.  As mentioned earlier, CM 

process may be executed either continuously or periodically. Continuous monitoring 

is operated automatically and continuously using acquisition sensors, such as acoustic 

emission sensors and accelerometers, whilst periodical monitoring is performed in 

particular time ranges such as weekly using portable data acquisition devices like a 

vibrometer, acoustic emission meter, and vibration pens.    

1.2.1 Condition Monitoring Techniques 

Most equipment gives certain signs, conditions or indications before they fail 

[10]. Many CM techniques have been developed to monitor equipment conditions.  

Those techniques utilize interdisciplinary fields such as vibration and noise, dynamics, 

tribology and non-destructive testing (NDT). 

Vibration monitoring is the most popular CM technique used especially for 

rotating equipment [11]. This technique is associated with non-destructive testing and 

monitoring the operational characteristics of the equipment. The equipment health 

status is determined by data sensor devices such as accelerometers, to detect changes 

in the vibration signature that may indicate damage or deterioration of components. In 

addition, vibration monitoring may be carried out either continuously or periodically. 

Another CM technique is sound or acoustic monitoring. This technique has a 

similarity with the vibration monitoring. The difference between those methods is 

based on the data acquisition technique, where vibration sensors record local 

displacements while acoustic sensors record sound of the equipment. 
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Oil-analysis is another CM technique. As its name suggests, the technique 

assesses the quality of the oil to decide the wear condition of the internal parts such as 

journal bearings and gears. Several other CM techniques available in the literature 

include temperature, pressure and electric current condition monitoring.   

This thesis focuses on vibration monitoring. The analysis of the health of the 

equipment is based on the vibration information collected when a machine is in 

operation. While in running condition, a machine generates vibration waveforms with 

unique signatures and the signatures change with operational condition.    

1.3 Thesis 

The thesis discusses the development of a fault diagnosis method based on 

vibration signatures in condition monitoring. The proposed method consists of three 

stages namely fault detection, fault classification, and fault identification. This is 

carried out by employing a combination of statistical parameters, Discrete Wavelet 

Transform (DWT), Principal Component Analysis (PCA), and k-Nearest Neighbors 

(kNN).     

The main objective of the thesis is to develop a vibration-based multi-fault 

diagnosis method for a centrifugal pump. The method was based on the statistical 

features extracted from the decomposition of time-domain vibration signals where the 

decomposition was employed through the use of discrete wavelet transform. In this 

research, the mother wavelet Symlet 4, 8, and 12 (sym4, sym8, sym12) were used and 

six statistical features were extracted from the decomposed signals. Subsequently, the 

principal component analysis was used to extract the most prominent features by re-

expressing the original dimension into a new subspace with a lower dimension.  The 

fault detection stage was performed using T2-statistic and Q-statistic while fault 

classification was carried out by plotting the first three principal components in three 

dimensional space. The k-Nearest Neighbors method was then used for fault 

identification. 

The thesis reports on the generation of the PCA models from four channels 

corresponding to four mounting locations of accelerometers on a centrifugal pump. 

The accelerometers were mounted on the pump’s inlet (channel 1), pump’s volute 

(channel 2), pump’s outlet (channel 3), and pump’s bearing house (channel 4). The 
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vibration data collected from each of the channels were decomposed using a wavelet 

transform and subsequently six statistical features were extracted. The generated 

features were then used to build the PCA models for all channels. The purpose of 

building the PCA models was for the detection, classification and identification of 

faults in the centrifugal pump. The types of faults considered were cavitation, impeller 

fault, bearing fault, blockage and some of their combinations. The performance of each 

Symlet wavelet was evaluated in term of its accuracy to detect, classify and identify 

the fault.     

1.4 Scientific Contribution 

There are many works in the literature relating to finding better methods for fault 

detection in rotating machinery. A centrifugal pump is a type of rotating machinery 

which performs an important role in industries; therefore there is a need to find an 

effective and reliable method to detect its failure. 

In order to find a superior method, many techniques have been developed for 

fault diagnosis in a centrifugal pump. Principal component analysis (PCA) is one of 

the popular methods for fault diagnosis in rotating machinery. However, the use of 

PCA has not been fully investigated for fault diagnosis in a centrifugal pump. In this 

thesis, the use of PCA is combined with the wavelet transform using Symlet wavelet 

family and statistical feature extraction.     

The study aims to contribute a new method for fault diagnosis in a centrifugal 

pump by using a combination of the statistical parameters, wavelet transform and the 

PCA model. It also contributes to add references for the selection of the Symlet 

wavelet type for decomposing the time-domain vibration signal for a centrifugal pump 

fault diagnosis. Furthermore, the extended use of the T2 and Q-statistics for fault 

detection, scores of principal components (PCs) for fault classification, and k-Nearest 

Neighbors (kNN) for fault identification also provides additional contributions to 

knowledge. 

1.5 Thesis Outline 

The outline of the thesis is as follow, 
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Chapter One 

This chapter describes a general introduction of the importance of maintenance 

systems in the industries. It gives an overview of the need of maintenance systems 

implemented in the industries in order to achieve a high level of reliability and 

availability of production equipment while keeping the maintenance cost at a 

reasonable level. It describes the division of the maintenance techniques, defines the 

fundamental concepts, and explains the advantages and disadvantages of each 

maintenance technique. It also describes the motivation and objectives of the thesis. 

The final part of the chapter outlines the structure and content and the scientific 

contribution of the thesis. 

Chapter Two 

The chapter describes the division of centrifugal pumps commonly found in the 

literature and also reviews their construction, characteristics, and their failure modes. 

The mechanical construction includes the description of the impeller, pump volute and 

bearing. It then considers the common failure modes in centrifugal pumps such as 

cavitation, impeller fault, bearing fault and blockage.      

Chapter Three 

This chapter discuss an overview of the vibration signal analysis techniques 

commonly applied in fault analysis. These techniques include time-domain, 

frequency-domain, and time-frequency-domain analysis. Several popular techniques 

in time-domain analysis area and a thorough review of the implementation of time-

domain analysis in fault diagnosis are presented. The use of the Fast Fourier Transform 

(FFT) in frequency-domain analysis is elaborated with an extensive review of its 

application for fault diagnosis. Finally, the chapter describes the wavelet transform 

technique and its application in fault analysis. Some remarks corresponding to 

important findings from the literature review are also presented. 

Chapter Four 

This chapter explains the fundamental concept of Principal Component Analysis 

(PCA) and its use in fault diagnosis.  The first part of the chapter thoroughly explains 

the mechanics of PCA, dimension reduction using PCA, and the use of PCA for fault 
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detection. The second part reviews the application of PCA in feature extraction and 

fault diagnosis. An extensive review of the use of a combination of PCA with other 

techniques for fault analysis is also presented. This chapter concludes with important 

findings related to the PCA-based fault diagnosis in the centrifugal pump. 

Chapter Five 

This chapter proposes a new integrated framework based on the Wavelet-PCA 

for fault diagnosis of the centrifugal pump. The algorithms of the proposed method are 

presented in detail and explained thoroughly. It describes the pre-processing training 

data, PCA modelling process, and pre-processing of the testing data. It explains the 

construction of the k-Nearest Neighbors rule and evaluates the proposed method’s 

performance. The final part of the chapter presents a test of the proposed method using 

external vibration data. 

Chapter Six 

This chapter describes the centrifugal test rig and vibration data acquisition 

process. It explains the configuration of a Spectra Quest Machinery Fault Simulator 

which was set up with a centrifugal pump and depicts the mounting locations of the 

accelerometers. It also describes the artificial component fault, the accelerometers and 

the acquisition device used in the experiment. Finally, the chapter concludes with the 

data structure of the vibration signal. 

Chapter Seven 

  This chapter reports the analysis of the experimental vibration data collected 

from the centrifugal pump test rig using the proposed method. The PCA models 

generated from all channels are evaluated and compared in order to conclude the best 

PCA model in each channel. The accuracy performance is also examined to select the 

PCA model with the highest identification accuracy. 

Chapter Eight 

 This chapter presents the conclusions and suggestions for future work. It 

presents the major research findings from the fault diagnosis of a centrifugal pump 

using the proposed method which combines the statistical parameter, wavelet 

transform, and PCA. It also reviews the objectives and describes the achievements of 
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the study. The second part of the chapter presents the recommendations for future 

work.        

The next chapter describes mechanical construction and characteristic of the 

centrifugal pumps. It also reviews failure modes such as cavitation, impeller fault, 

bearing fault and blockage.  
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2 A Review of Centrifugal Pumps and Their Failure 

Modes  

The use of pumps is essential in most industrial plants like power generation, oil 

and gas, water treatment, petrochemical, pharmacy, agriculture and fertilizers. A pump 

is a mechanical device used to transport fluids (varying from clean water to hazardous 

chemicals) from one place to another. Pumps operate by mechanical action and 

consume energy to perform mechanical work. 

Various types of pumps are available in the market and widely used in many 

areas of application. All pumps can be categorized into [12]: dynamics pumps, where 

the fluid velocity inside the pump is increased by adding the energy continuously, and 

displacement pumps, where the addition of energy to moveable fluid boundaries is 

performed by applying the force periodically. The subdivision of the dynamics pumps 

may consist of some of centrifugal pump types and other special-effect pumps. 

Meanwhile, the displacement pumps include rotary and reciprocating pump types.  

Centrifugal pumps are a type of rotordynamic pump where the flow velocity is 

increased by adding kinetic energy. A centrifugal pump is classified into velocity 

pumps which increases the flow rate and pressure of fluid using a rotating impeller. 

The use of centrifugal pumps in the new pump market reaches 64% [13]. The high 

demand on centrifugal pumps are caused by their high efficiency, simple design, 

continuous flow rate, vast array of capacity, and ease of maintenance and operation 

[14]. Centrifugal pumps have relatively fewer moving parts which tend to be relatively 

small with less weight than other pumps. The superiority of centrifugal pumps is also 

because of their capability to handle liquids containing dirt, abrasives, solids, etc [15].    

Centrifugal pumps can fail during their service due to problems that arise mainly 

from hydraulic and mechanical failure [16]. Hydraulic failures include cavitation, 

pressure pulsation, radial thrust, axial thrust and suction and discharge recirculation. 
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Meanwhile, mechanical failures consist of bearing failure, seal failure, lubrication 

failure, excessive vibration, and fatigue. 

The following sections discuss some important aspects on mechanical 

construction, characteristics, and failure modes of centrifugal pumps.  

2.1 Centrifugal Pump 

A centrifugal pump is a mechanical device which uses a rotating impeller to 

accelerate fluid by converting electrical energy into kinetic energy of the fluid. The 

volute pump as depicted in Figure 2.1 is the most common centrifugal pump type 

which is widely implemented in industries. The stationary volute (or diffuser) converts 

the kinetic energy of the fluid into fluid pressure. The inlet pump (or suction nozzle) 

delivers the fluid into the pump’s impeller eye due to low-pressure area at the suction 

eye. The low-pressure area is created because the rotation of the impeller pushes the 

fluid sitting between vanes outward into the volute or diffuser. This outward 

movement creates a vacuum at the impellers eye that continuously draws fluid into the 

pump. 

 

Figure 2.1 Major parts of centrifugal pump [17]  

A centrifugal pump consist of several components such as the rotating element 

which consist of the shaft and the impeller and the stationary element, which consists 

fluid outlet 

fluid inlet 
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of the casing, casing box, and bearing housing.  In general, centrifugal pumps can be 

grouped based on their design. Bachus and Custodio [18] suggests classifying 

centrifugal pumps as either axial-flow pumps, radial-flow pumps, mixed-flow pumps 

and turbines as shown in Figure 2.2. Other classifications, however, may be present in 

the literatures such groupings based on single-stage, double-stage, or multi-stage; 

single-suction or double suction.     

 

Figure 2.2 The major centrifugal pump classifications [19] 

2.1.1 Radial Flow Centrifugal Pumps 

Radial flow centrifugal pumps are the most frequently used centrifugal pump 

types in many application areas [13]. The fluid in the radial flow centrifugal pump 

enters along the axial plane and exits the pump radially with respect to the impeller 

shaft, as shown in Figure 2.2 and Figure 2.3.  As opposed to axial pumps, in which 

fluid exits the pump axially, radial flow pumps have higher centrifugal force due to 

flow deflections in the impeller. This makes a radial flow pump have higher head 

pressure, but with smaller capacity flow. 



Chapter 2 − A Review of Centrifugal Pumps and Their Failure Modes 

14 

 

Figure 2.3 Radial flow pump [20] 

The radial flow pump, due to its design, can be used for applications where it 

requires pumping of raw wastes. The materials such as rags and trash can be allowed 

to be present in the flow and do not clog the pump [21]. 

2.1.2 Axial Flow Pumps 

The axial flow pump as shown in Figure 2.4, also known as a propeller pump, is 

another popular type of pump which is constructed by a propeller inside a pipe. In this 

type of pump, the blades of the propeller develop the pressure by passing the fluid on 

them. The fluid enters the pump in the axial direction along the shaft of the propeller, 

so that each fluid particle does not change radial direction during the flow through the 

pump. The fluid then exits the impeller nearly axially.     
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Figure 2.4 Axial flow pump [22] 

An axial pump has a high relative flow rate with low head at the inlet end. In 

some models, the pitch of the propeller is adjustable to allow the pump to achieve peak 

efficiency. The most common applications are in handling sewage from industrial 

plants and commercial sites.  

2.1.3 Mixed Flow Pumps 

Mixed flow pumps have a unique design that is between a radial flow and axial 

flow pumps which gives the operating characteristics a combination of both. The fluid 

encounters both axial force and radial acceleration from the impeller. The fluid exits 

the impeller in the direction of 0 to 90 degrees with respect to the axial direction. The 

construction of the mixed flow pump gives several mechanical advantages such as 

higher pressure and higher discharge compared to axial flow and radial flow pumps 

respectively.     

2.2 The Construction of Centrifugal Pumps 

There are a large number of centrifugal pump designs available for any given 

application. In this section, a general description of the mechanical components of 

centrifugal pumps is discussed.  
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2.2.1 Pump Impeller 

The pump impeller is a rotating part in a centrifugal pump which converts 

electrical energy from the motor into kinetic energy in the fluid by accelerating the 

fluid radially with respect to impeller shaft.  The impeller is usually made of steel, 

bronze, aluminium, brass or plastic. The shape, size and speed of the impeller are the 

influential factors that determine pump performance. As a consequence, any kind of 

impeller faults could cause poor performance and a decrease in efficiency of the pump. 

Generally, impellers can be classified into three categories i.e., open impellers, semi-

open impellers, and closed (or enclosed) impellers.  

An open impeller, as shown in Figure 2.5, consists only of blades attached 

directly to a shaft. The blades are usually short and structurally weaker than either 

semi-closed or closed impellers. This type of impeller has a low efficiency and 

generally is used only in small and low energy pumps. The advantage of this impeller 

is that it is suitable for applications where clog resistance is required. 

 

Figure 2.5 Open impeller [23] 

Figure 2.6 shows a semi-open impeller which has a circular plate (shroud) 

attached to one side of the blades. The shroud is used to stiffen the blades and adds 

structural strength. Semi-open impellers are commonly used in medium-diameter 

pumps and with fluids containing small amounts of suspended solids. This type of 

impeller has higher efficiency than the open impeller.  
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Figure 2.6 Semi open impeller [24] 

The closed-impeller, as shown in Figure 2.7, has a circular plate attached to both 

side of the blades for maximum strength. They are used in large pumps and can be 

operated with liquids containing suspended-solids for service without clogging. This 

type of impeller is widely used for centrifugal pumps handling clear fluids. The pumps 

with closed-impeller rely on close-clearance wear rings on the casing and on the 

impeller. The wear rings are used to separate the inlet pressure from the pressure 

within the pump, reduce axial loads, and maintain pump efficiency.  

 

 

Figure 2.7 Closed-Impeller [24] 

2.2.2 Shaft and bearings 

A shaft is a major component in a centrifugal pump which delivers torque from 

the motor to the impeller mounted on the shaft. The pump shafts are commonly made 
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of carbon steel and stainless steel. It is subjected to several stresses such as torsional, 

shear, flexural, tensile, etc. Among these stresses, torsional stress is generally most 

dominant and is used as a basic factor to determine the shaft diameter. Another 

important consideration in determining the pump’s shaft diameter is the operating 

speed. If the operating speed is at its critical speed, it can result in excessive and 

destructive rotor vibration. One way to avoid the vibration resonance is to change the 

shaft size in order to change the rotor natural frequency.   

Ball bearings are the most commonly used type of bearings in small and medium 

sized centrifugal pumps because of their high speed capability and low friction. Ball 

bearings have many configurations, such as single and double row with various contact 

angles which can handle radial loads, combined radial and axial loads, and purely axial 

loads. Ball bearings are considered to have a relatively low load rating because the 

small contact area results in high contact stress for a given load [25]. 

Integral shaft bearings (or water pump bearings) are usually used in water pump 

applications. They are double row bearings with a simplified structure and, in contrast 

to conventional double row bearings, do not have inner rings for the two supporting 

bearings. The grooves for the inner ring are machined directly into the surface of the 

shaft and the outer rings are made to a unity. The two sides of the bearing are closed 

by rubber seals. Figure 2.8 shows typical integral shaft bearing. Compared to 

conventional ball bearings, in the same loading capacity, the radial dimensions are 

usually smaller than those of the same kind. Meanwhile, in the same radial dimensions, 

the loading capacity of the integral shaft bearing is usually bigger.   

2.2.3 Volute 

The volute in a centrifugal pump is the casing where the impeller is housed. The 

fluid being pumped by the impeller enters the volute and decreases its rate of flow. A 

volute has a unique shape, called a curved funnel, where its cross-sectional area 

gradually increases as it approaches the discharge.  

As a consequence of increasing the cross-sectional area, the speed of the fluid is 

decreased and its pressure is increased. The volute also helps to balance the hydraulic 

pressure on the pump shaft. The wall separating the curved funnel and the discharge 
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nozzle portion is called the tongue of the volute or the cut-water, as depicted in Figure 

2.9. 

 

 

Figure 2.8   Integral shaft bearing [26] 

Generally, there are four types of volute commonly used in centrifugal pumps, 

i.e., single volute, double volute, volute diffuser, and circular volute as illustrated in 

Figure 2.10. 

 

Figure 2.9   The cut-water in a volute [27] 

Small centrifugal pumps usually have a single volute, volute diffuser and 

circular volutes. The use of the diffuser vanes makes a uniform distribution of velocity 
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around the impeller resulting in lower radial impeller loads. The radial load is also a 

minimum in a circular volute at pump shut-off (or zero flow), and is maximum near 

the BEP.  

Double volutes are commonly used in larger centrifugal pumps. This type of 

volute has two cutwaters that radially balance the two resulting and opposing hydraulic 

forces. The presence of two cutwaters significantly reduces the hydraulic radial load 

on the impeller. 

  

 

 

 

Figure 2.10 Common type of volutes in centrifugal pumps [28] 

2.3 Centrifugal pumps performance characteristics 

There are four basic quantities for measuring pump performance, i.e., head, 

power, efficiency, and flow [29]. The pump performance is normally described by a 

set of curves. Head, power, and flow are usually measured and efficiency is calculated 

by using the equation, 

𝜂 =
𝑄𝜌𝑔𝐻

𝑃
 , 2.1 
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where 𝑄 is the volumetric flow rate, 𝜌 is density, 𝑔 is standard gravity, 𝐻 is total head, 

and 𝑃 is power consumption.  

Volumetric flow rate (𝑄) is defined as the volume of fluid which passes a 

particular cross-sectional area per unit time. It usually has units of either cubic metres 

per hour (m3/hr) or litres per second (l/s). The flow rate is not constant during pump 

operation. It usually changes as the operation conditions are altered. It also depends 

on various factors such as fluid properties, pump size and its inlet and outlet condition, 

impeller size, pump speed, pump geometry, pump suction, discharge temperature and 

pressure conditions [13]. The volumetric flow rate 𝑄 can be calculated by, 

𝑄 = 𝑉𝐴 , 2.2 

 

where A represents a cross-sectional, and 𝑉 is the mean velocity of the fluid flowing 

in the pipe. 

Head (𝐻) is a measure of the total energy imparted to the fluid at a certain 

operating condition and capacity. The total head of a system in which a pump must 

operate consists of the static head, friction head, and velocity head [15].  

Static head is the difference in elevation of the fluid surface. Thus, total static 

head of a system refers to a height measured from the suction fluid level to the 

discharge fluid level. The static discharge head is the height from the centreline of the 

pump to the discharge fluid level while the static suction head is measured from 

suction fluid level to the centreline of the pump. Figure 2.11 describes the relation of 

total static head, static discharge head, and static suction head.     

Friction head, expressed in unit length, is the equivalent head which is used to 

overcome the friction losses due to the flow of the fluid through the piping system.  

Friction head varies with the diameter and the length of the pipe, the number and type 

of fittings, and the flow rate of the fluid.  

Velocity head refers to the kinetic energy in the fluid at any point. Velocity head 

is expressed in joules per kilogram of liquid, that is, in metres of the fluid under 

consideration. The velocity head can be calculated by the following equation, 
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ℎ𝑣 =
𝑉2

2𝑔
 , 2.3 

 

where ℎ𝑣 is the velocity head, 𝑉 is the fluid velocity, and 𝑔 is the standard gravity. 

 

Figure 2.11   Total static head, static discharge head (hd), and static suction head (hs) 

[30] 

The typical performance curves for centrifugal pumps are normally plotting 

head, power, and efficiency against flow as illustrated in Figure 2.12. All pump 

manufacturers usually provide performance curves together with pump power and 

operating efficiency. 

The intersection point on the head-flow curve indicates the BEP—the Best 

Efficiency Point. The BEP graphically represents the point on a pump performance 

curve which yields the maximum efficiency of pump operation. Operating away from 

the BEP causes the pump’s performance and operational life to significantly decrease, 

since the pump is subjected to an increase in wear.  

Net positive suction head (NPSH) is the difference between the actual pressure 

of the fluid in a piping system and the fluid’s vapour pressure at a given temperature. 

The NPSH value is an important parameter in piping system design and indicates that 

when the fluid pressure drops below the vapour pressure, the fluid starts boiling and 

cavitation potentially occurs.    
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NPSH may refer to one of two quantities for the cavitation analysis. The 

available NPSH (NPSHA) is a measure of the level of pressure at a given point. 

Meanwhile, the required NPSH (NPSHR) is the head at a specific point, i.e., the 

suction opening of a pump required to keep the fluid away from cavitation. 

 

Figure 2.12   Performance curves for a centrifugal pump [31].  

Pump manufacturers usually provide NPSH data on the pump inlet pressure at 

which serious cavitation is likely to occur. Cavitation is often observed at about a 3% 

drop in head from the BEP. However, this value varies with the physical properties of 

the fluid and the roughness of the surface of the piping and hydraulic equipment [32].  

2.4 Common failure modes in centrifugal pumps 

Centrifugal pumps which are a popular type of pump in most industries, can fail 

during their service as a result of problems that arise within the fluid such as cavitation 

and mechanical faults such as impeller faults and bearing faults.  

In the following section, a brief overview of the failure modes which commonly 

occurs in the centrifugal pumps is discussed. 
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2.4.1 Cavitation 

Cavitation is considered as the most common problem that occurs at the suction 

side of centrifugal pumps. Cavitation arises when the pressure of the fluid inside the 

pump drops below the fluid’s vapour pressure. During cavitation, the vapour bubbles 

appear in the moving fluid where the pressure of the fluid is lower than its vapour 

pressure. The formation of vapour bubbles can have two harmful effects. Firstly, it can 

be sufficient to block the piping system, resulting in a significant reduction in the 

hydraulic performance. Secondly, the collapse of the vapour bubbles as they move to 

a higher pressure region may produce noise and erosion of the waterway surfaces.  

The vapour bubbles normally contract to a particular size, then spring back, and 

contract again, repeating a series of growths and collapses until they eventually 

disappear, however in most cases, the vapour bubbles experience one cycle only [13]. 

Figure 2.13 shows the volute of pump with a transparent cover when the cavitation is 

non-existent and when cavitation is occurring. 

The collapse of vapour bubbles is very fast resulting in very intense local 

pressure which leads to pitting and serious material erosion of the impeller blades, 

shrouds and volute; high level of noise and vibration; and reduced pump hydraulic 

performance [33].  It is clear that cavitation is an unacceptable condition which must 

be avoided.  

The common way to solve the cavitation condition is by modifying the system 

design or operation to increase the NPSHA. If the NPSHA increases sufficiently above 

NPSHR then cavitation disappears. One method to increase the NPSHA is to increase 

the inlet pressure by raising the feed tank or the fluid level in the feed tank (open to 

atmosphere) or by increasing the pressure in the space above the fluid (open tank). 

Another way is by reducing NPSHR. This is conducted by lowering the temperature 

of the fluid so its vapour pressure decreases. Another alternative method to decrease 

NPSHR is by reducing friction head loss. 
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Figure 2.13 Cavitation in centrifugal pump: no cavitation (left), cavitation (right) 

[34] 

2.4.1.1 Types of cavitation 

Incipient cavitation describes the beginning stage of cavitation where it is only 

just detectable. There is a difference in the condition between the appearance and 

disappearance of cavitation. Generally, an increase in pressure above that at which 

cavitation appears is required to cause cavitation to disappear.  

Traveling cavitation represents individual bubbles which appear in the fluid and 

move together with the fluid until they disappear. Usually, the bubbles appear at the 

low pressure point on solid boundaries or at the low pressure point in turbulent flow 

[35]. 

Fixed cavitation describes a cavity attached to the boundary of an immersed 

rigid body in the flowing fluid. It occurs when the flow detaches from the rigid body. 

This type of cavitation is defined as stable in a quasi-steady sense [36]. 

Vortex cavitation occurs when the cores of turbulence-generated vortices have 

the high shear area. This cavitation may exist as traveling or fixed [35]. 
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Vibratory cavitation occurs at the very low flow velocity so that recirculation 

occurs in the pump. This type of cavitation is a special case since any elements of the 

fluid may undergo many cavitation cycles. Whereas, in all other types of cavitation, 

any fluid elements passes the cavitation area only once [37]. 

2.4.1.2    Cavitation damage 

The collapse of vapour bubbles may produce very intense local pressure and 

shock waves which can cause severe damage to the metal surface due to erosion and 

destroy any surface film protecting the metal from corrosion. There are no materials 

which are completely resistant to damage due to cavitation.  The signs of erosion 

appear as pitting, caused by the water-hammering action of the collapsing vapour 

bubbles. The damage of the metal surface occurs because when the cavities collapse, 

the jet of fluid that is released hits the surface of the metal at the local speed of sound, 

which creates a local high surface stress that can be higher than the ultimate strength 

of the metal [38]. The damage of the metal due to cavitation may be reduced by 

redesigning appropriate details of the pump such as smoothing the surface of the metal, 

coating the metal, using corrosion-resistant materials, minimizing pressure differences 

in the cycle, and using cathode protection [39]. Generally, the more brittle the material, 

the more severe they are damaged by cavitation, because brittle materials are more 

vulnerable to fatigue.      

Pitting of the impeller surface may cause a serious deterioration of hydraulic 

performance which leads to a high level of damaging structural vibration together with 

a high level of noise. The noise generated by collapsing cavities is a sharp crackling 

sound. The level of noise resulting from cavitation may indicate the severity of the 

cavitation. The noise can be observed in and around the pump suction. If the crackling 

noise seems to be random with high intensity knocks, then it indicates cavitation in 

the suction recirculation. 

Pump vibrations due to cavitation can cause reduction in pumping efficiency. 

The vapour bubbles created during cavitation in the suction area around the impeller 

impede the fluid, thus resulting in a reduction in output. An efficiency drop is 

considered a more accurate sign of cavitation occurrence, since noise is not clearly 

observable until cavitation has progressed to the stage where the efficiency of the 

pump becomes very low [16]. 
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Generally, pump vibration due to cavitation occurs within the high frequency 

spectrum region, which is often overlapped with the blade pass frequency (BPF) 

harmonics [40, 41].  

2.4.2 Faulty Impeller 

The impeller is one of the most critical rotating elements in a centrifugal pump 

which converts electrical energy from the motor into kinetic energy of the impeller to 

accelerate the fluid outwards from the centre of rotation. The impeller is usually made 

of iron, steel, aluminium, brass, or bronze.  

During its service, the impeller may become worn out which alters the operating 

condition of the pump such as reducing the hydraulic performance, reducing the 

pumping pressure, and the flow rate.  The main cause of the impeller wear is 

cavitation. The high pressure resulting from imploding vapour bubbles makes the 

impeller erode. Figure 2.14 shows an example of a worn impeller caused by cavitation.  

The worn impeller may also produce imbalance of the impeller resulting in increased 

vibration to the system. 

 

Figure 2.14 Worn impeller due to cavitation [42] 

The source of vibration in the pump may come from mechanical and 

hydrodynamic motion. The unbalanced masses and friction in the bearing is the most 

frequent cause of mechanical vibration, while fluid flow disturbance is the common 

cause of hydrodynamic vibration. 
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A worn impeller may cause a loss in discharge pressure resulting in reduced 

pump efficiency which in turn may increase the power consumption as wear occurs. 

The decrease in discharge pressure may result in increasing vibration levels as choking 

the flow of the fluid induces cavitation. If vibrations occur at shut-off, a physical 

imbalance of the impeller is most likely exist [43]. 

An unbalanced impeller usually appears in the vibration spectrum as a pump 

shaft speed vibration. Generally, the unbalanced impeller is not inspected until heavy 

pitting is found on the impeller. The severity level of pitting is usually used as the 

indicator of the need for balancing an impeller [16].  

2.4.3 Faulty Bearing 

In general, bearings fail due to contamination of the bearing lubrication by water, 

foreign particles, other liquid or because of overheating caused by an overload on the 

bearing [44].  

If the pump is running under normal conditions i.e., BEP, the bearing loads are 

caused by the weight of rotating elements only. However, due to other operating 

conditions, BEP is not always achieved which eventually leads to overloading 

conditions on the bearings. Some other conditions which result in bearing overloading 

are imbalanced shaft, cavitation, bent shaft, blocked impeller, and extreme radial and 

axial thrust [15, 25]. 

Excessive loads can produce a large amount of heat which can cause damage on 

bearings. The appearance of damage caused by an excessive load is similar in 

appearance to inadequate lubrication damage. Figure 2.15 shows typical inner race 

damage due to overloading a ball bearing. 
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Figure 2.15 Inner race damage of ball bearing [45] 

Overloading of bearings within a short time period may cause deterioration of 

bearing performance leading to an increase in vibration level.  The vibration signal 

from a bearing contains spectral components that are associated with the geometry of 

the bearing, the rotation speed, the number of rolling elements, and the location of the 

defect.  

When a bearing rotates, any defects in the rolling elements may produce several 

vibration frequencies which correspond to fundamental defect frequencies (or 

characteristic frequencies) such as ball spin frequency (BSF), fundamental train 

frequency (FTF),  ball pass frequency of the inner race (BPFI), and ball pass frequency 

of the outer race (BPFO). These frequency components are small in amplitude so that 

they are often hidden among high level vibration components. 

The equation to calculate the fundamental defect frequencies are given as, 

𝐹𝑇𝐹 =
𝑆

2
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and 

𝐵𝑃𝐹𝐼 =
𝑛𝑆

2
(1 +

𝑑

𝐷
𝑐𝑜𝑠𝜙) , 2.7 

 

where 𝑆 is the shaft speed, 𝑛 is the number of rolling elements, 𝑑 is ball diameter, 𝐷 

is pitch diameter, and 𝜙 is the contact angle. 

Deterioration of a bearing usually occurs in a gradual stage from light to severe 

damage. Table 2.1 as taken from Beebe in Ref. [29] depicts degradation stages of 

rolling element bearings. 

 

Table 2.1 Stages of degradation of rolling element bearings [29] 

Stage of bearing wear Noise Level Vibration level 

Stage 1 Normal Normal 

Stage 2 (less than 20% 

bearing life left) 

Slight change Slight increase in 

acceleration. Resonance 

of bearing components 

show. At end of this 

stage, sidebands appears 

on these resonances 

Stage 3 (less than 5% 

bearing life left) 

Audible to a trained ear, 

but repeatability is poor 

Large increase in 

acceleration and velocity. 

Bearing defect 

frequencies and 

harmonics are now 

detectable and growing. 

Sidebands are evident on 

these and also on 

component resonances 

Stage 4 ( about 1% of 

bearing life left) 

Change in pitch clearly 

audible 

Significant increase in 

displacement and 

velocity, 1/rev and 

harmonics show.  
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2.4.4 Blockage 

Blockages in pumps refer to the condition where the pumped fluid contains 

materials such as rags, fibres, pieces of wood, abrasive grit, sand or bricks that can 

wrap around the impeller to prevent or even stop impeller rotation or can choke the 

area between impeller blades to reduce the flow rate. The accumulation of rags in a 

screw centrifugal impeller is depicted in Figure 2.16.  

Problems with the blockages commonly occur in pumps used in the sewage 

industry. Pump blockages may result in decreasing hydraulic efficiency, increasing 

power consumption, and also consume unnecessary operational time and resources. 

Blockages in pumps may generate vibrations that are either caused by residual 

mechanical unbalance due to the accumulating foreign materials in the rotating parts 

or caused by change of fluid flow behaviour. The magnitude of the vibration of 

blocked pumps normally increases at the frequency of the shaft rotational speed times 

the number of impeller blades, (blade pass frequency). 

 

Figure 2.16 Build-up of rags in a screw centrifugal pump [46] 

In the next chapter a review of current vibration signal analysis methods in fault 

diagnosis is introduced. It also presents the application of time-domain analysis, 

frequency-domain analysis, and time-frequency analysis in fault diagnosis of rotating 

machinery. 
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CHAPTER THREE 

3 An Overview of Vibration Signal Analysis Methods 

Condition-based maintenance (CBM) is considered as the most modern and 

popular maintenance technique discussed in the literature and widely implemented in 

industries [1, 5]. In order to recommend maintenance actions, CBM collects 

information of the health condition of equipment through condition monitoring (CM) 

processes, so that there is a close relationship between the performance of CBM and 

the performance of the associated condition monitoring. In turn, the performance of 

condition monitoring depends on the quality of the fault diagnosis. This indicates that 

fault diagnosis plays critical roles within CBM processes during the assessment of the 

machines condition. Fault diagnosis is related to the determination of the fault 

location, type, cause and severity level of component faults. Hence, the skill required 

for fault diagnosis for maintenance personnel is substantial to correctly utilise the 

condition monitoring method. 

Many condition maintenance techniques have been developed and discussed in 

the literature [47]. Various indicators of faulty components have been implemented 

either on a laboratory scale or within industries such as vibration, noise, electric 

current, tribology, pressure and temperature. According to Deng and Zhao [48], 

vibration-based methods are the most common techniques used in condition 

monitoring. 

Vibration monitoring relates to the vibration measurement of components to 

detect changes of a vibration signature which could indicate component failure. 

Vibration measurement is commonly used due to its effectiveness and versatility. Feng 

et al., [49]  argued that the level of vibration severity of a component and its pattern 

have a strong correlation with the health condition of the machine. Many researchers 

have investigated the correlation between a vibration signal and machine health 

condition and have proposed various analysis for particular vibration signals. 

In general, vibration signals are collected in situ (or in place) using a transducer 

like an accelerometer, mounted to the component. Physical information (e.g., 



Chapter 3 − An Overview of Vibration Signal Analysis Methods  

33 

mechanical vibration) is collected and stored at certain time intervals which form time 

series or time waveforms. The data is then analysed further for the purpose of 

diagnosis and prognosis in condition monitoring.  

Signal processing involves data processing of the data series and many signal 

processing methods are available in the literature to analyse and interpret it. Generally, 

signal processing may be divided into three groups, i.e., time-domain, frequency-

domain and time-frequency domain.  Figure 3.1 shows a schematic diagram of signal 

processing techniques commonly used in CM. 

 

Figure 3.1 Signal processing techniques commonly used in CM [50] 

The main objective of signal processing in fault diagnosis is to extract the most 

relevant features which may be hidden in the original time waveform. Feature 

extraction techniques consist of either domain transformation approaches or 

dimensional reduction approaches. In the case of a domain transformation approach, 

signal processing converts the original time waveform into another domain in order to 

reveal the hidden information, whilst the dimensional reduction approach reduces the 

amount of dimensionality but still retains the most important information. In addition, 

with the reduced amount of dimensionality of data, the computation cost can be 

significantly reduced. 

Signal processing techniques

Time domain

•Statistical parameters

•Time synchronous  
average

•Filter based techniques

Frequency domain

•Statistical parameters

•Discrete Fourier 
transform 

Time-frequency 
domain

•Wigner distribution

•Short time Fourier 
transform

•Wavelet transform
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In the following sections, some important aspects of the three categories of 

signal processing are discussed. 

3.1 Time Domain Analysis 

In general, vibration data are obtained in the time domain as data series 

indicating displacement, velocity, or acceleration. Typically, the vibration signals are 

acquired using a particular transducer, such as an accelerometer. Time-domain 

vibration features can be extracted using descriptive statistics like standard deviation, 

kurtosis, root mean square (RMS), variance, skewness, and others.     

3.1.1 Standard Deviation 

Standard deviation (σ) indicates how much dispersion the set of data (samples) 

has from its mean. A low standard deviation represents that the samples are near to the 

mean, while a high standard deviation denotes that the samples are scattered from the 

mean. Standard deviation can also be considered as a measure of the power content of 

the signal [51]. Standard deviation is defined as, 

𝜎 = √
∑ (𝑥𝑖 − �̅�)

2𝑁
𝑖=1

𝑁 − 1
  3.1 

 

Supposing the signal 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑁, then  



xi is an element of 𝑥, 



x  represents the 

mean of the 𝑥 and N is the number of elements. Ahmed et al., [52] used this feature as 

one of the time waveform vibration features for fault classification in compressors 

using a genetic algorithm and a probabilistic neural network.  

3.1.2 Kurtosis 

Kurtosis shows the shape of data/signals whether they are flat or spiky. A normal 

component (no fault) often gives a very low kurtosis, while a faulty component has a 

high kurtosis which is caused by the spikiness of the signal. It is given mathematically 

as,  
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𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑ (𝑥𝑖 − �̅�)

4𝑁
𝑖=1

(𝑁 − 1)𝜎4
 , 3.2 

 

where



xi is an element of 𝑥, 



N is the number of elements, 



x represents the mean of 𝑥 

and 𝜎 denotes the standard deviation. The use of kurtosis as a feature in fault diagnosis 

can be found in many literatures. Some of them can be found in Lin and Zuo [53], 

Antoni and Randall [54] and Sawalhi et al., [55].  

3.1.3 RMS 

The root mean square (RMS) indicates the energy level or power level of a 

signal. It is defined as, 

𝑅𝑀𝑆 = √
1

𝑁
∑ (𝑥𝑖 − �̅�)2

𝑁

𝑖=1
 , 3.3 

 

where N is the number of elements, 



x  represent the mean of the elements and 



xi is 

the element of 𝑥. An example of implementation of RMS as a feature in fault detection 

of centrifugal pump can be found in Sakthivel et.al [51].  

3.1.4 Variance 

Variance is also known as the second moment statistical measure and the 

formula is given as,  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑(𝑥𝑖 − �̅�)

2

𝑁 − 1
 , 3.4 

 

where 



x  represents the mean of the signal, 



xi denotes the element of  𝑥 and N 

represents the number of elements.  A few examples which show the implementation 

of variance for fault detection can be found in Samanta and Al-Balushi [56] and Rafiee 

et al., [57]. It should be noted that it is given by the square of the RMS. 
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3.1.5 Skewness 

Skewness indicates the degree of asymmetry of a distribution around its mean 

and it is defined as: 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
∑ (𝑥𝑖 − �̅�)

3𝑁
𝑖=1

(𝑁 − 1)𝜎3
 , 3.5 

 

where 



x represents the mean of the elements, 



xi represents the element of 𝑥, 𝜎 denotes 

the standard deviation and 



N  represents the number of elements. An example of the 

use of skewness in fault detection can be found in Ahmed et al. [52]. 

A thorough discussion about implementation of the above mentioned statistical 

features in pump fault diagnosis is presented in section 3.6. 

Other popular methods of time domain analysis found in literatures include 

Time-Synchronous Averaging (TSA), Autoregressive Moving Average (ARMA), 

Filter Based Method, and Stochastic Method and Blind Source Separation which 

discuss briefly in the following section. 

3.2 Time-Synchronous Averaging (TSA) 

Time-synchronous averaging (TSA) is considered as one of the most powerful 

algorithms for vibration analysis especially in gear fault detection [58]. TSA is able to 

effectively separate the vibration signature of a particular gear from other gears’ 

vibration and noise in a gearbox which are not synchronous with the gear under 

analysis. TSA is a technique that refines periodic time waveforms from the sources 

corrupted by noise.  This is achieved by averaging the vibration signals over a number 

of shaft revolutions, so as to improve the desired vibration signal components [2].  

