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ABSTRACT

The determination of the figure of the Earth and its gravity field has long relied on

methodologies that approximate the Earth by a sphere, but this level of accuracy

is no longer adequate for many applications, due to the advent of new and advanced

measurement techniques. New, practical and highly accurate methodologies for gravity

field modelling that describe the Earth as an oblate ellipsoid of revolution are therefore

required. The foundation for these methodologies is formed by solutions to ellipsoidal

geodetic boundary-value problems.

In this thesis, new solutions to the ellipsoidal Dirichlet, Neumann and second-order

boundary-value problems, as well as the fixed- and free-geodetic boundary-value prob-

lems, are derived. These solutions do not rely on any spherical approximation, but are

nevertheless completely based on a simple spherical harmonic expansion of the function

that is to be determined. They rely on new relations among spherical harmonic base

functions. In the new solutions, solid spherical harmonic coefficients of the desired

function are expressed as a weighted summation over surface spherical harmonic coeffi-

cients of the data on the ellipsoidal boundary, or alternatively as a weighted summation

over coefficients that are computed under the approximation that the boundary is a

sphere.

Specific applications of the new solutions are the computation of geopotential coeffi-

cients from terrestrial gravimetric data and local or regional gravimetric geoid determi-

nation. Numerical closed-loop simulations have shown that the accuracy of geopotential

coefficients obtained with the new methods is significantly higher than the accuracy

of existing methods that use the spherical harmonic framework. The ellipsoidal cor-

rections to a Stokesian geoid determination computed from the new solutions show

strong agreement with existing solutions. In addition, the importance of the choice

of the reference sphere radius in Stokes’s formula and its effect on the magnitude and

spectral sensitivity of the ellipsoidal corrections are pointed out.
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1. INTRODUCTION

This thesis investigates the new field of what is herein termed ellipsoidal physical

geodesy, which is concerned with the rigorous determination of the figure of the Earth

and its external gravity field using an ellipsoidal reference model. In practice, many

geodesists still rely on approximate methodologies using spherical models for gravity

field modelling, such as Stokes’s (1849) integral for geoid computation. However, the

introduction of new measurement techniques, and increased accuracy and spatial dis-

tribution of traditional observations calls for more accurate theoretical methodologies.

An overview of contributions to the field of physical geodesy and the solution strategies

chosen in this research are presented in this introductory chapter.

1.1 Historical overview of physical geodesy

The determination of the size and shape of the Earth has been a topic of research

since the Greek philosopher Eratosthenes conducted an experiment to calculate the

Earth’s circumference from solar observations around 250 B.C., but the influence of

gravity on the Earth’s shape was largely unknown until I. Newton in 1687 derived

his universal law of gravitation (Newton, 1729). Newton was also the first to realise

that the Earth’s shape is closer to an oblate ellipsoid of revolution flattened at the

poles, than to a sphere. This was confirmed several decades later by astro-geodetic

expeditions undertaken by the French Academy of Sciences.

The origin of physical geodesy as a field of study can be attributed to A. C. Clairaut

(e.g., Dragomir et al., 1982), who in 1743 published his theorem that relates the flat-

tening of the Earth to the magnitude of gravity at the poles and the equator. This

theorem first showed that the geometry of the Earth can be derived from purely dy-

namical quantities obtained by gravity measurements (Heiskanen and Moritz, 1967,
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p.75).

At the beginning of the nineteenth century, the notion that the figure of the Earth is

actually a level surface departing from the ellipsoid, usually credited to C. F. Gauss,

arose, and this level surface was named the geoid by J. B. Listing in 1872 (e.g., Moritz,

1990). Developments in potential theory by J. Lagrange, P. S. Laplace and others also

revealed that the Earth’s gravity field can, due to its harmonic properties, be expressed

as a scalar potential field (e.g., MacMillan, 1958). This facilitates the determination

of the Earth’s external potential from gravity measurements on the surface of the

Earth; the geodetic boundary-value problem (BVP), where the boundary condition is

formed by the so-called fundamental equation of physical geodesy (e.g., Heiskanen and

Moritz, 1967, p. 86). This fundamental equation is a differential equation relating the

disturbing potential of the Earth’s gravity field to the gravity anomaly.

Probably the most important contribution to physical geodesy was made by Stokes

(1849), who found a solution to the geodetic BVP expressing the disturbing potential

of the Earth’s gravity field as an integral over gravity anomalies weighted by a Green’s

function, often called the Stokes kernel. However, Stokes’s integral only provides a so-

lution to the spherical approximation of the fundamental equation of physical geodesy,

where the ellipsoidal reference gravity model is approximated by a spherical reference

gravity model to simplify the differential equation.

The error resulting from a spherical approximation is often assumed to be of the order

of the flattening of the Earth (∼ 0.3%), but may be even larger due to the combined

effect of subsequent approximations (e.g., Sansò and Tscherning, 2003; Tscherning,

2004). For a geoid-ellipsoid separation of 100 m, the error induced by a spherical

approximation is therefore in the order of 30 cm and possibly larger. This level of

accuracy is not sufficient for many present-day applications.

The accuracy and coverage of gravity measurements are nowadays of high enough

quality to provide geoid and gravity field models with relative accuracies well within

the order of the flattening of the Earth, which has led to the global aim to compute a

geoid model accurate to 1 cm (Rapp, 1997a). Naturally, highly accurate modelling of
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the geoid and the Earth’s external gravity field is only possible if the required rigorous

theoretical methodologies exist. This calls for a solution of a BVP where the boundary

is formed by an ellipsoid of revolution, i.e., an ellipsoidal BVP.

1.2 Ellipsoidal geodetic boundary-value problems

BVPs are concerned with the determination of a function in a certain region of space

from given conditions on the boundary of the region (Mackie, 1965). Ellipsoidal BVPs

thus arise when the boundary is formed by an ellipsoid. As the figure of the Earth

can closely (< 100 m) be approximated by an oblate ellipsoid of revolution, ellipsoidal

BVPs form the foundation of what is here called ellipsoidal physical geodesy.

1.2.1 Conditions in boundary-value problems

Any BVP consists of a set of conditions that apply to the function under investigation.

Common conditions are the harmonicity condition, the regularity or radiation condi-

tion, the continuation condition, and most importantly, the boundary condition (e.g.,

Mackie, 1965; Lehmann, 1999a; Fei, 2000).

The harmonicity condition is given by Laplace’s differential equation and is a prereq-

uisite for any BVP in physical geodesy (e.g., Sigl, 1985). The regularity condition

prescribes the behaviour of the function at infinity (Lehmann, 1999a) and is there-

fore of particular importance in BVPs where the domain is external, which is always

the case in geodetic applications since the Earth’s external gravity field is of interest.

In the case of the gravity potential, the regularity condition states that the potential

approaches zero for distances going to infinity. The continuation condition is often

not explicitly stated in geodetic BVPs, but it is often assumed that the potential is

continuous and at least twice differentiable.

The boundary condition is the most important condition, since it connects the function

of interest to a known quantity on the boundary, and it typically takes the form of an
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ordinary or partial differential equation. The boundary conditions that are of interest

in physical geodesy have been studied by many authors (e.g., Grafarend et al., 1985;

Heck, 1991; Sansò, 1995). Different geodetic boundary conditions can be constructed,

depending mainly on the observational data available, and the accuracy required.

1.2.2 Geodetic boundary conditions

A common categorisation of boundary conditions is a division between fixed and free

conditions, depending on whether the size and shape of the boundary are known or not

(e.g., Heck, 1991). In the classical approach, the boundary is assumed unknown, giving

rise to a free BVP (e.g., Grafarend and Niemeier, 1971; Sansò, 1981). However, with

the advent of precise satellite positioning from, for example, the Global Positioning

System (GPS), fixed BVPs (e.g., Bjerhammar and Svensson, 1983; Grafarend et al.,

1985) are of growing importance.

An additional category is the scalar-free BVP (e.g., Sacerdote and Sansò, 1986), where

the horizontal position is assumed known, but the vertical is not. The rationale behind

this is that the accuracy of the horizontal position is less critical than the vertical,

while it can be measured more accurately using classical triangulation measurements

or satellite positioning. The scalar problem not only contains fewer degrees of freedom

than the vector free problem, the errors due to linearisation are also approximately

one order of magnitude smaller (Heck, 1989). In this thesis, both the fixed- and the

scalar-free BVPs are considered.

Due to the introduction of new observation techniques, non-classical boundary con-

ditions can be formed that allow for the combination of different observation types.

An example is the altimetry-gravimetry problem which combines satellite altimetry

data on the oceans with gravity data on the continents (e.g., Svensson, 1988; Keller,

1996; Lehmann, 1999b; Grebenitcharsky and Sideris, 2005). Multiple measurement

techniques can also give rise to overdetermined geodetic BVPs (e.g., Sacerdote and

Sansò, 1985; Rummel et al., 1989; Van Gelderen and Rummel, 2001). Naturally, new

dedicated satellite gravity field missions also provide new observation types, albeit not
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on the same boundary as the terrestrial data.

In practice, however, the gravimetric BVPs are used most frequently in the treatment of

terrestrial data. Satellite altimetry data can be transformed into gravity anomalies, and

thus incorporated in the fixed- or scalar-free gravimetric BVP (e.g., Rapp and Bašić,

1992; Andersen et al., 1996; Hwang and Parsons, 1996). Multiple data sources that

give rise to overdetermined problems are usually combined to provide higher spatial

resolution, or to provide a verification of the solution. Therefore, the focus in this thesis

is on the gravimetric BVPs. However, an extension of the methodologies developed

here to other BVPs can be established as well.

1.3 Solutions to ellipsoidal geodetic boundary-value problems

A possible categorisation of solutions to BVPs is by the mathematical techniques used

to rewrite the boundary condition. The BVPs occurring in physical geodesy, either

with spherical or ellipsoidal boundaries, are usually solved in one of two ways:

1. Solutions using boundary integral equations based on Green’s second identity

(e.g., Martensen and Ritter, 1997);

2. Solutions using a representation of the gravity field in harmonic base functions

(e.g., MacRobert, 1967),

although it should be mentioned that a combination of both is also possible (e.g.,

Sjöberg, 2003c). With all approaches, a solution can be sought either in an analytic

or in a deterministic way. The second approach can be subdivided in solutions that

use spherical harmonic base functions and solutions that use ellipsoidal harmonic base

functions. This gives rise to three possible approaches, and the application of these

three approaches in ellipsoidal physical geodesy are discussed in the next three Sections.
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1.3.1 Solutions using boundary integral equations

Investigations towards the solution of ellipsoidal geodetic BVPs commenced more than

100 years after Stokes published his spherical solution. The works of Sagrebin (1956),

Molodenskii et al. (1962), Bjerhammar (1962, 1966), Brovar (1964), Koch (1968, 1969),

and Mather (1973) provide the first solutions, with highly varying practicality. All of

these early solutions are based on a reformulation of the boundary condition as an

integral equation by implementation of Green’s second identity.

More recent applications of boundary integral equations are given by Arnold (1986,

1987, 1989, 1990), Yurkina (2002) and Brovar et al. (2001). Wang (1999) uses the

boundary integral approach to provide ellipsoidal corrections to gravity anomalies from

satellite altimetry, and Sideris et al. (2002), Fei (2000) and Fei and Sideris (2000) apply

it to obtain a generalisation of Stokes’s and Hotine’s integral kernels for an ellipsoidal

boundary.

A similarity between all the above-mentioned methods is that none of them provide a

theoretically exact solution. Instead, they generally approximate the boundary condi-

tion to the level of the first numerical eccentricity of the ellipsoid.

The numerical evaluation of the boundary integral equation can be performed using

various deterministic methods such as finite difference methods, finite element methods

or boundary element methods (e.g., Ladyzhenskaya, 1985). Finite element methods

were introduced to physical geodesy by Meissl (1985), but are rarely used in practice,

as are finite difference methods. Boundary element methods, contrary to the other two

approaches, only require a discretisation of the boundary instead of the whole external

domain (Klees, 1997), and are therefore more useful in physical geodesy. Examples of

their application to ellipsoidal physical geodesy are given by Ritter (1998) and Lehmann

and Klees (1999).
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1.3.2 Solutions using spherical harmonic expansions

More practical solutions to ellipsoidal BVPs can be found using harmonic base func-

tions. They mainly thank their practicality to the wide consensus that harmonic ex-

pansions provide an efficient representation of the external gravity field. The most

simple case is a spherical harmonic expansion of the Earth’s gravity field. The com-

putation of such a spherical harmonic model from terrestrial gravity data requires the

solution to an ellipsoidal BVP.

Spherical harmonic coefficients can be computed numerically using a least-squares es-

timation or least-squares collocation (LSC) (e.g., Sansò and Tscherning, 2003). This

numerical procedure is often used to compute coefficients of low degree and order, but

is less suitable for higher degrees. The reason for this is, first of all, the rapidly increas-

ing computational load of the method for increasing degrees, but more important is

the fact that the numerical methods are susceptible to aliasing effects in degrees close

to the Nyquist frequency of the spherical harmonic expansion (Gleason, 1989a; Jekeli,

1996). Analytical solutions can overcome this problem.

Cruz (1985, 1986) and Pavlis (1988) were among the first to investigate the analytic

computation of spherical harmonic coefficients from gravity data on the ellipsoid, and

this method was refined by Petrovskaya et al. (2001). In their approach, the data on

the ellipsoid is upward-continued to a sphere and corrections to the boundary condition

are applied to transform the problem into a spherical BVP. An alternative procedure,

which is in fact based on a boundary integral equation, is suggested in Sjöberg (2003c).

Once a spherical harmonic expansion of the Earth’s gravity field is available, it can be

utilised to obtain ellipsoidal corrections to various gravity field functionals, in particular

to geoid heights, by implementing the spherical harmonic coefficients (SHCs) into the

rigorous ellipsoidal and spherically approximated fundamental equation of physical

geodesy. This approach was first outlined by Hotine (1969) and further developed by

Lelgemann (1970), Pellinen (1982) and Moritz (1989).
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Formulas specifically tailored to geoid computation based on the spherical harmonic ap-

proach are derived in Rapp (1981), Sjöberg (2003a,b, 2004b), Heck and Seitz (2003) and

Ellmann and Sjöberg (2004). Hipkin (2004) applies the spherical harmonic approach

to the computation of gravity anomalies on the ellipsoid from geopotential coefficients,

and argues its use in local geoid computation in combination with a satellite gravity

field model.

It should, however, be noted that all of the above solutions, like the boundary integral

solutions, are restrained to an order of relative accuracy equal to the square of the

first numerical eccentricity of the ellipsoid. This degrades the accuracy of ellipsoidal

corrections to geoid heights, but more seriously compromises the application of the

spherical harmonic approach to the computation of geopotential coefficients, as was

pointed out by Gleason (1988, 1989b). This is the major weakness of the solutions

using spherical harmonic expansions. However, it will be shown in the remainder of

this thesis that this weakness can now be taken away, allowing to profit from the

simplicity and practicality of the approach.

1.3.3 Solutions using ellipsoidal harmonic expansions

Basic ellipsoidal BVPs, such as the Dirichlet and Neumann problems (e.g., Kellogg,

1929; Heiskanen and Moritz, 1967), can be solved if the function under consideration

is expanded into a series of ellipsoidal harmonic base functions (e.g., Yu et al., 2003).

These solutions can also be applied to several geodetic BVPs, such as the fixed- and

free-geodetic BVPs (e.g., Heck, 1991).

Ellipsoidal harmonic expansions have long been used as an aid in the construction of a

reference gravity field (e.g., Heiskanen and Moritz, 1967, p. 44). Thông and Grafarend

(1989), Sona (1995) and Garnier and Barriot (2001) argue their use as a representation

of the Earth’s gravity field, and this has led to investigations towards solutions of the

ellipsoidal BVPs by means of ellipsoidal harmonic expansions. Yu and Cao (1996) and

Jinghai and Xiaoping (1997) provide solutions to the free gravimetric and the altimetry-

gravimetry BVPs, respectively, as a combination of ellipsoidal harmonic coefficients.
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Thông (1996), Martinec and Grafarend (1997a,b) and Martinec (1998) derive explicit

expressions of the integration kernel in this problem, as a generalisation of the Stokes

kernel. The practical implementation of the ellipsoidal Stokes kernel is discussed by

Ardestani and Martinec (2000), who also study the numerical contribution of the el-

lipsoidal correction in a remove-compute-restore (RCR) geoid computation (Ardestani

and Martinec, 2001, 2003a,b), and by Safari et al. (2005) who apply the ellipsoidal

harmonic approach to a local geoid computation in Iran.

The ellipsoidal harmonics approach can, paradoxically, also be used to compute spher-

ical harmonic coefficients of the Earth’s external gravity field. This follows from the

fact that an exact transformation between spherical and ellipsoidal harmonic coeffi-

cients is possible (e.g., Hotine, 1969; Buchdahl et al., 1977; Jekeli, 1988; Dechambre

and Scheeres, 2002). It provides an alternative way to construct a spherical harmonic

geopotential model from terrestrial gravity data, which is elaborated upon in, e.g.,

Rapp and Pavlis (1990). This approach is also approximative, because the fundamen-

tal equation of physical geodesy that forms the boundary condition in this problem

is approximated to the level of the square of the first numerical eccentricity of the

ellipsoid.

The major drawback of the ellipsoidal harmonics approach is the complicated nature

of the underlying associated Legendre functions of the second kind (cf. Hobson, 1931;

Heiskanen and Moritz, 1967). The numerical stability of functions of the second kind

of high degree and order is a point of concern (e.g., Sona, 1995).

1.4 Research objectives

Even though several theoretical contributions to ellipsoidal physical geodesy have been

made (see Section 1.3), the practical application of ellipsoidal theories remains limited.

This can presumably, at least partly, be prescribed to the complicated nature of the

formulas involved. Therefore, the general aim of this research is to find practical and

highly accurate methodologies to model the figure of the Earth and its external gravity

field from geodetic observations by solving ellipsoidal BVPs.
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The solution strategy followed to attain this research objective is based on the literature

review in Section 1.2. It is aimed for to find analytic solutions using the spherical

harmonic approach from terrestrial gravimetric data, profiting from the practicality

of spherical harmonics, yet improving on the poor accuracy of existing solutions that

hampers their use in some applications, such as the construction of geopotential models.

A more extensive rationale behind this solution strategy is explained next.

1.4.1 Analytic solutions

The emphasis in this thesis will be on the derivation of analytic solutions to ellipsoidal

BVPs, even though deterministic solutions based on fairly straightforward general prin-

ciples also exist (e.g., Gruber, 2001). However, the computational requirements of

these solutions are high, although this can, for example, be reduced by the use of

semi-analytic methods (e.g., Sneeuw, 2000). Although the optimal approach may be

different for various specific applications, full analytic solutions are often more efficient

and are therefore widely used. An example is the widespread use of (adaptations of)

Stokes’s integral formula in local and regional gravimetric geoid determination.

Secondly, in many cases, numerical methodologies to gravity field modelling suffer

from inaccuracies that can be circumvented by analytic methods. For example, the

computation of spherical harmonic coefficients of the Earth’s external gravity field can

be computed from terrestrial gravity data using least-squares estimation. This method

suffers from inaccuracies due to aliasing effects in the coefficients of high degree and

order (close to the Nyquist frequency) (Gleason, 1989a), which can be overcome by the

use of analytic methods (Lemoine et al., 1998, p. 8-44).

1.4.2 Spherical harmonic approach

It can be seen from the literature review in Section 1.2 that many contributions to

ellipsoidal physical geodesy are based on the framework of an ellipsoidal harmonic

expansion. This is not surprising, since ellipsoidal harmonics form a natural set of
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base functions for data on an ellipsoid. In practice, however, the use of ellipsoidal

harmonics has remained very minor. The few ellipsoidal harmonic representations

of the Earth’s gravity field that have been constructed, were all directly based on a

transformation from existing spherical harmonic models (e.g., Sansò and Sona, 2001;

Ardalan and Grafarend, 2001b,c), which clearly underlines the dominant position that

spherical harmonics take in the field of physical geodesy.

A representation of the Earth’s gravity field in spherical harmonic base functions is

more practical and still the standard today. The vast majority of recent Earth gravity

field models, such as for example EGM96 (Lemoine et al., 1998), the GPM98 models

(Wenzel, 1998), GRIM5-S1 (Biancale et al., 2000), the GGM models (Tapley et al.,

2003, 2005), and the EIGEN models (Reigber et al., 2002a, 2005) are represented as

spherical harmonic series expansions.

The seemingly lack of interest in the use of ellipsoidal harmonics can at least partly be

explained by the difficulties that occur in their computation (e.g., Sona, 1995). The

computation of spherical harmonic functions on the other hand is fairly straightforward

(e.g., Rizos, 1979; Koop and Stelpstra, 1989; Masters and Richards-Dinger, 1998), and

recently developed algorithms (Holmes and Featherstone, 2002) provide a fast and

stable way to compute spherical harmonic functions up to very high degree and order

(at least until degree 2600). Therefore, in this work the use of spherical harmonics is

taken as a point of departure in the development of theories to deal with ellipsoidal

effects in the computation of the Earth’s gravity field.

Solutions to specific ellipsoidal BVPs completely derived in the framework of spherical

harmonics have been published before (e.g., Cruz, 1986; Petrovskaya et al., 2001; Heck

and Seitz, 2003). In these methods, ellipsoidal computation of geoid heights and/or

spherical harmonic geopotential coefficients are presented as weighted summations over

spherically approximated coefficients, and are simpler and more practically applicable

than methods based on ellipsoidal harmonics expansions. Their accuracy, however, can

generally not match those of ellipsoidal harmonic methods, although this is less critical

for the computation of geoid heights than it is for recovery of the full external gravity
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field. The ideal is to obtain a practical solution in the spherical harmonic framework

that can match or even supersede the accuracy of the methods based on ellipsoidal

harmonics.

1.4.3 Terrestrial gravimetric data

A lot of interest in recent years has been focussed on satellite gravity missions such

as the Challenging Mini-Satellite Payload (CHAMP) mission (Reigber et al., 2002b),

the Gravity Recovery and Climate Experiment (GRACE) (Tapley et al., 2004) and the

Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) (Drinkwater et

al., 2003). Observations from these gravity missions will greatly improve the accurate

modelling of the Earth’s gravity field, but there are two main reasons why the focus in

this thesis is on terrestrial gravimetric data.

First of all, the orbits of satellites in the aforementioned gravity missions are, without

exception, chosen to be nearly spherical. The eccentricities of the orbits are in the order

of 0.004 for CHAMP, 0.0006 for GRACE and 0.002 for GOCE, which is in all three

cases smaller than the eccentricity of the Earth’s ellipsoid (0.007). Moreover, even

though the orbits are slightly elliptical, the satellite tracks do not form the surface of

an ellipsoid. This is due to the fact that the Earth’s geocentre is at one of the focal

points of the elliptical orbit, rather than in the centre of the orbit, and also due to the

fact that the orbits are not polar. Therefore, the issues faced due to orbital ellipticity

are of a very different nature compared to the ones faced in gravity field modelling

from terrestrial data.

Secondly, satellite gravity missions can only sense the long-wavelength structure of the

gravity field. Terrestrial gravity data are still needed to provide the fine structure of

the field. In fact, the advance that satellite gravity missions provide calls for more

accurate modelling of terrestrial data in order to be able to fully profit from the highly

accurate modelling of the long-wavelength field that satellite missions offer (cf. Kern

et al., 2003). Since numerical methods perform best for the long wavelengths and

analytical methods are especially useful for the shorter wavelengths, analytic methods
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are of the highest importance for the modelling from terrestrial gravity data.

The merger of terrestrial and satellite data is an important issue nonetheless, and

should be regarded a task of ellipsoidal physical geodesy as well. It is, however, outside

the scope of this thesis.

1.5 Thesis structure

In Chapter 2, the physical and mathematical theories that form the foundation of ellip-

soidal physical geodesy are presented, where specific attention is given to the formulas

relevant to the methodologies derived in the remainder of the thesis. It contains the

basics of the geometry of the ellipsoid, as well as the physical foundations of gravity,

the derivation of the gravimetric boundary conditions, and the representation of the

gravity field in series of harmonic base functions. Some new formulas with respect

to the geometry of the ellipsoid are also provided (in Section 2.1.2), as well as new

formulas to assess secondary effects in geodetic boundary conditions in Section 2.3.3.

Other well-known formulas are presented with an eye on their use in ellipsoidal physical

geodesy in general and their use in this work in particular.

Chapter 3 describes a new solution to the most simple of the ellipsoidal BVPs, the

ellipsoidal Dirichlet problem. The most interesting aspect of this method is that it

is theoretically exact and completely described in terms of spherical harmonic base

functions. It relies on relations among spherical harmonics (Claessens, 2005) that are

derived in Section 3.2. These new relations form the key, not only to the solution of

the Dirichlet problem, but also to solutions to other problems presented in Chapters

4 to 6. A numerical closed-loop simulation in Section 3.4 confirms the validity of the

new solution to the ellipsoidal Dirichlet problem.

In Chapter 4, the solution to the ellipsoidal Dirichlet problem derived in Chapter 3

is extended to also provide solutions to the ellipsoidal Neumann and second-order

BVPs, and in particular the fixed- and scalar-free-geodetic BVPs for computing the
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Earth’s gravity field from terrestrial gravity and satellite positioning measurements.

It is subsequently shown that the gravity field can also be resolved if second normal

derivatives or gravity anomalies are provided on the surface of the ellipsoid. This

culminates in the construction of an ellipsoidal generalisation of the so-called Meissl

scheme (Rummel and Van Gelderen, 1995) that connects various gravity field quantities

in an ellipsoidal framework.

Specific applications of the newly derived theories are provided in Chapters 5 and

6. Chapter 5 discusses the analytic computation of spherical harmonic geopotential

coefficients from terrestrial gravity data, a critical step in the construction of a high-

resolution global gravity field model. It is shown that two existing methodologies

of limited accuracy can be extended to much higher orders of accuracy by a rigorous

derivation based on the new relations among spherical harmonics in Section 3.2. A third

and novel methodology, based on the solution to the scalar-free-geodetic BVP derived

in Chapter 4, is also introduced. The three newly derived methods are compared

numerically, also to various existing methods, in Section 5.5.

A second application of solutions to ellipsoidal geodetic BVPs is local or regional gravi-

metric geoid computation, which is discussed in Chapter 6. It is shown that the spectral

relation between the disturbing potential and the gravity anomaly derived in Chapter

4 can be used to compute ellipsoidal corrections to Stokes’s (1849) integral formula,

which is based on spherical and constant radius approximations. The magnitude of

the ellipsoidal corrections is determined numerically, also in view of the widely used

remove-compute-restore (RCR) technique for geoid modelling, and it is shown that the

choice of the radius of the reference sphere has a substantial impact on the magnitude

and spectral sensitivity of the ellipsoidal corrections.

Chapter 7 provides a summary of the overall results and an itemised overview of the

main conclusions. In addition, an outlook on possible future research is provided.
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2. BACKGROUND TO ELLIPSOIDAL PHYSICAL GEODESY

The field of ellipsoidal physical geodesy, which this thesis investigates, combines the

classical fields of physical and geometrical geodesy, while realising that the figure of

the Earth is more closely approximated by an oblate ellipsoid of revolution (in short

denoted ‘ellipsoid’ throughout this thesis) than by a sphere. The concepts of physical

geodesy form its primary foundation, but the geometrical properties of the ellipsoid also

play an important role. The geometry of the ellipsoid is therefore discussed in Section

2.1, and some new formulas that assist in its application to ellipsoidal physical geodesy

are derived. Section 2.2 provides background to the mathematical modelling of the

gravity field of the Earth, and in Sections 2.3 and 2.4, the theoretical background to its

computation and the representation of the Earth’s gravity field in space by harmonic

base functions are outlined, respectively.

2.1 The geometry of the ellipsoid

The geometry of the ellipsoid and the coordinate systems with respect to the ellipsoid

are highly important in ellipsoidal physical geodesy. The formulas for various ellipsoidal

parameters take on different forms in different coordinate systems.

2.1.1 Coordinate systems

A point in space can naturally be denoted by Cartesian coordinates (x,y,z), but there

are several other coordinate systems that are more useful in many applications. In

ellipsoidal physical geodesy, three different coordinate systems are used:

1. Spherical polar coordinates (r,θ,λ),

2. Geodetic coordinates (h,ϑ,λ),

3. Ellipsoidal coordinates (u,β,λ).
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The longitude λ is the same for all systems and is, by convention, measured from

the Greenwich meridian. The latitudinal coordinates are shown in Figure 2.1 and the

geocentric radius r and height h of an arbitrary point P are shown in Figure 2.2. A

point on the surface of the ellipsoid is completely defined by the longitude λ and the

latitudinal coordinate θ, ϑ or β. Thus, only two coordinates are needed to describe a

point on the ellipsoidal surface, which immediately shows the main advantage of these

coordinate systems over 3D Cartesian coordinates.

The relations among the three different latitudinal coordinates can all be found from

the defining equation of the ellipse, which is

w2

a2
+

z2

b2
= 1 (2.1)

where a and b are the semi-major and semi-minor axes of the ellipse respectively, and

w and z are the two-dimensional Cartesian coordinates aligned with these axes, where

w2 = x2 + y2. Thus, the only difference with a circle is that the z-coordinate is scaled

by a factor b
a
. From Figure 2.1, it can then be seen that the relation between the

geocentric co-latitude θ and the reduced co-latitude β is (e.g., Bomford, 1971, p. 564)

tan θ =
a

b
tan β (2.2)

A relation between the geodetic co-latitude ϑ and the reduced co-latitude β can be

found from the parametric form of the definition of the ellipse

w = a sin β z = b cos β (2.3)

From this definition, an equation for the slope of the tangent of the ellipsoid can be

found
dz

dw
=

dz/dβ

dw/dβ
= − b

a
tan β (2.4)

while, by definition, the slope of the tangent is also related to the geodetic co-latitude

ϑ, as can be seen in Figure 2.1
dz

dw
= − tan ϑ (2.5)

Combining Equations (2.2), (2.4) and (2.5), the three different definitions of latitude

are related by (e.g., Bomford, 1971, p. 564)

tan θ =
a

b
tan β =

a2

b2
tan ϑ (2.6)

Equation (2.6) plays a crucial role in many applications involving the ellipsoid.
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circle

ellipse

Figure 2.1: Geocentric (θ), geodetic (ϑ) and reduced (β) co-latitude

Figure 2.2: The spherical polar (r, θ, λ) and geodetic (h, ϑ, λ) coordinate systems
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2.1.2 Parameters with respect to the ellipsoid

The shape of the ellipsoid is usually characterised by one of the following parameters

(e.g., Bomford, 1971):

flattening f =
a− b

a
(2.7)

first numerical eccentricity e2 =
a2 − b2

a2
(2.8)

second numerical eccentricity e′2 =
a2 − b2

b2
(2.9)

linear eccentricity E2 = a2 − b2 (2.10)

In addition, for the purpose of simplifying the equations in the following chapters, a

new type of eccentricity is defined here

quartic eccentricity ε4 =
a4 − b4

a4
(2.11)

The quartic eccentricity can easily directly be related to the first numerical eccentricity

by

ε4 = e2(2− e2) (2.12)

All the above parameters are solely dependent on the shape of the ellipsoid, and are

thus independent of position. Several other parameters with respect to the ellipsoid,

which are not only dependent on the shape, but also on the latitude of a point on the

surface of the ellipsoid, will be used extensively in the investigation of the geodetic

BVPs. The equations for these parameters in terms of spherical polar, geodetic and

ellipsoidal coordinates are therefore given below. Recall that all parameters given here

are independent of longitude λ, due to the rotational symmetry of the ellipsoid.

The ellipsoidal radius

The ellipsoidal radius re is the distance from the geometric centre of the ellipsoid

(not the focii) to a point on the surface of the ellipsoid. In Cartesian coordinates, its

expression simply follows from Pythagoras’s theorem

re =
√

w2 + z2 (2.13)
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spherical polar geodetic ellipsoidal

re a

√
1− e2

1− e2 sin2 θ
a

√
1− ε4 cos2 ϑ

1− e2 cos2 ϑ
a
√

1− e2 cos2 β

ρ
a(1− ε4 sin2 θ)

3
2√

1− e2(1− e2 sin2 θ)
3
2

a(1− e2)

(1− e2 cos2 ϑ)
3
2

a(1− e2 sin2 β)
3
2√

1− e2

ν a

√
1− ε4 sin2 θ

(1− e2)(1− e2 sin2 θ)

a√
1− e2 cos2 ϑ

a

√
1− e2 sin2 β

1− e2

Table 2.1: Expressions for the ellipsoidal radius (re), meridian radius of curvature (ρ) and
prime vertical radius of curvature (ν) as a function of geocentric (θ), geodetic (ϑ) and reduced
(β) co-latitude

Insertion of the parametric definition of the ellipse (Equation 2.3) into Equation (2.13)

gives an expression in ellipsoidal coordinates and by subsequently using Equation (2.6),

expressions in spherical polar and geodetic coordinates can also be found. All these

expressions are given in Table 2.1.

The principal radii of curvature

The principal radii of curvature of a point on the surface of the ellipsoid are defined

as the radius of curvature in the north-south direction (ρ), and the radius of curvature

in the east-west direction (ν). An expression for ρ, also called the meridian radius

of curvature, follows from the definition of the radius of curvature, which is the ratio

of the infinitesimal arc length to the corresponding change in the so-called tangential

angle. In this case, the tangential angle is the geodetic co-latitude, thus (e.g., Schwarz,

1996; Dragomir et al., 1982)

ρ =
ds

dϑ
=

√[(
dw

dβ

)2

+

(
dz

dβ

)2]
dβ

dϑ
(2.14)

Applying Equations (2.3) and (2.6), expressions for ρ can be found in spherical polar,

geodetic and ellipsoidal coordinates, and these can be found in Table 2.1.

Expressions for ν, also called the prime vertical radius of curvature, can be found more
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easily. Due to the rotational symmetry of the ellipsoid, the prime vertical radius is

equal to the distance from the surface of the ellipsoid to the z-axis, along the ellipsoidal

normal. An equation for ν can easily be derived from Figure 2.1

ν =
w

sin ϑ
(2.15)

Applying Equations (2.3) and (2.6), expressions for ν can be found in spherical polar,

geodetic and ellipsoidal coordinates and these are shown in Table 2.1.

The ellipsoidal deflection angle

Another important parameter in the derivations in the following chapters is the differ-

ence between the geocentric co-latitude θ and the geodetic co-latitude ϑ, which is here

named the ellipsoidal deflection angle φ, since it gives the deflection of the geocentric

radial direction with respect to the ellipsoidal normal (cf. Figure 2.1)

φ = θ − ϑ (2.16)

Using Equations (2.6), (2.16) and various trigonometric identities, expressions for φ

can be found that only depend on any of the geocentric (θ), geodetic (ϑ) or reduced

(β) co-latitude. Expressions for the sine, cosine and tangent of the deflection angle are

shown in Table 2.2.

spherical polar geodetic ellipsoidal

sin φ
e2 sin θ cos θ√
1− ε4 sin2 θ

e2 sin ϑ cos ϑ√
1− ε4 cos2 ϑ

e2 sin β cos β√
1− e2 + e4 sin2 β cos2 β

cos φ
1− e2 sin2 θ√
1− ε4 sin2 θ

1− e2 cos2 ϑ√
1− ε4 cos2 ϑ

√
1− e2

√
1− e2 + e4 sin2 β cos2 β

tan φ
e2 sin θ cos θ

1− e2 sin2 θ

e2 sin ϑ cos ϑ

1− e2 cos2 ϑ

e2 sin β cos β√
1− e2

Table 2.2: Expressions for the sine, cosine and tangent of the ellipsoidal deflection angle (φ)
as a function of geocentric (θ), geodetic (ϑ) and reduced (β) co-latitude
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2.1.3 Coordinate transformations

Spherical polar, geodetic and ellipsoidal coordinates of an arbitrary point P in space

can easily, though not always uniquely, be related to Cartesian coordinates. Formulas

for the computation of Cartesian coordinates can be found in Table 2.3. The inverse

relations are shown in Table 2.4, but it should be noted that the formulas for the

geodetic co-latitude (ϑ), the ellipsoidal height (h), and the ellipsoidal parameter (u)

only hold for points on the ellipsoid. For any point in space, the expression for u is

u =

√
1

2
(r2 − E2) +

1

2

√
(r2 − E2)2 + 4E2z2 (2.17)

Iterative and approximate formulas for the computation of the geodetic co-latitude

(ϑ), and thereby also the ellipsoidal height (h), from Cartesian coordinates are given

by, e.g., Bowring (1976). A closed expression for points anywhere in space was long

spherical polar geodetic ellipsoidal

x r sin θ cos λ (ν + h) sin ϑ cos λ
√

u2 + E2 sin β cos λ

y r sin θ sin λ (ν + h) sin ϑ sin λ
√

u2 + E2 sin β sin λ

z r cos θ (ν(1− e2) + h) cos ϑ u cos β

Table 2.3: Coordinate transformation from spherical polar (r, θ, λ), geodetic (h, ϑ, λ) and
ellipsoidal (u, β, λ) coordinates to Cartesian (x, y, z) coordinates

spherical polar geodetic ellipsoidal

r =
√

x2 + y2 + z2 h = 0 u = b

θ = arccos
z

r
ϑ = arccos

√
r2 − a2

r2e2 − a2ε4
β = arccos

z

u

λ = arctan
y

x
λ = arctan

y

x
λ = arctan

y

x

Table 2.4: Coordinate transformation from Cartesian (x, y, z) coordinates to spherical polar
(r, θ, λ), geodetic (h, ϑ, λ) and ellipsoidal (u, β, λ) coordinates on the surface of the ellipsoid
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thought impossible (e.g., Heiskanen and Moritz, 1967, p. 183), but exact formulas

based on the solution of quartic equations exist, as was first discovered by Paul (1973).

More efficient exact algorithms have been derived since and can for example be found

in Borkowski (1987), Jones (2002), Vermeille (2002) or Zhang et al. (2005).

2.2 The Earth’s gravity field

Like all branches of physics and applied mathematics, physical geodesy consists of

mathematical models of reality that are based on empirical evidence. One of the most

famous of these models is Newton’s universal law of gravitation, which forms the foun-

dation of physical geodesy. This law of gravitation was revised by Einstein’s theory of

general relativity, but Newton’s simpler formulation is generally considered of sufficient

accuracy for modelling the relatively weak gravitational field of the Earth. Based on

the universal law of gravitation, mathematical properties of the Earth’s gravitational

field can be extracted.

2.2.1 Newton’s universal law of gravitation

In order to study the Earth’s gravity field, it is important to know in which way the

gravitational force between objects is related to other quantities, such as the masses

of the objects and the distance between the objects. This relationship is given by

Newton’s universal law of gravitation, which was originally based on observations of

celestial bodies (Newton, 1729) and, somewhat reformulated, states that:

Every particle of matter in the universe attracts every other particle, with a force whose

direction is that of the line joining the two, and whose magnitude is directly as the

product of their masses, and inversely as the square of their distance from each other.

Thus, in mathematical terms, the force ~F exerted on a point mass at P with mass MP
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with respect to another point mass at Q with mass MQ equals

~FP = −GMP MQ

r3
PQ

~rPQ (2.18)

where ~rPQ is the vector between points P and Q, rPQ is its length, and G is the

universal gravitational constant. The value of G has been determined empirically. The

2002 CODATA (Committee on Data for Science and Technology) recommended value

of the gravitational constant is (Mohr and Taylor, 2005)

G = (6.6742± 0.001)× 10−11m3kg−1s−2 (2.19)

The gravitational acceleration ~a caused by this force field can be easily found by ap-

plying Newton’s second law of motion (~F = M~a)

~aP = −GMQ

r3
PQ

~rPQ (2.20)

These universal formulas form the basis for every study of the Earth’s gravitational

field, and are therefore of prime importance in ellipsoidal physical geodesy.

2.2.2 Gravity

Gravitational acceleration induced by the masses of the Earth forms the major part of

the acceleration observed by gravimetric instruments, but there are other effects that

play a role. The most important of these is the centrifugal acceleration ~χ due to the

rotation of the Earth, which in the spherical polar coordinate system reads

~χ = ω2r




sin θ cos λ

sin θ sin λ

0


 (2.21)

where ω is the angular velocity of the Earth’s rotation. The numerical value of ω is

determined by space geodetic techniques and its numerical value in the definition of

the Geodetic Reference System 1980 (GRS80) (Moritz, 1980) can be found in Table

2.5. The velocity of the Earth’s rotation changes slightly over time (e.g., Lambeck,

1980; Gross, 2001), but since the length-of-day variation is only in the order of several

milliseconds, its effect is at least seven orders of magnitude smaller than the centrifugal
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acceleration itself. The Earth’s rotation can therefore safely be treated as a constant

for gravity field modelling.

There are a number of other time-variable gravity effects, such as tidal gravitational

acceleration primarily caused by the Sun and the Moon, and inertial acceleration of

rotation caused by precession, nutation and polar motion. These effects will not be

considered in this work, as they are at least three orders of magnitude smaller than

the ellipsoidal effects (e.g., Groten, 1979).

Gravity is defined as the vector sum of the gravitational and the centrifugal acceleration

~g = ~a + ~χ (2.22)

and will in this thesis be considered time-invariant, although seasonal time-variations

in the Earth’s gravity field have recently been revealed by satellite observations from

GRACE (Wahr et al., 2004) and CHAMP (Sneeuw et al., 2005).

2.2.3 The external gravity field: A harmonic vector field

The Earth’s gravitational field is a vector field, because every point in space has an

absolute magnitude and a direction. Vector fields are often categorised by making use

of two important differential operators, the divergence and the curl. The divergence of

vector ~v at a point is the dot product of the gradient operator and that vector (∇ · ~v),

whereas the curl of vector ~v is defined as the cross-product of the gradient operator

and the vector (∇×~v). Categorisation of vector fields is obtained by asserting whether

the divergence and curl of the vectors are zero or non-zero (see Figure 2.3).

If the curl of a vector field is equal to zero at all points, the field is called irrotational or

conservative. In this case, the vector field is called a Poisson field. It can be shown using

Newton’s universal law of gravitation that the Earth’s gravitational field, if considered

stationary, is a Poisson field

∇× ~a = 0 (2.23)

For a formal proof of Equation (2.23), see, e.g., Sigl (1985). Poisson fields have the
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Laplace field Solenoidal field

Poisson field General field

harmonic

conservative/irrotational

source-free

Figure 2.3: Categorisation of vector fields by investigation of their curl and divergence

important property that they can always be expressed as a gradient field. This means

that at every point, the vector ~a can be written as the gradient of some scalar function

V , which here is called the gravitational potential

~a = ∇V (2.24)

when ~a is considered continuous and V continuously differentiable, which holds for

the external gravitational field (e.g., Kellogg, 1929). This is extremely useful, since it

reduces the three-dimensional vector field to a one-dimensional scalar field.

