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Instantaneous GPS-Galileo Attitude Determination:
Single-Frequency Performance in Satellite-Deprived
Environments
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Abstract—New and modernized Global Navigation Satellite
Systems (GNSS) pave the way for an increasing number of
applications in positioning, navigation, and timing (PNT). A
combined GNSS constellation will significantly increase the
number of visible satellites and thus will improve the geometry of
observed satellites, enabling improvements in navigation solution
availability, reliability, and accuracy. In this contribution a
GPS+Galileo robustness analysis is carried out for instantaneous
single-frequency GNSS attitude determination.

Precise attitude determination using multiple GNSS anten-
nas mounted on a platform relies on successful resolution of
the integer carrier phase ambiguities. The Multivariate Con-
strained Least-squares AMBiguity Decorrelation Adjustment
(MC-LAMBDA) method has been developed for resolving the
integer ambiguities of the nonlinearly constrained GNSS attitude
model that incorporates the known antenna geometry. In this
contribution the method is used to analyse the attitude determi-
nation performance of a combined GPS+Galileo system. Special
attention is thereby given to the GPS and Galileo Inter-System
Biases (ISBs).

The attitude determination performance is evaluated using
GPS/Galileo data sets from a hardware-in-the-loop experiment
and two real data campaigns. In the hardware-in-the-loop
experiment, a full GPS/Galileo constellation is simulated and
performance analyses are carried out under various satellite
deprived environments, such as urban canyon, open pit and
other satellite outages. In the first real-data experiment, single-
frequency GPS data combined with data of GIOVE-A/B (the two
experimental Galileo satellites) are used to analyse the two con-
stellation attitude solutions. In the second real-data experiment,
we present the results based on single-frequency data from one
of the Galileo IOV satellites (Galileo orbit validation satellites)
combined with data of GIOVE-A and GPS. We demonstrate and
quantify the improved availability, reliability, and accuracy of
attitude determination using the combined constellation.

Index Terms—GNSS, GPS, Galileo, attitude determination,
multivariate constrained integer least-squares, MC-LAMBDA,
carrier phase ambiguity resolution, inter-system biases

I. INTRODUCTION

Vehicular navigation using Global Navigation Satellite
Systems (GNSS) has become ubiquitous. GNSS-only atti-
tude (orientation) determination for land, airborne, and mar-
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itime vehicles has been explored using multiple GNSS re-
ceivers/antennas rigidly mounted on the platform [1]-[11]. The
use of these methods under constrained (satellite deprived)
environments such as urban canyon [12] and open-pit [13] is
limited due to a lack of sufficient visible satellites. In light of
new and modernized GNSS, however, the number of visible
satellites will increase, thus resulting in an improved perfor-
mance of positioning, navigation, and timing (PNT) solutions,
in particular in constrained, satellite deprived environments,
as well as offering operational back-up or independence in
case of failure or unavailability of one system. Interoperability
of the American GPS and the European Galileo system,
currently under development, is important for assessing the
PNT performance of the combined systems. At the time of
analysis, the Galileo system consisted of two Galileo in-
orbit validation element (GIOVE) satellites (GIOVE-A and -B
launched in December 2005 and April 2008, respectively), and
two in-orbit validation (IOV) satellites, namely Proto-flight
model (PFM) and flight model (FM) co-launched in October
2011. The current contribution presents, for the first time,
a combined GPS+Galileo attitude determination performance
analysis. Its robustness is tested for different satellite-deprived
environments with focus on the single-epoch, single-frequency
case, as this is the most challenging scenario.

GNSS-based precise attitude determination relies on suc-
cessful resolution of the integer carrier phase ambiguities.
The Least squares AMBiguity Decorrelation Adjustment
(LAMBDA) method [14] is currently the standard method for
solving unconstrained and linearly constrained GNSS ambi-
guity resolution problems [15]-[20]. For such GNSS models,
the method is known to be numerically efficient and optimal
in the sense that it provides an integer ambiguity solution
with the highest possible success-rate [21]-[23]. To exploit
the known multi-antennae relative positions in local body
frame, the multivariate constrained (MC-)LAMBDA method
has been developed [24]-[30]. Due to the nonlinear antennae-
geometry constraints, the search space of the integer carrier
phase ambiguities is then no longer ellipsoidal, thus requiring
special methods for the numerically efficient evaluation of the
nonlinear multivariate ambiguity objective function [31], [32].

In this contribution we analyse the single-frequency, single-
epoch GNSS attitude determination performance using com-
bined GPS and Galileo observations. The analyses include a
study of the performance robustness under various satellite-
deprived environments, whereby also the antennae-geometry
constrained performance is compared with the unconstrained



attitude determination performance. These studies are carried
out using data sets from a hardware-in-the-loop experiment
and two real data campaigns. In the hardware-in-the-loop
experiment, a full GPS/Galileo constellation is simulated. For
the real-data, two sets of data involving both constellations
are used. Due to orbital parameters, co-visibility of Galileo
experimental satellites does not exist for every day and hence,
two unique periods were chosen: the first one having long
GIOVE-A/-B co-visibility and the other one having long
GIOVE-A/Galileo PFM co-visibility.

This contribution is organized as follows. Section II
presents our attitude determination method for the combined
GPS/Galileo constellation. We first describe the functional
and stochastic model for combined GPS/Galileo observa-
tions, with special attention to inter-system biases and inter-
system double-differencing. Then we describe the nonlinearly
constrained GPS/Galileo attitude model and show how the
solution of its multivariate ambiguity objective function is
used to compute the ambiguity resolved attitude parameters.
Section III presents the results of our performance analyses,
first for the hardware-in-the-loop experiment and then for our
real data experiments. We compare the instantaneous, single-
frequency ambiguity resolution performance under various
satellite-deprived environments, for GPS-only, Galileo-only
and combined GPS/Galileo. This is done for the unconstrained
(LAMBDA) as well as constrained (MC-LAMBDA) case.
We also analyse both formal and empirical accuracies of the
corresponding ambiguity resolved attitude parameters. Finally,
Section IV contains the summary and conclusions of this
contribution.

II. ATTITUDE DETERMINATION FOR THE COMBINED
GPS-GALILEO SYSTEM

In this section we present our attitude determination method
for the combined GPS-Galileo system. First we discuss differ-
ent aspects of combined GPS-Galileo data processing and then
we present the corresponding attitude model together with its
multivariate constrained integer least-squares solution.

A. GPS/Galileo Observations

Attitude determination considered in this work is based on
relative positioning using the so-called double differencing of
GNSS observations. For combined GPS-Galileo observations,
one can perform either system-specific double differencing
[33] or inter-system double differencing [34], [35]. In the latter
case, one should, however, take into account the inter-system
bias (ISB) due to system specific hardware delays, more so
when mixed receiver types are used. In this work, we use ISB
corrected inter-system double differencing [36] which yields a
higher level of redundancy than system-specific differencing.

Assuming that two GPS/Galileo receivers r and 1 collect
pseudo-range and carrier-phase data on overlapping inter-
system frequencies (L1-El and/or L5-ES5A), the between-
receiver single difference (SD) pseudo-range and carrier-phase
observations at frequency j from GPS satellite s, denoted as

pi, and @7, respectively, are given as [37]

E (pigr,j) = pir +c [dth" + dfr,jjl + air,j (1)
E (¢ir,j) = pigr +c [dtlr + 5fr,j] + air,j + )\jMfr,j (2)

where s = 1g, ..., mg, E(+) denotes expectation, p$,. is the
SD topocentric distance, dt1, is the SD receiver clock bias,
df, ; and &7, ; are the frequency- and system-dependent SD
hardware biases inside the receiver, c is the speed of light,
aj,; and af, ; are the SD atmosphere delays, A; is the wave
length, M7, ; is the time-invariant SD carrier-phase ambiguity,
and m is the number of GPS satellites.

Similarly, the single difference Galileo observations are
given as:

E(pi, ;) = pl, +c[dtr +df, ;] +af,; (3)
E(61,;) = pl, +cldti + 07, ;] + o, ; + M ()

where ¢ = 15, ...
satellites.

