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 

Abstract — On-road sensors provide proactive traffic control 

centers with current traffic flow conditions in order to forecast the 

future conditions. However, the number of on-road sensors is 

usually huge, and not all traffic flow conditions captured by these 

sensors are useful for predicting future traffic flow conditions. 

The inclusion of all captured traffic flow conditions is an 

ineffective means of predicting future traffic flow. Therefore, the 

selection of appropriate on-road sensors, which are significantly 

correlated to future traffic flow, is essential, although the trial and 

error method is generally used for the selection. In this paper, the 

Taguchi method, which is a robust and systematic optimization 

approach for designing reliable and high-quality models, is 

proposed for determinations of appropriate on-road sensors, in 

order to capture useful traffic flow conditions for forecasting. The 

effectiveness of the Taguchi method is demonstrated by 

developing a traffic flow predictor based on the architecture of 

fuzzy neural networks which can perform well on traffic flow 

forecasting. The case study was conducted based on traffic flow 

data captured by on-road sensors located on a Western Australia 

freeway. The advantages of using the Taguchi method can be 

indicated: (a) traffic flow predictors with high accuracy can be 

designed; and (b) development time of traffic flow predictors is 

reasonable. 

Index Terms—sensor configuration, traffic flow prediction, 

fuzzy neural networks, Taguchi method, traffic flow control, 

orthogonal array, fuzzy systems, on-road sensor  

I. INTRODUCTION 

 

raffic flow predictors are generally used to provide future 

traffic flow conditions up to ten minutes ahead to proactive 

traffic control centers [22], in order to generate remedial 

actions to improve the mobility of transportation [25]. Prior to 

developing those predictors, an appropriate on-road sensor 

configuration, which illustrates the on-road sensor locations 

and the number of on-road sensors, has to be determined. Even 

though reasonable results can be obtained using statistical 

methods [3, 19, 20, 26], and more convincing results can be 

obtained using the universal estimator [18, 24], namely fuzzy 

neural networks (FNNs) [4, 12, 27], the determination of 

appropriate on-road sensor configuration has yet to be resolved. 
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Zhang et al. [29] and Lachtermacher and Fuller [15] also 

mentioned that determination of an appropriate input 

configuration for artificial network design is significant for 

time-series forecasting. It is not effective to use all traffic flow 

patterns captured by all the on-road sensors, as some patterns 

are useless for forecasting purposes. Ignoring useful patterns or 

including too many useless patterns, which are captured by the 

on-road sensors, may significantly affect the forecasting 

accuracy. Also, the optimal configuration of the FNN is closely 

correlated with the configuration of the on-road sensors, where 

the traffic flow patterns captured by the on-road sensors are fed 

into the FNN. When there are n on-road sensors installed along 

the freeway, people need to test 2n configurations in order to 

find the appropriate one. Hence, it is impossible to test all 

on-road sensor configurations, when the number of on-road 

sensors is large. However, so far no research studies have 

specified appropriate on-road sensor configurations for traffic 

flow predictors. The on-road sensor configuration is usually 

determined by trial and error. 

Therefore, it is desirable to develop a systematic and 

effective methodical approach for determining the appropriate 

on-road sensor configuration for FNN, in order to obtain more 

accurate forecasting. In quality control, the Taguchi method has 

been successfully used to design reliable and high-quality 

products at low cost for various products such as automobiles 
and consumer electronics [5, 14], where the number of design 

factors of products is huge, and finding appropriate design 

configurations is impossible by conducting experiments for all 

design configurations. The Taguchi method intends to identify 

the appropriate design configuration in order to optimize the 

defined performance characteristic and reduce the sensitivity of 

engineering designs to the sources of variation. 

Similarly, determination of appropriate on-road sensor 

configurations can be considered as designs of high quality 

products [10], where both designs are intended to seek the 

appropriate configuration involving a large number of design 

factors. In this paper, we propose the Taguchi method as a 
means of developing optimal on-road sensor configurations for 

FNN for traffic flow forecasting. In accordance with the 

Taguchi method, the on-road sensor configurations are 

arranged in an inner orthogonal array. The Taguchi method 

conducts systematic trials based on orthogonal arrays to study 

the on-road sensor configurations using a small number of 

trials, and then it estimates the significant on-road sensors 

which are critical for the development of traffic flow predictors.  

On-road sensor configuration design for traffic 

flow prediction using fuzzy neural networks and 

Taguchi method  
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A case study is conducted using traffic flow data captured by 

on-road sensors installed on a Western Australia freeway. 

Results obtained by the proposed approach are compared with 

those obtained by the stochastic algorithms namely genetic 

algorithms (GA) [9] and particle swarm optimization (PSO) [7] 

for optimizing input node configurations of artificial networks. 
The effectiveness of both algorithms in solving some difficult 

optimization problems such as noise controller design, [2, 21], 

estimation of sensor node locations [17], image retrieval [16], 

etc. has been demonstrated.  Also, both GA [8] and PSO [28] 

have been applied for optimizing input node configurations of 

artificial networks. Based on the comparisons, two advantages 

of using the Taguchi method merge: (a) high accuracy for 

traffic flow forecasting; and (b) short development time for the 

FNN. 

