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Abstract

The GEONETCast data dissemination system delivers free multi-source raw satellite images
and processed products to users worldwide. This data can be used to construct long time
series that can be used to study dynamic phenomena. To explore these dynamics, using an
animation with few controls is common practice. But animations easily lead to change
blindness due to information overload, a problem that can be addressed in various ways.
We present a combination of analytical and visual functionalities to better support visual
exploration of animated time series. The aim is to reduce the problem of change blindness.
Analytical pre-processing functions include slicing and tracking of objects of interest. Results
of the slicing and the tracking are input to the visualization environment, which is further
enriched by tools to make various time, attribute and area selections; options to visually
enhance selections relative to the surroundings, visualization of the path of moving objects,
and of multiple layers. The resulting toolbox is fully dedicated to visual exploration and
analysis of dynamic phenomena. A case study demonstrates it use. Some of the
visualization functions are tested with users, and test results already led to some
improvements. Factors influencing the performance of the toolbox are described, and
directions of future research.

Keywords: multi-source time series, geovisual analytics, tracking, animated visualization,
change blindness, ILWIS.

1. Introduction

Using satellite sensors is often the only way to quickly obtain data with a large spatial
coverage and a high temporal frequency. Currently, several satellite image providers have
distribution networks that offer images at low cost or even for free. For example, images
originating from a number of satellites, both geostationary and polar orbiting, are
distributed to end users through the GEONETCast data dissemination system. These images
are freely available for educational and research purposes
(http://www.earthobservations.org/geonetcast.shtml).

The GEONETCast images are suitable for a wide variety of applications such as meteorology,
climate monitoring, estimation of land and sea surface temperature, crop monitoring,
calculation of various vegetation indices, fire detection and many more. In a typical set up,
the user of the GEONETCast data dissemination system can receive up to 10 GB of satellite



images per day, resulting in long time series that users can explore to study dynamic
phenomena.

The purpose of such an exploration is to find patterns, trends and relationships in order to
detect, monitor and predict the behaviour of the phenomena under investigation at
different spatio-temporal scales. Currently, satellite time series are mainly explored by
animating image sequences, but functionalities are mostly confined to media player controls
(play for-/backward, pause, stop, etc.). This is very limited functionality for time series, e.g.:
subsets (in time, space, attribute values) cannot be extracted easily, and comparisons with a
related data set or in time are difficult to make. Another problem is that although animated
satellite images mimic real world dynamics, users are easily overwhelmed by rapid
sequences of changing pixel values (Monmonier 1992; Harrower 2002) and relevant ones
may pass unnoticed: a phenomenon generally known as ‘change blindness’ (Rensink,
O'Regan, and Clark 1997; Simons and Chabris 1999)

A main reason is that the encoding and comparison process needed to detect change is not
successful due to the limited capacity and short duration of working memory, where
information is processed (Kosslyn and Osherson 1995). For example, part of the motion
signals (local and temporal variation in appearance created by changes in a visual scene that
have no meaning yet) are not encoded because there are too many, causing a ‘cognitive
traffic jam’ (Harrower 2007) for working memory. On the other hand, changes may also be
too slow, below the threshold for perception, and signals can be missed due to saccades
made in the search for patterns or to legends (Rensink, O'Regan, and Clark 1997). Attention
might also be fully engaged in detecting changes that are related to a specific task and
other, even big changes go unnoticed: a phenomenon called inattentional blindness (Mack
and Rock 1998). To consciously perceive changing objects, focussed attention is needed to
interpret motion signals and perceive objects that have some constancy over time (Simons
and Ambinder 2005). But attention is limited, it can only concentrate on a few moving
objects at any time, and it can be distracted (e.g. by too many motion signals or a different
task, as explained; Rensink 2002). In short, change blindness is influenced by a mixture of
bottom-up and top-down processes. Bottom-up processes are driven by visual information
entering the brains, and top-down processes originate in the brains, and are attention or
task driven (Ware 2008).

Given the problems sketched above, visual exploration of animated times series is a rather
subjective and difficult process. Users who are interested in the evolution of phenomena
have to identify relevant features and concentrate to visually sieve and track the often
highly dynamic features to discover their behaviour. To this end, they need to employ a
cognitive management mechanism to selectively process information that is relevant for the
task at hand (Geerinck and others 2009).

