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Abstract

This thesis presents a biologically inspired model of learning and development. This
model decomposes the lifetime of a single learning system into a number of stages,
analogous to the infant, juvenile, adolescent and adult stages of development in a
biological system. This model is then applied to Kohonen’s SOM algorithm.

In order to better understand the operation of Kohonen’s SOM algorithm, a the-
oretical analysis of self-organisation is performed. This analysis establishes the role
played by lateral connections in organisation, and the significance of the Laplacian
lateral connections common to many SOM architectures.

This analysis of neighbourhood interactions is then used to develop three key varia-
tions on Kohonen’s SOM algorithm. Firstly, a new scheme for parameter decay, known
as Butterworth Step Decay, is presented. This decay scheme provides training times
comparable to the best training times possible using traditional linear decay, but pre-
cludes the need for e priori knowledge of likely training times. In addition, this decay
scheme allows Kohonen’s SOM to learn in a continuous manner,

Secondly, a method is presented for establishing core knowledge in the fundamental
representation of a SOM. This technique is known as Syllabus Presentation. This
technique involves using a selected training syllabus to reinforce knowledge known to
be significant. A method for developing a training syllabus, known as Percept Masking,
is also presented.

Thirdly, a method is presented for preventing the loss of trained representations
in a contimiously learning SOM. This technique, known as Arbor Pruning, involves
restricting the weight update process to prevent the loss of significant representations.
This technique can be used if the data domain varies within a known set of dimen-
sions. However, it cannot be used to control forgetfulness if dimensions are added to

or removed from the data domain.

xi
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Chapter 1

Introduction

The Story so far:
In the beginning, the Universe was created.
This has made a lot of people very angry, and has been widely re-

garded as a bad move.
— The Restaurant at the End of the Universe (Adams, 1980}

1.1 Machine Learning and Development

The last 50 years has seen an explosion in the computational power available to those
attempting to solve complex problems. However, the sheer complexity of the real
world defies this power. Despite the computational consequences of Moore’s Law, the
complexity associated with solving real-world problems necessitates that an intelligent,
rather than brute-force approach be taken to solving these problems.

A large number of architectures have been proposed for the purpose of machine
learning. The majority of these algorithms utilise some form of analysis of clustering in
the data set, or of entropy minimisation on a predetermined heuristic. These techniques
are then used to generate optimal (or near optimal) representations of a given static
knowledge base. When faced with a single, static training set, it is possible for a batch
learning scheme to scan the domain and range of training examples and search for an
optimal representation of this data space.

However, in real-world learning problems, learning is rarely a batch process. Real-
world learning systems do not usually have access to a complete and canonical set of
training examples prior to the commencement of training. Rather, learning is a con-
tinuous process with input stimuli that are highly non-stationary (i.e., the probability
distribution of training cases varies over time). When the training set is constantly

changing, a priori scanning of a data set is not a viable proposition.
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The use of a real-world data set changes the learning problem into an attempt to
optimize a representation over time with respect to a source of training exemplars,
rather than an attempt to learn a globally optimised representation of a single data
get. The domain of the source cannot be known canonically at the start of training; it
can only be derived from long term experience. In addition, an optimal representation
for any given time period may not be optimal over all time. Losses in optimality must
be accepted in the short term in order to achieve long term success.

This problem is exacerbated by changes in the source during the lifetime of the
learning mechanism. The probability density function defining the source is not guar-
anteed to be constant over time — in fact, it is almost guaranteed to vary in most
real-world learning problems. It would therefore be desirable for the representation of
the training source to change over time to reflect these changes, adding new detail as
it becomes available, and remembering old detail even if it ceases to be represented by
the training source.

The static nature of conventional batch training mechanisms make them unsuitable
for applications where data sets which exhibit either or both of these characteristics.
An alternative approach is required; one which is able to adapt to the dynamic nature
of a real-world training source.

One alternative source for solutions to these problems is the behaviour observed
in biological systems. Most artificial learning systems have an two stage approach to
learning (an active learning period, followed by an ‘off-line’ period of use). By compar-
ison, biological systems do not cease learning after an initial, clearly defined training
phase. The neural connections of an intelligent biological system are never completely
frozen; they adapt, even if only slightly, to all inputs. Consequently, biological systems
are able to learn by experience throughout their lifetime!. Biological systems must
learn in a continuous fashion, as the realm of experience changes from day to day.
When the domain of input stimuli changes, biological systems are able to adapt, using
past experience as a guide, whereas artificial systems require retraining.

While continuously learning biological systems do not have a clearly defined period
of ‘training’, they do experience an extended period of development. This developmen-
tal phase is the period of time required for the continuous learning process to establish

a useful knowledge representation. During this phase, the classifications/predictions

!Although the scope for large scale change decreases with age: as the aphorism goes, ‘vou can’t
teach an old dog new tricks’
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made by the system are frequently in error. In biological systems, the developmen-
tal process is frequently supervised (through parental interaction) to encourage the
development of strong survival characteristics.

The process of development is extremely significant to the individual. The learning
that takes place during these formative stages has an effect over the lifetime of the
system. For example, kittens raised in an environment which contains only vertically
oriented visual stimuli are unable in adulthood to see horizontally oriented features
(Blakemore and Cooper, 1970). Care must therefore be taken to ensure that the devel-
opmental process is carefully guided.

It is interesting to note that in biological systems, the intelligence of an organism
is directly related to the length of its development. Insects have a no significant de-
velopment phase. As a result, their intelligence is generally limited to simple stimulus-
response reactions. Cats and dogs have developmental phase which lasts 1-2 years (as
kittens and puppies respectively), and exhibit a simple intelligence. Humans expe-
rience a prolonged period of development, spanning some 10-20 years, and exhibit a
sophisticated ability to learn, reason, and adapt.

The use of biological metaphors is not uncommon in machine learning research.
Given that the only existing complete model of intelligent behaviour is biological, it
comes as no surprise that one of the most common approaches to developing intelligent
behaviour is to draw inspiration from a biological source. The theory underlying neural
network research is perhaps the most prominent example of such an approach. Starting
with a mathematical model of a single neuron, neural network theory attempts to
develop algorithms which will allow a machine to learn in the same manner as biological
systems.

The process of learning and development would appear to be an essential component
of the emergence of biological (i.e., animal) intelligent behaviours. By endowing a
machine learning algorithm with the same characteristics, it may be possible to improve

the capabilities of a learning algorithm in continuous problem domains.

1.2  Aims

This thesis presents a biologically inspired model of the learning and development
process, and applies this model to Kohonen’s Self-Organising Map (SOM) algorithm.

In particular, this thesis aims to answer the following questions:
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e What is the role played by neighbourhood relationships in a self-organising pro-
cess? Can these relationships be exploited to control the form of a self-organised
data space representation, and the rate of convergence towards this representa-

tion?

e Can a Kohonen-style SOM algorithm be altered so as to provide a facility for the
continuous learning of a data space? Can a SOM be constructed which will allow

the acquisition of new training knowledge over time?

o Is there a mechanism for controlling the stability-plasticity dilemma within a
continuously learning SOM? Can a SOM be constructed which will resist the loss
of core training knowledge? Can a SOM be constructed which will prevent the

loss of early training without preventing the acquisition of new knowledge?

In addition, the solutions found to these questions must be mutually compatible.
Each solution must be able to be utilised in isolation, or in concert with other proposed

solutions.

1.3 Approaches

The biologically inspired model of learning and development presented in this thesis
decomposes the lifetime of a single learning system into a number of stages. These
stages are analogous to the infant, juvenile, adolescent and adult stages of development
in a biological system. This model of learning and development is applied to Kohonen's
SOM algorithm.

Kohonen’s SOM algorithm has been chosen as a research platform because of the
biological origins of the algorithm. The application of biological metaphors to a com-
putational algorithm provided the original inspiration for both neural networks and
Kohonen SOMs. It is hoped that similar benefits may be drawn in the construction of
a model of learning and development through the application of biological metaphors
to Kohonen’s SOM algorithm.

In order to better understand the operation of Kohonen’s SOM algorithm, a the-
oretical analysis of self-organisation is performed. This analysis establishes the role
played by lateral connections in organisation, and the significance of the Laplacian
lateral connections common to many SOM architectures.

This analysis of neighbourhood interactions is then used to develop three key varia-

tions on Kohonen’s SOM algorithm. Firstly, a new scheme for parameter decay, known
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as Butterworth Step Decay, is presented. This decay scheme provides training times
comparable to the best training times possible using traditional linear decay, but pre-
cludes the need for a priori knowledge of likely training times. In addition, this decay
scheme allows Kohonen’s SOM to learn in a continuous manner.

Secondly, a method is presented for establishing core knowledge in the fundamental
representation of a SOM. This technique is known as Syllabus Presentation. This
technique involves using a selected training syllabus to reinforce knowledge known to
be significant. A method for developing a training syllabus, known as Percept Masking,
is also presented.

Thirdly, a method is presented for preventing the loss of trained representations
in a continuously learning SOM. This technique, known as Arbor Pruning, involves
restricting the weight update process to prevent the loss of significant representations.
This technique can be used if the data domain varies within a known set of dimen-
sions. However, it cannot be used to control forgetfulness if dimensions are added to
or removed from the data domain.

The approach taken in this thesis is largely empirical in nature, due to the imprac-
tical nature of a theoretical approach. There are many examples of theoretical proofs
on self-organising processes (Amari, 1980) (Tanaka, 1990) (Amari, 1990) (Kaski and
Kohonen, 1994), including proofs on Kohonen’s SOM algorithm (Cottrell ef al., 1998)
(Flanagan, 1998) (Luttrell, 1994). These proofs cover many aspects of self-organisation,
including conditions for parameter selection and decay. However, these proofs either
rely upon extensively simplified (and therefore limited} versions of SOM algorithms, or
draw only vague conclusions on the operation of complete SOM algorithms. The com-
plexity of interactions in a self-organising process, coupled with the iterative nature of
the process, inhibits the development of strong theoretical models of self-organisation.
As a result of these intrinsic difficulties, an empirical approach is adopted.

To ensure the validity of the algorithmic extensions presented in this thesis, each
extension is tested in isolation and in concert, using both synthetic and real-world
data sets. Each experiment is performed repeatedly in order to ensure experimental
consistency. A wide range of experiments are performed to ensure that the results

obtained are not aberrations caused by specific experimental conditions.
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1.4 Significance

There are many examples of the practical application of Kohonen-style SOMs to static
problems (Kangas and Kaski, 1998). However, the literature provides no examples
of the application of Kohonen-style SOMs to continuous problems. Kchonen (2001}
provides a recent canonical survey of variants of the basic SOM algorithm; this survey
does not discuss any variants capable of continuous learning.

This thesis adds continuous learning problems to the range of problems to which a
Kohonen-style SOM architecture can be applied. The novelty of this thesis lies in the
algorithms developed to achieve this end.

Specifically, this thesis makes four key contributions:

¢ a metric for evaluating the quality of a SOM data representation which is inde-

pendent of the weight space of the SOM;

e a parameter decay scheme for Kohonen's SOM, called Butterworth Step Decay,
which precludes the need for a priori knowledge of training time, and allows a

SOM to learn continuously;

e a method, called Syllabus Presentation, which can establish core training knowl-
edge in the fundamental representation of a SOM, and an associated method for

developing a training syllabus called Percept Masking; and

¢ a method, called Arbor Pruning, which can prevent the loss of trained represen-

tations in a continuously learning SOM.

1.5 Structure of Thesis

This thesis is organised as follows.

In Chapter 2, a survey of the status gquo is presented. This survey includes the
history and significance of neural and self-organising architectures, a review of Koho-
nen'’s Self-Organising Map (SOM) algorithm and its most significant variants, a review
of SOM quality measures, an introduction to the continuous learning problem, and
a review of machine learning algorithms which have been used to learn continuously
(including Kohonen’s SOM algorithm).

In Chapter 3, the theoretical and empirical framework for this thesis is established.
This includes a biologically inspired model of learning and development, and a metric

for evaluating the quality of SOM data representations.
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In Chapter 4, a theoretical analysis of neighbourhood relationships in self-organising
processes is introduced. This analysis investigates the role played by lateral connections
in organisation, and the significance of the Laplacian lateral connections common to
many SOM architectures.

In Chapter 5, the lesson learned in Chapter 4 are applied to Kohonen'’s SOM algo-
rithm, resulting in the development of a new scheme for parameter decay. This scheme
is known as Butterworth Step Decay.

In Chapter 6, a continuous learning extension to Kohonen’s SOM algorithm is pre-
sented. This scheme is developed by exploiting a key characteristic of the Butterworth
Step Decay scheme.

In Chapter 7, a method for developing a strong fundamental SOM topology is
presented. This technique is known as Syllabus Presentation. This technique involves
using a selected training syllabus to reinforce knowledge known to be significant. A
method for developing a training syllabus, known as Percept Masking, is also presented.

In Chapter 8, a method is presented which is capable of realising a reduction in for-
getfulness in a continuously learning SOM. This technique is known as Arbor Pruning.

In Chapter 9, the lessons learned in Chapters 58 are tied together in a single
framework.

Finally, in Chapter 10, we conclude, and provide some directions for future work.

The data sets used throughout this thesis for training and testing are described in

Appendix A.



Chapter 2

Status Quo

“What would you say if I told you that I wasn't from Guilford after

all, but in fact from a small planet in the vicinity of Betelgeuse?”
“Why? Is that the sort of thing that you're likely to tell me?”
— The Hitch-Hikers Guide to the Galazy (Adams, 1979)

2.1 Introduction

No thesis exists in a vacuum. The theories and models presented in this thesis repre-
sent the extension of models which have existed in general terms for almost fifty years,
and have been used in a computational form for almost twenty years. In this chapter,
the theories and models which form the foundation of this thesis will be presented.
Firstly, the history and significance of neural and self-organising architectures will be
discussed. The most significant implementation of these self-organising principles is
Kohonen’s Self-Organising Map (SOM) algorithm; this algorithm and its most signif-
icant variants will be presented. The continuous learning problem is introduced, and
Kohonen’s algorithm will be critiqued with respect to its usefulness as a continuous
learning mechanism. Mechanisms for evaluating the quality of a topographic mapping
produced by a SOM will also be discussed. Finally, other machine learning algorithms
which have been demonstrated to have an ability to learn continuously will be presented

and discussed.

2.2 Biological Origins of Learning

Given that the only existing complete model of intelligent behaviour is biological, it
comes as no surprise that one of the most common approaches to developing intelligent

behaviour is to draw inspiration from a biological source. Neural architectures were
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amongst the first general problem solving architectures to be suggested by the computer
science community. Drawing from a theoretical basis drawn from biological observation,
neural networks are an attempt to use a model of a biological neuron to build complex
computational classification systems. From the original work of McCulloch and Pitts
(1943), Hebb (1949), Rosenblatt (1958) and Widrow and Hoff (1960), through to the
more recent, specialised work (such as that of Fahlman (1991)), neural networks have
become a commonly used methods for generalised problem solving.

The success of neural network systems can be attributed to the many useful charac-
teristics of these systems. Neural architectures are a computationally Turing equivalent;
in some cases they have been shown to exhibit super-Turing characteristics {Siegel-
mann et al., 1997). They have been applied to a wide range of tasks, including pattern
recognition, numerical computation, prediction, and pattern classification. In addition,
neural architectures are easily implemented on parallel architectures, allowing massive
performance improvements when suitable hardware is available.

The original philosophy underlying neural networks — that of having a large number
of densely connected simple processing elements — was originally biologically inspired.
However, the majority of neural algorithms which have subsequently been proposed
have moved away from the original biological model. Recent neural network models
have become increasingly engineered towards specific applications rather than remain-
ing consistent with biological observation. Consequently, most of these algorithms have
many parameters which must be fine-tuned. In addition, these systems work best with
a minimal number of inputs; with a larger number of inputs, it becomes harder to
segment the significant features from inputs, as local gradient minima are more likely
to be mistaken for global minima.

Existing feedforward neural network algorithms operate almost universally as func-
tion approximators and non-linear classifiers. This is an appropriate and useful be-
haviour for a wide range of engineering tasks. However, not all problems can be posed
in terms of a learned numerical output resulting from a given numerical input. Problems
which cannot be posed in terms of a numerical relationship (for example, 1-to-many
functions) or simple class membership (for example, is this person tall?) are difficult

to represent using a classical neural network.
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2.3 Biological Self-Organisation

The study of self-organisation shares a common heritage with neural network research.
However, there is a significant difference in the degree to which these computational
models emulate biology. A traditional neural network is a computational model based
on the dynamics of an individual biological neuron. Large numbers of these computa-
tional units are then organised to create an entire learning system. However, there is
no evidence to suggest that these organisational structures (such as feed-forward lay-
ers) or the learning algorithms supporting these structures (such as the many variants
of the back-propagation algorithm) resemble the biological structures which originally
inspired them.

However, the theory underpinning self-organisation is based upon the structural
and dynamic model of neuron behaviour which has observed in biological systems.
Self-organising behaviour can be found in a number of cortical groups, in a wide range
of species. In higher vertebrates, two dimensional self-organising maps have been ob-
served in the retinal mapping of the striate cortex (Talbot and Marshall, 1941), and on
the surface of the superior colliculus (Apter, 1945)(Cooper et al., 1953); in lower verte-
brates, the optic tectum has been observed to be retinotopically organised (Gaze, 1958).
Self-organisation has also been found in less primitive cognitive functions such as the
somatosensory cortex (Rose and Mountcastle, 1959) and the motor cortex (Woolsey,
1952), and between central structures, as has been observed in the ordered intertectal
projection in amphibia (Gaze et al., 1970). In addition, one dimensional tonotopic
maps have been observed in the cochlea (Rose et al., 1959).

These biological observations are interesting in themselves, but it is the cause of this
phenomenon that is of more interest to those wishing to emulate biological intelligence
in a computational framework. Why is the cortex organised in this way, and through

what mechanism do neurons fall into this manner of organisation?

2.3.1 Von der Malsburg

At the time at which Hubel and Wiesel performed their original work on the phys-
iological and cognitive structure of the brain, genetic predetermination was the best
explanation that could be offered for cortical topological organisation. It was proposed
by Hubel and Wiesel (1963) that the entire cortical structure was drawn from a genetic
blueprint. Von der Malsburg (1973) suggested that the complete genetic predetermi-

nation of connections was implausible, for three reasons:
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e it would require an immense volume of genetic information to encode every neural

connection in the cortex;

e genetically predetermined connections limit the plasticity of a topological map-

ping during formation; and

e plasticity must be possible, long after genetic expression has been performed.

"The first of these criticisms could be challenged by considering the genetic code as a
fractal or generative expression method. However, the remaining two criticisms remain
valid: the process of map formation is strongly influenced by the domain of stimuli
presented during formation. Sensitivity to the domain of training stimuli would not be
permitted by a system predetermined by a genetic code established at conception.

Von der Malsburg (1973) proposed that rather than being predetermined, the topo-
logical organisation of connection weights is an algorithmic method which is fully func-
tionally dependent on the provided stimuli. In this model, the self-organising plane
consists of excitatory E-cells, and inhibitory I-cells, in equal numbers. The connection
between cells is modeled by a function f(z), where x is the distance between cells. This
function decreases monotonically with increasing distance — for example, a Gaussian
function centered at z = 0. This function can be characterised by its maximum ampli-
tude A4, and the range R over which the connections are significant. The connections
between E — E, E — I I — E, and I — I cells vary according to the following

relationship:
e fep(z) has Agg > 0, range Rpg,
e fri(z) has Agr > 0, range Rg; = Rig,
o fre(x) has Arp <0, range Rig > Rgg,
o fri{z) has A;r =0.

The summation of these weights over all cells yields a net Laplacian interconnection
between cells. Using these lateral connections and randomly instantiated synaptic
weights, each cell is allowed to relax into a stable state. During relaxation, the excitation
level of the cells oscillates; however, these oscillations dampen, approaching a stable
value.

Learning was then performed using a Hebbian update rule, in which synapses are

increased in strength proportional to the level of excitation. The gain used in this
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learning remained constant throughout the experiment. Normalisation across cells was
also performed to prevent saturation.
Von der Malsburg reached four key conclusions regarding self-organising processes

(Willshaw and Von der Malsburg, 1976):
1. maps develop in a step-by-step, orderly fashion;

2. lateral connections within the map are initially widespread, but during the learn-

ing process they decay in extent;

3. the orientation of the map is established early in the self-organising process, but

the final pattern of connections takes longer to develop;
4. appropriate starting conditions are essential to the formation of a good map.

The conclusions reached by Von der Malsburg are theoretical generalisations, rather
than experimental results (Willshaw and Von der Malsburg, 1976, Sec. 6). In partic-
ular, the second conclusion — that decaying neighbourhood size is a requirement for
topological learning — was untested.

However, two important qualities are demonstrated by Von der Malsburg’s exper-
iments. Firstly, learning was achieved without the need for a decaying learning gain
parameter. In most theoretical and experimental studies which have been performed
subsequently, variation in gain has been considered the most significant factor control-
ling learning. Secondly, global topographical organisation was only observed on small
maps. In large map simulations, Jocal topographical organisation occurred but global
topology was erratic.

The cause of the second result was theoretically demonstrated by Amari (1980).
Amari demonstrated that a map will develop single peak of excitation provided that
the domain of the lateral connection function spans the entire map. Lateral connec-
tion functions with a smaller range resulted in multiple peaks developing on a map.
During Von der Malsburg’s experiments, the range of the lateral connection function
was small, and was not decayed. Consequently, on small maps, the connection function
spanned the entire map, and global organisation was observed. On larger maps, Von
der Malsburg’s small connection function did not span the map, and many areas of
excitation occurred, resulting in erratic global topology.

While the theoretical models of Von der Malsburg and Amari are useful in exploring

the biological implications of self-organisation, they are not especially appropriate for
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use as a generalised learning tool. Since the motivation for these models is one of
modelling biological activity, they sacrifice computational efficiency in order to maintain
consistency with observed biological structure. In engineering applications, biological
consistency is of secondary interest to the efficient evaluation of a solution to a specific

problem.

2.4 Kohonen’s Self-Organising Feature Map

The biological process of self-organisation has been utilised by a range of computational
algorithms (Bishop ef al., 1997) (Bishop et al., 1998) (Heskes and B., 1993) (Luttrell,
1991) (Luttrell, 1992). However, it has been Kohonen’s discrete approximation of this
biological process (Kohonen, 1982) (Ritter and Kohonen, 1989), and variants thereof
(for a summary see Kohonen, 2001, Ch 5.), which have received the most attention in
the computing literature over the past twenty years. As a computational technique,
Kohonen’s SOM algorithm has been found to be an extremely useful method of arriving
at a topological organisation for a wide range of applications (see Kohonen, 2001, Ch.
7 for an extensive list). Kohonen’s algorithm is also computationally efficient, as it
removes the need for iteration to establish excitation levels.

Kohonen'’s SOM model is structurally similar to that of Von der Malsburg: a set
of neurons, each of which is connected to every other neuron through a connection of
predetermined strength, and to a set of inputs via a set of initially random weights.
The novel aspect of Kohonen’s algorithm is the key change to the lateral interaction
functions. This change significantly improves the computational efficiency of the self-
organisation process.

Kohonen was able to demonstrate that the purpose of the lateral interaction kernel
in neural sheet models such as Von der Malsburg’s was to establish Winner-Take-All
behaviour (Kohonen, 2001). In bioclogical models of self-organisation, the interaction
between each individual neuron is modeled using a lateral interaction kernel. This
kernel is used in an iterative feedback system to establish the level of excitation of
a set of neurons, for an arbitrary input pattern. The most commonly used kernel is
a narrow Laplacian; a kernel g for which g;; < 0,4 # j, and ¢;; > 0,7 = j. When
using an Laplacian kernel, the result of the iterative process is a single neuron which
asymptotically approaches saturation value, and all other neurons decaying to a state
of no excitation; that is, a single winner takes all. The weights supporting this winning

neuron can then be reinforced.
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Kohonen’s innovation was o replace this iterative process of reinforcement with
an algorithmic process of selection. Rather than have a winner selected using this
activity control kernel, Kohonen'’s algorithm substitutes a meta-level decision structure
which performs a similar task. In Kohonen’s algorithm, a winner is artificially selected,
according to some distance metric, and a second lateral interaction kernel — a plasticity
control kernel (such as a Gaussian) — is artificially fitted about this winner. This
plasticity control kernel is used as the basis for training. Neurons near the winner
receive strong support as a result of the large value of the plasticity control kernel, while
other neurons receive little or no support. In this way, the winner and its neighbours
are reinforced.

This approximation allows Kohonen’s SOM algorithm to be computationally simple.
Instead of requiring a complicated system of equations balancing individual neuron
dynamics and the dynamics of the map as a whole, it can be stated as a single iterative
weight update rule. Three significant variants of this weight update rule have been
presented in the literature. These variants, plus the overall Kohonen algorithm, will be
discussed in Section 2.5.1.

This computationai approximation does not significantly undermine the utility of
Kohonen’s algorithm (as is made evident by the plethora of SOM application literature),
but it does limit the extent to which the underlying self-organising process can be
analysed. Discontinuities and meta-level decision structures such as the winner selection
mechanism make formal analysis of the system difficult. As a result, many aspects of
Kohonen’s algorithm, such as the use of alternate plasticity control kernels, have not

been investigated.

2.4.1 Advantages of Kohonen SOMs

The most immediately apparent advantage of Kohonen’s SOM algorithm is a dra-
matic improvement in computational efficiency. The inner loop which evaluates neuron
response is the most frequently performed part of the generic SOM algorithm. By re-
moving this loop, the computational requirements of evaluating and updating a SOM
are substantially reduced.

Another key advantage of Kohonen-style SOMs comes in the type of classification
provided by the algorithm. Kohonen-style SOMs, and SOMs in general, provide an
unsupervised classification of training data. This places SOMs in a different domain to

most other neural architectures, which are generally supervised classifiers.
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The style of unsupervised classification provided by Kohonen’s algorithm is also
unique. Most unsupervised classifiers (K-means, decision trees, etc) generate discrete
output classifications, or provide a clearly defined discrete output state. While the
output state of a Kohonen map is ultimately discrete (in the form of discrete winners
on the map), the interpretation of this output does not provide clear class membership
— rather, it describes the topological relationships between training patterns. This
is extremely useful for problems in which class membership is an ambiguous concept
(for example, classifying a person as ‘tall’ or ‘short’) or for classifications which span
a,. continuous range. Using a Kohonen SOM, complex relationships in a data space
which defy a simple classification scheme can be visualised as a simple 2D spatial
representation. l

It should be noted that supervised variants of Kohonen SOMs do exist — for
example, the Adaptive Subspace SOM (Kohonen ef al,, 1997), and Learning Vector
Quantisation {(Kohonen, 1988). These are presented as extensions to Kohonen-style
self-organisation which convert the output of an unsupervised self-organising map into
an alternate discrete, supervised space. However, these extensions are not of interest
for the purposes of this thesis.

Another useful characteristic of Kohonen’s SOM algorithm is the relationship be-
tween the distribution of training patterns and the distribution of winners on the trained
SOM. Once a SOM is trained, the area on the SOM surface which represents a given
concept is proportional to the probability density of patterns representing that concept
in the training data set. As a result, the resolving power of the SOM is increased for
these concepts; that is, the SOM is able to perform much finer discrimination between
concepts from a specified region {or regions) of interest. This can be an extremely
useful characteristic: an inability to resolve a given concept can be rectified by altering
the composition of the training set.

Kohonen’s SOM algorithm also has the advantage of constrained memory require-
ments. Best case and worst case memory requirements are identical, and are directly
related to the specified map size. The resolving power of a Kohonen SOM is also lin-
early related to map size; an improvement in resolving power can be achieved through

a linear increase in memory requirements.



CHAPTER 2. STATUS QUO 16

2.4.2 Limitations of Kohonen SOMs

The approximations used by Kohonen also place limitations on the topographical solu-
tions that can be expressed by a map. The Winner-Take-All approach prevents multiple
peaks from forming on the map. This is a potentially useful feature for describing com-
plex topologies or for maps where redundancy is desirable. The insistence that there
must be ezactly one winner also prevents no peak situations. This is a potentially useful
outcome if a training example is unsuited to representation on a map.

An additional limitation of the Kohonen SOM is the restriction to a 2D topological
representation of training data. The output of a Kohonen 50M is a 2D map of neurons.
Therefore, the topology represented by this map of neurons is limited to approximately
2 dimensions (although under some circumstances, it is possible to represent slightly
more than 2 dimensions; for example, a partial representation of a third dimension). If
the training data set is formed from a topology which is inherently multidimensional,
the SOM will inevitably lose some topological information. If these higher dimensions
contain useful topological relations, this could be a significant loss of knowledge from
the data set.

Even if a 2D representation is sufficient to represent a given data set, Kohonen’s
SOM algorithm is unable to guarantee that the topological representation formed by a
map will be in any way meaningful. Although an ontological analysis of a data set may
reveal a significant underlying topology, Kohonen’s algorithm provides no guarantee
that this topology will be developed and reinforced on the map. In addition, Koho-
nen’s SOM algorithm is limited to representing topologies which can be expressed in
terms of a Euclidean distance between training vectors. Any weakness in the numerical
representation of a concept (for example, if Euclidean distance is not a good represen-
tation of similarity) will be exhibited as a weakness in the topological representation

of that concept on the map.

2.5 Variations on a Theme by Kohonen

The term ‘Kohonen Self-Organising Map’ encompasses a range of algorithms and algo-
rithmic variants. Kohonen has presented three fundamental variants of SOM represen-
tation and updates. In addition, there exists a range of parameter decay schemes and
architectural variants on the basic algorithm. Each of these variants have advantages

and disadvantages. The significance of these advantages and disadvantages must be



CHAPTER 2. STATUS QUO 17

judged on an application specific basis.

2.5.1 Representation and Update

The most notable variants of the Kohonen algorithm have been introduced by Kohonen
himself. These variants fundamentally repose the underlying architecture of the SOM,
by varying the operation of neurons and the update of weights to these neurons. Since
the initial publication of his SOM algorithm, Kohonen has described three major SOM
variants. These variants are the original maximal map, the minimal map and a revised,

optimised maximal map.

Maximal Maps

The original formulation of Kohonen’s SOM (Kohonen, 1982) bears many similarities
to the biological model from which the algorithm was drawn. A sheet of I neurons m;
is arranged and fully connected to a series of J inputs z; in the range [0 : 1] through a
set of independent weights w;;. The output of each neuron is taken in a similar manner

to traditional feedforward neural networks:
m; = Z:Bj’wij (2.1)
J

For any given pattern, the activation response of every neuron is evaluated. Using
this activation level, a winner — the neuron w with the highest level of activation —

is selected:
wlm, = max(m;) (2.2)

Having selected this winner, all the neurons on the map have their weights updated
according to a Hebbian style update rule. Under Hebbian update, the quantity of
reinforcement of weights is proportional to the strength of activation on the map. All
training patterns have some positive effect on the weights of the map. However, if the

training pattern does not engender a strong response, this effect may be minimal. The

update rule used in Kohonen’s maximal style SOM is defined as:

-"(t) + Ot( ) tw(t (t) (23)

o )z
H+HD) = B Tahe OFO]

In this formulation, h;,(t) is the plasticity control kernel, and «(¢) is the learning gain
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(a value in the range [0 : 1]). The plasticity control kernel controls the strength of the
neighbourhood interaction in the map. It can take one of two forms. The first form is
a simple neighbourhood function:

hiw(t) = Loore N (2.4)

0, i€ Nt)
That is, if the neuron i is in the set of neighbours of the winner N, at time t, update
the neuron weights; otherwise, provide no update. Membership of the neighbourhood
set is determined by the distance on the map from the winning neuron. The critical
distance defining neighbourhood membership (and thus the size of the neighbourhood
set) varies over time.
This kernel can also be stated as a simple relation by smoothing the kernel into a

continuous function:

i — s
hiw(t) = ezp (2.5)

in this formulation, 7; is a vector describing the position of neuron { on the map;
o(t) is a function describing the radius of the neighbourhood over time. As a result
of this kernel, the weights of every neuron are updated every time a new pattern is
presented. However, neurons which fall a large distance from the selected winner will
receive minimal update. It is this continuous form of the plasticity control kernel which
is most common in the literature.

The Kohonen SOM learning algorithm is based upon the repeated application of
this update rule over an entire training data set. The weights of the map are seeded
with small random values (to provide some local entropy). The parameters o and o
are given initial values, and are decayed over time, according to a predefined schedule.
A wide range of schedules have been suggested. These are discussed further in Section
2.5.2. During each epoch, a random order of presentation is chosen, and each pattern is
presented to the update mechanism in this order. The randomisation of the presentation
order at the start of each epoch ensures that the learned topology is not a function of
presentation order. This process continues for a predefined number of epochs. This
learning algorithm is expressed formally in Algorithm 1.

This general learning algorithm is identical for all of the Kohonen variants. The

portions of the algorithm specific to Kohonen’s original maximal formulation can all
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Algorithm 1 The SOMLearn algorithm. This algorithm takes a set of training vectors
X, containing N patterns with J inputs, creates a map of n xm = I neurons, and trains
the map for e epochs. Upon completion of training, a trained map W is returned.

W = SOMULearn(n,m, X, e)
Establish initial value of «
BEstablish initial value of o
Create W: an array of n x m neurons, each containing J weights
Instantiate weights in W with small random values.
fort =1toedo
Establish a random order of presentation R for the vectors in X
for p=1to N do
Update(W ,Zgp,c(t),0(t))
end for
end for
return W

Algorithm 2 The Update portion of the SOMLearn algorithm: original maximal map
version. This algorithm updates the weights W in the map, based upon the training
vector Z, and the current values of the learning parameters « and o. hj, is as defined
in Equation 2.4 or 2.5.

Update(W, Z, o, o)
fori=1toldo
0; =w;(t) - £
end for
w = max; 0,
fori=1to1ldo
@ (£)+ ok E(E)

Wit + 1) = @(8) + Wm(rf
end for

be found in Algorithm 2.

One critical limitation of Kohonen's original formulation is the requirement that
inputs must be normalised to the range [0:1]. Even within this range, there are signifi-
cant restrictions placed upon problem encoding. Kohonen’s maximal map relies upon
a direct correspondence between magnitude and significance. A large value, be it in
input, weight, or output, is interpreted as a significant value; similarly, small values
are interpreted as insignificant. This poses problems when encoding certain data types.
A significant negative cannot be encoded as 0; such an encoding attributes no signifi-
cance to the input. A continuous range cannot be simply scaled, as low values will be
interpreted as being less significant, rather than just numerically smaller.

These restrictions on problem encoding can prove a significant impediment to the
representation of certain problem types. Techniques have been found to overcome some
of these representational restrictions, some of which are used in this thesis. However,

these techniques generally rely upon encoding tricks which increase the number of
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inputs to the map, thus increasing computational complexity.

However, the largest problem associated with Kohonen’s maximal map is the com-
putational requirement of the algorithm. Although Kohonen’s maximal map is able
to form good topological representations of complex data sets, it is extremely stow.
In the original publication, training times of O{10000) epochs were quoted for simple
8 x 8 grid patterns. Although the time required to perform an epoch of training is
substantially smaller than the requirement in biological SOM models, the number of
epochs which must be computed remains large. This fact often renders impractical
the training of complex training sets. While this original algorithm demonstrates the
technical feasibility of self-organisation, significant improvements in the efficiency of

the algorithm are required.

Minimal Maps

Ritter and Kohonen (1989) addressed this concern by significantly restating the un-
derlying neuron concept. Whereas the original Kohonen formulation generates winners
from the maximum excitation, this revised formulation describes winners in minimal

terms. The activation of a neuron is then defined as:
mi = |35 — wyj (2.6)
J

For any given pattern, the activation response of every neuron is evaluated. A

winner with the lowest level of activation is then selected:
w|m,, = min(m;) (2.7)
1

That is, the algorithm selects as winners those weights which explicitly mimic training
patterns.

As a result of this formulation, the update rule becomes significantly simplified. The
minimal algorithm has a desirable final state: a weight representation where m; = 0. A
pattern/weight combination which generates this value will be an ideal representation.
The weight update rule can therefore update weights directly towards this ideal value.
The maximal algorithm has no analogous state; weights are reinforced if they engender
a response in the map, but there is no theoretically ideal weight. Therefore, the search
process for an ideal weight representation is somewhat slower.

The update rule for the minimal algorithm can be stated in a simple fashion as a
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Algorithm 3 The Update portion of the SOMLearn algorithm: minimal map version.
This algorithm updates the weights W in the map, based upon the training vector
#, and the current values of the learning parameters o and o. h;, is as defined in
Equation 2.4 or 2.5.

Update(W, 7, a,0)
fori=1toldo

0; = || — Z|
end for
W= min,; 91'
fori=1toIdo

Wy = W; + ahi,w(f - 'lﬁz)
end for

direct attempt to attain the ideal goal:
@i(t + 1) = Fi(t) + at)hiw()(F - @) (2.8)

Each update attempts to direct the weights towards the known goal m; = 0; the
magnitude of any change is moderated by the gain and neighbourhood parameters o
and o.

In all other respects, the minimal SOM algorithm is identical to the maximal al-
gorithm. The basic learning algorithm presented in Algorithm 1 holds; however, the
Update algorithm must be altered to accommodate the new representation of neurons
and update of weights. This variation is shown in Algorithm 3.

Algorithm 3 is the most commonly used Kohonen variant. Training times using
this algorithm are significantly improved over the original maximal algorithm. This
improvement can be attributed to the improved weight update mechanism.

This algorithm also has the advantage of allowing a much wider variety of inputs.
The maximal style SOM requires normalised inputs to ensure no component dominates
the overall activation level. However, the minimal style SOM has no such requirement.
All inputs attempt to attain a difference of 0, and the relative magnitude is eliminated
by subtraction. As a result, boolean values and numerical magnitudes can both be di-
rectly encoded, usually as single inputs. This representational freedom allows the SOM
trainer to define an extremely efficient problem representation; a fact which further
improves training times.