The rest of the paper is organized as follows. Section 2 

defines and describes the on-road sensor configuration of the 

FNN for traffic flow forecasting. In Section 3, the main 
operations of using the Taguchi method for determining 

appropriate on-road sensor configuration are discussed. Finally, 

the discussion of the results and several conclusions regarding 

on-road sensor configuration design using the Taguchi method, 

are given in Section 4. 

II. TRAFFIC FLOW PREDICTION USING ON-ROAD SENSORS 

Figure 1 shows the commonly used on-road sensor 
configuration of a section of a freeway, which consists of n 

on-road sensors (S1, S2, …and  Sn) between the starting point A 

and the end point B. When people are driving at location A and 

are intending to go to destination C, future traffic flow 

condition at B is essential in order for the traffic control center 

to indicate the best route for them. If the traffic flow condition 

at location B is predicted to be smooth in the near future, the 

traffic control center will advise the drivers to go directly via 

the freeway to B, leave the freeway by the off-ramp at B, and 
then reach C.  Alternatively, if the traffic flow conditions are 

predicted to be congested at B, the traffic control center will 

advise them to leave the freeway by the off-ramp in A, and then 

use the minor road to go to C.  

To forecast future traffic flow conditions at location B 

illustrated in Figure 1, a traffic flow predictor was developed 

based on the traffic flow conditions collected by the on-road 

sensors, where Si is the i-th on-road sensor with i=1,2…,n. Si is 

used to capture the traffic flow condition,  i
y t , at time t with 

a sampling time of sT . This traffic flow condition is usually 

indicated by the average speed of cars. If this average speed is 

close to the speed limit of the freeway, the traffic flow on the 

freeway is smooth. If the average speed of the cars is far below 

the speed limit, traffic congestion has occurred. 

The car speed is captured by the on-road sensor which 

consists of two inductive loop detectors namely (ILDs) 

separated by a small distance. Each ILD consists of a big loop 

of metallic coil which is buried beneath a lane of the freeway. 

These two ILDs are connected to a roadside station, which 

provides power to the loops and processes the information 
obtained from the ILDs to determine if a car is passing over. To 

determine the car speed, the time takes for the car to travel 

between the two ILDs is first captured. The speed of the car is 

calculated based on the time difference between the two 

captures and the distance between the two ILDs. Then, the car 

speeds are transferred to the proactive traffic control center. 

Traffic flow conditions are indicated by these car speeds. 

Hence, the proactive traffic control center can use those traffic 

flow conditions to control ramp meters, to identify congestion 
points, and to detect traffic incidents etc. 

 

 
Fig. 1 Traffic flow forecasting using on-road sensors on a freeway 

Then, the future traffic flow condition at location B, 

 
n

y t m , which is m sample time ahead, can be predicted by 

the fuzzy neural network (FNN) with a window size 1, when 
the current traffic flow conditions captured by the n on-road 

sensors,  1
y t ,  2

y t , …., and  n
y t , are available. The FNN 

consists of 
rule

n  fuzzy rules of which the g-th fuzzy rule is given 

by: 
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where 1,2,....,
rule

g n ; the  1
th

p ,  2
th

p ,..., and  
th

s
p n  

on-road sensors are used by the FNN for forecasting the future 

traffic flow conditions; 
s

n  is the total number of on-road 

sensors used by the FNN; and 
   p i

y t , with 1,2,...,
s

i n , is the 

traffic flow condition captured by the  
th

p i  on-road sensor; 

  1,2,...,p i n    with all    p i p j , , 1,2,...,
s

i j n , but 

s
n n .  

 
,i g

w  is the i-th consequent parameter with respect to the 

polynomial of the g-th rule; and 
    ,i g p i

A y t , with 

1,2,...,
s

i n , is the i-th membership function with respect to 

the g-th fuzzy rule, which is given by: 

 
            

2

,

2
2

, ,
y t y

i g p i

p i p i g p i g
A y t e

 

 .         (2) 

 
 ,p i g

y  and 
 ,p i g

 are the mean value and the standard 

deviation of the membership function respectively. The grade 

of membership of each rule is defined as: 

                 1, 2, ,1 2
...

g g g n gp p p ns s
t A y t A y t A y t      

or 

y1 (t) 

Sn Si S3 S2 

yn (t) 
yi (t) 

………

………

………

… 

S1 

flow 

Fuzzy Neural network 
(FNN) 

 ˆ
n sy t mT

………

………

………

… 

y2 (t) 

 
y3 (t) 

flow Location B Location A 

Location C 

flow 

flow flow 
Minor road 

Freeway 



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 

 

3 
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where 1,2,....,
rule

g n . The predicted future traffic flow 

condition at the location of the n-th on-road sensor,  ˆ
n s

y t T , 

is given by: 
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 Both equation (3) and (4) can be denoted by the following 

functional relationship: 

               1 2
ˆ , ,...,

n s FNN p p p ns
y t m T f y t y t y t      (5) 

where 
FNN

f  represents the function of the FNN, which consists 

of the FNN parameters, 
0,g

w , 
,i g

w , 
 ,p i g

y  and 
 ,p i g

 , with 

1,2,....,
s

i n  and 1,2,....,
rule

g n . 