, my and my is the number of Galileo

Inter-system double-differencing: In the case of double-
differencing [36], we form double difference (DD) observables
with respect to a GPS pivot satellite (or a Galileo pivot
satellite) for both GPS and Galileo observations:

E (p17) pres, =20, ..., Mg 5)
E (4155) pre° + N NLSS (6)
E(6189) = pi¢" +adf, + \NIe )

where 1 is the GPS reference satellite, (-);S% = (-)5,; —

()}fj denotes DD parameters, Nllfjs =M, ; — Mllfj is the
integer DD ambiguity, and df7; = (d; —d7 ;) — (dy; —df ;)
and 077, = (0,7, — 67 ,;) — (6% —07 ;) are the differential ISBs
for code and phase observations, respectively.

Differential ISBs are shown to be constant and their values
can be calibrated [36]. Hence, we may correct the Galileo

observations a priori for the differential ISBs:

B(plcd —edif) = ple% a=1s oo me O
1 INe! 1 1
E (o —cd5) = g+ \NIE (10)

where (foj and ~fr’fj are the differential ISBs for code and
phase known through calibration [36]. Note that, the ISBs
are constant regardless of the receivers’/antennas’ operating
environment. Hence, ISBs can be computed based on static
data set collected in a clean environment for one day with
required accuracy (Table IX) and calibrated before using
them for attitude determination of a moving vehicle. The
redundancy of this model is equal to 2f[(mg — 1) + mg| —
B+ f(meg—1)+ fmg] = f(mg+mp—1)—3 where f is the
number of overlapping GPS-Galileo frequencies. For single
frequency processing, which is considered in this paper, the
redundancy is equal to m¢ +my — 4. That is, the redundancy
increases with my compared to a GPS only case (myz = 0),
implying that every additional Galileo satellite strengthens the



model.

From here on we consider the combined system (after ISB
correction) as a single system with m + 1(= mq +my) satel-
lites. The linearized DD observation equations corresponding
to (5), (6), (9), and (10) read

E(Apl;) = 01" b, s=2 ... (m+1) (A
B(Ad,) = 01" b+ NI (12)
where Ap{ij and Aqﬁ%i, ; are the observed-minus-computed

code and phase observations, b, is the baseline vector con-
taining relative position components, and g1® is the geometry
vector given as gi® = el — e with e? the unit line-of-sight
vector defined in Section III-B2. The vectorial forms of the DD
observation equations for the rth baseline at the jth frequency

read

E(yprj) = Giby (13)

E(y¢._rryj) = Glbr—é—)\jzrﬁj (14)
with  yp.r j {Ap%%j, e Api%“rl)r, Yoirs
(a0t .. a0l @ = [af L g]
fry = (N2, NI "

For the stochastic modelling, we assume elevation depen-
dent noise characteristics [38]. That is, the standard deviation
of the undifferenced observable ¢ can be written as

—€
o.(e) = o0 1+ agexp —
<o

where € is the elevation angle of the corresponding satellite,
and o, ag,, and e, are the elevation dependent model
parameters. We further assume that if the receivers/antennas
have similar characteristics that the observation noise standard
deviations can be decomposed as

15)

_ . s
Op:, = 0700 ¢V

Ops;, = 070 jOpoV° (16)

 — <1+aoexp<,ezs))

where o, and o ; are the receiver and frequency dependent
weightings, respectively, and o4, and o,, are observation
dependent weightings. Note that this assumption may not be
valid in case of dissimilar receivers and/or antennas. In the
real data analyses of Section III-B, such dissimilarity is taken
into account by using different values for ag and/or eg.

B. GPS/Galileo Attitude Determination

This section describes the attitude determination for a small-
sized array of GNSS receivers/antennas with known local
body frame antenna geometry. First the multibaseline attitude
model is introduced using the multivariate formulation of
[25]. This formulation makes a frequent use of the Kronecker
product ® and the vec-operator [39], [40]. Then we include
the local body frame antenna-geometry and show how the
constrained attitude model can be solved in a step-wise
manner.

1) The multivariate model: Let us consider a set of r + 1
antennas rigidly mounted on a platform of interest and si-
multaneously tracking m. GPS and mj Galileo satellites
on the same f frequencies (considered as a single system
with m + 1 = mg + my satellites for inter-system double-
differencing). Combining the linearized DD GNSS code and
phase observations of (13) and (14) for the r baselines formed
by these antennas, the single epoch multivariate observation
model becomes:

E(YY) = AZ4+GB  ZeZ/™" BeR*>" (17)

where Y = [y1,...,y,] is the 2fm X r matrix of r lin-
earized (observed-minus-computed) DD observation vectors

with - = [yg. Yl "> UG = W1 U f17s and g, =

[Ypir1s -3 Ypor fl7s Z = [21,. .., 2] is the fm xr matrix of
unknown DD integer ambiguity vectors 2z, = [2],..., 2] ;]",
B = [b1,...,b,] the 3 x r matrix of r unknown baseline

vectors b, G = ear ® Gy is the 2fm x 3 geometry matrix
with ey the 2f x 1 vector of 1’s, A = L®I,, is the 2fmx fm
design matrix with 2f x f matrix L [AT, 07]" and
A = diag(\1, ..., Ay) the diagonal wavelength matrix. Note
that, for the simplicity of the formulation, we assumed that all
receivers/antennas track the same set of satellites. However,
this restriction is relaxed in the software implemented using
Matlab.

To construct the stochastic model for the multivariate array
observations in (17), let us consider undifferenced observations
in vector form reading

CZ [Cf7 ) C’rq’:l»l]T (18)
where (. = [¢§ pﬂT, ¢r = [(bﬁlv cees f,f]T’ (bnj =
[ %,ja 7¢:~7f]+ ]T7 Dr = [pﬁh ] pz:f]T’ pr,j =
[piyj, ...,p;?;_l]T, and p; ; and ¢; ; are the undifferenced

code and phase observations for r — s receiver-satellite pair
at jth frequency. With (16), assuming the observables to be
normally distributed and mutually uncorrelated, the variance
matrix (dispersion) of the observation vector ¢ can be written
as

D(¢() = Qr®Qy®blockdiag(Qy,Qp)  (19)
where  D(-)  denotes the  dispersion  operator,
Q, = diaglo?, ..., of,], Qf = diaglo?, ..., %],
Qs = Uiodiag[ulz, e y'm+12], and Q, =

. 2 2 .
o7 diag[v! v™*T1] are the co-factor matrices. The
variance matrix of the DD observables is then given as

D(vec(Y)) =D(D*¢) (20)
where the DD operator D7 is given as
D" =Dl @1y ® I, ® D}, 21

with DY = [—e,, I,] the differencing matrix. Hence, the
dispersion of the DD observables is given by the 2 fmr x2 fmr
matrix

D(vec(Y)) = Qyy =P ®Qy, (22)



where
P =
ny =

The system of observation equations (17) forms together
with the dispersion matrix (22) a multivariate Gauss-Markov
model, with unknown integer matrix Z and unknown baseline
matrix B. Once B has been determined, the platform attitude
can be determined as well.

D} Q.Dy (23)
Q ® blockdiag(D?X, Q4 Dy, DE,Qp D) (24)

2) The body-frame antenna-geometry as multivariate con-
straints: The strength of the above model can be increased
by including information about the geometry of the antenna
configuration. The known body-frame antenna-geometry can
be included into the above model through the parametrization

B = RBy (25)

with the unknown 3 x ¢ orthogonal matrix R (RT R = I,) and
the known ¢ x r matrix By describing the known geometry
of the antenna configuration in the body frame. Here, ¢ is the
degree of geometrical independence of the GNSS baselines,
for example, ¢ = 1 for co-linearly installed antennas, ¢ = 2
for co-planarly installed antennas, and ¢ = 3 for antennas
installed not in a single plane. For ¢ = 3, R is related to the
Euler attitude angles £ = [¢ 0 ¢]” as follows:

CeCy —CyS¢ 1+ SySeCe SypS¢p T CypSeCe
R(g) = CoS¢ CyCp + Sy S9Se —SyCp + CySeSe
—Sp Sy Co CyyCh

(26)

with ¢ the heading, 6 the elevation, 1 the bank, and where
Sq = sin(«) and ¢, = cos(«). Note that for ¢ < 3, only the
first ¢ columns of R are defined. For example, for a linear
antenna array (¢ = 1) only the first column is defined and
hence only heading and elevation are estimable.