TSA is implemented by taking the average of the series of signal segments each 

of which corresponds to one period of a synchronised signal, triggered by a once-per-

revolution trigger of a known phase (key-phasor) [59]. The following TSA’s formula 

is suggested by [2, 60], 
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𝑠(𝑡) =
1

𝑁
∑ 𝑥(𝑡 + 𝑛𝑇),        0 ≤ 𝑡 ≤ 𝑇  ,

𝑁−1

𝑛=0

 3.6 

 

where 𝑥(𝑡) represents the signal, T  represents period of averaging and N represents 

the number of samples. Details on discussion of TSA can be found in literatures of 

[58, 60, 61]. 

3.3 Autoregressive Moving Average (ARMA) 

Autoregressive moving average (ARMA) is another advanced method in time-

domain analysis. The method converts time-domain into time series models. In 

principle, ARMA fits the time-domain to a parametric time series model and extracts 

features from the proposed parametric model. An example of an ARMA model is 

suggested by Jardine et.al. [2] as, 

𝑥𝑡 = 𝑎1𝑥𝑡−1 +⋯+ 𝑎𝑝𝑥𝑡−𝑝 + 𝜀𝑡 − 𝑏1𝜀𝑡−1 −⋯− 𝑏𝑞𝜀𝑡−𝑞  , 3.7 

 

where p and q is the order of ARMA model,  𝑥 denotes the time-domain signal, 𝜀’s 

represent normal distribution with a zero mean and variance 𝜎2, and 𝑎𝑖 and 𝑏𝑖  

represent coefficients. 

An example of  implementation of ARMA can be found in Baillie and Mathew 

[62] which explored the performance of AR models by comparing three AR modelling 

approaches. Other examples are from Garga et al., [63] which proposed an AR model 

used for dimension reduction and from Zhan et al., [64] which combined the use of 

state space model and an AR model for vibration signal analysis.   

  There are many other time-domain techniques available for vibration signal 

analysis for fault diagnosis. Some of them are: filter-based method, prony model 

technique, adaptive noise cancellation (ANC), stochastic methods, and blind source 

separation methods. The following sections briefly discuss these techniques. 
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3.4 Filter-Based Method 

Filter-based methods, as suggested by its name, use filters to remove noise and 

isolate signals to extract features from the time waveform. This technique includes 

demodulation, prony model, and adaptive noise cancellation (ANC). 

Modulation is the process of varying properties of a signal (e.g. amplitude or 

phase). If the varied property is amplitude then it becomes amplitude modulation, 

whilst if the frequency is varied then it becomes frequency or phase modulation. 

Demodulation is the reverse of the modulation process. Demodulation also consists of 

amplitude demodulation and phase demodulation. The amplitude demodulation is 

widely used as vibration signal analysis particularly for bearings and gears. It is also 

known as resonance demodulation, envelope analysis, or high frequency resonance  

[65]. This technique separates low frequency signals from high frequencies noise 

which makes them easy to be analysed. With this technique, the signal envelope can 

be extracted by using amplitude demodulation and then its frequency is analysed to 

reveal the repetitive frequencies that are related to the faults [66].  

Pan et al., [67] demonstrated the use of envelope analysis for multi-fault 

detection of ball bearings. Other investigation on fault detection in bearings can be 

found in [68-70].  

Prony-model technique is commonly used in fault detection of low speed 

bearing elements. The technique analyses transient vibration signals and estimates the 

frequency, magnitude, damping, and phase directly from the modal components. [71]. 

The results of a Prony-model include spectral plots, trending parameters, and Prony 

parameters. The method has been shown to be able to analyse the transient signal and 

to determine fault severity [72]. 

Adaptive noise cancellation (ANC) is a technique to analyse time waveforms by 

filtering signals corrupted by additive noise. The technique uses two input signals as 

main input and a reference input. The main input contains the corrupted signals, whilst 

the reference input contains noise associated with the main input. These two input 

signals usually are acquired simultaneously. In practice, Shao and Nezu [73] proposed 

to mount the sensor for the reference signal acquisition at a position in the noise area 

where the signal is weak.     
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3.5 Stochastic Method and Blind Source Separation  

Stochastic parameter techniques such as chaos and blind deconvolution are 

considered as advanced methods to analyse vibration in the time domain waveform. 

Chaos and the correlation dimension have been implemented to identify faults in a 

rolling element bearing with various severity [74]. Mevel et al., [75] argued that the 

correlation dimension can provide true information associated with the dynamical 

system, thus it can be used to determine different faults. 

Another advanced analysis method in the time domain is Blind Source 

Separation (BSS). This technique attempts to restore the source signals from a set of 

mixed observed signals without knowing information about mixing process or source 

signals. [76]. The different combination mixture of observed signals is generally taken 

from a set of sensors. BSS assumes the mutual independence of the sources, and then 

the source signals and information about mixture are not necessarily needed.       

BSS has been shown to be a very attractive signal processing method for fault 

diagnosis of rotating machinery [77]. Gelle et al., [76] implemented BSS to rotating 

machinery by acoustical and vibration parameters. The results showed that BSS can 

be used for fault detection of rotating machinery by using the Nguyen-Jutten algorithm 

within a temporal context. It also concluded that vibration based parameters had better 

performance to monitor a whole system than the acoustical parameters. The BSS 

method generally assumes that the signal is either free from noise or has spatially 

distinct white noise. However, the real signals from rotating machinery may contain 

spatially correlated noises. Serviere and Fabry [78] proposed a technique called 

‘robust-to-noise’ to separate signals with spatially correlated noise from rotating 

machinery. The results indicated that the technique is efficient for analysis of a signal 

with low signal-to-noise ratio.    

3.6 Implementation of Time-domain Analysis of Vibration Signals 

for Fault Diagnosis of Machinery 

Generally, for the purpose of fault diagnosis, time-domain analysis is applied by 

measuring the level of statistical features such as standard deviation, kurtosis, RMS, 

variance, skewness, etc. There are many statistical parameters suggested in the 

literature that have been successfully applied for fault diagnosis of rotating machinery 
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like RMS, peak factor, histogram lower bound (HLB), histogram upper bound (HUB), 

entropy, variance, skewness, kurtosis [79], crest factor, absolute value, shape factor, 

clearance factor, normal negative log-likelihood value (Nnl) and Weibull negative log-

likelihood value (Wnl) [52], range, minimum value, maximum value and sum [51].   

Statistical parameters may indicate the distribution of amplitude of the vibration 

signal acquired from rotating machinery. In addition, the advantage of using statistical 

parameters for fault diagnosis is that the variation and speed condition of a machine 

has a lower effect on their values [80]. 

McCormick and Nandi [81] investigated the use of artificial neural networks 

(ANN) for condition monitoring of the rotating machinery from the vibration time 

series. The method proposed automatic classification of the machine condition using 

features extracted from several methods as neural network inputs. The extraction 

methods were based on the zero lag higher-order statistic which were applied either to 

horizontal and vertical vibration time series. The backpropagation with adaptive 

learning and momentum technique was used to train the ANN. The backpropagation 

method was tested in a test rig which was set up to introduce unbalanced shaft and rub 

faults. The results showed that the method using the combination of moments of the 

complex time series with the moments of its derivative achieved more than 90% fault 

detection success rate.     

Huaqing and Peng [82] proposed a time-domain based method, called “partially-

linearized neural network (PNN)”, for condition diagnosis of a centrifugal pump. This 

technique developed a sequential diagnosis method using PNN which can distinguish 

types of failure at an early stage for rotating machinery effectively. A new indicator, 

called non-dimensional symptom parameters (NSP) was defined to reflect the time-

domain features for the purpose of fault diagnosis. In order to measure the sensitivity 

of NSP for detecting faults, the synthetic detection index (SDI) was also developed. 

The method was tested for identifying fault types of a centrifugal pump, such as 

impeller fault, cavitation, and unbalance. The result showed that the method could 

identify the type of faults effectively. 

Lei and Zuo [83] performed an investigation on the usage of feature parameters 

in the time-domain and frequency-domain for gear damage detection.  They proposed 

25 feature parameters which were extracted to characterize the gear conditions. The 
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features consisted of 10 time-domain features, 11 statistical features specially 

formulated for gear diagnosis and 4 statistical features extracted from the frequency-

domain. Before the features was inputted into a classifier, the selection of relevant 

features was carried out through a two-stage feature selection and weighting technique 

(TFSWT) based on the Euclidean distance evaluation technique (EDET).  The 

weighted k-Nearest Neighbors (W-kNN) was proposed to identify the gear crack 

levels. The proposed method was tested using the vibration signals from the gears with 

varying speeds and loads. The result showed that the proposed method could identify 

the gear crack levels with a very good accuracy.  

Sakthivel et al., [51] investigated the use of a set of statistical features (e.g. 

standard deviation , standard error, kurtosis, variance, range, skewness, sum minimum 

value and maximum value)  for fault diagnosis of centrifugal pumps. This method 

applied a decision tree algorithm by extracting statistical features from vibration 

signals that were normal and contained faulty conditions. The faulty conditions 

included bearing fault, seal fault, impeller fault, seal and impeller faults, and 

cavitation. The result concluded that the approach was a promising method for 

practical application of fault diagnosis of a monoblock centrifugal pump.   

In addition, Sakthivel et al., [84] compared the use of rough set-fuzzy and 

decision tree-fuzzy methods for fault classification. These two methods extracted 

statistical features from normal and faulty condition of vibration signals of a 

centrifugal pump. The study concluded that the decision tree-fuzzy method has better 

accuracy than the rough set-fuzzy system. 

  Al Thobiani et al., [85] investigated a cavitation measurement method in 

centrifugal pumps using vibro-acoustic techniques. They evaluated vibro-acoustic 

techniques with conventional statistical parameters like peak factors and kurtosis from 

both time domain and frequency domain. The result showed that peak factor and 

kurtosis were inefficient for indicating cavitation. However, they found spectral 

entropy to be more accurate for detecting cavitation. It was also revealed that spectral 

entropy from airborne acoustic signals gave a better diagnostic performance than the 

surface vibration.   

Al-Hashmi [86] proposed the use of probability density function (PDF) and 

standard deviation (SD) for cavitation detection of centrifugal pumps. PDF and SD 
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were extracted from acoustical time domain signals which were taken from the 

discharge port. These two statistical parameters were then analysed and compared with 

the flow rate. It was concluded that both PDF and SD together with pump flow-rate 

can be used to identify the occurrence of cavitation from a centrifugal pump.  

Nasiri et al., [87] used two statistical features (kurtosis and crest factor) and 

neural networks to detect cavitation in centrifugal pumps. The purpose of the method 

was to apply two statistical features as the input of a specially built neural network for 

cavitation detection. Three conditions were introduced to test the method i.e., normal, 

developed and fully developed cavitation. The feed forward back propagation was 

then used to train the network. The result showed that the method was able to identify 

cavitation in centrifugal pumps. 

Ahmed et al., [52] explored the use of a combination of principal component 

analysis (PCA) with statistical parameters for different fault diagnosis from a 

reciprocating compressor. PCA was applied to select the effective diagnosis features 

from 14 statistical parameters. Fault detection based on PCA was subsequently 

developed by using Hotelling’s T2 and Q statistic to detect various faults. The result 

showed that the method could detect single and multi-faults introduced in a 

reciprocating compressor. The existence of faults was detected by comparing T2 and 

Q statistics values of the features with a defined threshold line.       

Sun et al., [88] used statistical features like kurtosis, crest factor, and RMS as a 

generic method for analysing faults from rolling element bearings. The features were 

extracted from the time domain vibration signals of normal and faulty bearings (inner 

race fault, outer race fault, and roller fault). These features were used for the purpose 

of fault pattern recognition by mapping them to create feature integration, linear 

classification and diagnosis. In order to generate a classifier for bearing fault 

diagnosis, an artificial neural network (ANN) was used and combined with a mapping 

strategy. The study concluded that the technique had advantages for monitoring 

complicated vibration signals which commonly occur in rolling element bearings. 

The use of new statistical parameters for the early detection of rolling element 

bearing fault was proposed by Niu et al., [89]. The modified statistical parameters, 

called unified description of normalized statistical parameters, contained skewness 

and kurtosis for rolling element bearing fault detection. The results from both 
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experimental test and computer simulation showed that the new statistical parameters 

had the same performance with the original parameters for early bearing fault 

detection.  

The combination of statistical parameters extracted from the time-domain, 

frequency-domain, and band frequency was developed by Hope and Wang [90] for 

detecting various types of bearing faults in centrifugal pumps. A statistical parameter 

of RMS was calculated from the time-domain, frequency-domain, and band frequency 

for each of the six types of bearing defects. Artificial neural networks (ANNs) then 

were applied in the classification of six different bearing defects. It was found that the 

method could classify all of the faults successfully using 2 hidden layers in cascade-

forward back-propagation neural networks. It was also shown that the classification 

accuracy was 100%.  

The use of statistical parameters like standard deviation as a feature for detecting 

bearing faults was investigated by Rafiee et al., [91]. Standard deviation was extracted 

using the wavelet transform approach. The standard deviation values together with 

energy levels obtained from the wavelet transform were then used to train the neural 

network. It was found that there was a significant improvement in training 

convergence and network performance, in terms of accuracy, in detecting gear and 

bearing faults. 

3.7 Frequency Domain and Time-Frequency Domain Analysis 

The features extracted from frequency domain and time-frequency domain 

generally can indicate machinery faults better than the use of purely time domain 

vibration features. This is due to the characteristics of frequency components like 

resonance frequency components which are easily observed and associated with the 

faults. A summary of developed frequency-domain analysis techniques is given in 

Table 3.1 as taken from Yang et al., in Ref. [92]  
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Table 3.1 Overview of frequency-domain techniques [92]. 

First order Second order Third order Fourth order 

    

Spectrum (FFT) 

Power spectrum, 

Power cepstrum 

(logarithm of 

Power Spectrum), 

Cyclostationarity 

Biocoherence 

spectrum, 

Bi-linearity 

 

    

Correlation of 

spectrum, Signal 

averaging,  Short 

Time Fourier 

Transform (STFT) 

Spectrogram, 

Wigner 

distribution 

Wigner bi-spectra Wigner tri-spectra 

 

The FFT [93] is considered to be the most popular signal analysis technique and 

has been commonly applied to identify the desired frequency components. The FFT 

may be used either for raw vibration signals or processed vibration signals. Envelope 

analysis is an instance by which the processed vibration signal is used before applying 

the FFT.   

In principle, the power spectrum is the square of the magnitude of the amplitude 

spectrum and can be used to diagnose faulty components [94]. Bispectrum is the 

higher order spectrum and can also be used to identify failure in bearings [95]. The 

third-order spectrum, called bicoherence spectrum, measures phase coherence among 

spectral components and has been applied for monitoring of bearing condition [96]. 

The power cepstrum is defined as a logarithm of the power spectrum and can be used 

to diagnose faulty components in machinery [97].      

Another second order spectrum method is cyclostationarity. This is a second 

order frequency domain statistical analysis method. This technique attempts to extract 

the spectral correlation function from cyclostationarity which is a powerful feature for 

fault analysis in gears [98] and bearings [99]. 
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Short time Fourier transform (STFT) is a time-frequency analysis technique that 

can represent signals in both time and frequency domain [100]. Due to this 

characteristic, STFT is suitable for analysing vibrations signals which are non-

stationary.   

Examples of the well-known quadratic time-frequency techniques are the 

Wigner distribution and the spectrogram which are commonly applied in gear faults. 

By its nature, the vibration signals from gear systems cause interfering cross-terms, 

which makes the analysis of the energy distribution not straightforward. The third-

order and fourth-order Wigner spectra, called Wigner bi- and tri-spectra respectively 

have been studied and developed for analysing signals of rotating machinery [101]. 

The continuous wavelet transform (CWT) is an improvement of STFT in order 

to obtain better time-frequency resolution. The scalogram is the squared modulus of 

the CWT. Both of these techniques have been applied for faults diagnosis. The discrete 

wavelet transform (DWT), discrete wavelet packet analysis (DWPA), and time-

frequency-scale domain (TFS) are other variant of the wavelet transform which have 

also been applied for faults diagnosis of machinery [92].   

3.7.1 Fast Fourier Transform (FFT)  

The FFT transforms time-domain into frequency-domain which produces a 

complex spectrum of the sampled signal. It calculates spectra power level and phases 

of the signal from frequency range of zero to half of the sampling frequency. 

One of the advantages of the FFT over other frequency-domain techniques is 

that it retains phase information of the signal which makes the inverse transformation 

possible and relatively simple. Another advantage is that it can evaluate multi-channel 

measurements and system analysis such as frequency response function, coherence, 

and correlation [102]. 

The FFT is an efficient algorithm for calculating the Discrete Fourier Transform 

(DFT) and its inverse. The algorithm calculates a series of N data points in 

approximately N log2 N operations instead of using N2 operation [103].  This makes a 

significant improvement of the calculation speed. As a result, this method is very 
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popular and widely applied in engineering and science in the frequency-domain area 

[97].  

The Fourier transform and its inverse for continuous signals is defined 

mathematically as, 

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 ,
∞

−∞

 3.8 

 

𝑥(𝑡) = ∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 , 3.9 

 

where 𝑥(𝑡) is the time-domain function and 𝑋(𝑓) is the frequency-domain function. 

The analogous DFT and its inverse are given by [103]: 

𝑋𝑑(𝑘) =
1

𝑁
∑ 𝑥(𝑛)𝑒−𝑗

2𝜋𝑘𝑛
𝑁  ,

𝑁−1

𝑛=0
 3.10 

 

𝑥(𝑛) =∑ 𝑋𝑑(𝑘)𝑒
𝑗
2𝜋𝑘𝑛
𝑁

𝑁−1

𝑘=0
 , 3.11 

 

where both 𝑋𝑑(𝑘) and 𝑥(𝑛) are, in general, complex series. 

An important property of the DFT is the convolution relationship. That is, the 

periodic mean convolution of the two time series of the DFTs is the DFT of the product 

of two DFTs. This property is powerful and useful for computing the filtered output 

of an input waveform. 

As abovementioned, FFT is an algorithm which makes the calculation of the 

DFT of a time series significantly faster than other algorithms. Table 3.2 as taken from 

Cochran et al., in Ref. [104] shows a comparison of computational cost which can be 

achieved by the using the FFT. 
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Table 3.2 Comparison of computational cost between “direct” and FFT [104] 

Operation 
Approximate number of multiplications 

Direct FFT 

DFT 𝑁2 2𝑁 log2𝑁 

Filtering (Convolution) 𝑁2 3𝑁 log2𝑁 

Autocorrelation Function 𝑁

4
(
𝑁

2
+3) 3𝑁 log2𝑁 

Two-Dimensional Fourier Transform 

(Pattern Analysis) 
𝑁4 4𝑁2 log2𝑁 

Two-Dimensional Filtering 𝑁4 3𝑁2 log2𝑁 

  

Comparison of the number of multiplication required for calculating the DFT 

using the FFT algorithm and the number of calculation required using direct 

calculation of the DFT is depicted in Figure 3.2. 

 

Figure 3.2 Number of calculation required for computing DFT using the FFT vs 

direct calculation [105] 

The FFT is a very efficient calculation technique which combines larger 

weighted sums of samples sequentially to produce the DFT coefficient [104]. More 

detailed explanation about the FFT algorithm can be found in [104-106]. 
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Despite the advantages, there are three problems most often encountered in 

using the FFT: leakage, aliasing, and the picket-fence effect. 

Leakage is a characteristic attribute of Fourier transform. Leakage usually refers 

to the windowing effect, which is a product of 𝑥(𝑡) with the window function. Since 

the basic assumption in Fourier transform requires the signal to be periodic so that the 

sampled signal in the sample window must be also periodic, otherwise leakage will 

occur. The effect of leakage in the spectrum is that the energy from the true frequency 

spreads into adjacent frequencies. Leakage also reduces the magnitude of the signal 

amplitude so that it will be less than the original amplitude of the signal. The usual 

approach to reduce the leakage is by applying special sample windows to the time 

series, which has a special characteristic of having lower side lobes than the 

rectangular sample window. 

Aliasing is a condition where the high-frequency components can impersonate 

the low frequencies. It also refers to the effect that causes different signals to become 

indistinguishable of one another when sampled. The aliasing effect occurs when the 

sampling rate is too low. The aliasing effect can be removed by using a sampling 

frequency at least twice the maximum component frequency of the function being 

sampled. 

The picket-fence effect, also called resolution bias error, means there may be 

peaks in the original spectrum that are between the lines of the FFT analysis. That is, 

the peaks in an FFT spectrum will be measured too low in level, and the valley will be 

measured too high. The cure to this problem involves applying data windows to the 

time series and performing complex interpolation on the complex Fourier coefficients. 

3.7.2 Envelope Analysis 

Envelope analysis, also known as high frequency resonance technique (HFRT), 

is a signal processing technique which generally refers to the sequence of processes 

whereby a raw vibration signal from an accelerometer is band-pass filtered, then band-

pass enveloped (or rectified), and finally transformed using the FFT, to create the 

calculated enveloped signal [107], as depicted in Figure 3.3  
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Figure 3.3 Procedure for the envelope analysis technique [107] 

The procedure begins with filtering time-domain vibration signal using a band 

pass filter which is chosen to include high frequency range. The band pass filter is 

used to eliminate the low frequency range which is generally found in rotating 

machinery such as unbalance and misalignment. The filtered signal is then rectified 

by taking the time waveform and folding the bottom part of the signal onto the top 

half. The rectifying process is usually performed by using the Hilbert Transform. After 

the signal is being rectified, the next process is applying FFT to the enveloped signal 

to reveal the envelope spectrum. The result is an envelope spectrum showing obvious 

amplitude peaks that are not visible in the FFT.    

Envelope analysis has been a proven useful method in cavitation detection of a 

centrifugal pump [107]. At an operating condition without cavitation, the peak at the 

1x rpm was observed in the envelope spectrum. In this operating condition, the peaks 

are relatively low and the harmonics are not clearly visible. Meanwhile, under the 

cavitation condition, the strong peak was observed at ½ blade pass frequency (BPF). 

The peaks in the envelope spectrum under the cavitation condition are consistent at 

different measurements location such as the pump’s inlet, volute, outlet, and bearing 

housing. 

The strong peak at ½ BPF in the envelope spectrum gives some evidence of the 

cavitation condition. The reason why a strong peak occurs at the sub-harmonic ½ BPF 

during cavitation condition is due to the early collapse of the bubbles before they reach 

one single cycle. The sub-harmonic ½ BPF may be observed in the envelope spectrum 

as short bursts spaced by long intervals [107].  

Envelope analysis is a widely used technique applied to fault diagnosis of rolling 

element bearing [108]. This technique may extract periodic impact produced by a 
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Vibration 
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Band Pass 
Filter

Envelope FFT
Envelope 
Spectrum



Chapter 3 − An Overview of Vibration Signal Analysis Methods  

50 

faulty rolling element bearing even though the energy signal generated by the rolling 

element bearing is very low. This makes it possible to identify a fault bearing at the 

early stage of failure.  

A faulty rolling element bearing generates impact or impulse in very short 

duration. The impact occurs when the rolling element passes over the fault zone. This 

low energy impact is then distributed over a broad range of high frequency. Hence, 

the identification of bearing faults is difficult due to the presence of relatively high 

level energy of vibration from other machine components. However, the natural 

frequency of the bearing element is excited by the impact which generates much higher 

frequency components than that produced from other machine elements. The envelope 

spectrum can show the repetitive impact of rolling element bearings as a strong peak 

with several harmonics at the frequency component representing faulty bearing 

elements. The characteristic defect frequency of each bearing element may also be 

calculated theoretically [109].  

3.7.3 The Use of Fast Fourier Transform for Fault Diagnosis 

The early study of FFT application for faults diagnosis was investigated by 

McFadden and Smith [110]. They developed the procedures to obtain the spectrum of 

the envelope signals for bearing monitoring by using the high-frequency resonance 

technique.  

The basic FFT technique for fault diagnosis involved presenting and analysing 

the vibration data only from the vibration spectrum. Birajdar et al., [40] described 

sources of vibrations in centrifugal pumps e.g., mechanical causes of vibrations, 

hydraulic causes of vibrations, and peripheral causes of vibrations. In their study, the 

FFT reading showing vibration peak due to several causes such as unbalance, 

eccentricity, bent shaft, misalignment, blade pass and vane pass vibration, flow 

turbulence, and cavitation were explained.     

The use of power spectra density (PSD) for fault diagnosis of hydraulic pump 

was demonstrated by Mollazade et al., [111]. In principle, PSD is a plot of power 

spectrum from a signal’s power which is given in the frequency bins. The power 

spectrum is commonly produced using the FFT. The vibration signal was taken from 

various pump conditions such as normal, inner race defect, outer race defect, and gear 
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tooth defect. It was found that between frequency ranges 70-120 Hz, the strong peak 

in the PSD was observed for all pump conditions. The fault diagnosis of the pump was 

then performed by comparing the area under PSD versus frequency.      

Ho and Randall [112] investigated the envelope’s spectrum performance to 

separate the signals from background noise by using the squared envelope. In this 

study, the bearing faults were digitally simulated which included random fluctuations 

of an excitation pulse for the bearing and a varying load angle of a rolling element. 

The results concluded that if the random fluctuation of an excitation pulse for the 

bearing was less than 1% then the use of the squared envelope gained an improvement 

if the ratio of MSR to SNR was greater than a factor of 0.2.     

Rai and Mohanty [113] proposed a fault diagnosis technique for bearings using 

the FFT based Hilbert-Huang Transform (HHT). The HHT is most suitable for the 

signal that is nonlinear and nonstationary. It is a method to decompose a signal into 

intrinsic mode functions (IMF) in order to obtain the instantaneous frequency. The 

result showed that HHT with the FFT intrinsic mode functions (IMF) clearly indicated 

the effectiveness of HHT in detecting bearing faults.  

The use of the FFT by means of envelope analysis for cavitation detection in a 

centrifugal pump was investigated by Tan and Leong [107]. The experimental testing 

considered 3 conditions of the centrifugal pump, e.g., at the condition of best 

efficiency point (BEP), 90% BEP, and 80% BEP. Vibration signals were acquired at 

several locations such as from the pump inlet, bearing, pump outlet and casing. The 

envelope spectra was compared between cavitation and non-cavitation conditions. The 

research concluded that envelope analysis was able to detect cavitation over 3 testing 

conditions.    

Farokhzad et al., [114] proposed a method which used statistical parameters 

extracted from frequency domain and artificial neural networks (ANN) for fault 

diagnosis of a centrifugal pump. A set of potential statistical features such as standard 

deviation, mean, skewness, kurtosis and variance were extracted from the frequency 

domain of vibration signals. Those features were then inputted into an ANN. In this 

study, an ANN model was developed based on a multi-layer perceptron neural network 

and back propagation algorithm. Several centrifugal pump conditions were introduced 

to test the method such as normal condition (no fault), impeller fault, cavitation, and 
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seal fault. It was found that the proposed method was capable of classifying the pump 

condition with 100% accuracy. This accuracy was achieved using a neural network 

model with one hidden layer.    

In addition, Farokhzad [115] applied the FFT technique to extract features from 

vibration signals for faults diagnosis of centrifugal pumps and used those features as 

input vectors to an adaptive neuro-fuzzy inference system (ANFIS). The study 

considered various condition of the centrifugal pump like healthy, broken impeller, 

worn impeller, leakage, and cavitation. A set of statistical features from the frequency 

domain (standard deviation, kurtosis, mean, skewness, RMS, and sample variance) 

were extracted to reflect different types of faults. The performance of the method was 

validated by applying the testing data set into the trained ANFIS model. The result 

demonstrated an accurate and automatic classification technique, by which the total 

classification accuracy was 90.67%.       

Moosavian et al., [116] investigated a method for fault diagnosis of main 

journal-bearings of an internal combustion (IC) engine based on combinations of PSD 

technique and two classifiers, namely k-Nearest Neighbors (kNN) and artificial neural 

network (ANN). The study aimed to compare the role of PSD, kNN, and ANN in the 

IC engine fault diagnosis. PSD was used to analyse the vibration signals collected 

from three different conditions of journal-bearings: normal, with oil starvation 

condition and extreme wear fault. Thirty frequency-domain feature parameters were 

extracted from PSD values and were then used as inputs to the classifier. The kNN 

and ANN were trained using training data sets and their performance was computed 

by using the testing data sets. The variable k value and hidden neuron (N) were varied 

from 1 to 20 to gain the best classification performance. The result showed that both 

classifiers could reliably separate different fault conditions of journal-bearings of an 

IC engine. However, the performance of ANN was better than kNN.       

3.8 Wavelet Transforms 

Wavelet transform (WT) is another signal processing tool based on a time-scale 

representation of a signal.  The first study of the wavelet transform was introduced by 

Alfred Haar in 1909. However, Jean Morlet and Alex Grossman were the ones who 
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proposed the concept of the wavelet and invented the term wavelet. The first invented 

and the simplest orthogonal wavelet is named the Haar wavelet [117]. 

WT is a tool that transforms a time domain signal into a different form such as 

various wavelet coefficients in the time-frequency domain [118]. In principle, the 

wavelet transform utilises different sized scaling factors (window or scale) for viewing 

and analysing signals. A large scale corresponds to a big frame for analysing a signal, 

whilst a small scale corresponds to a small frame for viewing the details of a signal. 

In other words, the wavelet transform has the capability for zooming in and zooming 

out of the signals [59]. 

The wavelet transform uses a small wave, called wavelet function, which has 

wavelike features and energy that is compressed in a short time. The wavelet function 

acts as a basic function to produce localised features of the original in a scaled domain 

[118].  

A wavelet function has a property called convolution where a wavelet can be 

reversed, shifted, integrated, and multiplied with a particular signal in order to extract 

information. The wavelet function also has a scalable and modulated characteristic 

which allows it to be shifted over the signal as depicted in Figure 3.4. The process can 

be repeated by using different scales of the window (slightly shorter or longer) and the 

result will be a representation of a signal in time-frequency with different 

resolutions.[59]. This unique characteristic is very useful for solving signal cutting 

problems and for an analysis of non-stationary signals. 

 

Figure 3.4 The fundamental principle of wavelet transform [119] 
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In the Fourier transform, a signal is decomposed into various sine waves with 

different frequency. Meanwhile, with the wavelet transform, a signal is decomposed 

into shifted and scaled versions of the original (or mother) wavelet. During the 

transformation process, the scaled mother wavelet is translated from the beginning to 

the end of the analysed signal and the process is repeated with a new determined scale 

of the wavelet function. 

The result of the wavelet transform are segments of signals which consist of 

approximated versions, labelled by ‘a’ and detailed version, labelled by ‘d’. The 

characteristic of the approximated version is low frequency content which is used to 

approximate the original processed signal, whilst the detailed version contains high 

frequency information of the processed signal. 

The wavelet transform was developed to overcome the limitation of the Fourier 

transform. In the FT, the original signal is decomposed into continuous sine and cosine 

functions which may not always be suitable to particular needs; this is because sine 

and cosine functions are not concentrated in space. For instance, if sine and cosine 

functions are used in the approximation of non-stationary signals then it will end with 

unsatisfactory results. 

The advantage of the wavelet transform includes its capability to analyse signals 

in different frequency bands with a resolution based on the wavelet scaling factor. 

Graps [120] stated that if a longer scale of wavelet is used, then the transformation 

results in low frequency information of the signals, meanwhile if a shorter scale of 

wavelet is used, then the high frequency information of the signal is obtained. 

The wavelet transform differs from the Fourier transform since the wavelet 

function is in the time-frequency plane [121]. Figure 3.5(a) depicts a Fourier transform 

with a simple square wave window. The sine and cosine function are trimmed with a 

single size of square wave window. Because only one window size is used along the 

whole signal, the result will give the same resolution in the time-frequency plane.   

On the other hand, the wavelet transform uses windows with varying width. For 

the purpose of isolating signal discontinuities, the WT applies very short wavelet 

functions. Meanwhile, in order to obtain high frequency information, WT uses a long 

wavelet function. This can be achieved by applying long low-frequency functions and 
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short high-frequency basis ones.  Figure 3.5(b) illustrates the basis function coverage 

of Daubechies wavelet in the time-frequency plane. 

 

  

(a) (b) 

Figure 3.5 Basis function and time-frequency resolution plane of  (a) the Fourier 

transform and (b) the Daubechies wavelet [120] 

  

There are many types of wavelet families which are commonly used in signal 

analysis application e.g., Daubechies wavelets, Coiflets, Biorthogonal wavelets, 

Symlets, Mexican Hat, Morlet wavelet, etc.  

The Daubechies N wavelet (dbN) was defined by Ingrid Daubechies [122] which 

is commonly used in various applications. Latuny [59] applied the db4 wavelet type 

to extract features for the purpose of training an ANFIS for a bearing fault classifier. 

Muralidharan and Sugumaran [123] used db1 – db10 wavelets for feature extraction 

from raw signals for fault diagnosis of a centrifugal pump. 

The Symlet wavelet family was used by Muralidharan and Sugumaran [124] for 

feature extraction in the application of the centrifugal pump fault diagnosis. One of 

the properties of the Symlet wavelet is that it is orthogonal. An orthogonal wavelet is 

a discrete wavelet transform in which the adjoint of the wavelet transform is equal to 

the inverse of wavelet transform. Figure 3.6 and Figure 3.7 show the Symlet wavelet 

function of sym2 to sym17 and Symlet scaling functions of sym2 to sym17.   
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A wavelet, or mother wavelet or analysing wavelet 𝜓(𝑡), is a waveform which 

has a finite duration. Wavelets consist of dilations and translations of a 

function 𝜓(𝑡) ∈ 𝐿2(𝐶), where )(2 CL  is a complex function. Dilation means a scaling 

of the argument, so that a given function 𝜓(𝑡) and a parameter s > 0, 
1

√𝑠
𝜓(

𝑡

𝑠
) gives a 

dilation of 𝜓(𝑡). The dilation of a function gives either a spreading out or contraction 

to the function. The factor 
1

√𝑠
 provides normalization needed to have an orthonormal 

wavelet basis. A translation corresponds to a shift of the argument along the real axis, 

so that for a given parameter 𝜏, the translation of the function 𝜓(𝑡) by 𝜏 is 𝜓(𝑡 − 𝜏). 

A mother wavelet 𝜓(𝑡) can be dilated by scale s and time-translated by factor 𝜏 

as follows [125]: 

𝜓𝑠,𝜏(𝑡) =
1

√𝑠
𝜓 (
𝑡 − 𝜏

𝑠
) ,      𝑠, 𝜏 ∈ 𝑅,   𝑠 > 0   3.12 

 

For any time-variable signal 𝑥(𝑡), the wavelet transform of 𝑥(𝑡) which has a 

mother wavelet 𝜓(𝑡) at scale 𝑠 and translation 𝜏 is defined by the convolution of 𝑥(𝑡) 

with a scaled and conjugated 𝜓(𝑡): 

𝑊𝑥(𝑠, 𝜏) = ∫ 𝑥(𝑡)
1

√𝑠
𝜓∗ (

𝑡 − 𝜏

𝑠
)𝑑𝑡 ,

∞

−∞

 3.13 

 

where 𝑊𝑥 is the wavelet transform of 𝑥(𝑡) and  𝜓(𝑡)∗ is the complex conjugate of 

𝜓(𝑡). 

The result of the wavelet transform 𝑊𝑥(𝑠, 𝜏) is defined in the 𝑠 − 𝜏 plane, where 

𝑠 determines frequency and 𝜏 relates wavelet time location. In principle, the changes 

in the value of 𝑠 relates to the alteration of time and frequency of the signal. At the 

same time, as the value of 𝜏 increases, the analysing wavelet shifts along the length of 

the analysed signal [119].  

Generally, the wavelet transform may be divided into the continuous wavelet 

transform (CWT) and discrete wavelet transform (DWT). In the following section, a 

brief explanation on each of them is introduced. 
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3.8.1 Continuous Wavelet Transform (CWT) 

The CWT of a signal 𝑥(𝑡) is carried out through convolution between the signal 

𝑥(𝑡) and complex conjugate mother wavelet 𝜓(𝑡) [118]: 

𝑐𝑤𝑡(𝑠, 𝜏) =
1

√𝑠
∫ 𝑥(𝑡)𝜓∗ (

𝑡 − 𝜏

𝑠
)𝑑𝑡

∞

−∞

 , 3.14 

 

where 𝑠 represents scale and 𝜏 denotes translation factors. 𝜓∗(𝑡, 𝑠, 𝜏) indicates the 

complex conjugate of mother wavelet 𝜓(𝑡) which is scaled and shifted with  𝑠 and 𝜏 

factor respectively. Since the CWT has two parameters, 𝑠 and 𝜏, a transformation of a 

signal using the wavelet transform produces a two-dimensional projection in time-

scale plane.  

3.8.2 Discrete Wavelet Transform (DWT) 

The DWT is the discrete form of CWT by discretising the mother wavelet 

𝜓𝑠,𝜏(𝑡).  This may be achieved using a dyadic discretisation which is well known as a 

wavelet discretisation technique [126] and is given mathematically by, 

𝜓𝑠,𝜏(𝑡) =
1

√2𝑗
𝜓 (

𝑡 − 2𝑗𝑘

2𝑗
) , 3.15 

 

where 𝑠 is replaced by 2𝑗 and 𝜏 by 2𝑗𝑘. The discrete form of a wavelet may allow the 

implementation of a computational wavelet transform. 
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Figure 3.6  Symlet wavelet function 
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Figure 3.7 Symlet wavelet scaling function 
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Coefficients, cD. The symbol (↓2) represents down-sampling in the decomposition 

process. The process can be achieved by discarding the odd coefficients of the filtered 

signal which then results in a number of coefficients in cA and cD. The total number 

of coefficients in cA and cD is approximately equal to the number of the filtered signal.  

Signal s(t)

FL

FH

↓2

↓2

cA

cD

cA

cD

↑ 2

↑ 2

FLR

FHR

Signal s(t)

A

D

(a) Decomposition

(b) Reconstruction

 

Figure 3.8 Decomposition and reconstruction process 

The reconstruction process, as can be seen in Figure 3.8b, is performed by 

convolving both vectors cA and cD using a pair of low-pass (FLR) and high pass (FHR) 

reconstruction filters. The process produces two reconstructed signal namely A and D 

which are known as the reconstructed Approximate Coefficient and the reconstructed 

Detail Coefficient respectively.  

An up-sampling process (↑2) is performed during the reconstruction process 

which it involves the addition of zeros between the coefficients of the vectors cA and 
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cD. The reconstruction process is subsequently carried out by adding coefficients A 

and D which produce a complete form of the original signal s.  

Figure 3.9 and Figure 3.10 show the application of a wavelet transform for 

filtering a noisy signal by using a low and a high pass filter. A noisy sinusoidal signal 

was processed using a symlet 8 (sym8) wavelet up to five levels of decomposition. 

Figure 3.9a shows the original signal and Figure 3.9b show the filtered signal using 

two levels of decomposition. It is shown that the noise level is significantly reduced 

after the original signal is filtered using two levels of decomposition. By increasing 

number of levels of the decomposition process, the noise level even can be more 

reduced as can be seen in Figure 3.10. 

Figure 3.10b shows a clean signal which is achieved by decomposing the 

original signal up to five levels of decomposition.   

 

Figure 3.9 Two levels decomposition using symlet 8 wavelet transform 
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Figure 3.10 Five levels decomposition using symlet 8 wavelet transform 
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d1

d2

a2

d3

a3

d4

a4

d5

a5

 

Figure 3.11 Principle of multi resolution analysis 

The division of frequency sub-bands of a signal processed using DWT MRA 

follows a standard rule. The rule is applied for each approximation (a) and detailed (d) 

part at each level of decomposition [131].   

Figure 3.11 shows an example of the decomposition process using DWT MRA 

of a signal with the maximum frequency up to 10 kHz. The signal is decomposed up 

to 5 levels and the frequency sub-band divisions of approximate (a) and detailed (d) 

parts from level 1 to 5 are given in Table 3.3.  The decomposition process starts at the 

first level of DWT MRA which transforms the signal into two parts, a1 and d1. The 

frequency sub-bands for the first level of approximate part, a1, ranges from 0−5000 

Hz and for the first level of detailed part, d1, ranges from 5000−10000 Hz. The 

remaining frequency sub-band divisions corresponding to each level of decomposition 

can be seen in Table 3.3.    
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Table 3.3 Frequency sub-bands of five decomposition levels using DWT MRA 

Approximation parts Sub-bands (Hz) Detailed parts Sub-bands (Hz) 

a1 0 − 5000 d1 5000 − 10000 

a2 0 − 2500 d2 2500 − 5000 

a3 0 − 1250 d3 1250 − 2500 

a4 0 − 625 d4 625 − 1250 

a5 0 − 312.5 d5 312.5 − 625 

 

Figure 3.12 and Figure 3.13 show an example of a DWT MRA implementation 

to a noisy sinusoidal signal processed using 5 levels of wavelet transforms (sym8 

wavelet). The results show an obvious gradually reduced noise from level 1 to level 5.     

