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Abstract

Giving robots the ability to move around autonomously in various real-world
environments has long been a major challenge for Artificial Intelligence. New
approaches to the design and control of autonomous robots have shown the
value of drawing inspiration from the natural world. Animals navigate, perceive
and interact with various uncontrolled environments with seemingly little effort.
Flying insects, in particular, are quite adept at manoceuvring in complex,
unpredictable and possibly hostile environments.

Inspired by the miniature machine view of insects, this thesis contributes to
the autonomous control of mobile robots through the application of insect-based
visual cues and behaviours. The parsimonious, yet robust, solutions offered
by insects are directly applicable to the computationally restrictive world of
autonomous mobile robots. To this end, two main navigational domains are
focussed on: corridor guidance and visual homing.

Within a corridor environment, safe navigation is achieved through the
application of simple and intuitive behaviours observed in insect, visual
navigation. By observing and responding to observed apparent motions in a
reactive, yet intelligent way, the robot is able to exhibit useful corridor guidance
Lehaviours at modest expense. Through a combination of both simulation and
real-world robot experiments, the feasibility of equipping a mobile robot with the
ability to safely navigate in various environments, is demonstrated.

It is further shown that the reactive nature of the robot can be augmented to
incorporate a map building method that allows previously encountered corridors
to be recognised, through the observation of landmarks en route. This allows for
a more globally-directed navigational goal.

Many animals, including insects such as bees and ants, successfully engage in
visual homing. This is achieved through the association of visual landmarks with
a specific location. In this way, the insect is able to ‘home in’ on a previously
visited site by simply moving in such a way as to maximise the match between the
currently observed environment and the memorised ‘snapshot’ of the panorama
as seen from the goal. A mobile robot can exploit the very same strategy to
simply and reliably return to a previously visited location.

This thesis describes a system that allows a mobile robot to home successfully.



1

Specifically, a simple, yet robust, homing scheme that relies only upon the
observation of the bearings of visible landmarks, is proposed. It is also shown
that this strategy can easily be extended to incorporate other visual cues which
may improve overall performance.

The homing algorithm described, allows a mobile robot to home incrementally
by moving in such a way as to gradually reduce the discrepancy between the
current view and the view obtained from the home position. Both simulation
and mobile robot experiments are again used to demonstrate the feasibility of

the approach.
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Preface

The original work presented in chapters 4, 5, and 6, of this thesis has previously
been published in various forms including book chapters, refereed journal articles
and refereed conference papers.

The corridor guidance chapter presents research conducted during the period
1995-1996. This has been published in: Proceedings of the Asian Conference on
Computer Vision (Chahl et al., 1995), Proceedings of the International Conference
on Pattern Recognition (Weber et al., 1996a), and From Living Eyes to Seeing
Machines, Chapter 11 (Weber et al., 1997).

The corridor discrimination chapter describes work conducted and completed
in 1996. This has been published in: Proceedings of the International Conference
on Automation, Robotics and Computer Vision (Weber et al., 1996b).

The most recent body of research was conducted between 1997 and
1998 on robot homing. This has been published in: Proceedings of the
International Conference on Pattern Recognition (Weber et al., 1998}, and
Adaptive Behavior (Weber et al., 1999).

The corridor guidance research has also appeared in several review articles on
the application of insect-inspired techniques to robot navigation: Computational
Intelligence: A Dynamic System Perspective (Srinivasan et al., 1995), Proceedings
of the International Conference on Field and Service Robotics (Srinivasan et al.,

1997}, and Robotics and Autonomous Systems (Srinivasan et al., 1998).
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1. Introduction 1

Chapter 1
Introduction

No sensible person will deny that the works of Nature are in
the highest degree simple, necessary and as economical as possible.
Therefore machines devised by mankind will doubtlessly likewise attain

most success if they are as far as possible modelled on works of Nature.

Giovanni Alfonso Borelli, 1680
(Italian mathematician and astronomer)

De moto animalium

Getting robots to navigate autonomously in the real world has proven to
be a difficult task. Despite 30 years of intensive research and great advances
in technology and computational power, only modest advances have been
made towards the goal of constructing truly autonomous machines, capable of
intelligently interacting with the world to perform useful tasks. One of the main
stumbling blocks, has been the inability to instruct a machine to perceive, reason
and interact with an inherently complex and unpredictable world in both a robust
and efficient manner.

When designing a machine to perform a difficult task, it can help to investigate
and draw inspiration from another machine — artificial or living ~ that can also
perform the task. However, trying to copy how humans perceive, understand,
and reason about the world is not an easy undertaking. Human-level cognition is
very complex and remains little understood. A natural alternative is to examine
how simpler animals solve the problems of navigating in unknown environments.
It is intriguing, that small living organisms, such as insects, have evolved effective
solutions to this problem despite having relatively simple nervous systems and
restricted processing capacities. The ability to both robustly and efficiently
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perceive and react to the real world has essentially been a requisite for survival.
Given this, it seems likely that insects employ ‘short cuts’ to navigate in the real
world. Tt is these principles which may be exploited to aid the development of
artificial autonomous machines.

Invertebrates, such as insects, are particularly attractive in the present context
by virtue of their pervasiveness in virtually all earthly environments, their rich
and diverse behaviour, their relative simplicity, and their ease of study. Despite
possessing small brains, insects exhibit many of the desired capabilities requested
of autonomous robots, such as highly skilled sensorimotor behaviour, efficient
communication, learning and cooperation. Insects are thus highly analogous and
applicable to autonomous robotics.

Insects may well be described as the ultimate miniature machines, having
evolved physical and neural hardware that, by virtue of its elegance and
robustness, has withstood the test of time and endured the hazards and
uncertainties of the environment. Inspired by this miniature machine view of
insects this thesis endeavours to transfer some of the successes of insect navigation

to the world of mobile robotics.

1.1 Aims and Approaches

The main aim of this thesis is to show that the guiding principles of autonomy
and navigation as observed in the natural world, specifically through the study of
insects, are of value in solving some of the real-time, real-world issues of autonomy
and navigation in mobile robotics.

Rather than following traditional anthropomorphic or engineering-based
approaches, this thesis will explore a subset of navigational strategies that
are inspired by findings in insect ethology. The underlying rationale is the
expectation that the parsimonious solutions offered by insects can be usefully
incorporated into algorithms for robot navigation. The main aim is to avoid
needless complexity and improve robustness by concentrating on only the key
qualitative elements of successful navigation. Such solutions, can be of extreme
benefit in the computationally restrictive world of real-time autonomous robot
navigation.

To this end, an exploration of the applicability of various insect-inspired visual
guidance behaviours, to the autonomous control of a mobile robot is undertaken.

Through a combination of both simulation and real-world experiments it will be
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shown that various simple visual cues and behaviours observed in insects can be

advantageously applied to autonomous robot navigation.

1.2 Contribution

The major contributions of this thesis involve the application of various visually-
driven, insect-inspired behaviours, to the efficient, robust and autonomous control
of a mobile robot.

Firstly, it is shown that very simple motion cues and behaviours, inspired
by the visual navigation of flying insects, can be used profitably to provide a
mobile robot with the ability to traverse a corridor environment. Specifically,
it is shown how relative motion cues can be utilised to efficiently drive useful
robot behaviour. Apparent motion cues are used to: (i) gauge range, (ii) keep
lateral walls equidistant, (iii} slow down when approaching an object, (iv) avoid
collisions, (v) regulate forward speed, and {vi) provide visual odometry.

Secondly, a method is proposed for augmenting the reactive nature of the
robot through the incorporation of a ‘map’ building regime that provides for
a route recognition capability. By observing landmarks en route, a previously
encountered corridor can be recognised as such. This knowledge can consequently
be used to help direct a more globally-oriented navigational goal.

Thirdly, a qualitative, landmark-based, robot homing strategy, inspired by
the visual homing behaviour of bees and ants, is presented. Despite being
simple, intuitive and computationally cheap, the homing technique provides
robust homing, superior to that of previous approaches. Landmark avoidance
characteristics are also shown to be implicit in the algorithm. Several simple,
approximate, and computationally efficient landmark correlation techniques are
explored, and are shown to be sufficient for reliable homing. Both qualitative
and quantitative investigations of various landmark correspondence techniques
and homing methods are made. It is shown that a robot can reliably return to a
previously visited site using only a parsimonious representation of the panoramic
environment. This is performed in a continuous and reactive fashion, without
the need for any explicit 3D modelling or reconstruction of the environment. The

homing behaviour is predominantly driven directly by visual stimuli.
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1.3 Thesis Qutline

This thesis is organised as follows:

Chapter 2 presents a survey of the background literature relevant to the work
presented in the following chapters, and also canvases some of the philosophical
issues concerning the construction of autonomous and intelligent machines.

Chapter 3 describes the specifics of the mobile robot that was employed in
the various real-world experiments throughout the thesis.

Chapter 4 describes an approach to visually guided autonomous robot
navigation, inspired by insect visual behaviour. Various visual behaviours, based
on relative motion cues, are used to control the mobile robot as it traverses
corridor-type environments. In each case, however, there is no need for a 3D
reconstruction of the environment, the robot behaviours are driven directly by
visual motion cues elicited when the robot is in motion.

Chapter 5 describes an attempt to provide the robot, equipped with very
reactive corridor guidance behaviours, with a higher-level ability to recognise, and
discriminate between, previously traversed corridor environments. In this way,
it is shown how the purely reactive robot can augment, in a relatively seamless
fashion, its knowledge of its environment in a way to obtain a more global view,
suitable for higher-level navigational goals.

Chapter 6 presents a qualitative landmark-based local homing technique,
inspired by visual homing in bees and ants. Utilising very simple landmark-
based cues a mobile robot is capable of reliably returning to a previously visited
location by simply moving continuously so as to make the current panorama more
similar to the panorama seen from that prior location.

Chapter 7 presents a summary of the main contributions of this thesis and
some final comments.

In addition to these previous chapters, two additional Appendices have been
included:

Appendix A presents a more comprehensive set of real-world corridor guidance
results. These provide a better impression of the typical robot behaviour
experienced within the context of the experiments described in chapter 4.

Appendix B presents some of the miscellaneous homing results and source
data. Also presented, is a more detailed comparison of an image-based approach

to visual homing and the landmark-based approach presented in chapter 6.
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Chapter 2
Background

This chapter attempts to canvas the majority of the background literature that
is directly relevant to work presented in the following chapters, and also discusses
the philosophical underpinnings of the major theme of the thesis. In this way
a metaphorical picture will be painted of autonomous robot navigation within
which the research presented in this thesis contributes.

The format of this chapter is as follows: Firstly, the basic background of
autonomous robot navigation is explored (§2.1}. This will cover the criticisms
and perceived failures of traditional approaches, which have in turn led to the
development of several new design philosophies, such as behaviour-based robotics
(§2.1.3) and biologically-inspired robotics (§2.2). Following this, several aspects
of robot vision are discussed (§2.3). The next major section (§2.4) will outline the
rather large body of work dealing with the subject of determining image motion
from a sequence of camera images. Image motion can elicit a great amount of
structural information about the surrounding environment. Following this, the
subject of insect ethology will be presented (§2.5). This will cover the visual
behaviours directly relevant to the later chapters, but also give a more general
feel for the subject of visually-guided autonomous navigation from the insect’s
point of view. The final two sections (§2.6 and §2.7) will cover the background
literature pertaining directly to the proceeding chapters on corridor guidance and

robot homing, respectively.
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2.1 Autonomous Robot Navigation

Building truly independent robots capable of intelligent and useful behaviour has
long been a major goal of Artificial Intelligence (Al) research.

From the earliest days of science fiction and AT the ideal of constructing the
quintessential artificial human being, capable of possessing all of the nuances
and qualities associated with a thinking, reasoning, and feeling being, has been
successfully portrayed as part of the natural evolution of artificial computation.

Classic fictional anthropomorphic robots such as C3P0 from Star Wars and
Data from Star Trek: TNG, despite their characteristic idiosyncrasies, are able
to negotiate and interact with the world in a very general and human manner.
They are capable of seeing, perceiving, reasoning and moving about the world
with the skill and purpose of a human.

However, the great chasm between science fiction and reality, in this regard,
remains undiminished. Despite the 30 years of Al research, intelligent real-time
control of autonomous mobile robots operating in unstructured domains still
proves to be a very difficult problem to solve.

Emulating a human’s ability to understand, and intelligently interact and deal
with the inherent richness and complexity of the unconstrained real world has
proven to be much more difficult than first thought. As it is still as yet unknown
exactly how the human mind and brain actually function, perhaps it is not too
surprising that attempts to emulate human ‘thought processes’ and thus human
behaviour are meeting with limited success. Although computers are well suited
for solving certain classes of problems, such as numerical problems, they are not
at all well suited to performing some of the tasks that we humans ordain to be,
more ‘intelligent’. Some of the tasks humans appear to perform very easily, such
as understanding and recognising what we perceive,! are exceedingly difficult to
instruct an artificial machine to do. Similarly, in the world of autonomous robot
navigation it has been difficult to instruct a machine to perceive and understand
its environment in a robust human-like way, as a prerequisite for human-level
intelligent behaviour. The attempted codification of perceived human-level
perceptual understanding and reasoning does not yet appear to be a very fruitful
methodology for the design of autonomous agents capable of surviving in the real

world for extended periods of time.

For a human, recognising a familiar face or facial expression, for example, takes a mere
fraction of a second.
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In the last decade, however, there has been a significant diversion from
the traditional anthropomorphic or engineering based approaches toward new
approaches inspired by simpler biological organisms. The main underlying
rationale of this approach is the fact that autonomy and intelligent behaviour are
also exhibited by much simpler animals, and hence intuitively are more likely to
be more easily understood and easier to emulate. Understanding the principles
which underlie robust autonomy in simpler organisms, may also provide clues
and insights into the requirements of the successful autonomy and ‘higher-level’
intelligence, as exhibited by humans.

The main dissatisfaction with traditional robotics and Al is its apparent
inability to deliver robust real-time autonomous performance in an unstructured,
dynamic world. Despite the constant advances in computer hardware, in
terms of price, speed and size, real-time robotics still operates in a relatively
computationally restrictive environment.

By drawing inspiration from the neurobiology, physiology, ethology, and
sociology of relatively simple animals the new approaches hope to solve the
major difficulty of dealing intelligently with the real-world in real-time. These
approaches usually involve a tight coupling of sense and action, with a minimum
or parsimonious representational view of the world. By concentrating on only
the ‘important’ elements of successful autonomous behaviour, as is exhibited
by relatively simple organisms, one is able to reduce some of the inherent
complexities assumed by traditional approaches, and produce both efficient
and robust solutions. Rather than have a traditional modularised process
involving perception, world modelling, planning, and action, new approaches
attempt to use the sensed world in a more direct and decentralised way to
guide appropriate behaviour. The paradigm shift is essentially, away from
the traditional reductionistic sense-model-plan-act architecture towards a more

behavioural sense-react style of operation.

2.1.1 Traditional robotic navigation

Two of the earliest attempts at autonomous robot navigation epitomise the
traditional approach and consequently set the tone for the next two decades
of robotics research.

The foundations of the traditional approach to autonomous robotics were first
laid down in the late 1960s and early 1970s with the development of the mobile
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robot Shakey (Nilsson, 1984}, at the Stanford Research Institute.? Shakey’s
task was to autonomously navigate within a specially prepared environment.
The environment consisted of several well-illuminated rooms which were empty
except for several large, coloured blocks and wedges which acted as obstacles.
Equipped with a single onboard black-and-white camera and touch sensors,
Shakey’s objective was to satisfy a goal provided by an outside human observer.
Depending on the prescribed goal the robot was to be able to autonomously
navigate to a desired destination, navigate around obstacles, push obstacles out
of the way, and move an obstacle to a new desired location.

Shakey succeeded in performing these tasks by following a computed plan of
action based on an internal 3D model of the world described and prescribed by
the visual scene. The images obtained from the camera were transmitted to, and
analysed by, an off-board computer. A logical description of what was seen by
the camera was then incorporated into a symbolic representation of the world. A
planning algorithm, STRIPS, then used this current world model® to generate a
sequence of physical actions.

The relative success of Shakey, however, was primarily due to its carefully
engineered environment. The environment was uniformly coloured and contained
only two classes of objects, blocks and wedges, making a world model
representation much easier to construct and maintain. In this ‘semi-artificial’
world, Shakey needed only to concern itself with recognising and distinguishing
between two obstacles, blocks and wedges. Each object was also carefully
constructed to have differently coloured facets. This eased surface edge detection,
aiding both object and pose recognition. The numbers of obstacles was also kept
small to reduce problems caused by visual occlusion.

By constraining the working environment to fall within acceptable limits it
was thus possible to design a viable system for autonomous navigation. Possessing
and maintaining such a perfect world model is, however, very unrealistic when
dealing with more general, real-world environments and conditions.

Robotics and Al had, nonetheless, adopted the idea of building a complete
three-dimensional model of the world, with which one could reason about the
world and one’s physical interaction with it. The role of computer vision, within

this system, was thus to recover the three-dimensional environment that produced

2Now SRI International.
3Based on first order predicate calculus.
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the two-dimensional image. Running under the assumption that this can be
realised, this then led to the standardisation and study of several subproblems,
such as generating a planned, collision-free, path through the model, which an
autonomous vehicle could successfully follow (Lozano-Pérez and Wesley, 1979;
Yap, 1987). The real value of these reductionist methods to the overall goal
of producing a viable system capable of real-time autonomous and intelligent
behaviour, is debatable. Brooks (1986a; 1991c; 1991b), for example, argues that
this ‘subprobleming’ has distracted attention from the real issues involved, and
thus will lead to the solving of irrelevant problems and not the eventunal creation
of an artificial being.

Around the early 1970s, another interesting project was under way at
the Massachusetts Institute of Technology (MIT). The purpose of the MIT
robot (Winston, 1972), was to view a toy world scene, consisting entirely of a
set of stacked wooden blocks, and make a copy of the scene using a robotic
arm. Although the programs to do this were very specific to the simple and
precisely controlled blocks world, this again reinforced the idea of producing a
3D description from a 2D scene. This also reinforced the reductionistic idea of
separating and modularising perception, modelling and reasoning, and action.
Assuming ‘human-level’ perception was a realisable and separate task, this then
also legitimised the work of others whose programs reasoned about perfect
internal representations of the world. The toy blocks world became a popular
Al domain in this respect (Winograd, 1972; Dreyfus, 1981). Involving simple
and uniform semantics, the state of this world was represented explicitly and
completely, making Al reasoning fairly straight forward.*

The traditional role of AI was thus mainly to take descriptions of the world,
build an internal representation and using e prior: knowledge of how the world
works, solve problems, make plans, and reason about the world. It was assumed
that the abstraction could be connected to the real world without great difficulty.
However, it soon became clear that perfect descriptions and models of the real
world could not be generated from real sensors.

Amnother early attempt at building a truly autonomous vehicle was carried

1See (Lozano-Pérez et al., 1989) for a more recent example. Although task-level planning
is performed with a real robotic manipulator for pick-and-place assembly tasks, the work
environment is still precisely modeled. The 3D positions of all the parts within the work
area are assumed to be known with a high degree of accuracy.
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out at Stanford in the late 1970s (Moravec, 1983). The Stanford Cart® was
a mobile robot developed to autonomously navigate through cluttered spaces
guided only by the input from its on-board camera system. While relaxing
the strict environmental requirements observed in the Shakey experiments, the
Stanford Cart still functioned under the same traditional sense-model-plan-act
framework.

The cart used stereopsis to determine the surrounding three-dimensional
structure of its environment and the result of its own motion. By moving the
camera horizontally, perpendicular to the line of sight, the cart could capture
several (nine in all) stereo images. These images were captured at precisely 6.5 cm
intervals, allowing range to be deduced from the parallax-induced displacement
of image features. From this range information an internal three-dimensional
world model was constructed, which was then used to plan an obstacle-avoiding
path, through the environment, to the desired new location. The cart could
navigate quite successfully for short runs (20 metres), but was however very slow.
Navigating through a relatively simple obstacle course, the cart moved, in lurches
of approximately 1 metre, every 10 to 15 minutes. After each move a new plan
was generated. In this way the cart would sequentially, visually locate obstacles,
model its perceived environment, plan a course of action, and finally execute a
small part of the plan. This sense-model-plan-act procedure was repeated until
the desired new location was reached.

Although providing promising results and improving on the earlier Shakey
experiments, the fragility of the cart under real world conditions was still
quite apparent. The errors caused by an imperfect sensory description of the
world, were compounded by the subsequent augmentation of the internal world
model and in combination with the cart’s imperfect self-positioning model this
eventually caused severe misconceptions about path safety.®

Inaccurate sensors, world unpredictability, and imperfect modelling and
control all contribute to the failure of traditional planning and navigation
systems that rely on complex internal models of an objective external world.
Unfortunately, brittleness in the face of unanticipated contingencies and novel

situations is still typical of the state of affairs in modern autonomous robotics.

5See (Moravec, 1977; Moravee, 1979; Moravec, 1980; Moravec, 1981; Moravec, 1983).
% Absolute coordinate systems are a major source of cumulative error and thus contribute to
the fragility of purely metric methods.
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2.1.2 Reductionism versus Holism

Traditional approaches toward the design of ‘true’ and complete Al have employed
a top-down deconstruction of intelligence through notions of thought and reason.
The daunting task of creating an artificial ‘human-like’ cognitive mind has thus
been functionally decomposed and subdivided into smaller, more manageable
pieces. It is thought that, eventually, as these pieces to the intelligence puzzle
are put together and combined, a truly autonomous and intelligent machine will
naturally emerge. One of the criticisms of this approach is that Al tends to gets
bogged down in subproblems of intelligence which have debatable relevance to
the main goal. Another criticism concerns the gestalt qualities of intelligence and
autonomy. There are aspects of the whole which are simply not evident in the
sum of its parts.

Opposing this traditional reductionist philosophy, new approaches to
designing autonomous robots have been directed towards a more holistic and
evolutionary view of intelligence. Essentially, to study and create intelligence from
the bottom up. Rather than tackle isolated aspects of human-level intelligence the
emphasis is on building completely autonomous, insect-level, intelligent control
systems for mobile robots that exist in and interact with the real world.”

It has thus been argued that the way forward for both autonomous robotics
and Al is with the construction of robust and completely autonomous creatures or
artificial insects which are physically grounded in the real world {Brooks, 1986a;
Brooks, 1988; Brooks, 1990; Brooks, 1991a). Brooks (1991d) suggests that the
new approaches to robotics essentially be concerned with creating robots which

are:
(i) embodied — having a direct physical relationship with the real world,
(ii) situated — requiring immediate and direct interaction with the world,® and

(iii) autonomous -— being separated from any further human input.

Having achieved this complete and robustly autonomous artificial insect,
the task is then to incrementally improve the system by incorporating more

‘intelligent’ capabilities. The creation of highly intelligent beings can now be

"This strategy essentially involves an initial trading of computational depth (high-level tasks)
for computational width (robust autonomy).

8The world is essentially viewed and used as its own model. The system thus continuously
refers to its sensors rather than to an internalised world model.
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viewed as essentially an evolutionary process. Whilst still maintaining the major
tenets of embodied autonomy, the ‘creatures’ are incrementally improved to
incorporate more and more aspects of so called high-level intelligence.® Further,
the experience and knowledge gained through the study, design, and construction
of completely autonomous creatures will assist in the creation of increasingly more
complex incarnations. Also, it is perhaps not unreasonable to suggest that some
insights into the requirements of higher-level intelligence and autonomy will only

emerge through the grounded real-world study of lower-level autonomy.

2.1.3 Behaviour-based Robotics

In the past decade or so, a relatively new approach to designing autonomous
agents has been developed, that of behaviour-based robotics (Maes, 1990). One
of the key tenets of the behaviour-based philosophy is concerned with using the
perceived world to direct behaviour rather than using a centralised internal model
view of the world. The emphasis is on the intimate and continuous interaction
with the environment. Essentially, a more direct linking is sought between
perception and action with minimal representation and ‘cogitation’. Apart from
the antirepresentation bias, other common themes include decentralised control
and the incremental layering of competences to provide greater robustness to
error and failure.

In the sense that traditional knowledge-based approaches to autonomous
control impose a sense-model-plan-act framework, the new behavioural
approaches propose a more direct sense-react framework, removing, to various
degrees, the need to model the world before acting upon it. The question of
the extent to which an autonomous robot needs to model or reason about the
world, before ‘intelligently’ interacting with it, has subsequently been queried
by several researchers (Brooks, 1991c; Nelson and Aloimonos, 1989; Aloimonos
and Rosenfeld, 1991; Brooks, 1991b; Aloimonos, 1992; Ballard and Brown, 1992;
Prescott, 1996).

The behaviour-based paradigm has been applied to a variety of tasks, such as

9This paradigm shift, can also be viewed as agent-directed improvement as opposed to
environment-directed improvement. Rather than building autonomous robots that operate in
very constrained worlds {(e.g. Shakey) and then go about improving the system by slowly
increasing the complexity of the environment, the system is initially built to cope with the
totally unconstrained real world and then the complexity of the creature is gradually increased.
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the control of robotic arms (Connell, 1989; Asteroth et al., 1992),'° underwater
vehicles (Bellingham et al., 1990; Bonasso, 1992; Payton et al., 1992) and
robots (Brooks, 1997), flying robots (Lewis et al., 1993; Montgomery et al., 1995),
legged robots (Brooks, 1989a), planetary exploration robots (Brooks, 1997), and
the time-delayed teleoperation of robots (Stein and Paul, 1994). The flying
robot (Montgomery et al., 1995), for example, used behaviour-based control
with low-level, reflexive behaviours responsible for craft survival and higher-level

behaviours responsible for tasks such as navigation and object location.

2.1.3.1 Subsumption Architecture

The traditional Al decomposition for an intelligent control system is to break
processing into a hierarchy of sequential information processing modules from
sensing to action (fig. 2.1(a)). The subsumption architecture,'! developed by
Brooks (1985; 1986b), proposes a more independently layered decomposition
where each behaviour-based layer directly connects sensing to action (fig. 2.1(b)).
Within this framework new task-achieving behaviours are added incrementally, as
separate layers, to allow the robot to operate at increasing levels of competence.
In this way, the architecture is very much based on an evolutionary approach.
The control system evolves through the gradual accretion of new layers.

Although dependencies may exist between the layered behaviours, there is
no explicit sequential execution of specific layers. While higher layers may
subsume lower ones to achieve certain poals, these lower layers still continue
to function ‘independently’. Behavioural conflicts are resolved through a fixed
priority arbitration scheme.

A given layer is realised by processes linking sensing to action through
a network of asynchronous, message-passing, augmented finite state machines
(AFSMs). The basis of the framework is that a given AFSM can suppress or
inhibit the inputs or outputs of another AFSM, for a given time period. In this
way, a higher layer can easily be integrated with and grafted onto the current
system structure.

Brooks used this behaviour-based architecture to construct several robots

which were truly embodied, situated and autonomous. The first of these was

See (Yamauchi and Nelson, 1991) for an interesting behaviour-based robot ‘juggling’
application.

Gee also (Connell, 1987; Connell, 1989; Brooks, 1989b; Chatila, 1989; Connell, 1990;
Matarié, 1991; Gat et al., 1993; Jones and Flynn, 1993; Lammens et al., 1995).
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the simple robot Allen {Brooks, 1986b), which consisted of only two layers. The
lower, reactive, layer used sonar readings to avoid static and dynamic obstacles,
whilst the upper, non-reactive layer, selected heading directions in which to
wander. The successful fusing of both reactive and non-reactive behaviours'
allowed the robot to successfully explore its environment whilst concurrently
avoiding collisions and keeping away from moving obstacles, such as people. A
more impressive implementation, however, was provided by the six legged robot
Genghis (Brooks, 1989a), which was programmed to walk over rough terrain. In
this case, the behavioural layers provided first the ability to stand up, then to
walk without feedback, then to adjust for rough terrain and obstacles via force
feedback, then finally to modulate this accommodation based on pitch and roll
sensors. Using only 57 AFSMs the robot successfully navigated rough terrain with
little computation, no explicit internal model of the world, and no hierarchical
control.

The key consequences of the subsumption approach are:

(i) each layer can deal with a different goal enabling the robot to cope with

multiple goals,

(ii) multiple sensors can be used according to the needs of each individual layer

without requiring any global representation,
(iit) the system is robust,
(iv) the system is incrementally buildable and testable, and

(v) the system structure is easily extensible. New behavioural layers can be

added incrementally, when and if required.
The key differences between this approach and traditional approaches are:

(i) there is no central model'® of the world explicitly represented within the

system.

(ii) there is no separation of data and computation, and

12The concept of a two tier system combining both reactive and non-reactive components
has become increasingly popular, as the reactive component is seen as a way of dealing with
the real-time issues, whilst the more the traditional AT component deals with the long-term
planning issues (§2.1.4).

13 Active (distributed) representation has however subsequently been incorporated into the
subsumption architecture {Matarié, 1990; Matari¢, 1992).
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(iii) there is no central locus of control.

The subsumption architecture is attractive in its elegance, simplicity, and
reactive robustness. The main criticism of the approach is its possible practical
limitations with respect to scalability. As a system grows in complexity, ‘proving’

its correctness also becomes increasingly difficult.

2.1.4 Reactive Systems versus Hierarchical Planning

Whilst there is an active perception that reactive and hierarchical planning
approaches are diametrically opposed to each other and thus mutually exclusive,
this need not necessarily be the case.!® By exploiting the strengths of each method
a synthesis of paradigms can yield improvements in robustness, flexibility, and
generality.

The strength of a reactive navigation system is in its intimate connection with
the perceived world. Much robustness can be gained through this tight coupling
of sense and action and minimal reliance on representation. Several reactive ap-
proaches have been proposed, such as Brooks’ subsumption architecture {Brooks,
1985; Brooks, 1986b), Payton's reflexive behaviours (Payton, 1986), Kadonoff
et al.’s arbitration strategies (Kadonoff et al., 1987), Agre and Chapman’s Pengi
system (Agre and Chapman, 1987), Kaelbling’s intelligent reactive system {Kael-
bling, 1987}, Arkin’s motor schemas {Arkin, 1987a; Arkin, 1987b; Arkin, 1989a),
and Zapata et al.’s risk zone (Zapata et al., 1994).

The hierarchical knowledge-based approach to navigation, on the other hand,
is best suited to the integration of world knowledge and high-level user intent.
Being the basis of the traditional planning approach much of the early literature
illustrates this methodology (§2.1.1). Classical planning systems!® essentially
consider a plan to be a partial order over a set of actions. Despite the differences
between the various individual planning models, the main identifying feature of

this hierarchical and functional decomposition is the heavy reliance on world

14Gee (Firby, 1987; Georgeff and Lansky, 1987; Schoppers, 1987; Arkin, 1989b; Arkin, 1990;
Mitchell, 1990; Payton, 1990; Payton et al., 1990; Gat, 1992; Hexmoor and Nute, 1992; Collins
et al., 1993; Hexmoor et al., 1993a; Hexmoor et al., 1993b; Lammens et al., 1993; Quinlan and
Khatib, 1993; Cameron and Probert, 1994; Langer et al., 1994b; Langer et al., 1994a; Robinson
and Jenkin, 1995).

15Gee (Fikes and Nilsson, 1971; Sacerdotti, 1977; Brooks, 1982; Brooks, 1983; Wilkins, 1984;
Chatila and Laumond, 1985; Crowley, 1985; Tate, 1995; Elfes, 1986; Goto and Stentz, 1987;
Harmon, 1987; Lozano-Pérez, 1987; Noriels and Chatila, 1989).
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models and explicit representation. Whilst this is useful for reasoning about the
world with respect to explicit high-level tasks, it is less appropriate for low-level
real-time interactions with the real world.

Thus instead of viewing reactive systems and knowledge-based planning
approaches as opposites, they can be thought of as addressing the two ends of
the same problem. Putting it very simply, the knowledge-based approach can be
viewed as high-level ‘plan formulation’, prior to execution, whereas the reactive
approach can be viewed as low-level ‘plan execution’.

The reactive paradigm can thus conceivably be used to overcome the
brittleness observed in many knowledge-based navigational planning approaches,
while the reverse can improve overall generality and flexibility, and provide
for high-level user intent. Truly ‘high-level’ intelligent autonomy may well

16 TInterestingly, studies in

ultimately lie in this integration of methodologies.
psychology (Shiffrin and Schneider, 1977; Norman and Shallice, 1986) and

neurcethology (Ewert, 1980; Guthrie, 1980) appear to encourage this view.

2.2 Biologically Inspired Robotics

Driven by findings in animal neurcbiology, physiology, ethology, and sociology,
biclogically inspired robotics draws many of its methods and inspirations directly
from the living world. Having already evolved effective solutions to many of
the ‘autonomous agency’ problems of interacting and surviving in the real-world,
living organisms can provide some of the best clues and insights into how a similar,
yet artificial, autonomous agent might be constructed.!”

While nature’s way may not be the only way, or even the best way, of achieving
a particular objective, it is still of value by virtue of the very fact that invariably

it is the most direct and economical way.

16 Although, several researchers (Brooks, 1991c; Brooks, 1991b) still argue that purely
behaviour-based systems are all that are required. It is still debatable whether reactive systems
are truly compatible with solutions that rely on a centralised world model view. Hybrid systems
offer a compromise by employing a reactive system for low-level control and a planner for higher
level decision making. This can simply be viewed as separating the control system into two
communicating but basically independent parts.

nterestingly, mobile robots have also been used to help verify hypotheses about specific
control mechanisms in certain animals, such as: phonotaxis in crickets (Lund et al., 1996;
Webb and Hallam, 1996), chemical orientation strategies in lobsters {Grasso et al., 1996), and
the extraction of compass information and dead reckoning in desert ants (Lambrinos et al.,
1998).
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2.2.1 Insect Inspired Robotics

Invertebrates, such as insects, are particularly attractive in the present context
by virtue of their pervasiveness in virtually all earthly environments, their rich
and diverse behaviour, their relative simplicity, and ease of study. Despite having
relatively simple nervous systems, insects exhibit many of the desired capabilities
requested of antonomous robots, such as highly skilled motor behaviour, efficient
communication, learning'® and cooperation. Insects are thus highly analogous
and applicable to autonomous robotics.

Modern robotics still hurmbles in comparison to some of the feats exhibited by
insects. For example, the highly efficient locomotion of the cockroach (Camhi,
1980), the visual and auditory communication among honeybees (von Frisch,
1967; Kirchner and Towne, 1994) and the cooperative talents of ants (IH¢lldobler
and Wilson, 1990). By unearthing some of the mechanisms and behaviours
underpinning some of the extraordinary feats exhibited by insects, the possibility
exists for not only advantageously applying them to autonomous robotics, but
also providing insights into how other more complex behaviours may be generated
from relatively simple mechanisms.'® The economy inherent in insect behaviour is
directly applicable to the computationally restrictive world of autonomous mobile

robots.

2.2.1.1 Physiology and Neurobiology

Insects have shown that they have solved some of the low-level real time vision
problems which have been so difficult to solve in Al and robotics. These tasks,
such as collision avoidance, are all the more impressive given the insect’s relatively

simple nervous system and their use of a rather coarse mosaic of passive electro-

181t is worth noting here the misconception that many insects may simply have behaviours
or reflexes that are *hard wired’ and hence involuntary. This perceived inability to learn new
connections between sensary input and action, is false (Heisenberg and Wolf, 1993).

Insects, for example, have powerful mechanisms of flight steering based primarily on the
processing of visual cues, such as motion (optic flow). In a novel experiment (Wolf et al., 1992)
it has been demonstrated that, as in humans, in the fly Drosophila, flow field information is
readily available to motor output systems not specifically designed for this type of sensory data,
thus suggesting that correctional steering in insects is more sophisticated than some automatic
mechanism. This experiment involved a fly being harnessed to a ‘flight simulator’ where the
force of its legs was used to move the visual panorama (in this case a single vertical dark stripe)
accordingly. It was consequently shown that the fly was able to learn, in the course of half an
hour, to manipulate (stabilise) the visual panorama.

%As has previously been shown, complex behaviours need not necessarily emerge from
complex sensory-motor interactions (Braitenberg, 1984).
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optical sensors. As some of the signal processing and optical principles™ at work
in insect visual systems are unearthed they may be advantageously applied in the
design of mobile robots (Franceschini, 1996).

The visuomotor system developed by Pichon et al. (1989) and Franceschini
et al. (1992), for example, is based heavily on the visual system of the common
house fly, and is used to successfully drive a mobile robot through a cluttered
environment without collision. In attempting to solve real-time visuomotor
problems they have shown how the sole ability to perceive visual motion (based
on passive sensors) might suffice to steer a robot through a complex environment.

At the moment, there is no visually guided mobile robot that comes anywhere
near to matching the real-time visuomotor prowess of the humble housefly. The
fly navigates swiftly in unconstrained environments and avoids obstacles without
making use of sonars, radars or laser range-finders. An essential requisite of
visually guided behaviour in flies is the ability to detect visual motion (Gétz,
1968). Motion-sensitive neurons have long been described in the fly’s visual
system (Franceschini et al., 1989; Franceschini, 1992).

A genuine compound eye with as many facets (100) as the fly’s eye (in its
equatorial plane) was installed on a wheeled mobile platform (Franceschini et al.,
1992). An array of electro-optical EMDs (elementary motion detectors), copied
from those of the fly, was wired down underneath the photosensor layer. The
EMDs operate concurrently and drive a (parallel) obstacle avoidance algorithm,
which controls the steering of the robot in real time. The robot, however, is only
partially sighted: it perceives only relative motion and depends on egomotion
to evaluate the hazards in its environments. Nevertheless, the robot is able to
operate swiftly and autonomously in the real world and in real time, and without
any world model or central representation. Rather, action is mediated through
the real-time local visual feedback of the environment.

More recently, the retinal movements observed to occur in the compound eyes
of flies has inspired the proposal of two eye movement strategies to enhance the
ability of a terrestrial mobile robot to perceive visual motion (Mura et al., 1996).

Biological inspiration, however, need not be limited to perceptual systems.
The physiology and neurcethology of insects also provide examples of elegant
solutions to the basic problem of robust and efficient locomotion. Within the

insect world, not to mention the terrestrial animal kingdom in general, one of the

2%ee (Laughlin, 1987; Stavenga and Hardie, 1989; Hausen and Egelhaaf, 1989) for reviews.



2.2 Biologically Inspired Robaotics 20

most pervasive and successful approaches is legged locomotion (Wilson, 1966).
The advantages of possessing legs are many and varied, however, in the present
context the sheer robustness of legged locomotion, especially over rough terrain,
make it very attractive for use in mobile robotics. Many of the principles of
walking in animals, especially insects, can be incorporated into the design and
control of legged robots.?! The amazingly skilled talents of insects in legged
locomotion, such as the speed and efficiency of the humble cockroach, are thus
highly envied. Studies of the neural basis of cockroach walking (Pearson et al.,
1973; Pearson, 1976) have, in fact, been used to design a distributed* neural
controller for a six-legged walking robot {Beer et al., 1989; Beer et al., 1992;
Chiel et al., 1992). More recently, explorations (Espenschied et al., 1996} were
made in applying the mechanisms that coordinate walking in the stick insect
Cuarausius morosus (Cruse, 1990). However, beyond maintaining stable gaits on
level ground, insects must utilise a greater variety of strategies and reflexes to
cope with rough terrain (Pearson and Franklin, 1984). The incorporation of these
strategies have also been investigated for use with the hexapod robot over rough
terrain (Espenschied et al., 1993; Espenschied et al., 1994).%3

Other forms of locomotion have also been explored for mobile robots, such as
flying (Shimoyama et al., 1992; Kubo et al., 1993; Kubo et al., 1994) inspired
by flight in insects (Chapman, 1982; Azuma et al.,, 1985; Ennes, 1988a; Ennes,
1988b; Wooton, 1990), or even swimming (Kukuda et al., 1994).

2.2.1.2 Ethology

Insect ethology,?* the study of insect behaviour, also has something to offer to

the world of antonomous robot navigation.?®> Alongside physical characteristics,

218ee (Donner, 1987; Brooks, 1989b; Brooks, 1989a; Beer et al., 1991; Espenschied et al.,
1993; Kleiner, 1994; Zill and Seyfarth, 1996; Beer et al., 1997).

220ne of the key characteristics of insect locomotion is distributed control. Local leg
‘controllers’ decentralise control and thereby decrease computational demand and increase
overall flexibility and robustness. (This is especially important to ensure a graceful degradation
in behaviour, in response to physical damage.) Stable gaits arise [rom the cooperative
interactions between many separate components.

238ee (Payton and Bihari, 1991; Simmons and Krotkov, 1991) for a more traditional Al
approach to ‘autonomous’ legged navigation, the human-piloted ASV. See (Simmons and
Krotkov, 1991) for a more recent, and more autonomous, example.

24Insect ethology is explored in much more detail in section 2.5.

25Naturally, various aspects of animal behaviour, such as the mechanisms which drive it, can
provide much inspiration for the control of autonomous robots (Anderson and Donath, 1990;
Beer et al., 1990; Schnepf, 1991; Nehmzow, 1995a). However, trace fossils (the fossilised remains
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insects have evolved many efficient neural and behavioural mechanisms or ‘short
cuts’ to successfully interact and deal with the complexities of the world.
Their small brains and relatively simple nervous systems have necessitated the
development of efficient ways of perceiving and reacting to the world. In so doing
they have also solved some of the real-time issues plaguing autonomy in machines.
The parsimonious nature of the insect behaviour is thus directly applicable to the
computationally restrictive world of autonomous mobile robots.

Insects have, for example, been shown to successfully exploit apparent motion
cues, which are in turn used to drive many useful visually-mediated behaviours. In
essentially the same way an autonomous robot can use simple cues and behaviours
to efficiently, robustly and intelligently guide its interaction with the world.

Recent studies of insect visual behaviour and navigation reveal a number of
elegant strategies that can be profitably applied to the design and control of
autonomous mobile robots (Srinivasan et al., 1995; Srinivasan and Venkatesh,
1997; Srinivasan et al., 1997; Srinivasan et al., 1998).

2.2.1.3 Sociology

Many species of insect, such as bees and ants,?® are also very sociable. They
communicate and cooperate with others of their own group in order to perform
certain tasks, such as foraging for food and nest building (Wilson, 1971; Hermann,
1982; Lewis, 1984; Franks, 1989). The group intelligence (Bonabeau and
Theraulaz, 1994) and the safely in numbers survival strategy are just other
evolved solutions to the problem of achieving the overall survival and prosperity
of both the social group and specie.

Efficient communication, cooperation and distributed yet collective behaviour,
however, are also traits that would be very useful to incorporate into groups
of small autonomous robots. In hazardous domains, the inherent robustness
of a cooperating colony of agents can be an enormous advantage. The

interchangeability and inherent redundancy of the individual makes for a more

of animal behaviour) can also be used as inspiration for simple robotic behaviour (Prescott and
Ihbotson, 1997a). Early fossil records have been shown to provide impeortant insights inco
the early evolution of animal spatial behaviour (Seilacher, 1967; Raup and Seilacher, 1969;
Seilacher, 1986). Further, it is tentatively suggested (Prescott and Ibbotson, 1997a) that the
capacity for intelligent behaviour exhibited by current behaviour-based robots (§2.1.3) is in fact
quite similar to that of animals of the early Cambrian period, approximately 530 million years
ago.
263ee (Topoff, 1971; Dumpert, 1981; Hermann, 1982; Holldobler and Wilson, 1990).
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stable and robust community. Individual robots become more expendable as
their loss to the community does not threaten the behaviour of the whole. The
economics of this approach also make it attractive through the mass production
of specific ‘classes’ of robots. In space/planetary exploration, for example, where
there is little chance of rescue or maintenance, there are clear advantages to
sending a colony of small, inexpensive robots rather than a single, expensive
one (Brooks and Flynn, 1989).

Communication is a very useful social skill for embodied robots {Arkin
et al.,, 1993; Dautenhahn, 1995; Billard and Dautenbahn, 1997a). Billard and
Dautenhahn (1997a), for example, show the value of a simple imitative behaviour
as a means to develop a vocabulary about another agent’s perceptions and
environmental states. Using a teacher-learner or mother-child scenario a two
robot?’ experiment focuses on a bidirectional following behaviour as a means for
the teacher robot to communicate its ‘labels’ for locations, based on its sensory
stimulation, to the learner. When separated from the teacher, the learner robot
is then able to use the teacher’s continued transmissions to assist in the searching
task. In this case, communication is not a built in behaviour but rather develops
through the external teaching by erample social interaction. Communication,
however, need not necessarily take place through an explicit and immediate
transfer of information. For example, ants use pheromone trail laying as a very
useful and effective means of indirect chemical communication. In this case the
communication is based on an in-built behaviour.

Robot cooperation has been investigated for performing various tasks, such as
collective transportation (Hashimoto et al., 1991; Stilwell and Bay, 1993; Evans
et al., 1997), where a swarm of ant-like?® robots are used to move palletised loads
from one location to another. This would be useful in an automated factory or
warehouse application, for example.

Questions about how an insect society functions has provoked interest in self-
organisation, collective behaviour and emergent behaviour. A major difficulty,
however, is deducing collective activity from individual behaviour. Collective

behaviour is not simply the sum of its parts (Pasteels and Deneubourg, 1987).

2"The robots need not necessarily be homogeneous. In this case, they are both physically
different and use different sets of sensors.

28Army ants frequently form groups to retrieve large items of prey. This super-efficient
cooperative behaviour allows a group of ants to carry a disproportionately heavier load {Franks,
1986). The group performance is much more than the sum of the performances of its members.
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Individual behaviour may seem inefficient and chaotic, but the sum produces
global behaviour capable of seemingly extraordinary feats. Attempts have been
made to model and explain the organisations of recruitment and foraging® within
ant colonies (Pasteels et al., 1987; Deneubourg et al., 1987; Deneubourg et al.,
1992; Fletcher et al., 1995). Self-organisation in groups of robots has also been
proposed based on wasp colony function (Theraulaz et al., 1991).