There is, therefore, a need to better support visual exploration of animated time series. Our
aim is to influence top-down and bottom-up encoding mechanisms in visual perception, i.e.:
to facilitate focusing of attention and selective perceptual processing of information that is
relevant for the task at hand through effective graphical representations (Geerinck and
others 2009). This paper approaches the problem by providing analytical support to the
visual exploration process and additional functionalities and improvements to the



visualization. More precisely, it presents a dedicated geovisual-analytics and open-source
toolbox to support interactive exploration of satellite time series.

The rest of the paper is organized as follows: section 2 presents the main characteristics of
the toolbox and its implementation as open-source software. Section 3 describes a case
study, namely the tracking of precipitation in relation to vegetation dynamics in Ethiopia
with details on the specific functionality required for this case. In section 4, we describe the
evaluation of selected functions and some aspects related to the overall performance of the
toolbox. Finally, section 5 summarizes our main findings and describes our future work to
further expand and evaluate the toolbox.

2. The toolbox

2.1 Functionality

Ware (2008) states that bottom-up and top-down perception processes can be improved by
implementation of appropriate visual aids. In accordance with this and with our aim to
facilitate visual information processing, we focus on employing methods that support the
perceptual transformation of sequences of changing pixel values (visual primitives) into a
higher level structure or pattern: a ‘figure’ that stand out of the ‘ground’. The figure/ground
concept is developed by Gestalt psychologists. MacEachren (1995) provides an overview of
the Gestalt ‘laws’ of perceptual grouping and their relevance for the representation of
geodata.

Because users of time-series data are primarily interested in the evolution of phenomena,
‘figure’ perception can be improved in several ways. A common method to explore the
evolution of features of interests in raster data is by applying classification methods and/or
using spectral indices (i.e. combination of two or more spectral bands). If the analyst works
with a classification or a spectral index, then a query and/or the slicing of the values is
sufficient to identify and visually track features of interest along the time series.

‘Figure’ perception can also be supported by an analytical process that detects image
features that have some constancy, and binds them into easily perceivable objects, that are
represented as polygons in the animation. It helps users to focus attention and is a crucial
first step in understanding how objects evolve (Samtaney and others 1994). A number of
detection and tracking algorithms exist and application depends, amongst others, on the
dynamic characteristics and size of the phenomenon under study, and the sampling
frequency of observations. We have implemented a method that is suitable for tracking
precipitation (see section 3.1).

To further support users to focus attention on particular changes, there are options to select
an area of interest (by zooming), attribute values of interest (through attribute slicing) and
moments or periods of time (through time selection). However, to visually explore highly
dynamic phenomena, things happening around the selection may provide a useful context,
and users may want to quickly switch between ‘figure’ (area and/or attribute values of
interest) and ‘ground’ (the surrounding context). Therefore, we also support the display of
area and attribute selections in a user-defined, subdued context.



Different cue-based techniques (like colour-based highlighting, depth of field highlighting,
transparency and contouring) are considered for the implementation since they generally
employ human perception to separate a ‘figure’ (the selection) from the ‘ground’ (the
context; Kosara, Miksch, and Hauser 2002; Robinson 2006). Colour highlighting can be
applied in our toolbox to a selected range of attribute values, a class, in the whole display
area. Depth of field highlighting and contouring are not considered suitable because they
either change or partly obscure the context. The transparency technique has been
implemented, a selected area and/or attribute values of interest appear enhanced relative
to the more transparent unselected context, which is simultaneously displayed, giving a
subdued impression. It is a way to create brightness contrast, a strong salient property in a
visual scene, important to direct attention (Cavanagh 1993). The technique can be
efficiently implemented by a layering technique, and transparency level and colours can be
managed according to a user’s preferences.

The evolution of a dynamic phenomenon often needs to be compared with related data
(e.g. vegetation and precipitation). The toolbox supports the use of multiple layers, for
example to overlay an animation with tracked objects or sliced selections on a land use
map, a DEM, or even another time series, of a related phenomenon.

Finally, to reduce the effect of change blindness due to rapid sequences of motion signals
that hinder encoding and comparison of changes in working memory, control over the
display speed of the animation should be added. Some other functions that are case-specific
will be described in section 3, and section 5 will address future research in additional
options to support visual exploration.