The result of approximated (a) parts after 5 levels decomposition is depicted in 

Figure 3.12 while the detailed (d) parts is shown in Figure 3.13. The detailed parts 

contain high frequency components of the original signal which are related to the 

noise.  
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Figure 3.12 Approximated parts, a1-a5, of a noisy sinusoidal signal 
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Figure 3.13 Detailed parts, d1-d5, of a noisy sinusoidal signal 
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hydraulic noise detection of a centrifugal pump. It was considered as one of the first 

publications to use wavelets in machine fault diagnosis. 

Prabhakar et al., [133] investigated the application of the discrete wavelet 

transform for single and multiple point defects of bearings. The proposed method was 

tested using vibration signals collected from several types of ball bearing faults such 

as outer race failure, inner race failure and combination faults. The result showed that 

wavelet decomposition can detect the impulse due to either single or multiple faults in 

the ball bearing effectively. 

Lou and Loparo [134] developed a scheme based on the combination of wavelet 

transform and neuro-fuzzy classification for bearing fault diagnosis. The scheme 

proposed a technique to extract features from an accelerometer signal using a wavelet 

transform. Three conditions of the bearing were included in the experiment i.e., normal 

bearings, inner race faults and ball faults. As a fault classifier, an adaptive neuro-fuzzy 

inference system (ANFIS) was trained and proposed. Test results showed that the 

proposed fault diagnosis scheme can effectively distinguish different fault types under 

varying load conditions.  

Gao et al., [135] undertook a comparative experimental study on performance 

monitoring of a hydraulic pump using the conventional FFT based technique and a 

wavelet based multi-resolution analysis method. In the study, outlet pressure data from 

the pump was selected as the signal. The pressure signal was then analysed using FFT 

and wavelet packet analysis.  The performances of both methods were tested based on 

simulation and experimental results. It was noted that the wavelet transform based 

fault diagnosis gave a more sensitive and robust detection result for all three conditions 

of the pump (normal, control plate wear, and loose ball-socket joints).  

Muralidharan and Sugumaran [124] compared the performance of the 

combination of a wavelet transform with two classifiers namely Naïve Bayes and 

Bayes net classifier for fault diagnosis of a centrifugal pump. In their study, three 

analysis steps were proposed: feature extraction, classification, and comparison of 

classification performance. The wavelet transform was used to extract features from 

the vibration signal acquired from the normal and faulty centrifugal pump 

components. Six wavelet families were considered in the study, namely Symlets, 

Daubechies, Meyer, Coiflet, Bi-orthogonal, and Reversed Bi-orthogonal. It was found 
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that a combination of feature extraction using the wavelet and the Bayes classifier was 

a promising candidate for fault diagnosis of centrifugal pumps. 

Muralidharan and Sugumaran [123] extended their investigation to wavelet 

transform for fault diagnosis of centrifugal pumps. In this study, the discrete wavelet 

transform was used to extract wavelet features from the vibration signals. The rules 

were then generated using rough set theory and the classifier developed using fuzzy 

logic. Various different faults were introduced in this study namely normal condition 

(without fault), bearing fault, impeller fault, cavitation, and the combination of bearing 

fault and impeller fault. The result showed that the wavelet features with a rough set 

and fuzzy logic was able to identify the presence of faults in the centrifugal pump.  

3.10 Concluding Remarks 

The vibration-based technique is an approach commonly used in many fault 

diagnosis applications. The popularity is due to its effectiveness and versatility, in 

which the health condition of the machine has a strong correlation with the level of 

vibration severity of a component. There are three categories of the vibration-based 

technique that are commonly used, namely time-domain analysis, frequency-domain 

analysis, and time-frequency domain analysis.        

The use of the statistical parameters extracted from time- and/or frequency-

domain becomes a popular method and has a wide range of applications in fault 

diagnosis. It has been found that statistical parameters have an advantage where the 

variation and speed condition of a machine has a lower effect on their values. In 

addition, there is a trend in fault diagnosis method to process the features extracted 

from time- and/or frequency-domain using the methods like the PCA, ANN, kNN, 

fuzzy method, etc. It is shown that those methods achieve a reliable performance in 

monitoring the health condition of machinery.    

The next chapter describes techniques and literature reviews of Principal 

Component Analysis (PCA) in fault analysis. It also presents the application of PCA 

in dimension reduction, fault detection, and feature extraction. 
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4 A Review of Principal Component Analysis in Fault 

Diagnosis: Techniques and Literature 

In many engineering fields, it is often that one engages with complex systems 

which are a result of sophisticated developments with machinery, control systems and 

industrial processes.  As a consequence of increased complexity, there is an increased 

risk of failure of components which requires an immediate maintenance action.  

The complexity of modern machinery may cause the number of variables that 

must be monitored to sharply increase, causing difficulties in analysis. However, these 

variables can often be found to be correlated to each other. That is, there can be a 

substantial redundancy among variables which leads to high correlation and 

multicollinearity.        

Principal component analysis (PCA) is a multivariate statistic technique which 

linearly transforms original data into a new space and may reduce a number of original 

data dimensions down to only a couple of dimensions without losing a significant 

amount of information. PCA attempts to re-orient the original data in such a way that 

only the first several dimensions may retain as much of the available details in the 

original data as possible [136]. PCA may avoid redundancy in the original data by 

holding most of the details in the original data using a very few dimensions. 

In essence, PCA projects the original data into the first principal component (PC) 

so that the projected data has a maximum variance and into the second principal 

component (orthogonal to the first PC) so that the variance of the projected data is as 

large as possible. This principle continues to the remaining PCs which in turn produces 

a set of projected data in the PCs. 

 The smaller number of dimensions makes interpretation of the data easy and 

simple and the following analysis becomes more convenient. It may also significantly 

reduce the computational cost. 
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The principal components are orthogonal each other, that is, each component is 

uncorrelated with all the others. This gives an advantage, by means of eliminating 

multicollinearity in the data set. 

PCA may be used not only for dimensional reduction of the original data but can 

also be used for fault detection and monitoring through the use of PCA being 

combined with Hotelling’s T2 and Q-statistic [52, 137, 138]. T2-statistic indicates the 

variation of each sample inside the PCA model whereas the Q-statistic represents the 

residual between the original data and projected data in the PCs retained within the 

model.     

The following sections discuss details of the PCA technique and its application 

in monitoring and fault diagnosis. 

4.1  Principal Component Analysis 

PCA has been applied successfully for monitoring and fault diagnosis in many 

scientific fields [139]. Many statistical techniques have been developed to draw 

essential information out from large data sets and to analyse the information. PCA has 

been implemented for those tasks more frequently in fault detection and in a diagnosis 

scheme [140].  

It is generally accepted that Pearson in 1902 and Hotelling in 1933 proposed the 

first technique to reduce multivariate data dimension which is recently known as PCA 

[141]. 

The main idea of PCA is to reduce the original data set dimension which most 

likely has considerable amount of multicollinearity between variables while at the 

same time attempts to hold as much of the variation in the model as possible. PCA 

transforms the original data set to new orientations namely principal components in 

such a way that they are uncorrelated and the first PCs hold most of the inherent 

variance of the original data set. 

The motivation underlying the use of PCA to reduce multidimensional original 

data to a smaller number of dimensions is based on the possibility that the implicit 

relationship between variables in a complex system can often be quite simple. PCA 
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may give a procedure to reduce the original data set dimension and seek some essential 

patterns which frequently influence it [138]. 

PCA constructs principal components through linearly transforming the original 

variables using eigenvalue decomposition of the original variables covariance matrix 

[142]. PCA also may be used to represent the similarity of patterns in the observations 

and variables by plotting them as points on a graph [143].  

4.1.1 The Mechanics of PCA 

Consider the original data set to be a matrix of 𝐗 ∈ ℝ𝑚×𝑛 where 𝑚 represents 

observations and 𝑛 represents variables and is given mathematically as, 

    

𝐗 =

(

 
 
 

𝑥11 𝑥12 … 𝑥1𝑗 … 𝑥1𝑛
𝑥21 𝑥22 … 𝑥2𝑗 … 𝑥2𝑛
… … … … … …
𝑥𝑖1 𝑥𝑖2 … 𝑥𝑖𝑗 … 𝑥𝑖𝑛
… … … … … …
𝑥𝑚1 𝑥𝑚2 … 𝑥𝑚𝑗 … 𝑥𝑚𝑛)

 
 
 
 , 

 

or in column form as, 

 

𝐗 = (𝐰1 𝐰2…𝐰𝑗 …𝐰𝑛) , 

 

 

4.1 

Row vector 𝐱i represents all variable measurements at the specific time instants, 

meanwhile column vector 𝐰j represents one variable measurements over the whole 

experimental time. 

In general, due to different magnitude and scales of the physical variables, the 

matrix 𝐗 needs to be scaled before further processing. One of the scaling techniques 

is auto scaling which re-scales the original data to have a mean of 0 and a variance of 

1 by transforming column vector 𝐰j as given by, 

𝜇𝐰𝑗 =
1

𝑚
∑ 𝑥𝑖𝑗

𝑚

𝑖=1
 , 4.2 

 

𝜎𝐰𝑗 = √
1

𝑚−1
∑ (𝑥𝑖𝑗−𝜇𝐰𝑗)

2𝑚

𝑖=1
 , 4.3 
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�̅�𝑖𝑗 =
𝑥𝑖𝑗 − 𝜇𝐰𝑗

𝜎𝐰𝑗
 , 4.4 

 

where  𝜇𝐰𝑗  represents mean and 𝜎𝐰𝑗  denotes standard deviation of variable wj whereas 

𝑥𝑖𝑗  is the data point which re-scaled to 𝜇𝐰𝑗 = 0 and 𝜎𝐰𝑗 = 1. Subsequently, the re-

scaled data is written without bar notation for convenience. 

The covariance matrix 𝐗 is then defined as, 

𝐂𝐗 =
1

𝑚 − 1
𝐗T𝐗  , 

 

which can be written as, 

 

𝐂𝐗

= 
1

𝑚 − 1

(

 
 
 
 

𝐰1
T𝐰1 𝐰1

T𝐰2 ⋯ 𝐰1
T𝐰𝑗 ⋯ 𝐰1

T𝐰𝑛

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝐰𝑗
T𝐰1 𝐰𝑗

T𝐰2 ⋯ 𝐰𝑗
T𝐰𝑗 ⋯ 𝐰𝑗

T𝐰𝑛

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

𝐰𝑛
T𝐰1 𝐰𝑛

T𝐰2 ⋯ 𝐰𝑛
T𝐰𝑗 ⋯ 𝐰𝑛

T𝐰𝑛)

 
 
 
 

 . 

4.5 

 

The covariance matrix 𝐗 is a square and symmetric matrix with size of 𝑛 × 𝑛. It 

quantifies the amount of linear relationship between all possible combinations of two 

variables within the data set. The terms in the main diagonal of matrix 𝐗 are variances 

of associated variables, meanwhile the covariance between all combinations of two 

variables are in the off-diagonal terms. The variance is defined as, 

𝜎𝐰𝑗
2 =

1

𝑚− 1
𝐰𝑗
T𝐰𝑗  , 

 

which can be expressed as, 

 

𝜎𝐰𝑗
2 =

1

𝑚 − 1
∑ 𝑥𝑖𝑗

2
𝑚

𝑖=1
 , 

4.6 
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while the covariance can be expressed as: 

𝜎𝐰𝑗,𝐰𝑘
2 =

1

𝑚 − 1
𝐰𝑗
T𝐰𝑘     , j≠k , 

 

which can be written, 

 

𝜎𝐰𝑗,𝐰𝑘
2 =

1

𝑚 − 1
∑ 𝑥𝑖𝑗𝑥𝑖𝑘

𝑚

𝑖=1
  

4.7 

 

In general, larger variance values indicate more essential information contained 

in the variables, while large covariance values represent high redundancy between any 

two of variables in the data set [136]. Matrix 𝐗 consists of 𝑛 dimensional space with 

n orthonormal basis vectors. PCA attempts to transform the vectors 𝐱i into a different 

orthonormal basis which may reveal hidden features of interest.  

PCA decomposes matrix 𝐗 into a score matrix 𝐓 and a loading matrix 𝐏 through 

singular value decomposition (SVD)  as [144], 

𝐗 = 𝐭1𝐩1
T + 𝐭2𝐩2

T +⋯+ 𝐭𝑛𝐩𝑛
T , 

 

which can be written as, 

 

𝐗 = 𝐓𝐏T , 

4.8 

 

where 𝐩𝑖 ∈ ℝ
𝑛×1 represents the eigenvectors of matrix 𝐂𝐗 and  𝐏 denotes loading 

matrix of the principal component. The 𝐭𝑖 ∈ ℝ
𝑚×1 vectors are a projection of the 

original data onto the vectors 𝐩𝑖 and 𝐓 represents the score matrix of the principal 

components. Each eigenvector 𝐩𝑖 corresponds to the eigenvalue 𝜆𝑖 which represents 

the variance of the vector 𝐭𝑖. 

Three important properties of PCs are uncorrelated, ordered from the largest 

variance, and the first several PCs have a minimal mean-squared approximation error 

[141]. Matrix 𝐏 is the transformation matrix which has the eigenvectors in its columns, 

that is, 
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𝐏 = (𝐩1 𝐩2⋯𝐩𝑗⋯𝐩𝑛) , 4.9 

  

and satisfies the eigenvalue-eigenvector property [138], 

𝐂𝐗𝐏 = 𝐏Λ , 4.10 

  

where Λ =

[
 
 
 
𝜆1

𝜆2
⋱

𝜆𝑛]
 
 
 

     (𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 ≥ 0) is a diagonal matrix 

which has positive real eigenvalues and ordered from the largest to the smallest 

magnitude. 

The transformation matrix can be used to transform the original data into a new 

space which is mathematically defined as, 

𝐓 = 𝐗𝐏  4.11 

In more detail, this becomes, 

 

(𝐭1 𝐭2⋯𝐭𝑗⋯𝐭𝑛) =

(

 
 
 

𝑥11 𝑥12 … 𝑥1𝑗 … 𝑥1𝑛
𝑥21 𝑥22 … 𝑥2𝑗 … 𝑥2𝑛
… … … … … …
𝑥𝑖1 𝑥𝑖2 … 𝑥𝑖𝑗 … 𝑥𝑖𝑛
… … … … … …
𝑥𝑚1 𝑥𝑚2 … 𝑥𝑚𝑗 … 𝑥𝑚𝑛)

 
 
 

 

× (𝐩1 𝐩2⋯𝐩𝑗⋯𝐩𝑛) 

4.12 

 

Each column of matrix 𝐓 then can be expressed as, 

𝐭𝑗 = 𝐗𝐩𝑗  , 4.13 

 

and the variances of vectors 𝐭𝑗 can be calculated as, 
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𝜎𝐭𝑗
2 =

1

𝑚 − 1
𝐭𝑗
T𝐭𝑗 =

1

𝑚 − 1
(𝐗𝐩𝑗)

T
(𝐗𝐩𝑗) , 

 

which can be written as 

 

𝜎𝐭𝑗
2 = 𝐩𝑗

T𝐂𝐗𝐩𝑗 = 𝜆𝑗  , 

 

4.14 

 

while the covariances are zero, hence, 

𝜎𝐭𝑗𝐭𝑘
2 =

1

𝑚 − 1
𝐭𝑗
T𝐭𝑘 =

1

𝑚 − 1
(𝐗𝐩𝑗)

T
(𝐗𝐩𝑘) , 

 

which becomes  

 

𝜎𝐭𝑗𝐭𝑘
2 = 𝐩𝑗

T𝐂𝐗𝐩𝑘 = 𝜆𝑗𝐩𝑗
T𝐩𝑘 = 0 

 

4.15 

 

The projection of the original data onto principal components produce the score 

matrix 𝐓 which has uncorrelated column vectors. Each column vector describes 

variables in a new set of orientation which their variances corresponds to the 

eigenvalues of the matrix  𝐂𝐗.  

The column vectors 𝐩𝑗 in loading matrix 𝐏 correspond to the eigenvector of 

matrix 𝐂𝐗 which are sorted in descending order based on their eigenvalues. Vector 𝐩𝑗 

with the highest eigenvalues conveys the largest amount of information within the data 

set. Geometrically, the data matrix 𝐗 is projected over the eigenvector 𝐩𝑗 and produces 

the vector 𝐭𝑗 of the score matrix 𝐓. 

  The transformed data matrix 𝐓 represents a new representation of the original 

data in a new set orientation. The first few uncorrelated principal components have the 

most important variation thus hold the most important information within the data.    

An example of a PCA application is described here using artificial data that has 

significant correlation. The two-dimensional scatter plot (X and Y axes) of the artificial 
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data is shown in Figure 4.1. In the Figure 4.1 (a), the data set is uncorrelated, but in 

the second figure (b), it is significantly correlated.  

 

Figure 4.1 Two dimensions artificial data, (a) uncorrelated, (b) correlated. 

These plots show a positive correlation between the pair of variables in Figure 

4.1(b) which has correlation coefficient r = 0.7, while the pair of variables in Figure 

4.1(a) has correlation coefficient of nearly zero, indicating it is uncorrelated. Since the 

pair of variables in Figure 4.1(b) is significantly correlated, it is possible to transform 

the original data into a new orientation corresponding to the principal components. In 

this case, the new transformed data will be uncorrelated and will have maximal 

variance. Intuitively, the first principal component direction should lie on the 

longitudinal axis of the data cloud. Analytically, the principal components are 

determined by calculating the eigenvectors and eigenvalues of the covariance matrix 

of the original data.  

The principal components can then be plotted into the original data cloud as 

shown in Figure 4.2. The first principal component (PC1) and the second principal 

component (PC2) are now reassigning values to all of the original data that is achieved 

by calculating the score matrix 𝐓 using equation 4.11. The transformed data can then 

be represented with respect to PC1 and PC2 by rotating these axes as shown in Figure 

4.3. 
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Figure 4.2 Two principal components plotted with the original data  

 

Figure 4.3 The transformed data projected on the two principal components. 
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4.1.2 Dimension Reduction 

The eigenvectors 𝐩𝑗 are sorted in descending order based on the quantity of 

information. Since most of the information within the data is included in the first few 

principal components, the dimension of the original data may be reduced down to 

several r principal components without losing substantial amount of details. PCA 

assumes the original data is adequately correlated; therefore it needs only a few 

principal components to cover the most important variation in the data set.  The 

reduced principal component loading matrix 𝐏 is then given by,          

�̂� = (𝐩1 𝐩2 𝐩3⋯𝐩𝑟) , 4.16 

 

and equation 4.8 can be expressed by, 

𝐗 = 𝐭1𝐩1
T + 𝐭2𝐩2

T +⋯+ 𝐭𝑟𝐩𝑟T
⏞                

𝐗

+ �̃� , 
4.17 

 

or, 

𝐗 = �̂� + �̃� , 4.18 

where,  

�̂� = �̂��̂�T = 𝐗(�̂��̂�T) , 

and 

�̃� = �̃��̃�T = 𝐗(𝐈𝑛 − �̂��̂�
T)  

 

 

Matrix �̂� ∈ ℝm×r is a reduced matrix established by projecting matrix 𝐗 onto the 

reduced loading matrix 𝐏 having r selected principal components. Matrix �̃� ∈

ℝm×(n−r) is a residual matrix created by projecting matrix 𝐗 onto the residual 

subspace.  Expanding equation 4.18 yields, 

𝐗 = �̂��̂�T + �̃��̃�T 4.19 

which can be written as, 
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𝐗 = 𝐗�̂��̂�T + 𝐗(𝐈𝑛 − �̂��̂�
T), 4.20 

 

where matrices �̂� ∈ ℝm×r and �̃� ∈ ℝm×(n−r) are reduced score matrices which have 

r and (𝑛 − 𝑟) column vectors respectively. Meanwhile, �̂� ∈ ℝn×r is a reduced loading 

matrix retaining r principal components and �̃� ∈ ℝn×(n−r) represents a reduced matrix 

in residual subspace with (𝑛 − 𝑟) ignored principal components. 

The matrix �̂� represents variations of 𝐗 calculated using r selected principal 

components and matrix �̃� shows variations due to noise during observation. The 

calculation of matrices  �̂� and �̃� is schematically depicted in Figure 4.4. As an 

example, if only the first three principal components are sufficient to hold most of the 

variation, then �̃� can be computed by, 

�̃� = 𝐗 − [𝐭1𝐩1
T + 𝐭2𝐩2

T + 𝐭3𝐩3
T] 4.21 

 

t1

t2

tr

. .
 .

tr+1

. .
 .

tn

�̂� 

�̃� 

𝐏 
𝐗 

�̂� 

�̃� 

 

Figure 4.4 Graphical representation of the experimental data as summation of 

approximation and error using PCA model 

The cumulative percent variance (CPV) of the selected r principal components 

can be given by [140], 
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𝐶𝑃𝑉 =
∑ 𝜆𝑗
𝑟
𝑗=1

∑ 𝜆𝑗
𝑛
𝑗=1

× 100%, 4.22 

 

where  𝜆𝑗 represents the jth eigenvalue of the covariant matrix 𝐂𝐗. The first r largest 

eigenvalues are retained within the PCA model. 

For the example shown previously in Figure 4.1 and Figure 4.2, the eigenvalues 

for the first PC and for the second PC were 1.2 and 0.2 respectively. Consequently, by 

just retaining the first principal component, the PCA model still has 86% (as calculated 

using equation 4.22) of the variation in the data. This provides an advantage of 

dimension reduction, since the model only lost 14% of the variation by compressing 

the data by 50%. 

4.1.3 PCA Analysis for Fault Detection 

The applications of PCA in fault diagnosis commonly use the well-known 

Hotteling T2-statistic and the Q-statistic (or Squared Prediction Error (SPE) statistic) 

[145]. The T2-statistic measures the variability of the score matrix 𝐓. It may detect an 

abnormal behaviour of new data by comparing variation in the variables to that defined 

by baseline condition [52]. Meanwhile the Q-statistic evaluates the variability of the 

matrix �̃� which is projection of original data onto residual subspace.     

4.1.3.1 T2-statistic 

In essence, the Hotteling’s T2-statistic is a general form of the Student’s t-

statistic which is a popular method for hypothesis testing of multivariate data. It 

evaluates the variation of the samples inside the model. The T2-statistic of the ith 

sample or experiment can be expressed by [138, 140], 

𝑇𝑖
2 =∑

�̂�𝜎𝑖𝑗
2

�̂�𝑗

𝑟

𝑗=1

= �̂�𝜎𝑖Λ̂
−1�̂�𝜎𝑖

T = 𝐱𝑖�̂�Λ̂
−1�̂�T𝐱𝑖

T ,  4.23 
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where �̂�𝜎𝑖  represents 1 × 𝑟 row vector which indicates ith row of matrix 𝐓. Meanwhile 

𝐱𝑖 is the 1 × 𝑛 row vector which represents the ith observation. They are related by 

the expression, �̂�𝜎𝑖 = 𝐱𝑖�̂�.   

When abnormal behaviour in the system occurs, such as the presence of a fault, 

the mapping relation of the data is collapsed which may fluctuate the corresponding 

T2 and/or Q-statistic. The threshold of T2 is based on F-distribution and 

mathematically  given by [146], 

𝑇𝑟,𝑛;𝛼
2 =

𝑟(𝑛 − 1)

𝑛 − 𝑟
𝐹𝑟,𝑛−𝑟;𝛼  , 

4.24 

 

where 𝑟 is retained principal components inside the PCA model, 𝑛 is measured 

variables used to build the PCA model, 𝐹𝑟,𝑛−𝑟;𝛼 is an F-distribution, and 𝛼 is the level 

of significance. 

The new observation is normal if it satisfies the following condition, 

𝑇𝑖
2 ≤ 𝑇𝛼

2   4.25 

 

When the 𝑇𝑖
2 of the new observation exceeds the threshold, 𝑇𝛼

2, it indicates a fault has 

occurred within the new data set. The contribution of the individual variables of the 

new observation to the 𝑇𝑖
2 can also be identified. The variables which considerably 

contribute to the 𝑇𝑖
2 are pointed to be likely the source of fault [52].  

4.1.3.2 Q-statistic 

The Q-statistic or SPE measures the variability of the observation data projected 

onto the residual space. It indicates the change of behaviour of the observation data 

which are not accounted for by the principal component subspace. The Q-statistic of 

the ith observation,  𝐱𝑖, can be expressed as [147], 

𝑄𝑖 = ‖�̃�𝑖‖
2 = ‖𝐱𝑖(I − �̂��̂�

T)‖
2
, 4.26 

 

where  �̃�𝑖 is the observation data projected onto the residual subspace. 
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A new experimental trial is considered normal if, 

𝑄𝑖 ≤ 𝑆𝑃𝐸𝛼   , 4.27 

 

where 𝑆𝑃𝐸𝛼  represents the upper control limit with significance level 𝛼. The threshold 

for 𝑆𝑃𝐸 is determined by its approximate distribution as given by [148], 

𝑆𝑃𝐸𝛼 = 𝜃1 [
𝑐𝛼√2𝜃2ℎ𝑜2

𝜃1
+ 1 +

𝜃2ℎ𝑜(ℎ𝑜 − 1)

𝜃1
2 ]

1
ℎ𝑜

, 4.28 

 

where, 

𝜃𝑖 = ∑ 𝜆𝑗
𝑖

𝑛

𝑗=𝑟+1

 ,      𝑖 = 1, 2, 3  , 4.29 

 

and, 

 

ℎ𝑜 = 1 −
2𝜃1𝜃3
3𝜃2

2  4.30 

 

where r is retained principal components inside the model and 𝑐𝛼 is the standard 

normal deviation with the upper 1-α percentile.  

When the 𝑄𝑖 of the new experimental trial violates the 𝑆𝑃𝐸 threshold, a fault is 

deemed to have occurred. The threshold value is defined with the assumption that the 

observation data is multivariate normally distributed and time-independent [147].      

The Q-statistic has a very small value and consequently is more sensitive than 

the T2-statistic. This characteristic makes the Q-statistic able to detect any small 

change in the system behaviour.  On the contrary, the T2-statistic needs substantial 

change in the system behaviour to be measureable [138]. 
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4.1.3.3 Comparison between the T2-statistic and Q-statistic 

The idea of using the T2 and Q-statistic for fault detection is illustrated 

graphically in Figure 4.5. A fault which is illustrated using a red circle can be detected 

by both T2 and Q-statistic because it lies outside the thresholds. A T2-statistic provides 

a measure of the deviation in the principal component subspace that most importantly 

corresponds to the normal condition. The normal range defined by the T2 threshold is 

usually larger than that defined by the Q threshold. Accordingly, small faults can easily 

exceed the Q threshold, but not the T2 threshold. This indicates that the T2 -statistic 

usually is less sensitive than the Q-statistic for the small fault detection.     

The score matrices from the principal component subspace can also be used to 

obtain information about particular events. The scores from desired principal 

components can be plotted in two or three dimensional space which may show a 

different pattern between a fault condition and a normal (without fault) condition. The 

T2-statistic, however, has included this information since it is obtained from the scores. 

In addition, the Q-statistic provides supplementary information obtained from the 

residual subspace because it calculates the variation of the data that lay outside the 

model. 

 

Figure 4.5 T2 and Q-statistic in PCA model [138] 
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4.2 Application of PCA in Feature Extraction and Fault Diagnosis 

Feature extraction from vibration data is a challenging field of research in many 

engineering applications, especially in the area of fault diagnosis of rotating 

machinery. It is one of the most extensively studied issues in condition monitoring 

[57]. Feature extraction is usually applied before undertaking fault diagnosis or fault 

classification. It aims to reduce the data set dimension and to perform a transformation, 

such that the critical information in the original data are extracted [84]. In this stage, 

pre-processing of the raw data is normally performed to obtain appropriate parameters 

that indicate whether the important pattern from normal machine condition is obtained. 

In the recent decades, a wide range of new feature extraction techniques have 

been proposed. Each technique has different theoretical backgrounds and gives 

different results. As a consequence, the implementation of a particular extraction 

technique depends on the operational condition of the system and the type of faults 

that are required to be detected [59].  

The use of a combination of feature extraction techniques seems to be more 

extensively studied than those using only a single feature extraction technique. The 

motivation in using the combined techniques is the importance of selecting the most 

effective and suitable techniques, thus producing more reliable diagnostic results. This 

motivation accelerates the development of new feature extraction techniques aimed at 

finding better and more suited feature extraction techniques for specific fault 

diagnosis. 

The use of the PCA in vibration signal analysis as a feature extraction method 

in fault detection has been widely proposed in many literatures. An example of feature 

extraction techniques published within the last ten years is presented in Table 4.1. It 

shows that many of the PCA-based extraction techniques are combined with other 

methods in order to obtain better and more appropriate features for fault diagnosis.  
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Table 4.1 Summary of the use of feature extraction for PCA applications  

References Objects 
Type of 
Fault 

Techniques Features 
Extraction 
method 

Results 

Li et.al (2003) 
[149] 
 

Gearbox Broken 
tooth 

Time-
domain 

Standard 
deviation, 
skewness, 

kurtosis, the 
max peak, 
absolute 

mean, RMS, 
crest factor, 
impulse 

factor, 
clearance 
factor 

PCA The 
proposed 
method is 

sensitive to 
different 
condition of 

gearbox 

Malhi and 

Gao (2004) 
[150] 

Ball bearing defect on 

inner race, 
outer race, 
both inner 

and outer 
race 

Time-

domain, 
frequency 
domain, 

wavelet 
domain 

Thirteen 

features 

PCA, neural 

network 

Smaller 

number of 
features 
performs 

better for 
defect 
classification 

than using all 
relevant 
features   

 

Sun et.al. 
(2007) [151] 

Rotor fault Oil whirl, 
shaft crack 

unbalance, 
rotor radial 
rub, 

unbalance 
and radial 
rub 

Time-
domain, 

frequency-
domain 

Peak-peak 
value, peak 

index, 
waveform 
index, 

tolerance 
index,` 
impulsion 

index, kurtosis 
index, 
skewness 

index, power 
spectrum, and 
amplitude 

spectrum 

PCA, C4.5 
decision tree 

A method 
based on 

combination 
of PCA and 
C4.5 

decision tree 
shows higher 
accuracy 

than neural 
network 
approach 

Shuang and 
Meng (2007) 

[152] 

Rolling 
bearing 

Faulty 
bearing on 

outer race, 
inner race 

Time-
domain 

Eigenvectors PCA, SVM Combination 
of PCA-

SVM-
eigenvectors 
provides a 

new 
technique for 
intelligent 

bearing fault 
diagnosis 

Trendafilova 
et.al. (2008) 
[153] 

A scaled 
aircraft wing 

Crack FRF Frequencies Modified PCA, 
simple pattern 
recognition 

(PR) 

The 
improved 
PCA and PR 

approach 
provides a 
promising 

technique  
for structural 
damage 

detection 
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References Objects 
Type of 
Fault 

Techniques Features 
Extraction 
method 

Results 

He et.al. 

(2009) [154] 

Internal-

combustion 
engine; and 
automobile 

transmissio
n gearbox 

Worn 

connecting 
road 
bearing; 

worn 
bearing 

Time and 

frequency-
domain 

Sixteen 

statistical 
features 

PCA 

technique and 
PC 
representation 

A low 

dimensional 
PC 
representatio

n is proven 
to be 
effective for 

representing 
and 
classifying 

machine 
condition 

Sakthivel 

et.al. (2010) 
[84] 

Centrifugal 

pump 

Impeller 

fault, 
Bearing 
fault, 

cavitation, 
and seal 
fault 

Time-

domain 
analysis 

Mean, 

median, 
standard 
deviation, 

standard 
error,  
variance, 

skewness, 
kurtosis, sum, 
range, 

minimum, and 
maximum 

PCA, C4.5 

decision tree 
algorithm, and 
rough set 

methods 

PCA based 

decision 
tree-fuzzy 
achieves 

96.67% 
accuracy 

Mujica et.al. 
(2010) [138] 

Steel sheet 
and gas 

turbine 
blade 

Crack Frequency 
response 

function 
(FRF) 

  PCA, Hotelling 
T2 statistic and 

Q-statistic 
(SPE) 

T2 statistic 
and Q-

statistic 
successfully 
detect 

damages in 
the 
structures 

Trendafilova 
(2010) [127] 

Roller 
bearings 

Outer race, 
Inner race, 
and rolling 

element 
faults 

Discrete 
wavelet 
transform 

(DWT) 

Daubechies2 
(db2), high 
frequency part 

Modified PCA, 
simple pattern 
recognition 

(PR) 

Combination 
of modified 
PCA and 

simple PR 
successfully 
detect and 

recognise 
bearing fault 
categories 

Li et.al (2010) 
[155] 

Gearbox Single wear, 
Single 
crack, 

single tooth 
broken, 
combination 

fault of 
crack and 
tooth 

broken and 
combination 
fault of wear 

and spalling  

Discrete 
wavelet 
transform 

(DWT) 

Daubechies20 
(db20) at 
decomposed 

level 5 

Wavelet-AR 
Model and 
PCA 

Combination 
of wavelet-
AR-PCA is 

able to 
classify all of 
experimental 

gears 
operating 
conditions. 

The result 
with PCA 
performs 

better  than 
that without 
PCA 

Pirra et.al. 
(2011) [156] 

Roll bearing Inner race, 
rolling 
element 

fault 

Time-
domain 

Absolute 
mean, RMS, 
maximum 

peak value 

PCA based 
model 

The result 
allows 
accurate 

damage 
recognition 
and reduces 

the number 
of False 
Alarm.  
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References Objects 
Type of 
Fault 

Techniques Features 
Extraction 
method 

Results 

Zimroz and 

Bartkowiak 
(2011) [157] 

Planetary 

gearboxes 

Gears 

damage 

Power 

spectral 
density 

A number of 

amplitudes 
from spectral 
components 

correspond to 
fundamental 
frequency and 

its harmonics 

PCA, analysis 

of eigenvalues 

The 

proposed 
method can 
find earlier 

damage in 
the gearbox. 
The damage 

evolution 
causes 
increased 

total energy 
dissipation 

Ahmed et.al. 
(2012) [52] 

Recipro-
cating 

compressor 

Several 
combination 

faults of 
discharge 
valve, 

suction 
valve, 
intercooler 

leakage, 
and a loose 
drive belt 

Time-
domain 

analysis 

RMS, Peak 
factor, 

histogram 
upper bound, 
histogram 

lower bound, 
variance, 
crest factor, 

entropy, 
absolute 
value, normal 

negative log-
likelihood , 
shape factor, 
clearance 

factor, 
kurtosis, 
skewness, , 

and Weibull 
negative log-
likelihood 

value 

PCA, Hotelling 
T2 statistic and 

Q-statistic 
(SPE) 

PCA with T2 
statistic and 

Q-statistic 
method 
allows the 

detection of 
single and 
multiple 

faults. Q-
statistic 
gives better 

detection 
ability than  
T2 statistic 

Abouhnik 
et.al. (2012) 

[158] 

wind turbine 
blade, 

gearbox, 
induction 
motor 

Cracks in 
turbine 

blade, gear 
tooth 
breakage, 

phase 
imbalance 
in induction 

motor 
current 

Time-
domain 

analysis 

Kurtosis, RMS 
and crest 

factor 

PCA and 
residual matrix 

Introduce a 
new 

approach to 
detect faults 
by using 

combination 
of PCA and 
residual 

matrix. In 
addition, 
crest factor 

are also 
applied to 
the residual 

matrix to 
detect faults 

Zhao et.al. 

(2012) [159] 

Centrifugal 

slurry pump 

Impeller 

vane 
leading 
edge 

damage 

Frequency-

domain 

Amplitude at 

1X, 2X, 5X, 
10X, RMS 
between 0-

1X, 0-2X, 0-
5X, 0-10X 

PCA, half and 

full spectra, 
fuzzy 
preference-

based rough 
sets 

Propose a 

method to 
generate a 
monotonicall

y indicator 
for impeller 
damage 

propagation 
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References Objects 
Type of 
Fault 

Techniques Features 
Extraction 
method 

Results 

Liying et.al. 

(2012) [160] 

Ball bearing defect on 

inner race, 
ball, outer 
race 

Time-

domain 

Amplitude   PCA, T2-

statisctic, Q-
statistic 

Achieved 

fault 
detection 
rate higher 

than 92.5% 

Dong and 
Luo (2013) 

[161] 

Bearings Bearing 
degradation 

Time-
domain, 

frequency-
domain, and 
time-

frequency 
domain 
analysis 

Sixteen 
features from 

time-domain 
and 12 
features from 

frequency-
domain 

PCA, LS-SVM propose 
combined 

approach 
(PCA and 
LS-SVM) for 

the bearing 
degradation 
process 

prediction 

Gharavian 
et.al. (2013) 

[162] 

Gear box Chipped 
and worn 

gear 

Continuous 
wavelet 

transform 

Morlet mother 
wavelet 

Features 
extraction: 

FDA, PCA, 
and classifier: 
KNN and 

GMM 

PCA-based 
features 

achieves 
recognition 
rate 84.6% 

Xi et.al. 
(2013) [163] 

Ball bearing defect on 
ball, inner 

race, and 
outer race 

Time-
domain and 

time-
frequency 
domain 

Mean value, 
kurtosis, 

wavelet 
packet energy 
spectrum 

PCA, back 
propagation 

neural 
network 

Investigate 
the 

performance 
PCA-based 
feature 

selection 
technique 

Sakthivel et.al 
(2014) [164] 

Centrifugal 
pump 

Bearing 
fault, 
impeller 

fault, seal 
fault, and 
cavitation 

Time-
domain 
analysis 

Standard 
deviation, 
standard 

error, Mean, 
median, 
variance, 

skewness, 
kurtosis, 
range, 

minimum, 
maximum, 
and sum 

PCA, C4.5 
decision tree, 
Bayes Net 

and Naïve 
Bayes 
classifier 

Combination 
of PCA and 
decision tree 

performs 
better than 
all other 

combination 
of dimension 
reduction 

technique-
classifier  

Shao et.al. 
(2014) [165] 

Gears Tooth root 
crack, pitch 

crack, tooth 
wear, and 
multi-fault  

db4 Wavelet 
packet 

transform 

Signal energy 
of 16 

frequency 
bands 

PCA and 
Kernel-PCA 

Nonlinear 
KPCA 

obtains 
better 
performance 

than PCA for 
the nonlinear 
relationship 

data 

 

Several important studies that use PCA technique for fault diagnosis of rotating 

machinery, as seen in Table 4.1, are explained in chronological order in the next 

section. 
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4.2.1 PCA-Based Extraction Techniques in Fault Diagnosis 

The use of PCA analysis to reduce feature dimension and to obtain an effective 

subspace for fault diagnosis was proposed by Li et al., [149]. The features used to 

build the PCA model were ten statistical parameters from the time-domain, including 

standard deviation, skewness, kurtosis, maximum peak value, RMS, absolute mean 

value, crest factor, impulse factor, shape factor, and clearance factor. The proposed 

method was tested on an automobile gearbox under three different operating 

conditions, i.e., normal, cracked tooth, and broken tooth were introduced. The raw 

time-domain signals from three different conditions were collected and ten features 

from each raw signal were computed. It showed that none of the features was able to 

tell the difference between the tooth damage and normal (no fault) tooth condition. By 

re-expressing the original features into principal components (PCs) subspace, the 

result showed that the first three PCs (containing 85% variation of the original 

features) may be used as a classifier for gear fault detection and can also be used for 

isolating particular types of faults from another. The result also showed a good 

sensitivity of the method for different gearbox working conditions and may identify 

natural gear defects. 

The application of PCA-based method for feature selection schemes of rolling 

bearing fault diagnosis was investigated by Malhi and Gao [150]. The study aimed to 

recognize the damage level of bearings without knowing previous information about 

the damage condition. The study proposed a new scheme for bearing fault 

classification using features extracted from time, frequency, and wavelet-domain. 

Three cases with several combinations of ball bearing faults were carried out. Initially, 

a set of 13 features was compiled. They included the rectified skew, RMS, kurtosis, 

crest factor, peak value (time-domain), amplitude of BPFO, BPFI, BSF and power in 

the defect frequency range (frequency-domain), wavelet & Fourier BPFO, BPFI, BSF 

amplitude, and power in the defect frequency range (wavelet domain). The PCA was 

built to reduce the input feature dimension which subsequently would be used for both 

supervised and unsupervised classification process.  The feed forward neural network 

(FFNN) was then applied to verify the performances of the features in the principal 

components subspace. The result showed that the proposed method attained higher 



Chapter 4−A Review of Principal Component Analysis in Fault Diagnosis: 

Techniques and Literature 

90 

classification accuracy than the method without PCA. It also confirmed the suitability 

of the proposed method for machine health assessment.  