Emergent behaviour can be explored through the simple interactions of many
individuals, such as observed in simulated fly swarms (Poggio and Poggio, 1994).
Interestingly, emergent behaviour has also been explored in terms of emergent
strategies, where the emergent strategies obtained from the local interactions
between simple agents, are used to play games of strategy, such as chess (Drogoul,
1993).3

Biologically-inspired collective and cooperative group behaviours have also
been experimented with, using real robots (Beckers et al., 1994; Gaussier and
Zrehen, 1994; Martinoli and Mondada, 1995; Maris and te Boekhorst, 1996;
Martinoli et al., 1997). For example, a group of ten Khepera (Mondada et al.,
1993) miniature mobile robots were used in an experiment involving the gathering
and clustering of small cylinders (Martinoli and Mondada, 1995; Martinoli et al.,
1997). Similar clustering behaviours are observed in ant colonies (Deneubourg
et al., 1991). In a second experiment the group of robots were expected to
remove long sticks from holes, requiring synchronous collaboration between a
pair of robots (Martinoli and Mondada, 1995).

Ant colony function, such as eflicient foraging behaviour (Goss et al., 1992;
Holldobler and Wilson, 1990; Goss et al., 1990; Beckers et al., 1992), has also
ingpired a new computational paradigm. For example, a new search methodology,
involving positive feedback, distributed computation, and greedy heuristics, has
successfully been applied to classical optimisation problems such as the traveling
salesman problem (Dorigo et al., 1996; Dorigo and Gambardella, 1997). Another
example of using an ant colony algorithm is in the control of load balancing in

communications networks (Schoonderwoerd et al., 1997).

2Interestingly, different species of ants (10,0004) utilise slightly differing recruitment and
foraging strategies, depending on such factors as the food distribution within the local
environment {Bernstein, 1975).

9The multi-agent chess approach views each chess piece as an autonomous agent, with its
own behaviour and perception area.
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2.3 Robot Vision

Among the many sensors available for mobile robots,*! such as sonar, tactile and
laser range finding, visual sensors arguably provide the greatest single source of
information about the surrounding environment.*? Given our deep understanding
of the world around us, even a single static visual scene possesses and can provide
us with, a wealth of structural and functional information about the sensed
environment.

Visual sensors can also be regarded as very economical in terms of information
per unit cost. Specific and sophisticated sensing hardware such as laser scanning
rangefinders are still quite expensive® in comparison to the mass-produced CCD
camera.

The value of vision is certainly not lost on nature. Animal survival and ‘fitness’
is determined to a large extent by the quality and speed of both the perception
of, and reaction to, the dynamic world. To this end, it is not surprising then,
that most animals have evolved effective vision systems in their relentless quest
for the slightest edge over competition and prey.?

Despite the obvious sensory power of visual perception, however, vision has
traditionally not been the sensor of choice for real-time mobile robot navigation.
Unfortunately, information-rich sensory data, such as provided by vision, usually
also entail the most computation, making real-time application more difficult. In

this case, this computational expense is due, only in part, to the large volumes

318ee Everett (1995) for a detailed study and review of both the theory and application of
the vast majority of sensors available for robots.

32This, however, does not imply that other more limited sensors, such as touch sensors, are
necessarily superfluous. Although information gathering at a distance, can be argued to be of
greater value due to its ability to allow an agent time to form judgements and to anticipate, and
hence perform ‘corrective’ action before potentially dangerous physical contact is made, other
forms of sensing still have a valuable and active role to play. Utilising sensory information from
various sources clearly has advantages in allowing a more distributed and comprehensive form of
perception. Sensor fusion is also an intelligent way of compensating for the inherently imperfect
nature of sensors and perception, and thus provide for a much more robust system. Consider the
situation if humans did not possess the sense of touch, an entire world of perception would be
lost. A sense of touch is crucial in many of the tasks we do, from grasping and manipulation to
simply perceiving when and where physical contact is made with the surrounding environment.

33 Approximately A$10,000-100,000 (Jarvis, 1997).

34Despite the seemingly ubiquitous nature of vision in most reagonably sophisticated animals,
there are of course the inevitable exceptions. Bats are a popular example, having developed
a very successful echo location mechanism to cope with the inadequacies of vision. Naturally,
vision can be quite limited in light restricted environments. Some species of burrowing mole
have even done away with vision completely.
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of data that usually accompany a vision system. The problem is mostly due
to the computational cost of traditional forms of image analysis, such as the
reconstructive approach to visual perception, used to extract the ‘necessary’ high-
level navigational cues. Attempting to perceive and understand visual stimulus
in terms of high-level structure has shown itself to be a difficult, brittle, and
computationally expensive undertaking.

However, relatively simple animals such as insects suggest that this need not
necessarily be the case. Given their restricted processing capacity they cannot
perceive the world in the same manner as humans do (or are thought to do).
Instead, they utilise parsimonious solutions or ‘short cuts’, based to a large
extent on relative motion cues, to effectively and quickly perceive and react to the
world. This kind of almost reflex-like visual behaviour has been shown to be used
by many insects, especially flying insects, to achieve much of their remarkable
navigational success {§2.5).

Thus by concentrating on only the ‘important’ elements of visual stimuli,
such as motion, that are actually needed for specific behaviours, it is possible
to achieve effective control at much reduced computational expense. In this
way, eflective real-time visual guidance for a mobile robot becomes very much
achievable, despite limited processing power.?> There is no inherent need for an
‘understanding’ of the perceptual world, to anywhere near the degree that we
possess, simply to achieve intelligent and real-time autonomy.

A similar train of thought has more recently emerged from research concerned
with various aspects of perception and action. Specifically, the value that can
be gained through an intimate relationship between the two.®® One of the
emerging ideas, closely allied with the behaviour-based and biologically inspired
philosophies previously outlined, is the concept of visual serveing where action
elicits and simplifies perception, which in turn directly drives behaviour.®” The
real-time advantages of having visual stimuli directly drive useful behaviour are

obvious. It is no coincidence that insects, especially flying insects, rely so heavily

33The increasingly economical nature of the perceptual process also allows (more) resources
t0 be redirected toward higher-level tasks.

36The value of an intimate connection between action and perception has been discussed
previously in various guises, such as active perception (Bajcsy, 1988; Aloimonos, 1993), active
vision (Aloimonos et al., 1988; Blake and Yuille, 1992), animate vision (Ballard, 1991}, and
purposive vision {Aloimonos, 1990).

37See (Espiau et al., 1992; Clark and Ferrier, 1992; Fermiiller, 1993; Raviv and Herman, 1993;
Sandini et al., 1993).
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on such visual behaviours.

An example application of this type of visual behaviour for mobile robot
navigation is provided by Santos-Victor and Sandini (1997c¢). Driven purely
by visual stimuli, in this case from first-order optical flow, a real-time robot
docking behaviour is elicited without any need for a 3D reconstruction of the
environment or any initial calibration procedures. Visual behaviours can thus be
designed for a variety of mobile robot related tasks (Santos-Victor et al., 1997a;
Santos-Victor and Sandini, 1997a), such as obstacle detection (Santos-Victor and

Sandini, 1995a), for example.



2.4 Image Motion 27

2.4 Image Motion

Two-dimensional image motion is the projection of the three-dimensional motion
of the real-world, relative to the visual sensor, onto the imaging plane.

The importance of visual motion in understanding and interacting with
the three-dimensional world cannot be overstated (see §2.5). Visual motion
can supply useful information about both the three-dimensional motion of the

observer as well as the three-dimensional structure of the scene.®®

2.4.1 Optical Flow

The optical flow field, or alternatively the image velocity field, refers to the
estimated two-dimensional image motion observed between multiple images or
frames. The flow field can represent either instantaneous image velocities or,
alternatively, discrete image displacements.

The optical flow field can be used to perform many useful functions, such as 3D
sensor motion estimation, depth perception and general scene reconstruction,®
motion and object segmentation,® object shape and orientation estimation,*!
time-to-collision calculation,?? focus of expansion (FOE) estimation,* and stereo
disparity measurement.*!

A large amount of research has been conducted, over the last two decades,
into reliable and accurate ways of estimating optical flow. Many different methods

have been put forward in this endeavour. The vast majority of these, however, can

38Gee (Gibson, 1950; Gibson and Gibson, 1957; Gibson, 1966; Hay, 1966; Braunstein, 1976;
Gibsen, 1979; Ullman, 1979; Koenderink, 1986)

398ee (Hay, 1966; Nakayama and Loomis, 1974; Braunstein, 1976; Prazdny, 1979; Ullman,
1979; Longuet-Higgins and Prazdny, 1980; Prazdny, 1980; Longuet-Higgins, 1981; Tsai et al.,
1982; Tsai and Huang, 1984; Adiv, 1985; Adiv, 1989; Barron et al., 1990; Negahdaripour and
Lee, 1992; Giachetti et al., 1994)

408ee (Nakayama and Loomis, 1974; Jain, 1984; Adiv, 1985; Murray and Buxton, 1987
Duncan and Chou, 1992; Rognone et al., 1992, Zhang and Faugeras, 1992; Bouthemy and
Frangois, 1993)

418ee (Longuet-Higgins and Prazdny, 1980; Tsai et al., 1982; Tsai and Huang, 1984; Longuet-
Higgins, 1984; Subbarao, 1988; Subbarao, 1989)

42See (Subbarao, 1990; Cipolla and Blake, 1992; Meyer and Bouthemy, 1992; Micheli et al.,
1993)

138ee (Longuet-Higgins and Prazdny, 1980; Regan and Beverley, 1982; Jain, 1983; Overington,
1987; Sundareswaran, 1992)

44Gee (Yakimovsky and Cunningham, 1978; Barnard and Thompson, 1980; Cornilleau-Péres
and Droulez, 1990; Jenkin, 1990; Langley et al., 1990; Langley et al., 1991; Jenkin et al., 1991)
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be classified into a handful of basic types:*® intensity-based differential methods,
frequency-based methods, correlation-based methods, multiple motion methods,
and temporal refinement methods. Each class of method operates under its own
subset of assumptions and suffers slightly differing problems and limitations.
Some common assumptions, for example, include uniform scene illumination,
Lambertian surface reflectance, and a single-surface hypothesis. As idealistic
assumptions about the environment and visual perception are violated, to varying
degrees, the reliability and accuracy of the various methods, in determining
optical flow, are thus also affected. Each method has its own set of advantages and
disadvantages which determine its suitability to particular scenarios.®® However,
no single method yet exists which can boast ubiquitous reliability, accuracy and

density.

2.4.1.1 Initial Constraints

The initial assumption in measuring image motion is that the intensity profiles,
of local image regions, are approximately constant for at least a short amount
of time (Horn and Schunck, 1981). Formally, if I(z,y,t} is the image intensity

function, then this local constraint can be expressed as

I(z,y,t) = I(z + Az, y + Ay, t + At) (2.1)

where Az and Ay define the displacement, of the local image region, after time
At. Using a Taylor series expansion, ignoring second-order partial derivatives

and higher order terms, this yields

Lu+lu+1L =0 (2.2)

where I, I, and I, are the first-order partial derivatives of I(x,y,) with respect
to x, y, and t, respectively — the spatial and temporal intensity gradients —

and v = (u,v) is the 2D image velocity. Equation 2.2 is commonly referred to

458ee (Aggarwal and Nandhakumar, 1988; Beauchemin and Barron, 1995) for a review of
both feature-based approaches and optical flow based approaches.

468se (Aggarwal and Nandhakumar, 1988; Barron et al., 1994a; Barron et al., 1994b). Hybrid
models combining more than one method, such as in Ogata and Sato {1992), appear promising
in this regard.



2.4 Image Motion 29

as the optical flow constraint equation, or alternatively the image flow constraint
equation (Schunck, 1986).
Thus the component of the movement in the direction of the intensity gradient

(I, 1,) is given by

Vil = —— (2.3)

In fact, the normal velocity component v is the only one that can be
estimated. This constraint equation alone is not sufficient to compute both
components of v, the two unknowns » and v. This is commonly known as the
aperture problem (Ullman, 1979).

The two-dimensional image motion (u, v) cannot be computed locally without

47 such as, for example, an optical flow

introducing additional constraints,
smoothness constraint, where the velocity field varies smoothly over the image
region. These constraints can, however, introduce new difficulties, such as in this
case when flow discontinuities arise due to visual occlusion.

Several forms of visual phenomena, such as occlusion, transparent motions,*
and dynamic objects, can cause problems in the determination of image motion

(see §2.4.1.5).

2.4.1.2 Intensity-Based Differential methods

Intensity-based differential methods?® compute image velocity from spatiotem-
poral derivatives of image intensity.®® The image domain is thus assumed to be
differentiable in space and time. Methods based on the optical flow constraint
equation 2.2, such as that expressed by equation 2.3, can be used to compute the

optical flow.

4TWhile this is true for this type of motion representation, the aperture problem cannot
be generalised to all motion detection schemnes. The correct two-dimensional velocity can, in
principle, be caleulated from purely local mechanisms without reference to additional global
constraints (Reichardt et al., 1988).

B Transparent motions are caused by the occlusion of a surface by a translucent object.
See (Irani et al., 1994).

49See (Longuet-Higgins and Prazdny, 1980; Horn and Schunck, 1981; Glazer, 1987a;
Enkelmann, 1988; Lee et al., 1988; Aisbett, 1989; Srinivasan, 1990; Sobey and Srimivasan,
1991; Burgen et al., 1992; Schnérr, 1992; Fleet and Langley, 1995)

S0Egomotion and scene structure may also be recovered directly from the image intensity
derivatives (Zinner, 1986; Horn and Weldon, 1987; Negahdaripour and Horn, 1987; Heel, 1990).
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Different individual techniques may also use different sized neighbourhoods
from which to draw a velocity estimate. Local methods, for example, may use
the normal-velocity information in small, local neighbourhoods, to perform a least
mean square minimisation to find the best fit for (u,v). Surface or contour models
may also be used to integrate normal velocities into full velocities (Bergholm,
1988).

Hierarchical approaches, applying differential techniques in a coarse-to-fine
framework, may be used to help alleviate some of the problems caused by large
2D image motion and aliasing effects. Glazer {1987a), for example, shows how first
order gradient-based methods may be extended to cope with large disparities by
formulating a hierarchical generalisation of the single level method. A coarse-to-
fine control strategy is used to progressively refine individual motion estimates.
This strategy can also be applied to correlation-based image motion detection
algorithms (Glazer, 1987b).

2.4.1.3 Frequency-Based methods

Frequency-Based methods® compute image velocity using orientation sensitive
filters in the Fourier domain of time-varying images.

The Fourier transform of equation 2.1 is

I(k,w) = Ii(R)6 (v k + w) (2.4)

where To(k) is the Fourier transform of I{z,y,0), ¢ is a Dirac delta function, and
(k,w) denotes spatiotemporal frequency. This yields the optical flow constraint

equation, in frequency space, as

vk+w=0 (2.5)

This shows that the velocity of a translating 2D intensity signal can be

expressed as a function of its spatiotemporal frequency and forms a plane through

the origin of the Fourier space.5’

51Gee (Adelson and Bergen, 1985; Watson and Ahumada, 1985; Heeger, 1988; Fleet and
Jepson, 1990; Grzywacz and Yuille, 1990; Heeger and Jepson, 1992; Beauchemin and Barron,
1995)

52]nterestingly, it has been shown that certain frequency-based methods are equivalent to
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2.4.1.4 Correlation-Based methods

Image matching approaches attempt to match image features, corresponding
to three dimensional object features in the scene, such as edges and corners,

3 Such matching methods naturally rely heavily on the

between images.”
presence and extraction of relatively sparse but highly discriminatory features.
Image displacements and consequently image velocities are determined by
correspondence.® However, even when matchable image features are available,
establishing and maintaining correct correspondence can be problematic and
unreliable.

Correlation-based matching® attempts to solve this problem by defining
image velocities, in terms of image displacements, by finding the best fit between
contiguous time-varying image regions. This is accomplished by maximising
a similarity measure, or alternatively, minimising a dissimilarity measure. A
correlation coefficient between two functions f(z) and g(z) can be defined by the

integral

(@ +8a2) - g(a)) de (2.6)

Assuming f(z + Az) does indeed equal g(z, y), finding (Az) which minimises
this integral is equivalent to finding the displacement between f and g.

Similarly, the image motion that has occurred between instantiations of the
time-varying intensity function I(z,y,t) of an image, can be determined by

minimising the double summation

SN (I(z+ Az,y + Ay, t + At) — Iz, y, 1)) dr dy (2.7)

Finding the value of {Az, Ay) which minimises this summation is equivalent
to finding the image displacement, and hence image velocity, between I(z,y,t)
and I(z,y, At).

correlation-based methods and to certain gradient-based methods (Adelson and Bergen, 1985;
Barron et al., 1994b).

538ee (Aggarwal and Nandhakumar, 1988) for a review.

¥8ee (Ullman, 1979; Anstis, 1980)

55See (Barnard and Thompson, 1980; Sutton et al., 1983; Scott, 1987; Anandan, 1989; Kalivas
and Sawchuk, 1991; Zheng and Chellappa, 1993)
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Due to the fact that correlation matching operates under a constant velocity
model, the size of correlation windows is an important parameter for correlation-
based region matching techniques. The optimal correlation window size depends
heavily on the structure of the underlying signal. The window must be large
enough to encompass enough signal variation for reliable correlation, whilst not
too large to significantly violate the constant velocity assumption. Hierarchical

approaches® can once again assist in this regard.

2.4.1.5 Multiple motion methods

One of the main problems that still affects most optical flow techniques is that
of discontimious motion or multiple motions. In real-world images, motion
discontinuities are usually caused by visual occlusion. Occlusion boundaries
are problematic for gradient-based approaches because of the requirement
for intensity derivatives, and are problematic for correlation-based approaches
because of possible appearance or disappearance of image structure. Several
strategies®” have been proposed to deal with the problem of multiple image
motion, such as explicitly modelling motion discontinuities or by relaxing

smoothness constraints.

2.4.1.6 Temporal refinement methods

Temporal refinement methods propose an incremental or iterative approach
to determining optical flow. The advantages of incorporating motion
estimates from earlier calculations include improved accuracy and computational
efficiency (Beauchemin and Barron, 1995; Fleet and Langley, 1995).

2.4.2 Image Interpolation

Image motion can also be estimated with respect to synthetic models of expected
image motion. Image interpolation makes use of the relative motion differences

between a set of known reference images and the actual motion images.

%Gee §2.4.1.2 and (Glazer, 1987b; Anandan, 1989; Okutomi and Kanade, 1990; Bergen et al.,
1992).

57See (Adiv, 1985; Mitiche et al., 1988; Aisbett, 1989; Schunck, 1989; Black and Anandan,
1990; Little and Gillett, 1990; Nagel, 1990; Schnorr, 1992; Burgen et al., 1992; Negahdaripour
and Lee, 1992; Jepson and Black, 1993; Irani et al., 1994; Beauchemin and Barron, 1995)
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This method computes the motion of a rigid, textured planar surface by a
single-stage, non-iterative process which interpolates the average image motion
with respect to a set of reference images (Srinivasan, 1994; Nagle and Srinivasan,
1996).

By assuming that the image motion between two images f; and f is continuous
and linear, one can interpolate f from f; with respect to reference images
synthetically generated from fy. This assumption holds provided that both the
image motion and the referential motion is small compared to the period of the
highest frequency image intensity structures.

The main advantages of this technique are:

(i) no identification or tracking of features is required

(ii) no measurement of high-order spatial or temporal derivatives is required

)
(iii) no iterative calculation is required
)

(iv) it is robust to noise

2.4.2.1 Calculating Image Translation

Comnsider two successive frames, fy(x,y) and f(z,y), captured by a moving
camera. To calculate the horizontal image motion that has occurred between
fo and f, two reference images, fi and fo, must first be generated. The two
reference images, f1 and f, are synthetically generated by shifting fy by +z..;

and —z,.¢ along the z axis:

filz,y) = folz — Az, y) (2.8)
fo(z,y) = folz + Az,y) (2.9)

Assuming that the captured images have been appropriately smoothed (to
remove aliasing effects, etc.}, an estimate of f can be expressed as a linear
interpolation between the reference images fi; and f;. Assuming the image
deforms continucusly and linearly from fy to f, the interpolated estimate of f

can be expressed as

) Gr— £ (2.10)
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The image translation between f, and f can now be calculated by determining
the value of Az that minimises the difference between f and the interpolated
estimate f. This can be done by minimising the mean-square error £ between f

and [ over some window of the image, defined by the function ¥

e = /f\lf(f— 2 dedy (2.11)

or equivalently

E:f/@{f—lfg+0.5(A§if) (fz—fl)”2 dz dy (2.12)

By differentiating £ with respect to Az, and setting this to zero, horizontal

image translation is given by

= 20zep [ [U(f = fo)(fo— i) dzdy
Ao = [TU(fs = fi)2dzdy (2.13)

where U represents the weighting function, such as a 2D gaussian, applied to the

window.

To calculate image motion along both z and y axes, the image interpolation
technique is simply extended through the use of additional reference images. In
this case, additional reference images are generated by shifting fy by +y,..; and
—Yres, along the y axis. This generates a set of simultaneous equations, one for

each unknown, which can be solved by matrix inversion.

2.4.2.2 Calculating Surface Slope

Surface slope is calculated in a similar way to translation. Consider the situation
where a moving camera views a vertical planar surface that is sloped at an angle
with respect to the horizontal axis.

To compute surface slope, both image translation and image compression
must first be computed. To calculate image compression two additional reference
frames, f3 and fy, are generated. These reference frames are the compressed and

expanded versions of the original image fy:
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fS(xvy) = fO(m(l"Acref):y) (214)
f4($ay) = fO(m(l+ACref):y) (2'15)

Now the interpolated estimate of f , assuming horizontal image motion and

compression, can be expressed as

F~fo+05 (AAﬂfxf) (fz—f1)+0-5( Ac )(f4—f3) (2.16)

giving the minimisation equation

2

o (2 )m_m]} A

By again differentiating ¢ with respect to the unknowns, Az and Ac, and
setting the resulting expressions to zero, image translation and compression 18

given by the two simultaneous equations

(Al‘ref)f/ )? d dy +
(Ayre,f)[/ (fs— f){fo — i) dzdy

=2 [ ¥ (/= f)fo— fr)dedy (2.18)

(Awmf)[/ — fi)(fa— fs) dedy +
(‘/—\‘yraf) // )2 dz dy

=2/ [ ¥ (F- )= ) dody (2.19)
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The two unknowns, translation and compression, can be solved by matrix
inversion. Surface slope can now be calculated using the computed image

translation and compression:

wsin @

slope = arctan 6 (2.20)

w cos f + compression sin €

where w represents image translation (i.e. angular velocity) and 6 the angle

between the direction of motion and the camera viewing direction.
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2.5 Insect Behaviour

Insects show, by their behaviour, that they perceive the world in three dimensions.
However, unlike vertebrates, insects possess immobile eyes with small interocular
separations and fixed-focus optics, implying that the range of an object cannot
be inferred by convergence cues, stereopsis®® or the refractive (focusing) power
required to bring the image into focus on the retina (Wehner, 1981; Collett
and Harkness, 1982; Horridge, 1987; Srinivasan, 1993). However, insects
are very adept at exploiting cues based on image motion to infer depth (see
Srinivasan (1992a; 1992b; 1993} for a review).

When the eye of an insect moves in a straight line, the images of stationary
objects move on the retina. The speed of this apparent motion depends on
distance: closer objects appear to move more rapidly. Thus, image motion can
be used to infer object range. The most striking application of this strategy 1s
the peering behaviour of locusts. Before jumping, a locust will sway its head and
body from side to side. They use this lateral peering motion of their heads to
estimate the range of a nearby target in terms of the motion of its image on the
retina. In this way the locust is able to adjust the power of its jump accordingly
(§2.5.3).

Considerable evidence now suggests that even flying insects are able to infer
the ranges of objects from the apparent motion of their images across the eye.
The closer a stationary object, the higher the apparent velocity of its image on
the retina. Thus, if an insect knows its speed of motion, it can estimate the range

of an object from the apparent angular velocity of its image.

2.5.1 Utilising Apparent Motion

Apparent-motion cues are utilised extensively by many insects for a great variety
of visually mediated behaviours.
2.5.1.1 Honeybees

Honeybees, for example, have shown that, whilst in flight, they are able to

locate a textured figure when presented raised above a textured background.

58(ne notable exception to this is the praying mantis which appears to use stereopsis as well
as motion-parallax cues to gauge depth (Rossel, 1983; Rossel, 1986). The praying mantis seems
to rely, at least to some extent, on binocular triangulation when estimating the distance of prey.
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This figure-ground discrimination ability has been investigated and shown to be
accomplished by using cues based on the apparent motion of the figure relative
to the background.®® This was shown, through behavioural experimentation, by
training bees to associate a reward with a raised figure (e.g. a disc) and then
observing and analysing the spatial distribution of the bees’ landings when the
reward is removed.

These experiments (Srinivasan et al., 1990) resulted in several interesting

findings:

(i} The bees are unable to detect a textured disc that is placed directly on a

similarly textured background.

(i) The bees do not use differences in apparent texture density between disc and
background as a cue in locating a raised, textured disc against a similarly

textured background.

(ili} The majority of landings occur at the boundary of the figure, irrespective

of its shape.
(iv) The bees tend to land facing the inside (centre) of the figure.

(v) Bees trained to detect a raised disc perform equally well at detecting a
raised square or triangle when this is offered instead of the disc. In fact,
they are unable to distinguish the disc and a similarly textured figure of

another shape (when offered simultaneously).

These findings, in turn, allow some deductive reasoning concerning the
underlying behavioural processes. For example, the observation that the bees’
performance is not influenced by differences in texture density, between figure
and ground, appears to rule out the possibility that this is used as a cue to detect
the raised figure. The bees appear to be detecting the raised figure by using a
cue derived from the motion of the image on the retina. The experiments using
a range of different patterns on the raised figures indicate that the important
parameter seems to be the relation between the motions perceived on either

side of the boundary (i.e. ‘boundary parallax’) between figure and ground. In

598ee (Lehrer et al., 1988; Srinivasan et al., 1990; Lehrer and Srinivasan, 1993). Relative
motion cues also explain the figure-ground discrimination ability of the fly {Reichhardt and
Poggio, 1979).
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honeybee vision, the boundaries of objects appear to play an important role in
visual processing and behaviour (Lehrer et al., 1990). Their visual systems are
particularly sensitive to edges that usually occur at the boundary between object

and background.

2.5.1.2 Ladybirds

Another example of a visually mediated behaviour, based on apparent-motion
cues, is that exhibited by ladybirds in their approach behaviour to nearby
stalks. Essentially, a visuo-motor reflex helps walking ladybirds turn towards
and approach nearby, plant-like objects (Collett, 1988}.

Experiments examining the turning responses of ladybirds to moving visual
stimulus, indicate that the attraction for close objects is due to the fact that
during walking such objects will generate a higher retinal image velocity than
more distant ones. The visual ‘filters’ mediating the turn are tuned to higher
image velocities.

The way the ladybird appears to use optic flow is to make the size of its
turns depend on image velocity and hence distance. Simulations of this strategy
resulted in a spiral path towards a target which, to some degree, resembles the

real approaches by ladybirds.

2.5.1.3 Male Hoverflies

Males of many species of hoverfly spend much of the day hovering in one spot
ready to dart instantly after any passing female. This pursuit behaviour is so
primed that the hoverfly will chase many inappropriate targets, ranging from
pebbles to distant birds (Collett and Land, 1975a).

An investigation (Collett and Land, 1978) of this pursuit behaviour of single
male hoverflies, by shooting various projectiles at them and observing their

behaviour, indicated that

(i) The fly’s first movement is not directly towards the target but rather in

approximately the same direction as that of the target. This suggests an

interception rather than a ‘tracking’ course.®

60This is in contrast to the chasing behaviour observed in male houseflies {Land and Collett,
1974).
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(i1) Once the target is detected the fly moves off at a rapid, uniform acceleration
which shows no correlation with the speed of the target or its image velocity

on the retina.

(i) The initial flight course is calculated and maintained without recourse to
sensory feedback; the fly does not respond immediately to a dramatic
reversal of direction of the projectile (at the beginning of a chase). However,
at a later stage the retinal position of the target image does have a much

greater control over the fly’s orientation.

Knowing only the angular position and angular velocity of the target at the
moment of sighting is not enough to specify uniquely the course the male should
take to intercept. But it can be assumed the male hoverfly knows’ three other
things: (1) the expected velocity of the female, (2) the distance at which the
female is likely to become visible, and (3) the male’s own acceleration. If all
these quantities are known (i.e. the fly assumes it’s intercepting a female) then a
planned interception course is possible. Indeed, the interception course calculated

for a non-female projectile is, as expected, incorrect.

2.5.1.4 Waterstriders

Waterstriders show how apparent-motion cues can be utilised for self-motion
stabilisation (Junger and Varjd, 1990; Junger, 1991; Junger and Dahmen,
1991). Visual and self stabilisation underpin much of insect visual behaviour
and guidance {Collett et al., 1993). For flying and swimming insects, without a
firm hold on the ground it is important to monitor self-motion. Waterstriders,
for example, are one of the fastest insects that live on the water’s surface. They
compensate for displacements on the surface, caused by wind or water flow, by
making occasional, high speed jumps to maintain an average stationary posttiomn.
In fact, when waterstriders are placed on water with non-uniform flow velocity,
which induce both rotation and translation, they are still able to compensate for
displacement as well as rotation. They do this by jumping (to compensate for
drift) and moving their legs (to compensate for rotation). This implies that in the
case of simultaneous translation and rotation the insects react to each component
with a separate behavioural sequence. That is, they can discriminate visually
between both rotation and translation. Other similar experiments show that the

waterstriders are able to distinguish rotation and translation monocularly, and
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that the discrimination of rotation is only possible if an extended area of the rigid

and contrasted world is visible,

2.5.1.5 Dragonilies

The detection of moving objects is very important to animals in general. This
task is easy when the animal is stationary, but when it is itself in motion the
task becomes much more difficult. The animal experiences not only the motion
of actual moving objects, but also the movement of the entire environment (due
to its own motion).

The dragonfly, like many insects, must distingnish between small moving
objects such as prey and predators, and the rest of the visual world, in spite of the
added visual motion caused by egomotion. To shed some light on this process,
Olberg (1981) examined the responses of individual object-movement detectors
and self-movement detectors, to moving visual stimulus, to see how two groups of
interneurons (in the dragonfly ventral nerve cord) are able to discriminate between
‘smmall object’ and ‘world’. The key finding was that object-movement detectors
discriminate primarily based upon the extent of the object perpendicular to the
direction of its motion, whereas, self-movement detectors discriminate primarily

based upon the extent of the pattern in the direction of motion.5

2.5.2 Range Perception

Insects show by their behaviour that they perceive the world in three dimensions.
This is accomplished through adept exploitation of relative motion cues. Moving
insects are able to infer the ranges of objects from the apparent motion of their
images across the eye.

The range (r) of an object can be inferred from its apparent angular velocity
(w), its bearing (#), and the linear velocity (v} of the eye (Whiteside and Samuel,
1970; Nakayama and Loomis, 1974) (see fig. 2.2):

81The way in which freely flving honeybees discriminate between stationary and moving
ohjects has also been studied (Lehrer and Srinivasan, 1992). By exploiting the honeyhees’
spontaneous preference for moving objects a series of experiments were designed to examine
the cues by which they detect a moving object. This preference for moving objects, is in fact,
irrespective of reward.

628ee (Wallace, 1959; Collett, 1978; Eriksson, 1980; Goulet et al., 1981; Collett and Harkness,
1982; Horridge, 1986; Collett, 1988; Lehrer et al., 1988; Kirchner and Srinivasan, 1989
Srinivasan et al., 198%; Sobel, 1990; Srinivasan et al., 1991).
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r = —sin(0) (2.21)

-.
7

6}

r = “sin(0)

Figure 2.2: Range from apparent velocity. The principle of motion parallax,
or more accurately velocity parallax, can be used to gauge the distance to a
stationary object. The observer, the insect in this case, can assess the distance
r to a static object if it is able to estimate its own translatory speed v and the
angular speed w of the object crossing its field of view.

2.5.3 Peering

Motion parallax is the phenomenon in which an observer’s motion (through a
stationary environment) results in the perception of apparent motion of objects.
As previously described, the apparent motion depends on distance: closer objects
appear to move faster. If the observer’s motion is known, the distance to an object
can be determined (§2.5.2).

The most readily observed example of a scanning movement used to obtain
motion parallax information is the peering behaviour of locusts (Wallace, 1959;
Collett, 1978; Sobel, 1990). Before jumping onto a nearby object, a locust will
sway its head and body from side to side,%® in order to gauge the distance and

83Peering is typically 5-10 mm in amplitude.
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hence the power of its jump.

Sobel (1990) describes experiments used to analyze this peering behaviour
used by the locust to estimate distances. The experiments involve a locust
jumping from a platform onto a moveable target. The target is moveable to
enable the alteration of parallax during peering.

The following results were obtained from the study:

(i) Jump velocity increases monotonically with target distance, implying a
reliable measure of the locust’s intended jumping distance (hence its

estimate of target distance).

(ii} The movement of the target during peering indicated locusts do use motion
parallax to judge distance. (The movement of the target can simulate the

parallax of an object at any specified distance.)

(iii) In computing target distance, locusts seem to ignore the relationship

between the directions of head and image movement.

(iv) Locusts seem to perceive less motion parallax with one eye occluded, and
ordinarily the motion parallax observed in each eye seems to be combined

(e.g. summed or averaged).

(v) Locusts appear to use the extent of lateral head motion in their computation

of distance.

2.5.4 Centring

Flying insects, such as honeybees, use information gleaned from image motion
to safely navigate around obstacles or fly a straight equidistant path between
obstacles. It has been shown (Kirchner and Srinivasan, 1989; Srinivasan et al.,
1991) that honeybees centre their flight paths between obstacles simply by
balancing the speeds of image motion on their two eyes. For instance, when
flying down a textured tunnel, bees strive to maintain equidistance from the two
flanking walls by effectively balancing the apparent angular speeds of their images

on the two eyes.
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2.5.5 Looming

One of the most important flight manoeuvres flying insects perform is that of
landing. They have to detect the approaching landing site, and perform the
necessary motor skills (e.g. extending their legs) for a safe landing on various
surfaces (Goodman, 1960; Wagner, 1982; Borst, 1986; Borst and Bahde, 1988).

Tt has been shown (Braitenberg and Taddei-Ferretti, 1966; Wehrhahn et al.,
1981) that landing behaviour can be induced by an apparent visual pattern
expansion (i.e. looming), in front of the fly, which mimics the fly’s approach
towards a landing site.

By studying the landing responses of tethered flying flies under these synthetic
visual conditions it is possible to investigate the sensory cues which lead a
fly to initiate landing. Experimental results (Borst and Bahde, 1988) suggest
that landing behaviour is induced by a temporal accumulation of the outputs
of movement detectors. Further, the response to a movement stimulus is
proportional to the number of stimulated movement detectors (if their position-
dependent weight is taken into account). Accordingly, the output signals of
different movement detectors (from either eye) simply add to form the signal,
which after being integrated in time, triggers landing.

Wagner (1982) argued that the critical cue which initiates the onset of
deceleration (which is regarded as the beginning of the landing phase) is the
relative retinal expansion velocity (RREV). Wagner’s investigation involved the
observation of freely flying female houseflies (Musca domestica L.) as they
approached and landed on black stationary spheres. Analyses were made of the
landing trajectories (i.e. examining variables such as the fly’s velocity, distance
and velocity relative to the target, angle subtended by the target on the retina,
and the target’s retinal expansion velocity) from which conclusions about sensory
cues were drawn. Essentially, the RREV is the inverse of time-to-collision.®* The
RREV gives information about the range of a target in relative units, dependent
on both the velocity and direction of flight with respect to the target; distance is
tagged with time. It is therefore implied that the important cues for landing are
times, not distances.

Once again it is an apparent-motion cue which drives behaviour.

61Also known as time-to-contact, this is the time needed to reach the target directly, at
constant velocity. See {Lee, 1976). See also equation 4.1 and §2.4.1.
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2.5.6 Regulating Forward Speed

Honeyhees have also been shown (Srinivasan et al., 1996) to regulate flight speed
by monitoring the speed of apparent motion. Essentially, they strive to hold
apparent image speed constant. For example, when forced to fly down a tapered
tunnel, bees slow down as they approach the narrowest section and speed up again
as the tununel widens once more. Similar behaviours have also been observed in
the visual control of flight speed in the fruitfly (David, 1982).

It is clearly an advantage to slow down in tight situations. However, this
visual behaviour also has an advantage when it comes to landing. When applied
to a landing surface this visual response has the effect of automatically ensuring
forward flight speed decreases with altitude, and is close to zero at touchdown.
This very same behaviour is also observed in the landing trajectories of bees. Asa
bee prepares to land on a horizontal surface it again holds constant the apparent
speed of the approaching surface and consequently also maintains a safe forward
speed approximately proportional to altitude.

Once again, a simple visual behaviour allows intelligent flight contrel without
the need for explicit knowledge concerning the three-dimensional structure of the

environment, such as the concept of altitude.

2.5.7 Measuring distance travelled

Recent investigations {Esch and Burns, 1995; Esch and Burns, 1996; Srinivasan
et al., 1996) have indicated that foraging honeybees also use image motion
to gauge the distances travelled to food sources. The findings revealed that
honeybees measure distances to goals by integrating, over time, the apparent
motion observed en route. This provides the bee with a visually driven ‘odometer’
that is robust to variations in travel speed and energy expenditure.®® Although
perhaps not the only information used to gauge long distances,” this cue does
appear to be significant in measuring short distances. However, due to the fact
that apparent motion is dependent on the distances of objects in the visual
panorama, this visual odometer is also necessarily route dependent. As such,

it can only provide an accurate distance measure for previously travelled routes.

85Foraging desert ants have also been shown to use self-induced visual motion to gauge travel
distance (Ronacher and Wehner, 1995).
86See (Goller and Esch, 1990; Esch et al., 1994; Kirchner and Braun, 1994).
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2.5.8 Homing by Path-Integration and Search

An interesting problem faced by many foraging insects is that of successfully
returning home after searching for food.%” Two separate navigational systems
have been found to be of prime importance in achieving this task. Firstly, foraging
bees and ants, use a vector navigation strategy (von Frisch, 1967; Wehner, 1972;
Wehner, 1976) to return approximately to their starting position. Immediately
following this they engage in a goal localisation strategy to pinpoint the exact
position of the goal, and thus finally reach it.

While foraging for food, bees and ants continually maintain an up-to-date
record of their position relative to home through simple path integration.®
The insect continuously monitors the angles steered and the distances travelled
whilst foraging, and integrates this information to compute the current mean
home vector. Both bees and ants use skylight compasses for measuring
directions (Wehner, 1989). Following the completion of the stereotypical foraging
behaviour, it is this home vector that is followed, in a straight line, back to their
starting point (home). This dead-reckoning mechanism, however, is inherently
subject to cumulative error, and only capable of returning the insect to a point
near home. Having returned to a location close to the nest the insect now utilises
an alternative strategy, namely goal localisation.

Both ants and bees are able to accomplish this final goal localisation by
using nearby landmarks surrounding the goal to pinpoint and ‘home in’ on their
location (§2.5.9). However, in environments which do not possess any obvious
local landmarks, the insect must make use of yet another strategy for finding its
nest. In such situations the insect has little alternative but to simply search for
its nest.

The desert ant Cataglyphis lives and forages in just such an environment
(Wehner et al., 1983). The search for food, such as dead arthropods, may take
the ant as much as a hundred metres away from the nest and last for up to two
hours. Despite the meandering outward path, dictated by its foraging strategy,
the ant always follows a direct path back to home using its computed mean
home vector. Although the dead-reckoning mechanism is accurate enough to

allow returns to the nest within a few percent of the entire homing distance, the

870r, for example, successfully returning to the location of a previously visited food source.

81n foraging desert ants this path integration has been shown to be solved, not by true vector
summation, but through a computationally simple non-trigonometric approximation (Miiller
and Wehner, 1988).
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ant must still actively search for the small inconspicuous hole which leads to its
subterranean colony. However, this search is not simply a random walk strategy
based on brownian motion. The desert ant, in fact, engages in a systematic search
behaviour®® which successfully weights the amount of searching in a particular
area by the probability of finding the nest in that area (Wehner and Srinivasan,
1981; Miiller and Wehner, 1994). This highly efficient search strategy involves
the ant performing a number of loops of ever-increasing size, starting and ending
at the origin of the search and pointing in different azimuthal directions. This
ensures that the centre area, where the nest is most likely to be, is searched
the most extensively. Further, this search strategy is effectively very similar to
other efficient search strategies based purely on theoretical grounds where the
location of the nest is assumed to follow a two-dimensional Gaussian probability
density function. The desert ant effectively builds a search density function
which successfully mimics the assumed Gaussian probability density function for
the location of home, providing a very efficient method of finding its nest when

landmark cues are unavailable.

2.5.9 Visual Homing

A large number of experiments (see Collett (1992; 1996) for a review) have shown
that many insects are able to ‘home in’ on a specific location, such as a nest,
by using visual cues provided by landmarks in the vicinity.”® This ability is

1 wasps™® and ants.™

developed most highly in central place foragers, like bees’
In fact, insects use terrestrial landmarks not only for pinpointing the location
of important places, but also for guiding their way along frequently travelled

paths (Collett et al., 1992).

99Similar search behaviour has also been observed in the wasp (Peckham and Peckham, 1905)
and the desert woodlouse Hemilepistus reaumuri (Hoffmann, 1978; Hoffmann, 1983b; Hoffmann,
1983a; Hoffmann, 1984). The foraging excursions of the woodlouse, however, are much shorter
in comparison to that of the desert ant, taking it only a metre or so away from its burrow.

70 AL present there is no conclusive evidence to suggesi that insects make use of cognitive maps,
rather they navigate using vectors and routes {Wehner et al., 1990; Wehner and Menzel, 1990;
Dyer, 1991; Kirchner and Braun, 1984; Wehner et al., 1996). (This is contrary to previous claims
that insects, such as the honeybee Apis mellifera, use landmark-based cognitive maps (Gould,
1986; Gould and Towne, 1987).)

"1See (Wehner, 1981; Cartwright and Collett, 1983; Lehrer, 1991; Lehrer, 1993; Briinnert
et al., 1994; Zeil et al., 1996).

"2See (van lersel and van den Assem, 1964; Zeil, 1993a; Zeil, 1993b).

73See (Wehner and Réber, 1979; Wehner, 1983; Wehner et al., 1983; Wehner, 1992).
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Ethological experiments seem to suggest that insects search for a specific
location by using a form of image matching. The insect behaves as though it is
striving to ‘home in’ by moving in such a way as to maximise the match between
the current retinal image and a ‘snapshot’ of the panorama as seen from the
goal, acquired on an earlier visit {Cartwright and Collett, 1983; Cartwright and
Collett, 1987). In this way the insect is continually and locally guided by the
desire to reduce this discrepancy between current and home snapshots until it
becomes zero. Moreover, it seems that insects ‘process’ the snapshot images for
features such as edges. Information such as the position, orientation, range and
colour of features can be used (Cheng et al., 1987).

It is also suggested that the insects make use of an external frame of reference,
a celestial compass, to keep track of snapshot orientations (Cartwright and
Collett, 1983; Collett, 1992; Collett and Baron, 1994; Dickinson, 1994; Collett,
1996). Tt is already known that insects obtain information on absolute direction
by making use of a celestial compass (based on the position of the sun or the
pattern of skylight polarisation)™ as well as a magnetic compass (Collett and
Baron, 1994; Frier et al., 1995). Even distant landmarks can be used as an
external frame of reference (Wehner et al., 1983). Homing, by familiar landmarks,
becomes much simpler and more certain when the snapshots have a common
orientational frame of reference.

Visual homing by way of a single memorised snapshot is however, quite
limiting. Due to the fact, that as the homing distance increases so too does the
dissimilarity between the visual panorama and the snapshot taken from home,
eventually visual homing must fail. Visual homing cannot function without
at least some correspondence between memorised snapshot and current retinal
image. The obvious solution to this limitation is to employ a host of memorised
visual snapshots, taken en route, to allow a return journey via a reverse chaining of
homing targets. In this case, each snapshot need only be similar to its immediate
neighbour to allow visual homing over extended distances. Indeed, biological
evidence for homing by multiple snapshots has recently been reported in wood
ants (Judd and Collett, 1998; Srinivasan, 1998).

"See (Lindauer, 1960; Collett and Land, 1975b; Rossel and Wehner, 1986; Miiller and
Wehner, 1988; Wehner, 1989; Wehner, 1992; Rossel, 1993; Wehner, 1994; Lambrinos et al.,
1998).
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2.5.9.1 Snapshot Theory

Cartwright and Collett {1983) describe experiments undertaken to discover how
honey bees use nearby landmarks to guide their way to a food source. The
experiments involve training bees to collect sugar solution from a feeder location
defined only by an arrangement of matt black landmarks. Then, by observing the
bees’ search behaviour when the food source is removed one can deduce the cues
bees use to home in on the learnt location. When the food source is removed in
the testing phase, the bees will search mainly at the position where the feeder was
previously located. By changing the arrangement of landmarks slightly between
training and testing phases the resultant change in bee search behaviour can
suggest which landmark details are learnt and used in guiding their return.

