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ABSTRACT 

 

A research project was undertaken to study the effect of biosolids on the decay 

times of enteric pathogens in the soil. This is the most comprehensive study in 

Australia where the persistence of enteric microorganisms in land-applied biosolids, 

particularly on broadacre grain farms in Australia, has been studied.  

 

Enteric pathogens such as faecal bacteria and viruses are present in biosolids, and 

when applied to land, these disease-causing microorganisms are at risk of being 

transmitted to humans following contact. The main aim of this research project was 

to examine the decay times of Escherichia coli (an indicator of enteric bacterial 

pathogens), Salmonella enterica (a representative of human pathogenic bacteria), 

bacteriophage MS2 (surrogate virus) and adenovirus (a representative human 

pathogenic virus). Agricultural soil from two farming properties in Western 

Australia and South Australia was selected for testing the inactivation of these 

enteric microorganisms over the growing season of a cereal crop. To do this, soil, 

biosolids and human enteric microroganisms were inoculated into sentinel 

chambers and inserted into the soil in the field. Chambers were sampled at regular 

intervals across the duration of the experiment and pathogen numbers were plotted 

over time. The decay times (T90) were then calculated based on the slope of decay 

to determine the estimated time for a one-log10 removal to occur. 

 

The key findings from the soil (field) experiments were that a) very low numbers of 

bacteria and bacteriophage (MS2) were detectable in the soil by harvest time since 

the microorganisms decayed rapidly over the growing season of the crop and b) that 

the decay times for E. coli, S. enterica and MS2 were shorter in the biosolids-

amended soil compared with the unamended soil. Results indicated that the 

application of biosolids to the soil may have actually increased the inactivation 

processes of the enteric microorganisms in the soil. Further findings were that enteric 

microorganism numbers, particularly bacteria, were significantly correlated with the 

changes in soil moisture and bacteriophage MS2 was significantly correlated with 

changes in soil temperature. For industry, this means that while the application of 

biosolids may introduce harmful pathogens to the field, the pathogens (in biosolids-
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amended soils) are adequately reduced over time. In addition, the climatic conditions 

as typical for Australia with dry hot summers, generally do not favour the survival of 

enteric pathogens. 

 

A glasshouse experiment was conducted to validate the methodology for the 

quantification and enumeration of enteric microorganisms from soil and biosolids-

amended soil. The resulting methods were a combination of procedures and 

processes from several sources that proved successful to improve the recovery of 

microorganisms from manure, biosolids or soil samples. The data from this 

experiment highlighted the difficulty faced when fitting a linear line of regression 

to the observed data points in order to calculate the time taken for the reduction of 

microorgainsms or the decay times (T90 values) from the reciprocal of the slope. 

Because of this, statistical models that take curvature into account with more terms 

such as quadratic and cubic were examined. The quadratic model was observed to 

provide the best fit, therefore was considered the most suitable for use for the field 

(soil) data.  

 

A phyllosphere experiment was conducted to determine the decay times of enteric 

microorganisms on the leaves, spikelets (grain heads) and grains of wheat. This 

was important where fodder crops are grown for livestock feed in biosolids-amended 

paddocks. The concern was that pathogenic contaminants would transfer from the 

soil to the plant and be of risk at consumption. A key finding from the present study 

was that enteric microorganisms were detectable for longer in the soil (6 to 7 

months) than the plant leaves (less than 1 month) therefore enteric pathogens on 

plant leaves would be of most risk to livestock where crops such as hay or lucerne 

are grown. Where withholding periods are maintained the risk of pathogen ingestion 

was considered to be low. Given favourable weather conditions for hay and silage 

production, the time from cutting to baling is approximately 1 week and because of 

this, the risks to livestock from pathogens is also considered low. Although the 

bacteria and virus examined in this research survived for several months on wheat 

grains (i.e. the time for a one-log10 removal (T90) for bacteria on stored grains was 9 

to 12 d), the risks to humans was considered to be low based on the assumption that 

grains are often milled, ground and baked prior to consumption.  
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Thresher and dust studies were conducted to compare indigenous bacterial levels at 

sites where biosolids had been applied, with sites where no biosolids had been 

applied.  A key finding was that indigenous heterotrophic bacteria and enterococci 

numbers were higher at the biosolids-amended harvesting site than the unamended 

site. In addition, the highest numbers of bacteria (and inoculated microorganisms) 

was found on the chaff, indicating that this region could be sampled for the testing of 

any pathogenic microorganisms potentially present in dust samples. Results 

demonstrated that the process of threshing significantly reduced microorganism 

numbers on matured wheat plants. For industry this means that the risk of 

transferring human enteric pathgoens (bioaerosols) to humans at harvest time is low 

where crops have been previously applied with biosolids (particularly if field 

workers remain inside vehicles in sealed cabs of harvesters, trucks and utes or use 

dust protection while the harvester is in operation). In addition, the high summer 

temperatures, dry conditions and low humidity in the field at harvest time do not 

favour the prolonged survival of bioaerosols. 

 

This study provides scientific data on the survival patterns of enteric bacteria and 

viruses across the growing season of wheat when introduced into agricultural soil 

from land-applied biosolids. The practical application of the results to cereal 

production enables key stakeholders to consider the areas of risk across the supply 

chain of grain production to contribute towards consumer safety and public 

protection. It was concluded that pathogens from biosolids are of greatest risk to 

humans directly involved with the handling of biosolids following dispatch from the 

wastewater treatment plant since microbial contamination levels are highest during 

this time. In addition, the Australian climate is not suited to prolonged survival of 

enteric pathogens outside of the host, particularly from spring to summer where soil 

moisture declines and soil temperatures increase. The pathways to ingestion are low 

where withholding periods are maintained and correct management procedures are 

followed such as the incorporation of biosolids with the soil within the appropriate 

timeframe. Therefore, the main pathway for the transmission of disease-causing 

pathogens to humans may be more prevalent where poor hygiene practices occur. 
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CHAPTER 1 GENERAL INTRODUCTION 

 

1.1. Research problem 

An important aspect of environmental health science is to limit the occurrence of 

environmentally-transmitted infectious diseases through addressing the fate, 

exposure, levels, prevalence and health outcomes relating to human pathogens in 

soil, air, water and food crops. With this in mind, the use of biosolids as a soil 

fertiliser requires close attention (Guzman et al. 2007) because human enteric 

pathogens are present in biosolids and they may result in infectious diseases being 

transmitted to humans or livestock through the environment. For this reason, the 

decay patterns and persistence of human enteric pathogens (or microorganisms) in 

broadacre cropping needed to be examined from seeding time to harvest in order to 

determine how long such microorganisms are expected to persist in agricultural soil 

amended with biosolids. 

1.2. Research background 

Biosolids are a secondary product of wastewater treatment processes originating 

from wastewater sludge (Spinosa and Vesilind 2001; Liang et al. 2003). They are 

termed ‘biosolids’ once they have been treated and processed and can be used as a 

useful resource (i.e. fertiliser) for soil conditioning (Evanylo 1999; Sidhu 2000); 

however, biosolids contain contaminants such as heavy metals, toxic organic 

chemicals and pathogens (LeBlanc et al. 2008). Of particular concern in this study is 

the presence of enteric pathogens which may be of harm to humans and livestock. 

Having undergone several treatment processes, the pathogenic contaminants found in 

the sludge are somewhat reduced but not completely eliminated. The study of the 

pathogens in biosolids has been recognised as a priority for research over other 

contaminants, since they have a more immediate potential impact on human (and 

livestock) health, whereas chemical contaminants are more likely to have negative 

effects after long term soil accumulation, sometimes several decades.  
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Land application is one of the main avenues for biosolids management in Australia. 

Of the 360,000 dry tonnes (t) of biosolids produced annually, the majority of 

biosolids in Australia are used for agriculture. In New South Wales over 65,000 dry t 

are applied to agricultural land, in Western Australia over 20,000 dry t are applied in 

the central wheatbelt and in South Australia over 20,000 dry t are stockpiled before 

being applied to agricultural land. However, in Queensland and New Zealand over 

40,000 dry t are placed in landfill each year, and in Victoria the majority of biosolids 

produced are stockpiled (approx. 60,000 dry t). For the purpose of this research, sites 

in Western Australia and South Australia were selected as the locations for the field 

experiments since biosolids are currently being applied to land as a fertiliser to 

dryland broad acre crops such as canola, cereals and oilseeds in both regions 

(LeBlanc et al. 2008). 

 

Under the current legislation, select bacteria such as thermotolerant coliforms are 

used to indicate the level of pathogenic contaminants, which are then used to grade 

the biosolids into a category of acceptance or suitability for release to land. Since this 

grading system is based on one or two indicator bacteria, the persistence and 

survivability of any other enteric microorganisms present in biosolids is unknown 

and, in particular, there is little information about the decay times of these pathogenic 

microorganisms in biosolids-amended soils in Australia in the field after 

incorporation. Hence, biosolids are currently being applied to land without 

comprehensive scientific data to indicate the levels of risk that may be present to the 

public from pathogenic (enteric) contaminants. 

1.3. Research aim 

The aim of this research was to determine the decay patterns (or T90 decay times) of 

human enteric microorganisms – Escherichia coli, Salmonella enterica, 

bacteriophage MS2 and adenovirus – across the growing season of wheat where 

biosolids are applied to agricultural soil. Determining these decay times is important 

in relation to the protection of public health, particularly where withholding periods 

are applied to restrict access to biosolids application sites and, more importantly, 

where appled to ‘sensitive crops’ are planted and harvested (i.e. edible crops that 

come into contact with the soil and may be consumed raw). 
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1.4. Research objectives 

Specific research objectives were as follows: 

 To find a method suitable for the monitoring of the decay of enteric 

microorganisms from soil and biosolids-amended soil in the field over the 

growing season of wheat (approx. 6 months); 

 To test the methodology to ensure that the environmental conditions outside 

the microcosms were in equilibrium with the internal environment (of the 

sample chamber), and to derive initial decay times (for S. enterica and MS2) 

in a pot experiment; 

 To determine the most appropriate model for non-linear (broken-stick) type 

decay patterns (linear, quadratic or cubic) as are common with environmental 

microorganism decay, in order to obtain decay times (T90); 

 To examine the decay patterns of E. coli (indicator bacteria), S. enterica 

(pathogenic bacteria), bacteriophage MS2 (surrogate virus) and human 

adenovirus (pathogenic virus) in biosolids-amended agricultural soil; 

  To observe any correlation of microorganism decay with changes in soil 

temperature and soil moisture in the field; 

 To determine any effect of microorganism type, soil type or site on decay 

patterns; 

 To examine the effect of plant location (i.e. spikelet, leaves) on 

microorganism decay (on wheat plants at the flowering stage); 

 To examine the effect of microorganism type on the decay patterns of enteric 

microorganisms on the phyllosphere of wheat; 

 To examine the effect of threshing on enteric microorganisms inoculated onto 

mature wheat plants; in addition, to determine where the microorganisms are 

being deposited through this process (i.e. chaff, thresher drum, grains); 

 To determine the presence/absence and numbers of bacteria - heterotrophic, 

E. coli  and enterococci – in a mature wheat crop at harvest in the field, 

previously applied with biosolids; and 

 To test for the presence and levels of bacteria in wheat dust during harvesting 

operations in a wheat crop where biosolids have been applied. 
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The enteric microorganisms selected for this study (i.e. E. coli, S. enterica, 

bacteriophage MS2 and adenovirus) are representative of the bacteria and viruses 

found in biosolids. E. coli is commonly used as an indicator organism to monitor 

inactivation of faecal bacteria in wastewater (Sidhu et al. 2008). E. coli bacteria are 

found in the gastrointestinal tract of all warm-blooded animals and are usually 

harmless, however several strains can cause gastroenteritis and when pathogenic, 

produce a toxin which can cause damage to the kidneys or even be life-threatening 

(Pepper et al. 2006). S. enterica bacteria are pathogenic to humans (Pepper et al. 

2006) and are from a large group of more than 2400 Salmonellae serotypes. They are 

the main foodborne pathogens that commonly cause bacterial gastroenteritis 

(www.aihw.gov.au). Bacteriophage MS2 is used as a surrogate virus for enteric 

viruses (Sidhu et al. 2008) and is commonly used as a study microorganism for 

inactivation in wastewater. Adenovirus is pathogenic and is one of the most common 

enteric viruses found in wastewater (Pepper et al. 2006; Sidhu et al. 2008) therefore 

it may be transmitted to humans from recreational and drinking water. Adenovirus 40 

have been detected in anaerobically-digested biosolids and can cause diarrhoea and 

respiratory infections, particularly in children (Pepper et al. 2006).  

 

Most published literature, specific to land-applied biosolids, document the use of the 

indicator bacteria E. coli (Crute 2004; Horswell et al. 2007; Lang et al. 2007; Lang 

and Smith 2007; Pourcher et al. 2007), enterococci (Crute 2004; Pourcher et al. 

2007) and the surrogate virus F-specific RNA bacteriophage (Crute 2004; Lang et al. 

2007). The most common pathogen studied is Salmonella spp. (Eamens et al. 2006; 

Horswell et al. 2007; Lang et al. 2007; Eamens and Waldron 2008; Horswell et al. 

2010) with some work conducted on Clostridium perfringens (Eamens et al. 2006; 

Pourcher et al. 2007). Sorber and Moore (1987) referred to different sludge-amended 

soil studies where inactivation (T90 values) for faecal coliforms, faecal streptococci, 

total coliform bacteria, Ascaris ova and Toxocara ova were examined; however, no 

references for these studies were provided. Very few studies have used pathogenic 

viruses such as adenovirus, and for this reason the present study contributes new 

information to this field. In addition, industry (i.e. WQRA) requested that dust 

experiments be conducted to examine potential bioaerosol levels in the environment 

where biosolids have been land-applied, particularly where dust is generated.   
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1.5. Research benefits 

The main focus of this research was to compare the enteric pathogen decay patterns 

in the soil where biosolids had been applied, with sites where no biosolids had been 

applied (unamended). Since grain crops are often grown following biosolids 

application, the risk pathway from the production of wheat to harvest was used. This 

included examining the decay times of the study bacteria and virus on the 

phyllosphere of wheat in the event that enteric pathogens could transfer from the soil 

onto the plant and be transmitted to livestock or humans (i.e. via grain, hay crops or 

silage).  

 

To date, no published data is available on the transfer of enteric pathogens onto 

wheat plants from biosolids-amended soil or the inactivation times of such pathogens 

from parts of cereal plants. Therefore, the research reported in this thesis is of utmost 

importance for Australian grain and hay export markets, particularly where biosolids 

have been used as fertiliser. Very few studies have examined the decay times of such 

pathogenic contaminants, particularly under Australian conditions. Where studies 

have been carried out (i.e. Crute 2004; Eamens et al. 1996; 2006; 2008), insufficient 

information as a whole has been collated therefore there are still gaps in the 

knowledge and understanding of the topic is incomplete.  

 

The principal risk was not considered to be the cereals themselves, but from the 

following: a) any crop that comes into contact with biosolids-amended soil and is 

consumed uncooked, b) farm workers/biosolids handlers that come into contact with 

the biosolids-amended soil; and c) contamination with the public immediately after 

biosolids have been released from the wastewater treatment plant (i.e. at 

spreading/seeding time). 

 

 

 

. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1. Background  

Population growth has lead to increasing volumes of wastewater produced around the 

world with corresponding larger amounts of sewage sludge. Sewage, primarily from 

domestic and industrial sources, is treated and processed (Evanylo 1999) using 

processes such as dewatering and anaerobic digestion to allow the biosolids to be 

applied to land for beneficial reuse (Spinosa and Vesilind 2001; Liang et al. 2003).  

Once properly treated and of good quality for use on land, the sludge (“solids”) is 

then termed ‘biosolids’ to distinguish it in public acceptance terms from other 

sludges (LeBlanc et al. 2008). Of the biosolids produced in Australia, the majority is 

used in agriculture, forestry, land rehabilitation or as landfill (Gale 2007; LeBlanc et 

al. 2008).  

 

Municipal biosolids contain nutrients and are considered a valuable resource in 

agriculture for use as fertilisers on agricultural land (Epstein 2003; Sanchez et al. 

2004; LeBlanc et al. 2008). Land application of biosolids has been common overseas 

but was not widely practised in Australia until the past few decades. In Australia and 

New Zealand, over one million tonnes of wet biosolids are produced per annum 

amounting to approximately 360,000 dry t.  Of this, the most common use of 

biosolids (in Australia) is land application with substantial quantities being 

stockpiled before use  (LeBlanc et al. 2008).  

 

The primary focus for biosolids end use has been to increase their emphasis as a 

resource rather than a waste product (Isaac and Boothroyd 1996). It is important to 

justify the use of biosolids on agricultural land both as an avenue for reuse and as a 

substitute fertiliser. The application of biosolids onto agricultural land introduces 

substantial organic matter and is a rich source of plant-available nutrients and trace 

elements (Joshua et al. 1998; Epstein 2003; Horan et al. 2004; LeBlanc et al. 2008). 

Several studies show benefits to agriculture such as increased crop yields, improved 

soil fertility, soil conditioning, improved cation exchange, an increase in soil 

porosity, decreased bulk density and increased soil water-holding capacity (Epstein 

1998; Nicholson et al. 2005; LeBlanc et al. 2008).  
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Soils in many Australian cropping regions are low in fertility and organic matter, 

have a low cation exchange capacity and are acidic, therefore biosolids are well 

suited to these soil types as soil conditioner and soil improvers (Joshua et al. 1998; 

LeBlanc et al. 2008). The use of organic wastes in agriculture has been known to 

increase soil organic matter and benefited agricultural production in countries such as 

Australia with depleted soils (Hassen et al. 1998). There has been renewed interest in 

applying biosolids to land in an attempt to save costs and to conserve water and 

nutrient resources (Cameron et al. 1997). Therefore, much research has gone into 

establishing biosolids as a fertiliser and developing its use with minimal damage 

imposed on the environment (Bruce and Evans 2002). However, some uncertainties 

remain as to the risks to human and animal health. 

 

Biosolids may contain contaminants that pose a risk to public health and the 

environment. Even though the recycling of biosolids onto agricultural land is the 

most practical, economical and environmentally-beneficial management option 

(Nicholson et al. 2005), some authors suggest that the benefits of biosolids outweigh 

the risks (Bright and Healey 2003) and that these risks should be assessed against the 

benefits to soil fertility and agricultural productivity (LeBlanc et al. 2008). Such 

risks include enteric pathogens, heavy metals, dioxins, organic contaminants, 

synthetic hormones, household chemicals and bioaerosols (Epstein 1998; McFarland 

2001) all of which have attracted public concern (Mininni and Santori 1987; Joshua 

et al. 1998; Hassen et al. 2001).  

2.2. Biosolids production and pathogen reduction  

The first barrier, in the multi-barrier approach to protection of the public health from 

the use of biosolids or sludge, is the requirement for sludge to be treated to reduce 

pathogen numbers (commonly determined using ‘indicator microorganisms’). It is 

recognised that pathogens do naturally decay in the environment when outside of 

their host organism, and the barrier strategy takes advantage of this natural behaviour 

to ensure that pathogen numbers are reduced to background levels before the 

biosolids are applied where “ready-to-eat crops” are grown. These treatment 

processes result in the production of primary and secondary wastewater from 

management processes such as dewatering and stabilisation to reduce pathogenic 

contaminants (Tables 2-1 and 2-2). 
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Table 2-1:  The most common technologies used for sludge stabilisation  

 

Stabilisation 

method 

 

 

Description 

 

Anaerobic digestion 

 

Fermentation by bacteria of organic material in the absence 

of free oxygen.  It is not designed to disinfect biosolids; 

therefore pathogens can survive in considerable numbers.  

Mesophilic Anaerobic Digestion (MAD) is used in the 

production of P2 biosolids.  

  

Aerobic digestion This process involves aerating sludge in open basins and 

directly oxidating any biodegradable matter with the 

production of cellular material. 
 

Composting Aerobic biological decomposition of organic materials under 

controlled conditions to a state where composted material 

can be handled, stored or applied to land without adversely 

affecting the environment. 

 

Alkaline stabilization  Adding lime to wastewater solids either before or after the 

wastewater solids are dewatered.  Usually applied to 

agricultural land in liquid or cake form or are land-filled. 

 

Dewatering This process involves one of several mechanical processes; 

usually a belt filter press or centrifuges to separate the water 

from the sludge. 

 

Heat drying Drying is needed if removal of water through dewatering 

processes is insufficient.  Wet sludge is heated to remove 

water. Heating of wet sludge evaporates water mechanically.  

Heat-drying technologies include flash dryers, rotary dryers, 

spray dryers, multiple-effect evaporators and multiple hearth 

dryers.  This method can be dusty if not formed into pellets. 

 

Source: USEPA 1999.  
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 Table 2-2: Biosolids classifications and related uses 

 

Category 

 

 

Description 

 

 

P1 - Primary treatment 

 

Very Limited Exposure.  

 

Includes disposal practices such as land-filling or 

limited access mine site rehabilitation. 

 

Removal of insoluble particulate materials by 

settling, screening, addition of alum and other 

coagulation agents, and other physical procedures. 

 

 

P2 - Secondary treatment 

 

Limited Exposure. 

 

Includes use of biosolids where public access is 

possible but limited.  May include disposal routes 

such as tree farming, market gardening and 

landscaping of public spaces. 

 

Biological removal of dissolved organic matter 

(trickling filters, activated sludge, lagoons, extended 

aeration systems and anaerobic digesters). 

 

 

P3 - Tertiary treatment 

 

Unrestricted Exposure. 

 

For unrestricted marketing of biosolids where the 

possibility of public exposure is high. 

 

Biological removal of inorganic nutrients, chemical 

removal of inorganic nutrients, virus 

removal/inactivation and trace chemical removal 

 
Source: Prescott et al. 2002; Gibbs & Goen 1995  
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Sludge is stabilised before it can be applied to land to reduce pathogenic micro-

organisms and chemicals that could be a health hazard to humans to 1) reduce 

offensive odours and 2) to decrease the rate of putrefaction (Spinosa & Vesilind 

2001; Switzenbaum et al. 1997).  The most common technologies used to stabilise 

sludge in order to meet regulatory requirements include anaerobic digestion, aerobic 

digestion, composting, alkaline stabilization and heat drying (Table 2-1 and Figure 2-

1) (Epstein 2003; Gerba et al. 2002; Sahlstrom et al. 2004; Sidhu 2000; 

Switzenbaum et al. 1997).  These stabilisation methods determine the classification 

and potential end-use of the biosolids.  The biosolids classifications commonly used 

(P1, P2 and P3) are derived from USEPA Part 503 Regulations (Table 2-2).  

 

 

 Figure 2-1: Schematic of the Beenyup Wastewater Treatment Plant process, Western Australia 

(LeBlanc et al. 2008). 
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The greatest short-term risk from untreated excreta, wastewater, septage and 

wastewater sludge is pathogenic microorganisms that can cause disease (LeBlanc et 

al. 2008). Regulators, producers and users of biosolids operate under set guidelines 

that have been established to minimise risk with minimum criteria, procedures and 

approval processes for the treatment and direct application of biosolids (USEPA 

1993; DOE 1996; EPA 1997; NSWEPA 2000; ADAS 2001; DEP et al. 2002; 

NZWWA 2003; USEPA 2003; NRMMC 2004; SAEPA 2009; DEP et al. 2010). The 

guidelines vary from state to state for each country according to the different types of 

biosolids that are produced from individual processing plants; therefore such 

regulations are referred according to the requirements in each state. Although 

reduced at stabilisation, pathogens are not completely eliminated (i.e. in 

conventional, T3 or Class B biosolids) and therefore, such biosolids cannot be 

completely considered pathogen-free (Bruce and Evans 2002).  

2.3. Pathogenic contaminants in biosolids 

An enteric pathogen is any virus, bacterium or other agent that lives in the intestinal 

tract and causes disease (Prescott et al. 2002). The pathogen groups associated with 

biosolids are bacteria, viruses and parasites such as protozoa and helminths (Awad et 

al. 1989; Cameron et al. 1997). These pathogen groups are listed in Tables 2-3 and 

2-4.  

 

Since biosolids are derived from human faecal material and may contain microbial 

contaminants a global priority is to provide basic sanitation and this involves the 

proper treatment and management of excreta, septage and wastewater sludge to 

reduce the transmission of pathogens. In developed countries this risk is somewhat 

reduced because of a lower prevalence of diseases amongst the population. These 

countries also have proper wastewater treatment systems in place and adequate food 

hygiene practices, unlike many developing countries where disease transmission 

(particularly from water resources i.e. cholera) is a severe health concern (LeBlanc et 

al. 2008). Pathogens commonly transfer into untreated sludge from human excreta, 

through the wastewater systems prior to treatment and any remaining 

microorganisms may be transferred onto agricultural soil through irrigation water or 

during land application of the biosolids (Figure 2-2). 
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Figure 2-2: The progress of excreta, wastewater sludge and biosolids management (LeBlanc et 

al. 2008). 

 

An awareness as to the potential magnitude of pathogen-related disease 

dissemination is important. Faeces excreted by a healthy person normally comprise 

many bacterial species of which there may be 10 thousand to 10 million units per 

gram (Lewis-Jones and Winkler 1991a). Likewise, faeces excreted by a person with 

gastrointestinal disorders contain large numbers of the pathogenic microorganisms. 

Although not all pathogens present in biosolids are infectious (Cliver 1980), it is 

necessary to treat all faecal coliform microorganisms as indicative of dangerous 

contamination (Gallagher and Spino 1968). The microbiological properties of sludge 

will reflect the level of enteric disease within the human population in terms of the 

numbers and range of pathogens and parasites present. These microorganisms can 

enter the sewage reservoirs and be of health hazard to the general public if contact 

occurs (Bruce and Evans 2002; Cliver 1980).  

 

The risk of pathogens to the human food chain is considered low given that pathogen 

decay along with biosolids loadings are trivial compared with enteric pathogen inputs 

(in livestock manures), and regrowth only occurs under specific circumstances; 

however, the impact on the environment is still unknown (Hillman et al. 2003). 

Sahlstrom et al. (2004) considered it possible that if biosolids were spread onto 

agricultural land, the load of pathogens on the environment could increase with time 

(given the evidence for factors such as regrowth (Sidhu et al. 2001)) and thus 

increase the risk of disease dissemination to people and animals. 
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Table 2-3: Some of the bacteria and viruses found in biosolids and resulting diseases 

 

Bacteria 

 

Disease 

 

Campylobacter jejuni 

 

Gastroenteritis 
 

Clostridium perfringens 

 

Food poisoning, gas gangrene, abdominal pain 
 

Escherichia coli (pathogenic strains) 

 

Gastroenteritis 
 

Listeria monocytogenes 

 

Listeriosis, neonatal sepsis, meningitis 

 

Mycobacterium tuberculosis 

 

Tuberculosis 
 

Salmonellae (approx. 1700 types) 

 

Salmonellosis, gastroenteritis, food poisoning 
 

Salmonella typhi 

 

Typhoid fever 
 

Shigella (four species) 

 

Shigellosis, bacterial dysentery, gastroenteritis 
 

Yersinia sp. 

 

Acute gastroenteritis, diarrhoea, abdominal pain 
 

Vibrio cholerae 

 

Cholera 

 

Virus 

 

Disease 

 

Adenovirus (31 types) 

 

Conjunctivitis, respiratory infections, 

gastroenteritis 
 

Caliciviruses 

 

Epidemic gastroenteritis 
 

Enteroviruses 

  

 

 Poliovirus 

 

Poliomyelitis 
 

 Coxsackievirus 

 

Aseptic meningitis, pneumonia, hepatitis fever 
 

 Echovirus 

 

Aseptic meningitis, paralysis, encephalitis 
 

Hepatitis A virus 

 

Infectious hepatitis 
 

Norovirus 

 

Severe gastroenteritis 
 

Reoviruses 

 

Respiratory infections, gastroenteritis 
 

Rotavirus 

 

Gastroenteritis, infant diarrhea 

Source: Adapted from Kowal (1985), USEPA (1989) and Epstein (1998). 
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Table 2-4: Some of the protozoa and helminths in biosolids and resulting diseases 

 

Protozoa 

 

Disease 

 

Balantidium coli* 

 

Balantidiasis, diarrhoea, dysentery 
 

Cryptosporidium 

 

Gastroenteritis 
 

Entamoeba histolytica* 

 

Amoebic dysentery, amebiasis, acute enteritis 
 

Giardia lamblia 

 

Giardiasis, diarrhoea, weight loss 
 

Toxoplasma gondii* 

 

Toxoplasmosis 

 

Helminths – Nematodes* 

 

Disease 

 

Anclostoma duodenale 

 

Hookworm disease, ancylostomiasis 
 

Ascaris lumbricoides (round worm) 

 

Ascariasis, digestive disturbance, vomiting 
 

Ascaris suum 

 

Fever, respiratory effects, chest pain 
 

Necator americanus 

 

Hookworm disease 
 

Strongyloides stercoarlis 

(threadworm) 

 

Strongyloidiasis, abdominal pain, diarrhoea 

 

Taenia sp. (tape worm) 

 

Taeniasis, weight loss, abdominal pain, nausea 

 

Trichuris trichiura (whip worm) 

 

Trichuriasis, abdominal pain, diarrhoea, anemia 
 

Toxocara canis (dog roundworm) 

 

Fever, abdominal pain, neurological symptoms 

Source: Adapted from Kowal (1985), USEPA (1989) and Epstein (1998). 

* These are generally not an issue in nations with high sanitation such as Australia  
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1
 Guidelines were established in the 1980’s where the EU Sludge Directive 1986 was implemented in the UK in 

1989 through the Sludge (Use in Agriculture) Regulations, which was complemented by a non statutory Code of 

Practice providing further guidance and advice on sludge treatment and land management to protect human 

health and the environment. 

 

2.4. Public health risk  

The potential that pathogens could be of risk to public health and the degree of that 

risk from faecal pathogens is important in considering the wellbeing and health of a 

community. One major potential health risk is the contamination of foods grown for 

human consumption. These pathways are through the consumption of contaminated 

crops by humans and the transfer of contaminants to animal food products for human 

consumption (Cameron et al. 1997). Nonenteric pathogens can also enter the 

wastewater system.  Abattoirs and funeral homes introduce high levels of nonenteric 

pathogens (commonly blood-borne pathogens and rare prions) into waste treatment 

systems. The latter have been linked to Creutzfeldt-Jakob disease and Mad Cow 

disease or bovine spongiform encephalopathy (BSE). Since experiencing recent 

health scares from Listeria, Salmonella, E. coli O157:H7 and BSE, food retailers 

have questioned the use of biosolids on agricultural land into the 21
st
 century (Bruce 

and Evans 2002). This has resulted in the development of the Safe Sludge Matrix 

thus further extending and clarifying the controls on agriculture utilisation of sludges 

in relation to pathogens. 

 

The reports of human and animal infection from land-applied biosolids have been 

low in the United Kingdom since the establishment of the 
1
Regulations and Code of 

Practice. These regulations have reduced environmental damage to human health, 

animals or crops (Bruce and Evans 2002) from the use of manures and sludges. 

Continued work has been carried out by research, regulatory and public organisations 

to find economically feasible and environmentally acceptable means for the use of 

biosolids (Bruce and Evans 2002; LeBlanc et al. 2008).  