Sun et al., [151] explored a method based on the combination of C4.5 decision 

tree algorithm and PCA for rotor fault diagnosis. The experiment was carried out for 

six types of operating condition namely normal, rotor radial rub, unbalance, shaft 

crack, oil whirl, and combination unbalance and radial rub. In the investigation, 7 

features from the time-domain and 11 features from the frequency-domain were used 

as input for the PCA model. The PCA then reduced the dimensionality of the features 

space down into a few dimensions. The first 6 PCs which held 98% of the variation of 

the data was selected and the original data set were subsequently projected onto those 

6 PCs. The projected data was divided into a training data set which was used for 

classifier training and a testing data set for testing the classifier validity. The result 

showed that reducing a large number of PCs did not decrease the diagnosis accuracy. 

Even for particular conditions, the accuracy of the proposed method with reduced PCs 

was higher than that without PCs reduction.       

Sakthivel et al., [84] investigated the accuracy of PCA analysis based decision 

tree-fuzzy logic for the centrifugal pump fault diagnosis. The study aimed to monitor 

the health condition of centrifugal pumps. Several different fault conditions were 

investigated such as: impeller fault, bearing fault, cavitation, seal fault, combination 

of bearing and impeller fault. In the investigation, a wide set of the statistical features 

from the time-domain were extracted which included mean, median, standard error, 

variance, standard deviation, skewness, kurtosis, range, sum, minimum, and 

maximum. Those statistical features were then used as input for the feature selection 

scheme which consisted of combination of C4.5 decision tree algorithm, rough set, 

and PCA. The output of the scheme were the prominent features that were important 

for rule generation. The selected features were then used to build the fuzzy inference 

engine. The results showed that the accuracy of the combination of the decision tree-

fuzzy method was 99.3%, the rough set-fuzzy was 97.50%, and the PCA-fuzzy was 

96.67%. Even though the accuracy of PCA-fuzzy method was smallest, it provided 

the advantage of using a reduced number of uncorrelated features. 

 The application of PCA and T2-statistic and Q-statistic fault diagnosis in the 

structures was explored by Mujica et.al., [138]. In the study, two kinds of structures 



Chapter 4−A Review of Principal Component Analysis in Fault Diagnosis: 

Techniques and Literature 

91 

were used to verify performance of the method: a steel sheet and a turbine blade of an 

aircraft engine. Two experimental approaches were performed to test the structures. 

For the first approach, a low frequency vibration from a shaker was applied to the 

structure while for the second one, a single piezoelectric (PZT) element was used as 

an actuator to excite high frequency vibration to the structure. In both approaches, 

several PZT sensors were also attached on the surface of the structure. A known 

vibration signal was applied to the structure and its dynamic response was recorded 

and analysed. The vibration data obtained from the undamaged structure (used for 

baseline) and from the damaged structure were projected onto principal components 

which subsequently produced PCA models with 20 PCs. For diagnosis purposes, the 

first two PCs were retained in the model and T2-statistic and Q-statistic indices were 

analysed. The results showed that for the steel-sheet-low-frequency scenario, the score 

matrices provided sufficient features to identify damage. In some cases, the T2-statistic 

was found to be more sensitive to changes of the structure while in other cases (blade-

low-frequency), the Q-statistic was better.     

The use of a combined PCA analysis and pattern recognition (PR) of vibration 

signals for roller bearing fault diagnosis was studied by Trendafilova [127]. Four types 

of vibration signals were considered, namely normal bearing, outer race fault, inner 

race fault, and rolling element fault signals. In the investigation, a wavelet transform 

was applied to pre-process a raw vibration signal and to extract desired high frequency 

components (detailed coefficient) which were appropriate for bearing fault diagnosis. 

The Daubechies2 (db2) wavelet was used to calculate feature vectors where only its 

high frequency parts (cH) were considered for subsequent analysis. For training 

purposes, one hundred signals from each fault condition were collected. The PCA was 

then applied to reduce the number of coefficients cH and to extract relevant features. 

Six PCs were retained in the model which provided more than 90% of the variance. 

The proposed method showed that even with the first two PCs, it succeeded to identify 

and classify the bearing fault. It was also found that the PR procedure achieved an 

excellent separation rate which was 94% to 96%.  

The investigation of combined a PCA-based feature extraction has continued 

with more methods for the purpose of finding better feature representations for fault 

diagnosis. For instance, Li et al., [155] suggested a method for gear multi-fault 
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diagnosis based on the wavelet-Autoregressive (AR) model and PCA. The test was 

performed for several gear conditions, namely normal, single wear, single broken  

tooth, single crack, compound fault of wear and spalling, and 6 combination faults 

with cracked and broken teeth. The Daubechies20 (db20) wavelet pre-processed raw 

vibration signals at 5 levels decomposition and the AR coefficients then extracted the 

prominent fault type features. To avoid redundancy and to improve fault diagnosis 

performance, the PCA was then applied to combine the AR coefficients into one 

unique parameter used as the classification criteria. It was found that the proposed 

wavelet-AR-PCA method could successfully classify all types of faults. 

An approach in the use of statistical features for fault detection of reciprocating 

compressors was carried out by Ahmed et al. [52]. Several types of faults were 

proposed such as intercooler fault, suction valve fault, loose drive belt, and a 

combination of suction valve fault with intercooler fault, discharge valve fault with 

suction valve fault, and discharge valve fault with suction intercooler fault. In this 

study, fourteen statistical features were extracted from the raw vibration signals and 

then selected as features for the PCA model. By re-expressing the features into the PC 

subspace, it was shown that seven of these variables accounted for 90% of the 

variance. This was considered to be acceptable for the compressor fault diagnosis. The 

T2-statistic and Q-statistic were subsequently developed to detect the faults. The result 

showed that the PCA based method succeeded to detect single and multiple faults in 

the compressor. The fault occurrences were detected by comparing T2 and Q-statistic 

of the features with the defined threshold. 

Zhao et al., [159] used a combination of half and whole spectra, fuzzy 

preference-based rough sets and PCA to produce the criteria that vary linearly with 

fault propagation for impeller fault detection in a centrifugal slurry pump. The half 

and full spectra were used to extract potential features associated with the pump 

condition. The potential features were amplitude at 1X, 2X, 5X 10X, RMS between 

0-1X, 0-2X, 0-5X, and 0-10X. The fuzzy preference-based rough sets were used to 

select the prominent features associated with the fault propagation linearly. The PCA 

model was employed to re-orient the features and generate the fault propagation 

criteria. In the investigation, four different scenarios were tested i.e., PCA applied 

directly to all features, PCA applied for feature extraction and feature evaluation using 
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fuzzy rough set, PCA for feature extraction and feature evaluation using dominance 

rough set, and PCA for feature extraction and feature evaluation using fuzzy 

preference-based rough set (proposed method). It was found that the whole spectrum 

was an appropriate instrument to extract features from the faulty pump. The results 

also showed that the proposed method successfully produced the criteria that may 

effectively differentiate the health status of the pump impeller.    

Liying et al., [160] investigated the use of one dimensional time-domain feature 

extraction for bearing fault detection. The method defined the vibration signal into a 

new space with higher dimensions and subsequently the PCA model was built based 

on this new space. Three types of faults were carried out to test the proposed method, 

namely good bearing, faulty outer raceway, faulty inner raceway, and ball fault under 

different load conditions. The T2 and Q-statistic were then applied for fault detection. 

The results demonstrate that the accuracy of the proposed method for bearing fault 

detection was above 95%. 

Gharavian et al., [162] studied a comparison of the Fisher discriminant analysis 

(FDA)-based and PCA-based feature for automobile gearboxes fault diagnosis. In 

their study, a continuous wavelet transform (CWT) was applied to a vibration signal 

collected from several conditions of the gears and the continuous wavelet coefficient 

(CWC) were then evaluated for some different scales. This produced a feature vector 

in which the number of dimensions was the same with the number of the scales.  The 

FDA-based and PCA-based methods were applied to reduce the dimensionality of the 

original features. As the classifier, the researchers examined the Gaussian mixture 

model (GMM) and k-Nearest Neighbor (kNN). The experimental results showed that 

the FDA-based method achieved a higher recognition rate than the PCA-based 

method, however the recognition rate of the PCA-based method was still considered 

high at 84.6%. Both of the classifiers gave a great performance in fault sorting for 

condensed fault condition.         

The application of PCA to obtain the prominent features from combinations of 

energy spectrum and statistical features for the purpose of bearing fault diagnosis was 

explored by Xi et al., [163]. In the investigation, the energy spectrum from the time-

frequency domain of vibration signals were selected using a wavelet packet transform 

from different frequency bands and the statistical features such as kurtosis and mean 
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were extracted from the time-domain. Four types of bearing conditions were 

introduced to test the proposed method such as normal bearing, ball fault, inner race 

fault, and outer race fault. The mother wavelet Daubechies 12 (db12) was used at level 

3 to calculate the wavelet packet energy spectrum. The ten features (eight energy 

spectrum and two statistical features) were used as input to the PCA model. Based on 

85% of the cumulative percent variance, the four most prominent features were 

selected from the ten original features set. These features were then trained using a 

back propagation neural network for bearing fault classification. The results 

demonstrated that the PCA-based feature selection scheme was effective for bearing 

fault diagnosis with correct detection rate of 87.5%-100%. 

4.3 Concluding Remarks 

A review of the application of PCA for feature extraction and fault diagnosis 

discussed in this chapter has shown the trends of combining the PCA approach with 

other methods to obtain the most prominent features. Several important findings from 

the literature review are presented in this section. 

 One of the most widely used applications of the PCA method is for feature 

extraction in order to find better feature representation for fault diagnosis by re-

expressing the original space into the new lower subspace. In spite of the large 

number of previous research studies using PCA, the selection of input for the PCA 

model, which is a critical step for building a robust PCA-based fault diagnosis 

framework, is often arbitrary and still has further potential to be explored [149]. 

Hence, there is an open area in the development of methodologies for the selection 

of better input vectors for the PCA model. 

 One of the important issues in the application of PCA in fault diagnosis is the 

trends that combine the PCA with other signal processing methods in order to find 

more effective features for fault diagnosis. Even though many PCA-based 

combination methods have been investigated, there are no clear standard rules 

which can be used as guidance for its application to a particular fault diagnosis. 

This means that there is no standardised methodology for selecting the 

combination of PCA-based framework for finding and generating reliable 
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features. Hence, the selection of the combination of PCA-based framework with 

other signal processing methods is still open for investigation. 

 The use of the wavelet transform for vibration signal pre-processing prior to the 

application of PCA methods has been explored by several researchers [127, 150, 

155]. Even though the use of the wavelet transform to pre-process signals is 

common, the selection of a suitable mother wavelet and decomposition level for 

a particular fault diagnosis is an unstandardized process. Hence, it is an area which 

is wide open for investigation.     

 The use of combinations of simple algorithm classifiers such as the kNN with the 

PCA method for fault diagnosis of rotating machinery is rarely found in the 

literature. It is wide open for further investigation. 

 The research of PCA-based fault diagnosis for the centrifugal pump health 

monitoring is still rare. Particularly in the case of applications that combine the 

wavelet transform and statistical parameters as input features to the PCA model 

for fault diagnosis.         

The next chapter describes the proposed wavelet-based PCA method for fault 

diagnosis. It presents the statistical parameters extracted from decomposed time 

signals which used to build PCA model. The chapter also explains the proposed fault 

diagnosis algorithm.  
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5 Principal Component Analysis and Wavelet-Based 

Framework for Fault Diagnosis 

In this study a new fault diagnosis framework for a centrifugal pump is proposed. 

The technique is based on Principal Component Analysis (PCA) combined with the 

wavelet-based feature extraction.  

The proposed method combines the use of statistical parameters obtained from 

wavelet decomposition using multi resolution analysis (MRA) and the PCA to develop 

a fault diagnosis framework for a centrifugal pump. The application of PCA combined 

with several other signal processing techniques, which is extensively discussed in 

previous chapters, motivates this research for further development of PCA-based 

techniques for fault diagnosis. In this research, six statistical features namely energy 

level, standard deviation, RMS, kurtosis, variance, and crest factor were extracted 

from the wavelet transform of the vibration signals using the MRA technique. The 

statistical parameters obtained were used as input vectors to build the PCA model. 

The use of the Symlet wavelet family in the feature extraction process in this 

research was based on several findings in the literature where the Symlet wavelet 

family was effective in the application of fault diagnosis of centrifugal pumps [124]. 

These findings led to the use of the three Symlet wavelets, i.e., symlet4 (sym4), 

symlet8 (sym8), and symlet12 (sym12).       

Several applications of the T2-statistic and the Q-statistic based on the PCA-

model, as presented in Chapter 4 (Table 4.1), motivated further investigation. The 

research extended the use of the T2-statistic and the Q-statistic in developing improved 

fault detection schemes for a centrifugal pump.   

In this research the application of scores of principal components (PCs) to 

identify fault location was extended. The results from several researchers motivated 

further investigation of the technique to identify faults in a centrifugal pump. 
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Examples of the use of scores of PCs for fault identification of sensor measurements 

from laboratory wastewater treatment process may be found in Tao et al., [140], 

Gharavian et al., [162] for fault diagnosis of automobile gearboxes, Widodo and Yang 

[166] for induction motor fault diagnosis using transient current signal, and Sakthivel 

et al., [164] for centrifugal pump fault diagnosis using vibration signals.       

The supervised machine learning, i.e., k-Nearest Neighbors (kNN) based on 

scores of PCs was used in this research for fault classification and identification. kNN 

was investigated since it was considered as a simple algorithm with the high level 

accuracy [167]. In addition, it was chosen because it has been widely used in many 

applications in the fault classification and identification area. Several examples can be 

found in Pandya et al., [168] for bearing fault diagnosis, Lei and Zuo [83] for gear 

crack level identification, and Bouguerne et al., [169] for classification of induction 

machine faults. 

This research aims to contribute additional references related to the use of the 

Symlet wavelet family for centrifugal pump fault diagnosis. This study can be used to 

add information to the selection of the most suitable Symlet type for feature extraction 

in fault diagnosis.   

Furthermore, this study aims to investigate the application of statistical 

parameters calculated from the wavelet decomposition of the raw vibration signal and 

used as an input vector for building the PCA model. The use of combinations of 

statistical parameters, wavelet transforms and PCA in the context of fault diagnosis 

have been proposed in many literatures [127, 155] and this research aims to explore 

different schemes of the combination of statistical parameters, wavelet transforms, and 

PCA.       

The proposed method also intends to expand the use of T2-statistic and the Q-

statistic for fault detection and scores of PCs combined with kNN for fault 

classification and diagnosis of the centrifugal pump.  

The feature extraction method (combination of statistical parameters and 

wavelets), PCA model, fault detection scheme (T2-statistic and the Q-statistic), and 

fault classifier (scores of PCs combined with kNN) form an integrated framework for 
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fault diagnosis of the centrifugal pump. The details of the proposed method are 

discussed in the following section. 

5.1 The Proposed Integrated Framework for the Centrifugal Pump 

Fault Diagnosis  

The proposed method commences with the feature extraction stage which 

utilises the Symlet wavelet to pre-process the raw time-domain vibration signals 

collected from the centrifugal pump test rig. The multi-resolution analysis (MRA) of 

the wavelet transform was used to decompose the time-domain vibration signals at up 

to 5 levels. 

The MRA of the discrete wavelet transform (DWT) decomposes the time-

domain vibration signals which results in Approximation parts (A) and Detailed parts 

(D). In this research, the Symlet wavelet family was used. There were three types of 

Symlet (sym-n) wavelet investigated, namely Symlet4 (sym4), Symlet8 (sym8), and 

Symlet12 (sym12). Figure 5.1 to Figure 5.4 depicts a schematic diagram of the 

algorithm of the proposed method. 

The first stage of the proposed method is the feature extraction framework as 

shown in Figure 5.1. The algorithm was initiated by collecting the raw time-domain 

vibration signal through the data acquisition process from the centrifugal pump test 

rig. The collected raw time-domain vibration signal was then decomposed using 

Symlet (sym-n) wavelet transform. The decomposition process was up to 5 levels 

using MRA. The decomposition process yielded two parts, namely Approximation 

coefficients (cA) and Detailed coefficients (cD). In this research, only the cA parts 

were selected for the next process [170]. Hence, the features were extracted only from 

the cA parts of each sym-n transform.         

The six features i.e., Energy level, Standard Deviation, RMS, Kurtosis, 

Variance, and Crest Factor were then extracted from the cA parts of each sym-n 

wavelet transform (up to 5 levels). Therefore, there were 30 features (6 features x 5 

levels) obtained from the wavelet transform process for each of the sym4, sym8, and 

sym12 wavelets.   
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The resulting 30 features for each sym-n transform were stored in matrix form. 

Hence, there were three feature matrices i.e., one each for sym4, sym8, and sym12. 

All of the feature matrices were normalized using a mean �̅�, and a standard deviation 

𝜎. The scale parameter vector �̅� and 𝜎 were obtained, and were then stored into files 

for later use in the next stage.    

Raw 

vibration signal

5 level 

sym4, sym8, sym12 

wavelet decomposition

Six feature values for 

each level (cA level1-5), 

sym4, sym8, sym12 
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Figure 5.1 Stage 1 of the proposed integrated framework (feature extraction) 

Figure 5.2 shows the second stage of the proposed method; the PCA modelling 

stage. In this stage, the feature matrices from normal (without fault) time-domain 

vibration signals obtained from the first stage were used to calculate the loading 𝐏 and 

eigenvalue 𝚲 matrices. There were three 𝐏 and three 𝚲 matrices obtained for each of 

the sym4, sym8, and sym12 wavelets decompositions. The next step was to determine 

the number of PCs to be retained in the PCA model. The cumulative percent variance 

(CPV) was used to select the number of the PCs based on the first r largest eigenvalues. 

The PCA model was then built based on the first r of the PCs. Three PCA models were 
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built, each for sym4, sym8, and sym12 wavelets. All of the PCA models (i.e., reduced 

loading 𝐏 and 𝚲 matrices) were then stored into files for later use in subsequent stages. 

The last step of the stage was the calculation of upper limits i.e., thresholds for fault 

detection. This was carried out for 𝑇𝛼
2  and 𝑆𝑃𝐸𝛼  which was calculated by means of 

an F-distribution and approximate distributions respectively as mentioned in Chapter 

4. 
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Figure 5.2 Stage 2 of the proposed integrated framework (PCA modelling) 

The third stage was the fault detection stage as depicted in Figure 5.3. The 

process was commenced by calculating the 𝑇2and 𝑄-statistics of the feature matrix 

generated from the faulty time-domain vibration signals (testing data). The testing data 

was pre-processed in stage 1 prior to being processed in this stage. The calculation of 

the 𝑇2 and 𝑄-statistics was based on equation 4.23 and 4.26 respectively using the 

reduced loading 𝐏 and 𝚲 matrices obtained from stage 2. This step was carried out for 

each of the feature matrices calculated using sym4, sym8, and sym12 wavelets. The 

𝑇2 and 𝑄-statistics obtained were then compared with the 𝑇𝛼
2  and 𝑆𝑃𝐸𝛼  calculated 

from stage 2. If either 𝑇2 > 𝑇𝛼
2 or  𝑄 > 𝑆𝑃𝐸𝛼 then a fault was detected.      

The last stage of the proposed method was fault identification and classification 

as shown in Figure 5.4. This stage depicts the process to classify and identify the fault 

based on the scores on the PCs. In this stage, prior to calculating the scores on PCs, 

the testing data (might include normal and faulty vibration signals) was pre-processed 

in stage 1. The process was then continued by projecting the testing data into the PCA 
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model. This process produced scores of PCs associated with the normal and faulty 

vibration signals.  

For the purpose of fault classification, the scores were then plotted either in two 

dimensions (PC1 versus PC2) or three dimensions (PC1 versus PC2 versus PC3). The 

results were used to analyse the accuracy of scores of PCs to separate fault types. The 

fault identification was performed based on the use of the k-Nearest Neighbors (kNN) 

scheme. Several combinations for k and number of PCs included in the scheme were 

analysed for each testing data. The results were used to determine the optimal number 

of k and PCs included in the scheme to identify the fault. The details of the kNN 

scheme were discussed in section 5.8.                  

Calculate the  T
2
 and 

SPE statistics 

T
2 
> T

2
α   SPE > SPE α

B

A

C

Fault in PC space 

detected

Fault in residual 

space detected

 

Figure 5.3 Stage 3, fault detection process 
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Figure 5.4 Stage 4, fault identification and classification process 

5.2 kNN Classifier 

A kNN is a simple non-parametric method commonly implemented for 

classification processes. Even though it has a simple algorithm, it performs very well 

and has a high level of accuracy [116]. The kNN classifier requires a metric distance 

d and a positive integer of k neighbors for the classification process. The principle of 

the kNN method is to place new observations in the class that belongs to the majority 

of its k nearest neighbors. For the large number of training data set, the kNN method 

proves to be very effective which provides a low misclassification error [168]. The 

classification accuracy mainly depends on k and the type of metric distance d used to 

calculate nearest distance.    

In the kNN method, the classification is based on the number of training samples 

categorized nearby the new observations. For instance, the new observation 

represented by the red circle has to be classified either to the class of green triangles 

or to the class of blue squares.  

Figure 5.5 shows that if the number of neighbors is 3, k = 3, which is represented 

by solid line perimeter then the new observation is classified into class of green 

triangles, since there are more number of green triangles compared to the number of 

blue squares inside the solid line perimeter. If k = 5 then inside the dashed line 

perimeter there are 3 blue squares and 2 green triangles, therefore the new observation 

is classified into the class of blue squares.   
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Figure 5.5 Example of kNN classification 

The kNN method depends on the value of k and in general, the algorithm of kNN 

may be described in the following steps [171], 

 Choose the k value, 

 Calculate the metric distance. There are many distance calculation 

methods that may be used for this step. The popular distance 

measurements include Euclidean and Mahalanobis distance, 

 Sort the distance calculation results in ascending order,  

 Identify the k class values, 

 Find the dominant class. In this step, a new observation is classified 

into the class having the most number of members among its k nearest 

neighbors. 

The accuracy of the kNN method must always be close to 100%  if the test set 

is a subset of the training samples since the position of training samples and their class 

are constant during the classification process [116].  

The Euclidean metric distance is the most commonly used and easy to be 

implemented method for computing the distance in a multidimensional input space. 

The Euclidean distance between any two points in a space is defined as the length of 
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a line between those points. In the Cartesian coordinate system, the Euclidean distance 

between point a and b is mathematically formulated by,  

𝑑𝐸 = √∑(𝑎𝑖 − 𝑏𝑖)2
𝑛

𝑖=1

 5.1 

 

where 𝑎𝑖  and 𝑏𝑖 are two points in Euclidean n-space. 

 

5.3 The Wavelet Multi-Resolution Analysis 

In this research, the original time-domain vibration signal was decomposed by 

filtering it into a low and a high frequency part using discrete wavelet transform multi-

resolution analysis (MRA). This technique has been studied previously by several 

researchers such as Latuny [59], Trendafilova [127], Li et al., [155], and Widodo 

[166]. However, in the proposed method it was modified by using the approximate 

parts (A) i.e, low frequency parts for up to five decomposition levels. The reason for 

using up to five decomposition levels was to ensure it provided a sufficient input for 

the purpose of PCA model building and to ensure that no essential information was 

lost due to inadequate data.  

The basic idea of decomposing a signal into low and high frequency parts using 

wavelet MRA is represented in Figure 5.6. The diagram shows five levels of the 

decomposition process resulting in five approximate coefficient (cA) parts and five 

detailed coefficient (cD) parts. In this research, the cA parts were used to generate six 

features which were then used as inputs to build the PCA model.   
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Figure 5.6 Wavelet MRA decomposition up to 5 levels 

Figure 5.7 depicts the separation of the frequency band for up to five levels of 

the original signal using wavelet MRA.  
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Figure 5.7 Separation of frequency band up to 5 levels 
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The calculation of the discrete wavelet transform was conducted using 

MATLAB’s Wavelet Toolbox. The built-in MATLAB’s function dwt was used to 

perform the single-level one-dimensional wavelet decomposition where the multi-

level decompositions were carried out through the iteration process within the scripts. 

5.4 Proposed Feature Extraction 

There were six features used to extract essential information from each of the 

cA parts obtained from the decomposition process as illustrated in Figure 5.8. The six 

features represented the characteristics of the vibration signal and were used to build 

the PCA model. Each of the six features was calculated from each of the cA parts, 

therefore there were 30 features available to be used as inputs to the PCA modelling 

process. The annotation for the features were carried out as follow, E1-E5 for energy 

level calculated from cA1-cA5 parts respectively, and similarly S1-S5 (for standard 

deviation), R1-R5 (for RMS), K1-K5 (for kurtosis), V1-V5 (for variance), and C1-C5 

(for crest factor). The features were then sorted as features of numbers 1 through 30 

(feat1-feat30). 

cA1

0-12048 Hz

cA2

0-6042 Hz

cA3

0-3012 Hz

cA4

0-1506 Hz

cA5

0-753 Hz

Energy level
Standard 

deviation
RMS Kurtosis Variance Crest factor

 

Figure 5.8 The six features obtained from each cA parts 

5.4.1 Energy Level (1st feature) 

The energy levels were calculated for each of the cA parts of the wavelet 

decomposition results using the formula suggested by Latuny and Entwistle [170], 
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𝐸(𝐴𝑖) = (
1

2
)
𝑝−1

∑(𝐴𝑖)
2, 5.2 

 

where p represented the next power of two of data length, i was the decomposition 

level (i = 1,2, …, n), and 𝐴𝑖 was the approximate coefficient (cA) result of the wavelet 

transform at the ith level. 

5.4.2 Standard Deviation (2nd feature) 

Standard deviation was calculated for each of the cA parts using the MATLAB’s 

built-in function and the formula was defined as,    

𝜎 = √
∑ (𝑥𝑖 − �̅�)2
𝑁
𝑖=1

𝑁 − 1
  , 

5.3 

 

where 



xi was an element of signal 𝑥, 



x  was the mean of 𝑥 and N was the number of 

data points. 

5.4.3 RMS (3rd feature) 

The root mean square (RMS) of each cA level was calculated using Equation 

5.4 as follow,  

𝑅𝑀𝑆 = √
1

𝑁
∑ (𝑥𝑖 − �̅�)2

𝑁

𝑖=1
 , 

5.4 

 

where N was the number of data points, 



x  was the mean value of data set, and 



xi was 

the element of the data set. 

5.4.4 Kurtosis (4th feature) 

Kurtosis value of each of the cA parts was calculated using the built-in function 

in MATLAB and mathematically was given as, 
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𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑ (𝑥𝑖 − �̅�)

4𝑁
𝑖=1

(𝑁 − 1)𝜎4
 , 5.5 

 

where N was the number of data points, 



xi was an element of data set, 



x  was the mean 

value of the data set, and 𝜎 was the standard deviation. 

5.4.5 Variance (5th feature) 

Variance was defined as in Equation 5.6 and calculated for each of the cA level 

using the MATLAB’s built-in function, 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑(𝑥𝑖 − �̅�)

2

𝑁 − 1
 , 5.6 

 

where 



xi was the ith element of the data set, 



x  was the mean of data set, and N was 

the number of points in the data set.   

5.4.6 Crest Factor (6th feature) 

Crest factor of each cA parts was calculated using the following formula, 

𝐶𝑟𝑒𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑥𝑚𝑎𝑥
𝑥𝑟𝑚𝑠

 , 5.7 

 

where 𝑥𝑚𝑎𝑥 and 𝑥𝑟𝑚𝑠 were the absolute maximum value and RMS value of the data 

set respectively. 

5.5 Example of Numerical Calculation of the Features  

The example of decomposition results for the normalized vibration signal of a 

normal condition (no fault) and an impeller fault up to level 5 using a symlet8 (sym8) 

are depicted in Figure 5.9 and Figure 5.10. The first 1377 samples were plotted 

corresponding to 1x shaft rotation. In this example, the data set used was 

#ch123_0412_67 and #ch123_0412_18 for the normal condition and impeller fault 
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respectively. The shaft rotation speed was 35 Hz (2100 rpm) and the vibration signal 

was taken from the accelerometer mounted on pump’s inlet with 48192 Hz sampling 

rate.  

 

Figure 5.9 Wavelet decomposition results for normal condition, s (original signal), a1 

– a5 (approximate parts level 1- 5) 
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Figure 5.10 Wavelet decomposition results for impeller fault, s (original signal), a1 – 

a5 (approximate parts level 1- 5) 

The visualisation of the numerical values of features calculated from the 

decomposition results of level 1-5 for the normal condition and impeller fault is shown 

in Figure 5.11 and Figure 5.12 respectively. It is obvious that all features give different 

values between the normal and the impeller fault. It is important to note that the results 

coming out from Standard Deviation (StdDev) and RMS looks very similar. It seems 

redundant to include both of them in the model. However, even though the redundancy 

will be eliminated in the PCA modelling, they are both deliberately kept in the analysis 

at this stage. 

In this research, the normal condition (no faults) of a centrifugal pump and seven 

types of faults were investigated. There were four types of single faults i.e., cavitation 

(fault1), impeller fault (fault2), bearing fault (fault3) and blockage condition (fault4) 

and three types of multi-faults namely, impeller fault with cavitation (fault5), impeller 

fault with blockage condition (fault6), and bearing fault with cavitation (fault7).     

-1
0
1

s

impeller fault

-1
0
1a

1

-1
0
1a

2

-1
0
1a

3

-1
0
1a

4

200 400 600 800 1000 1200

-1

0

1a
5

sample number



Chapter 5−Principal Component Analysis and Wavelet-Based Framework for Fault 

Diagnosis 

111 

Figure 5.13 and Figure 5.14 shows the numerical value of the six features 

calculated from the wavelet decomposition result of level 1 to 5 for the normal 

condition and for all types of fault scenario. Since there were 6 features for each 

decomposition level (level 1 to 5), there are 30 features in total. Feature number 1 to 

30 (feat1-feat30) corresponds to E1-E5, S1-S5, R1-R5, K1-K5, V1-V5, and C1-C5. 

 

Figure 5.11 Plot of example feature value for normal condition and impeller fault 

(part 1)

Figure 5.12 Plot of example feature value for normal condition and impeller fault 

(part 2) 
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The numerical value of the features for normal and faulty conditions as depicted 

in Figure 5.13 and Figure 5.14 shows the characteristics of the features for each case. 

It can be inferred that there is no specific pattern from the feature’s characteristics 

which can be used to identify any fault.  For example, the pattern of feature’s value 

for normal conditions, blockage and cavitation are quite similar. Hence it is difficult 

to decide whether the blockage or cavitation is present or not by just analyzing the 

features.  

 

Figure 5.13 Numerical values of feature number 1 to 30 for normal condition, single-

fault, and multi-faults (part 1) 
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Figure 5.14 Numerical values of feature number 1 to 30 for normal condition, single-

fault, and multi-faults (part 2) 

The visualisation of the feature values of the normal and faulty condition also 

indicates that the six features generated from cA parts of level 1 to 5 are not sufficient 

to distinguish the unique characteristic of each case.    

In this research, the PCA model was proposed to extract the most prominent 

features obtained from the cA parts of level 1 to 5. The scores matrix which was the 

projection of original data into principal components subspace was used to classify 

types of faults while the T2 and Q-statistic were calculated to detect the faults. The k-

Nearest Neighbors (kNN) scheme was constructed based on the scores on the principal 

components subspace and then used to learn and obtain conclusions regarding the fault 

identification.    

The proposed integrated framework for fault diagnosis of centrifugal pumps is 

discussed in the following section. There are two main parts of the algorithm. The first 

part (Part A) is depicted in Figure 5.15, and the second part (part B) is depicted in 

Figure 5.17.  
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5.6 Integrated Framework for Fault Diagnosis Algorithm 

In general, the proposed method has three major steps namely the detection step, 

classification step, and identification step. In the detection step, the method employs 

T2 and Q-statistic to detect whether fault condition occurs or not; the classification step 

provides a separation among normal and fault conditions by plotting PCs; and the 

identification step identifies the type of faults by applying kNN rule. The algorithm of 

proposed method consists of two parts, part A and part B which are shown respectively 

in Figure 5.15 and Figure 5.17. In this section, part A of the algorithm will be discussed 

in detail.  

The process was commenced by inputting the type of Symlet family (sym-n) 

used to decompose the vibration signal. There were three types of Symlet investigated 

in this study (sym4, sym8, and sym12). The number of decomposition levels was then 

chosen as 5 as required. The process continued with choosing the testing data code 

which corresponded to the file name of the stored raw vibration signal collected from 

the test rig. Error checking was carried out in this step to ensure the data code entered 

corresponded to the existing data file. This sequence is depicted in Figure 5.15. 

The step proceeded with checking if the PCA model exists in the workspace. In 

the case the PCA model did not exist in the workspace, the routine then required the 

PCA model to be built prior to continuing.  
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Figure 5.15 Integrated framework algorithm (Part A) 
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5.6.1 Pre-Processing Training Data for PCA Modelling 

The cycle of this step is shown in Figure 5.15 in the pre-processing training data 

and PCA modelling module. The process of PCA model building started by selecting 

the training data code series corresponding to the files from the normal condition (no 

fault) raw vibration signal. The normal condition was chosen to build the PCA model 

since it would become a baseline for further fault diagnosis. A routine check was also 

performed in this step to validate the inputted data code. An error message would 

appear in case the data code entered did not match with the existing stored data file. 

The process continued by loading each single mat data file for each of the 70 mat data 

files. The data set used to build the PCA model was from series 1 to 70.      

The script program loaded each single mat data file and processed the raw 

vibration signals into MATLAB’s workspace environment. This was carried out for 

all 70 mat data files. In this loop cycle, each of the loaded data files series was 

transformed using the sym-n wavelet transform with up to 5 levels of decomposition. 

The MATLAB’s built-in function, ‘dwt’ was used to perform this transformation. 

Since the dwt function was a single level decomposition, the decomposition process 

was carried out in five cycles (cycle 1 to 5). The result produced the cA and cD parts 

vectors from level 1 to 5 in the workspace for all of the vibration signals from series 1 

to 70. However, in this research, only the cA parts were considered for further 

processing. 

The algorithm proceeded with calculating the six features from each cA part of 

the wavelet transform. For each single mat data file, the calculation of the six features 

produced a feature vector of 1 row × 30 columns. There were 30 features obtained 

from this step (6 features × 5 levels), therefore 30 columns were needed to store the 

feature values. These 30 features were sorted in the sequence of decomposition level 

and feature number. That is, feature number 1 (feat1) to 5 (feat5) represented energy 

magnitude calculated from cA level 1 to 5,  feat 6 to feat10 represented standard 

deviation magnitude calculated from cA level 1 to 5, feat11 to feat15 represented RMS 

magnitude calculated from cA level 1 to 5, and this pattern continued for the rest of 

the features.  
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After 70 cycles of processing the single mat data files, extracting and calculating 

the six features,  the algorithm  produced a feature matrix of 70 rows × 30 columns, 

where 70 rows represented the number of data file series (1 to 70) and 30 columns 

represented the number of features obtained from cA parts 1 to 5. 

The process continued with normalizing the feature matrix using the mean and 

standard deviation. The normalization process produced a feature matrix which had a 

mean of zero and variance of 1 for each feature (column). This step also created the 

mean feature vector of 1 row × 30 columns which contained the mean value for each 

column, and standard deviation feature vector of 1 row × 30 which contained the 

standard deviation value for each column. The normalized feature matrix, feature 

mean vector, and standard deviation vector were then saved as a mat file into the hard 

drive for later use.  

The PCA model building process shown in Figure 5.15 with the block symbol  

 is explained in the following section.  

5.6.2 PCA Modelling Process 

The routine was commenced by loading the normalized feature matrix mat file 

into MATLAB’s workspace. For the purpose of PCA modelling, the normal condition 

(no fault) normalized feature matrix was used. The built-in MATLAB function for 

Singular Value Decomposition (SVD),  ‘princomp’, was then applied to calculate the 

loading matrix P and eigenvalue vectors. This step produced a loading matrix P of 30 

rows × 30 columns and eigenvalues vector of 1 row × 30 columns.  The eigenvalues 

were sorted in descending order and transformed into a diagonal matrix of 30 × 30 

with eigenvalues on the main diagonal. This matrix represents the eigenvalue matrix 

𝚲. The process flow of the PCA modelling approach is depicted in Figure 5.16.  

In order to determine the number of principal components (PCs) retained in the 

model, the algorithm calculated an index which would be used as a criteria to select 

the most prominent PCs. The cumulative percent variance (CPV) as an index criteria 

was then calculated and the total variance required in the model was entered to the 

program.      
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The process continued with choosing the number of eigenvalues retained in the 

model based on the total variance required.  For instance, if the total variance required 

in the model was 95%, then the algorithm would select the first r eigenvalues based 

on the CPV index of 0.95. 

The next process was to reduce the original loading matrix P and eigenvalue 

matrix 𝚲. In this step, the algorithm truncated the column of matrix P into r columns. 

This meant that the original size of matrix P (30 rows × 30 columns), was reduced 

into 30 rows × r columns, where r < 30. The retained r columns represented the 

retained principal components (PCs) in the PCA model.  

In a similar way, the algorithm also truncated the eigenvalue matrix 𝚲. In this 

case, the original matrix 𝚲 of size 30 rows × 30 columns was reduced to r rows × r 

columns instead of 30 rows × r columns as previous. The matrix 𝚲 had to be a square 

matrix since it was a diagonal matrix; therefore the reduced matrix had to have the 

same number of rows and columns. The process ended after the reduced matrix �̂� and 

reduced matrix �̂�  (PCA model) were constructed. 
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Figure 5.16 PCA model building process  

5.6.3 Pre-Processing Testing Data 

The routine of this step is depicted in Figure 5.15 in the module of pre-

processing testing data. Prior to pre-processing the testing data, the algorithm loaded 

the PCA model into MATLAB’s workspace. The process then continued by loading 

each single mat data from series 71 to 120, hence there were 50 data files/segments 

used for testing data. 

The procedure of pre-processing the testing data was similar with that of pre-

processing the training data. After loading each single mat data, the algorithm 

decomposed each loaded data set using the sym-n wavelet transform up to 5 levels and 

then selected only the cA part vectors from levels 1 to 5. The process continued with 

extracting the six features from each of the cA parts of the wavelet transforms. This 

produced a feature vector of 1 row × 30 columns for each single mat data file, 

therefore a feature matrix of 50 rows × 30 columns was needed to store the results for 
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the 50 test data files. The resulting feature matrix from the testing data was then saved 

into the hard drive for further processing.  

The next step of the algorithm was part B which was the fault diagnosis 

framework. The detail explanation of part B is discussed in the following section. 

5.7 Fault Diagnosis Algorithm 

Part B of integrated framework is the fault diagnosis algorithm. The flowchart 

of the algorithm is shown in Figure 5.17. 

The fault diagnosis process continued from part A. The process was initiated by 

loading the feature mean vector and feature standard deviation vector obtained from 

the training data set.  These two vectors were used to normalize the feature matrix of 

the testing data.    

The process continued with checking if the reduced loading matrix �̂� and 

reduced eigenvalue matrix �̂� existed in the MATLAB’s workspace. In case the 

matrices were not found in the workspace, the algorithm resumed by returning to part 

A. 
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Figure 5.17  Integrated framework algorithm (Part B) 

In the case where the reduced loading matrix �̂� and reduced eigenvector matrix 

�̂� exist in the workspace, the process continued with projecting the feature matrix of 

testing data 𝑿 (50 rows × 30 columns) into the reduced matrix �̂� (30 rows × r 

columns). The matrix multiplication of  𝑿 and �̂� would result in the scores matrix �̂� 



Chapter 5−Principal Component Analysis and Wavelet-Based Framework for Fault 

Diagnosis 

122 

of the testing data with dimension of 50 rows × r columns. At this point, the original 

data set (feature matrix of testing data) had been transformed to a new set of variables 

i.e., r principal components (PCs). The resulting scores matrix was then saved into a 

mat file for later use. 

The next process was to calculate the T2 and Q-statistic (or SPE) of the feature 

matrix from the testing data. This was carried out for each row (i.e., observation) of 

the matrix. The calculation of T2 and SPE used Equation 4.23 and Equation 4.26 

respectively. The results were stored in a vector of 1 row × 50 columns for each of the 

T2 and Q-statistic calculations. The 50 columns contain values for T2 or Q-statistic for 

the 50 observations. The vectors were then saved into the hard drive for the next 

processes.     