Substitution of (25) into (17), leads to the constrained GNSS
attitude model [31], [41]

E(Y) = AZ+GRBy
D(vec(Y)) = Qyvy =P ®Qy

Our objective is to solve for the attitude matrix R in a least-
squares sense, thereby taking the integer constraints on matrix
Z € Z™*" and the orthonormality constraints on matrix
R € 03*4 into account. Hence, the least-squares minimization
problem that will be solved reads

Z ezfmxr @27
R € 0% (28)

i Y — AZ — GRBy)|? 29
ZEmel;g“{%e@qu HVeC( O)HQYY ( )
with || - IIé = ()Q~1(-). This is a mixed integer nonlinear

least-squares problem that does not permit a closed-form
solution. We now describe how (29) can be solved.

3) The real-valued float solution: The float solution is
defined as the solution of (29) without the constraints. When
we ignore the integer constraints on Z and the orthonormality
constraints on R, the float solutions 7 and ]:2 and their
variance-covariance matrices are obtained from solving the

system of normal equations:

{ Qzz Qzn }1. [ VeC(Z) ]
Qrz Qran vec(R)
_ [ é’f;‘g }Q;},vec(Y) (30)
with
[ Qzz Qzr }
Qrz Qrn

([ LeAT
- By ® GT

The Z-constrained solution of R and its variance-covariance
matrix can be obtained from the float solution as follows

vec (R(Z)) = vec(R) — QRZ"QZTZ}VGC (Z — Z) (32)
Qi Qrn — QrzQ53Q 25
= (BoP7'BY) @ (GTQ;G) T (33)

—1
}Q;HA@A B5®G]) (31)

Using the above estimators, the original problem in (29) can
be decomposed as

min
ZeZfmxr ReQ3x4q

N 2 N
= Hvec (E)‘ + min (szec (Z — Z)‘
QYY Zerran

. 2

vec (R(Z) - R)‘ )
Qf?,(z)f?,(z)

with E =Y — AZ — GRB, being the matrix of least-squares

residuals. Note that the first term on the right hand side is

constant, as it does not depend on the unknown matrices Z
and R.

|[vec (Y — AZ — GRBO)HéYY

2

Qzz
(34)

+ min
Re03x4

4) The integer ambiguity solution: Based on the orthog-
onal decomposition (34), the multivariate constrained integer
minimization can be formulated as:

7 = arg Ze%lfigw C(2) (35)
where
C(z)= Hvec(Z - Z)‘ 2@
+ Hvec (R(z) - R(Z))‘ ’ (36)
QR(Z)R(Z)
with
R(Z) = arg Rgg:gq vec (R(Z) - R)’ ’ 37

R(Z)R(Z)

The ambiguity objective function C'(Z) is the sum of two
coupled terms: the first weighs the distance from the float
ambiguity matrix Z to the nearest integer matrix Z in the
metric of @5z, while the second weighs the distance from
the conditional float solution R(Z ) to the nearest orthonormal
matrix R in the metric of Qz(z)z(z)-

Unlike with the standard LAMBDA method [14], the
search space of the above integer minimization problem is
non-ellipsoidal due to the presence of the second term in



C(Z). This second term is a consequence of having the
orthonormality constraints rigorously included. The evaluation
of C(Z) requires the computation of a nonlinear constrained
least-squares problem (37) for every integer matrix in the
search space. In the MC-LAMBDA method, this problem
is mitigated through the use of easy-to-evaluate bounding
functions [32]. Using these bounding functions, two strategies,
namely the Expansion and the Search and Shrink strategies,
were developed, see e.g. [24], [28]. These techniques avoid
the computation of (37) for every integer matrix in the search
space, and compute the integer minimizer Z in an efficient
manner.

5) The ambiguity resolved attitude solution: Finally, we
obtain the integer ambiguity resolved attitude solution by
substituting Z into (32), thus giving R(Z). The sought-
for attitude angles 5(2) are then obtained by solving the
following nonlinear least squares problem:

R(¢)
QR(Z)R(Z)

E (R(Z)) -

D (vec (R(Z))) _

where R() is defined in (26). Using a first order approxi-
mation, the formal variance-covariance matrix of the attitude
angles is given by (see Appendix)

-1
Qe = (JheQa(naczne)

As the results in the next sections show, this first order
approximation works well. This can be explained by the fact
that once the ambiguities have been resolved, the precision
of the attitude solution is driven by the high precision of the
carrier phase observations.

(38)

(39)

III. PERFORMANCE OF GPS/GALILEO ATTITUDE
DETERMINATION

In this section the performance analyses of GPS/Galileo
attitude determination are presented. In the hardware-in-
the-loop experiment (Section III-A), instantaneous, single-
frequency attitude determination performance is studied for
a full GPS/Galileo constellation under three different satellite-
deprived environments, namely, satellite outage (Section
III-A1), urban canyon (Section III-A2), and open-pit (Section
II-A3), demonstrating the robustness of the MC-LAMBDA
method in resolving integer ambiguities under these conditions
compared to the standard LAMBDA method.

In the real data analyses (Section III-B), two sets of real data
involving both constellations are considered. Due to orbital
parameters, co-visibility of Galileo experimental satellites does
not exist for every day and hence, two unique periods are
chosen: the first one having long GIOVE-A/-B co-visibility
(Section III-B1) and the other one having long GIOVE-
A/Galileo PFM co-visibility (Section III-B2).

The performance measures considered for our analyses are
linked to the two type of matrix parameters that need to be
determined: the integer ambiguity matrix Z and the attitude
matrix R. The GPS/Galileo attitude model’s ability to correctly

TANT 2

‘lm
® " @
ANT1 ANT3

(a) Hardware

(b) Antenna Geom-
etry

Fig. 1. Hardware-in-the-loop simulation set up: a) Spirent GSS6700 multi-
GNSS single-frequency simulator connected to Septentrio SEPT POLARXS
receiver tracking GPS-Galileo L1-E1 signals b) simulated antenna geometry
in the local body frame (forward-right-down with the origin at ANT1)

resolve Z is measured by the empirical instantaneous single-
frequency ambiguity success fraction (relative frequency),
defined as

number of correctly fixed epochs

success fraction =
total number of epochs

(40)

where total number of epochs refer to the number time
steps during the scenario considered regardless of whether
ambiguities are fixed correctly or not. The single-frequency
GPS/Galileo attitude model’s ability to determine instanta-
neous attitude is measured by the ambiguity resolved angular
accuracy, for which both the formal and empirical standard
deviations are studied. Furthermore, the computational effi-
ciency of the algorithm is measured by the average overall
computation time based on Matlab implementation.