 The generalization capability of the FNN is evaluated by the 

mean absolute relative error ( MAREe ), which indicates the 

differences between the real collected traffic flow data and the 

forecasting obtained by the FNN. Based on the collected traffic 

flow data, MAREe  can be found by the following formulation: 
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where 
DataN

 

is the number of pieces of traffic flow data; and 

  ˆ 'n sy t k m T   is an estimate of the traffic flow condition with 

m sampling time ahead, which is given by: 

                  1 2
ˆ ' ' , ' ,..., '

s
n s FNN p p p n

y t k m T f y t k y t k y t k   ; 

 The k-th piece of traffic flow data can be written as: 

 

                 1 2
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s
n s p p p n

y t k m T y t k y t k y t k  
 

, 

where 
    '

p i
y t k

 

is the average car speed collected from the 

 
th

p i  on-road sensor at the time,  t k , and   'n sy t k m T 

 

is 

the average car speed collected from the thn  on-road sensor at 

the time,   st k m T  . 

 A FNN, can be obtained by performing two main task, in 

order to obtain accurate forecasting:  

(i) Determination of the appropriate on-road sensor 

configuration for the FNN: It can be performed by determining 
the appropriate on-road sensors which are used for capturing 

traffic flow conditions to the FNN. Hence, the values of  1p , 

 2p , ...and  s
p n , and the value of 

s
n  need to be 

determined. 

(ii) Determination of the optimal FNN parameters: After the 

appropriate on-road sensor configuration is determined, the 

optimal FNN parameters can be ascertained. This is performed 

by determining the optimal FNN parameters, 
0,g

w , 
,i g

w , 
 ,p i g

y  

and 
 ,p i g

 , with 1,2,....,
s

i n  and 1,2,....,
rule

g n . 

 The literature indicates that well-established algorithms have 

been developed for determining the optimal FNN parameters, 

when a set of historical traffic flow data is available. In this 

research, Jang's algorithm [6] is used to determine the FNN 

parameters with respect to the pre-determined FNN input 

configuration, because of its fast convergence. 

 Determination of the on-road sensor configuration is 

important, as it may significantly affect the FNN in forecasting 

future traffic flow. When patterns of significant on-road sensors 

are not included, the trained FNN may result in under-learning. 

The FNN cannot anticipate important behaviors of traffic flow. 
Hence, the FNN cannot fully learn the traffic flow behaviors, or 

alternatively, the FNN can only partially learn some behaviors 

of the traffic flow. When too many patterns of insignificant 

on-road sensors are included, unnecessary effort is required to 

train the FNN. As unnecessary patterns are fed into the FNN, 

effective learning behaviors are no longer applied in the FNN. 

Alternatively, the learning of spurious behaviors occurs in the 

FNN. 

 However, for pre-defining the on-road sensor configuration, 

the trial and error method is generally still used. Also, it is 

impractical to test all on-road sensor configurations, as it may 

involve a large amount of testing time. For example, when there 
are only 20 sensors on the freeway, 1048575 (=220-1) on-road 

sensor configurations are required to be tested. To 

pre-determine the on-road sensor configuration, a systematical 

and effective method, namely the Taguchi method [14, 15], is 

proposed. It has been widely used to reduce variation in the 

quality characteristics of products and improve manufacturing 

robustness. The operations of the Taguchi method for 

determining the on-road sensor configuration of FNN are 

detailed in the following section. 

III. DETERMINATION OF ON-ROAD SENSOR 

CONFIGURATION USING TAGUCHI METHOD 

A case study was conducted based on a real configuration of 

on-road sensors installed along the Mitchell Freeway, Western 

Australia, in order to illustrate the use of the Taguchi method 

for determining appropriate on-road sensor configuration of 

FNN. 

A. Overview of the on-road sensor configuration 

Traffic flow conditions were collected by 14 on-road sensors 

(D1 to D14) installed along the Mitchell Freeway, Western 

Australia, as illustrated in Figure 2. Three on-road sensors, 

namely D1 to D3, were installed at the off-ramp, at the on-ramp, 

and between the off-ramp and on-ramp, for the Reid Highway. 

For the other sections of the freeway, the on-road sensors were 

also installed at the off-ramp, at the on-ramp, and between the 

off-ramp and on-ramp of Karrinyup Road (D6 to D8), Cedric 



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 

 

4 

Street (D9 to D11) and Hutton Street (D12 to D14), respectively. 

For Erindale Road, two on-road sensors, namely D4 and D5, 

were installed at the off-ramp and near the on-ramp 

respectively. The sampling time used for capturing the traffic 

flow conditions for all on-road sensors was half minute (or 30 

seconds). The beginning section, Reid Highway, and the end 
section, Hutton Street, are 7 kilometers apart, where the speed 

limit within all the sections along the freeway is 100 km/hour. 