If the divergence of a vector field is zero, the field is called solenoidal. A Poisson field

is not necessarily solenoidal; the divergence of a gradient field is, in general, a function

of position

∇ · ~a = ∇ · ∇V = ∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
(2.25)

where ∇2 is the Laplacian differential operator. Using Newton’s law (Equation 2.18),

it can be shown that the divergence at a point in the gravitational field is a function

of the mass-density % at that same point

∇ · ~a = 4πG% (2.26)

Equation (2.26) is known as Poisson’s differential equation. A mathematical proof for

this formula is provided in, e.g., Sigl (1985).
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Thus, outside the masses of the Earth and its atmosphere, where the density is equal

to zero, the gravity field is a solenoidal field (see Figure 2.3). From Equations (2.23)

and (2.26), it can be seen that the external gravity field is a Laplace field that can be

described by a harmonic function, the scalar gravitational potential V , which obeys

Laplace’s differential equation

∇2V = 0 (2.27)

As discussed in Section 2.2.2, the Earth’s gravity field comprises the gravitational

field and the acceleration field induced by the Earth’s rotation. The potential of the

gravity field W can thus be separated in the gravitational potential V , plus a rotational

component Ω

W = V + Ω (2.28)

where

Ω =
1

2
ω2r2 sin2 θ (2.29)

It can be seen from Equation (2.29) that the rotational potential Ω does not satisfy

Laplace’s differential equation. Therefore, the Earth’s gravity field is, contrary to the

gravitational field, not harmonic outside the surface of the Earth.

However, the gravity field of the Earth is conservative, which allows for the definition

of the rotational potential. This means that the Earth’s gravity field can be viewed as

given by surfaces of equal potential. The geoid, depicted in Figure 2.4, is here defined

as the surface with a certain potential W0 that best fits, in a least-squares sence, global

mean sea level. Estimates of W0 are given by, e.g., Burša (1995) and Grafarend and

Ardalan (1997).

2.2.4 The reference gravity field

To simplify the determination of the Earth’s gravity field, it is often separated into a

reference (or normal) gravity field with potential U and a remaining disturbing (anoma-

lous) field with potential T at any point P

WP = UP + TP (2.30)
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mean sea level

geoid

ellipsoid

sea surface topography

Earth surface

geoid height

ellipsoidal
      height

orthometric
      height

Figure 2.4: Relations between the Earth surface, mean sea level, the ellipsoid and the geoid:
the ellipsoidal height is measured from the ellipsoid to the Earth surface, the geoid height
from the ellipsoid to the geoid, the sea surface topography from the geoid to mean sea level
(all three along the ellipsoidal normal) and the orthometric height from the geoid to the Earth
surface along the plumbline of gravity, where all four measures are positive in the external
direction

The reference field U should be chosen in such a way that it is close to the true gravity

field, but mathematically simply defined. Since the disturbing field will then be small,

it can usually be considered linear (or linearised), which simplifies the construction of

methodologies to compute the Earth’s gravity field.

The most simple form of a reference gravity field is a spherical one, where the Earth

is assumed to be a point mass, a concentric shell or a sphere with no lateral density

variations. The magnitude of the reference gravity vector ~γ induced by such a field at

any point P outside the sphere at a distance rP from its origin can simply be derived

from Newton’s universal law of gravitation (Equation 2.20)

γP =
µ

r2
P

(2.31)

where µ is the terrestrial gravitational constant, which is simply the product of the

gravitational constant G and the mass of the reference Earth model. Since this reference

gravity field is a harmonic vector field, the reference potential U can also be derived

UP =
µ

rP

(2.32)
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Due to the radial symmetry of Equation (2.32), the equipotential surfaces of any given

potential value U are all spheres. This definition of the reference field excels in simplic-

ity, but because the centrifugal potential Ω is not modelled by the reference potential

field, the disturbing potential T is non-harmonic. Secondly, the equipotential surfaces

of the Earth’s gravity field, in particular the geoid, are much closer described by an

ellipsoid of revolution. For these reasons, a rotating ellipsoidal reference gravity field is

usually adopted, with potential U resulting from the sum of the gravitational potential

due to an assumed total mass of the reference Earth and the centrifugal potential due

to a reference rotation velocity.

A reference gravity field that has equal potential at all points on the ellipsoidal surface

can be constructed, and the magnitude of the gravity at a point Q′ on the surface of

the ellipsoid induced by this field can be found by the Somigliana-Pizetti formula (e.g.,

Heiskanen and Moritz, 1967, Eq. 2-78)

γQ′ =
aγa sin2 ϑ + bγb cos2 ϑ√

a2 sin2 ϑ + b2 cos2 ϑ
(2.33)

where γa and γb are the magnitude of gravity at the equator and at the poles respec-

tively, which can be computed from the reference mass, reference rotation velocity and

major and minor axes of the ellipsoid (e.g., Heiskanen and Moritz, 1967; Moritz, 1980).

The values of a, γa and γb for GRS80 (Moritz, 1980) are shown in Table 2.5, and

the semi-minor axis b can be derived from the semi-major axis a and the flattening f

through Equation (2.7).

Equation (2.33) is given as a function of geodetic co-latitude (ϑ), but can through

application of Equation (2.6) also be expressed as a function of geocentric co-latitude

(θ) and reduced co-latitude (β)

γQ′ =
a3γb cos2 θ + b3γa sin2 θ√

a2 cos2 θ + b2 sin2 θ
√

a4 cos2 θ + b4 sin2 θ
(2.34)

γQ′ =
aγb cos2 β + bγa sin2 β√

a2 cos2 β + b2 sin2 β
(2.35)

The reference gravity vector on the surface of the ellipsoid points in the opposite

direction to the ellipsoidal external normal. In the remainder of this thesis, the normal

gravity and its derivatives will only be required for points on the ellipsoid, and therefore

the subscript Q′ is, in most instances, dropped from hereon.
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description symbol value

semi-major axis a 6378137 m

inverse flattening f−1 298.257222101

terrestrial gravitational constant µ 3.986005 · 1014 m3s−2

angular rotation velocity ω 7.292115 · 10−5 s−1

normal potential at ellipsoid U0 6.2636860850 · 107 m2s−2

gravity at equator γa 9.7803267715 ms−2

gravity at pole γb 9.8321863685 ms−2

Table 2.5: Parameters of the Geodetic Reference System 1980 GRS80 (from Moritz, 1980)

The derivative of γ with respect to the external normal, here notated as dh, can be

found as a function of the principal radii of curvature and the angular rotation velocity,

using a formula generally attributed to Bruns (Heiskanen and Moritz, 1967, p. 70)

∂γ

∂h
= −γ

(
1

ρ
+

1

ν

)
− 2ω2 (2.36)

The reference gravity and its normal derivative play an important role in the derivation

of the fundamental formulas that allow for the determination of the Earth’s gravity

field from gravity measurements, as will be shown in Section 2.3.2.

2.3 Geodetic boundary-value problems

The determination of the Earth’s external gravity field and the geoid from gravity-

related measurements requires the solution of a BVP, since measurements are generally

provided on a surface, whereas the unknown gravity field is required in the complete

three-dimensional external space. The boundary conditions of the most often used

geodetic BVPs are derived here and the approximations are discussed.

Since the focus of this thesis is on ellipsoidal effects, the boundary conditions are here

derived on the surface of the ellipsoid. Effects due to the downward-continuation of
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observed gravity from the surface of the Earth to the geoid or the ellipsoid and the

treatment of the effect of the topographic mass are not taken into account. Atmospheric

and tidal effects are also assumed to be properly modelled.

The downward-continuation of gravity is a common step in gravity field and geoid mod-

elling and its details are ubiquitous in the literature (e.g., Martinec and Vańıček, 1994;

Vańıček et al., 1996, 1999; Nahavandchi and Sjöberg, 1998). It forms an important

part of the Stokes (1849) approach and the Hotine (1969) approach to geoid modelling.

This introduces an indirect effect to the geoid, and the resulting equipotential surface

is called the cogeoid or regularised geoid (e.g., Heiskanen and Moritz, 1967), but here

the term geoid will be used throughout. The Stokes approach is distinctly different

from the Molodensky (1962) approach, where gravity is not downward-continued. This

approach does not yield geoid heights, but telluroid or quasigeoid heights, and will not

be considered here.

The topographic effects in ellipsoidal physical geodesy were recently investigated by,

e.g., Finn et al. (2002), Ardalan and Safari (2004), Novák and Grafarend (2005) and

Sjöberg (2004a), the latter of whom concludes that the error introduced by the com-

monly applied spherical approximations is practically negligible.

2.3.1 Types of boundary-value problems

Depending on the nature of the available boundary conditions (i.e., depending on the

available data), different BVPs can be distinguished, but other conditions also need to

be defined. Firstly, since the exterior gravitational field is a Laplace field, the Laplace

equation forms the harmonicity conditions in every geodetic BVP

∇2T (~x) = 0, ~x ∈ V (2.37)

where V is the space external to the masses of the Earth. Secondly, note that the

disturbing potential T can only be determined up to a constant, because it is the

gradient of a vector. This constant is usually set to zero, which yields the regularity
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condition occurring in every geodetic BVP

T (~x) → 0, |~x| → ∞ (2.38)

Alongside these two conditions, the boundary condition gives information about the

potential and/or a derivative thereof on a boundary S outside the Earth’s masses.

Some standard BVPs include (Kellogg, 1929; Sigl, 1985):

Dirichlet: T (~x) = F , ~x ∈ S

Neumann:
∂T (~x)

∂n(~x)
= F , ~x ∈ S

Robin:
∂T (~x)

∂n(~x)
+ κT (~x) = F , ~x ∈ S

(2.39)

where F is a quantity assumed to be known, n(~x) is the normal to the surface S, and

κ is an arbitrary constant.

Green’s theorems

Green’s integral theorems relate the gravitational potential of a continuous mass-

density distribution in a limited area to integrals over the normal derivative of the

potential and the potential itself at the boundary. They provide the formulas to

compute the Earth’s exterior gravitational potential from observational data on the

boundary, without the need to know the interior density distribution of the Earth and

thereby facilitate the solution of geodetic BVPs. Since the Earth’s interior density

distribution is not likely to be known in the near future, modelling of the gravity field

of the Earth will in practice always require a solution to a BVP.

Green’s first integral theorem can be used to determine which boundary conditions

a potential function must obey in order to be uniquely determined. It reads (e.g.,

Kellogg, 1929; Sigl, 1985)
∫∫∫

V

(Φa∇2Φb +∇Φa∇Φb)dV =

∫∫

S

Φa
∂Φb

∂n
dS (2.40)

where Φa and Φb are non-identical potential functions. With the use of this theo-

rem, it can be proved that the Dirichlet, Neumann and Robin BVPs are all uniquely

determined (Sigl, 1985).
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Green’s second integral theorem follows directly from the first theorem by exchanging

the scalar functions Φa and Φb and taking the difference with Equation (2.40) (e.g.,

Kellogg, 1929; Sigl, 1985)

∫∫∫

V

(Φa∇2Φb − Φb∇2Φa)dV =

∫∫

S

(
Φa

∂Φb

∂n
− Φb

∂Φa

∂n

)
dS (2.41)

Equation (2.41) is alternatively known as Green’s reciprocity theorem. It is often

utilised to solve various BVPs (Kellogg, 1929). It also follows from this theorem that

the Earth’s gravity field can be computed exterior to the Earth’s surface if the potential

and its normal derivative are known on the surface, because application of this formula

to the unbounded domain external of the Earth’s masses provides a function for the

disturbing potential in any point P in space from information on the boundary SQ

TP =
1

4π

∫∫

S

(
TQ

∂r−1
PQ

∂n
− 1

rPQ

∂TQ

∂n

)
dSQ (2.42)

where all masses outside the Earth are neglected or mathematically moved inside. This

solution requires knowledge of the disturbing potential and its normal derivative on the

boundary.

2.3.2 Geodetic boundary conditions

Various geodetic boundary conditions can be defined for different types of observa-

tions, or combinations of observations. A boundary condition, in general, relates the

observed quantity to the gravity field of the Earth, usually represented by the disturb-

ing potential T . The three main quantities that can be observed (directly or indirectly)

are geoid heights, gravity disturbances and gravity anomalies. Their relations to the

disturbing potential, which cannot be observed, give rise to the first, second and third

geodetic BVPs respectively.

The first geodetic boundary-value problem

Geoid heights can be observed over the oceans from time-averaged satellite radar al-

timetry, after instrument corrections and corrections for sea surface topography and
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tides are applied (e.g., Fu and Cazenave, 2001; Vergos et al., 2005). On land, geoid

heights follow from the difference between the geometric ellipsoidal height h and the

orthometric height H (see Figure 2.4). However, this commonly used relation is not

exact, since the orthometric height is measured along the plumbline of the gravity field

rather than along the ellipsoidal normal.

Ellipsoidal heights can be observed with a satellite positioning system and orthome-

tric heights are usually derived from geodetic spirit levelling, although it should be

noted that true orthometric heights cannot be known unless the mean value of the

Earth’s gravity acceleration along the plumbline within the topography is known (e.g.,

Tenzer et al., 2005). In addition, differences between local vertical datums introduce

inconsistencies in orthometric heights.

The relation between geoid heights N and the disturbing potential T is given by Bruns’s

equation, which forms the boundary condition in the first geodetic BVP and also plays

an important role in the derivation of the third geodetic BVP.

The geoid height, or geoid undulation, N is defined as the distance between a point

on the geoid P ′ and a point on the ellipsoid Q′ in a straight line along the ellipsoidal

normal, as in, e.g., Heiskanen and Moritz (1967, p. 83). Points P ′ and Q′ thus have

the same geodetic latitude and longitude. Note, however, that other definitions exist.

For example, Martinec (1998) defines the geoid height as the length of the plumbline

of the reference gravity field, which is a curved line, and thus situates point Q′ at the

same plumbline as point P ′. Since the curvature of the plumbline of the reference

gravity field is smaller than the inverse of the Earth’s radius, the difference between

both concepts is at the sub-micrometre level.

The simplest form of Bruns’s equation occurs when the gravity potential of the geoid

W0 is chosen equal to the known (and constant) reference potential at the ellipsoid

UQ′ , in which case according to Equation (2.30)

TP ′ = UQ′ − UP ′ (2.43)

The difference between the reference gravity potential on the ellipsoid and on the geoid
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can be written as a Taylor series around point Q′

TP ′ = −
∞∑

j=1

1

j!

∂jU

∂hj

∣∣∣∣
Q′

N j (2.44)

When only the first term in the series on the right-hand side of Equation (2.44) is

taken into account, a simple solution emerges, bearing in mind that the derivative of

the reference potential with respect to the ellipsoidal normal equals the magnitude of

the reference gravity

N =
TP ′

γQ′
(2.45)

and this is called Bruns’s formula (e.g., Heiskanen and Moritz, 1967, p. 85). It forms

the boundary condition in the first geodetic BVP, which according to Equation (2.39)

is a Dirichlet problem. The error introduced by the truncation of the summation in

Equation (2.45) is evaluated in Section 2.3.3.

The second geodetic boundary-value problem

The second geodetic BVP is based on the gravity disturbance δg, which is defined as

the difference between the magnitudes of gravity and reference gravity at the same

point. For a point Q′ on the surface of the ellipsoid, the gravity disturbance thus reads

δg = gQ′ − γQ′ (2.46)

Computation of gravity at point Q′ requires a downward-continuation of gravity ob-

served at the Earth’s surface to the surface of the ellipsoid. This is possible when the

ellipsoidal height h of the point, at which gravity is observed, is known, which is in

practice not the case for most gravity observations. Alternatively, the ellipsoidal height

can be approximated if the orthometric height H and an a-priori estimate of the geoid

height N are available.

The magnitude of gravity at point Q′ is the derivative of the potential in the direction

of the gravity vector, which is opposite to the external normal to the equipotential

surface of the Earth’s gravity field that runs through Q′. The external normal to

the equipotential surface is here symbolised by dH, since the orthometric height H is

measured along the plumbline. Equation (2.46) can thus also be written as

δg = −∂W

∂H

∣∣∣∣
Q′

+
∂U

∂h

∣∣∣∣
Q′

(2.47)
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The difference in the direction of the gravity vector and the ellipsoidal normal is called

the deflection of the vertical. If this deflection of the vertical is neglected, approxi-

mating ∂W/∂H by ∂W/∂h, the gravity disturbance can be related to the disturbing

potential T via a simple relation

δg = −∂T

∂h

∣∣∣∣
Q′

(2.48)

The error introduced by neglecting the deflection of the vertical is assessed in Section

2.3.3. Equation (2.48) forms the boundary condition in the second geodetic BVP, also

called the fixed-geodetic BVP, which is a Neumann problem (see Equation 2.39). Since

the gravity disturbance is considered at the ellipsoid, the second geodetic BVP with

the boundary condition in Equation (2.48) is an ellipsoidal BVP. The computation of

geoid heights from gravity disturbances defined by Equation (2.48) is called the Hotine

(1969) approach to geoid modelling.

The third geodetic boundary-value problem

When the ellipsoidal height is not available, as is the case for most gravity observations,

the gravity at point Q′ that appears in Equation (2.46) cannot be computed, but only

estimated if an a-priori value of the geoid height is known. Alternatively, gravity on

the ellipsoid at point Q′ can be replaced by gravity on the geoid at point P ′. This leads

to the definition of the gravity anomaly ∆g

∆g = gP ′ − γQ′ (2.49)

The difference between the gravity anomaly and the gravity disturbance can be evalu-

ated using a Taylor series expansion with respect to the geoid height N

∆g − δg = gP ′ − gQ′ ≈ γP ′ − γQ′ =
∞∑

j=1

1

j!

∂jγ

∂hj

∣∣∣∣
Q′

N j (2.50)

The error due to the approximation in Equation (2.50) does not exceed the error that

occurs when the summation in Equation (2.50) is truncated after the first term (Moritz,

1989), as is common practice. This approximation would not have been required if the

gravity disturbance would have been defined at point P ′ on the geoid, but here the

definition on the ellipsoid is retained to acquire a boundary condition on the ellipsoid.
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The magnitude of the error introduced by the truncation of Equation (2.50) after the

first term is discussed in Section 2.3.3. The gravity anomaly then becomes

∆g = δg +
∂γ

∂h
N (2.51)

The boundary condition in the case of the gravity anomaly can now be found by

inserting Equations (2.45) and (2.48) into Equation (2.51)

∆g = −∂T

∂h

∣∣∣∣
Q′

+
1

γ

∂γ

∂h
TQ′ (2.52)

where TP ′ in Bruns’s equation (Equation 2.45) is replaced by TQ′ , which is consistent

with the linear approximation of the Taylor series (e.g., Moritz, 1989). The gravity

anomaly in Equation (2.52) depends solely on functionals at point Q′ on the ellipsoid,

and is therefore herein called the gravity anomaly on the ellipsoid. Note that Equation

(2.52) is not exactly similar to the fundamental equation of physical geodesy as defined

by Heiskanen and Moritz (1967, Eq. 2-148), where the disturbing potential T and its

normal derivative are defined on the geoid. Due to the fact that the gravity anomaly

is here defined on the ellipsoid, the BVP of which Equation (2.52) forms the boundary

condition is an ellipsoidal BVP, which can be solved without further approximations

(see Chapters 3 and 4).

The BVP of solving the disturbing potential from gravity anomalies is called the third

geodetic BVP, or alternatively the free-geodetic BVP. However, the latter name is not

very appropriate under the current definition of the gravity anomaly on the ellipsoid,

because this definition has essentially fixed the boundary to the ellipsoid. The bound-

ary is thus no longer free, as it is under the more common definition of the fundamental

equation of physical geodesy (Heiskanen and Moritz, 1967, Eq. 2-148). Inspection of

Equation (2.39) shows that this third geodetic BVP is a Robin problem. The com-

putation of geoid heights from the gravity anomalies in Equation (2.52) is called the

Stokes (1849) approach to geoid modelling.

More rigorous relations between the gravity anomaly and the disturbing potential exist,

which do not neglect the deflection of the vertical (e.g., Moritz, 1989; Heck, 1991;

Vańıček et al., 1999) or that do not truncate the Taylor series (Grafarend et al., 1999).

These more general formulas have, however, never been solved rigorously. All existing
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solutions of the third ellipsoidal geodetic BVP take Equation (2.52) as a point of

departure, and even approximate this equation further to facilitate its solution (e.g.,

Stokes, 1849). In this thesis, further approximation of Equation (2.52) is avoided. The

influence of the approximations already made in the derivation of Equations (2.45),

(2.48) and (2.52) are discussed in detail in the following Section.

2.3.3 Approximation effects in geodetic boundary conditions

Approximation effects in geodetic boundary conditions are here defined as the theo-

retical differences between the classical first-order spherical approximations and their

rigorous counterparts. Recall that effects due to the downward-continuation of gravity

on the surface of the Earth to the geoid and the removal of the effect of the topo-

graphic mass are not taken into account here, and that atmospheric and tidal effects

are also assumed to be properly modelled. Still, there are three approximation effects

remaining that follow directly from the derivations of the boundary conditions in Equa-

tions (2.45), (2.48) and (2.52). Their magnitudes and possible ways to model them are

summarised below.

The linearisation effect

The linearisation effect affects both the first and the third geodetic BVPs and it stems

from the truncation of the Taylor series in Equations (2.44) and (2.50) after the first

term. Grafarend et al. (1999) provide an algorithm to compute the geoid height N

from Equation (2.44) using the solution of a multivariate homogeneous polynomial

(Grafarend et al., 1996), and numerical results of this formulation are given in Ardalan

and Grafarend (2001a). This algorithm gives a more accurate version of Bruns’s equa-

tion by adding terms with higher powers of the disturbing potential

N =
T

γ
− 1

2γ3

∂γ

∂h
T 2 +

[
1

2γ5

(
∂γ

∂h

)2

− 1

γ4

∂2γ

∂h2

]
T 3 +O(T 4) (2.53)

Since the magnitude of the higher-order terms decreases rapidly, the error in Bruns’s

equation (Equation 2.45) can be estimated from the second term. The Earth’s disturb-

ing potential has an absolute maximum of approximately 1000 m2s−2, which means that
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the maximum error in the geoid height due to linearisation effect in Bruns’s equation

is approximately 1.5 mm.

It is worth noticing that a refinement to Bruns’s equation simpler than Equation (2.53)

can also be derived. When the reference potential in the nonlinear terms in the Taylor

series of Equation (2.44) is approximated by the spherical reference potential (Equation

2.32), the summation of the terms with j running from 2 to∞ is given by an alternating

power series

T = γN −
∞∑

j=2

1

j!

∂jŨ

∂hj
N j

= γN − µ

R

∞∑
j=2

(−1)j

(
N

R

)j

(2.54)

where R is the spherical radius and where the spherical approximation of the reference

potential has been indicated by a tilde. The infinite sum in Equation (2.54) can be

expressed as a closed analytic expression. When the disturbing potential T is multiplied

by N/R and subsequently added to T , all cubic and higher-order terms cancel out,

resulting in

T = γN − µ

R2

(
N2

R + N

)
=

(γ − γ̃)N2 + RγN

R + N
(2.55)

The term containing the square of the geoid undulation on the right-hand side of

Equation (2.55) will always be small. In the case of the GRS80 ellipsoidal reference

potential, the contribution of this quadratic term is only approximately 5×10−5 percent

of the total disturbing potential, equivalent to around 50 µm in geoid undulation at

most. Disregarding this term, the solution for the geoid undulation N can then be

found as Bruns’s equation multiplied by a factor close to unity

N =
T

γ

(
R

R− T/γ

)
(2.56)

This generalisation of Bruns’s equation is exact if a spherical reference gravity field

(Equation 2.32) is applied, and improves on the accuracy of the original Bruns’s equa-

tion by approximately three orders of magnitude in case of the GRS80 reference field.

Since the simple Bruns’s equation (Equation 2.45) is used in the derivation of Equation

(2.52), the third geodetic BVP also contains a linearisation effect. Moreover, a second
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linearisation error is apparent due to the truncation of the Taylor series in Equation

(2.50). Grafarend et al. (1999) give the generalised fundamental equation without

linearisation effect as

∆g = −∂T

∂h
+

1

γ

∂γ

∂h
T +

1

2γ3

[
∂2γ

∂h2
−

(
∂γ

∂h

)2]
T 2 +O(T 3) (2.57)

Applying the principle of spherical approximation to the nonlinear terms in the Taylor

series in Equation (2.50) and inserting Equation (2.56) gives the same series, but in

this case all terms after the second term vanish. Since this formulation is exact for

a spherical reference gravity field, the linearisation effect in the fundamental equation

can be given as a closed analytical expression when this spherical reference field is

applied throughout.

When an ellipsoidal reference field is applied, an exact closed expression cannot be

found, but in this case higher-order terms can be neglected because the linearisation

effect is in this case much smaller

∆g = −∂T

∂h
+

1

γ

∂γ

∂h
T +

T 2

µ
+O(T 3) (2.58)

From both the formulations in Equations (2.57) and (2.58) it can be estimated that

the error in the original fundamental equation of physical geodesy (Equation 2.52)

due to the linearisation effect has an absolute maximum of approximately 0.3µGal (1

Gal ≡ 100 m/s2), which is negligible considering the accuracy of absolute gravimeters,

which is in the order of 1µGal (Faller, 2002), and its effect on the geoid height is well

below 1 mm. Further investigations into the linearisation effect of the third geodetic

BVP are made in, e.g., Seitz et al. (1994) and Heck and Seitz (1995).

The deflection effect

The deflection effect affects the second and third geodetic BVPs and stems from ne-

glecting the deflection of the vertical Θ. Various definitions of the deflection of the

vertical exist, the most common of which is Helmert’s definition (Jekeli, 1999), which

defines the vertical deflection as the difference in direction between the gravity vector

and the ellipsoidal normal. On the surface of the ellipsoid this is equal to the direction

difference between the gravity vector and the reference gravity vector.
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It should be noted that some authors consider the deflection effect as a component of

the ellipsoidal effect (e.g., Vańıček et al., 1999). This approach is not followed here.

Instead, the approach of Jekeli (1981) is followed, where the deflection effect in the

second and third geodetic BVPs is given by the difference between the derivatives of

the gravity potential in the direction of the normal gravity vector and in the direction of

the true gravity vector on the ellipsoid. In Vańıček et al. (1999), this effect is included

inside the correction that accounts for the approximation of the gravity disturbance by

the derivative of the disturbing potential in the inward radial direction.

Jekeli (1981, p.125) and Cruz (1986, p.3) provide distinctly different estimates for the

magnitude of the deflection effect, which can presumably be explained by an unwar-

ranted approximation of the latitudinal derivative of the normal potential in Jekeli’s

(1981) derivation. Here, the approach of Jekeli (1981) is followed, but with a simple

correction, confirming the result of Cruz (1986).

The deflection of the vertical is usually decomposed into a north-south component (ξ)

and an east-west component (η). It follows from Figure 2.5 that the north-south and

east-west deflections are related to the total deflections by

tan2 Θ = tan2 ξ + tan2 η (2.59)

Because the total deflection does generally not exceed 70 arcseconds (Bomford, 1971),

Equation (2.59) can safely be approximated by

Θ2 = ξ2 + η2 (2.60)

It also follows from Figure 2.5 that the derivative in the direction of the gravity vector

can be expressed in terms of geodetic coordinates using the direction cosines of dH

with respect to the normal directions that follow from geometric consideration

∂

∂H
= cos Θ

(
∂

∂h
− tan ξ

∂

ρ∂ϑ
+ tan η

∂

ν sin ϑ∂λ

)
(2.61)

Inserting the gravity potential W and approximating the direction cosines in the hori-

zontal directions gives an expression for the error introduced by neglecting the deflec-

tion effect (Jekeli, 1981)

∂W

∂h
− ∂W

∂H
= (1− cos Θ)

∂W

∂h
+ ξ

∂W

ρ∂ϑ
− η

∂W

ν sin ϑ∂λ
(2.62)
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Figure 2.5: The deflections of the vertical on the surface of the ellipsoid

Further approximating the principal radii of curvature (Equations 2.14 and 2.15) by

the spherical radius R and using the approximate relations for the deflections of the

vertical (Jekeli, 1999)

ξ ≈ 1

γR

∂T

∂ϑ
and η ≈ − 1

γR sin ϑ

∂T

∂λ
(2.63)

it follows that Equation (2.62) can be approximated by

∂W

∂h
− ∂W

∂H
= (cos Θ− 1)g + ξ

∂U

R∂ϑ
− η

∂U

ν sin ϑ∂λ
+ ξ2γ + η2γ (2.64)

Since the normal potential U is constant on the surface of the ellipsoid, the derivatives

of U with respect to the geodetic latitude and longitude equal zero. An approximation

of the deflection error can thus be obtained

∂W

∂h
− ∂W

∂H
=

1

2
γΘ2 (2.65)

where the first term on the right-hand side of Equation (2.64) is approximated by

−1
2
γΘ2. Total deflections as large as 70 arcseconds have been measured near Mount

Everest (Bomford, 1971, p. 528), for which case the deflection error, according to Equa-

tion (2.65), is approximately 56 µGal. The deflection error can be properly modelled

if an approximation of the vertical deflection is available, and this can, for example, be

computed a priori from a global geopotential model (Jekeli, 1999).
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The ellipsoidal effect

The ellipsoidal effect is the largest of the three approximation effects in BVPs. It

is caused by the approximation of the derivative of the disturbing potential and the

reference gravity with respect to the ellipsoidal normal by the radial derivative in the

second and third geodetic BVP, and by the approximation of the ellipsoidal reference

gravity by a spherical one in the third geodetic BVP. These approximations are usually

applied to facilitate their solution. In these spherical approximations, indicated by

tildes, the second geodetic boundary condition (Equation 2.48) reads

δ̃g = −∂T

∂r
(2.66)

and the third geodetic boundary condition (Equation 2.52) reads

∆̃g = −∂T

∂r
− 2

r
T (2.67)

The error introduced by these spherical approximations is of the order of the flattening

of the Earth, i.e., approximately 0.3%. A geoid computation based on Equation (2.67)

leads to an error in the geoid height of several decimetres.

An extra approximation is often made by replacing the geocentric radius r by a spherical

radius R, and this is known as the constant radius approximation. Equation (2.67)

then becomes

∆̃g = −∂T

∂r
− 2

R
T (2.68)

It will be shown in the remainder of this thesis that the errors resulting from this

constant radius approximation can become much greater than the order of the Earth’s

flattening in certain applications, such as the analytic computation of a global spherical

harmonic geopotential model from terrestrial gravity observations.

The primary aim of ellipsoidal physical geodesy is to correct for or avoid these errors,

by solving the rigorous boundary conditions in Equations (2.45), (2.48) and (2.52) for

an ellipsoidal boundary. Theoretically exact solutions to these boundary conditions are

derived in the following chapters for the first time, in the convenient spherical harmonic

framework, in accordance with the objective of this study (Section 1.4).
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2.4 Harmonic base functions

The Earth’s gravity field can be represented in many ways, the most popular of which

by far is a representation as a series of solid spherical harmonic base functions (SHFs),

often simply called spherical harmonics (e.g., Hobson, 1931; MacRobert, 1967). An

alternative to spherical harmonics are ellipsoidal harmonics (e.g., Hobson, 1931), which

play an important role in many methodologies in ellipsoidal physical geodesy, but are

seldom used as a representation of the Earth’s gravity field (see Section 1.4.2).

2.4.1 Solid spherical harmonics

Solid spherical harmonic expansions provide a solution to Laplace’s differential equa-

tion (Equation 2.27), which in spherical polar coordinates reads (e.g., Hobson, 1931;

MacRobert, 1967)

r2∂2T

∂r2
+ 2r

∂T

∂r
+ cot θ

∂T

∂θ
+

∂2T

∂θ2
+ csc2 θ

∂2T

∂λ2
= 0 (2.69)

where csc denotes the cosecant (the multiplicative inverse of the sine). It is shown here

for the disturbing potential T , but naturally holds for any harmonic function. The

solution to Equation (2.69) can be found by separation of variables (e.g., Dragomir

et al., 1982; Sigl, 1985) and leads to two series solutions, one of which diverges for

r → ∞ and one of which diverges for r → 0. The latter can be used to represent the

Earth’s external gravity field, since according to Newton’s universal law of gravitation

(Equation 2.18), the gravity field tends to zero for r →∞. This solution reads

T (r, θ, λ) =
∞∑

n=0

(
R

r

)n+1 n∑
m=−n

TR
nmYnm(θ, λ) (2.70)

where TR
nm are the spherical harmonic coefficients (SHCs) of degree n and order m, and

R is the radius of some reference sphere. The inclusion of R is in fact not necessary,

since it is a constant, but it provides a useful scaling to the coefficients TR
nm because

the absolute value of the term r−(n+1) rapidly decreases with increasing degrees n. The

use of the superscript R in the SHCs is not common, but is applied here to show that

the values of the SHCs depend on the choice of the reference sphere.
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In Equation (2.70), Ynm are the SHFs, which are defined as

Ynm(θ, λ) = Pn|m|(cos θ)

{
cos mλ for m ≤ 0

sin mλ for m > 0
(2.71)

where Pnm are the associated Legendre functions (ALFs). These are the solutions to

the associated Legendre differential equation (e.g., Abramowitz and Stegun, 1972)

∂2Pnm

∂θ2
+ cot θ

∂Pnm

∂θ
+ [n(n + 1)−m2 csc2 θ]Pnm = 0 (2.72)

Several recurrence formulas among ALFs are known, such as (e.g., MacRobert, 1967;

Abramowitz and Stegun, 1972)

Pnm = (2n− 1) sin θPn−1,m−1 + Pn−2,m, m ≥ 1 (2.73)

Pnm =
2n− 1

n−m
cos θPn−1,m − n + m− 1

n−m
Pn−2,m, m ≤ n− 1 (2.74)

Pnm = 2(m− 1) cot θPn,m−1 − (n−m + 2)(n + m− 1)Pn,m−2, m ≥ 2 (2.75)

These equations can be used to compute the functions of degree n ≥ 2, based on the

initial values

P0,0(cos θ) = 1 (2.76)

P1,0(cos θ) = cos θ (2.77)

P1,1(cos θ) = sin θ (2.78)

where the functions with m > n are defined as equal to zero.

ALFs are often fully normalised, making the average square value of the SHFs over the

sphere equal to unity, by applying a scale factor based on the degree n and order m of

the function

P nm = Pnm

{ √
2n + 1 for m = 0√
2(2n + 1) (n−m)!

(n+m)!
for m 6= 0

(2.79)

although it should be noted that alternative normalisation procedures, such as the

Gram-Schmidt semi-normalisation, also exist. The fully normalised ALFs in Equation

(2.79) obey similar, but slightly different, recurrence relations than the unnormalised

ones (Equations 2.73 - 2.75). Algorithms to compute them, avoiding numerical insta-

bilities for large degrees and orders, are for example provided by Koop and Stelpstra

(1989) and Holmes and Featherstone (2002).
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Introducing the fully normalised ALFs into Equation (2.71) yields fully normalised

SHFs Y nm. The normalisation ensures that the average square value of these fully

normalised harmonics over the sphere is equal to unity

1

4π

∫

σ

Y nm(θ, λ)Y n′m′(θ, λ)dσ = δnn′δmm′ (2.80)

where δij is the Kronecker delta, which is equal to 1 for i = j and 0 otherwise. Equation

(2.80) is an important relation since it shows that the SHFs form a set of orthogonal

base functions on the sphere. Application of these fully normalised harmonics to rep-

resent a function, as in Equation (2.70), yields different SHCs and these are therefore

also notated with an overbar

T (r, θ, λ) =
∞∑

n=0

(
R

r

)n+1 n∑
m=−n

T
R

nmY nm(θ, λ) (2.81)

The coefficients T
R

nm can be computed from the data on the sphere of radius R, which

follows from the orthogonality of the SHFs on the sphere (Equation 2.80)

T
R

nm =
1

4π

∫

σ

T (R, θ, λ)Y nm(θ, λ)dσ (2.82)

Thus, Equation (2.81) represents the harmonic function T anywhere in the exterior

space and its coefficients can be derived from function values on a sphere. It is therefore

a solution to the spherical Dirichlet BVP. The radius R in Equations (2.81) and (2.82)

can theoretically be any real positive value. In many cases in physical and satellite

geodesy, R is chosen equal to the semi-major axis of the Earth’s ellipsoid a.

The convergence of a spherical harmonic expansion of the Earth’s disturbing potential

has long been a point of discussion (e.g., Krarup, 1969; Sjöberg, 1980, 1984; Jekeli,

1981, 1982; Colombo, 1982; Moritz, 1989). It is fairly straightforward to show that

convergence can be guaranteed anywhere outside the smallest sphere that completely

encloses the masses of the Earth, the so-called Brillouin sphere (e.g., Moritz, 1989).

However, it is not elementary that the spherical harmonic expansion converges every-

where outside the Earth’s surface, or everywhere outside a reference ellipsoid, even if

the topography and atmosphere are assumed to be mathematically moved inside the

ellipsoid.

The disturbing potential can be approximated arbitrarily well anywhere outside the

Earth’s masses or the ellipsoid, i.e., also inside the Brillouin sphere, according to the
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Runge-Krarup theorem (Moritz, 1989). Therefore, convergence is often tacitly assumed

in practice, despite the warnings of Sjöberg (1980, 1984) and Jekeli (1981, 1982) that

the Runge-Krarup theorem cannot be invoked to justify use of a truncated spherical

harmonic series of the disturbing potential, because the arbitrarily close approximation

of the disturbing potential does not hold term by term.

Numerical computations by Jekeli (1982) have shown that the effect of divergence of

the total spherical harmonic series is < 1 mm for geoid heights and < 10µGal for

gravity anomalies using an expansion up to degree 300, which is practically negligible.

The size of the error due to a possible divergence on or close to the Earth’s surface for

high-degree spherical harmonic expansions (n ≥ 300) was identified by Sjöberg (1984)

as an open question, which to the best of this author’s knowledge remains unsolved

today. However, the issue of convergence of spherical harmonic expansions falls outside

the scope of this research, and the error due to possible divergence is assumed negligible

in the remainder of this thesis.

2.4.2 Surface spherical harmonics

A surface spherical harmonic expansion is, in principle, a special case of a solid spherical

harmonic expansion, but its properties allow for a broader use. For T residing on the

sphere of radius R, Equation (2.81) reduces to

T (R, θ, λ) =
∞∑

n=0

n∑
m=−n

T
R

nmY nm(θ, λ) (2.83)

Since only a function on a surface is described, the expansion in Equation (2.83) is in

this case called a surface spherical harmonic expansion. This expansion does, contrary

to the solid harmonic expansion, not only hold for harmonic functions, but can be used

to represent any arbitrary continuous function.

Moreover, surface SHCs are not restricted to a function defined on a sphere, as is

for example pointed out by Jekeli (1988). This is due to the fact that the formula

for the surface spherical harmonic expansion only depends on geocentric latitude and

longitude, not on the geocentric distance. Thus, a surface harmonic expansion can be
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applied to a function on a surface if any point on that surface is uniquely defined by

its geocentric longitude and latitude. Such a surface is called a star-shaped surface, of

which a more formal definition is given by Grafarend and Engels (1994).

A function defined on an ellipsoid of revolution, for example, can also be expanded into

surface SHFs

T (re, θ, λ) =
∞∑

n=0

n∑
m=−n

T
re

nmY nm(θ, λ) (2.84)

The coefficients T
re

nm can, even though the function is defined on the ellipsoid, still be

computed from an integration over the unit sphere

T
re

nm =
1

4π

∫

σ

T (re, θ, λ)Y nm(θ, λ)dσ (2.85)

due to the orthogonality of the SHFs on the sphere (Equation 2.80). It is not a surface

integration, but can be interpreted as a transform, where every pair of co-latitude and

longitude uniquely identifies one point on the ellipsoid (Jekeli, 1988).

The fact that surface spherical harmonic expansions can be applied to functions on an

ellipsoid is very useful in the field of ellipsoidal physical geodesy. It will prove of vital

importance in the derivations of new solutions to ellipsoidal BVPs and new accurate

gravity field modelling techniques described in the remainder of this thesis.

2.4.3 Ellipsoidal harmonics

Ellipsoidal harmonics can be derived in a very similar way to solid spherical harmon-

ics, the difference being that Laplace’s differential equation (Equation 2.27) is now

transformed into ellipsoidal coordinates (u, β, λ) (e.g., Hobson, 1931)

(u2 + E2)
∂2T

∂u2
+ 2u

∂T

∂u
+ cot θ

∂T

∂β
+

∂2T

∂β2
+

u2 + E2 cos2 β

(u2 + E2) sin2 β

∂2T

∂λ2
= 0 (2.86)

As in the case with spherical polar coordinates, there are two solutions to this equation,

and the one that tends to zero for u →∞ reads

T (u, β, λ) =
∞∑

n=0

n∑
m=−n

Qnm

(
i u
E

)

Qnm

(
i b
E

) T̂ u
nmYnm(β, λ) (2.87)
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where Qnm are ALFs of the second kind with complex argument and the circumflex

in T̂ u
nm indicates that these ellipsoidal harmonic coefficients differ from the spherical

harmonic coefficients. The division over Qnm(ib/E) is in fact not required, but ensures

that the coefficients T̂ u
nm are real values.

The ALFs of the second kind Qnm are, like the ALFs Pnm, a solution to the associated

Legendre differential equation (Equation 2.72), and they too obey recurrence relations

(Hobson, 1931; Sona, 1995). However, these recursive relations cannot be used to

compute ALFs of the second kind due to numerical instabilities, even below degree

n = 20 (Sona, 1995).

Several alternative procedures to compute Qnm have been developed. Hobson (1931)

derives an expression using the hypergeometric function F

Qnm(z) = (−i)m n!(n + m)!22n+m+1

(2n + 1)!zn+m+1
(z2 + 1)

m
2 F

(
m +

1

2
; n + m + 1; n +

3

2
;

1

z2

)
(2.88)

Other methods include the classical perturbative approach (Heck, 1991) and the limit

layer approach (Sona, 1995), which are both based on approximations of the Legendre

differential equation to order e2.

Equation (2.88) can also be used to derive a transformation between the spherical

harmonic coefficients TR
nm and the ellipsoidal harmonic coefficients T̂ u

nm (Buchdahl et

al., 1977; Jekeli, 1988; Dechambre and Scheeres, 2002). The appearance of slowly

converging hypergeometric series in the transformation formulas, however, hinders their

practicality.

2.5 Summary

In this Chapter, the formulas that form the foundation of ellipsoidal physical geodesy

were derived. The geometry of the geodetic reference ellipsoid and the coordinate

systems associated with it were discussed, and two new parameters – the quartic

eccentricity (Equation 2.12) and the ellipsoidal deflection angle (Equation 2.16) – were

introduced. However, the major part of this Chapter deals with the physical aspect of
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ellipsoidal physical geodesy. The Earth’s external gravitational field was shown to be

harmonic, which means that it can be expressed as a potential field and represented by

a spherical or ellipsoidal harmonic expansion. The computation of the Earth’s external

gravity field from gravity observations on its surface requires the solution of a geodetic

boundary-value problem (BVP).