A. Hardware-in-the-loop Experiment

This section presents the analyses of full constellation data
from a hardware-in-the-loop experiment to demonstrate the
improved availability of GPS-Galileo based attitude determi-
nation. We used the Spirent GSS6700 multi-GNSS single-
frequency simulator to generate GPS-Galileo L1-E1 signals,
which were tracked by Septentrio PolaRxS""® receiver (Figure
1(a)). We considered a GPS constellation of 32 satellites and a
Galileo constellation of 27 satellites to reflect the operational
and the proposed missions, respectively. The simulated static
platform is located at Perth, Australia (32° S 116° E) and
equipped with three antennas forming a planar array as shown
in Figure 1(b) for which the body frame coordinate matrix is
given as

By = H H o] (1)
The experiment was run for six hours with a start time of
Dec 14, 2011 00:00:00 (UTC). After ignoring a few initial
epochs due to cold-start of the receiver, we processed 20401
epochs of data at a rate of 1 Hz. Figure 2 shows the satellite
visibility (the sky-plots, the number of satellites, and the
PDOP values) during this period with an elevation cut-off
angle of 10°. On average, the receiver tracked 10 GPS and
8 Galileo satellites reflecting satellite availabilities from
prospective full constellations. Stochastic model parameters
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Fig. 2. Satellite visibility of GPS and Galileo constellations in the hardware-in-the-loop simulation with 10° elevation cut-off

System Code Phase
Opo Apg €po Tpo Qoo €ho
(Frequency) | fem] [deg] | [mm] [deg]
GPS (L1) 30 03 20 1 03 20
Galileo (E1) 10 0.3 20 1 0.3 20
TABLE 1

ELEVATION DEPENDENT STOCHASTIC MODEL PARAMETERS (15) FOR
SEPTENTRIO RECEIVER USED IN THE HARDWARE-IN-THE-LOOP
EXPERIMENT

for the elevation dependent model (15) of the receiver are
reported in Table I. In the following sections, we discuss the
results of single epoch, single-frequency (L1-El) processing
under various satellite deprived environments. We use the
inter-system double differencing in all cases. Note that, ISBs
are absent in this experiment as the same receiver was used
to collect the observations from all three antennas.

1) Satellite Outage: Satellite outages are simulated by
arbitrarily removing a number of visible satellites. Table II
reports the formal and empirical angular accuracies as well
as the ambiguity success fraction of the constrained MC-
LAMBDA method (with Eq. 25) compared to that of the
standard LAMBDA method (without Eq. 25). The cases with
significant improvement are highlighted using bold text. Ex-
cept for few severely deprived cases (with very few satellites),
the MC-LAMBDA method is capable of resolving the correct
ambiguities instantaneously with the success rate always better
than (or equal to) standard LAMBDA method. Improved
performance (robustness against satellite availability) of the
MC-LAMBDA method compared to the standard LAMBDA
method is due to the use of the geometry constraints. This,
in turn, has increased computational complexity: as given in
brackets the MC-LAMBDA has slightly high average overall
computation time compared to that of the standard LAMBDA
method.

The formal standard deviations (terms in brackets) are well
in line with the empirical standard deviations confirming
the assumed stochastic model parameters in Table I. Slight
degradation of the angular accuracy with the number of
satellites can be observed. Despite the slightly poor satellite

geometry (slightly higher PDOP values) of the Galileo-only
cases (m¢g = 0), which leads to poor success rate performance
compared to that of the GPS-only cases (mpg = 0), the angular
estimation accuracy of Galileo-only processing is slightly
better than that of GPS-only processing. This is due to the
Galileo observables having a slightly higher signal-to-noise
ratio (SNR) than that of GPS.

2) Urban Canyon: In this section we analyze the robustness
of the MC-LAMBDA method under urban canyon effect,
which is a well-known problem depriving GNSS based nav-
igation solutions in urban environments [12], [42]-[44]. We
simulate the blockage effect of urban canyon using a simple
model, where we have two buildings as shown in Figure 3
placed symmetrically with respect to the attitude platform
on an urban road. The blockage is defined by three angles:
Yo the azimuth of the center of the first building (defining
the direction of the road), «( the elevation at the center
of the building (defining the height of the buildings), and
Bo the azimuth angle (defining the width of the buildings).
For example, the severity of the blockage (for the case of
Yo = 90°, g = 60°, and By = 60°) becomes clear
when Figure 4 is compared with the full visibility case of
Figure 2. For these parameter values, the model represents two
buildings with a height of 9 meters and a width of 17 meters
on both sides of a ten-meter wide road in the North-South
direction. Urban canyon can also introduce multi-path effect
[12] and sometimes other types of interferences [45] that are
not considered in this contribution. The robustness of the MC-
LAMBDA method against multi-path effects has already been
studied and demonstrated in [46] using a simulation study.

We considered the urban canyon along a road in North-
South direction (79 = 90°). This corresponds to the worst
case deprivation due to a lack of visible satellites towards the
South direction in Perth, Australia (South polar region). Table
III summarizes the ambiguity resolution success fraction
for the simulated urban canyon scenario demonstrating the
robustness of the MC-LAMBDA method. Note that, for
large values of o and [y, only a fraction of epochs (given
in emphasized text) were processed due to the absence of
sufficient satellites for positioning (requires at least four



Success fraction (computation time [sec]) Angular standard deviation [deg]

mg  me (PDOP) LAMBDA MC-LAMBDA Heading Elevation Bank
4 (5.21) 0.00 (0.25) 0.58 (0.56) 0.07(0.08) 0.45 (0.49) 0.44 (0.49)
0 6 (2.73) 0.47 (0.17) 1.00 (0.20) 0.06(0.07) 0.24 (0.28) 0.24 (0.28)
8 (2.13) 0.87 (0.18) 1.00 (0.22) 0.05(0.06) 0.20 (0.23) 0.20 (0.23)
10 (2.08) 0.89 (0.19) 1.00 (0.22) 0.05(0.06) 0.19 (0.22) 0.19 (0.22)
4 (4.91) 0.29 (0.18) 0.99 (0.24) 0.07 (0.07) 0.31 (0.33) 0.30 (0.31)
2 6 (2.45) 0.95 (0.19) 1.00 (0.22) 0.06 (0.06) 0.23 (0.24) 0.22 (0.24)
> 8 (1.99) 1.00 (0.20) 1.00 (0.24) 0.05 (0.05) 0.19 (0.21) 0.19 (0.21)
0 (5.44) 0.00 (0.21) 0.22 (0.53) 0.13 (0.11) 0.58 (0.55) 0.53 (0.50)
4 2 (3.69) 0.17 (0.20) 1.00 (0.28) 0.09 (0.08) 0.28 (0.28) 0.27 (0.27)
4 (2.35) 0.95 (0.18) 1.00 (0.21) 0.06 (0.06) 0.21 (0.21) 0.21 (0.21)
> 6 (1.78) 1.00 (0.25) 1.00 (0.30) 0.05 (0.05) 0.18 (0.18) 0.18 (0.18)
0 (2.70) 0.11 (0.17) 1.00 (0.21) 0.09 (0.08) 0.26 (0.23) 0.26 (0.24)
6 2 (2.40) 0.93 (0.18) 1.00 (0.21) 0.07 (0.06) 0.21 (0.20) 0.21 (0.20)
4 (1.87) 0.99 (0.20) 1.00 (0.23) 0.05 (0.05) 0.18 (0.18) 0.18 (0.18)
> 6 (1.49) 1.00 (0.28) 1.00 (0.32) 0.04 (0.04) 0.16 (0.16) 0.16 (0.16)
3 0 (2.04) 0.96 (0.18) 1.00 (0.21) 0.07 (0.06) 0.22 (0.20) 0.22 (0.20)
>2(1.52) 1.00 (0.29) 1.00 (0.33) 0.05 (0.05) 0.15 (0.15) 0.15 (0.15)
10 0 (1.86) 0.99 (0.20) 1.00 (0.23) 0.07 (0.06) 0.21 (0.19) 0.20 (0.18)
> 2 (1.44) 1.00 (0.35) 1.00 (0.39) 0.04 (0.04) 0.15 (0.15) 0.15 (0.15)
12 0 (1.85) 0.99 (0.19) 1.00 (0.23) 0.07 (0.09) 0.21 (0.20) 0.20 (0.20)
> 2(1.43) 1.00 (0.34) 1.00 (0.37) 0.04 (0.04) 0.15 (0.15) 0.15 (0.15)