However, the minimal SOM does suffer from some problems. The encoding scheme
utilised by maximal style maps determines the significance of a weight from its magni-

tude. That is, a large weight indicates a significant patiern. However, using minimal
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SOMs, it is impossible to determine the significance of a weight without reference to a
specific pattern. The weight encoding by itself is meaningless — it requires subtraction
from a training vector to establish significance. This poses a major problem for those
attempting a post-training analysis of a SOM, as the weight space of the SOM cannot
be analysed without reference to a specific data set. The characteristics of the map
cannot be established independent of the data set used to create it.

The minimal SOM algorithm also poses restrictions from a research perspective.
As more is learned about the structure and function of self-organising structures in the
brain, it would be desirable to map these new theories into computational practice.
However, the computational advantages gained by the algorithm are achieved by aban-
doning the original biological metaphor. The application of new, biologically derived
modifications to the self-organising process is therefore extremely difficult. While effi-
cient, the minimal SOM is often inappropriate for research into the fundamental nature

of self-organisation.

Maximal Maps Revisited

Kohonen and Hari (1999) presents a revised version of the maximal map. As a maximal
map, the activation levels are calculated using Equation 2.1, and a winner is chosen as
the neuron with the highest activation as in Equation 2.2. The only difference between

this algorithm and the original maximal map is the update rule:

@it + 1) = @i(2) + ahiw (O[E() — [@i(t) - F()]i(1)] (2.9)

This update rule operates on the principle that the output product of a weight and
an input vector will be maximised if the weight and input vector have a high degree of
correlation. Each update using this rule attempts to increase this degree of correlation.
Uncontrolled growth in weight value is controlled due to the normalising influence of
the dot product w;(t) - Z(f) term.

Again, the basic Kohonen training algorithm (Algorithm 1) holds, but the Update
algorithm must be altered to reflect the new weight update rule. This revised Update
algorithm can be found in Algorithm 4.

This approach to weight update performs a much more direct convergence towards
the unknown maximum than the original maximal update rule. The original update
rule attempts to reach an optimal representation by slow accumulation of minute vector

components. This slow approach is necessitated by the absence of any negative rein-
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Algorithm 4 The Update portion of the SOMLearn algorithm: revised maximal map
version. This algorithm updates the weights W in the map, based upon the training
vector #, and the current values of the learning parameters o and o. hyy, 1s as defined
in Equation 2.4 or 2.5. Note that this algorithm is identical to Algorithm 2, except for
the weight update rule.

Update(W,Z, «,0)
fori=1toldo
O, =u; T
end for
w = max; ©;
fori=1toldo
Wi = W; + ahy (T — 0U0)
end for

forcement in the update algorithm; there is no mechanism for correction if the weight
representation overshoots an optimal representation. The revised update rule allows
weight subtraction, which subsequently permits overshoot and correction to occur in
the search for an optimal weight representation.

While still not explicitly directed towards a goal (maximal SOMs, in either formula-
tion, have no such specific goal), this update rule does converge quickly upon solutions.
The number of epochs required to train this updated maximal map is roughly equiva-
lent to that observed using minimal maps. As a maximal map, direct analogies can be
drawn between biological SOM architectures and the maximal algorithm, allowing the
application of biological principles to the computational map.

However, the restrictions on problem formulation imposed by maximal maps still
exist. Inputs to maximal maps must be normalised to the range [0 : 1] and must rep-
resent some concept of ‘support’. Whereas a value of 1 indicates positive support for
a concept, a value of 0 does not indicate positive support against a concept. Rather,
it represents an absence of any support, either positive or negative. True/False rela-
tionships, for example, cannot be represented as a simple 1/0 encoding; ‘false’ must be
represented as a ‘positive false’, not as ‘the opposite of true’. Simple binary represen-
tations, or scale normalisation of numeric inputs to the [0 : 1] range are therefore not
possible. Concepts must be encoded so that input magnitude has a direct relationship
to significance. These limitations can be overcome but only at the cost of an increase
in the number of inputs. This increases the computational complexity of learning.

Despite these restrictions, this revised maximal algorithm provides a comfortable
middle ground between the original maximal algorithm and the heavily optimised mini-

mal algorithm. It is this revised maximal algorithm that is used throughout this thesis.



CHAPTER 2. STATUS QUO 24

2.5.2 Parameter Decay Schemes

After modifications to the fundamental algorithms for representation and update, the
most significant variations made to the basic Kohonen algorithm revolve around the
manipulation of the key learning parameters.

The operation of Kohonen’s algorithm is based upon the control of two parameters
during training: learning gain (e) and neighbourhood size (). During the learning pro-
cess, these parameters are decayed. However, the manner in which these parameters
are decayed can have a profound influence on the style of organisation that develops.
In addition, these parameters control the number of training epochs taken to achieve
a complete map. Decay schemes which overestimate the required number of training
epochs can significantly prolong training time and increase the computational require-

ment of the SOM algorithm.

Gain Decay

The vast majority of literature on parameter decay has concentrated upon the appropri-
ate selection of a gain decay mechanism. The purpose of gain in the update equation
is to moderate the rate of update: a high gain value allows the weights to respond
rapidly to different inputs, whereas low gain limits the extent of any change. Decaying
gain over time allows a SOM to rapidly adjust to training during the initial stages of
learning and slowly adapt to the finer details towards the end of training.

At the time of initial publication, Kohonen suggested éimple linear decay mecha-
nisms for parameter decay. Using such a scheme, gain was decayed from the maximum
value of 1, to a minimum value of 0, over some predetermined time frame. However,
the selection of this time frame is a difficult task. Selecting a time frame which is too
short could result in a badly organised map. However, selecting a time frame which is
too long wastes processor cycles.

The general approach to selecting this decay period has been to use empiricism and
past experience to guide the selection of values. However, if a data set is extremely
large, or is not available a priori (such as would be the case in a real-world learning
situation), empirical testing is not a practical option. A wide range of simple algebraic
alternatives to linear decay have been proposed in the literature. For example, Kohonen
(2001) proposes:

alt +1) = 15 a® i(:r)(t) (2.10)
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~ a(t)
alt +1) = t_-—l—A_B (2.12)

where «(0), A and B are ‘suitably chosen constants’. Ritter et al. (1992) proposed an

exponential decay curve:

a(t) = agexp (—%) (2.13)

where 7 is a decay parameter and «g is the initial gain. Kang et el. (1995) proposed a

hyperexponential decay curve:

aft) = Aft exp (_,ft) (2.14)

where A is an amplitude adjustment, B is a slope determining constant and T is the
total training time.

These decay schemes do not obviate the need for parameter estimation — they
merely change the parameter which must be estimated. The process of choosing suitable
constants is largely unexplored. Of the commonly used general purpose parameter
decay schemes which exist in the literature, none are accompanied by general purpose
mechanisms for selecting appropriate values of key decay parameters.

Given the difficulty in evaluating decay parameters a priori, some attempts have
been made to use automated runtime schemes for parameter decay. One example
of such a runtime scheme is the Auto-SOM (Haese, 1998). The Auto-SOM algorithm
attempts to use a Kalman filter to recursively update SOM parameters during learning.
The Auto-SOM system consists of two process models: one of the learning process and
one of the organising process. The Kalman filter corrects these models based upon
errors between the predicted map output and the actual map output. By comparing
the Kalman filter state equation of the learning process with the weight update rule
for each neuron, it is possible to evaluate a gain value for each training epoch. Using
this model, each neuron has an independent learning gain.

However, complex schemes such as Auto-SOM can be extremely computationally
complex. The Auto-SOM Kalman algorithm has complexity of O(J), where I is the
number of neurons and J is the number of inputs (Haese, 1998). Since this Kalman
process must be evaluated after each training epoch, this can be a significant compu-

tational requirement if the training regime is prolonged. This is exacerbated by the
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fact that the Auto-SOM algorithm errs on the side of caution by converging slowly;
training times in the order of O(10*) epochs are quoted in Auto-50M literature (Haese

and Goodhill, 2001).

Neighbourhood Decay

Although many attempts have been made to find an optimal decay mechanism for
gain in Kohonen style maps, there have been comparatively few investigations into
neighbourhood decay. This is exemplified by the cursory analysis of the topic provided
by Kohonen in his seminal book {Kohonen, 2001). In the short analysis presented in
this source, Kohonen suggests that as long as the neighbourhood is initially large (a
value the same order of magnitude as the largest dimension of the neuron array) there
should be no problems obtaining a stable topological mapping of a data set. However,
he provides no guideline as to an appropriate rate of decay.

The only investigations into neighbourhood decay seem to take the form of basic
restrictions on neighbourhood decay, rather than specific decay schemes. Erwin et al.
(1992b) found that if the neighbourhood function was convex, the only stable states
would be ordered ones. Therefore, as long as a neighbourhood function such as a
Gaussian with a ‘large’ standard deviation is used, “ordering can be assured almost
surely” (Erwin et al., 1992b}). The only exception presented to this statement is the
special case of a SOM with an input signal of similar dimensionality to the SOM array.
However, such an arrangement would represent an extremely unusual SOM; in practice,
most SOMs have many more neurons than inputs.

In practice, most SOM practitioners follow the lead of Kohonen (1982) and use a
simple linear or geometric decay of neighbourhood size, mostly because practice has
shown such decay schemes to be “good enough” (Ritter et al., 1992). However, this
practice is endowed with the same problems as linear gain decay, as an appropriate
decay period must be found. One simple approach to selecting this decay period is
to ignore it by selecting a constant value for neighbourhood size. This approach is
particularly common in theoretical analyses, as it dramatically simplifies the analysis
of the organisation process.

The runtime approach used to evaluate gain can also be used to update neighbour-
hood size. For example, the Auto-SOM technique discussed in the previous section
models neighbourhood size in addition to learning gain. The Auto-SOM algorithm

uses a measure of local topological preservation to evaluate the preservation of input
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topologies. As this preservation increases, neighbourhood size is decreased. As with
the gain parameter, the neighbourhood for each neuron is independent. However, as
discussed previously, the Auto-SOM technique is computationally complex, and does

produce extended training times.

Discussion

The vast majority of SOM literature treats gain as the most significant factor affect-
ing SOM organisation, leaving neighbourhood decay as a relatively ancillary concern.
Mulier and Cherkassky (1994), for example, describe the choice of gain as ‘critical for
good performance’. However, no proof has been offered that this is indeed the case.
Theoretical analyses of self-organisation largely ignore the neighbourhood question,
dealing with idealised single neighbour neurons or static neighbourhood relationships
(Flanagan, 1998) (Martin-Smith et al., 1993) (Cottrell et al., 1998). The decay of neigh-
bourhood size in self-organisation is one area of research which calls for much further

investigation.

2.5.3 Neighbourhood Variants

The traditional neighbourhood function (Equation 2.5) is tightly bound to a geometric
interpretation of the neighbourhood. The SOM is assumed to be a rectangular or
hexagonal plane of evenly spaced neurons. The physical distance between neurons
on this plane is then used to evaluate the strength of any neighbourhood interaction.
A neuron which is physically close to a winner will receive strong support during an
update cycle, while other neurons which fall further away on the plane will receive
minimal support.

However, there is no requirement for this geometric organisation to be preserved.
The original formulation of neighbourhood (Equation 2.4) defines the ‘neighbourhood’
of a neuron as the members of a set; geometry is merely a simple way of determining
membership of the neighbourhood set. Any other scheme can be used, and can result
in some interesting topological structures.

Amongst the simplest variations to the neighbourhood set is to add neighbourhood
relationships to the existing planar geometrical relationships. By allowing neurons near
the edge of a map to be considered neighbours, the planar surface of the SOM eflectively
becomes the surface of a cylinder or sphere {depending on which edges are wrapped).

In this way, data which has a looped structure need not break the loop in order to find
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a 2D topological representation.

The removal of neighbourhood relationships is also possible. By introducing bound-
aries in the SOM over which geometric relationships are not preserved, the simple 2D
SOM plane can be transformed into a network of loosely attached local neighbour-
hoods. If these neighbourhoods are completely detached, the SOM algorithm becomes
a classifier, with each isolated neighbourhood corresponding to a classification category.

The neighbourhood set can also be extended into multiple dimensions. A number
of authors have suggested the use of a SOM whose neurons form the vertices of an N-
dimensional hypercube (Bauer and Villmann, 1997) (Truong, 1991) (Wan and Fraser,
1993). All geometric neighbourhood relationships familiar to the 2D case are then
abstracted to the N-dimensional case, allowing for more complex geometric relationships
to be represented in the output data set. This hypercubical topology can also have
neighbourhood relationships added and removed, allowing for topological loops and
boundaries in multiple dimensions.

The technique of adding and removing neighbourhood relationships is not a recent
discovery. Indeed, the possibility of developing eclectic neighbourhood relationships
was part of Kohonen’s initial discussion of his algorithm (Kohonen, 1982), and was
demonstrated later with triangular and ‘cactus’ shaped topologies (Kohonen, 1990).
This technique has also been used successfully in a practice, such as in the clustering
of data from satellite imagery by Koikkalainen and Qja (1990).

Using these neighbourhood variants, it is possible to improve the quality of topolo-
gies formed by complex data sets on a SOM. It stands to reason that a data set which
has an underlying ‘widget’ topology will fit on a map with ‘widget-like’ neighbour-
hood relationships better than it will on a rectangular map. Providing a map whose
topological structure suits your data is logical step.

Developing an appropriate set of neighbourhood relationships to represent a com-
plex map topology poses a problem. In order to create a neighbourhood structure
which suits the data, the user must have a good knowledge of the underlying topology
of the data set. However, the purpose of Kohonen’s SOM algorithm is the visualisation
and discovery of the topologies in a data set. Therefore, topological information of the
kind required to create an appropriate neighbourhood structure will not be known until
after organisation has occurred. If sufficient topological knowledge s known a priori,
there is little value {beyond novelty) in using a self-organising process to expose the

underlying topology.
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Another approach to neighbourhood decay is to consider the neighbourhood decay of
each neuron to be independent. Tn this way, the resolution of the ﬁlap is not a constant
(as is the case with simple arithmetic or geometric decay), and local resolution decays
at a rate determined by the difficulty of finding a good local topological representation.
The AASOM algorithm (Kiviluoto, 1996} is one SOM model which implements this idea.
Using this algorithm, neighbourhood size is lowered exponentially, but is increased if a
local topological discrepancy is found.

However, determining the existence of a local topological discrepancy relies upon
an accurate measure of local map quality. Such a measure can be difficult to establish
(as will be discussed in Section 2.6). If topological errors are overestimated, dynamic
techniques such as AdSOM will never decay neighbourhood size or will finish training
while some regions of the map still have a large neighbourhood size. This is exacerbated
by the fact that topological errors are more likely to occur in the mapping of complex
data sets — the same data sets which benefit most from a SOM visualisation tool. Maps
which contain zones with large neighbourhood sizes are of limited use for visualisation
purposes, as the neighbourhood size directly relates to the precision of the output

representation.

2.5.4 Other Variants

The variants presented here are by no means exhaustive: Kohonen (2001) cites 46
of the more interesting extensions to the original SOM algorithm; Kangas and Kaski
(1998) cites a total of 3043 works which have used, refined or provided variants upon
Kohonen’s basic SOM algorithm.

There are, however, some common themes in SOM research. The most common of

these themes are summarised by Kohonen (2001):
Different matching criteria which redefine the ‘winner’ function;

Accelerated searching for winners using traditional optimisation methods such as

linear programming or heuristic search to speed the search for the winning neuron;

Hierarchical searching, which simplify the SOM problem by breaking a large SOM

into a tree structure of smaller SOMs;
Accelerated learning of SOM weights;

Handling sequential signals such as temporal sequences;
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Supervised SOM, which provide methods for clustering outputs, and labeling those

clusters;

Systems of SOMs, where large networks of SOMs are interconnected, with the out-

put of one SOM becoming the input to another.

A full exploration of these other variants is beyond the scope of any single study.
However, the wide range of modification themes demonstrates that Kohonen’s SOM
algorithm is a highly adaptable and extensible algorithm which can and has been mod-

ified to represent many new ideas in machine learning.

2.6 Assessing SOM Quality

Topological descriptions are not created equal — it is easy to conceptualise ‘good’ and
‘bad’ mappings of a given data set. For example, the topology of a simple 2D data
set should be clearly preserved on a 21D SOM. Failure to do so should be considered a
failure of the algorithm. Given that there is a conceptual metric of ‘good’ and ‘bad’
topological representations, it would be desirable to have a guantitative description
of the ‘goodness’ of a given topological description. If such a metric were to exist,
it would be possible to compare the performance characteristics (such as quality of
topology, organisation time to reach a given quality, etc) of two variants of the SOM
algorithm.

Unfortunately, the nature of the SOM complicates the definition of such a mea-
sure. The output state of a SOM is a qualitative description, consisting of a topology
describing the key relationships present in a training data set, combined with some
measure of the relative importance of those concepts. While this is the ideal output
for a visualisation tool, it poses problems for the researcher attempting to quantify the
performance of a SOM algorithm.

Unlike most supervised and unsupervised learning algorithms, the SOM does not
produce discrete output classifications. Consequently, it is not possible to use the
traditional approach of counting false positives and false negative in the classification
of a test set. Developing an accurate and simple quantification of the continuous nature
of a SOM representation is a non-trivial task. This task is made more difficult by the
fact that there is no natural entropy description for the weight space of a SOM (Erwin
et al., 1992a). If such an entropy description were to exist, it would be trivial to quantify

this entropy, and use it for optimisation purposes (Heskes, 1999).
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The difficulty associated with developing a topological quality metric has not pre-
vented a large number of authors attempting to develop such a metric. A number of
methods have been presented in the literature for analysing the performance of topo-

logical organisation.

2.6.1 Quantisation Error

One of the simplest methods for evaluating SOM performance was suggested by Ko-
honen as an extension of error measurement used in the Vector Quantisation (VQ)
techniques he pioneered (Kohonen, 2001). The weights of a minimal SOM can be con-
sidered to be a set of reference vectors. If a training pattern corresponds exactly to the
weights of a given neuron, a perfect activation (i.e., distance 0) will occur. However,
such perfect mappings will be rare. The extent to which perfect mappings do not occur
is one measure of map performance. Formally, given a training set X consisting of
N training patterns ¥, which generate winning neurons with indices w(j), Kohonen'’s

quantisation error can be stated as:
N
— — 2
B =118 - dupl (2.15)
j=1

While this technique does give a measure of the extent to which good winners are
found for training patterns, it ignores the concept of neighbourhood preservation. Un-
der a good topology, two similar vectors should fall close together on the output map.
Conversely, two significantly different vectors should fall some distance apart. Using
the quantisation error metric, there is no bonus for preserving topological relationships
in the data set, nor is there a penalty for losing existent topological relationships or in-
troducing false relationships. This is a significant limitation, as the topology preserving

characteristic of the SOM is its most desirable characteristic.

2.6.2 Neighbourhood Quantisation Error

This limitation can be overcome by adding the neighbourhood of a winner to the
quantisation calculation. This variation, also suggested by Kohonen (2001} can be

expressed as:

E=

7
i=

N
> HE — @) R I (2.16)
1j=1
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Using this variation, the quantisation error is computed as the sum squared distance
between the training vector and all the vectors in the neighbourhood of the winner. In
this way, local topological continuity is added to the quantification, as a low quanti-
sation error will only occur if the neighbourhood of the winner supports the training
pattern in the same way as the winning neuron.

One significant limitation of this technique is that it only works on minimal SOMs.
The weights of a maximal SOM do not attempt to match input patterns, so subtraction
of maximal style weights from an input will not give any useful measure. If a maximal
style map is to be used (as is the case in the remainder of this thesis), quantisation
error of this form is not a useful measure.

However, the greatest limitation of this technique is the significance placed upon
the choice of neighbourhood size. Choosing a neighbourhood which is too small will not
encompass enough topological information to adequately quantify overall topological
performance. However, choosing a neighbourhood which is too large will result in
misleading measure of topological performance. Large scale variations in the map will
be considered an indication of a poor topological mapping, rather than a required
characteristic of a map which is to represent a large data domain.

The existence of a tunable parameter which has such a critical role in determining
map quality is problematic, as there is no method for determining if a poor quality
score is the result of a bad map, or a poor parameter selection. Viable quality metrics

should avoid such parameters.

2.6.3 Ideal Map Distance

Another simple quality metric was proposed by Lo and Bavarian (1991). This scheme
attempts to measure, for each pattern in the test set, the distance on the map between
the between the winning neuron for that pattern, and the ‘ideal’ position of the winning
neuron. The error in the map is then taken as the sum square distance between weights
and the ‘ideal’ grid position.

This technique presupposes that the user knows the ideal position for each winner.
In demonstrating their technique, Lo and Bavarian (1991) used a square grid — the
ideal winners for this topology are easy to establish. However, this will not be the
case for the vast majority of interesting data sets. Furthermore, if the ideal position is
known, or can be easily computed, there should be no need for a SOM exploration of

input topology as the user has already determined the topology of the data set.
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2.6.4 Topographic Product

Bauer and Pawelzik {1992) have suggested the use of the topographic product as a
measure of map quality. Topographic product is a measure of the preservation of
neighbourhood relations between spaces of possibly different dimensionality. Its use
as a technique is not limited to self-organising maps; it is also used in the context of
nonlinear dynamics and time series analysis {Lichert et al., 1991), although it is referred
to as “wavering product” in these areas.

The topographic product P is evaluated to be:

1 N N-1 \ | 1
P= N(N—_l);Elog(ﬂz_lczl(g,n@mz)) (2.17)
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In these expressions, n}’ (7) denotes the index of the kth nearest neighbour of neuron j
in the map space, and nkX (7) denotes the index of the kth nearest neighbour of training
sample j in the input space. The ratios Q1(j,k) and Qo{j, k) represent a comparison
between nearest neighbours in the map space and the input space, respectively. These
ratios will equal 1 if and only if the kth order nearest neighbours in the input and output
space coincide. Any deviation from 1 indicates a violation of the nearest neighbour
ordering on the map.

The topographic product suffers from two significant problems. Firstly, the measure
only works on minimal maps. The reasons for this are identical to those discussed
previously. Secondly, as noted by Villmann et al. {1994), the topographic product
is unable to distinguish between the folding of the map along nonlinearities in the
data space and folding within the data space itself. While the former is a desirable
characteristic in a map, the latter is a cause of discontinuities in the output map. A
good quality metric should be able to distinguish between these two cases, ignoring the

former, but counting the latter as a negative quality.

2.6.5 Topographic Function

A somewhat more sensitive technique was proposed by Villmann et al. {1997). This,

known as the topographic function, compares the neighbourhood relationships between
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receptive fields on the map. The receptive field of a neuron M is the range of patterns
in the input space which will cause M to be selected as a winner; that is, cells in the
Voronoi tessellation of the map units within the data manifold. On a well ordered map,
only units that are neighbours on the map may have adjacent receptive fields.

The topographic function @ (d) is defined as:

oY (d)

fild)

1l

> fi(d) (2.20)
# {Jllli — Fllmax > d; Bi N R; # fi0} (2.21)

The function f;(d) determines the number of units j which have receptive fields R;
adjacent to R;, while at the same time have a distance on the map larger than d. In
this formulation, #X is the cardinality of the set X, and the maximum norm ||Z||max =
max; |z;|. The value &% (d) is then computed for d values in the range [1..I].

This technique is a powerful measure of topological consistency in a SOM. Tt is not
immediately restricted to use on minimal SOMs, as Voronoi tessellation and receptive
fields can be computed on the output space of a SOM without consideration of the
underlying weight space. The function can also be normalised to allow comparison
between maps and input spaces of differing sizes.

However, this technique is semsitive to noise or misrepresentative inputs. Such in-
puts may cause poor selection of receptive fields, causing a poor judgement of adjacency.
Noise is a consistent problem with real world data sets. While the topographic function
may be useful for noise free data sets, the suitability of this technique for real world

applications must be questioned.

2.6.6 Topographic Error

Another measure of topographic integrity is Topographic Error, proposed by Kiviluoto
(1996). In contrast to the complexity of computing receptive field tessellation, Topo-
graphic Error is a simple calculation. Tt computes the proportion of samples for which
the nearest and second nearest units reside in non-adjacent positions on the map.

The topographic error £, is defined as:

1<
£ = ﬁ;u(m} (2.22)

. 1, iff winner and runner up neurons for x are non-adjacent
u(f) = (2.23)
), otherwise
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While this measure is not as susceptible to noise as previous methods, it does not
consider the extent of discontinuities. Given two similar points in the input space,
there is no difference between mapping them one neuron apart, or to opposite corners
of the map. Kiviluoto justifies this behaviour by claiming that the Topographic Error
allows for the distinction between a small number of major discontinuities and a large
number of minor discontinuities.

However, there are a large number of situations for which this behaviour is more of
a hindrance than a help. If a data set is sparse, winners will never be adjacent (as they
will fall 2 or more neurons apart). In such a case, the topographic error will report a
bad scare even if the topology is preserved perfectly. Fundamental limitations of this

kind render the topographic error largely unusable as a quality metric.

2.6.7 Path Integral Goodness

The measure proposed by Kaski and Lagus (1996) is based upon the average Euclidean
distance between the data vector &, the weight vector of the winning neuron ,, and
the minimum sum of differences between pairs of neighbouring weight vectors that lie
on a path from the winning neuron to the second best neuron match on the map. The
map goodness C' is expressed as:

P-1
C=F |||I7 - @y + min > gy — Byl (2.24)
p=0

where w(Z) is the index of the winning neuron for training pattern &, /() is the index
of the runner up neuron, and I;{7) is the index of the jth neuron on a path of P neurons
from the winning neuron to the runner up neuron; in this way, I;(0) = w(Z), L;(1) is
the index of the first neuron on the path, and so on to I;(P) = w'(Z), the index of the
Pth neuron on the path, which is the runner up neuron. E[-] is the expectation value
over all winners.

This measure evaluates both continuity in the mapping, and quantization error
(the Euclidean distance between the training vector and the weight vector) and can
be applied to any data set. However, it does require a minimal map, as the computed
path is essentially a path integral through the data space through the reference vectors
stored as weights. This path cannot be easily computed if the map is maximal.

A similar line integral method which does not required a minimal map was proposed

by Kraaijveld et al. (1992). In this method, the path is determined by using training
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vectors as the reference vectors on the path integral. Each neuron on the path through
the map is assumed to have been selected as a winner; the training vector which caused
this selection is used as a reference vector on the integral path in the data space.
However, this technique assumes that every neuron will be selected as the winner for
at least one pattern in the input space. Such correspondence cannot be guaranteed,
as discontinuities in mappings will frequently result in map neurons which are never
selected as winners. Although this allows the measure to be used on maximal SOMs,
the requirement for 1-to-1 correspondence is unrealistic, especially with large data sets
which are prone to topological errors.

Another limitation of path integral techniques is the computational requirement. In
order to compute the goodness for a given training vector, every path from the winner
to runner up must be considered. Furthermore, this path must be computed for every
pair of training vectors in the training set. In the worst case, this represents a pair
of multiplied exponential complexities. Statistical sampling of training patterns and
an informed search for the minimal path will reduce this complexity. However, if this
metric is to be computed continuously during training, this will impose a significant

slowdown on the training process.

2.6.8 Discussion

The concentration in the literature on minimal maps has lead to the vast majority of
quality metrics relying upon the use of the weights as reference vectors. While this can
lead to some useful measures of topological quality for minimal maps, they cannot be
used on the maximal maps which are used throughout this thesis.

The more promising approaches are the methods which ignore the weight space and
rely upon the output space as the true indicator of topological quality, such as those
proposed by Kiviluoto (1996), Kraaijveld ef al. (1992) and Villmann et al (1997).
While these specific approaches suffer from significant problems, the general approach
of considering the output topology and its relationship to the input data space bears

the greatest promise of yielding a general measure for map quality.
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2.7 Approaches to Continuous Learning

2.7.1 What is Continuous Learning?

The real world is a difficult thing to model. Real-world problems are nonlinear, as
the mathematical relationships underlying real-worlﬂ problerns are not a simple linear
combination of factors. Furthermore, real-world problems are time invariant; that is,
the statistical properties of real-world systems change over time. Although theoreticians
often assume the existence of linear systems with time invariant characteristics, the vast
majority of interesting (i.e., hard) problems in machine learning remain nonlinear and
time variant.

Real-world process control, for example, is both nonlinear and time variant. Not
only does the process change continuously in a nonlinear manner but the characteris-
tics of the process control problem are constantly changing due to aging, exchange of
components, and changes in environmental conditions. Many successful process con-
trol models have been developed which assume a time invariant process. However, the
lifespan of models which make this assumption is inherently limited to a time frame
over which the variation in the process is constrained.

The difficulty associated with developing algorithms which can learn in time variant
environments has not prevented a large number of attempts to develop such algorithms.
However, there is some confusion in the literature over the terms of reference to be used
in describing approaches to problems of this sort. All of the following terms have been

used to describe solutions to this general class of problem:

on-line learning

incremental learning

sequential learning

adaptation
o life-long learning

Unfortunately, these terms are not used consistently. Although they are sometimes
used to refer to solutions for nonlinear, time variant problems, they are also commonly
nsed to refer to solutions for linear, time invariant problems. For example, ‘On-line
learning’ is often used to refer to pattern-by-pattern update as opposed to batch update.

‘Adaptation’ is sometimes used to refer to weight (or parameter} change in general,
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which is part of any learning method. ‘Life-long learning’ often refers to the problem
of transferring domain knowledge between similar tasks. When used in these contexts,
these terms describe important components of a solution to time invariant problems,
but they do not encompass the problem as a whole.

The ambiguity of the existing terms lead to Protzel et al. (1998) dividing all learning

approaches into two categories:

1. systems which allow learning during a certain time interval (the training period},
after which the learning system is put into operation. At some point there might

be a new training period on an updated (usually large) data set; and

2. systems which allow learning takes place all the time in an uninterrupted fashion;
there is no difference between periods of training and operation. Learning and

operation can both commence after the first training pattern is presented.

Based upon this division, Protzel et al. {1998) defined the term continuous learning
to refer to the second class of learning problem. Systems which learn in this manner
are particularly useful for time variant problems, as they constantly learn from their
environment. If the environment changes, these changes should be reflected in the
learning system. This thesis concerns itself with an approach to continuous learning
which can be used to solve time variant problems.

It is interesting to note that continuous learning is a characteristic inherent in
many biological learning systems, including the human brain. Psychological studies
have shown that humans often employ more than just initial training data for the
purposes of generalisation. In addition, it is sometimes possible to generalise from a
single training example (Ahn and Brewer, 1993) (Moses et al., 1993). A prominent
example of this phenomenon is the recognition of faces (Beymer and Poggio, 1995)
(Lando and Edelman, 1995). When learning to recognise a person, a human does not
rely solely upon an initial static training set of faces; if the individual is new, the
new face is incorporated into existing knowledge. Furthermore, the learning process
involves a self-clarification of the learning task itself. With experience, humans learn
that certain facial characteristics, such as eye shape, are more important than other

characteristics, such as facial expression (Thrun, 1996).
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2.7.2 Naive Approaches to Continuous Learning

At a simplistic level, almost any algorithm which learns on a pattern-by-pattern basis
can be thought of as a continuous learning algorithm. A traditional pattern-by-pattern
training algorithm can be considered to be an update algorithm which acts upon a
single training pattern drawn from a static distribution. This update process is then
repeated until the system is considered to have converged (according to some system
specific measure).

However, most algorithms do not require that the probability distribution be static.
Neither do they prevent the use of the system for predictive purposes before the sys-
tem has converged — although the quality of predictions made prior to convergence
cannot be guaranteed. The naive approach to continuous learning exploits these facts;
training examples are drawn from a changing source and the system is allowed to make
predictions at any time. A similar approach can be taken with batch learning systems,
by altering the composition of the batch after each training iteration.

If such an approach to continuous learning is taken, there is an inevitable initial
period of development during which prediction quality will be poor. However, as the
system matures (over a time frame comparable to the time required for traditional
training) the quality of predictions will improve. However, this naive approach to

continuous learning suffers from a significant set of closely related problems:

Training set size is theoretically infinite. Over a sufficiently long time frame the
amount of training information will exceed any memory requirements if encoded
explicitly; implicit encodings may be prone to overspecification as a result of con-
stant stream of minor additions to knowledge representation. Good generalisation

mechanisms are therefore required.

0Old knowledge can become false or irrelevant. Over time, knowledge which was
assumed to be true may reveal itself to be misleading or false. Systems must
be able to remove such false information. In addition, specific knowledge can
become irrelevant to a given problem domain over time; irrelevant information

wastes storage space and has the potential to impede generalisation.

0Old knowledge can remain relevant despite lack of frequency. The absence of
supporting examples in a training set does not necessarily correspond directly to
irrelevance. Some domains will contain knowledge which cannot be challenged

and must be retained at all costs.
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These problems encompass what is known as the stability-plasticity dilemma (Heins
and Taurisz, 1995): any continuously learning system must remain stable enough to
retain old training information but remain sufficiently plastic to allow the incorporation
of new information or alter the representation of existing knowledge to reflect changes in
the problem domain. In addition, the system should remain plastic to single, significant
events but stable in response to single, irrelevant events. In many cases, these goals are
contradictory; the distinction between irrelevant and poorly supported information is
vague and will be problem specific in many cases.

The naive approach is therefore impractical for most — if not all — machine learning
architectures. More sophisticated approaches, which provide solutions for the stability-

plasticity dilemma, are required.

2.7.3 Memory Based Approaches

The simplest approaches to continuous learning are memory based. These approaches
memorise all training examples presented to the system and interpolate between these
training examples at query time.

One of the most widely used memory based algorithm is K-Nearest Neighbour
(KNN) (Stanfill and Waltz, 1986). The ‘memory’ X of a KNN system is a set of
training examples {Z;,%;) € X which map an input space x to an output space y.
A query on the KNN system takes the form of a query vector Z. Given this query
vector, the KNN algorithm searches X for the those K examples whose Z; is nearest to
% (according to some distance metric, usually Euclidean distance). It then returns the
mean of these K nearest neighbours as the output vector. The only significant design
decision is the choice of K; this value should be chosen to reflect the number of patterns
in memory, and the expected local density of those patterns.

Another common memory based algorithm is Shepard’s Method (Shepard, 1968).
In calculating output values for the memory system, Shepard’s Method considers all
training examples, weighting each example according to the inverse distance to the

query vector £. The output vector 5 of Shepard’s method can be expressed as:
~1
—f = g; 1
3(Z) = == — | S (2.25)
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In this formulation, ¢ is a small constant used to prevent division by zero. The result

of Shepard’s model is very similar to that of KNN. However, there is no need to select
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an appropriate value for K (the value selected for ¢ is not as critical).

Memory based approaches are essentially a naive approach, as they make no attempt
to control plasticity or stability. All new training examples are remembered, and no
old examples are forgotten. Compounding this problem is the problem of memory
requirements. If a system is allowed to learn indefinitely, the physical memory required
to uniquely store the training examples will eventually become excessive.

Although memory based can be used in a continuous learning framework, the lim-
itations stemming from their naiveté generally restricts their usefulness in real-world

applications.

2.7.4 Neural Network Approaches

The foundations of neural network theory were established in the 1950’s as attempts to
model the activity of the brain in computational structures (Hush and Horne, 1992).
The mathematical theory underlying neural networks is covered extensively in the lit-
erature (Hush and Horne, 1992) {Hecht-Nielsen, 1990). A wide range of mechanisms
exist for training neural networks. However, they all demonstrate fundamentally similar
properties.

One of the more useful neural network properties is the ability to generalise. The
generalisation property of neural networks is well established. A large number of at-
tempts have been made to improve the generalisation performance of neural networks
(Squire, 1996). A neural network generalises through activation of nodes that support
a particular output. The decision of class membership is not based upon a single com-
putational evaluation. Instead, a large number of nodes interact and combine to arrive
at a classification. A single piece of apparently contradictory evidence about an input
does not immediately invalidate a classification, as it is weighted against supporting
evidence. If supporting evidence outweighs negative evidence, the network generalises
and discards the contradictory evidence. Good generalisation performance allows a
very small training set to be used. As a result of generalisation, the network is able to
“fill in the gaps’, and interpolate results for unseen data (Lippman, 1987).

This generalisation behaviour is particularly desirable for continuous learning. Any
form of explicit encoding of training data will eventually fail due to memory require-
ments. Using neuron generalisation, neural networks remove the need to explicitly
encode patterns, instead using a weight network of predetermined fixed size to repre-

sent the problem domain.
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The problem of choosing an appropriate network size is the most critical issue i
neural network design. Choosing a network which is too large may result in overfitting
of the training data and poor generalization to unseen data. A mnetwork which is too
small may not be able to capture the relations underlying the training data, resulting
in poor prediction performance.

This problem is compounded in a continuous learning environment. In a static
training environment, a statistical analysis of the training set can assist in the creation
of an network of appropriate size. However, in a continuous learning environment,
this statistical information is not available — the statistical properties of the problem
domain cannot be guaranteed into the future. Choosing a static network topology for
such a dynamic training environment is a difficult task.

Neural networks are also subject to the stability-plasticity dilemma, although in the
opposite way to memory based systems. Weights in a neural network are constantly
updated to reflect changes in the problem domain. Providing that the weight update
algorithm allows a mechanism for escaping local minima {a common characteristic},
neural networks experience no difficulty in tracking changes in training data. How-
ever, they do suffer from forgetfulness. Patterns which are not reinforced are quickly
forgotten, as there is no incentive to reinforce weights which are not used.

The problems of determining network topology and knowledge retention can both be
solved by allowing learning algorithms to alter the network topology during the train-
ing process. Using constructionist mechanisms, it is possible to start with a minimal
network, and add neurons and weights as required. Alternatively, one can commence
training with an extensive network topology, and prune weights or neurons which do
not contribute to generalisation performance. A combination of these techniques is
also possible (adding neurons when required, removing others when they become re-
dundant).

One destructionist approach (that is, starting with a full network, and selectively
removing weights from the network) is called Optimal Brain Damage (Le Cun et al.,
1990). Optimal Brain Damage involves the removal of weights which have the least
effect on training error, based upon a diagonal approximation of the Hessian of the
network (in some examples, other techniques, such as principle components pruning, is
used).

However, Optimal Brain Damage has two significant down falls. Firstly, it is ex-

tremely computationally expensive (since the network must be re-trained after each
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pruning). Secondly, the pruning process is driven by the training data, and different
training data can generate different pruned weights (Squire, 1996).