Based on the captured past and current traffic flow conditions, 

the FNN was developed to forecast future traffic flow 

conditions with five sampling times ahead (or two and half 

minutes ahead). 

 The traffic flow data used for developing the FNN was 

collected in the 12-th week of 2009. This data was collected 

during the peak morning traffic period (7.30-9.30 am) on the 

five business days, Monday, Tuesday, Wednesday, Thursday 

and Friday. This data was divided into two data sets, training 

data and test data. The training data was the data collected from 

Monday to Thursday. It was used to train the FNN for traffic 

flow forecasting. The test set was the data collected for Friday. 

It was used to evaluate the generalization capability of the FNN 

in forecasting future traffic flow conditions. 

 As the sampling time of 30 seconds was used by the on-road 

sensors to capture traffic flow conditions, the total time used for 

capturing traffic flow conditions from Monday to Thursday is 

480 minutes (i.e. 4 days x 2 hours). Hence, 960 pieces of traffic 

flow data were used as the training data. The total time used for 

capturing traffic flow conditions from Friday is 120 minutes 

(i.e. 1 days x 2 hours). Hence, 240 pieces of traffic flow data 

were used as the test data. 

 

 
Fig. 2 On-road sensor configuration on the Mitchell Freeway 

 

B. Trail design using orthogonal array 

The first step in using the Taguchi method is to determine the 

design parameters which need to be studied. Then, an 

appropriate orthogonal array can be determined with respect to 

the design parameters.  
Here, we intend to determine the appropriate on-road sensor 

configuration for the FNN. It needs to be determined which 

on-road sensors are required to connect to the FNN, and which 

on-road sensors are not required to connect to the FNN. As 

there are 14 on-road sensors installed along the freeway, 14 

design parameters need to be studied. These design parameters 

are depicted in binary representation with either '0' or '1', where 

they determine the connection states of the on-road sensors. 

When the design parameter is '1', the corresponding on-road 

sensor is connected to the FNN and the traffic flow conditions 

captured by this on-road senor are fed into the FNN. When the 
design parameter is '0', the corresponding on-road sensor is 

disconnected from the FNN, and no traffic flow condition 

captured by this on-road sensor is fed into the FNN.  

As this design problem is concerned with 14 design 

parameters and with 2 states (either ‘1’ or ‘0’), the orthogonal 

array  14

20 2L  shown in Table 1, which has the same design 

platform, is used. Based on  14

20 2L , only 20 main trials are 

required to be studied in  14

20 2L , in order to determine the 

appropriate input configuration of the FNN which is engaged 

with 14 on-road sensors. Pairwise balancing property exists in 

the combinations of  14

20 2L , whereby every state of a design 

parameter occurs the same number of times for all trials. It 

minimizes the number of required trails when the pairwise 

balancing property is retained. 

For the first main trial, all on-road sensors are connected 

with the FNN. For the second main trial, the on-road sensors, 

D2, D5, D6, D7, D8, D10 and D12 are connected with the FNN and 

the other on-road sensors are all disconnected. 

 If the full factorial design is used to study this design 

problem, which consists of 14 design parameters with each 

design parameters having 2 states, 16384 ( 142 ) main trials are 
required to be conducted in order to determine the most 

appropriate input configuration for the FNN. When the 

orthogonal array,  14

20 2L , is used, only 20 main trials are 

required to be conducted. Therefore, 16364 trials (= 16384 

trials - 20 trials) can be saved by using the orthogonal array. 

Much less efforts are required by the using the orthogonal 

array,  14

20 2L , than those required by the full factorial design.  

C. Performance evaluation of each trial 

The performance for the input configuration of the FNN needs 

to be evaluated by: (a) the accuracy of traffic flow forecasting, 
and (b) the robustness of traffic flow forecasting. To address 

these two objectives, equation (7) which evaluates the signal to 

noise ratio (SNR) is used: 

  
2

10

1

1
10 log

1

n
i

MARE

i

e
n

 


   

        (7) 

where   is the SNR of the FNN for traffic flow forecasting; n 

is the number of trials with different initial values of FNN 

parameters;   is the mean value of i

MAREe ; and i

MAREe  is 

defined by equation (6) which indicates the mean absolute error 
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between the actual traffic flow conditions and the forecasts 

obtained by the FNN. All the algorithms and computation 

involved in this study were implemented using Matlab 7.7 in a 

PC which has a CPU of Intel(R) Core(TM)2 Duo 2.66GHz and 

a memory of 7.99GB. 

 Based on equation (7), two aspects by defining a type of 
signal-target problem [11] can be addressed. The robustness of 

the FNN, which is affected by the varieties of different initial 

values of FNN parameters, can be addressed as external to 

traffic flow forecasting. It evaluates the accuracy of the traffic 

flow forecasting by comparing the forecasts of the FNN and the 

actual traffic flow conditions. It also evaluates the level of 

robustness against the noise factors. If the SNR is larger, then 

the error between the actual traffic flow conditions and the 

forecasts is smaller, and the robustness of accuracy is larger. 