 

For disease to occur in the human host, sufficient levels of the pathogen must be 

ingested (Epstein 1998; Carr 2001) through one of the pathways of transmission 

(Table 2-6). Dose response levels for a selection of pathogens and reported infective 

doses for individuals are presented in Table 2-5. Minor levels of pathogenic 

organisms can cause infection (Hu et al. 1996) depending on the characteristics of 

the host. If diluted in the environment, the probability of infection is greatly reduced 

(Edmonds and Mayer 1979), and this risk tends towards the background levels.  
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Table 2-5: Reported infective doses for enteric microorganisms 

 

Pathogen 

 

Infective dose 

 

Bacteria 
 

 

 Clostridium perfringens 

 

  10
6
 

 

 E. coli 

 

  10
4
 

 

 Salmonella (various species) 

 

  10
2
 

 

 Shigella dysenteriae 

 

  10
0
 - 10

2
 

 

 Shigella flexneri 

 

  10
2
 - 10

9
 

 

 Vibrio cholerae 

 

  10
3
 

 

Viruses (human infective dose *HID50) 
 

 

 Rotavirus  

 

0.9 FFU 

            Human poliovirus (SM strain) 2 FFU 

            Human poliovirus (Fox strain) 2 FFU 

            Human echovirus 17 FFU 
 

Parasites 
 

 

 Cryptosporidium 

 

  10 cysts 
 

 Eritamoeba coli 

 

  1-10 cysts 
 

 Giardia lamblia 

 

  1 cyst estimated 
 

 Helminths 

 

  1 egg 

Source: Adapted from Smith et al. (2003) 

 

*HID (human infective dose) provided in the range of about 1- 1000 HID50, i.e., about 10 
5 
-

10 
8 
pfu (plaque forming units) per dose administered 

 

FFU – focal forming units 
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In 2001, infectious diseases were related to approximately 26% of the world’s deaths 

(Ashbolt 2004). Approximately 4 billion cases of diarrhoea per year reported to 

result in 2.2 million deaths. These incidences, particularly diarrhoea, are commonly 

excreta-related (Carr 2001). Ashbolt (2004) found that Campylobacter strains 

contributed to more cases of diarrhoea than Salmonella spp. and were to be 

considered one of the world’s main causes of gastroenteritis (www.aihw.com.au). In 

developed countries, 10% of the population have intestinal worms (Ascariasis) 

resulting in 60,000 deaths per year. Ascariasis is mostly excreta-related and most 

often caused by exposure to untreated wastewater or foods produced from it (Ashbolt 

2004). Hookworm is a major contributor to iron-deficiency anaemia (Loukas et al. 

2005). Helminthiases are the most common cause of parasitic infections in humans 

and animals around the world (Nithiuthai et al. 2004).  

 

Several factors will determine the transmission of diseases to humans. These include 

the initial concentration of pathogens in the environment (Eamens et al. 1996), the 

level of pathogens present in wastewater from a community (Carr 2001), the ability 

of the organism to infect the host, the time period required before the host becomes 

infected and the organism’s ability to survive or multiply in the environment (Carr 

2001). 

 

Characteristics of the host will also impact on the occurrence of disease transmission; 

these include nutritional status, immunity, health status, differential infectivity, age, 

sex, personal hygiene and food hygiene (Carr 2001; WHO 2003). Infectious agents 

spread by faecal-oral routes will be affected by the environment, food, poor hygiene, 

poverty and nutritional status (Ashbolt 2004). Exposure to pathogens can lead to 

pseudo-infections in the human body. Alternatively, pathogens can attach to a host, 

multiply and then cause disease (Armon et al. 1994). Potential transfer pathways for 

biosolids contaminants were outlined in Table 2-6. The main pathways associated 

with public health are via biosolids-amended soil, crops grown using biosolids, 

livestock produced off biosolids-amended pastures, bioaerosols and water routes.  
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Table 2-6: Some of the potential pathways of transfer of biosolids-amended contaminants (i.e. 

chemical and pathogenic) to humans and livestock. 

 

Pathway 

 

Highly exposed individual 

 

Biosolids to human 

 

Food produced from biosolids-amended 

agricultural land; home garden or 

residential soil applied with biosolids 

 

 

Biosolids to soil to human 
 

 

 

Water quality criteria; recreational 

activities; water catchments 

 

 

Biosolids to crop/pasture to grazing 

animals 
 

 

 

Contact with animal at handling, animal 

manures or slaughting of livestock 

 

Biosolids to bioaerosol 

 

Tractor operator; biosolids spreading; 

farmer; farm households 

Source: Adapted from Chaney et al. (1996) 

 

 

Pathogens may also be transmitted from animals and other vectors to humans, then 

from humans to humans. Pathogens can be present in the faeces of healthy animal 

carriers (Mawdsley et al. 1995) and then be transferred to humans through indirect 

means such as animals or vectors that are found around biosolids stockpile sites (Carr 

2001; Smith and Farrell 2003; Koopmans and Duizer 2004). Salmonella infections 

may occur after ingestion of substances such as water, soil and food which have been 

contaminated by the infected animal’s faeces (Lewis-Jones and Winkler 1991b). 

Note there are many sources of enteric pathogens in the environment (e.g. from 

livestock, wild animals and birds) with the soil itself as a reservoir for enteric 

bacteria surviving in the soil microbial community, therefore, the risk from biosolids 

should be viewed in the context of background risk from all other sources and not 

just as an isolated source of pathogens. 

 



Chapter 2 

 19 

2.5. Survival times  

Understanding survival times is necessary to ensure minimum withholding periods 

are established for sensitive crops (i.e. those which may be in direct contact with the 

soil and consumed raw). The survival times of various pathogen-groups in soil or on 

plants will vary between locations; however, the location itself does not determine 

the survival times as much as the local conditions such as soil type, temperature, 

moisture, rainfall and sunlight exposure. This information is necessary to protect 

biosolids-users and consumers, particularly where the length of the pathogen survival 

exceeds the growing season of the food crops. Part of the multi-barrier approach (i.e. 

the second barrier) to protecting human health from pathogen transmission by the 

management of biosolids is the time taken for the natural decay of pathogens to 

occur in the environment. From this, the minimal withholding periods are determined 

and public access to the sites is not permitted (before certain crops can be grown). 

Tables 2-7, 2-8 and 2-9 provide published survival times of selected bacteria, virus, 

helminths and protozoa. According to available published data, E. coli can survive in 

the soil for 12 to 267 d, Salmonellae for 15 to 280 d (Table 2-7), poliovirus for 100 d 

(Table 2-8) and hookworm for 42 to 180 d (Table 2-9).  
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Table 2-7: Published survival times of bacteria in land application sources 

 

Pathogen and application 
 

 

Survival times 

 

Sources 

 

Enteric bacteria 
  

 

Plants (common maximum) 

 

1 mth 

 

(Kowal 1985; USEPA 1989) 
 

Soil (common maximum) 

 

2 mth 

 

(Kowal 1985; USEPA 1989) 
 

Escherichia  coli 
  

 

Soil 

 

12-267 d 

 

(Epstein 1998) 
 

Coliforms 
  

 

Forest clear cut 

 

162-267 d 

 

(Edmonds and Mayer 1979) 
 

Forest 

 

15 mth 

 

(Edmonds and Mayer 1979) 
 

Grass and clover 

 

6-34 d 

 

(Golueke 1991; Epstein 1998)  
 

Soil surface 

 

38 d 

 

(Epstein 1998)  
 

Vegetables 

 

35 d 

 

(Epstein 1998)  
 

Salmonellae 
  

 

Grass and clover 

 

12-42 d 

 

(Epstein 1998) 
 

Soil 

 

15-280 d 

 

(Epstein 1998) 
 

Vegetables and fruit 

 

3-49 d 

 

(Epstein 1998) 
 

Salmonella typhosa 
  

 

Soil 

 

29-74 d 

 

(Golueke 1991; Epstein 1998) 
 

Vegetables and fruit 

 

31-68 d 

 

(Golueke 1991; Epstein 1998) 
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Table 2-8: Published survival times of viruses in land application sources 

 

Pathogen & application 

 

Survival times 

 

Sources 

 

Virus: 
  

 

Plants (common maximum) 

 

1 mth 

 

(Kowal 1985; USEPA 1989) 
 

Soil (common maximum) 

 

3 mth 

 

(Kowal 1985; USEPA 1989) 
 

Poliovirus 
  

 

Forest ecosystem 

 

28 d 

 

(Edmonds and Mayer 1979) 
 

Radish, lettuce 

 

36 d 

 

(Epstein 1998) 
 

Soil 

 

100 d 

 

(Epstein 1998) 

 

 

Table 2-9: Published survival times for helminths in land application sources 

 

Pathogen & application 

 

Survival times 

 

Sources 

 

Helminths: 
  

 

Plants (common maximum) 

 

1 mth 

 

(Kowal 1985; USEPA 1989) 
 

Soil (common maximum) 

 

2 y 

 

(Kowal 1985; USEPA 1989) 
 

Hookworm 
  

\ 

Soil 

 

42-180 d 

 

(Golueke 1991; Epstein 1998) 
 

Ascaris ova 
  

 

Vegetables and fruit 

 

27-35 d 

 

(Epstein 1998) 

 

Minimal, if any, data is available on Giardia cysts and Cryptosporidium oocysts survival 

times (USEPA 1989). 
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In other literature, Cryptosporidium oocysts have been reported to remain viable in 

moist environments for up to 6 months (Prescott et al. 2002). Salmonella spp. have 

been recorded to have persisted for 16 months (~504 d) in sludge applied to land 

(Dudley et al. 1980). However, in most circumstances pathogens below the soil 

surface are unlikely to survive for more than a year (Cliver 1980). Pathogens are 

mostly known to survive for longer periods in the soil than on plant surfaces (Epstein 

1998) due to higher levels of exposure to environment conditions such as ultraviolet 

(UV) exposure, increased temperatures and decreased moisture.  

 

In Australia, Eamens et al. (2006) studied the prevalence of E. coli, Clostridium 

perfringens and Salmonella spp. in soil amended with anaerobically-digested 

biosolids at Goulburn, New South Wales and found that bacterial numbers were 

above detection limits for 10 to 17 months. Previous work by Crute (2004) found that 

E. coli and enterococci were detectable for up to 6 months in biosolids-amended soil 

applied to dryland agricultural land at Toodyay, WA. Survival times are variable 

depending on a number of factors as is further discussed in Section 2.6. 

 

Internationally, there have only been limited studies on pathogens in soils amended 

with biosolids. Two examples of these studies include a soil experiment by Lang et 

al. (2007) and a forestry experiment by Horswell et al. (2007). Lang et al. (2007) 

measured the survival of E. coli in agricultural soil amended with conventionally 

treated and enhanced-treated biosolids in a temperate environment at Ascot in the 

Uniteed Kingdom. It was found that E. coli (in the conventionally treated biosolids) 

reached detection limits by 3 months. In New Zealand, Horswell et al. (2007) 

examined the decay rates of E. coli and Salmonella spp. in sewage sludge applied to 

young and old pine forests (Pinus radiata) and found that E. coli numbers returned to 

background levels after 3 weeks in the spring (with increasing temperatures and 

decreasing moisture availability), but did not significantly decrease in the 

autumn/winter until weeks 5 and 13 (with higher moisture levels and lower 

temperatures). 
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2.6. Factors influencing survival in the soil 

The major factors influencing survival of enteric microorganisms in the soil are 

summarised in Table 2-10. The survival of pathogens in soil is influenced by soil 

type (i.e. clay content and organic matter content), temperature, moisture, pH, 

utilisable organic matter (Ross et al. 1991; Lewis-Jones and Winkler 1991b; Epstein 

1998; Stevik et al. 2003), exposure to ultraviolet light, antagonism, competition and 

predation from soil microflora (Sorber and Moore 1987), soil nutrients (Estrada et al. 

2004) and ammonia (Jenkins et al. 1998). Survival is also influenced by initial 

numbers of microorganisms (Eamens et al. 1996), frost, concentration of inorganic 

salts, soil particle size (Lewis-Jones and Winkler 1991b), association with the soil 

and microorganism type (Pedley et al. 2004).   

 

The survival of pathogens in the soil is also affected by the method of biosolids land 

application and environmental conditions (Epstein 1998). Microorganisms that are 

protected from sunlight display a slower rate of inactivation (Ross et al. 1991). 

Microorganisms on the outer surfaces of the soil aggregates are exposed to UV light 

(Lewis et al. 2002) and are therefore destroyed through sunlight disinfection, 

desiccation and higher temperatures (Epstein 1998).   

 

Lower soil temperatures and higher moisture levels have been found to be the most 

influential environmental parameters to prolonging pathogen survival (Mawdsley et 

al. 1995; Cameron et al. 1997; Epstein 1998; Gerba et al. 2002; Liang et al. 2003). 

However, in some cases moisture content may be more influential than temperature 

(Liang et al. 2003).   A soil moisture content of less than 50% can be detrimental to 

microorganism survival (Ahmed and Sorenson 1995). This is the minimum level 

required for a rapid increase in microbial activity. A moisture content of 60-70% will 

optimise microbial activity  (Liang et al. 2003).  

 

Once microorganisms have been introduced into the soil they face competition for 

foods, are exposed to antibiotic materials from other microorganisms and are 

exposed to predation by other soil microorganisms (Loehr 1974). The application of 

biosolids introduces nutrients and carbon substrate that stimulate the soil microbial 



Chapter 2 

 24 

pool (Cameron et al. 1997). Interactions include mutualism, predation, parasitism 

and competition (Prescott et al. 2002). Human and animal pathogens are not well 

adapted to survival in the soil or at competing with indigenous organisms that are 

adapted to the environment, thus their existence is threatened and survival is 

difficult.  

 

Predation and competition activity are greatest at the soil’s surface (i.e. top 5 cm) as 

this region contains the highest levels of oxygen and decomposed matter. Biological 

controls such as temperature, moisture, pH and organic matter regulate pathogen 

survival, and thus, biological activity may be slowed through anaerobic conditions 

and lowered temperatures (Loehr 1974).  Protozoa are considered the main predators 

of bacteria (Stevik et al. 2003). Predation can reduce the stress factors caused by the 

density of microorganisms present, thus allowing prey to increase more rapidly than 

if the predator were not active (Prescott et al. 2002). In a study by Sidhu et al. (2001) 

indigenous microflora in composted biosolids appeared to reduce the potential for 

bacterial regrowth which may have been attributed to biological control.  

 

Rainy, humid weather may increase bacterial populations through regrowth, thus 

prolonging survival (Gibbs et al. 1995b) for, what is normally, a short period of time. 

It has been well documented that some bacterial pathogens are capable of regrowth 

given suitable conditions (Armon et al. 1994; Gibbs et al. 1995b; Gibbs et al. 1997; 

Sidhu 2000; Gantzer et al. 2001; Hassen et al. 2001; Sidhu et al. 2001; Gerba et al. 

2002; Pietronave et al. 2004). The occurrence of regrowth or repopulation of 

pathogenic microorganisms needs to be examined as a potential public health threat 

so that proper management procedures can be established (Ahlstrom 1985). Eamens 

et al. (1996) demonstrated increases in bacterial numbers in warm, wet 

environmental conditions where periods of maximum air temperatures were recorded 

in conjunction with recent substantial rainfall. Regrowth can only occur with bacteria 

though, since viruses, parasite eggs and protozoan cysts cannot grow outside a 

human or animal host (Lewis-Jones and Winkler 1991a). 
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Table 2-10: Major factors influencing virus and bacteria survival in soil 

Factor Viruses Bacteria 

 

Temperature 

 

Persistence longer at low temperatures 

 

Persistence longer at low temperatures 
 

Microbial activity 

 

Inactivation may occur more readily in presence of certain 

microorganisms, the opposite may also be true, or there 

may be no effect 

 

Presence of indigenous microorganisms may increase rate of 

inactivation; possible synergism with some protozoa may 

reduce inactivation rates 
 

Moisture content 

 

Survival is longer in moist soils and even longer under 

saturated conditions. However, increased reduction may 

occur in drying soils. 

 

Most survive longer in moist soils than dry soils 

 

 

pH 

 

Most are stable over pH range of 3 to 9; however, survival 

may be prolonged by near neutral pH values.  

 

Most will survive longer at near neutral pH. Increased acidity 

(i.e. lower pH) may reduce the survivability of bacteria. 

 
 

Organic matter 

 

Organic matter may prolong survival by competitively 

binding at air-water interfaces where inactivation can occur 

 

The presence of organic matter may act as a source of nutrients 

for bacteria, promoting growth and extended survival 
 

Association with 

soil 

 

Association with soil generally increases survival, although 

attachment to certain mineral surfaces may cause 

inactivation 

 

Adsorption onto solid surfaces reduces inactivation rates; the 

concentration of bacteria on surfaces may be several orders of 

magnitude higher than the concentration in the aqueous phase 
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Factor Viruses Bacteria 

 

Sunlight 

inactivation 

 

Viruses are more resistant to sunlight inactivation than 

bacteria. Adenovirus are resistant to ultra-violet light 

 

Bacteria are more sensitive to sunlight than viruses 

 

Salt species and 

concentration 

 

Certain cations may prolong survival depending on virus 

type 

 

Increasing ionic strength of the surrounding medium generally 

increasing sorption 
 

Bacteria/virus type 

 

Susceptibility to inactivation may vary by different 

physical, chemical and biological factors 

 

Susceptibility to inactivation may vary by different physical, 

chemical and biological factors 

Source: Adapted from Pedley et al. (2004) 
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2.7. Sampling containers used for soil 

Various types of sampling containers have been used to examine the survival of 

enteric bacteria and viruses in the soil. These include soil corers, microcosms, plastic 

bags, glass vials, diffusion chambers and sentinel chambers. For the research 

reported in this thesis, a suitable sample container had to be found to enable the 

monitoring of enteric pathogens in soil in the field without the loss of 

microorganisms. For this, some form of chamber was required to equilibrate with the 

environment so that the microorganisms inside could experience equivalent 

conditions to the field. This could not be achieved in a sealed plastic or glass vial; 

both examples of simple microcosms (see section 3.2).    

 

The following examples of the use of sample containers were found. Crute (2004) 

used sterile corers (syringes with the needle-attachment portion removed) to examine 

the decay times of E. coli, enterococci and bacteriophage MS2. For this study, the 

sampling was directed towards the biosolids applied to the soil thus collecting the 

areas where the study microorganisms were considered to be at their highest in 

number. While this method would have captured any environmental changes in the 

soil profile (such as soil moisture and temperature) over the duration of the 

experiment, it would not have enabled the sample contents to be contained, and 

therefore, did not provide a controlled environment from which to study 

microorganism decay. Vidovic et al. (2007) used polypropylene vials (capped soil 

microcosms containing 80 mL) to examine the survival of E. coli O157:H7 in two 

soil types amended with bovine manure, under sterile and non-sterile conditions. 

Hurst et al. (1980) used screw-capped (16 mL) glass vials containing sewage 

effluent-amended soil inoculated with a selection of viruses to measure the effects of 

various environmental variables on the rate of virus inactivation. Both sample 

containers, being capped glass vials, would not have allowed for gaseous exchange 

and moisture changes to flow in and out of the chamber. Since survival can be 

affected by such changes, particularly moisture, and environmental parameters need 

to be taken into consideration, this form of sample container was not considered 

suitable for the present research experiments. Similarly, partially sealed plastic bags 

were used by Lang and Smith (2007) to examine the fate of E. coli in biosolids-

amended agricultural soil in relation to soil type and moisture status. Sample bags 
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were placed into a temperature-controlled incubator and were sampled for each soil 

type. The plastic bags allowed for gaseous exchange to occur, but would not be 

suitable in a field experiment to capture moisture osmosis from the external soil 

environment. 

 

Two studies were found where environmental chambers were used. Toze et al. 

(2010) used Teflon diffusion chambers with mixed cellulose esters (Millipore) with a 

diameter of 25 mm and membranes (0.025 μm pore size) at either end to examine 

enteric pathogen decay in groundwater bores. The use of diffusion chambers was 

selected to allow groundwater and nutrients to cross through the membranes without 

the loss of inoculated enteric microorganisms, particularly viruses. Jenkins et al. 

(1999) developed a small-volume sentinel chamber (250 mm long x 7 mm internal 

diameter) to examine the effects of environmental stresses on the survival of 

Cryptosporidium parvum oocysts in soil and animal wastes (Figure 2-3). A 60 μm 

nylon-mesh filter was placed at the top of the chamber and a 0.45 μm pore-size filter 

at the base to allow for natural environmental interaction without the leaching of 

oocysts. Chambers were positioned vertically in animal waste piles and surface soil.  

 

Both types of environmental chambers enabled equilibrium with the external 

environment without the loss of the study microorganisms. In the current study, the 

sentinel chambers proved to be suitable environmental chambers in equilibrium with 

the outer environment (refer to Chapters 4 and 6). 

 

Figure 2-3: Sentinel chamber used by Jenkins et al. 1999 in field experiments 
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2.8. Enteric pathogen survival on the plant phyllosphere 

The phyllosphere in microbiological terms is described as the total above-ground 

surfaces of a plant colonised by a variety of bacteria, yeasts and fungi (Lindow and 

Brandl 2003). The rhizosphere, or below ground region of a plant where 

microorganism populations are present, was not examined in this research since the 

focus of the study was only on edible above-ground plant components. Williams et 

al. (2007) found that the persistence of pathogens (E. coli O157:H7) was unaffected 

at the rhizosphere or root zone. Of particular focus in the present study were the 

decay times of enteric pathogens from the phyllosphere in relation to biosolids-

amended soil where cereal crops (i.e. wheat) are grown.  

 

There are several factors that influence the persistence of enteric bacteria and viruses 

on edible plant parts. These include the external environment, the survival 

capabilities of the pathogen, chemical and physical factors, levels of nutrition 

(carbon and nitrogen) available in the leaves (Mercier and Lindow 2000; Lindow and 

Brandl 2003; Jablasone et al. 2005; Aruscavage et al. 2006; Aruscavage et al. 2010; 

Critzer and Doyle 2010), pathogen adaptability (Beuchat 2002), antagonism, sources 

of contamination (sludge or irrigation water), the toxic compounds released by the 

plant and other microorganisms and plant leaf health. The survival times of 

pathogenic microorganisms on plant foliage is primarily influenced by the rapid and 

extreme fluctuations that occur on the phyllosphere such as temperature (Lindow and 

Brandl 2003; Choi et al. 2004), relative humidity (Crook and Sherwood-Higham 

1997; Brandl and Mandrell 2002; Choi et al. 2004) and UV radiation (Abdulraheem 

1989; Fujioka and Yoneyama 2002).  

  

In addition, competition from other epiphytic microorganisms for moisture (Brown et 

al. 1980; Crook and Sherwood-Higham 1997; Cooley et al. 2006) and nutrition 

(Ibekwe et al. 2004) make enteric pathogen survival on leaf surfaces difficult 

(Mercier and Lindow 2000). Other factors known to influence epiphytic bacterial 

population sizes on plant leaves are adaptation to stress, reduced pH e.g. to below pH 

4.1 (Beuchat 2002; Weinberg et al. 2004), the carrying capacity of the leaf (eg. 

broadleaf vs. grasses) (Lindow and Brandl 2003), leaf texture (Armon et al. 1994), 

washing of the bacteria or viruses off the leaves eg. rainfall (Natvig et al. 2002), bio-
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film formation on plant tissue (Critzer and Doyle 2010), the location on the leaf 

(adaxial vs. abaxial) (Zhang et al. 2009), leaf ageing (Lindow and Brandl 2003) and 

the level of leaf damage (Brandl and Mandrell 2002; Aruscavage et al. 2008; Barker-

Reid et al. 2009). Zhang et al. (2009) found that E. coli O157:H7 populations 

survived longer on the abaxial (underside) surface than the adaxial (upper) side of 

plant leaves since the upper side is more exposed to direct sunlight and higher 

temperatures.  

 

The potential for contamination of salad crops grown in soil enriched with manures 

mostly depends on the survival capabilities of the pathogens present (Franz et al. 

2005). Levels of usable water are important for bacterial survival and proliferation on 

leaf surfaces (Lindow and Brandl 2003), yet a large proportion of bacterial colonies 

are washed from leaves (Brown et al. 1980) or reduced by non-penetrating agents 

such as UV light (Wilson et al. 1999; Sidhu et al. 2008). Rainy humid weather may 

result in increased pathogenic populations and prolonged survival (Brown et al. 

1980). Solar radiation alters the phyllosphere bacterial community composition 

(Jacobs and Sundin 2001). Climatic and agricultural determinants such as 

geographical location, wind, irrigation practices, management practices and the 

presence of insects, animals and birds can also influence the microbial ecosystem 

(Beuchat and Ryu 1997; Beuchat 2002). 

 

The plant cuticle contains waxes that make microorganism attachment to plant 

tissues difficult. For attachment of plant and animal pathogens to occur, this cuticle 

must be penetrated (Beattie 2002). Leaf lesions can provide protection (for 

microorganisms) from environmental stress (Brandl and Mandrell 2002). Injured 

plants can exude nutrients such as proteins and carbohydrates from damaged leaf 

tissues that can be used by enteric microorganisms present on leaves as a source of 

nutrition. However, injured plant cells may also release antimicrobial agents that 

could inhibit microbial populations (Beuchat 2002; Aruscavage et al. 2008). The 

nature of the protective cuticle, tissue pH and presence of antimicrobials dictate the 

types of plants that are more likely to be affected by microorganisms when damaged 

(Beuchat 2002). Thick waxy cuticles, which change as leaves age, may interfere with 

bacterial colonisation by inhibiting leaf surface wetting and diffusion of nutrients 

(Lindow and Brandl 2003). 
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Leaves constitute a very large microbial habitat (Lindow and Brandl 2003) and plant 

micro-biota interactions play a vital role in colonisation or inhibition of enteric 

pathogens in the phyllosphere of fresh produce (Critzer and Doyle 2010). Plant 

pathogens may have a synergistic or commensal relationship, such as the incidence 

of S. typhimurium with soft rot bacteria on retail market produce (Wells and 

Butterfield 1997; Beuchat 2002). Persistence of human pathogens in the phyllosphere 

may also be more successful where plant pathogens have weakened the plant’s 

defence mechanisms (Aruscavage et al. 2006) or where they have combined with 

human pathogens to reduce the effects of sterilisation (Wilson et al. 1999). 

Competition from human pathogens may increase with warmer temperatures, as in 

Brandl and Mandrell (2002), where competition from Salmonella occurred with two 

common colonisers of plant leaves (Pantoea agglomerans and Pseudomonas 

chororaphis) on cilantro (coriander) leaves. It is thought that the incidence of 

produce contamination may be reduced by promoting better agricultural practices 

that encourage the growth of competing bacteria such as Enterobacter asburiae 

(Cooley et al. 2006). 

 

The risk that human pathogens may internalise into salad vegetables plants has been 

reported to be low (Jablasone et al. 2005; Zhang et al. 2009; Ibekwe et al. 2009) and 

as a result was not discussed in relation to the present study, although it has been 

demonstrated that E. coli O157:H7 is capable of entering the root system of a lettuce 

plant under extreme conditions (Solomon et al. 2002; Horswell et al. 2006).  

 

Islam, Morgan et al. (2004) suggested that contaminated manure compost and 

irrigation water played important roles in contaminating soil and vegetables 

(Solomon et al. 2002). It has been well documented that faecal coliform may be 

dispersed by rain splash, and if so, could bypass physical barriers (Boyer 2008). 

Alternatively, disease transmission could occur indirectly by aerosols deposited on 

food, vegetation or clothing surfaces (Abdulraheem 1989). Other possible pre-

harvest sources of microorganisms may include water used to apply fungicides and 

insecticides (Guan et al. 2005), insects, inadequately composted manure, wild and 

domestic animals and human handling. Post-harvest sources may include harvesting 

equipment, transport containers, dust, rinse water and processing equipment 
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(Beuchat 2002). No studies could be found on the survival of enteric microorganisms 

on cereal grains. 

2.9. Pathogens in bioaerosols  

Bioaerosols are defined as “aerosols comprising particles of biological origin or 

activity which may affect living things through infectivity, allergenicity, toxicity, 

pharmacological or other processes” (Hirst 1995). Bioaerosols and exposures to them 

are influenced by a range of biological, physio-chemical, environmental and 

management factors. The probability of infection is related to microbial particle size, 

composition and the concentration of pathogens in the bioaerosols, along with the 

source, dispersal mechanisms in the air and environmental conditions at the site 

(Pillai and Ricke 2002). These factors should be considered in association with other 

factors that impact on the occurrence of disease transmission (such as characteristics 

of the host and pathways to transmission) as discussed in section 2.3.  

 

Previous studies (using biosolids) have recovered low concentrations of viruses and 

bacteria from aerosols (Fannin et al. 1977) and found that any pathogens in 

bioaerosols would be well below detection (Dowd et al. 2000). Most of the 

pathogens (i.e. bacteria, viruses, fungi, actinomycetes and biotoxins) commonly 

occurring in biosolids can be aerosolised except for helminths (Peccia et al. 2007). 

Brooks et al. (2005b) collected aerosol samples at loading, unloading, land 

application and background operations of biosolids. The greatest risk of infection 

was found to occur during loading operations. Crook and Sherwood-Higham (1997) 

stated that it was important to measure bioaerosol exposure near the breathing zone 

of the worker. Carducci et al. (2000) investigated the airborne biological hazards for 

plant workers at urban wastewater treatment plants and found no relationship 

between temperature, relative humidity or wind and airborne contamination. Fannin 

et al. (1977) found that conditions of lower wind velocity, higher ambient air 

temperatures and increased distance from bioaerosol emissions reduced airborne 

coliforms significantly. Mawdsley et al. (1995) found that wastes were safest 

dispersed in conditions of low wind speed, high UV intensity and a relative humidity 

of between 40-60%. 
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Microorganisms can die from aerosol shock, that is, once aerosolised they are 

exposed to a range of environmental decay mechanisms such as relative humidity, 

temperature and UV radiation (Edmonds and Mayer 1979). Sorber et al. (1987) 

reported most pathogenic bacteria such as Clostridium and Pseudomonas to be less 

susceptible to aerosol shock than indicator microorganisms because of the formation 

of survival mechanisms such as resistant endospores, as in the case of Clostridium. 

Enteroviruses are least affected by aerosol shock compared to other virus types. The 

viability of aerosolised microorganisms could be influenced by adverse temperatures, 

dehydration and humidity conditions; dehydration decreases the viability of some 

bacterial cells.  

2.10.  Methods used when collecting bioaerosol samples 

Bioaerosols samples may be collected using devices that place microorganisms 

directly onto agar media such as filtration devices and impingers that collect liquid 

(Crook and Sherwood-Higham 1997). Flow cytometry is also used to determine total 

numbers of microorganisms in bioaerosol samples. This method characterizes cells 

according to shape and size. Vital fluorescence staining allows for differentiation 

between viable and nonviable cells. Immuno-labelled fluorochromes then allow for 

further characterisation (Crook and Sherwood-Higham 1997). 

 

Delays in transportation between the experimental site and the laboratory may affect 

the viability of cells. Re-suspension medium may repair damaged cells, restore 

viability and give a representative sample of the levels of harmful bioaerosols present 

in the environment. Ingredients such as simple sugars (inositol or trehalose) and 

osmo-protectants enhance the recovery of stressed cells and may increase the 

tolerance levels of bacteria to drying (Crook and Sherwood-Higham 1997). 

 

Fannin et al. (1977) suggested that coliphages were preferable over coliforms for use 

as indicators in aerosols as the latter are less stable in an airborne state. Carducci et 

al. (2000) recommended that reoviruses and enteroviruses be used as indicator 

microorganisms for bioaerosols and that the sampling method represented that of the 

workplace being examined for the presence of bioaerosols.  
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2.11. Detection of microbial pathogens  

The most conventional ways to detect and enumerate bacteria and viruses from 

environmental samples is through either cultural or non-cultural methods. Cultural 

methods are the standard approach and have been adopted by most laboratories. 

Indicator bacteria and viruses are also used, particularly for water samples, to 

represent the survival patterns of enteric pathogens. Two of the main reasons that 

indicators are often preferred over pathogenic microorganisms are 1) to overcome 

culturing difficulties and 2) because they are safer for human handling.  