The Cascade Correlation Neural Network (CCNN) architecture (Fahlmann and
Lebiere, 1990), is a good example of a constructionist approach. This architecture
possesses some useful properties: it learns quickly, generalises well and is able to learn
complex behaviours through a sequence of simple lessons (Fahlman, 1991). The CCNN
learning process starts with a minimal network, which grows only when the existing
network is shown to be inadequate. This approach has been shown to be effective in a
number of architectures. Elman {1993) noted that this form of approach mimics human
learning, since children start with an initially restricted memory capacity. In this case,
the long learning period plays a positive role in the acquisition and development of
behaviour.

Initially, a CCNN consists of input and output units (including an input bias unit,
held at a value of 1.0), and connections between these units. This single layer is then
trained until error ceases decreasing considerably. If this value of error is sufficiently
small, the process stops. Otherwise, a new hidden unit is added to the network.

When a new hidden unit is required, a pool of candidate units are created, each
receiving inputs from all existing units {(except output units) in the network. The
outputs of these candidate units are not connected to the existing network. The input
weights of each candidate are trained to maximise correlation between the output of the
candidate, and the error of the existing network. When correlation ceases to improve,
the best candidate unit is selected and is added to the network. The input weights
to this new unit are then frozen, and the weights attached to the output units are
retrained (including the weights from the new unit). This process of adding units and
retraining continues until error in the entire network falls below a desired level (or a
certain number of nodes have been added).

CCNN are well suited to continuous learning problems as their constructive ap-
proach adds neurons if the problem domain changes. In addition, the freezing of weights
allows the preservation of old concepts in the network. As a result, CCNN (and its
recurrent cousin, RCCNN (Fahlman, 1991)) has been used successfully in a range of
long term signal processing and process control problems.

Constructive and destructive approaches to topology development both suffer from a
related problem. Constructive networks are prone to overdevelopment as the continuous

addition of neurons to a network can lead to overspecification and a loss of generalisation
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performance. Conversely, destructive networks require an overspecified network at the
commencement of training, before being pruned to a network capable of generalisation.
Optimal results for continuous problems require a combination of both constructive
and destructive approaches.

Another problem common to these architectures is a tendency to be highly sensi-
tivity to parameter selection. CCNN is especially sensitive to parameters; the choice
of gain and patience is critical for good performance {Keith-Magee, 1997). As a result,
the task of selecting appropriate parameters must be considered carefully.

Optimal Brain Damage and CCNN are not the only mechanisms which have been
proposed for constructing and deconstructing network topologies; others include the
Upstart algorithm (Frean, 1990), Weight Decay (Krogh and Hertz, 1992) and Weight
Elimination (Weigend et al., 1991). Using these constructionist and destructionist
algorithms, neural networks have demonstrated themselves well be suited to the repre-

sentation of continuous learning problems.

2.7.5 Adaptive Resonance Theory (ART)

Although generally classified as a neural network, Adaptive Resonance Theory (ART)
is sufficiently eclectic that it warrants separate discussion. The original theory of ART
networks was originally proposed by Grossberg (1986), and implemented by Carpenter
and Grossberg {1987c).

An ART network performs an unsupervised batch clustering of input data. Given
a set of input patterns, an ART network attempts to separate the data into clusters of
similar patterns. An ART network consists of two layers of processing elements (nodes),
which form an iterative feedback loop. The first layer, Fj, acts as short term memory;
the second layer, F, is an adaptive layer which acts as long term memory. Each node
in the F layer represents a cluster in the set of input patterns and contains the node
prototype representing the centre of the cluster.

The number of nodes in F5 is allowed to change as required, in order to best represent
the input patterns. The creation of nodes in F; is controlled by a parameter p, known
as the wvigilance of the network. This parameter determines the granularity of the
clusters represented by Fy by acting as a threshold on the similarity between clusters
represented by nodes.

The resonance in ART occurs in the iterative feedback loop between I} and Fs

when outputs between the two layers are within some threshold of similarity (that is,
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the output vector Fy —» Fy is similar to the output vector F» — Fi). The selection of
a winning node in an ART network utilises this resonance. Presentation of an input
pattern activates the nodes in the Fy layer, which propagates the input vector through
a set of fully connected weights to the F, layer. This activates the nodes in the F
layer, and the node with the highest inputs initiates a feedback loop with the I layer.
This alters the values of nodes in the F; layer, which in turn alters the F5 layer, and
so on. This process terminates when a node in the F3 layer places the network in a
resonant state; this node is then labeled as the winning node. If no node can be found
to place the network in a resonant state, the network adds a new node to the network,
and declares this new node to be the winner.

There are a large number of variations on the basic ART concept. Amongst these

are:

ART2 (Carpenter and Grossberg, 1987a,b), which allows for the clustering of analogue

input vectors;
ART3 (Carpenter and Grossberg, 1990) which adds a bias to the search process.

Fuzzy ART (Carpenter and Grossberg, 1991), which incorporates fuzzy operations

into the activation functions of the nodes in the network; and

ARTMAP (Carpenter et al., 1991), which uses a pair of ART networks to create a

network capable of supervised learning.

Each of these networks are based upon the same basic principles defined by the original
ART network. As a result, ART based architectures, regardless of the specific imple-
mentation, tend to suffer from some common problems. As a regult of the Winner-Take-
All competitive nature of ART networks, they are prone to local minima in the search
space (Baraldi and Blonda, 1998). They are also prone to overfitting, especially in the
presence of noisy data . They are also potentially sensitive to the order of presentation
of input vectors (Shih et al., 1992).

Just as with neural networks, ART networks can be easily applied to continu-
ous learning problems. The naive approach of continuously presenting new training
data will result in a network which continuously adds new information to the network.
However, just as with standard neural networks, ART networks are prone to plasticity
problems. Over time, the network will tend to drift away from concept representations

which are not reinforced through training.
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This plasticity issue has been addressed in ART variants such as Fuzzy ARTMAP
(Carpenter et al., 1992), FOSART (Fully Organising Simplified ART) (Baraldi and
Parmiggiani, 1997) and ITFOSART (Incremental FOSART) (Loh et al., 2001). IFOS-
ART, for example, maintains the learning rate of the network as a whole above a given
threshold, while allowing the learning rate of individual neurons decay to a stable min-
imum. The decay in individual néuron learning rate prevents the loss of old patterns.
However, by maintaining an overall network learning rate, new nodes can be added to
the system as required.

ART architectures have proven themselves to be good unsupervised (or in the case
of ARTMAP, supervised) classifiers for general learning problems (as is evidenced by
the extensive range of literature and variants on the basic ART architecture). They
are also well suited to continuous problems, and have been successfully used for this

purpose in a number of gituations (Loh et al., 2001).

2.7.6 Conceptual Clustering

Another prominent machine learning technique is the use of conceptual clustering algo-
rithms. The most common examples of these techniques are decision tree algorithms,
such as ID3 (Quinlan, 1982){Quinlan, 1986) and C4.5 (Quinlan, 1993). When presented
with a static data set, algorithms such as these are able to rapidly develop an efficient
representation of the training data. Each training pattern is grouped into a conceptual
cluster based upon some measure of conceptual similarity. 7

However, decision tree algorithms such as these cannot be used for continuous learn-
ing problems. Static conceptual clustering algorithms cannot modify their conceptual
descriptions. If training examples begin to contradict the conceptual clusters devel-
oped during initial training, the problem representation must be completely rebuilt to
accommodate the new facts. Additionally, if recently presented data suggests a better
primary partitioning of the problem space, static clustering algorithms are unable to
generate a new cluster hierarchy without complete retraining,.

Compounding this problem is the fact these many of these static algorithms contain
only generative functions — they do not contain pruning functions. As new data is
presented, these algorithms maintain the ability to add new classification rules to their
concept descriptors. However, these classification rules, once added, are never removed.
This potential for continuous rule creation introduces a risk of overfitting, which would

result in a loss of generality. Consequently, naive approaches to continuous conceptual
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chistering are not feasible.

The most simple continuous conceptual clustering algorithms bear some resem-
blance to the memory based systems discussed in Section 2.7.3. In these simple sys-
tems, all training examples are stored and a partitioning algorithm is used to perform
conceptual clustering. One example of such an algorithm is COBWEB (Fisher, 1990;
Reich, 1991}, which performs a hill-climbing search through a space of hierarchical clas-
sification schemes using operators that enable bidirectional travel through this space.

The COBWEB algorithm builds a conceptual hierarchy, with general nodes at the
top of the hierarchy and more specific nodes at the bottom. Each leaf node on this
hierarchy contains every one of the specific instances used to create that leaf. COBWEB
never deletes instances, and therefore never forgets any training pattern to which it has
been exposed. Each node in the hierarchy is a probabilistic concept representing a
cluster in the data set. COBWEB is able to merge nodes, split nodes, and create new
nodes. By using these operators on the node space, it is possible for the COBWEB
algorithm to reconfigure the representation of the problem over the lifetime of the
system.

One limitation of COBWEB is that can only represent symbolic data. A variant of
COBWEB, known as CLASSIT (Gennari et al., 1989), is able to represent symbolic and
real valued attributes. However, even with this variant, COBWEB is fundamentally
unsuitable for large scale continuous learning problems. Just as with memory-based ap-
proaches, the requirement that the algorithm remember every training example imposes
an impractical memory requirements on a long term learning system.

UNIMEM (Lebowitz, 1989, 1986) overcomes this memory requirement by imple-
menting a simple forgetting mechanism. UNIMEM represents the problem space in
a similar manner to COBWEB: as a hierarchy of nodes representing concepts. Each
time a new training example is presented, and a feature is matched, the value of that
feature is strengthened; each time a feature is not matched, the value of that feature is
weakened. If any feature value ever falls below a user specified threshold, it is pruned
from the concept hierarchy, and is forgotten. As a result of this pruning, UNIMEM,
unlike COBWERB, is not a full memory system. UNIMEM will forget training patterns.

However, UNIMEM is not without problems. Firstly, it requires the user to set
system parameters to make clustering decisions. Inappropriate parameter values could
completely restrict pruning (resulting in no forgetting) or could result in excessive

pruning (resulting in an amnesic system). Secondly, pruning is performed based upon
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usage. Old knowledge, which has not diminished in truth value, will be pruned from
the concept hierarchy if not reinforced. This is not desirable behaviour if significant,
but infrequently reinforced training information is to be retained.

A limitation of both COBWEB and UNIMEM is that they make the assumption
that the concepts in question have some concept of central tendency and that it is
only the boundaries between these central concepts which vary over time (Widmer and
Kubat, 1992). The STAGGER algorithm (Schlimmer and Granger, 1986b)(Schlimmer
and Granger, 1986a) counteracts this notion. In STAGGER, each conceptual represen-
tation is accompanied by two weighting measures, which describe the logical sufficiency
and logical necessity of the item for the general description of the concept. These two
measures are then used to guide the search for new descriptions; weak examples are
removed from cluster descriptions, and strong examples are used to form new clusters.
As a result, STAGGER is able to cope with substantial changes in concept meaning
over time.

The FLORA algorithm (Kubat, 1989) (Kubat, 1991) {Kubat, 1993} uses a window-
ing approach to overcome memory requirements. This algorithm maintains a set of
positive, negative and candidate descriptors. During training, the presentation of a
new positive training example results in either a new deseriptor being added to the set
of positive examples or in a the transferal of a candidate descriptor to or from the posi-
tive descriptor sets. A similar process is performed after the presentation of a negative
example. The training process also contains a history window. As training examples
fall out of this window, they are removed from the descriptor sets. In this way, the
memory requirements of the FLORA algorithm are constrained, the algorithm stores
as many instances as will fit in the window.

However, this approach, as with UNIMEM, requires the forgetting of old training
data. Although the truth value of old training examples may not diminish over time,
FLORA will reject old training examples from its knowledge representation. This
represents an ung,cceptable loss for a continuous learning system.

One algorithm which removes the need for training pattern memory is Incremental
Learning with Forgetting (ILF) (Lazarescu et al., 1999). The ILF algorithm is a hi-
erarchical clustering tool, derived from COBWEB and UNIMEM. However, ILF does
not store complete training instances. Instead, ILF stores specific values from training
instances when those values represent a novel aspect of a given feature. This prevents

fragmentation in concept representation as no excess information is stored in feature
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nodes, making ILF well suited to the learning of problem domains with large numbers
of attributes and training instances.

In addition, ILF implements a localised forgetting mechanism. The forgetting mech-
anism of UNIMEM affects the entire representation in that the strengthening of one
feature requires the weakening of all other concepts. Consequently, all forgetting actions
have global impact. The ILF algorithm implements a series of local aging procedures
to simulate short, medium and long term memory. These aging procedures allow local
plasticity to account for drift in the problem domain but ensure the stability of funda-
mental hierarchy concepts. As a result of these characteristics, ILF represents a robust,

efficient method of performing incremental conceptual clustering.

2.8 Kohonen’s SOM in Continuous Learning

In the previous section, a number of approaches to continuous learning were presented.
These approaches range from naive training of traditional learning algorithms to so-
phisticated approaches of network growth, pruning and coalescence to overcome the
stability-plasticity dilemma.

However, these systems are all fundamentally similar. Although both supervised
and unsupervised variants exist, all the examples presented ultimately yield a discrete
classification mechanism. While this is a useful representation for a wide range of
problems, it ignores those problems for which a continuous representation would be
more appropriate. In addition, discrete classification mechanisms are not well suited
to problems which require the visualisation of a complex data space.

Kohonen’s SOM algorithm has been shown to be well suited to the representation
of static problems which exhibit these characteristics. The 2D output representation
of a Kohonen SOM avoids discrete classification, representing output as a topological
relationship. This relationship is a highly simplified representation of a high dimen-
sionality data space, which allows visualisation. Given that Kohonen's SOM algorithm
has demonstrated itself to be a flexible and extensible algorithm, which can be adapted
to a wide range of applications, it seems reasonable to attempt to apply Kohonen’s
algorithm (or a variant of it) to the continuous learning problem.

The naive approach to a continuous learning SOM will inevitably fail. Kohonen
parameter decay schemes universally decay neighbourhood size and gain to 0 (or a very
small asymptotic value) over some predetermined training period. At the completion of

this training period, the map becomes a static weight representation and, consequently,
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no further adaptation is possible. A simple method to overcome this limitation would
be to decay neighbourhood size and/or learning gain to nonzero values. However, this
approach has not been tested in the literature.

Kohonen (2001) describes no attempts to achieve continuous learning using Kohonen-
style self-organisation. However, some of the techniques presented for use with static

data sets have the potential to be adapted for continuous problems.

2.8.1 Growing Maps

A recurrent theme in continuous learning algorithms is the idea that representations
must be able to develop over time. Successful continuous learning algorithms for neural
networks, ART networks, and conceptual clustering involve mechanisms for adding
descriptions or nodes to their knowledge representations as the problem domain evolves.

A similar line of research has been explored in SOM research. The idea of growing
2 SOM extends from the plastic concept of neighbourhood described in Section 2.5.3.
Although traditional SOMSs have a static array of neurons in a predetermined topology,
there is no requirement that this array remain static. New neurons can be added to
the candidate pool at any time; if the weights of a new neuron result in the selection of
that neuron as a winner, it will be reinforced, and will eventually become an integral
part of the SOM topology.

This leaves two problems for the growth algorithm:
1. When is a new neuron added to the network?

2. Where is it added in the topology, and what neighbourhood relationships does it

possess?

The constraints placed upon the neighbourhood relationships of new nodes determine
the topological structure that evolves.

If there are no restrictions imposed on neighbourhood relationships in the SOM, the
resultant SOM structure is a Neural Gas (Martinetz and Schulten, 1991}(Martinetz,
1993): that is, a graph of interconnected neurons without any predetermined struc-
ture. The graph resulting from this learning process is a subgraph of the Delaunay
triangulation corresponding to the reference vectors of the map (Fritzke, 1996).

However, if restrictions are imposed, a formal underlying structure will evolve. The
Growing Grid (GG) method (Fritzke, 1992} (Fritzke, 1995) enforces a hyperrectangular

structure on the node graph. Each addition to the map takes the form of a complete
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hyperrow or hypercolumn in the map. A similar approach was taken by Blackmore and
Miikkulainen (1995), to develop the Incremental Grid Growing Neural Network (IGG).
This network restricts the growth of the network to a rectangular plane.

More complex restrictions are also possible. Fritzke (1994) defines a k-dimensional
simplex known as a hypertetrahedron. In this structure, each of the (k+1) nodes of
the simplex are connected by (k + 1)k/2 neighbourhood relationships. These simplicies
are joined together to form a complex hypertetrahedral map relationship known as a
Growing Cell Structure (GCS). This allows the representation of complex topologies
within a regular cell structure.

The methods for adding and removing neighbourhood relationships are almost as
varied as the topological structures they generate. For example, the Neural Gas (Mar-
tinetz and Schulten, 1991) modifies the topology locally by inserting and deleting neigh-
bourhood relationships depending on their ‘age’. A neighbourhood relationship between
a pair of neurons is established (or reinforced} whenever both neurons are judged to
be similar to a training pattern. However, the relationship is removed if both neurons
are not selected again within a given time frame. IGG (Blackmore and Miikkulainen,
1995) attempts to minimize errors in representation, adding and removing edges as
required to minimize this error. GCS (Fritzke, 1994) attempts to generate a uniform
probability distribution between neurons; neurons are added and removed to maintain
this uniform probability distribution.

Regardless of the method used to add neurons and neighbourhood relationships,
constructive approaches suffer from a significant problem. Ome of the principal uses
of Kohonen’s algorithm is as a visualisation tool; using a SOM, high dimensionality
data sets are reduced to a 2D representation, allowing the user to examine complex
topological representations in a form which is easily interpreted. If the SOM surface
ceases to be a simple rectangular map, this visualisation becomes increasingly difficult.
The dynamic introduction and removal of neighbourhood relationships further increases
the complexity of the visualisation task. Given that the goal of visualisation is to
simplify the representation of a problem, techniques which explicitly add complexity
to this representation are of limited use.

Constructive SOM methods are also prone to generating specific, rather than gen-
eralised maps. The process of generalisation requires the acceptance of error and lo-
calised distortions. If constructive mechanisms attempt to minimize these errors and

distortions, the resulting SOM will specifically encode training patterns, rather than
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generalise to broader concepts. This process can be controlled using parameters to de-
fine acceptable levels of distortion. However, this then requires a method for selecting
appropriate parameters,

Computational complexity is also a significant issue with constructive SOM ap-
proaches. When a static SOM structure is used, the computational complexity is
constrained and the number of computations per training epoch is known a-priors.
However, if a constructive technique is used, the number of neurons could potentially
grow indefinitely, introducing a significant computational load per training epoch. In
addition, the process of creating and deleting new SOM neurons is a compufationally
intensive process. Again, these factors could be controlled by a parameter describing
maximum network size or constraining the neuron creation process, but this would also
required a method for selecting appropriate parameters.

Constructive SOM models of this type have not been applied to problems with con-
tinuous domalin. Although many papers refer to the incremental nature of constructive
learning, they are referring to the incremental addition of nodes to the network, not
the extension of the problem domain itself. The use of constructive SOM models for

continuous problems is one potential area for further research.

2.8.2 Neighbourhood Pruning

The analogy with continuous neural networks can also be drawn with network pruning.
Consider a map with neurons which initially have a generous neighbourhood set. This
map can be trained, establishing an initial topology. After this initial organisation, the
neighbourhood set can be pruned. If a given neuron has a neighbourhood relationship
which conflicts with the topology of the data set, this neighbourhood relationship can
be removed from the neighbourhood set of the neuron. Several schemes for removing
neighbourhood relationships in this fashion have been proposed in the literature (Kan-
gas et al., 1989) (Blackmore and Miikkulainen, 1993) (Szepesvdri and Léincz, 1993).
Tn this way, the definition of neighbourhood changes over time, but not in a pattern
of simple geometric decay. The resulting SOM will have neighbourhood relationships
which mirror the topological relationships found in the data set.

The dynamic neighbourhood technique allows for the development of complex map
topologies without the need for a priori knowledge regarding data set topology. How-
ever, as with growing map structure, the use of pruning techniques impedes the ability

of the map to be used as a visualisation tool. It is also worth considering that if the
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neighbourhood pruning process is extensive, the resulting map will form a number of
isolated islands. In this way, the SOM algorithm effectively reduces to an unsuper-
vised clustering tool. While unsupervised clustering is a useful task, there are many
other algorithms which are much more efficient at performing this task than a highly
customised SOM algorithm.

As with constructive SOM models, destructive and pruning models have not been
applied to continuous problem domains. This suggests another avenue for further SOM

research.

2.8.3 SOMs with a Conscience

One feature of Kohonen’s SOM learning algorithm is that the output map is directly
related to the probability distribution of the training set. As a result, there is no guar-
antee that each neuron on the map will be selected as a winner with equal probability.
Certain neurons near the center of key concepts will be often selected as winners. Con-
versely, it is entirely plausible (and common) for a specific neuron on map to never be
selected as a winner.

This can be a useful feature, as it gives increased resolution for those concepts in
the training data which are heavily represented. However, this occurs at the cost of
resclution in other areas which, although less frequent in the training set, may be just
as significant to the learning task.

To overcome this limitation, DeSieno (1998) introduced the ‘SOM with a Con-
science’. In a SOM with a Conscience, each neuron is trained as normal. However,
every time a neuron is selected as a winner, this win is recorded. The win count is
then used to develop a bias value B: thus, values with a high win count develop a large
bias. This bias value is then added to the function used to evaluate the winning neuron
in the map. In this way, any single neuron is prevented from dominating the winner
list. If a neuron wins repeatedly, the bias value for that neuron will increase until it
is impossible for that neuron to be selected over others. The term ‘conscience’ derives
from the fact that any given neuron will begin to “feel guilty’ if it wins too often, and
will prevent itself from being selected in the future.

The application of the conscience scheme to SOM learning generates SOM represen-
tation in which each neuron wins with approximately equal probability. Neurons which
win too often are penalised and are not selected, allowing underrepresented neurons to

be selected as winners. In this way, the conscience parameter achieves a similar goal to
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Neural Gas methods (Martinetz and Schulten, 1991). However, equiprobability in the
output space is not achieved at the cost of a regular map topology as the SOM with a
conscience can be represented on a simple rectangular grid.

By itself, it is not obvious how the introduction of a conscience parameter can be
used to assist continuous learning in a SOM. However, the SOM with a conscience does
demonstrate that by controlling the weight update process, it is possible to prevent
the expansion of one concept on the map, while encouraging the expansion of other
concepts. This feature could be exploited to develop long term memory on a SOM.
Although conscience itself may not be of use for continuous learning, there is significant
scope for investigation in the manipulation of map selection and update procedures to

achieve specific learning goals.

2.9 Conclusion

In this chapter, the current state of SOM and continuous learning research has been
presented. Three key SOM algorithms were presented, along with a range of variations
on this base algorithm. A number of metrics were presented for establishing the quality
of SOM representations. Finally, the continuous learning problem was defined, along
with a range of naive and informed solutions for these problems.

The literature explored in this chapter has shown that there are many variations on
Kohonen’s SOM algorithm which have been applied to static problems. Furthermore,
there have been many attempts to perform continuous learning using other machine
learning architectures. However, Kohonen’s SOM algorithm has not been applied to
continuous learning problems. In the following chapters, a model of learning and devel-
opment will be developed, and applied to Kohonen’s SOM algorithm. This model will
add continuous learning problems to the range of problems to which a Kohonen-style

SOM architecture can be applied.



Chapter 3
A Theory of Lifelong Learning

The scientists at the Institute thus discovered the driving force
behind all change, development and innovation in life, which was this:
herring sandwiches. They published a paper to this effect, which was
widely criticised as being extremely stupid.

— Mostly Harmless (Adams, 1992)

3.1 Introduction

Although a large number of machine learning algorithms have been presented in the
literature, the vast majority of these algorithms treat the task of machine learning as a
once-off problem of error maximisation or entropy minimisation with respect to a single
static data set. While these machine learning algorithms can generate useful solutions
in specific problem domains, they have met limited success as general problem solvers.
The success of these algorithms tends to rely upon application specific heuristics or
random elements in the convergence method.

One of the reasons that these algorithms fail as general problem solvers is that they
fail to take into account that nature of real-world data. Real-world problems consist
of data which can change over the lifetime of the system. Biological learning systems
have developed methods of learning during the entire lifetime of the organism, rather
than restricting learning to a short training period prior to use.

The purpose of this chapter is twofold. Firstly, in Section 3.2, it is argued that
a biological approach to learning and development could aid in the development of
improved representations of a data space. In Section 3.3, a biological model of learn-
ing is proposed. This model describes the life-cycle of an organism, and describes
the benefits of a lifelong approach to learning and development. Further analysis of

this model requires a machine learning architecture which has a biological analogue;
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maximal Kohonen SOMs are proposed as an appropriate architecture.

Secondly, a method for quantifying SOM performance is presented. This metric,
called the @ metric, does not attempt to examine the weight space of the SOM or
exploit aspects of the training algorithm. Rather, it quantifies the cbservable output
of the SOM by comparing the distances between vectors in the training set with the
distance between the SOM neurons selected as winners by those vectors. This metric

is demoustrated using the Simple Grid training set.

3.2 A Biological Metaphor

There are three key differences between traditional machine learning algorithms and

the learning process ohserved in biological systems:

Learning is a continuous process: Learning is not a once off process of minimising
error. A key aspect of learning in biological systems is the way in which new

knowledge is continuously assimilated into the existing knowledge base.

Simple tasks are learned first: Biological systems do not learn from a canonical
training set consisting of a complete set of complex training examples. Rather,
initial training occurs using simplified or heavily filtered data. For example, a
child learns to do simple mathematics before being exposed to calculus. The act
of learning simple addition establishes base knowledge upon which more complex
knowledge can be built. Traditional machine learning techniques would teach
calculus by attempting to minimise representational error while training with a

spanning set of calculus problems.

Hard lessons are learned well: Using traditional learning techniques, strong rein-
forcement of an idea requires that the frequency of the relevant training example
in the data set be proportional to its importance. In biclogical systems, highly
significant training examples do not require repeated presentation. Life threat-
ening or life changing experiences may result in a small amount of training data,
but the lessons learned from this data are not forgotten easily. For example, a
child will only touch a hot saucepan once; the lesson linking heat and pain is not

lost due to a lack of reinforcement.

These three differences are largely the product of the way in which data is presented

to traditional learning systems. The training algorithms for most machine learning
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systems divide the lifetime of an algorithm into two parts: a learning phase and a use
phase. The algorithm is exposed to training data during the learning phase. At the
completion of learning, the system is frozen and is used to perform classification.

However, this duality is not reflected in the real world. Biological learning systems
are constantly exposed to new training data and remain plastic to this new training
data throughout the lifetime of the organism {although the extent of this plasticity
does decrease over time). Biological learning systems make no distinction between the
process of learning and the process of use.

Traditional learning algorithms require the separation of the learning process to
provide a stable goal state upon which the algorithm may converge. However, the
dynamic nature of real-world learning problems is not compatible with this method of
separation. Real-world data requires a learning algorithm which can adapt to changes
in the data space over the lifetime of the system. In order to encapsulate the desirable
features of a biological learning system, a new model for learning and development is

required — a model which incorporates the entire life-cycle of an organism.

3.3 Life-Cycle of an Organism

Figure 3.1 describes the learning and development life-cycle of a typical organism. The
organism begins as a genotype, which is expressed through a set of expansion rules
as a juvenile phenotype. During the juvenile phase of life, this phenotype interacts
with a minimal environment, developing characteristics which are affected by, but are
not a direct function of the genotypic description of the organism. Once the juvenile
reaches a certain level of maturity, the organism is released into the real world where
it interacts with the environment and adapts further to its surroundings.

After this juvenile phase, the organism becomes able to reproduce. Under a Dar-
winian model, only the fittest organisms reproduce and through the copying and mu-
tation of the genotype of fit parents, a new generation of organisrns is born.

In addition to the genetic heritage obtained directly from parents, a young organ-
ism gains much useful training data through interaction with, and supervision by, the
adults of a population. By presenting useful lessons and training examples to a young
individual during the juvenile phase, it is possible to encourage the organism to develop
sophisticated behaviours which the experienced parent has found useful.

The biological learning processes observed today are the result of millions of itera-

tions of this cycle, as simple learning structures developed into more complex structures,
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Genetic Variation Gene Expression

Parental Guidance

Fitness Selection Juvenile Development

Envirenment

O

Individual Development

Figure 3.1: Learning and development life-cycle of a typical organism, adapted from
Vaario and Ohsuga (1992)

yielding the sophisticated reasoning system that are observed in biological systems.
This thesis will concentrate on just one part of this life-cycle; the stages of develop-

ment of a single individual, including the training information gained from interaction

with an experienced ‘parent’. The problem of species wide development over a genera-

tional time frame is left as a separate problem for future work.

3.3.1 Stages of Learning

An individual organism goes through four keys stages during its lifetime:

Infant: During infancy, the cognitive process of an organism are extremely impression-
able, as the presence or absence of key training examples can drastically affect
the later development of the individual. While at this stage of development, the

organism is incapable of fine resolution of ideas.

Juvenile: After establishing the fundamental cognitive processes, the individual pro-
gresses into a juvenile period. During this stage, training examples still consist
of broad concepts. However, there is significant improvement in the resolution of

these concepts.

Adolescent: During adolescence, directed learning on specific topics can take place.

The training examples presented as broad concepts during the infant and juvenile
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phases of development are increased in complexity to produce sophisticated rep-
resentations of domain knowledge. The resolving power of the system improves

to reflect these changes.

Adult: Finally, the organism experiences a period of adulthood. This period of adult-
hood is prolonged, and the space of input values can change during this time.
Additional knowledge acquisition is limited to the fine tuning of well established
cognitive patterns. During this period of the life-cycle, fundamental reorgan-
isation of knowledge is neither useful nor desired; at this point, a fundamental
reorganisation would result in the loss of all training acquired during the previous

stages of development.

The parents of the individual play an important role through the first three of these
stages. The process of incremental training relies upon the presentation of a syllabus
of useful training examples which increase in complexity as the individual develops. In
nature, the syllabus would be the result of many generations of refinement. However,
in an artificial system, it may be possible to use domain knowledge to establish the
core principles.

In this thesis, it is proposed that by utilising this process of lifelong development, it
is possible to develop a better representation of a specific data domain, in a shorter or
equivalent period of time than would be required by traditional learning architectures.
Furthermore, it is proposed that by controlling plasticity in concept representation, it

is possible for a system to adapt to changes in the composition of the data domain.

3.3.2 Modeling Individual Development

This lifelong learning model is based upon a metaphor which is tied to the behaviour
observed in biological systems. The use of a learning algorithm which is also biologically
derived will simplify the application of this biological metaphor. It is for this reason
that Kohonen-style Self-Organising Maps will be used to demonstrate the principles
and benefits of a lifelong process of learning and development.

Kohonen-style SOMs derive from an attempt to mathematically model low-level
brain functionality (although there are some notable differences with biology, discussed
in Section 2.4). The Kohonen algorithm derives from the initial attempts to explain
the organisation observed in the cortex in a simple algorithmic manner, rather than
by a process of dynamic feedback. Although Kohonen’s SOM algorithm is not a literal

model of biological behaviour, it does maintain an underlying biological metaphor.
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Specifically, the maximal SOM algorithm presented in Section 2.5.1 will be used in
this thesis. Despite the fact that Kohonen’s minimal SOM algorithm is more flexible,
and generally learns faster than maximal SOM algorithms, it destroys a key biological
metaphor — that of weight significance — making the application of further biological
metaphors a difficult task. Since the goal of this thesis is to explore additional biclogical
metaphors, it is reasonable to begin with the most biologically plausible algorithm which
is computationally feasible,

This choice of maximal SOMs does introduce a requirement for careful consideration
in the choice of data set. As was discussed in Section 2.5.1 many data sets are not
appropriate for use with a maximal map. However, these data sets can be posed in a
manner which is compatible with maximal SOMs, at a slight increase in computational
complexity. The data sets presented in Appendix A have been constructed in such a

manner.

3.4 Measuring Success

The approach taken in this thesis is largely empirical in nature, due to the impractical
nature of a theoretical approach. There are many examples of theoretical proofs on self-
organising processes (Amari, 1980) (Tanaka, 1990) (Amari, 1990) (Kaski and Kohonen,
1994), including proofs on Kohonen’s SOM algorithm (Cottrell et al., 1998) (Flanagan,
1998) (Luttrell, 1994). These proofs cover many aspects of self-organisation, including
conditions for parameter selection and decay. However, these proofs either rely upon
extensively simplified (and therefore limited) versions of SOM algorithms, or draw only
vague conclusions on the operation of complete SOM algorithms. The complexity of
interactions in a self-organising process, coupled with the iterative nature of the process,
inhibits the development of strong theoretical models of self-organisation.

Given that a theoretical analysis of self-organisation is infeasible, an empirical ap-
proach must be taken. However, to perform an empirical study, a mechanism for
objectively evaluating success must exist.

Section 2.6 introduced a number of metrics exist for the quantification of topology
preservation in self-organising maps. However, these metrics tend to be either compu-
tationally intensive, inappropriate for maximal SOMs, or specific to a single type of
data set or combinations.

In order to solve these problems, a new metric is proposed. The proposed metric

ignores the Kohonen algorithm and the underlying weight space, instead observing the
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end product (the visual topology) and evaluating the quality of this end product.

3.4.1 Topological Preservation

The end goal of a SOM is to represent the relationships which exist in a R” data space
on a R? map space. This process is successful if the topological relationships in the
data space are preserved in the map space.

Given that the relationships to be preserved are geometric in nature, it seems logical

to measure them in a geometric fashion. In formal terms, given two vectors o, £, their

projections into map space &, 7 J}, and the distance function d(A B) = | - B |, the
relationship:

d(#:, &) o d(i,75) (3.1)

ie.  dy o« dy Vi (3.2)

will hold if the SOM projection is a good topological representation of the data set. If
we consider Z; and ; to be drawn from a population X consisting of IV vectors, there
exists a population of N? possible distances d constructed from all possible pairs of
vectors 4, § drawn from X. This population d will have values in the range [0 : maz{d)],
and could follow any probability distribution over this range. A similar set d' exists
for distance between the projections of the data vectors in map space.

To simplify analysis, d can be normalised with respect to their maximum possible
values to yield a set of values in the range [0 : 1]. This is done by searching the set d for a
maximum value, and dividing all other distances by this constant. In addition, a process
of histogram equalisation is applied, yielding a data set with uniform distribution over
the normalised range.

The distances d+ also require normalisation. However, the maximum possible dis-
tance for these distances is known (the length of the map diagonal), so the scaling
process 1s much easier. No histogram equalisation is performed on these distances, as
they are the dependent quantity in this relationship.

The resultant of this normalisation and histogram equalisation process is two new
set of distances, D and D+, both on the range [0:1]. This distances sets yield a much

simpler relationship, without a constant of proportionality:

D(#,%;) = D(EF,7}) (33)
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ie. Dy = D5  Vij (3.4)

The extent to which this relationship does not hold is indicative of the level of failure
of the self-organising process.

Minor deviations from this relationship are to be expected — after all, SOMs are
not intended to be a precise guantitative mapping. However, major deviations from this

relationship should be examined. There are two types of deviation which can occur:

Dij < D (3.5)
Di; > Di# (3.6)

Equation 3.5 relates to the phenomenon of fearing on the map; a pair of points may
fall close together in the data space, but are placed apart from each other on the map.
This is an indication that a continuity that exists in the data set is not observed in the
mapping of the points. Equation 3.6 relates to the phenomenon of spread; a pair of
points may be distant in the data set, but fall close together on the map. The presence
of either of these qualities in a trained SOM suggest that the map may not be a good
representation of the complete data set.

It is worth noting that some deviation, while not desirable, is often inevitable. The
mapping of an n-dimensional space! onto a 2-dimensional space must result in a loss
of some topological information; either the complete loss of n — 2 dimensions, or the
partial logs of information from all n dimensions.

This inevitable loss in dimensionality also indicates that tearing is a more significant
problem than spread in a SOM topology. Tearing represents the introduction of a
new topological relationship on the map. Given the scarcity of dimensions in a SOM
output representation, this characteristic should be strongly avoided. Spread represents
an inevitable consequence of a loss of dimensionality; if dimensions in the data set
are lost, points will inevitably be distributed across the map, despite having a small
Euclidean distance between them. While not desirable, this characteristic should not

be considered as critical a failure as tearing.

'In this context, it is only the dimensionality of the principal components that is significant. A data
set representing a plane in a 3D space has an underlying dimensionality of 2, and so no information
will be lost in the mapping of the 3D data to a 2D surface.
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Figure 3.2: An ideal topology preservation plot. Points in the shaded region are indi-
cators of a poor topological mapping.

3.4.2 A New Metric

This loss of dimensionality can be visualised by plotting the distances D against the
distances D+. Figure 3.2 gives the idealised result of such a plot. In the ideal case,
every point in this plot would fall along the line D+ = D. Deviations from this line
indicate faults in the topology, with points falling in the shaded regions indicating the
worst possible faults.

More generally, any points falling on the line D+ = D (for some constant x) will
share identical tearing and spread characteristics. If x = 1, this corresponds to the ideal
case, with no tearing or spread. Other values of « indicate data which demonstrate
excessive tearing or no spread. If x » 1 (for example, the points 77 and T%), the data
exhibits bad tearing; a value of & < 1 (for example, the points S; and S3) indicates
poor spread.

This value « can therefore be used as a quantifiable measure of the extent of tearing
or spread of a specific data pair:

K =% = tan ©; (3.7)

t]
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DL

P =ﬁ:';- = tan W, (3.8)
The tangent values resulting from these expressions will fall in the range [0 : oo,
with 0 corresponding to the worst case (bad tearing or no spread respectively). To
simplify the analysis of a large set of data, a Gaussian can be used to scaled this

infinite range to a range of [0 : 1]:

— JURY-}

Tij =exp (%ﬁ?)—) (3.9)
—(tan ¥;)?

S;; =exp (—97—(;?0; ) ) (3.10)

Equation 3.9 can then be used to quantify the extent of tearing in the map repre-
sentation and Equation 3.10 can be used to quantify the extent of spread in a map
representation. As ©@ and W increase, the values of 7 and & will decrease. The rate at
which this decrease occurs is determined by the constant denominator term; the values
of 0.3 and 0.1 have been selected to ensure near 0 values of 7 and § when © and ¥
are = 45°. These constants also include an acknowledgement that tearing of a map is
a worse characteristic in a topology than poor spread.