Three geodetic BVPs were derived here, with three different boundary conditions that

relate the observations to the gravity potential (Equations 2.45, 2.48 and 2.52) based on

various observation types. These boundary conditions are constructed on the surface of

an ellipsoid, resulting in so-called ellipsoidal BVPs. Here and throughout this thesis, it

is assumed that the Earth’s topography and atmosphere are mathematically removed,

and that their indirect effect on the gravity field is accounted for. The theory presented

here is independent of their treatment.

The magnitude of two approximations made in the derivation of the boundary condition

– the linearisation effect and the deflection effect – were found not to exceed 0.3µGal

and 56µGal, respectively, and formulas to model them were derived (Equations 2.58 and

2.65). A third and fourth approximation often applied in practice are the spherical and

constant radius approximations, and these together are generally called the ellipsoidal

effect, the magnitude of which is larger than that of the first two approximations (see

Chapters 5 and 6). The remainder of this thesis is focussed on the rigorous solution to

ellipsoidal boundary-value problems avoiding the latter two approximations.
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3. A SOLUTION TO THE ELLIPSOIDAL DIRICHLET

BOUNDARY-VALUE PROBLEM IN SPHERICAL HARMONICS

In this Chapter, a solution to the ellipsoidal Dirichlet boundary-value problem (BVP)

is derived in terms of the simple spherical harmonic functions (SHFs). This results in a

novel approach to the computation of solid spherical harmonic coefficients (SHCs) from

function values on the surface of the reference ellipsoid. In Section 3.1, several strategies

towards the solution of the problem are discussed, after which the novel approach is

outlined in detail in the remaining Sections. A vital step in the derivation involves a

new relation among associated Legendre functions (ALFs) and SHFs, which is derived

in Section 3.2 (cf. Claessens, 2005). Finally, a numerical closed-loop simulation is

performed to confirm the validity of the new approach.

3.1 Solution strategies to ellipsoidal boundary-value problems

The external ellipsoidal Dirichlet BVP is to determine a harmonic function f(r, θ, λ)

anywhere in the space outside the ellipsoid, from function values F on the surface of

the ellipsoid

f(r, θ, λ) = F for r = re, 0 ≤ θ ≤ π, 0 ≤ λ < 2π (3.1)

where the function is harmonic outside the ellipsoid

∇2f(r, θ, λ) = 0 for r > re, 0 ≤ θ ≤ π, 0 ≤ λ < 2π (3.2)

and approaches zero at infinity, obeying the asymptotic regularity condition

f(r, θ, λ) ∼ O
(

1

r

)
for r →∞, 0 ≤ θ ≤ π, 0 ≤ λ < 2π (3.3)

Since the function f(r, θ, λ) is harmonic outside the ellipsoid, it can in this (unbounded)

region be represented by a solid spherical harmonic expansion (Equation 2.81)

f(r, θ, λ) =
∞∑

n=0

(
R

r

)n+1 n∑
m=−n

f
R

nmY nm(θ, λ) (3.4)
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where the solid SHCs f
R

nm can be computed from function values given continuously

on a sphere with radius R

f
R

nm =
1

4π

∫

σ

f(R, θ, λ)Y nm(θ, λ)dσ (3.5)

or alternatively from function values given on any other sphere of radius R′

f
R

nm =
1

4π

(
R′

R

)n+1 ∫

σ

f(R′, θ, λ)Y nm(θ, λ)dσ (3.6)

since it follows from Equation (3.4) that

f
R

nm =

(
R′

R

)n+1

f
R′

nm (3.7)

However, if the function values are not given on a sphere, the computation of solid SHCs

becomes more complicated. This is due to the fact that the the orthogonality of SHFs

on the sphere (Equation 2.80) does not hold on the ellipsoid. This has been the main

hindrance to the solution of the ellipsoidal BVPs in the spherical harmonic framework.

Several strategies can be followed to solve the ellipsoidal BVP. Four methods that

present the solution in terms of solid SHCs are discussed below.

3.1.1 The ellipsoidal harmonics method

An obvious approach to the solution of the ellipsoidal BVP is to first write the solution

in terms of an ellipsoidal harmonic expansion (Equation 2.87)

f(u, β, λ) =
∞∑

n=0

n∑
m=−n

f̂u
nm

Qnm(i u
E

)

Qnm(i b
E

)
Ynm(β, λ) (3.8)

The ellipsoidal harmonic coefficients f̂u
nm can then be transformed into SHCs f

R

nm using

the transformation derived by Jekeli (1988).

This approach contains some disadvantages. First of all, the numerical stability of

very high degree ellipsoidal harmonic base functions is not well-known. Sona (1995)

pinpoints several difficulties in the computation of ellipsoidal harmonics, and the stable

computation of ellipsoidal harmonics over a wide range of degrees, orders and latitudes

remains an open area for future research. The numerical computation of SHFs, on the



52

other hand, has received much more interest (e.g., Colombo, 1981; Koop and Stelpstra,

1989), and stable algorithms are in existence (e.g., Holmes and Featherstone, 2002).

Secondly, the transformation from ellipsoidal harmonic coefficients to SHCs is compli-

cated and time-consuming, since the formulas involve slowly converging hypergeometric

series (see also Section 1.3.3) .

3.1.2 The upward-continuation method

Another method sometimes used in practice (e.g., Rapp, 1977; Cruz, 1986; Petrovskaya

et al., 2001) is the upward-continuation method, where the data on the ellipsoid are

first upward-continued to an enveloping sphere, i.e., a sphere that circumscribes the

ellipsoid with radius equal to the semi-major axis of the ellipsoid (R = a), using a

Taylor series expansion. Function values on the sphere can be obtained using

f(R, θ, λ) = f(re, θ, λ) +
∂f

∂r

∣∣∣∣
re

(R− re) +
1

2

∂2f

∂r2

∣∣∣∣
re

(R− re)
2 + ...

=
∞∑
i=0

1

i!

∂if

∂ri

∣∣∣∣
re

(R− re)
i (3.9)

Equation (3.5) can then be applied to yield the solid SHCs.

This is, in fact, not a strict solution to the ellipsoidal Dirichlet BVP, since radial

derivatives of the function on the ellipsoid are also required. When the eccentricity

of the ellipsoid is small, the Taylor series in Equation (3.9) converges rapidly and a

truncation after the term containing the first radial derivative may give a solution of

sufficient accuracy, depending on the application. Thus, this method can, under certain

conditions, yield a satisfactory solution, but will, as well as the function values on the

ellipsoid, at least require their first-order radial derivative. An additional condition for

this method is that the derivatives are continuous in the space between the ellipsoid

and the sphere, but this is guaranteed by the harmonicity condition if the sphere is

completely outside the ellipsoid.
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3.1.3 The ellipsoidal integration method

A third method is based on Green’s second integral theorem (Equation 2.41)

∫∫∫

V

(f ∗∆f − f∆f ∗)dV =

∫∫

S

(
f ∗

∂f

∂h
− f

∂f ∗

∂h

)
dS (3.10)

which relates a three-dimensional integration over a volume V to a two-dimensional in-

tegration over surface S, using two non-identical potential functions f and f ∗. Sjöberg

(1988) shows that this theorem can be used to find an expression for the solid SHC

f
R

nm using an integration over the ellipsoid

f
R

nm =
1

4πR(2n + 1)an

∫∫

E

(
f

∂f ∗

∂h
− f ∗

∂f

∂h

)
dE (3.11)

where an is an arbitrary constant, E is the ellipsoidal surface and f ∗ is defined as

f ∗ =

[(
R

re

)n+1

+ an

(
re

R

)n]
Y nm(θ, λ) (3.12)

It follows from Equation (3.11) that, for this solution, the derivative of the function f

with respect to the ellipsoidal normal needs to be known, and this is the major drawback

of this method. Furthermore, the normal derivative of the function f ∗ needs to be

found, which is possible in a theoretically exact way, but makes this approach more

complicated than the upward-continuation method. However, it avoids the truncation

error that will always be apparent in practical application of the upward-continuation

method.

3.1.4 The coefficient transformation method

A second analytic approach that does not require any information, other than the

function values on the surface of the ellipsoid (in contrast to the upward-continuation

and ellipsoidal integration approaches), is possible. This is a novel approach to solve

the ellipsoidal Dirichlet BVP, based on the fact that function values on the ellipsoidal

surface can be described as a series of surface SHFs (Equation 2.84)

f(re, θ, λ) =
∞∑

n=0

n∑
m=−n

f
re

nmY nm(θ, λ) (3.13)
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1. upward continuation

2. ellipsoidal integration

3. coefficient transformation
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Figure 3.1: Schematic overview of the computation of solid SHCs f
R
nm from function values

on the ellipsoid f(re, θ, λ) using the 1. upward-continuation, 2. ellipsoidal integration, and
3. coefficient transformation methods

where the surface SHCs f
re

nm can be computed from an integration over the unit sphere

f
re

nm =
1

4π

∫

σ

f(re, θ, λ)Y nm(θ, λ)dσ (3.14)

The surface SHCs can then be transformed into solid SHCs, as follows. Comparing

Equations (3.4) and (3.13) gives

∞∑
n=0

n∑
m=−n

(
R

re

)n+1

f
R

nmY nm(θ, λ) =
∞∑

n=0

n∑
m=−n

f
re

nmY nm(θ, λ) (3.15)

A schematic overview of this approach, as well as the upward-continuation and ellip-

soidal integration approaches, is shown in Figure 3.1. The SHFs Y nm form a set of

orthogonal base functions on the sphere, which would allow for a one-to-one compar-

ison between the coefficients of each pair of degree n and order m, if the presence of

the ellipsoidal radius re on the left-hand side of Equation (3.15) would not have dis-

turbed this orthogonality. The key to finding a transformation between the solid SHCs

f
R

nm and the surface SHCs f
re

nm therefore lies in the ability to move the dependence on
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latitude that is present inside the ellipsoidal radius into the SHFs Y nm. This can be

achieved using a new relation among SHFs presented below.

3.2 New relations among spherical harmonic base functions

Many relations among SHFs exist, such as for example the product-sum formula, which

writes the product of two SHFs as a weighted summation over SHFs of equal order

(e.g., Giacaglia and Burša, 1980; Hwang, 1995). Such a weighted summation can also be

achieved for the product of an SHF with any trigonometric function. Here, these known

relations will be extended to hold for the product of SHFs with arbitrary powers of the

sine and cosine of the latitude. A more detailed description and additional relations

are provided in Claessens (2005).

3.2.1 Basic recursive relations

Equation (2.74) can be transformed in such a way that the product of the cosine and

an ALF Pnm(cos θ) is expressed as a weighted sum over two other ALFs, where the

weights F are independent of co-latitude θ

cos θPnm = F−1
nmPn−1,m + F 1

nmPn+1,m (3.16)

where

F−1
nm =

n + m

2n + 1
and F 1

nm =
n−m + 1

2n + 1
(3.17)

Equation (3.16) can be transformed into a fully normalised form using Equation (2.79),

yielding

cos θP nm = F
−1

nmP n−1,m + F
1

nmP n+1,m (3.18)

where

F
−1

nm =

√
(n + m)(n−m)

(2n− 1)(2n + 1)
(3.19)

F
1

nm =

√
(n−m + 1)(n + m + 1)

(2n + 1)(2n + 3)
(3.20)
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From Equation (2.71), it can be seen that Equations (3.16) and (3.18) are also valid

when the ALFs Pnm and P nm are replaced by the SHFs Ynm and Y nm respectively,

since the ALFs within the summation are of equal order m. Equations (2.73) and

(2.75) can be rewritten in similar fashion (Claessens, 2005).

3.2.2 New relations

As noted in, for example, Moritz (1989), Equation (3.16) can be applied twice to obtain

a relation when the cosine is squared. Replacing the ALFs by SHFs, this results in

cos2 θYnm = F−2
nmYn−2,m + F 0

nmYnm + F 2
nmYn+2,m (3.21)

where

F−2
nm =

(n + m)(n + m− 1)

(2n− 1)(2n + 1)
(3.22)

F 0
nm =

2n2 − 2m2 + 2n− 1

(2n− 1)(2n + 3)
(3.23)

F 2
nm =

(n−m + 1)(n−m + 2)

(2n + 1)(2n + 3)
(3.24)

Relations for fully normalised SHFs can also easily be derived in the same way. In the

case of full normalisation, it follows from Equation (2.79) that Equation (3.21) remains

the same, though with overbars over the SHFs Y nm and the functions F
i

nm, which in

this case become

F
−2

nm =

√
[(n− 1)2 −m2][n2 −m2]

(2n− 3)(2n− 1)2(2n + 1)
(3.25)

F
0

nm =
2n(n + 1)− 2m2 − 1

(2n− 1)(2n + 3)
(3.26)

F
2

nm =

√
[(n + 1)2 −m2][(n + 2)2 −m2]

(2n + 1)(2n + 3)2(2n + 5)
(3.27)

In general, for any power of the cosine term, its product with an ALF (or similarly

with an SHF) can be expressed as a weighted summation over ALFs or SHFs of equal

degree

cosj θY nm =

j∑
i=−j,2

F
ij

nmY n+i,m, j ∈ N (3.28)
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where the function F
ij

nm depends on degree n and order m solely and N is the set of

natural numbers. The summation runs from −j to j in steps of 2.

Since the sum of the squares of the sine and cosine of the same angle equals unity, it

follows from Equation (3.21) that

sin2 θY nm = K
−2

nmY n−2,m + K
0

nmY nm + K
2

nmY n+2,m (3.29)

where

K
−2

nm = −F
−2

nm, K
0

nm = 1− F
0

nm, K
2

nm = −F
2

nm (3.30)

Equation (3.29) can be generalised, leading to an equation similar to Equation (3.28),

but which only holds for even values of j

sinj θY nm =

j∑
i=−j,2

K
ij

nmY n+i,m, j ∈ E (3.31)

where E is the set of even natural numbers.

Since the functions F
ij

nm and K
ij

nm weight the ALFs or SHFs in the summation in

Equations (3.28) and (3.31), they are herein called Legendre weight functions (LWFs).

The functions F
ij

nm give the relation for the case of the power of a cosine multiplied

by the ALFs and are therefore called cosinusoidal LWFs, whereas K
ij

nm are here called

sinusoidal LWFs.

3.2.3 Computation of Legendre weight functions

Now the question arises how to compute the LWFs F
ij

nm and K
ij

nm in Equations (3.28)

and (3.31). A recursive relation can be found by investigation of the scheme shown

in Figure 3.2. The LWFs of index j can be obtained by applying Equation (3.16) to

the previous level of index j − 1. For example, LWF F
−2,2

nm is multiplied by the SHF

Y n−2,m and when this is multiplied with another cosine of θ, this term becomes, with

Equation (3.16)

F
−2,2

nm F
−1,1

n−2,mY n−3,m + F
−2,2

nm F
1,1

n−2,mY n−1,m (3.32)

Thus, F
−3,3

nm = F
−2,2

nm F
−1,1

n−2,m and F
−1,3

nm = F
−2,2

nm F
1,1

n−2,m plus an extra term from F
0,2

nm (see

Figure 3.2). In general, the arrows pointing left in Figure 3.2 indicate a multiplication
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Figure 3.2: Recursive computation of cosinusoidal LWFs F ij
nm

of the LWF with F
−1,1

n+i−1,m and the arrows pointing right indicate a multiplication of

the LWF with F
1,1

n+i−1,m. This leads to the following recursive relation

F
ij

nm = F
i−1,j−1

nm F
1,1

n+i−1,m + F
i+1,j−1

nm F
−1,1

n+i+1,m (3.33)

where F
ij

nm are set to zero for |i| > j or n < m. This recursive relation and all relations

below hold for the ranges j ≥ 2 and −j ≤ i ≤ j, unless otherwise stated, where it

should be noted that i and j are either both even or both odd numbers.

Equation (3.33) can also be found in a purely algebraic way, as follows

cosj θY nm = cos θ cosj−1 θY nm

=

j−1∑
p=−j+1,2

F
p,j−1

nm cos θY n+p,m (3.34)

=

j−1∑
p=−j+1,2

F
p,j−1

nm

1∑
q=−1,2

F
q,1

n+p,mY n+p+q,m

Substituting p by i− q, this results in

cosj θY nm =

j∑
i=−j,2

1∑
q=−1,2

F
i−q,j−1

nm F
q,1

n+i−q,mY n+i,m (3.35)

and upon comparison with Equation (3.28), a relation for the LWF F
ij

nm emerges as

F
ij

nm = F
i+1,j−1

nm F
−1,1

n+i+1,m + F
i−1,j−1

nm F
1,1

n+i−1,m (3.36)

which is exactly the same as Equation (3.33). However, if the terms cos θ and cosj−1 θ
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in Equation (3.34) are reversed, another recursive relation appears as

cosj θY nm = cosj−1 θ cos θY nm

=
1∑

q=−1,2

F
q,1

nm

j−1∑
p=−j+1,2

F
p,j−1

n+q,mY n+p+q,m (3.37)

=

j∑
i=−j,2

1∑
q=−1,2

F
q,1

nmF
i−q,j−1

n+q,m Y n+i,m

Thus

F
ij

nm = F
−1,1

nm F
i+1,j−1

n−1,m + F
1,1

nmF
i−1,j−1

n+1,m (3.38)

Equations (3.36) and (3.38) can both be used to compute any cosinusoidal LWFs from

the initial values in Equation (3.17). Equation (3.36) has the advantage that the LWFs

of one solitary pair of degree n and order m can be evaluated very quickly since only

the initial values (j = 1) need to be known for other degrees. These initial values,

F
−1,1

n+i+1,m and F
1,1

n+i−1,m, can be directly computed from Equations (3.19) and (3.20).

Thus, only a recursion over i and j is needed. Equation (3.38), on the other hand,

requires knowledge of LWFs of degrees n− 1 and n + 1 with index j − 1 (F
i+1,j−1

n−1,m and

F
i−1,j−1

n+1,m ). These LWFs, in turn, depend upon LWFs of degree n− 2, n and n+2, with

index j−2. A recursive scheme based Equation (3.38) should therefore compute many

LWFs of various degrees with indices up to j−1 before the LWFs of higher index j can

be computed. However, if all LWFs from degree and order zero onwards are desired,

Equation (3.38) can provide a slightly more efficient recursion than Equation (3.36),

because the initial values do not need to be stored or computed as often.

If one is only interested in LWFs of even j, as will prove to be the case in the solution

of ellipsoidal BVPs, other recursive relations can be found by taking the case j = 2 as

initial values. A recursive scheme is shown in Figure 3.3 and the mathematical relation

can easily be formulated

F
ij

nm =
1∑

k=−1

F
i−2k,j−2

nm F
2k,2

n+i−2k,m (3.39)

Also in this case, an alternative expression can be found along similar lines as Equations

(3.37) to (3.38), which is

F
ij

nm =
1∑

k=−1

F
2k,2

nm F
i−2k,j−2

n+2k,m (3.40)
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Figure 3.3: Recursive computation of cosinusoidal LWF F ij
nm for even j

Recursive computation based on Equation (3.39) or (3.40) is here named dual mode

computation of LWFs, whereas computation of LWFs using Equation (3.36) or (3.38)

is named single mode computation. The dual mode is more efficient, since it avoids

having to compute the coefficients of odd index j in the process.

The recursive relations for the computation of the cosinusoidal LWFs F
ij

nm (Equations

3.33, 3.38, 3.39 and 3.40) hold for both fully normalised and unnormalised LWFs. More

importantly, the sinusoidal LWFs K
ij

nm can also be computed using the same recursive

relations in both the fully normalised and unnormalised case, simply replacing F
ij

nm by

Kij
nm or K

ij

nm. However, the initial values in Equations (3.19) and (3.20) are different,

and because of this, the fully normalised LWFs F
ij

nm and K
ij

nm possess some interesting

properties that can facilitate their computation. Firstly, the fully normalised LWFs

are symmetric with respect to order m, contrary to the non-normalised case, as can be

seen from Equations (3.19) and (3.20). Secondly, the two initial values are connected

by a simple equation

F
1,1

nm = F
−1,1

n+1,m (3.41)

This relation can be generalised to

F
ij

nm = F
−i,j

n+i,m (3.42)

A proof of Equation (3.42) based on mathematical induction can be found in Appendix

A. Equation (3.42) also holds for the fully normalised sinusoidal LWFs K
ij

nm, as fol-

lows from the relationship between the initial values of the cosinusoidal and sinusoidal

LWFs in Equation (3.30). This relation can reduce the necessary computation time

approximately by a factor of two, since only LWFs with i ≥ 0 need to be computed.
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The LWFs of negative index i then follow directly from Equation (3.42). Moreover,

using Equation (3.42), Equations (3.36) and (3.39) can be formulated in a slightly more

convenient way

F
ij

nm = F
i+1,j−1

nm F
1,1

n+i,m + F
i−1,j−1

nm F
−1,1

n+i,m (3.43)

F
ij

nm =
1∑

k=−1

F
i+2k,j−2

nm F
2k,2

n+i,m (3.44)

where the degrees of the LWFs no longer depend upon the summation index k.

3.2.4 Numerical accuracy of Legendre weight functions

The computation of the sinusoidal and cosinusoidal LWFs can be performed in many

ways using any of Equations (3.33), (3.38), (3.39) or (3.40). Numerical tests were

performed to assess the errors in the computation of the LWFs for different values of

θ and j. In the routine used to compute the LWFs, the functions were all computed

on-the-fly, i.e., they were not stored in memory. This is the most practical approach,

especially considering that for values of j up to 32, the LWFs outnumber the ALFs by

more than a factor of 103. For example, for a certain co-latitude θ, degree and order

up to 360 and index j up to 32, there are 69, 000, 096 LWF values compared to the

65, 341 ALF values.

In the numerical tests, the validity of Equations (3.28) and (3.31) is examined, and the

measure used is an absolute relative error ςnmj, defined as

ςnmj(θ) =

∣∣∣∣ cosj θP nm −
j∑

i=−j,2

F
ij

nmP n+i,m

∣∣∣∣

cosj θP nm

(3.45)

This error measure also includes numerical errors in the ALFs P nm. For the computa-

tion of these ALFs, the forward column algorithm by Holmes and Featherstone (2002)

was used, which has a relative precision below 10−12 up to n = 2700 for all values of θ

tested.

Since the error measure ςnmj depends on four variables (degree n, order m, index j

and co-latitude θ) and also on the algorithm used to compute the LWFs, it is not
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Figure 3.4: Average absolute relative error ςn (Equation 3.47) per degree n in the computa-
tion of fully normalised cosinusoidal LWFs in dual mode (Equation 3.39) for θ = 30◦, θ = 45◦

and θ = 60◦, where the functions are computed in IEEE double precision

straightforward to assess the influence of any of the variables independently. To obtain

a useful tool for comparison, the average is taken over degrees n and orders m up to

360

ςj(θ) =
1

65, 341

360∑
n=0

n∑
m=0

ςnmj(θ) (3.46)

and the average over order m and index j up to 32

ςn(θ) =
1

32(n + 1)

32∑
j=0

n∑
m=0

ςnmj(θ) (3.47)

The measure ςn is shown in Figure 3.4 for degrees up to 360 and θ = 30◦, θ = 45◦

and θ = 60◦, where the LWFs were computed in 64-bit IEEE double precision (∼ 16

significant digits). It can be seen that the relative error becomes larger for increasing θ.

In addition, it can be seen from Figure 3.4 that the error ςn is roughly independent of

the degree n, which makes the average error over degree and order ςj (Equation 3.46)

a useful tool.

The values of ςj for both fully normalised and non-normalised LWFs using either Equa-
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fully normalised non-normalised

θ j single dual single dual

30◦ 2 2.6 · 10−16 2.4 · 10−16 2.8 · 10−16 2.5 · 10−16

4 5.4 · 10−16 4.9 · 10−16 5.1 · 10−16 4.6 · 10−16

8 1.2 · 10−15 1.1 · 10−15 1.1 · 10−15 1.1 · 10−15

16 3.6 · 10−15 3.2 · 10−15 3.2 · 10−15 3.1 · 10−15

32 2.4 · 10−14 2.2 · 10−14 2.3 · 10−14 2.2 · 10−14

45◦ 2 1.1 · 10−15 1.0 · 10−15 1.1 · 10−15 6.8 · 10−16

4 2.4 · 10−15 1.3 · 10−15 1.2 · 10−15 2.1 · 10−15

8 3.2 · 10−15 4.5 · 10−15 3.8 · 10−15 5.7 · 10−15

16 3.4 · 10−14 3.0 · 10−14 3.2 · 10−14 3.7 · 10−14

32 3.9 · 10−12 3.4 · 10−12 3.8 · 10−12 3.6 · 10−12

60◦ 2 3.9 · 10−16 3.8 · 10−16 2.7 · 10−17 2.7 · 10−17

4 1.4 · 10−15 1.3 · 10−15 1.5 · 10−15 1.5 · 10−15

8 1.3 · 10−14 1.1 · 10−14 1.5 · 10−14 1.5 · 10−14

16 1.7 · 10−12 1.7 · 10−12 1.6 · 10−12 1.6 · 10−12

32 6.5 · 10−08 5.5 · 10−08 4.2 · 10−08 3.8 · 10−08

Table 3.1: Average absolute relative error ςj per index j (Equation 3.46) in the computation
of fully normalised and non-normalised cosinusoidal LWFs in single mode (Equation 3.33)
or dual mode (Equation 3.39) for θ = 30◦, θ = 45◦ and θ = 60◦, where the functions are
computed in IEEE double precision

tion (3.33) (single mode) or Equation (3.39) (dual mode) to compute the LWFs are

shown in Table 3.1 for θ = 30◦, θ = 45◦ and θ = 60◦. For the extremes θ = 0◦ and

θ = 90◦, the values of ςj are below 10−16 for all j up to 32.

It can be seen from Table 3.1 that the error ςj is very similar for the computation

algorithms using Equations (3.33) and (3.39), and although it is not shown in Table

3.1, algorithms based on Equations (3.38) and (3.40) give very similar results. The

choice of algorithm can therefore mainly be based on computational speed, which is

roughly twice as fast for the dual mode compared to the single mode.

It also follows from Table 3.1 that the error generally increases with increasing index

j, and this effect is most profound for the case that θ = 60◦. An explanation for this is

that a high power of the cosine of θ, as in the left-hand side of Equation (3.28), becomes
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very small for θ close to 90◦. The right-hand side of Equation (3.28) must naturally

result in the same small value, but this requires the relatively large components of

different index i to almost cancel out. It is a well-known fact that subtraction of

almost equal relatively large values leads to a degradation of accuracy, and this is what

causes the larger errors in Table 3.1 for high j and θ = 60◦. It is important to realise

that this does, however, not mean that the LWFs are of lower accuracy in this case.

Not surprisingly, the accuracy of sinusoidal LWFs K
ij

nm shows a very similar pattern to

the cosinusoidal LWFs F
ij

nm, although ‘opposite’ with respect to θ, i.e. the behaviour

of the sinusoidal LWFs for θ = 30◦ matches that of the cosinusoidal LWFs for θ = 60◦

and vice versa. This follows naturally from the basic trigonometric identity that the

cosine of an angle equals the sine of its complement.

3.2.5 First- and second-order derivatives of spherical harmonics

The product of first- or second-order derivatives of ALFs or SHFs with respect to θ

with the sine or cosine of θ can also be expressed as a weighted summation over ALFs or

SHFs of equal order m respectively. These expressions follow directly from well-known

relations equating the derivatives of ALFs to a summation over ALFs (e.g., Hobson,

1931; MacRobert, 1967; Abramowitz and Stegun, 1972). The first-order derivative can

be expressed as a summation over ALFs of equal degree n, or as a summation over

ALFs of equal order m (e.g., Abramowitz and Stegun, 1972). The case with ALFs of

equal order m is of most interest, since in this case the ALFs can be replaced by SHFs.

The first derivative of the normalised SHF with respect to θ reads

∂Y nm

∂θ
= n cot θY nm − (n + m) csc θY n−1,m (3.48)

Multiplying both sides of Equation (3.48) by the sine of co-latitude θ, a weighted

summation over two SHFs of equal order m can be obtained

sin θ
∂Y nm

∂θ
= n cos θY nm − (n + m)Y n−1,m

= (nF
−1,1

nm − n−m)Y n−1,m + nF
1,1

n,mY n+1,m (3.49)
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Multiplication of Equation (3.49) by the cosine of the co-latitude θ yields

sin θ cos θ
∂Y nm

∂θ
=

2∑
i=−2,2

N
i,2

nmY n+i,m (3.50)

where the functions N
i,2

nm follow from a combination of the cosinusoidal LWFs

N
−2,2

nm = (nF
−1,1

nm − n−m)F
−1,1

n−1,m (3.51)

N
0,2

nm = (nF
−1,1

nm − n−m)F
1,1

n−1,m + nF
1,1

nmF
−1,1

n+1,m (3.52)

N
2,2

nm = nF
1,1

nmF
1,1

n+1,m (3.53)

By using Equations (3.28) and (3.31), Equation (3.50) can be generalised to hold for

sine and cosine to the arbitrary power j. This only holds for odd powers j, since

Equation (3.31) only holds for even powers

sinj θ cosj θ
∂Y nm

∂θ
=

2j∑
i=−2j,2

N
i,2j

nmY n+i,m (3.54)

where the functions N
i,2j

nm can be computed from any of the same recursive relations as

the sinusoidal and cosinusoidal LWFs F
ij

nm and K
ij

nm (Equations 3.33, 3.38, 3.39 and

3.40).

The second-order derivatives of ALFs and SHFs follow from the characteristic differ-

ential equation (e.g., Hobson, 1931)

∂2Y nm

∂θ2
= − cot θ

∂Y nm

∂θ
− [n(n + 1)−m2 csc2 θ]Y nm (3.55)

Multiplying this with the square of the sine of co-latitude θ gives

sin2 θ
∂2Y nm

∂θ2
= − sin θ cos θ

∂Y nm

∂θ
− [n(n + 1) sin2 θ −m2]Y nm (3.56)

Upon implementation of Equations (3.31) and (3.50), it can be seen that second-order

derivatives of ALFs or SHFs can also be written as a weighted summation over ALFs

or SHFs of equal order m

sin2 θ
∂2Y nm

∂θ2
=

2∑
i=−2,2

R
i,2

nmY n+i,m (3.57)

where the weights are again solely dependent on the degree n and order m

R
−2,2

nm = −N
−2,2

nm − n(n + 1)K
−2,2

nm (3.58)
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R
0,2

nm = −N
0,2

nm − n(n + 1)K
0,2

nm + m2 (3.59)

R
2,2

nm = −N
2,2

nm − n(n + 1)K
2,2

nm (3.60)

Naturally, Equation (3.57) can be multiplied by the square of the cosine of co-latitude

θ by implementation of Equation (3.28). After a rearrangement of summation order

(Appendix B) it becomes

sin2 θ cos2 θ
∂2Y nm

∂θ2
=

4∑
i=−4,2

R
j,4

nmY n+i,m (3.61)

where

R
j,4

nm =
2∑

j=−2,2

R
j,2

nmF
i−j,2

nm (3.62)

Equation (3.61) can be raised to higher powers of sine and cosine using Equations

(3.28) and (3.31). However, this only holds for even powers since Equation (3.31) also

holds for even powers only. The relations for the case of higher powers of sine and

cosine are not needed in the remainder of this thesis, and will therefore not be shown

in detail here.

3.3 The coefficient transformation method

The new relations among SHFs derived in Section 3.2 can be used to construct formulas

for the transformation between solid and surface SHCs. However, Equation (3.4) must

first be manipulated to obtain a form that allows for the insertion of these new relations.

This can be achieved by applying a binomial series expansion to the inverse ellipsoidal

radius (r−1
e ).

3.3.1 Transformation from solid to surface spherical harmonic coefficients

Inserting the equations for the ellipsoidal radius in spherical polar coordinates (r, θ,

λ) from Table 2.1 into Equation (3.4) gives

f(re, θ, λ) =
∞∑

n=0

(
c√

1− e2

)n+1

(1− e2 sin2 θ)
n+1

2

n∑
m=−n

f
R

nmY nm(θ, λ) (3.63)
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where c is a scale factor between the semi-major axis of the ellipsoid a and the reference

sphere R

c =
a

R
(3.64)

The term (1− e2 sin2 θ)
n+1

2 can be expanded into a binomial series (see Appendix C)

(1− e2 sin2 θ)
n+1

2 =
∞∑

k=0

(−1)k

(
n+1

2

k

)
e2k sin2k θ (3.65)

The power of the expression on the left-hand side of Equation (3.65) is a natural

number for odd n, but it is not for even n. Therefore, for odd n, the summation on

the right-hand side of Equation (3.65) will have a limited number of non-zero terms,

whereas for even n, the number of non-zero terms is infinite.

The series in Equation (3.65) will always converge, since e2 sin2 θ < 1 (see Appendix C).

Also, because e2 sin2 θ is always positive, the series will always be alternating. Then,

according to Equation (C-11), the absolute values of the terms in the binomial series

will start to decrease if

k >
(n + 1)e2 sin2 θ − 2

2(1 + e2 sin2 θ)
(3.66)

The convergence is thus slowest for points at the equator (θ = π
2
), but more importantly

it is slower for increasing degrees n. Figure 3.5 shows the convergence rates in this case

for degrees n up to 2160. The absolute values of the terms in the binomial series

(Equation 3.65) start to decrease above the dashed line in Figure 3.5, as follows from

Equation (3.66).

The truncation error ς of the binomial series can be approximated using Equation

(C-12)

ς <
(n + 1)k

2kk!
e2k sin2k θ (3.67)

As stated, the error is highest for points at the equator. Figure 3.6 shows how many

terms need to be taken into account to ensure a relative accuracy of 1, e2 or e4 for

degrees n up to 2160. The number of terms needed to achieve a given accuracy rises

almost linearly with the degree n, and the rate of this rise is very similar for any desired

accuracy. For the very high degree n = 2160, 16 terms are needed to obtain a relative

accuracy of at least one, 22 terms are needed to obtain a relative accuracy of e2 and

27 terms are needed to obtain a relative accuracy of at least e4.
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Figure 3.5: The size of the first ten terms in the binomial series in Equation (3.65) relative to
the total sum in percentage for degrees 0 ≤ n ≤ 2160. The dashed line indicates the boundary
described by Equation (3.66), increased by 0.5 so that it crosses the border between two terms
where those terms are equal.
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Figure 3.6: The absolute size of the first fifteen terms in the binomial series in Equation (3.65)
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(3.66), increased by 0.5 so that it crosses the border between two terms where those terms
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a relative accuracy of at least e4, e2 and 1 respectively (from left to right).



69

Inserting the binomial series in Equation (3.65) into the spherical harmonic expansion

in Equation (3.63) gives

f(re, θ, λ) =
∞∑

n=0

∞∑

k=0

αnk sin2k θ

n∑
m=−n

f
R

nmY nm(θ, λ) (3.68)

where

αnk =

(
c√

1− e2

)n+1

(−1)k

(
n+1

2

k

)
e2k (3.69)

The term αnk depends upon the degree n, the index of the binomial series k, the

square of the eccentricity of the ellipsoid e2 and the scale factor c that relates the

reference sphere R to the semi-major axis of the ellipsoid a (Equation 3.64). It is thus

independent of the longitude and latitude, i.e., the position of the point where the

function f is to be determined. Only the sine of the co-latitude θ and the SHFs Y nm

in Equation (3.68) depend upon position.

Now, the sinusoidal LWFs K
ij

nm (Equation 3.31) can be inserted into Equation (3.68),

because it contains the product of an even power sin θ with a SHF

f(re, θ, λ) =
∞∑

n=0

∞∑

k=0

αnk

n∑
m=−n

f
R

nm

k∑

i=−k

K
2i,2k

nm Y n+2i,m(θ, λ) (3.70)

This introduces yet another summation, but now all dependency on position is centered

in the SHFs Y nm. This is very useful, since it allows for a direct comparison with a series

of surface SHFs (Equation 3.13) relating the surface and solid SHCs by an expression

that is independent of latitude. First, a rearrangement of the summation order (see

Appendix B) is required to ensure that the SHFs do not depend on summation index i

f(re, θ, λ) =
∞∑

n=0

∞∑

k=0

k∑

i=−k

αn−2i,k

n∑
m=−n

f
R

n−2i,mK
2i,2k

n−2i,mY nm(θ, λ) (3.71)

Comparing Equations (3.71) and (3.13), a relation between solid and surface SHCs can

be found. Since all dependence on latitude is within the SHFs, which form a set of

orthogonal base functions, the coefficients of each pair of degree n and order m can be

equated individually

f
re

nm =
∞∑

k=0

k∑

i=−k

αn−2i,kK
2i,2k

n−2i,mf
R

n−2i,m (3.72)
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Reversing the summations over indices i and k (see Appendix B) gives the final trans-

formation formula as an infinite weighted summation

f
re

nm =
∞∑

i=−∞
λnmif

R

n−2i,m (3.73)

where the weights also follow from an infinite summation

λnmi =
∞∑

k=|i|
αn−2i,kK

2i,2k

n−2i,m (3.74)

Although the derivation of these weights is somewhat cumbersome, the presentation of

the final formula (Equation 3.73) as a simple weighted summation is very convenient for

practical application. However, this equation does not yet provide an outright solution

to the the ellipsoidal Dirichlet BVP, because this would require the computation of

solid SHCs from surface SHCs, i.e., the inverse to Equation (3.73).

3.3.2 Transformation from surface to solid spherical harmonics

The transformation from surface to solid SHCs can be found through application of

the inverse of Equation (3.73). This inverse can be found if the summation for all

coefficients up to a certain degree n and order m is written in matrix form.

F re = ΛreRFR (3.75)

The vectors F re and FR contain all solid and surface SHCs up to degree and order n

respectively. If the coefficients are ordered in an efficient way, the matrix ΛreR becomes

block-diagonal (see Figure 3.7). The coefficients in the vectors are first sorted by order

m, and subsequently sorted by even and odd degrees n to achieve the block-diagonality.

Since the matrix ΛRre is square, Equation (3.75) can easily be inverted

FR = ΛRreF re (3.76)

where ΛRre is the matrix inverse of ΛreR

ΛRre = (ΛreR)−1 (3.77)
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Figure 3.8: Logarithm of the ratio between |λnm0| and
50∑

i=−50,i 6=0

|λnmi| for all degrees and

orders up to 720, where the line starting at degree 520 indicates for which pairs of degree
and order the ratio is closest to unity

The fact that matrix ΛreR is block-diagonal means that the inversion can be performed

in a numerically efficient way, if the matrix is well-conditioned, which is always the

case if the matrix is diagonally dominant, i.e., if

|λnm0| ≥
∞∑

i=−∞,i 6=0

|λnmi| (3.78)

It can be seen from Figure 3.8 that this will not be the case for all pairs of degree

n and order m. If the spherical harmonic expansions exceed degree and order 520,

diagonal dominance is lost and it must be examined separately whether the matrix

is well-conditioned. It can be expected from the matrix structure that the matrix

becomes less well-conditioned with increasing degree n. The increasing importance of

the off-diagonal weights is, naturally, a direct effect of the behaviour of the binomial

series (Equation 3.65), which is shown in Figures 3.5 and 3.6. The weights λnmi where

i 6= 0, increase with increasing degree n due to the presence of n inside the binomial

coefficient in Equation (3.65).
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An alternative to the rigorous matrix inversion, which despite the block-diagonal struc-

ture is numerically time-consuming, is an iterative approach, where the surface SHCs

are used as a first estimate for the solid SHCs

f
R(k)

nm =
1

λnm0

(
f

re

nm −
∞∑

i=−∞,i6=0

λnmif
R(k−1)

n−2i,m

)
(3.79)

with as an initial approximation

f
R(0)

nm = f
re

nm (3.80)

This is, in principle, the Jacobi iteration method for the solution of a linear system

of equations (e.g., Strang, 1986). The convergence of this iterative solution can be

accelerated by using the Gauss-Seidel iteration or the successive overrelaxation (SOR)

methods (e.g., Strang, 1986). However, convergence can only be guaranteed for any

initial estimate of the coefficients f
R

nm if the matrix ΛreR is diagonally dominant. Thus,

below approximately degree 520, the iterative method will converge, and a rigorous

matrix inversion can be avoided. However, from degree 520 onwards, divergence may

occur for coefficients of low order m.

It is, however, not certain that the iteration will diverge when the diagonal dominance is

lost. In this case, the availability of a close initial approximation may become crucial.

The convergence of the Jacobi iteration with the initial estimate given in Equation

(3.80), as well as the overall numerical performance of the coefficient transformation,

is determined for the case of the disturbing potential of the Earth’s gravity field using

a closed-loop simulation, as follows.

3.4 Numerical closed-loop simulation

The coefficient transformation solution to the ellipsoidal Dirichlet BVP is tested nu-

merically using a closed-loop simulation (e.g., Ledin, 2001). In this test, the EGM96

global geopotential model (Lemoine et al., 1998) to degree and order 360 is used as

input data. Naturally, a more recent global geopotential model, such as GGM02 (Ta-

pley et al., 2005) or EIGEN-02S (Reigber et al., 2005), could also have been used.

However, the accuracy of the geopotential coefficients is of little concern here, since
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this test merely serves to confirm the validity of the BVP solution. It is thus used

as a synthetic test data set (cf. Tziavos, 1996), which does not need to be an exact

representation of reality, as long as it is reasonably realistic (e.g., Pail, 1999; Novák

et al., 2001; Claessens, 2003; Holmes, 2003). EGM96 is assumed to provide a realistic

representation of the Earth’s disturbing potential.

EGM96 consists of a set of solid SHCs of the Earth’s gravity potential W up to degree

and order 360. Solid SHCs of the disturbing potential T can be obtained by subtraction

of the solid SHCs of a reference gravity field. The GRS80 reference field, defined in

Table 2.5, is here used for this purpose. For the maximum degree and order of 360, the

iteration in Equation (3.79) for the inverse transformation should in theory converge,

as follows from Figure 3.8. The convergence beyond degree 360 is also tested, using

the GPM98A geopotential model to n = 1800 (Wenzel, 1998).

3.4.1 Computation of surface spherical harmonic coefficients

The solid SHCs of the disturbing potential comprising the EGM96 coefficients can be

transformed into a set of surface SHCs defined on the ellipsoid using Equation (3.73)

T
re

nm =
∞∑

i=−∞
λnmiT

R

n−2i,m (3.81)

where the weights λnmi can be computed using Equation (3.74).

This new transformation formula is tested by a synthesis-analysis procedure. First, a

grid of values of the disturbing potential is computed on the surface of the ellipsoid

from the solid SHCs, using a spherical harmonic synthesis

T (re, θ, λ) =
∞∑

n=0

(
a

r

)n+1 n∑
m=−n

T
R

nmY nm(θ, λ) (3.82)

where the radius of the reference sphere is equal to the semi-major axis of the GRS80

ellipsoid. The grid size chosen here is 30′, to coincide with the spectral resolution

of EGM96 up to degree n = 360. This is to ensure that both the spherical harmonic

expansion and the discretised spatial grid contain information up to the same frequency.
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Figure 3.9: Numerical tests comparing the surface SHCs (left), the function values on the
ellipsoid (centre) and the solid SHCs (right) via different ways of computation

Subsequently, a spherical harmonic analysis is performed to expand the grid of function

values into a series of surface SHFs. This step involves a discretised version of Equation

(2.85)

T
re

nm =
1

4π

∫

σ

T (re, θ, λ)Y nm(θ, λ)dσ

≈ 1

4π

180∑
i=0

360∑
j=1

T (re,i, θi, λj)Y nm(θi, λj) (3.83)

Naturally, despite the band-limited nature of the test data, the synthesis-analysis pro-

cedure is not error-free. Numerical tests by Rapp (1986) have shown that a synthesis-

analysis procedure cannot exactly reproduce the same set of coefficients, because the

orthogonality of the SHFs no longer holds in discrete form, and the discrepancies can

reach several centimetres in terms of geoid height.

