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ABSTRACT

Although properties of bulk heavy oil can be approximated
by an appropriate viscoelastic model, only a few attempts to
model properties of rocks saturated with heavy oil have been
reported. Rock-physics models used for rocks saturated with
conventional fluids are inapplicable to those saturated with
heavy oil because its viscoelastic rheology invalidates the
main assumptions of the Gassmann and Biot theories. We es-
timate viscoelastic properties of mixtures of rock and heavy
oil by considering �1� a system of layers of a solid and a vis-
coelastic medium and �2� by computing Hashin-Shtrikman
�HS� bounds for this system. These two methods give ap-
proximate bounds for the frequency- and temperature-depen-
dent velocities and attenuation coefficients in rocks saturated
with heavy oil. We also propose a method to compute a realis-
tic estimate of these properties that lie between those bounds.
This estimate is based on a self-consistent equivalent-medi-
um approach known as coherent-potential approximation. In
a more general form, this approximation can be used for ap-
proximate fluid substitution for heavy oil. This approach
gives frequency-dependent velocities and attenuation values
that are qualitatively consistent with experimental observa-
tions.

INTRODUCTION

Heavy oils are important hydrocarbon reserves that often are ex-
loited by using thermal-recovery processes. As with conventional
il and gas, the seismic method is the primary method used for reser-
oir characterization and for production monitoring. To this end,
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ock-physics relationships are required to link seismic parameters
velocities and attenuation coefficients� to the properties of oil as a
unction of frequency and pressure, volume, and temperature �PVT�
onditions. In recent years, some laboratory measurements of elastic
roperties of heavy oils and of rocks saturated with heavy oil have
een reported �Nur et al., 1984; Eastwood, 1993; Schmitt, 1999;
atzle et al., 2006�.According to these measurements, heavy oils ex-
ibit viscoelastic properties such that they behave like liquids at low
requencies, whereas they behave almost like solids at high frequen-
ies. At intermediate frequencies, the elastic moduli are complex,
xhibiting strong attenuation and velocity dispersion. The character-
stic frequency of this viscoelastic transition is strongly dependent
n temperature. Oil that behaves as a nearly elastic solid at room
emperature �over a wide range of frequencies� can exhibit Newton-
an fluid behavior at temperatures above 200°C.

The properties of bulk heavy oil can be approximated by an appro-
riate viscoelastic model, but very few attempts to model the proper-
ies of rocks saturated with heavy oil have been reported �Eastwood,
993; Leurer and Dvorkin, 2006�. The rock physics of rocks saturat-
d with heavy oil is different from that of rocks saturated with con-
entional fluids because the viscoelastic rheology of heavy oil
akes the Gassmann and Biot theories and all their extensions in-

alid. Indeed, Gassmann theory assumes that fluid pressure is equili-
rated throughout the pore space of a rock. If the medium is saturated
ith a Newtonian fluid, this is ensured by Pascal’s law, which is valid

n the static limit �in the absence of body forces�. However, heavy
ils are viscoelastic and have finite shear moduli even at seismic fre-
uencies; therefore, Pascal’s law does not apply. Similarly, the Biot
heory assumes that shear stresses in a fluid are negligible compared
ith shear stresses in a solid matrix, an assumption that does not hold

or viscoelastic media. Of course, both Gassmann and Biot theories
ight be valid at sufficiently low frequencies, but these frequencies

an be many orders of magnitude lower than seismic frequencies.

bruary 2008; published online 24 June 2008.
rth, Western Australia. E-mail: b.gurevich@curtin.edu.au, d.makarynska

geophysik.fu-berlin.de.
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In this paper, we propose methods to estimate the properties of
ixtures of rock and heavy oil by considering �1� a system of layers

f a solid and a viscoelastic medium and �2� by computing Hashin-
htrikman �HS� bounds for this system. These two approaches give
pproximate bounds for the frequency- and temperature-dependent
roperties of these rocks. We also propose a method to compute real-
stic estimates of these properties that lie between these bounds. This
stimate is based on an equivalent-medium approach known as co-
erent potential approximation �CPA� �Berryman, 1980�, which can
e used in a general form for approximate fluid substitution for
eavy oil.