2.2 Implementation

Some of the functions mentioned in this paper (like animated display of selected moments
or time intervals only; attribute slicing and options to highlight selected elements) were
already available in a research prototype called aNimVis (Animated Image Visualization; Blok
2005). But considering the problems above, analytical and visualization functionality to
handle long time series should preferably be embedded into existing image processing
software, and aNimVis was not linked to any image processing software. In addition, new
tools could be added, and existing ones improved. Developing a new toolbox as ‘Open
Source’ enables quick detection of software problems and further development. Free
availability is also important since the users will mainly be users of the GEONETCast data,
and we want to preserve the original GEONETCast philosophy, which is to make the images
and their added value products freely available for educational and research purposes.

ILWIS is free and open software and it already has a plug-in to access GEONETCast data
(Maathuis, Mannaerts, and Retsios 2008). Our choice was therefore to extend this further
and develop additional functionality for the analysis and animated visualization of time
series. ILWIS is software developed over the past 20 years at the ITC. In 2007, the C++
source code of ILWIS was made available as ‘Open Source’, and maintenance responsibility
was passed on to one of the communities of the open source software initiative 52°North
(http://52north.org/).




Strong points of ILWIS are that it is a lean and fast software, relatively easy to learn for end
users. Most of its functionality can be extended through a plug-in mechanism, but if
demanding functions require changes to ILWIS itself, it is possible because users have access
to all the source code. Additionally, ILWIS already provides analytical image processing
functions. This includes basic functions like image visualization, default animation, re-
projection/resampling, interpolation, filtering, clustering, overlay and (geo)statistics, but
also advanced functions like atmospheric correction and energy balance calculations.
Furthermore, it has a strong image mathematics component and a batch processing
component with which defined processes can be applied to thousands of images.

3. Case study

3.1 Problem, area and data

Precipitation plays an important role in the water cycle, it is particularly relevant in highly
sensitive systems such as semi-arid savannas, where precipitation drives vegetation
dynamics. As example of a semi-arid region, we have selected the Ethiopian lowlands,
located in sub-Sahara Africa, where 40% of the Ethiopian population lives. Most of the
population depends on rainfed agriculture and pastoralism. In areas like these, where
precipitation constitutes an important water source in an otherwise water-limited
ecosystem, it drives agricultural land-use decisions. Since precipitation is rare, serious
droughts occur frequently. For instance, in 2002 — 2003, 22% of the population (13.2 million
people) needed help because of a food crisis caused by intense droughts (Broad and
Agrawala 2000). This clearly indicates that there is a correlation between precipitation
anomalies and food crises (Verdin and others 2005). Thus, proper monitoring of
precipitation is a pre-requisite to avoid episodes of food insecurity.

Besides this, monitoring precipitation in semi-arid areas is also important for the forecast of
flash floods. Flash floods happen when heavy rain falls in areas where the vegetation cover
is limited and the soil is very dry (Lin 1999). In these circumstances, precipitation can result
in high flood peaks and rapid flows, than can cause heavy loss of life and property (Delrieu
and others 2005). However, forecasting flash floods is problematic since both vegetation
cover and precipitation are dynamic features. Given the spatio-temporal coverage of
precipitation stations over sub-Sahara Africa, the use of GEONETCast images can be useful
to forecast flash floods.

In this respect, SPOT-5 VEGETATION images are typically used to consistently monitor
vegetation dynamics over large areas; VEGETATION images are available as 10-days
composites (SPOT-VEGETATION S10 products;
http://www.vgt4africa.org/ViewContent.do?pageld=20) of the spectral channels Blue, Red,
Near infrared and Short-wave infrared, or of the most widely used spectral index to monitor
vegetation greenness: the Normalized Difference Vegetation Index (NDVI). Additionally,
images of the METEOSAT Second Generation (MSG) geostationary satellite are used to
produce the Multi-Sensor Precipitation Estimate (MPE) product. This product, also
distributed by GEONETCast, consists of the near-real-time precipitation rates in mm/hour
for each MSG image
(http://navigator.eumetsat.int/discovery/Start/Explore/DirectExtended.do ?EOResourceldent
ifier=EQ:EUM:DAT:MSG:MPE-GRIB; Levizzani and others 1999).