For example, when trained on a position defined by a single cylindrical
landmark, and tested on the same landmark, the bees search at the expected
feeder site. However, when the size of the landmark is changed between training
and testing phases, the bees search at a location where the apparent size of the
landmark (i.e. the visual angle subtended by the landmark) is identical to that
viewed from the feeder site. These experiments suggest that the bees learn only
the apparent size and bearing of landmarks as seen from the target location.
There is also some evidence that bees learn the distances of landmarks from
goal, possibly through cues based on optic flow (Cheng et al., 1987; Lehrer,
1996). Further, in returning to a previously visited goal, a bee appears to move
to a position where the retinal image best matches the memorised image of the
landmarks.

When trained on a more complex arrangement of three landmarks, the bees
search where the compass bearings of the landmarks on its retina are the same
as they had been when it was at the food source. ‘

Experiments also suggest that the bearings of the landmarks observed are
learnt with respect to external compass bearings. Bees were unable to learn
the location of the feeding site if the orientation of the landmark array was
varied (Cartwright and Collett, 1983).

Cartwright and Collett (1982; 1983) have also implemented computational
models to discover how bees might use a memorised image of the target location to
guide their return. The models simulate the situation in which a bee takes a two-
dimensional snapshot of its surroundings at its target location and when returning

continuously compares this snapshot with its current view. The simulated bee
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uses the difference between the two views to guide its return.

The model which most closely mimicked the bee’s true behaviour involved
comnputing homing directions from differences between the angular extents and
hearings of matched areas in the snapshots. An independent compass was also
required to maintain a constant orientation between snapshots.

The homing direction was computed by firstly segmenting the snapshot and
retinal image into regions of light and dark. Each region in the snapshot is then
paired with the closest region on the retina with the same sign (i.e. dark with dark
and light with light). Every pairing (not necessarily one-to-one) then generates
two correctional unit vectors, and the bee’s direction of flight is given by their
sum. One correctional vector is used to improve the angular size of the region
and the other its bearing. To improve angular size one moves towards or away
from the landmark, whereas to improve the bearing one moves perpendicular to
the landmark.

2.6 Behaviour-based Corridor Navigation

Several investigations of ‘corridor based navigation’ have been carried out, from
the behaviour-based point of view. These implementations attempt to use the
qualitative elements of optic flow to help visual guidance. For corridor guidance
this has, in the majority of cases, been inspired by the visual behaviour of
flying insects, specifically honeybees (see §2.5.4). By balancing the lateral optic
flow, honeybees are able, very simply, to exhibit a centring behaviour within an
enclosed space, such as a corridor.

One such investigation, inspired by this visual behaviour, is by Santos-Victor
et al. (1993; 1995) for robot navigation down a corridor. Their experimental setup
is based on a mobile platform with two cameras pointing laterally in opposite
directions, one at each side wall. When the robot (Robee) is in motion, the average
image velocities (1D optical flow}) seen by the two cameras are compared, in real
time, and used to control the robot’s direction and velocity. Range, however, 1s
measured in terms of image velocity. No attempt is made to compute range in
metric terms. The robot simply attempts to balance the average image velocities
observed through each camera. The robot moves forward at approximately
8 cni/s.

The flow difference is essentially treated as a misplacement error signal and

used by a PID controller to appropriately control the robot’s rotational speed:
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de(t)
dt

v=K, le(t)+K,—fTie(t—n)dt+Kd

where u is the applied rotational speed and e(¢) is the misplacement error at
time ¢.

This system suffers from several deficiencies, however. The first is due to
the fact that the two cameras are pointed laterally. Although this setup gives
sufficient motion information (i.e. optical flow, assuming adequate visual texture)
to enable centring within a corridor, it may not provide adequate coverage of
upcoming obstacles and other environmental conditions. Since there is no frontal
view, the robot is virtually looking where it has been, rather than where it is
going. If the corridor environment is fairly constant, then this is not a major
problem. The range of the lateral walls will not rapidly change. However, if
the corridor is changing significantly the side views will not be very indicative of
the upcoming environment. Sharp cornering and the narrowing of the corridor
requires the robot to move at a much slower, safer speed.

Another deficiency is that the image velocities seen by each camera are
spatially averaged before the inter-camera comparison is made. This is acceptable
when navigating down an empty corridor, but when there are obstacles (some
nearer, some farther), averaging the image velocity will destroy this structural
information. For example, the large image velocity produced by a relatively
small, yet near (and potentially dangerous), obstacle may be swamped, or at
least made less significant, by the image velocities of more distant objects and
background.

A further short coming is that the system does not take robot rotation
into account when comparing image velocities. Rotation induces an illusion of
greater depth on one side (the side being rotated towards), and of less depth
on the other side. Clearly, this effect can be important when trying to navigate
around obstacles. Corrective motion generally requires some degree of robot
turning and therefore introduces a rotational component to the perceived optic
flow. The greater the rotation, the greater the distortion of range perception.
However, efforts to reduce this rotational effect have been made through judicious
placement of cameras with respect to the centre of rotation of the robot, and
control over forward speed. Since robot rotation in this particular system is fairly

slow, usually less than 3° per second, and the side views are far removed from the
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focus of expansion (FOE), this deficiency is not as significant as it might otherwise
be. However, limiting the speed at which the robot can implement corrective
action can have an ohvious effect on performance. It effectively places further
limits on the ability to effectively deal with the speed at which the changing
environment is perceived.

Another mobile robot “bee-bot”, also inspired by the centring behaviour of
bees, is that described by Coormbs and Roberts {1992; 1993). It uses low resolution
motion vision over large fields of view to steer between obstacles and along a
corridor. The system uses a single, forward facing, wide-angle camera with a
115° field of view. This field is split into three equal sub-fields, of which the
extreme left and extreme right sub-fields are treated as the left and right fields
of view, respectively. The central sub-field is ignored. The response from each
field of view is the largest optical flow measured in the field, which usually arises
from the nearest obstacle. Active gaze stabilisation is used to overcome the effect
of rotation which can contaminate the flow field. The largest optical flow in
the left and right fields of view are then compared, in real time, to steer between
obstacles. Again no attempt is made to compute metric ranges of objects observed
in the image. The processing of optic flow in each field is implemented in two
parts. First, gradient-parallel optical flow is estimated, using local neighbourhood
operations. Then the maximum flow is identified by examining a histogram of
the flows. The robot moves forward at approximately 30 cm/s.

The steering control system is again based on deriving a corrective change in

heading given the difference in optic flow observed to the left wy, and right wg:

0R = k(lwz| = |wal)

where the desired change in heading 6 R is simply proportional to the difference
in lateral optic flow.

This implementation has more recently been augmented with a frontal
view (Coombs et al., 1995a). Looming cues, from the frontal view, warn the robot
of impending collisions. Corridor following combined with dead-end deflection
thus allows the robot to safely wander for extended periods.

This implementation also has some deficiencies despite addressing several

earlier ones.™ Firstly, the optical flow is estimated as if the fields of view were

751t should, however, be noted that the works of Santos-Victor et al. (1993} and Coombs and
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strictly sideways-looking, even though they are in reality pointed approximately
50° forward of side-looking. Furthermore, the bearing of the perceived motion
relative to the heading direction (the direction of FOE) is not taken into account.
If two objects produce equal image velocities, the one with the smaller bearing will
be nearer (see figure 2.2 and equation 2.21 in §2.5.2). This can be very significant
since the maximum flow, observed on each side of the robot, is used exclusively
for the comparison and hence the determination of appropriate corrective action.
It is assumed that this maximum flow is indicative of the effective range of either
side. Or, more precisely, indicative of the range of the closest object on either side.
However, as can be seen from equation 2.21, this need not be the case. The angle
at which an object is observed can play a very significant role in determining its
apparent angular velocity or lack there of. The closest object may not generate the
maximum observed apparent motion due to its proximity to the FOE. The closer
to the FOE the more significant the effect. In this implementation, the oblique-
looking views observe motion from as far as 60° from the FOE, to as close as 20°
from the FOE. This implies that the range of the object producing the maximum
observed flow can be up to 2.5 (sin(60°)/sin(20°)} times as far away as the closest
object. This problem can of course be compounded (or in fact cancelled out) by
the possible delusions on the opposite side of the robot. The objects within an
environment can therefore conspire to delude the robot into an incorrect, and
possibly unsafe, ‘corrective’ movement. Although, steering between obstacles
with this system can be suspect, basic corridor guidance remains reasonably
sound.

The more recent improvement, with regard to the additional frontal view,
removes the obvious and debilitating blind spot directly in front of the robot.
However, simply adding a frontal view does not significantly help estimates of
frontal range, because the frontal view provides only weak looming cues. The
frontal view is thus only used to warn the robot of impending collisions. Finally,
it can be quite difficult and cumbersome to compensate for rotations through
active gaze stabilisation.

Another robot built recently by Duchon and Warren (1994) again uses the

strategy of balancing lateral image velocities to centre the robot in a corridor.

Roberts (1992; 1993) were conducted at almost the same time and were derived independently
of each other.
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77 “phenomenal”

Inspired by behaviour-based robotics™ and the Gibsonian
viewpoint of ‘ecological psychology’™ and how optic flow may be used by animals
to directly guide their actions,”™ formal control laws,* based on optic flow, are
proposed for the control of the robot. To demonstrate the applicability of these
laws of control to the domain of behaviour-based robotics, two laws were devised
for the obstacle avoidance problem of mobile robotics. The two obstacle avoidance
strategies proposed were a “Balance Strategy” and an “Avoid-Closest Strategy”.
The balance strategy acts to equalise the rate of optic flow observed in left and

right halves of the visual field, as observed in honeybees (§2.5.4):
R = k(lwz| — |wal)

where the prescribed relative rotation (R) is proportional to the difference
between left (wy) and right (wg) apparent motion speeds. The avoid-closest
strategy acts to turn the robot away from the place in the visual field with the
lowest time-to-contact® (i.e. the closest object):

1 1

OR =
k(tm'm 8 pos(tm‘i'ﬂ))

where the prescribed relative rotation R is inversely proportional to the lowest
time-to-contact #n:;, and the relative angular distance of this point from the
heading direction pos(i,.,). The frontal obstacles are essentially detected by
measuring looming (image expansion) cues. Unfortunately, looming cues are
weak and become detectable only when the obstacle is dangerously close. The

robot moved forward at approximately 4 cm/s.

"6See section 2.1.3.

"See (Gibson, 1950; Gibson, 1958; Gibson, 1966; Gibson, 1979).

78 Animals and their environments are viewed as inseparable. As such, the environment
should not be described in terms of physics but rather in ‘ecological’ terms. Animals perceive
phenomena not noumena. The ecological approach ecological optics thus proposes a direct
perception view of animal behaviour (Gibson, 1966; Gibson, 1979). See also (Turvey et al.,
1981).

798ee (Gibson, 1958).

80Warren (1988) formalised Gibson’s (1938) descriptions of how animals might use optic flow,
hy proposing laws of control which might regulate the flight of flies.

8l1The time needed to reach the target directly, at constant velocity. See §2.4.1 and (Lee,
1976; Lee and Reddish, 1981; Nelson and Aloimonos, 1989; Enkelmann, 1990; Tresilian, 1991;
Ancona, 1992; Burlina and Chellappa, 1993).
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2.7 Robot Homing

Robot homing, as the name suggests, involves a mobile robot returning from an
arbitrary location to a previously visited location. In this sense it is identical to
that observed in many animals (Papi, 1992), including insects (§2.5.9).

Although there are various ways in which robot homing can be achieved,®?
such as through dead-reckoning or by triangulating on radio beacons, visual
based homing is perhaps the most interesting. As mentioned previously,
much real-world robustness can be achieved through the tight coupling of
the senses and behavioural action, with minimal reliance on abstract internal
representation. Similarly, using the visually sensed environment to directly
control a homing behaviour implies improved robustness with little reliance on
artificial information, such as radio beacons, or on explicit internal representations
of position that require regular and accurate augmentation, such as map-building
or dead-reckoning.

More interestingly, however, is the fact that relatively simple animals, such as
insects, also regularly perform visual homing. Insects appear to accomplish this
task by simply memorising the appearance of the environment as viewed from
home and using the discrepancy between this and what is currently observed, to
successfully guide their return. The insect essentially strives to move in such a
way as to reduce this visual discrepancy to zero. In this way there is no need for
an explicit three-dimensional model of the world and one’s location within it. The
visually sensed world can simply be used to drive an incremental improvement in
homing position.

Apart from the obvious vehicle guidance applications, visual homing may also
be used for a variety of other tasks, such as directing docking manoeuvres, tool
positioning and grasping.

There have been several previous implementations of vision-based robotic
homing, utilising visual snapshots of the environment.® However, the many
slightly different approaches can largely be classified into two main groups.

One main approach is to attempt to derive a correct homing vector directly

from the manipulation or analysis of the raw images captured from the differing

82Interesting examples of robot homing have also been produced using evolutionary
methods (Floreano and Mondada, 1996).

830nce again, most of the work in this area has its inspirational roots in insect ethology. In
this case, specifically visual homing (§2.5.9).
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views of home and current location. These methods — image-based homing —
attempt to establish the correct correspondence between views at the pixel or
sub-pixel level. The underlying assumption being that the image adjacency will
not be altered significantly between views. Over relatively short distances this
will generally be true. As an observer moves within a static environment, the
image motion perceived will always be in the opposite direction to the direction
of movement. Visual motion emerges from the focus of expansion, the direction
of movement, and recedes to the focus of contraction. The image adjacency
assumption is therefore only violated through occlusion caused by the relative
and differing distances of objects in the surrounding environment. Unfortunately,
visual occlusion is very common in the real-world. This is especially so in a natural
outdoor environment.

The other main approach — landmark-based homing — can be described as
the methods which attempt to detect salient features, such as landmarks, in the
differing views and then derive a homing solution from the discrepancies herein.
Again, a set of correspondences are established between the features in each view.
However, in this case, no major assumptions need be made concerning image
adjacency. The method simply relies on the reliable detection and matching of

corresponding visual features between snapshots.

2.7.1 Image-based Homing

An example of the image-based homing approach is that by Franz et al. (1997a).
They reduce the problem of homing to one of optimisation, by assuming that the
visual panorama is uniformly distant from the position at which the goal view
was obtained. Given this assumption, it is possible to determine how much the
robot should rotate (A), the direction in which it should translate (B), and the
size of the translation that it should make {C) in order to make the next view
resemble the ‘goal’ view as closely as possible. The expected panoramic view,
after a hypothetical movement defined by parameters A, B and C, is computed
by appropriately warping the current view. The warping function §(f) can be

described as

5(6) = arctan ( vsin(f — a) ) — (2.22)

1 —vcos(d —a)
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where @ denotes image position, « the direction in which the robot has moved, 10
the change in orientation, and v the relative distance moved.®*

Since the environment is not uniformly equidistant in reality, and absclute
range information is not available, this method does not take the robot to the
goal in a single step. Successive applications of the procedure allows the robot
to home in on the goal. However, as with all procedures that rely on image
matching, the method fails when the current and goal snapshots are too different
to permit sensible correspondence, or obtain usable values for the parameters A,
B, and C which decide how the current snapshot should be warped to obtain the
goal snapshot. Thus the size of the area within which the robot, when released,
can reliably ‘home in’ on the goal successfully — the ‘catchment area’ — can be
restricted. With this method one must also choose the instantiations of the image
warping parameters A, B, and C judiciously. How much of the search space (the
warping space} should be sampled? There is an obvious tradeoff here between
computational cost and reliability or accuracy.®

Robot experiments were conducted in an arena of size 118 x 102 cm. The
homing environment contained several (6) model houses, which were arranged to
form an approximate ring around the centre of the arena. A modified Khepera
miniature robot,*® connected to an SGI Indy workstation, is shown to successfully
‘home in’ on the centre of the arena, from various starting positions.®” However,
the experiments also highlighted the failure of the system to reliably home from
a starting point outside of the immediate ring of landmarks. The size of the

catchment area thus appears to be limited to the interior region of the homing

84 The relative homing distance is the ratio between the distance to the goal and the average
landmark distance. This relative parameter is due to the equal distance assumption of the
visual panorama.

8530me simulation results using this image warping method are presented in Appendix B.1.
A comparison is also made of the performance and computational cost of the image warping
approach and the proposed landmark based approach. As is shown in §6.7.1.2 and in more detail
in §B.1, the image based method suffers from a significant computational cost, the reduction
of which adversely aflects homing performance. The anecdotal examples also show that the
effective reliable catchment area, using the image warping approach, is generally restricted
to the interior region defined by the immediately surrounding environment. By comparison,
the proposed landmark based approach is shown to be vastly superior in both computational
economy and homing performance.

86 A panoramic view of the environment is provided by a single miniature camera placed
looking upwards at a conical mirror.

87Varying the location of home, the algorithm was shown to perform robustly up to an
average of 15 cm from the goal. At larger distances, visual occlusion started to affect homing
performance. In an office environment successful homing was achieved at distances of up to
200 cm.
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space defined by the closest landmarks. This is not surprising, given the main
assumptions of the approach.

Inspired by Cartwright and Collett’s (1983; 1987) work with honeybees and
the robot homing approach of Hong et al. (1991; 1992),%8 Rofer (1995b; 1995a)
presents a similar approach. However, instead of extracting explicit landmarks
with which to compute a homing vector, correspondernces are made at the pixel
level. Assuming the strict pixel topology that neighbouring points in one image
will be neighbours in the other, correspondence is computed via a modified version
of Kohonen’s (1982) self-organising feature map. The modified Kohonen network
is first initialised with the target image and then trained with the current image.
Successful training results in the weight vectors of the target image moving to
corresponding vectors in the current image. Having found a correspondence
between the current and target images at the pixel level, every pixel pair is used
in the computation of a single homing vector. The method used is essentially the
same as that proposed by Hong et al. (1991; 1992). However, in this case the
bearing of each pixel is treated as the bearing of a separate landmark. Each pixel,
together with its corresponding pixel in the other image, is used to compute a
correctional vector. The correctional vector C; is perpendicular to the bisection
of By and Byg, as shown in figure 2.3.3 The summation of these correctional
vectors thus provides the homing vector.

Homing experiments were performed with a non-rotating robot which
captured panoramic views of the environment through a rotating photoreceptor.
Within an environment, consisting of three lamps, the mobile robot was able to
successfully home from distances of up to 1 metre away.

Rofer (1997a) describes another slightly different image-based approach to
visual homing. Correspondences are again computed between two panoramic
images at the pixel level. However, the result is treated as a flow field. The
direction of the Focus of Expansion (FOE) between the current and target images
thus provides the correct homing direction. Pixel correspondence is achieved
via a simulated annealing type approach® whereby the area within which pixel

correlations can be made, shrinks with time. The algorithm involves an iterative

835ce §2.7.2.

89 Apain, this is the same strategy used by Hong et al. (1991; 1992). The ‘merits’ of this
strategy are discussed in detail later (§6.4.2.4).

90This is again inspired by Kohonen's (1982) self-organising feature map, except with a
stricter form of neighbourhood preservation.
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Figure 2.3: Computing a Correctional Vector. The correctional vector Cj, is
perpendicular to the bisection of the current bearing of landmark B; from location
S (By) and the bearing of the same landmark as observed from home T (Br). In
this case, a correctional vector C; is computed for each pixel ¢, the sum of which
produces the homing vector.

process whereby a selected pixel is correlated, within the prescribed area of
the other image, to find the best match. Each ‘best match’ results in the
linear warping of the image to reflect this correspondence but retain the strict
neighbourhood topology of the original image. Having produced a flow field of
the virtual motion between target and current positions, the homing direction is
computed by summing the (unit) low vectors.%!

Homing experiments are performed in the form of path control for a wheelchair
traversing within a room and a corridor. A path is prescribed by a sequence of
homing targets.”? Illustrated trajectories of the wheelchair show successful path
following in a 7 x & metre room and in a 2 metre wide corridor. Results also
show that the directional error is much greater when traversing within a corridor
as opposed to an open space. The average directional error within the corridor
was 46°, whereas within the room the average error was 11° and 21° (for two
different paths). Many more homing targets were thus needed for successful path

following within the corridor.

2.7.2 Landmark-based Homing

The homing scheme proposed by Basri and Rivlin (1993a; 1993b; 1995) is based

on representing the scene as a set of 2D views and interpolating the novel views

91Robot rotation is determined directly from the optical flow fietd. This rotation compaonent
is then subtracted from the flow to leave the purely translational flow field, which is used to
determine the homing direction.

92This is again very much akin to the work of Hong et al. (1991; 1992).
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by linear combinations of the model views. The method uses identifiable features
from within the model views to model, under weak perspective conditions, the
transformation from one view to another.% Unlike other homing approaches, only
a limited field of view is used. The actual homing algorithm operates in a very
qualitative and simple manner, and is divided into two basic stages. In the first
stage the robot fixates on an identifiable point and progressively circumnavigates
it (in the appropriate direction) until the point coincides with the corresponding
point in the target view. In the second stage the robot simply moves toward or
away from the identifiable point until the target position is reached.

Consider the homing task depicted in figure 2.4(a). The model of the scene is
composed of two images, Py and P,, separated by an angle . The target image
Pr is separated from P by an angle €, and the current image FPr is separated

from P, by an angle «.

() (b)

Figure 2.4: A Simple Homing Task. The robot homes in a systematic fashion
using the discrepancies observed between a set of model views (P, P;), the target
view {Pr), and the current view (Pg). The homing task is divided into two
basic stages: (i) the robot fixates on an identifiable feature and proceeds to
circummavigate it, until the feature coincides with the corresponding feature in
the target view, and (ii) the robot moves toward or away from the visual feature
until the target position is reached (home).

By comparing the transformation coefficients between the model and target
image, to the coeflicients between the model and the current image, the robot
can move in the appropriate direction so as to reduce |# — «|. The robot takes
a new image of the scene after each movement. In the first stage of the homing
algorithm each new current image results in a small Az movement perpendicular

to the line of sight (i.e. the fixation point) until |§ — «| is reduced to zero. The

#See also (Wilkes et al., 1994).
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resulting path is approximately circular around the point of focus (fig. 2.4b). The
line of sight now coincides with the line of sight of the target image. At this point
the robot need only advance toward or retreat from the fixated point to find the
position from which the target image was taken, i.e. home (fig. 2.4b). Again
a comparison of the transformation coefficients is used to determine the correct
direction of motion.

Although Basri and Rivlin (1993a; 1995) test their method on real-world
images, no results are presented for explicit homing in either simulation or robot
experiments.

One of the disadvantages of this approach to homing is the need for
appropriately placed model images of the scene portrayed within the target image.
There is also the need for identifiable features within the images, for which weak
perspective also holds, to enable the interpolation of novel views. The limitations
in using a limited field of view are also evident. It scems likely that many 2D
model views of the environment are required for robust homing. This is then quite
similar to associative homing, also suffering from many of the same drawbacks
(see §2.7.3).

Hong et al. (1990; 1991; 1992) have developed a system which uses a landmark-
based local homing algorithm to allow a mobile robot to move from one location
to another by successively homing in on a sequence of target locations situated en
route.** In their experiment a mobile robot successfully traverses a corridor by
homing on successive target locations which are evenly spaced along the corridor,
approximately one foot apart. The Denning DRV-1 non-rotating mobile robot
used for the experiment, was equipped with a camera placed looking upward
at a spherical mirror, thus producing the necessary panoramic views of the
environment.

The homing paradigm is again set around the exclusive use of the two
views attained from the target and current positions. Like Cartwright and
Collett (1983), Hong et al. (1990; 1991; 1992) attempt to extract a homing vector
from the discrepancies observed between corresponding landmarks viewed from
the current and target locations.

The key to successful homing is again a set of correct correspondences between

the target and current views. In this case, identifiable landmarks are used for

MGee also (Tsuji and Zheng, 1990b; Tsuji and Zheng, 1990a; Tsuji and Zheng, 1992). Indeed,
there is recent evidence that ants use a series of snapshots, acquired at various distances from
the goal, for navigation on subsequent trips (Judd and Collett, 1998).
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this purpose. The method by which Hong et al. (1990; 1991; 1992) determine
landmark correspondence is based on image correlation.”®

Firstly, a one-dimensional, circular luminance intensity signature, is extracted
from the panoramic views, for each snapshot position. This ‘snapshot signature’
represents the physical position at which it was obtained. Potential landmark
positions are then identified, from the current snapshot, by seeking the locations
of large intensity changes within regions of monotonically increasing or decreasing
intensity. The top fifteen most prominent potential landmarks are then selected
as the image features used in the matching process. A correlation function is used
to find the best match of the selected image features, in the intensity profile of the
current snapshot, within the intensity profile of the snapshot taken from home. In
a sense this particular aspect of the process is similar to what is attempted in an
image-based approach, and hence suffers from some of the same drawbacks. Image
features in the current intensity profile are correlated with image regions, not
image features, in the home intensity profile. (Image features are not extracted
from the home snapshot.)

Once landmark correspondence has been established the homing vector is
primarily computed using a simple vector summation technique. Each pairing
of landmarks produces a correctional vector, the sum of which represents an
approximate homing vector. Landmark bearings are used for this purpose in a
similar way to that proposed by Cartwright and Collett (1983). A correctional
vector represents the motion required to improve the landmark bearing disparity
observed between a pair of corresponding landmarks. By summing over the
complete set of correctional vectors an approximate homing vector is produced.
The final homing vector, however, is the result of several minor refinements. The
‘merits’ of one of these refinements is discussed in detail later (§6.4.2.4).

A slightly different approach tc the homing problem is articulated by
Pinette (1991). A mobile robot is again given:

1 the bearings of landmarks viewed from the current position,
2 the bearings of landmarks viewed from the target position, and

3 the correspondences between 1 and 2.

However, instead of computing a single homing direction from this information,

98Gee also (Zhang et al., 1991) for a proposed extension of this work.
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a range of possible homing directions is logically deduced.®®

Consider the homing task depicted in figure 2.5(a). The homing objective
is again to move in such a way as to reduce the discrepancies between the
corresponding landmark bearings observed in each snapshot. In this case to
reduce the angular landmark disparities of ZAgAr and £BgBr. To reduce the
disparity ZAgAr the robot must move, from starting point S, in a direction
defined by the angular interval (Ag, Ag)®" (fig. 2.6a). Choosing any direction
within this region will result in movement of the current bearing A toward the
target bearing Ar, thus reducing ZAgA7. The same logic can be equally applied
to all remaining landmark pairs (fig. 2.6b}. Now a feasible region, the range
of homing directions which will reduce all landmark disparities, can simply be
defined as the intersection of all the valid angular intervals computed for each

landmark pair (fig. 2.6¢).
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Figure 2.5: An Example Homing Task. The homing task is again defined
as moving to reduce the bearing disparities between corresponding landmarks,
observed from the current (S) and home (H) locations. In (a) this equates to
reducing ZAgAr and ZBgBr. For ease of description, {(a) can be presented as in

(b).

However, simply reducing landmark disparity is not enough to guarantee
successful homing. It is possible to continuously choose a direction from the
feasible region resulting in the robot never reaching home (i.e. the target

position). For example, in figure 2.7(a) if the robot continuously chooses a

96 This deduction, however, is dependent upon a perfectly correct (consistent) correspondence
between landmarks of current and target positions.

97The notation used here for an angular interval is in the form (§,3) where § defines the
counter-clockwise houndary and 3 the clockwise boundary of the interval.
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Figure 2.6: Improving Landmark Bearings. (a) To reduce the landmark disparity
between Ag and Ay, the robot must move in a direction defined by the angular
interval ((Ag, Ag)). (b) The same logic holds for all remaining landmarks (i.e.
B). {c¢) To reduce the bearing disparities caused by both landmarks A and B, a
homing direction must be chosen from the angular interval ((Bs, Ag)).

heading from the angular interval (Ar, Ag) it will never reach home, despite
continually improving the landmark disparities. To guarantee a finite homing
path, Pinette (1994) refines the feasible region for a landmark pair to be bounded
by the current bearing and the bearing opposite that of the corresponding target
bearing. Thus the feasible region now becomes { Bg, Ar) as shown in figure 2.7(a).

Having computed a range of plausible homing directions which guarantee
successful homing it is now possible to refine this even further (Pinette, 1991).
Assuming the feasible homing region is less than 180°, it can be further
constrained to also give a guarantee of improving the homing distance as
distinct from merely improving the perceived landmark bearings. In essence,
it constrains the robot to ‘efficiently’ home by continually improving its physical
proximity to home. This distinction is important in that a movement which
improves the bearing discrepancy does not mnecessarily imply an (immediate)
improvement in physical position. To improve the proximity of home the robot
must move to a point within the imaginary circle centred at home with radius
equal to the distance of home. The range of directions which are guaranteed to

(instantaneously) improve physical position is thus given by the intersection of
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Figure 2.7: Restricting the Range of Homing Vectors. (a) To guarantee a finite
homing path, a homing direction must be chosen from the angular interval
((Bg, Ar)). (b} To guarantee an (instantaneous) improvement in both landmark
bearings and physical location, a homing direction must be chosen from the
angular interval (A%, Bg).

half planes H(B&, Bg)®%®and H(A%, A%). The resulting region being the interval
(A%, B%) (fig. 2.7b).

Now the range of homing directions that have been deduced not only guarantee
successful homing, but also ‘efficient’ homing.

Interestingly, the method by which Pinette (1994) generates a set of landmark
correspondences between two panoramic snapshots, already produces a homing
vector. The method involves image warping in a similar fashion to the Franz
et al. (1997a) approach described earlier (§2.7.1). The main difference being,
where Franz et al. assume a fixed relative ‘landmark range’ and warp the entire
view accordingly, Pinette warps segments of the image at varying hypothesised
‘landmark ranges’. In both cases the process automatically generates an
hypothesised homing direction, although, Pinette also generates a set of landmark
correspondences. At this point it seems a little superfluous to continue with the

deduction of a feasible homing region when a homing direction has already been

% The notation used here for a half plane is in the form H(A, B) where the half plane is
bounded by line A and contains line segment B. In other words, the interval between A and A
that containz B.

99 4 is perpendicular to AL.
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computed.1?

As mentioned earlier, the logical deduction of a homing direction cannot
be successfully accomplished without a perfectly consistent set of landmark
correspondences. Although an algorithm for removing incorrectly matched
landmarks'® is proposed (Pinette, 1994), the ramifications or relative success
of this is not clear. The method involves a voting scheme which not only removes
incorrectly paired landmarks but also as a consequence correctly paired ones, in
an attempt to generate a consistent set of landmark pairs. The overall result
of this action on the homing behaviour is not at all clear. Graceful degradation
under increasing degrees of mismatch is similarly not apparent.

Unfortunately, Pinette (1994) provides very little in the way of experimental
results. Although no results are obtained for explicit homing, a real-world mobile
robot was used to gather real data (i.e. snapshots) upon which the algorithms
were tested. Interestingly, much more accurate homing directions were generated
from the landmark correspondence algorithm than the logical deduction process
itself. The image warping process produced a homing vector that was within £3°
of the true direction, while the deduction process produced, on average, a feasible

homing region of size 80°.

2.7.3 Associative Robot Homing

Associative vision-based homing is related to the homing methods described
earlier, in the sense that it makes primary use of snapshots. However, it differs
in the computation of the homing vector.

Associative homing involves taking snapshots at a number of different
locations in the environment, and associating each snapshot with a vector
which specifies the appropriate homing direction for that location. The homing
procedure then involves comparing the current snapshot with those stored in
memory to determine the homing direction. This can be done in a number of
ways. Nelson (1989a; 1989h; 1991), for example, in a robot arm implementation,
uses the homing vector of the associated stored smapshot which best matches
the current snapshot. Whereas, Zipser’s (1988) simulation averages all homing

vectors, weighting each by the degree of match between the corresponding and

1807y this sense it might be more accurate to classify this work as an image-based approach.
0lncorrectly matched landmarks can only be detected when they result in a logical
inconsistency, i.e. when they are not consistent with a single target direction.
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current snapshot, and then uses this average bearing as the correct homing vector.
The observer, essentially, interpolates the direction of home from the distribution
of homing vectors associated with the snapshots of the homing area.

The main disadvantages of this associative homing approach are a consequence
of the number of required snapshots. Before homing can take place, many
reference snapshots must be taken, at reasonably regular intervals, throughout
the required homing area. Exactly how many reference snapshots are required
and to what density they need to be distributed, for reliable visual homing, will
depend largely on the specific homing environment: what is sufficient in one
environment may not be sufficient in another. In fact, sufficient distribution may
well be far from uniform even within the same homing environment.

Each reference snapshot must also have a correct homing vector associated
with it. A correct homing vector, however, need not necessarily be one directly
indicative of home. It is sufficient to prescribe a direction which will ‘improve’
the robot’s position, and thus indirectly achieve the homing objective.

Establishing the necessary information base can thus be a costly and time-
consuming process, especially if done empirically. This training period may
well be totally unacceptable in certain autonomous scenarios. The storage
and computational requirements of this approach can also be excessive. Every
reference snapshot must be stored and every one of these must be matched
against the current view in order to generate a homing vector. As a result, these
computational costs, without access to parallel architecture, may prohibitively

hinder real-time performance.
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Chapter 3

The Mobile Robot

Real-world experiments were conducted with a small, relatively cheap,' custom-
built? mobile robot.  This robot was specifically designed to cater for
the requirements of applying various visually-based insect behaviours in the

autonomous robotics domain.

3.1 Hardware and Optics

The mobile robot is tethered to a workstation. The umbilical connection
provides the communications link between robot and workstation.® Full duplex,
asynchronous communication allows the concurrent transmission of both codified
commands {e.g. movement instructions) to the robot, and sensed data (e.g.
odometry, vision) from the robot.

Robot platform stability is provided by exactly three contact points with the
ground, consisting of two drive wheels at the front and a neutral trailing castor at
the rear (fig. 3.1). Flexibility of movement is by way of differential steering. The
drive wheels are independently controllable, allowing the robot to move along a
straight line or a curve, or even spin on the spot. The robot’s wheel base is 26 cm

wide.

For a price tag of only A31000 the robot provided an excellent testbed for the various
experiments.

2The robot was machined and assembled at the Research School of Biological Sciences,
Australian National University.

3The robot’s umbilical line also provides the link to an external power source which provides
for all on-board power consumption.
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Powered by a pair of 60 rpm electric motors* the mobile robot is capable of
a maximum forward speed of approximately 15 cm/s. Proficient manoeuvring
speed ranges from a slow 5 cm/s to approximately 12 cm/s.® Although higher
speed motor components (330 rpm) were experimented with, these did not provide
enough torque for acceptable performance.

The vision for the robot is provided by a miniature CCD video camera®
(768 x 576 pixels) with a field of view of 75° x 55°. This camera is placed
looking upwards at a mirror assembly” which directs two lateral and two straight-
ahead views onto the imaging plane of the camera (fig. 3.1 a,c). A pair of
mirrored surfaces,® arranged in the form of a V, directs the two lateral views
of the environment onto two strips of the imaging plane of the camera. Another
pair of mirrored surfaces, also arranged in the form of a V, directs light from
two additional mirrors oriented to capture two straight-ahead views of the
environment. These views are also imaged onto two strips of the imaging plane.
The centre-to-centre distance between these two mirrors determines the distance
between the axes of the two straight-ahead views. This distance ultimately
determines the range of depths that can be computed accurately, as well as the
resolution of depth within this range. Each lateral view is 55° x 15° and each
frontal view is 38° x 20°. A single camera is used to capture all four views, thus
avoiding difficulties associated with balancing automatic gain control systems of
multiple cameras. An illustration of the mapping of the four views onto the single
imaging plane of the camera is shown in figure 3.1(b). For each view, the motion
in the image plane is parallel to the pixel columns. This simplifies the generation,
in software, of the reference images required by the interpolation algorithm, to
calculate image motion.

On-board hardware® is used to control the motors driving the two wheels. The

Philips 80C552 8-bit microcontroller also controls all of the on-board monitoring

4The 12 Volt d.c. electric motor components are single, encapsulated and sealed combination
motor and gear-box units.

5 At speeds slower than approximately 5 cm/s robot motion becomes somewhat unstable as
maintaining forward momentum becomes more difficult.

5The Samsung mono chrome CCD camera module is fitted with a 3.8 mm (F2.0} lens,
providing a 92° diagonal field of view. The camera module weighs a mere 35 grams and fifs
inside a box 40 x 45 x 29 mm.

"The mirror assembly was constructed from machined aluminium.

8Highly polished alumininm surfaces.

9The on-board circuitry is the same as that designed for an earlier prototype (see Chahl and
Srinivasan (1996)).
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functions. Drivemotor speeds are monitored by optical counters attached to the
motor armatures, and robot velocity and odometry information is thus provided.

Basic control firmware is supplied by an on-board EPROM. Using a cross-
compiler and an EPROM burner, custom-purpose control, diagnostic, and
communication software has been written and installed on-board. Motor control
is implemented via pulse width modulation (PWM) using PID control. This
degree of on-board motor control is essentially to achieve and maintain prescribed

wheel velocities.

3.2 Design Considerations

The most important design consideration was the vision system. The design
of the robot, especially its novel imaging system, is eminently suited for our
corridor guidance experiments. The mirror assembly allows both lateral and
frontal views to be projected onto a single camera image. Further, the mapping of
the individual views onto the imaging plane is simple and allows straight forward
extraction and analysis without the need for any image warping or de-warping.
The perceived (horizontal) motion by the robot, in each view, is perpendicular
to the image rows on the image plane.

Although providing an elegant sensory solution for the task of visually guided
corridor navigation this solution is not ideal for visual homing. The disadvantage
for visual homing is the restricted field of view offered by the camera setup. A full
360° view, a panoramic sensor, is what is ideally required for vision-based homing.
This can be achieved by setting a camera to point directly up at a conical'® or
spherical'! mirror. In this way the entire panoramic view can be directed onto a
single image. However, due to the absence of a panoramic sensor for the homing
task, an alternative, behavioural solution must instead be employed to achieve a

panoramic view.

3.3 Software

Communication between the robot and the SGI Indy workstation is via a serial

umbilical cable. Codified commands, such as target wheel speeds, are transmitted

108ee (Yagi et al., 1995; Chahl and Srinivasan, 1996; Franz et al., 1997a).
1See (Hong et al., 1991).
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asynchronously to the robot. Correspondingly, the robot also communicates data
asynchronously.

The vision information supplied by the on-board camera is also transmitted
down the umbilical line via coax to the workstation for processing.

The basic control loop for the robot involves sensing, updating, analysis and
finally action. The faster this sensing/action loop can be performed, the better.
The sensing stage involves reading current odometric and visual information. The
updating stage involves updating egomotion variables, i.e. wheel velocities. The
analysis stage involves analysing the sensory input, both vision and egomotion,
and determining an appropriate response. Finally, the action, or perhaps mare

accurately, reaction stage, implements the selected response.

3.4 Conclusions

Despite the physical and visual limitations of the mobile robot it has served
its purpose quite well. Through an elegant design, both optic and platform,
the mobile robot provided a relatively simple and inexpensive real-world testing

platform for the various visually based tasks presented in the following chapters.
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()

Figure 3.1: Kenneth the Mobile Robot. (a) Using a mirror assembly, a single
camera captures the four separate views of the environment; (b} An example
camera image showing the mapping of the two lateral and two frontal views; (c)

The mobile robot.



4. Corridor Guidance 73

Chapter 4
Corridor Guidance

Giving robots the ability to move around autonomously in various real-world
environments has long been a major challenge for Artificial Intelligence. To this
end, it is vital for robots to be able to perceive their surroundings in 3D; they
must be able to estimate the distances of obstacles in their path.

Animals navigate through various uncontrolled environments with seemingly
little effort. Flying insects, in particular, are quite adept at manoeuvring in
complex, unpredictable and possibly hostile environments.

This chapter will demonstrate, through both simulation and real-world
experiments, the feasibility of equipping a mobile robot with the ability to
navigate a corridor environment, in real time, using principles borrowed from
insect-based visual guidance. In particular, this will be done using the honeybees’
visual navigation strategy of measuring object range in terms of image velocity.
The viability and usefulness of various other insect behaviours and strategies
for corridor navigation will also be shown. These include: (i) keeping walls
equidistant, (ii) slowing down when approaching an object, (iii) regulating speed
according to tunnel width, and (iv) using visual motion as a measure of distance

travelled.

4.1 Introduction

Common approaches to the problem of autonomous robot navigation include
the use of specialised equipment, such as laser rangefinders, sonars, and
inertial navigation systems. However, such equipment is expensive, and

even sophisticated inertial navigational systems accumulate positional error
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requiring periodic correction. Alternative approaches, employing passive vision,
are attractive, in that visual sensors constitute a rich, yet relatively cheap
source of information about the surrounding three-dimensional environment.
However, visual sensors are also the ones that entail the most computation.
Consequently, there is a strong motivation to explore techniques that make simple,
qualitative observations of the important properties of a scene, rather than to use
comprehensive, exact approaches that entail needlessly expensive computations.

One way to tackle this problem is to examine how relatively simple animals,
such as insects, overcome the problems of autonomous navigation. Given their
small size and relatively simple nervous systems, it seems likely that insects
employ ‘short cuts’ to navigate in the real world. These are the principles
that may be unearthed and applied advantageously to robot navigation. Recent
investigations® are now showing what sort of visual cues flying insects use to
achieve their navigational prowess.

The main aim of this chapter is to show that very simple motion cues
and behaviours, inspired by the visual navigation of flying insects, can be
used to provide a mobile robot with the ability to successfully traverse various
environments, in real-time. The viability of this approach is demonstrated in

both real-world and simulated experiments.

4.2 Background

4.2.1 Measuring range via apparent motion

Insects show by their behaviour that they perceive the world in three dimensions.
This is accomplished through adept exploitation of relative motion cues. Insects
are able to infer the ranges of objects from the apparent motion of their images
across the eye (§2.5).

The range (r) of an object can be inferred from its apparent angular velocity

(w), its bearing (#), and the linear velocity (v) of the eye (see fig. 4.1):

r = 55111(9) (4.1)

1See §2.5, (Collett et al., 1993; Heisenberg and Wolf, 1993; Hengstenberg, 1993; Srinivasan
et al., 1991).

|
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Figure 4.1: Range from Apparent Velocity. If the speed (v) of the observer is
known then the distance (r) to a static object can be gauged by its bearing (f)
and the angular speed (w} at which it appears to move.

4.2.2 Insect Behaviour

The following subset of insect behaviour,® is considered, as a basis for the

development of robust algorithms for corridor traversal.

(i) Peering — before jumping, a locust will sway its head and body laterally to
estimate the range of a nearby target in terms of the motion of the target’s

image on the retina.

(ii) Trying to keep obstacles or walls equidistant — honeybees centre their flight
paths between obstacles by balancing the speeds of lateral apparent motion

on their two eyes.

(ili) Responding to looming by slowing down — one of the most important flight
manoeuvres flying insects perform is that of landing, which is, in many flying

insects, triggered by a rapidly expanding retinal pattern.

(iv) Keeping motion speed constant — honeybees regulate flight speed by
monitoring the speed of apparent motion. Essentially, they strive to hold

constant the speed of laterally perceived motion.

(v) Utilising observed motion as a measure of distance travelled — honeybees
measure distances to goals through the integration of apparent-motion

speeds observed en route.

28ee section 2.5 for a detailed discussion of these and other insect behaviours.
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4.3 Copying Bee Behaviour

Inspired by the way honeybees use apparent motion cues for a variety of visual
guidance tasks, an attempt is made to use the same simple cues and behaviours to
provide a mobile robot with the ability to successfully navigate along a corridor
environmert.

Several similar investigations (see §2.6), also inspired by the navigational
behaviour of honeybees,® have been carried out. However, as pointed out, these

implementations suffer from a variety of deficiencies.

4.3.1 Improvements upon Previous Approaches

To combat some of the deficiencies of earlier approaches the following

improvements have been implemented and tested:

(1) In a simple way, the system takes robot rotation into account when
calculating range. This is crucial for the robot to be able to change direction
as it moves. When the robot is rotating as well as translating, the effects of
rotation on the image motion must be discounted before equation 4.1 can
be applied to estimate range. The rotational component is most significant
in the heading direction. In regions at or close to the Focus of Expansion
(FOE), rotation can even cause the perceived image motion to reverse.
Robot rotation can, however, also have a major effect on apparent motion
even in the side view (i.e. 90° from the FOE). Pure rotation of the robot
(i.e. an on-the-spot turn) yields no information on range: all points of
the image at a given elevation then move at the same angular velocity.
Pure translation, on the other hand, provides the most direct method of

computing range from image velocity, as specified by equation 4.1.

The rotation and translation of the robot are calculated by monitoring the
rotational speeds of the left and right wheels. The angular velocity of robot
rotation is calculated by dividing the difference in wheel coverage by the
width of the wheelbase, while the linear velocity of forward translation is
obtained from the average speed of the two wheels. The image velocity that

would have been obtained with pure translation is calculated by subtracting

38pecifically, by the way honeybees use lateral apparent motion to guide an equidistant path
between obstacles (§2.5.4).
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the angular velocity of rotation of the robot from the measured image
velocity. The corrected image velocity can then be used to calculate range.

This method avoids the need for active gaze stabilisation.

An image interpolation method is used to calculate apparent motion (see
§2.4.2). The advantages of this technique over previous methods are
that there is no need for (i) identification or tracking of features, (ii)
measurement of high-order spatial or temporal derivatives, or (iii) iterative
calculation. Furthermore, unlike earlier approaches, this technique delivers
the slope as well as the image motion of a surface. This is extremely useful

in the present context of corridor navigation.

Lateral images are used to measure not only the distances to the two side
walls, but also to measure their orientation. This additional information
can be used to help control the lateral position of the robot, as well as its

heading direction.

A ‘virtual motion’ strategy is presented for the detection of obstacles in
the forward direction, such as the end-walls in a T-junction or a sharp
L-turn. Two frontal views are captured along parallel axes that are
laterally displaced by a known distance. By measuring the apparent motion
observed between the two images, it is possible to gauge the distance to
the frontal obstructing surface. This strategy is analogous in many ways
to the sideways ‘peering’ head movements of locusts, which serve as a
means of estimating the range of frontal targets in terms of the apparent
motion of their images on the eye (§2.5.3). Furthermore, measurement of
horizontal compression (or expansion) between the two frontal images can
provide information on the orientation of the frontally-located surface. This
information, in combination with information from the laterally-directed
views, can be used to help determine the nature of an oncoming obstacle
(obstructing object, sharp turn, shallow turn, T-junction or dead-end),
to reduce the speed of the robot, and to control preparatory manoeuvres

accordingly.