Prior to plotting values of the T2, Q-statistic and scores of the testing data, the 

algorithm proceeded with checking whether the values of T2, Q-statistic and scores 

matrix for the training data (normal condition) existed in the workspace. The process 

resumed by returning to part A if those variables were not found in the workspace. If 

the variables were found in the workspace, the algorithm calculated the values of 𝑇𝛼
2 

and 𝑄𝛼 (or 𝑆𝑃𝐸𝛼). 

For the purpose of fault detection, the plots of T2 and Q-statistic values for 

normal condition (no fault) and testing data were drawn up and analysed. A plot of T2 

consisted of T2 values for the normal condition, T2 values of the testing data, and a 

threshold value 𝑇𝛼
2 while a plot of the Q-statistic consisted of Q-statistic values for the 

normal condition, Q-statistic values of the testing data, and a threshold value 𝑄𝛼. An 

example plot of T2 and Q-statistic is shown in Figure 5.18 part (a) and (b) respectively. 

The first 50 samples were T2 or Q-statistic values obtained from the feature matrix of 

normal condition (no fault), while the rest of the samples were the values of T2 or Q-

statistic calculated from feature matrix of faulty condition. 
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Figure 5.18 Example of T2 and Q-statistic plot 

The process continued with the fault classification using the scores matrix of the 

normal condition and faulty conditions. From the previous step, the scores matrix had 

dimensions of 50 rows × r columns. This means that there were r principal 

components (PCs) in the PCA model which were used to transform the original data 

set.  

The example of the plot of scores on PC1 and PC2 was depicted in Figure 5.19 

(a) and the plot of scores on PC1, PC2, and PC3 was shown in Figure 5.19 (b). These 

plots consisted of score values of the normal condition (no fault), fault1, fault2, and 

fault3. It was shown clearly that each type of fault was well separated in Figure 5.19 

(b) although there was little overlap between normal condition (no fault) and fault2 in 

Figure 5.19 (a). The overlap could be reduced by adding more PCs as indicated in 

Figure 5.19 (b). 
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Figure 5.19 Example plot of scores (a) on PC1 and PC2, (b) on PC1, PC2, and PC3 

After drawing up the plots for the purpose of fault detection and fault 

classification, the process continued with the construction of the classifier. In this 

study, the k-Nearest Neighbors (kNN) was used for fault classification and the detail 

of constructing the kNN rule will be presented in section 5.8.  

A kNN rule held the position of training data and their class (type of fault). The 

fault classification process began by calculating the distance between a testing data 

point and the training data set. The type of distance used was defined in the kNN rule. 

The result of the calculation of the distance was then sorted in ascending order. Based 

on the defined number of k in the kNN rule, the algorithm chose k samples with the 

least distances. The class with more samples inbound was then assigned to the class 

of testing data points.    

At this stage, the algorithm had performed fault detection, classification, and 

identification of the testing data for a particular type of fault. The whole process was 

then resumed by returning to Part A and starting again to evaluate the other types of 
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faults. The whole procedure was also iterated again for the other Symlet types (sym4, 

sym8, and sym12). Once all of the faults and Symlet types had been performed, the 

algorithm ended. 

5.8 Constructing the k-Nearest Neighbors (kNN) Rule 

The process of constructing the kNN rule was shown in Figure 5.20. It began by 

recalling the scores matrix of normal condition (no fault) and scores matrix of all types 

of faulty conditions. For the purpose of constructing the kNN rule, the data series 1-

70 were used as the training data set. All of the scores matrices were combined into 

one matrix where each row represented observations (samples) and each column 

represented scores. Since there was one score matrix of the normal condition and seven 

score matrices of faulty conditions, therefore the combined score matrix would have 

a size of 560 rows × 7 columns. Each row of this matrix was given a class name (i.e., 

type of fault) that corresponded to its type of fault. For instance, if the combined score 

matrix was formed from the original score matrix in the order of the normal condition, 

fault1, fault2,…, fault7, hence the order of the class name was exactly the same. The 

example of the combined matrix and the class name is depicted in Figure 5.21.   

START

Recall scores matrix of 
normal condition and all 
type of faulty conditions

(data series 1-70 for 
training data set)

Combine all scores into one 
matrix where each row 

represents observation and each 
column represents variable 

Create label matrix
(normal, fault1, 
fault2,.., fault7)

Select method 
to calculate 

distance

Select number 
of neighbors

kNN classifier

END

Construct kNN 
model using built-in 

Matlab function: 
fitcknn.m

 

Figure 5.20 k-Nearest Neighbors construction  
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The process continued with selecting a method to calculate the distance between 

the testing data point and the training data set. In this kNN classifier, the Euclidean 

distance metric was used and the number of neighbors was varied from 1 to 10. The 

kNN rule was then constructed by using the MATLAB’s built-in function ‘fitcknn’ 

which required the combined score matrix as input arguments. An example of the kNN 

rule produced by the function ‘fitcknn’ with the parameters:  Euclidean distance, 

number of neighbors = 4, number of classes = 4, and number of observations = 280 is 

depicted in Table 5.1. The resulting kNN rule was then saved into the hard drive for 

later use in the classification process. 

 

Table 5.1 Example of kNN parameters 

Parameters Values 

Predictor Name ‘x1’, ‘x2’, ‘x3’, ‘x4’, ‘x5’, ‘x6’, ‘x7’ 

Response Name ‘Y’ 

Class Name  ‘normal’, ‘fault1’, ‘fault2’, ‘fault3’  

Score Transform ‘none’ 

Number of Observation 280 

Distance ‘euclidean’ 

Number of Neighbors 4 
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   Scores Class (type of fault) 

  X1 X2 X3 … X7 Y 

row 1 - 70 

          normal 

          normal 

          normal 

          … 

row 71 -140 

          fault1 

          fault1 

          fault1 

          … 

row 141 - 210 

          fault2 

          fault2 

          fault2 

          … 

row 211 - 280 

          fault3 

          fault3 

          fault3 

          … 

row 281 - 490 

          … 

          … 

          … 

row 491 - 560 

          fault7 

          fault7 

          fault7 

 

Figure 5.21  Combined score matrix in kNN rule 

5.9 Evaluation of the Proposed Method’s Performance 

There were many parameters used and produced during the fault diagnosis 

processes. For instance, three types of Symlet (sym4, sym8, and sym12) were used to 

decompose the original signals, r principal components were produced from the PCA 

modelling and a number of k from 1 to 10 was evaluated with the kNN rule. All of 

these parameters produced combinations which affected the performance of the 

proposed method. 

The performance of the proposed method, by means of the accuracy of fault 

identification, was evaluated by considering all combination parameters as given in 

the flowchart in Figure 5.22.        
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START

Load all scores matrices (normal 
cond, fault1, fault2,.., fault7) 

obtained using sym4, sym8, sym12

For all n principal 
components (PCs)

n=1,2,..,r
For k=1 to 10

Calculate the 
accuracy of fault 

identification

Check if all possible 
combinations have 

been evaluated

Accuracy=(# of 
correctly classified 

examples/# of 
examples) X 100

Plot accuracy for all 
combinations

END

NO

YES

Load kNN rule

Modify kNN rule

Predict fault 
identification

 

 

Figure 5.22 Evaluation of fault identification performance 

All score matrices obtained using sym4, sym8, sym12 of the normal condition 

(no fault), fault1, fault2,.., fault7 were loaded from the hard drive. The procedure then 

continued to apply the kNN rule used to identify the fault.  

Prior to calculating the accuracy, the kNN rule was modified by swapping its 

parameters; the number of the predictor was evaluated from 1 to r principal 
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components (PCs) and the number of neighbors k was evaluated from 1 to 10. This 

step was iterated until all of the possible pairs were performed. For instance, if there 

were 7 PCs retained in each scores matrix, there would be 70 (7× 10) modified kNN 

rules produced by the end of the iteration process. 

Fault prediction was carried out for all fault scenarios using 70 modified kNN 

rules. At this stage, there were 3 groups of scores matrices (corresponds to sym4, 

sym8, sym12) where each group consisted of 8 scores matrices: normal condition, 

fault1, fault2,…, fault7. The accuracy of fault prediction of 70 modified kNN rules 

was then carried out for these 3 groups of scores matrices using the formula (# of 

correctly classified examples / # number of examples) × 100.    

The process continued with checking if there was a case of fault prediction that 

had not been evaluated. The process resumed by returning to the beginning of the 

iteration process if the checking condition was not satisfied. In the case the checking 

condition was satisfied, the process continued with plotting the value of the accuracy 

of prediction for all cases and subsequently the whole process was ended. 

In the following section, the proposed method was tested using external 

vibration data from ball bearing testing found in the NASA website at URL: 

http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/. The data set was 

taken from the Centre for Intelligent Maintenance Systems (IMS), University of 

Cincinnati [172]. The test aims to investigate the applicability and performance of the 

method in fault diagnosis.  

5.10 Test of the Proposed Method Using External Vibration Data  

The details related to the test rig setup are explained on a readme document 

provided in the zip file on the website. The bearing data set was provided in ASCII 

format which was compressed in ‘rar’ format and then zipped.  

There were three groups of data where each group of data describes a test-to-

failure experiment. The vibration data was recorded as 1-second snapshots and saved 

into individual files with recording interval of 10 minutes. For the purpose of testing 

the proposed method, the 2nd group which contained 984 individual files (data set) was 

used. Each data set had four channels which collected the vibration data of test-to-

http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
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failure experiment of bearing 1, bearing 2, bearing 3, and bearing 4 respectively. At 

the end of the experiment, an outer race fault was detected in bearing 1 (channel 1). 

The first channel (bearing 1) of the 2nd group of data was used to test the 

applicability and performance of the proposed method. All of the 984 data set was 

used in the test and the plot of four data sets which describe four different conditions 

of the bearing during the experiment is depicted in Figure 5.23. Data set #10, #450, 

#650 and # 890 corresponded to vibration data at the beginning, middle, region where 

sign of fault observed and end of the experiment respectively. 

 

Figure 5.23  Time waveform of vibration signal of bearing 1, data set # 10 (at the 

beginning region of test), data set #450 (at the middle region of test), data set #650 

(sign of fault observed) and data set #890 (at the end region of test)  
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The whole data set which consisted of 984 individual files recorded a test-to-

failure experiment. Based on the time waveform as shown in Figure 5.23, the whole 

data set may be divided into two regions, #1-450 for the no fault region and #650-984 

for the fault region. The data set #1-100 was used to build the PCA model. For k-

Nearest Neighbors (kNN) training, the data set #101-200 and data set #651-750 were 

used to train kNN rule for the no fault (normal condition) and outer race fault 

respectively, while data set #201-300 and data set #801-900 respectively was used for 

testing data of the normal condition and outer race fault. 

Symlet 8 (sym 8) wavelet decomposed the vibration data of channel 1 through 

the use of MRA up to 5 levels. The six features were then extracted from each of the 

cA parts of the decomposition results, as proposed in this research. These features 

were used to build the PCA model for fault diagnosis purposes.  

The results of fault detection are shown in Figure 5.24. It is shown that both T2 

and Q-statistic are able to detect the fault occurring at the end region of the experiment. 

The T2 indicated that abnormal behaviour of the system (fault occurred) was observed 

at the data set #600 as indicated by increasing T2 values. The abnormal behaviour was 

also detected by Q-statistics at an earlier region (at the data set #500), since the Q-

statistic is more sensitive to changes of system behaviour than the T2. 
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Figure 5.24 Fault detection (outer race fault) using T2 and Q-statistic of external 

vibration data  

From the results, the proposed method, by means of T2 and Q-statistic are able 

to detect the fault occurring at the end of the test-to failure of bearing 1. The result 

matched with the actual bearing condition at the end of the experiment where the outer 

race fault was detected.    

The next step of the test which used the external data was to test the fault 

classification performance using scores on principal components. The PCA model of 

external data obtained by using the proposed method retained 8 principal components 

(PCs) which had 95% of variance.  The first two scores on PC1 and PC2 of the testing 

data was plotted as depicted in Figure 5.25. It is shown that the clustering effect is 

clearly visible. This means that the first two scores on the principal components was 

able to separate the normal condition and the outer race fault of the vibration signal 

from the external data with very good result. 
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Figure 5.25 Plot of scores on PC1 and PC2 

In this test, the performance of the kNN rule was evaluated by varying the 

number of neighbors k and the number of predictors (features). The number of k was 

varied from 1 to 30 while the number of predictors was varied from 1 to 8. Figure 5.26 

shows the identification accuracy of the kNN while varying the number of k and PC(s). 

The lowest identification accuracy is for the kNN rule using only 1 predictor (1 PC) 

while the highest accuracy is that with 8 PCs. The results are as expected since 8 PCs 

contained more essential information, hence resulting in an improved kNN rule. In the 

case of varying k, the highest identification accuracy of the kNN rule of 8 PCs was 

obtained with 10 neighbors. It is also shown that adding additional neighbors into the 

model reduced identification accuracy. All of the findings as presented and discussed 

above suggest promising results, by means of general applicability and performance 

of the proposed method. 
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Figure 5.26 Performance of k-Nearest Neighbors (kNN) rule 

The next chapter describes setup of the centrifugal pump test rig and the 

vibration data acquisition process.        
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6 The Centrifugal Pump Test Rig and Vibration Data 

Acquisition 

The proposed method for fault detection and diagnosis of the centrifugal pump 

described in the previous chapter was tested using the vibration data taken from a 

Spectra Quest machinery fault simulator which was set up with a centrifugal pump 

configuration. The vibration data was acquired for two operating conditions of the 

centrifugal pump which are the normal condition (without fault) and a faulty condition 

(with fault). There were 7 types of artificial faults introduced in the test rig, namely 

cavitation (fault1), impeller fault (fault2), bearing fault (fault3), blockage condition 

(fault4), impeller fault and cavitation (fault5), impeller fault and blockage condition 

(fault6), and bearing fault and cavitation (fault7). The faulty conditions were carefully 

controlled and sequentially introduced to the test rig. The controlled vibration data was 

used to train the proposed method in order to evaluate the performance and 

effectiveness of fault detection and diagnosis for the centrifugal pump. Figure 6.1 

shows a schematic diagram of the vibration data acquisition process used in the 

proposed method. 
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Centrifugal pump test rig
-Spectra Quest Machinery 

Fault Simulator

Accelerometer 1
-pump inlet

Data acquisition device
(National Instrument NI 9234)

-Signal conditioning
-Amplifier

-Anti aliasing filter

PC with Matlab R14Time-domain vibration data
mat files

- Training data set
- Testing data set

Accelerometer 2
-pump volute

Accelerometer 3
-pump outlet

Accelerometer 4
-bearing housing

Channel 1

Channel 2

Channel 3

Channel 4

 

Figure 6.1 Data acquisition process 

6.1 Centrifugal Pump Test Rig 

The vibration signals for both normal and faulty condition of a centrifugal pump 

were collected from a Spectra Quest machinery fault simulator. Figure 6.2 and Figure 

6.3 shows photographs of the centrifugal pump-tank configuration and the detail of 

the accelerometers’ locations respectively. The suction and discharge sides of the 

centrifugal pump were fitted with manual valves and pressure gauges. The test rig 

consists of a centrifugal pump driven by a variable-speed AC motor through a shaft 

and belt-pulley mechanism. The shaft was connected to the AC motor by a fixed 

coupling and the belt-pulley mechanism which had a ratio of 1:1. The connecting shaft 

was supported by two roller bearings that were known to be in good condition. The 

rotational speed of AC motor was controlled by a speed controller and a tachometer 

was used to monitor its speed. The rotational speed was set to 35 Hz (2100 RPM) for 

the whole of the data acquisition process. 
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Figure 6.2 Centrifugal pump test rig set up 

 

Figure 6.3 Detail of the accelerometer (channel) locations 
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6.2 Artificial Fault Conditions 

There were 7 types of fault conditions considered in this research which 

consisted of 4 single fault conditions and 3 multi-fault conditions. The single fault 

conditions included cavitation, impeller fault, bearing fault, and blockage condition.   

The cavitation condition was artificially introduced to the system by reducing 

the flow rate of the pump’s suction which was done by partially closing the suction 

valve. The cavitation condition was allowed to fully develop before the data was taken. 

The pump cover was made of transparent polycarbonate cover which allowed the 

cavitation to be easily observed. Figure 6.4 shows the transparent pump cover with the 

fully developed cavitation clearly visible.   

 

Figure 6.4 Cavitation condition observed in the centrifugal pump 

The pump’s impeller used in this study was made of brass and consisted of five 

vanes. The impeller was an open impeller type that was overhung. The impeller was 

fitted in the volute house by using a shaft bearing. The artificial fault was introduced 

by cutting the impeller vanes at two locations for each blade as shown in Figure 6.5.  

Cavitation 
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Figure 6.5 Faulty impeller 

The type of bearing used in the centrifugal pump was a shaft bearing as depicted 

in Figure 6.6 which is commonly used in a water pump. The fault was introduced into 

the shaft bearing by applying an impact to the shaft bearing housing. The impact was 

not applied directly to the bearing housing. However it was inserted into a metal sleeve 

and an impact from a rubber head hammer was then applied. This procedure was used 

since the shaft bearing was manufactured as one integrated piece; hence disassembling 

the bearing without damaging the whole shaft bearing was not possible. The type of 

fault obtained was small localized spalling in the outer race as can be seen in Figure 

6.7.  

Artificial 
faults 
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Figure 6.6 Shaft bearing 

 

 

Figure 6.7 Faulty shaft bearing with small localized spalling 
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The blockage condition was artificially introduced by reducing the flow rate in 

pump suction. This was done by partially closing the manual valve in the suction side 

until the pressure gauge in the suction side indicated -4 in.Hg. This set up would make 

a condition just before cavitation where the cavitation bubbles were not observed, yet 

the pressure in the suction side has dropped.     

6.3 Accelerometers and Data Acquisition Device 

There were four accelerometers used in this experiment which were Deltatron 

accelerometers type 4507 B from Bruel & Kjaer. The accelerometers no 1 to 4 (or 

channel 1 to channel 4) were mounted respectively on the pump’s inlet, pump’s volute, 

pump’s outlet and bearing housing as illustrated in Figure 6.3. All the accelerometers 

were glued-mounted on the centrifugal pump and connected to the transducer interface 

connectors which were then connected to the data acquisition device inputs.  

Data acquisition module from National Instruments type NI 9234 was used for 

the vibration data acquisition. The module has been equipped with accelerometers, 

signal conditioning and anti-aliasing filters. The module was fitted to the NI cDAQ-

9178 chassis which was connected to the PC via USB cable. MATLAB R2014a with 

Data Acquisition Toolbox was used to control the data acquisition process. MATLAB 

codes to control the data acquisition process are listed in Appendix A.     

The vibration data of each normal and faulty condition was acquired using a 

simultaneous sampling rate of 48 kHz (48192 Hz) for each channel. The vibration data 

was recorded in multiple segments of 1 second duration and was then saved in the hard 

drive in the form of mat files.   

6.4 Data Structure 

Vibration data acquisition was carried out for each normal and faulty condition 

for 1 second duration with 1 second pause between recordings. The data acquisition 

process resulted in 120 segments for the normal condition (no fault) and for each fault 

condition and was saved using the mat file format. Hence, in total there were 960 files 

saved (120 segments x 8 normal and faulty conditions) during the data acquisition 

process. The data segments were subsequently used to train the proposed fault 
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diagnosis method and to test its performance in detecting and diagnosing faults in the 

centrifugal pump.  

The next chapter presents the results of the proposed wavelet-PCA method for 

fault diagnosis of the centrifugal pump. It present the results of each PCA model 

generated from all channels and the comparison of the accuracy performance of each 

PCA model is also provided. 
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7 Results and Discussion of the Proposed Method  

This chapter presents results of fault diagnosis of a centrifugal pump obtained 

using the proposed method. The use of sym-n wavelet types in the feature extraction 

step was evaluated and compared in order to select the most appropriate Symlet 

wavelet type to be used in a centrifugal pump fault diagnosis. A number of single and 

multi-faults namely, cavitation (fault1), impeller fault (fault2), bearing fault (fault3), 

blockage (fault4), impeller fault with cavitation (fault5), impeller fault with blockage 

(fault6), and bearing fault with cavitation (fault7) along with the normal condition (no 

fault) were introduced to the pump test rig to test the performance of the proposed 

method. 

In this research, there were four groups of PCA models produced by the 

proposed method. These four group models related to the four accelerometers mounted 

at different locations on the centrifugal pump. Therefore PCA model 1, 2, 3, and 4 

were based on the vibration data collected from pump’s inlet (channel 1), pump’s 

volute (channel 2), pump’s outlet (channel 3), and bearing housing (channel 4) of the 

centrifugal pump respectively. 

The identification accuracy of the proposed method was examined for all four 

groups of PCA models. This was aimed to find the best mounting location of the 

accelerometer on a centrifugal pump for fault diagnosis purposes. 

7.1 PCA Model Developed Using Vibration Signals Collected from 

Pump’s Inlet      

The time waveform of the normal condition (no fault) and faulty conditions of 

vibration signals acquired from channel 1 are depicted in Figure 7.1. They show time 

waveform plots of the vibration acceleration of the centrifugal pump under the normal 

condition (normal), pump with cavitation (fault1), pump with impeller fault (fault2), 

pump with bearing fault (fault3), pump with blockage condition (fault4), pump with 

both impeller fault and cavitation (fault5), pump with both impeller fault and blockage 
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condition (fault6), and pump with both bearing fault and cavitation (fault7), 

respectively. The time waveform plots were taken from data set #15 (sequence 15 of 

120 data sets) and the first 1377 samples corresponding to 1x shaft rotation are shown. 

 

Figure 7.1 Time waveform of normal (no fault) and faulty components acquired 

from channel 1 (data set #15) 

To build the PCA model, a set of training data was selected from the normal 

condition vibration signal. In this research, data set #1 to 70 was used as training data 

for building the PCA model while the data set # 71 to 120 was chosen as testing data. 

The training data was processed using the proposed method which produced a PCA 

model consisting of the eigenvalue (matrix 𝚲) and loading matrix 𝑷. The results of 

eigenvalues obtained using sym4 (PCA model 1a), sym8 (PCA model 1b), and sym12 

(PCA model 1c) for all principal components are depicted in Table 7.1.  

From Table 7.1, it is shown that the proposed PCA method has transformed the 

original variables (30 features) into 30 principal components which are uncorrelated. 
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The sym-n wavelet decomposition produces different eigenvalues for each principal 

component with half of them having values close to zero. Consequently, only half of 

the principal components are found to retain almost all the essential information in the 

model. For the purpose of PCA modelling, the total variance to be accounted for in 

the model was set at 95% and the cumulative percent variance (CPV) was calculated 

using Equation 4.22. The result of the CPV is depicted in Figure 7.2 in the Pareto chart 

which shows the eigenvalues for each principal component and their cumulative 

percentage values as well. It is shown that, for the 95% variance level to be accounted 

for in the model, the PCA model obtained using sym4 wavelet decomposition retained 

7 PCs, while that using sym8 and sym12 retained 8 PCs.         

 

Table 7.1 Eigenvalue of PCA model obtained using sym4, sym8, and sym12 

(channel 1) 

Principal 
component 

  Eigenvalue Principal 
component 

  Eigenvalue 

sym4 sym8 sym12 sym4 sym8 sym12 

PC1 17.3 17.0 16.8 PC16 6E-04 1E-03 2E-03 
PC2 3.8 4.7 4.4 PC17 2E-04 3E-04 4E-04 
PC3 3.1 2.9 2.7 PC18 7E-05 2E-04 3E-04 
PC4 1.7 1.6 1.8 PC19 2E-05 2E-05 2E-05 
PC5 1.1 1.0 1.1 PC20 1E-05 7E-06 1E-05 
PC6 0.9 0.7 0.8 PC21 3E-06 5E-06 8E-06 
PC7 0.6 0.5 0.7 PC22 2E-06 2E-06 2E-06 
PC8 0.5 0.5 0.5 PC23 4E-08 3E-07 7E-07 
PC9 0.3 0.4 0.4 PC24 2E-08 9E-08 2E-07 

PC10 0.2 0.2 0.2 PC25 1E-09 4E-09 4E-09 
PC11 0.2 0.1 0.2 PC26 4E-10 9E-10 2E-09 
PC12 0.1 0.1 0.1 PC27 1E-10 2E-10 3E-10 
PC13 0.1 0.1 0.1 PC28 7E-11 8E-11 2E-10 
PC14 0.1 0.1 0.1 PC29 9E-12 2E-11 2E-11 
PC15 0.0 4E-02 5E-02 PC30 2E-12 2E-12 7E-12 

 

The number of retained PCs in the model resulted in the reduction of matrix 𝚲 

and matrix 𝑷. Therefore in channel 1, three PCA models were obtained from sym4, 

sym8, and sym12 wavelet decomposition, each of which contained the reduced matrix 

�̂� and reduced matrix �̂�. The sym4 wavelet produced the reduced matrix �̂� and 

reduced matrix �̂� with dimension 7×7 and 30×7 respectively while the sym8 and 

sym12 wavelet produced matrices with dimension 8×8 and 30×8 for reduced matrix 
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�̂� and reduced matrix �̂� respectively. The schematic diagram of the resulting PCA 

models obtained from channel 1 are depicted in Figure 7.3. 

 

Figure 7.2 Number of principal components retained in the model based on 95% of 

the variance. (a) 7 PCs retained in the model by using sym4, (b) 8 PCs retained using 

sym8 and sym12 

The relationship between the original features and principal components can be 

examined by looking at the correlation matrix which is sometimes referred to as 

principal component loadings. The visualization of the correlation matrix between the 

8 retained principal components and the features obtained using sym8 wavelet 

decomposition is depicted in Figure 7.4. It is shown that the first principal component 

PC1 is positively correlated with all of the original features and has high correlation 

value with most of the original features. This means that PC1 has the strongest 

correlation with the original feature, hence it can sufficiently characterize the 

centrifugal pump condition; this is consistent with the idea of cumulative percent 

variance (CPV) in Figure 7.2 where PC1 has the highest eigenvalue i.e., contains the 

most essential information within the PCA model. The other principal components, 

PC2 and PC3 are positively related with 12 original features and negatively related 

with 18 original features. Both of the principal components also have relatively high 

correlation value with the original features compared to the rest of the principal 
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components. Therefore, the first three principal components (PC1, PC2, and PC3) 

were used in the fault classification process through the scores plot.   

Visualization of correlation matrices between principal components and the 

original features obtained using sym4, sym8 and sym12 wavelet decomposition for 

channel 1, 2, 3, and 4 are presented in Appendix B. 

CHANNEL 1

PCA model 1a PCA model 1b PCA model 1c

7 retained PCs
Matrix Λˆ , dim 7x7
Matrix Pˆ , dim 30x7 

8 retained PCs
Matrix Λˆ , dim 8x8
Matrix Pˆ , dim 30x8 

sym4 sym8 sym12

 

Figure 7.3 Three PCA models obtained from channel 1 
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Figure 7.4 Correlation between principal components (PCs) and the features of 

channel 1 (using sym8 decomposition) 

7.2 PCA Model Developed Using Vibration Signals Collected from 

Pump’s Volute  

The vibration characteristic collected from channel 2 for all of pump conditions 

are shown in Figure 7.5. For the consistency with the channel 1 data, data set #15 with 

1377 samples is again used here to visualize the time waveform. 
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Figure 7.5 Time waveform of normal (no fault) and faulty components acquired 

from channel 2 (data set #15) 

The eigenvalues obtained from channel 2 is depicted in Table 7.2. It shows a 

similar pattern with those obtained from channel 1 where half of the PCs are having 

the eigenvalue amplitude close to zero. With the same amount of variance accounted 

for as in the previous model (channel 1), that is 95%, the PCA model generated from 

channel 2 retained 7 principal components for all types of Symlet wavelet 

decomposition. The Pareto chart showed 95% cumulative percent variance as depicted 

in Figure 7.6. 

For this vibration channel, based on the 95% of variance to be accounted for in 

the model, the proposed method produces three PCA models which have identical 

dimensions for reduced matrix �̂� and reduced matrix �̂� as shown in Figure 7.7.  

The visualization of the correlation matrix between the PCs and the features 

obtained using sym8 wavelet decomposition is represented in Figure 7.8 which shows 

a strong positive correlation between the PC1 and the features. It also shows that the 
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first three PCs have the highest correlation values which mean they characterize the 

most important information of the original features for channel 2. 

 

Table 7.2 Eigenvalue of PCA model obtained using sym4, sym8, and sym12 

(channel 2) 

Principal 
component 

  Eigenvalue   Principal 
component 

  Eigenvalue   

sym4 sym8 sym12 sym4 sym8 sym12 

PC1 18.6 18.1 17.7 PC16 9E-04 9E-04 1E-03 
PC2 3.8 3.7 3.5 PC17 2E-04 2E-04 2E-04 
PC3 2.0 2.6 3.2 PC18 3E-05 5E-05 1E-04 
PC4 2.0 2.0 1.9 PC19 2E-05 3E-05 4E-05 
PC5 0.9 1.1 1.1 PC20 8E-06 1E-05 1E-05 
PC6 0.9 0.8 0.8 PC21 1E-06 2E-06 4E-06 
PC7 0.6 0.6 0.5 PC22 1E-06 8E-07 1E-06 
PC8 0.5 0.4 0.5 PC23 2E-08 2E-07 2E-07 
PC9 0.3 0.2 0.3 PC24 4E-09 2E-08 1E-07 

PC10 0.2 0.2 0.2 PC25 2E-10 5E-10 2E-09 
PC11 0.1 0.1 0.2 PC26 9E-11 4E-10 8E-10 
PC12 0.1 0.1 0.1 PC27 2E-11 3E-11 8E-11 
PC13 5E-02 4E-02 4E-02 PC28 1E-11 2E-11 5E-11 
PC14 4E-02 4E-02 3E-02 PC29 5E-12 8E-12 1E-11 
PC15 1E-02 1E-02 1E-02 PC30 5E-13 7E-13 1E-12 

 

 

Figure 7.6 Seven PCs retained in the model by using sym4, sym8, and sym12 (based 

on 95% of the variance)  
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CHANNEL 2

PCA model 2a PCA model 2b PCA model 2c

7 retained PCs
Matrix Λˆ , dim 7x7
Matrix Pˆ , dim 30x7 

sym4 sym8 sym12

 

Figure 7.7 PCA models of channel 2 

 

Figure 7.8 Correlation between principal components (PCs) and the features of 

channel 2 (using sym8 decomposition) 
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7.3 PCA Model Developed Using Vibration Signals Collected from 

Pump’s Outlet 

The time-domain of the vibration signal for normal and faulty conditions taken 

from channel 3 is shown in Figure 7.9. The time waveform is again plotted using data 

set #15 with 1377 samples to be consistent to those shown previously.  

 

Figure 7.9 Time waveform of normal (no fault) and faulty components acquired 

from channel 3 (data set #15) 

Table 7.3 depicts the eigenvalues of each principal component obtained using 

the sym4, sym8, and sym12 wavelet decomposition. Similar patterns are observed 

compared with the eigenvalues obtained from channel 1 and 2 where the last half of 

the PCs has eigenvalues close to zero.  

For channel 3, all types of symlet wavelets produced 7 retained principal 

components in the model as shown in the Pareto chart in Figure 7.10. Therefore, the 

proposed method results in the three PCA models as described in Figure 7.11. The 
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correlation matrix between the PCs and the features calculated using sym8 

decomposition is shown in Figure 7.12. A high correlation value is exhibited for the 

first three principal components which represent the most essential information of the 

original features.   

 

Table 7.3 Eigenvalue of PCA model obtained using sym4, sym8, and sym12 

(channel 3) 

Principal 
component 

  Eigenvalue   Principal 
component 

  Eigenvalue   

sym4 sym8 sym12 sym4 sym8 sym12 

PC1 16.2 15.9 15.5 PC16 9E-04 1E-03 2E-03 

PC2 4.3 5.0 6.0 PC17 3E-04 3E-04 3E-04 

PC3 3.4 3.8 3.8 PC18 5E-05 2E-04 2E-04 

PC4 2.0 1.5 1.2 PC19 1E-05 2E-05 3E-05 

PC5 1.4 1.2 1.0 PC20 3E-06 5E-06 1E-05 

PC6 0.9 0.8 0.7 PC21 2E-06 2E-06 2E-06 
PC7 0.6 0.6 0.7 PC22 3E-07 4E-07 8E-07 
PC8 0.5 0.5 0.4 PC23 6E-08 3E-07 6E-07 
PC9 0.3 0.3 0.3 PC24 2E-08 2E-07 3E-07 

PC10 0.3 0.2 0.2 PC25 1E-09 2E-09 5E-09 
PC11 0.1 0.1 0.1 PC26 4E-10 1E-09 4E-09 
PC12 0.1 0.1 0.1 PC27 1E-10 1E-10 3E-10 
PC13 3E-02 3E-02 4E-02 PC28 4E-11 5E-11 1E-10 
PC14 3E-02 3E-02 2E-02 PC29 3E-12 6E-12 1E-11 
PC15 6E-03 6E-03 7E-03 PC30 2E-13 4E-13 7E-13 

 

 

Figure 7.10 Seven PCs retained in the model by using sym4, sym8, and sym12 

(based on 95% of the variance) 
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CHANNEL 3

PCA model 3a PCA model 3b PCA model 3c

7 retained PCs
Matrix Λˆ , dim 7x7
Matrix Pˆ , dim 30x7 

sym4 sym8 sym12

 

Figure 7.11 PCA models of channel 3

 

Figure 7.12 Correlation between principal components (PCs) and the features of 

channel 3 (using sym8 decomposition) 
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7.4 PCA Model Developed Using Vibration Signals Collected from 

Bearing Housing 

The time waveform of the vibration signal from channel 4 is also plotted using 

data set #15 with 1377 samples as depicted in Figure 7.13. 

 

Figure 7.13 Time waveform of normal (no fault) and faulty components acquired 

from channel 4 (data set #15) 

The eigenvalues of the principal components obtained using sym4, sym8, and 

sym12 are depicted in Table 7.4. More than half the number of principal components 

had eigenvalues close to zero; this is similar with the three previous channels. The 

Pareto chart in Figure 7.14, based on the 95% variance level to be accounted for in the 

model, shows that sym4 wavelet decomposition suggests 5 PCs, while the sym8 and 

sym12 wavelet decomposition recommends that 6 PCs be retained. The PCA models 

produced on this channel are depicted in Figure 7.15. 
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Figure 7.16 depicts the correlation matrix between PCs obtained from the 

vibration signal of channel 4 using sym8 wavelet decomposition and the features. The 

first three PCs also have high correlation value, the same as in the three previous 

channels.  

 

Table 7.4 Eigenvalue of PCA model obtained using sym4, sym8, and sym12 

(channel 4) 

Principal 
component 

  Eigenvalue   Principal 
component 

  Eigenvalue   

sym4 sym8 sym12 sym4 sym8 sym12 

PC1 19.7 19.9 19.9 PC16 1E-03 1E-03 1E-03 
PC2 5.3 5.0 4.7 PC17 2E-04 4E-04 9E-04 
PC3 1.8 1.8 1.6 PC18 1E-04 2E-04 2E-04 
PC4 1.2 1.0 1.1 PC19 3E-05 4E-05 4E-05 
PC5 0.7 0.8 0.8 PC20 6E-06 9E-06 1E-05 
PC6 0.4 0.5 0.7 PC21 2E-06 2E-06 2E-06 
PC7 0.4 0.4 0.4 PC22 5E-07 7E-07 1E-06 
PC8 0.2 0.2 0.3 PC23 1E-07 4E-07 6E-07 
PC9 0.2 0.2 0.2 PC24 2E-08 1E-07 4E-07 

PC10 0.1 0.1 0.2 PC25 6E-09 8E-09 1E-08 
PC11 0.0 0.1 0.1 PC26 1E-09 5E-09 7E-09 
PC12 0.0 0.0 0.0 PC27 3E-10 1E-09 2E-09 
PC13 1E-02 1E-02 2E-02 PC28 3E-10 1E-10 6E-10 
PC14 1E-02 8E-03 9E-03 PC29 1E-11 3E-11 6E-11 
PC15 3E-03 4E-03 4E-03 PC30 2E-12 3E-12 4E-12 
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Figure 7.14 Number of principal components retained in the model based on 95% of 

the variance. (a) 5 PCs retained in the model by using sym4, (b) 6 PCs retained using 

sym8 and sym12 

CHANNEL 4

PCA model 4a PCA model 4b PCA model 4c

sym4 sym8 sym12

5 retained PCs
Matrix Λˆ , dim 5x5
Matrix Pˆ , dim 30x5 

6 retained PCs
Matrix Λˆ , dim 6x6
Matrix Pˆ , dim 30x6 

 

Figure 7.15 PCA models obtained from channel 4 
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Figure 7.16 Correlation between principal components (PCs) and the features of 

channel 4 (using sym8 decomposition) 

7.5 Summary of PCA Models Obtained from Channel 1 to 4 

A summary of PCA models produced by the proposed method for all the 

channels is presented in Table 7.5. It can be concluded that the proposed method 

produced a total of 12 PCA models which were built using input features obtained 

from the cA parts of the sym4, sym8, and sym12 wavelet decomposition. 
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Table 7.5 PCA models obtained from channel 1 to 4 

PCA model 

Number of PCs 
 retained  

(based on 95% 
variance) 

Eigenvalue matrix 
 (dim) 

Loading matrix  
(dim) 

Channel 1 
sym4 7 7x7 30x7 
sym8 8 8x8 30x8 

sym12 8 8x8 30x8 
     

Channel 2 
sym4 7 7x7 30x7 
sym8 7 7x7 30x7 

sym12 7 7x7 30x7 
     

Channel 3 
sym4 7 7x7 30x7 
sym8 7 7x7 30x7 

sym12 7 7x7 30x7 
     

Channel 4 
sym4 5 5x5 30x5 
sym8 6 6x6 30x6 

sym12 6 6x6 30x6 

 

7.6 Fault Detection and Diagnosis: Evaluation and Results 

The fault detection and fault diagnosis was carried out using the 12 PCA models 

obtained from channel 1 to 4. For each channel, the proposed method produced three 

PCA models corresponding to the sym4, sym8, and sym12 wavelet decomposition. 

Each PCA model had different characteristics where the number of PCs retained, 

eigenvalue and loading matrix dimensions were varied. All of the PCA models were 

evaluated and tested using the normal and faulty condition schemes of the centrifugal 

pump.  

The fault detection was carried out through the calculation of the T2 and Q-

statistic of the testing data from normal and faulty conditions. The performance of 

each PCA model in detecting various types of faults in the centrifugal pump was 

examined and tested by calculating the detection error which was obtained by dividing 

the number of false detection samples with the total samples. Figure 7.17 depicts the 

block diagram of the evaluation process of PCA models. The PCA model with the 

lowest identification error was selected as the best PCA model. 
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PCA model-n

Data set # 71-120

-normal condition
-fault1
-fault2
-fault3
-fault4
-fault5
-fault6
-fault7

Fault detection

T2 > T2α Q > Qα 
n = 1a, 1b, 1c, 2a, 2b, 2c,

3a, 3b, 3c, 4a, 4b, 4c

Calculate detection error

Best PCA model

 

Figure 7.17 PCA models evaluation process 

The fault classification was carried out through examining the plot of scores 

matrix on PC1, PC2, and PC3. The scores of each normal and faulty condition were 

plotted in the same graph so that the effect of clustering could be observed. The scores 

matrix obtained from all PCA models were evaluated and compared.  

The continuation of the fault identification process applied the kNN rule with k 

(number of neighbors) and the number of PCs as the parameters. To select the best 

kNN rule, the scores matrix obtained from all PCA models was used as one of the 

parameters. The number of PCs used to build the kNN rule was varied from 1 to the 

maximum number of PCs for each model. Another parameter used was the number of 

k nearest neighbors. The k parameter was also varied from 1 to 30. The performance 

of the kNN rule obtained from the combination parameter number of PCs and k was 

calculated in terms of accuracy; in this case accuracy means the number of correctly 

classified examples per number of examples multiplied by 100. Figure 7.18 shows the 

block diagram of the evaluation process of fault classification and fault identification.  