TABLE II

INSTANTANEOUS SINGLE-FREQUENCY AMBIGUITY SUCCESS FRACTIONS (RELATIVE FREQUENCIES), THE AVERAGE COMPUTATION TIME [SEC] (GIVEN
IN BRACKETS), AND EMPIRICAL AND FORMAL (GIVEN IN BRACKETS) ANGULAR STANDARD DEVIATIONS (BASED ON CORRECTLY FIXED EPOCHS) FOR
THE HARDWARE-IN-THE-LOOP EXPERIMENT WITH SIMULATED SATELLITE OUTAGE (HERE, ‘> s’ REFERS TO s OR MORE SATELLITES)
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(a) Skyplot (GPS) (b) Skyplot (Galileo) (c) Number of satellites and PDOP
Fig. 4. Satellite visibility for simulated urban canyon with «g = 60° and Bp = 60° in the North-South direction
ap Bo GPS only Galileo only GPS + Galileo
(deg) (deg) | LAMBDA MC-LAMBDA LAMBDA MC-LAMBDA LAMBDA MC-LAMBDA
20 | 0.89 (0.14) 1.00 (0.18) 0.85 (0.13) 1.00 (0.16) 1.00 (0.42) 1.00 (0.48)
20 40 | 0.85 (0.16) 1.00 (0.20) 0.79 (0.13) 1.00 (0.17) 1.00 (0.44) 1.00 (0.48)
60 | 0.85(0.15) 1.00 (0.18) 0.77 (0.13) 1.00 (0.17) 1.00 (0.46) 1.00 (0.47)
80 | 0.85(0.18) 1.00 (0.19) 0.77 (0.16) 1.00 (0.20) 1.00 (0.45) 1.00 (0.55)
20 | 0.86 (0.14) 1.00 (0.18) 0.78 (0.12) 1.00 (0.16) 1.00 (0.37) 1.00 (0.41)
40 40 | 0.68 (0.14) 1.00 (0.19) 0.55 (0.13) 1.00 (0.18) 1.00 (0.32) 1.00 (0.36)
60 | 0.37 (0.14) 0.97 (0.21) 0.15 (0.13)/0.90 0.97 (0.22)/0.90 1.00 (0.24) 1.00 (0.28)
80 | 0.28 (0.13) 0.97 (0.22) 0.10 (0.12)/0.90 0.97 (0.22)/0.90 1.00 (0.25) 1.00 (0.29)
20 | 0.81 (0.14) 1.00 (0.18) 0.65 (0.13) 1.00 (0.17) 1.00 (0.33) 1.00 (0.39)
60 40 | 045 (0.15) 0.96 (0.21) 0.24 (0.13)/0.99 0.84 (0.28)/0.99 1.00 (0.23) 1.00 (0.27)
60 | 0.03 (0.21)/0.57 0.77 (0.40)/0.57 * (x)/0.16 * (%)/0.16 0.75 (0.18) 1.00 (0.22)
80 | 0.01 (0.27)/0.49 0.69 (0.49)/0.49 * (%)/0.07 * (x)/0.07 0.71 (0.22)/0.82 1.00 (0.26)/0.82
20 | 0.71 (0.15) 1.00 (0.20) 0.59 (0.13) 0.98 (0.19) 1.00 (0.30) 1.00 (0.35)
30 40 | 0.23 (0.14)/0.92 0.84 (0.30)/0.92 0.16 (0.13)/0.85 0.81 (0.28)/0.85 1.00 (0.21) 1.00 (0.25)
60 | * (x)/0.00 * (%)/0.00 * (%)/0.02 * (%)/0.02 0.06 (0.50)/0.36 0.99 (0.57)/0.36
80 | * (%)/0.00 * (%)/0.00 * (x)/0.00 * (%)/0.00 * (%)/0.00 * (%)/0.00
TABLE III

INSTANTANEOUS SINGLE-FREQUENCY AMBIGUITY SUCCESS FRACTIONS (RELATIVE FREQUENCIES) AND THE AVERAGE COMPUTATION TIME [SEC]
(GIVEN IN BRACKETS) FOR THE HARDWARE-IN-THE-LOOP EXPERIMENT WITH SIMULATED URBAN CANYON (FIGURE 3); FOR SOME CASES, ONLY A
FRACTION OF EPOCHS (GIVEN IN EMPHASIZED TEXT) WERE PROCESSED DUE TO A LACK OF SUFFICIENT SATELLITES FOR POSITIONING (REQUIRES AT
LEAST FOUR SATELLITES)



Fig. 3. Simulated urban canyon: Buildings on both sides of an urban road
block satellite visibility; Angle o defines the direction of the road, while
angles g and B define the height and the width of the buildings, respectively.

satellites). For almost all other cases, instantaneous ambiguity
resolution is possible due to the exploitation of the geometry
constraints in the MC-LAMBDA method, which requires
slight high computational effort (given in brackets). The
corresponding angular accuracies (standard deviations) are
reported in Table IV, showing that empirical values are in
line with formal values (given in brackets). Similar to the
satellite outage problem of Section III-Al, the GPS-only
success fraction is slightly better than that of the Galileo-only
case due to better satellite geometry (small PDOP values,
which are not given in the table). Also, similar to the satellite
outage problem considered above, the Galileo-only angular
accuracies are slightly better than that of the GPS-only
cases due to the Galileo observables having slightly higher
SNR than that of GPS. Both success fraction and angular
accuracy degrade as the effect of the urban canyon increases
(i.e., angles ag and [y increase). Except for the worst case
scenario (i.e. ag = 80° and [y = 80°), the bold-texted
results of Table III show that the MC-LAMBDA based,
combined GPS-Galileo attitude solution is available with high
ambiguity success fraction. A combined GPS/Galileo system
processing not only improves the success fraction, but also
slightly improves the angular accuracies (Table IV). Both
the ambiguity resolution success fraction and the angular
accuracy, however, degrade as the effect of the urban canyon
increases (i.e., angles ag and §y increase).

3) Open-pit: In this section, the impact of an open-pit
environment is analyzed. As shown in Figure 5 the platform
is assumed to be at the center of an open-pit base. Tables
V and VI report the ambiguity success fractions and the
angular accuracies for the simulated open-pits, thus clearly
highlighting the benefit of using a combined system and im-
proved robustness of the MC-LAMBDA method with slightly
increased computational load (given in brackets). That is, the
MC-LAMBDA processing of a combined GPS/Galileo system
enables the availability of instantaneous attitude solutions for

Fig. 5. Simulated circular open-pit; the elevation masking angle o, defines
the blockage. The platform is assumed to be at the center of open-pit base

‘ CUTA

(b) Antenna geometry

(a) Antenna setup

Fig. 6. Curtin GNSS antennas used for the real data campaign

an open-pit with up to 40 deg elevation masking.

B. Real Data Campaign

The real data sets used for the analyses in this work are
from three antennas mounted on the roof of building 402 at
the campus of Curtin University in Perth, Australia. As shown
in Figure 6(a), the antennas form a planar array as shown in
Figure 6(b) for which the body frame coordinate matrix is
given as

8.418 —0.024

BO = [m]

0 4.269 (42)

These antennas are connected to three GNSS receivers whose
connectivities are summarized in Table VII. All three receivers
continuously track almost all available GNSS satellites.

The stochastic model parameters of the elevation dependent
model (15) for the receivers are reported in Table VIII,
indicating the different values for a,, and a4,. In the fol-
lowing analyses, we use inter-system double differencing after
correcting GNSS observations for the differential ISBs given
in Table IX.