Further, three additional insect behaviours which also assist corridor
navigation, are incorporated. Firstly, that of slowing down in narrow
corridors and speeding up in wider ones. This is achieved by regulating the

robot speed so as to maintain an approximately constant {maximum) image
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speed. Secondly, that of regulating robot speed according to the proximity
of frontal obstruction. Thirdly, the use of apparent-motion as a measure
of distance travelled, is explored. This alternative distance measure can be

very useful for times when wheel-based odometry fails or is inappropriate.

4.4 Proposed Paradigm

4.4.1 Simulation

Early experiments* were conducted solely in the domain of simulation, and were
therefore not as constrained by practical considerations. This naturally resulted
in slightly different methods of image motion estimation and consequently of
course control, than what was eventually implemented on the real robot. This
thesis, however, presents the simulations and models developed expressly for, and
based upon the specifics of the real mobile robot implementation (§4.5).

The basis of the simulation is the modelling of the robot’s motion in reaction
to visual stimuli observed through several camera views. Raytracing is used to
provide the images that would be seen by the cameras. In simulation, each camera
had a 30° field of view and provided both frontal and lateral views (fig. 4.2(a)).
The simulated environment (i.e. the corridor) is made up of textured walls. The
simulations were run on a Silicon Graphics Indy workstation.

The simulated robot is based primarily on the real mobile robot which was
used for real-world experiments. The robot moves via two drive wheels, located
at the front on either side of the robot. These drive wheels are controlled
independently and move at a specified velocity. Turning of the robot is achieved
by having one wheel run at a higher speed than the other. In this way the robot is
capable of moving in a straight line or moving through a curve, or even spinning

on the spot by having the wheels move in opposite directions.

4.4.2 Calculation of Image Motion

As previously described, image motion is computed using an image interpolation
technique (§2.4.2). The advantage of this technique for the present application is
that it allows relatively cheap and reliable computation of both image velocities

and their spatial gradients.

4Gee (Weber et al., 1994; Weber et al., 1995).
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4.4.3 Course Correction

The course correction strategy uses both the range and slope of the walls in
determining correct robot heading. Assume, for the moment, that the robot is
neither positioned on the tunnel axis nor pointing along it (fig. 4.2(b})). The
control rule makes the robot head for a point that is a specified distance away
on the tunnel axis. In the present experiments, this distance is set to 100cm. By
altering this distance, the rapidity of the control action can be varied. The closer
this point of attraction to the robot, the more rapid the corrective action.® For
implementing the control algorithm, the tunnel axis (dotted arrow) is defined as
the line positioned halfway along the width of the tunnel (specified by the mean
of the distances ry and r, measured to the left and right walls, respectively)
and oriented in a direction corresponding to the mean of the orientations of the
two walls. The apparent speeds and orientations of the two lateral walls are
measured by the image interpolation algorithm. Distances are in turn supplied
by equation 4.1.

This simple course correction strategy thus ensures that the robot tends
towards the corridor centre, and once centred, strives to maintain this centred
position. As the dynamics of the perceived corridor change, or as obstacles are
observed, corrective action is taken to maintain a centred path whilst avoiding
obstacles placed near either side wall.® The speed of this corrective action can

easily be altered, as required.

5Depending on the perceived urgency of required corrective actions, which are usually
determined by the dynamics of the environment, this ‘gain’ can be manipulated to improve
overall performance. Depending on the expected or even currently perceived terrain, the
judicious manipulation of this additional control variable allows for more sensible behaviour
and overall a more robust system. For example, when a straight section of corridor is being
traversed the ‘point of attraction’ for the robot should ideally be [urther away than for the
case of a winding path. In a straight corridor, there is no need for any quick corrective action.
Anthropomorphically speaking, the robot is ‘kept on its toes’ in a state of ‘readiness’, when
there is no need. Consequently, by decreasing the ‘urgency’ of corrective action, the robot
is allowed to ‘settle down’, resulting in a much smoother path where the natural side-to-side
meanderings of the robot are reduced. Ideally, the ‘point of attraction’ would be perfectly
tuned to the specifics of the upcoming environment. However, without perfect world knowledge
the upcoming environment remains, to a great extent, unknown, and so care must be taken
to allow corrective speed to be high enough to cope with rapid and unforeseen changes in the
environment, whilst not too high to introduce severe overcompensation. Care must also be
taken due to the fact that a limited view of the environment can cause visual perceptions to
change significantly, as the robot moves and changes its orientation. This in turn can cause
misconception or misinterpretation in a highly reactive system such as this, if the robot changes
direction too far too quickly.

80bstacles are essentially treated simply as extensions of a wall.
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(a) (b)

Figure 4.2: Robot Views and Course Correction. (a) The robot is equipped
with four separate views, two forward and two lateral. (b) Course correction for
the centring behaviour is performed by heading for a point located at a certain
prescribed distance along the corridor axis.

4.5 Real-World Robot Setup

The mobile robot” used for the real-world corridor guidance experiments is shown
in figures 4.3(a,c). Movement is provided by the two separately controllable drive
wheels located at the front of the robot. The four required views, two frontal and
two lateral, are provided by a single camera placed looking upwards at a mirror
assembly (fig.4.3(a)}. An example image is shown in figure 4.3(b).

The test environment is provided by cardboard walls covered with artificial
(random block) texture (fig. 4.3(d)}. Although the degree and type of artificial
texture is quite unrealistic, given the practical constraints of the robot and basic
assumptions of the approach, this was not considered inappropriate. The direct
reliance on visual stimuli, specifically apparent motion, made the use of artificial
texture within the fabricated environments mandatory. The specific type of
texture was considered unimportant, as long as it was capable of conveying useful
motion information. Given the limited processing time available and the purely
reactive nature of the system the entire viewable arena was supplied with texture.
This ensured apparent motion was always observable throughout the lateral views

and thus avoided any unnecessary computation directed towards finding alternate

"Described in detail in chapter 3.
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motion.
The important point is not how optic flow is measured but given the ability
to observe and measure apparent motion, how these visual cues can be used to

direct intelligent and useful behaviour. In this case, corridor navigation.

(c) (d)

Figure 4.3: Robot and environment. (a) A schematic of the robot shows how
the two frontal and two lateral views are captured by a single camera by way of
the mirror assembly. (b) An example camera image shows how the four separate
views are combined into a single image. (c) The physical robot. (d) The test
environment.

4.6 Results

A variety of visually-mediated insect behaviours have been implemented for
corridor navigation: (i) keeping walls equidistant, (ii) slowing down when
approaching an object, (ili) regulating robot speed by keeping apparent-motion
speed constant, and (iv) integrating visual motion as a measure of distance

travelled.
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4.6.1 Keeping walls equidistant

This centring strategy — keeping walls equidistant — is the basis of the mobile
robot’s control. Figure 4.4 shows the behaviour of the simulated robot as it
traverses various corridor environments. In each case the corridor is 2 metres
wide. The trajectories show successive positions of the leading edge {wheel base)
of the robot as it progresses up the corridor. The width of the robot trajectory
represents that of the robot’s wheel base, which is 26 cm wide.

Figure 4.4(a) shows a simple example of the robot traversing a straight section
of a corridor. Starting at an off-centre position, it quickly corrects its trajectory
by approaching the corridor axis and continues up the corridor maintaining this
central position. Note also however, how the centring control rule prescribes
proportional corrective action that results in very little unnecessary overshooting
of the corridor centre. (In this idealised case, no overcorrective action is observed.)
The robot essentially strives to approach the corridor axis without necessarily
crossing it. Figures 4.4(b-g) show the behaviour of the robot as it traverses
several non-straight corridors at varying speeds. Each of the three increasingly
more acute corridor segments are traversed twice. Once at an average speed of
20 cm/s and the other at 40 cm/s. In each case the robot successfully traversed
the corridor, avoiding walls and striving to maintain a centred position. At the
faster speed of 40 cm/s, it can be seen that the robot tends to understeer more,
especially around the sharp corners. This is a natural consequence of having less
time to react, but also due in part to the fact that a maximum turn rate has been
imposed upon the robot.®

Figures 4.5 and 4.6 show several sets of results obtained from the real-world
experiments: straight sections of corridor 4.5, curved sections 4.6{a-d), and U-
turns 4.6(e,f). In each case the mobile robot managed to successfully traverse the
corridor segments by striving to centre itself within the corridor and maintain its
centre. This proved quite successful irrespective of corridor width and shape. For
these results, the robot moved at an average speed of approximately 10-12 cm/s.

In these ‘real world’ experiments, however, the environment is very well
textured (fig. 4.3d). To test the effect a poorly textured environment can have
on a visual stimuli based reactive system, further centring experiments were

conducted with reduced texture. In these texture reduced experiments half of

8Given that the simulation was to emulate as close as possible ‘relevant’ real-world conditions
and limitations, this was considered an appropriate restriction.
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Figure 4.4: Centring Behaviour (simulation). The centring behaviour of the
robot simulant is shown in increasingly more acute corridor segments. The effect
of robot speed is also shown as each segment is traversed at two different speeds

(20 cm/s and 40 cm/s). In each case, the robot starts at the bottom of the

corridor and moves upward.
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Figure 4.5: Centring Behaviour (real world). The centring behaviour of the
mobile robot is shown in various straight sections of corridor. Irrespective of
corridor width, the robot is able to attain and maintain an approximately centred
position within the corridor. In each case, the robot starts at the bottom of the

corridor and moves upward.

the texture making up the environment were removed in A4 sized pieces. The
resultant behaviour is shown in figure 4.7. As expected the absence of relatively
large chunks of texture from the environment caused significant problems to the
purely reactive behaviour of the robot. Errors become much more pronounced
and complete failures (i.e. hitting the side walls) also occur.

Although this is indicative of the behaviour expected as a result of the absence
of stimuli, it is also somewhat misleading. Given the practical constraints and
limitations imposed on the mobile robot this effect is naturally exaggerated. This
is due in part by the limited fields of view but mainly by the fact that only a
single image patch is analysed for motion. If this small patch is not indicative
of the environment then delusional problems will naturally arise. In this case a
perceived absence of texture gives no useful information about the proximity or
even existence of a lateral wall. This situation may of course be improved through
active foveation or simply measuring image motion at more positions throughout
the entire visual field. If this cannot be accomplished, for practical reasons, then
the purely reactive nature of the present solution may need to be augmented to

compensate for a poorly textured environment.
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Figure 4.6: Centring Behaviour (real world). The centring behaviour of the

mobile robot is shown in various non-straight sections of corridor. In each case
the robot is able successfully traverse the corridor segment by continually striving

to maintain an approximately centred position.
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Figure 4.7: Centring in a texture reduced environment (real world). The corridor
navigation performance of the mobile robot is shown to be affected by the

temporary absence of observable texture.
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4.6.2 Slowing down due to frontal obstruction

Figure 4.8(a) shows the simulated robot as it approaches a dead-end passage. As
the robot approaches the dead-end it slows down, and will eventually stop and
turn around (turning around is not shown). The robot is moving at approximately
40 c¢cm/s before it slows down. Since the motion of the robot is shown by
incremental positions of equal temporal spacing, the relative speed of the robot
can be seen by the spatial separation.

The mechanism used for slowing down is as follows. If the frontal range
is less than some threshold (200 cm) then the regulated speed of the robot is
determined by a linear relationship between the maximum speed allowed at this
range (30 cm/s) and 0. The task is essentially to slow down gradually as a
frontal obstacle is approached. Thus, the manoeuvring speed is determined by
the current frontal range (R) and the linear function between 30 cm/s (at range
200 ¢cm) and 0 cm/s (at range 0):

TargetSpeed = 19% where R <p

where p is 200 cm in this case, and ¥ is 30 cm/s. However, the speed is monitored
even at ranges greater than p to ensure that the robot is given enough time to
slow down. This can be important when the robot is navigating a very sparse
environment at a relatively high speed (see §4.6.3, §4.6.4).

Figures 4.8(b-d, e—g) show the same behaviour for the real robot. These
demonstrate the use of the frontal views in addition to the lateral ones. In the
first example sequence {(b—d), the robot travels up the corridor until it perceives
the frontal range to be dangerously small at which point it stops (fig. 4.8(b)).
The robot then spins on the spot until the frontal range becomes large enough
for it to safely resume locomotion (fig. 4.8(c}). Due to the fact that the corridor
comes to a dead-end, the robot performs a 180° spin. Figure 4.8(c) then shows the
continuation of the robot as it moves back down the corridor, until again it reaches
a dead-end, and the procedure is repeated (fig. 4.8(d}). The same stereotypical
behaviour is shown in the second example sequence depicted in figures 4.8(b—d).

Due to the physical limitations on the speed of the real robot {12 cm/s
maximum) and hence the limited speed range (4-12 cm/s) within which to
manoeuvre, the act of slowing down, in response to frontal obstacles, is not clearly

visible in figures 4.8(b—g). The robot is essentially still moving at its top speed
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Figure 4.8: Slowing down for frontal obstacles; (a) simulation; (b-g) real-world.
Forward speed is regulated according to the proximity of frontal obstructions.

Subfigures (b—d) and (e-g) show two separate sequences of the robot behaviour
within a dead-end passage.

The solid circles are a result of the spinning
MAanoeuvres.

when the frontal object is perceived to be too close for comfort (60 cm) and it
responds by stopping, rather abruptly, and then spinning.
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4.6.2.1 Turning a sharp corner by spinning

Although, strictly speaking, this is not behaviour copied from insects, it is linked
to the previous section on regulating speed according to the proximity of frontal
obstruction. When the robot gets itself into a very ‘tight’ situation where normal
manoeuvring is unsafe, it must make use of a different manoeuvre to extricate
itself. This has been implemented as a spinning manoeuvre. An example of this
was seen in the previous section when the robot approached a dead-end passage.

The spinning behaviour is simply triggered when a frontal obstacle is
dangerously close. When the frontal range becomes too small to allow safe
manoeuvring (< 60 ¢cm) the robot simply stops and spins on the spot until the
frontal range becomes large enough again (> 200 ¢m) to resume forward motion.
This behaviour is shown in figure 4.9, where (a} shows the simulated result and
{b,c) the corresponding real-world result.

One difficulty, however, is deciding in which direction to spin. Currently this
is determined by the polarity of the average wall slope (i.e spin in the direction of
average wall slope). However, this is not a perfect strategy and will not work in
all situations. Thus, higher-level processes, not pursued here, would be required

to detect and correct erroneocus decisions.

Q@MIWWW \ %Q\.\'\\\\\anfl’/f'//}‘}'}%
R = SR

(a) (b) (c)

Figure 4.9: Spinning to aid sharp cornering; (a) simulation; (b, ¢) real-world.
When approaching a sharp corner the frontal range can be used to induce a
spinning manoeuvre which can assist in taking a sharp turn.
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4.6.3 Tailoring robot speed to tunnel width

Figure 4.10 shows the simulated robot exploring an environment whilst striving
to keep the observed (maximum) motion speed approximately constant. This is
a very useful strategy for regulating forward speed, in that it forces the robot to
slow down in tight situations, such as where the walls of a corridor become quite
narrow, and allows a higher speed in more open and ‘safer’ environments.

In subfigures 4.10(a, b) it can be seen that the robot increases its speed in the
wide portion of the corridor and subsequently slows down in the narrow portion.
Robot speed also changes significantly towards the end of the run, where frontal
obstacles appear. The robot performs several spin moves when the frontal range

becomes dangerously small.
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Figure 4.10: Regulating robot speed (simulation). Robot speed is regulated by
striving to maintain a constant (maximum) apparent-motion speed. Subfigures
{a—¢) show the trajectory, in sequence, of a single experiment, with (b) being the
continuation of (a), and (¢) the continuation of (b).

The behaviour of the robot also illustrates one of the problems with the purely
reactive centring behaviour. In the large room the robot tends to get a little lost,
as it loses its direction due to the attraction of the large open space in the middle
(fig. 4.10(a)}). Also, in 4.10(b}, it can be seen that as soon as the robot follows
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the right-hand turn of the corridor (top), the attraction of the open space to its
right draws the robot into a collision course with the corner of the small corridor.
This induces another spin manoeuvre, which then sets the robot on a course back
down the corridor (fig. 4.10(c)).

This is probably a good situation in which to abandon the centring behaviour
and switch to a behaviour in which only one of the walls is followed. Another
possibility would be to utilise additional frontal range information for course
control; essentially using frontal range to probe for openings. In this way, the
attraction of open space directly in front of the robot could offset or override the
attraction of open space to the side.

Figures 4.11(a, b) show the real-world results. In trying to maintain a constant
maximum speed of observed apparent motions, the mobile robot is clearly seen
to change its speed. Robot speed varies from 4-12 cm/s, approximately. In
the initial and final stages, where the walls are extremely close, the robot slows
down to almost stalling speeds, whereas in wider sections the robot increases its

manoeuvring speed to maximum.
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Figure 4.11: Regulating robot speed (real world). Robot speed is regulated by
striving to maintain a constant (maximum) apparent-motion speed. Subfigures
(a) and (b) show two example experiments; in each case the robot can clearly be

seen to appropriately speed up and slow down in response to perceived corridor
width.
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4.6.4 Wall Following

As was seen in the previous section, there is a clear need for a wall-following
behaviour. Wall-following has been implemented in essentially the same way as
the centring control behaviour. The only major difference is that, instead of using
the ranges and slopes of both walls to determine correct direction, only the range
and slope of the wall to be followed are taken into account. The robot strives to
maintain a pre-specified distance from the followed wall.

The trigger that instigates the wall following behaviour is simply a threshold
on the average range of the left and right walls. In essence, corridor width. If
the average range exceeds 150 c¢cm the robot will attempt to follow the closest
wall. Wall-following is discontinued, and centring resumed when the average
range becomes less than a given threshold (125 cm).

Figures 4.12(a, b) show how well the wall-following behaviour works in the
environment that caused problems in the previous section {fig. 4.10). As can be
seen, the robot simulant is now able to successfully navigate from one open area
to another via a connecting corridor. In large open spaces, where the notion of
‘centring’ can be considered quite arbitrary, wall following can provide a more
secure route. The wall-following behaviour essentially allows the robot to navigate
‘around’ open areas in a more reliable and predictable fashion.

Figure 4.13 shows the effect of the wall-following behaviour in the real-world
experiments. Figures 4.13(a,b) show the original results, without the wall-
following behaviour activated. As expected, the robot turns toward the open
space just after clearing the right wall. Figures 4.13(c,d), on the other hand,
show the behaviour of the robot with wall-following activated. The mobile robot
continues its almost straight path, ignoring the space that opens up to the right.

The robot tries to maintain a distance of 50 cm from the left wall.



4.6 Results 93

/

1% WIIIWIIIIIIW%WW/ \\\\\\\k\l‘%

ity

ﬂlﬂ!fhl!ﬂl!lIliFIIFIIHHW& 1

%,
A‘J"I‘”H,"tf//
“,

7,
/'I""HH AR

&
\\\\\\\\\\\

HLIIHHMHINMIW%

(S
LY
MWHNHHHmnnunnuuuunuun\“A

'“““”'””’“”iHHMUHuﬁﬁmnawmmmmm

/

dlmu\uulnww§*

AN
iHIIIHIIHIiH\\\\

(a) (b)

Figure 4.12: Wall following (simulation). Triggered by corridor width, wall
following provides a much more reliable path across a large open space. In this
case the robot simulant is able to (a) successfully navigate from one open space
(left), through a narrow connecting corridor (top), to another open space (right);
and (b} successfully return.
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Figure 4.13: Wall following (real world). (a,b) Without a wall following behaviour
the robot naturally heads into open space once clear of the right wall in an attempt
to centre its position. {¢,d) With a wall following behaviour the robot successfully
maintains its straight ahead trajectory ignoring the lateral absence of a wall.
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4.6.5 Using image motion to gauge distance travelled

As we move, the motion of the image on our retina provides information not only
about the environment, but also about our own motion. As suggested earlier
(§4.2.2), integrated optic flow can provide a viable measure of distance travelled.
This alternative measure can be very useful when wheel-based odometry fails or
is inappropriate. The integrated optic flow as observed in the results presented, is
the summation of observed pixel displacements in the left and right fields of view
when the robot is in forward motion. When spinning, flow is neither computed
nor integrated.

Integrated optic flow provides a measure of distance travelled, but is not
directly proportional to it. This is because the flow depends upon the
environment—specifically, upon the ranges to the surfaces and objects on either
side. However, integrated flow can be used to calibrate distance travelled along
a fixed route. Here the repeatability of using integrated flow to measure distance
travelled in a constant environment, is assessed over several runs. The expectation
is that the natural variation between runs would be averaged out somewhat by
the very nature of the integration process. Errors arising from the side-to-side
meandering of the robot, for example, would not be integrated into the calculation
because, as the robot approaches one of the side walls, inducing greater optic flow
on that side, it is simultaneously moving away from the other one, and hence
reducing the optic flow induced on that side. This results in a fairly constant
average optic flow, which is more representative of pure forward motion.

Figure 4.14 shows a few simple (simulation) runs, over a straight 5 metre
section of corridor and table 4.1 shows the results of integrating the optic flow
observed en route. In figures 4.14(a, b) the robot is moving at approximately
20 cm/s whereas in figures 4.14(c, d) it is moving at a much faster 40 cm/s.

There are two ways in which the integrated flow values can be computed.
First, the integrated flow can be computed as the sum of the left and right

apparent angular velocities accumulated over the path. That is
flowl = (wr, + wr)

Alternatively, the integrated flow can be computed using the sum of the

reciprocals of the left and right angular velocities. That is
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Figure 4.14: Using apparent motion to gauge distance travelled (simulation). An
identical corridor is traversed at two different speeds (a,b slower than c,d) from

two slightly different starting points (a,c versus b,d). For each run the lateral
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apparent motion observed en route is summed and recorded.

Table 4.1: Integrated optic flow statistics (simulation}.
apparent motion observed on each run depicted in figure 4.14 is shown.

Run Speed | Distance | flowl | flow?2
{(cms™!) | (cm)

4.14(a) 20 500.5 9500.5 | 9509.4

4.14(Db) 20 508.6 9955.8 | 9308.5

114(c) | 40 501.2 | 9530.8 | 9530.8

4.14(d) 40 507.9 10101.5 | 9502.5

The total (lateral)

As

expected, flowl provided a good measure of distance travelled, however, flow?2

provided a better, more consistent measure.



4.6 Results 96

flowQ—E(i_l_ﬁ)

Note that the denominator of the expression represents the sum of the
distances to the left and right walls, that is, the width of the corridor.

Considering first flowl, we find that there is a noticeable difference between
the integrated flow values (table 4.1) for the straight path (a and ¢) and the path
taken when centring (b and d). This is primarily because as the robot moves
closer to one of the side walls, the optic flow from that side increases faster than
the flow on the other side decreases. The result is an overall increase in integrated
optic flow, for non-centred runs through straight corridors.

Flow?2, on the other hand, is more independent of the robot’s position along
the width of the corridor. This is because this measure depends upon the sum
of the distances to the two walls, which is the same regardless of the robot’s
position. As can be seen in table 4.1, flow2 does indeed give a more consistent
measure of distance.

It is as yet unknown whether honey bees utilise plain integrated optic flow, in
spite of the error, or integrate some ‘corrected’ version of the perceived optic flow,
as in flow2. Since the bee (or the robot) strives to remain centred within the
corridor anyway, this error may well be insignificant with respect to the overall
length of the path.

This is illustrated in table 4.2, which compares the results obtained using
flow! and flow?2 for a relatively long circuitous path (fig. 4.15). However, it
should be noted that this result is somewhat of an artifact resulting from the very
nature of the simulation. Despite the initial position of the robot being different
in figures 4.15(a, b and c), the robot quickly ‘locks’ onto a standard trajectory.
As a result, the three paths are in fact very similar, for a major fraction of their
length. To ensure a non-standard trajectory the same experiment was repeated
varying instead robot speed. The resulting paths are illustrated in figure 4.16.
As can be seen in table 4.2, this now illustrates once again the advantage of
flow?2 over flowl. Considering flowl and flow2 observations from runs 4.15(a),
4.16(a) and 4.16(b), flow?2 can be seen to have provided a significantly better
route distance measure than did flowl. When exact traversal paths vary over a
given fixed route flow?2 will generally provide a significantly better measure of

route distance than flowl.
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In the simulation, the paths taken by the robot in figures 4.15 and 4.16 are
naturally fairly similar. However, in a real-world situation, the expectation is that
the robot’s trajectory would be much more chaotic. In this case, the advantage of

using flow2 may well be significantly greater than the simulation results suggest.’

Run Speed | Distance | flowl | flow?2
(ems 1) | (cm)

4.15(a) 20 5716 98049 | 89444

4.15(b) 20 2725 98544 | 89899

4.15(c) 20 5716 97676 | 89298

4.16(a} 30 2969 103031 | 86582

4.16(b) 10 5441 92811 | 90142

Table 4.2: Integrated optic flow statistics (simulation). The total (lateral)
apparent motion observed on each run depicted in figures 4.15 and 4.16, is shown.
As expected, flow2 again provided a better, more consistent measure of route
distance.

90ther than sheer simplicity, flowl does not seem to have any advantages over flow2.
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(a) 20 cm s71 (b) 20 cm s~ !

()20 cms *

Figure 4.15: Using apparent motion to gauge distance travelled (simulation). In
each of the above cases the robot simulant starts at a slightly different starting
point, but quickly ‘locks’ onto a common trajectory. Despite the circultous nature
of the corridor the integrated optic flow observed en route is thus expected to be
very similar. The robot maintained an average speed of 20 cm/s in all three
examples.
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Figure 4.16: Using apparent motion to gauge distance travelled (simulation).
Slightly different trajectories are induced by altering the robot’s speed. In (a)

the simulant averages 30 cm/s, and in (b) 10 cm/s. These can also be compared
with the 20 ¢m/s trajectory illustrated in figure 4.15(a).
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The experiments in figure 4.17 show the behaviour of the real robot traversing
a given section of corridor repeatedly. In experiments (a—d} the robot consistently
starts in the centre of the corridor and performs its standard centring behaviour
whilst maintaining an average velocity of approximately 12 cm/s. Experiments
(e-p) show the behaviour when the robot is started off-centre. Finally, the group
of experiments (qt) show the same robot behaviour whilst maintaining a slower
speed of 7.5 cm/s.

As expected, the real-world results (table 4.3} do confirm the simulation
observations and show that integrated optic flow does indeed provide a consistent
measure of physical distance travelled in a static environment. Also from table 4.3
it can be seen that flow2 does provide a slightly better, more consistent measure
than flowl.

Run Min. Max. Mean | Standard | SD as %
deviation ;. of mean

4.17(a—d) 22.624 23.831 23.187 0.551 2.375
(21.404) | (21.806) | (21.588) | (0.155) | (0.717)

4.17(e-h) 22.661 25.469 24.003 1.008 4,185
(20.962) | (21.230) | (21.137) | (0.103) | (0.489)

4.17(1—1) 22.991 25.411 23.641 1.023 4.329
(21.120) | (22.022) | (21.418)  (0.354) | (1.655)
4.17(m—p) | 22.148 23.215 22.771 0.398 1.748
(21.034) | (21.393) | (21.212) = (0.129) | (0.607)

4.17(q-t) 21.885 24.406 23.167 1.004 4.334
(19.154) | (20.632) | (20.046) | (0.580) | (2.893)

4.17(a—t) 21.885 25.469 23.370 0.956 4,089
(19.154) | (22.022) | (21.080) | (0.629) | (2.982)

Table 4.3: Flowl (and Flow?2) statistics (real world). This table shows the
integrated (lateral) optic flow statistics for the experiments depicted in figure 4.17.
As can be seen, flow?2 provided a better, more consistent measure of distance
travelled, than did flowl.
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Figure 4.17: Optic flow integration experiments (real world). Repeated exposure
to the same route allows a statistical analysis of how well an ‘integrated optic
flow’ measure of distance travelled coincides with true physical distance. Note

that the example runs, shown in groups of four, were selected to encompass a

variety of robot speeds and starting positions.
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4.7 Experimental Limitations

In spite of hardware limitations, both robotic and computing, the real robot
showed quite satisfactory behaviour and control. Indeed, the control was not
as ‘tight’ as in simulation, however, this was not unexpected due to the slower
control loop.!Y In the real-time experiments the frequency of the control loop
was approximately 3.2 Hz for the basic centring (i.e. analysing only side views)
and 2.3 Hz for the full system (i.e. analysing both frontal and side views}. In
comparigson, the frequency of the control loop for the simulation was 12.5 Hz.
Naturally, this allowed for much more reactive and robust behaviour.
Unfortunately, due mainly to practical restrictions such as a limited umbilical
cord length, the physical experimental space was also quite limited. Consequently,
various behaviours were tested and observed in isolation. Further large scale
experimentation would have been useful in observing the interaction and interplay
of all the implemented behaviours at the one time. With all the behaviours

activated at once a more holistic ‘behaviour’ could have been presented.

4.8 Conclusions

In this chapter, it has been shown that very simple motion cues and behaviours,
inspired by the visual navigation of flying insects, can be used profitably to
provide a mobile robot with the ability to traverse a corridor environment.

Specifically, through both simulation and real-world experiments, the
feasibility of equipping a mobile robot with the ability to navigate a corridor
environment in real time, using principles based on insect-based visual guidance,
has been demonstrated. In particular the viability and usefulness of various
insect behaviours has been shown: (i) utilising apparent motion to gauge range,
{i1) keeping walls equidistant, (iii) slowing down when approaching an object,
(iv) regulating speed according to tunnel width, and (v) using visual motion as
a measure of distance travelled.

Providing an autonomous robot with a real-time navigational control system,
capable of operating successfully in the real world, constitutes a major challenge
for Al and robotics. It is in this area that insect based navigation has something

of value to offer. As has been shown, useful behaviour can be achieved using

WThe control loop is the entire repetitive process of grabbing images of the environment,
analysing them and performing some corrective action.
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relatively simple strategies and mechanisms. Clearly, there are benefits to be

gained by emulating simple biclogical systems.
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Chapter 5
Corridor Discrimination

For a mobile robot to perform some sort of useful ‘global’ navigation function it
usually must have some sort of global understanding of its environment. This is
usually expressed in the form of a map.

In the previous chapter a mobile robot, inspired by insect visual guidance,
was shown to be able to navigate safely along corridor-type environments. This
was achieved through simple and intuitive behaviours observed in insect visual
navigation. By observing and reacting to observed apparent motions in a reactive,
yet intelligent, way, the robot was able to exhibit useful corridor guidance
behaviours at modest expense.

This chapter presents real-world experiments, using the same robot and the
same set of behaviours, to show how the robot might extend its knowledge of
its environment in a way to obtain a more global view. The mobile robot’s
world knowledge is extended by the ability to recognise and discriminate between
previously encountered corridor environments. This is achieved through the
building and refinement of maps based on simple, and homogeneous, landmarks
observed en route.

Although, this chapter is somewhat of a diversion from the main theme of this
thesis, it does show, that the simple reactive behaviour of corridor following can
be seamlessly augmented, using traditional Al techniques, to give a more ‘global’

goal oriented capability.



5.1 Robot Augmentation 105

5.1 Robot Augmentation

Inspired by the way flying insects navigate through the real world, with seemingly
little effort, a mobile robot has been equipped with the ability to autonomously
navigate along corridor-type environments using only the apparent motion
observed, while in motion.

However, for a mobile robot to do something more useful usually implies
knowing, to some degree, its location. Being able to move from location to
location, purposefully, requires some knowledge of the world and one’s place
within it.

In an effort to augment the purely reactive behaviour of the robot, the
possibility of building some form of representation (a map) to adequately describe
specific sections of corridor has been explored. This will allow the recognition of
previously traversed corridors.

Given the inherently structured nature of corridors, corridor recognition could
be quite efficient in an indoor structured environment, such as a complex complex.
Assuming corridor-type structures connect various parts of the complex, it could
be easier to recognise a connecting corridor, and hence one’s location, than to try
to recognise some unstructured area at the end of a corridor.

However, due to the structured nature of corridors, it can also be quite
difficult to recognise a specific piece of corridor by shape alone. Although the
shape of a corridor can be quite a useful discriminating feature, and hence assist
recognition, it can also be very ambiguous. Some other discriminating factor
must be included.! Simple landmarks seem very useful for this purpose. A
pattern of landmarks, together with the shape of the corridor, can quite easily

and dramatically reduce possible ambiguities.

5.2 Insect Behaviour

Dead reckoning is used by several insects to aid in navigation. The desert ants
of the genus Cataglyphis, for instance, have been shown (Wehner, 1972) to use a

vector navigation strategy to keep a bearing and distance of their nest, when out

LAlthough promising results were obtained in simulation, the somewhat erratic nature
of the robot’s path, in the real-world experiments, also made a pure path-representation
approach, quite clumsy, and frankly untenable. Other environmental features, in this case
simple landmarks, are needed to viably segment the robot’s path.
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foraging, to allow an efficient return when finished. Expending the least possible
amount of energy and time, under the hot sun, is clearly a worthwhile objective.

Landmarks themselves are also used by insects. Many insects, especially
foraging insects such as bees (Cheng et al., 1987; Lehrer, 1993}, wasps and
ants (Wehner and Flatt, 1972), exploit landmark cues to pilot their way back
home. A piloting-by-familiar-landmarks strategy enables the insect to find its
way. by linking the currently observed landmark panorama with the memorised

panorama observed around home and en route.

5.3 Landmarks

Inspired by the fact that insects can guide their way along a previously travelled
route via the association of landmarks observed en route, it seems reasonable
to assert the same for robots. While the methods by which insects and robots
operate, in this regard, need not be the same, the principle is sound enough.
Although corridor discrimination is a slightly different problem to that of path
guidance, the same principles still apply. Having the robot’s path confined to that

of a corridor can also simplify the task.

5.4 Robot Setup

As corridor discrimination, through the observation of simple landmarks, is built
secamlessly on top of the already established corridor navigation, the robot setup
remains identical to that described earlier (chapter 3 and §4.5).

The side views are again used to measure the lateral apparent motion required
for the corridor centring behaviour. However, they are now also used in the
detection of simple landmarks. The frontal view, on the other hand, while being
used to provide virtual motion information for the estimation of frontal range,
does not play a role in the detection of landmarks. It is used purely to aid visual

guidance.

5.5 Map Building

In an effort to augment the purely reactive nature of the mobile robot, a map

building and refinement regime using simple landmarks has been implemented.
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Simple dark and light patches in the environment were chosen to be landmarks,
as these can be detected both quickly and cheaply.

In this implementation, wheel-based odometry is used to provide the data to
allow dead-reckoning between landmarks. Despite the cumulative error that is
usually associated with dead-reckoning of this kind, it is not significant in this
case. Given that dead-reckoning is really only used between a pair of, hopefully
not too distant, landmarks, the cumulative effect of error should be negligible.

In order to assemble a set of landmarks and put them into a useful form, the
robot endeavours to build and refine a map. The map consists of a consecutive
list of dead-reckoned landmarks as observed en route. Each landmark node
records the (dead-reckoned) position at which the landmark was observed. Since
only the lateral robot views are used for this purpose, each landmark node also
records the direction in which the dark/light region was observed. This is done
by recording the current robot orientation together with the side of the robot
on which the landmark was observed. The cumulative odometry is recorded,
allowing analysis of distances travelled between specific, adjacent landmarks. A
‘reliability’ measure has also been attached to each landmark node. This serves
as an estimate of the importance of the landmark when matching and refining
the relevant map.

Thus each landmark node consists of (i) its relative (z,y) position, (ii) the
side of the robot the landmark was observed from, (iit) the cumulative robot
orientation relative to the starting position, (iv) odometry, and (v) the reliability
count for the node.

Thus a typical node m; is given as:
m; = node((z,y), side, orientation, s, count)
A map M consists of a sequence of nodes m; and is given as:
M ={my,ms,...,Mn}

5.5.1 Matching

For the purpose of matching the current map (pattern of landmark nodes observed
en route) to previous ‘learned’ maps, a straight forward depth-first tree searching

algorithm has been implemented. Utilising a divide-and-conquer strategy an
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attempt is made to find the best match between two maps, relatively cheaply,
by matching pairs of landmark nodes. Consequently, simple matching can be
performed incrementally, as landmarks are encountered, making it more amenable
to a real-time implementation.

Specifically, the degree of match between two pairs of landmark nodes is
calculated as a ‘probability’, assuming a gaussian error distribution (fig. 5.1).
The match probability is calculated using the displacement error between the
landmark nodes and the relative angles of the observed landmarks. A partial
path match, between two sets of adjacent landmark nodes, is thus judged by
comparing the euclidean, dead-reckoned, displacements between each pair and
the relative angles at which the landmarks were observed between each pair.
A standard deviation of 20cm and 30° is used for the displacement error and
relative landmark-angle error, respectively. (This was estimated from empirical
observation.) Given an error of zero, a match probability of 1.0 is returned. As
the error increases the match probability tends toward zero, based on a gaussian

distribution. The algorithm to compute the degree of match is shown below:

1
0.8
0.6
0.4
0.2 :
0 L L i 1 1

-40 -20 0 20 40
Displacement error (cm)

! T 1

Probability

Figure 5.1: Gaussian error distribution

Learned Map: {mla Mg, ..., mn}
Traversed Pattern: {p1,pe,.... om}

node_pair_prob({mi, ma), (p1,p2))
node pairs are first translated so that both m; and p; are at origin (0, 0)
D = (z,y) positional displacement between mg and p;
A, = maorientation — mjorientation
A, = pyorientation — pyorientation
if (mqside # moside) then A,, = A,, + 180
if (p1side # pyside) then A, = A, + 180
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A=Ap— A,
if (|4| > 180) then
+ multiples of 360, until |A| < 180
P, = probability of match based on D,
assuming a gaussian error distribution (g = 0, = 20em)
P, = probability of match based on A,
assuming a gaussian error distribution (g = 0,0 = 30°)
if (myside # piside and myside # ppside) then
P,=PF=x*01
node_pair_prob = P x Py

The matching algorithm is essentially a recursive process. At every level of
the recursive matching procedure (each level of the search tree) there are several
matching possibilities which are examined:

(i} identical (M) — A one-to-one correspondence between nodes (fig. 5.2).
Two strictly adjacent landmarks {m;, my1), from the ‘memorised’ map, are

matched against two equally adjacent landmarks from the currently observed

‘pattern’ (pj, pj1)-

P P2 Pm

Figure 5.2: One-to-one correspondence

(ii) transposed landmarks (M) — Between two valid landmark nodes there
are two landmarks which are transposed with one another (fig. 5.3). This
can easily occur due to the natural side-to-side meanderings of the robot. If
two landmarks are observed very close to each other on opposite sides of the
corridor, then, depending on the particular position and motion of the robot,
either landmark can be observed first. A penalty is imposed, based on the
distance separating the supposedly transposed nodes. Clearly the further the
two landmark nodes are apart, the less likely they could be confused with each
other. Also, for the two nodes to have been transposed it seems obvious that
the two landmarks should have been observed on opposite sides of the robot. An

additional penalty is imposed if this 1s not the case.



5.5 Map Building 110
I q ms msy 1 4 mg,
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P P2 P3 P 4 Pm

Figure 5.4: Missing and/or additional landmarks

(iii) combination of missing and additional landmarks (Af3) — Between two
valid landmark nodes there are assumed to be & missing landmarks as well as
j additional landmarks (fig. 5.4); 0 < k¥ < C and 0 < j < (C — k); where C
is the maximum allowable number of extraneous nodes between two valid ones.
Figure 5.4, for example, shows the situation where there is one missing node
(mg) and two additional nodes (ps,ps), between two pairs of matched nodes
((my,m3) and (p1,p4)). An explicit penalty is applied to the degree of match
depending on the number and importance of any missing/additional landmarks.
The importance of a missing landmark is determined by its ‘reliability’ count
m;count:

n ; ¢
missing-node_penalty(mi.m,) =1—>_ Micoun?

= teount

H

teount =Y mycount
additional node_penalty(py..pn) = ="

where tcount is the sum of all landmark-node counters in the map and z = (.8
(in this case).
The maximum degree of match from (i), (ii} and (iii) is hence returned as the

best solution. The algorithm best_match is shown below.

best_match(m;..7,, p1--Prm)

/* one-to-one correspondence */

A
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M, = node_pair_prob((my, ms), (11, p2))+
best_match(ms..my,, p2..0m)
/* transposed nodes */
My = node_pair _prob({mq, ma}, (p1,p3))+
node_pair prob({ma, ms), (ps, p2) }*
transposed_prob(msa, ms)+
node_pair_prob({(ms, m4), (P2, pa) }-+
best_match(my.. My, Pa..Pm)
/* missing/additional nodes */
M3 = maz{
node_pair_prob(ms, mg.), (71s piass)*
missing-node_penalty(mqi1).-Meg1))*
additional_node_penalty(put1).-p+1) )+
best_match(m k). Mn, Pa+4)--Pm);
where 0 < k < C,
0<j<(C-k)}
best.match = maz{M;, Ms, M3}

transposed _prob(mq, ms)

D = (z,y) positional displacement between
my and mg

P = probability of match based on D,
agsuming a gaussian error distribution
(= 0,0 = 40cm)

if {myside = maside) then

P=Px0.1
transposed_prob = P

Given the depth first nature of the matching procedure, the search tree can be
pruned using the maximum valid match attained so far. The search is therefore
discontinued down a branch if the resulting search is guaranteed not to better
the current best match. To prune the tree further, a restriction on the minimum
possible match probability, between a pair of nodes, within a valid solution is also
imposed (0.2 in this case).

Although the matching process is most easily described and understood
in recursive terms, it is not necessary to Implement it as such. To

minimise computational overhead, the matching process can be performed in an
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incremental fashion, as landmarks are encountered. In this way the computation
can be distributed over time. This can be a significant advantage as it
reduces the otherwise spasmodic computation which may draw processing power
away from more critical systems and tasks, at inopportune times. Within a
real-time autonomous system the need to pause to think may have serious
consequences. Having said this, most intelligent real-world tasks have an inherent
asynchronicity due to the spasmodic occurrence of events or encounters. In
a real-world navigation scenario, for example, asynchronism could be caused
by the emergence of, not necessarily static, obstacles. However, the ideal of
distributed computation, where possible, is still a valid one, by reducing the
maximum amplitude of the asynchronous computation.

In the present context an incremental solution of the map matching task
is proposed. As each landmark is encountered a further part of the overall
solution is computed. Although the need for an incremental implementation
was not apparent for the experiments so far conducted, the need may well arise
upon scaling.? By utilising a divide-and-conquer strategy the matching task is
inherently amenable to an incremental solution. The degree of match between
two maps is defined by the degrees of match of its constituent nodes. By only
augmenting the search tree, as opposed to recomputing it, as each new landmark
is observed, the inherent computational cost of the recursive search is distributed

over the time it takes to navigate the corridor segment defined by the map.

5.5.2 Map Augmentation and Refinement

If a successful match has been found the matched map is augmented with any
additional information observed in the currently traversed map. Currently a
successful match is basically defined by the ‘average’ match of the solution. If
the average match is greater than some threshold (0.5 in this case) then the
solution is considered to be a valid match. However, if an incremental matching

algorithm is used here, one must also take into account the number of landmark

’The experiments shown in §5.6 involved the matching of maps made up of approximately
one dozen landmark nodes each. Despite a recursive implementation, the matching time on
an Indy workstation was invariably still below one tenth of a second per map. Due to the low
number of maps required to be matched in the experiments, the total computational overhead,
of only a few tenths of a second, was not considered serious. However, when these experiments
are scaled up by either increasing the sizes of the maps (i.e. numbers of nodes) or the number
of maps, the need for incremental matehing should hecome self-evident.
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nodes observed. Clearly, the fewer landmarks actually observed, the less likely
the solution (currently attained) is reliably valid.
Specifically, the average match for a solution is calculated as:

best_match

average_match = - :
solution_size — 1 + penally

mecount * #missing N #%Ed() 5
i=1

teount

penalty = Z
ieM

where solution_size is the number of pairs of matched nodes in the solution; M
is the set of map nodes not mentioned in the solution; #missing is the size of
M; #added is the number of pattern nodes which are missing from within the
solution; tcount is again the sum of all landmark-node reliability counts within
the learned map. The rationale for this formula is to express a quality of ‘map
match’ that is largely ‘independent’ of actual map size. An ‘average’ match is
therefore devised, using the average match between landmark pairs, whilst also
including a penalty component for any extraneous landmarks.

Given a valid solution, the best matched of the previously ‘learned’ maps
can now be augmented and improved. If additional landmarks are contained
in the pattern, they are added to the matched map. On the other hand, if
there are missing landmarks in the pattern then the corresponding landmarks in
the matched map are augmented to indicate the lesser certainty pertaining to
these. This is accomplished through maintaining a simple ‘reliability’ counter
with each landmark node. Each missing landmark node has its corresponding
counter decremented by one. However, if the count associated with a landmark
is decremented to zero it is removed from the map. Each successful matching
of landmarks also increases this count by two. In this way landmarks which are
detected only one third or one half of the time may still provide useful guidance
information.

Successfully matched landmarks are also improved, in the sense that their
position and relative landmark-direction are refined in accordance with the new
data. The position of the landmark node and the relative direction of the
landmark are improved using a weighted average between the current pattern
of landmark nodes and the matched map. The landmark count is used as the
weight, such that, as the landmark counters are incremented over time, less of an

improvement is made to the map landmark nodes. In this way the learned map
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should tend toward a more ‘accurate’ representation over time, such as where the

side to side meandering nature of the robot is cancelled out.