2.11.1. Cultural methods  

Cultural methods are the most common method of detection of microorganisms with 

the use of agar or broth to supply bacterial cells with the correct nutritional 

requirements for survival (Baker and Herson 1999) and repression of growth of non 

study microorganisms. Apart from direct plating onto agar, the three detection 

methods commonly used are membrane filtration, multiple fermentation tube 

(commonly known as most-probable-number or MPN) and defined substrate assay 

such as Colilert® Quanti-tray® 2000 system (WERF 2007). The United States 

Environmental Protection Agency (EPA) recommends the MPN methods 1680 and 

1681 for detection of faecal coliform in biosolids, method 1682 for detection of 

Salmonella and the plaque assay procedure for the detection of viruses in biosolids 

(USEPA 1989). Most studies on the survival times of enteric pathogens in biosolids 

have used the MPN method for the detection of bacteria (Eamens et al. 2006; 

Horswell et al. 2007; Lang et al. 2007; Eamens and Waldron 2008) since most 

guidelines (internationally) require MPN analysis for pathogen enumeration . 

 

Cultural methods have limitations (Crook and Sherwood-Higham 1997) such as 

underestimating the total number of cells present due to cell expiry. Some cells are 

unable to grow in media or at the temperatures used in the laboratory. Some stressed 

microorganisms are incapable of growth and are therefore undetectable. A theory 

exists that bacterial cells can enter a viable but non-culturable (VBNC) state where 

bacteria are still viable but unable to form colonies on growth medium (Baker and 

Herson 1999). In a study of stockpiled biosolids, where regrowth of faecal coliforms 

and Salmonellae occurred, Gibbs et al. (1997) stated that it should be possible to 
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detect bacteria in this non-culturable state if the reason for regrowth was due to cells 

in the viable but non-culturable state converting back to a cultivable form.   

 

Culturing methods may affect the accuracy of results, although this is not commonly 

a problem for indicators such as E. coli since selective agars are highly specific. The 

problem usually lies with detecting background numbers of pathogens where 

interference from overgrowth of indigenous flora occurs. Crute (2004) found that the 

enumeration of cells through culturing processes was hindered by background 

autochthonous flora that is common when processing samples containing biosolids. 

This issue can be overcome by inoculating with high numbers of the target pathogen.  

2.11.2. Non-cultural methods  

In some situations, molecular-based methods may be advantageous over culturing. 

The most common non-cultural methods used to detect and characterise sequences 

are staining (immunofluorescence) and molecular methods (nucleic acid sequences) 

(Baker and Herson 1999). Immunofluorescent methods use immnofluorescent dyes 

to stain microorganisms being tested so that microbial cells can be counted under an 

epifluorescent microscope. This method relies on the recognition of antibody 

molecules. Methods of direct counting by light, fluorescence or scanning microscopy 

can also be used to calculate the total number of cells in bioaerosol assays. The use 

of microscopy is limited because it relies on identifying microbial cells by their 

shape and size alone (Crook and Sherwood-Higham 1997) and is also very time 

consuming. 

 

Molecular-based methods for analysis such as polymerase chain reaction (PCR) can 

be beneficial in terms of sensitivity, accuracy and efficiency (Crook and Sherwood-

Higham 1997). Molecular techniques also make it easier to explore the diverse range 

of soil microbes through the nucleic acids present. This process involves culturing or 

the direct extraction of DNA of specific microorganisms and relating their nucleic 

acids to known structures in the soil (Prescott et al. 2002). There are several issues 

that can arise with methods such as PCR, particularly from biosolids samples, since 

PCR is easily inhibited by substances such as proteins, humic acids and fats. This can 

result in false negative results. Such inhibitors can be reduced by additives such as 

bovine serum albumin (BSA) (Kreader 1996) or further washing and lysing steps to 
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purify the samples as much as possible before running PCR. However, the use of 

further purification steps results in the loss of some DNA. Another disadvantage with 

the use of PCR is that it will detect both alive and dead cells and thus the ‘infectivity’ 

of the detected cells is uncertain. There are many types of commercial kits available 

now for the extraction of viruses from faecal and water samples (WERF 2007). 

 

Nucleic acid sequences use nucleic acid probes with nucleotide sequences. A gene 

probe containing deoxyribonucleic acid (DNA) extracted from an environmental 

sample is used to bind and match specific nucleotide acid sequences to the matching 

sequence of the selected microorganism (Baker and Herson 1999). The presence of 

microbiological material can be detected in any sample through the use of gene 

probes and PCR (Crook and Sherwood-Higham 1997). However, one disadvantage 

with using nucleic acid sequences is that the number of specifically-matching 

microorganisms can be too low for them to be drawn towards the probes. The use of 

PCR is then necessary to amplify these sequences into detectable levels (Baker and 

Herson 1999). 

2.11.3. Indicator bacteria 

A common practice in the detection of enteric pathogens is the use of indicator 

microorganisms as surrogates for pathogenic types (Baker and Herson 1999). 

Because minimal work has been carried out on pathogens in biosolids, similar 

indicator microorganisms for water are being used for biosolids. The use of 

indicators to detect human pathogens in water has long been in question (Koopmans 

and Duizer 2004). Many sources refer to the use of indicators in water as appropriate 

to the nature of their ingestion (drinking, recreational activities) but there is very 

little information on the most appropriate indicators to use for biosolids, given their 

likely method of ingestion i.e. from the soil (Ashbolt 2004). Despite this, waterborne 

indicators are still being used to detect pathogens in biosolids. Therefore much work 

is needed in this area.  

 

The choice of indicators should relate to the pathogenic potential, the range of 

survival mechanisms across different environments and their association with faecal 

matter (Eamens et al. 2006). It is important to select suitable indicator 
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microorganisms since most microorganisms of concern are not always present or 

their numbers are too low to monitor (Horan et al. 2004).  

 

Faecal indicator numbers (total coliform, thermotolerant coliform and enterococci) as 

inoculated into soil or biosolids samples may be higher than those typically found in 

human faeces (Gauthier and Archibald 2001). Faecal coliform may die off faster than 

actual bacterial pathogens (Edmonds and Mayer 1979). Hassen et al. (2001) found 

that the use of indicator microorganisms such as coliform was advantageous as 

opposed to actual pathogens, since indicators were often present at higher numbers 

than pathogens and indicators were safer to detect. Coliform bacteria have been used 

as indicators of faecal contamination in water for many years and have been found to 

give a reasonable indication of probable levels of pathogenic microorganisms present 

(Gallagher and Spino 1968; Fannin et al. 1977).  

 

E. coli is typically used for detection of environmental faecal pollution in water 

samples (Mawdsley et al. 1995) although it is a poor indicator for the presence of 

parasitic protozoa and viruses in drinking water since both microorganisms survive 

longer than the indicator bacterium (Stevens et al. 2002). Wilkinson et al. (2003) 

found that Salmonella and Campylobacter were present when the indicator bacteria 

E. coli could only be detected by enrichment. Enterococci are reported to be reliable 

and successful indicators of faecal pollution because of their ability to grow at high 

temperatures (45˚C) and high pH (9.6) (Scott et al. 2002). They are also generally 

more resistant to a variety of environmental factors than coliform (Hassen et al. 

1998). However, faecal streptococci cannot be used as an indicator of faecal bacterial 

contamination in biosolids as it has a different level of susceptibility to the treatment 

processes than Salmonellae (Lewis-Jones and Winkler 1991b). 

2.11.4. Viral indicators 

Because of the many difficulties associated with the culturing of enteric viruses, viral 

indicators such as bacteriophages are used to indicate viral behaviour in biosolids 

and wastewater. Bacteriophages are used as surrogate viruses to represent human 

enteric viruses because they infect bacterial cells and are relatively easily cultured. 

They are not harmful to humans and have thus been used as a popular indicator for 

the detection of faecal pollution and for the modelling of viral transport in the 
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environment (Baker and Herson 1999). Even though similar in structure and 

behaviour to human pathogenic viruses, bacteriophages cannot be relied upon alone 

to indicate the presence, nor safety, of human faecal waste at exposure (Koopmans 

and Duizer 2004).  

 

There can be difficulties in detecting viruses in biosolids-amended soil. The 

detection and enumeration of bacteriophage MS2 can be difficult due to the viscous 

and muddy nature of biosolids (Crute 2004). Viruses may bind strongly to the soil 

and be difficult to recover. Virus survival can be prolonged because of this 

competitive binding onto organic matter (Pedley et al. 2004), soil or biosolids. 

Bacterial contamination can impair the performance of plaque assays used for the 

enumeration of bacteriophages (Lasobras et al. 1999). 

 

Bacteriophage may be used as an indicator for pathogenic viruses but may not reflect 

similar survival behaviour. Adenovirus are resistant to UV light (Carducci et al. 

2000) and therefore are unlike bacteriophage. It has been suggested that 

bacteriophage could be used as an effective surrogate for norovirus (Dawson et al. 

2005).  
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2.12. Future risks from enteric pathogens 

2.12.1.  Emerging diseases 

There is underlying risk that new pathogens may emerge, resulting in new diseases 

(e.g. E. coli O157). Emerging diseases are defined as infections that have reappeared 

after a decline in incidence, have been present in the population but passed 

undetected and are new diseases, or are established diseases that have been newly 

recognised as infectious. Such emerging diseases would normally have been shown 

to increase within the past two decades and would have the potential to threaten 

future populations. Emerging pathogens or microbial evolution are also of threat to 

humans with the increasingly close association between humans and animals, such as 

the domestication of pets into internal living areas (Ashbolt 2004). 

 

Foodborne infections have also changed considerably over time (Tauxe 2002). Some 

established pathogens have been controlled or eliminated through technology and 

some new pathogens have emerged due to changing ecology and adaptation to new 

technology. Scientific advances such as vaccines, antibiotics, improved sanitation, 

public health systems, diagnoses and education assist in the control of pathogen-

related infectious diseases (Nel and Markotter 2004). Despite this, the infectious 

diseases of most concern are those emerging, resurging or re-emerging diseases.  

 

Emerging pathogens may develop as a result of microorganisms crossing over from 

one to another species or non-pathogenic microorganisms transforming into 

pathogenic microorganisms through mutation, recombination or modification (Nel 

and Markotter 2004). For example, severe acute respiratory syndrome (SARS) 

resulted from a small genetic change occurring in a benign Coronavirus (Ashbolt 

2004). The disease strains that caused subclinical mastitis in sheep have recently 

been recognised as being related to a seed-borne disease in rice (Tauxe 2002). This 

raises the concern that enteric pathogens in biosolids, applied to land where grain 

crops are grown, could transfer to livestock and humans. 
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The occurrence of new or re-emerging waterborne pathogens is related to social and 

environmental change (Ashbolt 2004). Van de Berg et al. (2005) stated that new 

norovirus strains are continuously emerging and that some may be more adept at 

surviving environmental factors that would normally control such populations. Some 

of these strains may be more proficient in causing infection to individuals. A major 

factor contributing to re-emergence of pathogens and the spread of parasitic 

infections is related to human behaviour, and in particular, poor hygiene (Nithiuthai 

et al. 2004). 

        

The World Health Organisation (2003) implied that despite the degree of uncertainty 

and lack of information regarding re-emerging pathogens, neither the presence nor 

the absence of such pathogens should be assumed. Tauxe (2002) stated that we 

should “expect the unexpected”. A more proactive approach by water utilities to 

constantly improve the quality of biosolids and better communication across the food 

and distribution sector is important (Bruce and Evans 2002).  

 

The occurrence of re-emerging pathogens will continue to be a public health concern 

due to global population growth, climate change, ageing population therefore more 

vulnerable to infection (Tauxe 2002), increased international travel (i.e. infections 

occur abroad), recreational activities (e.g. water sports), migration, increased 

urbanisation where sanitation processes are overloaded), closer association with 

domestic animals (i.e. most modern communities) and changing international food 

trade patterns that combine new cuisines, tastes and food processing methods (Tauxe 

2002; WHO 2003). World population is projected to reach more than 9 billion people 

by 2050 (currently 7 billion), having increased by one billion people over the last 12 

years (Follett et al. 2005). Along with the threat of new diseases these increases have 

resulted in additional generation of waste and the need for improved disposal means.  

These changes have impacted our environmental systems (Cameron et al. 1997) and 

such changes ultimately affect food safety.  

 

Much research is required into the effects that the future changes to the climate could 

have on the spread of enteric pathogens, particularly where biosolids are currently 

applied to land as a beneficial resource. With greater climatic extremes expected, 

such as flooding or extended dry periods, rapid fluctuations could impact the way we 
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manage biosolids in the future. Collecting scientific data on the survival patterns of a 

range of pathogens (such as bacteria, viruses, helminths and protozoa) is the first step 

towards being able to identify the key areas of risk. Concerns about the potential 

health risks from pathogens associated with the land application of wastes will 

continue to occur into the future in the absence of available information on pathogens 

numbers and the survival of pathogens in biosolids and manures (Gerba and Smith 

2005). This is particularly important along the food production supply chain to 

ensure proper sanitation and reduction of cross-contamination of potentially 

dangerous diseases.  

 

The development of preventative technologies could possibly reduce future risks of 

pathogenic transfer. These include animal vaccination against zoonotic foodborne 

pathogens, treating foods with ionising radiation, composting and other pathogen-

reducing treatments for manures and the feeding of non-pathogenic, enteric 

microorganisms to animals to prevent colonisation of harmful pathogens through 

competitive exclusion (Tauxe 2002).  Livestock herds in developed countries are a 

major source of enteric pathogens; therefore, it is very unlikely that the risk of 

pathogen transfer from animals will be eliminated in the foreseeable future. 

 

Therefore, the responsibility of public health is spread across the entire food chain 

(Tauxe 2002). With the freeing up of food trade laws from developing to developed 

countries, pathogen guidelines will need to become more stringent and consistent to 

protect consumers from food crops such as vegetables that have been irrigated with 

faecally-contaminated water (Ashbolt 2004). The threat of such contaminations 

should not be overlooked (Kozan et al. 2005). Crop production for human 

consumption should not be permitted in areas where the irrigation water may be a 

health risk to the consumer (Koopmans and Duizer 2004). 
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2.13. Gaps in the knowledge  

From the search of available literature, several knowledge gaps have been identified 

in relation to the research to be conducted in this thesis: 

 

 Published data on survival times for enteric pathogens in soil, in particular soil 

amended with biosolids is relatively sparse. The information available is dated 

therefore does not generally track decay over the longer term, and the methods 

used to derive the survival times is often unclear; 

 Very few studies have been conducted in Australia on enteric pathogen 

survival where biosolids are currently used. Australia applies 50-70% of its 

biosolids to agricultural land yet no data is available specific to the various 

soil types and climatic conditions for each region; 

 No information is available on the decay of enteric pathogens from 

consumable plant parts or grains that are grown following biosolids 

application to the soil;  

 There is no comparative data on pathogen survival in animal manures which 

are used extensively as fertiliser throughout Australia and the rest of the 

world;  

 More studies are required on the climatic conditions that influence enteric 

pathogen survival in biosolids-amended soils;  

 There is insufficient information available on the survival times of viruses, 

helminths and protozoa in biosolids or biosolids-amended with soil; and 

 Laboratory methods need to be developed for the quantification of various 

enteric pathogens from soil amended with biosolids. 
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2.14. Further research needs 

It has been well recognised that there is a lack of information on the survival patterns 

of enteric pathogens, present in the soil from the application of biosolids to 

agricultural land (Gerba and Smith 2005; Lang et al. 2007; Sidhu and Toze 2009). 

Microbial risk assessment requires more sophisticated data on the survival and 

transport of pathogens during the land application of biosolids, to ensure 

management practices including treatment processes, and cropping and harvesting 

restrictions are appropriate, to ensure human health is protected from enteric disease 

where sludge is used in agriculture.    

 

One specific research need, identified in this thesis, was to contribute to the 

information on numbers and survival patterns of pathogens and indicators in 

biosolids-amended soil where food crops are produced around the world (Lang et al. 

2007). In order to do this, the following research was required: 

 

 Development of improved methodology for monitoring and enumerating decay 

of enteric pathogens in the field over time (eg. across the stages of crop 

growth); 

 Determining the decay times at each stage along the pathways to consumption 

of a food crop such as from the time biosolids are applied, while the crops are 

grown and when the plant components are consumed, to identify peak times of 

risk to consumers; 

 Determining the effect that biosolids have on the survival patterns and decay 

times of enteric pathogens in agricultural soil; 

 Establishing the presence or absence of airborne contaminants in dust during 

grain harvesting operations where biosolids have been recently applied (i.e. 6-7 

months prior); and  

  Determining the influence of climatic conditions and soil type on enteric 

pathogen numbers (under Australian conditions). 
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2.15. Summary  

 As increasing volumes of wastewater are produced and, as a result, more 

biosolids are being produced, sustainable and beneficial ways to use biosolids 

such as application onto agricultural land is becoming more popular. However, 

biosolids contain pathogenic contaminants of potential harm to human (and 

livestock) health and this risk must be understood in order to be correctly 

managed; 

 Pathogens can cause severe illnesses in humans such as gastroenteritis, 

diarrhoea, dysentery, cholera and meningitis. Regulations are set in place in the 

form of guidelines to minimise the risk of transmission of pathogens, and thus 

disease, from land-applied biosolids. Despite this, the survival patterns of such 

pathogenic contaminants needs to be better understood, particularly in 

Australian agricultural soils where the majority of biosolids are applied; 

 In addition, some of the factors affecting the survival of pathogens in the 

external environment (i.e. outside the host) need to be examined such as 

changes to soil temperature and soil moisture levels. This is necessary to 

identify the factors such as soil type or climate that may prolong pathogen 

survival (e.g. cold temperatures, wet conditions, soils with high organic matter); 

 To enable the survival patterns of pathogens to be examined in the field (where 

typical broadacre cereal crops are grown), a method needs to be established that 

enables a more controlled environment, while capturing natural decay processes 

where biosolids are currently being applied. For this reason, experiments in the 

glasshouse would not suffice alone since natural changes in soil and air 

temperature, humidity, soil moisture via rainfall events and natural predation 

from indigenous microorganisms would not be allowed to occur naturally; 

 A form of microcosm needs to be used that acts as an environmental chamber. 

This needs to allow for gaseous and moisture exchange to occur without the 

loss of microorganisms; 

 Since pathogen decay needs to be examined over the period of time of greatest 

risk to human health, decay times for bacteria and viruses in the soil needs to be 

examined over the growing season (approx. 6 months or more) of crops 

typically grown following the application of biosolids; 



Chapter 2 

 45 

 In addition, the decay times for pathogens (or enteric microorganisms) from 

parts of the wheat phyllosphere needs to be examined. If these microorganisms 

persist on the leaves and spikelets of wheat, then the risks to human health at 

consumption would be increased; and 

 Following this, should the pathogens survive in the soil into harvest time, the 

levels of bacteria in the dust at harvest needs to be examined, along with 

whether the threshing process will result in a more rapid inactivation of the 

pathogens. 

 Since pathogens are difficult to enumerate from biosolids/soil samples 

(compared to water samples) the use of indicator microorganisms would be a 

useful research tool, used in conjunction with the study of some pathogenic 

microorganisms as a comparison. For this reason, the indicator microorganism 

E. coli and surrogate virus bacteriophage MS2 would be useful, to compare 

with S. enterica and human adenovirus. Culturing using selective agars is 

deemed most suitable for the enumeration of E. coli, S. enterica and 

bacteriophage. The molecular-based method of PCR using extraction kits would 

be most suitable for the detection of adenovirus. 
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CHAPTER 3 GENERAL MATERIALS AND METHODS  

 

Standard methods of enumeration and quantification of enteric microorganisms 

(from microbiology laboratory protocols and procedures for water) were used across 

the entire study to ensure the methodology was robust and able to be replicated. All 

soil experiments involved the use of sentinel chambers, and general laboratory 

methods were employed to culture the study microorganisms and to quantify them 

over the duration of the experiments.  

3.1. Experimental strategy 

The experimental program used some of the described general methods and 

materials; other methods as relevant to each experiment are described within each 

chapter.  

 

The experiments conducted under this research program follow the growing season 

of wheat in the field, as typical to broadacre cropping conditions. A broad outline of 

the research program is provided in Table 3-1. The research comprises of an initial 

experiment in the glasshouse (Chapter 4) to examine the decay times of S. enterica 

and bacteriophage MS2 in soil chambers inserted vertically into soil in pots. 

Following this, three experiments were conducted in the field in grain growing 

regions of Western Australia (Moora) and South Australia (Mount Compass) where 

biosolids are currently applied to land (Chapter 6). These experiments, conducted 

over approximately 6 months, enabled the decay times of indicator and pathogenic 

bacteria and viral strains to be derived. A glasshouse experiment was conducted at 

the flowering stage of wheat (Chapter 7) to examine the decay times of inoculated 

enteric microorganisms from the spikelets and leaves. At harvest, dust experiments 

were conducted on-farm in the field in Western Australia to test for the 

presence/absence of residual bacteria in the soil, chaff, spikelets, grain, leaves and 

dust where biosolids had been previously applied (Chapter 8). In addition, a thresher 

experiment was conducted to examine the effect of threshing on the inoculated 

enteric microorganisms.   
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Table 3-1: Outline of experimental programs used in the current research project 

Experiment Location Year/s Purpose Study microorganisms 

Soil  

Glasshouse, 

Floreat  2006 To test methodology and obtain initial decay times 

S. enterica and 

bacteriophage (MS2) 

Soil  

Field, 

Moora  

Mt Compass  

2006 

2008 

To examine the decay times of inoculated enteric 

microorganisms in the soil of a biosolids-amended wheat crop 

E. coli,  

S. enterica,  

MS2 and  

adenovirus 

Phyllosphere  

Glasshouse,  

Floreat  2007 

To examine the decay times of inoculated enteric 

microorganisms on the spikelets and leaves of wheat 

E. coli,  

S. enterica and  

MS2 

Thresher  

Undercover area, 

Northam 2008 

To examine the effect of threshing on inoculated microorganisms 

from spikelet to dust 

E. coli,  

S. enterica and  

MS2 

Harvesting  Field, Moora  

2008  

2009 

To determine the presence/absence of bacteria in wheat dust 

where biosolids have been applied to the soil 

E. coli,  

enterococci and 

heterotrophic bacteria 

 

 



Chapter 3 

 48 

3.2. Sentinel chambers 

Sentinel chambers were selected as the tool for studying pathogen decay in soils (see 

section 2.7). Sampling containers or chambers have two applications: a) to contain 

sample contents and b) to act as environmental chambers. The sentinel chambers 

described by Jenkins et al. (1999), as similar to the diffusion chamber described in 

Toze et al. (2010), were selected because they provided suitable representation of the 

external environment (such as changes in soil temperature and soil moisture) while 

containing the sample contents. The applications for each type are described below: 

 

a) The sample container is to provide an enclosure to hold a sample during 

controlled environment investigations under laboratory conditions. This is a 

simple application and can be in the form of a plastic bag, pot or container. 

The container allows the sample to be exposed to the specific environmental 

treatment conditions but this exposure is limited. The vessel therefore is 

simply a means of containing the sample so that the experiment can be 

carefully performed under controlled conditions i.e. controlled temperatures 

or moisture levels. 

b) The environmental chamber is to enable the test microorganisms inoculated 

into the matrix in the chamber to be in continuous equilibrium with the 

external environment, so that they experience the same conditions should 

they exist in the outside environment. The conditions inside the chamber 

should adjust with changes in soil moisture levels i.e. following rainfall 

events or dry period as well as soil temperature changes. 

 

For these reasons, the sentinel chambers were advantageous in providing both a 

sample container to contain the soil, biosolids and microorganisms, but more 

importantly, a controlled environmental chamber from which to study 

microorganism decay in the field. In addition, the chambers avoided leaching and 

cross-contamination with the environment; reduced random error between samples; 

simplified sampling procedure; for ease of handling; and the commercial Microsep™ 

centrifugal devices were easily available.  
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The sentinel chambers used in the survival experiments (Figure 3-1) were assembled 

similar to the design used by Jenkins et al. (1999).  In the present study they were 

constructed using commercially produced Microsep™ centrifugal devices (35 mm 

long x 10 mm internal diameter, PALL Life Sciences, New York USA) with a 

membrane pore size of 300,000 molecular weight cut-off (MWCO) or approximately 

0.03 μm encased at one end. A commercially-produced 0.2 μm LidBAC® membrane 

lid from 2.0 mL Eppendorf® Safe-Lock® (Eppendorf®) was fitted to the opposite 

end of the chamber and sealed with Petrifilm™. The pore size of the Microsep™ 

membrane and the Eppendorf lids were sufficiently large to allow exchange of gases 

and moisture without the loss of bacteria or viruses from the chambers.  

 

Following assembly of the chambers with the calculated proportions of soil, 

biosolids and microorganisms (Figure 3-2), the chambers were then fitted at the top 

with the membrane lid, sealed at the sides with tape (as described above) and 

randomly placed into the soil (at depth <10 cm to simulate the placement of biosolids 

in the field) in a vertical orientation to allow for gaseous and moisture exchange into 

and out of the chambers, as would naturally occur in the soil profile.  

 

 

Figure 3-1: (Top left) A commercial 3.5 mL Microsep™ centrifugal device (Pall Life Sciences) 

and; (bottom right) a sentinel chamber (35 mm x 10 mm) with the sample contents soil, biosolids 

and seeded microorganisms 

35 mm 
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Figure 3-2: Filling the chambers with soil, biosolids and cultured microorganisms (CSIRO 

Microbiology Laboratory, WA) 

 

Figure 3-3: Pink tags used to mark the location of each sentinel chamber under the soil 



Chapter 3 

 51 

In the field, flags or pink marker tags were placed in the soil above each of the 

chambers to mark their location under the soil (Figure 3-3). At sampling, the required 

number of chambers was randomly selected from the appropriate plot by individually 

removing them from the soil with a trowel and placing them into labelled plastic 

bags. Each bag containing the correct number of chambers from each plot was placed 

immediately on ice and transported to the laboratory for processing within 24 h.  

 

The disadvantages of the sentinel chambers were: the sample size was limited to the 

available Microsep™ device and therefore quite small (~3 to 5 g); the flow of 

moisture and oxygen in and out of the chamber may have been slightly delayed or 

slower than what would have normally occurred across the soil profile; and the use 

of individual chambers for each sample (i.e. in destructive-style sampling) meant that 

the decay rates were not derived from the same place (i.e. as would have occurred 

with a lysimeters-type container).  

 

Figure 3-4 demonstrates that soil moisture content (%) inside the chambers followed 

similar patterns to the soil moisture outside the chambers (in the topsoil at 0-10 cm in 

the field) although the soil moisture levels over time were generally more stable 

inside the chambers. The soil moisture probes outside the chambers (tensiometer 

readings measuring centibars) followed similar patterns to the moisture changes 

inside the chambers in the topsoil. In addition, Figure 3-5 shows that microorganism 

decay patterns followed closely to the changes in soil moisture over the duration of 

the experiment thus indicating that the chambers were successfully equilibrated with 

the external environment. More information regarding the chambers is provided in 

Chapter 6. 
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Figure 3-4: Comparison of soil moisture changes inside the sentinel chambers, in the topsoil (0-

10 cm) and from the soil moisture probes (kPa) in the unamended soil at Site B, Moora 2008. 
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Figure 3-5: Changes in MS2 numbers inside the chambers in association with the soil moisture 

changes inside the chambers at Site B, Moora 2008.



Chapter 3 

 53 

 

3.3. Microorganism cultures 

The microorganisms used in the experiments were Escherichia coli (ACM 11775) 

commonly used as an indicator of enteric bacterial pathogens; Salmonella enterica 

serovar typhimurium (ATCC 13311) as a representative human pathogenic bacteria; 

bacteriophage MS2 (ATCC 15597-B1) as a surrogate virus; and adenovirus serotype 

41 as a representative human pathogenic virus. Note the biosolids used in the 

experiments was not sterilised (autoclaved) therefore any environmental strains 

present (such as E. coli, Salmonella or adenovirus) would have been enumerated 

across the duration of the experiment (using selective agars or PCR) along with the 

laboratory-cultured strains.     

 

E. coli and S. enterica were cultured in 100 mL nutrient broth (Oxoid) and incubated 

in a shaking platform incubator at 37˚C overnight. The cultures were purified by 

centrifugation at 5,000 rpm for 10 min and washed twice in sterile P-buffer to 

remove culture media and then resuspended in P-buffer prior to use. 

 

The bacteriophage MS2 was cultured in tryptone yeast extract broth (Oxoid) with a 

log phase host culture of E. coli HS(pFamp)R (ATCC 700881). The E. coli host was 

grown in 100 mL of tryptone yeast extract broth (Oxoid) containing 1 mL each of 

calcium chloride (CaCl2.2H2O) solution, magnesium-sulphate (MgSO4) solution and 

antibiotics (ampicillin and nalidixic acid) in a shaking incubator at 37˚C overnight. 

To produce the MS2 culture, an exponential culture was made up from the overnight 

bacteriophage E. coli HS(pFamp)R culture by seeding 1 mL of MS2 stock into the 

new host E. coli log culture and incubating in a shaking incubator at 37˚C for 4-5 h. 

To the exponential culture, 100L of MS2 stock was added and placed in the static 

incubator at 37ºC overnight.  Crude MS2 culture was purified by centrifugation at 

6,000 rpm for 10 min and passed through a 0.2 μm membrane to remove bacterial 

cells. Purified bacteriophage MS2 culture was stored at 4˚C. The MS2 and bacteria 

cultures were then acclimatised in sterile P-buffer overnight at room temperature 

prior to inoculation. The final microbial numbers in the suspensions for each culture 

type are provided for each individual experiment within the appropriate chapter. 
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Adenovirus serotype 41 was sourced from the Pathology Centre, WA. The virus was 

cultured in cell lines (African Green monkey kidney cells) and then harvested from 

the lawns. The initial number of infective viral particles in the viral suspensions was 

determined by the Pathology Centre (Perth, WA) through the MPN method in fresh 

cell culture lawns. The infective titre for the virus suspension was determined to be 

approximately 10
7
 PFU mL 

-1
. This stock was stored at -80ºC until required. The 

detection limit for adenovirus using quantitative PCR was determined by making 

serial 10-fold dilutions of extracted viral DNA and determining the lowest detectable 

dilution. The highest detectable dilution in which adenovirus was detected by PCR 

was 10
-6

 which equated to a detection limit of ca 10 or less adenovirus DNA 

molecules per PCR reaction (based on original MPN titre of 10
7
 PFU mL 

-1
).   

3.4. Microbial quantification 

All analyses for the quantification of pathogens were performed in triplicate. All of 

the bacteria were detected by spread-plating 100 μL of appropriate dilutions (based 

on the anticipated number of viable bacteria cells present) onto the respective agar 

plates using sterile glass spreaders. E. coli was detected on Chromocult™ coliform 

agar (Merck), S. enterica on xylose lysine deoxychlorate (XLD) agar (BBL), 

enterococci on Chromocult™ Enterococci Agar (Merck) and heterotrophic bacteria 

on R2A Agar (Oxoid). Inoculated plates were incubated at 37ºC overnight (28ºC for 

R2A plates) and then typical colonies were counted. Colony morphology for E. coli 

was deep-purple; for S. enterica, black colonies with pink borders and for 

enterococci, dark-pink colonies. For heterotrophic bacteria, all coloured colonies 

were counted. Dilutions containing 20-200 colony forming units (cfu) were selected 

for counting. The detection limit of this methodology was 3 cfu mL
-1

. The cfu per 

gram were then calculated from the original weight of the samples processed. 

 

Presumptive S. enterica colonies, with clear or yellow surrounds, were confirmed by 

streaking onto CHROMagar™ Salmonella (BBL). Plates were incubated at 37ºC 

overnight. Purple-coloured colonies were recorded as positive and any inhibited, blue 

or colourless colonies were considered negative. 
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The standard method of enumeration using MPN, as provided under the guidelines 

(refer to section 2.11.1), along with the recovery step to revive and recover the 

maximum number of cells was not used in this research project. MPN methodology 

is generally used for the detection of pathogens which are often present in low 

numbers. For this study, we considered the use of MPN methodology but it was not 

used for two reasons. Firstly, the pathogens and indicators were seeded into the 

biosolids at higher numbers than are found in the environment or in biosolids so that 

they could be detected easily using spread plate counts. Secondly, the seeded 

biosolids were sampled at regular intervals in order to determine inactivation rates. 