The trial with highest SNR demonstrates that the design 

parameters can represent the highest accuracy and the highest 

robustness. 

D. Analytical results 

Based on the orthogonal array,  14

20 2L , 20 main trials 

representing by the 20 combinations of the on/off states of the 

14 on-road sensors are conducted. Five results with respect to 

each main trial were collected as illustrated by  i

MAREe , with i=1, 

2, ..., 5,  in Table 2. These results were established by the initial 

FNN parameters, prior to each learning session. They indicate 

the generalization capabilities of the trained FNN as defined by 

equation (6). Then, the SNR were computed by using the 
equation (7), for each main trial of the orthogonal array 

 14

20 2L . The compiled results for all trials are shown in Table 

1. 

 
Trials D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 Number 

of 

connected 

on-road 

sensors 

1

MAREe  2

MAREe  3

MAREe  4

MAREe  5

MAREe  S/N Rank 

of 

SNR 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 9.03 9.11 8.89 8.99 8.56 46.90 12 

2 0 1 0 0 1 1 1 1 0 1 0 1 0 0 7 9.22 9.23 9.18 8.61 8.97 42.79 16 

3 0 0 1 0 0 1 1 1 1 0 1 0 1 0 7 8.87 9.16 9.18 9.20 8.89 52.09 5 

4 1 0 0 1 0 0 1 1 1 1 0 1 0 1 8 9.23 8.95 9.02 8.87 9.29 50.28 9 

5 1 1 0 0 1 0 0 1 1 1 1 0 1 0 8 9.02 8.91 8.90 8.76 8.85 62.92 1 

6 0 1 1 0 0 1 0 0 1 1 1 1 0 1 8 9.11 9.07 9.08 8.88 8.80 55.29 3 

7 0 0 1 1 0 0 1 0 0 1 1 1 1 0 7 8.54 8.95 9.05 8.88 9.25 42.90 15 

8 0 0 0 1 1 0 0 1 0 0 1 1 1 1 7 9.13 9.30 8.99 9.32 9.20 56.23 2 

9 0 0 0 0 1 1 0 0 1 0 0 1 1 1 6 8.89 9.05 9.10 8.93 8.66 51.25 7 

10 1 0 0 0 0 1 1 0 0 1 0 0 1 1 6 8.56 8.76 8.85 8.86 9.18 46.00 14 

11 0 1 0 0 0 0 1 1 0 0 1 0 0 1 5 9.31 8.86 9.39 8.60 9.42 36.11 19 

12 1 0 1 0 0 0 0 1 1 0 0 1 0 0 5 8.96 9.22 8.74 9.04 9.16 49.27 10 

13 0 1 0 1 0 0 0 0 1 1 0 0 1 0 5 8.57 8.88 8.89 8.83 9.01 52.53 4 

14 1 0 1 0 1 0 0 0 0 1 1 0 0 1 6 9.49 9.33 8.84 8.47 9.10 34.18 20 

15 1 1 0 1 0 1 0 0 0 0 1 1 0 0 6 8.71 9.07 9.14 8.80 9.50 39.48 17 

16 1 1 1 0 1 0 1 0 0 0 0 1 1 0 7 9.12 8.99 8.76 9.11 8.65 47.11 11 

17 1 1 1 1 0 1 0 1 0 0 0 0 1 1 8 8.60 8.97 9.02 8.72 8.79 50.91 8 

18 0 1 1 1 1 0 1 0 1 0 0 0 0 1 7 8.86 9.25 8.87 8.84 8.93 51.63 6 

19 0 0 1 1 1 1 0 1 0 1 0 0 0 0 6 8.88 8.83 9.12 9.51 8.55 36.46 18 

20 1 0 0 1 1 1 1 0 1 0 1 0 0 0 7 9.12 9.41 9.21 8.85 8.96 46.59 13 

Table 1 Orthogonal array, L20(2
14

), and trial results 

 

By using the orthogonal array L20(2
14), 20 main trials, with 

each main trial consisting of 5 trials, were conducted. Thus, a 

total of 100 trials needed to be conducted. If the full factorial 

design is used, a total of 81920 trials (i.e. 16384 ( 142 ) main 
trials consisting of 5 trials) need to be conducted. When 30 

seconds are required for each trial, 2457600 seconds (i.e. 40960 

minutes, 682.7 hours or 28.4 days) are required for the full 

factorial design. Requiring 28.4 days to design a predictor for 

traffic flow forecasting is not practical. When the Taguchi 

method is used, only 3000 seconds (i.e. 100 trials, 50 minutes 

or 0.83 hour) are required. Hence, 681.9 hours (i.e. 28.4 days) 

can be saved by using the Taguchi method. Therefore, a 

significant amount of computational effort and time can be 

saved. This demonstrates the effectiveness of using the Taguchi 
method in determining appropriate on-road sensor 

configurations for traffic flow forecasting. 