Chapter 7− Results and Discussion of the Proposed Method  

161 

PCA model-n

Data set # 71-120

-normal condition
-fault1
-fault2
-fault3
-fault4
-fault5
-fault6
-fault7

n = 1a, 1b,1c, 2a, 2b, 2c,
3a, 3b, 3c, 4a, 4b, 4c

k= 1,2,3,…,30
PCs= 1,2,3,..,8

Plot scores on 
PC1, PC2, and PC3

Fault classification

kNN rule
-number of k

-number of PCs
Fault identification

Calculate accuracy 
of kNN rule

Best combination 
of PCA model and 

kNN rule

 

Figure 7.18 Fault classification and fault identification evaluation process 

7.6.1 Fault Diagnosis Results Using PCA Model 1 

In order to detect when a fault occurred in the centrifugal pump test rig, the 

algorithm explained in Figure 5.14 was carried out. The training data obtained from 

data set #1 to 70 of the normal condition (no fault) was pre-processed using the wavelet 

decomposition that employed the sym4, sym8, and sym12 wavelets. There were three 

feature matrices obtained from the pre-processed step where each matrix was 

generated using the sym4, sym8, and sym12 process respectively. These three feature 

matrices were then used to build the PCA models; therefore channel 1 produced PCA 

model 1a, model 1b and, model 1c where they were constructed using sym4, sym8, 

and sym12 respectively. The details of each PCA model was given in section 7.1. 

The fault detection analysis was performed on the testing data from normal and 

faulty conditions (data set #71-120). There were 50 samples for each of the normal 
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and faulty conditions tested in order to detect the presence of a fault. The T2-statistic 

and Q-statistics were used to assess the fault detection performance using all the PCA 

models obtained in channel 1 as shown in Figure 7.19. The graph of the T2-statistic 

consisted of the T2 value calculated from normal and faulty condition and the threshold 

lines for each PCA model. Since the PCA model 1b and 1c had the same number of 

retained PCs as described in Figure 7.3, they shared the same threshold line (horizontal 

line) which was shown as a green horizontal line in Figure 7.19 while the blue 

horizontal line was the threshold line for PCA model 1a.    

 

Figure 7.19  T2 chart for normal and all faulty conditions obtained using PCA model 

1a, model 1b, and model 1c 

In Figure 7.19, the y-axis was in logarithmic scale which represented the T2-

value of testing data of normal and faulty condition. The T2 value obtained from each 

PCA model was plotted in the order of normal, fault1, fault2, fault3,…, fault7. Since 

there were 50 samples for each set, there were 400 samples in total. The T2 value 

obtained from PCA models 1a, 1b and 1c were plotted in blue, red, and green line 

respectively. The T2 values which lay below the threshold line indicated the normal 

condition, as suggested in Equation 4.25, otherwise the fault condition occurred.   
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Figure 7.19 shows that in general all PCA models from channel 1 were able to 

detect the normal and faulty condition with some exception in several samples of the 

normal and fault4 condition for which the threshold was exceeded. Several 

misdetections were also observed in normal condition for PCA model 1a and 1c and 

in fault4 for PCA model 1c.   

Figure 7.20 shows, the plot of Q value of normal and faulty conditions along 

with the threshold line for each of PCA model as suggested in Equation 4.28. 

  

Figure 7.20 Q chart for normal and all faulty conditions obtained using PCA model 

1a, model 1b, and model 1c 

It is shown that, similar with the T2 result, in general all PCA models were able 

to correctly detect the normal and faulty condition of components. In this case, several 

misdetections were observed in the normal condition for all PCA models and in fault4 

for the PCA model 1b. For comparison, Table 7.6 summarized the misdetection rate 

for all PCA models. 
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Table 7.6 Comparison of fault detection accuracy of PCA model in channel1  

 Misdetection rate % 

 PCA model 1a PCA model 1b PCA model 1c 

T2 0.5 0.3 2.5 

Q 0.3 1.3 0.5 

Weighted average 0.5 0.3 2.4 

   

From Table 7.6, it is shown that the PCA model 1b obtained the lowest weighted 

average misdetection rate which indicates the highest fault detection accuracy. The 

PCA model 1b obtained the weighted average misdetection rate of 0.3 compared to 

0.5 and 2.4 for PCA model 1a and 1c respectively. The weighted average was 

calculated by considering the total variance retained in the principal component 

subspace for T2 (95%) and the total variance retained in the residual subspace for Q 

(5%). For instance, the weighted average of misdetection for PCA model 1b was 

calculated by 0.3× 0.95+1.3×0.05=0.3. The PCA model 1b was then selected as the 

best PCA model obtained from channel 1 in detecting the fault conditions. 

In Figure 7.21 to Figure 7.23, the scores obtained from PCA model 1a, 1b, and 

1c of normal and all faulty conditions were plotted on PC1, PC2, and PC3 to reveal 

the clustering effect of each normal and faulty condition. For each figure, exhibit (b) 

shows the zoom in of the circled area in the exhibit (a). It is observed that PCA model 

1a and PCA model 1b shows clear clustering effect as depicted in Figure 7.21 and 

Figure 7.22 respectively, although some overlaps occur in both models. However, the 

overlaps can be reduced by considering more dimensions (PCs). Meanwhile in the 

PCA model 1c the clustering effect is not clearly visible particularly for the normal 

condition, fault2, fault4, and fault6. This result is consistent with the misdetection rate 

listed in Table 7.6 where the PCA models 1a and 1b have the higher identification 

accuracy compared with PCA model 1c. 

Figure 7.24 to Figure 7.26 depict the identification accuracy for each of the PCA 

models with various combinations of the number of PCs and k (neighbors). The 

number of PCs included in the calculation may be different for PCA model 1a, 1b, and 

1c. This is in accordance with the number of PCs in each model as described in the 

previous section. 
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Figure 7.21 Three-dimensional scatter plots of PC1, PC2, and PC3 constructed 

from PCA model 1a. Note that exhibit (b) zooms into the green ellipse area in 

exhibit (a)  

 

  

Figure 7.22 Three-dimensional scatter plots of PC1, PC2, and PC3 constructed 

from PCA model 1b. Note that exhibit (b) zooms into the red ellipse area in 

exhibit (a) 
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Figure 7.23 Three-dimensional scatter plots of PC1, PC2, and PC3 constructed 

from PCA model 1c. Note that exhibit (b) zooms into the blue ellipse area in 

exhibit (a). 

 

The identification accuracy of PCA model 1a is shown in Figure 7.24. The x-

axis represents the number of neighbors k which is varied from 1 to 30, while the y-

axis represents the identification accuracy in percentage. There are seven lines with 

different markers and colours which denote the identification accuracy of the PCA 

model employing from 1 PC to 7 PCs. As expected, the model with more numbers of 

PCs provides the higher identification accuracy. The model with 1 PC gives the worst 

identification accuracy from 47.0% to 55.7%, while the model with 7 PCs has the 

highest identification accuracy from 96.7% to 99.5%. This result agrees with the PCA 

theory where the amount of information corresponds to the number of PCs retained in 

the PCA model 

Figure 7.25 shows the identification accuracies of PCA model 1b. In this case, 

1 to 8 PCs were employed; the number of PCs in this model is as described in Figure 

7.3. The result has the same trend as the results obtained in the PCA model 1a where 

the model which employed more number of PCs gives the higher accuracies; 47.2% 

to 56.0% for PCA model with 1PC and 98.0% to 99.7% for PCA model with 8 PCs. 
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Meanwhile, the identification accuracies of PCA model 1c is depicted in Figure 

7.26, which consists of the 8 results that correspond to 1PC to 8PCs that are included 

in the model. This model also shows identification accuracy from 44.7% to 54.2% for 

the model with 1PC and 94.5% to 97.7% for the model with 8PCs. 

 

Figure 7.24 Identification accuracy comparison of the PCA model 1a using  

1 to 7 PCs. 

From Figure 7.24 to Figure 7.26, it can be seen that in general, the highest 

identification accuracies obtained by PCA model 1a and 1b is higher than those for 

PCA model 1c.  The average identification accuracies of PCA model 1a with 7 PCs is 

around 98.2% and PCA model 1b with 8 PCs is 99.2%, whilst, the average 

identification accuracies of PCA model 1c with 8 PCs is 96.3%. The results confirm 

the findings in the previous discussion where from Table 7.6 and from Figure 7.21 to 

Figure 7.23, PCA model 1a and 1b were found to have better fault detection and 

classification performance than PCA model 1c.  

It is observed from Figure 7.24 to Figure 7.26 that the identification accuracies 

depend on the number of neighborhood parameters, k. There is a downward trend in 

the level of accuracy with the increase in the number of parameters k which indicates 

0 5 10 15 20 25 30
40

50

60

70

80

90

100

Number of neighbors k

Id
e
n
ti
fi
c
a
ti
o
n
 a

c
c
u
ra

c
y
 %

PCA model 1a

 

 

1PC

2PCs

3PCs

4PCs

5PCs

6PCs

7PCs



Chapter 7− Results and Discussion of the Proposed Method  

168 

that the model is sensitive on the changes in the number of k. However, this is not the 

case for the PCA model with more PCs included in the model. For example, the PCA 

model 1a with 7 PCs, PCA model 1b with 8 PCs and PCA model 1c with 8 PCs provide 

relatively the same identification accuracies as the parameter k varies from 1 to 30. It 

is because the more PCs included in the model reduces the overlap between the classes 

therefore they may avoid misidentification by increasing the number of neighborhood 

parameter k.     

Theoretically, the improvement of identification accuracy becomes less as more 

PCs are added into the model because less information is held by high order PCs. 

However, in some instances the higher improvement of accuracy may occur on 

addition of high order PCs into model. These occurrence can be observed in model 1a 

where the addition of the 7th PC increases the accuracy more than when the 6th PC is 

added into the model. This can be due to the non-stationary behavior of the vibration 

signal which sometimes occurs on the centrifugal pump.       

 

Figure 7.25 Identification accuracy comparison of the PCA model 1b using  

1 to 8 PCs. 
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Figure 7.26 Identification accuracy comparison of the PCA model 1c using  

1 to 8 PCs. 

In view of the above result and discussion, it is appropriate to conclude that PCA 

model 1b achieves the higher performance in detection, classification and 

identification of faults in a centrifugal pump compared to the other two models. From 

the mechanical point of view, channel 1 where the acceleration sensor was mounted 

at the pump inlet, gives an excellent clustering effect for fault1 (cavitation) for all PCA 

models as depicted in Figure 7.21 to Figure 7.23. This is because the sensor is closest 

to the location of cavitation; hence the change of fluid condition (i.e., cavitation) in 

the pump inlet can be easily identified.      

7.6.2 Fault Diagnosis Results Using PCA Model 2 

The procedures used to evaluate the T2- and Q-statistic from channel 2 data were 

similar to that used for channel 1. There were three PCA models namely, PCA model 

2a, model 2b, and model 2c obtained from channel 2.  The result of the T2- and Q-

statistic is shown in Figure 7.27 and Figure 7.28 respectively.   
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Figure 7.27 T2 chart for normal and all faulty conditions obtained using PCA model 

2a, model 2b, and model 2c 

Figure 7.27 shows the T2-statistic calculated from PCA model 2a, 2b, and 2c 

compared to the threshold line. There was only one threshold line in this plot, since 

the PCA models 2a, 2b and 2c share the same threshold line; this is the consequence 

of the PCA model constructed in section 7.2 where all channel 2 PCA models retained 

7 PCs. Therefore according to Equation 4.24 there was only one threshold for all 

models which is represented as a green horizontal line in Figure 7.27. 
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Figure 7.28 Q chart for normal and all faulty conditions obtained using PCA model 

2a, model 2b, and model 2c 

Figure 7.27 shows that all PCA models made good predictions for all fault 

conditions where all values of T2 were above the threshold line. However, several 

samples in the normal condition exceeded the threshold which indicated misdetection. 

The Q-statistic, as depicted in Figure 7.28, shows a similar prediction with the one in 

the T2. The Q-statistic was able to detect all types of fault with 100% accuracy as 

indicated by the fault values that were all above the threshold. Yet, several samples in 

the normal condition were observed exceeding the threshold which denoted 

misdetection.      

   Overall, the misdetection rate of the T2- and Q-statistic is listed in Table 7.7 

along with its weighted average for all PCA models. The results show that PCA model 

2b obtained the lowest misdetection rate (0.3%) compared to the others.  

It was found that the lowest misdetection rate of channel 1 and 2 was obtained 

from the PCA model constructed from the same wavelet type (sym8). The finding was 

based on the comparison of weighted average misdetection rate from all PCA models 

in channel 1 and channel 2.     
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Table 7.7 Comparison of fault detection accuracy of PCA model in channel 2 

 Misdetection rate % 

 PCA model 2a PCA model 2b PCA model 2c 

T2 0.8 0.3 0.5 

Q 0.8 0.5 0.8 

Weighted average 0.8 0.3 0.5 

 

The three dimensional plot of the scores on PC1, PC2 and PC3 for PCA model 

2a, 2b, and 2c is depicted in Figure 7.29 to Figure 7.31. In general, the clustering effect 

achieved from all PCA models was visible. In Figure 7.29, the PCA model 2a revealed 

a good separation among classes except between fault2 (impeller fault) and fault6 

(impeller fault and blockage) where several overlaps occurred.      

  

Figure 7.29 Three-dimensional scatter plots of PC1, PC2, and PC3 constructed 

from PCA model 2a. Note that exhibit (b) zooms into the green ellipse area in 

exhibit (a) 
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Figure 7.30 Three-dimensional scatter plots of PC1, PC2, and PC3 constructed 

from PCA model 2b. Note that exhibit (b) zooms into the blue ellipse area in 

exhibit (a) 

 

  

Figure 7.31 Three-dimensional scatter plots of PC1, PC2, and PC3 constructed 

from PCA model 2c. Note that exhibit (b) zooms into the blue ellipse area in 

exhibit (a) 
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Figure 7.30 shows the clustering effect produced by PCA model 2b. It was 

observed that some overlap occurred between the class of fault2 and fault6. The 

same overlap was also observed in the PCA model 2c as shown in Figure 7.31. In 

general, the performance of all PCA models obtained from channel 2 in classifying 

the normal and fault condition is relatively the same. As can be seen from Figure 

7.29 to Figure 7.31, all classes can be completely separated except for fault2 and 

fault6. The relatively similar classification performance among the models 

confirmed the detection accuracies as summarised in Table 7.7 where the 

misdetection rate among the models was very similar.     

The identification accuracies of PCA models in channel 2 are depicted in 

Figure 7.32 to Figure 7.34. It was observed from Figure 7.32 that the PCA model 

2a with 7 PCs achieved the highest identification accuracy from 95.7% to 98.7% as 

expected where the model with 1 PC obtained the lowest accuracy from 79.7% to 

84.5%. The effect of the number of neighbors, k, in the model does not seem to 

indicate a trend that can be observed. However, in the model with 7 PCs, increasing 

the number k showed no significant change in the accuracy. 

 

Figure 7.32 Identification accuracy comparison of the PCA model 2a using  

1 to 7 PCs. 
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Figure 7.33 Identification accuracy comparison of the PCA model 2b using  

1 to 7 PCs. 

Employing 1 to 7 PCs, the identification accuracy of PCA model 2b is given in 

Figure 7.33. It is shown clearly that the model with 7 PCs obtained the highest 

identification accuracy from 95.7% to 98.5% while the model with 1 PC resulted in 

the lowest accuracy from 75.7% to 82.2%. The result of the model with 7 PCs was 

similar to that of PCA model 2a, which indicated that the highest performance of PCA 

model 2a and 2b was relatively the same.    

The similar pattern was also observed for PCA model 2c as shown in Figure 

7.34. The highest identification accuracy was achieved by the model with 7 PCs from 

95.2% to 97.7% while the model with 1 PC achieved the lowest accuracy from 76.2% 

to 80.7%. In general, for all PCA models, it could be inferred that the model was not 

sensitive on the changes in the number of k. 
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resulted in the lowest identification accuracy since the model provided less 

information to the fault identification process.     

 

Figure 7.34 Identification accuracy comparison of the PCA model 2c using  

1 to 7 PCs. 

From the discussion above, all PCA models in channel 2 produced relatively the 

same performance in terms of fault detection, classification and identification. 

Although they gave relatively the same performance, Table 7.7 indicated that PCA 

model 2b (constructed using sym8) achieved the lowest misdetection rate, that was 

0.3%, compared to the other two models of 0.8% and 0.5%. The classification result 

as given from Figure 7.29 to Figure 7.31 pointed out that all PCA models obtained 

relatively the same performance which was indicated by the overlap between the same 

classes. Similarly, the average identification accuracy showed that all PCA models  
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the PCA model constructed using sym8, i.e. PCA model 1b, provided the higher fault 

diagnosis performance than the others. Therefore, the PCA model constructed using 

sym8 was found to be the most suitable approach applied to both channels 1 and 2.  

From the mechanical point of view, in channel 2 the accelerometer was mounted 

on the pump’s volute which gave a good reading of the vibration signal from the 

hydraulic related impeller fault, cavitation, and blockage conditions. This caused the 

clustering effect as illustrated from Figure 7.29 to Figure 7.31 to be more visible 

compared to channel 1 except in the case of fault2 and fault6. An overlap was observed 

between fault2 (impeller fault) and fault6 (impeller fault-blockage) which indicated 

that the proposed method was not able to distinguish the uniqueness of vibration 

signals between fault2 and fault6 by using only the first three PCs. However, the 

addition of more PCs would be expected to reduce the overlap as demonstrated in the 

identification accuracy results (Figure 7.32 to Figure 7.34).           

7.6.3 Fault Diagnosis Results Using PCA Model 3 

The proposed method applied to channel 3 data produced T2- and Q-statistic 

charts as depicted in Figure 7.35 and Figure 7.36 respectively. In the T2 chart, there is 

only one threshold line (horizontal green line) since all PCA models in this channel 

retained the same number of PCs i.e., 7 PCs. Therefore, one threshold was applied for 

all PCA models. It can be seen from Figure 7.35 that the T2-statistic calculated using 

all PCA models was able to detect all the fault cases with 100% accuracy. It was 

obvious that all types of fault samples exceeded the threshold line (fault occurred). 

However, misdetection occurred for the normal condition case where several sample 

points exceeded the threshold. The misdetection rate for all PCA models was listed in 

Table 7.8.    

The performance of the Q-statistic for all PCA models is shown in Figure 7.36. 

Overall, the Q-statistic obtained from PCA model 3b and 3c showed an excellent 

performance (100% correct detection) in detecting fault cases where all associated 

samples lay above the threshold. Meanwhile, one sample from fault4 of the PCA 

model 3a crossed the threshold which indicated a false alarm.  
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The situation was slightly different for the normal condition samples. All the 

models made false detections several times as the Q-statistic values exceeded the 

threshold. This could be due to the non-stationary behaviour of the vibration signal 

acquired from channel 3 (pump’s outlet). Table 7.8 summarized the misdetection rate 

of the Q-statistic for all models.       

 

Figure 7.35 T2 chart for normal and all faulty conditions obtained using PCA model 

3a, model 3b, and model 3c 

0 50 100 150 200 250 300 350 400
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Samples

T
2
-s

ta
ti
s
ti
c

 

 

PCA model 3a

PCA model 3b

PCA model 3c

fault3

fault4

fault7

normal

fault2
fault6

fault5

fault1



Chapter 7− Results and Discussion of the Proposed Method  

179 

 

Figure 7.36 Q chart for normal and all faulty conditions obtained using PCA model 

3a, model 3b, and model 3c 

Table 7.8 shows that PCA model 3a and 3b achieved the lower misdetection rate 

(0.5%) compared to model 3c (1.0%). The PCA models 3a and 3b which were 

constructed using sym4 and sym8 respectively showed superior detection 

performance. This indicated that PCA models 3a and 3b could be more suitably 

applied in channel 3 for fault detection than the other one.    

 

Table 7.8 Comparison of fault detection accuracy of PCA model in channel 3 

 Misdetection rate % 

 PCA model 3a PCA model 3b PCA model 3c 

T2 0.5 0.5 1.0 

Q 0.8 1.0 0.3 

Weighted average 0.5 0.5 1.0 

 

Figure 7.37 to Figure 7.39 show the first three dimensions of the projected scores 

for PCA models 3a, 3b, and 3c respectively. As can be seen in the figures, the projected 

scores by all PCA models were not separated clearly. The overlaps between classes 
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occurred in all models where the worst was in PCA model 3a. In Figure 7.37, the 

projected scores of all the fault conditions were mixed up and the clustering effect was 

not visible. The same thing also occurred in the PCA model 3b and 3c where the 

proposed method was not able to properly separate the classes using the projected 

scores in the first three PCs.     

The identification accuracy of the proposed method is illustrated in Figure 7.40 

to Figure 7.42 for the PCA model 3a, 3b, and 3c respectively. In Figure 7.40, it can be 

seen that the highest identification accuracy was from 80.2% to 85.0% where it was 

achieved not only by the PCA model with 7 PCs but also with the ones with 5 and 6 

PCs. This suggested that the identification accuracy of the PCA model 3a did not 

increase by adding more PCs into model. Recalling the identification accuracy from 

PCA model 1a and 2a, it was found that PCA model 3a achieved a lower result. This 

was consistent with the classification result where the clustering effect obtained from 

PCA model 3a was less visible compared to PCA model 1a and 2a.    

  

Figure 7.37 Three-dimensional scatter plots of PC1, PC2, and PC3 constructed 

from PCA model 3a. Note that exhibit (b) zooms into the red ellipse area in  

exhibit (a) 
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Figure 7.38 Three-dimensional scatter plots of PC1, PC2, and PC3 constructed 

from PCA model 3b. Note that exhibit (b) zooms into the blue ellipse area in 

exhibit (a) 

 

  

Figure 7.39 Three-dimensional scatter plots of PC1, PC2, and PC3 constructed 

from PCA model 3c. Note that exhibit (b) zooms into the blue ellipse area in 

exhibit (a) 
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There was a slight improvement in identification accuracy of the PCA model 

3b compared to the PCA model 3a as illustrated in Figure 7.41. The model with 7 

PCs achieved identification accuracy from 85.0% to 87.5% while the one with 1 PC 

achieved the lowest accuracy ranged 63.2% to 71.5%. It can be seen that the 

performance of the model with 5, 6, and 7 PCs was not too much different. This 

observation confirmed the finding in PCA model 3a where the model with 5-7 PCs, 

did not significantly improve the identification accuracy by increasing the number 

of PCs into model.   

It is shown in Figure 7.40 and Figure 7.41 that adding the number of neighbors 

k into the model yielded varying results. For PCA model 3a, increasing the number 

k would increase the identification accuracy for the model with 1 and 2 PC(s) but it 

would reduce the identification accuracy for the others. Meanwhile, for the PCA 

model 3b, increasing the number k in general did not significantly improve the 

identification accuracy of the models except in the model with 1PC. This finding 

indicated that in most cases, increasing the number of neighbors k employed in the 

PCA model would not significantly increase the identification accuracy of the 

proposed method.  

 

Figure 7.40 Identification accuracy comparison of the PCA model 3a using  

1 to 7 PCs. 
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Figure 7.41 Identification accuracy comparison of the PCA model 3b using  

1 to 7 PCs. 

The identification accuracy of PCA model 3c as presented in Figure 7.42 shows 

that the model with 6 and 7 PCs achieved superior performance (87.0%-89.7%) 

compared to the other models. The PCA model with 2 to 5 PCs produced the middle 
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classification process where it produced a least visible clustering effect using the 

scores in the first three PCs. The result of fault identification also agreed with the fault 

classification where the PCA model 3a obtained the lowest result (80.2%-85.0%). 

Meanwhile, the PCA model 3c achieved better fault classification and identification 
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performance than the other two models although it had the lowest performance in fault 

detection (1.0% misdetection rate).  

 In view of the above results and analyses, it is appropriate to select PCA model 

3c as the best PCA model in channel 3 to diagnose the faults in the centrifugal pump. 

Moreover, it can be concluded that sym12 provided a better result in constructing the 

PCA models in channel 3. 

In channel 3, the accelerometer was mounted on the pump’s outlet where the 

discharge pressure was relatively high. The condition led to an unfavourable vibration 

environment acquired by the sensor. This caused considerable mistakes in fault  

classification and identification. It was found that in channel 3, the proposed method 

provided less accuracy in fault classification and identification than that for the other 

two channels (channel 1 and 2).            

 

Figure 7.42 Identification accuracy comparison of the PCA model 3c using  

1 to 7 PCs. 
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7.6.4 Fault Diagnosis Results Using PCA Model 4 

The proposed method was again carried out for vibration signals measured from 

channel 4 and the obtained result of fault detection is presented in Figure 7.43 and 

Figure 7.44. In the case of the T2 chart, there are two threshold lines, the black 

horizontal line and the blue horizontal line. The black horizontal line corresponds to 

PCA model 2b and 2c, where the blue one corresponds to PCA model 2a. The result 

of the T2-statistic shows that the proposed method provided poor performance in fault 

detection as depicted in Figure 7.43 where the T2 value of faulty condition samples 

(fault1 and fault4) crossed the threshold many times. This also occurred for normal 

condition samples where the T2 value exceeded the threshold line several times.      

In Figure 7.44, the proposed method demonstrates a better performance in fault 

detection through the use of the Q-statistic. It could be seen clearly that the proposed 

method was able to detect all types of faults. All the Q values from the fault condition 

samples lay above the threshold which indicated that the faults were correctly detected 

although several normal condition samples were misdetected.  

The results mentioned above showed that the Q-statistic was able to better detect 

the faults correctly than the T2-statistic. This is because the Q-statistic was calculated 

from the residual subspace of the PCA model which made it more sensitive to fault 

occurrence. The quantitative result of detection performance is listed in Table 7.9 as 

represented in misdetection rate. 
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Figure 7.43 T2 chart for normal and all faulty conditions obtained using PCA model 

4a, model 4b, and model 4c 

The misdetection rate in Table 7.9 shows that PCA model 4c achieved the lowest 

weighted average value (4.6%) which meant that the model had a relatively better 

detection performance than the other two models. In this channel, the PCA model 4c 

which was constructed using sym12 showed superior performance to the ones 

constructed using sym4 and sym8 therefore it was appropriate to conclude that sym12 

was best applied in channel 4.    
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Figure 7.44 Q chart for normal and all faulty conditions obtained using PCA model 

4a, model 4b, and model 4c 

Table 7.9 Comparison of fault detection accuracy of PCA model in channel 4 

 Misdetection rate % 

 PCA model 4a PCA model 4b PCA model 4c 

T2 11.0 10.0 4.8 

Q 0.5 0.8 1.0 

Weighted average 10.5 9.5 4.6 

 

The proposed method produced fault classification results which are shown in 

Figure 7.45 to Figure 7.47. It can be seen that the PCA model 4a in Figure 7.45 was 

not able to separate the different types of faults. The clusters were not visible since all 

score samples were mixed up with each other. The similar results were also shown for 

PCA model 4b in Figure 7.46 and PCA model 4c in Figure 7.47. It was observed again 

that overlaps occurred among the classes in both models. The proposed method seems 

to fail to classify the fault by using the scores on the first three dimensions of the PCA 

model. Comparing with the results obtained from channel 1 to 3, it was found that the 

proposed method in channel 4 achieved the worst fault classification performance.  
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Figure 7.45 Three-dimensional scatter plots of PC1, PC2, and PC3 constructed 

from PCA model 4a. Note that exhibit (b) zooms into the red ellipse area in  

exhibit (a) 

 

  

Figure 7.46 Three-dimensional scatter plots of PC1, PC2, and PC3 constructed 

from PCA model 4b. Note that exhibit (b) zooms into the red ellipse area in 

exhibit (a) 
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Figure 7.47 Three-dimensional scatter plots of PC1, PC2, and PC3 constructed 

from PCA model 4c. Note that exhibit (b) zooms into the red ellipse area in  

exhibit (a) 

Figure 7.48 shows the identification accuracy of the PCA model 4a with 1 to 

5 principal components (PCs). The PCA model 4a retained only 5 PCs therefore the 

proposed method evaluated its performance for 1 to 5 PCs.  It can be seen that the 

highest identification performance was obtained by the model with 5 PCs ranged 

from 55.0% to 61.2% and the lowest one was obtained by the model with 1 PC from 

45.5% to 51.2%. It was also found that the model with 3 and 4 PCs had a quite 

similar identification accuracy with the model with 5PCs which indicated that the 

model with 3-5 PCs was not sensitive to the increasing number of PCs. 

The PCA model 4b obtained better identification accuracy than the PCA 

model 4a. It achieved identification accuracy from 54.7% to 62.7% (the model with 

6 PCs) and the lowest one from 46.5% to 53.7% (the model with 1 PC). The PCA 

model 4b consisted of 6 PCs in the model so that the proposed method evaluated the 

identification performance of the model with 1 to 6 PCs. Note that in this case, the 

number of neighbors k included into the model had a significant effect on the 

identification performance as can be seen for the PCA model 4a and 4b. However 

the number of k was not sensitive to the identification accuracy on PCA model 4c.    
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Figure 7.50 shows the identification performance of PCA model 4c with 1 to 

6 PCs. The models retained 6 PCs as described in section 7.4 where the performance 

was higher for the model with 6 PCs and was lower for the model with 1PC. It was 

also observed that the model with 3-6 PCs achieved a relatively similar level of 

performance as shown by the overlapping lines; the highest accuracy was however 

obtained by the model with 6 PCs (57.7% to 62.5%). Meanwhile, the model with 

1PC provided the lowest accuracy from 43.7% to 53.2%. 

 

Figure 7.48 Identification accuracy comparison of the PCA model 4a using  

1 to 5 PCs. 
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Figure 7.49 Identification accuracy comparison of the PCA model 4b using  

1 to 6 PCs. 

 

Figure 7.50 Identification accuracy comparison of the PCA model 4c using  

1 to 6 PCs. 
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The performance of three PCA models in channel 4 (PCA model 4a, 4b, and 4c) 

as discussed above, showed the lowest performance compared to those in channel 1, 

2 and 3. The poor performance of the models occurred in fault detection, classification, 

and the identification step. The highest fault detection performance was obtained by 

PCA model 4c with 4.6% misdetection rate, while the lowest fault detection 

performance obtained from other channels was 0.3%, 0.3%, and 0.5% for 1b, 2b, and 

3a (and 3b) respectively.  

In the fault classification, all models in channel 4 failed to separate the classes 

and the clustering effect was not visible. In general, PCA model 4b and 4c achieved 

slightly better identification accuracy which ranged from 43.7% to 62.7%. Although 

the performance among the models in channel 4 was quite similar, by considering the 

above result analyses, it is appropriate to select PCA model 4c as the best model to 

diagnose faults in the centrifugal pump using channel 4.  

The mounting location of the accelerometer in channel 4 was on the bearing 

housing of the centrifugal pump. The location of the accelerometer was relatively far 

from the location of faults where they occurred, which was in the area close to the 

pump’s impeller (cavitation, impeller fault, and blockage) except for the bearing fault. 

The noisy vibration due to severe damage of the shaft bearing was also observed. This 

caused the proposed method to be unable to distinguish the uniqueness of the raw 

vibration signals associated with the faults and led to the poor performance of the 

diagnosis result.  

In the following section, the performance comparison among the selected PCA 

model from each channel was carried out and evaluated in order to find the best model 

to be employed for the general centrifugal pump fault diagnosis. 

7.7 Performance Comparison of the PCA models 

In this section, the performance comparison of the PCA models is analysed, 

aimed at finding which location in the centrifugal pump gave the best fault diagnosis 

results using the proposed method. The performance comparison was based on the 

misdetection rate obtained by the PCA models for each channel. Moreover, the 

average misdetection rate was taken from three PCA models in each channel and the 
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channel that had the lowest misdetection rate was then selected as the most appropriate 

channel for acquiring the vibration signal. Since each channel was related to a specific 

accelerometer location, hence the best location in the centrifugal pump to acquire the 

vibration signal for fault diagnosis purposes can then be concluded. 

   The misdetection rate comparison for all four channels is illustrated in Figure 

7.51. There were three PCA models for each channel where each was indexed using 

the letter ‘a’, ‘b’, and ‘c’. Therefore in channel 1 there were PCA models 1a, 1b, and 

1c and this naming convention also applied for the other channels.  

  

Figure 7.51 Misdetection rate of all PCA models from channel 1 to 4 

In Figure 7.51 and Figure 7.52, it is obvious that the lowest misdetection rate 

was obtained by the PCA model constructed from channel 2. This finding implies that 

channel 2 was the best channel for the purpose of fault detection. Since the 

accelerometer sensor in channel 2 was mounted onto the pump’s volute casing then it 

could be also inferred that the volute of a centrifugal pump was the most appropriate 

accelerometer’s mounting location for fault detection, for the range of faults being 

considered here.  
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Figure 7.51 also shows the lowest misdetection rate obtained by PCA models in 

each channel. The PCA model 1b, 2b, 3a, and 4c obtained the lowest misdetection rate 

for channel 1, 2, 3, and 4 respectively. It could be inferred that sym8 was most suitably 

applied in channel 1 and 2, sym4 in channel 3 and sym12 in channel 4 for fault 

detection in a centrifugal pump.    

 

Figure 7.52 Average misdetection rate from channel 1 to 4 
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can be concluded that PCA model 1b which was constructed using sym8 is the best 

model to identify fault in the centrifugal pump.    

 

Figure 7.53 Identification accuracy of the best PCA models in each channel 

Among the 30 neighbors employed in PCA model 1b, the model with 20 
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Table 7.10 Confusion matrix of PCA model 1b employing 20 neighbors k  

  PREDICTED 

  normal fault1 fault2 fault3 fault4 fault5 fault6 fault7 
A

C
TU

A
L 

normal 49 0 0 0 1 0 0 0 

fault1 0 50 0 0 0 0 0 0 

fault2 0 0 50 0 0 0 0 0 

fault3 0 0 0 50 0 0 0 0 

fault4 0 0 0 0 50 0 0 0 

fault5 0 0 0 0 0 50 0 0 

fault6 0 0 0 0 0 0 50 0 

fault7 0 0 0 0 0 0 0 50 

 

The confusion matrix for the PCA model 2b, 3c, and 4c is given in Table 7.11 

to Table 7.13 respectively. The PCA model 2b obtained the highest identification 

accuracy of 98.5% by employing 20 neighbors, the PCA model 3c achieved the highest 

identification accuracy of 89.7% by employing 14 neighbors, and the PCA model 4c 

had the highest identification accuracy of 62.5% by employing 19 neighbors. 

 

Table 7.11 Confusion matrix of PCA model 2b employing 20 neighbors k 

  PREDICTED 

  normal fault1 fault2 fault3 fault4 fault5 fault6 fault7 

A
C

TU
A

L 

normal 50 0 0 0 0 0 0 0 

fault1 0 50 0 0 0 0 0 0 

fault2 0 0 46 0 0 0 4 0 

fault3 0 0 0 50 0 0 0 0 

fault4 0 0 0 0 50 0 0 0 

fault5 0 0 0 0 0 50 0 0 

fault6 0 0 2 0 0 0 48 0 

fault7 0 0 0 0 0 0 0 50 
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Table 7.12 Confusion matrix of PCA model 3c employing 14 neighbors k 

  PREDICTED 

  normal fault1 fault2 fault3 fault4 fault5 fault6 fault7 
A

C
TU

A
L 

normal 50 0 0 0 0 0 0 0 

fault1 0 49 0 0 0 1 0 0 

fault2 0 0 42 0 0 0 8 0 

fault3 0 0 0 43 0 0 0 7 

fault4 0 1 0 0 47 0 2 0 

fault5 0 5 0 0 0 44 1 0 

fault6 0 0 16 0 0 0 34 0 

fault7 0 0 0 0 0 0 0 50 

 

Table 7.13 Confusion matrix of PCA model 4c employing 19 neighbors k 

  PREDICTED 

  normal fault1 fault2 fault3 fault4 fault5 fault6 fault7 

A
C

TU
A

L 

normal 45 3 0 0 2 0 0 0 

fault1 0 29 0 0 21 0 0 0 

fault2 0 1 23 0 0 6 20 0 

fault3 0 0 0 38 0 0 0 12 

fault4 1 19 0 0 30 0 0 0 

fault5 0 1 12 0 0 24 13 0 

fault6 0 0 19 0 0 8 23 0 

fault7 0 0 0 12 0 0 0 38 

 

The next chapter presents conclusions and suggestions for future work of the 

thesis.
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CHAPTER EIGHT 

8 Conclusions and Suggestions for Future Work 

8.1 Conclusions 

The proposed method was investigated in order to find a new technique for 

centrifugal pump fault diagnosis. It was based on a combination of wavelet transform, 

statistical parameters, and PCA modelling. The area of centrifugal pump fault 

diagnosis has not yet been fully researched and moreover the fault diagnosis 

techniques based on a wavelet-PCA model are still wide open to discovery. The 

investigation in this study contributes new knowledge on the use of wavelet transforms 

using Symlet and PCA models in building an integrated centrifugal pump fault 

diagnosis framework. It produces integrated algorithms for statistical feature 

extraction of decomposed vibration signals and for PCA modelling. The findings of 

the investigation also included PCA-based fault detection, fault classification and fault 

identification.            

Six statistical features, namely energy level, standard deviation, RMS, kurtosis, 

variance, and crest factor were extracted from the decomposed vibration signals 

obtained from four accelerometers located on the pump. The investigation of a new 

technique for feature extraction was carried out and led to the construction of the PCA 

model-based fault diagnosis for a centrifugal pump. The feature extraction technique 

combined the application of wavelet-based decomposition and the statistical 

parameters. The PCA models generated by using wavelet-based statistical parameters 

were used successfully in fault detection, fault classification, and fault identification 

in the proposed method.  

The development of the wavelet-PCA method in this study aimed to find a 

vibration-based multi fault diagnosis method for centrifugal pumps. The proposed 

wavelet-PCA method produced a set of PCA models obtained from four channels of 

vibration signals from four different accelerometers located on the pump.  The channel 

number 1 to 4 corresponded to accelerometers mounted on the pump inlet, pump 
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volute, pump outlet, and the pump bearing house respectively. Each channel produced 

3 PCA models which were built using Symlet 4, 8, 12 wavelets respectively.    

The Multi Resolution Analysis (MRA) of Symlet wavelets were used to 

decompose the time-domain vibration signal at up to 5 levels. The decomposition 

process produced Approximation coefficients (cA) and Detailed coefficients (cD). 

Only the cA parts were selected in this study for further processing.  Six statistical 

features were extracted from each of the approximation coefficients (cA); therefore 30 

statistical features were produced for each PCA model building process. The results 

of the feature extraction process were used to build the PCA model which consisted 

of the reduced loading matrix �̂� and the reduced eigenvalue matrix �̂�. The matrices �̂� 

and �̂� were used as the core matrices for the fault detection, classification, and 

identification process.  

The fault detection process was carried out using the T2 and Q-statistic where 

their values were compared with the threshold lines of 𝑇𝛼
2 and 𝑄𝛼 respectively. Twelve 

PCA models obtained from the four channels were then tested during the fault 

detection process. There were four single faults and three multi faults introduced for 

testing, namely: cavitation, impeller fault, bearing fault, blockage, impeller fault-

cavitation, impeller fault-blockage, and bearing fault-cavitation. The fault detection 

process was performed on all types of faults. The test results showed that the PCA 

model constructed from the vibration data obtained from channel 2 using the sym8 

(PCA model 2b) achieved the lowest misdetection rate of 0.3%. The finding implies 

that channel 2, where the accelerometer was mounted on the pump volute, provided 

the best mounting location of the accelerometer for the purpose of fault detection. 

Moreover, it concluded that sym8 provided the best decomposition of the time-domain 

waveform for statistical feature extraction purposes where it gave the PCA model 2b 

the lowest misdetection rate.  

The highest misdetection rate in the fault detection was 10.5%, which was 

achieved by PCA model 4a. This rate occurred in the test results using the PCA model 

constructed from channel 4. The result concludes that the mounting location on the 

bearing house provides the worst performance in the fault detection rate. In addition, 

among the three Symlet decompositions in channel 4, sym12 performed better in the 

results since it achieved the lowest misdetection rate. 
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Moreover, the test result also showed that the misdetection rate achieved when 

using the Q-statistic, in general was lower than that from the T2-statistic. This finding 

indicates that the Q-statistic is more sensitive in detecting the small behaviour of the 

system so that a small change in vibration signals indicating the occurrence of a fault 

can be detected earlier. However, in a particular case, the Q-statistic attains a worse 

misdetection rate than the T2-statistic. This condition refers to a situation where the 

residual subspace of the PCA model tends to be too sensitive to the change of vibration 

behaviour, therefore several Q-statistic values exceeded the threshold. 

The scores obtained from all PCA models were used to classify faults introduced 

on the centrifugal pump. The scores from normal (no fault) and faulty conditions were 

plotted using the first three principal components (PCs) in order to reveal the clustering 

effect. The PCA model 1a and 1b showed that the clustering effect was visible in 

which each of the classes were separated and could be distinguished. A small overlap 

was observed to occur in both of the models. However, the overlap could be avoided 

by adding more PCs in the classification process. Meanwhile, the situation was 

different for PCA model 1c where the clustering effect was not obviously visible. A 

large number of overlaps seem to occur among the classes which made them difficult 

to be classified.  