The complete test setup is displayed in Figure 3.9. First, a comparison is made in the

spectral domain between the surface SHCs resulting from the transformation (Equation

3.81) and the surface SHCs resulting from the synthesis-analysis (Equation 3.83). To

simplify the comparison, degree variances tn (signal power) were computed for both

sets of coefficients

tn =
n∑

m=−n

(
T

re

nm

)2
(3.84)

The degree variances of the surface SHCs and the differences between the two sets of

coefficients are shown in Figure 3.10. It can first be seen that the degree variances

of the test data (black line) generally decrease with increasing degree n, due to the
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Figure 3.10: Degree variances of surface SHCs T
re

nm (black line), their differences with the
degree variances of the solid SHCs T

R
nm (red line), and the differences between the surface

SHCs from the synthesis-analysis procedure (Equation 3.83) and those from the new trans-
formation formula (Equation 3.81) (green line), where the summation over i was performed
from −20 to 20

smoothness of the external potential surfaces of the Earth’s gravity field. Therefore,

the magnitude of the absolute differences between the solid spherical harmonic degree

variances and the surface spherical harmonic degree variances from data on the ellipsoid

(red line in Figure 3.10) decreases as well. However, the gap between both lines also

decreases, and this indicates that the relative difference between both sets of coefficients

increases. For degree 360, the relative difference between the solid degree variances and

the surface degree variances is approximately 50%, which shows the inaccuracy of the

constant radius approximation.

When the solid SHCs are transformed using Equation (3.81), the agreement with the

surface SHCs becomes much better, which can be seen from the fact that the green

line in Figure 3.10 is below the red line. In this transformation, the summation over i

was performed from −20 to 20 to ensure that the truncation error is smaller than the

numerical round-off error. The absolute differences between the degree variances com-
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puted from the coefficients T
re

nm from Equation (3.81) and Equation (3.83) are generally

five orders of magnitude smaller than the degree variances themselves, resulting in a

relative error of approximately 0.001%. Only for degrees very close to the maximum

degree of 360, the errors are larger, generally starting to increase from degree ∼345

onwards. This is not surprising, since the transformation formula (Equation 3.81) re-

quires solid SHCs T
R

nm of lower and higher degree n. Since coefficients beyond degree

360 are not available, they are set to zero, which causes large errors for coefficients of

degrees close to 360. One should therefore always be aware of the fact that the SHCs

obtained from the transformation method will be less accurate in the vicinity of the

maximum degree of the input coefficients.

Another feature that can be noticed in Figure 3.10 is the strong fluctuation of the green

line, which indicates that the accuracy of the transformation method varies widely per

degree n. This is somewhat surprising, since the degree variances comprise a summation

over a number of SHCs, which would expectedly smoothen out the occasional numerical

spike. The fluctuations can partly be explained by a peculiar pattern in the relative

accuracy of the SHCs themselves (see Figure 3.11). It can be seen that SHCs for which

n + m is odd are of very high accuracy, with relative errors in the order of 10−11,

whereas SHCs for which n + m is even display lower accuracies, with relative errors

in the order of 10−4. This behaviour cannot be explained by numerical inaccuracies

in the transformation from solid to surface SHCs, but are more likely to be caused by

errors in the synthesis-analysis procedure.

To investigate the influence of the differences between the SHCs on the function values

on the ellipsoid, a comparison in the spatial domain is performed as well (see centre

Figure 3.9), where the grid values from the direct synthesis of the solid SHCs (Equation

3.82) are compared to grid values derived from a synthesis of the surface SHCs that

were computed via the coefficient transformation

T (re, θ, λ) =
∞∑

n=0

n∑
m=−n

T
re

nmY nm(θ, λ) (3.85)

The values of the disturbing potential on the ellipsoid from Equation (3.82) are shown

in Figure 3.12 and the differences between these values and the disturbing potential

from Equation (3.85) are shown in Figure 3.13 for the region of Indonesia. This region
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Figure 3.11: Absolute relative difference between surface harmonic coefficients T
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nm com-
puted using the synthesis-analysis procedure (Equation (3.83) and the new transformation
formula (Equation 3.81) for n+m is even (black) and n+m is odd (red), where the summation
over i was performed from −20 to 20
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Figure 3.12: Disturbing potential of the Earth’s gravity field from the EGM96 geopotential
model and GRS80 reference gravity field (units in m2s−2; Robinson projection)
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comparison 1 comparison 2

minimum difference −0.625 −0.060

maximum difference 0.641 0.067

average difference −8.302 ·10−6 −5.872 ·10−5

average absolute difference 0.111 6.119 ·10−4

Table 3.2: Global statistics of the comparison between the values of the disturbing potential
on the ellipsoid from a spherical harmonic synthesis of surface SHCs obtained via a coefficient
transformation and 1) a spherical harmonic synthesis of the EGM96 geopotential coefficients
up to degree and order 360, and 2) a spherical harmonic synthesis of the surface coefficients
obtained via a synthesis-analysis procedure up to degree and order 340 (in m2s−2)

was selected because the largest differences occur around the equator. Some global

statistics of this comparison can be found in Table 3.2. Not surprisingly, the differences

in Figure 3.13 are completely dominated by short-wavelength errors resulting from the

large errors in the SHCs of degree close to the maximum degree of 360. In addition,

it should be noted that a comparison of this kind will always contain (small) errors

due to the fact that a solid harmonic expansion and a surface harmonic expansion up

to the same degree and order do not contain the same information, meaning that the

omission errors will not be equal.

To avoid this effect, the grid values resulting from a spherical harmonic synthesis of the

surface SHCs that were obtained via a transformation are compared to a synthesis of

the surface SHCs that were obtained via the synthesis-analysis procedure. Secondly, in

order to avoid the obvious errors in the SHCs close to the maximum degree of 360, the

syntheses are performed up to degree and order 340. The results of this comparison are

shown in Figure 3.14 for the region of Indonesia, and the global statistics are shown in

Table 3.2. It can be seen from Table 3.2 that especially the average absolute difference

has decreased considerably with respect to the first comparison, and is approximately

equivalent to 60 µm in geoid height. The absolute maximum error is considerably

larger at 7 mm in geoid height, but this is still relatively insignificant with respect to

the accuracy of gravity field modelling in practice, and falls within the global aim to

compute geoid heights accurate to 1 cm (e.g., Rapp, 1997a). Curiously, the maximum
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via a coefficient transformation up to degree and order 360 for the region of Indonesia (units
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error occurs exactly at the equator, and it can be seen from Figure 3.14 that there is

a distinct band of relatively large errors at the equator, whereas the errors in all other

areas are much smaller.

The difference in accuracy between the SHCs for which n + m is odd and those for

which n + m is even can now be explained. The SHFs for which n + m is odd are all

zero at the equator, and therefore the SHCs for which n + m is odd have no influence

on function values at the equator. On the other hand, SHCs for which n + m is even

do not influence function values on the equator only, but all over the globe. It can

therefore be concluded that the larger differences at the equator cannot be caused by

numerical errors in the transformation from solid to surface SHCs, because these would

result in larger errors at all points on the ellipsoid. They must be caused by errors in

the synthesis-analysis procedure instead.

Notwithstanding the larger differences at the equator, the magnitude of the differences

is small, which proves beyond doubt that the coefficient transformation procedure is an

adequate method for spherical harmonic models of the Earth’s gravity field up to degree

and order 340. The degradation of accuracy with increasing degree n shown in Figures

3.10 and 3.11 is small, suggesting that the method may also be applied successfully in

spherical harmonic series of higher degree and order, although expansions of very high

degree and order are likely to suffer larger inaccuracies. Moreover, it can be derived

from the short-wavelength nature of the errors in the spatial domain that functions

with higher power in the higher frequencies, such as for example gravity disturbances

or gravity anomalies, will perform relatively worse in the spatial domain.

3.4.2 Computation of solid spherical harmonic coefficients

In Section 3.4.1, the ‘forward’ transformation from solid SHCs to surface SHCs is

verified numerically with the use of the EGM96 geopotential model. The ‘inverse’

transformation is more complicated, since it requires an inversion of the weight matrix

(Equations 3.76 and 3.77), or alternatively, an iterative procedure (Equations 3.79 and

3.80).
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Figure 3.15: Degree variances of solid SHCs T
R
nm (black line), and their absolute differences

with the degree variances of the solid SHCs T
R
nm obtained after a forward and backward

transformation, where the backward transformation is performed with 20 iterations (red
line) and 50 iterations (green line). The summation over i was performed from −20 to 20
and the degree variance differences of zero were set to 10−32

The iterative procedure is computationally less demanding than the matrix inversion.

The convergence of the iteration can, however, not be guaranteed beyond degree 520

(see Figure 3.8). It will therefore be important that the initial approximation is a close

estimate. Unfortunately, the surface SHC that is used as the initial approximation

will become a worse estimate for increasing degree n, which follows directly from the

increasing importance of the off-diagonal weights.

The inverse transformation is first investigated using the EGM96 spherical harmonic

expansion of the Earth’s disturbing potential field. Figure 3.15 shows the differences

between the degree variances of the original EGM96 geopotential model, and the degree

variances after a forward and backward transformation (Equations 3.73 and 3.79). It

can be seen that convergence is achieved for all coefficients up to degree and order

360, demonstrating the functionality of the iterative backward transformation. The

number of iterations required to obtain an optimal relative accuracy of 10−16 increases



83

for increasing degree n. A total of 50 iterations suffices to obtain this accuracy using

the simple Jacobi iteration.

When backward-transforming the surface SHCs that were obtained from a synthesis-

analysis procedure, the relative differences between the resulting solid SHCs and the

original SHCs shows a very similar pattern to Figure 3.11, i.e., the coefficients for which

n + m is odd are of significantly higher accuracy than the coefficients for which n + m

is even. A spatial comparison of the solid SHCs T
R

nm also shows a similar pattern to

the spatial comparison of the surface coefficients T
re

nm, which is not surprising since the

validity of the backward transformation is already confirmed by Figure 3.15.

It should be noted that the computational efficiency of the coefficient transformation is

much higher than that of the synthesis-analysis procedure. Up to degree and order 360,

the inverse transformation with 50 iterations was of the order of 102 times faster than

the synthesis-analysis procedure, although this does of course strongly depend on the

algorithms used for the spherical harmonic synthesis and analysis. Not surprisingly,

the forward transformation is even faster than the inverse, and a transformation from

solid to surface SHCs up to degree and order 360 can be performed in several seconds

on a Pentium IV 2.4 GHz PC.

Finally, the convergence beyond degree 360 is investigated by a forward and backward

transformation using the GPM98A geopotential model to degree and order 720 with

120 iterations. The difference between the original and the resulting degree variances

is shown in Figure 3.16. It can be seen that the accuracy of the transformed SHCs

starts to decrease around degree 300, just as it does in Figure 3.15 for the case of 50

iterations. Thus, the extra iterations performed in the creation of Figure 3.16 do not

enhance the accuracy of the coefficients.

The order of magnitude of the coefficient differences in Figure 3.16 increases steadily

from degree 300 to approximately degree 520, where the relative error of the trans-

formed SHCs is in the order of 1%. Then, a sudden change takes place. The differ-

ences start to increase more rapidly, crossing the degree variances of the geopotential

model itself, which means that the accuracy of the transformed coefficients becomes
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Figure 3.16: Degree variances of solid SHCs T
R
nm (black line), and their absolute differences

with the degree variances of the solid SHCs T
R
nm obtained after a forward and backward

transformation, where the backward transformation is performed with 120 iterations and the
summation over i was performed from −50 to 50

very poor.

In addition, the differences fluctuate significantly less beyond degree 520. It is no coin-

cidence that this sudden change takes place at degree 520, which was earlier identified

as the degree where diagonal dominance of the weights is lost, and the backward trans-

formation might diverge for SHCs of low order m. Obviously, divergence of the iterative

procedure in the backward transformation of low order SHCs causes the decreased ac-

curacy of the degree variances. In conclusion, the iterative backward transformation

in Equation (3.79) cannot be used beyond degree 520, and loss of accuracy already oc-

curs from degree 300 onwards, as the diagonal dominance of the weight functions λnmi

weakens. The inverse transformation can nevertheless yield highly accurate results if

a spherical harmonic expansion to degree 360 is sufficient.
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3.5 Summary

In this Chapter, a new solution to the ellipsoidal Dirichlet BVP was derived in the

framework of spherical harmonic expansions. Solid SHCs of a harmonic function can be

computed from function values on an oblate ellipsoid of revolution via a transformation

from surface SHCs. The transformation between surface and solid SHCs consists of a

weighted summation, where the derivation of the weights relies heavily on new relations

among ALFs and SHFs. These new relations express the product of an ALF or SHF

with an arbitrary power of the sine or cosine of co-latitude θ as a summation over ALFs

or SHFs of equal order m respectively, multiplied by the herein-called LWFs.

Several numerical comparisons have confirmed the validity of the transformation from

solid to surface SHCs and its inverse for an expansion of the Earth’s disturbing potential

for degree and order≤ 360. The errors in SHCs for which n+m is even were significantly

larger than those in SHCs for which n + m is odd. However, this effect was shown to

be completely caused by numerical errors at the equator in the synthesis-analysis test

procedure, and is thus not caused by the new transformation formulas.

If the influence of the expected errors in the SHCs of degrees close to the maximum

degree of the expansion are omitted, SHCs can be computed with an average relative

accuracy in the order of 10−11. A degradation of accuracy of approximately 1 order of

magnitude for an increase in degree n of ∼ 200 can be observed. It should, however, be

noted that the numerical errors are expected to be higher for an ellipsoid with higher

eccentricity than the Earth, and for coefficients of higher degree. The convergence of

the iterative inverse transformation can be guaranteed up to degree and order 520.
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4. SPECTRAL RELATIONS BETWEEN GRAVITY FIELD

QUANTITIES: THE ELLIPSOIDAL MEISSL SCHEME

The relations among different gravity field quantities are much simpler in the spectral

domain than they are in the space domain, as pointed out in Meissl (1971). However,

the relations derived there only hold in spherical approximation. When the ellipticity

of the Earth is taken into account, a representation of gravity quantities as a surface

spherical harmonic expansion is still possible. The spectral relations between them

become more complicated, but they exist nevertheless. In this Chapter, the spectral

relationships between various gravity quantities on the ellipsoid are derived for the

first time. These allow for the solution of the ellipsoidal Neumann and second-order

BVPs, as well as the second and third geodetic BVPs. Finally, the derived relations

are combined in a new model, the ellipsoidal Meissl scheme, as a generalisation of

the spherical Meissl scheme devised by Rummel and Van Gelderen (1992, 1995) and

extended by, e.g., Grafarend (2001) and Nutz (2002).

4.1 Relation between the disturbing potential and its normal derivative

This Section describes the derivation of the spectral relations between the SHCs of the

disturbing potential and that of its normal derivative at the ellipsoid. This relation is

very straight-forward in spherical approximation, where the normal derivative is simply

the radial derivative, but is more complicated for the ellipsoidal case.

4.1.1 The radial derivative of the disturbing potential

The radial derivative of the fully normalised solid spherical harmonic expansion (Equa-

tion 2.81) can be found by a simple differentiation. The radial derivative of the dis-
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turbing potential on an ellipsoid with geocentric radius re can thus be written in terms

of solid SHCs T
R

nm

∂T

∂r

∣∣∣∣
re

= − 1

R

∞∑
n=0

(n + 1)

(
R

re

)n+2 n∑
m=−n

T
R

nmY nm(θ, λ) (4.1)

The radial derivative of the disturbing potential can alternatively be expanded into a

series of surface spherical harmonics

∂T

∂r

∣∣∣∣
re

=
∞∑

n=0

n∑
m=−n

drT
R

nmY nm(θ, λ) (4.2)

where drT
R

nm are fully normalised surface SHCs. If in Equation (4.1) the ellipsoidal

radius re is approximated by the spherical radius R – the so-called constant radius

approximation (e.g., Heck, 1991) – the term (R/re)
n+1 vanishes and a simple relation

between the coefficients in both series can be found. Since in both Equations (4.1) and

(4.2), all dependence on position is then located inside the SHFs, it follows from the

orthogonality of these functions on the sphere that the coefficients drT
R

nm read (e.g.,

Heiskanen and Moritz, 1967, p. 88)

drT
R

nm = −n + 1

R
T

R

nm (4.3)

Thus, there is a one-to-one relationship between both types of coefficients. However,

this is not the case if the constant radius approximation is not applied.

An exact solution is possible nevertheless, using a procedure very similar to the trans-

formation from solid to surface SHCs provided in Chapter 3. The explicit formula for

the ellipsoidal radius in geodetic coordinates (Table 2.1) can be inserted into Equation

(4.1), yielding

∂T

∂r
= − 1

R

∞∑
n=0

(n + 1)

(
c√

1− e2

)n+2

(1− e2 sin2 θ)
n+2

2

n∑
m=−n

T
R

nmY nm(θ, λ) (4.4)

where the scale factor c (Equation 3.64) is again introduced. Thus, in analogy with

Equation (3.73), the spectral relationship between the disturbing potential and its

radial derivative becomes

drT
R

nm =
∞∑

i=−∞
λnmi(drT, T )T

R

n−2i,m (4.5)
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where

λnmi(drT, T ) = −n + 1

R

∞∑

k=|i|
αn−2i+1,kK

2i,2k

n−2i+1,m (4.6)

The notation of drT and T between brackets indicates that the function λnmi(drT, T )

transforms SHCs of the disturbing potential T into SHCs of the radial derivative of the

disturbing potential drT , and this notation will be used from hereon. More interesting

than the radial derivative is the derivative with respect to the ellipsoidal normal, since

this derivative appears in the ellipsoidal Neumann and Robin BVPs, as well as in the

second and third geodetic BVPs. The normal derivative on the ellipsoid can be split

into the radial term above, plus a latitudinal term, as follows.

4.1.2 The derivative with respect to the ellipsoidal normal

The normal derivative on the ellipsoid can be found via the well-known chain rule of

differentiation
∂T

∂h
=

∂r

∂h

∂T

∂r
+

∂θ

∂h

∂T

∂θ
(4.7)

The derivatives of the geocentric radius r and the geocentric co-latitude θ with respect

to the external ellipsoidal normal can be found by evaluating the relations among

Cartesian, spherical polar and geodetic coordinates (Table 2.3). The distance from a

point in space to the geocentre can be written in geodetic coordinates

r =
√

(ν + h)2 sin2 ϑ + (ν(1− e2) + h)2 cos2 ϑ (4.8)

Differentiation with respect to the ellipsoidal normal gives

∂r

∂h
=

ν(1− e2 cos2 ϑ) + h

r
(4.9)

which on the surface of the ellipsoid (h = 0) reduces to

∂r

∂h

∣∣∣∣
re

=
ν

re

(1− e2 cos2 ϑ) = cos φ (4.10)

where the relations for ν, re and cos φ from Tables 2.1 and 2.2 were used.

A similar procedure can be applied to find the normal derivative of the geocentric

co-latitude θ. It can be derived from the formulas in Table 2.3 that the geocentric
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Figure 4.1: Normal derivative to the ellipsoid

co-latitude can be expressed as a function of the geodetic coordinates

θ = arctan

(
ν + h

ν(1− e2) + h
tan ϑ

)
(4.11)

Therefore, the derivative of the geocentric co-latitude with respect to the external

ellipsoidal normal becomes, after some simplifications (not approximations)

∂θ

∂h
=

−e2ν tan ϑ

(ν(1− e2) + h)2 + (ν + h)2 tan2 ϑ
(4.12)

which on the surface of the ellipsoid reduces to

∂θ

∂h

∣∣∣∣
re

=
−e2 tan ϑ

ν(1− e2 + tan2 ϑ)
= −sin φ

re

(4.13)

Insertion of Equations (4.10) and (4.13) into Equation (4.7) gives the disturbing po-

tential (or any other function) on the ellipsoid

∂T

∂h
= cos φ

∂T

∂r
− sin φ

∂T

re∂θ
(4.14)

Equation (4.14) can also be found geometrically, considering Figure 4.1. However, the

algebraic derivation was followed because it can more easily be extended to higher

order derivatives, as will be shown in Section 4.2.2.

4.1.3 The normal derivative of the disturbing potential

According to Equation (4.14), the normal derivative with respect to the ellipsoid can be

found from a combination of the radial and the latitudinal derivatives. The latitudinal
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derivative in terms of solid SHCs T
R

nm reads

∂T

∂θ

∣∣∣∣
re

=
∞∑

n=0

(
R

re

)n+1 n∑
m=−n

T
R

nm

∂Y nm

∂θ
(4.15)

Now, Equations (4.1) and (4.15) can be inserted into Equation (4.14) to find the normal

derivative of the disturbing potential in terms of the solid SHCs T
R

nm

∂T

∂h

∣∣∣∣
re

= − 1

R

∞∑
n=0

(
R

re

)n+2 n∑
m=−n

T
R

nm

(
(n + 1) cos φY nm + sin φ

∂Y nm

∂θ

)
(4.16)

Alternatively, the normal derivative of the disturbing potential can be expressed in

terms of surface SHCs
∂T

∂h

∣∣∣∣
re

=
∞∑

n=0

n∑
m=−n

dhT
re

nmY nm (4.17)

The aim is to find a relation between the solid SHCs T
R

nm and the surface SHCs of the

normal derivative on the ellipsoidal surface dhT
re

nm. A comparison of the two is only

possible in the spectral domain if both can be expressed in terms of the same set of

base functions. However, two obstacles are present in Equation (4.16) that prevent the

direct comparison of coefficients. Firstly, Equation (4.16) contains terms that depend

on latitude, which disturbs the orthogonality of the base functions. Secondly, the

presence of the latitudinal derivative of the SHFs impedes the direct comparison of

T
R

nm and dhT
re

nm.

Equation (4.16) consists of two main parts, one part containing the SHF Y nm and

another part containing its first derivative with respect to θ. Part one will be evaluated

first. The terms that depend on the latitude can be expanded into binomial series (see

Appendix C). This was shown for the term (R/re)
n+2 in Section 4.1.1, and the same

strategy can be followed for the other terms.

The cosine of φ can be expanded into a product of two binomial series (see Appendix

C) using the formulas in Table 2.2

cos φ = (1− ε4 sin2 θ)−
1
2 (1− e2 sin2 θ)

=

( ∞∑

k=0

(−1)k

(−1
2

k

)
ε4k sin2k θ

)( 1∑

k=0

(−1)ke2k sin2k θ

)
(4.18)

The two binomial series can be combined in one through a Cauchy multiplication (see

Appendix B). After applying the relation between the first numerical eccentricity e and
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the quartic eccentricity ε in Equation (2.12), the following relation appears

cos φ =
∞∑

k=0

(−1)ke2k(2− e2)k

k∑

l=k−1

(−1
2

l

)
sin2k θ (4.19)

Many ways can be followed to proceed from here. Since the term in Equation (4.19) is

multiplied by the SHF Y nm in Equation (4.16), the sinusoidal LWFs can be introduced

by implementating Equation (3.31). This moves the dependence on latitude apparent

in Equation (4.19) into the spherical harmonics, which is required for the comparison

of T
R

nm and dhT
re

nm.

However, it follows from Equation (4.16) that Equation (4.19) still needs to be mul-

tiplied by the term (R/re)
n+2. This term can also be written as a power series over

the sine of co-latitude θ, and it is more efficient to combine both power series before

inserting the LWFs. This can be seen from the fact that the insertion of the LWFs

introduces an extra summation sign, whereas a Cauchy multiplication introduces none.

It is therefore chosen to introduce the LWFs after the Cauchy multiplication has taken

place.

In Section 4.1.1, it was derived that the term (R/re)
n+2 can be expressed as a power

series (
R

re

)n+2

=
∞∑

k=0

αn+1,k sin2k θ (4.20)

Now, the two series in Equations (4.19) and (4.20) can be combined using a Cauchy

multiplication (see Appendix B)

(
R

re

)n+2

cos φ =
∞∑

j=0

j∑

k=0

αn+1,j−k(−1)ke2k(2− e2)k

k∑

l=k−1

(−1
2

l

)
sin2j θ (4.21)

After multiplication of Equation (4.21) with the SHFs Y nm, the sinusoidal LWFs (Equa-

tion 3.31) can be inserted. This gives

(
R

re

)n+2

cos φY nm =
∞∑

j=0

j∑
i=−j

βnmijY n+2i,m (4.22)

where

βnmij = K
2i,2j

nm

j∑

k=0

αn+1,j−k(−1)ke2k(2− e2)k

k∑

l=k−1

(−1
2

l

)
(4.23)
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It can be seen from Equation (4.23) that the function βnmij in Equation (4.22) only

depends on degree n, order m, the first numerical eccentricity of the ellipsoid e, and the

scale factor c (Equation 3.64). It is therefore independent of latitude and longitude.

In a similar fashion, the second part of Equation (4.16) can be rewritten. First, the

expression for sin φ in spherical polar coordinates (see Table 2.2) can be inserted

sin φ
∂Y nm

∂θ
= (1− ε4 sin2 θ)−

1
2 e2 sin θ cos θ

∂Y nm

∂θ
(4.24)

The term (1 − ε4 sin2 θ)−
1
2 can be expanded into a binomial series, and furthermore

Equation (3.50) can be inserted to obtain

sin φ
∂Y nm

∂θ
= e2

∞∑
j=0

(−1)j

(−1
2

j

)
ε4j sin2j θ

1∑

l=−1

N
2,2l

nmY n+2l,m (4.25)

When Equation (4.25) is multiplied by the term (R/re)
n+2 and Equation (4.20) inserted,

after a Cauchy multiplication of the two power series (see Appendix B), it becomes

(
R

re

)n+2

sin φ
∂Y nm

∂θ
= e2

∞∑
j=0

j∑

k=0

αn+1,j−k(−1)k

(−1
2

k

)
ε4k sin2j θ

1∑

l=−1

N
2l,2

nmY n+2l,m

(4.26)

Now, the sinusoidal LWFs (Equation 3.31) can be inserted and a formula where all

dependence on latitude is centred inside the SHFs can be derived

(
R

re

)n+2

sin φ
∂Y nm

∂θ
= e2

∞∑
j=0

j∑

k=0

αn+1,j−k(−1)k

(−1
2

k

)
ε4k

×
j∑

i=−j

K
2i,2j

n+2l,m

1∑

l=−1

N
2l,2

nmY n+2i+2l,m (4.27)

Equation (4.27) is slightly more complicated than Equation (4.22), derived for the first

part of Equation (4.16), because the degree of the SHF depends on three summation

indices. A solution of similar form as Equation (4.22) can be obtained nevertheless, be-

cause the summation order over i and l can be rearranged (see Appendix B). Equation

(4.27) can thus be written as

(
R

re

)n+2

sin φ
∂Y nm

∂θ
=

∞∑
j=0

j+1∑
i=−j−1

γnmijY n+2i,m (4.28)

where

γnmij = e2

j∑

k=0

αn+1,j−k(−1)k

(−1
2

k

)
ε4k

min(j,i+1)∑

l=max(−j,i−1)

K
2(i−l),2j

n+2l,m N
2l,2

nm (4.29)
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The function γnmij depends on the same parameters as βnmij, i.e., degree n, order m,

the first numerical eccentricity of the ellipsoid e, and the scale factor c. Equations

(4.22) and (4.28) are of similar form, the main difference being that the summation

over i contains two extra terms in the latter, namely i = −j − 1 and i = j + 1. Note,

however, that βnmij is zero for these two cases, due to the fact that the sinusoidal LWFs

K
2i,2j

nm are defined as zero for |i| > j.

Equations (4.22) and (4.28) can thus easily be added together and implemented in

Equation (4.16). Finally, an expression for the derivative of the disturbing potential

with respect to the ellipsoidal normal can be found

∂T

∂h

∣∣∣∣
re

= − 1

R

∞∑
n=0

n∑
m=−n

T
R

nm

∞∑
j=0

j+1∑
i=−j−1

[(n + 1)βnmij + γnmij]Y n+2i,m (4.30)

where all dependence on longitude and latitude is inside the SHFs Y nm. The summation

order over n and i can be rearranged (see Appendix B) to yield an expression where

the SHFs solely depend on degree n and order m

∂T

∂h

∣∣∣∣
re

= − 1

R

∞∑
n=0

n∑
m=−n

∞∑
j=0

j+1∑
i=−j−1

[(n− 2i + 1)βn−2i,mij + γn−2i,mij]T
R

n−2i,mY nm (4.31)

Subsequently, the summation over indices i and j can be rearranged so that the sum-

mation over i, upon which the SHCs depend, can be brought outside the summation

over j

∂T

∂h

∣∣∣∣
re

= − 1

R

∞∑
n=0

n∑
m=−n

∞∑
i=−∞

∞∑

j=|i|−1

[(n− 2i + 1)βn−2i,mij + γn−2i,mij]T
R

n−2i,mY nm (4.32)

This allows for a direct comparison with a surface harmonic expansion of the normal

derivative of the disturbing potential. The surface SHCs dhT
re

nm can now directly be

computed from a weighted summation over the geopotential coefficients T
R

nm of equal

order m

dhT
re

nm =
∞∑

i=−∞
λnmi(dhT, T )T

R

n−2i,m (4.33)

where

λnmi(dhT, T ) = − 1

R

∞∑

j=|i|−1

[(n− 2i + 1)βn−2i,mij + γn−2i,mij] (4.34)

Note that Equation (4.33) is almost identical to Equation (4.5), the only difference

being that the radial derivative is replaced by the normal derivative to the ellipsoid.
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Figure 4.2: Values of |λn00| (black) and
∞∑

i=−∞,i 6=0

|λn0i| (green) from Equation (3.74), as well

as |λn00(dhT, T )| (red) and
∞∑

i=−∞,i6=0

|λn0i(dhT, T )| (blue) from Equation (4.34), indicating

the diagonal dominance of the weights below degree n = 520 for both cases

It is a generalisation and theoretical improvement of the simple spherical and constant

radius approximation in Equation (4.3). A similar generalisation can be derived for the

second normal derivative of the disturbing potential, as will be shown later in Section

4.2.

As for the solution to the ellipsoidal Dirichlet BVP in Chapter 3, the inverse of Equation

(4.33) can be found via a rigorous matrix inversion, or via an iterative procedure similar

to Equation (3.79). Unfortunately, just as in the case of the solution to the ellipsoidal

Dirichlet BVP, the iteration will not converge for some SHCs beyond degree 520. This

is because the weights λnmi(dhT, T ) are no longer diagonally dominant beyond degree

520, i.e, the weights do no longer obey Equation (3.78) beyond degree 520, as is shown

for the zonal weights (m = 0) in Figure 4.2. The underlying reason is the same as

in the weights λnmi in Equation (3.79), and the cause lies in the functions αnk, which

contain binomial coefficients that are dependent on the spherical harmonic degree n.

All other binomial coefficients apparent in βnmij and γnmij do not contain the degree
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n or order m.

The inverse of the relation in Equation (4.33) computes solid SHCs T
R

nm from surface

SHCs dhT
re

nm. Since the solid SHCs describe the disturbing potential T in the whole

space exterior to the ellipsoid, the inverse of Equation (4.33) allows us to compute the

disturbing potential anywhere outside the ellipsoid from its derivative on the surface of

the ellipsoid (represented by a set of surface SHCs). The transformation does not only

hold for the disturbing potential T , but for any function that is harmonic outside the

ellipsoid, and the inverse of Equation (4.33) is therefore a solution to the ellipsoidal

Neumann BVP. The second geodetic BVP (or fixed geodetic BVP) with the boundary

condition given by Equation (2.48) is an example of an ellipsoidal Neumann BVP, and

the transformations derived here thus provide its solution.

4.2 Relation between the disturbing potential and its second normal

derivative

The second normal derivative of the disturbing potential on the ellipsoid describes the

vertical gravity gradient, i.e., the gradient of gravity in the direction of the ellipsoidal

normal. The gravity gradient has received a lot of attention in recent years (e.g., Klees

et al., 2000; Drinkwater et al., 2003), because the technique of satellite gravity gra-

diometry directly measures the second derivatives of the Earth’s potential. In addition,

vertical gravity gradients are important for the reduction of gravity measured on the

Earth’s surface and the computation of orthometric heights (cf. Tenzer et al., 2005). In

the latter application, the gravity gradient along the plumbline is needed, but this is in

practice often approximated by the gravity gradient in the direction of the ellipsoidal

normal (e.g., Vańıček and Krakiwsky, 1986, p.497).
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4.2.1 The second radial derivative of the disturbing potential

The second radial derivative of the disturbing potential is the gravity gradient in the

direction towards the Earth’s centre (here assumed to coincide with the centre of the

ellipsoid). The second radial derivative of a solid spherical harmonic expansion fol-

lows from a differentiation of Equation (4.1) with respect to re, and the second radial

derivative of the disturbing potential can thus be written as follows

∂2T

∂r2

∣∣∣∣
re

=
1

R2

∞∑
n=0

(n + 1)(n + 2)

(
R

re

)n+3 n∑
m=−n

T
R

nmY nm(θ, λ) (4.35)

This can also be expanded into a series of surface SHFs

∂2T

∂r2

∣∣∣∣
re

=
∞∑

n=0

n∑
m=−n

d2
rT

R

nmY nm(θ, λ) (4.36)

In constant radius approximation, where R = re, the term (R/re)
n+3 equals unity and

a simple relation between the coefficients in both series can be found (e.g., Rummel

and Van Gelderen, 1992)

d2
rT

R

nm =
(n + 1)(n + 2)

R2
T

R

nm (4.37)

Thus, as in the case of the first radial derivative in constant radius approximation,

there is a one-to-one relationship between both type of coefficients. However, this is

not the case if the constant radius approximation is not applied, but an exact solution

can be found along similar lines as the derivation in Section 4.1.1.

The explicit formula for the ellipsoidal radius in spherical polar coordinates (Table 2.1)

and the scale factor c (Equation 3.64) can be inserted into Equation (4.35)

∂2T

∂r2

∣∣∣∣
re

=
1

R2

∞∑
n=0

(n + 1)(n + 2)

(
c√

1− e2

)n+3

(1− e2 sin2 θ)
n+3

2

n∑
m=−n

T
R

nmY nm(θ, λ)

(4.38)

Equation (4.38) is very similar to the case of the first radial derivative in Equation

(4.4), so can be treated along the same lines. The spectral relationship between the

disturbing potential and its radial derivative thus becomes

d2
rT

R

nm =
∞∑

i=−∞
λnmi(d

2
rT, T )T

R

n−2i,m (4.39)
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where

λnmi(d
2
rT, T ) =

(n + 1)(n + 2)

R2

∞∑

k=|i|
αn−2i+2,kK

2i,2k
n−2i+2,m (4.40)

Obtaining a similar relation for the second derivative with respect to the ellipsoidal

normal is more complicated, but it is possible nonetheless, as is shown in the remainder

of this Section. The first step in this procedure is the derivation of a general relation

writing the second derivative with respect to the ellipsoidal normal in terms of first-

and second-order derivatives with respect to the geocentric radius and latitude.

4.2.2 The second derivative with respect to the ellipsoidal normal

The second derivative along the ellipsoidal normal can be expressed as a combination

of radial and latitudinal derivatives by applying the chain rule of differentiation to

Equation (4.7)

∂2T

∂h2
=

∂

∂h

(
∂r

∂h

∂T

∂r
+

∂θ

∂h

∂T

∂θ

)

=
∂2r

∂h2

∂T

∂r
+

(
∂r

∂h

)2
∂2T

∂r2
+

∂2θ

∂h2

∂T

∂θ
+

(
∂θ

∂h

)2
∂2T

∂θ2
+ 2

∂θ

∂h

∂r

∂h

∂2T

∂r∂h
(4.41)

The second normal derivative of the ellipsoidal radius can be found by differentiation

of Equation (4.9) with respect to h

∂2r

∂h2
=

1

r
− 1

r3
(ν(1− e2 cos2 ϑ) + h)2 =

1

r

[
1−

(
∂r

∂h

)2]
(4.42)

For a point on the surface of the ellipsoid, after implementation of Equation (4.10),

this becomes
∂2r

∂h2

∣∣∣∣
re

=
sin2 φ

re

(4.43)

The second normal derivative of the geocentric latitude can be found by differentiation

of Equation (4.12) with respect to h

∂2θ

∂h2
=

2e2 tan ϑ(ν + h)(1− e2 + tan ϑ)

[(1− e2)2 + tan2 ϑ]2

=
2(ν + h)(1− e2 + tan ϑ)

e2ν tan ϑ

(
∂θ

∂h

)2

(4.44)

For a point on the surface of the ellipsoid, after implementation of Equation (4.13),

this becomes
∂2θ

∂h2

∣∣∣∣
re

=
2(1− e2 + tan2 ϑ) sin2 φ

e2r2
e tan ϑ

=
2 sin φ cos φ

r2
e

(4.45)
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Thus, inserting Equations (4.10), (4.13), (4.43) and (4.45) into Equation (4.41) gives

the second normal derivative of the disturbing potential on the surface of the ellipsoid

∂2T

∂h2

∣∣∣∣
re

= cos2 φ
∂2T

∂r2
+ sin2 φ

(
∂T

re∂r
+

∂2T

r2
e∂θ2

)
+ sin 2φ

(
∂T

r2
e∂θ

− ∂2T

re∂r∂θ

)
(4.46)

which will allow for an expression of the second normal derivative in terms of SHCs,

described next.

4.2.3 The second normal derivative of the disturbing potential

To compute the second normal derivative of the disturbing potential from geopotential

coefficients, the second derivatives with respect to the geocentric radius and latitude

are required in terms of solid SHCs. The second radial derivative of the disturbing

potential follows from differentiation of Equation (4.1) with respect to r

∂2T

∂r2

∣∣∣∣
re

=
1

R2

∞∑
n=0

(n + 1)(n + 2)

(
R

r

)n+3 n∑
m=−n

T
R

nmY nm (4.47)

The second derivative with respect to the geocentric latitude follows from differentiation

of Equation (4.15) with respect to θ

∂2T

∂θ2

∣∣∣∣
re

=
∞∑

n=0

(
R

re

)n+1 n∑
m=−n

T
R

nm

∂2Y nm

∂θ2
(4.48)

The cross-derivative can be derived in two ways, either from a differentiation of Equa-

tion (4.1) with respect to the geocentric latitude, or by a differentiation of Equation

(4.15) with respect to the geocentric radius. Both give the same result:

∂2T

∂r∂θ

∣∣∣∣
re

= − 1

R

∞∑
n=0

(n + 1)

(
R

r

)n+2 n∑
m=−n

T
R

nm

∂Y nm

∂θ
(4.49)

The second derivative of the disturbing potential with respect to the ellipsoidal normal

can now be found by inserting Equations (4.1), (4.15), (4.47), (4.48) and (4.49) into

Equation (4.46)

∂2T

∂h2

∣∣∣∣
re

=
1

R2

∞∑
n=0

(
R

re

)n+3 n∑
m=−n

T
R

nm

{
(n + 1)[n + 2− (n + 3) sin2 φ]Y nm

+(n + 2) sin 2φ
∂Y nm

∂θ
+ sin2 φ

∂2Y nm

∂θ2

}
(4.50)
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This expression for the second normal derivative contains many terms that are depen-

dent on latitude. As in the case of the first derivative, all dependence on latitude can be

moved into the spherical harmonic base functions Y nm to allow for a direct comparison

with a surface spherical harmonic expansion of the second derivatives.

Equation (4.50) can be rewritten to move the dependence on co-latitude θ into the

SHFs, and express the derivatives of the SHFs as a function of the SHFs themselves

as well, in a very similar way to the treatment of the first derivative of the disturbing

potential in Section 4.1.3. The trigonometric functions of the ellipsoidal deflection

angle φ apparent in Equation (4.50) are first expanded into one or two binomial series

(see Appendix C), using the relations provided in Table 2.2 and some trigonometric

identities

sin2 φ = e2 sin2 θ cos2 θ(1− ε4 sin2 θ)−1

= e2 sin2 θ cos2 θ

∞∑

k=0

(−1)k

(−1

k

)
ε4k sin2k θ (4.51)

sin 2φ = 2e2 sin θ cos θ(1− e2 sin2 θ)(1− ε4 sin2 θ)−1

= 2e2 sin θ cos θ

[ 1∑

k=0

(−1)ke2k sin2k θ

][ ∞∑

k=0

(−1)k

(−1

k

)
ε4k sin2k θ

]
(4.52)

Subsequently, the products of binomial series can be combined using a Cauchy multipli-

cation (see Appendix B), and when multiplied with the first- or second-order derivatives

of the SHFs, the new relations derived in Section 3.2 can be inserted.

In the multiplication of sin 2φ (Equation 4.52) with the first derivative of the spherical

harmonics, Equation (3.50) can be inserted

sin 2φ
∂Y nm

∂θ
= 2e2

∞∑
j=0

(−1)je2j

j∑

k=j−1

(2− e2)k

(−1

k

)
sin2j θ

1∑
i=−1

N
2i,2

nmY n+2i,m (4.53)

In the case of the second derivative of the spherical harmonics, Equation (3.61) can be

applied

sin2 φ
∂2Y nm

∂θ2
= e2

∞∑

k=0

(−1)k

(−1

k

)
ε4k sin2k θ

2∑
i=−2

R
2i,4

nmY n+2i,m (4.54)

Equation (4.50) also contains a term where sin2 φ is multiplied by the SHF itself.

Equations (3.21) and (3.29) can be inserted to account for the terms cos2 θ and sin2 θ
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apparent in Equation (4.51). After a Cauchy multiplication of the series in Equations

(3.21) and (3.29), it is derived that

sin2 φY nm = e2

∞∑

k=0

(−1)k

(−1

k

)
ε4k sin2k θ

2∑
i=−2

1∑
j=−1

K
2i,2

nmF
2(i−j),2

nm Y n+2i,m (4.55)

From here, the derivation follows exactly the same principles as the derivation in the

case of the first normal derivative of the disturbing potential in Section 4.1.3. Equations

(4.53) to (4.55) can be pre-multiplied by the term (R/re)
n+3, which can be expanded

into a binomial series similar to Equation (4.20). The two series can be combined using

a Cauchy multiplication, after which the sinusoidal LWFs K
ij

nm can be inserted. This

moves all dependence on latitude inside the SHFs Y nm.