Both of these measures return = 0 in the ideal case, and larger values in the presence
of a bad topology. Consequently, an overall quality metric @ for the dataset X can be
defined as:

N N
C Yam ge1 TiiSiy
- =

o) (3.11)

This Q metric will yield values near zero in the ideal case, and increases if spread or
tearing becomes a problem in the mapping of the data set. This metric provides a single
value which can be used to describe the quality of a topology provided by a SOM, in a
manner independent of the SOM algorithm.

Consider the trained maps in Figure 3.3. The algorithm used to train the map is
" irrelevant — only the output state and its relationship to the data set is significant.
The data set used to train these maps is a 7 x 7 grid (See Section A.3 for details).
The SOM is a map of 15 x 15 neurons. Technically, this is a 49 dimensional input
set; however, the underlying topology is 2 dimensional. Thus, it should be possible to
completely preserve the underlying topology in a trained SOM.

At the end of training, a test set of 100 points was generated (as described in

Section A.3); the distances between all possible pairs of points taken from this set were
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Figure 3.3: Three trained maps. (a) A well trained map — topology is well preserved,;
{(b) An adequately trained map — topology is well preserved, but orientation is not
optimal; and (c) A badly trained map, incorporating a twist — a loss of topological
information.

generated, normalised, histogram equalised, and plotted. Figure 3.4 is a plot of the
D/D+ relationship. This plot demonstrates a generally linear trend. However, this
trend is a somewhat vague with larger data distances. As expected, it is the deviations
from this trend that indicate poor topologies. The badly organised map shows extensive
spreading away from the ideal line; the adequate map also demonstrates this quality,
but to substantially reduced extent.

The Q metric values for each of these plots gives an indication of the quality of
the mapping provided. The well trained map yields a Q metric value of 1.0 x 10™*
(7 =6.0x 1073, § = 1.7 x 1072); the adequately trained map yields a Q metric value
of 20x 1074 (T = 7.9x 1073, 8§ = 2.5 x 10?); the badly trained map Q metric value of
4.6 x 107* (T =12 x 1072, § = 3.9 x 10~2). This is commensurate with the expected
relationship between these values: the good map is slightly better than the adequate
map (a result of having a more even distribution of training vectors), but both are
significantly better than the badly trained map. The use of this quality measure is not
limited to the comparison of single values at the end point of training. The quality of a
mapping can be evaluated at any time in the training process, giving a representation
of the rate at which organisation is occurring. Figure 3.5 is a plot of the € metric
values of the three cases, evaluated at every epoch during the training process. During
initial training, the map quality is low, due largely to poor spreading characteristics.
However, as training continues, the Q metric slowly improves, until the map reaches

the asymptotic quality levels described previously.
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Figure 3.4: Normalised Topology Preservation Graphs for three trained maps. (a)
A well trained map — topology is well preserved; {(b) An adequately trained map —
topology is well preserved, but orientation is not optimal; and (¢} A badly trained map,
incorporating a twist — a loss of topological information.

It is worth note that similar plots can be generated for § and 7. These plots can
be used to interpret the specific cause of a failed organisation, or to evaluate the effect

of a training technique on different aspects of topological preservation.

Advantages

The @ metric has a number of distinct advantages over existing metrics for evaluating
the quality of topological organisation. Firstly, and perhaps most importantly, this
metric allows for the analysis of mappings produced regardless of the algorithm used
to produce them. Since only the raw observable output is used to evaluate quality, the
metric is not tied to specific weight structures or data representations. Consequently,
it is possible to compare mappings produced with maximal SOMs with those produced
by minimal SOMs. It is also possible to compare the rate of learning produced by
various update rules.

In addition, the metric can be tuned to specific dimensions, or specific subsets of
a data set. By considering only the components of the training vector from a subset
of dimensions, it is possible to evaluate the preservation of specific topologies in the
overall topology. Alternatively, by drawing a test data set from a specific subset of the
full data space, it is possible to test the topological preservation of a specific component
of a data set. This is not particularly relevant for simple topologies like the grid, but
in more complex data sets with high dimensionality and many significant subsets, this
can be a useful feature (one that will be exploited later in this thesis).

The metric also has value in its parts. Since the metric is the composite of two
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Figure 3.5: SOM Quality during training for the ‘good’, ‘adequate’ and ‘bad’ maps.

separate descriptors, it is possible to get descriptors of two specific underlying charac-
teristics of the mapping, as well as an overall quality description. This can be useful
while establishing the cause of the failure of a training process, or in optimising specific

aspects of a new training algorithm.

Disadvantages

One limitation of the @ metric technique is the fact that it is an empirical measure.
Rather than being a single canonical value drawn from the weight space of the SOM,
the calculation of the @ metric value requires the selection of a representative testing
set to empirically evaluate the topological relationships within the SOM with respect
to a specific data set. As such, care must be taken to choose an appropriate testing
data set. If the testing data set spans a subset of the training data or spans potential
data space not covered by the training data, the resulting @ metric value will not be
representative of the underlying topology learned by the SOM. Using the training data
set as the testing set is one potential method which can overcome this problem.

An alternative to the use of the training set for computing the @ metric is the
use of a randomly generated testing set, such as is used with the simple grid data
set. However, this introduces a new concern. When using such a testing data set,

it must be remembered that the data set is a statistical sampling of the underlying
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topology. As with all techniques which utilise statistical sampling, sample size is a
potential concern. When using a randomly generated test set, care must be taken to
choose an test set of an appropriate size. A failure to do so should be easily identifiable
through random fluctuations in the value of the metric once the topology has visibly
converged. A test set of insufficient size will not provide enough points to average out
the random fluctuation associated with test set selection. The use of a larger test set
should eliminate this ﬂurctuation.

Although the problems of statistical sampling can be obviated by selecting a testing
set consisting of a large number of testing patterns, the use of a large testing set does
reveal ancther limitation of the @ metric technique: the complexity of the algorithm.
The complexity of the metric calculation is O(n?} with number of test vectors. This
is unavoidable, as every training vector must be compared with every other training
vector. While this did not prove a practical limitation during testing performed in this
thesis, it could become an issue if large testing sets are required. It should also be noted
that this technique is no more computationally ineflicient than many other proposed
measures of topological quality.

Another limitation of the @ metric technique is the sensitivity of the technique at
the start of training when used on sparse testing sets. During initial stages of training,
the random influences introduced to provide entropy for the learning process can lead to
extremely poor placement of some training vectors. This results in extreme values for
7 and §. These extreme values are then multiplied to provide a @ metric component.
However, extremely large values of 7 can be accompanied by very small values of &
{and vice versa). After multiplication, this can result in a misleadingly small value for
the @ metric.

If the testing set is large, this does not pose a problem, as the effect of a small
number of poor Q metric components is averaged over the large number of reasonable
components. However, if the training set is small, the averaging process does not
remove the effect of a bad sample. As a result of this limitation, small (that is, ‘good’)
@ metric values registered at the start of training must be viewed with caution. A map
representation should only be considered good if the © metric reaches an asymptotic
value.

A final limitation of the @ metric technique is the use of the constani terms in
the evaluation of 7 and &. The values of 0.3 and 0.1 were determined as a result

of empirical testing. No formal justification of these values has been developed. The
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@ metric technique would be greatly strengthened by the development of a formal

mechanism for selecting these constant terms.

3.5 Conclusion

In this chapter, it was proposed that the use of an architecture which models the
lifelong development observed in nature would enable the development of improved
representations of a data domain. Furthermore, it was proposed that by controlling
plasticity in concept representation, it is possible for a system to adapt to changes in the
composition of the data domain. The biological metaphor which underpins maximal
SOMs suggests that SOM algorithms are an appropriate tool for investigating lifelong
development mechanisms.

In addition, a metric was proposed for evaluating the topological output of the
self-organising process. This metric, called the @ metric, does not attempt to examine
the weight space of the SOM or exploit aspects of the training algorithm. Rather,
it quantifies the observable output of the SOM by comparing the distances between
vectors in the training set with the distance between the SOM neurons selected as
winners by those vectors,

In following chapters, a number of algorithmic extensions to Kohonen’s maximal
SOM algorithm will be proposed. The purpose of these extensions will be to implement
the lifetime learning and development maodel proposed in this chapter. In Chapters 4
and 5, an algorithm is developed which separates the juvenile phase of development
from the remaining stages. An algorithm which allows for the continuous learning of
new training examples after the juvenile phase is presented in Chapter 6. In Chapter
7, an algorithm is presented which allows for the gradual introduction of progressively
more complex training examples, such as is observed during adolescence. Finally, in
Chapter 8, an algorithm is presented which is able to restrict the reorganisation of a
knowledge representation during the adulthood. The metric proposed in this chapter

will be used to evaluate the success or failure of these algorithmic extensions.



Chapter 4
Neighbourhood and Organisation

He [Arthur] had been told that when looking for a good oracle
it was best to find the oracle that other cracles went to, but he was
shut. There was a sign on the entrance saying, ‘T just don’t know
any more. Try next door, but that’s just a suggestion, not formal
oracular advice.’

— Mostly Harmless (Adams, 1992)

4.1 Introduction

The SOM algorithm is based upon the control of two key parameters: gain and neigh-
bourhood size. Through careful decay of these parameters it is possible to shape an
initially random set of SOM weights into an organised topological representation of any
data set with an underlying topology.

To date, analysis of SOM performance has concentrated on optimising learning
gain. The role played by the size, form and decay of the neighbourhood function within
Kohonen’s algorithm has been largely ignored or merely alluded to in the vast majority
of literature. However, no evidence has been presented to support the assertion that
the role played by neighbourhood size is indeed trivial. The size, form and decay of
neighbourhood interactions may play a much more significant role in the development
of Kohonen style topological maps than has previously been reported.

In this chapter, the role played by neighbourhood interactions in the organisa-
tion process is established. In Section 4.2, a mathematical model is presented which
consolidates the biological model of Von der Malsburg, and the computational model
of Kohonen. This model is used to demonstrate the significance of lateral connection
strategies on the process of self-organisation. In particular, the significance of Laplacian
lateral connections is established. Lateral connections of this type form the foundation

of many self-organising algorithms, including Kohonen’s.

70
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In Section 4.3, an investigation is performed into the role played by the size of the
Laplacian neighbourhood on the organisation process. The computational model used
in this section is similar to that used by Von der Malsburg. Using this model, some
fundamental characteristics of the relationship between neighbourhood size and SOM

output states are demonstrated.

4.2 'Theoretical Non-WTA

Traditional Kohonen style networks are described as being Winner-Take-All (WTA};
during each training iteration, a single winner is selected from the map, about which
weight reinforcement takes place. However, this algorithm — including its assumptions
about the importance (or lack thereof) of neighbourhood size — is an algorithmic
abstraction of the behaviour observed in non-WTA systems (Kohonen, 2001}. In non-
WTA systems, such as those used to initially demonstrate self-organising behaviour
(Von der Malshurg, 1973)(Willshaw and Von der Malsburg, 1976), winners are selected
through a complicated system of feedback, balancing individual neuron dynamics and
the dynamics of the map as a whole. Kohonen’s algorithm is an algorithmic abstraction
of an underlying dynamic process.

In performing this abstraction, it becomes possible to state the self-organising al-
gorithm as a single iterative weight update rule. However, this eliminates many of
the subtleties of the self-organisation process. For example, a dynamic update method
allows for no-winner and multiple-winner outcomes. Such outcomes cannot develop if
a single winner is selected externally. These subtleties are largely due to the complex
neighbourhood interactions which occur during the organisation process. Therefore, to
clearly demonstrate the role played by neighbourhood in the organisation process it is
necessary to return to a dynamically generated, non-WTA map.

In this section, we present a mathematical model of a non-WTA self-organising
neural system. This mathematical model is then used to demonstrate that a system
which has Laplacian lateral connections will, through a process of repeated iteration,
provide a Gaussian output centered over the winning node. This gives a similar result
to the manual selection of a maximum. However, in this model, winner selection is an
inherent characteristic of the system, precluding the need for a meta-level decision to

be made.
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Figure 4.1: The model neuron used in this experiment. Information flows in the di-
rection of the arrows. Note: the lateral connections for all but the cenire neuron have
been omitted from this diagram for clarity.

4.2.1 Continuous Time Model

Consider the theoretical model neuron pictured in Figure 4.1. Each of the n neurons
has an internal voltage u; which is a function of the input and lateral connections and
an output voltage v; = o(u;), where ¢ is a sigmoid function. This neuron receives a
vector X of m independent inputs z;; each neuron ¢ is connected to these inputs via an
independent weight w;;, forming an n x m matrix of input connections W. In addition,
each neuron p belongs to a plane of other neurons, and is connected to every other
neuron ¢ via a connection of strength L,,. These connections form an n x n matrix
of lateral connections L. Included in these lateral connections is a connection to the
neuron itself.

Using these definitions, the voltage of neurons in a SOM over time ¢ can be modeled

as:

A, i -
i _ —u; + Z Wik Tg + Z Lyio(ug) + h; (4.1)

at k=1 k=1

In this formulation, A; is a neuron activation bias. The system has the initial condition
u;{0) = 0 Vi.
To simplify the analysis of this system, the sigmoid function is approximated by a

linear function:

o(z) ==z (4.2)
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Figure 4.2: The rearrangement of neurons used to simplify the formulation of the SOM
problem. Input and neuron bias are considered to be pseudoneurons within the SOM
layer. Note: many lateral connections within the true neurons have been omitted from
this diagram for clarity.

This is a reasonable approximation, as the sigmoid function is almost linear for all
except extreme input values. At these values the sigmoid function is truncated to 0
or 1, to curb exponential growth. If we ignore exponential growth of the system, and
consider only the near linear region of the sigmoid, this simplification allows Equation

4.1 to be reposed as:

Ju;
ot

T n
= —u; + Z Wip T + Z Lyiuy, + by (4.3)
k=1 k=1

If we define U as the vector of voltages w;, this formulation simplifies to:

%?:mﬁ+WX+Lﬁ+ﬁ (4.4)

To solve this equation for Tj, we use an Huler approximation over a time step of

size It:
Jt+on = 0@+t %g_ (4.5)
t
= T(t) +ot[-U(t) + WX + LU(t) + H| (4.6)
= [(1 -8t} + QLU (t) + WX + 9tH (4.7)

Where ¢ is the identity in R¥.

To further simplify this formulation, let:

i-[v %1 (438)
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This simplification represents the bias and input neurons as pseudoneurons within
the SOM layer. These pseudoneurons receive no lateral input; each pseudoneuron
has a connection to each of the normal neurons. Figure 4.2 shows this arrangement

graphically. This simplifies Equation 4.7 to:

[ T+ 0t) | (L one + ot aew sl | | Ut)
X = 0 €m0 X (4.9)
1] i 0 0 1] 1
[t +01) | [ (1— 60 + oL, W ot |
X = 0 emooo | U (4.10)
T I 0 0 1
T(t+0t) = MUt (4.11)
T(t+20t) = ME(t+1) = M2T(2) (4.12)
U(t+kdt) = M) (4.13)
T(kOt) = MFE(0) (4.14)
The stable state of the system is the infinite limit of this process; i.e.,
lim M*¥(0) (4.15)

k—o0,8t—0

4.2.2 Discrete Time Model

While the continuous case is interesting from a biological point of view, the discrete
version of the algorithm is of more computational interest. The discrete case is almost

identical to the continuous case of Equation 4.1, expressed as discrete state variables:
Uppr = Lo(0) + WX + A (4.16)
or, with the benefit of the o(z) = = approximation:

[?H—l = L(}t + W)Z + .ﬁ (417)
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The analysis of the discrete system can be performed as a special case of the continuous

system, where 8¢ = 1, Substituting into Equation 4.11, this yields:

U1 L W i||0G
X = |0 ¢ 0 X (4.18)
1 0 0 1 1
(L w 7]
Vi = 0 e o |0 (4.19)
0 0 1
II_}t_;_l = M\i}t (420)
g = MU, = M?T, (4.21)
\I_}t+k: = Mki[_}t (422)
U, = MFT, (4.23)

This system can be analysed using eigenvectors; if s1..., and A;..., are the eigenvec-

tors and eigenvalues, respectively, of M, and S=| 3§ & -.- &, |, and
(M 0 o 0]
0 X
A= ; (4.24)
| 0 An

we can use the Eigenvector relation M* = SA*S™! to yield a computationally simple

output state of the system:
T = SAFS 10, (4.25)

The final output state of the system is given by limp_, 1]_ffk

This process ignores the fact that sigmoid scaling occurs during relaxation, not just
as a final step. Under the full model (Equation 4.16), a sigmoid is used to scale lateral
inputs, so as to prevent exponential explosion. ¢ is a monotonically increasing function,
so the relative ordering of inputs remains unchanged as a result of this scaling process.
Some shaping of relative magnitudes occurs as a result of the nonlinear nature of the
sigmoid function but the largest output will remain the largest throughout scaling.

The infinite limit of the process described by Equation 4.16 can therefore be derived
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by comparing relative magnitudes of outputs of the function ¥(t).

This formulation allows us to examine the convergence properties of a given lateral
connection kernel. In the discrete system, ¥ will grow exponentially if 3\ > 1; these
values, when raised to a large power will increase. These values combine with S to
determine the output state of the system. In systems where A; < 1 V¢, stagnani or
dissipative solutions exist, as no components exist to interact with S. This provides a
simple test for the ability of a lateral interaction kernel to converge on a useful solution;
M of Equation 4.23 must possess at least one eigenvalue > 1.

It should be noted that this is a somewhat trivial analysis. A number of sophis-
ticated theoretical analyses exist in the literature (Wilson and Cowan, 1973) (Amari,
1977). However, this analysis suffices to demonstrate the important role that the lateral

interaction function can play in the stable states assumed by self-organising maps.

Testing Laplacian Connection Kernels

The theoretical formulation presented in the previous section operates on a neural
construct of arbitrary size and demonstrates whether a given lateral connection kernel
will produce stable output states. However, the specific output state resulting from a
given kernel cannot be determined without considering a specific neural construct and
input pattern. In this section, a 15 input, 1D map of 100 neurons connected using a
Laplacian connection kernel is used in conjunction with a simple input spike to confirm
empirically the results obtained in the previous section, and to demonstrate the wide
range of stable output states which can be generated by simply changing the lateral
interaction kernel.

In this experiment, the Laplacian connection weights follow the relation:
Lij =1 +a)g (lli = jll,r) — aG (|lz — 4|, or) (4.26)

where L;; is the connection strength between neurons ¢ and j, r is the size of the
neighbourhood function, e is the magnitude of the negative Laplacian component, b is

the spread of the negative component of the Laplacian, and G is the Gaussian function:

r2
Glz,0) = e:cp(—m) (4.27)

In addition, these Laplacian weights are normalised so that 3; L;; = 1. This is done

to prevent edge effects.
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Figure 4.3: Stable state of a lateral interaction kernel, ¢ = 0.3, b = 3, ¢ = 20: (a)
Lateral interaction function for Neuron 1; (b) Eigenvalues; and {c) Stable output state
resulting from a single pulse input.

Now consider a specific instance of this lateral connection function, in which & = 0.3,
b= 3, and ¢ = 20. W is instantiated with random values on the range [0 : 0.01];
H is instantiated to 0. Figure 4.3 shows the results of analysis using the proposed
technique. Figure 4.3(a) shows a sample set of lateral connection strength values — a
classic Laplacian curve. Figure 4.3(b) shows the eigenvalues of this system; the single
A > 1 shows that this system will converge to a useful result.

The results on output can be simulated by providing a sample training pattern; say,
a single pulse (X = [00.5 1.0 0.50 ---0]T). The result of using this training pattern can
be seen in Figure 4.3(c). This plot of neuron outputs clearly demonstrates the ability
of a Laplacian kernel to produce Gaussian-like output, such as is required to perform
self-organisation; an alternative to the artificially fitting of a Gaussian about a winner,
in the winner-take-all mechanism of Kohonen. In Figure 4.3(c) the training pattern has
a peak on input 3; almost identical results are obtained using training patterns with
peaks in other positions.

Similar results are shown in Figures 4.4-4.6. In Figure 4.4, a system with large o
(¢ = 40) is tested. This clearly demonstrates that if a wide Laplacian is used, it acts
as a feaiure smoother, rather than peak enhancer: the wide Laplacian reinforces all
neurons, rather than selecting a single neuron and its neighbourhood as a winner. The
eigenvalues for this system give an indication of this behaviour. The largest eigenvalue
is a value of A = 1; consequently, the system is stagnant. Repeated iteration of this
system will not cause a stable pattern to emerge in the outputs.

Figure 4.5 considers the case of a small o. If a small ¢ is chosen (¢ = 4), such that

the range of the interaction function is vastly less than the size of the map, multiple
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Figure 4.4: Stable state of a lateral interaction kernel, e = 0.3, b = 3, ¢ = 40: (a)
Lateral interaction function for Neuron 1; (b) Eigenvalues; and (c) Stable output state
resulting from a single pulse input.
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Figure 4.5: Stable state of a lateral interaction kernel, a = 0.3, b = 3, ¢ = 4: (a)
Lateral interaction function for Neuron 1; (b) Eigenvalues; and (c) Stable, but unusual
(non-Gaussian) output state resulting from a single pulse input.

peaks can and will result. This multiple peak state is a stable state of the system.
However, it is not a useful stable state for global topological organisation as it does
not provide a single neighbourhood of positive support. It may, however, yield other
interesting topological effects.

As an exercise, the o = 1 case was tested. The results of this trial can be seen
in Figure 4.6. This lateral connection kernel (Figure 4.6(a)) is essentially the same
Laplacian used by Kohonen in his Winner-Take-All system. This system has a single,
very large eigenvalue (Figure 4.6(b}), yielding the expected result of a single winner on

output (Figure 4.6(c)).
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Figure 4.6: Stable state of a lateral interaction kernel, @ = 0.3, b = 3, ¢ = 1: (a)
Lateral interaction function for Neuron 1; (b) Eigenvalues; and (c) Stable output state
resulting from a single pulse input.

Testing Other Lateral Connection Kernels

The mathematical model presented in this chapter is an empirical tool. Given the
current state of an SOM, and a set of lateral connections, it will give an indication as to
whether a given combination of weights and lateral connections will provide conditions
conducive to learning topologies {as defined by Amari (1980) and other theoretical
studies). In these tests, a random set of input weights was used. The results obtained
in these experiments therefore relate to the formation of output states on untrained
maps. This technique can be used to investigate novel lateral connection strategies by
giving insight into the output patterns resulting from these strategies.

Three such novel lateral connection strategies can be seen in Figures 4.7-4.9. Figure
4.7 demonstrates the effect of using a Gaussian, rather than a Laplacian lateral inter-
action kernel. The smoothing effect of the Gaussian kernel is obvious, as the output
state of the system is a state of uniform excitation. This is a similar effect to the use
of a wide Laplacian kernel, seen in Figure 4.4.

Figure 4.8 demonstrates a variant on the simple Gaussian lateral connection — a
Gaussian with a negative shift superimposed. This is equivalent to a Laplacian kernel
for which negative support does not decay with distance. This system does not have
any eigenvalues greater than 1; as a result, the output state of this system is highly
unstable.

Figure 4.9 demonstrates an centre surround kernel. This kernel is the inverted
form of a Laplacian kernel; whereas a Laplacian kernel has a positive central region
surrounded a negative region, the centre surround kernel has a negative centre region,

surrounded by a positive region. This kernel can be seen to generate a stable output
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Figure 4.7: Stable state of a Gaussian lateral connection kernel: (a) Lateral interaction
function for Neuron 1; (b) Eigenvalues; and (c¢) Saturated output state resulting from

a single pulse input.
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Figure 4.8: Stable state of a shified Gaussian lateral connection kernel: (a) Lateral
interaction function for Neuron 1; (b) Eigenvalues; and (¢} Unstable output state re-
sulting from a single pulse input.

state. As with the narrow Laplacian, this output state does not provide result in a
single neighbourhood of positive support; therefore, this kernel will not cause a global
topological organisation to develop. However, this kernel may yield other interesting
topological effects.

There is one significant limitation to this technique. While it is possible to use this
technique to demonstrate the form of the stable output state (if any) that will arise
from a specific lateral interaction kernel, it does not indicate the form of the topological
mapping that will result from use of that kernel. A further analysis of the stable cutput
state is required to establish the topological mappings resulting from these eccentric

stable output states.
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Figure 4.9: Stable state of a centre surround lateral connection kernel: (a) Lateral
interaction function for Neuron 1; (b} Eigenvalues; and (c) Stable, but unusual (non-
Gaussian} output state resulting from a single pulse input.

4.3 The Role of Neighbourhood Size

In the previous section, a method was presented for demonstrating the manner in
which an iterative mechanism with a lateral connection kernel can be used to provide a
Gaussian fitted about a winning neuron, without the need to select the winner through
some external process. In this section, a similar iterative mechanism will be used to
demonstrate some key features of neighbourhoed size change during the learning and

development process of topographical self-organising maps.

4.3.1 Implementation

The algorithm used to implement the SOM model is very similar to that used by Von
der Malsburg. The learning process consists of two stages: an internal iterative loop,
which allows lateral connections to relax the output of each neuron; and an external
loop which controls the Hebbian update based upon output values. Given a set of
input vectors X , this algorithim learns a topographical mapping for the set of weights
w;;. Lateral connections are defined in a kernel L, defined as in Equation 4.26, with
@ = 0.3 and & = 3. The size of weight update for neuron ¢ is proportional to the
output of neuron ¢ in response to the training pattern; this update is a normalised
Hebbian update, drawn from (Kohonen, 1982). Each cycle of the outer Repeat-Until
loop (Algorithm 5) is an epoch of the training regime.

The algorithm for the inner loop (the function EvaluateMapQutput) is not as
straightforward. This is a result of the same algebraic explosion problem observed in

the previous section. To counter this algebraic explosion, a process of normalisation
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Algorithm 5 Mainline algorithm to implement SOM ordering.

repeat
Evaluate changes in learning parameters « and o
while 3 a pattern which has not been presented this epoch do
Randomly select a training pattern Z which has not heen presented this epoch
EvaluateMapOutput i for training pattern
Update weights according to rule:

Bt +1) = wWi(t) + at)Tv;

' l@:(t) + a(t)zvi]
end while

until finished training

Algorithm 6 Computationally normalised version of the Evaluate_Map Output
algorithm.

Evaluate Map_Qutput (%,7,8,W,X,N)
=0
for C=1.--N do

i =WX + fLi

—+

S |
Y= Tl

end for
¥ = o(i)
return ¥

is required. This normalisation can be performed using a number of methods. Two
versions of the inner iterative loop are presented here.

In the first version (Algorithm 6}, algebraic normalisation is performed at the end
of each iteration. At the conclusion of the iteration process, the normalised output
is passed through a sigmoid function to provide maximum and minimum saturated
outputs. In the second version (7), there is no explicit normalisation process - the
process of normalisation is performed on each iterative loop by a sigmoid function
tuned to the dynamic range of the iterative process.

Algorithm 6 is much easier to control. Given an input data vector X and a weight
matrix W, the algorithm calculates the output @. The strength of feedback is controlled
by the lateral efficacy parameter §; the strength of lateral connections is modeled by
L, a function of |7 — j|. At each iteration, the internal voltage is dynamically scaled to
prevent algebraic explosion. The final output value is the result of passing a sigmoid
over the internal voltage i, parameters for this sigmoid are custom selected to suit the
dynamic range of #.

This process of algebraic normalisation guarantees a consistent dynamic range on

output, permitting the use of a fitted sigmoid for the final transformation of output.
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Algorithm 7 Biologically plausible version of the Evaluate_Map_Output algorithm.

Evaluate_Map_Output (L,ﬁ,ﬁ,W,)_f WN)

Z=10

7=0

for C=1---N do
it = WX + pL#
¥ = o(i)

end for

return ¢

However, this model is somewhat artificial, as normalisation is a meta-level function,
requiring knowledge of the raw output of all other neurons in the system.

The second model {Algorithmm 7) is biologically more plausible, but it requires sig-
nificantly more effort to tune. Given an input data vector X and a weight map matrix
M, the algorithm calculates the output @#. The strength of feedback is controlled by
the efficacy parameter 3, and the strength of lateral connections is modeled by L, a
function of [ — j|. At each iteration, the output value is the result of passing a sigmoid
over the internal voltage #%; parameters for this sigmoid are selected to suit the dynamic
range of 4. Note that in this model it is the output voltage ¥, not the internal voltage
i that is used for feedback. In biological systems, this tuning would be performed
by intra-neuron monitoring of input, output and weight conditions. However, in this
computational framework, tuning of this kind is not possible.

Aside from this minor difference in implementation, the differences between the
two algorithms are negligible. The output states obtained from the two systems are
analogous. Some slight differences can be observed but this can be attributed to slight
differences in the tuning of the sigmoid functions.

It should be noted that this algorithm does not require a winner to be chosen or
a Gaussian-like function to be superimposed for the purposes of Hebbian learning.
The algorithm, as demonstrated in Section 4.2, naturally converges to a Gaussian-like
function about the map area of best fit for each input pattern, given a suitable Laplacian
lateral connection kernel.

In the following experiments, the first, algebraically normalised version is utilised.
This is done for no reason other than convenience. The biological version is presented
for completeness, in order to demonstrate that the self-organising process could be
performed using a completely biologically plausible model, without the need for any

meta-level functions.
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4.3.2 Experimental Results

In these experiments, a 15 input, 100 neuron SOM was used. These 100 neurons
were arranged into a ring, $o neurons on one end were attached to the other. This
was achieved by wrap around in the lateral interaction kernel. The Laplacian L of
Equation 4.26 was used for this kernel, with ¢ = 0.3, b = 3, and ¢ varying through
the experiment. This kernel was then normalised. 10 internal iterations were used
to evaluate the neuron output values. In the learning algorithm, the gain parameter
was set at a constant o = 0.3, to minimize the degrees of freedom in the experiment.
Lateral efficacy 3 was set at 1. This SOM was trained using the simple line data set
described in Section A.2.

Two similar experiments were performed, to establish the effect of a reduction
in neighbourhood size on the map. In both experiments, the SOM was first trained
for 50 epochs with a constant neighbourhood size of o = 20. This value for o was
shown to develop a stable output state in Figure 4.3. After this initial training, the
neighbourhood size was reduced to lower value.

The output states resulting from this initial training can be seen in Figures 4.10(a)-
4.10{(c}. At the conclusion of this initial training, the map can be seen to converge into a
stable state, with good topological organisation. Each curve in Figure 4.10{c) represents
the output response of a single training pattern; the maxima of these curves are seen
to be evenly distributed across the 1D SOM.

In the first experiment, the neighbourhood size was reduced to ¢ = 4. As a result
of this reduction, the neuron output responses can be observed to sharpen significantly
(compare Figures 4.10{c) and 4.10(d}). This highlights the benefit of a reduction in
neighbourhood size to precision on a map.

In the second experiment, the neighbourhood size was reduced to o = 2. However,
the result of this reduction was not as positive as in the first experiment. Instead of
sharpening the output states, each output state is split into multiple peaks. The effect
of this splitting can be seen in Figure 4.11. The effect is mild at first, but the splitting
behaviour becomes more severe as training with the smaller ¢ continues.

To clarify the role played by the period of training with a large neighbourhood size,
an attempt was made to train the same network without the initial training period
with a o = 20 kernel. Instead, all training was performed with a kernel of size o = 4.
However, this training regime was unable to form a global topographical organisation

— instead, a large number of zones of local organisation formed. This indicates that
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Figure 4.10: Qutput response over time for a non-WTA network. Each line is the
output response for a single training pattern. & = 20 for epochs 1-50; ¢ = 4 for epochs
51 onwards.

a period of training with a large neighbourhood size is essential to the formation of
global topology; small neighbourhood size kernels can be used to improve precision on

an existing map, but not to establish a map from scratch.

4.4 Controlling Organisation with the Neighbourhood

This experiment highlights a number of key features of SOM training. Firstly, it high-
lights the importance of neighbourhood size to the formation of topographic maps. In
order to produce a global topographical organisation, an initially wide spanning - em-
pirically, it would seem reasonable to hypothesize that the 6o diameter (3o, or 99.5%
of area, both sides of the mean) of the lateral interaction kernel must slightly exceed
the size of the map. This concurs with the experimental results of Von der Malsburg

(1973} and Willshaw and Von der Malsburg (1976), and one of the conclusions of Amari
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Kohonen's, where the artificial selection of a maximum prevents the formation of local
topologies in this manner. However, if we intend to use the entire output response, the
increase in precision brought about by training with a reduced neighbourhood size is
an essential feature. Care must therefore be taken to not decay neighbourhood size by
too large an amount. This concurs with the results of Zell (1994). The optimal rate of
decay for the kernel neighbourhood size remains to be determined.

It is also interesting to note that these self-organising systems converge without the
need for a sophisticated scheme of learning gain decay. This seems to contradict the vast
majority of literature (Kohonen, 2001) (Cottrell et al., 1998) (Mulier and Cherkassky,
1994), which emphasizes the importance of learning gain, leaving neighbourhood size
as a peripheral concern. This is not to imply that maps cannot form without neigh-
bourhood size decay. Takeuchi and Amari (1979) demonstrates that topological maps
will form if the size of connections is fixed. However, this work demonstrates empiri-
cally that the rate of decay of the lateral interaction kernel, and the form of this lateral

interaction kernel plays a significant role in the process of topology formation.

4.5 Conclusion

In this chapter it was shown that neighbourhood interactions play a significant role in
the organisation process. Using a mathematical model, it was shown that the shape of
the lateral interaction kernel has a significant effect on the style of organisation that
takes place on a SOM. A biologically inspired computational model was then used to
show that in the case of Laplacian lateral connections, the size of the lateral interaction
kernel can have a significant effect on the speed of convergence, and the precision of
representations. Neighbourhood size also determines whether the map will converge at
all.

In the next chapter, these findings about neighbourhood interactions will be applied
to a traditional Kohonen SOM in the form of a new set of parameter decay schemes

for Kohonen's algorithm.



Chapter 5

Step Neighbourhood Decay

The History of every major Galactic Civilization tends to pass
through three distinet and recognizable phases, those of Survival,
Inquiry and Sophistication, otherwise known as the How, Why and
Where phases.

For instance, the first phase is characterized by the question ‘How
can we eat?’, the second by the question ‘Why do we eat?’, and the
third by the question ‘Where shall we have lunch?’.

— The Hitch-Hikers Guide to the Galezy (Adams, 1979)

5.1 Introduction

Kohonen’s algorithm involves two key parameters for operation: learning gain (o),
and neighbourhood size {¢). A wide range of decay schemes have been proposed for
these parameters. However, the majority of these decay mechanisms concentrate on
optimising the decay of learning gain within Kohonen’s algorithm. Optimisation of
neighbourhood size has been largely ignored in the literature, being largely limited to
defining conditions for ordering, not optimising convergence time.

However, as the previous chapter has shown, this is a false assertion: the manner
of neighbourhood interaction can have a dramatic effect on the rate and quality of
topological organisation that occurs within a SOM.

In this chapter, neighbourhood relationships in Kohonen-style SOMs are investi-
gated, resulting in the development of a new scheme for parameter decay. Section 5.2
presents a study of the role of neighbourhood size in Kohonen-style SOMs. This study
shows the effect of using large and small neighbourhood interactions on the organisation
process of Kohonen-style SOMs.

As a result of the observations made in this study, a new scheme for parameter
decay is suggested. This scheme, known as Butterworth Step Decay, involves the use of a

constant value for gain, and a smoothed step between a large and a small neighbourhood
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size. This scheme provides training times comparable to the best times possible using
traditional parameter decay schemes, but does not require a priori knowledge of the
likely training time for the data set.

The Butterworth Step decay scheme is tested on a range of map sizes in Section 5.3.
As a result of these tests, the operational parameters of the scheme are established.
The performance of the scheme is compared to traditional decay schemes in Section
5.4. This comparison is performed using the Simple Grid, Questionnaire, and Scotch

Whisky data sets.

5.2 Testing the Effect of Neighbourhood

One requirement which has been established for organisation to occur in a SOM is
that the neighbourhood size must strictly decrease over time (Flanagan, 1998). This
requirement of a strict pattern of decay suggests that learning is not invariant to neigh-
bourhood size. Rather, it suggests that different neighbourhood sizes perform different
roles during the learning process. In order to optimise the decay of neighbourhood
during learning, it is important to have an understanding of these roles.

The experiments presented in this section attempt to test the role played by different
neighbourhood sizes in the learning process. In each experiment, 3 data sets were used:
5 x 5; 10 x 10; and 20 x 20 grids. Each grid was tested on the smallest map that could

fit the entire data set and with a 73 x 73 map.

5.2.1 Experimental Results

Data for each experiment in this section was drawn from the Simple Grid data set
(Section A.3). These data was trained on maximal Kohonen SOMs. In all cases, the
learning gain parameter was set to 0.2. In this way, the role played by neighbourhood
size decay can be established independent of learning gain decay.

In these experiments, a visual inspection of the final topologies was made. Using
these observations, it is possible to make broad statements regarding the role played

by neighbourhood size in the learning process.

Large Neighbourhood Size

In the first experiment, the effect of a large neighbourhood size on map convergence

was tested. In each test, a neighbourhood size equivalent to half the size of the map
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Figure 5.1: SOM Convergence using a 5 x 5 data set, 9 x 9 map, o = 5.
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Figure 5.2: SOM Convergence using a 5 x § data set, 73 x 73 map, ¢ = 37.

wag used. This allows a Gaussian curve centered on one side of the map to have a
small, but non-trivial influence on neurcons on the opposite side of the map.

The results of this experiment are shown in Figures 5.1-5.6. These results demon-
strate analogous behaviour in all cases. Using the large neighbourhood size, data points
are rapidly spread to the extent of the map, resulting in an initially good topological
mapping. However, the rough topology reached in the first few epochs of training does
not improve with further training. In addition, the resolution of this topology is very
poor; training vectors are not evenly spread over the resulting map. This is especially
evident on the larger data sets, in which the majority of winners are to be found on

the extremities of the map.
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{a) After 1 Epoch (b) After 10 Epochs {c) After 20 Epochs

Figure 5.3: SOM Convergence using a 10 x 10 data set, 19 x 19 map, o = 10.