1) GPS/GIOVE Data: In this section, we present the results
of attitude determination for the antennas shown in Figure

Antenna/Receiver | Antenna type Receiver type
CUTO & CUTA TRM59800.00 SCIS | TRIMBLE NETR9
CUBB JAV_GRANT-G3T QUA_G3D_3

TABLE VII
CURTIN GNSS RECEIVER-ANTENNA CONNECTIVITY



ap Bo GPS only Galileo only GPS + Galileo

(deg) (deg) | Heading Elevation Bank Heading Elevation Bank Heading Elevation Bank
20 | 0.07 (0.07) 0.24 (0.24) 0.24 (0.25) | 0.06 (0.06) 0.20 (0.21) 0.20 (0.21) | 0.04 (0.04) 0.14 (0.14) 0.14 (0.14)

20 40 | 0.07 (0.07) 0.26 (0.26)  0.26 (0.27) | 0.06 (0.06) 0.22 (0.22) 0.22 (0.22) | 0.04 (0.04) 0.15 (0.15)  0.15 (0.15)
60 | 0.07 (0.07) 0.27 (0.27) 0.27 (0.27) | 0.06 (0.06) 0.23 (0.23) 0.23 (0.23) | 0.04 (0.04) 0.15 (0.16) 0.15 (0.16)
80 | 0.07 (0.07) 0.27 (0.27) 0.27 (0.27) | 0.06 (0.06) 0.23 (0.23)  0.23 (0.23) | 0.04 (0.04) 0.15 (0.16) 0.15 (0.16)
20 | 0.07 (0.07) 0.25 (0.25) 0.25 (0.25) | 0.06 (0.06) 0.21 (0.22)  0.21 (0.22) | 0.04 (0.04) 0.14 (0.15)  0.14 (0.15)

40 40 | 0.08 (0.08) 0.37 (0.36) 0.37 (0.37) | 0.06 (0.06) 0.25 (0.25) 0.25 (0.25) | 0.05 (0.05) 0.16 (0.17)  0.16 (0.17)
60 | 0.10 (0.10) 0.47 (0.46) 0.48 (0.48) | 0.09 (0.09) 0.40 (0.41) 0.44 (0.45) | 0.06 (0.06) 0.22 (0.22)  0.23 (0.24)
80 | 0.10 (0.10) 0.51 (0.50) 0.52 (0.51) | 0.09 (0.09) 0.42 (0.44) 0.47 (0.48) | 0.06 (0.06) 0.25(0.25) 0.26 (0.26)
20 | 0.08 (0.08) 0.25 (0.25) 0.25 (0.26) | 0.06 (0.06) 0.21 (0.22) 0.22 (0.22) | 0.04 (0.04) 0.14 (0.15)  0.14 (0.15)

60 40 | 0.10 (0.10) 0.34 (0.33) 0.34 (0.34) | 0.08 (0.08) 0.24 (0.25) 0.26 (0.26) | 0.05 (0.05) 0.16 (0.17)  0.17 (0.17)
60 | 0.15(0.15) 042 (0.42) 046 (0.47) | 0.15(0.15) 0.34 (0.34) 0.42(0.42) | 0.11 (0.11)  0.29 (0.30) 0.36 (0.36)
80 | 0.13 (0.13) 0.57 (0.57) 0.61 (0.62) | 0.12 (0.12) 0.41 (0.41) 0.47 (0.46) | 0.11 (0.11) 0.42 (0.44) 0.47 (0.49)
20 | 0.08 (0.08) 0.26 (0.27) 0.27 (0.27) | 0.06 (0.06) 0.22 (0.22) 0.22 (0.23) | 0.04 (0.04) 0.15 (0.15)  0.15 (0.15)

30 40 | 0.09 (0.09) 0.36 (0.35) 0.37 (0.36) | 0.07 (0.07) 0.23 (0.23) 0.24 (0.24) | 0.05 (0.05) 0.18 (0.18) 0.18 (0.19)
60 | * (%) * (%) x (%) * (%) * (%) * (%) 0.14 (0.14)  0.26 (0.27)  0.38 (0.38)
80 * (%) * (%) * (%) * (%) * () * (%) * (%) * (k) * (%)

TABLE IV

EMPIRICAL AND FORMAL (GIVEN IN BRACKETS) ANGULAR STANDARD DEVIATIONS [DEG] FOR HARDWARE-IN-THE-LOOP EXPERIMENT WITH
SIMULATED URBAN CANYON (FIGURE 3)

Elevation GPS only Galileo only GPS + Galileo
Cut-off
[deg]
LAMBDA MC-LAMBDA LAMBDA MC-LAMBDA LAMBDA MC-LAMBDA
10 0.98 (0.16) 1.00 (0.19) 0.89 (0.13) 1.00 (0.16) 1.00 (0.44) 1.00 (0.53)
20 0.70 (0.13) 1.00 (0.16) 0.58 (0.12) 1.00 (0.15) 1.00 (0.31) 1.00 (0.35)
30 0.17 (0.13) 0.99 (0.20) 0.13 (0.12)/0.94 0.95 (0.21)/0.94 1.00 (0.22) 1.00 (0.25)
40 0.03 (0.15)/0.74 0.81 (0.36)/0.74 0.00 (0.16)/0.42 0.82 (0.36)/0.42 0.87 (0.17) 1.00 (0.21)

50 0.00 (0.39)/0.14 0.52 (0.64)/0.14 0.00 (0.80)/0.09 0.88 (1.00)/0.09 0.46 (0.22)/0.68 1.00 (0.26)/0.68
60 * (%)/0.00 * (%)/0.00 * (%)/0.00 * ()/0.00 0.17 (0.64)/0.09 1.00 (0.68)/0.09
TABLE V

INSTANTANEOUS SINGLE-FREQUENCY AMBIGUITY SUCCESS FRACTIONS (RELATIVE FREQUENCIES) AND THE AVERAGE COMPUTATION TIME [SEC]
(GIVEN IN BRACKETS) FOR THE HARDWARE-IN-THE-LOOP EXPERIMENT WITH SIMULATED OPEN-PIT USING ELEVATION MASKING; FOR SOME CASES,
ONLY A FRACTION OF EPOCHS (GIVEN IN EMPHASIZED TEXT) WERE PROCESSED DUE TO A LACK OF SUFFICIENT SATELLITES FOR POSITIONING
(REQUIRES AT LEAST FOUR SATELLITES)

Elevation GPS only Galileo only GPS + Galileo

cut-off

[deg] Heading Elevation Bank Heading Elevation Bank Heading Elevation Bank

10 0.07 (0.06) 0.21 (0.21) 0.20 (0.21) 0.05 (0.05) 0.19 (0.20) 0.19 (0.20) 0.04 (0.04) 0.13 (0.14) 0.13 (0.14)

20 0.08 (0.08) 0.31 (0.31) 0.31 (0.32) 0.07 (0.07) 0.28 (0.28) 0.29 (0.29) 0.05 (0.05) 0.19 (0.19) 0.19 (0.19)

30 0.10 (0.10) 0.54 (0.53) 0.53 (0.54) 0.08 (0.08) 0.50 (0.51) 0.53 (0.54) 0.06 (0.06) 0.30 (0.30) 0.30 (0.30)

40 0.12 (0.12) 0.80 (0.80) 0.79 (0.80) 0.12 (0.12) 0.69 (0.71) 0.75 (0.77) 0.09 (0.09) 0.51 (0.52) 0.51 (0.53)

50 0.14 (0.15) 1.27 (1.28) 1.28 (1.32) 0.13 (0.13) 0.82 (0.85) 0.94 (0.99) 0.12 (0.13) 0.97 (0.99) 0.98 (1.02)

60 * (%) * (%) * (%) * (%) * (%) * (%) 0.13 (0.13) 1.67 (1.64) 1.68 (1.66)
TABLE VI

EMPIRICAL AND FORMAL (GIVEN IN BRACKETS) ANGULAR STANDARD DEVIATIONS [DEG] FOR HARDWARE-IN-THE-LOOP EXPERIMENT WITH
SIMULATED OPEN-PIT USING ELEVATION MASKING

Antenna System Code Phase ISB Code ISB [m] Phase ISB [cycle]
. Opy Gpy  €po Opo gy €do (Standard Deviation) | (Standard Deviation)
/Receiver | (Frequency) [em] [deg]| [mm]  [deg] CUTA-CUTO 0.03 (0.001) 0.00 (0.001)
CUTO & GPS (L1) 14 5 20 1 5 20 CUBB-CUTO0 1.64 (0.001) -0.46 (0.001)
TA i
am | Gy | & s 0|1 g o i
CUBB K (LD DIFFERENTIAL ISB FOR E1-L1 FROM [36]
Galileo (E1) 10 10 20 1 25 20
TABLE VIII

ELEVATION DEPENDENT STOCHASTIC MODEL PARAMETERS (15) FOR
CURTIN GNSS STATIONS USED IN THE REAL DATA CAMPAIGNS

6 using GPS and GIOVE observations and demonstrate im-
proved performance due to inclusion of GIOVE satellites. For
this purpose, we considered data collected on Nov 24, 2011

from 14:06:52 to 20:59:43 (UTC) during which we have long
co-visibility of GIOVE-A and GIOVE-B with an elevation cut-
off of 10°. Figure 7 shows the satellite visibility (the sky-plot,
the number of satellites, and the PDOP values) during the
campaign for which both GIOVE-A (PRN E51) and GIOVE-
B (PRN E52) satellites were visible (for an elevation cut-off



(a) Skyplot (red-GPS and green-

Galileo)
14
13 3
12
11
310
=)
58 %s
5 7 2
g 6 o
€5
2 4 —— Number of GPS+Galileo satellites 1
3| — PDOP (GPS+Galileo)
2 —— Number of GPS satellites
(1) ——PDOP (GPS)

(1]
15:00 21:.00

18:00
24-Nov-2011
(b) Number of satellites and PDOP

Fig. 7. Visibility of GPS and GIOVE satellites on Dec 19, 2011 for 10°
elevation cut-off

angle of 10°). The green curves in the Skyplot correspond
to the trajectories of GIOVE satellites. In the following, we
discuss the results from single epoch, single-frequency (L1/E1)
processing of the data (24772 epochs with 1 sec sampling
interval).