All the PCA models from channel 2 revealed a clear separation among classes 

where each class could be classified clearly and only a small amount of overlap 

occurred.  The classification results obtained from channel 3 and 4 showed that the 

projected scores on the first three PCs were not obviously separated. The overlap 

occurred among all classes so that the fault classification was not properly achieved.  

The test results showed that the performance of fault identification from the PCA 

model in channel 1 was obviously quite high where the highest identification accuracy 

was achieved by PCA model 1b, with 99.2%. This accuracy was achieved by 

employing all PCs (8PCs) available in the model. The PCA models 2a, 2b and 2c 

achieved relatively the same identification accuracy which are 96.7%, 97.07% and 

96.5% respectively. Meanwhile, the fault identification performance of PCA models 

obtained from channel 3 and 4 was significantly lower than the previous ones.  

The confusion matrix presented information about actual and predicted classes 

of faults achieved by the proposed method. The matrix showed that there was only one 
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mislabelling of a fault class for PCA model 1b and six mislabellings for PCA model 

2b. 

The following section presents the final conclusions of the investigation of the 

proposed wavelet-PCA method for fault diagnosis of centrifugal pumps.  

As can be concluded from the literature review, the use of a combined statistical 

feature extraction, wavelet transform and PCA methods in the application of vibration-

based fault diagnosis of centrifugal pumps are still wide open to discovery. This study 

focused on investigating a new method for multi fault diagnosis by using a 

combination of six statistical parameters, wavelet transform, and PCA model.    

There was no single PCA model tested that achieved the best performance for 

all fault detection, fault classification, and fault identification; there were also no 

single PCA models suited for all channels. Rather, each case had to be diagnosed with 

a different PCA model. 

The test results of the proposed method shows that PCA model 2b achieved the 

lowest (and therefore the best) misdetection rate of 0.3% among the other models. In 

addition, it also achieved very high performance in fault classification in which the 

separation among classes was obviously visible. However in fault identification, it did 

not attain the best performance where it achieved 97.1% of the identification accuracy, 

although this result was obviously quite high.  As a comparison, the highest fault 

identification performance was achieved by PCA model 1b with 99.2% identification 

accuracy.  

The PCA model 2b was generated from the time-domain vibration signal of 

channel 2 by using sym8 wavelet family. This implies that channel 2 which 

corresponds to the mounting location of the accelerometer on the pump volute 

provides a better location for vibration acquisition than the other locations on the 

pump. Furthermore, in the PCA model 2b building process, Symlet 8 (sym8) 

decomposed the time-domain vibration signal at up to 5 levels and six statistical 

parameters were extracted from each level. The test results show that the 

decomposition processes using sym8 wavelet produced a better PCA model than the 

others.   
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As a final conclusion and in answering the main objective of the study, it can be 

expressed that the proposed wavelet-PCA based method can be used for vibration-

based multi fault diagnosis−consisting of fault detection, fault classification and fault 

identification−of centrifugal pumps, with some limitations as explained in the 

previous discussions. That is, different PCA models have to be employed for each 

transducer location in order to achieve the best performance. 

8.2 Suggestions for Future Work 

There are several aspects related to the study which can be explored further in 

order to improve the fault diagnosis performance of the proposed wavelet-PCA 

method. The future work may also aim to expand the generality of the method in fault 

diagnosis for other rotating machinery applications.    

It is important to investigate the use of different wavelet types to decompose the 

time-domain vibration signal in order to generate the most suitable features for the 

PCA model. For example, the application of different wavelet types like Daubechies, 

Coiflets, and Reverse Biorthogonal for feature extraction processes may be valuable 

for further investigation.     

There is a need to investigate the effect of Symlet types (sym-n) used to 

decompose the time-domain vibration signal in feature generation processes. This is 

due to the test results showing that a particular sym-n type provides a better PCA 

model than the other types. For instance, the sym8 wavelet type produced the PCA 

model 1b which gave a high performance in fault detection and PCA model 2b which 

achieved the best fault classification and fault identification. On the other hand, the 

results showed that sym4 (PCA model 1a and 2a) and sym12 (PCA model 1c and 2c) 

gave lower accuracy classification. This implies that sym4 and sym12 are not best 

suited for feature generation of PCA modelling processes with channels 1 and 2. 

The findings showed that the statistical features extracted from the time-domain 

vibration signals produced a strong fault diagnosis performance. However, an 

investigation to explore the use of statistical features extracted from the frequency-

domain and a combination from time- and frequency-domain is advisable. To enhance 

the quality of the features providing centrifugal pump fault-related information, it is 

important to develop a feature selection procedure in order to discard or weaken the 
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irrelevant features so that only the most prominent features would be fed to the PCA 

model building process. Moreover, the feature selection procedure also aims to avoid 

the difficulties with dimensionality.   

Further exploration of the use of the other variants of PCA like kernel-PCA 

(KPCA) may be beneficial to be examined. While the PCA is performed in the original 

sample space, the KPCA is carried out in the extended feature space. The method uses 

the kernel function and is most commonly applied in the system where a nonlinear 

condition most likely occurs. Even though the vibration signal obtained from the test 

did not indicate any non-linearity, the investigation of the use of KPCA is needed in 

order to evaluate its performance compared to the proposed method. 

The proposed wavelet-PCA method needs to be tested using different time-

domain vibration signals acquired from other pump sources. The test would evaluate 

the generality of the proposed method to fault diagnosis of various sizes of centrifugal 

pumps. It is also needed to test the proposed method using different capacity and 

operational speeds of the centrifugal pumps in order to assess the generalisation ability 

of the proposed method to the pump’s operational parameters.  

There is an aspect to evaluate other distance metrics in the kNN rule. Instead of 

applying the Euclidean distance metric, the use of Mahalanobis distance, Hamming 

distance, cosine distance or others are beneficial to be investigated in order to search 

better identification accuracy on fault identification. Furthermore, the use of other 

variants of kNN such as the weighted kNN (WkNN) would be interesting to be 

explored.     

There is scope to investigate other types of pump faults which are not examined 

in this study. The additional faults could be used to evaluate the applicability of the 

proposed method to the diversity of faults which are most likely to occur in the real 

world application.  

There is scope to extend the use of the proposed method; that is, instead of using 

vibration signals, it is a challenge to use acoustic emission signals to generate potential 

features for the PCA model building process. 
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  The future work may also include the application of the proposed method to 

fault diagnosis for other rotating machinery like induction motors, turbines and 

gearboxes. 
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Appendix A − MATLAB Script Code for Data Acquisition 

Using NI-9234 

%Script to run data acquisition using National Instrument NI 9234  

%Created: Dec 2013, Berli Kamiel 

  

clear all; 

clc; 

close all; 

  

plot_graph = 1; 

simpan_data = 1; 

tic; 

  

  

 s = daq.createSession('ni'); 

 s.DurationInSeconds = 1; 

 Dur = s.DurationInSeconds; 

 s.Rate = 48192; % sample rate 48192 / sec 

 s.addAnalogInputChannel('dev1', 'ai0', 'Accelerometer');  

 s.addAnalogInputChannel('dev1', 'ai1', 'Accelerometer'); 

 s.addAnalogInputChannel('dev1', 'ai2', 'Accelerometer'); 

 s.addAnalogInputChannel('dev1', 'ai3', 'Accelerometer'); 

  

 s.Channels(1).Sensitivity = 95.83E-3; 

 s.Channels(2).Sensitivity = 95.90E-3; 

 s.Channels(3).Sensitivity = 96.93E-3; 

 s.Channels(4).Sensitivity = 94.50E-3; 

     

     

 

     

for i=1:120 

     

    data = s.startForeground(); % start recording vibration data 

  

    data_ch1 = data(:,1); 

    data_ch2 = data(:,2); 

    data_ch3 = data(:,3); 

    data_ch4 = data(:,4); 

     

    if plot_graph == 1 

  

    figure(1) 

    subplot(4,1,1) 

    plot(data_ch1,'r-'); 

    xlabel('Samples'); 

    ylabel('Signal (Volts)'); 

    title('Acceleration data: Channel 1'); 

  

    subplot(4,1,2) 

    plot(data_ch2,'b-'); 

    xlabel('Samples'); 

    ylabel('Signal (Volts)'); 

    title('Acceleration data: Channel 2'); 

  

    subplot(4,1,3) 

    plot(data_ch3,'k-'); 

    xlabel('Samples'); 

    ylabel('Signal (Volts)'); 

    title('Acceleration data: Channel 2'); 
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    subplot(4,1,4) 

    plot(data_ch4,'g-'); 

    xlabel('Samples'); 

    ylabel('Signal (Volts)'); 

    title('Acceleration data: Channel 2'); 

         

    fft_data_ch1 = abs(fft(data_ch1))/length(data_ch1); 

    [ymax1,xmax1] = max(fft_data_ch1); 

  

    fft_data_ch2 = abs(fft(data_ch2))/length(data_ch2); 

    [ymax2,xmax2] = max(fft_data_ch2); 

       

    fft_data_ch3 = abs(fft(data_ch3))/length(data_ch3); 

    [ymax3,xmax3] = max(fft_data_ch3); 

         

    fft_data_ch4 = abs(fft(data_ch4))/length(data_ch4); 

    [ymax4,xmax4] = max(fft_data_ch4); 

  

    t = 1:1:length(fft_data_ch1)/2; 

    max_freq1 = num2str(xmax1); 

    max_freq2 = num2str(xmax2); 

    max_freq3 = num2str(xmax3); 

    max_freq4 = num2str(xmax4); 

         

    figure(2) 

    subplot(4,1,1) 

    plot(t/Dur,fft_data_ch1(1:1:length(fft_data_ch1)/2),'r-', xmax1,    

ymax1, 'bo'); 

    axis([0 (length(fft_data_ch1)/2+length(fft_data_ch1)*0.001) 0 

ymax1+ymax1*0.1]); 

    judul = ['FFT of signal: Max Freq: ' max_freq1 ,' Hz'];   

    title(judul); 

    xlabel('Frequency (Hz)'); 

    ylabel('Magnitude'); 

    grid on; 

  

    subplot(4,1,2) 

    plot(t/Dur,fft_data_ch2(1:1:length(fft_data_ch2)/2),'b-', xmax2, 

ymax2, 'ro'); 

    axis([0 (length(fft_data_ch2)/2+length(fft_data_ch2)*0.001) 0 

ymax2+ymax2*0.1]); 

    judul = ['FFT of signal: Max Freq: ' max_freq2 ,' Hz'];   

    title(judul); 

    xlabel('Frequency (Hz)'); 

    ylabel('Magnitude'); 

    grid on; 

         

    subplot(4,1,3) 

    plot(t/Dur,fft_data_ch3(1:1:length(fft_data_ch3)/2),'k-', xmax3, 

ymax3, 'ro'); 

    axis([0 (length(fft_data_ch3)/2+length(fft_data_ch3)*0.001) 0 

ymax3+ymax3*0.1]); 

    judul = ['FFT of signal: Max Freq: ' max_freq3 ,' Hz'];   

    title(judul); 

    xlabel('Frequency (Hz)'); 

    ylabel('Magnitude'); 

    grid on; 

         

    subplot(4,1,4) 

    plot(t/Dur,fft_data_ch4(1:1:length(fft_data_ch4)/2),'k-', xmax4, 

ymax4, 'ro'); 

    axis([0 (length(fft_data_ch4)/2+length(fft_data_ch4)*0.001) 0 

ymax4+ymax4*0.1]); 

    judul = ['FFT of signal: Max Freq: ' max_freq4 ,' Hz'];   

    title(judul); 

    xlabel('Frequency (Hz)'); 

    ylabel('Magnitude'); 
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    grid on; 

         

    end 

  

 % helpdoc datestr 

tanggal = datestr(now); 

tgl_date = datestr(tanggal,7); 

tgl_month = datestr(tanggal,5); 

tgl_year = datestr(tanggal,10); 

tgl_time = datestr(tanggal,13); 

tgl_ampm = datestr(tanggal, 15); 

hour = tgl_ampm(:,1:2); 

min = tgl_ampm(:,4:5); 

sec = tgl_time(:,7:8); 

format_tgl = [tgl_date tgl_month tgl_year '_' hour min sec]; 

  

rootname = 'c:\mat_data\';  % drive tujuan dan nama file 

extension = '.mat';     % ekstension utk nama file 

  

namafile = 

[rootname,'ch123_',tgl_date,tgl_month,'_',num2str(i),extension]; 

     

    data_all = [data_ch1 data_ch2 data_ch3 data_ch4]; 

     

    if simpan_data == 1 

       eval(['save ', namafile ,' data_all']); 

    end 

  

    pesan = ['Acquiring and saving data at loop number: ',num2str(i)]; 

    disp(pesan) 

  

end 

  

toc;
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Appendix B − Visualisation of Correlation Matrices for All 

Channels Using sym4, sym8 and sym12 

 

Figure B. 1 Correlation between principal components (PCs) and the features of 

channel 1 (using sym4 decomposition) 
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Figure B. 2 Correlation between principal components (PCs) and the features of 

channel 1 (using sym8 decomposition)

 

Figure B. 3 Correlation between principal components (PCs) and the features of 

channel 1 (using sym12 decomposition) 
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Figure B. 4 Correlation between principal components (PCs) and the features of 

channel 2 (using sym4 decomposition)

 

Figure B. 5 Correlation between principal components (PCs) and the features of 

channel 2 (using sym8 decomposition) 
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Figure B. 6 Correlation between principal components (PCs) and the features of 

channel 2 (using sym12 decomposition) 

 

Figure B. 7 Correlation between principal components (PCs) and the features of 

channel 3 (using sym4 decomposition) 
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Figure B. 8 Correlation between principal components (PCs) and the features of 

channel 3 (using sym8 decomposition) 

 

Figure B. 9 Correlation between principal components (PCs) and the features of 

channel 3 (using sym12 decomposition) 
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Figure B. 10 Correlation between principal components (PCs) and the features of 

channel 4 (using sym4 decomposition) 

 

Figure B. 11 Correlation between principal components (PCs) and the features of 

channel 4 (using sym8 decomposition) 
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Figure B. 12 Correlation between principal components (PCs) and the features of 

channel 4 (using sym8 decomposition) 
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Appendix C – Integrated Framework for Fault Diagnosis 

Code 

Module 1 – PCA Model Building 

% Script for extracting statistical features from decomposed time-domain 

% and then use the features to build PCA model 

% Created: Feb 2014, Berli Kamiel 

  

clear all; 

clc; 

close all; 

  

  

decomp_level=5; 

wave='sym12'; 

  

data_awal=1; 

data_akhir=70; 

  

%prepare matrix zeros for features' vector 

  

vector_ch1=zeros(data_akhir+1-data_awal,30); 

vector_ch2=zeros(data_akhir+1-data_awal,30); 

vector_ch3=zeros(data_akhir+1-data_awal,30); 

vector_ch4=zeros(data_akhir+1-data_awal,30);  

  

d1=0; 

  

for d=data_awal:data_akhir 

     

    signal_in=['C:\mat_data\Data_2013\sampling rate 

48192\04_12_2013_35hz_normal\ch123_0412_',int2str(d),'.mat']; 

    load (signal_in) 

     

    pesan= ['Processing data sequence no: ',signal_in]; 

    disp(pesan); 

     

  

    ch1 = data_all(:,1); 

    ch2 = data_all(:,2); 

    ch3 = data_all(:,3); 

    ch4 = data_all(:,4); 

     

     

    [ch1cA_0,~]=dwt(ch1,wave); 

    [ch2cA_0,~]=dwt(ch2,wave); 

    [ch3cA_0,~]=dwt(ch3,wave); 

    [ch4cA_0,~]=dwt(ch4,wave); 

     

   for K=1:4 

        

      for I=1:decomp_level 

         

        

eval(['[ch',int2str(K),'cA_',int2str(I),',~]=dwt(ch',int2str(K),'cA_',int2s

tr(I-1),',wave);']); 

    

       end 

   end 
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%calculate features from wavelet decomposed signal and put into 

corresponding vector_ch 

  

    d1=d1+1; 

  

    for i=1:4 

        for j=1:5 

         

          eval( [ 

'vector_ch',int2str(i),'(',int2str(d1),',',int2str(j),') = 

energi2(ch',int2str(i),'cA_',int2str(j),',',int2str(j),');']) 

          eval( [ 

'vector_ch',int2str(i),'(',int2str(d1),',',int2str(j+5),') = 

std(ch',int2str(i),'cA_',int2str(j),');']) 

          eval( [ 

'vector_ch',int2str(i),'(',int2str(d1),',',int2str(j+10),') = 

rms(ch',int2str(i),'cA_',int2str(j),',0);']) 

          eval( [ 

'vector_ch',int2str(i),'(',int2str(d1),',',int2str(j+15),') = 

kurtosis(ch',int2str(i),'cA_',int2str(j),');']) 

          eval( [ 

'vector_ch',int2str(i),'(',int2str(d1),',',int2str(j+20),') = 

var(ch',int2str(i),'cA_',int2str(j),');']) 

          eval( [ 

'vector_ch',int2str(i),'(',int2str(d1),',',int2str(j+25),') = 

crest(ch',int2str(i),'cA_',int2str(j),');']) 

       

        end 

    end 

end 

  

vector_ch1234(:,:,1)=vector_ch1; 

vector_ch1234(:,:,2)=vector_ch2; 

vector_ch1234(:,:,3)=vector_ch3; 

vector_ch1234(:,:,4)=vector_ch4; 

  

for i=1:4 

     

eval ( [ 

'[LOADING_ch',int2str(i),',SCORE_ch',int2str(i),',latent_ch',int2str(i),',T

2_ch',int2str(i),'] = 

princomp(zscore(vector_ch1234(:,:,',int2str(i),')));']); 

eval ( [ '[norm_vector_ch1234(:,:,',int2str(i),'),MU(i,:),SIGMA(i,:)] 

= zscore(vector_ch1234(:,:,',int2str(i),'));' ]) 

eval ( ['loading(:,:,',int2str(i),')=LOADING_ch',int2str(i),';']) 

eval ( ['score(:,:,',int2str(i),')=SCORE_ch',int2str(i),';']) 

eval ( ['latent(:,',int2str(i),')=latent_ch',int2str(i),';']) 

  

end 

  

figure(1) 

subplot(2,1,1) 

pareto(latent(1:30,1)) 

  

subplot(2,1,2) 

pareto(latent(1:30,2)) 

  

figure(2) 

subplot(2,1,1) 

pareto(latent(1:30,3)) 

  

subplot(2,1,2) 

pareto(latent(1:30,4)) 

  

figure(3) 

subplot(1,2,1) 

pareto(latent(1:30,1)) 
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subplot(1,2,2) 

pareto(latent(1:30,4)) 

  

  

save ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\baseline_PCAmodel_normal_35hz_sym12.mat','loading','score','latent',

'MU','SIGMA'); 

  

%***************************** 

%***************************** 

  

clear all; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\baseline_PCAmodel_normal_35hz_sym12.mat'); 

  

for i=1:4 

     

eval ( ['lamda',int2str(i),'=diag(latent(:,',int2str(i),'));' ]) 

CPV(:,i)=cumsum(latent(:,i))/sum(latent(:,i))*100; 

  

end 

  

% Building PCA model 

% **************************************************************** 

  

% criteria how many PCs retained in the PCA model 

  

totalVariance=95; 

for i=1:4 

    s=find( CPV(:,i)>totalVariance); 

    idx(i)=s(1); 

end 

  

% truncating lamda and loading matrix based on number of retained PCs 

  

for i=1:4 

    eval ( [ 

'PClamda_',int2str(i),'=lamda',int2str(i),'(1:idx(',int2str(i),'),1:idx(',i

nt2str(i),'));']) 

    eval ( [ 

'PCloading_',int2str(i),'=loading(:,1:idx(',int2str(i),'),',int2str(i),');'

]) 

end 

  

%PCAmodel created************************************************** 

  

filename='C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysi

s chapter 7\mat file sec7_6\truncating_PCAmodel_normal_35hz_sym12.mat'; 

  

save(filename) 
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Module 2 – Fault Detection 

% Script for fault detection using T2 and Q-statistic 

% Created: Feb 2014, Berli Kamiel 

  

clear all; 

clc; 

close all; 

  

filename2='C:\Users\13212047\Documents\MATLAB\script_thesis2014\anal

ysis chapter 7\mat file 

sec7_6\truncating_PCAmodel_normal_35hz_sym12.mat'; 

  

load(filename2) 

  

  

  

% converting PClamda and PCloading matrix 

  

for i=1:4 

    eval ( 

['PCloading_T_',int2str(i),'=transpose(PCloading_',int2str(i),');']) 

    eval ( 

['invPClamda_',int2str(i),'=inv(PClamda_',int2str(i),');']) 

    eval ( ['[r',int2str(i),',~]=size(PCloading_',int2str(i),');']) 

    eval ( [ 'E',int2str(i),'=eye(r',int2str(i),');']) 

end 

  

  

  

% input new data 

  

newdata_awal=71; 

newdata_akhir=120; 

  

decomp_level=5; 

wave='sym12'; 

  

d1=0; 

for k=newdata_awal:newdata_akhir 

     

     

    %newdata=['C:\mat_data\Data_2013\sampling rate 

48192\04_12_2013_35hz_normal\ch123_0412_',int2str(k),'.mat']; 

    %1newdata=['C:\mat_data\Data_2013\sampling rate 

48192\04_12_2013_35hz_normal_cavitation\ch123_0412_',int2str(k),'.mat']; 

    %2newdata=['C:\mat_data\Data_2013\sampling rate 

48192\04_12_2013_35hz_impeller\ch123_0412_',int2str(k),'.mat']; 

    

%3newdata=['C:\mat_data\Data_2014\22_03_2014_35Hz_bearing\ch123_2203_',in

t2str(k),'.mat']; 

    %4newdata=['C:\mat_data\Data_2013\sampling rate 

48192\04_12_2013_35hz_normal_blockage\ch123_0412_',int2str(k),'.mat']; 

    %5newdata=['C:\mat_data\Data_2013\sampling rate 

48192\04_12_2013_35hz_impeller_cavitation\ch123_0412_',int2str(k),'.mat']

; 

    %6newdata=['C:\mat_data\Data_2013\sampling rate 

48192\04_12_2013_35hz_impeller_blockage\ch123_0412_',int2str(k),'.mat']; 

    

newdata=['C:\mat_data\Data_2014\22_03_2014_35hz_bearing_cav\ch123_2203_',

int2str(k),'.mat']; 

     

    load(newdata) 

     

        

    pesan= ['Processing new data sequence no: ',newdata]; 

    disp(pesan); 
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    ch1 = data_all(:,1); 

    ch2 = data_all(:,2); 

    ch3 = data_all(:,3); 

    ch4 = data_all(:,4); 

     

     

    [ch1cA_0,~]=dwt(ch1,wave); 

    [ch2cA_0,~]=dwt(ch2,wave); 

    [ch3cA_0,~]=dwt(ch3,wave); 

    [ch4cA_0,~]=dwt(ch4,wave); 

     

   for K=1:4 

        

      for I=1:decomp_level 

         

        

eval(['[ch',int2str(K),'cA_',int2str(I),',~]=dwt(ch',int2str(K),'cA_',int

2str(I-1),',wave);']); 

    

       end 

   end 

  

     

  

%calculate features from wavelet decomposed signal and put into 

corresponding vector_ch 

  

    d1=d1+1; 

  

    for i=1:4 

        for j=1:5 

         

          eval( [ 

'vector_ch',int2str(i),'(',int2str(d1),',',int2str(j),') = 

energi2(ch',int2str(i),'cA_',int2str(j),',',int2str(j),');']) 

          eval( [ 

'vector_ch',int2str(i),'(',int2str(d1),',',int2str(j+5),') = 

std(ch',int2str(i),'cA_',int2str(j),');']) 

          eval( [ 

'vector_ch',int2str(i),'(',int2str(d1),',',int2str(j+10),') = 

rms(ch',int2str(i),'cA_',int2str(j),',0);']) 

          eval( [ 

'vector_ch',int2str(i),'(',int2str(d1),',',int2str(j+15),') = 

kurtosis(ch',int2str(i),'cA_',int2str(j),');']) 

          eval( [ 

'vector_ch',int2str(i),'(',int2str(d1),',',int2str(j+20),') = 

var(ch',int2str(i),'cA_',int2str(j),');']) 

          eval( [ 

'vector_ch',int2str(i),'(',int2str(d1),',',int2str(j+25),') = 

crest(ch',int2str(i),'cA_',int2str(j),');']) 

       

        end 

    end 

  

    % normalized vector_ch 

    for i=1:4 

        eval ( ['step_vector_ch',int2str(i),' = 

bsxfun(@minus,vector_ch',int2str(i),',MU(i,:));']) 

        eval ( ['norm_vector_ch',int2str(i),' = 

bsxfun(@rdivide,step_vector_ch',int2str(i),',SIGMA(i,:));']) 

    end 

  

%vector_ch1234(:,:,1)=vector_ch1; 

%vector_ch1234(:,:,2)=vector_ch2; 

%vector_ch1234(:,:,3)=vector_ch3; 

%vector_ch1234(:,:,4)=vector_ch4; 
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   % calculating T squared 

    for i=1:4 

        eval ( ['T2_ch',int2str(i),'(d1) 

=norm_vector_ch',int2str(i),'(d1,:)*PCloading_',int2str(i),'*invPClamda_'

,int2str(i),'*PCloading_T_',int2str(i),'*transpose(norm_vector_ch',int2st

r(i),'(d1,:));']) 

    end 

     

    % calculating Q statistic 

     

    for i=1:4 

        eval ( [ 'Q_ch',int2str(i),'(d1)= ( norm ( 

norm_vector_ch',int2str(i),'(d1,:)* (E',int2str(i),'-

PCloading_',int2str(i),'*PCloading_T_',int2str(i),')) ).^2;']) 

    end 

     

     

end 

  

%calculating score for fault condition 

     

for i=1:4     

    eval( 

['score_faulty',int2str(i),'=norm_vector_ch',int2str(i),'*PCloading_',int

2str(i),';']) 

end 

  

%the following line is to save T2 and Q into file 

  

   

  %save 

('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis chapter 

7\mat file 

sec7_6\T_Q_sym12\normal_T_Q_sym12.mat','T2_ch1','T2_ch2','T2_ch3','T2_ch4

','Q_ch1','Q_ch2','Q_ch3','Q_ch4'); 

%1save 

('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis chapter 

7\mat file 

sec7_6\T_Q_sym12\cavitation_T_Q_sym12.mat','T2_ch1','T2_ch2','T2_ch3','T2

_ch4','Q_ch1','Q_ch2','Q_ch3','Q_ch4'); 

%2save 

('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis chapter 

7\mat file 

sec7_6\T_Q_sym12\impeller_T_Q_sym12.mat','T2_ch1','T2_ch2','T2_ch3','T2_c

h4','Q_ch1','Q_ch2','Q_ch3','Q_ch4'); 

%3save 

('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis chapter 

7\mat file 

sec7_6\T_Q_sym12\bearing_T_Q_sym12.mat','T2_ch1','T2_ch2','T2_ch3','T2_ch

4','Q_ch1','Q_ch2','Q_ch3','Q_ch4'); 

%4save 

('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis chapter 

7\mat file 

sec7_6\T_Q_sym12\blockage_T_Q_sym12.mat','T2_ch1','T2_ch2','T2_ch3','T2_c

h4','Q_ch1','Q_ch2','Q_ch3','Q_ch4'); 

%5save 

('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis chapter 

7\mat file 

sec7_6\T_Q_sym12\impellercavitation_T_Q_sym12.mat','T2_ch1','T2_ch2','T2_

ch3','T2_ch4','Q_ch1','Q_ch2','Q_ch3','Q_ch4'); 

%6save 

('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis chapter 

7\mat file 

sec7_6\T_Q_sym12\impellerblockage_T_Q_sym12.mat','T2_ch1','T2_ch2','T2_ch

3','T2_ch4','Q_ch1','Q_ch2','Q_ch3','Q_ch4'); 
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save ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\bearingcavitation_T_Q_sym12.mat','T2_ch1','T2_ch2','T2_c

h3','T2_ch4','Q_ch1','Q_ch2','Q_ch3','Q_ch4'); 

  

%save 

('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis chapter 

7\mat file 

sec7_6\T_Q_sym12\bearingcavitation_score_matrix_sym12.mat','score_faulty1

','score_faulty2','score_faulty3','score_faulty4'); 

%save 

('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis chapter 

7\mat file sec7_6\T_Q_sym12\baseline_latent.mat','latent'); 
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Module 3 − Plotting T2 and Q-statistic 

%Script to plot T and Q statistic 

%Created: Mar 2014, Berli Kamiel 

  

clear all; 

clc; 

close all; 

  

%%%%%%%%%%%%%%%%%%%%%% LOAD T_Q sym4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\normal_T_Q_sym4.mat') 

T2_Ch1_normal_sym4=T2_ch1; 

Q_Ch1_normal_sym4=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\cavitation_T_Q_sym4.mat') 

T2_Ch1_cavitation_sym4=T2_ch1; 

Q_Ch1_cavitation_sym4=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\impeller_T_Q_sym4.mat') 

T2_Ch1_impeller_sym4=T2_ch1; 

Q_Ch1_impeller_sym4=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\bearing_T_Q_sym4.mat') 

T2_Ch1_bearing_sym4=T2_ch1; 

Q_Ch1_bearing_sym4=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\blockage_T_Q_sym4.mat') 

T2_Ch1_blockage_sym4=T2_ch1; 

Q_Ch1_blockage_sym4=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\impellercavitation_T_Q_sym4.mat') 

T2_Ch1_impellercavitation_sym4=T2_ch1; 

Q_Ch1_impellercavitation_sym4=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\impellerblockage_T_Q_sym4.mat') 

T2_Ch1_impellerblockage_sym4=T2_ch1; 

Q_Ch1_impellerblockage_sym4=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\bearingcavitation_T_Q_sym4.mat') 

T2_Ch1_bearingcavitation_sym4=T2_ch1; 

Q_Ch1_bearingcavitation_sym4=Q_ch1; 

  

%%%%%%%%%%%%%%%%%%%%%% END LOAD T_Q sym4 %%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%%%%% COMBINE T_Q sym4 %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

T2_Ch1_sym4=[T2_Ch1_normal_sym4,T2_Ch1_cavitation_sym4,T2_Ch1_impell

er_sym4,T2_Ch1_bearing_sym4,... 

    

T2_Ch1_blockage_sym4,T2_Ch1_impellercavitation_sym4,T2_Ch1_impellerblocka

ge_sym4,T2_Ch1_bearingcavitation_sym4]; 

  

Q_Ch1_sym4=[Q_Ch1_normal_sym4,Q_Ch1_cavitation_sym4,Q_Ch1_impeller_s

ym4,Q_Ch1_bearing_sym4,... 

    

Q_Ch1_blockage_sym4,Q_Ch1_impellercavitation_sym4,Q_Ch1_impellerblockage_

sym4,Q_Ch1_bearingcavitation_sym4]; 
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%%%%%%%%%%%%%%%%%%%%% END COMBINE T_Q sym4 %%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

  

%############################ 

  

%%%%%%%%%%%%%%%%%%%%%% LOAD T_Q sym8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\normal_T_Q_sym8.mat') 

T2_Ch1_normal_sym8=T2_ch1; 

Q_Ch1_normal_sym8=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\cavitation_T_Q_sym8.mat') 

T2_Ch1_cavitation_sym8=T2_ch1; 

Q_Ch1_cavitation_sym8=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\impeller_T_Q_sym8.mat') 

T2_Ch1_impeller_sym8=T2_ch1; 

Q_Ch1_impeller_sym8=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\bearing_T_Q_sym8.mat') 

T2_Ch1_bearing_sym8=T2_ch1; 

Q_Ch1_bearing_sym8=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\blockage_T_Q_sym8.mat') 

T2_Ch1_blockage_sym8=T2_ch1; 

Q_Ch1_blockage_sym8=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\impellercavitation_T_Q_sym8.mat') 

T2_Ch1_impellercavitation_sym8=T2_ch1; 

Q_Ch1_impellercavitation_sym8=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\impellerblockage_T_Q_sym8.mat') 

T2_Ch1_impellerblockage_sym8=T2_ch1; 

Q_Ch1_impellerblockage_sym8=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\bearingcavitation_T_Q_sym8.mat') 

T2_Ch1_bearingcavitation_sym8=T2_ch1; 

Q_Ch1_bearingcavitation_sym8=Q_ch1; 

  

%%%%%%%%%%%%%%%%%%%%%% END LOAD T_Q sym4 %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%%%%% COMBINE T_Q sym4 %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

T2_Ch1_sym8=[T2_Ch1_normal_sym8,T2_Ch1_cavitation_sym8,T2_Ch1_impell

er_sym8,T2_Ch1_bearing_sym8,... 

    

T2_Ch1_blockage_sym8,T2_Ch1_impellercavitation_sym8,T2_Ch1_impellerblocka

ge_sym8,T2_Ch1_bearingcavitation_sym8]; 

  

Q_Ch1_sym8=[Q_Ch1_normal_sym8,Q_Ch1_cavitation_sym8,Q_Ch1_impeller_s

ym8,Q_Ch1_bearing_sym8,... 

    

Q_Ch1_blockage_sym8,Q_Ch1_impellercavitation_sym8,Q_Ch1_impellerblockage_

sym8,Q_Ch1_bearingcavitation_sym8]; 

%%%%%%%%%%%%%%%%%%%%% END COMBINE T_Q sym4 %%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
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%%%%%%%%%%%%%%%%%%%%%% LOAD T_Q sym12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\normal_T_Q_sym12.mat') 

T2_Ch1_normal_sym12=T2_ch1; 

Q_Ch1_normal_sym12=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\cavitation_T_Q_sym12.mat') 

T2_Ch1_cavitation_sym12=T2_ch1; 

Q_Ch1_cavitation_sym12=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\impeller_T_Q_sym12.mat') 

T2_Ch1_impeller_sym12=T2_ch1; 

Q_Ch1_impeller_sym12=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\bearing_T_Q_sym12.mat') 

T2_Ch1_bearing_sym12=T2_ch1; 

Q_Ch1_bearing_sym12=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\blockage_T_Q_sym12.mat') 

T2_Ch1_blockage_sym12=T2_ch1; 

Q_Ch1_blockage_sym12=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\impellercavitation_T_Q_sym12.mat') 

T2_Ch1_impellercavitation_sym12=T2_ch1; 

Q_Ch1_impellercavitation_sym12=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\impellerblockage_T_Q_sym12.mat') 

T2_Ch1_impellerblockage_sym12=T2_ch1; 

Q_Ch1_impellerblockage_sym12=Q_ch1; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\bearingcavitation_T_Q_sym12.mat') 

T2_Ch1_bearingcavitation_sym12=T2_ch1; 

Q_Ch1_bearingcavitation_sym12=Q_ch1; 

  

%%%%%%%%%%%%%%%%%%%%%% END LOAD T_Q sym4 %%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%%%%% COMBINE T_Q sym4 %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

T2_Ch1_sym12=[T2_Ch1_normal_sym12,T2_Ch1_cavitation_sym12,T2_Ch1_imp

eller_sym12,T2_Ch1_bearing_sym12,... 

    

T2_Ch1_blockage_sym12,T2_Ch1_impellercavitation_sym12,T2_Ch1_impellerbloc

kage_sym12,T2_Ch1_bearingcavitation_sym12]; 

  

Q_Ch1_sym12=[Q_Ch1_normal_sym12,Q_Ch1_cavitation_sym12,Q_Ch1_impelle

r_sym12,Q_Ch1_bearing_sym12,... 

    

Q_Ch1_blockage_sym12,Q_Ch1_impellercavitation_sym12,Q_Ch1_impellerblockag

e_sym12,Q_Ch1_bearingcavitation_sym12]; 

%%%%%%%%%%%%%%%%%%%%% END COMBINE T_Q sym4 %%%%%%%%%%%%%%%%%%%%%%%%% 

  

   

  

%%%%%%%%%%%%%%%%%%%LOAD EIGENVALUES (or VARIANCE)%%%%%%%%%%%%%%%%%%% 

 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\baseline_latent_sym4.mat') 

latent_sym4=latent; 
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load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\baseline_latent_sym8.mat') 

latent_sym8=latent; 

  

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\baseline_latent_sym12.mat') 

latent_sym12=latent; 

clear latent 

 

%%%%%%%%%%%%%%%%%%%%%%%%% END LOAD EIGENVALUES %%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%% CPV CALCULATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

for i=1:4 

     

    %eval ( ['lamda',int2str(i),'=diag(latent(:,',int2str(i),'));' 

]) 

    

CPV_sym4(:,i)=cumsum(latent_sym4(:,i))/sum(latent_sym4(:,i))*100; 

    

CPV_sym8(:,i)=cumsum(latent_sym8(:,i))/sum(latent_sym8(:,i))*100; 

    

CPV_sym12(:,i)=cumsum(latent_sym12(:,i))/sum(latent_sym12(:,i))*100; 

end 

  

% criteria how many PCs retained in the PCA model 

  

totalVariance=95; 

for i=1:4 

    s_sym4=find( CPV_sym4(:,i)>totalVariance); 

    idx_sym4(i)=s_sym4(1); 

     

    s_sym8=find( CPV_sym8(:,i)>totalVariance); 

    idx_sym8(i)=s_sym8(1); 

     

    s_sym12=find( CPV_sym12(:,i)>totalVariance); 

    idx_sym12(i)=s_sym12(1); 

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%% END CPV %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%%%%%%%%%%%%%%%%%%%%%%%%% T2alfa %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%sym4 

T2alfa_sym4=idx_sym4(1)*(30-1)/(30-idx_sym4(1))*2.4422; 

%sym8 

T2alfa_sym8=idx_sym8(1)*(30-1)/(30-idx_sym8(1))*2.3965; 

%sym12 

T2alfa_sym12=idx_sym12(1)*(30-1)/(30-idx_sym12(1))*2.3965; 

%%%%%%%%%%%%%%%%%%%%%%% END T2alfa %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%%%%%%%%%%%%%%%%%%%%%%%% Qalfa %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%Qsym4 

Teta1= sum( (latent_sym4(idx_sym4(1):30,1)).^1); 

Teta2= sum( (latent_sym4(idx_sym4(1):30,1)).^2); 

Teta3= sum( (latent_sym4(idx_sym4(1):30,1)).^3); 

  

h0=1- ((2*Teta1*Teta3)/(3*Teta2^2)); 

c_alpha=1.96; 

  

a1=h0*c_alpha*sqrt(2*Teta2)/Teta1; 

a2=Teta2*h0*(h0-1)/Teta1^2; 

  

Q_alfa_sym4=Teta1*(a1+1+a2)^(1/h0); 

  

%----------------------------------------------------- 
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%Q_sym8 

Teta1= sum( (latent_sym8(idx_sym8(1):30,1)).^1); 

Teta2= sum( (latent_sym8(idx_sym8(1):30,1)).^2); 

Teta3= sum( (latent_sym8(idx_sym8(1):30,1)).^3); 

  

h0=1- ((2*Teta1*Teta3)/(3*Teta2^2)); 

c_alpha=1.96; 

  

a1=h0*c_alpha*sqrt(2*Teta2)/Teta1; 

a2=Teta2*h0*(h0-1)/Teta1^2; 

  

Q_alfa_sym8=Teta1*(a1+1+a2)^(1/h0); 

  

%---------------------------------------------------- 

  

%Qsym12 

Teta1= sum( (latent_sym12(idx_sym12(1):30,1)).^1); 

Teta2= sum( (latent_sym12(idx_sym12(1):30,1)).^2); 

Teta3= sum( (latent_sym12(idx_sym12(1):30,1)).^3); 

  

h0=1- ((2*Teta1*Teta3)/(3*Teta2^2)); 

c_alpha=1.96; 

  

a1=h0*c_alpha*sqrt(2*Teta2)/Teta1; 

a2=Teta2*h0*(h0-1)/Teta1^2; 

  

Q_alfa_sym12=Teta1*(a1+1+a2)^(1/h0); 

  

  

%%%%%%%%%%%%%%%%%%%%%%% END Qalfa %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

  

figure1=figure; 

  

semilogy(T2_Ch1_sym4,'-*b','MarkerSize',2) 

hold on 

semilogy(T2_Ch1_sym8,'-*r','Markersize',2) 

semilogy(T2_Ch1_sym12,'-*g','MarkerSize',2) 

line( [0 400],[T2alfa_sym4 T2alfa_sym4],'LineStyle','-','color','b') 

line( [0 400],[T2alfa_sym8 T2alfa_sym8],'LineStyle','-','color','r') 

line( [0 400],[T2alfa_sym12 T2alfa_sym12],'LineStyle','-

','color','g') 

legend('PCA model 1a','PCA model 1b','PCA model 

1c','Location','NorthWest') 

ylabel('T^{2}-statistic') 

xlabel('Samples') 

  

%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

% Create textbox T2 STATISTIC 

annotation(figure1,'textbox',... 