In the case study, the use of animated visualization of vegetation time series and
precipitation could certainly help users, but some visualization and analytical issues need to
be solved to facilitate an effective visual exploration of the complex spatio-temporal
interrelations of low vegetation and precipitation. In section 2, we already described some
of the analytical and visualization functionality to do so. Here we explain how functions can
be dedicated to a case, and how the resulting toolbox works.

3.2. Dedicated functionality

As mentioned above, there are various algorithms to track objects. For the case we have
implemented an algorithm that uses the spatial properties of the precipitation features?, to
track and bind them into object paths. In our approach, tracking solves an identity problem
based on overlap criteria. The underlying assumption of tracking using overlap is that the
sampling frequency of the sensor is high enough to detect overlaps in at least large objects.

Generally, tracking can be performed in either a pre-processing or post-processing mode
(Samtaney and others 1994). In the pre-processing approach, the objects are extracted on a
pixel-to—pixel basis: each pixel of the image in one frame is compared to all, or part of, the
pixels of the image in the next frame utilizing simultaneously temporal (motion) and spatial
(intensity) segmentation. If the post-processing mode is used for tracking, individual images
are first pre-processed to extract features, and then those features are correlated in time to
form objects. Since precipitation rates, already extracted by the satellite data provider, can
be used to establish features, in this study we adapted a previously developed tracking
method based on the post-processing approach, using overlap criteria (Turdukulov, Kraak,
and Blok 2007).

Our tracking algorithm performs an iterative search for best overlapping combinations, both
forward and backward in time. Thus, the correspondence between a given feature (F, ) at

time step i -1 in the previous image ( F,i‘l) and a set of k-overlapping features at time step J

in the current image { Fli,..., Fki }is found using the following procedure:

Fix feature index | in previous time step i-1

2. For a given feature index |, determine feature index kwo in
current time step i with maximum spatial overlap:

kwo(l)= argmax [Size(F'" NF)]

3. For a given feature index kvo, determine feature index o in
previous time step i-1 with maximum spatial overlap:

Ivo(kuo)= argmax [Size(F"™* NF, )]

4. Check if feature indices are the same: Ivo=I

Algorithm 1. Procedure to detect the continuation of a feature.

1 Here we refer to a precipitating “feature” instead of a precipitating “object”; to become an object, at least
two overlapping spatial features in successive images are needed.



If Imo=/is true, then it is presumed that the precipitating feature FkiMO corresponds to the

feature Fli‘l and they both belong to the path of one precipitating object. For the

precipitating features which do not have overlaps (small fast moving features),
correspondences are formed by applying user-defined larger buffers till overlaps are found.
Finally, all the remaining unmatched precipitating features are marked as
appearances/disappearances.

In the case, tracked objects are used as input in the visualization environment, where they
are represented as polygons to facilitate exploration of dynamic precipitation features.
Additionally, functionality has been developed to visualize the path of an object (Andrienko,
Andrienko, and Gatalsky 2005 ) by a thin line that connects the centroids of the object. The
number of time steps to be displayed for the path is user-defined. Finally, to enable
comparison with a simultaneously displayed underlying theme (here NDVI), the
precipitation objects can be made transparent.

3.3 Use scenario

A possible use scenario of the toolbox in the case study is sketched here. The scenario
includes

the following steps: overview first, zoom/filter, details on demand of Shneiderman’s (1996)
visual exploration strategy. It also includes the steps: analyze first, show the important,
zoom/filter, analyse further, details on demand of Keim and others (2006) adapted stategy
for visual analysis of large data sets. Both analytical steps draw heavily on algorithmic
operations.

The assumption is that a user will first run the animation of the NDVI time series without
any interaction to obtain an overview of the vegetation dynamics. This is a strategy that is
followed by experienced users of animated time series (Blok 2005). Then the user will
probably filter low NDVI values (i.e. areas without much green vegetation), using the sliders
of the legends, to learn when and where the vulnerability to flash floods of the area under
study is high; the user may zoom in to a particular area, or if dynamics in the surroundings
are also relevant, define an area of interest, and display it with a subdued context. Details
(relevant values) can be acquired by mouse clicks in the display window.