Also, Table 1 shows the SNR of the 5 trials with respect to 

the 20 main trials, and the number of on-road sensors connected 

to the FNN. It shows that the 5th trial which is engaged with the 

eight on-road sensors can achieve the smallest SNR. It is 

smaller than that achieved by the 1st trial, involving all the 14 

sensors. These results show clearly that we should not simply 

use all the sensors to develop the FNN for traffic flow 

forecasting, as this might not achieve the best forecasting result. 

Also, someone may assume that it is necessary to include the 

traffic flow conditions captured by the on-road sensors that are 

located at or near the forecasting point. However, these results 

show that this is not the case. The SNR obtained by the 5th trial 

are smaller than those achieved by the 8th and the 9th trials, 

where the on-road sensors located at the forecasting points are 

connected in the 8th and the 9th trials, but those in the 5th trial are 

not connected. Therefore, it is necessary to use appropriate 

on-road sensor configuration to design the FNN, in order to 

obtain satisfactory traffic flow forecasting. 

Since the combinations of the design parameters of each trial 

are orthogonal, it can separate out the main effect of each 

design parameter [1, 11]. The main effects of each design factor 

at each of the two levels are calculated and shown in Table 2. 

They are calculated by taking the average from Table 1 for a 

design parameter at a given level. As an example, the on-road 

sensor D3 is connected with the FNN for trials 1, 3, 6, 7, 12, 14, 

16, 17, 18 and 19. The average of the corresponding traffic flow 

condition is 46.67, which is shown in the response table that the 
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on-road sensor D3 is connected. 

The sensitivity of each design factor is computed by taking 

the difference between the largest and smallest main effect for a 

given design factor. It reveals that the on-road sensor, D4, 

shows the greatest sensitivity. This means that the one which 

has the largest effect on the FNN is realized by varying the 

on-road sensor, D4. Similarly, the on-road sensors, D1, D2, D3 

and D7, show the least sensitivity to the FNN. Hence, their 

effect on the FNN is little whenever they are connected with or 

disconnected from the FNN. The main effects of all on-road 

sensors are also shown graphically in Figure 3. Graphing the 

main effects of all on-road sensors can provide more insight at a 

glance, and it clearly shows that the on-road sensor, D4, has 

much greater sensitivity than do all of the other on-road 

sensors.  

 

 

 

 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 

Level 1 

(connected) 

47.36 48.56 46.67 47.39 47.61 46.77 46.24 48.39 51.87 47.02 47.27 48.15 50.88 47.88 

Level 0 

(disconnected) 

46.35 53.22 51.33 33.54 39.23 43.63 45.23 53.05 50.86 51.68 46.26 52.81 55.54 52.54 

Sensitivity 1.01 4.66 4.66 13.85 8.38 3.14 1.01 4.66 1.01 4.66 1.01 4.66 4.66 4.66 

Table 2 Main effects of SNR of each on-road sensor 
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Figure 3 Main effects of SNR of each on-road sensor 

  

The larger main effects of each on-road sensor are underlined 

in Table 3, i.e. D1 is connected; D2 is disconnected; D3 is 

disconnected; D4 is connected; D5 is connected; D6 is 

connected; D7 is connected; D8 is disconnected; D9 is 
connected; D10 is disconnected; D11 is connected; D12 is 

disconnected; D13 is disconnected; and D14 is disconnected. 

Based on the connection states of the on-road sensors with 

larger SNR, the FNN with window size 1 formulated in 

equation (5) can be developed to represent the traffic flow 

predictor, where the FNN parameters were determined based 

on the training data collected from Monday to Thursday, week 

12, 2009. Figure 4 shows the simulation result obtained by the 

FNN for forecasting traffic flow conditions based on the test 

data collected on Friday, week 12, 2009. It can be seen that the 

forecasting result is close to the actual traffic flow data. The 
accuracy in terms of traffic flow forecasting is 94.70%, which 

is considered to be satisfactory. 
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Figure 4 Forecasting of traffic flow condition 

 

In this case study, only 7 on-road sensors are required to be 

connected to the FNN in order to produce satisfactory traffic 

flow forecasting results. Hence, the installation cost for 7 



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 

 

7 

on-road sensors is less than that of 14 on-road sensors. When 

two ILDs are used on each on-road sensor, and each ILD costs 

around USD 800, USD 11,200 (= 14 x USD 800) are saved on 

installation of on-road sensors in this section of road [23]. 

When more accuracy detectors such as acoustic array detectors 

and video image processors are used as the on-road sensors, 
there is further cost-saving, as accuracy detectors cost more. 

Also, the chance of producing faulty forecasting is reduced, as 

the chance of damaging any one of the 7 on-road sensors is less 

than the chance of damaging any one of the 14 on-road sensors. 

It can also save the effort and cost of maintaining the on-road 

sensor networks, as only 7 on-road sensors, not all 14 of them, 

need to be maintained. 