When the summation order is rearranged such that the SHFs are independent of any

summation indices other than n and m, the series can be compared to a surface spherical

harmonic expansion of the second-order derivatives of the disturbing potential on the

ellipsoid
∂2T

∂h2

∣∣∣∣
re

=
∞∑

n=0

n∑
m=−n

d2
hT

re

nmY nm(θ, λ) (4.56)

The surface SHCs d2
hT

re

nm can eventually be expressed as a weighted summation over

the solid SHCs T
R

nm

d2
hT

re

nm =
∞∑

i=−∞
λnmi(d

2
hT, T )T

R

n−2i,m (4.57)

where the weights follow from an infinite summation

λnmi(d
2
hT, T ) =

1

R2

∞∑

j=|i|−2

[
(n + 1)(n + 2)δ0i − (n− 2i + 1)(n− 2i + 3)κn−2i,mij

+(n− 2i + 2)ζn−2i,mij + ηn−2i,mij

]
(4.58)

The weights only depend on the degree n, order m, the first numerical eccentricity of

the ellipsoid e, the reference sphere R, and the scale factor c, as can be seen from the

explicit formulas for the terms in Equation (4.58)

ζnmij = 2e2

j∑

k=0

αn+2,j−k(−1)ke2k

k∑

l=k−1

(2−e2)l

(−1

l

) min(j,i+1)∑

p=max(−j,i−1)

K
2(i−p),2j

n+2p,m N
2p,2

nm (4.59)

ηnmij = e2

j∑

k=0

αn+2,j−k(−1)kε4k

(−1

k

) min(j,i+2)∑

l=max(−j,i−2)

K
2(i−l),2j

n+2l,m R
2l,4

nm (4.60)
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κnmij = e2

j∑

k=0

αn+2,j−k(−1)kε4k

(−1

k

) min(j,i+2)∑

l=max(−j,i−2)

K
2(i−l),2j

n+2l,m K
2l,2

nm

1∑
p=−1

F
2(i−p),2

nm (4.61)

Equations (4.59) to (4.61) are the contributions to the weight functions of the terms

in Equations (4.53) to (4.55) respectively.

The inverse of Equation (4.57) computes solid SHCs of the disturbing potential (or any

other function that is harmonic outside the ellipsoid), from surface SHCs of its second

derivative on the ellipsoid. It therefore forms a solution of the second-order ellipsoidal

BVP in the spectral domain.

The numerical stability and efficiency of this solution for the case of the Earth’s dis-

turbing potential are not explicitly tested here, but based on the appearance of the

term αn+2,j−k in Equations (4.59) to (4.61), difficulties in the inversion for high degrees

(n > 520) can be expected. Since the spectral sensitivity of these high degrees of the

second normal derivative of the disturbing potential is more than 99% (e.g. Schwarz,

1985), this severely hinders the practicality of the solution in applications involving

the Earth’s gravity field.

4.3 Relation between the disturbing potential and the gravity anomaly

In Section 2.3.2, the relation between the disturbing potential T and the gravity

anomaly ∆g was derived in the space domain. This relation is given by the funda-

mental equation of physical geodesy (Equation 2.52)

∆g = −∂T

∂h
+

1

γ

∂γ

∂h
T (4.62)

and the level of approximation of Equation (4.62) was assessed in Section 2.3.3. In this

Section, the relation in the spectral domain will be derived. This relation is well-known

for the spherical and constant radius approximation (e.g., Heiskanen and Moritz, 1967,

p. 89), and is derived in Section 4.3.1. Without application of these approximations,

the relation becomes more complicated, since a one-to-one relation between SHCs is

no longer possible. However, the relation can be found using the new relations among
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SHFs derived in Section 3.2, and this more rigorous relation is derived here for the first

time.

4.3.1 Spherical and constant radius approximation

The gravity anomaly on the ellipsoid can be expanded into a series of surface SHFs

(Equation 2.83)

∆g =
∞∑

n=0

n∑
m=−n

∆g
re

nmY nm (4.63)

The coefficients ∆g
re

nm can simply be related to the geopotential coefficients T
R

nm in

spherical and constant radius approximation, as follows. The spherical approximation

includes two steps. First, the normal derivative to the ellipsoid is approximated by the

radial derivative, which transforms Equation (4.62) into

∆g = −∂T

∂r
+

1

γ

∂γ

∂r
T (4.64)

Secondly, the reference gravity γ is approximated by a spherical reference gravity γ̃.

This spherical reference gravity is simply the gravity induced by a point mass or a

homogeneous sphere (of which the radius does not exceed the ellipsoidal radius at the

point of interest) with a total mass equal to that of the Earth, which is independent of

longitude and latitude (Equation 2.31). The radial derivative of the spherical reference

gravity can be found by differentiation, and inserted into Equation (4.64)

∆g = −∂T

∂r
− 2

re

T (4.65)

The error in the gravity anomaly introduced by the spherical approximation is well-

known to be of the order of the flattening f of the ellipsoid (≈ 0.003) (e.g., Heiskanen

and Moritz, 1967; Rummel, 1985).

Inserting the spherical harmonic representations of the disturbing potential (Equation

2.81) and its radial derivative (Equation 4.1) into Equation (4.65) gives an expression

for the gravity anomaly in terms of geopotential coefficients

∆g =
1

R

∞∑
n=0

n∑
m=−n

(n− 1)

(
R

re

)n+2

T
R

nmY nm (4.66)
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The simplest solution occurs when the ellipsoidal radius re is set equal to the radius of

the reference sphere R, i.e. when the constant radius approximation is applied. This

causes the term (R/re)
n+2 to equal unity and Equation (4.66) reduces to

∆g =
∞∑

n=0

n∑
m=−n

n− 1

R
T

R

nmY nm (4.67)

and all dependence on latitude is now contained inside the SHFs. Due to the or-

thogonality of the SHFs on the sphere, a one-to-one relation between surface SHCs of

the gravity anomaly and geopotential coefficients can be obtained upon comparison of

Equations (4.63) and (4.67) (e.g., Heiskanen and Moritz, 1967, p. 89)

∆g
re

nm =
n− 1

R
T

R

nm (4.68)

Alternatively, similar to the case of the first derivative of the disturbing potential, the

term (R/re)
n+2 can be expanded into a binomial series after which an expression occurs

with all dependence on latitude inside the SHFs

∆g = − 1

R

∞∑
n=0

n∑
m=−n

Y nm

∞∑

k=0

k∑

i=−k

(n− 1− 2i)αn+1−2i,kK
2i,2k

n−2i,mT
R

n−2i,m (4.69)

The errors introduced by the spherical and constant radius approximation will be

assessed in Chapter 5. These errors can be revealed because a rigorous derivation

without these approximations is possible, as is presented next.

4.3.2 The rigorous ellipsoidal relation

While the approximations to Equation (4.62) made above do simplify the solution, it

will be shown here that they are not strictly necessary. A rigorous derivation, largely

based on formulas derived in previous Sections, is possible. In Section 4.1, it was

shown that the spectral relation between the disturbing potential and its derivative

with respect to the ellipsoidal normal can be derived rigorously. It remains to be

proven that the second term in Equation (4.62), containing the reference gravity γ,

can be expressed in a similar way, and this is shown next.

According to Equation (2.36), the derivative of the reference gravity can be expressed

as a function of the principal radii of curvature ρ and ν and the angular velocity of the
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Earth’s rotation ω. Division of this formula by the normal gravity γ gives

1

γ

∂γ

∂h
= −1

ρ
− 1

ν
− 2

ω2

γ
(4.70)

The terms on the right-hand side of Equation (4.70) can all be expressed as a function

of the geocentric latitude. Moreover, they can all be expressed in such a way that they

can be expanded into converging binomial series, which allows for the insertion of the

LWFs derived in Section 3.2.

For example, the inverse of the meridian radius of curvature ρ can be written as (see

Table 2.1)
1

ρ
=

b

a2
(1− e2 sin2 θ)

3
2 (1− ε4 sin2 θ)−

3
2 (4.71)

The two terms between brackets in Equation (4.71) can be written as a binomial series

(see Appendix C)

1

ρ
=

b

a2

[ ∞∑
j=0

(−1)j

(
3
2

j

)
e2j sin2j θ

][ ∞∑

k=0

(−1)k

(−3
2

k

)
ε4k sin2k θ

]
(4.72)

and these two binomial series can be combined using a Cauchy multiplication (see

Appendix B)

1

ρ
=

b

a2

∞∑
j=0

(−1)je2j

j∑

k=0

(
3
2

k

)( −3
2

j − k

)
(2− e2)j−k sin2j θ (4.73)

A power series for the inverse of the prime vertical radius of curvature ν can be found

in a very similar way

1

ν
=

b

a2
(1− e2 sin2 θ)

1
2 (1− ε4 sin2 θ)−

1
2

=
b

a2

[ ∞∑
j=0

(−1)j

(
1
2

j

)
e2j sin2j θ

][ ∞∑

k=0

(−1)k

(−1
2

k

)
ε4k sin2k θ

]

=
b

a2

∞∑
j=0

(−1)je2j

j∑

k=0

(
1
2

k

)( −1
2

j − k

)
(2− e2)j−k sin2j θ (4.74)

The term 2ω2/γ in Equation (4.70) can also be expressed as a power series. For this

purpose, Somigliana’s formula for normal gravity in geodetic coordinates (Equation

2.34) first needs to be written in an alternative form

γ = γb(1− e2 sin2 θ)−
1
2 (1− ε4 sin2 θ)−

1
2 (1− e2

γ sin2 θ) (4.75)
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where

e2
γ = 1− γa

γb

(1− e2)
3
2 (4.76)

which is obviously much smaller than 1, since γa ≈ γb and e2 ¿ 1. The inverse of the

reference gravity needed in Equation (4.70) can therefore be written as the product of

three fast-converging binomial series (see Appendix C)

1

γ
=

1

γb

(1− e2 sin2 θ)
1
2 (1− ε4 sin2 θ)

1
2 (1− e2

γ sin2 θ)−1

=
1

γb

[ ∞∑
i=0

(−1)i

(
1
2

i

)
e2i sin2i θ

][ ∞∑
j=0

(−1)j

(
1
2

j

)
ε4j sin2j θ

][ ∞∑

k=0

e2k
γ sin2k θ

]
(4.77)

The three binomial series can be combined using a Cauchy multiplication (see Appendix

B). Combining the first two series and subsequently combining it with the third, results

in a single power series expression

1

γ
=

1

γb

[ ∞∑
j=0

j∑
i=0

(−1)j

(
1
2

i

)(
1
2

j − i

)
(2− e2)j−ie2j sin2j θ

][ ∞∑

k=0

e2k
γ sin2k θ

]

=
1

γb

∞∑
j=0

j∑

k=0

(−1)ke2ke2(j−k)
γ

k∑
i=0

(
1
2

i

)(
1
2

k − i

)
(2− e2)k−i sin2j θ (4.78)

Pre-multiplying Equation (4.78) by the term (R/re)
n+1 and subsequently applying a

Cauchy multiplication of the power series, gives

(
R

re

)n+1
1

γ
=

1

γb

∞∑
j=0

j∑

k=0

αn,j−k

k∑

l=0

(−1)le2le2(k−l)
γ

l∑
p=0

(
1
2

p

)(
1
2

l − p

)
(2− e2)l−p sin2j θ

(4.79)

Then, Equations (4.73), (4.74) and (4.78) can be inserted into Equation (4.70) and a

simple summation of the three power series gives

(
R

re

)n+1
1

γ

∂γ

∂h
= −

∞∑
j=0

j∑

k=0

αn,j−k

k∑

l=0

(
b

a2
(−1)k(2− e2)k−le2k

[(
3
2

l

)( −3
2

k − l

)
+

(
1
2

l

)( −1
2

k − l

)]
+ 2

ω2

γb

(−1)le2le2(k−l)
γ

l∑
p=0

(
1
2

p

)(
1
2

l − p

)
(2− e2)l−p

)
sin2j θ (4.80)

This series can be used to obtain an expression for the second term of the fundamental

equation of physical geodesy (Equation 4.62) in terms of the solid SHCs of the disturb-

ing potential. All dependence on latitude can be centred inside the SHFs by inserting

the sinusoidal LWFs K
ij

nm (Equation 3.31)

1

γ

∂γ

∂h
T =

∞∑
n=0

n∑
m=0

T
R

nm

∞∑
j=0

j∑
i=−j

εnmijY n+2i,m (4.81)
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where

εnmij = −K
2i,2j

nm

j∑

k=0

αn,j−k

k∑

l=0

(
b

a2
(−1)k(2− e2)k−le2k

[(
3
2

l

)( −3
2

k − l

)
+

(
1
2

l

)( −1
2

k − l

)]
+ 2

ω2

γb

(−1)le2le2(k−l)
γ

l∑
p=0

(
1
2

p

)(
1
2

l − p

)
(2− e2)l−p

)
(4.82)

A similar expression for the first term of the fundamental equation of physical geodesy,

which is simply the normal derivative of the disturbing potential, was already derived

in Section 4.1 and given in Equation (4.32).

Equations (4.32) and (4.81) can be summed to obtain a formula for the gravity anomaly

in terms of the SHCs T
R

nm

∆g =
∞∑

n=0

n∑
m=0

T
R

nm

∞∑
j=0

j+1∑
i=−j−1

(
εnmij +

n + 1

R
βnmij +

1

R
γnmij

)
Y n+2i,m (4.83)

A rearrangement of the summation order (see Appendix B) is applied to ensure that the

SHFs do not depend on the summation indices i and j, which facilitates the comparison

with the surface SHCs of gravity anomalies

∆g =
∞∑

n=0

n∑
m=0

∞∑
j=0

j+1∑
i=−j−1

(
εn−2i,m,i,j +

n− 2i + 1

R
βn−2i,m,i,j +

1

R
γn−2i,m,i,j

)
T

R

n−2i,mY nm

(4.84)

This expression can, due to the orthogonality of the SHFs on the sphere, be directly

compared to surface SHCs from the gravity anomalies on the ellipsoid (Equation 4.63)

∆g
re

nm =
∞∑

j=0

j+1∑
i=−j−1

(
εn−2i,m,i,j +

n− 2i + 1

R
βn−2i,m,i,j +

1

R
γn−2i,m,i,j

)
T

R

n−2i,m (4.85)

Reshuffling the summation order once more provides the final formula containing a

weighted summation over SHCs of the disturbing potential from −∞ to ∞

∆g
re

nm =
∞∑

i=−∞
λnmi(∆g, T )T

R

n−2i,m (4.86)

where the weights λnmi(∆g, T ) can be computed from another infinite summation

λnmi(∆g, T ) =
∞∑

j=|i|−1

(
εn−2i,m,i,j +

n− 2i + 1

R
βn−2i,m,i,j +

1

R
γn−2i,m,i,j

)
(4.87)
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The inverse of Equation (4.86) is a solution to the third geodetic BVP (or free-geodetic

BVP) with the boundary condition given in Equation (2.52), since the solid SHCs T
R

nm

define the disturbing potential in the complete exterior of the ellipsoid.

The weights λnmi(∆g, T ) are very similar to the weights λnmi(dhT, T ) that define the

spectral relation between the disturbing potential and its first derivative with respect

to the ellipsoidal normal, especially for high degrees n. The weights of high degrees

are dominated by the term αnk, which defines the continuation between the sphere and

the ellipsoid. Therefore, the iterative method to find the inverse of Equation (4.86),

similar to Equation (3.79), can only be guaranteed to converge for SHCs up to degree

520, just as in the case of the solutions to the ellipsoidal Dirichlet, Neumann and fixed

geodetic BVP.

4.4 The Meissl scheme

The spectral relations between several gravity field quantities can be combined in a

diagram, often called the Meissl scheme. The principles of the spectral theory of

gravity quantities were formulated by Meissl (1971) and these were combined into a

concise scheme by Rummel and Van Gelderen (1992, 1995). The main part of the

scheme relates surface SHCs of the disturbing potential with coefficients of its first and

second-order radial derivatives on spheres at different altitudes. This scheme has been

extended to also include derivatives in latitudinal and longitudinal direction by using

vector or tensor spherical harmonic expansions instead of the common scalar spherical

harmonic expansion (Rummel and Van Gelderen, 1995). It has been further expanded

to include vertical deflections and gravity disturbances (Grafarend, 2001) and forward

gravity field modelling using a Newtonian integration (Kuhn and Featherstone, 2003),

while Keller (2002) discusses the Meissl scheme when pseudo-differential operators are

applied.

All of the above contributions only apply for gravity field functionals given on a sphere.

An extension of the Meissl scheme to a not necessarily spherical geometry is provided by
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Nutz (2002) using wavelet techniques. A second limitation of the original Meissl scheme

is that it only considers radial, longitudinal and latitudinal derivatives. Derivatives with

respect to the ellipsoidal normal are not included, even though this derivative features

in many BVPs. Bölling and Grafarend (2005) derive relations between the disturbing

potential and its derivatives in the ellipsoidal domain. They use the framework of

ellipsoidal harmonics to derive the ellipsoidal spectral properties. Here, the Meissl

scheme will be generalised to include relations between the disturbing potential and its

normal derivatives on the ellipsoid, in the framework of the simple and most commonly

used scalar spherical harmonic expansion.

4.4.1 The spherical Meissl scheme

The spectral relations between the disturbing potential and its first- and second-order

radial derivative are shown in Equations (4.3) and (4.37). Furthermore, from the

spherical harmonic series (Equation 2.70) it follows that the relation between two

SHCs referenced to two spheres of different radii, say R and Rs, is given by a simple

one-to-one relation

T
Rs

nm =

(
R

Rs

)n+1

T
R

nm (4.88)

The spectral relations between the different functionals can be shown in the form of a

diagram (see Figure 4.3). This diagram was published in Rummel and Van Gelderen

(1995) and Rummel (1997).

Figure 4.3: Spherical Meissl scheme (adapted from Rummel and Van Gelderen 1995)
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matrix eigenvalue matrix eigenvalue

ΛR(drT, T )
−R

n + 1
ΛRRs(T, T )

(
R

Rs

)n+1

ΛRs(drT, T )
−Rs

n + 1
ΛRRs(dT, dT )

(
R

Rs

)n+2

ΛR(d2
rT, drT )

−R

n + 2
ΛRRs(d2T, d2T )

(
R

Rs

)n+3

ΛRs(d2
rT, drT )

−Rs

n + 2

Table 4.1: Eigenvalues forming the diagonal elements in the matrices of the spherical Meissl
scheme (Figure 4.3)

The arrows in Figure 4.3 point in the direction of decreased power in the high frequen-

cies. It shows that the lower frequencies become more dominant for higher altitudes

and for lower-order derivatives. The capital lambdas accompanying the arrows are the

matrices that connect the vectors of surface SHCs. For example, the relation between

the disturbing potential at a sphere of radius R and at a sphere of radius Rs reads

T Rs = ΛRRs(T, T )T R (4.89)

where the matrix notation introduced in Section 3.3.2 is again used.

Equation (4.89) is, in fact, nothing else than Equation (4.88), although the surface

SHCs are now put together to form a vector. Since Equation (4.88) provides a one-

to-one relation between the coefficients, it follows that the matrix ΛRRs(T, T ) will be

diagonal. Written out more explicitly, Equation (4.89) reads




T
Rs

00

...

T
Rs

nn


 =




(
R

Rs

)

. . . (
R

Rs

)n+1







T
R

00

...

T
R

nn


 (4.90)

The elements on the diagonal of ΛRRs(T, T ) can be viewed as eigenvalues, since Equa-

tion (4.90) represents an eigenvalue analysis of, in this case, the upward-continuation

or Poisson operator (e.g., Rummel and Van Gelderen, 1995). All matrices Λ in Figure

4.3 are diagonal, and the eigenvalues that form the diagonal elements are provided in
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Table 4.1. They follow simply from Equations (4.3), (4.37) and (4.88). In the case

that the quantities are not given on a sphere, but on an ellipsoid, the matrices will

no longer be diagonal, since no one-to-one relation between the surface spherical har-

monic coefficients exists. However, also in this case the transformation matrix can be

determined, as is shown next.

4.4.2 The ellipsoidal Meissl scheme

The relations derived in Sections 4.1 and 4.2 allow for the construction of an ellipsoidal

Meissl scheme, because the spectral relations are now known for the disturbing potential

and its derivatives. A scheme very similar to the spherical Meissl scheme (Figure

4.3) can therefore be set up, where the spherical radii R and Rs are replaced by the

ellipsoidal radii re and rs, and where the radial derivatives are replaced by derivatives

with respect to the ellipsoidal normal. This ellipsoidal Meissl scheme is shown in Figure

4.4. The two ellipsoids with radii re and rs do not necessarily need to have the same

flattening or eccentricity, although from a numerical point of view the eccentricity

of both should be small to avoid large truncation errors in the binomial series (see

Appendix C).

The matrices that connect the various quantities can be found from the final transfor-

mation formulas derived in Sections 4.1 and 4.2 (Equations 4.33 and 4.57). However,

Figure 4.4: Ellipsoidal Meissl scheme
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these formulas relate the surface SHCs of normal derivatives on the ellipsoid to solid

SHCs T
R

nm, which feature in the spherical Meissl scheme, but not in the ellipsoidal

Meissl scheme. The matrices of the ellipsoidal Meissl scheme can therefore only be

found in two steps, always first transforming from one ellipsoidal quantity to the solid

SHCs before a transformation to another ellipsoidal quantity can be performed. The

relation between the ellipsoidal and the spectral domain is given in Equation (3.73) for

the disturbing potential and by Equations (4.33) and (4.57) for the first- and second-

order derivatives, respectively. The spherical and ellipsoidal Meissl schemes can thus

be connected, as is shown in Figure 4.5.

Equation (3.73) becomes for the disturbing potential T in matrix notation

T re = ΛreR(T, T )T R (4.91)

Furthermore, Equation (4.33) that gives the spectral relation between the disturbing

potential and its first normal derivative on the ellipsoid reads, in matrix notation

dT re = ΛreR(T, dT )T R (4.92)

The vectors T R and dT re contain all surface SHCs up to a certain degree and order of

the disturbing potential T and its normal derivative ∂T/∂h, respectively.

Figure 4.5: Connections between the spherical and ellipsoidal Meissl schemes (black dashed

lines), given by Equations (3.73), (4.33) and (4.57)
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As long as both the disturbing potential and its derivative are expanded into a series of

equal maximum degree and order, the matrix ΛreR(T, dT ) will be square. The inverse

of Equation (4.93) can thus simply be found by a matrix inversion

T R = ΛRre(dT, T )dT re (4.93)

where

ΛRre(dt, T ) =
[
ΛreR(T, dT )

]−1
(4.94)

Now, Equation (4.93) can be inserted into Equation (4.91), and the matrix Λre(dT, T )

in the ellipsoidal Meissl scheme (Figure 4.4) follows from a matrix product

T re = Λre(dT, T )dT re (4.95)

where

Λre(dT, T ) = ΛreR(T, T )ΛRre(dT, T ) (4.96)

A similar procedure can be followed to acquire the other matrices in the ellipsoidal

Meissl scheme in Figure 4.4. For example, the second derivative of the disturbing

potential with respect to the ellipsoidal normal is related to the disturbing potential

itself by Equation (4.57), which in matrix notation reads

T R = ΛRre(d2T, T )d2T re (4.97)

Taking the inverse relation and inserting Equation (4.93) gives the matrix Λre(d2T, dT )

in the ellipsoidal Meissl scheme

Λre(d2T, dT ) =
[
ΛRre(d2T, T )

]−1
ΛRre(dT, T ) (4.98)

As in the original Meissl diagram (Figure 4.3), the connection between quantities at

different altitudes can also be established in the ellipsoidal case. However, continuation

from one surface to another cannot be derived from surface spherical harmonic expan-

sions only. The surface spherical harmonic expansion at one ellipsoid should therefore

first be transformed into a solid spherical harmonic expansion, and subsequently be

back-transformed at the level of the other ellipsoid. For example, the transformation

from T
re

nm to T
rs

nm can be found by first transforming to T
R

nm using Equation (4.91).

Then, the inverse transformation, where re is replaced by rs can be inserted

T re = Λrers(T, T )T rs (4.99)
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where

Λrers(T, T ) = ΛreR(T, T )
[
ΛrsR(T, T )

]−1
(4.100)

The upward-continuation of the first- and second-order derivatives of the disturbing

potential from re to rs can be derived similarly, by a forward and backward transfor-

mation.

From the derivations above, it can be deducted that all quantities in the full Meissl

scheme are connected in a similar fashion, with the general formula being

diT R1 = ΛR1R2(djT, diT )djT R2 with 0 ≤ i ≤ 2, 0 ≤ j ≤ 2 (4.101)

where the radii R1 and R2 can be either R, Rs, re or rs. To somewhat shorten the nota-

tion, the superscriptR2 is in some of the above formulas dropped from ΛR1R2(djT, diT )

if it is equal to R1.

The matrix ΛR1R2(djT, diT ) that connects the two quantities can be found from a

multiplication of known matrices by a transformation via the quantity dkT on a surface

with radius R3

ΛR1R2(djT, diT ) = ΛR1R3(dkT, diT )ΛR3R2(djT, dkT ) (4.102)

with 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, 0 ≤ k ≤ 2

where it also holds that

ΛR1R2(djT, diT ) =
[
ΛR2R1(diT, djT )

]−1
(4.103)

This allows the computation of any transformation matrix between two quantities in

the combined spherical-ellipsoidal Meissl scheme in Figure 4.5 from known matrices.

Equations (4.96), (4.98) and (4.100) are examples thereof.

Using Equation (4.102) and the relations between surface SHCs of various functionals

and the solid SHCs of the disturbing potential in Equations (3.73), (4.33), (4.57) and

(4.88), all matrices that connect the functionals in the ellipsoidal Meissl scheme (Figure

4.4) can be derived. However, in all cases a transformation from and to the sphere is

required. This means that in all cases, a forward and backward transformation is
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required, and the divergence of the iterative backward transformation will limit the

practical use of the relations. However, there is an alternative and more efficient way

to find the matrices that connects two quantities on the same ellipsoidal surface in the

ellipsoidal Meissl scheme (Figure 4.4). This will be shown here for the relation between

the surface SHCs of the disturbing potential and the SHCs of its normal derivative.

Comparison of the surface and solid spherical harmonic expansions (Equations 2.81

and 2.84) shows that the relation between the solid and surface SHCs for a certain

latitude is given by

TR
nm =

(
re

R

)n+1

T
re

nm (4.104)

This relation is not very useful for a coefficient transformation, since the desired set

of coefficients would be different for every different latitude, and only applicable for

synthesis at that specific latitude. For this reason, the transformation between both

sets of coefficients derived in Section 3.3 first moves the dependence on latitude into

the spherical harmonic base functions Y nm. In this case, Equation (4.104) will prove

useful nonetheless, because it can be inserted into Equation (4.16), yielding

∂T

∂h

∣∣∣∣
re

= − 1

R

∞∑
n=0

R

re

n∑
m=−n

T
re

nm

(
(n + 1) cos φY nm + sin φ

∂Y nm

∂θ

)
(4.105)

The only difference with Equation (4.16), besides the change from solid to surface SHCs

T
re

nm, that the term (R/re) is not raised to the power n + 2.

A relation between the surface SHCs of the disturbing potential and those of its deriva-

tive can therefore be derived along exactly the same lines as those laid out in Section

4.1.3, and the only difference between the weights λnmi is that the functions αn+1,k that

appear in the expressions of the functions βnmij and γnmij (Equations 4.23 and 4.29)

are changed to α0,k, which according to Equation (3.69) become

α0,k =
c√

1− e2
(−1)k

(
1
2

k

)
e2k (4.106)

The replacement of αn+1,k by α0,k greatly facilitates the computation, because now

the binomial coefficients are no longer dependent on the degree n, which means that

the weights of λnmi of i 6= 0 (the off-diagonal weights) do not significantly increase for

higher degrees n. The matrix containing the weights is therefore strongly diagonally
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dominant, i.e., obeying Equation (3.78), even when SHCs of very high degree and order

are taken into account, which is shown in Figure 4.6.

This not only makes the forward transformation more efficient, it also ensures that

iterative procedures such as Jacobi iteration, or alternatively Gauss-Seidel or SOR

methods (e.g., Strang, 1986), in the backward transformation will always converge.

The rate of convergence of these iterative methods will be high, due to the strong

diagonal dominance displayed in Figure 4.6, with every element on the diagonal being

at least two orders of magnitude larger than the sum of all other elements in the same

row.

The spectral relation between the surface SHCs of the disturbing potential and its

second derivative can be obtained along the same principles, and all horizontal trans-

formations in the ellipsoidal Meissl scheme (Figure 4.4) can thus be performed very

efficiently in both directions. Transformations from the sphere to the ellipsoid are less
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efficient due to the increase in the off-diagonal terms for higher degrees n, but only con-

tain a forward transformation and do therefore not contain the problems encountered

in inverse transformations. Only transformation from an ellipsoidal surface to another

surface (either the sphere or another ellipsoid) requires the computation of the inverse

of a non-diagonally dominant matrix, which can only be performed efficiently up to

degree and order 520 for an ellipsoid with the eccentricity of the Earth (e2 ≈ 0.0067).

4.5 Summary

Based on the transformation from solid to surface spherical harmonic coefficients

(SHCs) of a function described on an ellipsoid derived in Chapter 3, the transfor-

mation to surface SHCs of the first- and second-order derivatives of the function were

derived as well, principally providing solutions to the Neumann and second-order el-

lipsoidal BVPs. In addition, the spectral ellipsoidal relation between solid SHCs of the

disturbing potential and surface spherical harmonic coefficients of the gravity anomaly

was derived based on the rigorous fundamental equation of physical geodesy (Equation

4.62). The latter provides a solution to the third geodetic boundary-value problem.

In all of the transformations derived here, the SHCs of the unknown quantity are ex-

pressed as a weighted summation over SHCs of the known quantity with equal order

m.

The newly derived relations were combined to form an ellipsoidal Meissl scheme, as

an extension of the spherical Meissl scheme introduced by Rummel and Van Gelderen

(1995). This scheme provides the spectral relation between the disturbing potential and

its first- and second-order derivatives on any ellipsoid, also allowing transformations

from one ellipsoid to another. The transformations are expressed as a multiplication of

a block-diagonal matrix with a vector containing surface SHCs of one quantity, yielding

a vector containing surface SHCs of a second quantity.

Admittedly, the ellipsoidal Meissl scheme is more complicated than the spherical Meissl

scheme, where a one-to-one relation exists between the SHCs (i.e., the matrix becomes



117

diagonal in spherical and constant radius approximation). From a numerical point of

view, the main difficulties in the ellipsoidal Meissl scheme occur in the transformation

from the ellipsoid to another surface, which requires inversion of a non-diagonally

dominant matrix, and can only be solved efficiently up to degree and order 520.
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5. ANALYTIC APPROACHES TO THE CONSTRUCTION OF A

GLOBAL SPHERICAL HARMONIC GEOPOTENTIAL MODEL

One application where the formulas derived in Chapter 4 can be used is the analytic

computation of spherical harmonic geopotential coefficients, i.e., a spherical harmonic

analysis, from terrestrial gravity anomalies. Several approaches to the computation of

geopotential coefficients from gravity anomalies can be taken, and these are discussed

in Section 5.1. Three of these approaches provide very similar formulas, namely as a

weighted summation over coefficients that are computed under spherical and constant

radius approximation. These are investigated in more detail in Sections 5.2 to 5.4.

One of these so-called weighted summation methods, based on the spectral relations

derived in Section 4.3 has never been applied before for this purpose. The other

two methods are here derived more rigorously than before, using the new relations

among associated Legendre functions (ALFs) derived in Section 3.2. The newly derived

formulas are compared numerically to various existing methods, in Section 5.5.

5.1 Methodologies

The computation of solid spherical harmonic coefficients (SHCs) of the disturbing po-

tential can be performed in various ways that can roughly be divided into two categories

(Lemoine et al., 1998):

1. Least-squares estimation/collocation,

2. Numerical quadrature.

Both methods are explained in brief below. More detailed derivations can be found

in, e.g., Colombo (1981) or Sneeuw (1994), and a discussion on their advantages and

disadvantages is given by, e.g., Pavlis et al. (1996). The least-squares techniques are
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based on a solution of a system of normal equations, and the numerical quadrature

approach is based on analytic solutions of a geodetic boundary-value problem (BVP).

The latter forms the primary focus of this Chapter. Several strategies can be followed to

derive a numerical quadrature procedure, and the most commonly used is the ellipsoidal

harmonic method discussed in Section 5.1.3. Three alternative methods are derived

and discussed in Sections 5.2 to 5.4.

5.1.1 Least-squares estimation

The least-squares estimation and collocation (LSC) techniques compute all coefficients

up to a certain degree and order simultaneously from a set of gravity-related obser-

vations, solving a system of linearised normal equations (e.g., Lemoine et al., 1998;

Sansò and Tscherning, 2003). These techniques are formally equivalent in the case of

band-limited data (e.g., Moritz, 1989), and the principles of least-squares estimation

are briefly explained here.

The least-squares estimation method requires that several ellipsoidal corrections are ap-

plied to the gravity anomalies prior to the computation of solid SHCs of the disturbing

potential (Pavlis, 1988; Rapp and Pavlis, 1990), so that the spectral relation between

gravity anomalies and disturbing potential in spherical approximation (Equation 4.68)

can be applied

∆̃g(θ, λ) =
1

R

∞∑
n=0

(n− 1)

(
R

re

)n+1 n∑
m=−n

T
R

nmY nm(θ, λ) (5.1)

Given an equiangular grid of mean gravity anomalies ∆̃g, Equation (5.1) forms a set

of linear equations (Colombo, 1981)

∆̃g(re,i, θi, λj) =
1

∆σiR

Nmax∑
n=2

(n− 1)

(
R

re,i

)n+1 n∑
m=−n

T
R

nm

θi+1∫

θi

λj+1∫

λj

Y nmdλ sin θdθ (5.2)

where ∆σi is the surface area of one grid block

∆σi =
1

(λj+1 − λj)(cos θi − cos θi+1)
(5.3)
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The only unknowns in Equation (5.2) are the SHCs T
R

nm, which can be computed via

a least-squares adjustment (e.g., Lemoine et al., 1998)

T R = (ATPA)−1ATP∆Gre (5.4)

where T R is a vector containing the SHCs T
R

nm, ∆Gre is a vector containing the block-

averaged gravity anomalies, A is the design matrix that contains the remaining terms

of Equation (5.2) and P is the variance-covariance matrix of the observations.

The main advantage of the least-squares approach, besides its simplicity, is that it

allows for the simultaneous computation of internal error estimates, which after cali-

bration can serve as a measure of the accuracy of the coefficients. It should, however,

be noted that not all global gravity field models computed using the least-squares

approach are calibrated, and that error estimates are not always released in full.

A disadvantage of the least-squares approach is that large systems of linear equa-

tions become ill-conditioned, which necessitates special treatment to compute the least-

squares solution. This problem is more serious in the case of satellite data, as opposed

to terrestrial data (e.g., Lemoine et al., 1998). The solution can be improved when

a regularisation method, such as Kaula’s regularisation or Tikhonov regularisation

(Tikhonov and Arsenin, 1977), is applied (e.g., Kusche and Klees, 2002).

A second disadvantage is the required computation time for coefficients of high degree

and order, since it requires the inversion of a matrix with a dimension equal to the

total number of coefficients. For example, for computation of coefficients to degree

and order 360, a matrix of dimension 65, 341 needs to be inverted. This disadvantage

can be overcome by applying some restrictions to the grid sampling intervals and data

weights (Colombo, 1981), at the expense of the rigour exercised in the development of

the model (Lemoine et al., 1998), or by applying a semi-analytical approach (Sneeuw,

2000). Both these techniques make the design matrix block-diagonal, which facilitates

its inversion. Increased computer power due to the advent of technology also slightly

reduces this disadvantage.

A third disadvantage of the least-squares estimation procedure is that it is suscepti-
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ble to aliasing effects in the high degrees, decreasing the accuracy of the computed

geopotential coefficients (Gleason, 1989a; Jekeli, 1996). This results from the fact that

the data are assumed band-limited, while in reality they are not, and that the least-

squares estimation technique is unable to compute coefficients beyond the Nyquist

degree defined by the resolution of the data. Analytic methods discretised into a nu-

merical quadrature procedure can be employed to compute the high-frequency part

of the spectrum. This strategy was, for example, followed in the construction of the

EGM96 global geopotential model (Lemoine et al., 1998), and will also be followed in

the construction of EGM06 (Holmes, 2004, pers. comm.).

5.1.2 Numerical quadrature

The numerical quadrature approach is based on the expression of surface SHCs as an

integral over functions values on the ellipsoid (Equation 2.85)

∆g
re

nm =
1

4π

∫

σ

∆gY nmdσ (5.5)

Implementing the spherical spectral relation between the gravity anomalies and the

disturbing potential (Equation 4.68), an expression for the solid SHCs T
R

nm emerges

T̃R
nm =

R

4π(n− 1)

∫

σ

∆gY nmdσ (5.6)

where the tilde over TR
nm indicates that a spherical approximation is again applied.

Equation (5.6) can be discretised in a manner suggested by Colombo (1981) for an

equiangular grid of area means of gravity anomalies

T̃R
nm =

R

4π(n− 1)

Nmax−1∑
i=0

1

qin

2Nmax−1∑
j=0

∆gij

θi+1∫

θi

λj+1∫

λj

Y nm sin θdθdλ (5.7)

where qin are smoothing factors described by Pellinen (1966).

Equation (5.7) cannot be used when high accuracy is required, due to the presence of the

spherical approximation (e.g., Rapp and Pavlis, 1990). There are several ways to obtain

a higher level of accuracy avoiding or correcting for the spherical approximation. Four
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methods can be distinguished, based on the four solutions to the ellipsoidal Dirichlet

BVP discussed in Section 3.1. The first method is the ellipsoidal harmonics method,

which differs from the other three methods, because it utilises an ellipsoidal harmonic

expansion to account for the fact that the gravity anomalies in Equation (2.52) are

defined on the ellipsoid, whereas the other methods, described in Section 5.1.4, avoid

the use of ellipsoidal harmonics.

5.1.3 The ellipsoidal harmonics method

In the ellipsoidal harmonics method, a fully normalised ellipsoidal harmonic expan-

sion is applied to the gravity anomalies on the surface of the ellipsoid in ellipsoidal

coordinates, multiplied by the ellipsoidal radius re (Gleason, 1988)

re∆g(u, β, λ) = R

∞∑
n=0

n∑
m=−n

Qnm

(
i u
E

)

Qnm

(
i b
E

)∆̂g
u

nmY nm(β, λ) (5.8)

The multiplication with re is required because the gravity anomaly function is not

harmonic in the exterior space, but under the spherical definition of the gravity anomaly

(Equation 2.67), re∆g is (e.g., Heiskanen and Moritz, 1967, p. 90). The definition of the

gravity anomaly (Equation 2.67) is here assumed to be valid not only on the surface

of the ellipsoid, but in the whole exterior space. This extension from 2D to 3D is

questioned by Vańıček et al. (2004), who suggest that it may not be possible to derive

the 3D gravity anomaly (Equation (2.52) where point Q can be located anywhere in

the space exterior to the ellipsoid), from the 2D gravity anomaly (Equation 2.49).

The product of the ellipsoidal radius and the gravity anomaly re∆g may also be ex-

panded into a series of solid spherical harmonic functions (SHFs)

re∆g(r, θ, λ) = R

∞∑
n=0

n∑
m=−n

(
R

r

)n+1

∆g
R

nmY nm(θ, λ) (5.9)

The SHCs ∆g
R

nm can be computed from the ellipsoidal harmonic coefficients ∆̂g
u

nm via

the transformation derived by Jekeli (1988)

∆g
R

nm =

int(
n−|m|

2
)∑

k=0

Lnmk

Sn−2k,m( b
E

)
∆̂g

u

n−2k,m (5.10)
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where

Lnmk =

(
E

R

)2k
(−1)k(n− k)!(2n− 4k + 1)!

k!(n− 2k)!(2n− 2k + 1)!

√
(2n− 4k + 1)(n−m)!(n + m)!

(2n + 1)(n− 2k −m)!(n− 2k + m)!

(5.11)

and Snm is a normalisation of the ALFs of the second kind Qnm that avoids the use of

complex numbers

Snm(
u

E
) =

(
R

E

)n+1
in+1(2n + 1)!

2nn!

√
δm0 + 1

2(2n + 1)(n−m)!(n + m)!
Qn,|m|(i

u

E
) (5.12)

which can alternatively be written in the form of a hypergeometric expansion (Jekeli,

1988).

This transformation allows for the computation of solid SHCs of the gravity anomaly

from ellipsoidal harmonic coefficients that follow from an integration over the sphere

∆̂g
u

nm =
1

4πR

∫

σ

re∆g(b, β, λ)Y nm(β, λ)dσ (5.13)

The solid SHCs of the disturbing potential can finally be obtained using the spherical

spectral relation between gravity anomalies and disturbing potential (Equation 4.68).

A spherical approximation of the boundary condition is thus still required, and the el-

lipsoidal harmonic transformation only accounts for the fact that the gravity anomalies

are given on an ellipsoid and not on a sphere. The approximation of the boundary con-

dition, i.e., the use of Equation (2.67) instead of (2.52), is usually rectified by applying

ellipsoidal corrections to the gravity anomalies prior to processing (Pavlis, 1988; Rapp

and Pavlis, 1990). The spectral relation between gravity anomalies and disturbing

potential on the ellipsoid, derived in Section 4.3, can alternatively be used.

The final formulas for the computation of geopotential coefficients from an equiangular

grid of block mean gravity anomalies ∆̃g that are corrected for the use of the spherical

boundary condition (Pavlis, 1988; Rapp and Pavlis, 1990) follow from Equations (5.7),

(5.10) and (5.13)

T
R

nm =
1

4π

Nmax−1∑
i=0

re,i

int(
n−|m|

2
)∑

k=0

Lnmk

(n− 2k − 1)qi,n−2kSn−2k,m( b
E

)

×
2Nmax−1∑

j=0

∆̃g(re,i, θ, λ)

θi+1∫

θi

λj+1∫

λj

Y nm sin θdθdλ (5.14)
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A distinct advantage of this ellipsoidal harmonics method over the least-squares esti-

mation procedure is that it allows for the computation of estimates of the SHCs T
R

nm

above the maximum degree defined by the resolution of the grid of gravity anomalies.

Moreover, the ellipsoidal harmonics method avoids the problems associated with the

inversion of an ill-conditioned matrix that burdens the least-squares estimation proce-

dure. The same advantages over least-squares estimation also hold for all alternative

numerical quadrature methods, described next.

5.1.4 Alternative numerical quadrature methods

Three alternatives to the ellipsoidal harmonics method described in Section 5.1.3 that

do not involve the use of ellipsoidal harmonics all represent the geopotential coefficients

as a weighted summation over spherically approximated geopotential coefficients. The

spherically approximated coefficients are defined as the coefficients computed using the

spherical and constant radius approximation, i.e., an approximation of the boundary

condition in Equation (2.52) by Equation (2.68) and neglecting the term (R/r)n+1 in

the spherical harmonic expansion (Equation 2.81), which results in Equation (5.7).

An important difference between these three methods and the ellipsoidal harmonics

method is that the gravity anomalies do not need to be corrected before processing,

because the three alternative methods are based on the rigorous boundary condition

(Equation 2.52) instead of the spherical approximation in Equation (2.68). In addition,

for the three alternative methods, the boundary condition relating the gravity anomaly

to the disturbing potential only needs to hold on the ellipsoid, and not in the whole

exterior space. As mentioned in Section 5.1.3, this extension from 2D to 3D has been

questioned by Vańıček et al. (2004).