Next, the user wants to display heavy precipitation rates on top of the NDVI time series.
First, high precipitation rates are detected and tracked over time, an analytical process.
Once the objects are displayed as transparent polygons on top of the NDVI images, the user
tries to get an overview of the dynamic behaviour of the precipitation objects by running
the animation. To further explore the relationship with low NDVI values, selections are
made, like above. Also, the definition of precipitating objects can be adjusted, needing
another analytical process. Of precipitation objects that are expected to cause problems,
tracks are represented to predict the path ahead, and details about those tracks are
queried.

During exploration, the user can of course also utilize media player and animation speed
controls, pan, and display the values of an attribute over time in a graph. This process may
have several iterations, and one possible result is visualized in figure 1.
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FIGURE 1: The toolbox with a snapshot of an NDVI time series. Attribute slicing highlights
low NDVI values (areas vulnerable to flash floods) in a subdued context (here in grey values).
As animated overlay, tracked high precipitation objects are displayed transparently,
together with the track of a selected object during 18 time steps.

4. Evaluation

4.1 Evaluation of selected visualization functions

A first evaluation has been executed to assess the usability of some selected visualization
functions: user defined selections of area of interest and attribute values of interest with
the colour and transparency options to enhance the selection relative to the context. The
primary goal was to identify usability problems for further improvement. A number of
monitoring tasks have been executed by two homogeneous groups, each consisting of 8
potential users. The tasks included identification of areas with constant NDVI values, or with
values in a particular range, for either the whole time series (covering two years) or part of
it, and for the whole study area (Ethiopia), or a particular region. In addition, comparisons
had to be made to find noticeable changes in greenness, variability in an area relative to its
surroundings, and to discover in which year a particular value range covered most of the
area of Ethiopia. One group used a toolbox with the above mentioned functions, the other
the same toolbox without.

A complementary set of methods was deployed to collect user data on effectiveness,
efficiency and satisfaction: think aloud, observation, questionnaires and an interview.



According to the effectiveness metrics set for the test (complete, incomplete and wrong
answers) the group that used the extended toolbox exhibited a better performance: 72.9%
complete answers (versus 66.7% for the other group) and 12.5% (versus 16.7%) wrong
answers; the remaining answers were incomplete. Three out of the eight participants of the
group that used the toolbox with new functions gave complete answers for each task,
against none of the eight in the other group. Efficiency was measured by the average time
taken per task. Overall, the group using the new tools performed a bit faster, on average
3.85 minutes per task (versus. 4.19 minutes for the other group). Satisfaction levels were
comparable, and relatively high for both groups: (almost) 4 on a scale from 1 (very poor) to
5 (very good), but users of the extended toolbox were more confident in task execution
than the other group.

The difference in results for the two groups was lower than expected. Main reason was that
there were still some bugs causing performance problems, and deficiencies. It already led to
implementation of some improvements. The main ones are: a dynamic link between
thematic legend and display area, so that selected transparency levels are not only visible in
the display area, but also in the legend; more precise selection of attribute values of
interest, and instead of masking the selected range of attribute values, display of variations
within the range. In addition, the display speed control and some buttons and dialogue
boxes in interface were improved. Further evaluation including more functions will follow,
but we will first extend and improve the functionalities of the toolbox (see section 5).

4.2 Aspects related to the overall performance of the toolbox

Much of the rendering of digital raster images and animations in the toolbox is not
performed in the software, but by the graphics hardware using the industry standard
OpenGL (http://www.opengl.org), which is installed on all modern computers. This results in
a significant performance gain.

The performance of the graphics hardware depends, amongst others, on the speed of the
graphics-processor, and the available graphics RAM memory. Typical graphic boards have
between 128Mb and 1Gb of memory (2011). For this toolbox, the amount of available
graphics RAM memory is the main performance bottleneck. If rendering of images and
animations requires more memory than is available on the graphics board, the graphics
processor will swap data from the graphics memory to the physical memory of the
computer to accommodate for the extra need. The data has to go through the graphics bus,
which is much slower than the channels that are typically implemented locally on the
graphics hardware, resulting in serious performance degradation.