E. Results using different training sets 

Section III.D shows the results of the FNN which is developed 

based on the training data captured from Monday to Thursday 

(four days), and the test data captured on Friday. Hence, four 

days of data were used for training, and one day of data was 

used for testing. In this section, we evaluated the forecasting 

accuracies when a smaller amount of training data is used for 

developing the FNN. We used the data captured from Tuesday 

to Thursday (three days), from Wednesday to Thursday (two 

days) and from Thursday (one day) as three sets of training 
data. We repeated the procedures of using the Taguchi method 

to generate FNN based on these three sets of training data. 

Figure 5 illustrates that using the training data captured from 

the four days can develop better FNN for forecasting than that 

developed based on the data of three days, which can only 

obtain 92.13% accuracy. Those developed based on the training 

data captured on two days or one day are 88.56% and 80.09% 

respectively. The results illustrate that using more training data 

can generate a more accurate FNN for traffic flow forecasting 

in this case study. 
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Fig. 5 Accuracies for traffic flow forecasting using different training sets 

 

F. Comparisons with stochastic algorithms 

The two approaches, namely genetic algorithms (GA) [8] and 

particle swarm optimization (PSO) [28], which have been used 

for determining appropriate FNNs, were employed as a 

comparison. 

In the GA [8], a population of chromosomes in binary 

representation is first generated randomly as illustrated in 

Figure 6. Then, a FNN is developed with respect to the input 

configuration which is represented by the chromosome, where 

the FNN is generated using Jang's algorithm [6]. The 
chromosomes of the GA are evaluated based on a fitness 

function which is identified to equation (6) intending to 

measure the differences between the forecasts of the FNN and 

the actual traffic flow conditions. Hence, the fitness of the 

chromosome indicates the generalization capability of the FNN 

represented by the chromosome. When the chromosome has 

better fitness, the generalization capability of the FNN is better 
and more accurate forecasting of traffic flow conditions can be 

produced by the FNN. 

After evaluating all chromosomes based on the fitness 

function, the evolutionary operations including selection, 

crossover and mutation proposed in [8], are performed in order 

to generate a new population of chromosomes, where the new 

chromosomes intend to create a better input configuration 

which can produce a better FNN than those created by the old 

chromosomes. The evolutionary operations of the GA are 

repeated until the pre-defined number of generations is reached. 

The detailed operations of the GA can be referenced in [8]. 

 
Fig. 6 On-road sensor configuration of the FNN model represented in the GA 

and the PSO 

To perform the test, the two GAs, namely GA-5-20 and 

GA-5-200, were used. The following parameters were used in 

both GA-5-20 and GA-5-200: crossover rate = 0.8; mutation 

rate = 0.1; and population size = 5. In GA-5-20, the pre-defined 

number of generations used was 20. Hence, the total 

computational evaluations used were 100, which were those 

used in the Taguchi method. This setting was established to 

evaluate the performance difference between the genetic 

algorithm and the Taguchi method, when the same 

computational effort was used. In GA-5-200, the pre-defined 

number of generations was set to 200. Hence, there were 1000 
computational evaluations used in the GA-5-200, where the 

number of computational evaluations used by the GA-5-200 

was 10 times more than those used by the Taguchi method. This 

setting of genetic algorithm intends to evaluate whether the 

GA-5-200 can obtain significantly better performance than the 

Taguchi method, when much more computational efforts are 

involved. 

In the PSO [28] approach, a swarm of particles is generated 

in a binary representation, which can be illustrated in Figure 6, 

where the parameters of the FNN models are determined by 

using the Jang's algorithm [6]. Similar to the chromosome 
evaluations of the GA, each particle is evaluated based on 

equation (6) with respect to the input configuration specified by 

the particle. Hence, a better particle can produce a FNN which 

 ˆ 5n sy t T 
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can more accurately forecast traffic flow conditions. After 

evaluating the particles, the positions and velocities of the 

particles in the swarm are updated based on the position of the 

particle and the global best position of the swarm found so far. 

The movement of the swarm continues, until the pre-defined 

number of generations has been reached. The detailed 
operations of the PSO can be referenced in [28]. 

The two PSO, namely PSO-5-20 and PSO-5-200, were used. 

The following PSO parameters were used in the two PSO: the 

maximum and minimum inertia weights were set to 0.9 and 0.2, 

respectively; the swarm sizes for both PSO were 5; and the 

initial acceleration coefficients were set to 2. In PSO-5-20, 100 

computational evaluations were used in each run, which was 

the same as those used in the Taguchi method. By doing this, 

we can evaluate the performance of the PSO and the Taguchi 

method when the same amount of computational effort is used. 

In PSO-5-200, the pre-defined number of generations was set to 

200. Hence, 1000 computational evaluations were used for 
each run, which were ten times more than those used in the 

Taguchi method. This allows us to determine whether the PSO 

can outperform the Taguchi method, when more computational 

efforts are used. 

As both the GA and the PSO are stochastic algorithms, 

different results are found with different runs. Therefore, all the 

algorithms, GA-5-20, GA-5-200, PSO-5-20 and PSO-5-200, 

were run 30 times, and the results of the 30 runs were recorded. 