This study focuses on the effect of temperature on the frequency-
ependent shear modulus of oil. The effects of bulk viscosity are also
mportant but lie outside the scope of this paper for two reasons: �1�

e are not aware of any experimental data on bulk rheology of
eavy oils, and �2� the effect of bulk viscosity on bulk modulus is
maller than the effect of shear viscosity on shear modulus.

PROPERTIES OF BULK HEAVY OIL

hear-wave dispersion

Figure 1 shows the storage modulus �the real part of the shear
odulus� of heavy oil �extracted from a rock sample from the
valde field, Texas� for a range of temperatures and frequencies, as
easured by Batzle et al. �2006�. The properties of heavy oil show

iscoelastic behavior so that for a given temperature, its storage
odulus increases with frequency. The simplest model of a vis-

oelastic medium is the Maxwell model, which results in the follow-
ng dependency of the complex shear modulus � f on frequency �,

� f��� �
��

1

� i��
� 1

, �1�
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igure 1. Storage modulus of Uvalde heavy oil as a function of fre-
uency for temperatures as measured by Batzle et al. �2006� �trian-
les� and predicted using best fit of the combined Cole-Cole and
axwell model �solid lines�, the Cole-Cole model �dashed lines�,

nd the Maxwell model �dash-dotted line, for 20°C only�.
here �� is the �real� shear modulus of the medium at high frequen-
ies �or quick deformation�, � � � /�� is the so-called relaxation
ime �inverse of relaxation frequency �0�, i � ��1 is the imaginary
nit, and � is the dynamic shear viscosity of the same medium at low
requencies �or slow deformation�. At high frequencies ��� �1�,
he complex shear modulus of the medium approaches the real value

�. Conversely, at low frequencies, ��� �1�, � f ��i�� . In the
ime domain, this means that for very slow deformation, the shear
tress is proportional to the time derivative �rate of change� of the
hear deformation, which is the behavior characteristic of Newton-
an fluids. Batzle et al. �2006� and Behura et al. �2007� note that the
requency dependency described by the Maxwell model is stronger
han can be observed in experimental data. This is also evident in
igure 1, where the best-fit Maxwell model for a temperature of
0°C �dash-dotted line� is plotted alongside the experimental data.

To model a more gradual variation of elastic properties with fre-
uency, a memory function with more than one relaxation time is re-
uired. To achieve this, Batzle et al. �2006� use a model with the con-
inuous-relaxation time spectrum proposed by Cole and Cole
1941�,

� f � �0 �
�� � �0

1

��i�� �� � 1

, �2�

here �0 and �� are the �real� shear moduli of the medium in the
ow- and high-frequency limits, respectively, and the exponent

�1 is an adjustable parameter. For appropriate parameters, the re-
ationship given by equation 2 fits the measurements reasonably
ell �Batzle et al., 2006�. However, according to this model, the

omplex shear modulus at low frequencies is

� f � �0 � ��� � �0���i�� �� . �3�

hus, in the low-frequency limit, the complex shear modulus ap-
roaches a real value �0, and the model predicts elastic behavior in
he low- and high-frequency limits. This contradicts the widely as-
umed notion that oil behaves at low frequencies more like a New-
onian liquid. This is a common observation for many viscoelastic

aterials such as polymers and synthetic oils �Barlow and Lamb,
959; Ferguson and Hudson, 1994�. If we assume that heavy oil is
ewtonian at sufficiently low frequencies �or large times�, we have

o set �0 � 0. However, with this assumption in the low-frequency
imit, we have

� f � ����i�� �� � ��
1����i���� . �4�

hus, at low frequencies, the absolute value of the complex shear
odulus is proportional to �� , not �1, as it should be for Newtonian
uids. Note that the very conception of viscosity is problematic in

his case.
To ensure that the behavior of oil is Newtonian in the low-fre-

uency limit, we propose the following model, combining the relax-
tion spectra of the Cole-Cole and Maxwell models �we call it the
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Velocity and attenuation in heavy-oil rocks E117
CM model�:

� f �
��

1

��i�� �
�

1

��i�� 1�� � 1

, �5�

here � � � /�� and � 1 �� are two characteristic points of
he continuous-relaxation spectrum. In the low-frequency limit,

f �� i�� , whereas for high frequencies, � f � →��. Further-
ore, if the spectrum is sufficiently wide, � /� 1�1. Then �� f�	 ��

or �1����2, where �1 � �� 1
�� �1�1/�1�� � and �2 � � 1

�1. Note
lso that for � /� 1�1 and ���1, the predictions of equation 5 are
lose to those of the Cole-Cole model �equation 2�. Conversely, for
/� 1→0, we recover the Maxwell model �equation 1�.
This is illustrated in Figure 2, where we compare the relaxation

pectrum � �Re � f�/�� ln �� corresponding to the CCM model
equation 5� with those of the Maxwell and Cole-Cole models. We
ee that the CCM and Cole-Cole models give much broader relax-
tion spectra than the spectrum of the Maxwell model. This is be-
ause typical heavy oil consists of molecules of vastly different siz-
s, resulting in a broad relaxation spectrum. However, at very low
requencies, the CCM spectrum decreases more rapidly with de-
reasing frequencies than the Cole-Cole spectrum, which is consis-
ent with Newtonian fluid behavior.

emperature dependency

Elastic properties of heavy oils are known to be strongly depen-
ent on temperature, so that they behave almost like a solid at room
emperature but like a liquid when heated to, say, 200°C. Such be-
avior is not unique to heavy oils but is typical for many viscoelastic
aterials such as polymers and synthetic oils. The dependency of

iscoelastic properties of such materials on frequency and tempera-
ure can be simplified using the so-called temperature-frequency su-
erposition principle, which states that dispersion curves for differ-
nt temperatures are the same if frequency is normalized by some
emperature-dependent parameter �Williams et al., 1955�. For our
tudy, this means we can use dispersion equation 5 for all tempera-
ures by assuming an appropriate temperature dependence of the re-
axation time � or viscosity � .

Batzle et al. �2006� review known viscosity-temperature relation-
hips. We approximate these curves by the following empirical rela-
ionship:

ln�� /� �� � A exp��T/T0� , �6�

here � � � ����
�1, T is Celsius temperature and ��, A, and T0 are

djustable parameters. The exponential term in the right-hand side
f equation 6 ensures that at high temperatures, the viscosity
� � �� does not reduce below a set value ��.
Figure 1 shows the dependency of the storage modulus Re � f of

eavy oil as a function of frequency for temperatures as predicted by
he Maxwell model, the Cole-Cole model, and the CCM. The param-
ters used in equations 1, 2, and 5 were obtained by setting the mini-
um viscosity at �� � 10�3 Pa·s and the ratio � /� 1 at 10 and by
tting the storage modulus to the data. The best-fit values for equa-
ion 5 are A � 38, T0 � 74°C, �� � 1.02 GPa, and � � 0.20.
here is a good fit of the CCM and Cole-Cole models with the
xperimental data. We also see that in the low-frequency limit, the
redicted storage modulus decreases more rapidly with decreasing
requency.

MODELING PROPERTIES OF
ROCK-OIL MIXTURES

ock as a system of solid and oil layers

When pore fluid is Newtonian, low-frequency elastic moduli of a
ock saturated with that fluid can be computed from the properties of
he dry rock and the fluid compressibility by using the Gassmann
quation. The corresponding dynamic moduli can be obtained from
iot’s equations of poroelasticity. However, neither the Gassmann
quation nor Biot’s theory is applicable if the pore-filling material is
iscoelastic. That is because the Gassmann equation is based on Pas-
al’s law, which states that in the absence of body forces, fluid pres-
ure is the same throughout the pore space. This law does not apply
o solids or to any medium whose shear modulus has a finite compo-
ent. Biot’s theory is an extension of the Gassmann theory to finite
requencies and is also inapplicable to viscoelastic media.