{a) After 1 Epoch (b) After 10 Epochs (c) After 20 Epochs

Figure 5.4: SOM Convergence using a 10 x 10 data set, 73 x 73 map, o = 37.

{a) After 1 Epoch (b) After 10 Epochs {c) After 20 Epochs

Figure 5.5: SOM Convergence using a 20 x 20 data set, 39 x 39 map, ¢ = 20.
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Figure 5.6: SOM Convergence using a 20 x 20 data set, 73 x 73 map, ¢ = 37.
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Figure 5.7 SOM Convergence using a 5 x 5 data set, 9 x 9 map, o = 2.

Small Neighbourhood Size

In this experiment, the effect of a small neighbourhood of interaction on map conver-
gence was tested. In each test, a neighbourhood size of 2 was selected.

The results of this experiment are shown in Figures 5.7-5.12. From these results
it can be seen that, while global topologies do not develop quickly using the small
neighbourhood size, local topologies are evident almost immediately. Winning neurons
can be easily divided into small groups, each of which exhibits a locally consistent
topology. However, the topologies of adjacent groups do not necessarily correlate; the
global topology is therefore twisted.

The only exception to this pattern is the smallest data set on the smallest map
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Figure 5.8: SOM Convergence using a 5 % 5 data set, 73 x 73 map, ¢ = 2.
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Figure 5.9: SOM Convergence using a 10 x 10 data set, 19 x 19 map, o = 2.
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Figure 5.10: SOM Convergence using a 10 x 10 data set, 73 x 73 map, ¢ = 2.
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(a) After 1 Epoch (b) After 10 Epochs (¢} After 20 Epochs

Figure 5.11: SOM Convergence using a 20 x 20 data set, 39 x 39 map, o = 2.

{a) After 1 Epoch (b) After 10 Epochs {(c) After 20 Epochs

Figure 5.12: SOM Convergence using a 20 x 20 data set, 73 x 73 map, o = 2.

(Figure 5.7). In this case, a good global topology of the entire data set is observed to
form. This is the result of the combination of two factors. Firstly, although localised
clustering does occur in this data set, the data set is sufficiently small that only one
cluster is able to form — a cluster encompassing all the training data. Secondly, the
size of the map is sufficiently small that the ‘small’ neighbourhood size of 2 is sufficient
to impose global effects on the map. The corresponding ‘large’ neighbourhood size
experiment used a neighbourhood size of 5, a value only marginally larger (with respect
to the size of the map) than the ‘small’ value used here.

It is interesting to note that at the completion of each training sequence, winning
neurcns are, for the most part, 2 neurons apart. This is the same distance used in

the neighbourhood update function. This suggests a relationship between the neigh-
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bourhood size used for training and the extent of spread in winning neurons. This

relationship could be used to ensure adequate spreading of winning neurons in SOMs.

5.2.2 Discussion

The use of large and small neighbourhood sizes during training demonstrates two dis-

tinct behaviours, each with unique benefits:

Large Neighbourhood Sizes rapidly generate a consistent global topology but do

not generate a precise local topological mapping; and

Small Neighbourhood Sizes allow for the fine tuning of local topologies but are not

good at arranging global topologies.

Attempts to quickly generate precise global topologies require a combination of
these two characteristics; the rapid spreading of points across the map afforded by a
large neighbourhood size, and the fine control afforded by a small neighbourhood size.
A learning scheme which utilises a combination of these behaviours should provide near
optimal learning behaviour.

This result is supported by the observations made by Von der Malsburg (1973) in
his experiments on biologically faithful self-organising map models. Two important
qualities are demonsirated by Von der Malsburg’s experiments. Firstly, learning was
achieved without the need for decaying the learning gain parameter. In most theo-
retical and experimental studies since, variation in gain has been considered the most
significant factor controlling learning. Secondly, global topographical organisation was
only observed on small maps; in large map simulations, local topographical organisation
occurred, but global topology was erratic.

The cause of this result was theoretically demonstrated by Amari (1980). In this
proof, it was demonstrated that a single peak of excitation will result, provided the
domain of the lateral connection function spans the entire map. Conversely, a lateral
connection function with a smaller range will result in multiple peaks occurring on
a map. During Von der Malsburg’s experiments, the range of the lateral connection
function was only a small number of neurons, and was not decayed. Consequently, on
small maps, the connection function spanned the entire map and global organisation
was observed. On larger maps, the small connection function did not span the map

and many areas of excitation occurred, resulting in erratic global topology.
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Another interesting feature of these results is that the primitive topologies develop
without the need for a complex learning gain decay mechanism. This seems to suggest
that the role played by learning gain is not as significant as previously suggested in
the literature. The use of a single constant value for learning gain would significantly
simplify the learning process, by removing the need to establish another set of decay

parameters.

5.3 Optimizing Learning in Kohonen’s SOM

Having established the role played by large and small neighbourhood sizes during the
learning process, it is possible to propose a parameter decay scheme which exploits
these characteristics to yield improved training times.

In this section, the results obtained in the previous sections are applied to Kohonen's
algorithm, by way of a novel method for decaying neighbourhood size during training.
This decay scheme provides training times which are equivalent to the best training
times possible using traditional decay schemes. However, this technique has the addi-
tional benefit of removing the need for extensive tuning of key learning parameters or

a priori knowledge of the likely training time.

5.3.1 Step Neighbourhood Decay

The previous experiments demonstrate that SOM learning can be broadly characterised
by two behaviours: global topological organisation and local topological fine tuning.
These two behaviours can be obtained by using a large and small neighbourhood size,
respectively. However, both of these behaviours are desirable during the learning pro-
cess.

It therefore seems reasonable to propose a scheme for decaying neighbourhood size
during training which utilises both of these characteristics. Such a scheme would consist

of 2 phases:
Phase 1: o = [v2N?/2], for T epochs; and
Phase 2: ¢ = R, for as many epochs as are required to converge on a solution.

In this formulation, the map undergoing training is an N x N square map of neurons,
and R is the resolving distance of the SOM; that is, the distance between winners that

would be cbserved if every data point was spread evenly over the map.
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An additional modification to this simple step may be required. Maximal SOMs
are much more sensitive learning algorithms than their minimal counterparts. Unlike
the minimal SOM, maximal SOMs have no quantifiable goal state, and consequently,
the update rule cannot be directed towards a precise optimal goal.

As a result of this sensitivity, the rapid change in neighbourhood size required by
the step decay scheme may cause some difficulty to the learning process, resuiting
in optimisation towards suboptimal map states. To compensate for this, a smoothed
step scheme based upon the Butterworth filter is proposed. This filter is a continuous
approximation of the ideal step function, similar to that used in image processing in
the continuous approximation of “Top Hat’ filters. An nth order Butterworth step from

X to X' at epoch T is given by the equation:

X-Xx
L+ (v2 - 1{(t/T)™)

o(t) =X —

A comparigson of parameter decay under the Butterworth scheme and under normal
step decay can be found in Figure 5.13. Butterworth filters are used in image processing
to remove high frequency ‘ringing’ effects associated with hard boundaries in image
filters. Similarly, the smoothed edge of the Butterworth step decay prevents the rapid
development of local topologies, instead encouraging the development of local topologies
which are extensions of the global topology established in the early phases of training.
This does not detract from the goals of the original step decay scheme; it merely
smoothes the transition from large to small neighbourhood size.

In addition to this neighbourhood decay scheme, a scheme for decaying learning
gain is required. Based upon the preliminary result obtained in the previous section,
a minimalist approach to gain decay will be taken — gain will be held constant at a
value of 0.2 throughout experimentation. Experimental verification of this assumption

will be presented in the following sections.

5.3.2 Experimental Results

Two experiments were performed to establish the capabilities of the proposed step
decay algorithm. In the first experiment, simple grid data sets (see Section A.3) of
various sizes were learned by large and small maximal SOMs, in order to establish an
appropriate value for T, the length of phase 1 of training in the Butterworth Step decay
algorithm.

In the second experiment, simple grid data sets were again used, this time to test



CHAPTER 5. STEP NEIGHBOURHOOD DECAY 98

g C
 } 4
order 10
order 2
order 1
Xs_ X’ 1
| > | -
T time T time
{a) Step decay (b) Butterworth Decay

Figure 5.13: (a) Normal step decay from A to B at epoch T'. (b) Butterworth decay
from X to X’, decay time T. Filters of order 1,2 and 10 are shown; in the infinite limit,
Butterworth decay approaches step decay.

the assertion that a sophisticated gain decay mechanism is required when using the
step decay algorithm. As with the first experiment, tests were performed on a range of
map sizes and grid sizes.

A test set consisting of 500 training points was generated and used to evaluate the
Q metric after each epoch of training. In this way, it was possible to establish the rate

at which convergence took place.

Establishing decay period

In this experiment, a maximal SOM consisting of a square grid of neurons is used.
The initialisation and update rules for these maps are as described in Section 2.5.1.
The Butterworth Step Decay algorithm was used to decay neighbourhood size. In each
experiment, learning gain was held at a constant value of 0.2.

Simple grid data sets of size 5 x 5, 10 x 10 and 20 x 20 were trained on these maps.
Fach data set was trained on a large and a small map. The size of the small map was
set as the smallest map which would accommodate the data set (a 9 x 9 map for the
5 x b data set; a 19 X 19 map for the 10 x 10 data set; and a 39 x 39 map for the 20 x 20
data set). A 73 x 73 map was used as the large map for each data set.

For each map-grid combination, six trials were performed. The purpose of these
trials was to test a range of values for T, the step period in the Butterworth Step Decay

algorithm. T values of 2, 10, 20, 30, 40 and 50 were used. This establishes behaviour
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of the Butterworth Step algorithm from the minimum possible period, to a reasonable
maximum. Each trial was performed once.

The results of this experiment can be found in Figures 5.14. In each example, the
quality of each map rapidly rises to a suboptimal value. As the neighbourhood size is
reduced to the lower level, the average Q@ metric for the map decreases rapidly, becoming
asymptotic at a low value. This value varies with the choice of data set but observation
of trained maps showed the values to be representative of well formed maps. Despite
the wide range of map and data set sizes utilised in these tests, consistent behaviour is
observed in every case.

These results suggest that there is no minimum requirement for global topological
ordering. The only requirement seems to be that some organisation is performed using
a large neighbourhood size. However, a decay period of only 2 epochs is sufficient
to ensure that global topological ordering takes place. In order to ensure that global
ordering does occur, a decay period of 10 epochs will be used and tested in the following

experiments.

Establishing gain level

In this experiment, a maximal SOM consisting of a square grid of neurons is used.
The initialisation and update rules for these maps are as described in Section 2.5.1.
The Butterworth Step decay mechanism was used to decay neighbourhood size, using
a decay period of 10 epochs.

As with the decay period experiments, simple grid data sets of size 5x 5, 10x 10 and
20 x 20 were trained on these maps. Each data set was trained on a large and a small
map. The size of the small map was set as the smallest map which would accommodate
the data set (a 9 x 9 map for the 5 x 5 data set, a 19 x 19 map for the 10 x 10 data
set, and a 39 x 39 map for the 20 x 20 data set). A 73 x 73 map was used as the large
map for each data set.

For each map-grid combination, seven trials were performed. The purpose of these
trials was to test a range of values for learning gain while decaying neighbourhood size
using the Butterworth Step algorithm. Constant gain values of 0.01, 0.1, 0.2, 0.3, 0.4
and 0.5 were used. In addition, a linear gain decay from 1.0 to 0 over a periocd of 50
epochs was tested. This establishes the behaviour of the SOM algorithm using a range
of constant gain values, as well as providing a comparative example of linear gain decay.

Each trial was performed once.
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Figure 5.14: Testing the optimal neighbourhood decay period in the Butterworth Step
decay algorithm. Each plot shows SOM Quality during the learning of a simple grid,
using a range of step sizes.
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The results of this experiment can be found in Figures 5.15. Similar results are
observed in each experiment. The characteristic rapid convergence of the Butterworth
Step decay algorithm is largely unaffected by the choice of gain size, or the decision to
use a constant, rather than a linearly decaying value of gain. Using a constant gain
value, good topologies are achieved quickly.

The only significant feature which seems to affect the choice of gain is that it exceeds
a minimum critical value. The only plots which do not follow the consistent behaviour
are the plots corresponding to very low constant gain values — values of 0.01 and 0.1.
When these low constant values are utilised, the SOM is not reinforced sufficiently
after each training epoch. Consequently, during the first 10 epochs, the map does not
develop a strong global topology, and the resulting map is a poor global topological
organisation of the training data.

These results suggest that the choice of gain value is largely insignificant in con-
trolling the organisation process. These experime.nts produced identical results with a
wide range of gain values. In addition, no gain decay scheme was necessary to stimulate
the organisation process. This challenges the notion that gain decay is the strongest
controlling factor on the organisation process.

Following the results presented in this section, the self-organisation experiments
performed in this thesis will utilise a constant gain value of 0.2, coupled with a neigh-

bourhood decayed using the Butterworth Step method.

5.4 Comparison with Existing Schemes

Having established the values required for the key parameters, it is now possible to
compare performance of this algorithm to existing parameter decay algorithms. The
experiments presented in this section compare the performance of the step decay tech-
nique with conventional decay mechanisms. Three different data sets and five different
decay schemes (including simple step decay and Butterworth Step Decay) are used to
form this comparison. In these experiments, the Q metric was evaluated throughout

training in order to establish the rate at which convergence tock place.

5.4.1 Simple Grid

In this experiment, a maximal SOM consisting of a square grid of 9 x 9 neurons is used.

A simple grid of size 5x 5 was then used to train the map. The initialisation and update
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rules for these maps are as described in Section 2.5.1. Five different neighbourhood

decay schemes were tested:
L oaft) =1.0— 22¢ o(t) = 9.0 — 224

2. oft) =1.0— ¢ o(t) = 9.0 — 04

G

. a(t) =02, o(t) = 9.0 — F5t;
4. a(t) =0.2, o(t) = 6, £ < 10, otherwise o(t) = 2; and

5. a(t) =02, o(t) = 6 — r—tror

Schemes 1 and 2 are classic Kohonen linear decay schemes, over a period of 300 and
100 epochs respectively. Scheme 3 uses a classic linear decay for ¢ over 100 epochs, but
keeps a at a constant value of 0.2 throughout training. Scheme 4 is a simple step decay
scheme, and Scheme 5 is an example of Butterworth Step Decay. Following the results
of the Section 5.3, a step decay period (T') of 10 epochs is used in schemes 4 and 5.
The step decay schemes use a large neighbourhood size of 6 and a small neighbourhood
size of 2. A constant gain of 0.2 is used in schemes 3-5.

Each neighbourhood decay scheme was tested 10 times, and the results of these
trials were averaged. Uncertainty in each mean value was calculated using a single
value two tailed Student’s t-test on a 95% confidence interval. The test set used to
evaluate & metric values consisted of 500 vectors.

A table of the asymptotic value reached by each scheme can be found in Table 5.1.
The decay in @ metric value for each scheme is shown graphically in Figure 5.16. These
results demonstrate that all five schemes eventually reach the same asymptotic value
(allowing for experimental uncertainty). This value represents a well formed topological
representation of a grid. Scheme 1 reach this value after = 250 epochs, Schemes 2 and
3 after = 75 epochs, and Schemes 4 and 5, the step decay, after = 20 epochs.

Upon first inspection, these results would seem to suggest that the step decay
algorithm, in either form, vields superior training times to the linear decay mechanisms.
However, this is not necessarily the case. The factor restricting the convergence time
of the linear decay examples is the selection of an appropriate decay time. A linear
decay scheme may be capable of matching the performance of the step algorithm by
selecting a linear decay period of 20 epochs. However, linear (and many other decay
schemes) require a priori knowledge of the time required for decay or an appropriate

rate of decay. This knowledge is not available for most problems without empirical
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Figure 5.16: SOM Quality during learning of a 5 x 5 simple grid on a 9 x 9 map. Each
curve represents a different decay scheme.

study. The greatest advantage of the step algorithm is that it requires no such o prior
knowledge, only a knowledge of the size of the map, and the probable density of data
points on that map. Given this knowledge, which is available prior to training, without
empirical testing, it is possible to use the step decay technique to attain training times
comparable to the best possible using linear decay.

Another feature of note is the fact that Schemes 2 and 3 have almost identical con-
vergence times, and converge to a statistically identical asymptotic value. In addition,
Scheme 3 is observed to demonstrate much less erratic behaviour during convergence.
This suggests that the role played by decaying learning gain during training is much
less significant than the literature suggests. The erratic convergence of Scheme 2 could
even lead tc the conclusion that decaying « ¢mpedes learning by preventing stable

convergence on an optimal solution.

5.4.2 Questionnaire

In this experiment, a maximal SOM consisting of a square grid of 15 x 15 neurons is
used. The initialisation and update rules for these maps are as described in Section
2.5.1. A questionnaire data set (see Section A.4) consisting of 4 questions was used as

the training data. The @ metric was evaluated using the same data set.
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| Scherme Asymptotic Q metricvalue (x10~%) |
Linear decay, 300 epochs 3.6 0.2
Linear decay, 100 epochs 3.7x£0.2
Linear decay, 100 epochs, constant gain 3.6 £0.2
Simple step, constant gain 4.1+0.3
Butterworth step, constant gain 4.1+0.3

Table 5.1: Asymptotic @ metric values at the end of training a 5 x 5 simple grid on a
9 x 9 map, using a variety of neighbourhood decay schemes.

| Scheme | Asymptotic Q metricvalue (x10°3) |
Linear decay, 300 epochs 22+03
Linear decay, 100 epochs 22+03
Linear decay, 100 epochs, constant gain 1.94+04
Simple step, constant gain 1.9+0.2
Butterworth step, constant gain 2.1+0.2

Table 5.2: Asymptotic @ metric values at the end of training a 4 question questionnaire
on a 15 x 15 map, using a variety of neighbourhood decay schemes.

Five different neighbourhood decay schemes were tested:
L aft)=1.0- 29¢t o(t) = 15.0 ~ &0¢;

2. a(t) = 1.0 - 3¢, o(t) = 15.0 — {¢;

3. a(t) =0.2, o(t) = 15.0 - B2¢;

4. oft) = 0.2, o(t) = 11, ¢ < 10, otherwise o(t} = 2; and

_ _ g
5. a(t) =02, 0(t) = 11 — e

These decay schemes are analogous to the schemes used in the grid experiment.
Schemes 1 and 2 are classic Kohonen linear decay schemes, over a period of 300 and
100 epochs respectively. Scheme 3 uses a classic linear decay for o over 100 epochs, but
keeps « at a constant value of 0.2 throughout training. Scheme 4 is a simple step decay
scheme, and Scheme 5 is an example of Butterworth Step Decay. Following the results
of the Section 5.3, a step decay period (T') of 10 epochs is used in schemes 4 and 5. The
step decay schemes use a large neighbourhood size of 11 and a small neighbourhood
size of 2. A constant gain of 0.2 is used in schemes 3-5.

Figure 5.17 shows the results of training using the questionnaire data set with

the 5 neighbourhood decay schemes. Table 5.2 shows the asymptotic @ metric values
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Figure 5.17: SOM Quality during learning of a 4 question questionnaire on a 15 x 15
map. Fach curve represents a different decay scheme.

achieved by each scheme. The results obtained in this experiment are analogous to those
obtained in the Grid experiment. In each trial, the map converges to an asymptotic @
metric value. The same Q metric value is obtained in each trial. The only significant
difference between each trial is the time taken to reach this asymptotic value. Using
linear decay schemes, the time taken to converge is constrained by the decay parameter.
As a result, training takes ~ 250 epochs in the first trial, and = 80 epochs in the second
and third trials. However, the step decay schemes reach an asymptotic representation
after only 20 epochs, without the need to specify an appropriate decay period.

An interesting feature of these results is the range in topologies which are generated
by the decay scheme. The 4-question questionnaire data set is a 4 dimensional data set
(with each dimension represented using two inputs). However, in presenting this data
on a 2D SOM surface, 2D of the 4D data space must be lost. If the preserved topologies
correspond exactly with the obvious input topology, there are *Cy = 6 possible ways to
organise this 4D data. Figure 5.18(a) is an example of one of these simple topological
preservations. In this example, the answers for the first and last questions form the
principal topology — the response to question 1 on the vertical axis, and question 4
on the horizontal axis. A secondary topology can be observed in the second and third

questions. However, this topology is localised to regions within the principal topology.
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Figure 5.18: Two example mappings of a 4 question questionnaire on a 15 x 15 map.
These two mappings have almost identical @ metric values, even though Mapping 1 is
the more obvious and useful representation.

This is not the only way which the SOM algorithm can organise this data set. The
2 dimensions which must be lost during organisation need not be orthogonal to the 4
obvious dimensions of the data space. Rather than completely losing 2 dimensions and
completely preserving another 2, the SOM can organise into a state which preserves half
of every dimension, losing the other half. This results in an output state whose topology
is not visually obvious; however, the @ metric value resuiting from such an organisation
is virtually identical to that produced by the more obvious topology. Figure 5.18(b} is

an example of such an eccentric topology.

5.4.3 Scotch Whisky

In this experiment, a maximal SOM consisting of a square grid of 25 x 25 neurons is
used. The initialisation and update rules for these maps are as described in Section
2.5.1. The Scotch Whisky data set deseribed in Section A.6 was used as a training set.
The © metric was evaluated using the same data set.

Five different neighbourhood decay schemes were tested:
1. aft) = 1.0 - $3t, o(t) = 25.0 — 204,

2. a(t) = 1.0 — §5¢, oft) = 25.0 — 04

3. a(t) =0.2, o(t) = 25.0 — 22+,

4. aft) = 0.2, o(t) = 18, t < 10, otherwise o(¢) = 2; and
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Figure 5.19: SOM Quality during learning of the Scotch Whisky data set on a 25 x 25
map. Each curve represents a different decay scheme.

| Scheme Asymptotic Q metricvalue (x107°) |
Linear decay, 300 epochs 0.9+0.3
Linear decay, 100 epochs 1.3£0.3
Linear decay, 100 epochs, constant gain 1.0+£0.5
Simple step, constant gain 1.2+0.3
Butterworth step, constant gain 0.8£0.2

Table 5.3: Asymptotic @ metric values at the end of training the Scotch Whisky data
set on a 25 x 25 map, using a variety of neighbourhood decay schemes.

5. a(t) =02, o(t) = 18 — m

These decay schemes are analogous to the schemes used in the Simple Grid experi-
ment. Schemes 1 and 2 are classic Kohonen linear decay schemes, over a period of 300
and 100 epochs respectively. Scheme 3 uses a classic linear decay for o over 100 epochs
but keeps a at a constant value of 0.2 throughout training. Scheme 4 is a simple step
decay scheme and Scheme 5 is an example of Butterworth Step Decay. Following the
results of the Section 5.3, a step decay period {T') of 10 epochs, and a constant gain
of 0.2 is used for schemes 4 and 5. The step decay schemes use a large neighbourhood
gize of 18 and a small neighbourhood size of 2.

Figure 5.19 shows the results of training using the Scotch Whisky data set with the
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five neighbourhood decay schemes. This real-world example confirms the results of the
previous experiments. Again, all neighbourhood decay schemes are able to bring the
SOM to a good topological representation of the data but the step decay mechanisms
are able to do so without the need for 4 priori knowledge of the time required to train
the data set. A table of the asymptotic € metric values obtained in this experiment
can be found in Table 5.3.

As with the questionnaire data set, the dimensionality of the Scotch Whisky data
vastly exceeds the 2 dimensions available on the SOM. Consequently, many dimensions
of data are not represented in the final topology. However, unlike the questionnaire
data set, there is not obvious organisation of the Scotch Whisky data. A wide range of
equally valid 2D topological organisations of this data set are observed; however, there

is currently no method for forcing a given topology to express in preference to another.

5.5 Discussion

These experiments clearly demonsirate the principal benefit of the Butterworth Step
decay scheme. Traiming times using the technique are comparable with the best possible
training times using traditional decay techniques. However, these fraining times can
be achieved using parameters that can be easily derived from the data set and map to
be used. No a priori knowledge or empirical studies of likely training time are required
to establish the key parameters of the step decay scheme.

Perhaps the strongest evidence supporting use of the step decay mechanism comes
through observing the goodness of fit curves for the 300 epoch linear decay in Figures
5.16, 5.17 and 5.19. The behaviour of this curve can be classified into two types; erratic
oscillation (during epochs 1-150) and stable decay (during epochs 150-300). The switch
between states in both cases occurs at the point where neighbourhood size decays to a
value equivalent to the resolving power of the map. Once the neighbourhood size reaches
-this point, a stable topographical representation is rapidly achieved rapidly. The step
mechanism represents the distillate of this process. Rather than engage in a long period
of erratic representations, the step decay mechanism uses a large neighbourhood size for
the minimum possible time — just long enough to establish a primitive global topology.
Neighbourhood size is then dropped to R (the desired resolution of the data set}), to
allow precise local ordering.

It is also interesting to note that this fast training time was achieved without the

need for a sophisticated scheme of learning gain decay. This represents a significant
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difference from the perspective presented in the vast majority of literature {(Kohonen,
2001) (Cottrell et ol., 1998) (Mulier and Cherkassky, 1994). These sources emphasize
the importance of learning gain, leaving neighbourhood size as a peripheral concern.
This study suggests that neighbourhood size is at least an equal, if not more important
contributor to the process of learning in self-organisation.

Why is gain seemingly unimportant in these experiments? As an estremely sim-
plistic analysis, this can be attributed to the fact that a learning step with oo = 0.4 is
essentially equivalent to 2 learning steps at @ = 0.2 (however, as a — 1, this relation
becomes increasingly tenuous). Allowing initially large gain permits rapid convergence
from random weights to a reasonable topology. However, there is no guarantee that if a
good topology will be retained if found. This is observed in the wildly ranging & metric
values in the initial epochs of Figures 5.16, 5.17 and 5.19. During these early epochs
a good topology acquired in one epoch is often lost in the next. By using a smaller
learning gain, it may take slightly longer to attain a global topological representation
but oscillations about this representation will be minimal. The net difference in time
taken to reach a stable representation is therefore minimal. Sophisticated schemes of
learning rate decay would seem to be unnecessary.

One possible benefit of an initially large neighbourhood size is to provide momentum
to escape local minima representations of a high dimensionality input space. To avoid
this eventuality, the step decay method could be combined with an optimal learning
rate decay scheme (such as those in Chapter 3.6 of Kohonen (2001)). However, the
experiments performed here seem to suggest that this is not required to achieve good
training times for many data sets.

The proposed neighbourhood size decay scheme has one additional benefit: the
potential for use in a continuous learning framework. Using conventional learning decay
schemes, learning gain and neighbourhood size are, in most cases, decayed to 0 at the
conclusion of training. Under these conditions, the SOM has reached a steady state
and further learning cannot take place. The SOM is then used in an ‘off-line’ manner,
identifying winners without updating the map weights. However, using the proposed
training scheme, there is no limit on the time for which training can take place. Once
the map has arrived at an asymptotic representation with the small neighbourhood size,
the map can be used to identify winners within a precise global topology. However, by
retaining the ability to update, the SOM will continue to respond to changes in input

data, becoming a dynamic model of the input data set. While this facility could be
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built into conventional parameter decay schemes, it would require a priori evaluation
of yet more parameters. This issue will be addressed in Chapter 6.

The partial preservation of complex topologies is also a matter of some interest.
The results presented in Sections 5.4.2 and 5.4.3 show that when a complex (i.e., >
2D) topology exists in the training data, only 2D of the complete topology will be
represented in the SOM. The loss of topology can occur either as the complete loss of
certain topological dimensions or as a p;a.rtial loss over all dimensions. However, these
two modes of topological loss generate equivalent asymptotic @ metric values.

This can be attributed to the fact that the ©Q metric method assumes that all
dimensions in a data set are equally significant. This is not necessarily the case. A
priori knowledge about the data set could indicate that specific dimensions of the data
set are of greater importance than others. If this is the case, it would desirable to be
able to force the SOM into a given principal topology. However, the traditional SOM
algorithm provides no method for preferentially selecting dimensions for preservation
— all dimensions are treated equally during training. This issue will be addressed in

Chapter 7.

5.6 Conclusion

In this chapter, the role played by large and small neighbourhood sizes was established
using an empirical study. It was found that large neighbourhood sizes are responsible
for establishing global map topology, whereas small neighbourhood sizes are responsible
for developing local map topologies. A combination of large and small neighbourhood
sizes is required during the training process to establish a good global topology with
local precision.

Based upon these findings, a scheme for decaying parameters during SOM training
was proposed. This scheme, known as Butterworth Step Decay, involves a smooth step
between a large and small neighbourhood size. This decay scheme provides training
times comparable to the best training times possible using traditional linear decay
schemes but precludes the need for a priori knowledge of likely training times.

In addition, the use of this scheme removes the need for sophisticated learning gain
decay schemes. Butterworth step decay utilises a constant value for gain. Empirical ev-
idence presented in this chapter demonstrates that the performance of the Butterworth
scheme is largely unaffected by the choice of gain. This demonstrates that learning gain

is not the most significant attribute contributing to the learning of a SOM topology.
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An additional benefit of the proposed parameter decay scheme is its potential for
use in continuous learning situations. As a result of the fact that the Butterworth
Decay scheme maintains nonzero learning parameters, a map trained using the scheme
can remain receptive to changes in training data over time. This feature is not available
to conventional parameter decay schemes which decay all learning parameters to zero

at the end of training. This feature will be explored in the next chapter.



Chapter 6
Continuous Learning

He [Arthur] knew that one of the things he was supposed to do as
a parent was to show trust in his child, to build a sense of trust and
confidence into the bedrock of relationship between them. He had a
nasty feeling that that might be an idiotic thing to do, but he did it
anyway, and sure enongh it had turned out to be an idiotic thing te
do. You live and learn. At any rate, you live.

You also panic.

— Mostly Harmless {Adams, 1992)

6.1 Introduction

Most conventional algorithms maintain a two stage approach to the learning process;
an initial phase of learning, followed by a prolonged period of off-line use, in which
no new information is learned. This separation of the learning process into two stages
enforces a hard endpoint to the period of training. Kohonen’s SOM is one example of a
learning algorithm which follows such a two-stage approach to training. This two stage
approach is enforced through the selection of parameter decay schemes. Traditional
parameter decay schemes for Kohonen’s SOM involve decaying SOM parameters to
zero at the end of the training phase. Once parameters have decayed to this level, the
SOM remains static and cannot adapt to new training data.

However, in real-world learning problems, it is difficult to perform this division.
Learning systems do not usually have access to a complete and canonical set of train-
ing examples prior to the commencement of training. Rather, learning is a continuous
process with input stimuli that are highly non-stationary (i.e., the probability distribu-
tion of training cases varies over time). This necessitates the development of algorithms
which can learn continuously.

In this chapter, a continuous learning extension to Kohonen'’s SOM algorithm is

presented. This extension is achieved by exploiting the fact that the Butterworth Step
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Decay scheme presented in the previous chapter does not decay learning parameters to
zero. As a result, the SOM retains the ability to adapt to changes in the training set
indefinitely. This avoids the need to divide the life of the SOM into discrete phases of
training and use.

This extension is tested empirically using the Simple Grid, Questionnaire, and
Scotch Whisky data sets. These data sets are allowed to ‘drift’ over time, introducing
new training examples from outside the original domain of training. Performance of the
continuously learning SOM is compared to traditional parameter decay schemes to show

the manner in which new training data can be integrated into the SOM representation.

6.2 Continuous Learning in Kohonen’s SOM

Using conventional learning decay schemes within Kohonen’s algorithm, parameters
learning gain and neighbourhood size are decayed to 0 at the conclusion of training.
Under these conditions, the SOM reaches a steady state at the end of training, and
further learning cannot take place. The SOM is then used in an ‘off-line’ manner,
identifying winners without updating the map weights.

This approach requires that the user has an extensive a priori knowledge of the char-
acteristics of the data set in order to set appropriate decay parameters. In a continuous
learning situation, it is hard or impossible to obtain this information, as changes in the
characteristics of the data set over time cannot be predicted. Alternatively, the user
must expend significant computational effort to use dynamic filters (such as Kalman
filters) to update learning parameters.

One technique that can circumvent this problem is the use of Butterworth Step
Decay, introduced in Chapter 5. Under this scheme, SOM learning is divided into
two phases. In the short initial phase (= 10 epochs}, a large neighbourhood size
(approximately half the size of the map) is used. The map is trained using this large
neighbourhood size to establish an initial global map topology. After this short initial
period of training, a prolonged pericd of learning with a small neighbourhood size
takes place. The neighbourhood size selected for this phase of training is dependent on
the expected density of the data set on the trained map. This smaller neighbourhood
size is used for training until an adequate topological organisation has developed. The
transition between the large and small neighbourhood sizes is moderated by a second
order Butterworth approximation of the hard step. This prevents the introduction

of false local topologies by encouraging the local topologies suggested by the global
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topology. Learning gain is held constant throughout training; Chapter 5 found a value
of gain value of 0.2 to be suitable.

Using this parameter decay scheme, there is no limit to the time over which training
can take place. Once the map has arrived at an asymptotic representation with the
small neighbourhood size, the map can be used to identify winners within a precise
global topology. Consequently, the map reaches a stable representation when it is
ready, rather than being restricted by an artificially imposed parameter decay rate.

This characteristic can be exploited to achieve continuous learning on a SOM. By
retaining the ability to update, the SOM remains capable of responding to changes
in input data. When using a static data set, the SOM will eventually reach a stable
representation and, although the weights are capable of updating, they tend not to
change by any significant amount. However, if we allow the training set to change
over time, the SOM becomes a dynamic model of the input data set at any given time
— that is, the SOM can learn continuously. While this facility could be built into
conventional parameter decay schemes, it would require a priori evaluation of yet more
parameters.

One advantage of the use of SOMs for continuous learning is the control of over-
specification. Overspecification is a key problem with many continuous learning archi-
tectures (see Section 2.7 for a full discussion). However, SOMs are an unsupervised
learning mechanism — that is, they do not learn an output classification state, only an
internal representation. The specificity of this internal representation is limited by the
resolution (i.e., the number of neurons) of the self-organising neural layer. All training
data presented to the map is fitted to the existing elements on this neural layer. Con-
sequently, the user has complete control over specificity through the initial selection of

map size.

6.3 Testing Continuous Learning

In this section, an experiment is presented which demonstrates the way in which the
Butterworth Step decay mechanism can be used to implement a scheme of continuous
learning. This experiment is repeated three times, using three different training sets:
the Simple Grid data set {see Section A.3}, the Questionnaire data set (see Section
A .4}, and the Scotch Whisky data set (see Section A.6).

In order to demonstrate the continuous learning capabilities of the Butterworth Step

Decay mechanism, each data set is split into two overlapping subsets. The first subset is
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presented to the SOM, and learned completely. At the completion of this initial phase
of learning, the second subset is presented to the SOM. This new data set contains
some farmiliar training examples and some new examples from the same domain. A
continuously learning system should incorporate the new training examples into the
topology established in the initial training phase. For the purposes of comparison, a
second SOM is trained using the same training data regimen. However, this map uses
traditional Kohonen linear decay to 0 of neighbourhood size. This shows the effect
of a changing data source on a traditional Kohonen SOM, and provides a basis for
comparison with the continuous learning technique.

The performance of the continuously learning SOM is quantified using the @ metric
defined in Chapter 3. The evaluation of the @ metric value is performed with respect
to a specific data set. By using test data drawn from a specific data set (or subset) it is
possible to use the @ metric to evaluate the representation of each of the overlapping

data subsets, and the combined data set.

6.3.1 Simple Grid

In the first experiment, a Simple Grid data set (see Section A.3) is used. Change in
the source data is achieved by generating a rectangular grid of inputs (instead of the
normal square) and selecting two overlapping square subsets of this rectangular data
set.

To simulate a shift of n units in a Simple Grid data set, a 7 x 7 4+ n rectangular
Simple Grid data set was generated. The two 7 x 7 subsets were drawn from this
rectangular data set as training subsets. Using these two subsets of the original data
set it is possible to test the response to new data in the data source (the columns of
data in subset 2 which are not in subset 1), and the response to data disappearing from
the data source (the columns of data in subset 1 which are not in subset 2).

This process of data set generation is demonstrated graphically in Figure 6.1. Data
subsets representing shifts of size 1, 4 and 8 were generated for this experiment. This
represents a range of shifts from a minor shift, to a complete change in the data source.

These data subsets were trained on a 13 x 13 neuron map. The first period of
training, using data subset 1, lasted for 75 epochs. After this initial period of training,
data subset 2 was used for a further 75 epochs of training.

When using Butterworth neighbourhood decay, neighbourhood size is decayed from

9 to 2, with the step occurring after 10 epochs. The final step value of 2 is maintained
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Figure 6.1: Generating subsets of the Simple Grid data set. This figure shows a two
7 % 7 subsets, with a shift of 4 units.

until the end of training with data subset 2. When using linear neighbourhood decay,
neighbourhood size is decayed from 13 to 0 over a period of 75 epochs (the end of the
initial training phase). During the second training phase, a neighbourhood size of 0 is
used. In both Butterworth and linear decay experiments, a constant learning gain of
0.2 is used.

To eliminate statistical variation, each experiment was performed 10 times, and
the Q metric for each trial averaged. The value of each @ metric was based upon a
randomly selected set of 500 test points from within the domain of the relevant data
subset.

The results of these trials can be found in Figures 6.2-6.7. Although there is wide
variation in the extent of the shift used in these trials, analogous behaviour is observed
for all values of shift. The results obtained using a shift of 4 units (Figures 6.4 and 6.5)
will be used as specific examples for the purposes of discussion in this section; results
using a shift of 1 (Figures 6.2 and 6.3) and a shift of 8 (Figures 6.6 and 6.7) can be
extrapolated from this discussion.

The Q metric plots (Figures 6.4(g) and 6.5(g)) of each trial show three curves: the
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@ metric representing the topological quality of each data subset, and the ¢ metric
representing the topological quality of the original source data set. The performance
of each SOM is functionally identical at the end of the first period of training. The
Q metric for data subset 1 reaches an asymptotic value of 0.0003 using Butterworth
decay and a value of 0.0002 using linear decay. The trials utilising linear neighbourhood
decay reach these asymptotic @ metric values at a slower rate than their Butterworth
counterparts; this is a function of the period selected for linear neighbourhood decay.
The output state resulting from this initial period of training can be seen in Iigures
6.4(a) and 6.5{a); these clearly show a well ordered, evenly spread map topology.