From this data collected, a decay slope could be produced. MPN methodology is 

more labour intensive, with perhaps marginal improvement in quantitative detection 

of microbial numbers. In addition, the rate of inactivation (which was the objective) 

could be measured accurately enough, provided that the same methodology was used 

across the sampling events.  

 

The quantification of F-specific bacteriophage MS2 was carried out using a 

modification of the standard double layer agar method (Havelaar and Hogeboom 

1984) with tryptone-yeast extract medium (TYG) containing: tryptone (Oxoid, 

England) 10.0 g L
-1

; yeast extract (Oxoid, England) 1.0 g L
-1

 and sodium chloride 

(NaCl) solution (BDH, Australia) 8.0 g L
-1

. The basal medium was sterilised (15 min 

at 121ºC) and then glucose (C6H12O6) (BDH, Australia) 500 g L
-1

; calcium chloride 

(Merck, Australia) 150 g L
-1

 and magnesium sulphate (BDH, Australia) 150 g L
-1 

were added. Top-layer agar (semi-solid) contained 1% Agar Bacteriological (Oxoid, 

England) (w/v) and bottom layer agar contained 2% (w/v). The host bacteria, E. coli 

HS(pFamp)R (ATCC 700881) was grown to exponential phase in 100 mL of 

tryptone yeast extract broth (Oxoid) containing 1 mL each of glucose-calcium 

chloride solution, magnesium-sulphate solution and antibiotics (ampicillin and 

nalidixic acid) in a shaking incubator at 37˚C for 3 h. Culture (100 μL) of the 

exponential phase E. coli was seeded into the top-layer agar and poured immediately 

onto the plates.   

 

MS2 were detected by drop-plating three replicate 10 μL aliquots of appropriate 

dilutions (based on the anticipated number of infective phage particles present) onto 

the surface of the double-layer medium inoculated with the E. coli host. The method 
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of spot inoculation or drop-plating was a modification (used in this research) to the 

referenced pour plate method described by Havelaar and Hogeboom (1984). 

Inoculated plates were incubated at 37˚C overnight and then typical 1-2 mm clear 

plaques of MS2 were counted. Clear plaques were counted to determine the average 

plaque forming units (pfu g
-1

) after incubation at 37ºC overnight. Dilutions 

containing 1-30 plaques were selected for counting. The detection limit of this 

methodology was 30 pfu mL
-1

. 

 

The quantification of human adenovirus genomes in biosolids was performed by 

determining the number of PCR detectable copies of genomic DNA using 

quantitative PCR (examples in Figures 3-5 and 3-6).  To extract the adenovirus DNA 

template, 1 g soil samples from each chamber were weighed, suspended in 5 mL Star 

Buffer (Roche), vortexed for 2 min and stored overnight at 4ºC. Prior to extraction of 

the DNA, samples were vortexed again for 2 min, then centrifuged at 2500 rpm for 

10 min at 4ºC to remove soil particles. Adenovirus DNA was extracted from the 

supernatant using a QIAamp DNA Stool Mini (Qiagen) as per manufacturer 

instructions. To increase the DNA yields, a modification was made to the initial cell 

lyses step where samples were heated at 90°C for 10 min, rather than 70°C for 5 min. 

The resulting extract containing template was then stored at -80C until analysis. 

 

Quantitative PCR reactions for detection of adenovirus DNA were performed on 

Bio-Rad iQ5 (Bio-Rad Laboratories, California, USA) using iQ Supermix (Bio-Rad).  

Each 25µL PCR reaction mixture contained 12.5 µL of SuperMix, 120
 
nM of each 

adenovirus primer (Heim et al. 2003)  and 3 µL of template DNA.  Bovine serum 

albumin (BSA) was added to each reaction mixture to a final concentration of 0.2 µg 

µL
-1

 to relieve PCR inhibition (Kreader 1996). All DNA samples were analysed in 

triplicate. Thermal cycling conditions for adenovirus DNA detection were 

undertaken as outlined in Sidhu et al. (2010).  Briefly, initial incubation at 95ºC for 8 

min, then 55 cycles at 95ºC for 30 sec, 55ºC for 20 sec. 72ºC for 20 sec.  The final 

cycle had an extension time of 5 min at 72ºC.  

 

Mean viral copy numbers were calculated from a standard curve generated during the 

PCR using the iCycler software (Bio-Rad). The standard curve was generated from 

100-fold serial dilutions of adenovirus DNA using DNA extracted from the original 
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washed suspensions. Four dilutions (1:10) of the standard DNA were used to 

construct the standard curve starting with the initial extracted DNA solution being 

used as the first dilution (10
0
). Aliquots of the same standards were used for all 

samples and experiments for comparative purposes.  

 

A melt curve analysis was performed after the PCR run to differentiate between 

actual products and primer dimers, and to eliminate the possibility of false-positive 

results (Figures 3-7 and 3-8). The melt curve was generated using 80 cycles of 10 s 

each starting at 55°C and increasing in 0.5°C intervals to a final temperature of 95°C. 

The Tm for each amplicon was determined using the iQ5 software (Bio-Rad).   
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Figure 3-5: Example of qPCR amplification output for adenovirus in biosolids-amended soil 

 

 

 

 

 

Figure 3-6: Example of PCR Standard Curve for adenovirus in biosolids-amended soil 
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Figure 3-7: Example of PCR melt curve chart for adenovirus in biosolids-amended soil 

 

 

 

 

 

 

 

Figure 3-8: Example of PCR melt peak chart for adenovirus in biosolids-amended soil 
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Along with the internal melt curve testing above, a series of other quality control 

(QA) and quality assurance (QA) practices were employed. This involved the 

following measures: 

 

1. The use of separate laboratory areas and equipment for each stage of the 

process to avoid false positives resulting from carryover contamination of 

amplified virus particles or viral nucleic acid; 

2. The method ensured that if any false positives were identified, the run was 

discarded and the PCR reactions were re-run;  

3. Negative controls (non spiked Rnase/Dnase-free water) and positive controls 

(virus suspensions) were run with each set of samples and processed through 

the nucleic acid extraction and enzymatic amplification assays;  

4. Blank controls with the same reaction mixture, except for the template, were 

included with the PCR assays;  

5. Inhibition was tested with the viral stock of adenovirus which was diluted by 

serially diluting 10
-5

 to 10
-2

 in autoclaved biosolids and 100 µL of each 

dilution was inoculated into 1 g samples in order to test if the biosolids 

sample was capable of inhibiting the replication of viruses (Schlindwein et al. 

2010);  

6. PCR inhibition was tested with 3 µL of template from the biosolids DNA and 

3 µL of adenovirus DNA template to test for any inhibition occurring during 

PCR reactions. No PCR inhibition was observed with regular testing;  

7. Adenovirus recovery in soil and biosolids samples returned mean recovery 

efficiencies of 56% from the biosolids-amended soil and 55% from the nil-

biosolids soil;  

8. Non-autoclaved biosolids samples tested positive for human adenovirus. 

Therefore, the detection of the RNA viruses in this study were not inhibited 

by the natural levels in the biosolids samples tested. 
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3.5. Data normalisation 

Prior to statistical analysis, pathogen counts were normalised from the raw data in 

Microsoft ® Excel by transformation into log10 cfu g
-1

 using the log conversion 

formula (Equation 1). This was done to account for different dilutions, plating 

volumes, phosphate buffer levels and soil volume used. The pathogen numbers in 

each replicate for each sampling event were converted to log values so they could be 

plotted over time and decay times could be determined.  

 

Equation 1: 

Log10 Count = log10 [((Count *10^ 
Dilution

 *10^ 
volume plated

)*X mL) (1/g) +1]   (1)  

 

  where, Count is the number of cfu present between 20-200 per plate; 
Dilution

 is the 

variable number of the dilution (e.g. 1/1000 = 3, 1/10000 = 4); 
volume plated

 is a constant 

amount of sample spread onto each plate (e.g. 10 or 100 μL); X mL is the constant 

amount of P-buffer used to suspend the samples (e.g. 30 mL); 1/g is the variable 

amount of sample as determined by the net weight (g) of each sample; and the value 

of 1 was added to non detects (zero values) to take account of the problem of log 

transformation for the zero observations. 

 

The counts from Time 0 were removed from all field data prior to any statistical 

analyses as it was observed that some variability in numbers relating to clumping and 

un-clumping of microorganisms occurred between Time 0 and the first sample event 

that had a major effect on the reliability of the statistical analysis. Associated 

standard deviations, trendlines and logarithmic transformations were performed in 

Origin® 6.1 (OriginLab Corporation 1991-2000).  
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CHAPTER 4 THE TRIALLING OF THE METHOD TO 

STUDY THE EFFECT OF BIOSOLIDS ON THE DECAY 

TIMES OF S. ENTERICA AND MS2 IN SOIL 

 

4.1. Introduction 

Biosolids applied to agricultural soils contain contaminants, in particular enteric 

pathogens, which pose a potential risk to human health. Following contact, they can 

cause rapid illness in infected individuals (Sidhu and Toze 2009). There is a need for 

research on the survival of enteric pathogens in human waste incorporated with 

agricultural soil (Gerba et al. 2002; Horswell et al. 2007; Lang et al. 2007). There is 

not enough scientific data available on the decay times of bacteria and, in particular, 

viruses in soils and biosolids-amended soils. Some studies have examined enteric 

bacterial survival in soil, sewage sludge or animal manures under field conditions 

(Avery et al. 2004; Hutchison et al. 2004; Holley et al. 2006; Horswell et al. 2007; 

Lang et al. 2007; Wu et al. 2009) and laboratory conditions (Lang and Smith 2007) 

but there is no standard methodology for monitoring the persistence of enteric 

pathogens in the field, in agricultural soil or biosolids-amended soil, so that decay 

times can be obtained. Furthermore, difficulties with methodology are faced by the 

researcher, such as seeded pathogens being lost through the soil profile via leaching 

of microorganisms (such as viruses and oocysts) difficult to find in the soil. 

Therefore, a suitable methodology was required where the sample contents could be 

contained in some form of chamber while remaining under the influence of 

environmental changes. Unfortunately, the methodology used to study decay is not 

the same in every study and so it is difficult to properly compare results. Hence, the 

validation of the technique was required. 

 

In a few studies, some form of microcosm to contain sample contents such as 

polypropylene vials (Vidovic et al. 2007), screw-capped glass vials (Hurst et al. 

1980), sealed plastic bags (Lang and Smith 2007) or pots and trays (Chandler and 

Craven 1980) have been used (refer to Sections 2.7 and 3.2). For groundwater 

sampling Toze et al. (2010) used Teflon diffusion chambers inoculated with enteric 
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microorganisms with appropriate membrane filters at either end to retain 

microorganisms. In previous work, Crute (2004) used sterile corers (modified 

syringes) to sample directly into the field soil. Jenkins et al. (1999) used sentinel 

chambers (25 mm long x 7 mm wide) to examine the environmental stresses on the 

survival potential of Cryptosporidium parvum oocysts in soil and animal wastes. A 

nylon-mesh filter was placed at the top of the chamber (60 μm) and a porous filter 

(0.45 μm) was placed at the base, to allow for natural interactions to occur without 

the leaching of microorganisms and to therefore capture environmental effects. This 

approach met the following objectives: to provide representative samples of soil, or 

amended soil, that are consistent and of manageable size for processing and analysis; 

to prevent environmental contamination from leaching or leakage; to ensure 

uniformity across replicates in order to reduce random error that occurs when 

biosolids clump; thus enabling samples to be placed into the environment of choice; 

and to maintain samples under the influence of natural environmental changes such 

as rainfall events, soil temperature and sunlight infiltration.  

 

Research presented in this chapter is focused on developing and testing the 

methodology to be used in the overall study. This method was used to determine the 

decay times of bacteria and viruses introduced into agricultural soil through the land 

application of biosolids. The purpose of the study was to compile and then test all 

methodology, from seeding time (of the cereal crop and the inoculation of cultures) 

to the enumeration of microorganisms in the laboratory. This involved the 

development of an easy-to-use environmental sample container by modifying Jenkins 

et al. (1999) sentinel chamber design (designed for animal wastes) which could be 

used to take measurements of enteric pathogens in soil from the field. The specific 

objective was to compare the decay times of individual microorganisms in biosolids-

amended soil and unamended soil over the timescale of a growing wheat crop (in a 

pot study) to determine any treatment effect, as well as to compare the decay times 

across microorganisms.  
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4.2. Materials and methods 

4.2.1. Site description 

The study was carried out at the Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) centre for Land and Water at Floreat, Western Australia 

(WA). A pot experiment was conducted in glasshouse facility # 48 during a typical 

WA wheat season from May to November 2006. Soil was collected from a farming 

property in Moora, WA where biosolids are currently used as a fertiliser across a 

regular farm cropping program. This was also the site used for the field experiments 

described in Chapter 6. The soil, collected from the medium slope of a wheat 

paddock (A26 Silverfox Map, 30º 50’24.07”S, 116º 05’18.37”E), was a gravely-

loamy sand soil (Site A, Table 6-1, p. 102).  

4.2.2. Pot and sentinel chamber establishment 

Soil samples were taken from the topsoil (at depth of 10 cm) to fill the pots and 

chambers. Six TerraBoxes ™ (Planterra) plastic pots (450 mm length x 150 mm 

width x 100 mm deep) were established. Three pots for the biosolids-amended 

treatment were filled with approximately 7.60 kg of soil and the topsoil was amended 

with approximately 70 g of non-sterile (non-autoclaved) biosolids. The other three 

pots were filled with 7.65 kg of unamended soil (as the control). Biosolids to soil 

ratios were based on 1 litre of soil weighing approximately 1.10 kg (refer to 

Appendices Section 11.4.2).  

 

Mesophilic anaerobically digested biosolids were collected from the Woodman Point 

wastewater treatment plant, Perth, WA. The biosolids applied to the pots had a 20% 

total solids content and pH 7.0 (Site A, Table 6-2, p. 103). The rate of application of 

biosolids in the biosolids-amended pots was 14 g per 675 cm
2
 (based on 10 cm 

depth) which was based on 10 t ha
-1

 dry solids (DS) as equivalent to 1% biosolids to 

soil. Biosolids dewatered cake are currently applied in WA at rates of approximately 

8 t ha
-1

 DS (LeBlanc et al. 2008). The biosolids-amended and non-amended pots 

were cultivated with a sterile spatula and then wheat (Triticum aestivum cv. 

Calingiri) was planted at 10 grains pot
-1

, 4.5 cm apart and 2.5 cm deep (Figure 4-1). 

The fertilisers, diammonium phosphate and urea, were applied at 77 mg kg
-1 

and 53 

mg kg
-1

, respectively (refer to Appendices Section 11.4.6).  
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The microorganisms tested were S. enterica and bacteriophage MS2 and each was 

cultured as described in Section 3.3. The final suspension of S. enterica had a final 

number of approximately 1 x 10
7
 cfu mL

-1
. The final MS2 suspension was 

determined to have a final plaque count of approximately 1 x 10
8
 pfu mL

-1
.  

 

The sentinel chambers, constructed as described in Section 3.2, were filled with soil 

(either unamended or mixed with biosolids) and inoculated with a suspension of the 

washed cultures (S. enterica and MS2). Prior to filling the chambers, unamended soil 

was sieved (<2mm) and then split into two equal portions. One portion (385 g) was 

amended with biosolids at a rate equivalent to 10 t DS ha
-1

 (assuming an 

incorporation depth of 10 cm) to a final ratio of 113:1 (3.4 g biosolids to 382 g soil). 

The other control portion (385 g) was maintained in an unamended condition (refer 

to Appendices Section 11.4.5). Both portions were seeded with 3.5 mL of washed S. 

enterica and 3.5 mL of bacteriophage suspension to achieve a final number in the 

soil of approximately 1 x 10
6
 cfu g

-1
 of S. enterica and 1 x 10

8
 pfu g

-1
 of MS2. The 

amended and unamended soils (~2 to 5 g) were then used to fill the sentinel 

chambers. A total of 216 chambers (108 with unamended soil and 108 with soil 

amended with biosolids) were prepared. Each chamber was oriented vertically in the 

surface soil (to a depth of 10 cm) at the beginning of the experiment (after biosolids 

had been applied and wheat had been sown). Over the duration of the experiment, 

pots were watered to gravimetric soil water holding capacity without leaching to 

maintain constant soil moisture.   
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Figure 4-1: Pots sown to wheat (in biosolids-amended soil) with chambers placed in soil beneath. 

 

 

Figure 4-2: Diluting soil samples in phosphate buffer for plating 
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4.2.3. Glasshouse conditions 

Air temperature in the glasshouse was maintained at 17˚C (± 0.25) and relative 

humidity at 72% (± 0.97) by an air-conditioning unit. A data logger was used to 

detect any changes from this temperature range.  

4.2.4. Sample collection and microbial quantification 

The survival experiments comprised: biosolids-amended soil (as the experimental 

treatment) and soil only (as the control). Sentinel chambers were collected at days 0, 

5, 14 and 19. Sampling frequency was then reduced to approximately fortnightly and 

monthly intervals (days 34, 54, 76, 104, 133, 175 and 202) to a maximum of 7 

months, or until the experimental microorganisms fell below detection limits. At 

each sampling event, from days 0 to 34, three chambers from three pots in both 

treatments were randomly selected (9 chambers per treatment). However, from day 

54 to 202 (as chamber numbers decreased, but pathogens were still able to be 

detected) only one chamber from each block was sampled (three chambers per 

treatment), since only a limited number of chambers had been able to fit on the 

surface area of the pot. All samples were transported on ice to the CSIRO 

Microbiology Laboratory, Floreat, WA for processing within 8 h.  

 

Sample contents (~3 g) in each chamber were transferred into pre-weighed sterile 

polypropylene tubes (Sarstedt) and net weights were obtained. Earlier 

experimentation had been carried out (in this research) to determine the best sample 

size (1, 2.5 or 10 g) in proportion to the level of phosphate (P) buffer (9, 22.5 or 45 

mL) for optimal recovery of S. enterica. It was found that a higher rate of recovery of 

microorganisms could be obtained where 1:9 proportions were used. P-buffer (pH 

7.2) was added (30 mL), and the samples were vortexed for 2 min, left to settle, then 

vortexed again for 1 min (Keegan et al. 2009). A portion of the resulting supernatant 

above the soil was then collected and serial 10-fold dilutions were made in P-buffer 

(Figure 4-2). The quantification of pathogens was performed as described in Section 

3.4. The cfu g
-1 

and pfu g
-1

 were calculated on a per dry soil weight basis from the 

original weight of the soil sampled inside the sentinel chamber. 
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4.3. Data analysis 

Prior to statistical analysis, pathogen counts were normalised from the raw data as 

described in Section 3.5. 

4.3.1. Statistical analysis 

All analyses were performed using SAS package version 9.1 (SAS Institute, 2005). 

 

4.3.1.1 Analysis of variation sources for decay of individual microorganisms 

The mixed effect model analysis of variance (ANOVA) was used to identify 

significant variation sources affecting final pathogen counts (log10 Count) in 

individual experiments. The variation sources included the fixed effects (treatment, 

linear term of a covariate - sampling date, and their interactions) and random effects 

(block nested within the treatment and then the chamber nested within the block).  

The following equation was used (Equation 2): 

 

Equation 2 

Log10Y ijkln = μ + Ti + Sj + (TS)ij + Cl (TB)ik + eijkln        (2)

  

  

 where, Log10Y ijkl is the observation of the nth individual; μ is the overall mean; Ti is 

the fixed effect of the treatment (i =1, 2 corresponding to biosolids and nil, 

respectively); Sj is a covariate (regression coefficient) representing the fixed effect of 

the sampling date (j= 5, 14 …175); (TS)ij is the interaction between the ith treatment 

by the kth sampling date, representing the specific decay rate for either treatment; Cl 

(TB)ik is the random effect of the lth chamber (l=1, 2, 3) nested within the ith 

treatment and the kth block; and eijkln is the residual error of the nth individual.  

 

The variance and covariance estimates for random and fixed effects, and the least-

square effects of all the fixed factor comparisons were then produced. The regression 

coefficient of sampling date was used as the pathogen inactivation rate, or decay rate, 

where the time to a one log10 reduction of numbers (T90 value) was calculated using 

Equation 5 in Section 5.3.1 (p. 85) based on the decay slope (sdate). Based on the 

decay rate, the predicted model for individual pathogen survival patterns was also 

established for either ‘nil’ or ‘biosolids’ treatment.  
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4.3.1.2 Comparison of decay rates across all microorganisms  

A mixed model was formulated to examine the general decay patterns of treatments 

by comparing decay effects within trial across individual microorganisms as follows 

(Equation 3): 

 

Equation 3 

Log10Y ijklmn = μ + Om + Ti + Sj + (OT)im + (OS)jm + (OTS)mij + Cl (OTB)mik + eijklmn (3) 

 

 where, Log10Y ijklmn is the observation of the nth individual; μ is the overall mean; 

Om is the fixed effect of the organism (m = Salmonella, phage); Ti is the fixed effect 

of the treatment (i =1, 2 corresponding to biosolids and nil, respectively); Sj is the 

fixed effect of the sampling date (j=0, 5, …202); (OT)mi is the interaction between 

the mth organism by the ith treatment; (TS)ij is the interaction effects of the ith 

treatment by the jth sampling date; (OTS)mij is the interaction effects of the mth 

organism by the ith treatment by the jth sampling date; Cl (OTB)mik is the random 

effects of the lth chamber (l=1, 2, 3) nested within the mth organism, the ith 

treatment and the kth block; and eijklmn is the residual error of the nth individual. 
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4.4. Results 

4.4.1. Survival patterns of individual microorganisms 

Changes in S. enterica and MS2 numbers in the sentinel chambers in the biosolids-

amended soil and unamended soil are presented in Figure 4-3 and the decay times of 

these microorganisms are presented in Table 4-1. Further statistical results are 

available in the Appendices Section 11.4. The error bars in the following figures 

represent the standard deviation between the means of three replicates. 

 

Over the first 54 d, S. enterica numbers decreased more than four-log10 and fell 

below detection in the biosolids-amended soil (Figure 4-3a). At day 76, S. enterica in 

both soil types was able to be detected (>1 log10 cfu g
-1

 dry weight soil (dw)) but fell 

below detection again in the biosolids-amended soil at day 133. There was no 

significant difference (P=0.97) between the S. enterica numbers in the biosolids-

amended soil compared with the nil-biosolids soil since only 1% biosolids was used. 

The expected time for a one log10 reduction (T90) of S. enterica to occur was 25 d in 

both soil types (Table 4-1) with no significant difference (P=0.99) between decay 

times.  

 

Bacteriophage MS2 decay patterns were slower than the bacteria (S. enterica) and an 

approximate two-log10 loss occurred over the first 131 d of the experiment (Figure 4-

3b). After day 131, the decay rate was observed to increase such that MS2 was 

unable to be detected in both soil types. There was no significant difference (P=0.24) 

in the bacteriophage numbers in the biosolids-amended soil compared with the nil-

biosolids soil and no significant difference (P=0.41) between decay rates in both soil 

types. The estimated T90 decay times were 29 d in the biosolids-amended soil and 31 

d in the nil-biosolids soil (Table 4-1).  

 

When comparing the two microorganisms, using a linear decay rate, there was no 

significant difference (P=0.73) between treatments and no significant difference 

(P=0.67) between the decay rates in both treatments.  
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Figure 4-3: Decay of (a) S. enterica and (b) MS2 numbers in biosolids-amended (B-A) soil and 

nil-biosolids (N-B) soil with average, predicted observed values and standard error bars shown.  

 

(a) 

(b) 
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Table 4-1: Time for a one-log10 reduction (T90) of S. enterica and MS2 to occur in biosolids-

amended and unamended soil. 

 

 

 

 T90 times (days) 

 

Treatment 

 

S. enterica 

 

Bacteriophage MS2 

 

Biosolids-amended soil 

 

25 

 

29 

 

Nil-biosolids soil 

 

25 

 

31 

 

NB: The standard deviations on individual sampling events are provided in the figures. 
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4.5. Discussion 

The main purpose of this experiment was to act as a ‘trial run’, to validate all 

methodology (i.e. the chambers, laboratory protocol and procedures, inoculation, 

timing of seeding and biosolids application rate) and to collect some initial data on 

the decay times of S. enterica and MS2.  

4.5.1. Decay times 

In this experiment, the decay times of a bacteria and a surrogate virus were studied in 

soil inside soil microcosms (sentinel chambers). The experiment was established to 

determine the rate of inactivation of the enteric microorganisms in biosolids-

amended soil and unamended soils over the growing season of wheat in the form of 

an initial study.  

 

The estimated time required for one log10 reduction of microorganisms (T
90

) to occur 

was 25 d for S. enterica in both soil treatment types. Reduction times were slower for 

bacteriophage MS2 with T90 values of 29 d in the biosolids-amended soil and 31 d in 

the nil-biosolids soil. In a similar study, Crute (2004) found shorter decay times of 

less than 9 d for E. coli and enterococci seeded into biosolids-amended soil (8 and 16 

t DS ha
-1

) and nil-biosolids soil in the glasshouse. Decay times in this study were less 

than 14 d for MS2. However, Crute (2004) sterilised the biosolids in an autoclave 

before seeding them with microorganisms and incorporating them into the soil and 

this may have affected decay times, possibly due to the lack of predation that would 

have otherwise occurred between inoculated microorganisms and indigenous or other 

pathogens present in the biosolids. Soil corers were used to sample the soil rather 

than chambers and thus the microorganisms may have been reduced through leaching 

rather than as a result of inactivation.  

 

Holley et al. (2006) reported similar reduction times (time (DRT) for 90% reduction 

of Salmonella viability) across a simulated winter-summer period in Canada. 

Decimal reduction times were 16 to 21 d in hog manure-amended clay soil and 4 to 5 

d in unamended soil. In loamy sand soils, decay was faster with reduction times of 16 

to 17 d (manure-amended) and 0.4 to 3 d (unamended). Holley et al. (2006) stored 
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soils in containers covered with perforated lids under temperature-controlled 

conditions to simulate the seasons. Salmonella was quantified using direct agar 

plating as similar to the present study. A reduction time of E. coli in moist soil 

amended with dewatered mesophilic anaerobically digested sludge (DMAD) was 

reported by Lang and Smith (2007) as 20 d in different soil types (sandy loam and 

silty clay). NB: this was an incubation study using controlled temperatures.   

4.5.2. Reliability of sentinel chamber for pathogen survival studies 

The monitoring of microorganisms in the environment may be difficult since there 

are many external conditions that are unable to be controlled. The reduction of 

microorganism numbers may be a result of leaching, washing from rainfall or 

binding onto soil particles. One of the purposes of this study was to develop a soil 

microcosm that could contain the microorganisms under examination while still 

allowing the exchange of gaseous substances and moisture to occur, and to therefore 

provide a more controlled environment from which to study microorganism 

inactivation in the field. No studies apart from Jenkins et al. (1999) report the use of 

sentinel chambers to study pathogen inactivation in soil. In particular, no information 

was available on the decay times of enteric pathogens in chambers containing 

biosolids-amended agricultural soil.  

 

In the present study, a commercially-available chamber was sourced (i.e. the 

Microsep™ centrifugal device from PALL Life Sciences, New York, USA) suited to 

the dimensions and design required to act as a sentinel chamber, as described by 

Jenkins et al. (1999). Earlier experimentation had been carried out using hand-made 

Teflon diffusion chambers, similar to those used to monitor pathogen inactivation in 

water samples (Toze et al. 2010). However, due to the scale of the experiments 

designed for the present research, the diffusion chambers were too time-consuming 

and expensive to construct. The diffusion chambers were also difficult to assemble 

with soil, biosolids and microorganisms since the soil particles would prevent the 

screw-thread from sealing properly. This would result in the leaching of inoculated 

microorganisms from the diffusion chambers.  
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The sentinel chamber was thus a versatile tool for examining pathogen decay over 

time because the chambers could be ordered in large quantities, were sterile, easy to 

assemble at any preferred laboratory (using the soil and manures of choice), 

transported to the field site, inserted into the soil at the experimental site of choice 

and retrieved for later testing. The sealed chambers limited the potential harm to 

humans or livestock via leaching or at contact. Therefore the chambers resolved the 

difficulties often encountered with random sample collection (using cores or similar 

tools into the soil) by reducing the lack of uniformity, cross-contamination and 

potential for infectivity to those entering biosolids-application sites.   

 

Previously, Crute (2004) used sterile corers to collect soil samples from pots and 

field but the decay rates reported may have been the result of leaching. Alternatively, 

the method of random selection of soil may not have located the biosolids-amended 

soil where the majority of pathogens were present. An advantage of the sentinel 

chamber was that the entire contents of the sample chambers could be processed so 

that each sampling event included all of the surviving microorganisms which could 

potentially be enumerated. In the field soil experiments (Chapter 6), the decay times 

of E. coli inoculated into the chambers were directly compared with E. coli numbers 

outside the chambers (topsoil). It was demonstrated that the patterns of decay was 

significantly correlated (P<0.05) between both sources of E. coli at both sites (Moora 

and Mt Compass) (Figures 6-20 and 6-21, p. 126). This shows that the chambers 

were suitable environmental microcosms for monitoring microorganism decay 

patterns. 

 

The conditions inside the sentinel chambers were expected to be in equilibrium with 

the external environment, as rapid moisture and gaseous exchange across the 

membranes can occur. From the field climatic data (Chapter 6) it can be seen that the 

moisture content inside the chambers responded according to the changes in moisture 

across the duration of the season (Figures 6-10, 6-11, 6-14 and 6-15). These changes 

were significantly correlated in the topsoil at Site B (P=0.001) and in the chambers, 

thus indicating that moisture and gaseous exchange did occur within the chambers.  
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Jenkins et al. (1999) found that factors other than temperature affected 

Cryptosporidium oocyst survival, and that the chambers exposed the oocysts to 

ambient environmental stresses. In the present study, a wheat crop was sown in pots 

to represent the environment where biosolids are applied. This was done because 

shading from the plant could influence soil temperature, and moisture uptake by the 

plant could reduce soil moisture levels and thus influence pathogen decay. Similarly, 

biosolids were applied to the topsoil, even if not directly sampled into, to represent 

the environment where biosolids are applied to cereal crops. The influence of 

environmental factors (on the seeded microorganisms inside the chambers) was 

expected to be similar to the soil in the pots and thus the sentinel chambers were 

designed to capture any changes to the external environment. 

4.5.3. The development of the methodology 

The methodology used to process the soil and biosolids samples was based on the 

microbiology protocol and procedures commonly used by CSIRO Land and Water 

for water samples. Some earlier work had been conducted to enable soil and 

biosolids samples to be processed in this manner (Crute 2004); however, further 

experimentation was required to reduce background flora and improve colony 

visibility on plates of isolation media. This included laboratory experimentation to 

determine the levels of P-buffer to add to samples for optimal microorganism 

recovery, heat treatments, antibiotics, centrifugation, optimal sample size, testing of 

chambers and the use of CHROMagar to confirm S. enterica colonies. The resulting 

methodology described in Chapter 3 was a combination of successful procedures 

along with processes that other researchers have found to improve microorganism 

recovery from manure, biosolids and soil samples.  
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As previously discussed, other studies commonly use MPN’s (based on international 

standards and guidelines), sampled directly into the soil or amended soils (biosolids 

or animal manure) along with enrichment steps, so that the length of time that enteric 

microorganisms can be detected in the soil is determined. The differences between 

the methods used in the present study and the methods used by other researchers are 

as follows:  

 

 The inoculation of indicator and pathogens (for higher starting numbers) was 

used;  

 The microorganisms were cultured on selective agars (for quantification rather 

than presence or absence);  

 The chambers were used to contain all the inoculated and environmental 

microorganisms;  

 Biosolids were used rather than animal manures;  

 The methods were designed for field experimentation rather than just for 

laboratory or glasshouse experimentation;  

 Decay slopes were used to calculate T90 decay values; and 

 The decay times were estimated using a quadratic model rather than a linear 

model. 