5.6 Results

The set of results shown in figure 5.5 shows the process by which a specific section
of corridar, 51, is ‘learned’. Figures 5.5(a,c,e,g,1,k) show the initial raw landmark
maps which are constructed from the robot’s dead-reckoning as it moves along
the corridor, and concurrently matched to learned ones. Every alternate figure
(figs. 5.5b,d,fh,j,]) shows the evolution of the matched (learned) map. Each
successive map is the updated and improved version of the previous, given the
successfully matched current map in each case.

Figure 5.5(a) shows the landmarks observed on the initial run. Since no
maps have been learned at this stage, a new map (fig. 5.5b} is created from
the initial pattern. Figure 5.5(c) shows the second run along the identical
portion of corridor with the same landmark layout. This is successfully matched
(average_match = 0.622) with the current learned map (5.5(b)). The learned
map is then improved (fig. 5.5d) given the fresh information contained within
5.5(c). The third through to the sixth run also matched successfully (see table 5.1
and fig. 5.6) with their current learned map. At each stage the learned map is
refined. The fifth refinement of the learned map (fig. 5.51} can be seen to be
marginally straighter and more centred than the first few. The improvement is
quite slight due to the natural tendency of the robot, in that specific environment,

to meander to the right at the beginning of the run.

5 Average Match with
Run | latest refined map from 5.5
5.5(a)

5.5(c) 0.622

5.5(e) 0.693

5.5(g) 0.808

5.5(1) 0.510

5.5(k) 0.720

Table 5.1: Match data for S; (fig. 5.5}

Having successfully learned one piece of corridor the robot is put into a new

corridor to see how it performs. In fact, the new corridor, Sp, has simply a slightly
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Figure 5.5: Learning a landmark map through repeated traversals of corridor 5.

different arrangement of landmarks. Figure 5.7 shows the maps built during this
phase. Again, figures 5.7(a.c,e,g,ik) show the patterns of landmarks as observed
by the robot on successive runs, whereas the remaining alternate figures show the
evolution of the learned map.

The first run through the new corridor is shown in figure 5.7(a). The new
pattern of landmark nodes is again matched against all previously learned maps.
The degree of match for the previous learned map (fig. 5.71) was 0.415 and
hence failed. A new map is therefore created from the new pattern, shown in
figure 5.7(b). The rest of the runs were again successfully matched with the
refined versions of 5.7(b) (see table 5.2 and fig. 5.8). In each case the previous
learned map 5.5(1) failed to match, as shown in table 5.2.

Having shown that the robot can correctly match and discriminate between
a couple of straight sections of corridor, it should be noted that in some sense

this can be considered a worst case scenario. A straight corridor is difficult to
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Figure 5.6: Match data for Sy (from table 5.1)

S Average Match with Average Match with
Run map 5.5(1) latest refined map from 5.7
5.7(a) 0.416

5.7(c) 0.451 0.654

5.7(e) 0.281 0.864

5.7(g) 0.462 0.736

5.7(1) 0.479 0.606

5.7(k) 0.354 0.697

Table 5.2: Match data for S, (fig. 5.7)

discriminate from another straight section, as there is very little difference in
the shape of the corridor. Hence the pattern of dead-reckoned landmark nodes
becomes increasingly important. The discrimination essentially comes down to
the ‘uniqueness’ of the pattern of landmarks. This can be quite a limiting
factor on the number of corridors which can be successfully discriminated, given
a maximum map size. As the number of corridor sections, to be successfully
discriminated between, increases, so does the required size, or complexity, of the
maps.

If, however, a straight corridor were to be matched against a curved one, or
even simply one with turn or kink in it, the shape differences are clearly going to
increase the chances of discrimination.

Having successfully learned two straight sections of corridor the performance
within a curved section of corridor, ), is now examined. Once again,
figures 5.9(a,c,e,g,ik) show the sequence of dead-reckoned landmark maps
generated en route. The alternate maps in figures 5.9 again show the evolution
of the learned map.

The initial run through the new corridor (fig. 5.9a) failed to match either of

the two previously learned maps and hence a new map is generated. As shown in
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Figure 5.7: Learning a second landmark map through repeated traversals of
corridor Ss.

table 5.3, each successive run was successfully matched with the current learned
map and failed to match the two previously learned ones. As expected, it can
also be seen (table 5.3 and fig. 5.10) that the degree to which the curved corridor
is distinguished from the straight sections is significantly greater than the degree
with which the straight sections were distinguished from one another (fig. 5.8).

It should be noted that, although the corridor segments are ‘learned’, in the
sense of reinforcement learning, there is no ‘training’ period in the traditional
sense. The results were grouped into batches of six runs purely for ease of
description.

As has been shown the robot can now successfully distinguish between three
different corridors, 5. S, and C, via the evolved maps depicted in figures 5.5(1),
5.7(1), and 5.9(1), respectively. Given this state, the robot is again presented with

a succession of six runs through corridor S;. This is depicted in figure 5.11. As
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Figure 5.8: Match data for Sy (from table 5.2)

Run | Average Match with | Average Match with Average Match with
map 5.5(1) map 5.7(1) latest refined map from 5.9

5.9(a) 0.174 0.117

5.0(c) 0.205 0.163 0.661

5.9(e) 0.188 0.330 0.56%

5.9(g) 0.282 0.178 0.746

5.9(1) 0.180 0.208 0523

5.9(k) 0.268 0.349 (.790

Table 5.3: Match data for C; (fig. 5.9)

shown in table 5.4 and figure 5.12, the robot successfully recognises the corridor
as being 5.

The robot is now presented with six more traversals through corridor S;.
This is shown in figure 5.13. However, as table 5.5 and figure 5.14 show, run
5.13(i) fails to successfully match any previously memorised maps. A new map
is consequently created (fig. 5.13(j)). The next run, 5.13(k), now poses a small
problem. It matches successfully with two memorised maps, 5.13(h) and 5.13(j),
with probabilities 0.765 and 0.704, respectively. Which one should be chosen to
be correct? Intuitively, the one providing the best match is chosen (5.13(h)).
However, a further decision is also made concerning the validity of the learned
map 5.13(j). Due to its high degree of match with another memorised map and
its relatively low ‘maturity’, it is expunged. Map maturity can be defined by the
average ‘reliability’ of the nodes that make it up. In this case map 5.13(j) has a
maturity of only 2.0, whereas map 5.13(h} has a maturity of 10.2.

Finally, the robot is presented with a further succession of runs through
corridor C1, shown in figure 5.15. These are once again easily recognised as being
C1, but also highly distinguished from both S; and S, (table 5.6 and figure 5.16).

From figures 5.6, 5.8, 5.10, 5.12, 5.14, and 5.16 it can also be seen that degree
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Figure 5.9: Learning a third landmark map through repeated traversals of
corridor (.

with which the second batch of runs (figs. 5.12,5.14,5.16) is distinguished is much
more consistently than the first. The degree of discriminatory power, provided by

the more established maps, seems also to have, in the main, marginally improved.

5.7 Conclusions

The robot’s purely reactive behaviour has been augmented to incorporate an, on
the fly, map building regime for the express purpose of recognising previously
navigated corridors. As was shown, the robot was able to discriminate between
similar environments by virtue of distinguishing features observed en route. These
features being the shape of the navigated path, which is confined by the corridor
environment, and the relative positions of simple landmarks observed en route.

Although, in the present implementation, the dead-reckoning data was
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Figure 5.10: Match data for ¢} (from table 5.3)

Run Match with | Match with | Match with
map 5.11(1) | map 5.13(1) | latest map 5.11
51i(a) | 0.755 0.349 0.150
5.11(c) 0.615 0.421 0.152
51l(e) | 0.685 0.417 0.206
511(g) | 0.718 0.411 0.211
511(1) 0.739 0.303 0.162
5.11(k) 0.859 0.425 0.197

Table 5.4: Continued match data for Sy (fig. 5.11)

provided by the robot’s wheel-based odometry, this need not be the only source.
If wheel-based odometry is unavailable or unreliable then ‘visual odometry’ may
be a viable alternative. As was shown in the previous chapter, the integration of
the optic flow (e.g. lateral apparent motion} observed en route, can provide an
alternate measure of distance travelled. At the very least, visual odometry can
provide an additional source of discriminatory information for matching purposes.

Although the map building scheme outlined is not an optimal solution, given
the computation restrictions of working in real-time and the simple entomological
nature of the mobile robot (e.g. its meandering path), the performance was quite
successful. If computational overhead was not a consideration, a brute force
matching regime, examining complete patterns and maps as a whole, could be
imposed. This would produce superior results but the costs would be prohibitive,
especially in a real-time application.

Obviously, there are several improvements and extensions which can and
should be made, to provide a specific mobile robot with the ability to perform
the navigational function needed of it. However the basic premise, as shown, is
quite sound.

One such extension is a mechanism by which learned maps are linked
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Figure 5.11: Continued Learning of landmark map 5,

together. Self-location is only one piece of the autonomous navigation puzzle.
Adding further levels of abstraction can aid and improve ‘global’ knowledge and
navigation.

Certain other situation-specific parameters also need to be nailed down. These
include the maximum and minimum size of a map, when to end a pattern and start
a new one, and so on. One must also consider how a reliability judgement can be
made. How reliable is the current information and to what extent does this affect
decision making? For example, when comparing current en route experience to
memorised knowledge when does recognition become reliable. Reliability here can
be gauged by the ‘uniqueness’ of the pattern. Although a very relative concept,
the uniqueness or distinguishing power of a corridor map can be loosely defined by
its size and complexity. These details, however, would usually strongly depend on

specific environmental characteristics, and so, by effect, on maps already learned.
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Figure 5.12: Continued match data for S; (from table 5.4)

Run Match with
map 5.11(1)

Match with
map 5.13(1)

Match with
latest map 5.13

5.13(a) | 0.402 0.726 0.076
5.13(c) | 0476 0.797 0.209
5.13(c) | 0.543 0.700 0.171
5.13(g) | 0.411 0.647 0.112
5.13(1) 0.467 0.083 0.105
5.13(k) | 0.432 0.765 0.159

Table 5.5: Continued match data for S; (fig. 5.13)

Run Match with | Match with Match with
map 5.11(1) | map 5.13(1) | latest map 5.15
5.15(a) 0.059 0.060 0.721
5.15(c) 0.288 0.170 0.718
5.15(e) 0.154 0.215 0.804
5.15(g) 0.254 0.174 0.755
5.15(i) 0.250 0.126 0.771
5.15(k) 0.280 0.153 0.842

Table 5.6: Continued match data for C {fig. 5.15)




5.7 Conclusions 123

it
rgtr
”iﬂmﬂwﬁmﬁmﬂmmmwwwﬁ?
Pl
Pt

—
[
N
——
o
=
—
i)
W
—
(=
=
——
[qe]
S
——
—
o

e
b b

g (b (i

MWWWWWWW

R
Tf*—*rfw' ﬁrL‘v

.

¥
7
i)

—

(1) () ()

Figure 5.13: Continued learning landmark map S5,
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Figure 5.14: Continued match data for S; (from table 5.5}
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Figure 5.15: Continued learning landmark map 4
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Figure 5.16: Continued match data for Cy (from table 5.6)
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Chapter 6
Homing

Many animals, including insects, successfully engage in visual homing. This
chapter describes a systemn that allows a mobile robot to home. Specifically,
a simple, yet robust, homing scheme that only relies upon the observation of the
bearings of visible landmarks, is proposed. However, this can easily be extended
to include other visual cues which may improve overall performance.

The homing algorithm allows a mobile robot to home incrementally by moving
in such a way as to gradually reduce the discrepancy between the current view
and the view obtained from the home position. Both simulation and mobile robot

experiments are used to demonstrate the feasibility of the approach.

6.1 Introduction

Many animals are very adept at finding their way back home after foraging
for food (Papi, 1992). Insects, particularly hymenopterans such as bees and
certain species of ants, rely heavily on visual cues for homing. Such creatures are
particularly attractive subjects to emulate in the present context. The Saharan
desert ant, for example, navigates flawlessly back to its nest after going out
on foraging bouts that take it several thousand body lengths away from its
nest (Wehner, 1992). Similar principles could conceivably be applied to the design
of navigational strategies for a planetary rover that may be deployed to explore
unknown territory over the course of an entire day, and to return to its ‘home
base’ at nightfall to recharge batteries or transfer data.

This chapter presents a simple, robust strategy for robotic homing, inspired

by the visual homing behaviour of bees and ants.
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6.2 Background

6.2.1 Insect Homing

A large number of experiments (see §2.5.9) have shown that many insects are able
to ‘home in’ on a specific location, such as a nest, by using visual cues provided
by landmarks in the vicinity. This ability is developed most highly in central
place foragers, such as bees and ants.

Ethological experiments (see §2.5.9) seem to suggest that insects search for
a specific location by using a form of image matching. The insect behaves as
though it is striving to ‘home in’ by moving in such a way as to maximise the
match between the current retinal image and a ‘snapshot’ of the panorama as seen
from the goal, acquired on an earlier visit. In this way the insect is continually
and locally guided by the desire to reduce this discrepancy between current and
home snapshots until it becomes zero. Moreover, it seems that insects ‘process’
the snapshot images for features such as edges. It is also suggested that the
insects make use of an external frame of reference, a celestial compass, to keep
track of snapshot orientations. Homing, by familiar landmarks, becomes much
simpler and more certain when the snapshots have a common orientational frame

of reference.

6.2.2 Robot Homing

There have been several previous implementations of vision-based robotic homing
(see §2.7). However, there are two main approaches to vision-based homing using
the panoramic information as seen from home. Firstly, one can try to derive a
correctional vector from discrepancies seen in the raw images captured from the
differing views of home and current location. This will be referred to as image-
based homing. Secondly, one can opt to try to detect salient features, such as
landmarks, in the views and then derive a solution from the discrepancies herein.
This will be referred to as landmark-based homing.

The homing approach most similar to the one presented here is that of
Hong et al. (1990; 1991; 1992). They have developed a system which uses a
landmark-based local homing algorithm! to allow a mobile robot to move from

one location to another by successively homing in on a sequence of target locations

1See §2.7.2 for details.
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situated en route. In their experiment a mobile robot traverses a corridor by

homing on successive target locations evenly spaced, approximately one foot

apart, along the corridor.

6.2.2.1 An Improved Approach

By matching the bearings of features extracted from panoramic views and using a

vector summation technique to extract a homing vector, a simple, parsimontous,

and yet quite robust robotic homing algorithm can be constructed. Specifically,

however, the proposed approach:

(1)

(i)

(iii)

(iv)

is very simple. Vector summation is an intuitive, simple, and

computationally cheap method of generating a homing vector.

can function well using only a parsimonious representation of the
environment. The homing algorithm requires only landmark bearing
information, and hence a snapshot need essentially consist of only a list of
bearings. Homogeneity of landmarks is therefore of no concern. The homing
algorithm may, however, easily be extended through the incorporation of
additional cues, to further assist in the visual homing task. Landmark
apparent-size cues, for example, allow improved homing as well as improved

landmark avoidance behaviour.

is very powerful in terms of catchment area. In these experiments it is
shown that the size of the catchment area, for the homing algorithm, is
only limited by the detectability of landmarks. In general, given that the
same set of landmarks are detectable, the homing algorithm will provide a
successful path back home irrespective of how different the snapshots are.

This is not the case with previous vision-based homing approaches.

does not require any complex correspondence techniques. It is shown that
a very simple, and approximate, correspondence between landmarks is
all that is required for successful homing. Further, it is shown that an
O(n?) landmark correspondence method provides an approximation which

performs equally well to that of perfect correspondence.

has an inherent tendency to avoid collisions with landmarks.  This

very useful feature emerges from the vector summing technique used in
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calculating the homing vector.? It is also shown that one of the refinements
that Hong et al. (1991) make to their homing vector computation actually

interferes with this feature_.

The main differences between the Hong et al. (1990; 1991; 1992) approach
and that presented here are subtle but significant. It is shown that the landmark
correspondence technique can be approximate, computationally parsimonious
and yet still sufficient for homing. Despite this approximation, however, the
homing algorithm still produces a superior catchment area to that of previous
approaches. Also shown is the quite dramatic effect that a seemingly small and
intuitive ‘improvement’ on homing vector computation can have on the global
homing behaviour. In this case the landmark avoidance behaviour of the homing
algorithm is corrupted by such an improvement. Finally, the homing algorithm
can easily be extended by incorporating a richer source of homing cues. This
can significantly improve homing performance. As will be shown, the additional
use of landmark angular size cues not only improve the robustness of the homing

approach but also provide a method of reinforcing landmark avoidance.

6.3 Robot Setup

The mobile robot® used for the real-world visual homing experiments is depicted
in figures 6.1(a,c). Movement is provided by the two separately controllable drive
wheels located at the front of the robot. The views, two frontal and two lateral,
are provided by a single camera placed looking upwards at a mirror assembly
(fig. 6.1(a)). An example image showing the mapping of the two lateral and two
frontal views onto the single camera image, is shown in figure 6.1(b).

The test environment is constructed with the use of artificial,* cylindrical,
matt white landmarks (fig. 4.3(d)). The use of artificial landmarks allowed for
the explicit placement of landmarks at various distances. Thus providing a very

flexible homing environment in terms of specific arrangements of landmarks.

To my knowledge, none of the previous studies have considered landmark avoidance
explicitly.

3Described in detail in chapter 3.

4Typically strongly dependent on environment specifics, general real-world landmark
recognition is a difficult problem in and of itself and hence was not considered an essential
element to be pursued here. The key issue pursued in this chapter is not how landmarks are
identified or recognised, but given this ability, how these visual cues can be used to direct
intelligent and useful behavicur, in this case, visual homing.
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The landmarks are considered homogeneous for both greater generality
and simplicity. Although identifiable landmarks allow more reliable landmark
recognition and correspondence they can also introduce another source of error
as the recognition process becomes less certain under less than ideal, real-world
circumstances. As will be shown, there is no inherent need for heterogeneous
landmarks. An arrangement of homogeneous landmarks, or simply landmarks

treated as being homogeneous, is all that is required for visual homing.

() (d)

Figure 6.1: Robot and environment. (a) A schematic of the robot shows how
the two frontal and two lateral views are captured by a single camera by way of
the mirror assembly. (b) An example camera image shows how the four separate
views are combined into a single image. (c) The physical robot. (d) The test
environment.

As described previously, the mobile robot was custom designed specifically to
cater for experimentation in applying visual-based insect behaviours. However,
one major disadvantage of our robot, for the task of visual homing, is the

restricted field of view offered by the camera setup. The current imaging system
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was not designed with homing in mind.® A full 360° view, a panoramic sensor, is
what is ideally required for vision-based homing. This can be achieved by setting
a camera to point directly up at a conical® or spherical” mirror. In this way the
entire panoramic view can be directed onto a single image.

To achieve a panoramic view for this system a behaviour-based rather
than hardware-based solution, has been employed. This solution unfortunately
interferes with the pure homing behaviour and consequently compromises control.
In essence, the robot must physically rotate (on the spot) a full 360° every time
a snapshot of the environment is to be obtained. A panoramic snapshot of the
environment provides the most reliable and complete view of the salient features
used for homing. The spinning behaviour, consequently forces the robot into a
stop/start stepwise refinement behaviour rather than a smooth, continuous, more
efficient behaviour.? Despite the practical restrictions, however, the resulting
behaviour has been quite successful. As will be shown, the real robot not
only exhibits successful homing behaviour but also confirms the general homing

behaviour chserved in simulation.

6.4 Robotic Homing

6.4.1 Image Processing

As previously described, due to the absence of a panoramic sensor, the robot
must spin on the spot each time it wishes to grab a snapshot of the environment.
A panoramic view of the environment is created by piecing together the sequence
of images observed through one of the frontal views, as the robot spins. This
is done on the fly, by correlating each new image, seen as the robot rotates,

with the current panoramic image being created. Odometric information is used

5See chapter 4.

5See (Yagi et al., 1995; Chahl and Srinivasan, 1996; Franz et al., 1997a).

“See (Hong et al., 1991).

fDue to the constant spinning behaviour, global orientation had to be manually refreshed
periodically, as the wheel-based odometry was not accurate enough to maintain a common
frame of reference for the visual snapshots. Ideally, a magnetic compass sensor would be used
for this purpose, although, the use of an optical gyroscope is also quite attractive since the
objective is to merely provide a common frame of reference and not specifically maintain an
accurate account of magnetic north. Optical gyroscopes are becoming very attractive for mobile
robotics. With little or no moving parts, such rotation sensors are virtually maintenance free
and display no gravitational sensitivities, eliminating the need for gimbaled mounting (Everett,
1995).
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to guide this process by providing an initial registration estimate for each new
image. Odometric information also assists in the identification of the wrap-around
point. In essence, the degree of physically sensed rotation is used to assist in
the calculation of visually sensed rotation by providing initial estimates. Image
correlation, however, is used to fine tune the piece-wise assembly. Each image
is smoothed by a gaussian filter before being correlated with and added to the
evolving panoramic image.

To detect landmarks in the pancramic image, a moving window is used to
identify contiguous regions of significantly light and dark luminance. For current
purposes, landmarks are simply defined as very light regions in the image. The
bearings of these landmarks (i.e. centre of gravity) are then noted. This is the
only information needed by the homing algorithm. A snapshot can therefore be

represented by a simple list of landmark bearings:®

5= {91, 92, 93, ey gn] where 9i<9i+1

6.4.2 Homing Algorithm

The homing algorithm primarily computes a homing direction, given the snapshot
information as taken from home, and the snapshot information taken from the
present location. However, the homing algorithm, in this case, is required to give
a target distance as well as direction. This homing vector essentially directs the

robot to the next snapshot position.

6.4.2.1 Landmark Correspondence

The first task is to match up corresponding landmarks (bearings) from each
snapshot as best as possible. Each landmark in one snapshot is paired with
exactly one landmark from the other snapshot. In the current case this is straight
forward due to the fact that all landmarks are considered to be homogeneous.
To achieve an ‘optimum’ pairing of landmarks, and hopefully a correct one,
a search is conducted for the matching that gives the least mean square error of

the pairing error. The pairing error is defined as the angular difference between

9Note that the dot notation in this thesis is used to signify the operators that are used
to do arithmetic with bearings. These operators, such as < and —, appropriately handle the
wrap-around effects observed with bearings.
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paired landmarks. This search can be performed using a standard depth first

search strategy. Essentially, the search strives to find the minimum of:

> 10— Boiiy|? (6.1)
=1

where 6; and [3,;) represent the bearings of paired landmarks and n the number
of said pairs. The pairing function p(¢) serves to provide the mapping between
landmarks observed from the home snapshot and those currently observed.

Although this snapshot similarity measure is not guaranteed to provide a 100%
correct correspondence between landmarks, it is sufficient. An approximation is
all that is required for the homing algorithm to work.

The only problem with exhaustively searching for an ‘optimal’ pairing of
landmarks, despite tree pruning, is that when the number of landmarks becomes
large the computational requirements may easily become excessive. Exhaustive
search has a complexity of the order O(n!). ‘

There are several solutions to this problem. One can, for example, throw
away some of the landmarks, perhaps the less distinctive or less prominent
ones. However, solutions involving disregarding possibly valuable information
are unattractive for obvious reasons. The visual appearance of landmarks may
well change significantly from different perspectives, for example. Although
eliminating erroneous landmarks, such as those caused by unreliable landmark
detection, is a worthwhile objective, this is also fraught with danger if this
mechanism is also unreliable. Usually a better, more robust, option is to be
able to cope with erroneous data in an implicit fashion.

To overcome this computational complexity problem several alternative
matching methods have been investigated. Experiments have shown that the
homing algorithm is very tolerant of less than optimal and blatantly wrong
matchings. This is due to the fact that, in general, the further away from home,
the greater the discrepancy between snapshots and the greater the chances of
incorrect pairing, the less need for correct matching. In other words, the increase
in snapshot dissimilarity and consequent landmark correspondence error that
occurs with increased homing distance is at least in part compensated for by the
fact that the margin of error also increases as the distance from home increases. In
this chapter it will be shown that very good homing behaviour can be achieved

even with very simple matching and correspondence technigues, with far less
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computational complexity than the exhaustive search procedure described above.

6.4.2.2 Alternative Landmark Correspondence Methods

As stated earlier, an exhaustive search (O(n!)), for the ‘optimal’ pairing of
landmarks, can really only be safely applied when a small number of landmarks
are being used.

To combat this problem several alternative landmark correspondence methods
have been explored, that are simple and computationally safe. The four methods,
k2, h3, k4, and k5, are at worst O(n?). Method k6 is O(n®). (Let us assume,
for the moment, that the numbers of landmarks within the home and current
snapshots are equal.) The relative success of each method will be discussed in
detail in the results section. (Method A1 refers to the exhaustive search approach.)

The conceptually simplest and computationally cheapest is method A2. This
method consecutively pairs each home snapshot landmark (6;} with the closest
matching landmark, with respect to bearing, in the current snapshot (3;}. So,
for example, #, is paired with the closest bearing within {8, 5, .., 8.}. Then f
is paired with the closest unpaired bearing within {8, 82, .., 3»}. And so on for
all #;. This reduces the worst case complexity to @(ﬂ”z;l)-), and although only
a rough approximation, and hence more susceptible to error, this still results in
successful homing.

Method A3 simply involves correlating the two snapshots with each other
using the same matching function as was used in the search (h1). The resulting
correspondence is given by the least mean square error. This method differs from
h1 by not altering the adjacency of the landmarks within a snapshot. In other
words, if &; is paired with §;, then #;;1 must be paired with 5;;,. (For two sets
of n landmarks there are n possible sets of pairings.)

Method h4 utilises a simple local sort concept. Starting from the default
initial correspondence, where snapshot landmarks are consecutively paired (i.e.
f; is paired with 3;}, adjacent pairings are exchanged with each other if the result
is an improvement in the sum of the square error involved. If 8; is paired with
5; then, for example, f; can be exchanged with [ so that 6, is now paired
with 3, and @ with 3,. If this new correspondence reduces the error, it is kept.
This bubbling improvement is continued for all adjacent pairs until no further
improvement is possible.

Method A5 is merely a concatenation of methods A2 and h4. In essence, the
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initial correspondence for h4 is provided by the output from A2.

Method h6 is similar to A2, however a preferential voting scheme is used
to provide a better overall match. Each landmark within a snapshot has a
list of preferences of which landmarks, within the other snapshot, it wishes to
be paired (i.e. the closest). This is implemented by treating the problem as
a stable marriage problem (Sedgewick, 1988). In this way, a ‘stable’ pairing
configuration is established in the sense that, there does not exist the situation
where a landmark prefers another (in the other snapshot) over their existing
partner and the preferred landmark ‘feels’ the same. If there exist two landmarks
which prefer each other over their respectively assigned partners then the pairing
configuration is said to be ‘unstable’.

For reasons of completeness, a one-to-many landmark correspondence method
(A7) is also examined. Method A7 is essentially identical to method h2, except
that a one-to-one correspondence is not enforced. The landmark bearing from
one snapshot is now paired with the closest landmark bearing from the other

snapshot, irrespective of any other pairing.

6.4.2.3 Computing The Homing Direction

We have chosen a very intuitive method of computing the homing direction given
only a list of paired bearings (landmarks).

Essentially what is required, is to move the robot in a direction which brings
the bearings of landmarks seen at the current position closer to the bearings of the
landmarks seen from home. Given only bearing information, the most obvious
answer is to move perpendicularly to the current bearing of a landmark,' in
the appropriate direction to bring it closer to the correct bearing as seen from
home. For each pairing of bearings, there is a correctional vector. By summing
over all the correctional vectors we arrive at our homing direction. However, these
correctional vectors are also weighted by the error (difference in bearing) between
the bearing pairs. In this way the homing algorithm will strive to correct the
worst pairings faster than the best pairings. {The effect of using unit correctional
vectors!! instead of proportional correctional vectors is also examined in §6.5.)

Consider the situation depicted in figure 6.2. The robot wishes to home

10Although this perpendicular movement is the most obvious, it is certainly not the only
option available, as described in detail in §6.4.2.4.

171n this thesis, the use of unit correctional vectors is signified by a ‘u’ appended to the
landmark correspondence method {e.g. h7u).
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from starting point S, back to its home position H, given the bearings of three
landmarks A, B, and C. Firstly a hypothesised correspondence is established
between the landmarks currently observed and those seen from home. For this
simple case it can safely be assumed that this has been successfully accomplished;
a 100% correct correspondence has been established. Now, the correctional
vectors (Vy, Vg, and V¢) can be computed, such that each vector is in a
perpendicular direction to the (currently) observed landmark. Moreover, they
are in a direction which brings the bearings of the landmarks closer to that
observed from home. For example, consider the correctional vector for landmark
A (Vy4). To improve the current bearing of A (Ag), i.e. make it more similar to
that observed from home (Ag), one moves in the direction Vjy.

The length of each correctional vector is determined by the angular difference
between the landmark bearing currently observed, and the corresponding
landmark bearing as observed from home. This is a linear relationship: the
vector size is proportional to this error. As seen in figure 6.2, Vp is small relative
to V4 and Vg due to the relatively small angular difference between Bg and Bg.

The correctional vectors are now summed to produce the homing direction 5.

A=y

i=1

10:=Bois)|  £6:
,81' +90° 92<ﬂ1
B —90° : 620

el
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In summary, a homing vector H is given by the vector summation of all
correctional vectors 17; where the home bearings 8; are paired with the currently
observed bearings B,;)- (In the above notation a vector is expressed as a
magnitude M and a bearing # pair: M Z£6.)

The only task remaining is to compute the distance to be traversed before the
next snapshot. (This distance information is needed due to the discretising effect
of our robot’s panoramic capturing limitations.) This distance is proportional
(within set limits} to the total error between paired bearings. (This error is
again calculated by summing over the angular differences observed between paired
landmarks, i.e. 7 |6;—3y| where p(z) is the pairing function.) The smaller

the error the less distance the robot should cover before taking another snapshot.
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®: c®

Figure 6.2: Computing the Homing Direction. Each landmark i produces a local
correctional vector V;, the summation of which determines the homing direction
Hjs. Given only landmark bearing information, each correctional vector attempts
to improve the perceived bearing of its landmark to better match that observed
from home H.

7
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The robot therefore ‘slows’ (i.e. makes smaller steps between snapshots) as the
error decreases in response to the increasing proximity of home. In this way the
robot should successively home in on its target without overshooting significantly.

In summary, the homing procedure involves successively moving in such a
way as to try to incrementally improve the perceived position with respect to the
goal. This is achieved by moving in response to a homing vector derived from
a comparison of remembered and perceived landmark bearings. At each new
position, Jandmarks are detected, correspondences made, and a homing vector
computed. The process is repeated until either, the current and home views are
sufficiently alike, a local minimum is detected, or a threshold on the maximum

number of homing steps has been reached.

6.4.2.4 Analysis of Modified Homing Direction

It can be argued that one can improve on and refine the homing direction as
calculated in the previous section.

For example, consider the computed homing vector for the simple situation
depicted in figure 6.3. Given the two landmarks, what homing vector should be
followed to return from the current position S back to position T (home)}? The
homing vector Hg is computed as usual by summing the correction vectors Vj
and Vp. However, now consider the situation in reverse. What is the computed
homing vector if the robot was at home (T) and was trying to get to its current
position (S)7 If the original homing vector were correct then it would make sense
that the homing vector of the reversed situation would simply be 180 degrees out
of phase. It is not.

The reason for this can be seen quite clearly (fig. 6.3} to be a result of the
differing bearings, of the perceived landmarks, as seen from the two vantage
points. The landmark bearings, as seen from one vantage point (T), are obviously
going to be different from the landmark bearings observed from a different vantage
point (S). This therefore implies differences in the corresponding correctional
vectors and hence the resulting homing vector. Depending on the situation, this
difference in the effective homing vector can be large or small. In figure 6.3,
the homing direction computed from the reversed scenario Hy (Hy + 180°) is

significantly different from Hg.'?

12This ‘reversed homing scenario’ is a naturally intuitive way of understanding the logic of the
improvement. However, the homing vector computed via this construct is, in fact, equivalent to
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Figure 6.3: ‘Improving’ the Homing Direction. When homing from position 5
to T, the homing direction Hg may be ‘improved’ by incorporating the homing
direction calculated from the reversed scenaric Hg (i.e. homing from 7" to 5).

Given this alternative view, one can attempt to ‘improve’ the homing vector
by defining the new homing vector as being the average of the homing vectors
in the two scenarios. This is in fact exactly what Hong et al. (1990; 1991; 1992)
have done.

However, this avenue of improvement has been ignored here because it
interferes with the inherent landmark avoidance feature of the homing algorithm.
Although this is hinted at in figure 6.3, it is only when the resulting behaviour 1s
viewed that the real significance of the effect can be realised.

Figure 6.4 shows a few examples of how this ‘improvement’ can affect the
homing behaviour. Each subfigure shows three robot paths corresponding to the
use of the three homing vector variations: (i) original homing vector (Hg), (ii)
‘reversed scenario’ homing vector (Hg), and (ili} average of (i) and (ii). These
paths will be referred to as path O, path R, and path A, respectively.

In figure 6.4(a) path O follows a curved path, safely circumnavigating the
closest landmark, ending up at home (open circle). Path R, however, is
immediately drawn to the closest landmark and is almost caught in what is
effectively a local minimum. This ‘fatal’ attraction and the resulting inefficient
zig-zag path is caused by the fact that the ‘reversed scenario’ effectively dictates

a mirroring path to that dictated by the original homing vector. This can

simply having the correctional vectors (in the original scenario) direct movement perpendicular
to the bearings observed in the home snapshot (rather than those in the current snapshot).
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be interpreted as an attempt to circumnavigate the landmark on the opposite
side. This mirroring behaviour, however, is essentially flawed because it simply
causes the robot to get caught at the cusp between the two navigation options.
Eventually the robot reaches a point where the original homing scenario perceives
that the best improvement can now be gained by circumnavigating the landmark
on the opposite side. These reversals of homing direction thus cause the zig-
zag approach and continue until the ‘offending’ landmark is passed. Although
resultant path A managed to successfully reach home, in perhaps a more efficient
manner than O, it did make a much closer pass by the landmark.

In another example, figure 6.4(b) shows path O again giving a wide berth to
the closest landmark before successfully homing in on its target. Path R also
reached home, however it did so by effectively passing through the landmarks en
route. Path A also successfully reached home, but again passed quite close by
the landmarks.

In figures 6.4(c,d) path O again follows an indirect, yet safe path home. Paths
R and A, however, both head straight for the nearest landmark and pass directly
‘through’ to eventually reach home.

Further, it is worth noting here that, due to the fact that, at this stage, only
the bearings of landmarks are observed and taken into account to compute a
homing vector, the homing paths are unaffected by landmark size.”® Since, the
actual size and proximity of landmarks are unknown it would seem best to avoid
unnecessarily increasing this proximity whilst homing.

To show that these anecdotal example scenarios are not merely pathological
cases that rarely occur, some basic statistics were gathered from a randomly
generated set of simulated homing scenarios. For a given number of landmarks,
1000 random arrangements of landmarks were generated within which 50 random
homing starting positions were chosen. Table 6.1 shows the average landmark
distances produced by each of the correctional vector methods O, A, and R.
Minimum landmark distance for a specific homing scenario, refers to the minimum
distance!* between the simulant and a landmark attained during the entire
homing procedure, i.e. the closest approach to a landmark. The maximum

landmark distance, on the other hand, refers to the largest observed separation

130ne important exception to this, which will be pursued later, is caused by the visual
acclusion of landmarlks.

14 The distance between robot and landmark is calculated centre-to-centre sinee they are
treated simply as point-like objects at this stage.
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H
(a) (b)
A
' H
R
s
{e) (d)

Figure 6.4: Homing Paths (simulation). Slightly different ways of computing
the homing direction can result in significantly different homing trajectories: (Q)
Original homing vector; (R) Reversed scenario; (A} Average of O and R. The
landmark avoidance characteristics of path O suggest the safest option. Each

path starts from the same starting point (S), and returns to home (H).
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between the robot and the current closest landmark.

Number | Average min. landmark distance (cm}
of (Av. max. landmark distance)
landmarks | (O)riginal | (A)verage | (R)eversed

4 165 145 123
(346) (340) (337)

6 129 113 94
(296) (291) (288)

8 107 93 77
(263) (258) (256)

12 80 70 57
(222) (218) (216)

20 54 48 41
(180) (178) (176)

50 25 23 21
(121) (120) (118)

100 14 13 12
(90) (89) (89)

Table 6.1: Average landmark proximity during homing. The average minimum
and maximum proximity to the closest landmark observed during a set of
simulated homing runs, show clear landmark avoidance differences between
various methods of computing correctional vectors (O, A, and R). As can be seen,
the method O provides for the greatest inherent landmark avoidance behaviour,
followed by methods A, and R, respectively.

Although, these “average” statistics do belittle the significant path differences
that can and do occur, they do show the consistent trends involved. Method
O consistently evokes the safest path around landmarks, followed by methods
A and R, respectively.'® As expected, average (minimum) landmark distance
also decreases with respect to increasing numbers of landmarks, irrespective of
method.

LiHoming performance can, however, also be affecied. For example, for the 4 landmark
case above, the set of simulation experiments showed a noticeable degradation in homing
performance using methods A and R. If, for the sake of argument, we consider a final homing
distance greater than 20 cm to be a failure then the failure rates for the three variants O, A, and
R were 1.87%, 2.12% and 3.13%, respectively. Further, the maximum observed final homing
distance for experiments using methods O, A, and R were 173, 221, and 637 ¢m, respectively.
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6.5 Results I

A variety of results were obtained in both simulation and real-world experiments.
Various ideas were pursued in simulation to determine theoretical performance,
and then the lessons learned in simulation were used and verified in the real-world

robot experiments.

6.5.1 Simulation

Although the simulation provides an idealised and somewhat unrealistic
environment, it is still of value in the testing of various homing strategies. The
complete control over all parameters allows for a very powerful comparative tool.
It can also quickly show the theoretical limitations of various approaches.

One particular area in which the simulator was found to be very useful was
in showing the homing-vector field and resulting catchment area of an arbitrary
arena, under various conditions. (This would be very time consuming if performed
bv the mobile robot, especially given the image acquisition technique described
earlier.) The catchment area is defined by the points from which the robot can
successfully home. For example, figures 6.5 and 6.6 show the homing vector fields
for a variety of landmark configurations. The unfilled circle in the centre of the
arena indicates the position of home, whereas the filled circles indicate landmark
positions. Each arrow within the vector field indicates the home direction
calculated for that point. The homing vector field essentially provides a more
condensed view of the homing algorithm’s performance. Although discretised,
much behavioural information can still be gleaned from such views.

From these vector fields (figs. 6.5 and 6.6) it can be seen that the catchment
area is essentially the entire arena. In other words, the robot can successfully
reach home from any position within the arena. Reliable homing occurs even when
the robot starts at locations well outside and far away from the constellation of
landmarks (fig. 6.6). Of course in practice this is limited by the reliable detection
of the landmarks involved. In the present set of simulations, utilising only bearing
information, the robot simulant could always see the landmarks irrespective of
position or distance.

A closer look at the homing vector fields, also reveals some of the implicit
behavioural tendencies that the homing algorithm provides. One useful feature

of the homing algorithm {independent of the landmark correspondence method),
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Figure 6.5: Homing-Vector Field (simulation, hl). Homing vectors are computed
at regular intervals throughout the emtire arena, showing the extent of the
resulting catchment area. The open circle in the centre of each vector field
indicates the position of home and the solid circles indicate the positions of
landmarks. (a,b) Landmark avoidance is most prominent when homing with
respect to a small number of landmarks.
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Figure 6.6: Homing-Vector Field (simulation, h1). Homing vectors are computed
at regular intervals throughout the entire arena, showing the extent of the

resulting catchment area.

The open circle in the centre of each vector field

indicates the position of home and the solid circles indicate the positions of
landmarks. (a,b} Successful homing also occurs when relatively far from home.
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which is borne out by the simulation results, is the implicit tendency for the
robot to avoid landmarks. This can be seen quite clearly in figure 6.5, where the
numbers of landmarks are small. Here the homing vectors show the tendency
of the robot to circumnavigate some of the closer landmarks first, instead of
immediately heading straight for home. This is a natural byproduct of the
homing algorithm tending to move the robot in such a way as to correct
the (instantaneous) bearings of the landmarks as fast as possible. Landmark
avoidance is primarily a result of directing correctional movement perpendicular
to currently observed landmarks, but is also partially a result of weighting the
correctional vectors to induce motion that will tend to correct the bearings of the
landmarks exhibiting the greatest error, faster than those exhibiting less error.
Figures 6.7(a-f) show the simulated robot successfully homing from arbitrary
positions within various landmark configurations. These figures show the path
of the robot as it homes from arbitrary positions back to the centre. For these
results the distance traversed between successive snapshots was kept small {5cm)
to give approximately continuous results. Again the tendency of the robot to
avoid landmarks is quite distinctive in several of the runs (e.g. figs. 6.7(a,b)).
Figures 6.8(a-f) show the same homing behaviour, except in this case
the distance between snapshots is much larger. These discretised results are
essentially what is expected in the real-world experiments, given our panoramic

capturing restrictions.
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(e)

(f)

Figure 6.7: Continuous Homing Behaviour (simulation, hl). Individual homing
trajectories show the path taken by the robot simulant on its return journey,
in various arenas. A small inter-snapshot distance is used to approximate a

continuous homing response.
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(d)

(e)

Figure 6.8: Discrete Homing Behaviour (simulation, hl). A wvariable inter-
snapshot distance reduces the required numbers of snapshots whilst still retaining
approximately the same homing path as the ‘continuous’ case.
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6.5.1.1 Analysis of Simpler Landmark Correspondence

As stated earlier, several simpler, computationally safe, landmark correspondence
methods have been explored.  Although an exhaustive search produces
optimal solutions, with respect to the snapshot similarity function expressed
in equation 6.1, it can really only be safely applied when a small number of
landmarks are being used.

It is therefore useful to have alternative correspondence methods available
which are computationally cheap, with respect to the order of complexity.
Figures 6.9, 6.10, 6.11, 6.12, and 6.13 compare the resultant behaviour of methods
hl, h2, and h3, via homing-vector fields.

Differences can be seen between the homing vector fields generated with
correspondence methods hl and h2 (figs. 6.9-6.12). This is due to the inevitable
increase in the chances of erroneous pairing up of landmarks when using the
simplified method. However, this tends to only affect the homing path, not
ultimate homing success.

Figure 6.13 shows the homing vector field produced by the homing algorithm
using h2 and h3, within a very dense (50 landmarks) arena.'® The superiority
of method h3 over h2 can clearly be seen. (The number of landmarks, in
this example, is too large to make method hl computationally tractable.)
Figure 6.13(b) shows that the h3 approach provides a perfect homing vector
field. Whereas, figure 6.13(a) shows that with the h2 approach there is a small
hole in the catchment area, close to home, where homing fails. This occurs where
the computed homing vector is shown to point away from home and is indicated
by the boxed regions. Essentially, this indicates a small local minimum near the
goal. Although this seems minor it does show (anecdotally perhaps} that the
h2 method does not provide an accurate enough landmark correspondence when
close to the goal. The closer one is to home, the less the margin for error.

For a more detailed analysis of the alternative landmark correspondence
methods, statistics for the degree of home-vector error (fig. 6.14), homing-vector
error (fig. 6.15), and angular pairing error (fig. 6.16), rates of homing failure
(tables 6.2 and 6.3), and final homing position (figs. 6.17, 6.18), are presented.
In these graphs, method hO refers to perfect landmark correspondence.

These statistics were generated by calculating, for each combination of

correspondence method and number of landmarks, the vector fields for 1000

16Gee figure B.14 for the performance of h4, h5, h6, and h7 within this scenario.
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random arrangements of landmarks. Each vector field is made up of 507
observations. We also gathered statistical data from actual simulated homing
runs. Here again the homing performance is tested, varying both method and
number of landmarks, on 1000 random arenas each. For each arena there were
50 random starting positions from which the robot was required to home. For
the purposes of statistical evaluation the test arenas were given a scale. The

2. For each experiment data concerning the

area of each test arena is 1000 cm
degree of home-vector error, homing-vector error, rates of homing failure, and final
homing position, were gathered. Home-vector error was calculated by comparing
the computed homing-vector direction (v} with the true bearing of home ().
Thus, the home-vector error (y/av({|y—a¢|?)) is a measure of the accuracy of
the homing procedure. The Homing-vector error, however, was calculated by
comparing the computed homing-vector direction () with that obtained under
perfect correspondence (¢). Thus, the homing-vector error (1/av(|y—|?)} is more
a measure of the navigational error arising from the mismatching of landmarks.

As expected, the rates at which landmarks are incorrectly paired (irrespective
of method) monotonically increases with respect to both distance from home
(i.e. range) and number of landmarks. However, for a true comparison of the
correspondence methods, the effective homing vector statistics resulting from
their use are examined. Figure 6.14 shows the relative performances resulting
from each correspondence method. The exhaustive search method (hl), as
expected, provided correspondences capable of supporting very accurate homing
vectors. However, more surprisingly, method h3 is shown to be equally good,
if not better, followed by h5, h6, h4, h2, and h7, respectively. Interestingly,
h3 appears to be slightly more accurate in determining the true home vector
than even h0. The one-to-many correspondence method h7, however, does not
appear to be well suited to this ‘bounded universe’ domain.’” As the number
of landmarks increases the performance resulting from h7 decreases, especially
when close to the goal (fig. 6.14(b)). Figure 6.14 also shows that the use of unit
correctional vectors (h5u, h7u)'® does not appear to be appropriate in this case
either. Interestingly though, method h3u performed remarkably well, managing
to consistently perform almost as well as h3 itself.

1TThis is despite the fact that method h7 actually produces a landmark pairing that is very
low in terms of angular pairing error (fig. 6.16).