Since data subset 2 shares some training vectors with data subset 1, this initial
period of training yields a SOM which contains a partial representation of data subset
2. Consequently, the @ metric value for data subset 2 is also asymptotic at epoch 75. A
value of 0.0018 is reached using Butterworth decay, and 0.0016 is reached using linear
decay. The practical consequence of this can be seen in Figures 6.4(b) and 6.5(b). The
part of data subset 2 which is shared with data subset 1 forms a good grid topology.
However, very poor spreading is observed in the new training vectors. These vectors are
compressed into a single column on the edge of the SOM — a topologically consistent,
but functionally useless representation.

The Q metric for the combined data set (i.e., the full grid) is a combination of these
two values; 0.0018 using Butterworth decay and 0.0016 using linear decay. Figures
6.4{c) and 6.5(c) show the output state of the combined data set. This output is a
combination of the output of the two data subsets, with good representation of most
of the data set but compression on the edge of the map where the new training vectors
from data subset 2 should fall.

Regardless of the neighbourhood decay scheme used, the @ metric for data subset
1 has reached the best topological representation by epoch 75; this should not be
surprising, as up to this point, the map has been trained using data exclusively from
data subset 1. The Q@ metric values for data subset 2 and the full data set are somewhat,
higher but do reach an asymptotic value representative of their partial representation
in the SOM topology.

However, after epoch 75, a dramatic change is observed. Trials utilising Butterworth
decay exhibit a switch between asymptotic values. The Q metric value for data subset
2 improves to the level previously observed for data subset 1. Conversely, the @ metric

value for data subset 1 rises to the level previously demonstrated by data subset 2.
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By the end of training at epoch 150, the @ metric values for the two data subsets
have again reached asymptotic values; these asymptotic values are reversed from their
condition at epoch 75. This reflects the change in training source. The distribution
of source data has shifted, and the SOM has adapted to represent this new training
source.

Although the @ metric value for the data subsets change as the training source
changes, the asymptotic @ metric value for the combined data set does not change
substantially between epoch 75 and 150. Just after epoch 75, there exists a short
period of time during which the data learned during the initial training period have
not been lost but the new data has not been fully reinforced. During this period, which
lasts no more than 30 epochs, the @ metric value for the combined data set slightly
improves. However, this improvement is lost as data subset 2 is further reinforced. The
benefit of training with data subset 1 is lost as training with data subset 2 persists.

The Butterworth step decay algorithm is able to adapt to changes in the data subsets
regardless of the size of the shift between the data subsets. However, the performance
of the algorithm does decay slightly as the size of the shift is increased. The worst
observed performance occurs with a shift of 8. Using a shift of this size, the Q metric
value for data subset 2 greatly improves but never reaches the level obtained by data
subset 1. This is not entirely surprising: when a shift of 8 units is used, subset 2 shares
no data with subset 1. Data subset 2 is effectively an entirely new data set, which
shares a gross topology, but nothing else, with the original data subset. Consequently,
phase 2 of the experiment becomes an attempt to learn an entirely new topology. This
learning can be guided by the gross topology established while training data subset 1
but, as the shift increases, the benefit of this guidance decreases.

While this decay in performance is less than ideal, it 1s important to note that it is a
dramatic improvement over the performance observed in systems utilising linear decay
(Figures 6.3, 6.5 and 6.7). These systems do not adapt at all. Systems trained using
linear decay reach their asymptotic Q@ metric values at the point at which neighbour-
hood size decays to 0. Beyond this point, the © metric value does not substantially
change, regardless of changes to the training data source. This asymptotic value is not
perfectly constant — a small amount of localised distortion is observed. This can be
attributed to two sources. Firstly, the Q metric is the result of calculations performed
using a randomly generated test set; and secondly, although neighbourhood size is 0,

gain is not — weights on the winning neuron are still updated, and as a result, the
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winning neuron (and therefore the topology) can change. However, the extent of this
fluctuation is substantially less than the dramatic adaptation observed in the trials
utilising Butterworth Decay.

Comparing results with other values of shift in the data set show that the difference
between the asymptotic @ metric values is a function of the shift between the subsets.
When the shift is small, there is substantial overlap between the contents of the two data
subsets. Consequently, the training provided by using data subset 1 is substantially
similar to the training provided by using data subset 2. Training using data subset 1 can
therefore generate a topology which is adequate for describing data subset 2, resulting
in similar asymptotic values. As the shift between the subsets is increased, the overlap
in the subsets decreases. As a result, data subset 1 is decreasingly representative of
data subset 2, and the difference between asymptotic values increases.

One interesting feature of all the trials is the spike in the @ metric value observed
at epoch 75. This spike increases with the size of the shift between the data subsets.
This characteristic is essentially an edge effect, associated with the sudden change in
the training source. When the training data subset changes, the new subset contains
training examples which stimulate inputs which were not previously undergoing stimu-
lation. As the shift increases in size, the number of novel inputs also increases, resulting
in a larger @ metric spike. In the Butterworth decay trials, the map is able to rapidly
adapt to this edge effect, the spike being only a temporary setback. Linear decay trials,
however, are limited in their capacity to adapt. If the shift (and resulting spike) is
small, the presence of nonzero gain can overcome the spike. However, if the shift is
large, it is difficult for the map to compensate. Figure 6.7 shows the effect of a map
which suffers catastrophic failure with the presentation of a substantially shifted data
subset. This failure is due to the extremely poor representation of data subset 2, at

the edge of the map.

6.3.2 Questionnaire

In the second experiment, a Questionnaire data set (see Section A.4) is used. Changes
in the source data is achieved in a similar manner to that used for the Grid data set.
The complete data set consists of 5 + n questions; this data space is split into two
overlapping subsets of 5 questions each. The changing data source can be thought of as
a Questionnaire that changes over time as new guestions are added and old questions

are removed. Data subsets representing shifts of 1, 3 and 5 questions were generated
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for this experiment. This represents a range of shifts from a minor shift, to a complete
change in the data source.

These data subsets were trained on a 15 x 15 neuron map. The first period of
training lasted for 75 epochs, using data subset 1. After this initial period of training,
data subset 2 was used for a further 75 epochs of training. When using Butterworth
neighbourhood decay, neighbourhood size is decayed from 11 to 2, with the step oc-
curring at 10 epochs. When using linear neighbourhood decay, neighbourhood size is
decayed from 15 to 0 over a period of 75 epochs. In both Butterworth and linear decay
experiments, a constant learning gain of 0.2 is used. To eliminate statistical variation,
each experiment was performed 10 times, and the © metric for each trial averaged.

The results of these trials can be found in Figures 6.8-6.10. As with the Simple
Grid data set experiments, the Butterworth Step method allows for continuous learning
of the new data set. Q metric plots for maps using Butterworth neighbourhood decay
can be seen in Figures 6.8(a), 6.9(a) and 6.10{a). Prior to epoch 75, each Q metric plot
asymptotes at a state where data subset 1 has a better representation than data subset
2. The @ metric plot for the combined data set asymptotes at a value which is the
approximate average of these two subset Q metric values. At epoch 75, the new data
subset is introduced, the map quickly responds, and asymptotes at a new state in which
data subset 2 holds a better representation that data subset 1. The combined data set
maintains an asymptotic value consistent with that observed prior to the change in
data subset.

The behaviour of maps utilising linear decay is also consistent with previously ob-
served behaviour. @ metric plots for maps using linear neighbourhood decay can be
seen in Figures 6.8(b}, 6.9(b) and 6.10(b). In each trial, the map reaches a steady state
by epoch 75. However, when the data subset is changed, the map is unable to adapt
to the new data set, instead settling at a suboptimal asymptotic level.

There is one significant difference between the behaviour observed with the Simple
Grid data set and the Questionnaire data set. In the Questionnaire experiments, the
performance of the continuous learning method improves as the size of the shift is
increased. This disparity is caused by a difference in the fundamental topology of the
underlying data set. Although the Simple Grid data set consists of 7 x (7 + n) inputs,
the underlying topology of these inputs is 2 dimensional. The shift in the data set does
not introduce any new topologies: the data from data subset 2 falls in a different range

of the same dimension. When the data subset is shifted, the topological range expressed
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by the weight space must also shift; a task which becomes increasingly difficult as the
size of the shift increases.

However, the topology of the Questionnaire data set is (5 4+ n)-dimensional, exactly
equivalent to the number of questions. When the Questionnaire data set is learned, 2
of the 5 dimensions in data subset assert themselves as dominant {even though they
are, in fact, no more significant). The remaining dimensions are underrepresented, or
are not represented at all.

When the data set is shifted a small distance, some of these dimensions are remaoved
from the training data. However, it is possible for a dominant topology to remain in
the training set, and thus on the map. As a result, it is difficult for the @ metric value
for data subset 2 to reach the same level as was expressed by data subset 1 before the
shift.

When the shift is large, none of the original topologies exist in the new data subset;
rather, the training data consists of an entirely new 5 dimensional data set. Without
any old topologies attempting to assert themselves, it is an easy task for the SOM to

adopt a new topological structure.

6.3.3 Scotch Whisky

Finally, the use of the Butterworth Decay for continuous learning was tested on a real-
world data set — a tasting analysis of Scotch Whisky (see Section A.6). This data set
is drawn from expert tasting analysis of single malt Scotch Whisky. This data set does
have a topology, of sorts, but it is not a regular or evenly distributed topology.

The subset method is again used to generate change in the source data. One of the
descriptors in the full data set classifies each whisky according to the location of the
distillery: Highland, Lowland or Islay. The characteristics of Scotch Whisky are related
to the locality in which they are distilled; by creating subsets of the complete data set
which omit various localities, it is possible to generate overlapping subsets within the
irregular topology of the data set.

The complete Scotch data set consists of one sample from each of the 109 Scotch
Whisky distilleries. Of these, 89 are Highland whiskies, 12 are Lowland whiskies, § are
from the Islay region. Three subsets were generated, with each subset omitting whisky
originating from a single region. Any two of these subsets will have one locality overlap.
By presenting one subset during the first phase of training and a different subset during

the second phase, a shift in the training source can be simulated. The combination of
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Data Subset | Locality omitted || N° Vectors |
A Lowland a7
B Islay 101
C Highland 20

(a) Locality omissions used to generate data subsets

I Trial I Training Subset 1 | Training Subset 2 |

1 Data Subset A Data Subset B
2 Data Subset B Data Subset C
3 Data Subset A Data Subset C

(b) Data subsets used in experimentation

Table 6.1: Generating subsets of the Scotch whisky data set.

pairs of subsets yields a range of shift sizes, due to the differing sizes of each subset.
The formation of the data sets, and the three pairs of subsets used during each of the
three trials, are shown in Table 6.1.

These data subsets were trained on a 25 x 25 neuron map. The first period of
training lasted for 75 epochs, using data subset 1. After this initial period of training,
data subset 2 was used for a further 75 epochs of training. When using Butterworth
neighbourhood decay, neighbourhood size is decayed from 18 to 2, with the step oc-
curring at 10 epochs. When using linear neighbourhood decay, neighbourhood size is
decayed from 25 to 0 over a period of 75 epochs. In both Butterworth and linear decay
experiments, a constant learning gain of 0.2 is used. To eliminate statistical variation,
each experiment was performed 10 times, and the O metric for each trial averaged.

The results of these trials can be found in Figures 6.11-6.13. Figure 6.11 is trained
with a data set initially consisting of no Lowland whiskies; secondary training contains
Lowland whiskies, but no Islay whiskies. Figure 6.12 is trained with a data set ini-
tially consisting of no Islay whiskies; secondary training contains Islay whiskies, but
no Highland whiskies. Figure 6.13 is trained with a data set initially consisting of
no Lowland whiskies; secondary training contains Lowland whiskies, but no Highland
whiskies. Although these results are not as clear as those observed using synthetic data
sets, the continuous learning nature of the Butterworth Step method can still be ob-
served. Linear neighbourhood decay is again unable to adapt to changes in the training

data source.
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When using Butterworth decay (Figures 6.11(a), 6.12(a), and 6.13(a}), the Q metric
value for data subset 2 improves after the change in training subset at the epoch 75.
Conversely, the @ metric value for data subset 1 becomes worse. This behaviour is
not observed when using linear neighbourhood decay (Figures 6.11(b), 6.12(b), and
6.13(b)). Although the map is able to form a good representation of the initial data
subset, the map is unable to adapt to the shifted data set which is presented after
epoch 75. This is consistent with a map which has reached a static state at the end of
the first 75 epochs of training.

The extent of changes in Q metric value in the Butterworth decay experiments
is moderated by the size of the shift between the data subsets. In Figure 6.11, the
overlap between subset 1 and subset 2 consists of 89 training examples (of 109). The
presentation of data subset 2 therefore involves the re-presentation of many of the
vectors in data subset 1. As a result, the magnitude of change in Q metric values
is not particularly large. However, in Figure 6.12, the overlap between the two data
subsets is & mere 12 vectors. As a result, the learning of data subset 2 is effectively a
completely new training task, with the topology representing data subset 1 being lost
in the process of learning a topology for data subset 2.

One interesting characteristic of these results is the extent of decay in the repre-
sentation of data subset 1 during the second phase of training in Figures 6.12(a) and
6.13(a). In the experiments with synthetic data sets, Q metric values are observed to
‘swap’ during the second phase of training; that is, data subset 2 improves to a @ metric
value comparable to that previously held by data subset 1 and vice versa. However, in
these trials, the representation of data subset 1 is observed to dramatically decay after
the introduction of data subset 2.

This can be explained by considering the composition of the training subsets. In the
Simple Grid and Questionnaire experiments, the two data subsets are of equivalent size
and topological density (i.e., inputs are evenly distributed over their domain. Conse-
quently, during the second phase of training, data subset 1 is replaced with a new data
subset of equal size and density. As a result of the symmetry between the two data sets
in the two training phases, the extent to which data subset 2 is not represented in the
first training phase is equivalent to the extent to which data subset 1 is not represented
in the second training phase. This is observed as a ‘swap’ in Q metric values for the
two data subsets.

However, the Scotch Whisky data does not share this characteristic; data is not
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evenly distributed over the problem domain, and the data subsets are not of equivalent
size. Consequently, there is no relationship between the Q metric values for the two data
sets after training data is swapped. The extent of the decay in Q metric is exacerbated
by the size of the two training subsets. In the second two Scotch Whisky trials, the
second data subset contains only 20 training vectors; under the Butterworth scheme,
these vectors are allowed to reinforce their topology without restraint. As a result, the
topology of the much larger initial training set is substantially lost.

This skew in the data set also affects the @ metric value for the full data set. In
the synthetic experiments, the full data set was equally composed of the two data
subsets. As a result, the overall @ metric value is largely unaffected by a change in
training subset. The Scotch Whisky data subsets are not similarly balanced. The
Highland whisky subset comprises a major part of the full data set; when this data
set is removed from the training process, a much larger drop in overall performance is

observed.

6.3.4 Discussion

The examples presented in this chapter clearly demonstrate that a Kohonen style SOM
can be made to learn continuously. The power of this technique is based solely upon
maintaining non-zero neighbourhood size. Kohonen’s algorithm is unable to expand
its knowledge representation beyond the initial training data set purely because after
initial training, the neighbourhood size is decayed to 0; as a result, the potential for
further learning is limited. By maintaining non-zero training parameters in the SOM,
it is possible for the SOM to adapt to changes in the training space of the SOM. At
any given time, the state of the map will represent the training set currently in use.
Given a significant period of stationarity in this training set, the map will stabilize to
a consistent topology of the current training set. Therefore, it is not necessary to have
a canonical training set at the commencement of training. All that is required is a
sufficiently spanning data set to establish an initial global topology.

It is also worthy of note that this technique allows the use of training sets which do
not fall into the traditional ‘batch of data’ category. Although the examples presented in
these experiments all train upon static sets of data, the continuous learning mechanism
has the potential to allow training data to be drawn from a non-repeating source. An
example of such a source would be a real world questionnaire; rather than collecting 10

examples of questionnaire data, and repeatedly presenting them, a continuous stream of
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unique examples could be collected and presented once to the SOM. The map topology
then become a function of the statistical distribution of training vectors drawn from
the training source. If this training source is non-stationary, the topology represented
by the map will evolve over time to represent the current statistical distribution from
the training source.

Although the rapid adaptation of the SOM is a desirable characteristic, it does raise
one significant problem. The SOM algorithm effectively forms a probability density map
of the input set. The area given over to a concept on a trained SOM is directly related
to the frequency of the training patterns representing that concept in the training set.
This is a useful characteristic when using static data sets. If the user wishes to have
high resolving power of a given concept, they need only bias the training set to give an
emphasis to that concept.

However, in a dynamic learning environment, the training set changes constantly,
and consequently, so does the probability distribution underlying the training set. If
the SOM adapts to a dynamic data set, the probability density map provided by the
SOM will, at any given time, represent only the most recent training examples, not the
range of data presented over the entire history of training. Training examples which
are not repeated will, over time, lose their representation in the map, regardless of the
significance of these training examples. That is, the continuously learning SOM has no
long-term memory.

While a continuous learning mechanism capable of short-term, forgetful memory
(such as a SOM using Butterworth Step Decay and a dynamic training set) may be
useful for some applications, long term memory also has significant uses. Applications
which need to learn from experience cannot afford to lose the benefit of significant
training examples simply because they occurred early in training and have not been
repeated recently. To be of ‘general use, a method for overcoming this forgetfulness

must be found. This issue will be addressed in Chapter 8.

6.4 Conclusion

In this chapter, it was shown that by decaying learning parameters to non-zero levels,
it is possible for a Kohonen-style SOM to adapt to changes in the training data source.
By maintaining non-zero neighbourhood size, the SOM becomes a constantly adjusting
representation of a data source. If the data source changes, so does the representation.

It is therefore possible for a Kohonen-style SOM to learn continuously.
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This method of using non-zero neighbourhood size does raise the issue of forget-
fulness. By remaining flexible to changes in the training source, the SOM will forget
training examples which are not reinforced. Applications which need to learn from
experience cannot afford to lose the benefit of significant training examples simply be-
cause they occurred early in training and have not been repeated recently. To be of
general use, a method for overcoming this forgetfulness must be found. This issue will

be addressed in Chapter 8.
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Figure 6.2: Continuous learning of a Simple Grid data set with a Kohonen-style SOM,
using Butterworth step neighbourhood decay. Initial training is performed using data
subset 1; after 75 epochs, training subset 2 is used. Training subset 2 is formed by
shifting subset 1 by 1 unit. The full data set is the union of these two subsets.
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Figure 6.3: Continuous learning of a Simple Grid data set with a Kohonen-style SOM,
using linear neighbourhood decay. Initial training is performed using data subset 1;
after 75 epochs, training subset 2 is used. Training subset 2 is formed by shifting subset
1 by 1 unit. The full data set is the union of these two subsets.
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Figure 6.4: Continuous learning of a Simple Grid data set with a Kohonen-style SOM,
using Butterworth step neighbourhood decay. Initial training is performed using data
subset 1; after 75 epochs, training subset 2 is used. Training subset 2 is formed by
shifting subset 1 by 4 units. The full data set is the union of these two subsets.
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Figure 6.5: Continuous learning of a Simple Grid data set with a Kohonen-style SOM,
using linear neighbourhood decay. Initial training is performed using data subset 1;
after 75 epochs, training subset 2 is used. Training subset 2 is formed by shifting subset
1 by 4 units. The full data set is the union of these two subsets.
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Figure 6.6: Continuous learning of a Simple Grid data set with a Kohonen-style SOM,
using Butterworth step neighbourhood decay. Initial training is performed using data
subset I; after 75 epochs, training subset 2 is used. Training subset 2 is formed by
shifting subset 1 by 8 units. The full data set is the union of these two subsets.
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Figure 6.7: Continuous learning of a Simple Grid data set with a Kohonen-style SOM,
using linear neighbourhood decay. Initial training is performed using data subset 1;
after 75 epochs, training subset 2 is used. Training subset 2 is formed by shifting subset
1 by 8 units. The full data set is the union of these two subsets.
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Figure 6.8: Continuous learning of the Questionnaire data set with a Kohonen-style
SOM. Initial training is performed using data subset 1; after 75 epochs, training subset
2 is used. Data subset 2 is created by shifting data subset 1 by 1 question.
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Figure 6.9: Continuous learning of the Questionnaire data set with a Kohonen-style
SOM. Initial training is performed using data subset 1; after 75 epochs, training subset
2 is used. Data subset 2 is created by shifting data subset 1 by 3 questions.
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Figure 6.10: Continuous learning of the Questionnaire data set with a Kohonen-style
SOM. Initial training is performed using data subset 1; after 75 epochs, training subset
2 is used. Data subset 2 is created by shifting data subset 1 by 5 questions.
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Figure 6.11: Continuous learning of the scotch data set with a Kohonen-style SOM.
Initial training is performed using data subset 1; after 75 epochs, training subset 2 is
used. Training subset 1 contains no Lowland whiskies; Training subset 2 contains no
Islay whiskies. The full data set contains all whiskies.
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Chapter 7

Learning from a Syllabus

“You know, it’s at times like this, when I'm trapped in a Vogon
airlock with a man from Betelgeuse, and about to die of asphyxiation
in deep space, that I really wish I'd listened to what my mother told
me when [ was young.”

“Why, what did she tell you?”

“I don’t know, I didn't listen.”

— The Hitch-Hikers Guide to the Galazy (Adams, 1979)

7.1 Introduction

In the previous chapter, the basic SOM algorithm was extended so as to enable a self-
organising map to add knowledge continuously to a basic representation. However, this
does not account for the initial establishment of a representation.

The establishment of a good fundamental representation of a problem domain is of
critical importance in almost all learning systems. A poor fundamental representation
will restrict the ability of the system to develop general representations of a problem
space. This is especially important for continuous learning problems. A misleading or
misrepresentative fundamental representation will restrict the long term performance
of a learning system, as all future representations must be based upon the initial lessons
learned by the system.

In this chapter, a method for developing a strong fundamental topology is presented.
This technique is known as Syllabus Presentation; it is similar in nature to incremental
presentation techniques which have been successfully applied to feedforward networks
learning grammatical data (Plunkett and Marchman, 1990)(Elman, 1993). A method
for developing a training syllabus is also presented. This technique, known as Percept
Masking is based upon masking training inputs as a result of prior domain knowledge.

The syllabus presentation technique is demonstrated with SOMs using two simple data
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sets: a Grid-in-a-Grid, and a 4 question Questionnaire. The technique is then demon-

strated on the Scotch Whisky training data.

7.2 Syllabus Presentation

A common characteristic of machine learning systems is the significant effect that early
training samples have on the fundamental structure of the system. For example, kittens
raised in an environment which contains only vertically oriented visual stimuli are
unable in adulthood to see horizontally oriented features (Blakemore and Cooper, 1970).
The composition of training of data during the formative period of development is
therefore capable of skewing the decision making power of a system over its entire
lifetime.

Furthermore, the effect of false or misleading training information is more significant
during the initial stages of training. After a prolonged pericd of training, a system has
sufficient experience to identify and ignore (or at least reduce the significance of) train-
ing data which deviate from expectation. During initial training, this experience has
not yet been accumulated and all training information has the illusion of significance.
For example, the root partition of a decision tree is formed from the information avail-
able at the start of training. The validity of this root partition is never subsequently
challenged. If the data set changes in such a way as to introduce a new significant
partition, or to reduce the significance of an initially strong partition, the decision tree
cannot and does not compensate. Pruning and merging strategies can help to overcome
partitioning discrepancies on leaf nodes. However, if a partitioning problem is caused
by the root partition, the decision tree cannot be fixed without rebuilding the entire
decision tree. Rebuilding from the root node is extremely inefficient, as it requires the
loss of all previous training knowledge.

The significance of initial data partitions suggests a method for overcoming one
of the key aspects of the stability-plasticity dilemma: the difference between infre-
quent but important and infrequent, unimportant training information. In an ideal
system, important information would not be lost, regardless of presentation frequency.
Conversely, unimportant information would never be integrated into the knowledge
representation. The oversensitivity of systems to initial training examples provides a
mechanism by which the preservation of important knowledge can be ensured.

The continuous learning problem is generally considered to involve an ability to learn

and operate after the first training pattern is presented (Protzel et al., 1998). Under



CHAPTER 7. LEARNING FROM A SYLLABUS 139

these conditions, the suitability of initial training examples cannot be determined or
controlled. As a result, if the initial training data is not representative of the overall
problem space, the initial partitioning of the data space will not be representative of
the overall problem. This could have a significant detrimental effect on the long term
performance of the system.

An alternate approach is to provide a short period of guided learning at the start
of training. During this guided training period, all training knowledge comes from a
well established training set, embodying core knowledge from a syllabus consisting of a
known subset of the full problem domain. If this syllabus consists solely of knowledge
known to be significant, this knowledge will form the fundamental knowledge repre-
sentation of the system. Consequently, this knowledge will be difficult to ‘unlearn’,
without a complete reorganisation of the system. Later training can introduce less sig-
nificant knowledge/ or knowledge from a different part of the problem domain, without
the risk of losing a significant representational component.

This approach has been successfully applied to the learning of static language
and grammar problems by traditional feedforward networks. Plunkett and March-
man (1990) have shown that neural architectures demonstrate better overall learning
when the training corpus is allowed to slowly grow in size. Elman (1993) demonstrated
similar results using a series of staged training sets. In these experiments, the neural
network was unable to learn a grammar when the training data was presented all at
once.

The syllabus approach to learning is also a feature of everyday experience. For
example, consider the problem of teaching a child integral calculus. In attempting to
teach a child, the teacher does not give the child a book full of calculus problems and
hope that the child will be able to 'maximise entropy’ over this training set and develop
an optimal representation — and therefore understanding — of calculus. Rather, the
teacher starts by teaching simple arithmetic problems, progresses to simple algebra,
eventually culminating in calculus. This progression of training occurs over a prolonged
period of titme. The change from a sparse, simple training set to a complex data set

does not occur until the simple training data is mastered.

7.2.1 Syllabus Presentation for SOMs

As discussed in Chapter 5, the principal topology of a SOM is determined during the

initial stages of the learning process. During this time, the neighbourhood size is large,
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and a consistent global topology develops. The local topological relationships on the
map are then refined during a protracted period of training with a small neighbourhood
size.

Self-organising maps can also be applied to continuous learning problems. It was
shown in Chapter 6 that by decaying neighbourhood size to a non-zero asymptotic value,
a SOM is able to continuously incorporate new knowledge into its output representation.
The chosen asymptotic value for neighbourhood size should reflect the desired resolving
power of the SOM. However, if this value is kept small, fundamental changes in global
map topology are prevented, as no single training exemplar is able to affect the entire
map.

These features of SOM learning suggest that syllabus presentation would be well
suited for use in the training of a continuously learning self-organising map. If, during
the initial training period, the training set is restricted to a specific subset, the principal
topology of the SOM will be defined by the data present in this subset. Once this initial
topology is established, a reduced neighbourhood size can be used to refine the local
topology and incorporate training data from new parts of the problem domain; however,
the reduced neighbourhood size prevents major shifts in the global topology.

This leaves the problem of how to develop a training data set which can be used for
syllabus training. In a lifelong learning and development context (such as the life-cycle
model of Figure 3.1, the training syllabus can be identified by a ‘parent’ figure (or, in
the case of an orphaned or parentless system, a mentor or trainer}). This parent figure
would extract the ‘most useful’ training examples, and use them to create a syllabus.
However, in the context of a once-off learning system, no ‘parent’ exists. Rather, an

automated system for developing a syllabus from an initial training batch is required.

7.3 Percept Masking

One method for developing an SOM syllabus is to exploit the nature of the topological
mapping produced by a SOM. Regardless of the input space used for training, the
output space of a SOM is a two dimensional topological map. Higher dimensional
relationships are generally not represented on the fundamental map topology (unless
there are significant folds in this topology). Rather, they are only observed at a local
level. The output representation of a SOM is therefore a low dimensionality projection
of a high dimensionality training set.

However, there is no mechanism by which to choose the axis of projection or to
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force a given projection to take the principal topology. The only factor determining
the fundamental topology which emerges is the underlying probability distribution of
the training data. Dimensions which are dominant in the training data will form
the principal topology. In the absence of a significant skew in the training data, the
fundamental topological dimensions of a SOM are effectively chosen at random (through
the randomly instantiated initial weights). This result was demonstrated empirically
in Chapter 6.

This provides a way to control the emergence of principal topologies on a SOM
during learning. If we know a prior: that one specific subset of dimensions is of more
importance to the output representation than another subset, we can use this knowledge
to generate a skew in the training data space. Furthermore, if we assume that there
is a correspondence between the components of a training vector and the underlying
topology of the data set, we can mask individual inputs {or percepts) to generate a
skew in the training data.

By applying an arithmetic mask to training examples, it is possible to limit the
experience of a SOM to a specific subset of the full training set. This technique is
referred to as Percept Masking. For example, consider a 4 element training vector
[1.0 0.5 0.7 0.2], drawn from a data set with an underlying 4D topology. If we assume
that the elements of the training vector correspond to the dimensions of the underly-
ing topology and that elements 2 and 3 of this vector represent the most significant
dimensions, we can use a percept mask of [0 1 1 0], resulting in a training vector during
syllabus training of [0 0.5 0.7 0]. A training pattern element with strength 0 results in
no update to weights connected to those inputs. Therefore, the initial random weights
connected to these inputs are unaffected. However, as these random initial values are
small, they contribute little to the activation, and thus winner selection, on the map.

Using this technique, it is possible to ensure that certain dimensions of the training
set are never presented. As a result, it is possible to prevent these dimensions from
being expressed in the fundamental topology of the SOM, as these dimensions are never
present during the initial period of syllabus training. Upon completion of syllabus
training (i.e., a stable representation of syllabus data has been achieved), the mask
can be relaxed, and the full training set can be presented to the SOM. As a result of
exposure to the unfiltered, higher dimensionality training set, secondary topologies will
develop within the established fundamental topology.

The use of a syllabus training set produced in this manner introduces the need for



CHAPTER 7. LEARNING FROM A SYLLABUS 142

a minor change to the neighbourhood decay scheme. Consider a 4D binary feature
vector, where the spanning training set would consist of 16 patterns. If two inputs
in this data set are masked, there would appear to be only 4 unique training vectors.
This poses a problem for the selection of an appropriate final neighbourhood size. On
a 15 x 15 map, the full data set would require a final neighbourhood size of approxi-
mately 2, representing half the expected distance between winning neurons. However,
when training using the syllabus, a neighbourhood size of approximately 7 would be
appropriate for spacing the sparse vectors of the syllabus training set.

If a final neighbourhood size of 7 were to be chosen, the SOM would have insuffi-
cient resolving power to discern between the vectors in the full data set. However, a
neighbourhood size of 2 is insufficient to represent the sparse syllabus training set. A
small neighbourhood size such as this would result in the loss of the global topology
learned during the initial training period with a large neighbourhood size.

This situation necessitates the introduction of an intermediate step of neighbour-
hood decay. This intermediate step can be configured to represent the expected pattern
density of the syllabus training set; once this topology has been learned, the neighbour-
hood size can again be reduced, this time to a final value. This decay scheme is shown
graphically in Figure 7.1. Under this scheme, the syllabus is used to train from time
0 to time 7", and the neighbourhood size is decayed from X to X'. X' is chosen to
represent the expected data resolution of the syllabus data set. The full data set is used
from time 7" onwards, and involves a decay to a neighbourhood size of X", chosen to
represent the expected data resolution of the full data set. In this way, it is possible to
develop a well spaced topology of the syllabus data, and then refine this topology to
represent the entire training set.

Although the examples presented here deal with a single syllabus, the syllabus
approach could be applied iteratively, over many subsets of the training data. After an
initial syllabus consisting of a 2D subset, a secondary 4D subset could be presented,
followed by a tertiary 6D subset and so on, until all dimensions of the input data are
represented. This could be of great use with extremely high dimensionality training

sets with a complex underlying topology.

7.4 The Q metric and Percept Masking

In order to test the capabilities of Percept Masking, two metrics are required. Firstly,

a method is required for testing topological preservation over the entire data set. Sec-
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Figure 7.1: Normal Butterworth decay, and the two step Butterworth decay scheme,
used to ensure adequate representation of a sparse syllabus.

ondly, a method is required for testing the topological preservation of specific subsets
of data; for example, the subsets used for syllabus training. The @ metric method,
presented in Section 3.4.2, is well suited to the first task; this suitability was demon-
strated empirically in Chapter 5. The Q metric can also be used for the second task if
a small modification is applied.

The Q metric method given in Section 3.4.2 measures the preservation of topology
across an entire data set, by performing a comparison between the distance between two
vectors in the data space, and the distance on the SOM between the winning neurons
activated by those two vectors. In this calculation, the distance between vectors in the
data space is calculated as the Fuclidean distance over all dimensions of the training
vectors.

However, the distance between vectors in the data space need not be a distance
over all dimensions. By measuring the distance over a small subset of dimensions,
it is possible to evaluate the topological preservation of those dimensions, instead of
the entire data set. This modified distance calculation is also a Euclidean distance
measure, but one that ignores specific dimensions of the training vectors. This method
is equivalent to measuring the distance between vectors in an orthogonal projection of
the data set, rather than in the full data space.

For example, consider a 4D training set, containing the vectors [1.0 0.5 0.7 0.2]
and [0.0 0.4 0.6 0.9]. These vectors are a distance of 1.2288 apart in the full data

set. This distance is calculated using all four dimensions of the data set; it ignores the
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obvious similarity in elements 2 and 3 of the training vectors. If inputs 2 and 3 are
used as a syllabus, the 2D projection of these training vectors yields [0.0 0.5 0.7 0.0]
and [0.0 0.4 0.6 0.0], which are a distance of 0.1414 apart. Similarly, the ‘anti-syllabus’
yields vectors [1.0 0.0 0.0 0.2] and [0.0 0.0 0.0 0.9] are a distance of 1.2206 apart. A map
which places these two training vectors close together will therefore demonstrate a good
topological preservation of the syllabus, and a poor representation of the anti-syllabus.

These reduced distance measures can then be used to evaluate Q metric values for
their respective data subsets by comparing with map distances, and averaging over
all training vectors. Using a selection of distance measures, representing a range of
data subsets (syllabi), it is possible to develop quantifiable Q metric descriptions of the

topological representations of specific subsets of data, in addition to the full data set.

7.5 Testing Syllabus Presentation

In the following section, percept masking is used to establish specific topologies as
the global map topologies in preference to secondary topologies. These experiments
are performed using the Grid-in-a-Grid data set, the Questionnaire data set, and the
Scotch Whisky data set.

In each experiment, the full data set can be decomposed into two subsets of the
overall dimensionality. Without syllabus presentation, the SOM algorithm will attempt
to produce a good overall topology which represents each subset proportional the fre-
quency of that subset in the full training set. The subsets of the Grid-in-a-Grid are
equally represented in the data set. Therefore, the @ metric value for each subset should
be equal. Similar behaviour should be observed for the Questionnaire data set. The
Scotch Whisky data set, however, is not evenly distributed over all dimensions. There-
fore, the natural representation of this data set will exhibit preferential representation
of some subsets.

However, a priori knowledge may suggest that one of the two subsets is of greater
significance. If this is the case, it would be desirable for the SOM to give preferential
representation to the significant subset. The purpose of syllabus training is to realise
this preferential representation. If successful, the map should develop a lower O met-
ric value for the significant subset than was observed without syllabus presentation.
Similar, a higher ©Q metric value for the less significant subset should be observed.

The effect on the overall topology will depend upon the composition of the data set.

If the dimensional subsets are equally represented in the data set {as is the case with
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the Grid-in-a-Grid and Questionnaire data sets), the overall Q metric value should be
unaffected. Topological improvements in one subset will be evenly compensated for
by topological losses in the other subset. However, in the case of a data set which
does not have equal representation of subsets (such as the Scotch Whisky data set),
improvements in one subset will not be evenly balanced by losses in other subsets; as

a result, a slight worsening in the overall Q metric representation may occur.

7.5.1 QGrid-in-a-Grid

In the first experiment, a Grid-in-a-Grid data set (see Section A.5) was used. This data
set consisted of a 3 x 3 major grid and a 3 x 3 minor grid. This data set consists of
four obvious dimensions, as each grid possesses two physical dimensions. Each training
vector consists of 18 inputs, composed by concatenating two 9 input patterns, each of
which represents a 2D grid. The training syllabi were created by masking the respective
grid components out of the training vector.

Three trials were performed. In the first trial, Grid 1 (inputs 1-9) was used as
a syllabus, while Grid 2 (inputs 10-18} was masked. In the second trial, Grid 2 was
used as a syllabus while Grid 1 was masked. For the purposes of comparison, a third
trial was conducted, in which no masking was performed. Each trial was performed 10
times. Q metric performance was averaged over these runs. A test set of 500 vectors
was used for each data subset.

The Grid-in-a-Grid data set was trained on a 25 % 25 neuron map. Training was
divided into two periods: a first period of 30 epochs, during which the syllabus data set
was used; and a second period of 30 epochs, during which the full data set was used.

In the first two trials, Butterworth step decay was used to decay neighbourhood
size. During the first period, neighbourhood size was decayed from 13 to 8, with a
decay period of 10 epochs. During the second period, neighbourhood size was decayed
from 8 to 2 with a decay period of 10 epochs. In the third trial, Butterworth step
decay was also used. However, no intermediate step was used. Neighbourhood size was
decayed in a single step from 13 to 2, over a decay period of 10 epochs. Gain was kept
at a constant value of 0.2 during all experiments.

The results of this experiment can be seen in Figures 7.2 and 7.3. Figure 7.2 shows
the average Q metric performance of each data subset during each of the three trials.
Each plot shows three @ métric traces: the Q metric for the full data set, and the @

metric for each of the two data subsets used as a syllabus. Without the benefit of a
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Figure 7.2: Three experiments in percept masking, using a Grid-in-a-Grid. Each plot
shows the results of training using the specified syllabus; each line shows the @ metric
for that subset of the data set.

syllabus (Figure 7.2(a}), the grid-in-a-grid data set quickly converges to a Q metric
value of 0.0006. The two data subsets which compose the full data set converge a Q
metric value of 0.002. This demonstrates that, in the absence of any sophisticated
training mechanism, both subsets of the full data set are treated equally.