 

The following benefits of the methodology were realised: 

 This method was suited to high numbers of microorganisms, i.e. in particular 

immediately following release of the biosolids from the wastewater treatment 

plant; 

 The method was suited to processing large volumes of samples from several 

experimental/testing sites and therefore compilation and comparison of data 

from several locations was made possible; 

 The use of selective agar reduced the formation of indigenous and presumptive 

colonies, thus enabling the study microorganisms to be determined without 

further time-consuming identification steps (e.g. dark violet colonies for E. 

coli);  
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The following disadvantages of the method were acknowledged: 

 More variation in standard error occurred where microorganism numbers were 

at lower numbers i.e. below 10
1
; 

 Direct plating (without an enrichment step) may not result in all available 

colonies growing on the plates e.g. viable but non-culturable cells; however, 

since this method quantifies microorganisms using the relevant dilution (e.g. 

10
1
, 10

2
 or 10

3
) the corresponding logarithm is determined as accurately as 

possible within the appropriate range (e.g. 1-100, 101-999, 1000-9999 etc.); 

 The quantification of microorganisms from individual sentinel chambers did 

not enable decay slopes to be developed from the same chamber across the 

duration of the experiment. In order to achieve this, other sample types such as 

lysimeters should be trialled.    

 

The testing of the overall methodology involved determining the best sampling 

frequency based on the rate of decline of seeded microorganisms in the soil. This was 

important when later designing the field experiments so that samples from two 

locations could be processed at the same laboratory (for uniformity of method). 

Experimentation was also carried out with the inoculant levels to be added to the soil 

and biosolids. This was done to provide high enough numbers so that decay slopes 

could be analysed over a timescale of >6 months. The application rate of biosolids 

was equivalent to what would normally be applied in the field. Results from this 

initial experiment demonstrated that the rate of 1% used was not high enough to 

show any treatment effect that the biosolids may have had on the survival times of 

the enteric pathogens in the soil. 

4.5.4. Need for appropriate statistical model to determine decay times 

When plotting the data from this initial experiment, it was realised that the fit of 

linear regression lines to the observed data had several limitations. Figure 4-3a 

demonstrates the limitations associated with the linear model by showing the poor 

goodness-of-fit that can occur when trying to place a linear line-of-fit through the 

observed data points. The plotting of S. enterica numbers in the soil over time 

resulted in a regression line that moved towards the X-axis a lot earlier than was 

represented by the scatter points. The occurrence of zero numbers around day 54 

resulted in drawing down of the average and thus the decay patterns of the 
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microorganism may not have been properly represented. Similarly, the general 

pattern of decay of bacteriophage (Figure 4-3b) was consistently steady to day 133, 

but the decay rate then increased to day 175 where no bacteriophage were detected. 

The linear regression used was influenced by this change in decay rate such that it 

overestimated decay up to day 133 and underestimated the decay from days 133 to 

175. This demonstrates the importance of using the correct model to provide an 

accurate fit of data. It is probable that the use of non-linear models to solve the 

equations would provide a better line-of-fit. Currently, linear regression (using a 

broken-stick) is commonly used to derive decay times (T90) but as demonstrated, it is 

not suited to non-linear data. Ideally, a model using quadratic and cubic equations 

would provide a better goodness-of-fit and this alternative has been examined in 

Chapter 5. 

4.5.5. The treatment effect of adding biosolids to soil 

Under glasshouse conditions, the addition of biosolids to the soil at a rate equivalent 

to what is applied in the field had no significant impact on the decay times of study 

microorganisms. This study was undertaken to gain initial data on the effect of 

adding biosolids to soil on the survival times of enteric pathogens. This was 

important since one of the main concerns when applying biosolids to agricultural soil 

is the risk that enteric pathogens will transfer from the soil to humans or livestock 

and cause disease. It was expected that the addition of biosolids to soil would 

increase the persistence of the microorganisms introduced into the soil since 

biosolids are thought to provide a protective effect for microorganisms in the soil 

(Eamens et al. 2006); however, the rate of biosolids to soil, although equivalent to 

what is used in the field (1%), was not high enough to influence the decay patterns.  

 

In a similar experiment conducted in a glasshouse, decay times were reported to be 

longer using a biosolids application rate of 16 t DS ha
-1

 for E. coli (T90=5 d), 

enterococci (T90=7 d) and MS2 (T90=30 and then 4 d) compared with an application 

rate of 8 t DS ha
-1

 where T90 decay times were 2 and then 13 d for E. coli, 5 d for 

enterococci and 11 d for MS2 (Crute 2004; Crute et al. 2005); however, this 

difference was not significant. Holley et al. (2006) reported that manure application 

enhanced the survival of Salmonella in soil. Lang and Smith (2007) found that higher 

removal rates of E. coli occurred in sludge-amended soil, although this was clearly 
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related to moist soils as their removal rates were significantly reduced in amended 

soils that were air-dried. Holley et al. (2006) also found that Salmonella survived 

better where the soil moisture content was higher. In previously published literature 

(Crute et al. 2005; Holley et al. 2006; Lang et al. 2007; Lang and Smith 2007), the 

decline of microorganisms over time was attributed to the effects of temperature, soil 

type, moisture and the addition of sludge (Holley et al. 2006; Lang and Smith 2007).  

The reduction of pathogens in sludge-amended soils has also been related to soil 

biota (Lang and Smith 2007) and the input of organic substrate from sludge, 

stimulating the activity of predatory and competing soil flora (Lang et al. 2007). 

More work is required to determine the effect of different per cent solids of sludge on 

decay times in the soil. 
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4.6. Conclusions 

 

The findings from this chapter are summarised below: 

 The experiment reported in this chapter was designed to validate all 

methodology processes for robustness for their ability to be replicated; 

 Standard microbiology protocols and procedures commonly used for water 

samples were adapted for use on soil and biosolids samples;  

 The addition of biosolids to the soil, at a rate equivalent to what would be 

applied in the field (i.e. 1%), did not result in an increased persistence of the 

enteric microorganisms tested; 

 The decay time (T90) of S. enterica in both soil types was 25 d. MS2 had 

slightly longer decay times of 29 d in the biosolids-amended soil and 31 d in the 

unamended soil; 

 The sentinel chambers were determined to be suitable microcosms to contain 

sample contents without the loss of microorganisms from the soil profile. In 

addition, they reduced the risk of contamination, particularly where harmful 

pathogens may be used; 

 The chambers were easy to assemble, sample and process and therefore would 

be suited for use in the field. Other benefits were the commercial availability of 

the chambers (Microsep™ centrifugal devices) and the filters (Eppendorf® 

Safe-Lock®) thus overcoming other chamber deficiencies;  

 The resulting methodology was a successful combination of methods to suit 

biosolids and soil testing, and the experiment demonstrated that the methods 

were reliable; 

 The data plotted in this chapter demonstrated the limitations associated with 

fitting linear regression lines to microbial numbers observed over time. For this 

reason the use of more terms, such as quadratic or cubic, has been explored in 

Chapter 5. 
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CHAPTER 5 THREE STATISTICAL MODELS TO 

ESTIMATE THE DECAY TIMES OF ENTERIC 

MICROORGANISMS  

 

5.1. Introduction 

The decay times of enteric pathogens in water and biosolids have been commonly 

estimated using a simple linear equation (Chandler and Craven 1980; Gordon and 

Toze 2003; Holley et al. 2006; Sidhu et al. 2008). T90 values, also known as decimal 

decay rates or decimal reduction times (DRT), are estimated by the linear regression 

analysis from the reciprocal of the slope using log10 values plotted against time. It is 

common that the survival patterns of microorganisms are rarely completely linear 

when plotted across a scale of time (Sidhu et al. 2008). This usually means that the 

goodness-of-fit of the linear regression lines are often poor and R-square values 

(indicating the power of a model fitting) are so low (eg. R
2
<0.65) that no meaningful 

trend line can be fitted to the results (Hutchison et al. 2004). In order to place a better 

line-of-fit to the data, often two or three lines are required (commonly known as the 

broken-stick model) thus resulting in more than one T90 value or decay time. 

Therefore, there is potential for developing a more accurate statistical method for 

estimating T90 values and this was explored in this chapter. 

 

The purpose of the research reported in this chapter was to compare the powers of 

three statistical models (linear, quadratic and cubic models) in estimation of decay 

times. The specific objective was to compare the output from these models in order 

to select the most practical and accurate solution for use in the field studies. Output 

data comparisons included ANOVA outcomes, the R-squared values, the accuracy of 

the predicted values to correctly represent the plotted data (log10 values), and the 

variation of decay times across the three models, as well as the practicality and 

efficiency of using the models to derive the desired outputs. 
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5.2. Materials and methods 

5.2.1. Source of data  

The input data used for the purpose of this chapter was derived from the data 

reported in Chapter 6 from E. coli numbers quantified in the biosolids-amended soil 

collected at Site A, Moora WA in 2006 (Section 6.2.1, p. 99). The data from this site, 

already normalised as described in Section 3.5, was selected for illustrative purposes 

only.  

5.3. Statistical analysis 

The least-square effects of all the fixed factor comparisons were produced and the 

regression coefficients of sampling date (linear, quadratic and cubic terms) within 

each treatment were used as the indication of pathogen inactivation rate or decay 

time. Based on the decay times and intercept of the final model, the predicted 

equation for individual pathogen survival patterns was established for either 

‘biosolids’ or ‘nil’ treatment. Decay times (T90 d), or time for a one log10 reduction of 

microorganism numbers to occur, were then estimated by solving the linear, 

quadratic and cubic equations. All analyses were performed using SAS version 9.1 

(SAS Institute, 2005). 
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5.3.1. The linear model 

The generalised linear model analysis of variance (ANOVA) was conducted using 

SAS (version 9.1) to identify significant variation sources affecting final pathogen 

counts (log10 Count) in individual experiments. These variation sources included the 

fixed effects of trial, treatment, a linear term of a covariate – sampling date, the 

interactions between sampling date with trial and treatment. The statistical linear 

model can be written simply as γ = α + bχ or the following (Equation 4):  

 

Equation 4 

Log10Yijkln = μ + Ti + Sj + (TS)ij + (TB)ik + Cl (TB)ik + eijkln       (4) 

   

 

 where, Log10Y ijkln is the observation of the nth individual; μ is the overall mean; Ti 

is the effect of the treatment (i =1, 2 corresponding to biosolids and nil, respectively); 

Sj is a regression coefficient referring to the linear decay effect of the sampling date 

(j=14, 28 …181); (TS)ij is the interaction between the treatment by the jth sampling 

date (also a regression coefficient) representing the specific decay rate for either 

treatment; (TB)ik is the effect of the kth block (k=A, B, C) nested within the 

treatment; Cl (TB)ik is the effect of the lth chamber (l=1, 2, 3) nested within the ith 

treatment and the kth block; and eijkln is the residual error of the nth individual.  

 

Based on the regression coefficients of corresponding terms in the above linear 

model (S and TS), where sample date was involved for either experiment, the time to 

a one log10 reduction (d) of numbers (T90 value) was calculated based on the decay 

slope (sdate) according to the following formula (Equation 5): 

 

Equation 5 

χ = 1/ b           (5) 

          

 where, χ is the expected number of days for one log reduction of microorganisms to 

occur; b is the derived decay rate for either treatment (i.e. “nil-biosolids” or 

“biosolids-amended”) from the linear model. The decay times were calculated in 

Microsoft ® Excel. 
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5.3.2. The quadratic model 

The quadratic model was applied to study non-linear curvature of the relationship 

between sampling timeline and final pathogen count. The difference between a linear 

model and a quadratic model was that the squared terms of the regression coefficient 

of the sampling date were added to the quadratic model.  The statistical quadratic 

model can be written simply as γ = α + bχ + cχ
2
 or by the following equation 

(Equation 6): 

 

Equation 6 

Log10Yijkln = μ + Ti + Sj + (TS)ij + S
2

j + (TS
2
) ij + S

3
j + (TS

3
)ij + (TB)ik + Cl (TB)ik + 

eijkln              (6)

     

Most of the variables in the quadratic model were the same as in the linear model,  

except S
2
 (the quadratic terms of the sampling date), (TS

2
) ij (the interaction between 

the ith treatment by the quadratic terms of the jth sampling date),  S
3

j  (the interaction 

between the linear and quadratic term of the jth sampling date) and  (TS
3
)ij (the 

interaction between the ith treatment and the interaction between the linear and 

quadratic term of the jth sampling date (decay rate).  

 

Based on the regression coefficients of corresponding terms in the quadratic model, 

the time taken for a one log10 reduction (T90 days) of pathogen numbers was 

estimated with the following formulae (Equation 7): 

 

Equation 7: 

cχ
3
 + bχ

2
 + aχ + 1 = 0          (7) 

   

where, χ is the expected number of days for one log reduction of microorganisms to 

occur; a, b and c  were the least square effects of cubic, quadratic and linear  decay 

rates from the quadratic model. These were derived from the ANOVA results where 

the variables “sdate*treatment”, “sdate*sdate*treatment” and 

“sdate*sdate*sdate*treatment” were fitted for each individual treatment (i.e. 

“biosolids” or “nil”).  The decay times (χ) were determined using the following 

website for cubic solvent:  http://www.1728.com/cubic.htm.  

http://www.1728.com/cubic.htm
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5.3.3. The cubic model 

The cubic model aimed to further improve the pathogen count variation explained by 

various factors in the experiments. This included higher order of the linear decay rate 

in the linear model by following the basic idea of mathematic Taylor’s theorem. The 

cubic statistical model can be written simply as γ = α + bχ + cχ
2
 + d χ

3 
or by the 

following equation (Equation 8): 

 

Equation 8 

Log10Yijkln = μ + Ti + Sj + (TS)ij + S
2
j + (TS

2
) ij + S

3
j + (TS

3
)ij + S

4
j + (TS

4
) ij + S

5
j + 

(TS
5
) ij + S

6
j + (TS

6
) ij + (TB)ik + Cl (TB)ik + eijkln        (8) 

   

The cubic model was similar to the quadratic model except higher orders of 

regression variables (inactivation time) and their interactions with other fixed effects 

were fitted. These included S
4

j (the quartic terms of the sampling date), and the 

interactions with other variables such as (TS
4
) ij (the interaction between the ith 

treatment by the quartic terms of the jth sampling date), S
5

j (the quintic terms of the 

sampling date), (TS
5
)ij  (the interaction between the ith treatment by the quintic terms 

of the jth sampling date), S
6

j  (the sextic terms of the sampling date) and (TS
6
)ij  (the 

interaction between the ith treatment by the sextic terms of the jth sampling date). 

 

For the cubic model, the time taken for a one log10 reduction (days) of initial 

pathogen count was derived by solving the following quintic equation (Equation 9): 

 

Equation 9:  

aχ
5
 + bχ

4
 + c χ

3
 + d χ

2 
+ e χ + 1 = 0        (9) 

 

 where, χ is the expected number of days for one log reduction of microorganisms 

(T90) to occur; the regression coefficients a, b, c, d and e are the corresponding 

quintic, quartic, cubic, quadratic and linear decay rates respectively for either “nil” or 

“biosolids” treatment. The estimated values of these terms were extracted from the 

least square effects of fixed effects tables of ANOVA for “sdate”, “sdate*sdate”, 

“sdate*sdate*sdate”, “sdate*sdate*sdate*sdate” and 

“sdate*sdate*sdate*sdate*sdate” for the individual treatment (i.e. “biosolids” or 
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“nil”).   The value 1 corresponds to the required one log reduction of 

microorganisms. The following website was used to determine the χ values 

http://www.freewebs.com/brianjs/ultimateequationsolver.htm. 

5.4. Results 

5.4.1. Comparison of ANOVA model fits  

The predicted pathogen values for the linear, quadratic and cubic models plotted 

against the observed sample data (log10 Count) are presented for biosolids-amended 

soil and nil-biosolids soil in Figure 5-1. The error bars in the following figures 

represent the standard deviation between the means of three replicates. 

 

An increased improvement of fit from the linear model to the cubic model can be 

seen. The linear predicted values passed in a straight line through the middle of the 

observed data points and the ANOVA model had an R-square value (goodness-of-fit) 

of 57% (Table 5-1). However, the linear model for the biosolids-amended soil 

grossly underestimated the observed values at the first data point and overestimated 

the following values (apart from at day 80) from days 30 to 150 (Figure 5-1a). The 

quadratic predicted values followed more closely the same trend as the observed data 

and the model had a better goodness-of-fit of 66% than the linear model (Table 5-2). 

The cubic predicted values closely followed the direction of the observed data and 

the model had the best R-square value of 72% (Table 5-3).  

 

The treatment effect varied across the three models. Using the linear and cubic 

models, the difference between the sample data in the biosolids-amended soil 

compared with the nil-biosolids soil (treatment effect) was highly significant 

(P<0.001), however using the quadratic model of ANOVA there was no significant 

difference (P=0.65) between treatments. In all models, the block and chamber 

differences had no significant effects on final pathogen counts. 

 

http://www.freewebs.com/brianjs/ultimateequationsolver.htm
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Figure 5-1: Predicted values from the linear, quadratic and cubic models plotted against 

observed sample data (with SE bars)  in (a) biosolids-amended soil and (b) nil-biosolids soil 

(a) 

(b) 
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Table 5-1: ANOVA for fixed effects on pathogen count (Log numbers) using linear model. 

Source df  Type III 

SS     

 Mean 

Square    

 F 

Value 

Pr > F 

Treatment (± biosolids) 1 491.58 491.58 140.03 <0.001 

Sdate
1
  1 1507.23 1507.23 429.34 <0.001 

Sdate*treatment 1 107.98 107.98 30.76 <0.001 

Block
2
 (treatment) 4 6.22 1.55 0.44 0.778 

Chamber
3
 (block*treatm) 12 32.29 2.69 0.77 0.685 

Error 504 1769.34 3.51     

Corrected total 523 4136.14 2114.55   

        

R-square 0.57     

1
 Sdate refers to sampling date  

2 
Block is for each plot replicate (i.e. A, B or C)   

3
 Chamber refers to each individual sample collected 

 

Table 5-2: ANOVA for fixed effects on pathogen count (Log numbers) using the quadratic 

model. 

Source df  Type 

III SS     

 Mean 

Square    

F 

Value 

Pr > F 

Treatment (± biosolids) 1 0.58 0.58 0.21 0.6479 

Sdate 1 363.43 363.43 130.95 <0.001 

Sdate*treatment 1 55.18 55.18 19.88 <0.001 

Sdate*sdate 1 205.10 205.10 73.90 <0.001 

Sdate*sdate*treatment 1 36.01 36.01 12.97 0.003 

Sdate*sdate*sdate 1 167.43 167.43 60.32 <0.001 

Sdate*sdate*sdate*treatment 1 17.96 17.96 6.47 0.011 

Block (treatment) 4 4.97 1.24 0.45 0.774 

Chamber (block*treatment) 12 33.73 2.81 1.01 0.435 

Error 500 1387.71 2.78     

Corrected total 523 4136.14 852.51   

        

R-square value 0.66     

Sdate*sdate = S
2   

Sdate*sdate*sdate = S
3
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Table 5-3: ANOVA for fixed effects on pathogen count (Log numbers) using the cubic model. 

Source df  Type III 

SS     

 Mean 

Square    

 F 

Value 

Pr > F 

Treatment (± biosolids) 1 38.34 38.34 16.25 <0.001 

Sdate 1 32.81 32.81 13.91 0.002 

Sdate*treatment 1 50.70 50.70 21.49 <0.001 

Sdate*sdate 1 7.69 7.69 3.26 0.072 

Sdate*sdate*treatment 1 49.05 49.05 20.79 <0.001 

Sdate*sdate*sdate 1 1.04 1.04 0.44 0.507 

Sdate*sdate*sdate*treatment 1 48.69 48.69 20.64 <0.001 

Sdate*sdate*sdate*sdate 1 0.01 0.01 0.00 0.951 

Sdate*sdate*sdate*sdate*treatment 1 47.22 47.22 20.01 <0.001 

Sdate*sdate*sdate*sdate*sdate 1 0.66 0.66 0.28 0.596 

Sdate*sdate*sdate*sdate*sdate*treatment 1 44.50 44.50 18.86 <0.001 

Sdate*sdate*sdate*sdate*sdate*sdate 1 1.68 1.68 0.71 0.399 

Sdate*sdate*sdate*sdate*sdate*sdate*treatment 1 41.15 41.15 17.44 <0.001 

Block (treatment) 4 4.34 1.08 0.46 0.765 

Chamber (block*treatment) 12 33.99 2.83 1.20 0.279 

Error 494 1165.53 2.36     

Corrected total 523 4136.14 369.83   

        

R-square 0.72     

Sdate*sdate = S
2  

sdate*sdate*sdate*sdate = S
4  

sdate*sdate*sdate*sdate*sdate*sdate = S
6
 

Sdate*sdate*sdate = S
3  

sdate*sdate*sdate*sdate*sdate = S
5
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5.4.2. Comparison of T90 values between models  

The decay time estimates from the three statistical models is presented below in 

Table 5-4. Using the linear model, the estimated decay times (T90) for the sample 

data in biosolids-amended soil was 51 d and 30 d in the nil-biosolids soil. Using the 

quadratic model, the decay times were much shorter with 5 d calculated for the 

biosolids-amended soil and 12 d in the nil-biosolids soil. Using the cubic model, T90 

decay times were calculated to be 71 d in the biosolids-amended soil and 21 d in the 

nil-biosolids soil. 

 

Table 5-4: Estimation of decay times (T90) for sample data using linear, quadratic and cubic 

equation. 

 

Statistical model 

 

Biosolids-amended soil 

(T90 d) 
 

 

Nil-biosolids soil  

(T90 d) 
 

 

Linear 

 

51 

 

30 

 

Quadratic 

 

5 

 

12 

 

Cubic 

 

71 

 

21 
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5.5. Discussion 

This chapter examined the use of three statistical models to provide a more accurate 

representation to analyse the observed data (other than the linear model). Since most 

studies have used general linear models to estimate T90 values, D values or decimal 

reduction times (DRT) (Gordon and Toze 2003; Hutchison et al. 2004; Hutchison et 

al. 2005; Horswell et al. 2010; Lang and Smith 2007) it was decided that statistical 

models with further terms such as quadratic and cubic should be examined and 

compared, to determine whether the additional models provide a better data fit and 

thus, more accurately estimated decay times. Sidhu et al. (2008) stated that while 

T90s are useful to compare inactivation rates of enteric pathogens, the decline of 

pathogens is not always linear. In particular, microorganisms in environmental 

samples rarely, if ever, follow a linear pattern of decay and therefore plotting a linear 

regression line to the observed data can misrepresent true data. The effects such as 

treatment effect, estimated decay times (T90) or other interactions may be incorrectly 

analysed. The need for accurate analysis of data is important for proper risk 

management  

 

Commonly, the decay patterns of microorganisms are exponential or follow a 

‘broken-stick’ pattern (i.e. varying rates of decay across the timescale observed). For 

this reason, the use of linear models is not always ideal and therefore not accurate 

enough to use for calculating decay times from non-linear data. Hutchison et al. 

(2004) also found that the variation in plotted observed data made the calculation of 

T90s (D values) impossible because straight-line fitting with an R
2
 of >0.65 was not 

possible for some data sets. For what appears to be a similar reason, Lang et al. 

(2007) used an exponential decay function and the Gompertz equation to describe an 

asymmetrical sigmoidal decay response in relation to time. From the data collected in 

this research, it was found that the appropriate model had to be selected for each data 

set, and that the model had to be refined according to the type of analysis required. 

Charles et al. (2009) used a log-likelihood method to fit decay models to data. From 

comparing a first-order decay model with a biphasic decay model it was found that 

significant differences existed between the datasets.   
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In the present study, the output from the ANOVA for the linear and cubic models 

detected a highly significant effect (in the E. coli numbers) between treatments 

(Tables 5-1 and 5-3, respectively). However, using the same data, the quadratic 

model determined that there was no significant effect between treatments (Table 5-

2). In scientific research, these outcomes may be crucial and if incorrectly 

represented because of statistical analysis methods, could affect important results. 

 

The decay times calculated from the three models were different, particularly those 

from the quadratic model. In the biosolids-amended soil, the decay times (T90) for the 

linear and cubic models were 51 d and 71 d, respectively. Using the same data, the 

quadratic model estimated only 5 d. The same pattern occurred in the nil-biosolids 

soil where the linear and cubic models estimated longer decay times (30 and 21 d) 

compared with the quadratic model (12 d). Since the fit of the linear regression lines 

has limitations, and the cubic model returned similar output to the linear model, it 

was conceded that the quadratic model should be used to calculate decay times.  In 

addition, the cubic model is more complex and time-consuming to use compared 

with the quadratic model.  

 

Through fitting the higher orders of decay times and their interactions to different 

treatments and other environmental effects, it can be seen that the cubic and 

quadratic models returned a much better goodness-of-fit (R
2
=0.72 and 0.66, 

respectively) than the linear model (R
2
=0.57). The error variances were much lower 

in the quadratic and cubic models. A similar conclusion about the quadratic model 

was also drawn by Stone et al. (2009) where a log-quadratic model (the same 

concept as the quadratic model used in this study) was compared to the commonly 

used first-order linear model, a biphasic model (assuming a microbial population 

consists of two subpopulations) and Weibull model. Stone et al. (2009) observed that 

the log-quadratic model provided for a better model fit than the biphasic and Weibull 

models and best explained the observed microbial counts. However, the R-squared 

value alone cannot be used to determine the best type of equation to use. 

 

In the present study, it can be seen that the cubic model followed the observed data 

the closest. However, the predicted pathogen count using the cubic model will also 

follow the data curvature upwards if the sampling events should go beyond the 
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observed experiment period (for example in the event of regrowth) as this likely 

explains the longer decay times. As Stone et al. (2009) correctly pointed out 

regarding the limitations of the log-quadratic model, extreme caution needs to be 

taken as quadratic and cubic models may be unsuitable for determining the time 

required to achieve higher log-reduction outside the experiment time ranges. 

 

While some authors and regulators (e.g. food safety) still prefer to use a first-order or 

linear model, more studies are using nonlinear semi-logarithmic and non-log-linear 

models such as the biphasic and Weibull models to describe microbial inactivation. 

Current computing technology has continued to develop, assisting in the ability to 

refine statistical models to provide better solutions and useful additional information 

(Stone et al. 2009). However, further work is required to develop and test models 

such as the quadratic model for accuracy, practicality and application for use on 

microorganism inactivation data derived from environmental samples. 

 

Following comparison of the three statistical models, the quadratic model was 

preferred for analysis of microorganism data from the field studies in Chapter 6. The 

reasons for this choice were as follows: 

 

1. The observed data across the experimental period was mostly non-linear; 

2.  The quadratic model followed the observed data more closely than the linear 

model, although not as closely as the cubic model (which also has the ability 

to follow data curvature upwards); 

3. Since the quadratic model followed the observed data more closely, the 

quadratic model better explained the observed microbial counts and thus, the 

decay response in relation to time; 

4.  By more accurately representing the observed data, the decay times could be 

more accurately estimated; 

5. The more accurate representation of the observed data was reflected in the 

improved R-squared values (from linear to quadratic to cubic), although these 

values alone should not be used to determine the best model to use; and 

6. The need to determine the time required to achieve higher log-reduction 

outside the experimental time range was not required, therefore the cubic 

model was not considered necessary. 
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5.6. Conclusions 

 

The following conclusions were made from this chapter: 

 The fit of linear regression lines to non-linear datasets showed limitations in the 

model and resulted in a variation in the output of statistical data; 

 The quadratic model showed significant treatment variation compared with the 

linear and cubic models;  

 The use of decay slopes derived from the linear model to determine decay times 

(T90s) showed several limitations, particularly where microorganism decay 

patterns were non-linear; 

 Despite the ability of the predicted values to closely follow the observed data, 

the cubic model fitted too closely to the data and this may have resulted in a 

poor reflection of decay times. This would particularly be an issue if 

microorganism numbers tested higher at certain sampling times; 

 The cubic model was more complex and time-consuming compared to the 

quadratic model; and 

 Fitting the models to the E. coli inactivation data showed that the quadratic 

model best explained the observed microbial counts and thus was the preferred 

solution for the data collected from the field study (Chapter 6). 

 Further work on this topic should be conducted by experienced statistical 

technicians. 

 



Chapter 6 

 96 

CHAPTER 6 THE EFFECT OF BIOSOLIDS ON THE 

DECAY TIMES OF E. COLI, S. ENTERICA, MS2 AND 

ADENOVIRUS IN AGRICULTURAL SOIL 

 

6.1. Introduction 

The treatment of human waste is a global issue with growing challenges that every 

country needs to manage well in order to ensure proper sanitation. Wastewater and 

sludge (solids) containing human excrement pose a health risk unless they are 

properly managed. Finding suitable end-solutions for the management of this waste 

is part of the challenge and for some countries has resulted in the sludge being 

disposed to landfill, used as a source of energy or treated and applied to land. Treated 

sludge is known as biosolids to distinguish it from raw sludge. Biosolids possess 

many beneficial qualities when land-applied as a fertiliser and soil conditioner and is 

therefore considered a valuable resource (LeBlanc et al. 2008).  

 

Despite undergoing stabilisation, biosolids may contain residual numbers of enteric 

pathogens which are potentially harmful to human and livestock health following 

exposure (LeBlanc et al. 2008). There is insufficient scientific data available on the 

fate of enteric pathogens in sludge or biosolids-amended soils (Sorber and Moore 

1987; Gerba and Smith 2005; Horswell et al. 2007; Lang et al. 2007; Sidhu and Toze 

2009). This includes survival in or on the soil following land-application (Gerba and 

Smith 2005). In addition, most of the available data is restricted to Salmonella and 

indicator bacteria (Sorber and Moore 1987). In particular, very little information is 

available on other pathogens such as human viruses in biosolids or animal manures.  

 

In this study, the decay of selected enteric bacteria and viruses was monitored in 

biosolids-amended and unamended agricultural soil at three field sites on two 

farming properties in the southern region of Australia. The purpose of the study was 

to investigate the addition of biosolids to soil on the decay times of E. coli, S. 

enterica, bacteriophage (MS2) and human adenovirus when introduced to the soil 

where cereal crops are grown. These four enteric microorganisms were selected 

based on the availability of earlier research or as examples of common enteric 
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viruses detected in biosolids (such as adenovirus). The specific objectives 

investigated were to compare the decay times of individual microorganisms in 

biosolids-amended soil and unamended soil, and to identify the major drivers that 

may affect decay, and thus influence the management of land-applied biosolids. 

6.2. Materials and methods 

6.2.1. Site description and preparation 

Three field sites were selected in dry temperate cropping regions of southern 

Australia to determine the decay patterns of the selected pathogens; Sites A (30º 

50’24.07”S, 116º 05’18.37”E) and B (30º 50’9.31”S, 116º 05’44.53”E) were located 

at Moora, WA, and Site C (35º 21’39.68”S, 138º 32’47.67”E) was located at Mt 

Compass, SA (Figure 6-1). The field experiments were conducted from May to 

December over two years, 2006 and 2008; these months being the cereal growing 

season in both regions.  Moora is 175 km north-east of Perth, WA, with an annual 

rainfall of 500 mm (www.bom.gov.au). Topography was undulating with medium 

slope and soil type was gravelly-loamy sand. Mt Compass is 69 km south of 

Adelaide, SA, with an annual rainfall of 800 mm (www.bom.gov.au). Topography 

was undulating with gentle slope and soil type was a sandy soil. Soil (analysed 

through the Chemistry Centre, Perth) and biosolids characteristics (analysed through 

SGS Environmental Services, East Perth) for each site are presented in Tables 6-1 

and 6-2, respectively. Soil pH (CaCl2) was between 4 to 5, with a high sand content 

(87-96%) and low organic carbon (~2%). Trial plots were established for biosolids-

amended soil (treatment) and nil-biosolids soil (control). Three replicate plots (each 

10 m
2
) were established for each treatment (to a total of six plots) using a 

randomised-block design (n = three replications).  