The three methods for the computation of spherical harmonic geopotential coefficients

T
R

nm from gravity anomalies ∆g are schematically shown in Figure 5.1. The classical

method upward-continues the gravity data from the ellipsoid to the sphere circum-

scribing the ellipsoid (R = a), and this is here called the upward-continuation method.

The second method is the ellipsoidal integration method, where the geopotential coef-
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Figure 5.1: Schematic overview of three methods to compute spherical harmonic geopotential
coefficients from gravity anomalies on the ellipsoid

ficients are computed from an integration over the ellipsoid, using a formula based on

Green’s second identity (Equation 2.41). The third method, here called the coefficient

transformation method, has never before been proposed for the purpose of computation

of geopotential coefficients. It first involves an expansion of the gravity anomalies on

the ellipsoid into a series of surface SHFs, and then transforms these into geopotential

coefficients, using the transformation derived in Section 4.3.

5.2 Method 1: Upward continuation

The oldest approach to the analytic computation of geopotential coefficients T
R

nm from

gravity anomalies on the ellipsoid was derived by Rapp (1977) and Cruz (1985, 1986)

and refined by Petrovskaya (1995) and Petrovskaya et al. (2001). It was, for example,

used in the construction of the OSU86E/F geopotential models (Rapp and Cruz, 1986).

The method has so far only been derived involving approximations to the boundary

condition of order e2, but this was proven insufficient by Gleason (1988). Here, the

rigorous derivation is presented.
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5.2.1 Solution strategy

Geopotential coefficients can be computed from an integration over a sphere, if the

disturbing potential is known on the surface of that sphere

T
R

nm =
1

4π

∫

σ

T (R, θ, λ)Y nmdσ (5.15)

From the spherical spectral relation between the disturbing potential and the gravity

anomaly (Equation 4.68), it can be derived that the geopotential coefficients can also

be computed from an integration over the gravity anomalies

T
R

nm =
R

n− 1

1

4π

∫

σ

∆̃g(R, θ, λ)Y nmdσ (5.16)

where the tilde over the gravity anomaly ∆g indicates that a spherical approximation

was applied. Thus, the approximated gravity anomalies ∆̃g(R, θ, λ) on the sphere are

needed, whereas gravity anomalies on the ellipsoid are provided.

A correction to the gravity anomalies needs to be applied to be able to use them in

Equation (5.16)

∆̃g(R, θ, λ) = ∆g(re, θ, λ) + δ∆g (5.17)

The term δ∆g contains corrections for the spherical boundary condition εe, as well as

a continuation of the gravity anomaly from the ellipsoid to the sphere εc (Cruz, 1986)

δ∆g = εe + εc (5.18)

where the correction term εe equals the difference between the rigorous fundamental

equation of physical geodesy (Equation 2.52) and the spherically approximated funda-

mental equation of physical geodesy (Equation 2.67)

εe =
1

γ

∂γ

∂h
T − ∂T

∂h
+

∂T

∂r
+

2

r
T (5.19)

and the correction term εc consists of a Taylor series expansion to provide the upward-

continuation from the ellipsoid to the sphere

εc =
∞∑
i=1

1

i!

∂i∆̃g

∂ri

∣∣∣∣
r=R

(re −R)i (5.20)

Both correction terms can be expanded into a series of solid SHCs of the disturbing

potential, as follows.
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5.2.2 Expansion of the correction terms

Equation (5.20) contains the spherically approximated gravity anomaly, which can be

written in terms of solid SHCs of the disturbing potential using Equation (4.66)

∆̃g = − 2

re

T − ∂T

∂r
=

1

R

∞∑
n=0

(n− 1)

(
R

re

)n+2 n∑
m=−n

T
R

nmY nm (5.21)

However, the i-th radial derivative of this gravity anomaly with respect to the geocentric

radius r is required for evaluation of Equation (5.20). Differentiating Equation (5.21)

with respect to r once gives

∂∆̃g

∂r
= − 1

R2

∞∑
n=0

(n− 1)(n + 2)

(
R

re

)n+3 n∑
m=−n

T
R

nmY nm (5.22)

A general relation for the i-th derivative can then easily be deduced

∂i∆̃g

∂ri
= (−1)i 1

Ri+1

∞∑
n=0

(n− 1)
(n + 1 + i)!

(n + 1)!

(
R

re

)n+2+i n∑
m=−n

T
R

nmY nm (5.23)

The complete Taylor series in Equation (5.20) also includes the i-th power of the

difference between the ellipsoidal radius re and the radius of the sphere R. Inserting

the formula for the ellipsoidal radius (Table 2.1) and the scale factor c (Equation 3.64),

this can be rewritten as

(re −R)i = (−ca)i

[
1−

√
1− e2

c
(1− e2 sin2 θ)−

1
2

]i

(5.24)

The term between the square brackets will be ¿ 1, since the scale factor c is always

close to 1 and e2 ¿ 1. This term is taken to the power of an integer i, which means it

can be expressed as a finite binomial series (see Appendix C)

(re −R)i = (−ca)i

i∑
j=0

(−1)j

(
i

j

)(√
1− e2

c

)j

(1− e2 sin2 θ)−
j
2 (5.25)

However, because the term between the square brackets in Equation (5.24) contains

the difference between two almost equal values, the resulting binomial series will be an

alternating one where the absolute values of the individual terms become very large,

especially for high values of i. Since these alternating terms almost cancel out to a

value very close to zero, the relative numerical accuracy for terms of high index i is
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expected to be poor. This is due to the loss of significant digits when two large similar

values are subtracted from one another. The terms of high index i become especially

relevant for high degrees (n > 360), since the absolute value of the i-th derivative of

the gravity anomaly in Equation (5.23) increases with increasing n.

The term (1 − e2 sin2 θ)−j/2 in Equation (5.25) can also be expressed as a binomial

series, yielding

(re −R)i = (−ca)i

i∑
j=0

(−1)j

(
i

j

)(√
1− e2

c

)j ∞∑

k=0

(−1)k

(− j
2

k

)
e2k sin2k θ (5.26)

Then, inserting Equations (5.23) and (5.26) into Equation (5.20) gives an expression

for the correction term εc

εc =
∞∑

n=0

∞∑

k=0

χnk sin2k θ

n∑
m=−n

T
R

nmY nm (5.27)

where

χnk = (−1)ke2k (n− 1)

(n + 1)!

∞∑
i=1

1

i!R
(n + 1 + i)!

i∑
j=0

(−1)j

(
i

j

)(√
1− e2

c

)j(− j
2

k

)
(5.28)

The dependence on latitude in Equation (5.27) can now be completely moved into the

SHFs by application of the sinusoidal Legendre weight functions (LWFs) (Equation

3.31)

εc =
∞∑

n=0

n∑
m=−n

T
R

nm

∞∑

k=0

χnk

k∑

j=−k

K
2j,2k

nm Y n+2j,m (5.29)

and after a rearrangement of the summation order (see Appendix B) to make the SHFs

independent of index i, this becomes

εc =
∞∑

n=0

n∑
m=−n

Y nm

∞∑
j=0

j∑
i=−j

χn−2i,jK
2i,2j

n−2i,mT
R

n−2i,m (5.30)

A similar type of expression can also be derived for the correction term εe by inserting

Equations (4.69) and (4.84) into Equation (5.19)

εe =
∞∑

n=0

n∑
m=0

Y nm

∞∑
j=0

j+1∑
i=−j−1

(
εn−2i,m,i,j +

n− 2i + 1

R
βn−2i,m,i,j +

1

R
γn−2i,m,i,j − n− 1− 2i

R
αn+1−2i,jK

2i,2j

n−2i,m

)
T

R

n−2i,m (5.31)
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Now, the total correction to the gravity anomaly can be found by addition of Equations

(5.30) and (5.31)

δ∆g =
∞∑

n=0

n∑
m=0

Y nm

∞∑
j=0

j+1∑
i=−j−1

[
εn−2i,m,i,j +

n− 2i + 1

R
βn−2i,m,i,j +

1

R
γn−2i,m,i,j +

(
χn−2i,j − n− 1− 2i

R
αn+1−2i,j

)
K

2i,2j

n−2i,m

]
T

R

n−2i,m (5.32)

After interchanging the summations over i and j (see Appendix B), Equation (5.32)

reads

δ∆g =
∞∑

n=0

n∑
m=−n

Y nm

∞∑
i=−∞

λnmi(δ∆g, T )T
R

n−2i,m (5.33)

where

λnmi(δ∆g, T ) =
∞∑

j=|i|−1

[
εn−2i,m,i,j +

n− 2i + 1

R
βn−2i,m,i,j +

1

R
γn−2i,m,i,j +

(
χn−2i,j − n− 1− 2i

R
αn+1−2i,j

)
K

2i,2j

n−2i,m

]
(5.34)

Equation (5.34) provides the weights for a transformation between surface SHCs of the

gravity anomaly corrections δ∆g and solid SHCs of the disturbing potential T .

5.2.3 Computation of the geopotential coefficients

The computation of solid SHCs T
R

nm follows from inserting Equation (5.17) into Equa-

tion (5.16)

T
R

nm = T̃R
nm +

R

n− 1

1

4π

∫

σ

δ∆gY nmdσ (5.35)

where the tilde over TR
nm indicates that these coefficients result from a spherical ap-

proximation (Equation 5.7). Inserting Equation (5.33) into Equation (5.35) gives

T
R

nm = T̃R
nm +

R

n− 1

1

4π

∫

σ

∞∑

n′=0

m′∑

n′=−m′
Y n′m′

∞∑
i=−∞

λn′m′i(δ∆g, T )T
R

n′−2i,m′Y nmdσ (5.36)

where primes were added to the degree and order to be able to differentiate between

the two instances of degree and order occurring in this formula.

The order of summation and integration can be reversed, and since only the spherical

harmonics depend on longitude and latitude, all other terms can be taken outside the
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integration. It then follows from the orthogonality of SHFs on the sphere (Equation

2.80) that the integration vanishes

T
R

nm = T̃R
nm +

R

n− 1

∞∑
i=−∞

λnmi(δ∆g, T )T
R

n−2i,m (5.37)

There are several ways to solve for the solid SHCs T
R

nm from Equation (5.37), and

the most straightforward method is through an iterative approach outlined by Cruz

(1986). As an initial estimate, the SHCs T
R

n−2i,m can be replaced by the spherically

approximated SHCs T̃R
n−2i,m. This results in a weighted summation over the spherically

approximated SHCs

T
R

nm =
∞∑

i=−∞
λuc

nmi(T, T̃ )T̃R
n−2i,m (5.38)

where

λuc
nmi(T, T̃ ) =





1 +
R

n− 1
λnm0(δ∆g, T ) for i = 0

R

n− 1
λnmi(δ∆g, T ) for i 6= 0

(5.39)

and where the superscript uc is added to indicate that the upward-continuation ap-

proach is applied. Equation (5.37) can then be solved iteratively.

In the derivation of Cruz (1986), the summation in Equation (5.38) only runs from −3

to 3. Since the more rigorous infinite summation derived here depends on the new,

and thus at that time unknown, sinusoidal LWFs, Cruz (1986) derived lengthy explicit

formulas to achieve this solution. The errors caused by the truncation of all terms of

|i| > 3 are, however, smaller than the errors caused by approximations to the order of

e2 that Cruz introduced in the correction terms εc and εe (but that were avoided in

this derivation), as will be proven in Section 5.5.1.

Cruz’s (1986) derivation was improved upon by Petrovskaya et al. (2001), but the im-

provement did not involve the inclusion of terms higher than order e2 in the correction

terms. The improvement is instead based on a different iteration strategy, which can

be obtained by moving the term T
R

nm inside the summation on the right-hand side

of Equation (5.37) to the left-hand side, which in the formulation used in this thesis
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becomes

T
R

nm =

(
1− R

n− 1
λnm0(δ∆g, T )

)−1(
T̃R

nm +
R

n− 1

∞∑

i=−∞,i6=0

λnmi(δ∆g, T )T
R

n−2i,m

)

(5.40)

When the SHCs T
R

nm on the right-hand side of Equation (5.40) are approximated by the

spherically approximated coefficients, Equation (5.38) can again be obtained. However,

the weight functions λuc
nmi are in this case slightly different from Equation (5.39):

λuc
nmi(T, T̃ ) =





(
1− R

n− 1
λnm0(δ∆g, T )

)−1

for i = 0

Rλnmi(δ∆g, T )

n− 1−Rλnm0(δ∆g, T )
for i 6= 0

(5.41)

In Petrovskaya et al. (2001), the formulas are derived with an accuracy of order e2, and

the summation in Eq. (5.38) only runs from −1 to 1. Inclusion of terms with |i| > 1

would not have provided a more accurate solution, given the level of accuracy of order

e2. The numerical performance of Cruz’s (1986) and Petrovskaya’s (2001) methods are

outlined in Section 5.5 and compared to the two other methods that are derived in

Sections 5.3 and 5.4.

5.3 Method 2: Ellipsoidal integration

The second method to compute geopotential coefficients from terrestrial gravity anoma-

lies involves an integration over the ellipsoidal surface, based on the integral formula

by Sjöberg (1988). This method was proposed by Fan (1989) and Sjöberg (2003c), and

yields a similar type of weighted summation as the upward-continuation approach in

the previous Section (Equation 5.38). In Fan’s (1989) formulas, the summation runs

from −3 to 3 and in Sjöberg’s (2003c) formulas from −1 to 1, which introduces an

error due to the series truncation, but a general derivation with unlimited summation

based on the ellipsoidal integration methods was derived by Claessens and Featherstone

(2005).
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5.3.1 Solution strategy

The ellipsoidal integration method is founded on a formula for the geopotential coeffi-

cients based on Green’s second identity (Equation 2.41). Sjöberg (1988) has shown that

the solid SHCs of the Earth’s disturbing potential can be computed from an integration

over the ellipsoid E

T
R

nm =
1

4πR(2n + 1)an

∫

E

(T
∂S

∂h
− S

∂T

∂h
)dE (5.42)

where S is the function

S =

[(
R

re

)n+1

+ an

(
re

R

)n]
Y nm (5.43)

and an is an arbitrary constant depending solely on the spherical harmonic degree n.

Sjöberg (1988) identifies an = (n− 1)/(n + 2) as a suitable choice for the computation

of solid SHCs of the disturbing potential from gravity anomalies, and this choice was

utilised in the numerical investigations in Section 5.5.

The integration over the ellipsoidal surface E can be tranformed into an integration

over the sphere σ using a relationship between the ellipsoidal infinitesimal elements

and its spherical counterpart (Sjöberg, 1988)

dE =
r2
edσ

cos φ
(5.44)

Fan (1989) and Sjöberg (2003c) approximate this relation to the order of e2, and also

approximates the function S and its derivatives with respect to the ellipsoidal normal to

the same order of accuracy. These approximations are acceptable for the computation

of low-degree and -order SHCs, but severely compromise the accuracy of coefficients of

higher degrees and order (n > 180), as will be shown in Section 5.5.1.

Moreover, the approximation depends on the numerical coincidence that the geo-

dynamic parameter m is approximately half the size of e2 (Moritz, 1989, Equation

(39.12)). Hipkin (2004) argues against this approach, because it is not general and

does not lend itself to higher-order approximations. In this study, an alternative pro-

cedure is followed.
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Because the normal derivative of the disturbing potential is present in both the formula

for computation of the geopotential coefficients (Equation 5.42) and in the boundary

condition (Equation 2.52), the gravity anomaly can be inserted directly into Equation

(5.42), and with Equations (4.14) and (5.44) this gives

T
R

nm =
1

4πR(2n + 1)an

∫

σ

r2
eS

cos φ
∆g +

(
r2
e

∂S

∂r
− re tan φ

∂S

∂θ
− r2

eS

cos φ

1

γ

∂γ

∂h

)
Tdσ (5.45)

The integration kernel contains four parts that are either multiplied by the gravity

anomaly ∆g or the disturbing potential T , namely

r2
eS

cos φ
, r2

e

∂S

∂r
, re tan φ

∂S

∂θ
and

r2
eS

cos φ

1

γ

∂γ

∂h

These four parts can all be expanded into binomial series, after which the dependence

on the co-latitude θ can be shifted into the SHFs solely, using the sinusoidal LWFs

(Equation 3.31).

5.3.2 Expansion of the integration kernels

Combining Equations (5.43) with relations for the ellipsoidal radius re and the cosine

of the ellipsoidal deflection angle φ from Tables 2.1 and 2.2, respectively, gives for the

first of the four parts in Equation (5.45)

r2
eS

cos φ
= a2(1− ε4 sin2 θ)

1
2

[
c−n−1(1− e2)−

n−1
2 (1− e2 sin2 θ)

n−3
2

+cnan(1− e2)
n+2

2 (1− e2 sin2 θ)−
n+4

2

]
Y nm (5.46)

The three parts in Equation (5.46) containing the sine of co-latitude θ can be expressed

as binomial series, which will always be convergent due to the small eccentricity of the

Earth (see Appendix C)

r2
eS

cos φ
= a2

∞∑
i=0

(−1)i

(−1
2

i

)
ε4i sin2i θ

[
c−n−1(1− e2)−

n−1
2

∞∑
j=0

(−1)j

(
n−3

2

j

)

×e2j sin2j θ + cnan(1− e2)
n+2

2

∞∑

k=0

(−1)k

(−n+4
2

k

)
e2k sin2k θ

]
Y nm (5.47)

Subsequent summation and Cauchy multiplication of the Taylor series (see Appendix

B) yields an expression as one single series over the square of the sine of the co-latitude
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θ
r2
eS

cos φ
=

∞∑
i=0

νin sin2i θY nm (5.48)

where the term νin follows from a finite summation over binomial functions

νin = a2e2i

i∑

k=0

(2− e2)i−k

(
1
2

i− k

)[
c−n−1(1− e2)−

n−1
2

(
n−3

2

k

)

+cnan(1− e2)
n+2

2

(−n+4
2

k

)]
(5.49)

The form of Equation (5.48) allows for the application of the sinusoidal LWFs (Equation

3.31), but first, the other parts of Equation (5.45) can be rewritten using a similar

procedure of binomial expansion and Cauchy multiplication.

For the second part in Equation (5.45), the radial derivative of the function S with

respect to r can be found by differentiation of Equation (5.43)

∂S

∂r

∣∣∣∣
re

=

[
− n + 1

R

(
R

re

)n+2

+ nRan

(
re

R

)n−1]
Y nm(θ, λ) (5.50)

After implementation of the equation for the ellipsoidal radius re (Table 2.1), a formula

can be found that can be expanded into binomial series

r2
e

∂S

∂r

∣∣∣∣
re

=
[
a2cn−2nan(1− e2)

n+1
2 (1− e2 sin2 θ)−

n+1
2

− c−n−1(n + 1)(1− e2)−
n
2 (1− e2 sin2 θ)

n
2

]
aY nm (5.51)

As in the first part in Equation (5.45), summation and Cauchy multiplication of the

binomial series (see Appendix B) yields an expression as one single series over the

square of the sine of the co-latitude θ

r2
e

∂S

∂r

∣∣∣∣
re

=
∞∑
i=0

ξin sin2i θY nm (5.52)

where the term ξin, like the term νin, follows from a finite summation over binomial

functions

ξin = ae2i

i∑

k=0

[
cn−2nana2(1− e2)

n+1
2

(−n+1
2

k

)
− c−n−1(n + 1)(1− e2)−

n
2

(
n
2

k

)]
(5.53)

For the third part in Equation (5.45), the latitudinal derivative of the function S

(Equation 5.43) must be obtained. This can be done by first introducing the formula for
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the ellipsoidal radius (Table 2.1) into Equation (5.43) and subsequently differentiating

with respect to the geocentric co-latitude, yielding

∂S

∂θ

∣∣∣∣
re

=

[
− (n + 1)

(
R

re

)n+1

+ nan

(
re

R

)n]
tan φY nm +

[(
R

re

)n+1

+ an

(
re

R

)n]
∂Y nm

∂θ
(5.54)

Combining Equation (5.54) and the equations for re (Table 2.1) and tan φ (Table 2.2)

provides an equation that expresses the third part of Equation (5.45) as a function of

θ. Then, as in the first two parts, the terms containing sin θ can be expanded into

binomial series, which after insertion of Equation (3.50) leads to

re tan φ
∂S

∂θ

∣∣∣∣
re

=
∞∑
i=0

(µin sin2i θY nm + σin

1∑
j=−1

N
2j,2

nm sin2i θY n+2j,m) (5.55)

where

µin = ae2i+4

min(i,2)∑
j=1

(2i− 2j − 3)
i∑

k=0

( −3
2

i− k

)[
(n + 1)c−n−1(1− e2)−

n
2

(
n−1

2

k

)

−ncnan(1− e2)
n+1

2

(−n+2
2

k

)]
(5.56)

and

σin = ae2i+2

i∑

k=0

( −3
2

i− k

)[
c−n−1(1− e2)−

n
2

(
n+1

2

k

)
− cnan(1− e2)

n+1
2

(−n
2

k

)]
(5.57)

The fourth part in Equation (5.45) is equal to the first (Equation 5.48), multiplied by

the term γ−1∂γ/∂h. Combining the relations for re and cos φ from Tables 2.1 and 2.2

with Equation (4.80), the following formula can be found for the fourth and final part

r2
eS

cos φ

1

γ

∂γ

∂h
=

∞∑
i=0

ρin sin2i θY nm (5.58)

where

ρin = −
i∑

k=0

νi−k,n

{√
1− e2

a
e2i

k∑
j=0

(2− e2)j

[(−3
2

k

)(
3
2

k − j

)
+

(−1
2

k

)(
1
2

k − j

)]

−2
ω2

γb

k∑
j=0

e2(k−j)

(
1
2

k − j

) k∑

l=0

e2(k−l)(2− e2)k−l

(
1− b3γa

a3γb

)2l(−1

l

)(
1
2

k − l

)}
(5.59)

The functions in Equations (5.49), (5.53), (5.56), (5.57) and (5.59) all depend only on

the spherical harmonic degree n and the parameters of the reference gravity field.
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5.3.3 Computation of geopotential coefficients

Inserting Equations (5.48), (5.52), (5.55) and (5.58) into Equation (5.45), followed by

insertion of Equation (3.31) and interchanging of the order of summation and integra-

tion gives

T
R

nm =
1

4πR(2n + 1)an

[ ∞∑
i=0

νin

i∑
j=−i

K
ij

nm

∫

σ

∆gY n−2j,mdσ

+
∞∑
i=0

(ξin − µin − ρin)
i∑

j=−i

K
ij

nm

∫

σ

TY n−2j,mdσ (5.60)

−
∞∑
i=0

σin

1∑

k=−1

N
2k,2

nm

i∑
j=−i

K
ij

n−2k,m

∫

σ

TY n−2(j+k),mdσ

]

The integrals in Equation (5.60) are equal to those in the spherical approximation,

where it holds that

T̃R
nm =

1

4π

∫

σ

TY nm(θ, λ) =
R

4π(n− 1)

∫

σ

∆gY nm(θ, λ)dσ (5.61)

where use was made of the relationship between the disturbing potential T and the

gravity anomaly ∆g in the spherical spectral domain (Equation 4.68). After using

Equations (5.61) and rearrangement of the summation order, the final compact formula

for the computation of geopotential coefficients from gravity anomalies on the ellipsoid

becomes

T
R

nm =
∞∑

i=−∞
λei

nmi(T, T̃ )T̃R
n−2i,m (5.62)

where

λei
nmi(T, T̃ ) =

1

R(2n + 1)an

∞∑

k=|i|

[(
n− 1

R
νkn + ξkn − µkn − ρkn

)
K

ki

nm

−σkn

min(i+k,1)∑

j=max(i−k,−1)

N
2j,2

nm K
k,i−j

n−2j,m

]
(5.63)

and where the superscript ei was added to indicate that the weights are computed via

the ellipsoidal integration method.

Thus, the geopotential coefficients can be obtained from a weighted summation over

the spherically approximated coefficients of the same order m, as in the upward-

continuation method. The weights here also depend solely on the degree and order
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of the coefficient and the reference gravity field, and not on latitude or longitude. The

formula for the weights λei
nmi(T, T̃ ) (Equation 5.63) is slightly more complicated than

that of the weights λuc
nmi(T, T̃ ) (Equation 5.41), but iterations are not required here.

5.4 Method 3: Coefficient transformation

The third method for the computation of geopotential coefficients from terrestrial grav-

ity anomalies is arguably the simplest. It follows directly from the spherically approxi-

mated and rigorous spectral relations between the disturbing potential and the gravity

anomalies (Equations 4.68 and 4.86 respectively)

∆g
re

nm =
∞∑

i=−∞
λnmi(∆g, T )T

R

n−2i,m

=
n− 1

R
T̃R

nm (5.64)

The relation between the solid SHCs of the disturbing potential and their counterparts

in spherical approximation can therefore be simply derived

T̃R
nm =

R

n− 1

∞∑
i=−∞

λnmi(∆g, T )T
R

n−2i,m (5.65)

The inverse relation can then be found via a matrix inversion, or via an iterative

procedure such as the Jacobi, Gauss-Seidel or SOR method (see Section 3.3.2).

This result is very similar to that of Method 1 in Section 5.2, and both methods

require an iterative procedure to obtain the solution. The main difference is that the

continuation between the sphere and the ellipsoid is here not treated separately using

a Taylor expansion, but incorporated inside the transformation between surface and

solid SHCs. This simplifies the formulas for the weight functions.

The inverse of Equation (5.65) reads

T
R

nm =
∞∑

i=−∞
λct

nmi(T, T̃ )T̃R
n−2i,m (5.66)

where the superscript ct indicates that the weight functions λct
nmi(T, T̃ ) result from a

coefficient transformation. These functions can be computed via a matrix inversion,
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when the weights R
n−1

λnmi(∆g, T ) are inserted into the matrix in Figure 3.7. The

inverse of this matrix will then contain the weights λct
nmi(T, T̃ ). This rigorous matrix

inversion is numerically stable up to at least degree n = 1800 (see Section 5.5.4).

However, it is more efficient to compute the solid SHCs T
R

nm via an iterative procedure

as in Method 1, where the functions λct
nmi(T, T̃ ) are defined by

λct
nmi(T, T̃ ) =





n− 1

Rλnm0(∆g, T )
for i = 0

R

n− 1
λnmi(∆g, T ) for i 6= 0

(5.67)

Due to the loss of diagonal dominance of the matrix for n > 520, convergence of this

iterative procedure for the computation of solid SHCs beyond degree 520 cannot be

guaranteed (see Section 3.4).

Obviously, as in Equations (5.39) and (5.41), in spherical approximation the functions

λct
nmi(T, T̃ ) reduce to 1 for i = 0 and to 0 for i 6= 0.

5.5 Comparison of the upward continuation, ellipsoidal integration and

coefficient transformation methods with existing methods

The newly derived ellipsoidal integration (Section 5.3) and coefficient transformation

(Section 5.4) methods are compared numerically to the existing formulations of Cruz

(1986), Petrovskaya et al. (2001), Sjöberg (2003c) and Jekeli (1988). Cruz’s and Petro-

vskaya’s methods are approximations of the upward-continuation approach derived

rigorously in Section 5.2, Sjöberg’s approach is an approximation of the rigorous for-

mulation of the ellipsoidal integration approach in Section 5.3, and Jekeli’s approach

is the ellipsoidal harmonics method described in Section 5.1.3.

A comparison between Cruz’s (1986), Jekeli’s (1988) and Fan’s (1989) methods was

performed by Nord (1992), using a simple theoretical ellipsoidal Earth model to spheri-

cal harmonic degree and order 180. Here, a comparison between the weight functions in

the various methods is first made in Section 5.5.1, followed by a closed-loop simulation

using EGM96 geopotential coefficients up to degree and order 360, which provides a
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more realistic comparison than that of Nord (1992), in Sections 5.5.2 and 5.5.3. A view

at the accuracy of various methods beyond degree and order 360 is shown in Section

5.5.4.

5.5.1 Comparison of weights

A first and most simple comparison is that of the weight functions λuc
nmi, λei

nmi and

λct
nmi. Theoretically, these functions should not be equal even in the rigorous formula-

tion, since the upward-continuation and coefficient transformation methods require an

iterative procedure to obtain the solid SHCs T
R

nm. However, since both Cruz (1986)

and Petrovskaya et al. (2001) accept the result after the first iteration as an acceptable

solution, a comparison of the weights is justified. Thus, the differences between λuc
nmi,

λei
nmi and λct

nmi provide an indication about the level of error that can be expected in

each method. The ellipsoidal harmonics method of Jekeli (1988) cannot be included

in this comparison, since it does not contain a weighted summation over spherically

approximated coefficients. Other methods of comparison that include the ellipsoidal

harmonics method are described in Sections 5.5.2 and 5.5.3.

The computation of the weight functions λnmi(T, T̃ ) in all three approaches described

in Sections 5.2 to 5.4 contains a converging infinite summation. The convergence rate

is important for the practical evaluation, and is shown for the computation of λei
nmi

(Equation 5.63) in Figure 5.2. It can be seen that the convergence is generally slower

for increasing degrees n. Evaluation of only the first two terms (k = 0 and k = 1)

is clearly insufficient especially for the high degrees (n > 360), as could already have

been expected from the numerical results in Figures 3.5 and 3.6. The more rigorous

formulation derived here is therefore of vital importance to obtain accurate results. As

can be seen from Figure 5.2, more than 25 terms of the summation in Equation (5.63)

need to be taken into account to reach a relative accuracy of e4 for n > 2000, but

this does not provide a major computational burden. The computation of all weights

λnmi(T, T̃ ) for 0 ≤ m ≤ n ≤ 2160 and 0 ≤ i ≤ 25 takes in the order of one hour on a

Pentium IV 2.4GHz PC.
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Figure 5.2: Convergence rate in the computation of the weights for the case i = 0 (summation
over k in Equation (5.63)): number of terms with an absolute value higher than e4 for all
pairs of degree n and order m
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The computation of the solid SHCs of the disturbing potential also contains an infinite

summation for all three methods (see Equations 5.38, 5.62 and 5.66). The convergence

rate in all three methods is very similar, and is shown for the ellipsoidal integration

method in Figure 5.3. The pattern in Figure 5.3 indicates that the number of required

terms increases for an increase in the difference between degree n and order m. For

the case n = m (the sectorial harmonics), the convergence is very fast, and for the

case m = 0 (the zonal harmonics), the convergence is slowest. This can be explained

intuitively from the geometry of the ellipsoid, as follows.

The sectorial harmonics do not change sign along a meridian. Any variation in latitudi-

nal direction is therefore mainly represented by zonal and tesseral harmonics, whereas

the sectorial harmonics mainly account for variations in longitudinal direction. A

transformation between an ellipsoid of revolution and a sphere alters the shape of the

meridians, but not of the parallels. Therefore, zonal surface SHCs on an ellipsoid and

on a sphere will differ most, and sectorial surface SHCs will differ least.

Therefore, the zonal SHCs will require the largest corrections, and can be viewed as a

‘worst case’. The zonal weights λn,0,i(T, T̃ ) are shown in Figure 5.4 for i = 0, |i| = 1

and |i| = 2, for various methods. The methods of Cruz (1986) and Sjöberg (2003c)

give very similar weights, presented by the green lines in Figure 5.4, which decrease

almost linearly. This occurs both for the primary weights (i = 0) and the secondary

weights (|i| = 1), where it should be noted that the weights for i = 1 and i = −1

are not exactly the same, but agree to such an extent that the difference cannot be

distinguished in Figure 5.4. The similarity between Cruz’s and Sjöberg’s methods can

be explained by the fact that both approximate the fundamental equation of physical

geodesy (Equation 2.52) to the order of the square of the first eccentricity of the ellipsoid

e2. The weights in Petrovskaya’s method do not show the linear dominance present in

the other two methods, because the relations between λuc
nmi(T, T̃ ) and λnmi(δ∆g, T ) in

Equation (5.41) are nonlinear.

The rigorous forms of the ellipsoidal integration method and the coefficient transfor-

mation method derived in Sections 5.3 and 5.4 respectively, are also shown in Figure
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Figure 5.4: Weight functions λnmi(T, T̃ ) for zonal harmonics (m = 0) with i = 0 (solid
lines), and |i| = 1 (dashed lines) for the methods of Cruz (1986) and Sjöberg (2003c) (green),
the method of Petrovskaya et al. (2001) (blue), the new ellipsoidal integration (ei) method
(black) and the new coefficient transformation (ct) method (red). The weights of |i| = 2 are
also shown for the coefficient transformation method (dotted red line).

5.4 and give very similar results. For the primary weights (i = 0), the numerical dif-

ferences between both methods are very small, but the differences for the secondary

weights (|i| = 1) are slightly larger. Still, the agreement between these two methods

is far greater than that with any of the other methods. This is a first indication that

the accuracy of both the rigorous ellipsoidal integration and coefficient transformation

methods surpasses that of the other methods.

Figure 5.4 also shows the weights for i = 2 given by the coefficient transformation

method. Sjöberg’s (2003c) and Petrovskaya’s (2001) approximate methods neglect

terms of |i| > 1, but it can be seen that these weights in fact become significant for the

higher degrees (n > 360). Cruz’s (1986) method does include this term, as well as the

weights of index |i| = 3. However, it can be deduced from Figure 5.4 that the errors

in the terms of i = 0 and |i| = 1 in Cruz’s method are larger than the contribution of

the terms of higher index |i|.
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Furthermore, it can be seen that for all methods, the correction to the spherically

approximated SHCs is smallest for the low degrees, where the primary weights are close

to one and all other weights close to zero. For all methods, the weights deviate further

from these nominal values for increasing degree n. This corresponds to the observation

from Figure 5.3 that the corrections to the SHCs increase in size for increasing difference

between degree n and m. Obviously, the size of the corrections also depends on the size

of the spherically approximated SHCs themselves, and even for very low degrees, the

correction to SHCs T̃R
nm can become relatively large if T̃R

nm ¿ T̃R
n−2,m and/or T̃R

nm ¿
T̃R

n+2,m.

5.5.2 Closed-loop simulation

The various methods for the computation of geopotential coefficients are tested using

a closed-loop simulation (cf. Ledin, 2001). As in Section 3.4, the coefficients of the

EGM96 geopotential model (Lemoine et al., 1998) are used to create a grid of gravity

anomalies on the ellipsoid, and these gravity anomalies serve as input for the methods

under investigation. First, the spherically approximated coefficients are computed

from the grid of gravity anomalies through a discretised spherical harmonic analysis

(Equation 5.7). The radius of the reference sphere R is in this numerical simulation set

equal to the semi-major axis of the ellipsoid a, since this is also the case in the existing

methods of Cruz (1986), Jekeli (1988), Petrovskaya et al. (2001) and Sjöberg (2003c).

In Figure 5.5, the degree variances of EGM96 are shown, along with the absolute

errors in degree variances of various methods. These absolute errors are defined as

the absolute difference between the EGM96 degree variances and the degree variances

after spherical harmonic synthesis on the ellipsoid and spherical harmonic analysis using

various methods described in Sections 5.1 to 5.4. It can be seen that the absolute errors

in the degree variances of the spherically approximated coefficients contain almost as

much power in the high degrees as the original signal itself. In other words, the spherical

approach is highly inaccurate, especially for the high degrees.

Cruz’s (1986) method clearly improves on the spherical approximation and gives an
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Figure 5.5: The degree variances of EGM96 (black) and the absolute errors in the degree
variances after a closed-loop simulation using the spherical approximation (red), the methods
by Cruz (1986) and Sjöberg (2003c) (green), the method by Petrovskaya et al. (2001) (blue),
the ellipsoidal harmonics method by Jekeli (1988) (magenta), the new ellipsoidal integration
method (yellow) and the new coefficient transformation method (brown)

error spectrum very similar to Sjöberg’s (2003c) method. It can be seen in Figure 5.5

that the difference between the logarithmic degree variances of the original EGM96 and

the logarithm of the absolute errors of Cruz’s and Sjöberg’s methods decreases with

increasing degree n. This indicates that these two methods contain the largest errors

in the high degrees, which was already acknowledged by Sjöberg (2003c), and could

also be expected from the weights in Figure 5.4. Around degree 360, the difference

between the logarithmic degree variances is around one, which translates to a relative

error of approximately 10%.

Petrovskaya’s (2001) method improves on Cruz’s method by approximately a factor

of 10, but its accuracy varies more strongly for different degrees, as can be seen from

Figure 5.5. This behaviour can also be seen in the ellipsoidal integration and coefficient

transformation methods derived in Sections 5.3 and 5.4, although to a lesser extent.

It can, nevertheless, be seen in Figure 5.5 that the coefficient transformation method
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gives the most accurate results, with errors in the same order of magnitude as the errors

in Jekeli’s ellipsoidal harmonics conversion method (relative accuracy of the order of

10−5). The latter two methods show an error degree variance signal that is almost

parallel to the EGM96 signal, which means that they do not give the larger relative

errors in the higher degrees that occur in the other methods.

Only for degrees very close to the maximum of 360 do the errors in the coefficient

transformation method increase. This is an artefact that all weighted summation

methods possess, because the degrees above 360 that are needed in the summation,

are absent. This is not problematic, because the SHCs can be computed to a slightly

higher degree to avoid this effect, which is in some cases done in practice anyway.

For example, in the construction of EGM96, numerical quadrature solutions to degree

and order n = 500 were computed, even though only the solution to degree and order

n = 460 was used in further analysis and only the solution to degree and order n = 360

was released (Lemoine et al., 1998).

5.5.3 Comparisons in the space domain

In order to examine how the errors in the recovered geopotential coefficients propagate

into geoid heights, a spherical harmonic synthesis is performed and Bruns’s formula

(Equation 2.45) is applied. A more detailed explanation of the computation of geoid

heights from a geopotential model is provided in Section 6.1.1. In Figures 5.6 to 5.11

the errors in the geoid heights, i.e., the difference from the EGM96 geoid heights, are

shown for the various methods. Naturally, these errors also include numerical errors in

the spherical harmonic synthesis and analysis that are performed during the simulation.

Based on simulations by Novák et al. (2001) and Huang et al. (2003), the maximum

errors in the synthesis-analysis procedure can be expected to be in the order of several

centimetres. Global statistics of each method are provided in Table 5.1.

Since analytic methods are mainly of interest in the higher degrees of the geopotential

spectrum, the biggest challenge of any method to compute spherical harmonic geopo-

tential coefficients is to properly model the high-frequency error caused by the constant
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Figure 5.6: Differences in geoid height computed from the EGM96 geopotential coefficients
and the coefficients recovered after a closed-loop simulation using the spherical approximation
for 0 ≤ n ≤ 360 (units in m; Robinson projection)
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Figure 5.7: Differences in geoid height computed from the EGM96 geopotential coefficients
and the coefficients recovered after a closed-loop simulation using the method of Cruz (1986)
for 20 ≤ n ≤ 340 (units in m; Robinson projection)
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Figure 5.8: Differences in geoid height computed from the EGM96 geopotential coefficients
and the coefficients recovered after a closed-loop simulation using the method of Petrovskaya
et al. (2001) for 20 ≤ n ≤ 340 (units in m; Robinson projection)
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Figure 5.9: Differences in geoid height computed from the EGM96 geopotential coefficients
and the coefficients recovered after a closed-loop simulation using the ellipsoidal integration
method for 20 ≤ n ≤ 340 (units in m; Robinson projection)
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Figure 5.10: Differences in geoid height computed from the EGM96 geopotential coefficients
and the coefficients recovered after a closed-loop simulation using the coefficient transforma-
tion method for 20 ≤ n ≤ 340 (units in m; Robinson projection)
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Figure 5.11: Differences in geoid height computed from the EGM96 geopotential coefficients
and the coefficients recovered after a closed-loop simulation using the ellipsoidal harmonics
method by Jekeli (1988) for 20 ≤ n ≤ 340 (solution provided by Holmes (2004, pers. comm.))
(units in m; Robinson projection)
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minimum maximum mean abs. mean

Spherical approximation −7.85 5.84 −2.77 · 10−3 5.41 · 10−1

Cruz (1986) −3.19 2.60 7.01 · 10−4 1.46 · 10−1

Petrovskaya et al. (2001) −6.46 · 10−1 8.13 · 10−1 −4.20 · 10−4 4.28 · 10−2

Ellipsoidal integration −6.51 · 10−2 6.98 · 10−2 −4.70 · 10−5 4.97 · 10−3

Coefficient transformation −2.12 · 10−3 2.61 · 10−3 6.11 · 10−8 2.96 · 10−4

Jekeli (1988) −1.80 · 10−4 1.64 · 10−4 9.05 · 10−8 8.19 · 10−6

Table 5.1: Statistics of the errors in the geoid height from solid SHCs of the disturbing
potential computed using various methods for 20 ≤ n ≤ 340 (units in m), where abs. mean
is the average of the absolute values of the errors

radius approximation. Figures 5.7 to 5.11 and Table 5.1 therefore do not include the

degrees 0 ≤ n < 20, so that any errors in the longest wavelengths are filtered out.

This serves to clarify the comparison of the medium and high degrees. In addition, the

maximum degree in these numerical comparisons is set to 340, in order to filter out the

inaccuracies in the close vicinity of the maximum degree that the weighted summation

methods suffer from (see Section 5.5.2).

The spherical approximation in Figure 5.6 contains a long-wavelength signal with a

magnitude of several decimetres, and this is caused by the approximation of the fun-

damental Equation (2.52). This long-wavelength pattern, with lows over the Indian

Ocean and the East Pacific and highs over West Africa and Papua New Guinea, can

be found in many recent publications on ellipsoidal corrections to geoid heights (e.g.,

Heck and Seitz, 2003; Huang et al., 2003; Hipkin, 2004; Ellmann, 2005).

In this case, however, there is also a high-frequency error signal around the poles,

which is caused by the fact that the term (R/re)
n+2 in Equation (4.66) is neglected in

the constant radius approximation. The magnitude of this short-wavelength signal is

much larger, and the overall error reaches up to an absolute maximum of 7.85 m at

78◦ S, but can possibly be larger if a geopotential model to higher degree and order

is used. The fact that high-frequency errors do not occur around the equator can be
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explained by the choice of the radius R equal to the semi-major axis of the ellipsoid a.

If, for example, the radius R was alternatively set equal to the semi-minor axis of the

ellipsoid b, the high-frequency errors would occur around the equator instead of the

poles, because the errors are largest where the ellipsoidal radius re and the spherical

radius R are furthest apart.

It can be seen in Figures 5.7 and 5.8 that in the methods by Cruz (1986) and Petro-

vskaya et al. (2001), the high-frequency errors are still dominant. The absolute max-

imum errors in these methods are 3.19 m and 0.81 m respectively (see Table 5.1), in

both cases close to the poles. Around the equator the error is only in the order of a

decimetre for Cruz’s method and several centimetres for Petrovskaya’s method.