However, this behaviour can be altered by the introduction of a syllabus. Figure
7.2(b) shows the results of training using data from Grid 1 as a syllabus. During the
first phase of training, the ©Q metric value for the Grid 1 data subset converges to
almost 0, indicating a near perfect mapping. Conversely, the representation of Grid 2
improves very little from the @ metric resulting from initially random weights, At the
end of the first phase of training, the representation of Grid 2 reaches an asymptotic

value of 0.009. The combination of an extremely good representation of Grid 1 and an
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Figure 7.3: Comparative performance of percept masking on a Grid-in-a-Grid. Each
plot shows the comparative © metric for the specified data subsets in each of the
experiments from Figure 7.2.

extremely poor representation of Grid 2 results in an overall @ metricvalue of 0.003.

During the second phase of training, the data from Grid 2 is introduced to the train-
ing set. Not surprisingly, the representation of Grid 2 improves significantly, reaching
an asymptotic @ meiric value of 0.003. This improvement in representation of Grid 2
comes at the detriment of the representation for Grid 1. As a result, the @ metric value
for Grid 1 increases to 0.0008. The overall representation is also observed to improve,
as the overall @ metric value improves to approximately 0.0006. Analogous results are
obtained if the syllabus consisting of Grid 2 is used (Figure 7.2(c)).

Figure 7.3 compares the performance of the masking technique on the three data
sets. In each of the three trials, the full data set (Figure 7.3(a)) converges to a Q

metric value of approximately 0.0006 — that is, the overall performance of the training
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system is unaffected by the syllabus training. However, the representations of specific
data subsets are strongly affected by syllabus training (Figures 7.3(b) and 7.3(c)). In
the absence of a syllabus, a @ metric value of 0.002 can be achieved. If the syllabus
favours the data subset, an improved Q metric value of 0.0008 is observed. On the
other hand, if the syllabus favours the other data subset, representation of the subset

decays to a Q metric value of 0.003. These results are identical for both data subsets.

7.5.2 Questionnaire

In the second experiment, a data set consisting of a 4 question Questionnaire (see
Section A.4) was used. This data set consists of four obvious dimensions; each question
represents a dimension in the data set.

Three trials were performed. In the first trial, questions 1 and 2 were used as a
syllabus, while questions 3 and 4 were masked. In the second trial. questions 3 and
4 were used as a syllabus, while questions 1 and 2 were masked. Since the data set
is rotationally invariant, these results could be extrapolated to any two dimensional
subset of the 4 question questionnaire. For the purposes of comparison, a third trial
was conducted, in which no masking was performed. Each trial was performed 10 times.
Q@ metric performance was averaged over these 10 runs.

The Questionnaire data set was trained on a 13 % 13 neuron map. Training was
divided into two periods: a first period of 30 epochs, during which the syllabus data set
was used; and a second period of 30 epochs, during which the full data set was used.

In the first two trials, Butterworth step decay was used to decay neighbourhood
size. During the first period, neighbourhood size was decayed from 9 to 4, with a decay
period of 10 epochs. During the second period, neighbourhood size was decayed from
4 to 2 with a decay period of 10 epochs. In the third trial, Butterworth step decay was
also used. However, no intermediate step was used. Neighbourhood size was decayed
in a single step from 9 to 2, over a decay period of 10 epochs. Gain was kept at a
constant value of 0.2 during all experiments.

The results of this experiment can be seen in Figures 7.4 and 7.5. These plots have
been trimmed in the vertical axis to preserve resolution in the final asymptotic values.

Figure 7.4 shows the average Q metric performance of each data subset during each
of the three trials. Each plot shows three @ metric traces: the @ metric for the full
data set, and the Q metric for each of the two data subsets used as a syllabus. Without

the benefit of a syllabus (Figure 7.4(a)), the questionnaire data set quickly converges
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Figure 7.4: Three experiments in percept masking, using a 4 question Questionnaire.
Each plot shows the results of training using the specified syllabus; each line shows the
Q metric for that subset of the data set.

to a @ metric value of 0.0018. The two data subsets which compose the full data set
converge to a € metric value of approximately 0.0003. This demonstrates that, in
the absence of any sophisticated training mechanism, all components of a data set are
treated equally.

However, this behaviour can be altered by the introduction of a syllabus. Figure
7.4(b) shows the results of training using Questions 1 and 2 as a syllabus. During
the first phase of training, the @ metric value for the first pair of questions converges
to almost 0, indicating a near perfect mapping. Conversely, the representation of
Questions 3 and 4 improves very little from the initial @ metric value, which is the
result of the initially random weights. At the end of the first phase of training, the

representation of the second pair of questions reaches an asymptotic value of 0.03. The
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Figure 7.5: Comparative performance of percept masking on a 4 question Question-
naire. Each plot shows the comparative @ metric for the specified data subsets in each
of the experiments from Figures 7.4.

combination of an extremely good representation of the first pair of questions and an
extremely poor representation of the second pair results in an overall Q metric value
of 0.017.

During the second phase of training, the second pair of questions is introduced
to the training set. Not surprisingly, the representation of these questions improves
significantly, reaching an asymptotic Q@ metric value of 0.0004. This improvement
in representation comes at the detriment of the representation for the first pair of
questions. As a result, the © metric value for the first pair increases to 0.0002. The
overall representation is also observed to improve, with the overall @ metric value
improving to 0.0018. Analogous results are obtained if the second two questions are

used as a syllabus (Figure 7.4(c)).
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Figure 7.5 compares the performance of the masking technique on the three data
sets. In each of the three trials, the full data set (Figure 7.5(a)) converges to a @
metric value of approximately 0.0018 — that is, the overall performance of the training
system is unaffected by the syllabus training. However, the representations of specific
data subsets are strongly affected by syllabus training (Figures 7.5(b) and 7.5(c}). In
the absence of a syllabus, a @ metric value of 0.0003 can be achieved. If the syllabus
favours the data subset, an improved Q metric value of 0.0002 is observed. On the
other hand, if the syllabus favours the other data subset, representation of the subset
decays to a Q metric value of 0.0004. These results are identical for each data subset.

One characteristic common to these plots are the extremely low values for the @
metric at the start of training with the syllabus, and after the introduction of the full
training set. This is observed as a spike at epoch 30 in the Q metric value for the full
data set in Figures 7.4(c), 7.4(c), and 7.5(a). These low values are an artifact of the
size of the test set. As discussed in Section 3.4.2, small test sets are prone to developing
misleadingly low © metric values at the start of training. The full questionnaire test
set consists of 16 training vectors, and the syllabus contains only 4 vectors. Therefore,
the low Q metric values should not be misinterpreted as a good topology which has
been overlocked by the SOM learning process; they are short lived artifacts resulting

from the small testing set.

7.5.3 Scotch Whisky

In the final experiment, the syllabus training technique was applied to the Scotch
Whisky data set {see Section A.6). Each vector in this data set consists of 97 compo-
nents; these components can be split into 10 categories {Colour, Nose, Body, Palette,
Finish, Age, Distillery Score, Whisky Score, Alcohol Content, District). The first five
of these categories are tasting characteristics; the second five are manufacturing char-
acteristics. Although the underlying dimensionality of this data set is unclear, these
10 categories could be considered to define 10 dimensions of the training data. Each
category is itself multidimensional, and so could be easily split into subcomponents.
However, the 10 basic categories provide a convenient partitioning of the input space.

Four training syllabi were prepared:
Syllabus A containing Colour and Nose data;

Syllabus B containing Body, Palette and Age data;
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Syllabus C containing Palette and Finish data; and

Syllabus D containing Distillery score, Whisky score, Alcohol content and District
data.

These syllabi were chosen at random, not as a result of any formal selection process or
prior knowledge about the data.

Five trials were performed. In the first four trials, a syllabus was used to train the
data, before the introduction of the complete data set. For the purposes of compari-
son, a fifth trial was conducted, in which no masking was performed. Each trial was
performed 10 times. @ metric performance was averaged over these 10 runs.

The Scotch Whisky data set was trained on a 25 x 25 neuron map. Training was
divided into two periods; a first period of 30 epochs, during which a syllabus data
set was used, and a second period of 30 epochs, during which the full data set was
used. Butterworth step decay was used to decay neighbourhood size. However, no
intermediate step was used. Neighbourhood size was decayed in a single step from 18
to 2, over a decay period of 10 epochs. No intermediate step was required due to the
large number of unique training examples in the syllabus training data. Gain was kept
at a constant value of 0.2 during all experiments.

The results of this experiment can be seen in Figures 7.6 and 7.7. Figure 7.6
shows the average Q metric performance for each data subset during each of the five
trials. As with previous experiments, components generate approximately equivalent
representations if there is no training syllabus (7.6(e)). The only exception to this
behaviour is the representation of Syllabus D; the reasons for this will be discussed
shortly.

Training with Syllabi A, B and C (Figures 7.6(a)- 7.6(c)) also yield results similar
to those observed in previous experiments. During these trials, the data subset used as
a syllabus achieves a Q metric value better than that observed for other data subsets
{(and the full data set). After the introduction of the full data set at epoch 30, a minor
performance decrease is observed in the representation of the data subset used as a
syllabus, while minor performance improvements are observed in the representations of
the other data subsets and the full data set.

One interesting feature of these resulis is the fact that the degree of improvement
is not especially significant. In the Grid-in-a-Grid and Questionnaire experiments,
there was a substantial difference between the quality of representations when using

a syllabus. For example, using Grid 1 as a syllabus substantially impacted upon the
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representation of Grid 2. However, in these experiments, the use of a syllabus does not
give a significant representational advantage to the data represented in that syllabus.
That is, using Syllabus A does not have a major effect upon the representation of data
in Syllabus B.

This reveals an interesting characteristic of the Scotch Whisky data set; each of
the tasting characteristics are closely related. Although the tasting characteristics are
designed to represent independent characteristics of a whisky, this analysis suggests that
there are close relationships between the tasting characteristics of a whisky. Although
“Yellow’ colour and ‘Warm’ finish are intended to be independent binary characteristics,
there is an underlying correlation between these (and other) features. This implies
that the dimensionality of the tasting characteristic data space is much less than the
68 dimensions used to define the space, and that the underlying basis is not orthogonal
to these tasting characteristics.

Furthermore, the manufacturing characteristics would appear to be somewhat de-
pendent upon the tasting characteristics. Training using Syllabus A, B or C does not
affect the representation of Syllabus D, which contains only manufacturing character-
istics. This would only occur if there was some similarity between the tasting topology
and the manufacturing topology. This implies that the tasting characteristics could be
used to infer certain manufacturing characteristics (although the nature of this impli-
cation cannot be easily derived from these maps).

The inverse, however, is not true. Training with Syllabus D (Figure 7.6{d}) enforces
a principal topology based entirely upon manufacturing characteristics. However, this
fundamental topology does not allow good representations of the other data subsets.
Syllabi A, B, C, and the full data set all develop poor representations before the intro-
duction of the full data set. Elements of the topology of manufacturing characteristics
support the topology of tasting characteristics, but the dominant topology of man-
ufacturing characteristics does not support the tasting topology. This suggests that
although tasting characteristics can be used to imply manufacturing characteristics,
manufacturing characteristics cannot be used to imply tasting characteristics. This
represents an interesting asymmetry in the data set.

This asymmetry also explains the high © metric value observed for Syllabus D when
no syllabus is used (Figure 7.6(e}). The topology underlying the manufacturing data is
evidently weak, and not supported by the tasting data. When no syllabus is used, and

the tasting data is equally represented on the map, the manufacturing data develops a



CHAPTER 7. LEARNING FROM A SYLLABUS 154

poor representation on the SOM.

Figure 7.7 compares the performance of the masking technique on the three data
sets. The results observed in this experiment are similar to those observed with the grid-
in-a-grid and questionnaire experiments. Syllabi A, B, C and D (Figures 7.7(a), 7.7(b),
7.7(c), and 7.7(d)) all perform as expected. Performance with a supporting syllabus
is better than performance without a syllabus, which is better still than performance
with a non-supporting syllabus. However, the improvements are not quite as extreme.

The most significant difference between the Scotch Whisky experiment and the
previous experiment is the comparative performance of the whole data set. In previous
experiments, no difference in overall performance was observed; the asymptotic value
of the Q metric was unaffected by the choice of syllabus, and was consistent with
performance achieved without the use of a syllabus. In this experiment, the same
Q metric value is achieved using each syllabus. However, the performance achieved
without the use of a syllabus is slightly better than the with-syllabus value. This
implies that the syllabi used in this experiment are not representative of the underlying
topology of the data set.

It is interesting to note that Syllabus B (Figures 7.7(b)), which is comprised of
two tasting characteristics (Body and Palette) and one manufacturing characteristic
{Age), gives the most consistent results. This suggests that the strongest underlying
topology of the Scotch Whisky data set is comprised of both manufacturing and tasting
characteristics. This supports the hypothesis that the syllabi used in this experiment
are not representative of the data space; another hypothesis on the structure of the

data should be made.

7.5.4 Discussion

The results presented in this section demonstrate that the syllabus presentation of a
training set generated by percept masking can be used to control the development of
topologies on a Kohonen-style SOM. If the chosen syllabus is a good representation of
a key component of the underlying topology, specific topologies can be preferentially
trained onto a SOM, improving the quality of representation of specific components of
the training set at the detriment of other components. If the syllabus is well selected,
this does not affect the overall quality of the representation, only the representation of
individual components.

The syllabus presentation and percept masking techniques can be used in one of two
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ways. Firstly, if the user has strong prior knowledge, the user can use this knowledge
to enforce a specific topology on the data set. By selecting a syllabus which represents
the known underlying topology, it is possible to encourage this topology to form the
fundamental topology of the SOM. After the reduction in neighbourhood size, this fun-
damental topology will be difficult to override, as training with a small neighbourhood
size has limited capacity to alter global organisation. The global topology will be pre-
served without the need to present supporting training examples. This ensures that
the prior knowledge is retained by the SOM.

Secondly, the syllabus presentation technique can be used as a mechanism for topol-
ogy discovery. The first two experiments in this chapter demonstrated that syllabus
presentation can be a useful technique if good domain knowledge is available. How-
ever, this will not always be the case. In many real-world problems (such as the Scotch
Whisky data set}, it is difficult to acquire -priori knowledge about a data domain.
If there is an absence of good ground knowledge, syllabus presentation can be used to
test various hypotheses regarding the topological independence of input components.
If two input components are independent, syllabus training with the first component
will generate a poor representation of the second component, and vice versa. This was
demonstrated with the Scotch data. The ©Q metric results from this experiment (Figure
7.6) revealed that the tasting characteristics are not completely independent.

The use of syllabus presentation does require a loss of flexibility. By enforcing
a specific topology, one loses the ability to represent an arbitrary topology -—— possi-
bly a topology which would be a better representation of the overall problem space.
The syllabus presentation technique should only be used if there is strong background
knowledge and good reason to suggest that this background knowledge should form the
dominant topology of a map.

However, syllabus presentation can be used to overcome one of the fundamental
inflexibilities associated with SOMs. The output representation of a SOM is a 2D map.
When training an n-dimensional data space, n > 2, approximately n-2 dimensions
must be lost. Traditional training provides no method for specifying which of these
dimensions will be lost — the fundamental topology is determined at random through
the random weight instantiations. However, by using syllabus training, it is possible to
force specific pairs of dimensions to form the fundamental topology. This deterministic
approach to topology selection allows the user to generate of a family of SOMs, each of

which visualises a specific 2D projection of the data space. An n-dimensional data space
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would require a family of *C, maps, each representing a unique pair of dimensions!.

This overcomes one of the major representational issues associated with SOMs: the
representation of high dimensionality data spaces.

The experiments presented in this chapter have shown that percept masking can
be used to generate a useful training syllabus. However, this technique does make one
significant assumption: that the underlying topology of a data set is orthogonal to the
input components. The Scotch Whisky experiment demonstrated that this need not be
the case. Complex data sets will exhibit complex topological relationships which are
not orthogonal to the input components. In these problems, a simple binary masking
technique will not produce the strongest possible fundamental topology. To represent
these topologies, a more complex mask would be required.

One possible mechanism for generating such a mask would be the use of principal
components or Hotelling transform to filter complex topological relationships out of
mixed data. Whereas simple percept masking represents a projection of a full training
vector onto a subspace orthogonal to the input space, a Hotelling transform would allow
projection onto a non-orthogonal subspace, allowing the representation of topologies

across inputs. The development of such a technique is left as future work.

7.6 Conclusion

In this chapter, the concept of syllabus presentation was introduced. This technique
uses a simplified training set to ensure the development of key knowledge representa-
tions. A technique was also presented for developing a simplified training set suitable
for use in syllabus presentation. This technique, called percept masking, uses an or-
thogonal projection of the training vector onto a subspace of the full input space to
simplify an initial training set. Using these techniques, given prior knowledge about
a training set and careful selection of masked percepts, it is possible to encourage a
specific SOM topology to develop. These techniques can also be used for exploration
of a complex topology if little is known about.

The syllabus presentation and percept masking techniques allow core knowledge to
be established in the fundamental topology of a SOM. This limits the extent to which
these core concepts can be forgotten. However, this does not address the forgetfulness of

concepts introduced in later training. This issue will be addressed in the next chapter.

'This approach is similar to observing 2D projections of an n-dimensional hypermap.
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Figure 7.6: Three experiments in percept masking, using the Scotch Whisky data set.
Each plot shows the results of training using the specified syllabus; each line shows the
Q metric for that subset of the data set.
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set. Each plot shows the comparative Q metric for the specified data subsets in each
of the experiments from Figure 7.6.



Chapter 8
Arbor Pruning

Murmurs of alarm came from the crowd. The management con-
sultant waved them down.

‘So in order to obviate this problem,’ he continued, ‘and effectively
revalue the leaf, we are about to embark on a massive defoliation
campaign, and ... er, burn down all the forests. I think you'll agree
that’s a sensible move under the circumstances.’

— The Restaurant af the End of the Universe {Adams, 1980)

8.1 Introduction

Using Butterworth Step Decay, neighbourhood size does not decay to 0 at the end of
training, resulting in a SOM which retains the ability to update. As a result, the SOM
remains capable of responding to changes in input data. If the training set presented
to the SOM changes over time, the SOM becomes a dynamic model of the input data
set at any given time — that is, the SOM can be made to learn continuously.

The continuously learning SOM algorithm does suffer from one major drawback:
the problem of forgetfulness. The SOM algorithm effectively forms a probability density
map of the input set. The area given over to a concept on a trained SOM is directly re-
lated to the frequency of the training patterns representing that concept in the training
set. As the SOM adapts to a dynamic data set, the probability density map provided
by the SOM will, at any given time, represent only the most recent training examples,
not the range of data presented over the entire history of training. Training examples
which are not repeated will, over time, lose their representation in the map, regardless
of the significance of these training examples. That is, the continuously learning SOM
has no long-term memory.

In this chapter, we propose one method for realising a reduction in forgetfulness in

continuously learning SOMs. This technique is known as Arbor Pruning. This tech-
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nique involves introducing a key restriction to the update stage of the SOM learning
algorithm, thereby restricting the ability of the SOM to adapt to represent novel input
patterns. These restrictions are introduced after an initial topology has been learned,
enabling the preservation of an existing topology while remaining plastic to the intro-
duction of new training data. The arbor pruning technique is introduced in Section
8.2.1, and is tested empirically in Section 8.3 using the Simple Grid, Questionnaire,

and Scotch Whisky data sets.

8.2 Overcoming Forgetfulness

The problem of forgetfulness was demonstrated empirically in Chapter 6. The experi-
ments presented in that chapter clearly demonstrate the two extremes of the stability-
plasticity dilemma. Using linear neighbourhood decay, a SOM is completely static
at the completion of training. No new knowledge can be integrated into the SOM
once the neighbourhood size has decayed to 0. Using Butterworth Step Decay, the
S0M is extremely plastic, and therefore remains responsive to new training examples.
This training could potentially continue indefinitely. However, using Butterworth Step
Decay, the long term retention of trained knowledge cannot be guaranteed without
reinforcement. If training patterns are not reinforced, they eventually lose their repre-
sentation on the map.

This represents a major limitation to the usefulness of a SOM for continuous learning
purposes. While a continuous learning mechanism capable of short-term, forgetful
memory may be useful for some applications, long term memory also has significant
uses. Applications which need to learn from experience cannot afford to lose the benefit
of significant training examples simply because they occurred early in training and have
not been repeated recently. To be of general use, a method must be found to overcome
this forgetfulness problem.

One method for overcoming forgetfulness in SOMs is to exploit the weight relation-
ships on a map. Kohonen’s SOM algorithm uses a fully arborised network of neurons.
Each and every input is connected to each and every SOM neuron by a single weight.
This complete arborisation strategy gives Kohonen’s SOM algorithm remarkable flex-
ibility in representation, as every input has an equivalent potential to affect each and
every neuron on the map. By restricting the input arborisation, it is possible to control
the ability of the SOM to represent certain topologies. If certain inputs are prevented

from influencing a map neuron, that map neuron will not undergo Hebbian reinforce-
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ment to support that input.

However, this leaves the important question of which weights to restrict, and by
how much. In addition, we wish the outcome of restricting map update to yield a
specific goal: that of realising a reduction in forgetfulness as new training patterns are
presented to the map. In order to achieve this specific goal through weight restriction,
an informed strategy for weight restriction is required.

One possible strategy can be obtained by examining the significance of weight values
in a trained maximal SOM. In maximal SOMs, significant concepts are awarded strong
weights. Weak concepts, however, have small weights and therefore contribute little
to concept representation on the map. If a weight contributes little to the concept
representation on the map, it makes little difference whether the weight is present or
not. This fact can be exploited for the purposes of reducing forgetfulness. By controlling
these weak weights, it should be possible to prevent the loss of existing patterns, and
restrict the development of strongly competing patterns.

It is important to note that this technique is not possible on minimal SOMs (the
more common form of Kohonen-style SOM, described in Section 2.5.1), as there is no
direct analogue between weight strength and importance. Minimal SOMs attempt to
minimize the distance between weight and input pattern. Therefore, the significance of
a given weight cannot be determined without the use of a reference training pattern.
Maximal SOMs, by contrast, do not require such a reference. A large weight indicates

significance, regardless of any specific training instance.

8.2.1 Arbor Pruning

The arbor pruning technique presented in this chapter exploits this relationship between
weight strength and the significance of that weight to concept representation. The
arbor pruning algorithm is fundamentally simple. At the time pruning is to take place,
a threshold value ¢ is chosen. At every subsequent Hebbian update of weights, the
update of weights in the map which do not exceed this threshold is prevented. All
other aspects of map operation are unchanged. The changes to the update portion of
the algorithm are presented in full in Algorithm 8.

If the training set remains static, nothing is affected. Strong weights become
stronger, and the weak weights (which contributed little to the selection of winners
in the first place) are no longer reinforced. However, if the training set changes, the

removal of weak weights from the map restrict the ability of the map to alter to rep-
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Algorithm 8 The update portion of the arbor pruning algorithm. This procedure
replaces the update function of Algorithm 4. All other aspects of the SOM algorithm
are the same as the original maximal SOM algorithm.

Update_withPruning (W,7,a,0,0)
fori=1toIdo
O; = ;- T
end for
w = max; &
fori=1toldo
forj=1to Jdo
if w;; > ¢ then
wij = wij + [ahiw (T — O]
end if
end for
end for

resent these changes. As a result, the map will resist (or completely forbid) the loss of
known concepts which previously held significance in the training set.

The arbor pruning technique is applied to a map at the end of initial training. A
map is fully trained using Butterworth Step Decay. This initial training period can
be thought of as juvenile development, where the parent (or in this case, user) of the
map carefully trains the juvenile, exposing it to appropriate and extensive stimuli. At
the end of this initial training, weights which do not exceed a threshold ¢ are removed
from the trained map. Using the neighbourhood size and learning gain from the end of
the juvenile training period, the map can then learn continuously without significant

forgetting.

8.3 Testing Arbor Pruning

In this section, an experiment is presented which demonstrates the way in which the
Butterworth Step Decay mechanism can be used to implement a scheme of continuous
learning. This experiment is repeated three times, using three different training sets:
the Simple Grid data set (see Section A.3); the Questionnaire data set (see Section
A.4); and the Scotch Whisky data set (see Section A.6). This experiment is identical
in spirit to that performed in Chapter 6. However, in ord.er to prevent the forgetfulness
observed in that chapter, the arbor pruning algorithm will be implemented.

In order to demonstrate continuous learning without forgetting, each data set is
split into two overlapping subsets. The first subset is presented to the SOM and

learned completely. At the completion of this initial phase of learning, the second
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subset is presented to the SOM. This new data set contains some familiar training
examples and some new examples from the same domain. A continucusly learning
system should incorporate the new training examples into the topology established in
the initial training phase.

However, the incorporation of these new training examples cannot be at the cost
of already learned training examples. To prevent the loss of representation of training
examples presented in the initial phase of learning, the arbor pruning scheme is imple-
mented during the second phase of learning. A range of arbor pruning threshold values
are tested, to demonstrate the way in which the level of forgetfulness can be controlled

by controlling the threshold parameter.

8.3.1 Simple Grid

In the first experiment, a Simple Grid data set (see Section A.3) is used. Change in the
source data is achieved using the same technique described in Section 6.3.1. Using this
technique, a 7 x 11 rectangular simple grid data set was generated, in order to simulate
a data set shift of 4 units. The two 7 x 7 subsets were drawn from this rectangular data
set as training subsets. Using these two subsets of the original data set it is possible
to test the response to new data in the data source (the columns of data in subset 2
which are not in subset 1) and the response to data disappearing from the data source
(the columns of data in subset 1 which are not in subset 2). This change in data source
represents a change in domain .along established dimensions in the data source.

These data subsets were trained on a 13 x 13 neuron map. The first period of
training lasted for 75 epochs, using data subset 1. After this initial period of training,
data subset 2 was used for a further 75 epochs of training. Neighbourhood size is
decayed from 9 to 2, using the Butterworth Step method, with the step occurring after
10 epochs. Learning gain is kept at a constant value of 0.2 in all experiments.

The arbor pruning algorithm was brought into effect at epoch 75 of each trial. To
demonstrate the effect of the arbor pruning algorithm, trials utilising pruning thresholds
of 0.0, 0.02, 0.05, 0.1, and 0.15 were performed. This range of pruning thresholds
represents a range of pruning levels from no pruning, through to almost complete
pruning.

To eliminate statistical variation, each experiment was performed 10 times, and
the @ metric for each trial averaged. The value of each @ metric was based upon a

randomly selected set of 500 test points from within the domain of the relevant data
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Figure 8.1: Q metric during continuous learning with arbor pruning of a Simple Grid
data set, using a range of pruning thresholds. Initial training is performed using data
subset 1; after 75 epochs, tralning subset 2 is used. Training subset 2 is formed by
shifting subset 1 by 4 units. The full data set is the union of these two subsets.

subsets.

The results of these trials are shown in Figure 8.1. Without the benefit of pruning
(i.e., ¢ = 0.0), the behaviour observed is identical to that observed in Chapter 6. Initial
training with the data subset 1 results in a SOM which has a @ metric for this subset
of 0.0002. The representation second subset asymptotes at the larger Q@ metric value of
0.0015. This data set is able to form a partial representation, as data subset 1 partially
overlaps data subset 2. However, the guality of this representation is limited. The Q
metric value of 0.0016 is observed for the combined training set.

During the second training period, training is performed using data subset 2. With-
out pruning, the representation of data subset 2 improves to a @ metric value of 0.0002.

This improvement comes at the detriment of the representation of data subset 1, which
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increases to a Q metric value of 0.0015. This represents a complete reversal of Q metric
values for the two data subsets. The overall @ metric value is not affected, except dur-
ing a short period after the change of training set. During this period (epochs 75-100},
the entire data set is briefly represented on the SOM; this dual representation is lost
as data set 2 is reinforced.

However, by slowly increasing the pruning threshold ¢, it is possible to limit the
loss of representation of data subset 1. Figure 8.1(a) shows that as ¢ is increased, a
decrease in the extent of representational loss (i.e., a smaller increase in Q metric value})
is observed, with a pruning threshold of 0.15 sufficient to prevent almost any loss. The
opposite occurs to data subset 2. As ¢ is increased, the improvement in asymptotic
Q metric value decreases. A pruning threshold of 0.15 is sufficient to prevent any
improvement in representation of data subset 2. In fact, Q metric value for data subset
2 is observed to increase slightly.

Altering the pruning threshold has an interesting effect on the overall @ metric
value. If the pruning threshold is set high {e.g., ¢ = 0.15), no update to the topology
can take place. Consequently, no change in overall @ metric value is observed. If the
pruning threshold is set to 0, there is also no effect on the overall @ metric value. The
first data subset is completely replaced by the second, with no overall gain. However,
if the pruning threshold is set at a small value (0.05 < ¢ < 0.10), it is possible to
improve the overall @ metric value for the combined data set. In this case, the use of a
pruning threshold prevents the complete loss of existing training cases, but allows for

the introduction of new data; as a result, overall performance improves.

8.3.2 Questionnaire

In the second experiment, a Questionnaire data set (see Section A.4) is used. Changes
in the source data are achieved in a similar manner to that used for the Simple Grid
data set. The complete data set consists of 8§ questions, split into two overlapping
subsets of 5 questions each. This represents a shift of 3 questions between the two data
subsets. The changing data source can be thought of as a questionnaire that changes
over time. New questions are added, and old questions are removed. This represents
a second type of shift in the data set; the introduction of new dimensions to the data
source.

These data subsets were trained on a 15 x 15 neuron map. The first period of

training lasted for 75 epochs, using data subset 1. After this initial period of training,
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Figure 8.2: Q metric during continuous learning with arbor pruning of a Questionnaire
data set, using a range of pruning thresholds. Initial training is performed using data
subset 1; after 75 epochs, training subset 2 is used. The full questionnaire contains 8
questions. Training subset 1 contains questions 1-5; training subset 2 contains questions

4-8.

data subset 2 was used for a further 75 epochs of training. Neighbourhood size was
decayed from 11 to 2 using the Butterworth Step method, with the step occurring at
10 epochs. A constant learning gain of 0.2 was used in all experiments.

To demonstrate the effect of the arbor pruning algorithm, pruning thresholds of
0.0, 0.015, 0.15, and 1.5 were used. This range of pruning thresholds represents a range
of pruning levels from no pruning, through to almost complete pruning. To eliminate
statistical variation, each experiment was performed 10 times, and the Q metric for
each trial was averaged.

The results of these trials can be found in Figure 8.2. The results which utilise

a pruning threshold of 0.0 are identical to the results observed in Chapter 6. Initial
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training with the data subset 1 results in a SOM which has a © metric for this subset of
0.00001. The representation second subset asymptotes at the larger @ metric value of
0.006. This data set is able to form a partial representation, as data subset 1 partially
overlaps data subset 2. However, the quality of this representation is limited. A @
metric value of 0.004 is observed for the combined training set.

During the second training period, training is performed using data subset 2. With-
out pruning, the representation of data subset 2 improves to a Q metric value of 0.00004.
This improvement comes at the detriment of the representation of data subset 1, which
increases to a Q metric value of 0.006. This represents a complete reversal of ¢ metric
values for the two data subsets. The overall @ metric value is not affected.

Unfortunately, the introduction of pruning to this data set does not have the desired
effect. The application of arbor pruning has very little effect on the representation of
data subset 1 as the final asymptotic Q metric values are similar to those observed
without arbor pruning. However, the results for data subset 2 experience a significant
drop in performance. The application of arbor pruning at almost any threshold results
in a significant drop in asymptotic @ metric value. The asymptotic value reached
appears to be independent of the threshold value chosen. Similar result are obtained
for the full data set. A significant and consistent loss in Q metric value is observed for
almost all arborisation thresholds. This indicates that the application of arbor pruning
has a significant detrimental performance on overall SOM performance.

The only exception to this behaviour is observed with extremely large pruning values
(¢ = 1.5). These values correspond to a complete pruning of neuron arborisation. In
this situation, no weights in the SOM are updated. As a result, the representation of
data subset 1 is completely preserved and the acquisition of a representation of data
subset 2 is completely prevented.

The reason for this failure is easily established. At the completion of the first phase
of training, the weights connected to known questions (i.e., inputs which have seen
non-zero values) have been updated. However, weights connected to unseen questions
will have received no update. Given that the SOM is instantiated with small random
values, these weights which will be pruned when arbor pruning is applied. Therefore,
the weights which are connected to the novel inputs cannot be updated, preventing the
SOM from learning any topologies represented by these inputs.

This does not render the arbor pruning algorithm useless. However, it does restrict

the type of forgetting that can be prevented. Care must be taken to ensure that
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all relevant inputs are represented in the initial training set before the arbor pruning

technique is to be used.

8.3.3 Scotch Whisky

Finally, the use of the Butterworth Decay for continuous learning was tested on a real-
world data set — an tasting analysis of Scotch Whisky (see Section A.6). This data
set is drawn from expert tasting analysis of single malt Scotch Whisky. This data set
does have a topology; however, it is not a regular or evenly distributed topology.

The subset method is again used to generate change in the source data. The con-
struction of subsets of the Scotch Whisky data set is described in depth in Section
6.3.3. Chapter 7 established that the principal dimensions of the Scotch Whisky data
set are not orthogonal to the input space; therefore, the problems encountered with the
Questionnaire data set should not be encountered.

These data subsets were trained on a 25 x 25 neuron map. The first period of
training lasted for 75 epochs, using the first data subset. After this initial period of
training, the second data subset was used for a further 75 epochs of training. When
using Butterworth neighbourhood decay, neighbourhood size is decayed from 18 to
2, with the step occurring at 10 epochs. Given the density of the training data, no
intermediate step was required. In both Butterworth and linear decay experiments, a
constant learning gain of 0.2 is used.

To demonstrate the effect of the arbor pruning algorithm, pruning thresholds from
0.0 to 1.4 in increments of 0.2 were used. This range of pruning thresholds represents
a range of pruning levels from no pruning, through to almost complete pruning. To
eliminate statistical variation, each experiment was performed 10 times and the Q
metric for each trial averaged.

The results of these experiments can be found in Figures 8.3-8.6. Figure 8.3 is
trained with a data set initially consisting of no Lowland whiskies; secondary training
contains Lowland whiskies, but no Islay whiskies. Figure 8.5 is trained with a data
set initially consisting of no Islay whiskies; secondary training contains Islay whiskies,
but no Highland whiskies. Figure 8.6 is trained with a data set initially consisting of
no Lowland whiskies; secondary training contains Lowland whiskies, but no Highland
whiskies.

The results obtained in this experiment are comparable to those obtained when

applying arbor pruning to the Simple Grid data set. During initial training, the repre-
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Figure 8.3: @ metric during continuous learning with arbor pruning of the Scotch
Whisky data set, using a range of pruning thresholds. Initial training is performed
using data subset 1; after 75 epochs, training subset 2 is used. Training subset 1
contains no Lowland whiskies; training subset 2 contains no Islay whiskies. The full
data set is the union of these two subsets.

sentation for data subset 1 reaches a good representation, while data subset 2 reaches
an asymptotic, but less adequate representation. During the second phase of training,
data subset 2 is introduced. In the absence of pruning, the representation for data
subset 1 is observed to decay, and the representation for data subset 2 is observed to
improve. The extent of any changes in Q@ metric value is controlled by the size of the
overlap between the training subsets. In the first experiment, there is significant over-
lap in the two data sets; consequently, there is very little improvement in the Q metric
values after the introduction of data subset 2. The second two experiments exhibit very
little overlap in training data, resulting in a dramatic increase in Q@ metric value after

the introduction of data subset 2.
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Figure 8.4: Detail of Figure 8.3. These plot shows that although the difference between
data subsets 1 and 2 is small, asymptotic values for the @ metric are still ordered by
the value of the pruning threshold ¢.

Introduction of pruning prevents this change. As the pruning threshold is increased,
the extent of changes in representation are observed to decrease, as the representation
of data set 2 improves less and the representation of data set 1 decays less. At a pruning
threshold of approximately 1.2, the representation of the data subsets is virtually static,
a result of a complete pruning of the weights. The arbor pruning algorithm is therefore
able to control forgetfulness in this data set. This results can be clearly observed in
Figures 8.5 and 8.6 as an ordered decrease in the asymptotic @ metric value for data
subset 1, and corresponding decrease in the asymptotic @ metric values for the data
subset 2. This behaviour is also observed in the first experiment (Figure 8.3); however,
the small difference between data subsets makes the ordering difficult to observe. Figure

8.4 shows a detail of the asymptotic values, demonstrating that although the difference
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Figure 8.5: Q metric during continuous learning with arbor pruning of the Scotch
Whisky data set, using a range of pruning thresholds. Initial training is performed
using data subset 1; after 75 epochs, training subset 2 is used. Training subset 1
contains no Islay whiskies; training subset 2 contains no Highland whiskies. The full
data set is the union of these two subsets.

is small, pruning can be used to control forgetfulness within this range.

The representation of the full data set demonstrates some interesting results. As
was discussed in the Scotch Whisky experiment of Chapter 8, the @ metric value of the
full data set is affected by the change in training subset. This is the result of the lack
of symmetry in size and density of the training subsets. In the first experiment (Figure
8.3, with detail in Figure 8.4), the two data subsets (No Lowland and No Islay)} are
approximately the same size. Wit_hout pruning, a small improvement in Q metric value
is observed when data subset 2 is presented. Through the introduction of pruning, it is
possible to control the extent of this overall improvement. As the threshold is increased,

the @ metric value for the full data set increases until it reaches a level indicative of
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Figure 8.6: @ metric during continuous learning with arbor pruning of the Scotch
Whisky data set, using a range of pruning thresholds. Initial training is performed
using data subset 1; after 75 epochs, training subset 2 is used. Training subset 1
contains no Lowland whiskies; training subset 2 contains no Highland whiskies. The
full data set is the union of these two subsets.

no change from the state of the map at the end of the first phase of training.