 

In Western Australia, mesophilic anaerobically-digested dewatered biosolids were 

delivered fresh to the trial sites from Beenyup WWTP, Perth CBD (Figure 6-2). They 

were typically 20% solids, with high nitrogen content (77,000-78,000 mg kg
-1

) and 

neutral pH (7.0-7.9) (Table 6-2). Table 6-3 shows the arithmetic mean contaminant 

and nutrient concentrations for Beenyup WWTP. The full summary of physico-

chemical properties for Beenyup biosolids is available from the Water Corporation, 

Perth. Biosolids were applied to Site A at 6 t DS ha
-1

 in May 2006 and Site B at 19 t 

http://www.bom.gov.au/
http://www.bom.gov.au/
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DS ha
-1

 in May 2008 for Trials 1 and 2, respectively; with three control plots left 

unamended. Biosolids were incorporated into the top 10 cm of soil using a disc-

seeder.  

 

In South Australia, tertiary treated (stockpiled) biosolids were collected from Bolivar 

sewage treatment plant, Adelaide. Biosolids were typically dry (total solids 66%), 

low in nitrogen (18,000 mg kg
-1

) with a pH of 6.7 (Table 6-2).  At Mt Compass, 

biosolids were applied in May 2008 to three of the plots at a rate of 28 t DS ha
-1

. 

Biosolids for Site B (Moora 2008) contained 1,200,000 thermotolerant coliforms and 

Site C (Mt Compass 2008) contained 620 thermotolerant coliforms (Table 6-2) as 

determined by MPN method via the analysis laboratory. Biosolids were incorporated 

into the top 10 cm using a rotary hoe. NB: the biosolids from the two locations (WA 

and SA) underwent different treatment processes and were typical of the biosolids 

produced for each area, as it was impractical to truck the same biosolids interstate.   

 

Biosolids application at Site A was 1 x nitrogen limited biosolids application rate 

(NLBAR) according to district practice, however biosolids applications at Sites B 

and C were 1.5 times the NLBAR (DEP et al. 2002) so that the treatment effect of 

biosolids on pathogen survival could be examined (Crute 2004). The application 

rates were calculated according to soil nitrogen requirements and biosolids moisture 

content and therefore were specific to each site.  

 

At Moora, wheat (Triticum aestivum cv. Calingiri) was sown to all plots using a disc 

seeder at 60 kg ha
-1

, 18 cm row spacing and 2.5 cm depth within 2 h according to 

common district practice. At Mt Compass, wheat (Triticum aestivum cv. Clearfield 

Janz) was sown at 60 kg ha
-1

, 25 cm row spacing and 2.5 cm depth within 2 h. The 

seeding of wheat further incorporated the biosolids with the soil as required under the 

land application guidelines.  

 

Soils in the treatment and control plots were tested at the beginning of the study 

(after sludge application) for E. coli (i.e. namely site samples). Soil tested from the 

biosolids-amended plots contained 3 x 10
6
 cfu g

-1
 of E. coli at Site B and 2 x 10

3
 log 

cfu g
-1

 of E. coli at Site C. As part of the background test, no E. coli were detected in 

the nil-biosolids (unamended) control plots at Site B, however E. coli numbers were 
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3 x 10
3 

cfu g
-1

 in the nil-biosolids plots at Site C at the beginning of the experiment. 

It was noted that cattle and native kangaroos had been grazing at the site up to two 

weeks before the experiment commenced. Faecal pathogens can be introduced into 

the soil in this manner (Wu et al. 2009). The presence of E. coli in the topsoil at Site 

A was not tested therefore this information is not available. 

Figure 6-1: Field site locations in Western Australia and South Australia. 
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 Table 6-1: Soil characteristics from three field experiments 

 

Soil characteristic  

 

Site A 

 

Site B 

 

Site C 

 

pH (CaCl2) 

 

5.3 

 

4.6 

 

4.4 
 

Sand content (%) 

 

-# 

 

87 

 

96 
 

Silt content (%) 

 

-# 

 

5.5 

 

2.5 
 

Clay content (%) 

 

-# 

 

7.5 

 

1.5 
 

Total Nitrogen (%) 

 

0.20 

 

0.14 

 

0.21 
 

Organic Carbon (% W/B) 

 

2.76 

 

1.90 

 

2.54 
 

Cation exchange capacity, NH4Cl (me %) 

 

8a 

 

6 

 

9 
 

Total Phosphorus (mg kg
-1

) 

 

480 

 

150 

 

140 
 

Phosphorus Retention Index (mL g
-1

) 

 

30 

 

8 

 

-0.7 
 

Aluminum, AmOx (mg kg
-1

) 

 

1800 

 

1 

 

<1 
 

Iron, Fe AmOx (mg kg
-1

) 

 

410 

 

73 

 

63 
 

Exchangeable Calcium (me %) 

 

6.13a 

 

2.65 

 

4.60 
 

Exchangeable Magnesium (me %) 

 

0.68 

 

0.60 

 

1.26 
 

Exchangeable Potassium, K (me %) 

 

0.20a 

 

0.32 

 

0.40 
 

Exchangeable Sodium, Na (me %) 

 

0.09a 

 

0.04 

 

0.10 

Source: Chemistry Centre, East Perth, WA (refs: 05A639/1-1 and 08A7/1-5) 

 
# not determined, but site was within 2 km of Site B in the same paddock.
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Table 6-2: Biosolids characteristics used in the three field experiments 

 

Biosolids characteristics 

 

Site A 

 

Site B 

 

Site C 

 

pH units (H2O) 

 

7.0 

 

7.9 

 

6.7 
 

Total solids (% w/w) 

 

20.0 

 

18.5 

 

65.7 
 

Total Kjeldahl Nitrogen (mg kg
-1

) 

 

78,000 

 

77,000 

 

18,000 
 

Total Phosphorus, P (mg kg
-1

) 

 

21,000 

 

21,000 

 

26,000 
 

Ammoniacal Nitrogen, NH3-N (mg kg
-1

) 

 

460 

 

13,000 

 

1200 
 

Nitrate, NO2 (mg kg
-1

) 

 

1.5 

 

<5 

 

9000 
 

Nitrite, NO3 (mg kg
-1

) 

 

0.1 

 

<5 

 

15 
 

Thermotolerant coliform (CFU g
-
1) 

 

# 

 

1.200,000 

 

620 

Source: SGS Environmental Services, Newburn, WA. 

 

# Results not available 
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Table 6-3: Mean contaminant and nutrient concentrations for Beenyup biosolids. 

 

Nutrient and contaminant 

concentrations (mg kg
-1

) 

 

Site A - 2006  

Arithmetic Mean 

(SD) 

 

Site B - 2008  

Arithmetic Mean 

(SD) 

 

Aluminium 

 

3780.00 (±540.37) 

 

6500.00 (±1564.18) 
 

Arsenic 

 

6.48 (±3.42) 

 

2.25 (±1.27) 
 

Cadmium 

 

1.59 (±0.29) 

 

1.16 (±0.22) 
 

Total Chromium 

 

54.67 (±12.35) 

 

39.57 (±4.64) 
 

Copper 

 

1037.62 (±136.05) 

 

963.85 (±173.76) 
 

Lead 

 

37.29 (±5.46) 

 

25.21 (±3.26) 
 

Mercury 

 

2.99 (±2.09) 

 

1.90 (±0.30) 
 

Molybdenum 

 

12.40 (±6.07) 

 

13.50 (±1.91) 
 

Nickel 

 

26.00 (±3.29) 

 

22.71 (±3.71) 
 

Selenium 

 

4.18 (±1.16) 

 

4.43 (±1.22) 
 

Zinc 

 

701.43 (±178.17) 

 

842.14 (±97.28) 
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Figure 6-2: Delivery of biosolids from Beenyup Wastewater Treatment plant to the Moora trial 

site, May 2008. 

 

 

Figure 6-3: Inserting a sentinel chamber into the soil at Moora, WA 
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6.2.2. Chamber preparation and inoculation 

Sentinel chambers were used in the survival experiments as a tool for monitoring the 

inactivation of enteric microorganisms in the field. The sentinel chambers were 

constructed as described in Section 3.2. 

 

To fill the sentinel chambers, unamended soil (collected from each corresponding 

site) was sieved (<2 mm) and then split into two equal portions. One portion was 

amended with biosolids to a final ratio of 1:4 biosolids to soil for Site A (20% 

biosolids to 80% soil) and 1:3 for Sites B and C. Higher than normal biosolids 

application rates (i.e. than is usually applied in the field) were used so that treatment 

effect (of adding biosolids to soil) could be examined.  

 

The second control portion was maintained in an unamended condition. Each of the 

portions was then inoculated with the washed E. coli, S. enterica, bacteriophage MS2 

and adenovirus cultures. The amended and unamended soils were then used to fill the 

sentinel chambers. Over 440 chambers were prepared so that destructive sampling 

could occur throughout the experiment for both treatments: 200 chambers (100 and 

100) were prepared to test pathogen decay, 120 chambers (60 and 60) were prepared 

to test moisture content at each sample event and 120 chambers (60 and 60) were 

prepared to measure the number of adenovirus genomic copies in the samples. 

Adenovirus was seeded into separate chambers (from E. coli, S. enterica and MS2) 

due to the different analysis methods (i.e. PCR). The microorganisms tested were E. 

coli, S. enterica, bacteriophage MS2 and adenovirus, cultured as described in Section 

3.2. The final bacteria suspensions had a final cell count of more than 1 x 10
6
 cfu 

mL
-1

 and the bacteriophage MS2 suspension was determined to have a final cell 

count of more than 1 x 10
7
 pfu mL

-1
. The titre for adenovirus was 10

7
 pfu mL 

-1
.  

 

Once constructed, the chambers were placed in a vertical orientation in the topsoil (at 

10 cm depth) in each plot (Figure 6-3). Labelled pink tags were used to mark their 

location in the soil (Figure 6-4). The biosolids-amended chambers were placed in 

random positions in the biosolids-amended plots and the nil-biosolids chambers were 

placed in the nil-biosolids plots. Each of the plots contained 220 sentinel chambers at 

the start of the experiment. 
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Figure 6-4: Field tags used to mark the location of sentinel chambers under the soil in the wheat 

crop at Site B Moora, WA. 

 

Figure 6-5: Humidity and soil moisture data loggers stationed at Site C Mt Compass, SA. 
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6.2.3. Climatic monitoring 

At each site, daily air temperature and relative humidity were recorded every 20 min 

using a Tinytag Plus 2 (Gemini Data Loggers Ltd, UK). Soil temperature and soil 

moisture were recorded at hourly intervals using a Watermark Monitor (Irrometer 

Company Riverside, CA USA) (Figure 6-5). Rainfall was recorded every 20 min 

with a tipping bucket rain gauge (Davis Instruments Corp, Hayward CA USA) and 

Tinytag data logger (Gemini Data Loggers Ltd, UK). Soil moisture was manually 

determined by oven-drying (105ºC for 24 h) soil samples from the field. Moisture 

probes were set at the same depth as the chambers (i.e. 0-10 cm) for direct 

comparison. 

6.2.4. Sample collection and analysis 

Samples were collected at Time 0 and then every second week up until week 4. 

Sampling frequency was then reduced to monthly intervals up to a maximum of 7 

months or until the target microorganisms fell below detection. At each sample 

event, three chambers were randomly selected from each of the three blocks in each 

treatment. Topsoil from the biosolids-amended plots, namely ‘site samples’, was also 

taken in triplicate (at 10 cm depth) to compare any changes in E. coli numbers 

outside the chambers with the E. coli inside the chambers (at Sites B and C in 2008 

only). All samples collected from Moora were transported on ice to Floreat, Perth.  

Samples from Mt Compass were transported on dry ice via overnight courier for 

processing in Floreat to reduce potential variation that may have occurred across 

laboratories. All samples were delivered to the CSIRO Microbiology Laboratory, 

Floreat, WA and were processed within 24 h.  

6.2.5. Sample processing and quantification of microorganisms  

Sample contents (~2-5 g) from each chamber were transferred into pre-weighed 

sterile polypropylene tubes (Sarstedt), 30 mL of sterile P-buffer (pH 7.2) was added 

and the samples vortexed for 2 min, left to settle, then vortexed again for 1 min. A 1 

mL sample of the resulting supernatant was then collected without disturbing the 

pellet.  A serial 10-fold dilution according to expected numbers was made in the P-

buffer from the supernatant, for the detection of E. coli, S. enterica and MS2. The 

quantification of each of the microorganisms was performed as described in Section 
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3.4.  The samples containing adenovirus were stored at -80ºC and analysed all at the 

same time (using the same standards) to reduce variance in analysis. 

6.3. Data analysis 

6.3.1. Data preparation 

Prior to statistical analysis, pathogen counts were normalised from the raw data and 

converted to log values as described in Section 3.5.  The counts from Time 0 were 

also removed from all trials prior to statistical analyses as described in Section 3.5. 

Associated standard deviations, trendlines and logarithmic transformations were 

performed in Origin® 6.1 (OriginLab Corporation 1991-2000).  

6.3.2. Statistical analysis  

 

6.3.2.1 Analysis of variation sources for decay of individual microorganisms 

The quadratic model was used to analyse the data in this chapter. The least-square 

ANOVA was conducted using SAS (version 9.1) to identify significant sources of 

variation affecting final pathogen counts (log10 Count) within individual 

experiments. These variation sources comprised the fixed effects (trial, treatment, 

linear terms of a covariate – sampling date, their interactions with trial and treatment, 

block and chamber). The statistical model (quadratic) was the same as described in 

Section 5.3.2 (Equation 6), p. 86. 

 

The least-square effects of all the fixed factor comparisons were then produced. All 

statistical data is available in the Appendices Section 11.6. The regression 

coefficients of sampling date (quadratic terms) within each treatment were used as 

the indication of pathogen inactivation rate or decay time. Based on the decay times 

and intercept of the final model, the predicted equation for individual pathogen 

survival patterns was established for either ‘biosolids’ or ‘nil’ treatment.  

 

The decay times (T90 d) were then estimated by solving the quadratic equations as 

described in Section 5.3.2 (Equation 7). All analyses were performed using SAS 

version 9.1 (SAS Institute, 2005). 
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6.3.2.2 Comparison of decay rates of all microorganisms across sites  

A least-square ANOVA was conducted to identify the significant experimental 

interactions affecting final pathogen counts (log10 Count) across sites within 

individual microorganisms. The statistical model can be written as (Equation 10):  

 

Equation 10 

Log10Y ijklnp = μ + Ti + Dp + (TD)ip + Sj + (DS)pj + (TS)ij + (DTS)pij + S
2

j  + (DS
2
)pj + 

(TS
2
)ij + (DTS

2
)pij + S

3
j + (DS

3
)pj + (TS

3
)ij + (DTS

3
)pij + Bk (DT)pi + Cl (DTB)pik + 

eijklpn            (10) 

 

  where, Log10Y ijklnp is the observation of the nth individual; μ is the overall mean 

and e ijklnp is the residual error of the nth individual. All the other terms and their 

descriptions are presented in Table 6-3. 
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Table 6-4: Description of quadratic terms and their interactions (Equation 10). 

Symbol Description 

Ti The fixed effect of the treatment (i =1, 2 corresponding to biosolids and 

nil, respectively) 

Dp The fixed effect of the pth trial (p=‘Moora06’, ‘Moora08’, ‘Mt 

Compass08’) 

(TD)ip The interaction between the ith treatment and the pth trial 

Sj The fixed effect of the jth sampling date (j=14, 28, …205) 

(DS)pj The interaction effects of the pth trial by the jth sampling date 

(TS)ij The interaction effects of the ith treatment by the jth sampling date 

(DTS)pij The interaction effects of the pth trial by the ith treatment by the jth 

sampling date 

S
2
j The quadratic terms of the jth sampling date 

(DS
2
)pj The interaction between the pth trial and the quadratic terms of the jth 

sampling date 

(TS
2
)ij The interaction between the ith treatment and the quadratic terms of the 

jth sampling date 

(DTS
2
)pij   The interaction between the pth trial and the ith treatment and the 

quadratic terms of the jth sampling date 

S
3
j The interaction between the linear and quadratic terms of the jth sampling 

date (decay rate) 

(DS
3
)pj The interaction between the pth trial and the linear and quadratic terms of 

the jth sampling date 

(TS
3
)ij The interaction between the ith treatment and the linear and quadratic 

terms of the jth sampling date 

(DTS
3
)pij The interaction between the pth trial and the ith treatment and the linear 

and quadratic terms of the jth sampling date 

Bk 

(DT)pi   

The effects of the kth block (k=A, B, C) nested within the pth trial and the 

ith treatment 

Cl 

(DTB)pik 

The effects of the lth chamber (l=1, 2, 3) nested within the pth trial, the 

ith treatment and the kth block 
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6.3.2.3 Climatic effect 

To determine the relationships between soil temperature or soil moisture change with 

individual decay patterns of E. coli, S. enterica, MS2 and adenovirus in both 

biosolids-amended soil and unamended soil, the correlations were calculated in 

Microsoft® Excel using the CORRE function and the significances were tested using 

Student t-tests for each experimental site. The critical P-value for the test was set at 

0.05. 

 

A one-tailed Student t-test was also applied in Excel to determine any significant 

difference between soil moisture levels in the chambers and in the topsoil (outside 

chambers).  

 

All statistical data from the analyses of climatic effect are available in the 

Appendices.
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6.4. Results 

6.4.1. Environmental conditions 

The climatic conditions during the inactivation experiments are summarised in Table 

6-4 and climatic patterns for the three sites are shown in Figures 6-6 to 6-15. 

Average daily air temperatures ranged from 12 to 16ºC across the duration of the 

experiments (autumn to spring) at all sites with higher average temperatures recorded 

at Moora than Mt Compass. Minimum daily temperatures ranged from 7 to 10ºC 

with maximum daily temperatures ranging from 17 to 22ºC. Mean soil temperatures 

ranged from 12 to 18ºC with lower temperatures recorded at Mt Compass than 

Moora. Average relative humidity was 62 to 73% and average soil moisture content 

was 12 to 16% (based on oven-dried manual samples, not centibars). Cumulative 

rainfall was 262 mm and 275 mm at Moora (Sites A and B, respectively) and 328 

mm at Mt Compass (Site C). 

 

As observed from the soil moisture and rainfall conditions in Figures 6-6 and 6-7, 

Site A had a dry period in June 2006 at the commencement of the growing season, 

and then another dry period occurred from the end of September into the summer.  

From the moisture probes in the soil it can be seen that soil moisture in the nil-

biosolids plots became drier much earlier than the biosolids-amended plots (Figure 6-

7). Soil moisture content for the topsoil and inside the chambers at each sampling 

event were not taken at Site A, therefore this data is not available. 

 

 At Site B, a dry period occurred from August to September 2008 (Figures 6-8 and 6-

9) and then again in October. Soil moisture levels from probes, topsoil and chambers 

in the biosolids-amended soil followed the same pattern as the moisture levels in the 

nil-biosolids soil (Figure 6-9, 6-10 and 6-11); however, soil moisture in the topsoil 

was higher at the unamended site (than in the biosolids-amended soil), and the soil 

moisture in the chambers was higher in the biosolids-amended soil than the 

unamended soil. Despite this, the changes in soil moisture in the chambers over the 

growing season were significantly correlated (P<0.001) to the soil moisture patterns 
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in the topsoil (outside the chambers) in the biosolids-amended and the unamended 

soils (Figures 6-10 and 6-11). 

 

Soil moisture levels, from soil moisture probes taken at Site C (Figures 6-12 and 6-

13), remained constant across the growing season of the wheat until October 2008, 

when conditions became drier up until November. Soil moisture levels from the 

probes in the biosolids-amended soil followed the same patterns as the moisture 

levels in the nil-biosolids soil (Figure 6-13). Soil moisture content outside the 

chambers (topsoil) followed similar patterns to the moisture content inside the 

chambers in both the biosolids-amended soil (Figure 6-14) and the unamended soil 

(Figure 6-15); however, these changes were not significantly correlated (P<0.20). At 

all three sites, soil and air temperatures increased from the winter through to the 

summer. 
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Table 6-5: Summary of seasonal parameters during field experiments 

 

Seasonal parameter 

Site A  

Moora 2006 

Site B 

Moora 2008 

Site C  

Mt Compass 2008 

Arithmetic mean (SD) Arithmetic mean (SD) Arithmetic mean (SD) 

 

Mean daily air temperature (˚C) 

 

16 (6.4) 

 

14 (+ 3.6) 

 

12 (+ 3.7) 

 

Minimum daily temperature (˚C) 

 

10 (5.0) 

 

9 (+ 3.4) 

 

7 (+ 2.7) 

 

Maximum daily temperature (˚C) 

 

22 (5.8) 

 

21 (+ 5.0) 

 

17 (+ 5.4) 

 

Mean relative humidity (%) 

 

63 (12.2) 

 

73 (14.6) 

 

62 (22.7) 

 

Cumulative rainfall (mm) 

 

262 

 

275 

 

328 

 

Soil temperature (˚C) 

 

18  (6.5) 

 

17 (5.4) 

 

12 (3.6) 

 

Soil moisture content (%) topsoil 

 

ND 

 

12 (12.0) 

 

16 (9.7) 

ND – Not determined
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Figure 6-6: [Site A – Moora 2006] Daily rainfall and average soil and minimum and maximum 

air temperatures. 
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Figure 6-7: [Site A] Mean daily relative humidity (%) and soil moisture levels (kPa) from probes 

in biosolids-amended (B-A) and nil-biosolids (N-B) soil. 
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Figure 6-8: [Site B – Moora 2008] Daily rainfall and mean soil and minimum and maximum air 

temperatures. 
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Figure 6-9: [Site B] Mean daily relative humidity (%) and soil moisture levels (kPa) from probes 

in biosolids-amended (B-A) and nil-biosolids (N-B) soil. 
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Figure 6-10: [Site B] Comparison of soil moisture recordings from soil probes (kPa), mean 

topsoil moisture and mean soil moisture inside chambers of the biosolids-amended soil across 

the duration of the experiment. 
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Figure 6-11: [Site B] Comparison of soil moisture recordings from soil probes (kPa), mean 

topsoil moisture and mean soil moisture inside chambers of the unamended soil across the 

duration of the experiment.  
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Figure 6-12: [Site C – Mt Compass 2008] Daily rainfall and mean soil and minimum and 

maximum air temperatures. 
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Figure 6-13: [Site C] Mean daily relative humidity (%) and soil moisture levels (kPa) from 

probes placed in biosolids-amended (B-A) and nil-biosolids (N-B) soil. 
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Figure 6-14: [Site C – Mount Compass] Comparison of soil moisture recordings from soil 

probes (kPa), mean topsoil moisture and mean soil moisture inside chambers of the biosolids-

amended soil across the duration of the experiment. 
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Figure 6-15: [Site C] Comparison of soil moisture recordings from soil probes (kPa), mean 

topsoil moisture and mean soil moisture inside chambers of the unamended soil across the 

duration of the experiment.  
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6.4.2. Enteric microorganism survival in the soil 

All of the study microorganisms were observed to decay in the soil; however, the 

ANOVA results showed that the rate of inactivation was highly significantly (P< 

0.01) affected by the variations in the microorganism, site location, treatment, related 

soil type and climatic conditions during the wheat growing season. The plots and the 

chambers within plots had no significant effects (P> 0.05) on the pathogen numbers.  

 

The observed and predicted decay patterns are presented in Figures 6-16 to 6-21.  

The estimated decay times (T90) for each of the enteric microorganisms tested at all 

three sites are presented in Table 6-6. Full statistical data is available in the 

Appendices Section 11.6. 

 

Rapid decay of bacteria in both biosolids amended soil and control soil occurred over 

the duration of the experiment (Figures 6-16 to 6-18). The numbers of E. coli and S. 

enterica fell below 1-log10 by 180 d. The decay times (T90) for E. coli were less than 

12 d at sites A and C (Table 6-6). Longer decay times occurred at site B (56 d for 

biosolids amended soil and 83 d for unamended soil). For S. enterica, the decay 

times were less than 25 d at Sites A and B (Moora, WA) but were longer at Site C 

(Mt Compass, SA, 37 and 57 d for biosolids and control soils respectively). E. coli 

decay times in the biosolids-amended soil, outside the chambers, were 29 d at site B 

(Moora, WA) and 109 d at site C (Mt Compass, WA). The changes in E. coli inside 

the chambers was significantly correlated (P<0.05) to the decay patterns of E. coli 

outside the chambers (topsoil) at sites B and C (Figures 6-20 and 6-21). When the 

bacteria count was compared across the duration of the experiment, the ANOVA 

(results) showed that the difference between biosolids-amended soil and unamended 

soil was highly significant (P<0.001) at sites A and B, but not at site C (P>0.05).  

 

Viral decay in the soil was less rapid than the bacteria (Figure 6-19). Bacteriophage 

(MS2) numbers declined only 2 to 3-log10 over the first approximate 120 d of the 

experiment. Following this, MS2 numbers rapidly fell below 1-log10. Climatic 

parameters observed during this time showed reduced rainfall events, decreasing soil 

moisture levels and increasing soil temperatures (above 20ºC) (Figures 6-6 to 6-15). 
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Decay times (T90) for MS2 were less than 36 d, except at sites A and B (Moora, WA) 

in the unamended soil where estimated decay times were 108 and 90 d, respectively 

(Table 6-6). The ANOVA results showed that the difference between treatments in 

the MS2 counts was highly significant (P<0.001) for all sites and in general the 

biosolids-amended soil had higher viral numbers than the control soil.   

 

Unlike other microorganisms in the study, inconsistent or limited reduction in 

adenovirus numbers was observed at the three field sites over the duration of 

experiment (Figure 6-19). At Site B there was little change in adenovirus count, 

therefore no T90 value was achieved.  At Sites A and C there were significant 

fluctuations in viral numbers, as results multiple decay times (T90 values) were 

observed (Table 6-6). The ANOVA results indicate that the difference between 

adenovirus numbers in the biosolids-amended soil compared with the unamended 

soil over time was highly significant (P<0.001) at sites B and C, but not at site A 

(P=0.82).  

 

A general trend occurred where bacteria and bacteriophage in the biosolids-amended 

soil (chambers) had shorter decay times than those in the unamended soil (Table 6-

6). Soil moisture content in the moisture chambers at Site B and Site C were also 

higher in the biosolids-amended soils than the unamended soil (Figures 6-10, 6-11, 

6-14, 6-15 and Table 6-5) and higher in the chambers than the topsoil (Table 6-5). 

Soil moisture in the topsoil was only higher at the biosolids-amended site at Site C 

(compared with the unamended soil). 

 

Table 6-6: Mean soil moisture content (%) in chambers and topsoil (0-10 cm) at Sites B and C. 

 Site B Site C 

Mean soil moisture 

content (%) 

Biosolids-

amended Unamended 

Biosolids-

amended Unamended 

Chambers 25 (±3) 12 (±2) 20 (±3) 12 (±2) 

Topsoil (0-10cm) 7 (±2) 7 (±2) 17 (±4) 14 (±3) 
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Figure 6-16: E. coli decay in biosolids-amended and nil-biosolids soil with standard error bars 

where (a) is Moora 2006 Site A; (b) is Moora 2008 Site B; and (c) is Mt Compass 2008 Site C. 
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Figure 6-17: E. coli  numbers in biosolids-amended and nil-biosolids soil (outside chambers) 

with standard error bars where (a) is Moora 2008 Site B; and (b) is Mt Compass 2008 Site C. 
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Figure 6-18: S. enterica decay in biosolids-amended and nil-biosolids soil (with SE bars) where 

(a) is Moora 2006 Site A; (b)  is Moora 2008 Site B; and (c) is Mt Compass 2008 Site C. 
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Figure 6-19: The decay patterns of MS2 and adenovirus in biosolids-amended and nil-biosolids 

soil (with SE bars) where (I and iv) are at Moora 2006 Site A; (ii and v) are at Moora 2008 Site 

B; and (iii and vi) are at Mt Compass 2008 Site C, respectively. 
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Figure 6-20: Comparison of E. coli (inoculated) into chambers with E. coli (environmental 

strain) in topsoil at biosolids-amended plots, Site B Moora 2008. 
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Figure 6-21: Comparison of E. coli (inoculated) into chambers with E. coli (environmental 

strain) in topsoil at biosolids-amended plots, Site C Mt Compass 2008.
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Table 6-7: Time for a one log10 reduction (T90) to occur for enteric microorganisms in soil at three field sites. 

 Estimated T90  times (d) 

 Site A – Moora 2006 Site B – Moora 2008 Site C – Mt Compass 2008 

Microorganism Biosolids Nil-biosolids Biosolids Nil-biosolids Biosolids Nil-biosolids 

E. coli 5 12 56 83 7 8 

E. coli site # # 29 21 109, 189 59 

S. enterica 4 21 12 25 37 57 

MS2 36 108 29 90 22 29 

Adenovirus 20, 102, 198 18, 71, 189 >200 >200 >200 44, 80, 18 

# Not tested 

 

NB: The standard deviation values on individual sampling events are provided in the figures. 
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6.4.3. The effects of climate variables on microbial numbers  

The changes in E. coli, S. enterica, MS2 and adenovirus (inside the chambers) at 

Moora in 2008 (Site B) were significantly influenced (P<0.05) by the changes in soil 

moisture (taken from inside moisture chambers) over the duration of the experiment 

in the biosolids-amended soil (Figure 6-22) and the unamended soil (Figure 6-23). 

The only exception was adenovirus in the biosolids-amended soil (Figure 6-22), 

which was not significantly correlated (P=0.28) to soil moisture patterns.   

 

At Mount Compass in 2008 (Site C), the decay patterns for E. coli, S. enterica and 

MS2 in the unamended soil were significantly correlated (P<0.01) to changes in soil 

moisture (Figure 6-25). In the biosolids-amended soil, the changes in MS2 and 

adenovirus were significantly correlated (P<0.05) to soil moisture changes at the 

same site (Figure 6-24).   

 

Soil temperature changes over the duration of the experiment were significantly 

correlated (P<0.05) with changes in E. coli and MS2 in both soils at Site B (Figures 

6-22 and 6-23). At Site C, decay patterns for MS2 were significantly correlated 

(P<0.01) to soil temperature changes in the biosolids-amended soil and unamended 

soil (Figures 6-24 and 6-25). In addition, the decay patterns of adenovirus in the 

biosolids-amended soil and S. enterica in the unamended soil were significantly 

correlated (P<0.02) with soil temperature changes over time at the same site.    

 

The changes in E. coli, taken from the biosolids-amended soil outside the chambers, 

were significantly correlated (P=0.05) to changes in soil moisture at Site B at Moora 

in 2008 (Figure 6-26). There was no correlation between changes in E. coli (outside 

the chambers) and soil temperature at Site B, and no correlation between soil 

temperature and soil moisture at Site C (P>0.10). 
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Figure 6-22: Decay patterns of E. coli, S. enterica, MS2 and adenovirus in biosolids-amended 

soil chambers with soil moisture levels (%) from biosolids-amended moisture chambers along 

with soil temperature (from auto-probes) at Site B, Moora 2008. 
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Figure 6-23: Decay patterns of E. coli, S. enterica, MS2 and adenovirus in unamended soil 

chambers with soil moisture levels (%) from unamended moisture chambers alongside soil 

temperature changes at Site B, Moora 2008. 