In the ellipsoidal integration method (Figure 5.9), the short-wavelength errors are less

dominant, but a long-wavelength error of up to 6.9 cm (with n ≥ 20) is still present. As

could be expected from Figure 5.5, the coefficient transformation method and Jekeli’s

(1988) ellipsoidal harmonics conversion method perform best. Here, the errors are

mainly of long-wavelength nature, due to the smoothness of the geoid, and do not

exceed 3 mm (for 20 ≤ n ≤ 340). It is striking, however, that the coefficient transfor-

mation method in Figure 5.10 shows a pattern of stripes in the latitudinal direction,

whereas Jekeli’s (1988) method in Figure 5.11 shows a pattern of stripes in the lon-

gitudinal direction. This indicates that the coefficient transformation method models

the zonal harmonics more accurately, whereas Jekeli’s method models the sectorial

harmonics with higher accuracy.

The relative accuracy of coefficients of various degrees n is shown in Figure 5.12. It

can be seen in Figure 5.12 that Jekeli’s (1988) method is most accurate for coefficients

of absolute order |m| close to degree n, whereas the coefficient transformation method

(Section 5.4) is most accurate for coefficients of low order |m|. The relative accuracies

of the coefficient transformation method range from approximately 10−8 for |m| close to

zero to approximately 10−4 for |m| close to n. Optimal results can be obtained when

both methods are combined. Based on Figure 5.12, the coefficient transformation

method can, for example, be used for coefficients of |m| ≤ n/6, and Jekeli’s method
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Figure 5.12: Relative accuracy of SHCs T
R
nm computed from gravity anomalies using Jekeli’s

(1988) method (black) and the coefficient transformation method (red) compared to the SHCs
resulting from a synthesis-analysis procedure for (a) n = 30, (b) n = 90, (c) n = 180 and (d)
n = 300

for all other coefficients.

Overall, the magnitudes of the errors in the coefficient transformation method are

slightly larger than those of Jekeli’s method. However, the accuracy of both methods

will generally be sufficient, given the sub-centimetre accuracy in geoid height shown in

Figures 5.10 and 5.11. Importantly, Figures 5.5 and 5.12 have shown that the relative

accuracy of both methods is largely independent of the degree n for all degrees up to

340. This means that coefficients computed using either one of the two methods can

also accurately recover gravity functionals with more power in the higher degrees, such

as vertical deflections (cf. Jekeli, 1999). The other methods that were tested show lower

accuracy for high degrees n (see Figure 5.5), which means that synthesis of gravity field

functionals with high power in the higher degrees will show errors that are even more

significant than those in the geoid heights shown in Figures 5.7 to 5.9.

Despite the fact that both the coefficient transformation method and Jekeli’s (1988)

method yield highly accurate coefficients, the formulas to compute them are completely

different. It should be noted that the coefficient transformation method is very easily
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applicable, because it simply computes the coefficients from a weighted summation

over spherically approximated coefficients and avoids the use of ellipsoidal harmonics

or hypergeometric series, which are embedded in Jekeli’s solution. This simplicity is

further illustrated by its limited required computation time. The coefficient transfor-

mation up to degree and order 360 takes less than one minute on a Pentium IV 2.4GHz

PC.

5.5.4 Computation of very-high-degree and -order geopotential coefficients

Admittedly, the coefficient transformation approach does not perform well in the com-

putation of solid SHCs above degree and order ∼ 520. This is due to the divergence

of the iteration process above this degree and order, which also hampers the trans-

formation from surface SHCs on the ellipsoid to solid SHCs. The reason for this was

uncovered in Section 3.4, and lies in the loss of diagonal dominance of the weight

functions λnmi. The same principle applies in this application.

The ellipsoidal integration method does not include any iterative procedure to acquire

the solution, and it therefore does not encounter this problem. However, in a closed-

loop simulation with a very-high-degree expansion of the Earth’s gravity field (to n =

1800) the ellipsoidal integration approach also shows an inability to accurately recover

solid SHCs of the disturbing potential for degrees n > 720. This is presumably caused

by numerical errors in the computation of the weight functions λei
nmi, and an indication

for this is provided in Figure 5.13.

Figure 5.13 shows the weights up to |i| = 3 for the ellipsoidal integration method

and for the coefficient transformation method. Weights of |i| > 3 are not shown for

illustrative purposes. The weights for the latter method were derived from a rigorous

matrix inversion, in the way indicated after Equation (5.66). The strong correspon-

dence between both methods that was found in Figure 5.4 does not hold beyond degree

n ≈ 720.

It can be seen that in the ellipsoidal integration method, the weights of positive and
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Figure 5.13: Weight functions λnmi(T, T̃ ) for zonal harmonics (m = 0) with i = 0 (black),
|i| = 1 (red), |i| = 2 (green) and |i| = 3 (blue) for the ellipsoidal integration method (solid
lines) and the coefficient transformation method (dashed lines)

negative index i start to diverge, whereas the weights in the coefficient transformation

method do not. Another observation from Figure 5.13 is that the sum of the absolute

weights is close to one for all degrees n in the coefficient transformation method, but

for the ellipsoidal integration method this is no longer the case for high degrees n.

It appears that numerical errors degrade the accuracy of the ellipsoidal integration

method at high degrees. Unfortunately, the coefficient transformation with matrix

inversion takes more than 102 times as long (for degree n to 2160) to process, and

is, in fact, at least as time-consuming as the block-diagonal least-squares estimation

procedure. Further investigation of the analytic computation of high-degree solid SHCs

of the disturbing potential from gravity anomalies, in particular a more detailed study

of the numerical errors that occur, is a possible topic of future research.
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5.6 Summary

In this Chapter, the analytic computation of spherical harmonic geopotential coeffi-

cients from gravity anomalies on the ellipsoid was discussed. Three alternatives to

the ellipsoidal harmonics method of Jekeli (1988) were derived, all of which express

the geopotential coefficients as a weighted summation over spherically approximated

coefficients. These three weighted summation methods are here called the upward-

continuation method (Section 5.2), the ellipsoidal integration method (Section 5.3)

and the coefficient transformation method (Section 5.4). The first two methods are

based on methods proposed by Cruz (1986) and Sjöberg (2003c), but were here de-

rived to a higher level of accuracy, and the latter method is novel. The three derivations

are performed based on the rigorous fundamental equation of physical geodesy (Equa-

tion 2.52), whereas all existing methodologies are based on an approximation of this

equation to the level of the square of the first numerical eccentricity of the ellipsoid e2.

It is shown numerically that this level of approximation is insufficient in the weighted

summation methods and a closed-loop simulation revealed that the newly derived rigor-

ous formulas allow us to model the Earth’s gravity field up to two orders of magnitude

more accurately than the existing weighted summation methods. The coefficient trans-

formation method provides the most accurate results, with an average absolute error

in geoid height of 0.3 mm (for 20 ≤ n ≤ 340). The coefficients of low-order m are more

accurate than those where the order |m| is close to degree n, with relative accuracies

ranging from approximately 10−8 to 10−4 on average. The coefficient transformation

method performs better than the ellipsoidal harmonics method of Jekeli (1988) for

coefficients of low order |m|, and optimal results can therefore be obtained from a com-

bination of both methods. However, the computation of geopotential coefficients for

degree n > 360 has proven problematic due to numerical inaccuracies, and remains an

open area for future research, especially in view of recent efforts to compute a global

geopotential model (EGM06) to degree and order 2160 (Kenyon et al., 2005).
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6. ELLIPSOIDAL CORRECTIONS TO GRAVIMETRIC GEOID

COMPUTATIONS

Ellipsoidal corrections to the spherical approximations in regional geoid computation

have received a lot of attention in recent years (e.g., Grafarend and Ardalan, 1997; Fei

and Sideris, 2000; Brovar et al., 2001; Heck and Seitz, 2003; Huang et al., 2003; Sjöberg,

2003c, 2004b; Hipkin, 2004). These corrections account for the errors introduced by the

spherical and constant radius approximations that are applied in the classical solution

of Stokes (1849). Many different approaches can be taken to derive the ellipsoidal

corrections. The solutions to ellipsoidal BVPs derived in Chapters 3 and 4 can be

utilised for this purpose, and in this Chapter it is shown how these solutions can yield

equivalent corrections to Stokes’s integration kernel and geoid heights.

In Section 6.1, the spherical approximation is outlined, which is necessary for a sound

understanding of the definition of the ellipsoidal corrections applied here. Section 6.2

contains an overview of the various existing methods to compute ellipsoidal correc-

tions and discusses the utility and efficiency of each. A new approach based on the

transformation between solid and surface SHCs is derived in Section 6.3. In addition,

numerical results are provided, also in view of the often used remove-compute-restore

(RCR) approach to geoid computation (Section 6.4).

6.1 The spherical approximation to geoid computation

Ellipsoidal corrections to geoid heights are naturally related to the definition of the

spherical approximation that is applied. Huang et al. (2003) note that various authors

apply different definitions of the spherical approximation, which makes comparison

of ellipsoidal corrections difficult. For example, Martinec and Grafarend (1997a) and

Ardestani and Martinec (2000) define the spherical approximation in terms of ellip-
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soidal coordinates to accommodate for the use of an ellipsoidal harmonic expansion.

A more practical and more commonly used definition sets the spherical approximation

equivalent to Stokes’s (1849) solution for the computation of geoid heights in spherical

polar coordinates, and this is the definition used here.

6.1.1 Definition of spherical approximation

Geoid heights N can be computed from geopotential coefficients using a spherical

harmonic synthesis in combination with Bruns’s formula (Equation 2.45)

N(θ, λ) =
1

γ

∞∑
n=0

(
R

re

)n+1 n∑
m=−n

T
R

nmY nm(θ, λ) (6.1)

but it should be noted that some assumptions are embedded in Equation (6.1), as

follows. As explained in Chapter 3, the creation of the SHCs T
R

nm from a geopotential

model such as, for example, EGM96 requires the definition of a reference gravity field.

The GRS80 reference field (see Table 2.5) was chosen here. Secondly, the use of the

simple Bruns formula (Equation 2.45) implies that the potential of the geoid W0 is

chosen equal to the potential of the reference ellipsoid UQ.

In addition, it is assumed that the geopotential model and the reference model refer

to the same tidal model, and that the geopotential model is capable of providing the

potential inside the masses of the Earth, which strictly speaking it is not (e.g., Nsombo

and Sjöberg, 1996; Rapp, 1997b). However, since only ellipsoidal corrections to the

geoid heights are of interest here, Equation (6.1) is used, even though the terminology

“geoid height” for N computed from Equation (6.1) can be disputed (Rapp, 1997b;

Smith, 1998).

In many publications, the summation over n in Equation (6.1) is shown to run from

n = 2 to ∞, but this assumes the choice of a reference field model with a zero-degree

term that equals the terrestrial gravitational constant and a coordinate system with

its origin in the Earth’s centre of mass. Here, generality is maintained by starting

the summation at n = 0. The geoid computed via Equation (6.1) from the EGM96

geopotential model is shown in Figure 6.1.
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Figure 6.1: Geoid surface computed from Equation (6.1) using the EGM96 global geopoten-
tial model and GRS80 reference ellipsoid (units in m; Robinson projection)

Alternatively to Equation (6.1), a surface spherical harmonic expansion of the dis-

turbing potential at the ellipsoid (Equation 2.84) can be utilised in combination with

Bruns’s formula (Equation 2.45)

N(θ, λ) =
1

γ

∞∑
n=0

n∑
m=−n

T
re

nmY nm(θ, λ) (6.2)

Stokes (1849) derives the geoid heights as a global integration of gravity anomalies

in spherical approximation. This integral formula can be obtained by inserting the

spectral relation between the disturbing potential and gravity anomalies in spherical

and constant radius approximation (Equation 4.68) into Equation (6.1), and addition-

ally approximating the ellipsoidal radius re by the spherical radius R so that the term

(R/re)
n+1 vanishes

Ñ(θ, λ) =
1

γ

∞∑
n=0

R

n− 1

n∑
m=−n

∆g
re

nmY nm(θ, λ) (6.3)

The spherical approximations introduced by this step are here indicated by a tilde over

the geoid height N , and Ñ is generally called the geoid height in spherical approxima-

tion.

On comparison of Equations (6.2) and (6.3), it can be seen that the approximation in
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the spherical computation thus comes down to

T
re

nm ≈ R

n− 1
∆g

re

nm (6.4)

It is important to note the difference between the spherical approximation in geoid

computation defined by Equation (6.4) and the spherical approximation in the com-

putation of geopotential coefficients, which is defined by Equation (4.68)

T
R

nm ≈ R

n− 1
∆g

re

nm (6.5)

The reason for the difference is the additional constant radius approximation applied

to Equation (6.1) to obtain Equation (6.3). It means that the spherical approximation

to the geoid height only equals geoid heights computed from ‘spherically approximated’

geopotential coefficients defined by Equation (6.5) when the coefficients are synthesised

on the sphere. The differences between geoid heights computed from spherically ap-

proximated geopotential coefficients and rigorously computed geopotential coefficients

derived in Chapter 5 (Figure 5.6) do therefore not coincide with the differences be-

tween the geoid heights in Equations (6.1) and (6.3), since in Chapter 5 the spherical

harmonic synthesis was correctly performed on the ellipsoid.

6.1.2 Stokes’s formula

Equation (6.3) requires the gravity anomalies to be given in the form of a set of surface

spherical harmonic coefficients, but gravity anomalies are observed as point values. To

account for this, the surface spherical harmonic analysis formula (Equation 2.85) can

be inserted into Equation (6.3)

Ñ(θ, λ) =
1

4πγ

∞∑
n=0

R

n− 1

n∑
m=−n

∫

σ′
∆g(θ′, λ′)Y nm(θ′, λ′)dσ′Y nm(θ, λ) (6.6)

where primes were added to the co-latitude θ and longitude λ inside the integration

to avoid confusion with the computation position of the geoid height Ñ . If the order

of summation and integration is reversed, a simplification can be obtained using the

decomposition formula of spherical harmonics (e.g., Heiskanen and Moritz, 1967, p.

33)

Pn(cos ψ) =
1

2n + 1

n∑
m=−n

Y nm(θ, λ)Y nm(θ′, λ′) (6.7)
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where ψ is the spherical distance between the points (θ, λ) and (θ′, λ′)

cos ψ = cos θ cos θ′ + sin θ sin θ′ cos(λ′ − λ) (6.8)

Upon insertion of Equation (6.7) into Equation (6.6), Stokes’s formula appears

Ñ(θ, λ) =
R

4πγ

∫

σ′
S(ψ)∆g(θ′, λ′)dσ′ (6.9)

where the spherical Stokes kernel S(ψ) is a function of the spherical distance ψ only

S(ψ) =
∞∑

n=0

2n + 1

n− 1
Pn(cos ψ) (6.10)

A geoid computation using Stokes’s formula is thus homogeneous, i.e. independent of

the location of the point of interest, and isotropic, i.e. independent of the azimuth of the

point of interest and the location of the gravity anomaly. This is of great importance

in view of its practicality, as will be discussed in Section 6.2.2.

The infinite summation in Equation (6.10) converges very slowly, but a more efficient

analytical closed solution can also be derived (e.g., Heiskanen and Moritz, 1967, p. 94)

S(ψ) =
1

sin ψ
2

− 6 sin
ψ

2
+ 1− 5 cos ψ − 3 cos ψ ln(sin

ψ

2
+ sin2 ψ

2
) (6.11)

Equation (6.9) is used in the vast majority of local and regional geoid computations,

where a global geopotential model is often used to model the long-wavelength part

of the geoid, and the integration is limited to a spherical cap around the point of

interest, whereby the Stokes kernel is sometimes modified to account for the resulting

truncation error (e.g., Vańıček and Sjöberg, 1991; Sjöberg, 1991; Featherstone et al.,

1998). However, this kernel modification does generally not account for the error caused

by the spherical and constant radius approximations that yield Equation (6.4).

6.2 Existing methods for the computation of ellipsoidal corrections

Many authors have derived formulas for the computation of geoid heights in the rigor-

ous ellipsoidal approximation (e.g., Rapp, 1981; Moritz, 1989; Martinec and Grafarend,

1997b; Fei and Sideris, 2000; Heck and Seitz, 2003; Sjöberg, 2003c). Practically with-

out exception, these contributions present the results as ellipsoidal corrections to the
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formulation in spherical approximation. These ellipsoidal corrections differ in various

ways, giving rise to many methods to compute them, and somewhat disturbingly not

all results are equivalent (Huang et al., 2003).

6.2.1 Types of ellipsoidal corrections

The ellipsoidal corrections in geoid computation can be presented in three distinctly

different ways. The most common approach is to apply a correction to the geoid height

(e.g., Heck and Seitz, 2003; Sjöberg, 2003c)

N(θ, λ) =
R

4πγ

∫

σ′
S(ψ)∆g(θ′, λ′)dσ′ + δN(θ, λ) (6.12)

Alternatively, the Stokes kernel can be modified (e.g., Martinec and Grafarend, 1997a;

Fei and Sideris, 2000), noting that this is different to the kernel modification to reduce

the truncation error

N(θ, λ) =
R

4πγ

∫

σ′
(S(ψ) + δS(θ, λ, θ′, λ′))∆g(θ′, λ′)dσ′ (6.13)

or ellipsoidal corrections to the gravity anomalies can be applied prior to computation

N(θ, λ) =
R

4πγ

∫

σ′
S(ψ)(∆g(θ′, λ′) + δ∆g(θ′, λ′))dσ′ (6.14)

Naturally, combinations of these three options are also possible, and have been derived

by many authors (e.g., Molodenskii et al., 1962; Rapp, 1981; Moritz, 1989; Brovar et

al., 2001), but this does generally not enhance the clarity of the method. An advantage

of Equation (6.12) is that it gives an immediate idea of the magnitude, and thereby the

relevance, of the ellipsoidal corrections, whereas use of Equations (6.13) and (6.14) re-

quire a global integration over the sphere to properly assess the effect of the corrections

on the geoid height.

6.2.2 Ellipsoidal corrections from a global integration

The corrections to the Stokes kernel δS(θ, λ, θ′, λ′) and/or to the gravity anomalies

δ∆g(θ′, λ′) have received much attention in literature. Formulations can be found by
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application of Green’s second identity (e.g., Molodenskii et al., 1962; Mather, 1973;

Zhu, 1981; Fei, 2000; Fei and Sideris, 2000; Brovar et al., 2001), by application of an

ellipsoidal harmonic expansion (e.g., Martinec and Grafarend, 1997b; Martinec, 1998;

Ardestani and Martinec, 2000), or by application of a spherical harmonic expansion

(e.g., Sjöberg, 2003c).

The ellipsoidal Stokes kernel can also be obtained in terms of spherical harmonics,

using the theories developed in Chapters 3 and 4. The derivation is very similar to

that in Section 6.1 (Equations 6.1 to 6.10), but without the spherical and constant

radius approximations. Thus, instead of implementing the spherical spectral relation

between the disturbing potential and the gravity anomalies, the rigorous spectral rela-

tion derived in Section 4.3.3 (Equation 4.86) is inverted and subsequently inserted into

Equation (6.1)

N(θ, λ) =
1

γ

∞∑
n=0

(
R

re

)n+1 n∑
m=−n

∞∑
i=−∞

λnmi(T, ∆g)∆g
re

n+2i,mY nm(θ, λ) (6.15)

The surface spherical harmonic analysis (Equation 2.85) can be inserted to obtain the

geoid height as an integration over gravity anomalies

N(θ, λ) =
1

4πγ

∞∑
n=0

(
R

re

)n+1 n∑
m=−n

∞∑
i=−∞

λnmi(T, ∆g)

×
∫

σ′
∆g(θ′, λ′)Y n+2i,m(θ′, λ′)dσ′Y nm(θ, λ) (6.16)

As for the spherical and constant radius approximation, the order of summation and

integration can be reversed. However, the decomposition formula (Equation 6.7) cannot

be applied, for two different reasons. Firstly, the weights λnmi(T, ∆g) depend on the

order m, and can therefore not be placed outside the summation over m, and secondly,

the degree of the spherical harmonics Y n+2i,m(θ′, λ′) depends on the summation index

i and is therefore not always equal to that of the other spherical harmonics Y nm(θ, λ).

Equation (6.16) can thus be written as

N(θ, λ) =
R

4πγ

∫

σ′
Se(θ, λ, θ′, λ′)∆g(θ′, λ′)dσ′ (6.17)

where Se(θ, λ, θ′, λ′) is the ellipsoidal generalisation of Stokes’s kernel

Se(θ, λ, θ′, λ′) =
1

R

∞∑
n=0

(
R

re

)n+1 n∑
m=−n

Y nm(θ, λ)
∞∑

i=−∞
λnmi(T, ∆g)Y n+2i,m(θ′, λ′)

(6.18)
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It is immediately obvious that this equation is far less efficient than the closed form of

the spherical approximation in Equation (6.11), for three main reasons.

1. The weights λnmi(T, ∆g) do not follow directly from the derivations in Section

4.3.3. Equation (4.87) provides the weights λnmi(∆g, T ) that transform the sur-

face spherical harmonic coefficients of the gravity anomalies into the solid spher-

ical harmonic coefficients of the disturbing potential. However, the inverse rela-

tion is needed here, which requires a rigorous matrix inversion. Since the weights

increase with increasing degree n, due to the constant radius approximation,

weights up to very high degree and order need to be taken into account, and

the matrix that needs to be inverted will thus be fairly large and non-diagonally

dominant, as explained in Section 4.3.

2. Equation (6.18) involves slowly converging series of weighted products of spherical

harmonic base functions, and the derivation of a closed solution is not as straight-

forward as it is in the case of the spherical and constant radius approximation.

Martinec (1998) and Fei (2000) present approximations of the ellipsoidal Stokes

kernel based on an ellipsoidal harmonic expansion and Green’s second identity,

respectively.

3. Solutions to points 1 and 2 above cannot overcome the third impracticality of the

ellipsoidal Stokes kernel in Equation (6.18): the ellipsoidal form of Stokes kernel

cannot be expressed as a function of the spherical distance ψ. This can be seen

from the fact that on an ellipsoid, a line of points at equal surface distance from

a certain computation point will not form a circle as it does on the sphere, nor

will it be of equal shape for computation points at different latitudes. In other

words, the process becomes non-isotropic and non-homogeneous. Therefore, the

ellipsoidal Stokes kernel will always depend upon four parameters, i.e., longitude

and latitude of the computation point and longitude and latitude of the integra-

tion point, whereas the spherical Stokes kernel only depends on one parameter

(the spherical distance), and is thus homogeneous and isotropic. The ellipsoidal

kernel will thus be less efficient.
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The ellipsoidal correction to the geoid height δN in Equation (6.12) is more practically

useful than the modifications to the Stokes kernel or gravity anomalies, since it can

simply be applied after the spherical geoid computation has been performed. Secondly,

it avoids singularity in the vicinity of the computation point that the Stokesian inte-

gration suffers from, although the spherical Stokes integral naturally still contains this

singularity. Ellipsoidal corrections to the geoid height can be computed in an efficient

way, avoiding the need for integration, by evaluation of a global spherical harmonic

geopotential model (e.g., Heck and Seitz, 2003; Sjöberg, 2003c).

6.2.3 Ellipsoidal corrections from spherical harmonic geopotential coefficients

The computation of ellipsoidal corrections from a global set of geopotential coefficients

has been proposed by many authors (e.g., Rapp, 1981; Moritz, 1989; Heck and Seitz,

2003; Sjöberg, 2003c). Lelgemann (1970) had already realised that the low frequencies

are dominant in the ellipsoidal corrections, which permits the truncation of high-degree

coefficients. The level of error introduced by various truncation degrees is discussed

in Section 6.4. The dominance of the low frequencies has been confirmed by recent

numerical studies into the ellipsoidal corrections (e.g., Heck and Seitz, 2003; Huang et

al., 2003; Hipkin, 2004; Ellmann, 2005). Huang et al. (2003) state that the contribution

of coefficients beyond degree 20 only contributes 10% of the total ellipsoidal correction.

Heck and Seitz (2003, Equation 59) and Sjöberg (2003c, Equation 24) have shown that

the ellipsoidal corrections to geoid heights can be presented as a summation over solid

SHCs of the disturbing potential, roughly of the form

δN(θ, λ)
.
=

∞∑
n=0

n∑
m=−n

∞∑
i=−∞

τnmiT n+2i,mY nm(θ, λ) (6.19)

where τnmi depend on degree n, order m and the parameters of the reference gravity

field. In both Heck and Seitz (2003) and Sjöberg (2003c), the boundary condition

is approximated to the order of e2 and the summation over i in Equation (6.19) is

truncated after the first terms of |i| = 1. It was shown in Section 3.4 that this is highly

inaccurate for high-degree coefficients in the transformation between surface and solid

coefficients. This is due to the fact that the terms of index i have an impact of order
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O(e2ini). However, Heck and Seitz (2003) show that the terms of index i in Equation

(6.19) is of order O(e2in0), which means that disregarding all terms of |i| > 1 provides

ellipsoidal corrections with an accuracy of order e2.

Using the spectral relations derived in Chapters 3 and 4, τnmi can be derived rigorously

for all indices i. Moreover, the approximation of surface SHCs by solid SHCs that

is required in the method of Heck and Seitz (2003) can be avoided, and a rigorous

solution can be obtained. This is here called the surface harmonics method to ellipsoidal

corrections, described next.

6.3 The surface harmonics method to ellipsoidal corrections

This method provides an easy and efficient way to compute ellipsoidal corrections to

geoid heights from geopotential coefficients. The derivations here are made for any

arbitrary reference sphere, contrary to many other ellipsoidal corrections which were

only derived for a certain set reference sphere with radius R. For example, Moritz

(1989) derives ellipsoidal corrections for the ‘mean’ radius R = (a2b)1/3 (which is the

radius of the sphere with the same volume as the ellipsoid), Fei and Sideris (2000)

derive corrections for R = b and R = (a2b)1/3, and Heck and Seitz (2003) derive

corrections for R = a. The choice of the radius of the reference sphere proves to have

a large impact on the magnitude and spectral sensitivity of the corrections, and this is

discussed in Section 6.3.3 and 6.3.4.

6.3.1 Derivation of the correction formulas

The ellipsoidal correction to the geoid height can be computed from a set of solid

spherical harmonic geopotential coefficients from the difference between Equations (6.1)

and (6.3)

δN =
1

γ

∞∑
n=0

n∑
m=−n

[(
R

re

)n+1

T
R

nm −
R

n− 1
∆g

re

nm

]
Y nm, n 6= 1 (6.20)



165

where the surface harmonic coefficients of the gravity anomalies ∆g
re

nm can be computed

from solid spherical harmonic geopotential coefficients T
R

nm via the forward transfor-

mation in Equation (4.86). Equation (6.20) does not hold for the case n = 1, due to

the division over n− 1, and this special case is discussed in Section 6.3.2. An alterna-

tive for Equation (6.20) is possible using a surface spherical harmonic expansion of the

disturbing potential (Equation 6.2)

δN =
1

γ

∞∑
n=0

n∑
m=−n

(
T

re

nm −
R

n− 1
∆g

re

nm

)
Y nm, n 6= 1 (6.21)

Equation (6.21) is much more practical than Equation (6.20), because the term between

the brackets is independent of position. It therefore provides the surface SHCs of the

ellipsoidal corrections to the disturbing potential

δT =
∞∑

n=0

n∑
m=−n

δT
re

nmY nm (6.22)

where the surface SHCs δT
re

nm are given by

δT
re

nm = T
re

nm −
R

n− 1
∆g

re

nm, n 6= 1 (6.23)

and the ellipsoidal corrections to geoid heights follow from Bruns’s formula

δN =
δT

γ
(6.24)

Thus, all that is required to obtain a global set of ellipsoidal corrections are surface

spherical harmonic expansions of the disturbing potential and the gravity anomalies.

These can be obtained from a set of geopotential coefficients. The surface SHCs of the

disturbing potential and gravity anomalies can be computed via a synthesis-analysis

procedure, or alternatively and much more efficiently via the transformations derived

in Chapters 3 and 4 (Equations 3.81 and 4.86).

This new approach to the computation of ellipsoidal corrections to geoid heights is

arguably of great simplicity. Importantly, it only requires forward transformations from

solid SHCs T
R

nm to surface coefficients T
re

nm and ∆g
re

nm that are numerically stable to at

least degree and order 360 (see Sections 3.4.1 and 5.5.2), and the problems encountered

with the inverse transformation for coefficients of high degrees in Chapters 3 and 5 are

avoided. No iterations or approximations are required, making this method for the
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computation of ellipsoidal corrections theoretically exact, unlike any existing method,

because all existing methods involve approximations to the order of e2.

Naturally, the spherical harmonic expansions involved will in practice always be trun-

cated, and so will the summations in the transformation formulas. However, the errors

resulting from this truncation will always be small, since the ellipsoidal corrections are

dominated by the long wavelengths. This is shown for various degrees of truncation in

Section 6.4.

6.3.2 The zero- and first-degree coefficients

The solid SHCs T
R

nm of degree n = 0 and n = 1 are commonly set to zero by the

choice of the reference ellipsoid. The zero-degree solid SHC of the Earth’s gravitational

potential equals the terrestrial gravitational constant µ (e.g., Heiskanen and Moritz,

1967), and T
R

0,0 will thus become zero if the terrestrial gravitational constant of the

reference gravity field equals the terrestrial gravitational constant of the geopotential

model.

The first-degree solid SHCs T
R

1,−1, T
R

1,0 and T
R

1,1 will be zero if the origin of the co-

ordinate system coincides with the centre of mass of the Earth. They are sometimes

called the forbidden or inadmissable harmonic coefficients, which according to Heiska-

nen and Moritz (1967, p. 62) “must vanish in any spherical harmonic expansion of

the Earth’s potential”. However, this does not hold for a surface spherical harmonic

expansion of the Earth’s gravity potential from function values on any other surface

than a sphere, because a one-to-one relation between solid SHCs and surface SHCs

from a non-spherical surface does not exist. This is acknowledged by Heck (1991) for

surface SHCs from an ellipsoid, and this case is described next.

It can be seen from the transformation between surface and solid SHCs (Equation 3.73)

that the surface SHCs T
re

1,m will not vanish if the solid SHCs T
R

1,m are equal to zero,



167

180˚

180˚

210˚

210˚

240˚

240˚

270˚

270˚

300˚

300˚

330˚

330˚

0˚

0˚

30˚

30˚

60˚

60˚

90˚

90˚

120˚

120˚

150˚

150˚

180˚

180˚

-75˚ -75˚

-60˚ -60˚

-45˚ -45˚

-30˚ -30˚

-15˚ -15˚

0˚ 0˚

15˚ 15˚

30˚ 30˚

45˚ 45˚

60˚ 60˚

75˚ 75˚

-0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Figure 6.2: Ellipsoidal corrections to the geoid heights computed by Equations (6.22) to
(6.24) using the EGM96 geopotential model with degrees 0 ≤ n ≤ 1 (units in m; Robinson
projection)

but depend on all solid SHCs of equal order m and odd degree n

T
re

1,m =
∞∑
i=1

λ1,m,−iT
R

1+2i,m (6.25)

Similarly, according to Equation (4.86), the first-degree coefficients in the surface spher-

ical harmonic expansion of gravity anomalies on the ellipsoid will not vanish either

∆g1,m =
∞∑
i=1

λ1,m,−i(∆g, T )T
R

1+2i,m (6.26)

even though they do vanish in spherical approximation (see Equation 4.68). The inverse

of Equation (6.26), which can be computed iteratively or via a matrix inversion, reads

T
R

1,m =
∞∑
i=1

λ1,m,−i(T, ∆g)∆g1+2i,m (6.27)

which shows that the gravity data should fulfill three consistency conditions (Heck,

1991) (the cases m = −1, 0, 1), when T
R

1,m are indeed equal to zero. This will generally

not be the case for empirical data, but it can be expected that the effects on practical

computations are negligible (Heck, 1991).

Since the first-degree terms disappear in spherical approximation, the first-degree sur-

face SHCs of the ellipsoidal correction simply equal the first-degree surface SHCs of
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the disturbing potential

δT
re

1,m = T
re

1,m (6.28)

Huang et al. (2003) reveal that the methods for the computation of ellipsoidal cor-

rections by Molodenskii et al. (1962), Moritz (1989) and Fei (2000) fail to reproduce

the first-degree term. Later tests with synthetic data by Huang, equal to the tests de-

scribed in Huang et al. (2003), have revealed that the method by Heck and Seitz (2003)

correctly computes the first-degree term, as well as all other terms, with an accuracy

within the computation noise (±1 cm). Comparison of the results of Equation (6.28)

to the results of Heck and Seitz (2003) shows a very strong resemblance, as can be

concluded from comparison of Figure 6.2 with Heck and Seitz (2003, Figure 5). The

small differences between both methods, which amount to less than 1mm for any point

on Earth, can possibly be explained by the fact that the coefficients in Heck and Seitz

(2003) are only accurate up to the order of e2.

6.3.3 Ellipsoidal corrections for various reference spheres

It can be seen from Equation (6.23) that the ellipsoidal corrections to geoid heights do

not only depend on the surface SHCs of disturbing potential and gravity anomalies, but

also on the radius of the reference sphere R. The radius R effectively works as a scale

factor to the geoid heights computed by Stokes’s integral (Equation 6.9). The choice

of R has a substantial effect on the ellipsoidal corrections. For example, the difference

between the ellipsoidal correction, where R is chosen equal to the semi-major axis of

the ellipsoid a and the semi-minor axis of the ellipsoid b, respectively, is of the order

of the flattening of the ellipsoid. This effect is as large as the corrections themselves,

since ellipsoidal corrections are of the order of the flattening (e.g., Rummel, 1985).

Some existing formulas for ellipsoidal corrections, such as those by Heck and Seitz

(2003), only hold for a reference sphere equal to the semi-major axis a, and if another

reference sphere is used, all formulas should be re-derived. In the derivations of Sjöberg

(2003c, 2004b) a special scale factor is introduced to allow computation for other ref-

erence spheres, and this scaling is separated from the ellipsoidal corrections. Here, the
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scaling was included in the ellipsoidal corrections by introduction of the scale factor c

(Equation 3.64) for reasons of convenience.

The ellipsoidal corrections for R = a and R = b are shown in Figures 6.3 and 6.4

respectively, and the corrections for the ‘mean’ spherical radius R = (a2b)1/3 (R =

6, 371, 005 m) (Moritz, 1980) are shown in Figure 6.5, where the GRS80 values of a and

b (Table 2.5) were used. The spherical harmonic expansion was evaluated for degrees

up to 340, to avoid the error that is introduced in the SHCs close to the maximum

degree, which occurs due to the absence of SHCs of higher degrees (see Section 5.5.2).

The corrections are based on the EGM96 geopotential model (Lemoine et al., 1998)

that was also used in the numerical experiments in Chapters 3 and 5. The choice for

EGM96 in this application is based on the fact that most earlier numerical studies into

the ellipsoidal corrections (e.g., Heck and Seitz, 2003; Huang et al., 2003; Ellmann,

2005) also use EGM96, which makes the results easy to compare. For example, Figure

6.3 is very similar to Heck and Seitz (2003, Figure 3), which increases the probability

that both methods are valid. Moreover, the validity of the transformations from solid

SHCs of the disturbing potential to surface SHCs of the disturbing potential and gravity

anomaly was already confirmed by the numerical experiments in Chapters 3 and 5

respectively, and therefore no additional closed-loop simulation is needed here.

It can be seen from Figures 6.3 to 6.5 that the ellipsoidal corrections show some sim-

ilarities with the geoid computed from EGM96 (Figure 6.1). In particular, the lowest

point of the geoid appears in the vicinity of Sri Lanka, and this corresponds with the

largest negative ellipsoidal correction in Figures 6.3 to 6.5. Likewise, there is a high

in the geoid over Papua New Guinea, and this is also reflected in the ellipsoidal cor-

rections. This indicates that the spherical approximation underestimates the absolute

values of the geoid heights. For R = b, this effect is more profound than for R = a,

which is understandable given that R scales the geoid heights. Since even R = a does

apparently not scale the geoid heights by a high enough factor, it follows that the

ellipsoidal corrections are smaller when R > a.

Figure 6.6 shows the ellipsoidal corrections for R = a+20km. Comparison with Figure
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Figure 6.3: Ellipsoidal corrections to the geoid heights computed by Equations (6.22) to
(6.24) using the EGM96 geopotential model with degrees 0 ≤ n ≤ 340 and a reference sphere
with radius R = a (units in m; Robinson projection)
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Figure 6.4: Ellipsoidal corrections to the geoid heights computed by Equations (6.22) to
(6.24) using the EGM96 geopotential model with degrees 0 ≤ n ≤ 340 and a reference sphere
with radius R = b (units in m; Robinson projection)
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Figure 6.5: Ellipsoidal corrections to the geoid heights computed by Equations (6.22) to
(6.24) using the EGM96 geopotential model with degrees 0 ≤ n ≤ 340 and a reference sphere
with radius R = (a2b)1/3 (units in m; Robinson projection)
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Figure 6.6: Ellipsoidal corrections to the geoid heights computed by Equations (6.22) to
(6.24) using the EGM96 geopotential model with degrees 0 ≤ n ≤ 340 and a reference sphere
with radius R = a + 20km (units in m; Robinson projection)
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R = b R = (a2b)1/3 R = a R = a + 20km

minimum -0.863 -0.637 -0.524 -0.304

maximum 0.655 0.469 0.380 0.333

mean 0.006 0.008 0.009 0.011

absolute mean 0.164 0.125 0.114 0.106

standard deviation 0.219 0.170 0.150 0.127

Table 6.1: Statistics of the ellipsoidal corrections for a reference sphere with radius R equal
to semi-minor axis b, ‘mean’ radius (a2b)1/3, semi-major axis a and semi-major axis a+20km,
obtained from geopotential model EGM96 and degrees 0 ≤ n ≤ 340 synthesised on a 30’ grid
(units in m)

6.3 shows that the ellipsoidal corrections are in this case increased around the poles,

but attenuated around the equator, where the largest corrections appeared. It can be

seen from the statistics in Table 6.1 that the minimum and maximum values of the

ellipsoidal corrections are substantially lower for R = a+20km than in the cases where

R is chosen smaller, as are the absolute mean and standard deviation.

This leads to the conclusion that the spherical approximation obtains the ‘best’ results,

in a least-squares sense, when the gravity anomalies are assumed to lie on a sphere with

a radius that is larger than the equatorial radius. However, when increasing the ra-

dius R further, the ellipsoidal corrections become larger again, and errors up to several

decimetres will always remain in the spherical approximation for any choice of R. More-

over, when R > a the high frequencies are amplified, which makes it more difficult to

model the ellipsoidal corrections accurately from a global geopotential model. Ideally,

the ellipsoidal corrections should contain as little power in the high degree coefficients

as possible, to allow highly-accurate modelling from low-degree coefficients only. This

can be achieved with an optimal choice of the reference sphere R, and this is shown

next.
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6.3.4 Ellipsoidal corrections with varying reference sphere radius

As stated, the vast majority of numerical studies into ellipsoidal effects either choose

the radius of the reference sphere R = a (e.g., Huang et al., 2003; Heck and Seitz, 2003)

or R = (a2b)1/3 (e.g., Ellmann, 2005). Interestingly, it can be observed from Figures

6.3 to 6.5 that the ellipsoidal corrections show the least small-scale variations where

R equals or is close to the ellipsoidal radius re: in Figure 6.3, where R = a, the least

small-scale variations occur around the equator; in Figure 6.4, where R = b, the least

small-scale variations occur around the poles; and in Figure 6.5, where R = (a2b)1/3, the

least small-scale variations occur along the mid-latitudes (θ ≈ 45◦ and θ ≈ 135◦). This

indicates that the short-wavelength effects are mainly caused by upward- or downward-

continuation from the reference sphere to the ellipsoid.

It can therefore be deduced that ellipsoidal corrections with relatively more power in

the low frequencies can be obtained if the radius of the reference sphere R is chosen

equal to the ellipsoidal radius re at the point of computation. Admittedly, the radius

of the reference sphere R is required to be constant for all points on the sphere in order

to derive the spherical Stokes formula (Equation 6.9). However, from a pragmatic

point of view, in the computation of the geoid height at a certain point, the choice

R = re simply means that the global set of gravity anomalies are all assumed to lie

on the sphere that intersects the ellipsoid at that computation point and has the same

origin as the ellipsoid. Another point at a different latitude can thus be computed

with a different constant radius. It should be noted that the choice R = re is applied

in the computation of, for example, geoid models for the British Isles (Featherstone

and Olliver, 1994) and Australia (Featherstone et al., 2001), although the choice of the

reference sphere is seldomly stated explicitly in publications.

The computation of ellipsoidal corrections with R = re is slightly more complicated

than in case of a constant radius. The correction to the geoid height becomes, according

to Equation (6.21)

δN =
1

γ

∞∑
n=0

n∑
m=−n

(
T

re

nm −
re

n− 1
∆g

re

nm

)
Y nm (6.29)
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Figure 6.7: Ellipsoidal corrections to the geoid heights computed by Equations (6.22) to
(6.24) using the EGM96 geopotential model with degrees 0 ≤ n ≤ 340 and R = re (units in
m; Robinson projection)

Since the ellipsoidal radius re depends on latitude, the surface SHCs of the correc-

tion to the disturbing potential δT
re

nm cannot be recovered straight away by comparing

Equation (6.29) to Equation (6.22). However, it is possible to remove the dependence

of latitude in re using the transformation derived in Section 3.3. The coefficient trans-

formation for SHCs that are multiplied by the term (R/re)
n+1 is given in Equation

(3.73), and the special case (R/re)
−1 can be applied to obtain an expression for the

surface SHC of the correction to the disturbing potential

δT
re

nm = T
re

nm −
R

n− 1

∞∑
i=−∞

∞∑

k=|i|
α−2−2i,kK

2i,2k

n−2i,m∆g
re

n+2i,m (6.30)

The ellipsoidal corrections can then be computed via Equations (6.22) and (6.24), and

the results are shown in Figure 6.7. It can be seen that the corrections in the case of

R = re contain less power in the high degrees than in the cases where R was chosen

constant (Figures 6.3 to 6.6). The strong dominance of the low-degree coefficients

can also be derived from the degree variance spectra of δT
re

nm for various values of R

that are shown in Figure 6.8. The degree variances for the case R = re decrease very

rapidly, but at about the level of 10−7 they start to oscillate heavily. This is caused by

numerical inaccuracies that only affect coefficients of even degree n.
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Figure 6.8: From top to bottom: Degree variances of the solid SHCs T
R
nm (black) and of the

surface SHCs δT
re

nm for R = a + 20km (yellow), R = b (green), R = a (red), R = (a2b)1/3

(blue) and R = re (brown)

The same can be seen in Figure 6.8 for the degree variances of the surface SHCs δT
re

nm

for other values of R, although it is less obvious there because the degree variances

are larger. Without the numerical inaccuracies, the degree variances of even degrees

would be of the same order of magnitude as those of odd degrees, and the contribution

of degrees n > 70 is less than a millimetre for any point on the ellipsoid, as will be

shown in Section 6.4. The surface spherical harmonic series with SHCs computed via

Equation (6.30) can therefore safely be truncated at degree 70, avoiding the influence

of the numerical inaccuracies.
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6.4 Ellipsoidal corrections in view of the remove-compute-restore (RCR)

approach to geoid computation

In local or regional geoid computation, the so-called remove-compute-restore (RCR) ap-

proach (e.g., Torge, 1991), which combines the local gravity data with long-wavelength

information from a global geopotential model, is often applied, either with or without

modifications to the spherical Stokes kernel (e.g., Vańıček and Sjöberg, 1991; Feather-

stone et al., 1998, 2004). The use of the RCR approach has important implications for

the application of ellipsoidal corrections, as is shown by the numerical investigations

of, e.g., De Min (1995), Ardestani and Martinec (2003b) and Ellmann (2005).