Results in terms of traffic forecasting accuracies obtained by all 

methods and the computational times used for all methods are 

shown in Figure 7 and Figure 8, respectively. Figure 6 shows 
that the results obtained by both GA-5-20 and PSO-5-20 are 

poorer than those obtained by the Taguchi method, where the 

computational efforts used in the three methods, GA-5-200 and 

PSO-5-200 and the Taguchi method, were identical, as shown 

in Figure 8. Figure 7 shows that the results obtained by the 

Taguchi method are slightly poorer than the results obtained by 

the GA-5-200 and PSO-5-200, while the computational efforts 

used by both PSO-5-200 and GA-5-200 were significantly 

larger than those used by the Taguchi method.  

These results demonstrate that both the GA and the PSO can 

achieve slightly better results than the Taguchi method in terms 

of traffic flow forecasting accuracies, when a significantly 
larger amount of extra computational effort was used in both 

the GA and the PSO. However, when the same computational 

efforts were used in the three methods, the Taguchi method can 

obtain better results in term of traffic flow forecasting than 

those obtained by both the GA and the PSO. Therefore, the 

Taguchi method is more effective than the two methods in 

searching for the appropriate input node configurations of the 

FNN models for traffic flow forecasting. 
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Fig. 7 Traffic forecasting accuracies obtained by the methods 
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Fig. 8 Computational times used by the methods 

As GA-5-20, GA-5-200, PSO-5-20 and PSO-5-200 are all 

stochastic algorithms, different on-road sensor configurations 

can be generated with different runs. Figure 9 shows the 

number of on-road sensors involved in each on-road sensor 

configuration generated by the four stochastic algorithms. For 
GA-5-20 and PSO-5-20, the numbers of on-road sensors 

involved in those configurations are mostly between eight to 

eleven, and between eight to ten, respectively. For GA-5-200 

and PSO-5-200, the numbers of on-road sensors are mostly 

between seven to eight, and between six to eight, respectively, 

which are close to the one generated by the Taguchi method. 

Hence, this further demonstrates that it is not necessary to use 

all the on-road sensors for traffic flow forecasting in this 

section of freeway. As the Taguchi method is a deterministic 

method, the same on-road sensor configuration can be 

generated with different runs where the number of on-road 
sensors is seven. Hence, the same number of on-road sensors 

can be generated by the Taguchi method in different runs, while 

different numbers of on-road sensors are generated by the 

stochastic methods in different runs. The difference between 

the Taguchi method and the stochastic methods can be further 

demonstrated. 
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Figure 9 Number of on-road sensors searched by the methods 

IV. DISCUSSION AND CONCLUSION 

In this paper, the Taguchi method, was proposed to determine 

appropriate on-road sensor configuration for fuzzy neural 

networks in order to forecast traffic flow. As the number of 

on-road sensors installed on the freeway is huge, it is 

impossible to test all individual configurations in order to 

determine the optimal one. The effectiveness of the Taguchi 

method was demonstrated by a case study intended to perform 

traffic flow forecasting based on fuzzy neural networks, where 

the traffic flow data was captured by fourteen on-road sensors 

installed on a section of freeway in Western Australia. Two 

advantages of using the Taguchi method in terms of forecasting 
accuracies and development time were demonstrated. Results 

show that the Taguchi method can provide a systematic and 

efficient methodology to determine the appropriate on-road 

sensor configurations with far less development time than that 

required for full factorial design. It can generate fuzzy neural 

networks with better traffic flow forecasting than the other 

existing methods including the evolutionary algorithm and the 

particle swarm optimization, when the same development time 

was used. 

 The Taguchi method can be further extended by the 

following research, which is related to the on-road sensors and 
the other applications: 

Moving window of traffic flow predictor: we can further 

refine the prediction accuracy by moving windows of the time 

sequences, which are used for traffic flow forecasting. The 

exclusion of too many time sequences might exclude important 

traffic flow patterns, and inclusion of too many time sequences 

might elicit less influential patterns. Hence, finding the proper 

window size is often a critical balancing act. We can vary the 

window sizes and measure the forecasting errors based on trial 

and error, until the window size with the best forecasting 

performance is selected. 

The Taguchi method, which is a more systematic approach, 
can be applied to determine window size in order to further 

refine the prediction performance. The dimension of the 

orthogonal array can be selected based on the number of 

significant on-road sensors, and the number of levels of the 

orthogonal array can be defined as the window sizes. The 

procedures discussed in this paper can be reused in order to 

determine the appropriate window size. Hence, the prediction 

accuracy can be further refined. 

Determination of appropriate sensor configuration for 

other applications: This paper presents a mechanism that uses 

the Taguchi method to design on-road sensor configurations for 

traffic flow forecasting. Apart from the design of on-road 

sensor configurations, the Taguchi method can also be applied 

on other configuration designs which involve many sensors. 
For example, the Google map is produced by a set of location 

sensors, where determination of an appropriate configuration of 

location sensors is essential in order to produce a more 

informative map. The Taguchi method can be applied to 

determine appropriate configurations of the location sensors in 

order to create a better appreciation of the Google map. 
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