The performance degradation depends on the size of the digital raster image as seen on the
computer screen (thus not the actual size of the image in rows and columns). Therefore,
performance degradation due to low memory conditions is normally not a problem for
single images, but for animations it might become a bottleneck. To avoid reaching the
memory limits of the graphics hardware, as a rule of thumb, the digital images in a series
that must be animated smoothly should be limited to:

on-screen image size ( x * y ) * number of images in the series * bytes per pixel < graphics
memory size.



Thus if an animation does not run smoothly because the memory requirement exceeds the
memory on the graphics board, one can either reduce the number of images in the series, or
the window size.

Tracking results in vector (polygon) maps. In OpenGL rendering, polygons consist of a mesh
of triangles that cover the area of the polygon. Although these triangles are invisible in the
final rendering because edge and interior of each triangle have the same colour, they are
drawn. Graphics hardware is very efficient in rendering triangles; the size of the polygons
does not influence the performance, but their number and complexity (related to the
number of triangles) do. Therefore, vector images with a few thousand polygons usually
suffer from reduced rendering performance, though it depends on the complexity of the
polygons.

5. Conclusions and future work

We have presented some functionality to improve visual exploration of animated time
series compared to using a conventional animation. The functions described are expected to
mitigate some common change blindness problems in use of animations by supporting users
to focus attention on items that are relevant for the task at hand. Sequences of changing
pixel values can be transformed by analytical processing into animated polygons, orin a
range of attribute values or areas of interest that stand out as ‘figure’, which can be
displayed in isolation or in a subdued context.

Analytical processing was implemented using two stage process - the feature extraction and
tracking stages. In this way, the feature extraction stage can take advantage of various
image classification/segmentation algorithms developed in the domain areas and present in
ILWIS. Especially in cases when the features can be easily separated using the intensity or
shape information only, such as precipitation estimations. Secondly, the overlap —based
tracking limits the number of features that must be compared. Therefore, the tracking
becomes a real—-time process which is important for resulting visualization of the object
paths. Lastly, the spatial overlap is a useful measure for detecting the events in the history
of spatial objects. Events are stages in the evolution of the phenomena such as:
continuation, creation (appearance), dissipation (disappearance), bifurcation (split) and
amalgamation (merge) of the features (Samtaney et al., 1994).

Feature extraction and quantification contributes a rise in the level of abstraction: from data
containing interesting features to data describing the features, their states and events in
their history. The number of characteristics describing each feature can be extended to add
other measurements of the statistical and spatial distribution, depending on the purpose of
the application and the events the user wants to represent. This offers richer graphical and
interactive functionality. Although some ideas, like visualizing the events and object paths,
are not entirely new (Andrienko, Andrienko, and Gatalsky 2005), the novelty of our
approach is that access to the GEONETCast distribution system, pre-processing, analytical



and extensive animated visualization functionality will be packaged into a single Open
Source environment, ILWIS.

ILWIS already has some functions to support image projection, re-sampling, filling of missing
pixels, smoothing, filtering, classification, slicing and tracking. But investigation into their
application in (multi-sensor) time series still needs to be done. As example, we mention the
investigation into tracking algorithms for different applications or phenomena.

An alpha version of the toolbox described here is ready, but we still want to extend the
functionality. First of all, we want to look into challenges related to the pre-processing
needed to run animated time series. For example, daily images need to be projected to a
common grid (an operation known as gridding) to create the time series. This step is far
from trivial since Earth observing satellites scan the Earth surface from slightly different
orbits and this implies that the ground area covered by each pixel in each image is slightly
different (Gomez-Chova and others 2011). In addition to this, the analyst should consider
the best method to resample the images while projecting them to a common grid.

Although there is already support for common visual exploration and analysis strategies,
options to see details can still be improved, e.g. by providing additional (visualized)
information about the (tracked) features, like their size, spectral/spatial properties, and
guantification of their behaviour. We also plan to improve options to compare and
synchronize time series, and we want to investigate optimization and integration of the
usually frequently consulted temporal legend, so that it does not distract too much from
what is happening in the animated display.

Last but not least, the question if the tools support users to focus attention, and if they
reduce change blindness need to be answered. A user evaluation of the software is planned,
taking the above question, in addition to utility and usability of the toolbox, into account.
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