    [0.235285714285714 0.541904761904763 0.0847142857142857 

0.0500000000000008],... 

    'String',{'fault1'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure1,'textbox',... 

    [0.814632895294616 0.863706147586056 0.0847142857142857 

0.0500000000000008],... 

    'String',{'fault7'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure1,'textbox',... 
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    [0.435642857142856 0.87666666666667 0.0847142857142857 

0.0500000000000008],... 

    'String',{'fault3'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure1,'textbox',... 

    [0.531742899533701 0.369523809523811 0.0847142857142857 

0.0500000000000008],... 

    'String',{'fault4'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure1,'textbox',... 

    [0.620270877490463 0.561165731881668 0.0847142857142857 

0.0500000000000008],... 

    'String',{'fault5'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure1,'textbox',... 

    [0.725612123781264 0.441073353128781 0.0847142857142857 

0.0500000000000008],... 

    'String',{'fault6'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure1,'textbox',... 

    [0.33443471810089 0.395785769273069 0.0847142857142857 

0.0500000000000008],... 

    'String',{'fault2'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure1,'textbox',... 

    [0.142924544298432 0.314285714285714 0.0847142857142857 

0.0500000000000008],... 

    'String',{'normal'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

% ^^^^^^^^^^^^^^^^^ END CREATE TEXTBOX T2 STATISTIC 

^^^^^^^^^^^^^^^^^^^^^^ 

  

figure2=figure; 

  

semilogy(Q_Ch1_sym4,'-*b','MarkerSize',2) 

hold on 

semilogy(Q_Ch1_sym8,'-*r','Markersize',2) 

semilogy(Q_Ch1_sym12,'-*g','MarkerSize',2) 

line( [0 400],[Q_alfa_sym4 Q_alfa_sym4],'LineStyle','-','color','b') 

line( [0 400],[Q_alfa_sym8 Q_alfa_sym8],'LineStyle','-','color','r') 

line( [0 400],[Q_alfa_sym12 Q_alfa_sym12],'LineStyle','-

','color','g') 

legend('PCA model 1a','PCA model 1b','PCA model 

1c','Location','NorthWest') 

ylabel('Q-statistic') 

xlabel('Samples') 

  

%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

% Create textbox Q-statistic 

annotation(figure2,'textbox',... 

    [0.140285714285714 0.319047619047619 0.0686428571428571 

0.0452380952380959],... 
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    'String',{'normal'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure2,'textbox',... 

    [0.245807121661721 0.510392609699769 0.0613145400593472 

0.0461893764434181],... 

    'String',{'fault1'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure2,'textbox',... 

    [0.342958456973294 0.451131639722864 0.0613145400593472 

0.0461893764434181],... 

    'String',{'fault2'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure2,'textbox',... 

    [0.43939762611276 0.816027713625866 0.0613145400593472 

0.0461893764434181],... 

    'String',{'fault3'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure2,'textbox',... 

    [0.828121661721069 0.818337182448037 0.0613145400593472 

0.0461893764434181],... 

    'String',{'fault7'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure2,'textbox',... 

    [0.73019881305638 0.471916859122402 0.0613145400593472 

0.0461893764434181],... 

    'String',{'fault6'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure2,'textbox',... 

    [0.632275964391692 0.536581986143187 0.0613145400593472 

0.0461893764434181],... 

    'String',{'fault5'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

  

% Create textbox 

annotation(figure2,'textbox',... 

    [0.540287833827893 0.402632794457275 0.0613145400593472 

0.0461893764434181],... 

    'String',{'fault4'},... 

    'FitBoxToText','off',... 

    'LineStyle','none'); 

%^^^^^^^^^^^^^^^^^^^^^ END CREATE TEXT BOX Q STATISTIC^^^^^^^^^^^^^^ 

  

%OOOOOOOOOOOOOOOOOO CALCULATE MISDETECTION OOOOOOOOOOOOOOOOOOOOOOOOO 

%T2 

  

T2idx_sym4_normal=size(find(T2_Ch1_sym4(1:50)>T2alfa_sym4)); 

T2idx_sym4_fault=size(find(T2_Ch1_sym4(51:400)<T2alfa_sym4)); 

T2idx_sym4_total=(T2idx_sym4_normal(2)+T2idx_sym4_fault(2)); 

misdetection_T2_sym4=T2idx_sym4_total/400 *100 
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T2idx_sym8_normal=size(find(T2_Ch1_sym8(1:50)>T2alfa_sym8)); 

T2idx_sym8_fault=size(find(T2_Ch1_sym8(51:400)<T2alfa_sym8)); 

T2idx_sym8_total=(T2idx_sym8_normal(2)+T2idx_sym8_fault(2)); 

misdetection_T2_sym8=T2idx_sym8_total/400*100 

  

T2idx_sym12_normal=size(find(T2_Ch1_sym12(1:50)>T2alfa_sym12)); 

T2idx_sym12_fault=size(find(T2_Ch1_sym12(51:400)<T2alfa_sym12)); 

T2idx_sym12_total=(T2idx_sym12_normal(2)+T2idx_sym12_fault(2)); 

misdetection_T2_sym12=T2idx_sym12_total/400*100 

% END T2 

  

% Q 

  

Qidx_sym4_normal=size(find(Q_Ch1_sym4(1:50)>Q_alfa_sym4)); 

Qidx_sym4_fault=size(find(Q_Ch1_sym4(51:400)<Q_alfa_sym4)); 

Qidx_sym4_total=(Qidx_sym4_normal(2)+Qidx_sym4_fault(2)); 

misdetection_Q_sym4=Qidx_sym4_total/400 *100 

  

Qidx_sym8_normal=size(find(Q_Ch1_sym8(1:50)>Q_alfa_sym8)); 

Qidx_sym8_fault=size(find(Q_Ch1_sym8(51:400)<Q_alfa_sym8)); 

Qidx_sym8_total=(Qidx_sym8_normal(2)+Qidx_sym8_fault(2)); 

misdetection_Q_sym8=Qidx_sym8_total/400 *100 

  

Qidx_sym12_normal=size(find(Q_Ch1_sym12(1:50)>Q_alfa_sym12)); 

Qidx_sym12_fault=size(find(Q_Ch1_sym12(51:400)<Q_alfa_sym12)); 

Qidx_sym12_total=(Qidx_sym12_normal(2)+Qidx_sym12_fault(2)); 

misdetection_Q_sym12=Qidx_sym12_total/400 *100 

% END Q 

  

%OOOOOOOOOOOOOOOOOO END CALCULATE MISDETECTION OOOOOOOOOOOOOOOOOOOOO 
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Module 4 − Plotting Score Matrix 

%Script to plot Score Matrix 

%Created: Mar 2014, Berli Kamiel 

  

clear all; 

clc; 

close all; 

  

%$$$$$$$$$$$$$$$$$$$$ LOAD SCORE sym4 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

  

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\normal_score_matrix_sym4.mat') 

normal_score_faulty1_ch1_sym4=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\cavitation_score_matrix_sym4.mat') 

cavitation_score_faulty1_ch1_sym4=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\impeller_score_matrix_sym4.mat') 

impeller_score_faulty1_ch1_sym4=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\bearing_score_matrix_sym4.mat') 

bearing_score_faulty1_ch1_sym4=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym4\blockage_score_matrix_sym4.mat') 

blockage_score_faulty1_ch1_sym4=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\impellercavitation_score_matrix_sym4.mat') 

impellercavitation_score_faulty1_ch1_sym4=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\impellerblockage_score_matrix_sym4.mat') 

impellerblockage_score_faulty1_ch1_sym4=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\bearingcavitation_score_matrix_sym4.mat') 

bearingcavitation_score_faulty1_ch1_sym4=score_faulty1; 

  

%$$$$$$$$$$$$$$$$$$$$ END LOAD SCORE sym4 %%%%%%%%%%%%%%%%%%%%%%%%% 

  

%******************** LOAD SCORE sym8 ****************************** 

  

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\normal_score_matrix_sym8.mat') 

normal_score_faulty1_ch1_sym8=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\cavitation_score_matrix_sym8.mat') 

cavitation_score_faulty1_ch1_sym8=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\impeller_score_matrix_sym8.mat') 

impeller_score_faulty1_ch1_sym8=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\bearing_score_matrix_sym8.mat') 

bearing_score_faulty1_ch1_sym8=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym8\blockage_score_matrix_sym8.mat') 

blockage_score_faulty1_ch1_sym8=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\impellercavitation_score_matrix_sym8.mat') 

impellercavitation_score_faulty1_ch1_sym8=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\impellerblockage_score_matrix_sym8.mat') 

impellerblockage_score_faulty1_ch1_sym8=score_faulty1; 
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load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\bearingcavitation_score_matrix_sym8.mat') 

bearingcavitation_score_faulty1_ch1_sym8=score_faulty1; 

  

%******************* END LOAD SCORE sym8 *************************** 

  

%^^^^^^^^^^^^^^^^^^^ LOAD SCORE sym12 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

  

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\normal_score_matrix_sym12.mat') 

normal_score_faulty1_ch1_sym12=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\cavitation_score_matrix_sym12.mat') 

cavitation_score_faulty1_ch1_sym12=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\impeller_score_matrix_sym12.mat') 

impeller_score_faulty1_ch1_sym12=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\bearing_score_matrix_sym12.mat') 

bearing_score_faulty1_ch1_sym12=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_6\T_Q_sym12\blockage_score_matrix_sym12.mat') 

blockage_score_faulty1_ch1_sym12=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\impellercavitation_score_matrix_sym12.mat') 

impellercavitation_score_faulty1_ch1_sym12=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\impellerblockage_score_matrix_sym12.mat') 

impellerblockage_score_faulty1_ch1_sym12=score_faulty1; 

load('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\bearingcavitation_score_matrix_sym12.mat') 

bearingcavitation_score_faulty1_ch1_sym12=score_faulty1; 

  

%^^^^^^^^^^^^^^^^^^^^ END LOAD SCORE sym12 ^^^^^^^^^^^^^^^^^^^^^^^^^ 

  

  

  

%&&&&&&&&&&&&&&&&&&&& PLOT sym4 &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

  

figure1=figure; 

  

  

plot3(normal_score_faulty1_ch1_sym4(:,1),normal_score_faulty1_ch1_sy

m4(:,2),normal_score_faulty1_ch1_sym4(:,3),'h') 

hold on 

plot3(cavitation_score_faulty1_ch1_sym4(:,1),cavitation_score_faulty

1_ch1_sym4(:,2),cavitation_score_faulty1_ch1_sym4(:,3),'o','color','g') 

plot3(impeller_score_faulty1_ch1_sym4(:,1),impeller_score_faulty1_ch

1_sym4(:,2),impeller_score_faulty1_ch1_sym4(:,3),'*','color','r') 

plot3(bearing_score_faulty1_ch1_sym4(:,1),bearing_score_faulty1_ch1_

sym4(:,2),bearing_score_faulty1_ch1_sym4(:,3),'d','color','r') 

plot3(blockage_score_faulty1_ch1_sym4(:,1),blockage_score_faulty1_ch

1_sym4(:,2),blockage_score_faulty1_ch1_sym4(:,3),'square','color','y','Ma

rkerSize',3) 

plot3(impellercavitation_score_faulty1_ch1_sym4(:,1),impellercavitat

ion_score_faulty1_ch1_sym4(:,2),impellercavitation_score_faulty1_ch1_sym4

(:,3),'>','color','m') 

plot3(impellerblockage_score_faulty1_ch1_sym4(:,1),impellerblockage_

score_faulty1_ch1_sym4(:,2),impellerblockage_score_faulty1_ch1_sym4(:,3),

'^','color','g') 

plot3(bearingcavitation_score_faulty1_ch1_sym4(:,1),bearingcavitatio

n_score_faulty1_ch1_sym4(:,2),bearingcavitation_score_faulty1_ch1_sym4(:,

3),'p','color','c') 

xlabel('Scores on PC1','FontSize',8) 



Appendix C 

242 

ylabel('Scores on PC2','FontSize',8) 

zlabel('Scores on PC3','FontSize',8) 

title('(a)') 

grid 

legend('normal','fault1','fault2','fault3','fault4','fault5','fault6

','fault7','location','NorthWest') 

FigHandle = figure1; 

set(FigHandle, 'Position', [50, 50, 450, 600]); 

set(gca,'FontSize',8) 

view([-57 6]) 

  

figure2=figure; 

  

  

plot3(normal_score_faulty1_ch1_sym4(:,1),normal_score_faulty1_ch1_sy

m4(:,2),normal_score_faulty1_ch1_sym4(:,3),'h') 

hold on 

plot3(cavitation_score_faulty1_ch1_sym4(:,1),cavitation_score_faulty

1_ch1_sym4(:,2),cavitation_score_faulty1_ch1_sym4(:,3),'o','color','g') 

plot3(impeller_score_faulty1_ch1_sym4(:,1),impeller_score_faulty1_ch

1_sym4(:,2),impeller_score_faulty1_ch1_sym4(:,3),'*','color','r') 

%plot3(bearing_score_faulty1_ch1_sym4(:,1),bearing_score_faulty1_ch1

_sym4(:,2),bearing_score_faulty1_ch1_sym4(:,3),'d','color','r') 

plot3(blockage_score_faulty1_ch1_sym4(:,1),blockage_score_faulty1_ch

1_sym4(:,2),blockage_score_faulty1_ch1_sym4(:,3),'square','color','y','Ma

rkerSize',3) 

plot3(impellercavitation_score_faulty1_ch1_sym4(:,1),impellercavitat

ion_score_faulty1_ch1_sym4(:,2),impellercavitation_score_faulty1_ch1_sym4

(:,3),'>','color','m') 

plot3(impellerblockage_score_faulty1_ch1_sym4(:,1),impellerblockage_

score_faulty1_ch1_sym4(:,2),impellerblockage_score_faulty1_ch1_sym4(:,3),

'^','color','g') 

%plot3(bearingcavitation_score_faulty1_ch1_sym4(:,1),bearingcavitati

on_score_faulty1_ch1_sym4(:,2),bearingcavitation_score_faulty1_ch1_sym4(:

,3),'p','color','c') 

xlabel('Scores on PC1','FontSize',8) 

ylabel('Scores on PC2','FontSize',8) 

zlabel('Scores on PC3','FontSize',8) 

title('(b)') 

grid 

legend('normal','fault1','fault2','fault4','fault5','fault6','locati

on','NorthWest') 

FigHandle = figure2; 

set(FigHandle, 'Position', [550, 50, 450, 600]); 

set(gca,'FontSize',8) 

view([-57 6]) 

%&&&&&&&&&&&&&&&&&&&&&&&&&&& END PLOT sym4 &&&&&&&&&&&&&&&&&&&&&&&&& 

  

%~~~~~~~~~~~~~~~~~~~~~~~~~ PLOT sym8 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

figure3=figure; 

  

plot3(normal_score_faulty1_ch1_sym8(:,1),normal_score_faulty1_ch1_sy

m8(:,2),normal_score_faulty1_ch1_sym8(:,3),'h') 

hold on 

plot3(cavitation_score_faulty1_ch1_sym8(:,1),cavitation_score_faulty

1_ch1_sym8(:,2),cavitation_score_faulty1_ch1_sym8(:,3),'o','color','g') 

plot3(impeller_score_faulty1_ch1_sym8(:,1),impeller_score_faulty1_ch

1_sym8(:,2),impeller_score_faulty1_ch1_sym8(:,3),'*','color','r') 

plot3(bearing_score_faulty1_ch1_sym8(:,1),bearing_score_faulty1_ch1_

sym8(:,2),bearing_score_faulty1_ch1_sym8(:,3),'d','color','r') 

plot3(blockage_score_faulty1_ch1_sym8(:,1),blockage_score_faulty1_ch

1_sym8(:,2),blockage_score_faulty1_ch1_sym8(:,3),'square','color','y','Ma

rkerSize',3) 

plot3(impellercavitation_score_faulty1_ch1_sym8(:,1),impellercavitat

ion_score_faulty1_ch1_sym8(:,2),impellercavitation_score_faulty1_ch1_sym8

(:,3),'>','color','m') 
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plot3(impellerblockage_score_faulty1_ch1_sym8(:,1),impellerblockage_

score_faulty1_ch1_sym8(:,2),impellerblockage_score_faulty1_ch1_sym8(:,3),

'^','color','g') 

plot3(bearingcavitation_score_faulty1_ch1_sym8(:,1),bearingcavitatio

n_score_faulty1_ch1_sym8(:,2),bearingcavitation_score_faulty1_ch1_sym8(:,

3),'p','color','c') 

xlabel('Scores on PC1','FontSize',8) 

ylabel('Scores on PC2','FontSize',8) 

zlabel('Scores on PC3','FontSize',8) 

title('(a)') 

grid 

legend('normal','fault1','fault2','fault3','fault4','fault5','fault6

','fault7','location','West') 

FigHandle = figure3; 

set(FigHandle, 'Position', [50, 50, 450, 600]); 

set(gca,'FontSize',8) 

view([-57 6]) 

  

figure4=figure; 

  

plot3(normal_score_faulty1_ch1_sym8(:,1),normal_score_faulty1_ch1_sy

m8(:,2),normal_score_faulty1_ch1_sym8(:,3),'h') 

hold on 

plot3(cavitation_score_faulty1_ch1_sym8(:,1),cavitation_score_faulty

1_ch1_sym8(:,2),cavitation_score_faulty1_ch1_sym8(:,3),'o','color','g') 

plot3(impeller_score_faulty1_ch1_sym8(:,1),impeller_score_faulty1_ch

1_sym8(:,2),impeller_score_faulty1_ch1_sym8(:,3),'*','color','r') 

%plot3(bearing_score_faulty1_ch1_sym8(:,1),bearing_score_faulty1_ch1

_sym8(:,2),bearing_score_faulty1_ch1_sym8(:,3),'d','color','r') 

plot3(blockage_score_faulty1_ch1_sym8(:,1),blockage_score_faulty1_ch

1_sym8(:,2),blockage_score_faulty1_ch1_sym8(:,3),'square','color','y','Ma

rkerSize',3) 

plot3(impellercavitation_score_faulty1_ch1_sym8(:,1),impellercavitat

ion_score_faulty1_ch1_sym8(:,2),impellercavitation_score_faulty1_ch1_sym8

(:,3),'>','color','m') 

plot3(impellerblockage_score_faulty1_ch1_sym8(:,1),impellerblockage_

score_faulty1_ch1_sym8(:,2),impellerblockage_score_faulty1_ch1_sym8(:,3),

'^','color','g') 

%plot3(bearingcavitation_score_faulty1_ch1_sym8(:,1),bearingcavitati

on_score_faulty1_ch1_sym8(:,2),bearingcavitation_score_faulty1_ch1_sym8(:

,3),'p','color','c') 

xlabel('Scores on PC1','FontSize',8) 

ylabel('Scores on PC2','FontSize',8) 

zlabel('Scores on PC3','FontSize',8) 

title('(b)') 

grid 

legend('normal','fault1','fault2','fault4','fault5','fault6','locati

on','NorthWest') 

FigHandle = figure4; 

set(FigHandle, 'Position', [550, 50, 450, 600]); 

set(gca,'FontSize',8) 

view([-57 6]) 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~ END PLOT sym8 ~~~~~~~~~~~~~~~~~~~~~~~~~ 

  

%>>>>>>>>>>>>>>>>>>>>>>>>>>> PLOT sym12 <<<<<<<<<<<<<<<<<<<<<<<<<<<< 

  

figure5=figure; 

  

plot3(normal_score_faulty1_ch1_sym12(:,1),normal_score_faulty1_ch1_s

ym12(:,2),normal_score_faulty1_ch1_sym12(:,3),'h') 

hold on 

plot3(cavitation_score_faulty1_ch1_sym12(:,1),cavitation_score_fault

y1_ch1_sym12(:,2),cavitation_score_faulty1_ch1_sym12(:,3),'o','color','g'

) 

plot3(impeller_score_faulty1_ch1_sym12(:,1),impeller_score_faulty1_c

h1_sym12(:,2),impeller_score_faulty1_ch1_sym12(:,3),'*','color','r') 

plot3(bearing_score_faulty1_ch1_sym12(:,1),bearing_score_faulty1_ch1

_sym12(:,2),bearing_score_faulty1_ch1_sym12(:,3),'d','color','r') 
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plot3(blockage_score_faulty1_ch1_sym12(:,1),blockage_score_faulty1_c

h1_sym12(:,2),blockage_score_faulty1_ch1_sym12(:,3),'square','color','y',

'MarkerSize',3) 

plot3(impellercavitation_score_faulty1_ch1_sym12(:,1),impellercavita

tion_score_faulty1_ch1_sym12(:,2),impellercavitation_score_faulty1_ch1_sy

m12(:,3),'>','color','m') 

plot3(impellerblockage_score_faulty1_ch1_sym12(:,1),impellerblockage

_score_faulty1_ch1_sym12(:,2),impellerblockage_score_faulty1_ch1_sym12(:,

3),'^','color','g') 

plot3(bearingcavitation_score_faulty1_ch1_sym12(:,1),bearingcavitati

on_score_faulty1_ch1_sym12(:,2),bearingcavitation_score_faulty1_ch1_sym12

(:,3),'p','color','c') 

xlabel('Scores on PC1','FontSize',8) 

ylabel('Scores on PC2','FontSize',8) 

zlabel('Scores on PC3','FontSize',8) 

title('(a)') 

grid 

legend('normal','fault1','fault2','fault3','fault4','fault5','fault6

','fault7','location','West') 

FigHandle = figure5; 

set(FigHandle, 'Position', [50, 50, 450, 600]); 

set(gca,'FontSize',8) 

view([-57 6]) 

  

figure6=figure; 

  

plot3(normal_score_faulty1_ch1_sym12(:,1),normal_score_faulty1_ch1_s

ym12(:,2),normal_score_faulty1_ch1_sym12(:,3),'h') 

hold on 

plot3(cavitation_score_faulty1_ch1_sym12(:,1),cavitation_score_fault

y1_ch1_sym12(:,2),cavitation_score_faulty1_ch1_sym12(:,3),'o','color','g'

) 

plot3(impeller_score_faulty1_ch1_sym12(:,1),impeller_score_faulty1_c

h1_sym12(:,2),impeller_score_faulty1_ch1_sym12(:,3),'*','color','r') 

%plot3(bearing_score_faulty1_ch1_sym12(:,1),bearing_score_faulty1_ch

1_sym12(:,2),bearing_score_faulty1_ch1_sym12(:,3),'d','color','r') 

plot3(blockage_score_faulty1_ch1_sym12(:,1),blockage_score_faulty1_c

h1_sym12(:,2),blockage_score_faulty1_ch1_sym12(:,3),'square','color','y',

'MarkerSize',3) 

plot3(impellercavitation_score_faulty1_ch1_sym12(:,1),impellercavita

tion_score_faulty1_ch1_sym12(:,2),impellercavitation_score_faulty1_ch1_sy

m12(:,3),'>','color','m') 

plot3(impellerblockage_score_faulty1_ch1_sym12(:,1),impellerblockage

_score_faulty1_ch1_sym12(:,2),impellerblockage_score_faulty1_ch1_sym12(:,

3),'^','color','g') 

%plot3(bearingcavitation_score_faulty1_ch1_sym12(:,1),bearingcavitat

ion_score_faulty1_ch1_sym12(:,2),bearingcavitation_score_faulty1_ch1_sym1

2(:,3),'p','color','c') 

xlabel('Scores on PC1','FontSize',8) 

ylabel('Scores on PC2','FontSize',8) 

zlabel('Scores on PC3','FontSize',8) 

title('(b)') 

grid 

legend('normal','fault1','fault2','fault4','fault5','fault6','locati

on','NorthWest') 

FigHandle = figure6; 

set(FigHandle, 'Position', [550, 50, 450, 600]); 

set(gca,'FontSize',8) 

view([-57 6]) 

  

%<<<<<<<<<<<<<<<<<<<<<<<<<< END PLOT sym12 >>>>>>>>>>>>>>>>>>>>>>>>> 
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Module 5 − Plotting Classification Performance Using k-nn 

%Script to plot classification performance 

%Created: Mar 2014, Berli Kamiel 

  

clear all; 

clc; 

close all; 

  

%>>>>>>>>>>>>>>>>>>> LOAD SCORE MATRIX sym4 <<<<<<<<<<<<<<<<<<<<<<<<< 

  

% TRAINING DATA 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\normal_training_score_matrix_sym4.mat','score_faulty1'); 

training_normal_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\cavitation_training_score_matrix_sym4.mat','score_faulty1')

; 

training_cavitation_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\impeller_training_score_matrix_sym4.mat','score_faulty1'); 

training_impeller_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\bearing_training_score_matrix_sym4.mat','score_faulty1'); 

training_bearing_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\blockage_training_score_matrix_sym4.mat','score_faulty1'); 

training_blockage_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\impellercavitation_training_score_matrix_sym4.mat','score_f

aulty1'); 

training_impellercavitation_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\impellerblockage_training_score_matrix_sym4.mat','score_fau

lty1'); 

training_impellerblockage_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\bearingcavitation_training_score_matrix_sym4.mat','score_fa

ulty1'); 

training_bearingcavitation_ch1_sym4=score_faulty1; 

% END OF TRAINING DATA 

  

% TESTING DATA 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\normal_score_matrix_sym4.mat','score_faulty1'); 

testing_normal_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\cavitation_score_matrix_sym4.mat','score_faulty1'); 

testing_cavitation_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\impeller_score_matrix_sym4.mat','score_faulty1'); 

testing_impeller_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\bearing_score_matrix_sym4.mat','score_faulty1'); 

testing_bearing_ch1_sym4=score_faulty1; 
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load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\blockage_score_matrix_sym4.mat','score_faulty1'); 

testing_blockage_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\impellercavitation_score_matrix_sym4.mat','score_faulty1'); 

testing_impellercavitation_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\impellerblockage_score_matrix_sym4.mat','score_faulty1'); 

testing_impellerblockage_ch1_sym4=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym4\bearingcavitation_score_matrix_sym4.mat','score_faulty1'); 

testing_bearingcavitation_ch1_sym4=score_faulty1; 

% END OF TESTING DATA 

%~~~~~~~~~~~~~~~~~~~~~ END OF sym4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  

  

  

k=30; %Number of Neighbors 

  

[r_training,c_training]=size(training_normal_ch1_sym4); 

  

X=[training_normal_ch1_sym4;training_cavitation_ch1_sym4;training_impe

ller_ch1_sym4;training_bearing_ch1_sym4; 

    

training_blockage_ch1_sym4;training_impellercavitation_ch1_sym4;training_im

pellerblockage_ch1_sym4;training_bearingcavitation_ch1_sym4]; 

  

[r_X,~]=size(X); 

  

Y(1:r_training,1)=cellstr('normal'); 

Y(r_training+1:2*r_training,1)=cellstr('fault1');Y(2*r_training+1:3*r_train

ing,1)=cellstr('fault2'); 

Y(3*r_training+1:4*r_training,1)=cellstr('fault3');Y(4*r_training+1:5*

r_training,1)=cellstr('fault4');Y(5*r_training+1:6*r_training,1)=cellstr('f

ault5'); 

Y(6*r_training+1:7*r_training,1)=cellstr('fault6');Y(7*r_training+1:8*

r_training,1)=cellstr('fault7'); 

r_training=r_training-20; 

Y1(1:r_training,1)=cellstr('normal'); 

Y1(r_training+1:2*r_training,1)=cellstr('fault1');Y1(2*r_training+1:3*r_tra

ining,1)=cellstr('fault2'); 

Y1(3*r_training+1:4*r_training,1)=cellstr('fault3');Y1(4*r_training+1:

5*r_training,1)=cellstr('fault4');Y1(5*r_training+1:6*r_training,1)=cellstr

('fault5'); 

Y1(6*r_training+1:7*r_training,1)=cellstr('fault6');Y1(7*r_training+1:

8*r_training,1)=cellstr('fault7'); 

  

  

Z=[testing_normal_ch1_sym4;testing_cavitation_ch1_sym4;testing_impelle

r_ch1_sym4;testing_bearing_ch1_sym4; 

    

testing_blockage_ch1_sym4;testing_impellercavitation_ch1_sym4;testing_impel

lerblockage_ch1_sym4;testing_bearingcavitation_ch1_sym4]; 

  

for I=1:c_training 

    for J=1:k 

         

        X1=X(:,1:I); 

         

        kNN=fitcknn(X1,Y,'NumNeighbors',J); 

         

        label_result(:,I,J) = predict(kNN,Z(:,1:I)); 

        L(I,J)=loss(kNN,Z(:,1:I),Y1); 
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    end 

end 

  

[r,c]=size(L); 

  

kNN_performance=(ones(r,c)-L)*100; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure1=figure; 

  

plot(kNN_performance(1,:),'-bo','MarkerSize',2) 

hold on 

plot(kNN_performance(2,:),'-g+') 

plot(kNN_performance(3,:),'-rx') 

plot(kNN_performance(4,:),'-cs','MarkerSize',2) 

plot(kNN_performance(5,:),'-k.') 

plot(kNN_performance(6,:),'-m*') 

plot(kNN_performance(7,:),'-rd') 

%plot(kNN_performance(8,:),'-r^') 

%cek_kNN_sym4=kNN_performance(7,:) 

ylim([40 102]) 

  

h_legend=legend('1PC','2PCs','3PCs','4PCs','5PCs','6PCs','7PCs','Locat

ion','EastOutside'); 

set(h_legend,'FontSize',8) 

  

  

xlabel('Number of neighbors k') 

ylabel('Identification accuracy %') 

title('PCA model 1a') 

  

clear all; 

  

%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

%********************************************************************* 

%##################################################################### 

  

%>>>>>>>>>>>>>>>>>>> LOAD SCORE MATRIX sym8 <<<<<<<<<<<<<<<<<<<<<<<<<< 

  

% TRAINING DATA 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\normal_training_score_matrix_sym8.mat','score_faulty1'); 

training_normal_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\cavitation_training_score_matrix_sym8.mat','score_faulty1')

; 

training_cavitation_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\impeller_training_score_matrix_sym8.mat','score_faulty1'); 

training_impeller_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\bearing_training_score_matrix_sym8.mat','score_faulty1'); 

training_bearing_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\blockage_training_score_matrix_sym8.mat','score_faulty1'); 

training_blockage_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\impellercavitation_training_score_matrix_sym8.mat','score_f

aulty1'); 

training_impellercavitation_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 
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sec7_6\T_Q_sym8\impellerblockage_training_score_matrix_sym8.mat','score_fau

lty1'); 

training_impellerblockage_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\bearingcavitation_training_score_matrix_sym8.mat','score_fa

ulty1'); 

training_bearingcavitation_ch1_sym8=score_faulty1; 

% END OF TRAINING DATA 

  

% TESTING DATA 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\normal_score_matrix_sym8.mat','score_faulty1'); 

testing_normal_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\cavitation_score_matrix_sym8.mat','score_faulty1'); 

testing_cavitation_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\impeller_score_matrix_sym8.mat','score_faulty1'); 

testing_impeller_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\bearing_score_matrix_sym8.mat','score_faulty1'); 

testing_bearing_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\blockage_score_matrix_sym8.mat','score_faulty1'); 

testing_blockage_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\impellercavitation_score_matrix_sym8.mat','score_faulty1'); 

testing_impellercavitation_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\impellerblockage_score_matrix_sym8.mat','score_faulty1'); 

testing_impellerblockage_ch1_sym8=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym8\bearingcavitation_score_matrix_sym8.mat','score_faulty1'); 

testing_bearingcavitation_ch1_sym8=score_faulty1; 

% END OF TESTING DATA 

%~~~~~~~~~~~~~~~~~~~~~ END OF sym8~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  

  

  

k=30; %Number of Neighbors 

  

[r_training,c_training]=size(training_normal_ch1_sym8); 

  

X=[training_normal_ch1_sym8;training_cavitation_ch1_sym8;training_impe

ller_ch1_sym8;training_bearing_ch1_sym8; 

    

training_blockage_ch1_sym8;training_impellercavitation_ch1_sym8;training_im

pellerblockage_ch1_sym8;training_bearingcavitation_ch1_sym8]; 

  

[r_X,~]=size(X); 

  

Y(1:r_training,1)=cellstr('normal'); 

Y(r_training+1:2*r_training,1)=cellstr('fault1');Y(2*r_training+1:3*r_train

ing,1)=cellstr('fault2'); 

Y(3*r_training+1:4*r_training,1)=cellstr('fault3');Y(4*r_training+1:5*

r_training,1)=cellstr('fault4');Y(5*r_training+1:6*r_training,1)=cellstr('f

ault5'); 

Y(6*r_training+1:7*r_training,1)=cellstr('fault6');Y(7*r_training+1:8*

r_training,1)=cellstr('fault7'); 
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r_training=r_training-20; 

Y1(1:r_training,1)=cellstr('normal'); 

Y1(r_training+1:2*r_training,1)=cellstr('fault1');Y1(2*r_training+1:3*r_tra

ining,1)=cellstr('fault2'); 

Y1(3*r_training+1:4*r_training,1)=cellstr('fault3');Y1(4*r_training+1:

5*r_training,1)=cellstr('fault4');Y1(5*r_training+1:6*r_training,1)=cellstr

('fault5'); 

Y1(6*r_training+1:7*r_training,1)=cellstr('fault6');Y1(7*r_training+1:

8*r_training,1)=cellstr('fault7'); 

  

  

Z=[testing_normal_ch1_sym8;testing_cavitation_ch1_sym8;testing_impelle

r_ch1_sym8;testing_bearing_ch1_sym8; 

    

testing_blockage_ch1_sym8;testing_impellercavitation_ch1_sym8;testing_impel

lerblockage_ch1_sym8;testing_bearingcavitation_ch1_sym8]; 

  

for I=1:c_training 

    for J=1:k 

         

        X1=X(:,1:I); 

         

        kNN=fitcknn(X1,Y,'NumNeighbors',J); 

         

        label_result(:,I,J) = predict(kNN,Z(:,1:I)); 

        L(I,J)=loss(kNN,Z(:,1:I),Y1); 

         

    end 

end 

  

[r,c]=size(L); 

  

kNN_performance=(ones(r,c)-L)*100; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure2=figure; 

  

plot(kNN_performance(1,:),'-bo','MarkerSize',2) 

hold on 

plot(kNN_performance(2,:),'-g+') 

plot(kNN_performance(3,:),'-rx') 

plot(kNN_performance(4,:),'-cs','MarkerSize',2) 

plot(kNN_performance(5,:),'-k.') 

plot(kNN_performance(6,:),'-m*') 

plot(kNN_performance(7,:),'-rd') 

plot(kNN_performance(8,:),'-b^') 

%cek_kNN_sym8=kNN_performance(7,:) 

ylim([40 102]) 

  

h_legend=legend('1PC','2PCs','3PCs','4PCs','5PCs','6PCs','7PCs','8PCs'

,'Location','EastOutside'); 

set(h_legend,'FontSize',8) 

  

xlabel('Number of neighbors k') 

ylabel('Identification accuracy %') 

title('PCA model 1b') 

  

%save ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_8\TheBestKNN_ch1.mat','kNN_performance') 

%save ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file sec7_8\ForConfusionMat_1b.mat','label_result','Y1') 

clear all; 

  

%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

  

%>>>>>>>>>>>>>>>>>>> LOAD SCORE MATRIX sym12 <<<<<<<<<<<<<<<<<<<<<<<< 
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% TRAINING DATA 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\normal_training_score_matrix_sym12.mat','score_faulty1'); 

training_normal_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\cavitation_training_score_matrix_sym12.mat','score_faulty1

'); 

training_cavitation_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\impeller_training_score_matrix_sym12.mat','score_faulty1')

; 

training_impeller_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\bearing_training_score_matrix_sym12.mat','score_faulty1'); 

training_bearing_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\blockage_training_score_matrix_sym12.mat','score_faulty1')

; 

training_blockage_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\impellercavitation_training_score_matrix_sym12.mat','score

_faulty1'); 

training_impellercavitation_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\impellerblockage_training_score_matrix_sym12.mat','score_f

aulty1'); 

training_impellerblockage_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\bearingcavitation_training_score_matrix_sym12.mat','score_

faulty1'); 

training_bearingcavitation_ch1_sym12=score_faulty1; 

% END OF TRAINING DATA 

  

% TESTING DATA 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\normal_score_matrix_sym12.mat','score_faulty1'); 

testing_normal_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\cavitation_score_matrix_sym12.mat','score_faulty1'); 

testing_cavitation_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\impeller_score_matrix_sym12.mat','score_faulty1'); 

testing_impeller_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\bearing_score_matrix_sym12.mat','score_faulty1'); 

testing_bearing_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\blockage_score_matrix_sym12.mat','score_faulty1'); 

testing_blockage_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\impellercavitation_score_matrix_sym12.mat','score_faulty1'

); 

testing_impellercavitation_ch1_sym12=score_faulty1; 
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load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\impellerblockage_score_matrix_sym12.mat','score_faulty1'); 

testing_impellerblockage_ch1_sym12=score_faulty1; 

load ('C:\Users\13212047\Documents\MATLAB\script_thesis2014\analysis 

chapter 7\mat file 

sec7_6\T_Q_sym12\bearingcavitation_score_matrix_sym12.mat','score_faulty1')

; 

testing_bearingcavitation_ch1_sym12=score_faulty1; 

% END OF TESTING DATA 

%~~~~~~~~~~~~~~~~~~~~~ END OF sym8~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  

  

  

k=30; %Number of Neighbors 

  

[r_training,c_training]=size(training_normal_ch1_sym12); 

  

X=[training_normal_ch1_sym12;training_cavitation_ch1_sym12;training_im

peller_ch1_sym12;training_bearing_ch1_sym12; 

    

training_blockage_ch1_sym12;training_impellercavitation_ch1_sym12;training_

impellerblockage_ch1_sym12;training_bearingcavitation_ch1_sym12]; 

  

[r_X,~]=size(X); 

  

Y(1:r_training,1)=cellstr('normal'); 

Y(r_training+1:2*r_training,1)=cellstr('fault1');Y(2*r_training+1:3*r_train

ing,1)=cellstr('fault2'); 

Y(3*r_training+1:4*r_training,1)=cellstr('fault3');Y(4*r_training+1:5*

r_training,1)=cellstr('fault4');Y(5*r_training+1:6*r_training,1)=cellstr('f

ault5'); 

Y(6*r_training+1:7*r_training,1)=cellstr('fault6');Y(7*r_training+1:8*

r_training,1)=cellstr('fault7'); 

r_training=r_training-20; 

Y1(1:r_training,1)=cellstr('normal'); 

Y1(r_training+1:2*r_training,1)=cellstr('fault1');Y1(2*r_training+1:3*r_tra

ining,1)=cellstr('fault2'); 

Y1(3*r_training+1:4*r_training,1)=cellstr('fault3');Y1(4*r_training+1:

5*r_training,1)=cellstr('fault4');Y1(5*r_training+1:6*r_training,1)=cellstr

('fault5'); 

Y1(6*r_training+1:7*r_training,1)=cellstr('fault6');Y1(7*r_training+1:

8*r_training,1)=cellstr('fault7'); 

  

  

Z=[testing_normal_ch1_sym12;testing_cavitation_ch1_sym12;testing_impel

ler_ch1_sym12;testing_bearing_ch1_sym12; 

    

testing_blockage_ch1_sym12;testing_impellercavitation_ch1_sym12;testing_imp

ellerblockage_ch1_sym12;testing_bearingcavitation_ch1_sym12]; 

  

for I=1:c_training 

    for J=1:k 

         

        X1=X(:,1:I); 

         

        kNN=fitcknn(X1,Y,'NumNeighbors',J); 

         

        label_result(:,I,J) = predict(kNN,Z(:,1:I)); 

        L(I,J)=loss(kNN,Z(:,1:I),Y1); 

         

    end 

end 

  

[r,c]=size(L); 

  

kNN_performance=(ones(r,c)-L)*100; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure3=figure; 

  

plot(kNN_performance(1,:),'-bo','MarkerSize',2) 

hold on 

plot(kNN_performance(2,:),'-g+') 

plot(kNN_performance(3,:),'-rx') 

plot(kNN_performance(4,:),'-cs','MarkerSize',2) 

plot(kNN_performance(5,:),'-k.') 

plot(kNN_performance(6,:),'-m*') 

plot(kNN_performance(7,:),'-rd') 

plot(kNN_performance(8,:),'-b^') 

ylim([40 102]) 

  

h_legend=legend('1PC','2PCs','3PCs','4PCs','5PCs','6PCs','7PCs','8PCs'

,'Location','EastOutside'); 

set(h_legend,'FontSize',8) 

  

xlabel('Number of neighbors k') 

ylabel('Identification accuracy %') 

title('PCA model 1c') 

 