6.4.1 The remove-compute-restore approach

In the classical RCR approach, i.e., without a modified kernel (e.g., Vincent and Marsh,

1973; Rummel and Rapp, 1976), the long-wavelength part of the geoid is provided by

a global geopotential model, and local gravity data are used to provide the short-

wavelength part. The geoid height is thus split into two parts

N(θ, λ) = N1(θ, λ) + N2(θ, λ) (6.31)

where N1 is the contribution from the global geopotential model and N2 is the high-

frequency contribution from a Stokesian integration over the local gravity anomalies.

The spherical harmonic geopotential model is evaluated until a certain maximum degree

and order nmax. The optimal value of nmax depends mainly on the quality of the local

gravity data and of the global geopotential model, but is commonly simply chosen

equal to the maximum degree of the global model used. Very roughly, nmax can be

as low as 20 for satellite-only models (Vańıček and Krakiwsky, 1986), but is usually

higher (up to or even beyond 360) when a combined model, such as EGM96, is used.

The main advantage of the RCR approach is that a global set of gravity anomalies is

not required and local data can be used to refine the coarse geoid resulting from the

global model, although small errors will still be present because the short-wavelength
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part of gravity anomalies outside the region is neglected, the truncation error. However,

the approach also introduces some complications, and the most important of these is

that the local gravity data also contain a long-wavelength contribution. Therefore, to

avoid accounting for the long wavelengths twice, the low-frequency part of the local

gravity anomalies needs to be removed beforehand. This can be done by computing

gravity anomalies from the global model until degree and order nmax and subtracting

this from the local gravity anomalies.

This step is often performed in spherical approximation using Equation (4.67) or a

slightly better approximation that only includes the spherical approximation to the

boundary condition, but not the constant radius approximation

∆gnmax(re, θ, λ) =
nmax∑
n=0

(
R

re

)n+1
n− 1

re

n∑
m=−n

T
R

nmY nm(θ, λ) (6.32)

where the subscript nmax indicates that this gravity anomaly is only evaluated for 0 ≤
n ≤ nmax. Equation (6.32) was, for example, used in the construction of a geoid model

for Australia (Featherstone et al., 2001). It is, however, reasonably straightforward to

compute the band-limited gravity anomalies in a more exact way, using the rigorous

boundary condition (Equation 2.52). The expansion of the normal derivative of the

disturbing potential in Equation (4.16) can be inserted into the boundary condition to

obtain a rigorous expression for the gravity anomalies in terms of spherical harmonic

geopotential coefficients

∆gnmax =
1

R

nmax∑
n=0

(
R

re

)n+2 n∑
m=−n

T
R

nm

[
re

γ

∂γ

∂h
+ (n + 1) cos φ + sin φ

∂

∂θ

]
Y nm (6.33)

where it should be noted that R here needs to be equal to the reference sphere that

the SHCs of the disturbing potential refer to, and cannot be chosen freely (unless of

course the SHCs T
R

nm are also transformed to the new radius R using Equation (3.7)).

The application of Equation (6.33) instead of the spherical approximation in Equation

(4.67), can be seen as an ellipsoidal correction to the long-wavelength term of the

gravity anomalies.

The derivation of ∆gnmax on the ellipsoid is performed in an alternative way from the

method described here by Hipkin (2004), who expresses the long-wavelength effect of
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the gravity anomaly on the ellipsoid (in the current notation) as

∆gnmax =
1

R

nmax∑
n=0

(
R

re

)n+2 n∑
m=−n

T
R

nm

[
(n−1) cos φ−sin φ

∂

∂θ

]
Y nm−E(θ)N(θ, λ) (6.34)

where

E(θ) =
γ(2− e2 − e2 cos2 ϑ)

√
1− e2 cos2 ϑ

a(1− e2)
− 2γ cos φ

re

+ 2ω2 (6.35)

The main difference between Hipkin’s (2004) solution (Equation 6.34) and Equation

(6.33) is that Hipkin applies a correction including the geoid height N separate from the

summation over geopotential coefficients, and suggests that the required geoid height

can be evaluated from geopotential coefficients beforehand. The term E(θ) in Equation

(6.35) mainly contains an explicit expression for the normal derivative of the reference

gravity ∂γ/∂h. Despite the difference in notation, Equations (6.33) and (6.34) are

the same, except for one small difference. In Equation (6.33), the term containing the

latitudinal derivative of the SHF Y nm is added to the other terms, whereas in Equation

(6.34) it is subtracted. This can presumably be attributed to a sign error in Hipkin’s

(2004) publication.

Equation (6.33) is, in principle, equivalent to the weighted summation derived in Equa-

tion (4.84), but it is for this purpose not strictly necessary to bring all dependence on

latitude inside the SHFs. Instead, the ellipsoidal radius re and ellipsoidal deflection

angle φ, as well as the reference gravity γ and its normal derivative ∂γ/∂h, can be

computed for every desired latitude separately. However, Equation (4.84) is compu-

tationally more efficient and removes the singularity at the poles in Equation (6.33),

which is caused by the appearance of the first latitudinal derivative of the SHF.

In conclusion, the long-wavelength term N1 reads

N1(θ, λ) =
1

γ

nmax∑
n=0

(
R

re

)n+1 n∑
m=−n

T
R

nmY nm(θ, λ) (6.36)

and the short-wavelength term N2 follows from an integration

N2(θ, λ) =
R

4πγ

∫

σ′

S(ψ)[∆g(θ′, λ′)−∆gnmax(θ
′, λ′)]dσ′ (6.37)

which can in principle be confined to a spherical cap around the computation point

due to the absence of the long wavelengths in the gravity anomalies. To reduce long-

wavelength information entering in the computation of N2, the spherical radius of the
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cap ψ0 can be chosen according to the rule of thumb ψ0 ≈ π/nmax. However, the

restriction of the integration limits results in the omission of far-zone short-wavelength

gravity data, causing a truncation error (e.g., Rummel and Rapp, 1976). Sjöberg (2005)

shows that this truncation error can reach 3 cm for a spherical cap with a radius of 2

degrees, which according to the rule of thumb corresponds to nmax = 90.

Alternatively, or in addition, to the removal of the low-frequency part of gravity anoma-

lies, the spherical Stokes kernel can be modified, primarily to reduce the truncation

error (e.g., Wong and Gore, 1969; Vańıček and Sjöberg, 1991; Sjöberg, 1991; Feather-

stone et al., 1998). This approach has, for example, been applied in the computation of

geoid models for the British Isles (Featherstone and Olliver, 1994), Canada (Vańıček et

al., 1995), and Australia (Featherstone et al., 2001, 2004). The ellipsoidal correction to

one of the modified Stokes kernels has been studied by Sjöberg (2003c, 2004b). How-

ever, the simple unmodified RCR approach has also been applied in numerous geoid

computations, such as, for example, in the computation of geoid models for Canada

(Sideris and She, 1995) and the United States (Smith and Roman, 2001). Comparisons

of the unmodified and the modified RCR approach (Vańıček and Sjöberg, 1991) are

provided in Vańıček and Featherstone (1998), Featherstone et al. (2004) and Sjöberg

(2005).

The ellipsoidal corrections in the unmodified RCR approach were investigated by

Ardestani and Martinec (2003b) for the ellipsoidal harmonics method of Martinec and

Grafarend (1997a), and are here shown for the surface spherical harmonics method

derived in Section 6.3. The effect of kernel modification on the ellipsoidal corrections

using the spherical harmonics method is a possible topic for further research.

6.4.2 High-frequency ellipsoidal corrections

In the computation of ellipsoidal corrections in view of the RCR approach, it is usu-

ally assumed that the geopotential coefficients in the global model do not contain any

spherical approximation. Recent satellite-only geopotential models that provide highly

accurate low-degree coefficients, such as GGM02 (Tapley et al., 2005) or EIGEN-02S
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(Reigber et al., 2005), can be used to compute the term N1 in Equation (6.31). Ac-

cording to, e.g., Rummel et al. (2002), Koch (2005) and Mayer-Gürr et al. (2005),

these models provide accurate coefficients up to approximately degree 30 − 60. Since

satellite-only models are not computed from data on an ellipsoid, additional ellip-

soidal corrections to N1 are not necessary. Note, however, that geoid heights computed

from other recent geopotential models that also include terrestrial gravity data, such

as EGM96 (Lemoine et al., 1998), do not require any ellipsoidal corrections either,

because in their computation the ellipticity of the Earth is already taken into con-

sideration. EGM96 can therefore also be used to compute N1 without the need for

ellipsoidal corrections to this term.

The term N2 in Equation (6.31) still requires attention. This term is computed from

local gravity data from which the long-wavelength effect obtained from Equation (6.33)

is subtracted. Although a geopotential model does generally not provide as much detail

about the high-frequency part of the Earth’s gravity field as the local gravity data, it

can still provide an accurate estimate of the magnitude of the ellipsoidal corrections at

these high frequencies. The ellipsoidal correction to term N2 can be obtained from a

spherical harmonic series that starts at degree nmax

δN2 =
1

γ

Nmax∑
n=nmax

n∑
m=−n

δT
re

nmY nm (6.38)

where Nmax is the maximum degree and order of the geopotential model.

The absolute error in δN2 due to truncation at degree Nmax will be very small inde-

pendent of the choice of nmax, since the ellipsoidal corrections are predominantly of

long-wavelength nature, especially if the radius of the reference sphere R is chosen

equal to the ellipsoidal radius re (see Section 6.3.4). The degree variance spectra of

the ellipsoidal corrections in Figure 6.8 are roughly parallel to the degree variance

spectrum of the disturbing potential itself, and approximately five orders of magnitude

lower. Therefore, the absolute truncation error in the computation of δN2 will be of

the order of five times smaller than the truncation error in the geoid height. Based on

the investigation into the spectral properties of the geoid height by Schwarz (1985),

which shows that the contribution of SHCs beyond degree 360 is less than 0.1%, the
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truncation error in δN2 can be approximated to be well below 1 mm for any choice of

reference sphere R.

6.4.3 Magnitude of ellipsoidal corrections in various bandwidths

The magnitude of ellipsoidal corrections in the RCR approach are investigated for the

region of Australia, which was chosen as the test area with a view to the determination

of a new AUSGeoid model (cf. Featherstone et al., 2001). In any geoid computation, the

optimal cut-off degree of the global geopotential model nmax will depend on the quality

of the global geopotential model, and also on the quality of the local gravity data,

which means that the optimal choice of nmax is different for every region. However,

most people choose nmax = Nmax, the appropriateness of which will not be discussed

here.

The choice of nmax has a great impact on the magnitude of the ellipsoidal correction

term δN2. As an example, computations of the term δN2 based on a choice of nmax = 90

and Nmax = 340 are shown in Figures 6.9 to 6.11 for R = a, R = (a2b)1/3 and R = re,

respectively, based on the EGM96 global geopotential model. Global statistics based on

this choice of parameters are provided in Table 6.2. The parameter Nmax was chosen

slightly smaller than 360 (the maximum degree of EGM96), to avoid errors in the

computation of the ellipsoidal corrections in the vicinity of the maximum degree. The

contribution of SHCs beyond degree 340 is negligible, judging from the degree variance

spectra in Figure 6.8.

As expected, it can be seen from Figures 6.9 and 6.10, respectively, that the largest

corrections appear in the south (at the largest distance from the equator) for R = a,

and in the north (at the largest distance from the mid-latitudes) for R = (a2b)1/3.

The magnitude of the corrections reaches a maximum of approximately 5 mm in both

cases. However, for R = re, the magnitude of the corrections remains well below 0.5

mm over the whole region, as can be seen in Figure 6.11. This size of correction is close

to the level of the numerical errors, which cause the pattern of longitudinal stripes,

specifically in the south (see Figure 6.11).
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Figure 6.9: Ellipsoidal correction term δN2 (Equation 6.38) from the EGM96 geopotential
model with degrees 90 ≤ n ≤ 340 and a reference sphere with radius R = a (units in m;
Mercator projection)
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Figure 6.10: Ellipsoidal correction term δN2 (Equation 6.38) from the EGM96 geopotential
model with degrees 90 ≤ n ≤ 340 and a reference sphere with radius R = (a2b)1/3 (units in
m; Mercator projection)
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Figure 6.11: Ellipsoidal correction term δN2 (Equation 6.38) from the EGM96 geopotential
model with degrees 90 ≤ n ≤ 340 and a reference sphere with radius R = re (units in m;
Mercator projection)

This leads to the conclusion that truncation at degree n = 90 will only lead to sub-

millimetre errors. In fact, this does not only hold for Australia, but for the entire

Earth. The global extremes of close to 1 cm that can be seen in Table 6.2 occur at

the poles and are caused by the numerical errors in the coefficients of even degree, but

without these numerical errors, the ellipsoidal corrections are below 1 mm for even the

most mountainous regions.

Therefore, evaluation of a global geopotential model using Equations (3.81), (4.86)

and (6.22) to (6.24) up to degree 90 provides very accurate ellipsoidal corrections. In

addition, when a global geopotential model is used to account for the effect up to degree

n = 90, the ellipsoidal correction to δN2 can be ignored. This may even be the case

for n < 90. Figure 6.12 shows the ellipsoidal correction δN2 for R = re and nmax = 20.

Also in this case, the corrections are very small, with an absolute maximum of 2 mm

in Australia. The strong correlation between the ellipsoidal corrections and the geoid

heights can be observed from comparison of Figures 6.12 and 6.13.
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Figure 6.12: Ellipsoidal correction term δN2 (Equation 6.38) from the EGM96 geopotential
model with degrees 20 ≤ n ≤ 340 and a reference sphere with radius R = re (units in m;
Mercator projection)
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Figure 6.13: Geoid computed from the EGM96 geopotential model with degrees 20 ≤ n ≤
340 (units in m; Mercator projection)
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R = b R = a R = (a2b)1/3 R = re

minimum -35.8 -44.4 -29.5 -9.2

maximum 55.2 39.7 25.6 9.9

mean 0.007 0.024 0.018 0.007

absolute mean 1.34 1.54 1.08 0.32

Table 6.2: Global statistics of the ellipsoidal corrections for a reference sphere with radius R

equal to semi-minor axis b, ‘mean’ radius (a2b)1/3, semi-major axis a and ellipsoidal radius
re, obtained from geopotential model EGM96 and degrees 90 ≤ n ≤ 340 synthesised on a 30’
grid (units in mm)

R = b R = a R = (a2b)1/3 R = re

minimum -83.0 -64.4 -41.5 -14.2

maximum 85.4 49.9 33.2 11.1

mean -0.035 0.195 0.118 0.006

absolute mean 3.72 3.37 2.53 0.62

Table 6.3: Global statistics of the ellipsoidal corrections for a reference sphere with radius R

equal to semi-minor axis b, ‘mean’ radius (a2b)1/3, semi-major axis a and ellipsoidal radius
re, obtained from geopotential model EGM96 and degrees 20 ≤ n ≤ 340 synthesised on a 30’
grid (units in mm)

The global statistics of δN2 for nmax = 20 are shown in Table 6.3. The ellipsoidal

correction beyond degree 20 amounts to less than 1 cm in almost every place on Earth,

with an absolute maximum of 1.4 cm. The statement by Huang et al. (2003) that

“the first 20 degrees of the geopotential harmonic series contribute approximately 90%

of the ellipsoidal correction” only holds for reference spheres of constant radius glob-

ally. For R = re, the first 20 degrees of the geopotential harmonic series contribute

approximately 98% of the ellipsoidal correction.

Since practically every modern geoid computation uses a global geopotential model at

least up to degree n = 20, the errors introduced by the spherical approximation to δN2

will be sub-centimetre, which is negligible in most cases, provided that: 1) the reference
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sphere R in Equation (6.9) is set to the ellipsoidal radius re for each computation point,

and 2) the long-wavelength contribution to the gravity anomaly is computed via the

rigorous ellipsoidal formula in Equation (6.33).

6.5 Summary

In this Chapter, new formulas for ellipsoidal corrections to regional geoid heights were

derived based on the spectral relationships found in Chapters 3 and 4. These formu-

las express the ellipsoidal corrections as a function of global geopotential coefficients,

which is more efficient than evaluation of the ellipsoidal Stokes’s integral formula. The

formulas derived here are not restricted to the order of the square of the first numer-

ical eccentricity of the ellipsoid e2, unlike all of the existing methods. The numerical

results show a very close agreement with the ellipsoidal corrections computed by Heck

and Seitz (2003), which was shown to be within 1 cm accuracy with the synthetic test

of Huang et al. (2003).

An important aspect of ellipsoidal corrections to geoid heights is the dependence of the

solution on the reference sphere used in the spherical approximation, which appears

largely unrecognised in the literature on the subject. It can be concluded that the

dominance of the short-wavelength part of the ellipsoidal corrections can be attenuated

significantly if the radius of the reference sphere in the spherical approximation is set

equal to the ellipsoidal radius of the computation point (R = re). This reduces the

impact of spherical harmonic degrees beyond 20 on the ellipsoidal corrections from

∼ 10% to ∼ 2%, contributing a maximum of 1 cm to the geoid height only. This means

that the ellipsoidal corrections can be modelled more easily and efficiently, and more

importantly that the ellipsoidal corrections to the Stokes integration can be ignored if

an RCR procedure to geoid computation is applied, which is often the case in practice.
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7. SUMMARY, CONCLUSIONS AND OUTLOOK

In this thesis, new solutions to various ellipsoidal boundary-value problems (BVPs)

have been derived, and their application in gravity field modelling and geoid determi-

nation was investigated. Section 7.1 contains a short summary of the approach and

derived solutions. The main conclusions resulting from this research are summarised

in Section 7.2, and based on these conclusions, an outlook to possible future research

subjects is provided in Section 7.3.

7.1 Summary

The main objective of this research was to derive highly accurate solutions to ellipsoidal

BVPs in the framework of spherical harmonics for application in gravity field modelling.

Based on new relations among spherical harmonic functions (SHFs) derived in Section

3.2, a solution to the general Dirichlet BVP was formulated (Section 3.3). Along similar

lines, solutions to the Neumann BVP and second-order BVP were derived in Chapter

4, and this has led to the formulation of an ellipsoidal Meissl scheme that connects

surface spherical harmonic coefficients (SHCs) of the disturbing potential and its first-

and second-order derivatives on ellipsoids of various shapes and sizes.

Based on these derivations, solutions to the ellipsoidal second and third geodetic BVPs

were also derived. The application of these solutions in two areas – the computation of

solid SHCs of the Earth’s gravity field, and ellipsoidal gravimetric geoid computation

– was investigated in Chapters 5 and 6 respectively. The necessity for high theoret-

ical accuracy in the computation of solid SHCs of the disturbing potential, avoiding

approximations to the rigorous fundamental equation of physical geodesy (Equation

2.52), was proven. In addition, new insights into the nature of ellipsoidal corrections

to gravimetric geoid computation were obtained.
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7.2 Conclusions

The most important conclusions that can be drawn from the work presented in this

thesis are itemised below, and a short explanation is appended to each conclusion.

1. The product of associated Legendre functions (ALFs) or spherical harmonic func-

tions (SHFs) with an arbitrary power of the sine or cosine of co-latitude θ can

be expressed as a weighted summation over ALFs or SHFs of the same order m

(Equations 3.28 and 3.31).

The weight functions in these expressions are called sinusoidal or cosinusoidal

Legendre weight functions (LWFs), respectively. They can be computed from

four different iterative algorithms (Equations 3.33, 3.38, 3.39 and 3.40) and the

numerical accuracy of the relations is better than 10−12 for degree n and order

m up to 360, and for sin θ or cos θ up to at least a power of 16 (with θ = 0◦, 30◦,

45◦, 60◦ and 90◦). Similar relations for the first- and second-order derivatives of

ALFs and SHFs with respect to θ were also derived (Equations 3.54 and 3.61).

2. The new relations among SHFs allow for a transformation between solid SHCs

and surface SHCs of a function defined on an ellipsoid.

A harmonic function can be expressed as a solid spherical harmonic expansion,

which can be used to synthesise function values on the surface of an ellipsoid.

Moreover, function values on an ellipsoid can be expressed as a surface spherical

harmonic expansion. The relation between the solid SHCs and the surface SHCs

from the ellipsoid was derived (Equation 3.73), based on new relations among

SHFs (Equation 3.31). It expresses the surface SHCs as a weighted summation

over solid SHCs of equal order m, where the weights only depend on degree n,

order m, and the shape and size of the ellipsoid used.



189

3. Theoretically exact solutions to many ellipsoidal BVPs can be found in the spheri-

cal harmonic framework using a transformation from surface SHCs to solid SHCs.

The transformation of surface SHCs from an ellipsoid into solid SHCs of the har-

monic function under consideration provides a solution to an ellipsoidal BVP,

since solid SHCs represent the harmonic function anywhere in space where har-

monicity holds. Such a coefficient transformation was derived for the case that

the function values or its first- or second-order derivatives are given on the surface

of the ellipsoid (the Dirichlet, Neumann and second-order BVPs; Equations 3.73,

4.33 and 4.57). In addition, it was shown that such a transformation can also be

derived for the ellipsoidal second and third geodetic BVPs (Equations 4.33 and

4.86).

4. Solutions to ellipsoidal BVPs from a transformation between surface and solid

SHCs yield accurate results (with average relative error in degree variances of

10−12) efficiently up to spherical harmonic degree and order ∼ 520 for an ellipsoid

with the Earth’s eccentricity.

All solutions to ellipsoidal BVPs that use a transformation from surface to solid

SHCs require the inversion of a linear system of equations, where the size of the

system depends on the maximum degree of the spherical harmonic expansions

used. This inversion can be performed efficiently via a Jacobi iteration (or a

related iterative procedure), but convergence of such an iterative procedure can

only be guaranteed as long as the design matrix is diagonally dominant. It was

shown in Section 3.3.2 that for an ellipsoid with the eccentricity of the Earth

(e2 = 0.0067), diagonal dominance only occurs for spherical harmonic expansions

up to degree n ≈ 520. This value was found to be almost identical for the Dirichlet

(Section 3.3.2), Neumann (Section 4.1.3), and free-geodetic BVPs (Section 4.3.2),

due to the fact that non-diagonal dominance at the higher degrees is primarily

caused by the continuation of data from the ellipsoid to a sphere, and is thus

mainly independent of the boundary condition.
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5. Using spectral relations between surface SHCs of the disturbing potential and its

first- and second-order derivatives on an ellipsoid, an ellipsoidal Meissl scheme

can be constructed.

Based on the relations between surface and solid SHCs, an ellipsoidal Meissl

scheme (Figure 4.4) was constructed, as an extension of the spherical Meissl

scheme (Rummel and Van Gelderen, 1992). In this spherical scheme, all surface

SHCs are connected by one-to-one relations, but this does not hold for functions

on the ellipsoid, which makes the ellipsoidal Meissl scheme more complicated than

the spherical one. Instead, the relations are presented as the product of a block-

diagonal matrix with a vector containing surface SHCs of one quantity, yielding a

vector containing surface SHCs of a second quantity. The transformation from a

quantity on an ellipsoid to a quantity on another surface requires the inversion of a

matrix that becomes non-diagonally dominant for spherical harmonic expansions

beyond degree ∼ 520, but diagonal dominance is assured for transformations

between different quantities on the same ellipsoid (see Section 4.4.2).

6. Solid SHCs of the disturbing potential can be computed from gravity anomalies

on the ellipsoid, using a weighted summation over spherically approximated solid

SHCs, by three different methods: the upward-continuation method, the ellipsoidal

integration method and the coefficient transformation method.

The upward-continuation and ellipsoidal integration methods that were intro-

duced by Cruz (1985) and Sjöberg (2003c), respectively, form a simpler and more

efficient alternative to the ellipsoidal harmonics method by Jekeli (1988). It was

shown in Sections 5.2 and 5.3 that these two methods can be derived more rig-

orously, avoiding approximations to the order of e2 that hinder the accuracy of

existing methods. In addition, a third and novel approach was introduced in

Section 5.4: the coefficient transformation method. This third approach relies

entirely on the spectral relationship between solid SHCs of the disturbing poten-

tial and surface SHCs of gravity anomalies on the ellipsoid, and is also void of

approximations to the order of e2.
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7. The coefficient transformation and ellipsoidal integration methods for computa-

tion of solid SHCs of the disturbing potential significantly improve on the accuracy

of existing weighted summation methods.

A numerical comparison of the ellipsoidal integration method and the coefficient

transformation method with several existing methods has shown the superiority of

the newly derived solutions over other weighted summation methods (see Figure

5.5). The accuracy of the coefficient transformation method was the highest,

leading to a mean error in geoid height of 0.3 mm and a maximum of 2.6 mm (for

20 ≤ n ≤ 340). This is slightly worse than Jekeli’s (1988) ellipsoidal harmonics

method, which is primarily caused by numerical errors in the coefficients of order

|m| close to degree n, where the relative accuracy is in the order of 10−4. For low

orders |m|, the accuracy of the coefficient transformation method is in the order

of 10−8, which is slightly better than that of Jekeli’s method (see Figure 5.12).

This means that optimal results can be obtained via a combination of the two

methods. Both methods show no degradation of accuracy with increasing degree

up to n = 340.

8. Solid SHCs of very-high-degree and order (n > 720) computed from a weighted

summation method contain numerical inaccuracies that increase with increasing

degree n.

The upward-continuation and coefficient transformation methods (Sections 5.2

and 5.4) rely on the solution of a linear system of equations via a Jacobi iteration

(or a related iterative procedure), for which convergence can only be guaranteed

up to degree and order ∼ 520. This causes the accuracy of the solution to

deteriorate with increasing degree n. The alternative rigorous matrix inversion is

very time-consuming and therefore inefficient. The ellipsoidal integration method

(Section 5.3) does not require an iterative procedure, but the computation of the

weights suffers from numerical inaccuracies that become especially large above

degree n ≈ 1000.
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9. Ellipsoidal corrections to a Stokesian geoid computation can be evaluated from

surface SHCs of the disturbing potential and of gravity anomalies, which can both

be obtained from a global geopotential model using a coefficient transformation.

Many methodologies exist to compute ellipsoidal corrections to geoid heights via

a global integration over gravity anomalies, using a generalisation of the spherical

Stokes kernel and/or a priori corrections to the gravity anomalies (e.g., Martinec

and Grafarend, 1997a; Fei and Sideris, 2000). However, due to the dominance

of the long-wavelengths, ellipsoidal corrections can more efficiently be evaluated

with the use of a global geopotential model. Heck and Seitz (2003) and Sjöberg

(2003c) provide formulas to do so using approximations of the order of e2, but it

is shown in Equation (6.21) that the ellipsoidal corrections can also be evaluated

from surface SHCs of the disturbing potential and of the gravity anomalies, which

can be computed via a coefficient transformation (Equations 3.73 and 4.86). This

formulation contains no approximations other than those already embedded in

the rigorous fundamental equation of physical geodesy (Equation 2.52).

10. The magnitude of ellipsoidal corrections to geoid heights strongly depends on the

reference sphere chosen in the spherical approximation.

The geoid heights resulting from a spherical approximation depend on the choice

of the radius of the reference sphere, and the magnitude of the ellipsoidal correc-

tions in turn depend on this. It was shown theoretically and numerically, that

the influence of the choice of the reference sphere radius on the magnitude of the

ellipsoidal corrections is as large as the magnitude of the corrections themselves

(see Figures 6.3 to 6.6). The ellipsoidal corrections are smallest, in a least-squares

sense, for a reference sphere radius that is larger than the semi-major axis of the

ellipsoid.
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11. When the reference sphere radius is chosen equal to the ellipsoidal radius for each

computation point (R = re), the short wavelengths of the ellipsoidal corrections

are strongly attenuated, reducing the impact of degrees n > 20 from 10% to 2%

(contributing a maximum of 1 cm to the geoid height).

In the literature, ellipsoidal corrections are almost exclusively computed using

a constant reference sphere radius (e.g., Huang et al., 2003; Ellmann, 2005),

even though the reference sphere radius can be chosen independently for each

computation point. It was shown that the choice of R = re makes the dominance

of the long-wavelengths of the ellipsoidal corrections even more profound (see

Figure 6.8), which means that they can more easily and more accurately be

modelled from a global geopotential model. In modern geoid computations, a

remove-compute-restore (RCR) approach is widely applied, whereby the long-

wavelengths of the geoid signal are provided by a global geopotential model up

to at least degree 20. In this case, ellipsoidal corrections are not necessary for

centimetre accuracy, provided that the long-wavelength contribution is removed

from the gravity anomalies using the rigorous ellipsoidal formula (Equation 6.33).

7.3 Outlook

The new solutions to ellipsoidal BVPs presented in this thesis were proven to provide

very high numerical accuracy (relative errors < 10−4) for low and medium degree

and order (n < 360). They can therefore successfully be applied in this range of

degrees for either spherical harmonic analysis or computation of ellipsoidal corrections

to gravimetric geoid computation. Secondly, the demonstrated importance of the choice

of the reference sphere radius in a Stokesian geoid computation can be of use in geoid

computations around the world and may avoid the improper or inconsistent use of

ellipsoidal corrections.

The main point of concern in the solutions to ellipsoidal BVPs is the decrease in

accuracy with increasing degree beyond n = 360. Contrary to the majority of existing
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solutions to ellipsoidal geodetic BVPs, the cause does not lie in the approximation of the

boundary condition to the level of e2, since such approximations were not introduced

in the derivations here. The inaccuracies are instead caused by numerical inaccuracies

and/or divergence of iterative procedures.

In the case of the coefficient transformation method, the problems mainly occur due to

divergence of the iterative inversion of a large system of linear equations. A different

inversion strategy may yield more accurate solutions, but given the large size of the

system of equations, the inversion must be highly efficient. Due to the sparseness of the

design matrix (despite its non-diagonal dominance), an efficient and accurate inversion

scheme may exist, but the search for and application of an optimal inversion procedure

would require further research.

The need for inversion of a linear system of equations can be avoided by the ellipsoidal

integration method, which can be used in the computation of solid SHCs of the disturb-

ing potential from gravity anomalies on the ellipsoid. However, also in this method,

degradation of accuracy for very high degrees (n > 720) was observed, presumably

caused by numerical inaccuracies. The exact reason for the occurrence of these inac-

curacies is as yet unknown, but if they can be circumvented, the ellipsoidal integration

method would be a highly efficient alternative to the ellipsoidal harmonics method.

Independent of the possibilities to improve the numerical performance of the solutions

to ellipsoidal BVPs derived in this thesis, the question can be posed whether the

spherical harmonic framework is indeed the most suitable for a global gravity field

model of very-high-degree and order. The inaccuracies in spherical harmonic analysis

encountered here are not the only difficulties that arise with very-high-degree and

order spherical harmonic expansions. For example, Holmes (2003) points out that a

spherical harmonic synthesis will exhibit increasingly large rounding errors at the poles

with increasing degree n.

Exclusive use of ellipsoidal harmonic expansions in gravity field modelling would avoid

the numerical difficulties described above. However, this would require that all users

of global geopotential models have stable algorithms for very-high-degree and order
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ellipsoidal harmonic synthesis at their disposal. Such algorithms are unfortunately

not available today, and their development would presumably still require considerable

research effort (cf. Sona, 1995). Overall, a shift from spherical to ellipsoidal harmonics

as the primary framework for global gravity field models would present a vast challenge

to the global geodetic community, but may ultimately be beneficial.
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Springer, Berlin, Germany, pp. 19–66.

Martinec, Z. (1998) Boundary-Value Problems for Gravimetric Determination of a Pre-
cise Geoid, Lecture Notes in Earth Sciences, Vol. 73, Springer, Berlin, Germany,
223 pp.

Martinec, Z. and Grafarend, E. W. (1997a) Construction of Green’s function to the
external Dirichlet boundary-value problem for the Laplace equation on an el-
lipsoid of revolution, Journal of Geodesy, Vol. 71, No. 9, pp. 562–570, DOI:
10.1007/s001900050124.

Martinec, Z. and Grafarend, E. W. (1997b) Solution to the Stokes boundary value
problem on an ellipsoid of revolution, Studia Geophysica et Geodaetica, Vol. 41,
No. 2, pp. 103–129, DOI: 10.1023/A:1023380427166.
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Rapp, R. H. and Bašić, T. (1992) Oceanwide gravity anomalies from GEOS-3, SEASAT
and GEOSAT altimeter data, Geophysical Research Letters, Vol. 19, No. 19,
pp. 1979–1982.

Rapp, R. H. and Cruz, J. Y. (1986) Spherical harmonic expansions of the Earth’s
gravitational potential to degree 360 using 30′ mean anomalies, Report 376, De-
partment of Geodetic Science and Surveying, Ohio State University, Columbus,
USA, 22 pp.

Rapp, R. H. and Pavlis, N. K. (1990) The development and analysis of geopoten-
tial coefficient models to spherical harmonic degree 360, Journal of Geophysical
Research, Vol. 95, No. B13, pp. 21585–21911.

Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J. M.,
Koenig, R., Loyer, S., Neumayer, H., Marty, J. C., Barthelmes, F., Perosanz, F.
and Zhu, S. Y. (2002a) A high-quality global gravity field model from CHAMP
GPS tracking data and accelerometry (EIGEN-1S), Geophysical Research Letters,
Vol. 29, No. 14, DOI:10.1029/2002GL015064.

Reigber, C., Luehr, H. and Schwintzer, P. (2002b) CHAMP mission status, Advances in
Space Research, Vol. 30, No. 2, pp. 129–134, DOI: 10.1016/S0273–1177(02)00276–
4.

Reigber, C., Schmidt, R., Flechtner, F., Koenig, R., Meyer, U., Neumayer, K. H.,
Schwintzer, P. and Zhu, S. Y. (2005) An Earth gravity field model complete to
degree and order 150 from GRACE: EIGEN-GRACE02S, Journal of Geodynam-
ics, Vol. 39, No. 1, pp. 1–10, DOI: 10.1016/j.jog.2004.07.001.

Ritter, S. (1998) The nullfield method for the ellipsoidal Stokes problem, Journal of
Geodesy, Vol. 72, No. 2, pp. 101–106, DOI: 10.1007/s001900050151.

Rizos, C. (1979). An efficient computer technique for the evaluation of geopotential
from spherical harmonic models, Australian Journal of Geodesy, Photogrammetry
and Surveying, No. 31, pp. 161-169.

Rummel, R. (1985) From the Observational Model to Gravity Parameter Estimation,
in: Proceedings of the Beijing International Summer School: Local Gravity Field
Approximation, Schwarz, K.P. (ed.), University of Calgary, Calgary, Canada,
pp. 67–106.

Rummel, R. (1997) Spherical spectral properties of the Earth’s gravitational potential
and its first and second derivatives, in: Geodetic Boundary Value Problems in
View of the One Centimeter Geoid, Sansò, F. and Rummel, R. (eds.), Springer,
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No. 1, pp. 1–33.
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APPENDIX A: RELATION AMONG FULLY NORMALISED

LEGENDRE WEIGHT FUNCTIONS

A proof for the identity among fully normalised cosinusoidal Legendre weight functions

(LWFs) F
ij

nm given in Equation (3.42) can be found by mathematical induction, where

Equation (3.42) forms the proposition

F
ij

nm = F
−i,j

n+i,m (A-1)

It can easily be seen from Equations (3.19) and (3.20) that this proposition holds for

the base case i = j = 1. Assuming that the inductive hypothesis

F
pq

nm = F
−p,q

n+p,m (A-2)

is true for all p and q, the two propositions of the inductive step remain to be proven,

i.e.,

F
p+1,q

nm = F
−p−1,q

n+p+1,m (A-3)

F
p,q+1

nm = F
−p,q+1

n+p,m (A-4)

Inserting Equation (3.38) in the left-hand side of Equation (A-3), and subsequently

applying the inductive hypothesis in Equation (A-2), gives an equation, which – ac-

cording to Equation (3.36) – is exactly the same as the right-hand side of Equation

(A-3)

F
p+1,q

nm = F
p+2,q−1

nm F
−1,1

n+p+2,m + F
p,q−1

nm F
1,1

n+p,m

= F
−p−2,q−1

n+p+2,m F
1,1

n+p+1,m + F
−p,q−1

n+p,m F
−1,1

n+p+1,m (A-5)

= F
−p−1,q

n+p+1,m Q.E.D.

A similar procedure can be followed to prove Equation (A-4)

F
p,q+1

nm = F
−1,1

nm F
p+1,q

n−1,m + F
1,1

nmF
p−1,q

n+1,m

= F
1,1

n−1,mF
−p−1,q

n+p,m + F
−1,1

n+1,mF
−p+1,q

n+p,m (A-6)

= F
−p,q+1

n+p,m Q.E.D.
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Since the base case and the inductive step are true, the proposition in Equation (A-1)

is true for all i and j. Moreover, according to Equation (3.30), the base case i =

j = 1 of Equation (A-1) also holds for the sinusoidal Legendre weight functions K
ij

nm.

Because these sinusoidal Legendre weight functions also obey the recursive relationships

(Equations 3.33 and 3.38), it can be proven along the same lines that Equation (A-1)

holds for all sinusoidal Legendre weight functions as well.
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APPENDIX B: REARRANGEMENT OF SUMMATION ORDER

When two summations are nested, the order of the summations can be rearranged.

In the situation where the summed quantities can be split into one part depending

on both summation indices and one part depending on the sum of both summation

indices, the summation order can be rearranged so that the second part only depends

on one of the summation indices

imax∑
i=imin

jmax∑
j=jmin

aijxi+j =

imax+jmax∑

k=imin+jmin

bkxk (B-1)

where

bk =
lmax∑

l=lmin

al,k−l (B-2)

and

lmin = max(imin, k − jmax) (B-3)

lmax = min(imax, k − jmin) (B-4)

The boundaries imin, imax, jmin and jmax can be any integer or ±∞. Equations (B-1) -

(B-4) can be obtained from investigation of Figure B-1. A 2D summation over a rect-

angular grid of points is commonly presented as a summation over the two axes i and

j, since the summation limits are in this case all constants. It is, however, also possible

to transform the summation indices to k and l, where the k-axis is perpendicular to

the lines of constant i + j. The summation limits over l then depend on index k and

are given by Equations (B-3) and (B-4), as can be verified by inspection of Figure B-1.

A special case of rearrangement formula (Equation B-1) is the so-called Cauchy mul-

tiplication (e.g., Protter and Morrey, 1964), which is a discrete version of convolution.

This involves the product of two power series and enables to combine these into one

power series. Given two power series

A =
imax∑

i=imin

aix
i (B-5)
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i

j

l

k

Figure B-1: Schematic overview of a rearrangement of summation order from indices i and
j to indices k and l

and

B =

jmax∑
j=jmin

bjx
j (B-6)

the product of both series is of the form of the left-hand side of Equation (B-1)

AB =
imax∑

i=imin

jmax∑
j=jmin

aibjx
i+j (B-7)

Thus, the product AB can be written as a summation where the parameter x only

depends on one summation index

AB =

imax+jmax∑

k=imin+jmin

lmax∑

l=lmin

albk−lx
k (B-8)

This is a generalisation of the commonly presented Cauchy multiplication of two power

series running from zero to infinity (e.g., Protter and Morrey, 1964; Pugh, 2002), in

which case k also runs from zero to infinity and l runs from zero to k.

In the case of infinite series, it is important to note that convergence of the resulting

series can only be guaranteed if one of the series converges and the other series converges

absolutely. The scalar to which the series in Equation (B-7) will converge is in this

case always equal to the product of the infinite sums of A and B.
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When the limits of the summation over j in the left-hand side of Equation (B-1) are

dependent on index i, Equations (B-1) and (B-8) do not hold. A case that frequently

appears in this thesis is the situation where i runs from 0 to ∞, and j runs from −i to

i

C =
∞∑
i=0

i∑
j=−i

cij (B-9)

This also allows for a rearrangement of the summation order, but one of a whole

different type, where the indices of the variable are not affected. The summations over

i and j can simply be reversed, changing the summation limits as follows

C =
∞∑

j=−∞

∞∑

i=|j|
cij (B-10)

Naturally, such a reversal of summations can also be applied in the case that the range

of the second summation is independent of the first summation index, in which case

the summation limits do not change at all.
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APPENDIX C: BINOMIAL SERIES EXPANSION

A function of the form

f(x) = (1 + x)k (C-1)

where x and k are real numbers, can be expressed as a binomial series

f(x) =
∞∑

j=0

(
k

j

)
xj (C-2)

where
(

k
j

)
is the binomial coefficient, which can be defined as

(
k

j

)
=

k(k − 1)(k − 2) · · · (k − j + 1)

j!
for j ≥ 1, and

(
k

0

)
= 1 (C-3)

or as a closed expression (
k

j

)
=

Γ(k + 1)

j!Γ(k − j + 1)
(C-4)

where Γ is the gamma-function, which is an extension of the factorial into the domain

of real and complex numbers. When k is a natural number, the gamma-function is

defined as

Γ(k + 1) = k! for k ∈ N (C-5)

When k is half of an integer, an explicit expression for the gamma-function can also

be found

Γ(k + 1) =
(2k)!

√
π

22k(k − 1
2
)!

for k ∈ H (C-6)

where H is the set of half-integers. Thus, implementing Equations (C-5) and (C-6) in

Equation (C-4) gives explicit expressions for the binomial coefficient

(
k

j

)
=

k!

j!(k − j)!
for k ∈ N (C-7)

(
k

j

)
=

(2k)!(k − j − 1
2
)!

22kj!(k − 1
2
)!(2k − 2j)!

for k ∈ H (C-8)

The convergence of a binomial series can be investigated using the ratio test (Stew-

art, 1995). The absolute value of the ratio of two consecutive terms in the binomial
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expansion, aj and aj+1, is ∣∣∣∣
aj+1

aj

∣∣∣∣ =
|k − j|
j + 1

|x| (C-9)

This value tends to zero for higher terms for |x| < 1, which means that absolute

convergence is assured in this region

lim
j→∞

|k − j|
j + 1

|x| = 0 for |x| < 1 (C-10)

The rate of convergence depends strongly on the values of x and k. For negative x, the

series is alternating, in which case the error in the truncated series is always smaller

than the absolute value of the first truncated term, provided that the absolute values

of the terms decrease. This is only the case if the ratio in Equation (C-9) is less than

one, which occurs for

j >
k|x| − 1

1 + |x| (C-11)

If this condition is met, the error ς of a truncation of the binomial series after the j-th

term will be less than the term j + 1. Thus, an upper limit for the truncation error is

the following

ς <

(
k

j

)
|x|j <

kj

j!
|x|j, for j > 1 (C-12)

which is a close approximation for high values of j and k. Equations (C-11) and (C-12)

show that, in general, the convergence will be slower for higher values of k and for

higher absolute values of x.
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