Table X reports the instantaneous single-frequency ambi-
guity success fractions (relative frequencies) and the aver-
age computation time (given in brackets) for simulated GPS
satellite outages demonstrating the improved success rate
performance due to inclusion of GIOVE satellites. Further-
more, the inclusion of GIOVE observations results in a slight
improvement of angular accuracy, which is reported in Table
XI. Better angular accuracy compared to the hardware-in-
the-loop experiment in Table II is due to the use of longer
baselines in real data campaign (as shown in Appendix the
angular standard deviations are inversely proportional to base-
line lengths). The relatively poor bank accuracy is due to the
use of a shorter baseline CUTO-CUBB compared to CUTO-
CUTA and poorer noise characteristics of CUBB compared to
the other two receivers/antennas (cf., Table VIII).

2) GPS/GIOVE-A/Galileo I0V Data: Curtin receivers (Ta-
ble VII) were among the first to track signals from Galileo-
PFM (one of the two Galileo IOV satellites launched on Oct
21, 2011) on Dec 10, 2011. On Dec 19, 2011, Curtin stations
for the first time logged navigation data for Galileo-PFM (PRN
E11). We considered the data set collected on Dec 19, 2011,
from 07:14:00 to 09:52:16 (UTC) during which GIOVE-A and
Galileo-PFM were co-visible for an elevation cut-off of 10°
(9497 epochs of data). Figure 8 shows the satellite visibility
(the sky-plot, the number of satellites, and the PDOP values).
The green lines in the Skyplot correspond to the trajectories of
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Fig. 8. Satellite visibility of GPS, GIOVE-A, and Galileo-PFM on Dec 19,
2011 for 10° elevation cut-off

GIOVE-A and Galileo-PFM. Since Galileo-PFM was in orbit
validation stage, its clock had not been calibrated resulting in
large satellite clock error. Due to this large clock error, CUBB
did not track E11 continuously. Hence, we considered attitude
determination using single baseline formed by CUTO and
CUTA (Table VII). Consequently, we only estimated heading
and elevation angles.

Since E11 observations were affected with large satellite
clock error and all three clock parameters in the received nav-
igation message were set to zero, we considered an extended
model for single point positioning (SPP) by including the
satellite clock error for E11 as an additional unknown parame-
ter. Combining the linearized pseudo-range observations from
me GPS satellites, GIOVE-A, and Galileo-PFM satellites, the
system of equations reads:

Ap,§ (te) —elé(te)” 1 0 0
ECl Apre(te) |)= | —eme(te)” 1 0 0
ApES () e (t)T 0 1 0
ApZy () —eP(t)T 0 1 1
Az, (te)
cAdLS (1)
cAdtE (o) “3)

r

CAdEE (t = TF (t5)

with ¢ the observation time in GPS system time, dt7, (t)
the combined receiver clock error and hardware delay,
Apy 4 (te) = ppq(te) fpi:?(tG) the observed-minus-computed
observation, p; ; () the pseudo-range observation from satel-
lite 5 at frequency L1 or EL, e; (te) = (xp(f(;:;ftrf%l;f?gf))
the unit vector from receiver at time ¢ to satellite at time ¢, —




GPS only GPS+GIOVE
# Sat (PDOP) LAMBDA  MC-LAMBDA # Sat (PDOP) LAMBDA  MC-LAMBDA
7(9.40) 0.00 (0.12) __ 0.12 (0.58) 6 (6.74) 0.02 (0.14) __ 0.94 (0.26)

5 (5.50) 0.00 (0.11)  0.81 (0.51) 7 (4.33) 033 (0.14) 099 (0.20)

6 (3.59) 0.03 (0.12) 098 (0.34) 8 (3.22) 0.66 (0.15)  1.00 (0.20)

7 (2.46) 0.19 (0.12) 099 (0.17) 9 (2.22) 0.81 (0.15)  1.00 (0.19)

8 (2.17) 0.52 (0.13) 1.00 (0.19) 10 (1.97) 093 (0.16)  1.00 (0.19)

9 (2.07) 0.72 (0.13) 1.00 (0.17) 11 (1.87) 0.97 (0.18) 1.00 (0.21)
10 (2.05) 077 (0.13) 100 (0.18) 12 (1.85) 0.97 (0.18) 1.00 (0.21)
TABLE X

INSTANTANEOUS SINGLE-FREQUENCY AMBIGUITY SUCCESS FRACTIONS (RELATIVE FREQUENCIES) AND THE AVERAGE COMPUTATION TIME [SEC]
(GIVEN IN BRACKETS) FOR GPS ONLY AND GPS+GIOVE; '# SAT’ REFERS TO NUMBER OF SATELLITES

EMPIRICAL AND FORMAL (GIVEN IN BRACKETS) ANGULAR STANDARD DEVIATIONS [DEG] FOR GPS ONLY AND GPS+GIOVE;

GPS only GPS+GIOVE
# Sat Heading Elevation Bank # Sat Heading Elevation Bank
4 0.04 (0.04) 0.10 (0.09)  0.26 (0.29) 6 0.02 (0.02)  0.05 (0.04) 0.20 (0.19)
5 0.02 (0.02) 0.06 (0.06) 0.18 (0.23) 7 0.02 (0.02) 0.05 (0.04) 0.17 (0.17)
6 0.02 (0.02) 0.05 (0.04) 0.15 (0.17) 8 0.02 (0.01)  0.04 (0.03) 0.15 (0.15)
7 0.02 (0.01) 0.04 (0.03) 0.14 (0.16) 9 0.01 (0.01)  0.04 (0.03) 0.14 (0.14)
8 0.01 (0.01) 0.04 (0.03) 0.14 (0.14) 10 0.01 (0.01) 0.03 (0.03) 0.14 (0.13)
9 0.01 (0.01) 0.04 (0.03) 0.14 (0.13) 11 0.01 (0.01) 0.03 (0.03) 0.14 (0.12)
10 0.01 (0.01) 0.04 (0.03) 0.14 (0.13) 12 0.01 (0.01) 0.03 (0.03) 0.14 (0.12)
TABLE XI

NUMBER OF SATELLITES

-39.715 T T

-39.716 4

-39.717 B

-39.718 A

-39.7191 4

-39.72f : B

’# SAT’ REFERS TO

Clock bias Clock drift Clock drift rate
(ao) [1072 sec] | (a1) [10710 sec/sec] | (a2) [10~1° sec/sec?]
CUTO —3.9733 4.2479 2.1900
CUTA —3.9733 4.2924 2.1197
TABLE XII

E11 CLOCK ERROR BASED ON SINGLE POINT POSITIONING USING THE
EXTENDED MODEL IN (43)
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Fig. 9. Estimates of E11 clock error based on SPP solutions of CUTO and
CUTA using extended model (43)

T5(te), 75 (te) the signal travel time, and pf(te — 75 (tc), ts)
the topocentric distance between receiver at time ¢ to satellite
at time ¢t —7; (t¢). Prefix A in the right-hand side of the above
equation refers to the correction in the iterative least-squares
estimation.