 



Chapter 6 

 129 

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

 S
o

il 
m

o
is

tu
re

 (
%

) 
a

n
d

 s
o

il 
te

m
p

e
ra

tu
re

 (
O
C

)

 Soil temperature

 Soil moisture
L
o
g

1
0
 c

fu
 g

-1
 d

s

Time (days)

 E. coli

 S. enterica

 MS2

 Adenovirus

 

Figure 6-24: Decay patterns of E. coli, S. enterica, MS2 and adenovirus in biosolids-amended 

soil chambers with soil moisture levels (%) in biosolids-amended moisture chambers along with 

soil temperature changes (probes) at Site C, Mt Compass 2008. 
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Figure 6-25: Decay patterns of E. coli, S. enterica, MS2 and adenovirus in unamended soil 

chambers with soil moisture (%) from unamended moisture chambers along with soil 

temperature changes at Site C, Mt Compass 2008. 
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Figure 6-26: Decay pattern of E. coli (environmental strain) in biosolids-amended topsoil 

alongside soil moisture (outside chambers) and soil temperature at Site B, Moora 2008. 

 

Table 6-8: Levels of signficance (P<0.05) of correlations between the decay patterns of enteric 

microorganisms with soil moisture and soil temperature. 

Microorganism  

Soil moisture Soil temperature 

Biosolids-

amended Unamended 

Biosolids-

amended Unamended 

SITE B     

E. coli P=0.00 P=0.00 P=0.03 P=0.01 

S. enterica P=0.02 P=0.01 P=0.08 P=0.09 

MS2 P=0.01 P=0.00 P=0.05 P=0.01 

adenovirus P=0.28 P=0.05 P=0.06 P=0.18 

E. coli (site) P=0.05 P=0.03 P=0.18 ND 

SITE C     

E. coli P=0.10 P=0.01 P=0.14 P=0.12 

S. enterica P=0.09 P=0.00 P=0.06 P=0.02 

MS2 P=0.00 P=0.00 P=0.01 P=0.00 

adenovirus P=0.03 P=0.69 P=0.00 P=0.27 

E. coli (site) P=0.76 ND P=0.14 ND 

ND = Not determined
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6.5. Discussion 

This is the most comprehensive study in Australia where the survival of enteric 

microorganisms in land-applied biosolids, particularly on broadacre grain farms in 

Australia, has been undertaken. Results from this study demonstrate that enteric 

bacteria (after inoculating at high levels) can be expected to remain above detection 

limits for 6 to 7 months in agricultural soil amended with biosolids, particularly in 

dry temperate cropping regions (when spring temperatures increase and soil moisture 

levels decrease). Enteric viruses can be expected to survive for longer periods of time 

than bacteria with slower patterns of decay over time. 

6.5.1. Decay times of enteric bacteria in the soil 

The inactivation times (T90) of seeded enteric bacteria were 4 to 12 d for S. enterica 

at Moora and 5 to 7 d for E. coli at Moora in 2006 and Mt Compass in 2008 (Table 

6-6). In a similar study, Crute (2004) reported decay times of 4 d for E. coli and 12 d 

for enterococci sampled directly into biosolids-amended soil at Toodyay, WA. 

Similar decay times were reported in soils irrigated with farm effluent in Victoria as 

15 d for E. coli and 10 d for Salmonella (Chandler and Craven 1980), and 8 to 15 d 

for S. enterica in sewage sludge in New Zealand (Horswell et al. 2010).  

 

The Australian soils used in this study had fairly low levels of organic carbon (~ 2 to 

3%) (Table 6-1). Higher inactivation rates of E. coli have been associated with low 

organic carbon content (<1.65%) (Vidovic et al. 2007). The decay times of E. coli 

(Table 6-6) were similar at Moora (2006) to Mt Compass (2008) despite being 

different seasons, different locations and different biosolids (with different treatment 

processes), but much longer decay times were found for Moora in 2008 (Table 6-6). 

Some possible explanations for this are that the biosolids application rate was almost 

three times higher in 2008 compared with 2006, although this does not explain the 

longer decay time in the unamended soil of 83 d (Site B). The clay (7.5%) and silt 

(5.5%) content at the Moora site (Site B) was higher than at Mt Compass (Site C) 

where the clay content was 1.5% and the silt content was 2.5%. Clay soils not only 

have a better moisture holding capacity than sandy soils, the moisture is not as easily 

lost which also improves chances of bacterial survival (Platz 1980) which are more 
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sensitive to loss of soil moisture. The soil components at both Moora sites should 

have been similar, being close in location, and therefore this does not explain the 

longer decay times at Moora in 2008 (Site B). Soil moisture content at Site B (Figure 

6-9) underwent a dry period from August to September which would normally cause 

bacterial deaths but despite this, there was no pattern of sudden decay during this 

period. Cools et al. (2001) reported that moisture content did not affect the survival 

of E. coli or Enterococcus. 

 

Based on the observed data (Figure 6-16), the E. coli at all three sites decreased 

approximately seven-log10 over 150 to 200 d with E. coli numbers below one-log10 

by approximately 5 to 6 months. These results indicate that estimated decay times 

(T90 values) should be considered in conjunction with the observed data. In previous 

work, Crute (2004) reported that E. coli and enterococci were able to be detected in 

biosolids-amended soil for up to 6 months at Toodyay, WA. Eamens et al. (2006) 

reported longer detection times of 10 to 17 months for E. coli, C. perfringens and 

Salmonella spp. in soils amended with anaerobically-digested biosolids at Goulburn, 

New South Wales. These survival times may have been longer due to samples 

collected directly from biosolids ‘clumps’ as opposed to the biosolids being diluted 

with the soil.  

 

Actual survival times have been reported as up to 3 months in New Zealand and the 

United Kingdom (Horswell et al. 2007; Lang et al. 2007) and 7 months up to 11-12 

months in Australia (Eamens et al. 2006; Eamens and Waldron 2008). These survival 

(detection) times are related to various locations, soil characteristics at the site, the 

type of waste applied (Williams et al. 2007), starting numbers at the beginning of the 

experiment, detection limits, methods of enumeration, methods for determining 

decay times, and the microorganism type (Cools et al. 2001) used across the various 

studies.  

 

The difference between the survival times reported in other studies such as Horswell 

et al. (2007), Lang et al. (2007), Eamens et al. (2006) and Eamens and Waldron 

2008 and the present study, could be that these studies commonly report the ‘losses’ 

or removal of microorganisms from the soil rather than the actual decay times 

calculated from the decay slope. This means that the reductions, or the time before 
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the microorganisms fell below detection, as reported in these studies, may have been 

as a result of factors such as leaching, random distribution or run-off. Some of the 

bacteria may have been inside of biosolids ‘clumps’ and others not. As the biosolids 

would have broken down over time, there may have been greater variation and more 

difficulty associated with the ability to detect them. In the present study, the unique 

aspect of the research was that actual decay times were examined. Since the 

microorganisms were inoculated and confined to the sentinel chambers, the 

reductions reflected in the observed data were not a result of microorganisms being 

leached or washed away. Rather, the viable microorganisms present inside the 

chambers were cultured at each sampling event and therefore provided a more 

accurate representation of the decay patterns for each microorganism studied.  

 

The decay times (T90) of S. enterica were shorter at Moora in the biosolids-amended 

soil (4 to 12 d) compared with Mt Compass (37 d). The same pattern occurred in the 

unamended soils, where decay times were shorter at Moora (21 and 25 d) compared 

with Mt Compass (57 d), although this difference was not as great. This may have 

been due to higher moisture and lower temperatures that occur on the South 

Australian peninsula compared with the drier, warmer climate that is common inland 

from the coast of Western Australia. Soil temperatures and humidity were lower at 

Mt Compass than Moora (Table 6-3) with higher annual rainfall recorded at Mt 

Compass (328 mm pa). Similar results were found by Lang et al. (2007) where 

temperature, particularly soil temperature, and soil moisture were identified as the 

most influential environmental parameters affecting inactivation. 

 

Several factors need to be taken into account when reviewing the reduction times 

found in the present study. Firstly, biosolids were added to soil at far higher rates 

than would be allowable (for release onto land) under the current land application 

guidelines. Biosolids applications at Moora in 2008 (Site B) and Mt Compass (Site 

C) were 1.5 times the nitrogen limited biosolids application rate (NLBAR) or normal 

district practice (DEP, WRC and DOH 2002) so that the treatment effect of biosolids 

(on pathogen survival) could be examined. In the sample chambers, the biosolids to 

soil rates were 25% biosolids to 75% soil. In the field (based on the NLBAR) the 

application rate would be approximately 7 to 10 dry t ha
-1

 which would equate to 1% 

biosolids to 99% soil in the chambers. Based on previous findings (Crute 2004), the 
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rate of 1% biosolids was not high enough to show up any treatment effect (i.e. the 

effect that biosolids have on the decay rates of the pathogens). The biosolids from 

Western Australia were fresh, were despatched directly from the wastewater 

treatment plant and were applied to land immediately after delivery to the site. 

Biosolids from South Australia had been stockpiled for approximately 2 years before 

application. This could have resulted in any a higher level of predation occurring in 

fresh biosolids thus the increased inactivation times from the Western Australian 

plots. Alternatively, the bacteria remaining in the stockpiled biosolids may have been 

more robust and may have resulted in longer decay times at the South Australian site.  

 

Secondly, the laboratory-cultured pathogens tested in this study were inoculated into 

the soil and biosolids-amended soil at very high levels; at levels which, if present in 

biosolids, would not normally be permitted for land application. The higher starting 

numbers at the beginning of each experiment (from the use of inoculants), coupled 

with higher biosolids application rates, served to provide a worse-case scenario or 

overestimation of the levels of risk to be expected where biosolids are used in the 

field.  Therefore, where biosolids are applied under normal conditions (according to 

NLBAR), the risks to public health from enteric pathogens would be expected to be 

lower. 

 

Inoculation was used to provide a longer time-frame to examine decay patterns 

before die-off occurred, and for statistical purposes. Given these factors, E. coli was 

also tested from the topsoil of the paddock (outside the chambers), where biosolids 

had been applied at a normal district rate of approximately 8 dry t ha
-1

 for 

comparison with the E. coli inside the chambers. The decay pattern for both were 

significantly correlated (P<0.05). The starting numbers of E. coli inoculated into the 

biosolids-amended soil at Moora in 2008 (Site B) were very similar, being 7 log cfu 

g
-1

 in the chambers compared with 6 log cfu g
-1

 in the topsoil at the biosolids-

amended site and as a result, the decay times (T90) were similar (i.e. 56 d in the 

chambers and 29 d in the topsoil). However, at Mt Compass (Site C) the starting 

numbers were 10 log cfu g
-1

 inside the chambers compared with 3 log cfu g
-1

 outside 

the chambers at the biosolids-amended site, as expected, and the decay times were 

vastly different (7 d in the chambers and 109 d in the topsoil) and yet still 

significantly correlated (P<0.05). The presence of E. coli in the unamended soil at 
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Mt Compass may be attributed to the grazing of cattle and kangaroos at the site prior 

to the experiment since faecal pathogens have been known to be introduced into the 

soil in this manner (Wu et al. 2009).  

 

The soil moisture content inside the chambers was higher in the biosolids-amended 

soil than the unamended soil (from data collected at Sites B and C – Table 6-5). As a 

possible link, the decay times were shorter for E. coli, S. enterica and MS2 in the 

biosolids-amended chambers than in the unamended soil chambers (Table 6-6). In 

addition, despite the same mean content (of 7% in Table 6-5), the moisture content in 

the topsoil at Site B was higher across the experiment in the unamended soil (Figure 

6-11) than the biosolids-amended soil (Figure 6-10), and as a possible result, the 

decay time of E. coli was shorter in the unamended soil where the soil moisture 

patterns were higher (Table 6-6). This suggests that decay may be increased (or 

decay times shorter) for the study microorganisms (E. coli, S. enterica and MS2) in 

soils with higher moisture content. This pattern, however, was not evident in the 

topsoil at Site C (with a lower T
90

 in the unamended soil of 59 days), where there 

was less variation in moisture levels between treatments (17 and 14% in Table 6-5 

and Figures 6-14 and 6-15). 

6.5.2. Decay times of E. coli inside chambers compared with outside chambers 

At Moora in 2008, the estimated decay time (T90) of E. coli inoculated into the 

biosolids-amended soil inside the sentinel chambers (56 d) was similar to that of the 

E. coli (not inoculated) into the biosolids-amended soil (topsoil) outside the 

chambers (29 d). The decay patterns of E. coli outside the chambers showed greater 

variability in the observed data than the E. coli inside the chambers (Figures 6-16b 

and 6-17a); however, these decay patterns were significantly correlated (P<0.001) 

across the duration of the experiment. This significance (P<0.05) also occurred for 

E. coli outside the chambers at Site C. Bacteria outside the chambers (in the topsoil) 

may have been more exposed to the elements, resulting in shorter decay times. At 

this site (Site B), soil moisture content was lower in the topsoil (where decay time 

was also shorter at 29 d) than in the chambers (where decay time was longer at 56 d) 

demonstrating that the chamber may provide more stabilised conditions from rapid 

drying, thus the effect of moisture in increasing decay times as previously suggested 

may not always be the case.   
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The variability in the observed data may have also been because the biosolids 

incorporated with the soil contained more clumps. To avoid soil dilution factors, the 

clumps were sampled in an effort to obtain a direct measurement of the actual 

survival of bacteria within the biosolids (Crute 2004; Eamens et al. 2006). This 

method of sampling into the soil does not truly reflect the inactivation of 

microorganisms when incorporated with the soil (i.e. the dilution factor for any given 

application rate). In addition, the method may introduce more random error between 

samples, particularly as the clumps begin to dry and become difficult to penetrate 

with a sample corer. For this reason, the chambers were useful for reducing random 

error and for providing uniformity without compromising the general survival decay 

patterns in the soil. 

6.5.3. Decay times of enteric viruses in the soil 

Bacteriophage decay times (T90) in the biosolids-amended soil were less than 36 d at 

all three sites (Table 6-6); however, decay times were much longer at Moora than Mt 

Compass. This may have been influenced by higher clay content in the soil at Moora 

(7.5%) compared with Mt Compass (1.5%), as was suggested for the bacterial decay 

patterns. Assadian et al. (2005) found that the extended persistence of bacteriophage 

MS2 in soil was reported to be due to higher clay content. Goyal and Gerba (1979) 

found that increased persistence of virus through soil adsorption was highly strain 

dependent and was influenced by the type of soil. In addition, better adsorption of 

viruses occurs in soil with a saturated pH of less then 5.0.  In the present study, 

bacteriophage in the unamended soils had longer decay times than the biosolids-

amended soils (Table 6-6).  

 

The decay rate of enteric microorganisms is known to be influenced by the 

microorganism type (Sidhu et al. 2008). In the present study, the enteric bacteria 

were inactivated more rapidly than the surrogate virus (MS2). This was also found 

by Lasobras et al. (1999). Moce-Llivina et al. (2003) found that phages were 

significantly more resistant (to higher temperatures) than bacterial indicators.  For 

this reason, it does not seem appropriate to rely on indicator microorganisms to act as 

a true representation of other enteric pathogens in soil/biosolids-type samples, even 

though they may provide accurate representation in water or other substances. 
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However, the author does recommend that indicator microorganisms such as E. coli 

be used for other (E. coli) pathogenic strains, for example.  

 

From the observed data (Figure 6-19) a general trend occurred at all three sites where 

MS2 numbers decayed slowly up to approximately 150 d before rapidly decreasing 

to below one-log10 at 180 d or 6 months. It was during this time that soil 

temperatures also increased, there were fewer rainfall events and soil moisture levels 

rapidly declined (Figure 6-6 to 6-11).  F-specific bacteriophages have been observed 

to be sensitive to temperatures over 25ºC, resulting in a reduction of more than 2 

log10 units following exposure (Lasobras et al. 1999; Moce-Llivina et al. 2003; 

Guzman et al. 2007). At Moora, soil temperatures rose above 20ºC from 130 to 140 d 

with increasing periods where temperatures were above 25ºC from approximately 

160 d onwards. Soil temperatures at Mt Compass reached 20ºC from 150 d onwards. 

At both sites, the changes in MS2 was significantly correlated (P<0.05) with changes 

in soil temperature and soil moisture over time (Table 6-7). 

 

No notable inactivation of adenovirus occurred in both the biosolids-amended and 

unamended soils over the growing season of the wheat crop and, as a result, the 

decay times (T90) were more than 180 d. This is in agreement with previously 

reported findings of Charles et al. (2009) and Schlindwein et al. (2010) where there 

was no change in adenovirus numbers across the duration of their experiments. In the 

present study, this may have either been due to the strong adsorption of the viruses to 

the soil minerals (Hurst et al. 1980; Horswell et al. 2010) or, more likely, the use of 

quantitative PCR to detect viral DNA rather than the detection of infective viruses by 

culture. Wei et al. (2009) examined the ‘detection’ of human Adenovirus 41 (Ad41) 

in manure and biosolids and found no significant loss of viral DNA after 60 d. When 

they tested ‘infectivity’, the adenovirus decay times (T90) were much shorter at 4 and 

8 d (in dairy manure), 12 and 28 d (in biosolids) and 19 and 51 d (in swine manure). 

Horswell et al. (2010) also observed that adenovirus could be detected by PCR in the 

soil where no culturable viruses were detected and attributed this to greater 

sensitivity of PCR to detect viable and nonviable viruses alike. This agrees with 

others who stated that PCR methods do not quantify the human heath risk associated 

with enteric pathogens since they do not distinguish between infectious (living) and 

noninfectious (dead) pathogens (Lasobras et al. 1999; Guzman et al. 2007; Charles et 
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al. 2009; Schlindwein et al. 2010). Further experimentation is required to quantify 

virus decay (i.e. using an indicator such as bacteriophage) to compare cultural 

methods with molecular techniques and thus ‘infective’ decay times with ‘detectable’ 

decay times. For these reasons, it is difficult to draw conclusions from the results 

because the PCR detects live and dead virus. 

6.5.4. The effect of adding biosolids to soil 

In the present study, the decay times were often shorter in the biosolids-amended soil 

compared with the unamended soils. This indicates that, in some cases, the addition 

of biosolids to the soil may actually increase the inactivation times of these enteric 

microorganisms. Ingham et al. (2004) also reported that E. coli decreased more 

rapidly in manure-fertilised soils. Jiang et al. (2002) found that E. coli O157:H7 was 

inactivated more rapidly in non-autoclaved soil compared with autoclaved soil since 

the antimicrobial activities of microorganisms in manures and indigenous soil 

microorganisms are thought to contribute to the more rapid inactivation of E. coli in 

soils amended with biosolids or manures.  Along with this, the organic substrate in 

sludge may contribute towards the reduction of indigenous populations by 

stimulating the activity of predatory and competing soil flora (Lang et al. 2007). In 

Hurst et al. (1980), the presence of sewage did not influence virus survival.  

 

Increasing manure content can result in decreased attachment, in particular for 

bacteria. Guber et al. (2005; 2007) found that maximum E. coli attachment occurred 

to soils in the absence of manure colloids. The opposite trend was found by Cools et 

al. (2001), Platz (1980) and Holley et al. (2006) where the addition and incorporation 

of manure to the soil enhanced bacterial survival. In Holley et al. (2006) this was 

thought to be due to possible nutrient availability. In other studies, the presence of 

manure enhanced the survival of E. coli in no-till soil which was thought to be due to 

enhanced microsite habitat and the addition of nitrogen (Gagliardi and Karns 2000). 

Horswell et al. (2007) found that bacterial die-off was significantly correlated with 

per cent solids of sludge. Eamens et al. (2006) also found no significant difference 

between survival in biosolids, with or without incorporation with the soil, however 

the raw data indicated a trend towards slightly greater survival of bacteria where 

biosolids had been incorporated, suggesting a possible protective effect under the 
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soil. In the present study, the addition of organic matter was not attributed to 

prolonged survival of bacteria. 

6.5.5. The effect of climate and location 

Bacteria respond to seasonal patterns in the environment by declining with increasing 

soil temperature and decreasing soil moisture (Holley et al. 2006; Lang et al. 2007). 

In the present study, the decay of bacteria was significantly correlated (P<0.05) with 

declining moisture levels, particularly at Site B and in the unamended soil at Site C; 

however, the same significant relationship with soil temperature did not occur at Site 

C (P>0.10) but was evident at Site B (P<0.03). Lang et al. (2007) found that E. coli 

populations declined in warm, drier soil in the summer and increased in cool, moist 

soils in the winter. Horswell (2007) also reported that E. coli die-off was faster when 

temperatures increased in conjunction with reduced rainfall events resulting in 

increased moisture loss. Cools et al. (2001) reported that increasing temperature 

caused a decrease in survival of E. coli at levels from 15 to 25ºC. Unc and Goss 

(2006) also found that E. coli populations decreased faster at a soil temperature of 

20ºC compared with 12 and 4ºC. In the present study, soil temperatures rose above 

15ºC at Site A from September to November, and at Sites B and C from October to 

November, however there was no obvious rapid decline of E. coli relating to soil 

temperature changes within these periods. Horswell et al. (2007) also found that E. 

coli numbers reduced to background levels following a week of increased 

temperatures and low rainfall (15 mm). Chandler and Craven (1980) reported that 

moisture-availability was a dominant factor in the survive-ability of E. coli. Hurst et 

al. (1980) also found that temperature and soil moisture content had a large influence 

on virus survival along with the degree of virus adsorption to the soil (adsorption 

increased as soil pH decreased) along with the presence of aerobic microorganisms. 

In the present study, the decay of the surrogate virus (MS2) was significantly 

correlated (P<0.05) with soil temperature and soil moisture at Sites B and C (Table 

6-7), indicating that the inactivation of this virus was influenced by increasing 

temperatures and decreasing moisture levels in the surrounding soil environment. 

This agrees with the information presented in the Literature Review, p. 23. 

 

Overall, when introduced to agricultural soil, enteric pathogens do decay and this 

decay may be influenced by climatic conditions, in particular, soil moisture and soil 
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temperature. Decay times and the influence of climatic variables may vary between 

sites, thus more research is required to refine the understanding of the drivers 

influencing decay at different sites under different conditions. 

6.6. Conclusions  

The key findings from this chapter were as follows: 

 Enteric microorganisms in the biosolids-amended soil had shorter decay times 

than those in the nil-biosolids soil;  

 The enteric bacteria and bacteriophage (inoculated and in sentinel chambers) in 

the field experiments, were detected in the soil (chambers) for 6 to 7 months;  

 The changes in E. coli numbers inside the chambers were significantly 

correlated (P<0.05) with the changes in E. coli numbers outside the chambers 

(topsoil) at Sites B and C, thus indicating that the chambers were suitable 

microcosms to represent the external environment; 

 Decreasing soil moisture over the duration of the experiment significantly 

influenced (P<0.05) most enteric microorganisms at Sites B and C, particularly 

in the unamended soils (Table 6-7); 

 Increasing soil temperature significantly influenced (P<0.05) virus (MS2) 

decay patterns at Sites B and C, as well as E. coli decay patterns at Site B in the 

biosolids-amended and unamended soil (Table 6-7); 

 The changes in moisture content inside the chambers was significantly 

correlated (P<0.001) with the moisture content outside the chambers (topsoil) 

at Site B, thus demonstrating that gaseous and moisture exchange had occurred 

between the surrounding soil and the chamber membranes; 
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Further conclusions were made from this chapter: 

 It was observed that the enteric bacteria decayed faster than the enteric viruses 

in the soil (chambers), therefore decay times were dependant on microorganism 

type;  

 The decay of E. coli at Moora in 2006 (Site A) was similar to that of Site C at 

Mt Compass in 2008 with reduction times (T90) of less than 12 d, but Site B 

(Moora 2008) was vastly different with decay times of up to 83 d;  

 The decay times for S. enterica in the nil-biosolids soils at Moora were higher 

than the biosolids-amended soils (21 to 25 d), and both treatments at Mt 

Compass were between 37 and 57 d; 

 Based on the results, the author recommends that E. coli should not be used as 

an indicator to represent the patterns of other pathogen types, in particular from 

soil or biosolids medium (water samples may provide different results); 

 Due to the use of inoculation and higher biosolids application rates, decay times 

reported were overestimations of what would normally be expected to occur in 

the field, and this must be taken into consideration when reviewing the results;  

 A general trend occurred at three sites where MS2 experienced a rapid decrease 

between 150 to 180 d. This may have been related to increases in temperature 

(above 20ºC) that occurred over this period; 

 Adenovirus showed no significant decay across the duration of the experiment. 

This may have been a result of the use of a molecular technique (PCR) which is 

able to detect the adenovirus regardless of the level of infectivity. The use of 

‘detection’ provided a more conservative estimation, which was preferable over 

underestimating decay in relation to the protection of public health; 

 The enteric bacteria and viruses, inoculated into the soil at high numbers, were 

below one-log10 by the end of the growing season of wheat (6 to 7 months); 

 

The results of this chapter suggest that the period of time where the public would be 

at greatest health risk is when biosolids are first applied to the cropping site. 

Increased risk occurs where temperatures are low and rainfall is high, usually from 

the autumn to spring months in regions where wheat is produced (below the Tropic 

of Capricorn) in Australia.   
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CHAPTER 7 THE DECAY TIMES OF E. COLI, S. 

ENTERICA AND MS2 FROM THE PHYLLOSPHERE 

AND ON GRAINS OF WHEAT 

 

7.1. Introduction 

The concern that foodborne illnesses may occur from food products contaminated 

with microbial pathogens has mostly been associated with the fresh fruit and 

vegetable industry, in particular from contaminated animal manures and irrigation 

water (Beuchat 1996; Doyle 2000a, 2000b; Buck et al. 2003; Johannessen et al. 

2005). In broadacre cereal crop production, the risk to consumers from contaminated 

plant and grains due to the use of biosolids is not fully understood since very little 

research has been conducted on the quantification of human enteric pathogens in the 

phyllosphere of plants (Ibekwe et al. 2004). In particular, no studies could be found 

on the decay times of enteric pathogens from the plant components of wheat or other 

cereal plants. 

 

There is a potential risk or concern that enteric pathogens, present in biosolids-

amended soil, could transfer onto the grain heads of food crops and thus be 

transmitted to humans. Contaminated soil, manure compost and irrigation water have 

been responsible for the contamination of salad and vegetables (Solomon et al. 2002; 

Ibekwe et al. 2004; Islam, Morgan et al. 2004; Ibenyassine et al. 2006; Ibekwe et al. 

2009). This has resulted in diseases being transmitted from wastewater sources via 

the faecal-to-oral route (Abdulraheem 1989). The survival of enteric pathogens in 

soil, and subsequent recontamination onto plant leaves during rainfall events, may be 

a primary source of transmission from sludges (Brown et al. 1980). Pathogens such 

as faecal bacteria and viruses may be dispersed from the soil onto plant leaves by 

factors such as rain splash and may persist through natural physical barriers (Boyer 

2008). If this was to occur, contaminated grains and fodder may transmit diseases to 

humans and livestock at consumption. Primarily, the responsibility of consumer 

safety has moved from final cook or consumer across the food supply-chain back to 

the producer. Thus, from a marketing point of view it is particularly important to 
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assess the bio-safety of cereal crops grown on biosolids-amended land (Chaney et al. 

1996; Tauxe 2002).     

 

Most studies on pathogen survival in the plant phyllosphere have been conducted on 

fruits and vegetables which are consumed raw or have minimum preparation time 

prior to consumption.  Prolonged survival of E. coli O157:H7 on the plant 

phyllosphere has been previously reported, for example on lettuce (Solomon et al. 

2002; Solomon et al. 2003; Islam, Doyle et al. 2004; Ibekwe et al. 2009), ryegrass 

(Sjogren 1995), grassland (Bolton et al. 1999) and onions or carrots (Islam et al. 

2005).   

 

The comparison of pathogen survival times is difficult across these studies due to the 

different methodology used (Franz et al. 2005). Results from these studies may not 

directly relate to cereal crops due to different plant types, growing seasons and 

climatic conditions. No studies could be found on the presence of, or inactivation 

times, of enteric pathogens on cereal crops contaminated from biosolids.  

 

The purpose of the research reported in this chapter was to examine the decay times 

of E. coli, S. enterica and bacteriophage MS2 from the phyllosphere of wheat and the 

decay times of the same microorganisms on wheat grains. The specific objective was 

to compare the decay times of individual microorganisms on two locations of the 

wheat plant – 1) the leaves and 2) the spikelets at flowering time. In addition, the 

decay times of individual microorganisms on the grains of two wheat varieties was 

also investigated.   
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7.2. Materials and methods 

7.2.1. Experimental site 

Two glasshouse experiments were carried out at the CSIRO Land and Water, Floreat, 

WA. The first experiment, a plant experiment, was conducted during the spring of 

September 2006 and the second experiment, a grain experiment, was conducted 

during the winter from May to July 2007.  

7.2.2. Establishment of wheat plants  

Three pots were prepared (TerraBoxes™, Planterra, 450 mm length x 150 mm width 

x 100 mm depth) with sieved soil (<2 mm) from Moora Site A (as described in 

Chapters 3 and 6). Soil was amended with non-sterile biosolids sourced from 

Beenyup wastewater treatment plant, Perth, WA at a rate equivalent to 10 t DS ha
-1

. 

Biosolids were incorporated with the topsoil (<10 cm) to resemble a similar 

environment (i.e. soil moisture and temperature) where biosolids are applied in the 

field. Noodle wheat (Triticum aestivum cv. Calingiri) was sown into the soil (10 

grains pot
-1

) at a depth of 2.5 cm and 4.5 cm wide row spacing at a rate equivalent to 

the field seeding rate of 60 kg ha
-1

. Fertilisers applied were diammonium phosphate 

(77 mg kg
-1

) and urea (53 mg kg
-1

) at rates equivalent to what would be applied in 

the field. Pots were maintained at gravimetric soil water holding capacity without 

leaching during the plant development stage (for approximately 4 months). At the 

time of the experiment, each pot contained approximately 10 flowering plants with 

well-formed heads (stage Z65-71 Zadoks scale (Zadoks et al. 1974) as indicated in 

Figure 7-1).  

 

The microorganisms tested were E. coli, S. enterica and bacteriophage (MS2), 

cultured and prepared as described in Section 3.3, p.54.  The final bacteria 

suspensions had a final cell count of more than 1 x 10
8
 cfu mL

-1
 and the 

bacteriophage had a final suspension of more than 1 x 10
8
 pfu mL

-1
. Inoculant 

cultures of E. coli, S. enterica and MS2 were applied to the leaves and the spikelets 

in two to three applications using a sterile brush for even distribution. A 10 min 

drying time was allowed between applications.  
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Figure 7-1: Zadoks growth stages for cereal plants (Zadoks et al. 1974) showing the stage used for experimental work.  
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Plant samples were collected at hours 0, 1, 2, 4, 6 and 8. Sampling frequency was 

then reduced to 26, 28, 53, 64, 206 h to a maximum of 9 d. At each sampling event, 

three plant leaves and three spikelets (grain heads) from three pots were randomly 

selected (n=3 samples per treatment). All samples were placed directly into sterile 

Bag Filter® (Interscience) bags and transported on ice to the CSIRO Microbiology 

Laboratory, Floreat, WA for processing within 5 h.  

7.2.3. Establishment of harvested grains  

Wheat (Triticum aestivum) was collected from Co-operative Bulk Handling Ltd 

(CBH, Forrestfield, WA) where grain produced across WA is pooled together and 

stored according to segregation. The two varieties tested were noodles (NN), 

typically used for pasta, and Australian Soft White (ASW), used to produce flour for 

biscuits or cakes. Feed wheat (FF), typically used for livestock, was also examined 

but not reported in this chapter due to similarities in results with the ASW wheat.  