Although it seems unusual to practice a technique which is detrimental to the overall
representation of a data set, it is important to note that the improvement in overall
representation comes at the cost of a decay in the representation of data subset 1. If an
application requires a strong representation of data subset 1, a minor drop in overall
representation would probably be an acceptable loss.

The overall results for the experiments 2 and 3 are significantly different. Unlike the
first experiment, these experiments experience a significant decrease in the @ metric
value of the full data set upon the introduction of data subset 2. This is caused by

the composition of the data set. In these experiments, data subset 2 (No Highland
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Whiskies) is significantly smaller than data subset 1. As a result, the overall Q metric
value is skewed to the representation of data subset 1, and the loss of representation
of data subset 1 impacts heavily upon the representation of the full data set. As the
pruning threshold is increased, the loss of representation of data subset 1 is reduced.
Given the strong dependence of the full data set on this subset, a stmilar reduction
in overall representational loss is observed. When pruning is increased to a maximum
(¢ = 0.4), virtually no representational loss is observed. The Q metric value for the
representation of the full data set is virtually unchanged upon the introduction of data
subset 2.

An interesting feature of these results for experiments 2 and 3 is the magnitude
of arbor pruning threshold required to prevent a loss of representation of the overall
data set. In these experiments, an arbor pruning threshold of ¢ = 0.2 is sufficient
to almost completely prevent any loss of representation in the full data set. The use
of a low pruning threshold also allows for improverments in the representation of data
subset 2. This shows that the use of a pruning threshold can significantly improve
overall performance, without completely restricting the ability of the SOM to acquire
new representations of new training data.

The results for these Scotch experiments appear contradictory. In experiment 1,
pruning has the effect of increasing the @ metric value of the full data set, while in
the second two experiments, pruning has the effect of increasing the @ metric value
of the full data set. While these results appear to conflict, the contradiction is easily
explained. In all experiments, the application of pruning limits the extent to which
the full @ metric value deviates from the level observed at the end of the first phase
of training. In all cases, complete arbor pruning results in a static @ metric value for
the full data set upon the change in data set. The increase or decrease observed in the
quality of representation of the overall data set is a function of the data sets themselves,
not of the pruning function. The pruning function only serves to control the extent of
any changes which occur to this representation as a result of the introduction of new

training examples, or the removal of old examples.

8.4 Discussion

The results of the previous section repeatedly demonstrate that by restricting arbori-
sation, it is possible to limit the loss of representation caused by missing or underrep-

resented training data. As the pruning threshold is increased, the SOM is increasingly
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restricted In its ability to adapt to new training data, limiting the extent to which
topologies learned using old training examples are forgotten.

The ability to restrict forgetfulness is not, however, universal. Care must be taken
to ensure that all relevant inputs are represented in the initial training set if the arbor
pruning technique is to be used. If new input dimensions are introduced during later
training, arbor pruning at any level would prevent these input dimensions from being
expressed.

Ensuring the presentation of all training inputs would be an appropriate task for
syllabus learning (Chapter 7). By using a syllabus of known examples, it would be
possible to ensure that all appropriate dimensions are represented in training before
arbor pruning takes place. This initial training would force some weights above the
pruning threshold; these weights would then retain the ability to be modified after
arbor pruning has taken place.

Another possibility would be to implement a pruning scheme which selectively ig-
nores specific inputs. If it is known that given subset of inputs cannot or will not
be presented during initial training, these inputs could be exempted from the pruning
process. This would preserve the ability to update weights connected to the novel in-
puts. The implementation of such a technique would require highly specific knowledge
about the data set — for example, the knowledge that questions may be added to the
questionnaire in the future. The testing of such a technique is left as future work.

The choice of an appropriate threshold value is also left as an open question. The
smooth and continuous relationship between the arborisation threshold ¢ potentially
allows the user to finely tune the level of arborisation to suit the desired level of concept
drift and forgetfulness. This fine tuning is application specific; therefore, no general
results are presented here.

However, while performing this fine tuning, it is worth remembering that the dif-
ference between limiting forgetfulness by using a large arborisation threshold, and not
using continuous learning at all, is extremely limited. If the appropriate level of ar-
borisation seems to require a large value of ¢, one must question whether is it worth
implementing arbor pruning at all. If the user is not willing to tolerate any concept

drift, the choice to use a continuous learning mechanism must be questioned.
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8.5 Conclusion

The continuously learning SOM algorithm suffers from one major drawback: the prob-
lem of forgetfulness. The SOM algorithm effectively forms a probability density map
of the input set; the area given over to a concept on a trained SOM is directly re-
lated to the frequency of the training patterns representing that concept in the training
set. This represents a significant problem for continuous learning problems. In such
a problem, the training set changes constantly. Consequently, so does the probability
distribution underlying the training set.

In this chapter, the technique of arbor pruning was introduced to limit forgetfulness.
The arbor pruning technique utilises the correlation between weight magnitude and
significance that is observed in maximal SOMs. By removing insignificant weights from
the update process, it is possible to encourage the preservation of topologies without
repeated presentation of data. This technique can be used if the data domain varies
within a known set of dimensions. However, it cannot be used to control forgetfulness
if dimensions are added or removed from the data domain.

In the next chapter, the techniques of step neighbourhood decay, syllabus presen-
tation, and arbor pruning will be combined into a single training regime to realise a

continuously learning SOM.



Chapter 9

A Lifetime Model Implemented

“Well, what we called a computer in 1977 was really a kind of
electric abacus {...] There really wasn't a lot this machine could de
that you couldn’t do yourself in half the time with a lot less trouble,”
said Richard, “but it was, on the other hand, very good at being a
slow and dim-witted pupil.”

— Dirk Gently’s Helistic Detective Agency {Adams, 1987)

9.1 Introduction

In Chapter 4, the importance of neighbourhood interactions in the self-organising pro-
cess was established. Using this knowledge, four algorithmic extensions of Kohonen’s

maximal SOM algorithm were developed and presented. These extensions are:

Butterworth Step Decay {Chapter b), a neighbourhood decay scheme which utilises
a large neighbourhood size for 10 epochs, followed by prolonged training with a

small neighbourhood size;

Continuous Learning (Chapter 6), a side effect of the use of Butterworth step decay
which allows the learning process to extend into the period of use, rather than

halting at the end of the traditional training period;

Syllabus Data Presentation (Chapter 7), a method of encouraging specific topolo-
gies to emerge as the principal topology when training data consists of more than

two dimensions; and

Arbor Pruning (Chapter 8), a mechanism for preventing forgetfulness, so trained

useful topologies are not lost over time due to a lack of repeated presentation.

As demonstrated in the previous chapters, these extensions provide useful function-

ality when used individually, but when used in concert, they implement the lifetime

176



CHAFPTER 9. A LIFETIME MODEL IMPLEMENTED 177

model of learning and development proposed in Chapter 3. During the initial period of
infancy, the cognitive process of an organism are extremely impressionable. The pres-
ence or absence of key training examples can drastically affect the later development of
the individual. This corresponds to the period of training with a large neighbourhood
size, using the fundamental patterns of the training syllabus. If the syllabus does not
contain key dimensions of the expected real world data, these dimensions will not de-
velop on the global map topology. During this phase, the use of a large neighbourhood
size restricts the resolving power of the map.

After establishing the fundamental cognitive processes in the period of infancy, the
individual progresses into a juvenile period. During this phase, the neighbourhood size
decays to its smaller value, with training data continuing to come from the core training
syllabus. This period of training establishes local topologies within the previously
established global topology. As a result of the reduction of neighbourhood size, the
resolving power of the map falls to a useful level. However, the map has not been
exposed to sufficient data to be a useful tool.

During adolescence, directed learning on specific topics can take place. The syllabus
is expanded to include more detail through the inclusion of less significant topological
dimensions in the data set. Neighbourhood size remains small, providing good resolving
power over this new training data. At the conclusion of this adolescence period, the
map is can be used as a data analysis tool — it has been exposed to sufficient training
data, and has the resolving power to differentiate these data.

Finally, the organism experiences a prolonged period of adulthood. This period of
adulthood is prolonged and the space of input values can change during this time. Ad-
ditional knowledge acquisition is limited to the fine tuning of well established cognitive
patterns. This is achieved by pruning inactive weights to limit the acquisition of new
concepts by the map.

It should be noted that just as is cbserved in nature, the change between stages is not
a clear and obvious state change. There is no single point in time at which an individual
changes from being a juvenile and becomes an adolescent {or any other sequential
stages). Rather, a gradual shift from state to state occurs. This is achieved through
gradual adjustment of parameters between extreme values, such as the Butterworth
approximation of the step between large and small neighbourhood sizes.

In this chapter, the algorithmic extensions presented in the previous chapters will

be used in concert, demonstrating that the lifetime model of learning and development
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can be used to provide reduced training time, and increased map functionality in a

data environment which is constantly changing.

9.2 Testing the Lifetime Model

The syllabus presentation and arbor pruning algorithms have been demonstrated ex-
tensively in previous chapters, However, in each demonstration only one algorithmic
extension was utilised. The ability of the extensions to perform in concert has not been
tested. The purpose of this experiment is to demonstrate that these extensions can be
implemented in a single SOM, resulting in a continuously learning SOM.

The experiment takes the form of a thought experiment concerning the behaviour
of a hypothetical agent which wanders Scotland seeking out Whisky distilleries and
tasting their produce. The creator of the agent has a preconceived belief that Palette
and Finish are the most defining characteristics of a whisky. Therefore, there is a
preference that these characteristics dominate in the topology learned by the SOM.

Initially, the agent is land locked, and therefore experiences only Highland and
Lowland whiskies. However, after a prolonged period of training, the agent gains
access to a boat, discovers the Islay region, and adds Islay distilleries to its tasting
tour. However, due to the time required for travel to this region, the agent ceases to
travel into the Scottish Highlands and therefore ceases to have exposure to Highland
whiskies.

This problem domain is continuous: the agent must be able to incorporate the expe-
rience of tasting Islay whiskies without forgetting the experience of Highland whiskies.
Furthermore, there is significant background knowledge which should not be forgot-
ten. This baseline knowledge (the importance of palette and finish) is provided by an

experienced teacher,

9.2.1 Experimental Results

For the purposes of this experiment, the Scotch Whisky data set (see Section A.6)
was divided into two subsets; Data Subset A consisting of Highland and Lowland
whiskies, and Data Subset B consisting of Lowland and Islay whiskies. In addition, a
training syllabus is constructed from Subset A by masking all inputs other than those
corresponding to Palette and Finish characteristics. For the purposes of comparison,

a syllabus consisting of manufacturing characteristics (Whisky Score, Distillery Score,
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Alcohol Content and District) is also created; however, no training is performed using
this syllabus.

Three trials were performed:

¢ No Syllabus, No arbor pruning;

e Syllabus, No arbor pruning; and

¢ Syllabus, Arbor pruning at ¢ = 0.2.

Fach trial was performed 10 times. @ metric performance was averaged over these 10
runs. In each trial, training was performed on a 25 x 25 neuron map. Training was
divided into three periods of 75 epochs each. During the first two periods, data subset
A was used. During the second two training periods, data subset B was used. In the
second two trials, the syllabus was applied for the first period only.

Butterworth step decay was used to decay neighbourhood size. However, no inter-
mediate step was used. Neighbourhood size was decayed in a single step from 18 to 2,
over a decay period of 10 epochs. No intermediate step was required due to the large
number of unique training examples in the syllabus training data. Gain was kept at a
constant value of 0.2 during all experiments.

The results of this experiment can be seen in Figures 9.1 and 9.2. These results
demonstrate the familiar properties shown in the previous chapters. Without a syllabus
(Figure 9.1(a}), the Scotch data set is able to develop a good topology, but there is no
preferential representation of the Palette and Finish data. Topological components are
equally represented in the output topology. By introducing a syllabus (Figures 9.1(b)
and 9.1(c)), the representation of Palette and Finish data is made stronger than the
represerfation of manufacturing characteristics. However, this comes at the cost of a
slightly worse overall topological representation.

At the end of phase 2 of training (epoch 150}, a stable representation of Data
Subset A has been achieved in all 3 trials. Trials 2 and 3 both implement a syllabus.
As a result, these trials are identical up to epoch 150. At this point, the second data
subset is introduced, and arbor pruning takes effect for trial 3. In Trial 1 and 2, the
representation of the full data set and Data Subset A decays significantly as a result
of the change of training focus. These representational losses are limited by pruning in
Trial 3. Similarly, the improvement gained in the representation of Data Subset B is

restrained by pruning.
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Figure 9.1: Representation of the training syllabi in a continuously learning SOM. The
each line shows the @ metric for that syllabus of the data set.

The success of this experiment should not be surprising. Each algorithmic technique
was demonstrated successfully in previous chapters, and the periods of influence of these
techniques do not overlap. Syllabus training should not extend beyond the juvenile
period of training, while arbor pruning should not come into effect until adulthood.
The experiment presented here, while demonstrative, does not reveal any genuinely

novel results beyond the assurance that the techniques can be used in concert.

9.3 Conclusion

In this chapter, the algorithmic extensions presented in the previcus chapters — Butter-
worth Step Decay, continuous SOM learning, syllabus presentation, and arbor pruning

— were combined into a single process, resulting in a number of stages in the develop-
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Figure 9.2: Representation of data subsets in a continuously learning SOM. The each
line shows the Q metric for that subset of the data set.

ment of a SOM topology. These steps can be seen to mirror the stages of development
observed in biological organisms: a period of infancy during which both experience
and resolving power is limited; a juvenile period during which experience is limited but
resolving power is significantly improved; an adolescent period during which experience
is expanded; and adult experience, during which experience is further expanded.

Each of the algorithmic extensions were demonstrated in previous chapters. The
results presented in this chapter clearly demonstrate that the extensions can be used in
concert to produce a continuously learning SOM, sufficiently static to retain significant

initial knowledge, but sufficiently plastic to incorporate new knowledge.



Chapter 10

Conclusions

“Well, [ mean, yes idealism, yes the dignity of pure research, yes
the pursuit of truth in all its forms, but there comes a point I'm
afraid where you begin to suspect that if there’s any real truth, it’s
that the entire multi-dimensional infinity of the universe is almost
certainly being run by a bunch of maniacs. And if it comes to a
choice between spending yet another ten million years finding that
out, and other the other hand just taking the money and running
then I for one could do with the exercise,” said Frankie.

— The Hitch-Hikers Guide to the Galozy (Adams, 1979)

10.1 Summary

A common problem with traditional learning architectures is their failure to take into
account the nature of real-world data. Traditional learning architectures generally
restrict learning to a short training period prior to a prolonged period of use. This
constrains the class of problem to which these techniques can be applied. Real world
problems consist of data which can change over the lifetime of the system. Restricting
learning to a short initial period prevents an architecture from adapting to changes in
the data over the lifetime of the system.

The aim of this thesis was develop a model of the learning and development process
as it occurs in biclogical systems, and to apply this model to Kohonen’s Self-Organising
Map (SOM) algorithm. This was achieved by breaking the lifetime of a single learning
system into a number of stages, analogous to the infant, juvenile, adolescent and adult
stages of development in a biological system.

In Chapter 3, the theoretical and empirical framework for this thesis was estab-
lished. It was proposed that the use of a biologically inspired model of learning and
development would enable the development of improved representations of a data do-

main. In addition, a metric was proposed for evaluating the quality of SOM data
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representations. This metric quantifies the observable output of a SOM, rather than
attempting to manipulate the SOM weight space.

In Chapter 4, a theoretical analysis of neighbourhood relationships in self-organising
processes was presented. This analysis established the role played by lateral connections
in organisation. It was then shown that in the Laplacian lateral connections conmon to
many SOM architectures, the size of the lateral interaction kernel can have a significant
effect on the speed of convergence, and the precision of representations formed.

The lessons learned in Chapter 4 were applied to Kohonen’s SOM algorithm in
Chapter 5. This resulted in the development of a new scheme for parameter decay in
Kohonen's SOM algorithm. This scheme, known as Butterworth Step Decay, involves a
smooth step between a large and small neighbourhood size. This decay scheme provides
training times comparable to the best training times possible using traditional linear
decay, but precludes the need for a priori knowledge of likely training times. This
chapter also demonstrated that sophisticated schemes for gain decay are not necessary;
the Butterworth Step Decay scheme is able to learn with constant gain.

One advantage of the Butterworth Step decay scheme is the fact that neighbourhood
size never decays to 0. As a result, the Kohonen SOM algorithm never stops integrating
training data into its weight representation. This capacity for continuous learning was
tested in Chapter 6.

The establishment of a good fundamental data representation for a problem domain
is of critical importance in almost all learning systems. In Chapter 7, a method for
developing a strong fundamental topology in a SOM was presented. This technique
is known as Syllabus Presentation. This technique involves using a selected training
syllabus to reinforce knowledge known to be significant. A method for developing a
training syllabus, known as Percept Masking, was also presented.

The continuous learning scheme presented in Chapter 6 suffers from one major lim-
itation: forgetfulness. Training patterns which are not repeated eventually lose their
representation on the SOM. In Chapter 8, a method was presented for realising a reduc-
tion in forgetfulness in a continuously learning SOM. This technique, known as Arbor
Pruning, involves restricting weight update process to prevent the loss of significant
representations. This technique can be used if the data domain varies within a known
set of dimensions; however, it cannot be used to control forgetfulness if dimensions are
added to or removed from the data domain.

Finally, in Chapter 9, the lessons learned in Chapters 5-8 are tied together in a
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single experiment. This demonstrates that the techniques presented in the previous

chapters are mutually compatible.

10.2 Future work

The material presented in this thesis suggests a number of avenues for future investi-

gation.

10.2.1 Improvement of Percept Masking

The experiments presented in Chapter 7 showed that percept masking can be used to
generate a useful training syllabus. However, the percept masking technique does make
one significant assumption; that the underlying topology of a data set is orthogonal to
the input components. The Scotch Whisky experiment demonstrated that this need not
be the case. Complex data sets will exhibit complex topological relationships which are
not orthogonal to the input components. In these problems, a simple binary masking
technique will not produce the strongest possible fundamental topology. To represent
these topologies, a more complex mask would be required.

One possible mechanism for generating such a mask would be the use of principal
components or a Hotelling transform to filter complex topological relationships out of
mixed data. Whereas simple percept masking represents a projection of a full training
vector onto a subspace orthogonal to the input space, a Hotelling transform would allow
projection onto a non-orthogonal subspace, allowing the representation of topologies

across inputs. The development of such a technique is left as future work.

10.2.2 Improvement of Arbor Pruning

The experiments presented in Chapter 8 showed that by restricting input arborisation,
it is possible to limit forgetfulness in a continuously learning SOM. However, the ability
to restrict forgetfulness is not universal. Care must be taken to ensure that all relevant
inputs are represented in the initial training set if the arbor pruning technique is to be
used. If new input dimensions are introduced during later training, arbor pruning at
any level would prevent these input dimensions from being expressed.

One possible technique for rectifying this problem would be to implement a prun-
ing scheme which selectively ignores specific inputs. If it is known that given subset

of inputs cannot or will not be presented during initial training, these inputs could be
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exempted from the pruning process. This would preserve the ability to update weights
connected to the novel inputs. The implementation of such a technique would require
highly specific knowledge about the data set — for example, the knowledge that ques-
tions may be added to the questionnaire in the future. This knowledge is analogous
to the knowledge required to form a training syllabus using the percept masking tech-
nique. The development and testing of an improved pruning technique is left as future
work.

In addition, a method of selecting an appropriate pruning level is required. The
experiments presented in Chapter 8 suggest that the pruning threshold is somewhat
data set dependent. The development of a general technique for selecting an arbor

pruning threshold is another avenue for future work.

10.2.3 Remainder of Life Cycle

In Chapter 3, a lifetime model was presented. This lifetime model encompasses the
life-cycle of an individual organism, and the interaction between an individual, its
progenitors and its offspring.

The work presented in this thesis represents a significant subset of this model. In
this thesis, the lifetime of a single individual was investigated. The role played by
genotypic expansion, genetic variation, and fitness selection in the development of the
individual was largely ignored. These areas could be explored in future work.

The subject of parental interaction was briefly addressed in Chapter 7, in the dis-
cussion of Syllabus Presentation. The percept masking technique requires that the
syllabus be generated based upon a priori knowledge, provided by an informed trainer.
In a complete model of learning and development, this syllabus would be automatically
generated by the parent. An automated mechanism for the development of training

syllabi is another possible source of future research.

10.2.4 Alternate Neighbourhood Kernels

The maps resulting from traditional self-organising architectures are topological ones;
that is, the distance between the mapped positions of two training vectors is directly
related to the Fuclidean distance between those training vectors. While this is a use-
ful feature to extract, the self-organising technique could be used to generate other
mappings with potential uses for pattern recognition tasks.

The technique presented in Chapter 4 allows the experimenter to evaluate the plau-
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sibility of alternate lateral connection strategies. Using this technique, it is possible
to establish the form taken by stable output states of a neural system as a result of
a specific lateral connection strategy. It is also possible to rule out lateral connec-
tion strategies that will not produce stable output states, or produce saturated output
states.

It should be noted that this technique does not tell the experimenter the type
of mapping that will result from using a specific connection strategy — this remains
an empirical problem. The role played by this technique is to eliminate from further
investigation lateral connection strategies which will not yield a stable output. The de-
velopment of alternate lateral connection strategies, and determining their significance,

is another avenue for future work.

10.2.5 Conversion from Maximal Maps to Minimal Maps

One of the major limitations of this research is the requirement that a maximal SOM
be used. This conflicts with common practice: minimal SOMs are the overwhelmingly
dominant SOM architecture in the literature. This is due to their improved convergence
speed, and enhanced representational capabilities.

Most of the techniques developed in this thesis can be applied to minimal SOMs
without alteration. The Butterworth Step Decay, continuous learning and syllabus
presentation techniques are not dependent upon the internal representation of a SOM
for their application. Exploratory testing suggests that these techniques would be of
equal utility on a minimal map as they have proven to be on a maximal map.

However, the arbor pruning technique cannot be applied to a minimal SOM. Arbor
pruning requires a correlation between weight strength and significance to be effective.
This correlation does not exist in minimal style maps.

One possible approach to rectifying this situation would be to use a method similar
to that used by DeSieno (1998) in the ‘SOM with a Conscience’ algorithm. In this
algorithm, each neuron is given a bias parameter, which is adjusted each time the
neuron is selected as a winner. This parameter gives an indication of the significance of
a given neuron. This parameter could then be used as a basis for pruning. The tuning
of the conscience parameter, and the development of an appropriate pruning strategy

is left as future work.



CHAPTER 10. CONCLUSIONS 187

10.2.6 Applying the Lifetime Model to Other Architectures

The lifetime learning model presented in Chapter 3 is architecture agnostic. While
the SOM algorithm is a powerful mechanism for data visualisation, and this thesis has
applied the lifetime model to the SOM algorithm, the lifetime model is not restricted
to use with SOMs. Other machine learning algorithms could benefit from a similar

approach to learning. This represents a significant body of potential future research.



Appendix A

Data Sets

“But look, you found the notice, didn’t you?”

“Yes,” said Arthur, “ves [ did. It was on display in the bottom of
a locked filing cabinet in a disused lavatory with a sign on the door
saying ‘Beware of the Leopard’.”

— The Hitch-Hiker's Guide to the Galary (Adams, 1979)

A.1 Introduction

In the course of this thesis, a number of data sets are used to demonstrate key char-
acteristics of Kohonen’s algorithm and its variants. The details of these data sets are
presented here so that they may be reproduced accurately by other researchers.

It should be noted that the data sets presented in this Appendix are somewhat
specific to the style of map used. As was described in Section 2.5.1, this thesis utilises
maximal SOMs throughout. This places certain restrictions on the types of data set
which can be learned. While this does not preclude the use of these data sets in minimal

SOMs, there are almost certainly more efficient representations.

A.2 Simple Line

The simple line data set is an attempt to simulate one dimensional input of the type
likely to be experienced by a tonotopic map in the ear. Each vector in the data set is
the representation of the ear ‘hearing’ a single frequency tone and the peripheral tonal

stimulation resulting from ‘hearing’ the tone.

188
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A.2.1 Training Set
Construction of Training Vectors

Each training pattern in the simple line data set consists of a vector of » inputs.
One of these inputs is selected as the stimulated input, and is given a value of 1.0.
The two immediate neighbours of the stimulated input are given a value of 0.5. This
neighbourhood relationship wraps around the end of the vector (i.e., the first vector

element is a neighbour of the last). All other values in the vector are set to zero.

Construction of Training Set

The training set consists of n training vectors, one example of stimulation of each input.

These vectors are presented in random order during the training process.

A.2.2 Testing Set

The simple line data set is used solely to demonstrate that a stable output can be
generated by a laterally connected self-organising neural system. Therefore, it does not

require an independent testing set.

A.3 Simple Grid

The simple grid data set is a two dimensional extrapolation of the simple line data set,
representing input of the type likely {0 be experienced by retinotopic or somatosensory
maps in the brain. Each training vector represents the stimulation of a single point
on a two dimensional surface, plus the peripheral excitation resulting from that point

stimulation.

A.3.1 Training Set
Construction of Training Vectors

Each training pattern is formed from an n xm matrix. One of the elements of the matrix
1s selected as the stimulated input, and is considered to be the centre of a Gaussian bell
with standard deviation of 1. The value of all other inputs are taken by sampling this
Gaussian bell as a function of the distance from the stimulated input (for example, if
element (2,3) is the stimulated input, element (3, 5) has a distance of V12 422 ~ 2,23

from the centre of activation, yielding an activation level of exp(—2.23%/2) ~ 0.08.
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There are no wraparound neighbourhood relationships in this matrix; if the stimulated
input falls near the edge of the matrix, a partial Gaussian bell is observed.
This matrix of sampled values is then converted into a vector by concatenating rows

of the matrix, yielding a vector with nm elements.

Construction of Training Set

The training set consists of nm training patterns; one example of stimulation of each

input. These vectors are presented in random order during the training process.

A.3.2 Testing Set
Construction of Testing Vectors

The construction of testing vectors is almost identical to the construction of training
vectors, except that stimulation points are not limited to integer values. Instead, any
value in R? in the range [1 : »,1 : m] can be selected. The Gaussian bell is fitted about

this point, and the testing values are sampled at integer intervals.

Construction of Testing Set

Testing sets of arbitrary size can be constructed by randomly selecting points from R?

as centres of activation and constructing matrices and test vectors accordingly.

A.4 Questionnaire

The questionnaire data set simulates the responses to a questionnaire consisting of n

questions. Each question can be answered either ‘Yes’ or ‘No’.

A.4.1 Training Set
Construction of Training Vectors

Each training pattern consists of the responses to the questionnaire of a single indi-
vidual. The answer to each question is encoded as an input pair: {1,0} for ‘Yes’, and
{0,1} for ‘No’. Each training vector therefore consists of 2 x n inputs.

The paired representation of boolean training values is required as a result of the
use of a maximal SOM. Maximal SOMs maintain a direct connection between signal
strength and signal significance. That is, the magnitude of an input represents the

significance of that input to the training pattern. When using boolean training values,
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a value of 0 is just as significant as a value of 1. However, using a maximal SOM, it
is not possible to discern a difference between a ‘No’ signal, and an absent signal (a
signal with no signal strength) — using single inputs, both would be represented by
the value (. By encoding as pairs, the ‘No’ signal is given a unique representation as a

significant negative; an absent signal is represented as the pair of insignificant signals

{0,0}.

Construction of Training Set

The training set consists of a spanning set of questionnaire responses. A single example
of each and every possible combination of responses is present in the data set. A
questionnaire with n questions therefore yields a training set of 2" patterns. These

patterns are presented in random order during the training process.

A.4.2 Testing Set

No independent test set exists for this data set; the training set spans all possible values

for input. The testing set is therefore identical to the training set.

A.5 Grid-in-a-Grid

The Grid-in-a-Grid data set is a synthetic example intended to demonstrate the process
of learning a data set known to possess two independent complex topologies. This data
set can be conceptualised as a large grid which has a smaller grid embedded at each

grid point of the larger grid.

A.5.1 Training Set
Counstruction of Training Vectors

Two simple grid training vectors are generated using the technique described in Section
A.3. These two grids need not be of the same size (i.e., if the large grid is of size n x m,
and the small grid is of size p x g, there are no equivalence requirements between n, m,
p, and ¢}. These two vectors are then concatenated, resulting in a training vector with
nm + pq elements describing two points in two separate topologies.

It should be noted that although the two sets are referred to as the large grid and

the small grid, there is no requirement that n,m > p,q. The adjectives ‘large’ and
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‘small’ are merely used to describe their position in the principal topology of the data

set.

Construction of Training Set

The training set consists of the concatenation of all possible combinations of grid points
from the two grid training sets.

A large grid of size n x m and a small grid of size p x g will therefore yield a training
set consisting of nmpg training vectors. These patterns are presented in random order

during the training process.

A.5.2 Testing Set
Construction of testing vectors

The construction of testing vectors is performed by combining the methods for creating
a Simple Grid testing vector and the Grid-in-a-Grid training vector.

Two Simple Grid testing vectors are generated and concatenated by randomly se-
lecting points in ®? and building an activation matrix and simple grid test vector.

These two test vectors are then concatenated to yield a Grid-in-a-Grid test vector.

Construction of testing set

As with the training vectors, testing vectors for the Grid-in-a-Grid data set are con-
structed by generating a Simple Grid test vectors for each of the two sub-grids, and
concatenating these test vectors. Testing sets of arbitrary size can be generated using

this technique.

A.6 Scotch Whisky

Whisky, from the Gaelic uisgebeatha, meaning ‘water of life’, is defined as alcoholic
liquor obtained by the distillation of a fermented starchy compound, usually a grain.
Single-malt Scotch Whisky, the pinnacle of the form, is produced by 109 distilleries in
Scotland (as well as one distillery in Ireland, and three in Japan).

To qualify as a single malt Scotch Whisky, a liquor must be produced from fermented
(malted) barley, produced in a pot still in a single distillery, aged in oak for at least three

years. Although this is a highly prescribed process, each distillery produces a whisky
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with distinctive characteristics, which are savoured at great length by connoisseurs and
amateurs alike.

In “The Malt Whisky Companion’ {Jackson, 1989), an expert analysis of each of all
available single malt scotch whiskies is presented, yielding a set of classification terms
based upon color (14 terms), nose {12 terms), body (8 terms), palette (15 terms) and
finish (19 terms). These characteristics are binary variables. In addition to these binary
characteristics, this analysis provides the age, alcohol content, region, district, a score
rating the quality of the distillery, and a score rating the quality of each whisky.

This data set was selected as a real world example because:
e it is a large and complex data set;
s it can be formulated in a manner compatible with maximal SOMs;

o it has been described by Lapointe and Legendre (1994) providing a statistical

benchmark for comparison;

e it has been analysed with a SOM (Deboeck and Kohonen, 1998), providing a

benchmark for comparison of self-organising performance;

e it is in the public domain, and downloadable from:

http://www.fas.umontreal.ca/biol/casgrain/en/labo/scotch.html

e it is an example that is able to sustain the interest of readers from almost any

discipline.

A.6.1 Training Set

There are 109 distilleries in Scotland which produce single malt Scotch Whisky. One
whisky from each distillery was selected and characterised, yielding 109 training vectors
in total. The names of these distilleries, and the abbreviated names used on graphical
representations of self-organising maps, are given in Tables A.1 and A.2.

The full set of potential values for the descriptors in each training vector can be seen
in Table A.3. The binary classification terms (colour, nose, body, palette, and finish)
are encoded one input per term, yielding a total of 68 inputs. The district descriptor
is also encoded as a set of 3 binary inputs (100 — Highland, 010 — Lowland, 001 —

Islay).
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Abbreviated Full Name Abbreviated Full Name
Name Name
Abef Aberfeldy Abel Aberlour
Ardb Ardberg Ardm Ardmore
Auch Auchentoshan Ault Aultmore
Balb Balblair Balm Balmenach
Balv Balvenie Banf Banfl
Benn Ben Nevis Benr Benromach
Bera Beanriach Bern Benrinnes
Blad Bladnoch Blai Blair Athol
Bowm Bowmore Brac Brackla
Brui Bruichladdich Bunn Bunnahabhain
Caol Caol lla Cape Caperdonich
Card Cardhn Clyn Clynelish
Cole Coleburn Conv Convalmore
Crag Cragganmore Crai Craigellachie
Dail Dailuaine Dall Dallas Dhu
Dalm Dalmore Dalw Dalwhinnie
Dean Deanston Duff Dufftown
Edra, Edradour Fett Fettercairn
Galb Glen Albyn Gall Glenallachie
Ghur Glenburgie Gcead Glencadam
Gdev Glen Deveron Gdro Glendronach
Gdul Glendullan Gelg Glen Elgin
Gesk Glenesk Gfar Glenfarclas
Gfid Glenfiddich Ggar Glen Garioch
Ggla Glenglasshaugh Ggoy Glengoyne
Ggra Glen Grant Gkel Glen Keith
Gkin Glenkinchie Gliv Glenlivet
Gloc Glenlochy Glos Glenlossie
Gmho Glen Mhor Gmon Glenmorangie
Gmoy Glen Moray Gord Glenordie (Ord)
Grot Glenrothes Gsco Glen Scotia
Gspe Glen Spey Gtau Glentauchers
Gtur Glenturret Gugi Glenugie
Gury Glenury High Highland Park
Impe Imperial Incg Inchgower
Incm Inchmurrin Inve Inverleven
Jura Jura Kinc Kinclaith
- Knoc Knockando Knod Knockdhu
Lady Ladyburn Laga Lagavulin
Laph Laphroaig Link Linkwood
Litt Littlemill Locn Lochnagar
Locs Lochside Long Longmorn
Maca Macallan Mill Millburn
Milt Miltonduff Mort Mortlach

194

Table A.1: Names of Scotch Whisky Distilleries, with abbreviations used. Part I, A-M
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Abbreviated Full Name Abbreviated Full Name
Name Name
Nort North Port Oban Oban
Port Port Ellen Pult Pulteney
Rose Rosebank Sain Saint Magdalene
Scap Scapa Sing Singleton {Auchroisk)
Spey Speyburn Spri Springbank
Splo Springbank-Longrow Stra Strathisla
Tali Talisker Tamd Tamdhu
Tamn Tamnavulin Tean Teaninich
Tobe Tobermoray Toma Tomatin
Tomi Tomintoul Torm Tormore
Tull Tullibardine

Table A.2: Names of Scotch Whisky Distilleries, with abbreviations used. Part I, N-Z

The remaining descriptors (age, alcohol content, distillery score, whisky score, and
disirict) are continuous in nature, and thus require special encoding in a maximal
SOM in order to preserve continuity relationships. To achieve this, a single continuous
variable is encoded using an ordered series of inputs. Each of these inputs is used
to represent a key value in the expected range of the continuous variable. These key
values are evenly spaced along the expected range. The activation levels assumed by
the inputs take their values from the sampled value of a Gaussian curve with a mean
equivalent to the value of the continuous variable, and a standard deviation equivalent
to the spacing used between key values.

Figure A.1 gives an example of this process. In this figure, the age of an 11 year
old scotch is represented. Scotch age is known to vary between 8 and 20 years; a set
of 7 inputs, separated by 2 year intervals is used to represent this range. A Gaussian
bell with standard deviation of 1 input (2 years) is centered at age 11 (between inputs
2 and 3). This yields a training vector of 0.25 0.86 0.86 0.25 0.02 0.00 0.00].

As a result of this style of encoding, age is encoded as 7 inputs (with peaks at 8,
10, 12, 14, 16, 18 and 20), distillery score is encoded as b inputs {with peaks at 1, 2,
3, 4 and 5), whisky score is encoded as 6 inputs (with peaks at 50, 60, 70, 80, 90 and
100), and alcohol content is encoded as 8 inputs (with peaks at 40, 42.5, 45, 47.5, 50,
52.5, 55 and 57.5). This represents an additional 26 inputs. The binary descriptors,
district and continuous descriptors are concatenated to produce a complete training
vector with a total of 97 inputs per vector.

An example training vector is presented in Figure A.2. In this figure, whisky from
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Activation

Input 1 2 L3 4 5 6 7

Key Value 8 0 512 14 16 18 20

Figure A.1: Creating Maximum style input from a continuous parameter: Representa-
tion of a scotch aged 11 years.

| Component [ Training Vector |
Color 01000000000000
Nose 110000100000
Body 11000000
Palette 001000000000100
Finish 1100000100010000000
Age 0.86 0.86 0.25 0.0200 0
Distillery Score | (.54 1 0.54 0.08 0
Whisky Score | 0.11 0.61 0.99 0.47 0.07 0
Alcohol content | 10.5400800000
District 100

Figure A.2: Example training vector: Aberfeldy (Abef) distillery. The training vector
is formed from the concatenation of these individual components.

the Aberfeldy distillery is described. This distillery is in the Highlands district, and
has a distillery score of 2. The whisky produced at Aberfeldy is 9 years old, yellow
in colour, has an aromatic, peaty and fruity nose, a soft medium body, is oily and
sherry-like on the palette and has a full, dry, spicy and fruity finish. This whisky has

an alcohol content of 40%, and scores 69%.

A.6.2 Testing Set

No independent test set exists for this data set; the training set spans all known values

for input. The testing set is therefore identical to the training set.
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| Characteristic ] Data Type | Valid values

Colour One of White wine, yellow, very pale, pale gold, gold,
old gold, full gold, bronze, pale amber, amber,
full amber, red, fino sherry.

Nose Any of Aromatic, peaty, sweet, light, fresh, dry, fruity,
grassy, salty, sherry, spicy, rich.

Body Any of Soft, medinm, full, round, smooth, light, firm, oily.

Palette Any of Full, dry, sherry, big, light, smooth, clean, fruity,
grassy, smoky, sweet, spicy, oily, salty, aromatic.

Finish Any of Full, dry, warm, big, light, smooth, clean, fruity,
grassy, smoky, sweet, spicy, oily, salty, aromatic,
quick, long, very long, lingering.

Age Integer > 3 (All data in range 8 — 20)

Distillery Score Integer in range 0 — 5 (All data in range 1 — 5).
Whisky Score Integer in range 0 — 100 (All data in range 55 — 90).
Alcohol content Integer in range 0 — 100 (All data in range 40 — 57.1)

District One of Highland, Lowland, Islay.

Table A.3: Descriptive Characteristics of Single Malt Scotch Whisky.
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