The estimated E11 clock error is shown in Figure 9. Using
satellite clock error model ag + a0t + a2dt2, where 6t is the
difference between observation time and signal transmission,
the model parameters for E11 satellite clock error, ag, ai,
and as, are estimated. As reported in Table XII it indicates a
large clock bias. Note that due to the additional parameter to
be estimated in (43), Galileo code observations do not con-
tribute to absolute positioning. However, this clock error gets
eliminated in double differencing. Hence, Galileo observations
do contribute to relative positioning. In the following, we
discuss the results of single epoch, single-frequency (L1/El)
processing of this data (9497 epochs at a rate of 1 Hz).

Table XIII reports the instantaneous single-frequency am-

GPS only GPS + GIOVE-A + Galileo-PFM
1 # Sat Heading Elevation # Sat Heading Elevation
——ye 4 0.03 (0.03)  0.07 (0.06) 6 0.02 (0.02)  0.05 (0.05)
5 0.02 (0.02)  0.05 (0.04) 7 0.02 (0.01)  0.04 (0.03)
6 0.02 (0.02)  0.05 (0.04) 8 0.02 (0.01)  0.04 (0.03)
7 0.02 (0.01)  0.04 (0.03) 9 0.01 (0.01)  0.03 (0.03)
8 0.02 (0.01)  0.04 (0.03) 10 0.01 (0.01)  0.03 (0.03)
9 0.01 (0.01)  0.03 (0.03) 11 0.01 (0.01)  0.03 (0.03)
10 0.01 (0.01)  0.03 (0.03) 12 0.01 (0.01)  0.03 (0.03)
TABLE XIV

EMPIRICAL AND FORMAL (GIVEN IN BRACKETS) ANGULAR STANDARD
DEVIATIONS [DEG] FOR GPS ONLY AND GPS + GIOVE-A +
GALILEO-PFM; "# SAT’ REFERS TO NUMBER OF SATELLITES

biguity success fractions (relative frequencies) and the aver-
age computation time (given in brackets) for simulated GPS
satellite outages. Similar to GPS-GIOVE processing in Section
III-B1, it demonstrates the improved success rate performance
due to inclusion of GIOVE-A and Galileo-PFM satellites.
Also the inclusion of GIOVE-A and Galileo-PFM observations
results in a slight improvement of angular accuracy, which is
reported in Table XIV. As we have the same (first) baseline
in this analyses and that in Section III-B1, angular accuracies
in Table XIV are well in line with that in Table XI.

IV. SUMMARY AND CONCLUSIONS

In this contribution a combined GPS+Galileo performance
and robustness analysis was carried out for instantaneous



GPS only GPS + GIOVE-A + Galileo-PFM
# Sat (PDOP) LAMBDA  MC-LAMBDA # Sat (PDOP) LAMBDA  MC-LAMBDA
7(9.98) 0.00 (0.07) 033 (0.08) 6 (6.32) 047 (0.09) 097 (0.09)

5 (3.55) 0.05 (0.07)  0.77 (0.07) 7 (3.11) 0.82 (0.09)  1.00 (0.09)

6 (2.70) 034 (0.07) 095 (0.07) 8 (2.34) 0.98 (0.09)  1.00 (0.09)

7 (2.13) 077 (0.07) 100 (0.07) 9 (1.93) 0.99 (0.09)  1.00 (0.09)

8 (2.01) 0.96 (0.08) 1.00 (0.08) 10 (1.81) 1.00 (0.10)  1.00 (0.10)

9 (1.89) 0.99 (0.08) 1.00 (0.08) 11 (1.70) 1.00 (0.10) 1.00 (0.11)
10 (1.89) 0.99 (0.08)  1.00 (0.08) 12 (1.70) 1.00 (0.10) 1.00 (0.11)
TABLE XIII

INSTANTANEOUS SINGLE-FREQUENCY AMBIGUITY SUCCESS FRACTIONS (RELATIVE FREQUENCIES) AND THE AVERAGE COMPUTATION TIME [SEC]
(GIVEN IN BRACKETS) FOR GPS ONLY AND GPS+GIOVE-A+GALILEO-PFM; *# SAT’ REFERS TO NUMBER OF SATELLITES

single-frequency attitude determination. Improved availability
and angular accuracy were demonstrated using data from a
hardware-in-the-loop experiment as well as from real data
campaigns. We considered various satellite deprived envi-
ronments (satellite outage, urban canyon, and open-pit) to
study the robustness of the GPS/Galileo-based attitude solu-
tions. In comparing the performances of LAMBDA and MC-
LAMBDA, we also studied the impact of using the known
antenna-geometry on ambiguity resolution.

It was shown, using simulated satellite outages, that instan-
taneous single-frequency ambiguity resolution using the MC-
LAMBDA method is possible with as few as six satellites
from GPS and/or Galileo constellations. It was also shown for
satellite masking effect of the urban canyon environment, that
combined GPS/Galileo processing still enables instantaneous
attitude determination in case buildings are 9 meter tall, 17
meter wide and symmetrically placed on both sides of a ten-
meter wide urban road. And it was shown that the use of
a combined GPS/Galileo constellation enables instantaneous
open-pit attitude determination with elevation masking as large
as 40 degrees, while one can only go up to 20 degree elevation
masking with a single system.

Further to the hardware-in-the-loop experiment, we used
two real data sets involving Galileo experimental satellites to
validate the above findings. Processing of the first real data set
consisting of data from two GIOVE satellites confirmed the
significant advantages of using a combined system. Finally, we
demonstrated that the Galileo-PFM satellite, which is in the
early stage of testing phase, has already contributed to attitude
solution availability in the case of a number of GPS satellite
outages.

Important for future research in the field of GNSS attitude
determination is the further development of a probabilistic
framework, similar to the one already available for the stan-
dard mixed-integer GNSS model [47], [48]. Such theoretical
framework would allow for the development of the appro-
priate probability density functions and test statistics for the
constrained GNSS attitude model.

APPENDIX

In this section we derive the formal variance-covariance ma-
trix of attitude angular estimates ¢ (Z) in (38). The linearized

version of (38) reads

E (vec (AR(Z))) = Jre(&)AE
D (Vec (R(Z))) =
where AR(Z) = R(Z) — R(&), AE = € — &, and Jr.¢(&)

is the Jacobian matrix evaluated at intermediate estimate &
from the iterative least squares estimation and given as

(44)
Qrz)a(z)

T
Jre = [JI...J]] (45)
with
—S¢Co —CpS9
ifg=1 J, = CeCh —5456
0 —Cp
—5¢Ch —Cy59 0
else J; = CyCo —s459 0
0 —Cp 0
and
I —S5$S0Sy — CopCyp CpCHSy CpSeCyp + SpSy
JQ = CpSeSy — SpCop SpCHSq SpSHCyp — CopSyp
i 0 —80Sy CoCy
[ —S8¢S9Cy + CpSy CyCHCy) —CySpSy + S¢Cy
Jg = CpSHCop + S¢S SpCHCy —S5¢S50Sy — CopCy
I 0 —89Cy —CpSy

The variance-covariance matrix of attitude angular estimates
at least-squares solution £ is given as

“ ~\ —1
Qee = (JR,§(£)T ééZ)R(Z)JR,§(§)>

Using (33), the variance-covariance matrix of attitude angles
can be written as

Qee = (‘]R,s(é)T (P ®s™) JR’f(é))_l

where P = (B()P_lBOT)_1 and S = (GTQy_ylG)_l. Hence,
the angular estimation accuracy depends on antenna geome-
try (P), attitude angles, receiver-satellite geometry (G), and
observation variance-covariance matrix (Q)y,). Using (45), the
above can be written as

(46)

(47)

-1
q q

Qee= | D

i=1 j=1

P IS ; (48)



where P, ; is the ¢, j element of P~ L If we increase the lengths
of the basehnes (such that BO = [Bg) then the variance matrix
reads

—1
T S S (49)
=1 j=1
1
= ﬁQgg (50

Hence, the angular standard deviation is inversely proportional
to baseline length.
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