To gauge the effect of viscoelasticity of the pore-filling material
n overall rock properties, the first model we consider is a simple pe-
iodic system of elastic and viscoelastic layers �the “layered cake” of
igure 3�. This simplistic approach to modeling elastic properties of
uid-saturated rocks was used by Schoenberg �1984�, Schoenberg
nd Sen �1986�, Molotkov and Bakulin �1996�, Gurevich �1999,
002�, and Gurevich and Ciz �2006�. The advantage of using this
imple periodic system is that exact dispersion equations are known
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igure 2. Frequency representation � �Re � f�/�� ln�� of the relax-
tion spectra for the viscoelastic combined Cole-Cole and Maxwell
odel �solid line�, the Cole-Cole model �dashed line�, and the Max-
ell model �dash-dotted line�. Relaxation spectra correspond to the
t of each model to Uvalde oil data �Figure 1� using temperature de-
endencies given by equation 6. The spectra shown correspond to a
emperature of 40°C.
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E118 Gurevich et al.
Rytov, 1956; Brekhovskikh, 1981�. The method is applicable to any
heology and does not have any requirements with respect to size of
ores or properties of layers.

Let us denote the properties of elastic layers with a subscript s and
hose of viscoelastic �“fluid”� layers with a subscript f. For shear
aves propagating along the layers and polarized parallel to the lay-

rs, the exact dispersion equation is �Rytov, 1956; Brekhovskikh,
981�

p�tan2� shs

2
� tan2� fhf

2
� � �1 � p2�tan

� shs

2
tan

� fhf

2

� 0. �7�

ere, � s
2 � �2�1/bs

2 � 1/b2� and � f
2 � �2�1/bf

2 � 1/b2�, where bs

��s/
s�1/2 and bf � �� f /
 f�1/2 are shear velocities in the materials s

nd f, respectively; p � � f� f /�s� s; 
 f and 
s are layer densities; hf

nd hs are layer thicknesses; and b denotes the unknown complex ve-
ocity of the SH-wave. The real part of the complex velocity is the
hase velocity of the wave, and the ratio of the imaginary part to the
eal part of the slowness yields the dimensionless attenuation �in-
erse quality factor�

Q�1 � 2
Im b�1

Re b�1 . �8�

To simulate the properties of rocks, the model should include fluid
ayers of thickness corresponding to pore size of the rock, and solid
ayers of thickness corresponding to grain size of the rock. The dis-
ersion equation 7 does not have an analytical solution but can be
olved numerically by iteration.

The results of this solution for the phase velocity and the dimen-
ionless attenuation are shown in Figure 4a and b. The calcula-
ions were performed for a system of alternating layers of a solid

aterial with the moduli Ks � 58 GPa, �s � 5.7 GPa, density 
s

2.54g·cm3, and thickness hs � 15 �m and with Uvalde heavy oil
ith bulk modulus Kf � 2.03 GPa, density 
 f � 0.9 g ·cm3, thick-
ess hf � 5 �m, and frequency- and temperature-dependent shear
odulus as discussed in the previous section. Predictions of an an-

sotropic variant of Biot’s �1956� theory of poroelasticity, with dy-
amic-permeability function adjusted to flat slabs, also are shown in
igure 4b �Bedford, 1986; Gurevich and Ciz, 2006�. We see that for

ow temperatures, the S-wave dispersion is consistent with vis-
oelastic behavior of the bulk oil, whereas at high temperatures, it
egins to exhibit small Biot dispersion. The viscoelastic attenuation
s much higher than Biot attenuation.

hs

hf

Solid Ks s s

y

x

Oil Kf f f

igure 3. Aperiodic system of alternating solid and viscoelastic “flu-
d” layers �“layered cake”�.
Also shown in Figure 4 are velocities and attenuation factors for
he wave propagating perpendicular to the model layers. The corre-
ponding exact dispersion equation given by Rytov �1956� and by
rekhovskikh �1981� is similar to equation 7 and is not repeated
ere. Clearly, the waves propagating across layers exhibit much
igher dispersion.