8pethod h7u is a close approximation of the model proposed by Cartwright and
Collett (1983), with the exception that, in this case, apparent size cues are ignored.
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Failure rates are shown in tables 6.2 and 6.3. For the purposes of
demonstration, homing failure occurs when the final homing position is further
than 20 cm from home. For the vector field data, homing failure is defined
as occurring when the catchment area is less than 100%. These results show
that the failure rates of h0, hl, and h3 are almost identical. The efficient h3
method not only performs as well as the exhaustive search but also as well as is
possible given perfect correspondence knowledge (h0). All of the correspondence
methods, except h2 and h7. tend toward perfection as the number of landmarks
increases. Interestingly, the accuracy of the h2 approximation seems to be beyond
the threshold at which more landmarks would normally aid successful homing.
Instead the addition of landmarks seems to be a hindrance rather than a help.
The correctional vectors contributing to a correct homing vector are beginning
to be outweighed by the erroneous ones. This is especially the case close to the
goal where the margin for error is smaller. When close to the goal the correct
correctional vectors will naturally be small, whereas the erroneous ones tend not
to be. Although the failure rate of h2 does eventually peak (at around 20-50
landmarks) and starts to drop as the numbers of landmarks become very large,
the failure rates of the other methods peak at a much earlier stage (1.e. relatively
small numbers of landmarks).

Finally, figures 6.17 and 6.18 show the behavioural performance with respect
to the final homing position. Homing success can be gauged by how close to
the home, on average, the robot is able to return. These results again show the
superiority of method h3. The O(n?) landmark correspondence approximation
still results in an equal performance to that of perfect knowledge.

It should be noted that in the simulations even perfect landmark
correspondence (h0) has a non-zero failure rate. This is due to the chance
occurrence of pathological arrangements of landmarks. When the landmarks tend
to form a line running through home there can be an enormous bias with regard
to the computed homing direction. Consider the situation when the robot is
also positioned on this line, somewhere between the inner two landmarks around
home. All of the correctional vectors will tend to be small and perpendicular to
(and toward) this line and thus result in a small homing vector perpendicular to
home. Once the robot has homed in on this line it tends to get caught in what is
effectively a local minimum. The resultant behaviour is similar to that observed
when homing using a single landmark as the only visual reference. That is, the

robot will home in an arc about the landmark until it intersects the line formed
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by the landmark and home. Naturally, as the numbers of landmarks increase, the

chance of randomly generating a pathological test arena decreases exponentially.
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Figure 6.9: Homing-Vector Field (simulation, h1,h2}. A comparison is made
between landmark correspondence methods hl and h2 by way of the resulting
homing-vector fields. In the given scenario, differences can be observed in the
resulting homing vectors and the effective homing trajectories they imply.
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Figure 6.10: Homing-Vector Field (simulation, h1,h2). A comparison is made
between landmark correspondence methods hl and h2 by way of the resulting
homing-vector fields. In the given scenario, differences can be observed in the
resulting homing vectors and the effective homing trajectories they imply.
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Figure 6.11: Homing-Vector Field (simulation, h1,h2). A comparison is made
between the homing behaviour resulting from landmark correspondence methods
hl and h2, within increasingly dense arrangements of landmarks. Resulting
homing behaviour can be seen to differ in the example scenario.
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Figure 6.12: Homing-Vector Field (simulation, h1,h2}. A comparison is made
between the homing behaviour resulting from landmark correspondence methods
hl and h2, within increasingly dense arrangements of landmarks. Resulting
homing behaviour can be seen to differ in the example scenario.
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Figure 6.13: Homing-Vector Field (simulation, h2h3). A comparison is
made between the homing performance resulting from landmark correspondence
methods h2 and h3, within a very dense arrangement of landmarks. Method h2
is seen to be both less accurate and less reliable than h3. The boxed region in
(a) indicates a hole in the catchment area.
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Figure 6.14: Average Home-Vector Error (simulation}.
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Homing accuracy is

gauged by the average angular difference between the computed homing-vector

direction and the true bearing of home (y/av(|y—¢|?)). This error is graphed for
the various correspondence methods and presented over four homing ranges.
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Figure 6.15: Average Homing-Vector Error (simulation). Navigational error
(arising from the mismatching of landmarks) is gauged by the average angular
difference between the computed homing-vector direction and that obtained under

perfect correspondence (y/av(|y—¢|?)).

This error is graphed for the various

correspondence methods and presented over four homing ranges.
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Figure 6.16: Average Angular-Pairing Error (simulation). The angular-pairing
error is calculated from bearing disparities observed between the home landmarks
(theta;) that have been paired and the true corresponding home landmarks
(thetagpyy) that should ideally have been paired. This error provides a
measure of how well the two sets of landmarks have been paired with each

other (\/ av(|6;—Bsp(in[*))- This error is graphed for the various correspondence
methods and presented over four homing ranges.
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various numbers of landmarks.
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Figure 6.18: Final Homing-Distance Percentiles {simulation).
homing success of each correspondence method is gauged by how close the robot
simulant is able to return to the true position of home. This is presented for
various numbers of landmarks.
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Number of Homing-Vector Field Failure (%)
landmarks | h0 [ h1 | h2 | h3 | h3u | h4 | h5 | hbu | h6 h7 h7u
4 2202231 (22|23 (2622 23 [31| 715 | 73.5
6 05105] 36 |05]03[44]1061 6.0 |25 8.0 | 915
8 0.0|00| 88 | 00| 0.2 |55]27 | 1L.7 28] 93.2 | 978
12 00| — |195|00| 00 [45}22]181 (20| 971 | 99.6
20 00| — |295|00| 00 [07]06]|181|03]| 99.6 | 100.0
50 00| — |21.0|00| 00 {00D]|0.0]| 124 (0.1 |100.0 | 100.0
100 00| —|120(00| 0.0 |0.0]|00| 59 |0.0|100.0 | 100.0

Table 6.2: Homing failure rates for various correspondence methods. Homing
failure is indicated by the percentage of simulation trials that produced a non-
perfect catchment area, for various numbers of landmarks.

Number of Homing Failure (% > 20cm)

landmarks i} h1 L2 h3 h3u nd h5 k5u ks k7 h7u
4 1.874 | 1.872 2.12 1.872 | 10.80 | 2.017 | 1.909 | 10.% | 2.270 | 29.1 | 32.3
6 .476 | 0.476 1.46 (1476 3.52 2.046 | 0.356 4.8 Q.780 | 37.6 | 421
8 0.022 | 0.030 2.64 0.030 1.34 2.346 | 0.398 5.6 0.365 | 43.2 | 31.9
12 (0.0G0 — 5.29 0.004 0.17 2.861 1.528 9.2 0.298 | 56.2 | 70.6
20 0.000 — 12.89 | 0.000 0.00 0,807 | 0.815 | 13.2 | 0.264 | 729 | 87.2
50 0.000 — 13.34 | 0.000 .00 0.004 | 0.000 | 11.9 | 0.128 | 495.3 | 98.0
100 0.000 — 11.40 | 0.000 0.00 0.000 | 0.000 8.4 0.002 | 994 | 995

Table 6.3: Homing failure rates for various correspondence methods. Homing
failure is indicated by the percentage of simulation trials that ended with a final
homing distance of greater than 20 cm, for various numbers of landmarks.
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6.5.1.2 The Perception Horizon Problem

Although this chapter is not primarily concerned with the perception horizon
problem, it is still worth mentioning that if the required homing distance
significantly affects the observability of the same set of landmarks as that observed
from home, then homing performance can also be significantly affected.

Up until now it has been assumed that all landmarks within the homing arena
are perceivable. Furthermore, it has been assumed that landmarks outside of the
homing arena are not perceived. What are the consequences of relaxing these
assumptions and placing limitations on the range of perception?

A “fog of war’ concept is a realistic one. No autonomous agent can realistically
hope to possess complete knowledge of its environment. There will always be
limitations on what is and can be perceived. Many factors can contribute to the
limitations placed on perception and perceptual range. These can include such
things as lighting, camouflage, proximity, apparent visual size, orientation, time,
and occlusion.

Homing within what is effectively an infinite landscape, for example,
necessarily places practical limitations on perception. The same can be said for
homing within an open or outdoor environment, such as an orchard or perhaps
a boulder strewn planetary surface. These scenarios introduce some interesting
questions. Such as, how much of the perceived homing environment needs to
be in common, between what is observed at the current and target locations,
to make visual homing feasible? Or phrased in a slightly different way, at what
point are additional snapshots required to maintain homing efficacy?

Consider the situation where visual navigation is attempted on the surface
of a sphere, upon which a ‘forest’ of homogeneous visual landmarks reside. Due
to the curved surface a perceptual limit is placed on the observability of the
landmarks. In this case, the perception horizon can be defined by a circle centred
at the observer with radius equal to the distance to the visual horizon. The
detectability of a landmark is simply determined by its physical proximity.

A moving observer is now confronted by the fact that moving may cause
current visual landmarks to disappear and new landmarks to appear (fig. 6.19).
This complicates visual homing because the set of landmarks that are observed
from one position may be significantly different to the set observed from another
position. Further, due to the fact that the visual landmarks in question are

considered to be homogeneous, there is no reliable way of determining which
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landmarks are in common between two visual snapshots. The degree to which
these sets of landmarks are dissimilar depends not only on the displacement
distance between snapshots (relative to size of the perception horizon), but also
on the specific relative spatial arrangements of the landmarks. Determining
correct landmark correspondence thus becomes a much more difficult problem. In
general, as the number of landmarks in common between two snapshots decreases,
so do the chances of determining an appropriate homing vector. The resulting
catchment area for successful homing within a ‘visually unbounded’ or open

environment is therefore significantly restricted.

¢

New Perception arca (%)

L . 2 L L L L . L
0 20 40 60 80 100 120 140 160 120 200
Distance (%)

(a) (b)

Figure 6.19: Perception Horizon. In an open environment a perception horizon
may be defined by the given distance to the visual horizon. Only landmarks
located within this circle are detectable by the observer. (a) As the observer
moves from location A to B new landmarks will be perceived in region N,
whereas landmarks within region O will be lost. (b) The percentage of newly
perceived terrain (N) is approximately linear to the displacement distance

between snapshots (AB).

As can be seen from figures 6.20 and 6.21, the robot can fail in determining an
appropriate homing-vector despite being close to home. In these homing-vector
fields, the perception horizon is indicated by the large open circle centred at
home. Only the landmarks located within this radius (250cm), centred at the
observation point, are detectable.

The homing performance of the landmark correspondence methods, both one-
to-one (h5) and one-to-many (h7), are quite similar in this domain. Depending
largely on individual scenarios, one correspondence method may provide a ‘better’

catchment area than another. However, none of the correspondence methods
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examined can guarantee reliable homing at significant distances. However, within
this domain, as indicated in figures 6.20(c,d), the use of unit correctional vectors
(h5u, h7u) can now significantly improve the size and placement of the catchment
area. Although, as figures 6.21(c,d) show, this improvement is not always
guaranteed.

These results from the perception horizon experiments were, at first, quite
surprising. As can be seen from the homing vector fields, even small movements,
relative to the perception horizon, can cause significant problems in determining
a viable homing vector. This is despite the fact that the majority of perceived
landmarks may still be in common between snapshots. After closer examination,
however, it becomes clear as to what is actually happening. The problem 1s
primarily due to the fact that as the robot, and hence the circular perception
horizon, moves, landmarks will tend to disappear and appear on opposing sides
of the horizon (fig. 6.19). As the robot moves forward, landmarks will disappear
from behind and new landmarks will appear from infront. This essentially equates
to having to deal with erroncous landmarks having bearing errors of magnitudes
approaching 180°. Despite being small in number, the erroneous landmarks are
large in bearing based error. The resulting effect on the computation of a viable
homing vector can thus be quite significant. Unfortunately, this is especially
so when close to home. Ignoring for the moment the problems associated with
correct landmark correspondence, remember that the inherent margin of error is
less, the closer one is to home. This is due to the fact that as one approaches
home the correctional vectors resulting from the correctly paired and perceived
landmarks will decrease in magnitude. The same cannot be said for incorrectly
paired or perceived landmarks. Therefore the corrupting influence of error, on
the determination of a homing vector, increases with the proximity of home.
Unfortunately, in the present scenario this effectively results in a ‘no win - no win’
situation. The closer one is to home the more corrupting erroneous landmarks are,
and the further away from home, the less of the environment is common between
the two snapshots, resulting in increased numbers of erroneous landmarks.

Although the “inherent margin of error” problem can be suppressed by simply
usi'ng unit correctional vectors, it does not solve the “homing with a perception
horizon problem”. There still remains the underlying landmark correspondence
problem. Erroneous landmarks of the form discussed above also have a significant
disruptive effect with regard to landmark correspondence. This is not surprising

given the anonymity of the landmarks and the limited perceptual information.
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h5.h7.h5u,h7u). As indicated, neither a one-to-one correspondence method (h5)

nor a one-to-many correspondence method

at significant distances within an ‘unbounded
vectors (hbu, h7u) can now be used to improve the catchment area. In these

Figure 6.20
examples the large open circle indicates the limit of possible landmark perception,

from the observat
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correctional vectors (h5u, h7u), in determining a homing direction, cannot always

guarantee an improvement in homing performance.

Figure 6.21
h5,h7 h5u,h7u).
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Given the assumption of homogeneous landmarks, it is not possible to
guarantee reliable homing at significant distances, in a reactive (i.e. no tracking of
landmarks) fashion, within an environment which imposes a significant perception
horizon problem. That is to say, reliable homing cannot be guaranteed, using a
single memorised snapshot of the environment. Extended visual homing in certain

domains necessarily demands the use of multiple snapshots of the environment.
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6.5.1.3 Error Models

Up to this point the simulations have been run under the assumption of perfect
and precise measurement and perception. This is unrealistic. In an effort to
explore the effects of various forms of perceptual error, on the homing process,
simulation experiments were conducted with varying degrees and types of error.

To this end, two basically separate error models were explored. One error
model simply involved introducing gaussian error to the measured bearings of
the landmarks. The other involved introducing error to the actual perception of
landmarks. In this case, randomly chosen landmarks were removed, added, or
replaced.

The results of introducing a gaussian error distribution to the measured
bearings of perceived landmarks, is shown in figures 6.22-6.26."% Figure 6.22
shows the average home-vector error observed during sets of simulations.® As
expected, the average home-vector error gradually increases with respect to the
amount of landmark bearing error (fig. 6.22(a)). Although the amount of error
has little effect on the calculation of a homing vector at large homing ranges
(fig. 6.22(c)), its effect increases with the proximity of home (fig. 6.22(d)). When
close to home the corrupting influence of bearing error is naturally at its peak
(fig. 6.22(b)). However, as also shown, increasing numbers of landmarks help
offset this disrupting influence.

Figure 6.23 shows how the introduced error, effects homing performance in
terms of how close the robot is able to reliably return home. As can be seen,
increasing amounts of bearing based error produces a gradual degradation of
homing performance. In response to the increasing error, the robot is increasingly
restricted by how close it can reliably home. Once again, this is offset somewhat
by increased numbers of visual landmarks. The additional triangulation
information effectively helps counteract the implicit error contained within a
single bearing measurement. As increasingly more evidence is accumulated
the individual error effects become increasingly diluted, thus assisting homing
accuracy.

Finally, the homing performance is examined in terms of homing-vector fields.

As is also suggested by figures 6.24, 6.25, and 6.26, homing performance tends

9 The tabularised source data is detailed in §B.2, tables B.10-B.12.
20Essentially the same testing regime was carried out, as was previously conducted for the
statistical performance analysis of the various correspondence methods (§6.5.1.1).
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to degrade quite gracefully under increasing amounts of noise. As the degree of
error within landmark bearing measurements increase, so too does the distance
within which the robot can reliably return to home. The irregularities in the
computed homing-vectors can be seen to increase with respect to the closeness
of home. Further, these irregularities spread out further and become much more
pervasive as the degree of error increases. Landmark bearing noise essentially
effects homing accuracy, effecting how close the robot is able to reliably return
to home. Once again, as the number of landmarks increases, this effect can be
seen to decrease as the additional triangulation information improves the overall
accuracy of the homing vector.

The second error model explored, involved removing, adding, and replacing
randomly selected landmarks. In this way, an unreliable or simply imperfect
landmark detection scheme can be simulated and thus help ascertain some of the
effects this might have on the homing process. In the simulation experiments
exactly the same basic behavioural and performance trends were observed as for
the earlier bearing error model. As increasingly more landmarks are corrupted,
homing performance degrades accordingly. Additional landmarks once again have
a positive effect on performance. However, one notable difference observed with
this model was the increased accuracy of homing vectors close to home. Due to
the fact that landmarks were only being removed and added, not systematically
altered, the chances of producing an accurate homing vector close to home were
somewhat improved (as compared to further away from home), since extraneous
landmarks are simply ignored when correspondences are made. When close to
home, the legitimate landmarks will tend to be where they ought to be, and hence
more likely be matched correctly with the corresponding landmark in the other
snapshot. The ignored extraneous landmarks will thus tend to be the erroneous
ones.

Although these error models are artificial and somewhat unrealistic, they
do show the general trend of effects that various degrees of error have on the
determination of a homing vector, and hence, homing performance. It is also
evident what effect the proximity of home and the number of landmarks utilised

in the homing task, has in relation to this.
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Figure 6.22: Home-Vector Error from Bearing Error Model (simulation, h3)}.
Homing accuracy is again gauged by the average angular difference between the
computed homing-vector direction and the true bearing of home (y/av(|y—¢|?)).
The effect of various amounts of bearing-error (artificial error introduced to the
measured bearings of perceived landmarks) on homing accuracy, is examined.
Gaussian error is added in standard deviations of 0°, 5°, 10°, 20°, and 50°. As
shown, the effects on short range performance (b} are much more severe than

that at long range (c).

The accuracy of the homing vector gradually degrades

with respect to both increases in error and decreases in homing range. Increased
numbers of landmarks, however, do tend to offset this degradation in homing
performance (d).
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Figure 6.23: Final Homing-Distance Percentiles (simulation, h3). How close the
robot simulant is able to return to the true position of home, under various
amounts of bearing-based error, is examined. Final homing-distance percentiles
are shown for 5 error magnitudes: standard deviations of 0°, 5°, 10°, 20°, and 50°.
Homing success, defined by final home proximity, is shown to gradually degrade
under increased amounts of error (a, b, ¢). Again increased numbers of landmarks
help offset this influence (¢).
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Figure 6.24: Homing-Vector Fields with Bearing-Based Error (simulation, h3).
These homing fields show the gradual disruptive effect increased amounts of
gaussian error {added to the measured bearings of perceived landmarks) has on
the computation of homing vectors and the consequent degradation in homing
performance. Gaussian error is added in standard deviations of 10°, 20°, and
50°. Homing-vector irregularities first emerge in the centre, close to home, and
gradually increase and move outward, as the degree of error is slowly increased.
In this scenario 10 landmarks are utilised for the visual homing task.
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Figure 6.25: Homing-Vector Fields with Bearing-Based Error (simulation, h3).
These homing fields show the gradual disruptive effect increased amounts of
gaussian error (added to the measured bearings of perceived landmarks) has on
the computation of homing vectors and the consequent degradation in homing
performance. (Gaussian error is added in standard deviations of 10°, 20°, and
50°. Homing-vector irregularities first emerge in the centre, close to home, and
gradually increase and move outward, as the degree of error is slowly increased.
In this scenario 20 landmarks are utilised for the visual homing task.
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Figure 6.26: Homing-Vector Fields with Bearing-Based Error (simulation, h3).
These homing fields show the gradual disruptive effect increased amounts of
gaussian error (added to the measured bearings of perceived landmarks) has on
the computation of homing vectors and the consequent degradation in homing
performance. Gaussian error is added in standard deviations of 10°, 20°, and
50°. Homing-vector irregularities first emerge in the centre, close to home, and
gradually increase and move outward, as the degree of error is slowly increased.
In this scenario 50 landmarks are utilised for the visual homing task.
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6.5.2 Mobile robot

Figures 6.27 and 6.28 show several examples of the robot homing behaviour in
our real-world experiments. Here, the large, filled circles show explicit landmark
locations, and the smaller circles show robot snapshot positions. The start
position S is the location of the first snapshot whilst the small, filled circle
represents the initial home snapshot position. Each snapshot position also has
several vectors associated with it, as shown. The vectors emerging from the centre
of the circle (snapshot position) show the bearings of perceived landmarks from
that position. The other arrowed (and usually larger) vector shows the calculated
homing vector which directs the robot to the location of its next snapshot and
eventually home.

In figures 6.27(a,b), the homing behaviour of the real robot within a
simple, minimal arrangement of landmarks is shown. For comparison purposes,
simulation equivalents are also shown (figs. 6.27(c,d)).?* Despite the aberrations
caused by the imperfect panoramic capturing process and phantom landmarks,
the real-world robot performed quite well and the homing behaviour observed
matches that seen in simulation very well.*

In the examples depicted in figures 6.27(a,b) and 6.28(a,b) the mobile robot
homes successfully, from position S to home, in only a few incremental steps. As
can also be seen, the homing vector for each successive move is tending to decrease
in length. As the robot gets closer to home, each snapshot tends to bhecome
more similar to the home snapshot, the resulting error becomes less and hence
the reduction in homing vector size. This avoids significant over-shooting and
oscillation whilst still keeping the number of time-consuming snapshot operations
to a minimum.

Figure 6.28(c) shows a larger homing example where the robot is required to
home from over 3 metres away via 8 explicit landmarks. Although there were
only 8 explicit landmarks, there were in addition several ‘implicit’ landmarks
(i.e. noise) detected sporadically at various positions in the environment. These
extraneous landmarks do cause some interference with the homing. However, if
the numbers of stable landmarks outweigh the transitory ones, the problem is not

significant. The effect should only be in relation to the path taken, not overall

#'For a more complete comparison see §B.3, figures B.19-B.21.
“2Due to the relatively small numbers of landmarks used in the mobile robot experiments the
correspondence method hl was used.
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success or failure. As the homing domain is restricted to a limited or ‘visually
bounded’ indoor environment there is no significant perception horizon problem.

The reason for the seemingly high number of snapshots in figure 6.28(c},
relative to 6.28(a) and (b), is to do with the dynamic threshold on the
maximum allowed step size. (The step size being the prescribed distance between
snapshots.) Although the size of the homing vector is primarily dictated by
the error observed between paired landmarks, it is also limited by prescribed
thresholds. The actual step size is determined by a linear relationship between the
minimum and maximum expected error and the minimum and maximum allowed
step size. In this way the homing vector is constrained between a minimum and
maximum size whilst still providing a proportional magnitude with respect to the
error. In an effort to intelligently deal with the unusual situation in which the
error grows between successive snapshots instead of shrinking, the maximum step
size is altered accordingly. When the error increases between successive snapshots
the maximum step size decreases. Conversely, when the error decreases again the
maximum step size increases. In this way the magnitude of the homing vector
tends to decrease in response to an unusual trend in the observed error between
successive (and presumably closer) snapshots and the home snapshot. This can
be seen as a safety mechanism in response to an unexpected situation, i.e. when
in doubt, move cautiously.

Within figures 6.28(a, b, ¢) there is a notable discrepancy between the target
position of the next snapshot, shown by the homing vector, and the actual position
of the next snapshot. This is due to the over-shooting nature of the robot’s
traversals and spins. This naturally makes little difference to the overall homing
behaviour.

The end condition for the homing behaviour was simply a threshold on the
average difference between paired landmarks. This compromise results in a
reasonably close final position without having to resort to too many snapshots.
With the discrete case there will always be a trade off between accuracy and
required number of snapshots. As can be seen in figure 6.28(c) there is clearly
still room for improvement after the end condition is met. The final homing

vector is shown (although not acted upon) to improve the final position.
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Figure 6.27: Homing Behaviour (real-world and simulation). A comparison of
the homing behaviour seen in the robot experiments with that seen in simulation
shows them to be quite similar. In the two examples depicted, the robot
trajectories are very similar.
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Figure 6.28: Homing Behaviour (real-world). Within increasingly more complex
arrangements of landmarks, as shown, the mobile robot continues to exhibit

successful homing.
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6.6 Extending and Improving the Homing
Algorithm

The basic homing algorithm can easily be extended to incorporate a richer source
of visual homing cues. Additional landmark apparent-size cues, for example, can
be utilised to overcome some of the limitations resulting from using only landmark
bearing cues. Apparent-size cues, however, improve not only the robustness of
the homing behaviour, but also reinforce its landmark avoidance characteristics.
Visual occlusion is now also realistically incorporated into the simulations.

A snapshot is now represented by a list of bearings (8,,) and angular sizes (a,,)

and is given as:

S = [(91, Oi]_), (92, O!Q), (93, 0‘13), ceey (9,-“ Oz‘n)] where 9,‘{8@4_1

6.6.1 Computing The Homing Direction

Although bearing information alone is usually enough for successful homing,
the incorporation of additional apparent-size information can further assist in
this task. This involves simply adding further correctional vectors, correcting
for the apparent size of landmarks. This is implemented in exactly the same
way as before (§6.4.2.3, fig. 6.2), except the correctional vectors will be directed
towards or away from the landmarks in order to better match their angular sizes
(fig. 6.29). If a landmark in the current view appears larger than its corresponding
landmark (as viewed from home), then the correctional vector directs movement
away from the landmark in order to decrease its apparent size. Conversely,
if the landmark appears too small, the correctional vector is directed towards
the landmark in order to better match that observed from home. Again, the
correctional vectors are weighted, but in this case by the differences in angular
size between landmark pairs. This has the additionally useful effect of providing
a (proportional) repulsive force, directing movement away from extraneously
looming landmarks.

The final and improved homing vector is thus computed by adding the homing
vector computed for apparent-size cues to the original homing vector for bearing

Cues.
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Figure 6.29: Computing Correctional Vectors (using landmark apparent-size
information). Given landmark angular-size information, each correctional vector
V; now attempts to improve the perceived size of its landmark (A,B,C) to better
match that observed from home H.

6.7 Results II

6.7.1 Simulation

Figure 6.30 shows the simulated homing behaviour, utilising both landmark
bearing and apparent-size cues, for various test arenas. Figure 6.30(a) shows
how the homing behaviour performs in a simple arena. It is worth noting that
this arena would cause problems if one were only using bearing information. In
these situations where the landmarks and the target location lie along a line,
ambiguity would arise if the additional apparent size cues were not utilised.
Figures 6.30(b,c) not only show the landmark avoidance behaviouwr but also
show the effect occlusion can have on the otherwise smooth homing path.
Figures 6.30(d,e,f) show how the homing behaviour performs in increasingly more
cluttered environments. Apparent size cues greatly assist in avoiding looming
landmarks. Finally, figures 6.30(g,hi) show the ability of the robot simulant to
home even in a very densely packed arena. Despite the visual occlusion problems,

the robot was able to home successfully in each case.
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Figure 6.30: Homing Behaviour (simulation, h3,h5).  Individual homing
trajectories show the path taken by the robot simulant on its return journey, in
increasingly cluttered environments. Using both landmark bearing and apparent-
size cues, the robot is capable of successful homing despite visual occlusion.
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6.7.1.1 Visual Occlusion Ambiguities

At this point, it should be noted that visual-homing ambiguities still arise. These
are now mainly caused by the visual occlusion of landmarks. As the observer
moves, closer landmarks in the foreground will naturally obscure other more
distant ones within the homing environment. The partial occlusion of the visual
field can thus make the panorama from two physically different locations appear
very similar. This phenomenon, as expected, can mislead a visual homing robot
into falsely interpreting the proximity or direction of home.

When two physically different locations appear practically identical there is
effectively little, in the way of visual homing, that can be done to resolve the
ambiguity and improve the situation. If an identical alternative Jocation is homed-
in on, there is essentially no way to recognise this fact. The very fact that a
panorama. is identical to that observed from home, for all intents and purposes,
suggests a successful return. Fortunately, more than one ‘global minimum’ is very
rare.

Local minima, on the other hand, are not so rare. Fortunately, these can be
recognised as such by the significant differences in perceived panorama. If a false
minimum can at least be detected there is hope for evading it, or escaping from
it.

A good example of the homing problems that can occur is shown in figure 6.31.
The vector field, identifies four local minima within which the homing robot may
find itself trapped. In each case, the small pool of incorrectly computed homing
vectors is a direct result of visual occlusion.

Consider first the bottom-most problem area, indicated in figure 6.31 by
the boxed region. For ease of description, the landmarks within the arena are
sequentially numbered from left to right and top to bottom. From the problem
location, defined by the erroneous homing vectors, landmarks 1 and 2 are fully
eclipsed by landmarks 3 and 4. From this vantage point only landmarks 3, 4, 5
and 6, are observed. Given that both landmarks 1 and 2 are missing from view,
the correspondence algorithm (h3) determines the best pairing, between current
(C) and home (H) snapshots, to be: ({(Cs, H1), (Cy, Ha), (Cs, Hs), (Cs, Hy)). The
key mistake here is the misinterpretation that treats the bottom two landmarks (5
and 6) as if they were the middle two (3 and 4). The computed homing direction
is thus understandably misdirected away from the true position of home.

The same homing problem can also be seen to occur when close to a
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landmark.?® The other two problem areas, occurring very close to landmarks
3 and 4 (fig. 6.31), are essentially caused by the same general problem.** The
visual occlusion of landmarks causes a misleading landmark pairing, which in
turn provides an incorrect homing vector. However, in this case, the problem is
caused by a single looming landmark. This makes corrective action much easier.
A simple landmark circumnavigation behaviour, for example, has shown to be
quite effective in resolving the impasse. The robot is effectively transported to
the other side of the offending obstacle, from where successful visual homing can
once again, safely resume.

In the previous problem area, however, the culprits of the occlusion are not
so easily identified. No simple reactive behaviour can reliably extricate the robot
from its predicament. A more systematic behaviour needs to be employed.
This may either involve an intelligent modification of the landmark pairing or
a more behavioural solution. There are many possibilities in this regard. One
possible solution, for example, is the utilisation of some kind of systematic search
behaviour akin to that observed in insects (§2.5.8). Although in this case, instead
of being used to find home, the search would perhaps more intelligently be
directed towards finding a more promising location from which to recommence

visual homing.

6.7.1.2 Landmark-Based Homing versus Image-Based Homing

For a comparison of the homing performance offered by the proposed landmark-
based approach, with that of image-based approaches, consider the two example
scenarios depicted in figure 6.32.

The homing-vector fields resulting from the landmark-based (L) method
indicate that homing is quite reliable from any part of the arena, irrespective
of visual occlusion problems. The size of the catchment area is generally
only dependent on the detectability of the same set of landmarks, visual

occlusion notwithstanding, as those seen from home. Given a ‘bounded universe’

23This is not surprising given the greater depree of occlusion a closer landmark can cause.

24 A ‘deflection behaviour’ is already being utilised to avoid the stalemate that can occur
directly behind a landmark when the bearing and apparent-size correctional vectors, are
combined destructively. However, in this particular case, this has little bearing on the
occlusionary problem being discussed. The deflection behaviour simply directs the homing
vector perpendicularly to the offending landmark. This successfully avoids much of the problem
associated with looming landmarks.
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Figure 6.31: Homing Ambiguity Caused by Occlusion (simulation, h3).

occlusion of landmarks can lead to a misleading set of landmark correspondences,
which in turn, as shown above, can create a ‘local minimum’ within which the
robot may become trapped. Naturally, this occurs most often when landmarks are

close, thus obscuring more of the visual field, but may also occur when landmarks

are further away.
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assumption (i.e. no significant perception horizon problem),” there exists
essentially no position where the visual snapshots are so different as to render
visual landmark-based homing unworkable.

The image-based approach, used for comparative purposes in figure 6.32, is
that proposed by Franz et al. (1997a) (see §2.7.1). The homing-vector fields
resulting from this image-warping (W) method show its inherent limitations.
The extent of the resulting catchment area is primarily restricted to the interior
region, defined by the surrounding environment. Homing becomes unreliable
when presented with a starting position that is outside of the space defined by
the immediately surrounding landmarks at the home position. This result is not
surprising given the basic equi-distant panorama and pixel adjacency assumptions
of the approach.

For the purpose of figures 6.32(b,d), the ‘warped space’ was sampled with
12 directions of movement (0°,30°,60°,..,330°) and 15 displacement distances
(Ocm, 10cm, 20em, 40cm, 80cm, 140cm, 200cm, 260cm, 320cm,.., 680cm). The
panoramic image consisted of 360 pixels, one per degree of view. The average
range of the initial panorama, as seen from home, was synthetically computed
and used as the relative range value. Although unrealistic, this allowed, for the
purposes of simulation, a much more confined search space. In the real-world, lack
of environmental knowledge must be compensated for by increasing the search
space, unfortunately however, at increased computational expense.

The asymmetry of the catchment area, observed in figure 6.32(b), is mainly
due to the heterogeneous nature of the landmarks. By way of further assisting
the image-warping approach the landmarks were given unique luminance values.
Landmarks, however, remained homogeneous for the landmark-based approach.

A final comment on the computational cost of the image-warping method
should also be made. Increasing the sampling rate, at which a matching snapshot
is searched for in ‘warped space’, naturally increases homing reliability, up to a
point. However, due to the combinatorial effect that increasing the size of the
sampling set has on computational cost, this can quickly become prohibitive.
Any substantial increase in image resolution also incurs a similar cost. Without
access to parallel architecture, the image-warping approach may not be viable
in terms of real-time performance, at least not without compromising homing

performance. On an SGI Indy workstation, using the parameters described above,

?35ee £6.5.1.2 for an example of the effect a perception horizon can have on visual homing.
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an image-based homing vector could be computed in approximately 10 seconds.
When the panoramic image resolution is reduced to 90 pixels, a homing vector
is computed in approximately 0.7 seconds.?® By comparison, for the examples
above, the landmark-based approach computed a homing vector in approximately
0.003 seconds, which represents a 230 fold improvement. The computational
requirement of the landmark-based approach is also, essentially, unaffected by
image resolution. Once the landmarks are extracted from an image, the image is

no longer required.

6.7.2 Mobile robot

Figure 6.33 shows another example of the robot homing behaviour observed in
our real-world experiments. In this case however, both landmark bearings and
landmark apparent sizes are observed and used to visually ‘home in’ on home.
Home is represented by the small solid circle in the centre. The open circles
indicate successive snapshot positions with the directions of observed landmarks
also shown. Again, the discrete nature of the homing path is a consequence of the
way the robot must capture its panoramic images. The mobile robot successfully
homes by incrementally improving its position, in discrete steps, until a close

match between the current snapshot and memorised home snapshot is attained.

S

®
—

100 cm
®

® .
Figure 6.33: Homing Behaviour (real-world). An example robot homing
trajectory using both landmark bearing and apparent-size cues is depicted.

268everal other alternatives exist to help reduce the computational expense of this image
warping approach. These include utilising various heuristics to help prune the search or even
simply using a compass sensor to remove the robot orientation dimension from the search space.
See §B.1 for a more detailed analysis.
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6.8 Conclusions and Discussion

This chapter has presented a very simple, intuitive, computationally cheap, and
yet very robust (especially in terms of catchment area), qualitative landmark-
based homing technique. The experiments detailed here, have shown that if
even simple, homogeneous landmarks can be detected within an environment and
an external frame of reference (i.e. compass) is available, then landmark-based
homing can provide a very powerful method of real-time navigation.

Although the basic algorithm, utilising only bearing information, performs
well and provides stable homing, it can easily be extended to incorporate a richer
source of visual homing cues. The additional use of landmark apparent-size cues,
for example, is shown to improve not only the robustness of the homing behaviour,
but also reinforce landmark avoidance.

It has been shown that the landmark correspondence, required to determine
a homing vector, need only be approximate. Of the efficient landmark
correspondence methods tested,?” method h3 provided the best pairing overall
for the homing procedure. Further, method h3 was shown to provide a pairing
that produced equal, if not better, homing performance than perfect landmark
correspondence. As figure 6.14 shows, method h3 consistently produced the most
accurate homing vector. However, as this method is based on maintaining the
landmark topology within each snapshot, it is best only applied when the numbers
of landmarks in each snapshot are equal. If the numbers of landmarks in the
snapshots are large and unequal then method h3 may become computationally
prohibitive. This is due to its computational complexity being O{max(n?, n(fr’:)))
where n and m are the numbers of landmarks in each snapshot. In these
cases, when method h3 is inappropriate, method h5 appears to provide the next
best landmark pairing for the homing task. Method hb is computationally safe
irrespective of the numbers of landmarks in each snapshot (O(mn)). In a real
homing scenario it would thus pay to choose a correspondence method, on the
fly, depending on the numbers of landmarks involved. Another option of course
is to base a strategy on utilising more than one method concurrently, by choosing
and combining various estimates.

A one-to-one landmark correspondence (e.g. h3) method is also shown to

be much more appropriate in a ‘visually bounded’ domain than a one-to-many

27See §6.4.2.2 for a detailed description of the various landmark correspondence methods
evaluated.
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correspondence (i.e. h7). This becomes increasingly apparent as the number
of visual landmarks increases, and as the proximity of home increases. As the
numbers of landmarks increase, the accuracy of the computed homing-vector,
produced from a one-to-many correspondence, tends to decrease. The opposite
is true for a one-to-one correspondence.

Given a set of landmark correspondences, a homing-vector is simply computed
by summing all of the correctional vectors. However, there are several slightly
different ways in which a correctional vector may be defined. Although the basic
idea for each correctional vector is to attempt to correct the perceived bearing of
its associated landmark, there is no unique direction that achleves this. The
most obvious direction is perpendicular to the currently observed landmark,
the rationale being that, given no range information, this will produce the
fastest bearing correction. Alternatively, the correctional vector may be directed
perpendicularly to the landmark bearing as it was observed from home. A third
option is the bisection, or some other combination, of the two. Although the
consequences of each approach are not immediately evident, the resulting homing
behaviour is seen to be quite different. As is shown, if the correctional vector is
perpendicular to the current bearing, an inherent landmark avoidance behaviour
can be observed. However, incorporating home landmark-bearing information
interferes with this landmark aveoidance feature. Although a compromise homing-
vector may produce a more efficient homing path, in terms of distance travelled,
the overriding concerns of safety suggest the original scenario is best. A landmark-
avoidance behaviour also reduces problems caused by visual occlusion. The
further away one is from a landmark, the less its tendency to occlude other
features and landmarks in the environment.

In its present form, the proposed algorithm is only proficient at homing
with respect to a single constellation of landmarks, where there is no significant
perception horizon problem. In other words, the homing region is assumed to be
either ‘visually bounded,” such as an indoor environment, or the robot is assumed
to be close enough to home for the same general set of landmarks to be observable.
Under these conditions landmark-based homing can be extremely reliable. In an
open, ‘visually unbounded,’ cutdoor environment, for example, it is assumed that
the robot is capable of returning, via other means such as dead-reckoning, to an
approximate home position from which visual-based homing is possible. This
behaviour is also observed in insects. When far away from their nest, insects are

known to return approximately, via alternative means, and then ‘home in’ more
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accurately on their nest {§2.5.8).

Future work is required in this area to provide an elegant and reliable
algorithm which will function well despite a significant perception horizon
problem. Although all visual homing algorithms will eventually fail in this
domain, the task is to provide a solution which will make the best of a difficult
situation. If a certain homing distance can generally be guaranteed, perhaps
defined by a percentage of the perceptual radius, then homing via multiple
snapshots can provide a viable navigational compromise. Indeed, biological
evidence for homing by multiple snapshots has recently been reported (Judd
and Collett, 1998). In this way, it will be possible to reliably home within
a practically infinite, homogeneous arena, such as a lunar-surface. Through
the accommodation and memorisation of multiple snapshots the robot can
concelvably increase its potential homing range without bound. Learning a
topological arrangement of visual snapshots by exploration can thus be used to
navigate successfully through an environment that is too large to be encompassed
by a single snapshot. In this way a cognitive map or ‘view graph’ (Scholkopf
and Mallot, 1995; Franz et al., 1998) can be constructed and used to navigate
successfully beyond the perceptual horizon of a single snapshot. This can be
extremely useful if a dead reckoning behaviour (e.g. odometric capability) is
unavailable or inappropriate. A return trip can be made by retracing one’s steps
by ‘homing in’ on, in reverse order, the sequence of visual snapshots memorised
on the outward journey. In this way one can use a generic homing behaviour as an
intermediary navigational step in prescribing and achieving a larger objective. By
giving the robot successive homing targets, one can generate a host of interesting
global behaviours, by dividing a complex navigational problem into smaller
homing subproblems. However, as the numbers of visual snapshots, required
to be memorised, increase, so does the need for parsimonious representations.

If, under certain circumstances or in certain situations, visual homing is
unreliable or inappropriate, then a hybrid system may be used. Using an
assoclative homing technique, the agent may also be directed, via a simple dead-
reckoning vector. In this way a displacement vector may be acted upon, to elude a
perceived local minimum, before the next homing stage. On an outward journey,
the need for an additional snapshot can easily be deduced by monitoring the
return vector, computed via the homing algorithm. When this does not coincide
with that expected for a successful return then a new snapshot must be memorised

to maintain a traversable chain of homing locations. However, if the need for a
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new snapshot is almost immediate upon leaving the last snapshot location, such
as may be observed in relation to a perception horizon problem (e.g. fig. 6.21(a}),
then an associated homing vector may be assigned.

Another avenue for improvement is in making the homing algorithm more
robust to occlusionary ambiguities. As discussed in section 6.7.1.1, the visual
occlusion of landmarks can cause a misleading landmark pairing to be adopted,
which in turn can lead the robot into what is effectively local minimum. To
extricate itself from a false homing location, the robot must either search for
a more promising visual homing starting-point, or take corrective measures in
terms of the landmark correspondence pairing.

The main advantages of landmark-based homing over image-based homing
are the larger size of the resulting catchment area, and the economy of snapshot
representation and computational cost. As we have shown, with landmark-based
homing there is essentially no position in which the discrepancy between current
and home views is so bad as to render homing untenable. This is not however,
the case with image-based homing. Image-based homing is usually, only reliable
within an area defined by the immediately surrounding environment. Within a
constellation of landmarks this generally, limits the catchment area to the open
area defined by the closest landmarks. The key difficulty in image-based homing
is dealing with the visual panorama in a holistic and yet still accurate way.
As an observer moves, objects at different distances and bearings will appear
to move by different amounts. Further, objects at different distances will also
move in front of and behind others, changing their relative position or possibly
obscuring them. Therefore, the degree with which the dynamics of the actual
visual panorama fits the expected dynamics determines its basis for success. The
key reason for the success of landmark-based homing is the absence of any range or
image adjacency or landmark topology assumptions. The landmark-based homing
method proposed is capable of very reliable homing from anywhere within a single,
finite constellation of landmarks, by utilising both the global characteristics of
the cluster and the triangulation of observed landmark bearings.

Both image-based and landmark-based methods have their own set of
assumptions, advantages and disadvantages.  Depending on the current
environment and the specific homing requirements at the time, one method may
be much more suitable than another. For an autonomous robot navigating in
unknown domains, it seems prudent to have more than one method of performing

a given task at its disposal. In this way, a more robust overall behaviour can be
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produced by tuning the use of particular methods to appropriate circumstances.
Although the concurrent application of multiple methods may be considered
overkill in most cases, the possible advantages of incorporating alternate strategies
should not be overlooked.

The landmark-based approach to visual homing can, however, be easily
extended into the three-dimensional domain. The bearings of visual landmarks
simply incur an additional elevation dimension. The computation of a
correctional vector remains essentially unchanged, but for the fact that the
vector is now orientated in three-dimensional space. The 3D correctional vectors
would again simply be summed to produce a 3D homing vector. The landmark-
based approach would also be little affected in terms of homing performance and
computational cost, the same cannot be said so easily for image-based approaches.

Clearly, the methods and algorithms proposed in this chapter are primarily
concerned with providing solutions for autonomous robot navigation. Although
inspired by findings in insect ethology, specifically visual homing behaviour,
no direct insights into insect ‘cognition’ are being claimed. There are obvious
difficulties in determining exactly how an insect performs a task. An insect cannot
be opened and read like a book. One must try to deduce function from observable
inputs and outputs. From ethological evidence one can make basic deductions and
draw broad conclusions. Exact details, however, in the quest to fully understand
the ‘thought’ processes which drive an insect, remain elusive. Despite this, insect
ethology suggests that insects perceive and interact with their environment in
a minimalist, yet successful fashion. Inspired by this philosophy, one can strive
to imitate the successful behavioural strategies in similarly simple, elegant, and
robust ways. It is this ethos which can be of prime significance in solving
some of the difficult problems of autonomy in artificial agents. Insects prove by
example that the underlying principle of simplicity and elegance in behavioural
mechanisms is quite sound. The complexities and richness of behaviour need not

necessarily be derived from complicated mechanisms.
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Chapter 7

Conclusions

7.1 Summary

The main aim of this thesis has been to show that the guiding principles of
autonomy and navigation as observed in the natural world, specifically through
the study of insects, are of value in solving some of the real-time, real-world issues
of autonomy and navigation in mobile robots.

In chapter 4, it has been shown how very simple motion cues and visual
behaviours, inspired by the visual guidance of flying insects, can be used profitably
to provide a mobile robot with the ability to simply and efficiently perceive,
interact and move within real environments, such as in this case, in corridor-type
environments.

Chapter 5 showed how the reactive robot behaviour could be seamlessly
augmented to allow a ‘route recognition’ and ‘route discrimination’ ability. By
observing landmark features en route, a previously encountered corridor can be
recognised as such, and thus be used to help direct a more global goal-oriented
activity.