Figure 5 shows our corresponding results for compressional
aves. The dispersion of P-waves along the layers is of the same or-
er of magnitude as that for S-waves propagating in the same direc-
ion. However, the dispersion of P-waves propagating perpendicular
o layers is weaker than that for corresponding S-waves. This is be-
ause the shear modulus of the “fluid” layers at low frequencies

100 102 104 106
0

500

1000

1500

0oC

20oC

40oC

220oC

Frequency (Hz)

V
S

)s /
m(

V
H
B

100 102 104 106

10−6

10−4

10−2

100

0oC

20oC

40oC

220oC

Frequency (Hz)

Q/1
S

V
H
B

a)

b)

igure 4. SH-waves in the oil-solid mixture of the “layered-cake”
odel: �a� Velocity and �b� attenuation versus frequency and tem-

erature for SH-waves propagating parallel to layers �solid lines�
nd perpendicular to layers �dashed lines�. Circles show predictions
f the anisotropic Biot theory for SH-waves propagating parallel to
ayers.
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Velocity and attenuation in heavy-oil rocks E119
ends to zero, whereas the P-wave modulus reduces to the bulk mod-
lus of the fluid, which is finite. Qualitatively, the dispersion resem-
les that observed by Batzle et al. �2006� and by Behura et al. �2007�.
he characteristics of dispersion and attenuation that we obtained

or waves parallel and perpendicular to layers can serve as bounds
or the behavior of real rocks. Although models of periodic systems
f layers such as ours are unrealistic, they provide an exact solution
hat is an important limiting case for approximate effective-medium

odels.

ashin-Shtrikman bounds

To obtain realistic estimates of the properties of a rock saturated
ith heavy oil, we computed Hashin-Shtrikman bounds for a mix-

ure of elastic and viscoelastic media. The limitation of using these
ounds is that they cannot simulate high-frequency �Biot� effects be-
ause they are designed intrinsically for static moduli �and the corre-
ponding representative structure corresponds to isolated spherical
ores or grains�. However, the advantage of these bounds is that they
re constrained by an additional requirement of isotropy and thus
orrespond to a more realistic geometric structure of the rock.

The original HS bounds are rigorous and exact bounds for static
ulk and shear moduli of an isotropic composite consisting of two
sotropic elastic constituents �see, e.g., Christensen, 1979�. They are
lso valid if one of the constituents is fluid, in which case its shear
odulus is simply set to zero. We use HS bounds to compute fre-

uency-dependent moduli of a mixture of an elastic solid and a vis-
oelastic fluid by first computing the complex shear modulus of the
fluid” by using equation 5 and then using it as a static shear modu-
us.As a result, we obtain estimates of the bulk and shear moduli cor-
esponding to lower and upper HS bounds. We note that the moduli
btained are no longer rigorous bounds because they are now com-
lex. The conception of a value lying between two bounds is unde-
ned for complex numbers. For the limiting cases of low tempera-

ure �elastic solid pore fill� and high temperature �inviscid fluid pore
ll�, these estimates provide rigorous realizable bounds. For inter-
ediate cases, they provide exact expressions for realistic geometric

onfigurations of a solid and a viscoelastic medium �Hashin, 1970�
n the quasi-static limit. Rigorous bounds for viscoelastic media de-
ote regions in the complex plane and are much more difficult to ob-
ain �Milton and Berryman, 1997�.

The results for S-waves are shown in Figure 6. We see a very simi-
ar behavior to the layered cake for S-waves — weak dispersion for
he upper bound and much stronger dispersion for the lower bound.
imilar behavior is observed for P-waves �Figure 7�.

oherent potential approximation

The results for the layered cake �Figure 3� and the HS bounds give
pper and lower estimates of the rock properties. To obtain a realistic
iddle estimate, we propose to use one of the popular mixing laws of

he theory of composite materials, namely, coherent potential ap-
roximation �CPA�. We choose CPA because it has the property that
he more abundant constituent is the load-bearing one. Thus, for ex-
mple, a solid-fluid mixture is modeled as a solid with spheroidal
uid inclusions when fluid concentration is low and as a suspension
f solid particles in the fluid when solid concentration is low. This is
n attractive property because it is consistent with the concepts of
ercolation and critical porosity and allows one to model both sand-
tones and unconsolidated sand. The application of an “elastic” mix-
ng law to viscoelastic media is justified by the use of the elastic-vis-
oelastic correspondence principle �Hashin, 1970; Mase and Mase,
999�.

CPA, which originally was proposed in quantum field theory, is
ssentially a self-consistent version of the average T-matrix approxi-
ation of Küster and Toksöz �1974�. CPA is computed by solving a

ystem of two equations for bulk K
*

and shear �
*

moduli:

��Kf � K*�P*f � �1 � ���Ks � K*�P*s � 0, �9�
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igure 5. P-waves in the oil-solid mixture of the “layered-cake”
odel: �a� Velocity and �b� attenuation versus frequency and tem-

erature for P-waves propagating parallel to layers �solid lines� and
erpendicular to layers �dashed lines�.
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E120 Gurevich et al.
��� f � �*�Q*f � �1 � ����s � �*�Q*s � 0, �10�

here � is porosity, Kf and � f are bulk and shear moduli of the pore
ll, Ks and �s are bulk and shear moduli of the matrix �grain� materi-
l, and P and Q are invariants of the so-called Wu tensor. The compo-
ents of this tensor depend on the aspect ratio of the pores, the bulk
nd shear moduli of the pore fill, the matrix material, and the as of yet
nknown effective moduli K

*
and �

*
. Berryman �1980� gives the ex-

licit expressions for the components of the Wu tensor. For spherical
nclusions, they have a simple form:

P*i �
K* � 4�*/3

Ki � 4�*/3
, �11�
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igure 6. S-waves in the mixture of heavy oil and solid: �a� Velocity
nd �b� attenuation versus frequency and temperature for S-waves,
stimated using upper �solid lines� and lower �dashed lines� Hashin-
htrikman bounds and CPAfor spherical pores �dotted lines�.
Q*i �
�* � F*

�i � F*

, �12�

here F
*

� ��
*
/6��9K

*
� 8�

*
�/�K

*
� 8�

*
� and i � f ,s. The cou-

led equations 9 and 10 can be solved by iteration.
Figure 7a and b shows the CPA results for spheres. As expected,

hey lie between the lower and upper HS bounds. Figure 8a and b
hows the comparison of CPAvelocities with those computed by us-
ng the Gassmann equation �with dry bulk and shear moduli comput-
d by CPA with empty pores�. We see that the CPA results are ap-
roximately Gassmann consistent when the fluid is Newtonian �i.e.,
or low frequencies or high temperatures�. We note that the CPA for
pheres is known to overestimate typical sandstone bulk and shear
oduli, simply because typical pores in sands and sandstones are not
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pherical. More realistic estimates can be obtained by using CPA
ith the aspect ratio of pores and grains set to 0.3 or 0.2.

CONCLUSIONS

We have shown how the effect of heavy oil in rock on elastic wave
elocity and attenuation can be estimated by using simple theoreti-
al constructs adopted from the theory of elastic composite materi-
ls. Our aim was not to predict precise experimental values, but to
btain estimates of frequency-dependent velocities and attenuation
alues that are qualitatively consistent with experimental observa-
ions. The results of our investigation can be used in the characteriza-
ion of heavy-oil reservoirs by using seismic and sonic-log data. In
articular, our approach can predict seismic-to-sonic dispersion and
se it to tie seismic reflection data to well-log data in the presence of
eavy oil or to develop attenuation-related seismic attributes for de-
ection of heavy-oil reservoirs.
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igure 8. Oil-solid mixture: �a� P-wave and �b� S-wave velocity ver-
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ores �dotted lines� and the Gassmann equation �solid line�.
We note that the predicted P-wave dispersion was weaker in our
alculations than that observed in the experiments. This might be be-
ause we ignored the bulk viscosity effect in our study.Alternatively,
t might be attributed to squirt flow of heavy oil in and out of grain
ontacts.

This paper focused on the effect of temperature on attenuation and
ispersion and ignored the important effects of pressure and steam
aturation and the effect of oil properties on the properties of the ma-
rix �which could be significant for loosely consolidated sediments
uch as tar sands�. All these effects need to be analyzed to build a re-
listic rock-physics model for rocks saturated with heavy oil.
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