Chapter 6 presented a very simple, intuitive, computationally cheap, and yet
robust, qualitative landmark-based homing technique. This was similarly inspired
by the visual homing behaviour of bees and ants. It was shown that if even simple,
homogeneous landmarks can be detected within an environment and an external
frame of reference is available (e.g. a compass}, then landmark-based homing
can provide a very powerful method of real-time navigation. Although the basic
algorithm, utilising only bearing information, performs well and provides stable

homing, it can easily be extended to incorporate a richer source of visual homing
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cues. The additional use of landmark apparent-size cues, was shown to improve
not only the robustness of the homing behaviour, but also reinforce landmark

avoidance. The algorithm can also be easily extended into the third dimension.

7.2 Future Directions

From this body of research, one main avenue of future work and improvement has
to do with the experimental environments and overall robustness. Although the
experiments were conducted in the real-world using a real robot, they were still
quite contrived in nature. As outlined in the previous chapters, this was mainly
due to the limitations imposed by both physical and practical characteristics of
the robot and project, as well as the desire to maintain experimental flexibility
and control. However, the testing of a completely autonomous system in totally
unprepared, realistic environments is a necessary step forward.

As with all of the experiments described in this thesis, the reliance upon
visual stimuli is paramount. The inherent ‘real-world’ limitations of relying upon
purely visual stimuli, as a source of navigational information, are obvious. As the
‘quality’ of the visual stimuli and perception decreases so too does behavioural
competency. To compensate for this environmentally induced ‘incompetency’ it
will become necessary to either alter behaviour to actively improve the richness
of perception (and quality of interpretation), or more likely, increase reliance
upon the perception and interpretation of alternative stimuli, and thus help
drive appropriate behaviour. To this end, more work needs to be conducted to
successfully fuse a multitude of extra-sensory behaviours to produce more robust
interaction with the real-world, in the face of a paucity of quality stimuli.

Fortunately, there is no shortage of examples of how the world could
conceivably be perceived: there exists no richer source of sensory and perceptual
strategies than that observable in the natural world. Within such a diverse global
environment, animals have evolved a miriad of sensory techniques with which to
efficiently and successfully perceive, interpret and survive a hostile world.

More specifically, the situation as it stands at the end of this project, could
be improved in several ways, in terms of both hardware and software, as well
as experimental improvements. In terms of hardware there is ample room for
improvement with regard to the physical characteristics of the ‘autonomous’
robot; such as, removing the restrictive umbilical, improving the quality and

quantity of the visual sensing (eg. incorporating a panoramic sensor), the use
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of additional non-visual sensors, and general mechanical improvements aimed at
improving the physical robustness of the platform. The use of additional sensors
would naturally also imply the use of additional sensory behaviours. A necessary
next step will also be the testing of the system within more realistic (relatively
unprepared) and natural environments.

Unfortunately, due mainly to the practical restrictions on experimental work
space and limited umbilical cord length, it was not possible to conduct large-
scale experiments as part of this investigation. Consequently, various behaviours
were tested and observed in isolation. Further large scale experimentation would
be very useful in observing the interaction and interplay of all the implemented
behaviours at the one time. With all the behaviours activated at once a more
‘holistic behaviour’ could be observed and studied. The integration of behaviours
is a challenging and interesting problem and would help bridge the gap between
a set of low-level navigational tools and the solution of specific navigational
problems. All of the behaviours presented within this thesis could conceivably
be combined to solve a single large-scale navigation problem; for example, a
homing problem requiring the robot to visit a sequence of intermediate ‘homes’
en route, through a sequence of corridor-type environments, to a final destination.
Such an experiment would provide valuable information on how well the various
behaviours work and ‘gel’ together to help achieve a larger objective.

In the visual homing work, two problem areas were identified as requiring
further study. The first problem involved the visual homing ambiguity arising
from a perception horizon. If the set of perceived landmarks changes significantly
from location to location then reliable visual homing is also affected. The second
problem also involved homing ambiguity, but in this case it was caused by visual
occlusion. Visual occlusion may cause an incorrect landmark correspondence to
be established, which in turn can lead to an incorrect homing vector and thus a
‘local minimum’. The problem posed by visual occlusion is perhaps the easier of
the two to solve, but both problem areas provide clear avenues for investigation
and overall improvement in terms of the visual homing algorithm.

As previously mentioned, far broader future directions include the additional
use of other non-visual cues and sensory behaviours. Visual guidance behaviours
help solve one small piece of the autonomy puzzle. An ensemble of strategies based
on a multitude of sensory sources can and should be employed to deal efficiently
and robustly with the uncertainties of the real world. Sensory fusion, through

distributed control, can provide a useful way of compensating for the inherently
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imperfect nature of sensors and perception, and thus provide for a much more
robust system. This will hopefully lead to the constructive combination of many
behaviours upon which higher-level behaviours can be constructed.

The desire to cut the umbilical and thrust the robot into the real real-world,
is always present. Hopefully with a ‘critical mass’ of appropriately combined
‘sensory behaviours’, a truly autonomously functioning system can be built that
will survive in the real world for extended periods, and from which further higher-

level behavioural advances can then be made.
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Appendix A

Further Corridor Guidance
Results

This appendix presents a more comprehensive set of real-world corridor guidance
results. This will give a better impression of the typical robot behaviour
experienced within the context of the experiments conducted chapter 4. Apart
from showing the ‘typical’ nature of the visual behaviours, this section will also
present some of the not so perfect results and thus indicate some of the problems
involved.

Figures A.1-A.4 show a variety of examples of the robot using the cenfring
behaviour to safely navigate down various straight sections of corridor. Note that
variations in robot behaviour are also partly a result of variations in target speed,
start position, and corridor specifics. Figures A.5—A.9 show the same centring
behaviour but in a variety of differently shaped corridor.

Figure A.10 shows several examples of how the spinning behaviour can be used
to turn a sharp corner. As suggested, this was probably the most unpredictable
behaviour of all. Due to the meandering nature of the robot, and the fact that
spinning is triggered by frontal range, the resulting behaviour varied greatly.
There was also the problem of determining in which direction the robot should
spin. As shown, this was not perfectly determined. Thus, on occasion, the robot
would fail to turn in the appropriate direction.

Figure A.11 shows several examples of the wall following behaviour. The
effects of both wall-following and non-wall-following are examined and compared.

Figure A.12 shows several examples of how the robot can regulate its forward

speed according to tunnel width by maintaining a constant {lateral) apparent
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motion speed.
Finally, figure A.13 and table A.1 present the results of an earlier version of

the visual odometry experiments.
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observed apparent motion statistics are shown in table A.1.
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Run Min. Max. | Mean | Standard | SD as %
deviation | of mean

Ai3(ag) | 23.76 | 2550 | 2447 | 0.53 217
(20.72) | (21.49) | (21.20) | (0.25) | (1.18)

A13(h-m) | 25.04 | 2855 | 26.26 | 128 1.39
(20.17) | (22.41) | (21.20) | (0.90) | (4.23)

A13(nw) | 2384 | 9582 | 2474 | 048 1,04
(22.01) | (23.07) | (22.41) | (0.32) | (142)

A13(aw) | 23.76 | 2855 | 2505 | 107 127
(20.17) | (23.07) | (21.76) | (0.78) | (3.59)

Table A.1: Flowl (and Flow?2) statistics (real-world). This table shows
the integrated (lateral) optic flow statistics for the experiments depicted in
figure A.13. As can be seen, flow2 provides a better, more consistent measure of
distance travelled, than flowl.
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Appendix B

Further Homing Results

This appendix presents some of the miscellaneous homing results. This includes
some of the raw data, presented in tabular form, used to construct the graphs

presented in chapter 6.

B.1 Homing via image based warping

This section presents an anecdotal comparative study of the homing results
obtained from an image-based warping approach! and the landmark-based
approach presented in this thesis (§6). Both homing performance and
computational cost are examined.

As described in §2.7.1, the image-based warping approach to visual homing,
functions by hypothesising the new visual panorama expected given the current
panorama and a hypothetical displacement vector. The homing procedure
therefore searches through the many hypothetical movements for the one that
generates the most similar expected panorama to that which was observed from
home. The movement resulting in the most similar expected visual panorama, to
that of home, should therefore also be very indicative of the way home.

Thus the image warping approach requires the ‘warped space’ to be searched.
The search space is thus sampled with the intent of finding a match with that
observed from home. Although a perfect match will not generally be found, the
assumption is that the closest match found represents a location physically closer
to the home position than the current position. In this way the homing procedure

can be repeated until home is reached.

1See §2.7.1, specifically the work of Franz et al. (1997a).
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The three-dimensional? ‘warped space’ is inherently infinite and continuous
and thus must be sampled in a cost effective way, in an effort to find the visual
match that coincides with home. The granularity of this sampling, however,
affects not only the computational cost but also homing performance.

Figures B.1-B.10 show the homing performance of both the image-warping
and landmark-based methods within several custom-designed® arenas.

To gauge the effect that various degrees of sampling had on the homing
performance of the image-warping method, three different sampling sets
were experimented with (Wi, Wa, W3).  Sampling set W, was the most
comprehensive and consisted of 18 directions of movement (0°,20°,40°, .., 340°)
and 36 displacement distances (Ocm, 20cm, 40cm, 60cm, 80cm,.., 700cm).
Sampling set W, was less comprehensive consisting of 12 directions of movement
(0°,30°,60°,..,330°) and 15 displacement distances (Ocm, 10cm, 20cm, 40cm,
80cm, 140cm, 200cm, 260cm, 320cm,.., 680cm). Sampling set W3 was least
comprehensive, consisting of only 8 directions of movement (0°,45°,90°, ..,315%)
and 5 displacement distances (Ocm, 20cm, 80cm, 300cm, 700cm).

As expected, homing performance was significantly affected by the degree
of sampling. The more comprehensive the sampling the better the homing
performance. However, this is at the cost of increased computation. Sampling
set W, provided the best homing performance but was also computationally
prohibitive. The inherent complexity of determining the homing vector can
be estimated by the product of the number of samples in each dimension of
the search space. In these image-warping experiments the panoramic image
consisted of 360 pixels, one per degree of view. The inherent complexity of
W, is therefore approximately 18 x 35 x (360z + 360%y), where 360z refers
to the computation of the warped panorama*® and 360%y the computation of
robot orientation (i.e. panorama correlation). This translated to approximately

37 seconds computation® per homing vector, making the process completely

2The three dimensions are defined by the three movement parameters: rotation,
displacement distance, and displacement direction. The displacement vector, however, is only
relative to the hypothesised distance of the surrounding panoramic environment.

3These arenas were specifically designed to give a good impression of the overall performance
of the homing methods and alse to show some of the inherent homing difficulties associated
with each method. The main difficulty for the image-warping approach is homing from a point
outside of the immediately surrounding environment. The landmark-based approach, on the
other hand, has most of its homing difficulties tied up with visual occlusion problems.

1See equation 2.22, §2.7.1.

5The simulations were performed on an SGI Indy workstation equipped with 14400
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untenable for a real-time application.® Table B.1 gives a summary of the
computational costs experienced in each case. Of the three basic sampling sets,
W5 is the only one approaching the response requirements of a real-time scenario.

To achieve some semblance of real-time performance whilst still retaining
reasonable homing behaviour the search space must be further pruned in
alternative ways. Apart from the obvious tactic of simply reducing the number
of pixels making up the panoramic image,” there are several other options.

Perhaps the most attractive option is simply utilising a compass sensor to
provide accurate robot orientation information. The effects of this would be
two-fold. Firstly, the search space would be significantly reduced by removing
the robot rotation dimension. The optimisation problem would then simply be a
matter of determining the two remaining unknowns, home direction and distance,
significantly reducing computation (see Ws. and Wi, in table B.1). Secondly,
providing an accurate frame of reference for the snapshots would also tend to
improve effective homing behaviour. This can be seen in figures B.11 and B.12
where the homing behaviour is again shown for the example test arenas, except in
this case a common frame of reference (i.e. a compass sensor} is used to provide
robot rotation information. Although some of the catchment areas do not appear
to be significantly improved, a closer examination of the computed homing vectors
does reveal a noticeable improvement in overall homing accuracy.

Instead of using a compass sensor, however, one could always simply use earlier

processors. Although these processing times are obviously machine dependent, they do give
a good impression of the true trend. The inherent computational complexity of the algorithm
involved remains the most significant factor.

80r at least requiring parallel architecture to make the process viable for a real-time scenario.

?Although a further order of magnitude improvement in computational overhead can most
casily be achieved by reducing the granularity of the panoramic image, the effects of such an
action on homing quality need also be a consideration. For example, reducing the number of
pixels from 360 to 100, reduces the required computation by a factor of 11, Using sample set W3,
this would lower the computational overhead to a fraction of a second (0.17s), providing good
real-time performance. Depending on the application, Wy could possibly become workable,
providing some semblance of real-time performance with an overhead of only 0.9 seconds.
Sampling set W) would, however, remain too computationally expensive for effective real-time
performance (3.3s). Again the adverse effects of reducing the visual acuity may override the
gains made in reactive speed. Nevertheless, this is highly speculative as the whole argument is
really only relevant with respect to the specifics of the environment and required performance
criteria. The homing performance effects of this change have not been examined in any detail
and it is unclear how much of an adverse effect this would have on the image matching
component of the process and consequentially also on homing. Given the inherent synthetic
nature of the environment in the simulations, these tests would not be appropriate to assess
this and results would remain inconclusive. Thus real-world experimentation would need to be
conducted for a more conclusive analysis of effects.
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approximations for parameters to help direct the search. Previous determinations
of homing distance and direction could possibly provide close initial estimates,
and thus assist in further pruning the search. Assuming the robot has not
moved very far since the last snapshot was taken the homing distance and
direction should be quite similar. However, this type of strategy does possess
several flaws. As inevitable errors creep into calculations they can be carried
through to possibly contaminate future estimates (i.e. misdirect the search) and
consequently adversely effect homing behaviour.

Another alternative to reducing the computational requirements of the search
is through another form of heuristic pruning. An image difference measurement,
for example, can be quite indicative, up to a point, of homing distance. A
large difference between home and current snapshots would indicate a larger
homing distance than a small image difference. By inferring spatial distance
from measured image distance (i.e. minimum snapshot difference) the sampling
can be significantly weighted to concentrate the search at specific homing ranges.
A linear approximation for the relationship between spatial and image distance
is, in fact, used by Franz et al. (1997a) to gauge the distance of home and
thus heavily prune the search space. The speed of the algorithm can thus be
drastically improved. However, as with all heuristics optimal performance is
never guaranteed. In this case, it is assumed that this correlation will remain
valid and be reasonably predictable, for the various homing environments and
homing distances required.

As is indicated in table B.1, there is a stark difference between the
computational overhead of the landmark-based approach and the image-warping
variants. Consider that the average computational overhead for the landmark-
based approach (Lz3) was 0.003 seconds per homing vector calculation, which is
almost three orders of magnitude (a factor of 630) less than that required by the
image-warping variant W5. Although this computation time is dependent on the
number of visual features that are required to be paired, there will always be less
features than pixels.®

With the notable exception of occlusion there were no perceptual limitations
included in this set of experiments. The panorama is perfectly observable.

However, a few perceptual embellishments were included to aid the image-based

8For a comparison, consider the fact chat 100 visual features increases the average
computational overhead of Ly3 to only = 0.01 seconds. This is still an order of magnitude
improvement over Wy,
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Complexity CPU time
vector vector field
W1 | 18 x 35(360z + 360%y) | 37 secs 26 hours
Wa | 12 x 14(360z + 360°y) | 10 secs 7 hours
W3 | 8 x 4(360z + 360°y) 1.9 secs | 1.3 hours
Wae | 12x 14 x360(z -+%) | 0.61 secs | 25.6 mins
Wi | 8x4x360(x+vy) 0.12 secs 5 mins

| Lna | — [ 0.003 secs | 7.2 secs |

Table B.1: The Computational Complexity of Producing a Homing Vector. This
table shows the computational costs involved in computing a homing vector.
The three basic variants of the image-warping approach (W;, W,, Ws) using
differing sampling sets are shown to incur correspondingly high computational
expense. The use of a compass sensor (Ws,, W3,) is shown to significantly reduce
computational overheads and improve speed. The landmark-based approach
(Lps), using correspondence method k3, is shown to be the most computationally
efficient.

warping approach. Firstly, the relative range of the panoramic environment
was provided artificially’ by simply averaging the ranges of the objects within
the arena. This assists the warping approach by making the scope of the
required sampling set much more well defined. Secondly, the objects within the
environment were given unique grey-scale luminance values.!® The landmark-
based homing method, however, still perceives the objects as being identical.
The homing-vector fields shown in figures B.1-B.10 provide a good snapshot
of the homing performance, while at the same time depicting the failures inherent
in the system. As expected, the image-warping approach to homing, starts
to fail when the underlying assumptions about image adjacency and constant
panoramic-range are violated. Reliable homing is thus generally restricted to

the interior region defined by the immediately surrounding environment.*' This

9 Although unrealistic, this really only affects the degree of required sampling. The absence
of this knowledge can be compensated for by providing a more extensive sampling set. The
disadvantage being the additional computational expense of increasing the size of the sampling
set or, alternatively, the performance degradation caused by increasing the sampling granularity.
It is thus very important to be able to estimate beforehand, as close as possible, the required
homing distances relative to the distance of the surrounding environment.

18The justification for this was that in the real world this would not be an unreasonable
assumption. A real-world panorama will usually provide a kaleidoscope of luminance values.
This, in turn, significantly improves the matching process, which is inherently pixel-based. See
figure B.13 for a few example catchment areas resulting from the use of homogeneous landmarks.

Hmage-warping, and in fact image-based approaches in general, are not well suited for
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can be seen quite clearly by comparing figures B.1(a} and B.2(a). When the
four objects are equidistant and, more importantly, surrounding the required
homing region (fig. B.1a), there is no significant homing difficulty. The robot
can successfully home from anywhere within this region. However, as shown in
figure B.2(a), problems arise when homing is attempted from outside of the initial
surrounding environment. Further good examples of this are shown in figures B.6,
B.4, B.5, B.8, and B.9. The reliable catchment area is essentially restricted to
the most interior region defined by the objects within the homing environment.?
The landmark-based approach to homing does not suffer from this problem.
As shown in figures B.1-B.10, the W; approach is very robust in terms of
catchment area. There is no implicit limitation on how different the views can
be in order to still be capable of reliable homing. Identifying, not necessarily
heterogeneous, visual features relaxes the constraints on visual adjacency.
However, this does not preclude problems associated with the observability of the
visual features, which are used exclusively in determining the homing direction.
Visual occlusion being the main culprit in this case. Occlusion has been observed
to cause two main classes of problems. The first class of problem is the occasional
formation of small pools of local minima directly behind landmarks where the
robot may become trapped. This is the problem most frequently manifested.
This can be seen quite clearly in figures B.7(d) and B.8(d). Although, the
discrete nature of the vector field does exaggerate this phenomenon, this problem
does arise often enough to justify the use of additional behaviours to evade such
traps. Several solutions have been proposed and implemented to enable the

3 However, given the nature of

robot to successfully escape these situations.!
the homing-vector field generation procedure this is not indicated in the figures.
The second class of problem arises when there exist multiple locations within
the homing region which have identical, or at least very close, visual panoramas.
This is essentially a problem of multiple ‘global’ minima. Unfortunately, there
is no “visual homing” solution to this problem without relaxing some of the
previous assumptions (see §6.7.1.1). See for example figure B.6. In this case,

visual occlusion causes multiple locations to appear similar to that observed from

obstacle rich environments, where pixel adjacency is violated to any great extent.

12The asymmetrical nature of these homing-vector fields is primarily due to the heterogeneous
nature, in terms of luminance, of the landmarks. See figure B.13 for example results using
homogeneous landmarks.

133ee §6.7.1.1. Using a circumnavigatory behaviour the offending landmark can be bypassed
and visual homing can successfully resume on the other side.
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home. Making the best of what is currently perceived, the homing algorithm
ignores missing landmarks, which in this case may result in a misleading landmark

correspondence and hence lead to a false minimum.
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(d) Lns

(¢) W3
Image Warping versus Landmark Based Homing (simulation).

The performance of variants of the image warping approach (Wi, W,, W3) are

compared with the landmark-based approach (L3). The homing-vector fields

show the extent of the resulting catchment area in each case.

Figure B.1
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(c) Ws (d) Lns
Image Warping versus Landmark Based Homing (simulation).

The performance of variants of the image warping approach (Wi, Wy, Wy) are
compared with the landmark-based approach (La3). The homing-vector fields

show the extent of the resulting catchment area in each case.

Figure B.2



B.1 Homing via image based warping 221

YRR TR T R R R R R aar e [ M N AR
R AR T A TR R A L L TR L L N R LA LRI L LA A L L I R R R L R R T e I N L L A SR L)
e M AN ANl e i amr s ar g vAm e e gy e N L R T R L R L L e ]
PV T L T R AR I e e e N A AL N TN S e A |
AR LA LT L B L U R NI A i R I R T AT I A AL N I A Tl B R N
DR LA R L e €4 QA d A F A NE A R RN RS RN YN A TS VAT e (AT AT T
LR LA L B L b R R N L A T A I T R N N R B e i St
P L A R T MR R R I I R A I RS N R RSN Y U I il U R Rt
AR I E A T A B L I LA PRI I R I S AT R AP W B R S A A A e
. TN N R L R I A B I R R N N R L T T i
- LT A T R R R R R T A L e o |
- AL R B T A S PR I N N Y R E R R L R N N il Rl
- AN BN AR Rt Ay B T T T S B e P I I A ol g
- NiE A Ngve pn S A R I L T i
- AR AT AT T A R e e i e R I O A N A A B
B P R L R R RV R L WL P R e R L T I O e e A I IR IR Rk
R A e et S T R T N S TR TR i Rl I i Rt i e T e e R T T L T I I it I I S
R e e T R A R L ettt Rt R L A R R R L e b
e R L R L P A R D e N R N R R R N R E
e i T S B R i Lt B I R R NN N TR N L Ll S T A R VI g BN 3 3 |
L T T T P e N I B R LR RN
SIIILITIILIIITIIIIIIININI LTI N Y L R R L LR E 3
i e R T R Y AR e b L R LA SO A e
Pl hmaes, wwme e B L e A R E
e LRI IM I TIIIIIIIIIIIIIIMIIIIIIIININNY Ve NIl ITIIIIIII N T e
IR R IR PR KT - POV - N P LE
B T P B T R L U AP Ve P L L N S RN LS I
TN It famm st samamaar st ELAN AN A e b L [ R L L L A Y Y o I I
LI I I T I I B B R e P R M LB
R R RN R N R e P RN N R NN b | . LG E EE
L N A I N N L R L R R N N N | be Y R e UL E LK)
IR R AN R R R R L T R B [} E R N I I N I IR I U IO e o o T
IR EERE] AUV R rarrr s AR E PRI LR RN FPE R 2 Pl AN st pr el b AR E b AN I A AR AT
IEENENAR] e AR N R N N N R ] e A N N A N N N N I I I Al i b
P R nulRER IR PRI ' IR REEEERAE P o o R P
nlin ks ke ;\-n+ AR AL I N L
St P PP fnnnnAlnIn N AR A RR] RLLEL
fatelalelelels L4 T NANAR NNNFAR P M iAinMran R
ilk nrenrnrirarin Rlalatilaly {a] aladelntalede o b Ay Al alelnli alile N LF §
NENAANAA AR M AN AN N N alolelelelelelele oo b da oo lsTade Dl ulaluTuladu le ARCANANAR
ANNRAANAAARAAEA s NARNNAnN BN ARNNAARAAAAAAANRNANARNAANBARRR RAENAR
ANARRAANAAARARAaan L P PP R e i AAMAARBAANRaE N RN RNIARNAAR AR
il ' rararan FRFEFAFEr] 1 s FYA. FENT NN FY Tir rirarars FaFara Farl 2 3-4 T KN alalnlely 1o ale Sl
i lels ole e br Lidg i o raaa‘i i ale ke [ Talol= 1 1 P FINANNraran d.aa.3 RN LY LIFIVETITRTRTS ra ra TERTA -
= T alalelilels i r ha a2 PP BN [l alalale e de = i Y AN L\FEFSF] F13a w0y
bl rlsalaialalilelolelrir L n LI LI B N il aalaladalale p bl br b brbrpr e |l sty ly)g e s ML Al
FERTA vielelilole bbbl e MLAAALEL DR bl oyl afe [ L fr B LGkl kP EEFFERTT ELEREE
NEEEECE NN == - AnAnMLEaE = EEERAAAA S5 EEEANAS22S33 3333 LAEEM
FEEELECCEr 333375 = EL AT AR e EEEEAA I3 CECECEONN 3233 S 35 333 EN|
(a) W, (b) Wa
FEF TR R AN NEEE .-" AN e N N N N NN R i
1l D N N A e b fa | * LA NREYNS i i i L T O T N B B T I i i il
b dr I = At wanr g w0 i i T T O R R I A L i
kil Er AT B T NN T B et e, e . e B | 1 E il B R R R R R R R R RN N A Skl
PRl YRR IC AN EE L R T T S N O S e O I O R R i
: el r CA A LR e a e[ = I Fialy R L R R R R N R T RN R il
=l sava e a v a=DEAd LA NN R R N N I I I N N R R i
ol 250 L B RURN BE N BRI SR L ER gy el g i I I L R T R T B T A i
~FFLFF R r ] y1¥} R I T T N TE N TR R B BRI I B AU A L et
i) all IEE RN . rlal il e R R N BN B IR AT I R e i i
s A F Pdba b vl sbrares » ild.Jd R il S ST N N T R R IR R A A A i g
huall K1 . [N AR N B il . Rl L A R T B B B PR AP SEI R A i ittt g s
= NAAN Chvd AT a ey P P Lk T N R S At
F L i itk gur v NN D R T T e
EENANNA MMM AN - L B N R LR A s
HAEEN CNRE A b ke BN i i R R L R R R R R ittt
AANRE P Y I AT =1 A e P Y P PR R R il
el P LR O Y T I ] I A N AN N Sttt R LR L L R
nn F1 = L L L TR I A L1 alelyl” R YRR R R R iRttt el
- TR Y TLLEE B e T T A R il i il
=44 o o] TR L e I R R A L T N R R N I B et Sl
AEEE abas g s sl LN R R R e N i
AAEER"IN I P Y TTTELT D R e b R I I
LA R EES R RS b i T R L Y Lttt Ot
AEE! EE: o e T[T PR g o S L
el F PN T ] |#F4F 4 Fasddrumcaramcncsrrfiaansasasssannsaasnsntiyy
ANSS T Frasararaana iDL T00 T P R I T T
5 AL Wl R R R R T T Py e R Y R T R R e
T T RN RN R RN N O rEEE IR R R N
LN M P e A o I P [#7F2 2 raprsmsorararar et isiatianstsnsasatsantnnany
T T N sessara Innw van by AT T A (s r sz rarsanarors i b i d b P e P 4IAEUATE LR ARATRLE AR LR TARY
TS PR # e N AT IR R R N N R R I I N I
T A IR LR i i T TR R R R R R R R R R R R )
T[T T T FI %o rrab b ad LR Lk A Cr KL L R R N N R e N I L I I I ]
T N EEEEI LR WLLERD y AR EAZEEE ) PYEEIEEELE IR ET D) A
ML E N L FE LD PR R R PR I
N eI Pl e s AT+ = 5 IS RS IR
RARNAN E I s raannn e N IR R IR
., ARNANAAR = ATnANANNRONG T by AP IN.. ceasriana N AP R, é
LLGLLOLOLET INREALAFARLAANAE ENEL T v R N RN N e A R R T N R R ety
ANNARAANA AARCEEE BEENAAN O ER " P R R N e R R RN
AN nnn P 3l AN NEEE N f R R R R R R R R R R R R
N AN n N ARATNANAAREEE R EE N R R A R A R A N A A S R R R R R R R R R
N3 O A AR NANANAN R E nercL R AR R R R R e R R
=3 rnAannARASAN AINECAARN — 3 e R R R R R R R R R R S R R R N R N
2333 ANARARRNASA PR CARA AAANAAAAA T dd TaE: EED R R R RN R R R R R R R e R A NN
USEEE nn AAEE] RARS FEERERE K YRR RN N R R R I R R N N R AN ]
E EEERTA SIIEENN LG EEE R TEE T L R R R R N N R R R R R R N R ]
I3 23 EIIICEEEE 33333 FEES RN R R N N R AR

2
ha
—~
E
t"
a;

Figure B.3: Image Warping versus Landmark Based Homing (simulation).
The performance of variants of the image warping approach (W, Wy, W3) are
compared with the landmark-based approach (L3). The homing-vector fields
show the extent of the resulting catchment area in each case.
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Image Warping versus Landmark Based Homing (simulation}.
The performance of variants of the image warping approach (Wp, Wy, W) are

compared with the landmark-based approach (L;3). The homing-vector fields

show the extent of the resulting catchment area in each case.

Figure B4
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(c) Wy

Image Warping versus Landmark Based Homing (simulation).

Figure B.5

Ws) are

compared with the landmark-based approach {Lp3). The homing-vector fields

show the extent of the resulting catchment area in each case.
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The performance of variants of the image warping approach (Wi,
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Image Warping versus Landmark Based Homing (simulation).

Figure B.6

h (Wl, VVQ., Wd) are

compared with the landmark-based approach (Lp3). The homing-vector fields

show the extent of the resulting catchment area in each case.
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Image Warping versus Landmark Based Homing (simulation}.
The performance of variants of the image warping approach (Wy, Wa, W) are

compared with the landmark-based approach (Ly3). The homing-vector fields

show the extent of the resulting catchment area in each case.
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compared with the landmark-based approach (L;3). The homing-vector fields

(d) Lns
show the extent of the resulting catchment area in each case.

image warping approac

() Wy
Image Warping versus Landmark Based Homing (simulation).

The performance of variants of the
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The performance of variants of the image warping approach (W, W, W3) are
compared with the landmark-based approach (Lys). The homing-vector fields

show the extent of the resulting catchment area in each case.

Figure B.9
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B.1 Hom

The performance of variants of the image warping approach (W, Ws, W3} are
compared with the landmark-based approach {Zs3). The homing-vector fields

show the extent of the resulting catchment area in each case.

Figure B.10



229

ing

based warp

ing via image

B.1 Hom

EEEEECEEEECEESL )

T qARIII3II3II:
3 "AN3333333333:
..uuuuuuuuuum

41431333333

d
23
23
33
23
33
33
33
k2l
i
el
fe
ot
N3
fehet
)
hl

T G Rk ke kU A A
P B8 CEE L G it Lkl il L]

ARNAND 33333 33N

U233 379 39333 3739 JLE LG E UL L Ml |
333337333 32735337 TEE LLELLLNUNY ]

3 300 393 39!

nnmn"""n“un"“mn“"m-mﬂmmnuauﬂuwmmumuumw.uumuuun

EEECLECE ECULELEL HEL CECCEr 3933 30 33 F 333333 33 3 3kl

mmmmuum_u_w

1M 3233 333 IXTIT JACE EE)

733939333 23333333
feorteret

i
2nnA
nrRR

ERbpieet EELEEEEE T e B R e

h

(

simulation).

The homing behaviour resulting from a variant of the image warping approach

(

Based Warping

Figure B.11: Homing with a Compass and Image-

and increases homing accuracy. The homing-vector fields show the extent of the

utilising a compass sensor (Ws,), is shown. A compass sensor reduces computation
resulting catchment area for each example scenario.
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simulation).

h
resulting from a variant of the image warping approach

(

()

and increases homing accuracy. The homing-vector fields show the extent of the

utilising a compass sensor (W3,), is shown. A compass sensor reduces computation
resulting catchment area for each example scenario.

Figure B.12: Homing with a Compass and Image-Based Warping (

The homing behaviour
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B.1 Homing via image based warping
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Based Warping with Homogeneous Landmarks
The homing-vector fields show the performance of the

(8)

of homogeneous landmarks. The extent of the resulting catchment area is shown

image warping approach (using sampling set W3), within an arena consisting
for each sample scenario.

Figure B.13: Homing via Image-

(simulation, Wj).
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B.2 Correspondence-Method Comparisons and

Source Data

This section presents some of the miscellaneous findings comparing the results
of the performance criteria for various landmark correspondence methods. Also
presented are the source data for these statistical comparisons and the source
data for the bearing-based error model described in §6.5.1.3.

The vector fields depicted in figure B.14 show how the correspondence
methods h4, h5, h6, and h7 perform within the same densely packed arena as
was presented in figure 6.13 for methods h2 and h3. Differences in the field
patterns can clearly be seen, even between methods h4, h5 and h6.

Figures B.15 and B.16 show the average home-vector error experienced with
all the tested correspondence methods and unit vector variants. The effect of both
homing range and numbers of landmarks on this error is shown. Figures B.17 and
B.18 show the home-vector and angular pairing errors, respectively. Again, the
relationship between these error criteria and both homing range and landmark
numbers, is shown graphically.

Tables B.2, B.3, and B.4 detail the source data for the home-vector, homing-
vector, and angular pairing errors, respectively. For comparison, the data for
‘non-squared error’ versions of the home-vector error, homing-vector error, and
angular-pairing error, is also shown (tables B.7, B.8, and B.9). Tables B.5 and
B.6 show the mean and standard deviation of the final homing distances, observed
with each of the correspondence methods and selected unit vector variants there
of.

Tables B.10, B.11, and B.12 detail the source data for the home-vector,
homing-vector, and angular pairing errors, observed using correspondence method
h3 under varying degrees of artificially introduced bearing-based error. Again, for
comparison, the data for ‘non-squared error’ versions of the home-vector error,
homing-vector error, and angular-pairing error, are also shown (tables B.14, B.15,
and B.16). Table B.13 shows the mean and standard deviation of the final homing

distances, observed under varying degrees of bearing-based error.
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A comparison is

Homing-Vector Field (simulation, h4-h7).
made between the homing performance resulting from landmark correspondence

methods h4, h5, h6, and h7, within a very dense arrangement of landmarks. The
catchment area provided by method h7 is clearly inferior to the other methods.

Figure B.14
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Figure B.15: Average Home-Vector Error (simulation, h2-h7). Homing accuracy
is gauged by the average angular difference between the computed homing-vector
direction and the true bearing of home (y/av{|y—¢[?)). This error is graphed
for the correspondence methods h2, h3, h4, h5, h6, and h7. The graphs show

how this error is affected by both homing range and landmark numbers, for each
method.



B.2 Correspondence-Method Comparisons and Source Data 235

W — by —
‘Hoeme-vector Error

50-
45
40
33

Rl
150 55

550 650 H17° oo of landmarks
Home Range {cm)

W —

Homg-vecter Error

50
150
50
350
50
5356 55 ria

Number of landimarks

Home Range (cm)

Figure B.16: Average Home-Vector Error (simulation, h0,h3u,h5u,h7u). Homing
accuracy is gauged by the average angular difference between the computed
homing-vector direction and the true bearing of home (y/av(|y—¢|?)). This error
is graphed for the correspondence methods and unit vector variants h0, h3u, hou,
and h7u. The graphs show how this error is affected by both homing range and
landmark numbers, for each method.
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Figure B.17: Average Homing-Vector Error {(simulation, h2-h7). Navigational
error (arising from the mismatching of landmarks) is gauged by the average
angular difference between the computed homing-vector direction and that
obtained under perfect correspondence (y/ev(|y—¢|?)). This error is graphed
for the correspondence methods h2, h3, h4, h5, h6, and h7. The graphs show

how this error is affected by both homing range and landmark numbers, for each
method.
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Figure B.18: Average Angular-Pairing Error (simulation, h2-h7). The angular-
pairing error is calculated from bearing disparities observed between the home
landmarks (theta;) that have been paired and the true corresponding home
landmarks (theta ) that should ideally have been paired. This error provides
a measure of how well the two sets of landmarks have been paired with each other
(\/ av(]6;—8p(n|?)), and is graphed for the correspondence methods h2, h3, hd,
h5, h6, and h7. The graphs show how this error is affected by both homing range

and landmark numbers, for each method.
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Number of Range Average home-vector error (\/a?}{l’}‘.—¢|2})
landmarks (cm) ho hi [ h2 [ h3 [ h3u [ hd hE | RSu | h6 [ K7 h7u
0-100 25.78 25.22 26.80 25.22 29.08 25.72 25.29 209.11 26.70 32.01 34.54
100-200 28.65 27.07 32.03 27.07 29.86 27-92 27.34 30.09 32,99 34.28 40.23
200-3040 32.22 26.92 36.53 29.92 31.64 31.16 30.37 32.08 39.57 34.07 42,46
300-400 35.82 33.28 40.08 33.28 34.24 34.73 33.81 34.74 44,10 32.28 40,135
400-500 30.48 36.99 43.21 36.99 37.23 38.48 37.62 38.11 47.34 31.39 37.33
500-600 43.70 41.35 48.76 41.35 41.535 43.05 42.05 42,16 50.36 34.81 37.51
600-700 48.11 45.80 5¢.37 45.80 45,34 47.a7 46.51 45.93 53.54 35.32 38.24

D-700 | 37.54 | 8504 | 41.15 | 35.24 | 36.16 | 36.67 | 85.80 | 36.66 | 44.50 | 33.26_| 39.13

0-100 | 22.33 | 2L.16 | 25.11 | 21.16 | 24.96 | 27.37 | 21.68 | 3561 | 2431 | 26.54 | 32.37
T00-200 | 25.27 | 22.50 | 32.97 | 22.58 | 25.67 | 29.16 | 24.54 | 28.49 | 32.40 | 3363 | 4144
300-300 | 28.47 | 24.51 | 35.28 | 24.901 | 27.17 | 31.12 | 27.38 | 30,04 | 38.68 | 3342 | 44.02
300-300 | 3L.41 | 2773 | a7.17 | 27.73 | 29,42 | 33.4% | a0.04 | 3153 | 4188 | 29.49 | 38.93
100500 | 34.56 | #1..05 | a9.31 | 51.05 | 32.48 | 36.14 | 32.85 | 34.86 | 4425 | 2505 | 34.40
500600 | 85.47 | 35.18 | 42.34 | 5.18 | 36.61 | 4027 | 3669 | 37.56 | 47.06 | 27.56 | 32.72
BOG-700 | 42.80 | 39,46 | 45.01 | 39.46 | 40.70 | 4439 | 4087 | 3138 | 50.12 | 31.53 | 33.27

0700 | 33.01 | 20.66 | 35.10 | 29.66 | 81.41 | 35.12 | 3153 | 3312 | 4217 | 29.43 | 37.66 |

0-100 | 20.09 | 18.35 | 27.42 | 18,35 | 21.76 | 28.27 | 21.61 | 25.87 | 22.42 | 28.70 | 31.97
100-200 | 23.20 | 10.62 | 33.18 | 19.62 | 22.49 | 95.27 | 24.64 | 29.30 | 22.85 | 33.73 | 42.92
200-300 | 26.03 | 21.74 | 84.16 | 21.74 | 24.10 | 31,56 | 26.02 | 28.84 | 37.89 | 33.48 | 46.23
300-400 | 28.57 | 24.33 | 35.32 | 24.33 | 26.46 | 33.79 | 28.35 | 20,73 | 20.23 | 29.04 | 4048
400-500 | 5149 | 27.49 | 37.11 | 27.40 | 20.62 | 35.84 | 30.50 | 31.65 | 4240 | 24.03 | 32.77
500-600 | 35.20 | 41.83 | aD.60 | a1.35 | 34.65 | 30.77 | 33.74 | 35.01 | 44.87 | 24.35 | 20.90
§00-700 | 35.34 | 35,36 | 43.06 | 36.36 | 37.7L | 43.27 | d7.0¢ | 3871 | 47.64 | 27.11 | 29.53

oo| ¢n| o] o] oo| ae| Go|| O | G| S | | D] D D | | | ] ] ] ] ] ]

B 9.700 | 30,13 | 26,20 | 36.39 | 06.20 | 2847 | 35.03 | 29.62 | 31.37 | 4062 | 28.17 | 37.4L |
2 B-100 | 17.66 — 31.82 | 15.16 | 18.19 | 26.08 | 21.35 | 98.54 | 23.60 | 27.75 | 32.78
2 T00-200 | 20.38 = 32.08 | 15.80 | 18.00 | 28.54 | 33.61 | 28.45 | 3272 | 37.47 | 40.57
12 200-300 | 2245 — 5365 | 17.40 | 20.28 | 3242 | 35.58 | ov.vd | 3.12 | 36.47 | 51.13
2 300-400 | 24.48 — 33.25 | 15.66 | 22.35 | 35.28 | J6.88 | 28.06 | 3600 | 20.68 | 4102
2 100-500 | 27.08 = 3425 | 2242 | 25.16 | 36.62 | 28.03 | ©6.88 | 30.04 | 22.70 | 30.00
2 300-600 | 30.48 — 36.29 | 25.90 | 28.85 | 39.08 | 30.46 | 31.48 | 4147 | 20.04 | 26.16
2 E00-700 | 34.56 = 39.19 | 26.71 | B32.85 | 42.38 | 33.46 | 34.70 | 44.28 | 21,56 | 24.26
[ 12 [ o0-700 | 2600 | — 34.18 | 2142 | 24.21 | 35.64 | 27.53 | 20.22 | 37.69 | 28.34 | 38.38 |
70 0-100 | 15.26 — 36.57 | 1L.60 | 14.20 | 20.09 | I8.88 | 20.38 | 24.46 | 30.28 | 3837
20 100-200 | 16.88 = 33.30 | 1185 | 14.78 | 26.22 | 23.27 | 2D.30 | 29.79 | 4548 | 59.68
30 700-300 | 18.12 — 33.15 | 12.67 | 15.00 | 32.78 | 26.30 | 28.80 | B0.85 | 42.60 | 57.87
20 300-400 | 10.64 — 39.68 | 14.51 | 17.60 | 37.30 | 2r.er | 27.61 | 32.43 | 31.88 | 43.05
20 400-500 | 21.78 — 33.05 | 16,82 | 20.01 | 38.87 | 96.03 | 26.45 | 34.98 | 22.51 | 2901
20 500-600 | 24.82 33.16 | 10.78 | 25.27 | 4156 | 28.15 | 27.06 | a6.57 | 19.69 | 22.99
70 €00-700 | 28.51 — 35.13 | 23.17 | 26.76 | 42.57 | 29.82 | 30.28 | 49.10 | 17.28 | 18.37
30 0700 | 2110 | — | 3295 | 1618 | 19.27 | 26.76 | 26.71 | 27.89 | 3337 | 3097 | 41.08 |
50 0-100 | 10.75 — 3908 | 7.18 | ©.27 | 18.85 | 1602 | 36.04 | 02.08 | 48.64 | 60.65
50 100-200 | 1132 3672 | 6.96 | .71 | 22.58 | 2506 | 30.18 | 22.51 | 67.23 | _79.39
50 300300 | 12.00 = 36.95 | 742 | 10.43 | 3178 | 29.24 | B85.19 | 23.73 | 53.60 | 68.86
50 300-400 | 13.03 — 33.84 | §.4a | 11.53 | 8925 | 20.63 | 20.42 | 24.83 | 3670 | 4859
50 200500 | 14.55 — 3123 | 10.07 | 1517 | 4217 | 27.77 | 25.04 | 26.36 | 26.08 | 29.07
50 500-600 | 16.81 5107 | 12.23 | 15,50 | 43.85 | 27.63 | 24.88 | J8.12 | 23.00 | 22.87
50 500-700 | 18.78 — 3158 | 1486 | 18.22 | 43.04 | 27.50 | 25.36 | 30.38 | 16.52 | 16.30
i 30 D-700 ] 14.17 — [ 3347 | 971 [ 12.54 | 38.20 | 27.88 | 29.78 | 25.70 | 35.16 | 48.36
D0 D-100 | 8.10 — 39.43 | 5.12 | 7.07 | 1130 | 16.28 | 44.34 | 18.08 | 71.37 | 80.04
100 100-200 | 8.92 — 38.86 | 4.7 | 7.35 | 2098 | 25.02 | 47.21 | 18.05 | 77.54 | 88.38
100 200-300 | 8.70 — 3863 | 500 | 7.80 | 30.80 | 30.00 | 4049 | 18.44 | 59.65 | 76.23
100 300-400 | 9.40 — 35.08 | 5.60 | .48 | 39.06 | 3121 | 3107 | 19.21 | 40.77 | 54.89
100 400-500 | 10.52 — 32.00 | 6.88 | 0.56 | 43.62 | 28.08 | 9546 | 20.40 | 2v.62 | 31.68
10G 500-600 | 12.26 — 3T.03 | 8.30 | 1195 | 44.69 | 28.30 | 24.48 | 22.08 | 27.02 | 25.32
100 600-700 | 14.65 — | 30.57 | 10.53 | 13.30 | 42.94 | 27.21 | 23.86 | 24.01 | 1503 | 17.93
[ 100 [ 0700 | 10381 | — [ 94.59 | G.68 | 90.34 | 58.60 | 25.02 | 32.49 | 20.05 | 44.93 | 34.16 |

Table B.2: Home-Vector Error Data
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Number of Range Average homing-vector error (\/uv(h'—'np\z))

landmarks {cm) ht | hi T hZ h3 | hd | K [ he [ h7
4 0-100 0.00 5.00 9.55 a.00 7.81 6.36 4.66 24,13

4 100-200 0.00 9.56 18.24 4.56 13.69 12.56 10.80 29.79

4 200-300 0.00 13.00 2344 13.00 18.78 17.24 14.56 32.01

4 300-400 (4.00 15.20 25.67 15.20 22.15 19.97 16.11 31.286

4 400-500 4.00 16.68 26.21 16.68 24.06 21.58 15.23 29.29

4 500-600 0.00 17.92 26.21 17.92 26.43 22.78 12.86 28.34

4 600-700 0.00 19.34 26.80 19.34 28.43 24.02 10.06 27.90

| 4 g-700 0.00 [ 15.37 | 24.66 15.37 ! 22.368 19.88 ] 14.21 [ 39.87
[ Q-100 0.00 .00 13,12 §.00 20.54 10.36 5.78 23.57

[ 100-200 G.00 10.28 25.8% 10.28 24.04 18.56 14.85 33.20

G 200-300 .00 13.32 29.19 13.32 27.97 22.95 18.74 33.38

G 300-400 .00 14,89 29.43 14.89 29.57 24.60 18.67 33.45

[ 400-500 0,00 15.85 28.61 15.83 30.21 24.83 16.69 30.50

6 500-600 .00 16.81 28.04 16.81 32.41 25.35 14.37 28.56

6 G00-700 .00 18.33 28,22 18.33 33.61 26.35 11.43 28.7%

[} | Q-700 0,00 | 14.88 | 28.20 14.88 | 29.55 23.78 | 16.55 [ 31.65

8 0-100 0.00 6.75 22.27 6.7 25.04 16.13 9.09 27.28

] 100-200 0.00 10.84 30.432 10.84 28.68 23.49 17.91 35.31

] 200-300 0.00 13.37 30.83 13.37 31.5% 26.03 20.37 368,77

] 300-400 0.00 14.36 30.18 14.36 33.0¢ 26.45 19.26 34.22

[] 400-500 0.00 15.00 28.86 15.00 33.12 25.90 17.02 30.36

8 300-600 0.00 15.86 28.31 13.86 33.53 26.09 14.62 37.98

] 600-700 0.00 17.31 28.80 17.31 36.32 26.97 11.77 25.23

[:] 0-700 0,00 ] 14,34 | 28.39 14.34 32.80 25.63 17.44 | 3%.16

12 0-100 0.00 — 29,80 7.49 24.79 19.46 12.83 28.68

12 100-200 0.00 — 32.41 10.85 30.12 24.95 20.92 35.95

12 200-300 0.00 — 31.50 12.39 34.69 27.23 20,07 39.77

12 300-400 0.00 30.56 12.99 36.97 2747 18.29 34.58

12 400-300 0.00 — 29.17 13.29 36.97 26.60 16.61 29.78

12 500-600 0.00 — 28.66 14.03 39.08 26.76 14,70 26.97

12 600-700 0.00 — 28,70 15.25 39.09 2717 12.34 23.29

[ 12 0-700 0.00 — | 30.10 12.95 | 36.16 26.60 17.47 32.99
20 0-100 0.00 — 36.48 8.10 2(.02 16.11 17.81 32.47

20 100-200 0.00 — 33.64 10.11 28.25 23.08 19.99 47.68

20 200-300 0.00 - 32.91 10.82 35.38 28.06 17.95 44.66

20 300-40H) 0.00 — 31.37 11,09 3%.68 28.43 16.95 35.24

20 400-600 0.00 — 29.21 11.24 40,27 27.06 15.90 28.38

20 500-600 D.D0 — 28.64 11.81 42.60 27.01 14.48 25.94

20 E00-T00 0.00 — 28.93 12.81 42.19 27.30 12.45 21.44

20 0-700 D.00 — | 30.89 11.13 | 38,39 27.14 16.61 34.64

50 0-100 0.00 — 39.77 6.93 14,53 17.74 17.05 50.02

50 100-200 0.00 — 37.36 7.62 23.84 26,39 15,29 67.89

50 200-300 0.00 — 36.88 7.84 33.16 30.56 14.61 54.01

50 300-400 0.00 — 34.08 7.82 40.65 30.82 14.21 37.81

50 400-500 0.00 — 30.89 7.71 43.28 28,74 13.77 27.53

50 500-600 0.00 — 29.99 8.02 44,96 28.27 12.85 26.49

50 H00-700 0.00 — 20.72 8.57 43.66 27.70 11.50 20.62

| 50 0-700 0.00 — 33.38 7.82 [ 39.37 [ 28.85 | 14.04 40.56
100 0-100 0.00 — 39.70 5.59 12.11 16.86 13.54 71.87
100 100-200 0.00 — 39.235 5.89 21.61 26.65 12,20 77.66
100 200-300 0.00 — 39.00 5.86 31.42 31.60 11.7¢ 59.81
100 300-400 0,00 — 35.04 3.73 40,00 31.86 11.57 41.11
100 400-500 0.00 — 32.01 3.64 44.12 29.56 11.48 28.59
100 500-600 0.00 30.70 5.84 45.18 28.77 11.19 28.39
100 600-700 0.00 - 29.84 6.24 43.14 27.64 9.97 22.72
[_1oad [ o7o0 [ 0.0 1T — F460 | 5.79 | 80,15 | 29.65 | 11.56 | 4546

Table B.3: Homing-Vector Error Data
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Number of Range Average angular-pairing error (\/av(\ﬂi ;9¢(p(i])|2))
landmarks {cm) hG T Bl T"hZ T B3 T hd 1] hi T hé [ h7T
4 0-100 0.00 7.09 9.45 7.09 0.16 7.61 7.69 7.00
4 100-200 0.00 14,14 20.77 14.14 17.42 15.62 19.15 15.80
4 200-300 0.00 20.96 30.37 20.96 25.31 23.05 30.28 24.20
4 300-400 0.00 27.05 37.32 27.05 31.55 29,12 39.19 31.19
4 400-500 0.00 32.29 42.38 32.29 J&6.18 34.08 45,90 36.88
4 500-600 0.00 36.07 45.52 36.07 39.98 37.70 49.45 40.56
4 £00-7D0 0.00 39.99 48.00 35.09 43.24 41,35 531.35 43.43
4 | 0-7T0D 0.00 | 28.90 | 3813 28.90 32.76 | 30.63 [ 40.52 | 32.50
5 0-100 0.00 8.20 13.61 §.20 18.55 10,52 10.10 7.80
[ 100-200 0.00 16.06 27.70 16.06 25.62 21.17 24.43 17.89
[5] 200-300 0.00 23.53 38.14 23.53 36.78 29.93 37.27 27.35
5] 300-400 0.00 30.12 45.00 30,12 41.77 35.93 46.95 34.96
[ 400-500 0.0¢ 35.95 49.72 35.95 45,32 40,22 53.50 41.05
[ 500-600 0.0 40.25 52.70 40.25 48.67 43.44 57.72 43.15
[ 600-700 .00 44.50 54.87 44.50 51.06 46.86 59.71 48.08
G | Q-700 G.00 | 32.23 ] 45.30 32.23 42.27 [ 3665 [ 47855 | 36.61
8 J-100 0.00 8.78 17,51 5.78 22.34 13.58 12.26 8.64
E] 100-200 .00 17.14 32.62 17.14 33.71 26.01 28.24 19.22
] 200-300 2,00 24.08 42.59 24.98 41.66 34.33 41.87 29.29
8 300-400 .00 31.77 49.08 3177 46.73 39.48 51.68 37.32
8 400-500 .00 37.82 53.58 37.82 49.73 43.20 58.65 43.68
8 500-600 Q.00 42.43 56.38 42.43 53.19 46.33 52.17 47.86
8 600-700 3,00 465.96 58.42 46.96 55.44 49.69 53.96 50.41
8 | a-700 .00 [ 33.99 | 49.23 33.99 46.78 30.96 | 5241 [ 38.88 |
12 a-100 .0 — 22.37 9.28 23.05 17.26 15.58 9.66
12 100-200 0.00 — 37.78 18.17 36.14 20.74 33.99 21.30
12 200-300 0.00 — 47.43 26.48 45.97 37.62 47.89 31.93
12 300-400 0,00 — 53.70 33.64 51.85 42.61 57.62 40.30
12 400-300 0.00 — 57.87 39.92 54.60 46.10 64.39 486.75
12 300-60G0 .00 — 60.56 44.85 57.42 49.26 57.81 50.72
12 60G-700 0.00 — 62.52 49.06 58.99 52.52 69.72 53.36
12 0-700 0.00 — [ 5364 [ 3593 [ 51.15 | 42.04 58.04 41.7]._|
20 0-100 0.00 — 27.19 10.07 20.61 19.67 20.71 10.85
20 100-200 0.00 — 41.88 19.25 33.17 31.82 40.20 23.30
20 200-300 0.00 — 51.50 27.73 47.53 40.01 53.63 34.46
20 300-400 0.00 — S7.62 35.15 55.54 44.95 63.05 43.20
20 400-500 0.00 — 61.32 41.64 58.72 48.11 69.56 48,74
20 500-600 0.00 — 63.51 46.84 61.06 51.33 72.86 53.80
20 600-700 0.00 — 65.88 31.75 61.94 54.73 74.70 56,23
20 0-700 0.00 — 57.27 | 37.54 [ 54.19 [ 45.12 63.26 44,48
aa (0-100 0.00 — 29,91 10.42 17.19 20.27 28.39 12.57
30 100-200 0.00 — 45.48 19.81 31.80 34.00 46.52 25.23
50 200-300 | 0.00 — 55.93 | 28.46 | 46.18 | 43.07 | 59.40 | 36.57
30 300-400 0.00 — 61.57 35.95 37.98 47.47 58.41 45.91
a0 400-500 0.00 — 64,55 42.60 63.08 49.83 74,47 53.00
50 300-600 0.00 — 56.69 47.99 G3.82 52.79 T7.56 57.91
30 600-700 0.00 — G8.53 53.07 63.44 56.04 T9.34 £0.32
50 [ o700 ] 0.00 | B0.7L | 38.44 | 56.20 | 47.14 | 68,37 | 47.51 |
100 0-100 0.00 — 30.37 10.59 15.63 20.00 31,22 13.23
100 109-200 0.00 — 46.82 20.02 30.13 34.82 48,94 25.78
100 200-300 0.00 — 47.83 28.65 44.77 44.59 61.61 37.20
100 300-400 0.00 — 63.156 36.17 38.05 48.71 70.38 46.89
100 400-500 0.00 — 65.65 42.88 65.00 50.66 76.20 54.55
100 500-600 0.00 — 87.47 48,31 64.30 53.33 79.12 650.43
100 600-700 0.00 60.16 53.48 63.46 56.44 80.82 63.54
100 0-700 ] 0.00 | — | 61.05 | 38.70 | &6.76 | 48.05 | 70.20 | 49.02 ]

Table B.4: Angular-Pairing Error Data
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Number of Final Home distance (cm) — g (o) |
landmarks h0 hl h2 h3 h4 h5 hé
4 2.610 2,621 2.860 2,621 2.722 2.636 2.963
(7.851) | (7.853) | (9.908) | (7.853) | (8.598) | (7.867) | (12.601)
6 1.714 1.726 3.353 1.726 3.367 1.823 2.526
(3.044) | (3.116) | (17.638) | (3.116) | (14.582) | (4.735) | (16.622)
8 1.471 1.481 4.895 1.481 3.492 1.991 2.580
(L087) | (1.117) | (23.345) | (1.117) | (14.121) | (7.601) | (20.171)
12 1.417 — 7.008 1.412 3.021 2.352 2.167
0.790) | (—) | (24.573) | (0.822) | (10.439) | (8.140) | (14.393)
20 1.397 — 9,352 1.387 1.821 1.698 1.798
(0.721) | (—) | (23.002) | (0.727) | (3.849) | (3.196) | (7.792)
50 1.367 — 7437 1.343 1.436 1.383 1.427
0.672) | (—) | (15.426) | (0.674) | (1.022) | (0.722) | (1.805)
100 1.333 — 6.822 1.308 1.421 1.413 1.349
(0.669) | (—) |(13.021) | (0.665) | (0.949) | (0.826) | (0.676)

Table B.5: Final Homing Distance Statistics (simulation, h0-h6)

Number of Final Home distance (cm) — g (o)
landmarks h3u h5u h7 h7u
4 7.569 7.616 57.481 67.954
(14.384) | (14.621) | (113.351) | (127.804)
6 3.894 6.540 72.404 96.901
(7.069) | (26.380) | (116.299) | (136.305)
8 2.752 0.879 87.275 122.561
(3.976) | (36.952) | (122.340) | (142.003)
12 1.915 11.628 114.857 170.448
(1.604) | (34.056) | (126.891) | (140.616)
20 1.573 10.910 161.151 221.035
(0.786) | (28.431) | (120.013) | (124.803)
50 1.342 9.353 236.421 278.602
(0.675) | (22.531) | (108.155) | (101.310)
100 1.286 §.144 271.519 305.410
(0.680) | (16.137) | (93.414) | (96.003)

Table B.6: Final Homing Distance Statistics (simulation, h3u,h5u,h7h7u)
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Number of Range Average home-vector error {av{|y—¢[))
landmarks {cm) 0 h1 h3 [T h3 T h3u T4 h5 hau he | h7 [ hTu |
4 0-100 20.52 20.23 21.21 20,23 23,81 20.44 20.26 23.82 31.23 23.05 26.86
4 100-200 22.79 21.84 25.38 21.84 24,49 22.34 22.00 24,63 26.46 34.86 30.33
4 200-300 26.19 24.65 28.56 24.63 28.07 25.54 24 97 26.36 32.98 25.43 31.7T
4 300-400 29.86 28.0D 32.81 28.00 28.40 29.24 25.44 28.82 37.90 24.97 31,32
4 400-500 33.69 31.73 37.45 31.73 31.25 33.17 32.33 31.81 41.48 25,20 28,10
4 500-6060 38.11 36.17 41.30 36.17 34.56 37.98 36.90 35.24 44.76 20.02 30,03
4 600-700 42.84 40.83 45.45 40.83 37.45 42.82 41.60 38.17 48.29 34.21 31.88
4 0-700 31.35 ] 20.63 | 3482 [ 29.63 29.75 30.90 30.12 30.21 38.12 | 26.14 [ 30.17 |
[ 0-100 17.51 16.92 19.14 16.92 20.33 19,75 17.17 20.58 18,54 20.52 24 89
5] 100-200 19.88 18.25 24.8G 18.25 20.88 22.52 19.46 22.20 26.D2 23.60 3.7
[5] 200-300 22.94 20.46 28.80 20.46 22.31 25.38 22.38 23.93 32,48 24.13 32,863
] 300-400 25.94 23.11 31.27 23.11 24.35 28.28 25.16 25.81 36.00 22.09 29,86
6 400-500 29.15 26.26 33.72 26.26 27.10 31.32 28.08 28.22 38.51 Z0.23 26.1%
[ S500-600 33.05 30.22 36.90 30.22 30.74 35.867 31.78 31.57 41.45 22.51 25.77
3] 600-700 37.45 34.41 40.85 34.41 34.19 349.92 35.93 34.94 4474 26.72 27.12
G T700 | 27.23 | 2402 | 31.94 | 2462 | 2586 | 20.62 | 3693 | 27.06 | 3507 | va.27 | 9830 |
8 0-100 15.37 14.69 19.32 14.69 17.67 19.46 16,03 1%.19 18.02 19.25 24.08
8 100-200 18.16 15.92 25.49 15.92 18.28 22.65 19.22 21.a7 26.61 23.18 31.51
& 200-300 20.92 17.81 28.05 17.81 15.67 26.00 21.77 22.70 32.09 23.82 33.82
E] 300-400 23.49 20.13 29.70 20.13 21.80 28,79 23.80 24.25 34.57 21.42 29.73
8 400-500 26.38 23.01 31.71 23.01 24.87 31.16 25.92 26,36 36.77 18.50 24,60
E] 500-6800 30.03 26.64 34.46 26.64 28,31 35.37 29.03 29,56 39.38 15.74 23,43
8 600-700 34.13 30.47 37.96 30.47 31.88 39.02 32.71 32.83 42.31 22.68 24,07
[ 8 [ 0700 | 2471 | 21.06 | 3044 | 21.56 | 23.35 | 25.60 | 2467 | 05.46 | o467 | 20.86 | 97.62 |
12 0-100 13.45 — 21,19 12.15 14.66 18.06 15.47 19.23 17.96 18.17 23,80
12 1003-200 15.83 — 25,82 12.87 15.25 22.38 18.97 21.11 27.03 25.44 35.97
12 200-300 18.04 — 27.06 14,24 16.44 27.04 21.32 21.92 29.G8 25.59 37.25
12 300-400 23.03 — 28,01 16,09 18.26 30.36 22.68 23,78 31.45 21.47 30,21
12 400-500 232 .40 — 29,19 18.46 20.74 32.189 23.73 23,93 33.60 17.02 22.66
12 S00-600 25.66 — 31.31 21.61 24,07 35.70 25.99 26.44 36.08 16.68 20.16
12 6G0-700 29.61 — 34.18 25.20 27.67 38.33 28.81 29.42 39.04 17.70 19,54
[ 12 T G700 | 2L.15 | — | 26.60 | 17.07 | 10.66 | 30.46 | 23.01 | 23.6L | 32.04 | 20.18 | 27.39 ]
20 Q-100 11.35 — 24.80 9.36 11.39 14.64 14.35 19.67 19.77 19.38 26.98%
20 100-200 13,16 — 26.81 9.52 11.84 20.84 19.34 21.95 24.70 31.06 44.09
20 200-300 14.56 — 268,00 10.37 12.74 27.80D 22,40 23,87 25.77 29.36 42.48
20 300-400 15.96 27.88 11.71 14.18 32.73 23.25% 23.43 27.30 22.48 31.25
20 400-500 17.83 — 27.41 131.62 16.26 34.45 22.86 21.78 29.19 16.73 20.92
20 500-600 20.52 — 2R.48 16.15 15.10 37.86 23.95 23.30 31.33 15.44 17.60
20 600-700 23.86 30.28 19.13 22.18 38.95 23.41 25.52 33.82 13.82 15.43
| 20 C.700 | 1607 | — | 27.78 | 1.8 | 15.41 | 31.86 | 2357 [ 25.47 | 28.07 | 2110 | 38.21 |
50 0.100 | 8.00 — 7 2896 | 572 | 7.4l | 1072 | 1882 | 3506 | 17.64 | 5195 | 1404
50 Too-200 | B.81 T 3131 | 554 | 7.96 | 18.77 | 21.86 | ab.r7 | 1872 | H0.50 | ©63.14
50 200-300 9.60 — 31.98 5.91 8.36 27.76 25.91 28.99 19.43 38.62 52.38
50 300-400 10.47 — 20.92 6.72 9.26 35.23 26.16 24 .49 20.49 25.93 34.73
50 4CH0-500 11.75 — 27.4D 5.04 10.59 38.14 24.20 20.93 21.89 18.79 20.57
50 H00-600 13.65 — 27.12 9.82 12.52 41.01 24.03 20.84 23.51 18.88 17.90
50 5C0-700 18.17 — 27.61 12.02 14.82 40.13 23.80 21.27 25.56 12.46 12.53
| 50 [ o700 [ 1126 [ — [ 20.08 | 7.65 | i0.00 | 53.60 | 24.00 | 2406 | 2181 | 26.64 | 32.72 |
100 0-100 6.18 — 2B.86 4.09 5.63 9.23 13.79 31.87 14.53 52.42 62.73
100 1030-200 6.62 — 33.69 3.82 5.90 17.94 23.11 38.59 14.66 61.42 72.50
100 200-300 6.97 — 34.55 3.97 §.24 27.30 2772 33.74 15.00 45.07 59.81
100 300-400 7.54 — 31.85 4.52 6.80 35.54 27.91 26.36 15.69 20.43 39.50
100 400-300 8.47 — 28.76 5.49 7.68 39.79 25.66 21.64 16.81 20.83 22.29
100 300-600 9 .88 e 27.66 6.80 9.06 42.41 25.01 20,82 18.18 23.33 21.04
100 600-7T00 11.88 — 26.97 8.47 10.76 40.39 23.85% 20.22 19.93 15.28 13.95
[ 1Q0 | G-700 8.17 — 30.57 .19 7.39 34.27 | 25.87 | 26.34 | 1637 | 31.58 [ 37.50

Table B.7: Home-Vector FError Data
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Number of Range | Average homing-vector error (av(|y—w[})
landmarks {cm) RO ] KT | b2 | h3 | hd [ hs [ hé& | &Y
4 (0-100 0.00 0.48 2.03 0.48 .80 0.61 1.55 8.61
4 100-200 0.00 1.58 6.19 1.58 2.58 2.19 5.2 15.65
4 200-300 0.00 2.77 9.53 2.77 4.77 4.02 8.55 19.97
4 300-400 0.00 3.74 11.07 3.74 .56 5.42 ¢.68 21.21
4 400-500 0.00 4.43 11.25 4.43 T.68 6.33 §.19 20.37
4 500-600 0.00 4.92 10.64 4.92 2.91 G.94 7.60 19.02
4 600-700 0.00 5.50 10.15 5.50 9.87 7.48 3.81 17.53
E: [ o700 [ 0.00 | 375 | 10.01 | 873 ] 6.57 | 5.5 ] B.17 | 19.31
[ 0-100 0.00 .86 4.52 0.86 5.00 1.36 2.93 12.38
5] 100-200 0.00 2.43 12.14 2.43 $.41 5.22 9.03 21.26
[ 200-300 0.00 3.97 16.20 3.97 12.63 8,56 12.78 25.22
] 300-400 0.00 4.99 16.89 4.99 14.39 10.23 13.08 25.14
& 400-500 0.00 3.83 15.88 3.63 14.98 10.59 11.67 23.38
] 500-600 0.00 G.08 14.62 6.08 16.42 10.73 9.91 21.54
& 600-700 0.00 8.76 13.62 6.76 16.79 11.17 T.94 19.40
{ 3] | O-700 0.00 4.80 15.13 | 4.90 | 1395 | 946 [ 11.1v 23.02 ]
[ 0-100 0,00 1.24 B.18 1.24 B8.17 3.54 4.51 15.23
] 100-200 0.00 3.23 17.40 3.23 14.06 9.52 12.01 24.17
8 200-300 0.00 4.80 20.26 4.90 18.12 13.10 14.95 26.97
) 300-400 0.00 3.80 20.03 5.80 19.95 14.03 14.42 26.10
() 400-500 0.00 6.3 18.48 6.33 19.97 13.61 12.82 23.74
B 500-600 0.00 §.70 16.85 6.76 21.82 13.43 10.87 21.74
] E00-T00 0.00 7.530 15.72 7.530 21.73 13.63 8.91 15.36
[ 8 0-700 D.00 | 5.66 | 18.28 | 3.668 | 19.13 [ 12.8% [ 12.6§ 24.01
12 0-100 0.0D — 14.53 1.80 10.4G T.14 7.4l 17.79
12 10D-200 0.00 22.56 4.13 18.33 14.€1 15.38 28.13
12 200-300 0.00 — 23.66 3.71 24.10 17.94 13.70 2D.19
12 300-400 0.00 — 22.93 G.43 26.73 18,32 14.52 26.17
12 400-500 0.00 — 21.15 6.73 26.51 17.12 13.31 23.24
12 500-€0D 0.00 — 19.60 7.15 28.32 16.71 11.84 21.22
12 600-700 0.00 — 18.33 7.86 27.36 16.46 10.05 18.560
[ 12 [ o700 [ 0.00 | — | 21.48 | 6.23 | 25.22 | 16.86 | 13.59 | 24.57
20 0-100 0.00 — 22.85 2.71 10.50 11.03 12.15 21.37
20 100-200 0.00 - 26.12 5.01 19.50 18.33 15.91 33.99
20 200-300 0.00 — 26.48 .15 26.96 21.45 14.48 32.16
20 300-400 0.00 — 25.24 5.57 31.51 21.65 13.86 26.01
20 400-500 0.00 23.06 .70 31.94 19.98 13.16 21.93
20 500-600 0.00 — 21.72 T7.07 34.23 19.41 12.07 20.31
20 600-700 0.00 — 20.72 T.75 32.81 18.94 10.32 17.01
[ 70 T 0700 | 0.00 | — | 2404 | 641 | 39.60 | 20.00 | 1345 | 25.08
30 0-190 0.00 — 28.13 3.36 .77 13.42 13.27 33.78
S0 100-200 9.00 — 31.00 4,95 18,59 21.80 13.30 51.40
50 200-300 0.00 — 31.71 5.47 27.48 23.79 11.87 39.52
50 300-400 0.00 — 29.39 5.54 34.85 253.90 11.65 27.33
50 400-500 0.00 — 26.19 5.45 37.49 23.58 11.41 21.07
) 500-600 0.00 — 24.30 5.69 39.91 22.82 10.83 21.06
50 600-700 0.00 — 23.86 g.10 37.33 21.81 9.78 15.83
[ 50 0700 | 0.00 | — | 27.95 | 548 | 33.02 | 23.74 | 11.51 | 28.42
100 0-100 0.00 - 28.71 3.30 3.98 13.69 10.78 53.31
100 100-200 (.00 — 33.48 4.28 17.77 23.05 09.84 6G1.69
100 200-300 0.00 — 34.36 4.43 27.00 27.61 9.53 45.33
100 300-400 G.00 — 31.60 4.38 35.19 27.73 9.43 29.92
100 400-500 G.00 = 28.21 4.27 39.38 25,30 9.43 21.69
100 500-600 0.00 — 26.47 4.43 41.80 24,42 9,18 23.72
100 600-700 Q.00 — 25.11 4.72 38,94 23.03 8.37 17.35
( 100 T 0700 | 0.00 | — | 30.02 | 4.34 | 33.85 | 25.37 | 9.44 | 52.20

Table B.8: Homing-Vector Error Data



B.2 Correspondence-Method Comparisons and Source Data

244

Number of Range I Average angular-pairing error (av(|8;—84rp5r)31))
landmarks (cm) [ hd | hl | hZ2 T B3 hd | h5 | h& h7 ]
4 0-100 0.00 0.86 2.18 0.86 1.15 0.92 2.18 1.73
4 100-200 0.00 3.00 7.54 3.00 3.90 3.37 8.21 £.00
4 200-300 0.00 6.02 13.61 6.02 7.70 G.79 15.6¢ 11.15
4 300-400 0.00 9.47 18.60Q 9.47 11.62 10.42 22.28 13.83
4 400-500 0.00 12.99 22.43 12.89 15.12 13.95 27.39 19.75
4 500-800 0.00 15.92 24.76 15.92 18.24 16.86 20.64 22,26
4 600-700 0.00 10.12 26.53 19.12 2115 19.90 30.44 24,24
4 ] 0-700 a.00 10.54 | 18.70 | 10.54 12.46 11.37 ] 22.20 16.26 |
G 0-100 a.00 1.23 3.76 1.22 4.70 1.64 3.47 2.42
[ 100-200 7.Q00 4.11 12,11 4.11 10.69 6.00 12.33 §.17
[ 200-300 ¢.00 8,33 20.1% 4.03 15.94 11.35 22.20 14.51
G 300-400 .00 12.36 26.07 12.36 20.11 15.89 30.23 20.68
G 400-600 .00 16.83 30.23 16.83 23.39 19.58 36.08 25.29
[{ 500-600 .00 20.50 32.73 20.50 26.56 22.58 38.73 28.27
& 600-700 0.00 24.35 34.44 24.33 28.09 25.87 39.65 30.37
[ | g-7v00 [ 000 [ 13.7C [ 25.78 13.70 20.47 16.38 [ 29.80 21.00
[:] 0-100 0.00 1.50 5.61 1.50 .76 2.78 4.7G 3.04
[:] 100-200 0.00 4.95 16.00 4.85 14.73 9.45 15.41 9.71
8 200-300 0.00 0.47 24,70 8.47 21.41 15.64 26.36 17.36
] 300-400 0.00 14.2¢ 30.80 14.29 26.04 19.96 35.03 23.85
a 400-500 0.00 19.22 35.01 19.22 28.87 23.29 41,32 28.51
8 S00-600 0.00 23.35 37.42 23.35 32.22 26.29 43.87 31.80
[:] 600-700 (.00 27.61 30,08 27.61 34.53 29.58 44.68 33.88
] 0-700 1 0.00 [ 15.73 ] 30.20 15.73 25.81 20.16 [ 34.50 24.03 ]
12 0-100 0.00 — 8.66 1.87 8.73 5.39 6.70 3.93
12 100-200 0.00 — 21.27 6.00 18.96 14.42 16.89 12.18
12 200-300 0.00 — 30.65 11.29 27.86 20.83 31.91 20.94
12 300-400 0.00 — 36.85 16.77 33.43 24.99 41.12 28.08
12 4D0-500 0.00 — 40.83 22.20 35.94 27.84 47,70 33.40
12 500-600 0.00 — 43.09 26,77 38.61 30.70 50,24 36.36
12 £00-700 0.00 44.58 31.37 40,09 33.83 51.18 38.24
12 T 0700 [ 000 | — | 36.00 | 18.26 | 32.25 | 24.88 | 40.a7 | 28.00 ]
20 0-100 D.00 — 12.91 2.49 9.21 9.27 9.59 5.15
20 100-200 0.00 — 26.24 7.34 20.85 19.29 24.40 14.80
20 200-300 0.00 — 36.11 13.24 32.08 25.94 36.95 24.53
20 300-400 0.00 — 42.37 19.24 35,80 29.68 46.68 32.29
20 400-500 0.00 — 45.96 25.05 42.54 31.85 53.52 37.71
20 500-600 0.00 — 48.00 29.97 44.62 34.57 55.97 40.68
20 £00-700 0.00 — 49.38 34.80 45,05 37.68 56.87 42.29
20 | 0-700 0.00 — 41.17 20.76 37.61 29.24 45.77 31.91 ]
50 0-190 0.00 — 16.76 3.30 9.44 13.11 13.30 7.14
50 100-200 0.0¢ — 31.63 8.91 21.48 24.72 28.75 17.65
30 200-300 (.00 — 42.36 15.23 34.30 32.04 42.20 27.88
50 300-400 .00 — 48.27 21.43 45,34 34.84 52.36 36.47
50 400-500 a.00¢ — 51.10 27.42 49.81 35.76 50.18 42.47
50 500-600 Q.00 52.52 32.48 530.06 37.95 61.31 46.14
50 600-700 0.00 — 53.58 37.44 48.72 40.76 62.10 47.38
[ 50 Q-700 G060 [ — [ 46.49 [ 22.94 42.37 33.79 | 51.11 36.18 |
100 Q-100 Q.00 — 17.81 3.81 9.34 14.21 14.40 7.99
104 100-200 G.(H — 33.59 9.60 21.32 26.88 30.47 13.45
100 200-300 Q.00 — 44.91 15.92 34.31 34.78 44.30 28.78
100 300-400 .00 — 50.55 22.14 46.54 37.09 54.48 37.90
100 400-500 0.00 — 52.8% 23.19 52.77 37.35 651.19 44.65
100 500-600 Q.00 — 53.90 33.29 51.75 39.18 63.02 49.34
100 600-700 Q.00 — 54.72 38.33 49.54 41.77 63.71 51.07
100 [ 0-700 [ 000 | — | 48.41 | 2367 | 48.77 | 35.66 | 53.04 | 38.05

Table B.9: Angular-Pairing Error Data
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Number of | Range | Average home-vector error \/ av{|y—¢|?)

landmarks (em) [ 0° 5° 10° | 20° | 50°
10 0-100 | 16.43 | 29.97 | 46.95 | 69.11 91.38

10 100-200 | 17.36 | 18.93 | 23.64 | 39.95 75.33

10 200-300 | 19.10 | 19.67 | 21.35 | 28.17 60.57

10 300-400 | 21.37 | 21.66 | 22.49 | 25.78 49.72

10 400-500 | 24.28 | 24.41 | 24.79 | 26.43 42.55

10 500-600 | 27.88 | 27.88 | 27.92 | 28.42 39.20

10 600-700 | 31.80 | 31.74 | 31.47 | 30.83 37.42

10 | 0-700 | 23.19 } 23.90 | 25.61 | 30.84 52.57

20 0-100 | 11.69 | 21.57 | 34.94 | 56.15 85.02

20 100-200 | 11.85 | 12.83 | 15.54 | 25.34 62.25

20 200-300 | 12.87 | 13.20 | 14.19 | 17.97 43.58

20 300-400 | 14.51 | 14.63 | 15.05 | 16.92 32.42

20 400-500 | 16.82 | 16.83 | 16.94 | 17.72 26.83

20 500-600 | 19.78 | 19.67 | 19.52 | 19.46 24.75

20 600-700 | 23.17 | 22.93 | 22.49 | 21.42 23.88

20 0-700 | 16.12 | 16.54 | 17.64 | 21.18 38.25

50 0-100 | 7.18 | 13.02 | 22.52 | 39.37 74.00

50 100-200 | 6.96 | 7.52 | 9.14 | 14.25 42.70

50 200-300 | 7.42 | 7.59 | 821 | 10.54 24.82

50 300-400 | 8.44 | 851 | 881 | 10.06 18.08

50 400-500 | 10.07 | 10.07 | 10.17 | 10.68 15.41

50 500-600 | 12.23 | 12.15 | 12.04 | 11.92 14.55

50 600-700 | 14.86 | 14.64 | 14.26 | 13.31 14.11

[ 50 | 0-700 | 9.71 | 9.94 | 10.70 | 13.14 I 25.08

Table B.10: Home-Vector Error Data (Bearing Error).
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Number of | Range | Average homing-vector error (\/ av(|y—¢|?))
landmarks (em) [ 0° [ 5° [ 10° | 20° | 50°
10 0-100 [ 7.31 [ 26.83 | 45.73 | 69.08 91.56
10 100-200 | 11.12 | 13.95 | 20.80 | 39.78 76.14
10 200-300 | 12.95 | 14.38 | 17.91 | 28.11 62.30
10 300-400 | 13.74 | 15.11 | 18.16 | 25.67 52.69
10 400-500 [ 14.22 | 15.90 | 19.27 | 26.17 47.19
10 500-600 | 15.04 | 17.33 | 21.27 | 28.22 45.76
10 600-700 | 16.52 | 19.70 | 24.21 | 31.09 46.49
| 10 | 0-700 [13.74]16.24[20.94 [ 30.71 | 5587
20 0-100 | 8.10 [ 20.23 | 34.54 | 56.41 85.31
20 100-200 | 10.11 | 11.73 | 15.47 | 26.40 63.12
20 200-300 | 10.82 | 11.82 | 14.05 | 19.53 45.40
20 300-400 | 11.09 | 12.10 | 14.12 | 18.45 35.48
20 400-500 | 11.24 | 12.54 | 14.82 | 19.06 31.50
20 500-600 [ 11.81 | 13.68 | 16.44 | 20.96 31.42
20 600-700 | 12.81 | 15.51 | 18.76 | 23.59 33.04
20 [ 0-700 | 11.13 | 12.93 [ 16.10 | 22.46 41.34
50 0-100 | 6.93 [ 13.15 [ 22.86 | 39.76 74.21
50 100-200 | 7.62 | 8.55 | 10.46 | 15.52 43.40
50 200-300 | 7.84 | 8.40 | 9.50 | 12.22 26.31
50 300-400 | 7.82 | 8.38 | 9.41 | 11.69 20.54
50 400-500 | 7.71 | 8.52 | 9.81 | 12.25 19.09
50 500-600 | 8.02 | 9.31 | 10.99 | 13.75 19.83
50 600-700 | 8.57 | 10.63 | 12.78 | 15.90 21.56
[ 50 | 0700[ 7.82 [ 890 [10.76] 1458  27.33

Table B.11: Homing-Vector Error Data (Bearing Error).
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Number of | Range | Average angular-pairing error (\/ av(|0i—Byip(iy )

landmarks (em) [ 0° [ 5° [ 10° 20° 50°
10 0-100 | 28.75 | 31.84 | 43.47 | 83.90 221.91
10 100-200 | 56.22 | 59.25 | 69.24 | 105.95 230.66
10 200-300 | 81.98 | 85.52 | 96.20 | 132.77 243.21
10 300-400 | 104.34 | 108.75 | 121.25 | 159.74 257.10
10 400-500 | 123.99 | 129.65 | 144.40 | 185.00 269.82
10 500-600 | 139.44 | 146.65 | 164.00 | 206.05 279.37
10 600-700 | 154.39 | 163.50 | 183.02 | 225.26 286.68
10 [ 0700 [ 111.58 | 116.93 [ 130.80 | 169.53 | 260.47
20 0-100 | 45.05 | 51.62 | 72.48 | 134.79 316.96
20 100-200 | 86.11 | 91.91 | 108.81 | 162.93 330.51
20 200-300 | 124.12 | 130.25 | 147.06 | 198.19 349.76
20 300-400 | 157.21 | 164.29 | 182.45 | 234.53 370.73
20 400-500 | 186.21 | 194.64 | 214.98 | 269.85 390.47
20 500-600 | 209.47 | 219.71 | 242.77 | 300.08 405.21
20 600-700 | 231.44 | 243.72 | 269.40 | 327.83 416.70

| 20 0-700 | 167.88 [ 175.94 | 195.48 | 248.75 376.19 |
50 0-100 | 73.67 [ 88.28 | 125.44 | 218.28 500.71
50 100-200 | 140.05 | 150.84 | 178.85 | 259.95 523.16
50 200-300 | 201.21 | 211.39 | 237.30 | 314.92 555.89
50 300-400 | 254.22 | 265.12 | 292.22 | 372.35 591.22
50 400-500 | 301.23 | 313.64 | 343.72 | 429.11 624.43
50 500-600 | 339.37 | 353.91 | 388.04 | 478.25 648.83
50 600-700 | 375.28 | 392.48 | 430.96 | 524.07 667.99

| 50 [ 0-700 | 271.82 [ 283.91 | 313.28 | 395.91 | 600.35 |

Table B.12: Angular-Pairing Error Data (Bearing Error).

Number of Final Home distance {cm) — g (o)
landmarks 0° 5° 100 [ 20° | 50°
10 1.472 18.607 36.891 73.795 196.748
(1.210) | (11.363) | (22.595) | (45.068) | (118.974)
20 1.387 12.349 23.860 47.803 133.439
(0.727) | (7.171) | (13.830) | (27.702) | (75.348)
a0 1.343 7.773 14.538 28.650 82.175
(0.674) | (4.241) | (8.038) | (15.747) | (45.179)

Table B.13: Final Homing Distance Statistics {Bearing Error).
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Number of | Range | Average home-vector ervor (av(|y—a|))
landmarks (em) | 0° ] 5 [ 10° | 20° [ 50°
10 0-100 | 13.12 [ 21.48 [ 33.82 [ 63.15 [ 75.91
10 100-200 | 13.98 | 15.27 [ 18.73 | 29.83 | 59.52
10 200-300 | 15.52 | 15.99 [ 17.34 | 22.23 | 46.17
10 300-400 | 17.54 | 17.78 | 18.43 [ 20.86 | 37.47
10 400-500 | 20.09 | 20.19 | 20.46 | 21.62 | 32.32
10 500-600 | 23.36 | 23.35 | 23.33 [ 23.50 | 30.17
10 600-700 | 27.16 | 27.08 [ 26.71 | 25.79 | 20.11
[ 10 | 0-700]18.87]19.41]20.5423.84| 39.13
20 0-100 | 9.36 | 14.99 [ 23.95 [ 41.07 [ 69.10
20 100-200 | 9.52 | 10.31 [ 12.38 [ 19.11 | 47.18
20 200-300 | 10.37 [ 10.63 | 11.39 | 14.27 | 32.12
20 300-400 | 11.71 | 11.80 [ 12.13 [ 13.57 | 24.38
20 400-500 | 13.62 | 13.62 | 13.70 [ 14.28 | 20.69
20 500-600 | 16.15 | 16.05 | 15.90 | 15.78 | 19.38
20 600-700 | 10.13 | 18.91 | 18.51 | 17.48 | 18.83
[ 20 ] 0-700[12.83]13.12]13.78 1583 27.08 |
50 0-100 | 5.72 | 8.98 [ 14.62] 26.94 | 57.80
50 100-200 | 5.54 | 599 [ 7.25 [ 11.12| 31.04
50 200-300 | 5.91 | 6.05 | 6.55 | 840 | 18.72
50 300-400 | 6.72 | 6.78 | 7.03 | 8.04 | 1415
50 400-500 | 8.04 | 8.04 | 813 | 855 | 12.20
50 500-600 | 9.82 | 9.75 | 9.66 | 956 | 11.57
50 600-700 | 12.02 [ 11.83 | 11.51 | 10.69 | 11.23
[ 50 | 0700] 758 [ 774]817 [ 951 | 1676

Table B.14: Home-Vector Error Data (Bearing Error).
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Number of | Range | Average homing-vector error (av(|y—¢|))
landmarks (em) [ 0° [ 5° | 10° [ 20° 50°
10 0-100 | 1.54 | 16.56 | 31.09 | 52.14 75.69
10 100-200 | 3.75 | 8.62 | 14.60 | 28.64 60.00
10 200-300 | 5.40 | 8.28 | 12.19 | 21.05 47.68
10 300-400 | 6.26 | 8.52 | 12.01 | 19.44 40.10
10 400-500 | 6.69 | 8.91 | 12.61 | 19.82 36.32
10 500-600 | 7.13 | 9.69 | 13.94 | 21.43 35.75
10 600-700 | 7.92 | 11.05 | 15.92 | 23.66 36.81
10 | 0-700 | 6.08 i 9.17 | 13.56 | 22.24 42.39
20 0-100 | 2.71 | 12.58 | 23.01 | 41.10 | 69.26
20 100-200 | 5.01 | 7.70 | 11.45 | 19.81 | 48.01
20 200-300 | 6.15 | 7.68 | 10.25 | 15.31 33.82
20 300-400 | 657 | 7.89 | 10.28 | 1451 | 27.05
20 400-500 | 6.70 | 8.21 | 10.83 | 15.02 24.63
20 500-600 | 7.07 | 9.03 | 12.10 | 16.65 | 24.04
20 600-700 | 7.75 | 10.40 | 13.95 | 18.75 | _ 26.51
20 0-700 | 6.41 | 839 | 11.42 | 16.67 |  30.41
50 0-100 | 3.36 | 8.62 | 1491 | 27.36 | 57.98
50 100-200 | 4.95 | 621 | 813 |12.15| 31.73
50 200-300 | 5.47 | 6.23 | 7.43 | 9.71 20.03
50 300-400 | 5.54 | 6.27 | 7.38 | 9.30 16.17
50 400-500 | 5.45 | 641 | 7.72 | 9.77 15.20
50 500-600 | 5.69 | 7.06 | 8.68 | 11.00 15.88
50 600-700 | 6.10 | 816 | 10.13 | 12.77 17.35
[ 50 [ 0700[543] 659 [ 8.14 [10.79] 19.32

Table B.15: Homing-Vector Error Data (Bearing Error).
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Number of | Range | Average angular-pairing error (av(10;—fsn[))
landmarks (em) | 0° [ B° 10° | 20° | 50°
10 0-100 | 1.69 | 2.80 | 5.67 | 14.91 51.00
10 100-200 | 5.52 | 6.66 | 9.66 | 19.23 53.50
10 200-300 | 10.49 | 11.79 | 15.12 | 25.30 57.27
10 300-400 | 15.73 [ 17.29 | 21.18 | 32.25 61.68
10 400-500 | 20.98 | 22.90 | 27.49 | 39.41 65.91
10 500-600 | 25.46 | 27.87 | 33.23 | 45.76 69.22
10 600-700 | 30.01 | 33.06 | 39.15 | 51.85 71.82
[ 10 0-700 | 17.23 [ 19.01 | 23.23 | 34.52 62.77
20 0-100 [ 2.49 | 4.38 | 8.65 | 20.22 54.26
20 100-200 | 7.34 | 9.11 | 13.20 | 24.27 56.90
20 200-300 | 13.24 | 15.03 | 19.16 | 30.04 60.86
20 300-400 | 19.24 | 21.19 [ 25.57 | 36.70 65.40
20 400-500 | 25.05 | 27.29 | 32.08 | 43.73 69.93
20 500-600 | 29.97 | 32.64 | 37.98 | 50.12 73.44
20 600-700 | 34.80 | 37.99 | 43.90 | 56.29 76.29
| 20 | 0-700 | 20.76 | 22.92 | 27.58 | 39.05 66.63
50 0-100 | 3.30 | 6.26 | 11.51 | 22.80 55.80
50 100-200 | 8.91 [ 11.20 | 15.75 | 26.49 58.58
50 200-300 | 15.23 | 17.24 | 21.45 | 32.05 62.71
50 300-400 | 21.43 | 23.45 | 27.72 | 38.62 67.45
50 400-500 | 27.42 | 29.63 | 34.23 | 45.72 72.18
50 500-600 | 32.48 | 35.07 | 40.16 | 52.22 75.81
50 600-700 | 37.44 | 40.50 | 46.16 | 58.57 78.76
| 50 0-700 | 22.94 | 25.21 | 29.82 | 41.10 68.72

Table B.16: Angular-Pairing Error Data (Bearing Error).
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B.3 Mobile Robot Homing and Simulation
Comparisons

This section presents a more comprehensive comparison of the homing behaviour
observed in the mobile robot experiments against identical simulated versions.
For each of the real-world homing runs presented in §6.5.2 the equivalent
continuous and discrete simulated homing version is shown.

Figures B.19, B.20, and B.21 demonstrate that the real-world robot homing
compares favourably with the simulated versions. In each case essentially the
same general homing behaviour can be observed. The slight differences between
the actual homing path taken by the robot and that observed in simulation,
is primarily due to the occasional erroneous observation of landmarks. This
is most apparent in figure B.21, where the robot homing path is significantly
different to that generated by the simulation. At each snapshot position, the
direction of a sensed landmark is noted. Due to the spasmodic identification of
erroneous landmarks, in addition to the occasional failure to observe legitimate
landmarks, the computed homing vector is not as accurate as those generated
in simulation. However, despite this the homing algorithm was able to produce
homing vectors accurate enough to incrementally improve the robots position and

thus successfully home.
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Figure B.19: Mobile Robot Homing and Simulation Comparisons. The real-world

homing experiments using the mobile robot (a, b) compare well with identical
scenarios run in simulation {c-f).
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Figure B.20: Mobile Robot Homing and Simulation Comparisons. The real-world
homing experiments using the mobile robot (a, b} compare well with identical

scenarios run in simulation (c-f).
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Figure B.21: Mobile Robot Homing and Simulation Comparison. The real-world
homing experiment using the mobile robot (a) compares reasonably well with
identical scenarios run in simulation (b, ¢). Path differences are due to the
erroneous perception of landmarks.
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