 

One portion (1.5 kg) of wheat grains was inoculated with E. coli, S. enterica and 

bacteriophage MS2 inoculums, prepared as described in Section 3.3. Inoculant 

cultures were applied by evenly distributing the grains across a tray and spraying the 

inoculums onto the grains with a fine-mist atomizer. The other control portion (1.5 

kg) was sprayed with sterile water to match the moisture content of the amended 

grains. Grains were tossed several times and allowed to air-dry for 10 min between 

applications for even distribution. Seven tins (500 g) with lids were established to 

represent stored grains - three containing inoculated grains, three containing non-

inoculated grains (control), and one test tin for monitoring moisture and temperature 

changes inside the tin. The grain moisture and temperature was tested using an 

Infratec at CBH, Forrestfield, WA. Tins were stored in the glasshouse, under direct 

sunlight (non artificial), with the lids on to represent grain storage silos. 

 

Grain samples were collected at days 0, 1, 2, 7, 14, 21, 30 and 35. Sampling 

frequency was then reduced to fortnightly intervals (days 50 and 63) to a maximum 

of 63 d. At each sampling event, three representative samples of grain from three tins 

were selected for each treatment (n=9 samples per treatment). All samples were 

placed directly into sterile Bag Filter® (Interscience) bags and transported on ice to 

the CSIRO Microbiology Laboratory, Floreat, WA for processing within 8 h.  
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7.2.4. Enumeration of microorganisms 

The net weights of sample contents in each stomacher bag (Bag Filter® Interscience) 

were obtained (i.e. ~3 g plants and ~15-25 g for grains). P-buffer (pH 7.2) was 

aseptically added (20 mL to plant samples and 50 mL to grain samples).  All sample 

bags were placed in the stomacher (Bag Mixer®, Interscience) and mixed for 2 min 

(speed no. 7). The supernatant was collected, transferred into sterile polypropylene 

tubes (Sarstedt) and serial 10-fold dilutions were made in P-buffer. The 

quantification of pathogens was performed as described in Section 3.4, p. 54.  

7.2.5. Glasshouse conditions 

Air temperature in the glasshouse was maintained at 17˚C (± 0.25) by an air-

conditioning unit and relative humidity maintained at 72% (± 0.97). Temperature and 

solar radiation levels were monitored inside the glasshouse during the grain 

experiment. Global solar radiation was recorded from inside the glasshouse using an 

automated Global Radiation Instrument (Unidata model 6501-F/G) connected to data 

logger (Unidata Starlogger 6004-2). Daily air temperature and relative humidity 

during the winter (May to July 2007) were automatically recorded from inside the 

glasshouse every 20 min using a Tinytag Plus 2 (Gemini Data Loggers Ltd, UK).   

7.3. Data analysis  

7.3.1. Data preparation 

Prior to statistical analysis, pathogen counts were normalised from the raw data as 

described in Section 3.5, p. 62.  This was done to account for different dilutions, 

plating volumes, phosphate buffer levels and leaf, spikelet or grain volumes used. 

The log values of each microorganism were plotted over time and the decay times 

determined.  
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7.3.2. Statistical analysis 

All statistical analyses were performed with the generalised linear model (GLM) 

using SAS version 9.1 (SAS Institute Inc. 2005).  

 

7.3.2.1 Analysis of variation sources for decay of individual microorganisms 

The generalised linear model of ANOVA was used for the plant experiment to 

identify significant variation sources affecting final pathogen counts (log10 Count) in 

individual experiments. The variation sources included the fixed effects (treatment, 

linear terms of a covariate - sampling date, their interactions, pot and sample effect). 

The statistical model can be written as described in Section 5.3.1 (Equation 4), p. 85: 

 

Log10Yijl = μ + Ti + Sj + (TS)ij + Cl (T)i      

  

a) in the plant experiment Ti =1, 2 corresponds to spikelet or leaf, respectively; 

and Cl (T)i is the effect of the lth sample collected (l=1, 2, 3) nested within 

the ith treatment; 

b) in the grains experiment, T is replaced by B which corresponds to each block. 

Bk is the effect of the block (k =1, 2 corresponding to grain segregations 

ASW and NN); (BS)jk is the interaction between the kth block by the jth 

sampling date; Cl (B)i is the effect of the lth sample collected (l=1, 2, 3) 

nested within the kth block. 

 

The least-square effects of the fixed factor comparisons were then produced for both 

experiments. The regression coefficients of sampling date (linear terms) within each 

treatment were used as the indication of pathogen decay times.  

 

Based on the regression coefficients of corresponding terms in the simple linear 

model (“sdate” and “sdate*treatment”), where sample date was involved for either 

experiment, one-log10 decay time (T90) for each microorganism in the plants 

experiment (h) and the grains experiment (d) were determined from each pot using 

the formula described in Section 5.3.1 (Equation 5). 



Chapter 7 

 149 

 

7.3.2.2 Comparison of decay rates across all microorganisms  

A linear mixed model ANOVA was formulated for the plant experiment to compare 

significant effects within trial across microorganisms as described in Section 4.3.1.2 

(Equation 3), p. 70. 

 

Log10Y ijmn = μ + Ti + Om + Sj + (OS)jm + (OT)im + (OTS)ijm + Cl (OT)im + eijmn   

   

 with the addition of the following modifications where, i =1, 2 corresponds to the 

spikelet or leaf; m = E. coli, S. enterica, MS2; and the block effect (B) was not fitted 

in the model due to confounding effects between block and treatment. 

 

A similar model was also used for the grains experiment to compare significant 

effects within trial across microorganisms. The modification to the above equation 

was that the fixed effect of treatment (Tj) was replaced with (Bk), the fixed effect of 

the kth (k =1, 2 corresponding to the different grain types ASW or NN) in each block.  
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7.4. Results 

7.4.1. Environmental conditions 

Temperatures inside the glasshouse during the plant experiment averaged 16.5ºC 

(Table 7-1). Mean solar radiation readings (manually recorded) were 124.9 W m
-2

 

with a maximum of 656.3 W m
-2

. Manual light intensity readings taken at each 

sampling event are presented in Figure 7-2. 

 

The temperature and relative humidity recorded (automatically) inside the glasshouse 

for the grains experiment is presented in Figure 7-3. Temperatures inside the 

glasshouse during the experiment averaged 17.4ºC and relative humidity averaged 

72.2% (Table 7-1).  

 

Table 7-1: Climate conditions in the glasshouse during the plant component and grain variety 

experiments. 

 

 

Glasshouse condition 

 

 

Mean 

 

 

Maximum  

 

 

Minimum 

 

 

Plant experiment – Spring 2006 

   

 

 

Temperature (ºC) 

 

 

16.5 (±1.3) 

 

 

23.4 

 

 

14.3 

 

 

Solar radiation (W m
-2

) 

 

 

124.9 (±13.9) 

 

 

656.3 

 

 

1.37 

 

 

a
External temperature (ºC) 

 

 

16.6 (±0.26) 

 

 

18.9 

 

 

14.1 

 

 

Grain experiment – Winter 2007 

   

 

 

Temperature (ºC) 

 

 

17.4 (±0.25) 

 

 

22.9 

 

 

13.9 

 

 

Relative humidity (%) 

 

 

72.2 (±0.97) 

 

 

87.8 

 

 

43.9 

 

a
Recorded by Swanbourne weather station (www.bom.gov.au) 

http://www.bom.gov.au/


Chapter 7 

 151 

11/09/200610.30:00 AM

11/09/2006 13.24:00 PM

11/09/200617.46:00 PM

12/09/2006  13:44:00 PM

14/09/2006  13:10:00 PM

0

100

200

300

400

500

600

700

11/09/200610.30:00 AM

11/09/2006 13.24:00 PM

11/09/200617.46:00 PM

12/09/2006  13:44:00 PM

14/09/2006  13:10:00 PM

0

5

10

15

20

25

30

35

40

W
/m

2

Time (date)

 Light intensity (W/m
2
)

 

 T
e

m
p

e
ra

tu
re

 (
o
C

)

Time (date)

 Temperature (auto)

 Temperature (manual) 

 

Figure 7-2: Daily temperatures (
º
C), temperature during sample events and solar radiation 

levels (W m
-2

) recorded for the plant experiment. 
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Figure 7-3: Temperature and humidity recording during the grains experiment.   
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7.4.2. Survival patterns of microorganisms on the phyllosphere 

The inactivation rate of E. coli, S. enterica and MS2 was examined from the leaves 

and spikelets of wheat to determine decay times. The experiments were conducted in 

relation to the potential transfer of pathogens from the soil up onto the cereal plants 

from the use of biosolids.  

 

The observed changes in E. coli, S. enterica and MS2 numbers are presented in 

Figure 7-4. The error bars in the following figures represent the standard deviation 

between the means of the replicates. E. coli and S. enterica on the wheat leaves 

decreased approximately four to six-log10 cfu g
-1

 over the duration of the experiment 

(200 h or 8 d). Inactivation of MS2 was faster with approximately three-log10 cfu g
-1

 

loss over the same period. E. coli and S. enterica from the spikelets decreased 

approximately three to four-log10 cfu g
-1

 over the duration of the experiment. 

Inactivation from the spikelets was slower with decreases of approximately four to 

six-log10 for E. coli, S. enterica and MS2.  Overall, MS2 decayed the fastest from the 

spikelets and the leaves (Figure 7-4c). 

 

The decay times for E. coli, S. enterica and MS2 are presented in Table 7-2. The 

decay times (T90) of the enteric microorganisms on the leaves tended to be longer (35 

to 72 h) compared with the spikelets (23 to 51 h), however this was not significant 

for E. coli (P=0.23) nor S. enterica (P=0.08).  

 

The three microorganisms behaved significantly different (P<0.001). On the leaves, 

E. coli decayed significantly slower than S. enterica (P<0.001) and MS2 (P=0.001). 

The difference in S. enterica and MS2 decay times was also highly significant 

(P<0.001). The decay time of MS2 on the leaves was the shortest (35 h). S. enterica 

on the spikelets decayed significantly faster than E. coli (P<0.001) on the spikelets. 

The difference in decay times between E. coli and MS2 on the spikelets was also 

significant (P=0.001). Again, the decay time for MS2 on the spikelets was the 

shortest (23 h).  
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Figure 7-4: Decay patterns on wheat leaves (■) and spikelets (□) with linear regression lines for 

the leaves (—) and spikelets (—) where (a) is E. coli; where (b) is for S. enterica; and (c) is for 

MS2. Standard error bars are shown. 

(a) 

(b) 

(c) 
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Table 7-2: Time for a one log10 reduction (T90) to occur for enteric microorganisms on the leaves 

and spikelets of wheat. 

  

T90 times (h)   

 

 

Microorganism 
 

 

Wheat leaves 
 

 

Spikelets 
 

 

E. coli 
 

 

72 
 

 

51 
 

 

S. enterica 
 

 

57 

 

34 

 

Bacteriophage MS2 

 

 

35 

 

23 

 
NB: The standard deviation values on individual sampling events are provided in the figures. 

 

 

Table 7-3: Time for a one log10 reduction (T90) to occur for enteric microorganisms on wheat 

grains. 

  

(T90) times (d) 
 

 

 

Microorganism 
 

 

Noodle grains (NN) 
 

 

ASW grains  
 

 

E. coli 
 

 

9 
 

 

10 
 

 

S. enterica 
 

 

10 
 

 

12 
 

 

Bacteriophage MS2 
 

 

60 
 

 

71 
 

 

NB: The standard deviation values on individual sampling events are provided in the figures. 
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7.4.3. Survival patterns of microorganisms on grains 

The decay times of E. coli, S. enterica and MS2 were examined on stored wheat 

grains so that the potential contamination risk to humans and livestock, where 

biosolids have been used, could be evaluated. Figure 7-5 presents the decay patterns 

of the three enteric microorganisms from the stored wheat grains.  The error bars in 

the following figures represent the standard deviation between the means of the 

replicates. 

 

It can be seen that E. coli decreased approximately four-log10 cfu g
-1

 and S. enterica 

decreased approximately three-log10 cfu g
-1

 over the duration of the experiment (~60 

d). The decay of MS2 was much slower with a loss of less than one-log10 pfu g
-1

 over 

the experimental period.  

 

The decay times for E. coli, S. enterica and MS2 are presented in Table 7-3. The 

decay times (T90) of enteric bacteria from both grain varieties were less than 12 d. 

MS2 decay times were longer at 60 to 71 d. There was a significant decay of E. coli 

and S. enterica (P=0.001 and P=0.003, respectively) from the noodle grains 

compared with the ASW grains; however, this difference was not significant 

(P=0.81) for MS2.  

 

The decay patterns across all three microorganisms on the noodle grains was 

significantly different (P<0.001). The decay times of E. coli and S. enterica were 

shorter than MS2 and there was a significant difference (P=0.009) between the 

changes in all three microorganisms across the grain varieties tested.  
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Figure 7-5: Decay patterns of (a) E. coli, (b) S. enterica, and (c) MS2 on wheat grains where NN 

is (■) and ASW  is (□), and linear regression lines are NN (—) and ASW (—). Standard error 

bars are shown. 

(a) 

(b) 

(c) 
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7.5. Discussion 

7.5.1. The decay times from the phyllosphere and grains  

The estimated inactivation times (T90) of S. enterica and E. coli on the phyllosphere 

were 2 to 3 d (57 to 72 h, respectively) on the leaves and 1 to 2 d (34 to 51 h, 

respectively) on the spikelets. In comparison, on lettuce much longer decay times of 

15 to 77 d have been reported for E. coli O157:H7 (Beuchat 1999; Solomon et al. 

2002; Solomon et al. 2003; Islam, Doyle et al. 2004; Ibekwe et al. 2009) and 63 d for 

Salmonella typhimurium (Islam, Morgan et al. 2004). E. coli O157:H7 has also been 

reported to persist for 41 d on ryegrass (Sjogren 1995), 99 d on grassland (Bolton et 

al. 1999) and 74 to 168 d on onions and carrots, respectively (Islam et al. 2005). 

Patel et al. (2010) reported  E. coli O157:H7 survival times from 7 to 14 d on spinach 

leaves when co-inoculated with non-pathogenic E. coli. Islam, Morgan et al. (2004) 

found that S. enterica persisted for 161 d on parsley. Kroupitski et al. (2009) found 

no decline in Salmonella on lettuce over 9 d.   

 

The longer survival times of bacteria on plant surfaces such as parsley and lettuce 

(Islam, Doyle et al. 2004) may have been attributed to crop density. Crops such as 

alfalfa have shown increased survival times of enteric microorganisms due to the 

reduction of desiccation and sunlight effects (El Hamouri et al. 1996). Such complex 

leaf structures may provide protection for enteric pathogens on the phyllosphere 

whereas enteric pathogens on plants with flat, wider leaves (similar to wheat) may be 

more exposed to drying and sunlight inactivation. The longer survival times for E. 

coli O157:H7 on onions and carrots (Islam et al. 2005) may be attributed to the 

protective effect under the soil, in moist conditions and in the absence of direct 

sunlight.    

 

Estimated decay times (T90) for MS2 were 35 h on wheat leaves 23 h on spikelets 

(i.e. approximately 1 d). These results were similar to Choi et al. (2004) where one 

log reduction times of 1 to 2 d were reported for bacteriophage (MS2 and PRD1) on 

the surface of lettuce. The short decay times were thought to be due to high 

temperatures over the duration of the experiment. In other studies, poliovirus survival 

was reported as actual survival times of more than 76 d on celery and 55 d on 

spinach maintained at 4ºC in a humid atmosphere in the dark (Ward and Irving 
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1987). Brown et al. (1980) observed that coliphage on grass could not be detected 

after 24 h followed by simulated rainfall events. Croci et al. (2002) observed that 

only a slight decrease in hepatitis A virus occurred (over 9 d) and saw complete 

inactivation within 7 d for fennel.  

 

Despite the different growing conditions, irrigation sources and methods used in the 

above studies, the persistence of viruses remained within the growing season and 

consumption times of the harvested produce. The growing season for cereal crops is 

much longer than that of vegetable and salad crops, and the consumable parts for 

wheat are not grown close to the soil. Along with this, the time available for enteric 

pathogens to be inactivated is longer for cereal crops grown in dryland conditions 

than for vegetable and salad crops, therefore the risk of disease transmission is 

considered to be lower. This is supported by Wilkinson et al. (2003) who found that 

E. coli numbers were higher in the soil during the crop growing period but had 

dropped markedly by harvest time. Wilkinson et al. (2003) chose food crops that are 

consumed raw because of the higher risk of food-borne illness that is evident in the 

absence of cooking. 

 

Due to the rapid reduction times (<3 d) reported in the present study from the 

phyllosphere of wheat, the risks to the consumer are considered much lower than 

salad and vegetable crops.  For wheat crops, this means that the use of biosolids is 

considered a safe option and that minimal risk of disease transmission is imposed. 

This is particularly evident when comparing the decay times of perishables such as 

lettuce, alfalfa, parsley and carrots which have actual longer survival times (<168 d) 

and are consumed immediately following harvest. 

7.5.2. The effect of microorganism type on survival times  

The survival times of enteric bacteria on the phyllosphere and grains depended on the 

type of microorganism. S. enterica had significantly faster inactivation times than E. 

coli when seeded onto the leaves, and bacteriophage was significantly faster than 

enteric bacteria. In general though, the survival patterns were similar for both 

microorganisms. This may be related to poor natural attachment capacity of 

Salmonella to the plant surface. It has been observed that plants have the ability to 

deter the attachment of Salmonella (Barak et al. 2008). In the plant experiment, the 
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opposite occurred for the spikelets where the inactivation time of E. coli was 

significantly faster than S. enterica. Different enteric bacteria have different 

attachment properties, indicating species variability with regard to attachment 

(Critzer and Doyle 2010). In the present study, the different microorganisms tested 

had different inactivation rates from the different parts of the wheat plant. This 

demonstrates the inability of an indicator microorganism (such as E. coli) to truly 

represent an enteric pathogenic patterns (such as Salmonella). In particular, E. coli as 

an indicator should not be expected to represent a whole suite of pathogens that may 

be present in biosolids. 

7.5.3. The effect of climatic conditions on survival  

Virus inactivation can increase with increasing temperatures (Abdulraheem 1989; 

Aruscavage et al. 2006). On the leaves, the decay time (T90) of bacteriophage was 

significantly shorter than enteric bacteria (i.e. 35 h). The same trend occurred on the 

spikelets where the decay time for bacteriophage was significantly shorter than the 

bacteria (i.e. 23 h). This may be due to bacteriophage irreversibly binding onto the 

plant surfaces or just dying off more rapidly. This also occurred in Sidhu et al. 

(2008) where inactivation times for bacteriophage on grass in the shade during 

winter were faster compared with enteric bacteria. However, this trend was not seen 

across any of the other microorganisms tested in their study.  

 

Since viruses are commonly more resistant to adverse climatic conditions than 

bacteria, it was expected that bacteriophage should have survived longer than the 

bacteria cells on the wheat leaves. The average temperature in the glasshouse during 

the spring was 16.5ºC with a maximum of 23.4ºC and thus, the faster reduction of 

bacteriophage numbers in this case, may have been influenced by temperature as was 

also found by Choi et al. (2004).  
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7.5.4. The effect of location on plant on microorganism inactivation 

The specific survival times of enteric pathogens on wheat plants may be influenced 

by the location of the microorganisms on the plant. The inactivation times of E. coli, 

S. enterica and bacteriophage tended to be shorter (P>0.05) from the spikelets than 

from the leaves. This was expected since the spikelets are located in the upper region 

of the phyllosphere where they are exposed to factors such as higher UV light 

intensity, desiccation and higher temperatures. This means that the region of the 

plant where grains are produced (and later consumed) is also the region of lower risk 

where the survival of enteric pathogens is significantly reduced. 

 

The desiccation of enteric microorganisms exposed to light and temperature was also 

found by Sidhu et al. (2008). The leaves are more subject to shading, increased 

moisture levels and other microbial communities (Lindow and Brandl 2003). Since 

enteric pathogen populations may reside and survive between the leaves and stems of 

the plants (Brown et al. 1980; Ibekwe et al. 2004), it would be expected that longer 

detection times of pathogen numbers should occur. However, the leaves are also 

subject to rapid and large fluctuations in temperature, humidity, and osmotic 

pressures (Wilson et al. 1999) which may be detrimental to the survival of enteric 

pathogens. Other factors such as waxes (Aruscavage et al. 2006) may restrict 

bacterial attachment to leaf surfaces, and the competition for nutrients and moisture 

makes enteric pathogen survival on leaf surfaces more difficult (Mercier and Lindow 

2000). 

7.5.5. The effect of grain variety on microorganism inactivation 

The survival times of enteric pathogens on grains appears to be influenced by grain 

variety. The inactivation of enteric bacteria was faster on the noodle grains (NN) 

than the soft wheat (ASW) grains, with all T90s being less than 10 d. Likewise, the 

inactivation of MS2 was also faster on the noodle grains compared with the ASW 

grains, with T90 times of 60 to 71 d. Grain varieties contain different properties which 

are suited to different end uses i.e. noodle wheat is used for the production of pasta, 

ASW for the production of flour, doughs and biscuits, and feed wheat is used for 

consumption by livestock. As a result of the different properties, the grains vary in 

strength i. e. noodle grains are softer and ASW grains are more brittle. In any case, 



Chapter 7 

 161 

grain varieties such as noodles and ASW are subjected to milling (for flour 

production) and cooking prior to consumption and such processes result in a further 

reduction of any enteric pathogens that may be present. This means that the risks to 

the consumer (from pathogens) are also reduced. 

 

Bacteriophage is more persistent in humid conditions than in dry conditions (Choi et 

al. 2004). The prolonged persistence of bacteriophage on the grains in this study may 

have been due to the higher humidity levels that occurred inside the tins. At seeding, 

the grains were spray-inoculated with cultures and then stored in sealed tins. Prior to 

inoculation, grain moisture levels were approximately 10% and with the added 

moisture from the inoculant cultures, the grains would have started the process of 

‘sweating’ inside the tins.  Moisture levels in wheat grains are known to increase 

approximately 1 to 2% (i.e. from 11.5% to 13.5%) when sealed in enclosed areas and 

stored in the sun such as in trucks covered with tarpaulins or grain silos. Therefore, 

the longer inactivation times of bacteriophage on the grains in stored tins may have 

been influenced by increased humidity levels along with the absence of direct 

exposure to UV rays and thus avoided desiccation from the sun.   

 

Based on the results of the present study, the risks to the consumer from wheat 

products grown from biosolids-amended land are considered to be very low. In the 

experiments reported in this chapter, the enteric microorganisms were inoculated 

onto the wheat leaves, spikelets and grains at higher numbers than would be expected 

to occur where biosolids have been land-applied in the field. In addition, the results 

from the field soil studies showed that the same enteric microorganisms, when 

inoculated at high starting numbers into the soil in late autumn-winter, were mostly 

reduced to low levels (<4 log10 cfu g
-1

) in the soil by the spring and summer time. It 

would be expected that only a small percentage of pathogens would be transferred 

from the soil onto the phyllosphere through transmittable means such as rain-splash 

or by becoming wind-borne. The results of the present study demonstrate that , if 

present, microorganism numbers are rapidly reduced. In addition, climatic conditions 

in the spring and summer months such as increasing temperatures, decreased 

moisture levels, decreased humidity and increased UV intensity do not favour the 

persistence of pathogens on wheat plants or grains.  
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7.6.  Conclusions 

The following conclusions were made from this chapter: 

 The type of microorganism affected the decay times. The enteric bacteria 

seeded onto the wheat plant had longer decay times (T90) of 34 to 72 h than the 

virus (23 to 35 h); 

 The enteric bacteria seeded onto the stored grains had decay times of less than 

12 d. The surrogate virus persisted for longer with decay times of 60 to 71 d; 

 The location of the microorganisms on the plant made a difference to the decay 

times. The enteric microorganisms tested in the phyllosphere experiment 

generally persisted longer on the leaves of the wheat plant than the spikelets 

even though this was not statistically significant;  

 The grain variety made a significant difference to the decay times of the enteric 

microorganisms tested. The enteric microorganisms on the biscuit variety of 

grains (i.e. ASW) tended to persist significantly longer than those on the pasta 

variety (NN);  

 The risk that enteric pathogens may persist on wheat plants and grains (until 

consumed) is considered to be low. In addition, the climatic conditions that 

occur in the spring and summer are not favourable to the persistence of enteric 

pathogens on the phyllosphere or grains of wheat.  

 Since most foods produced from wheat involve some form of processing such 

as grinding, milling, rolling, steaming and baking, the risks of human enteric 

pathogens originating from land-applied biosolids and transmitting to humans 

at consumption is considered to be very low.   
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CHAPTER 8 THE PRESENCE OF BACTERIA IN 

BIOAEROSOLS WHERE BIOSOLIDS ARE USED; AND 

EFFECT OF THRESHING ON PATHOGEN NUMBERS 

 

8.1. Introduction 

Bioaerosols, or aerosolised biological particles such as enteric pathogens, can travel 

over significant distances (Pillai et al. 1996; Pillai and Ricke 2002). The aerosols 

containing enteric pathogens may result in a potential health hazard if inhaled (Pillai 

and Ricke 2002; Pepper et al. 2006).  

 

There is a concern regarding the occupational and public health safety associated 

with the exposure of bioaerosols from harvesting crops where biosolids have been 

previously applied. Farmers may be exposed to high levels of microorganisms when 

working with grain dust during threshing and grain storage work (Halstensen et al. 

2007). The immediate risk of transfer of bioaerosolised pathogens from soil and 

wheat plants during harvesting is unknown. To date, the only information available is 

related to aerosols from wastewater treatment plants, the land application of 

wastewater, the health effects at composting plants and the risks at application of 

animal manures (Pepper et al. 2006).  

 

There has been a series of studies carried out on airborne microorganisms such as 

fungal spores, mycotoxins (Ayalew et al. 2006), nephrotoxins, endotoxins and 

hyphae in grain crops (Halstensen et al. 2004; Halstensen et al. 2007) but only a  few 

studies have been conducted on the generation of bioaerosols from land applied 

biosolids (Brooks et al. 2005b).  Of these studies, most have linked waste application 

practices, biosolids handling, wind patterns and micrometeorological fluctuation to 

the aerosolisation of microbial pathogens (Pillai et al. 1996; Dowd et al. 1997; Pillai 

and Ricke 2002).   

 

Since enteric pathogens can survive for several months in the soil and may transfer 

onto standing wheat plants, it is possible that any pathogens present in cereal crops at 

the time of harvesting may become airborne during threshing and potentially be 
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transmitted to humans through inhalation of associated dust or ingestion of 

contaminated grains and processed products. No studies have examined the fate and 

transport of enteric pathogens from cereal crop into wheat dust (bioaerosols) that is 

generated during harvesting and threshing. The purpose of the research presented in 

this chapter was to examine the potential presence of bacteria in bioaerosols 

generated during the harvesting operations of a wheat crop where biosolids have 

been applied.  The fate of seeded microorganisms on mature wheat plants during 

threshing was also examined. The specific objectives were: to compare indigenous 

bacterial levels at biosolids application sites with unamended sites to examine 

whether biosolids influence bacteria numbers at the site; and to test the enteric 

microorganism numbers (on the spikelets, chaff, grains, thresher drum and dust) 

following threshing to determine whether threshing reduces microorganism numbers. 

8.2. Material and methods 

8.2.1. Experimental sites 

The potential dispersal of pathogens via bioaerosols during harvesting and threshing 

of grains was examined in two separate studies.  The experiment to examine 

bioaerosol generation during the threshing of wheat grains was carried out in an 

undercover area at Muresk Institute (Curtin University), Northam, WA. The 

experiment to examine the dispersal of aerosolised pathogens during wheat crop 

harvesting was carried out on a broadacre cropping farm at Moora, WA. Both studies 

were conducted over the summer harvesting period (December) over two years, 2008 

and 2009.  

 

Four field sites were selected for the harvester study: Site NA – a nil-biosolids site 

(30º48’19.53”S, 116º04’43.44”E), Site BB – a biosolids application site 

(30º49’10.14”S, 116º01’45.87”E), Site NC – a nil-biosolids site (30º50’18.4”S, 

116º06’06.8”E) and Site BD – a biosolids application site (30º51’27.1”S, 

116º05’22.1”E). The four sites were within 5 km radius of each other on the same 

property and consequently had the same climatic conditions (temperature and 

rainfall) and soil type (i.e. gravely sandy-loam). The sites in this study were different 

to those described in Chapter 6 although were carried out on the same property. 

Anaerobically-digested dewatered biosolids (Beenyup Wastewater Treatment Plant, 
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Perth WA) had been previously applied to Site BB in May 2006 (i.e. 3 years before 

harvest) and to Site BD in May 2009 (i.e. the same season). No biosolids had 

previously been applied to Sites NA and NC. All sites contained matured standing 

wheat crops, ready for harvest at the time of the experiments. 

8.2.2. Bioaerosol samplers 

The bioaerosol samplers used to collect the dust samples for both studies were SKC 

BioSamplers® (SKC West Inc., Fullerton, California) operating at an air intake rate 

of 12.5 L min
-1 

(Figure 8-1). All glassware was autoclaved at 121˚C for 15 min prior 

to use. In preparation for this study, an experiment was conducted to test three 

collection mediums (i.e. mineral oil, P-buffer and sterile distilled water) for the 

optimal recovery of the study microorganisms. Collection mediums were placed in 

the collection basin of the BioSamplers®. Results found that sterile distilled water 

provided the best recovery efficiency with a 1 to 2 log10 higher recovery rate than the 

P-buffer or mineral oil. For this reason, sterile distilled water was selected for use in 

the thresher and harvester experiments. 

 

For the thresher experiment, samplers were clamped to a custom-built mount and 

placed approximately 5 to 10 cm from the dust outlet (Figure 8-2). The samplers 

were sealed with a large plastic bag to recover all the dust generated by the thresher.  

 

For the harvester study, the samplers were mounted to a Toyota Landcruiser tray 

back utility parked approximately 20 to 30 m away downwind from the operating 

combine harvester (Figure 8-3). Air intake was provided through the use of three 

SKC Vac-U-Go pumps (SKC West Inc.) that were run for 2 min during sample 

collection.  

 

NB: The following photos are for illustrative purposes only and were not taken while 

the thresher was in operation or where any inoculated pathogens were present. Full 

protective gear such as gloves, masks, suits and safety glasses is required to be worn 

during sample collection.    
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 Figure 8-1: Left: Venables small seed thresher; Right: BioSampler collection vials. 

 

 

 

Figure 8-2: The sampling points on the Venables small seed thresher. 
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Figure 8-3: Collecting dust samples during wheat harvesting using three BioSamplers® 

mounted onto the frame of the Landcruiser utility. 

 

 

Figure 8-4: Taking swab tests from inside the thresher drum – 150 mm paddle length and 150 

mm radius is shown. 

Radius 
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Paddle 
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8.2.3. Thresher experiment 

Three individual microorganisms (E. coli, S. enterica and bacteriophage MS2) were 

tested across the stages of threshing to examine where the microorganisms were 

being directed during the process of threshing. The thresher experiment comprised 

three treatments: wheat spikelets (thresher control), wheat spikelets (control) and 

inoculated wheat spikelets (treatment). Wheat spikelets were weighed into 200 g 

portions. Wheat spikelets for the thresher control were established in triplicate (n=3). 

Seven replicates of the control wheat spikelets were established (n=7) and seven 

replicates of the inoculated wheat spikelets were prepared (n=7).  

 

A Venables small seed thresher (L & T Venables, Wembley WA) was used for the 

thresher study (Figure 8-2). The swab samples were taken from the threshing drum 

(dimensions 300 mm diameter, paddle length 150 mm, slotted screen 150 x 150 mm 

= 225,000 mm
2
). Dry, matured wheat plants (Triticum aestivum cv. Calingiri) were 

collected from the farming property at Moora where biosolids had been previously 

applied. Wheat stalks were cut approximately 25 cm below the seed head or spikelet 

(Figure 8-5) to match the approximate harvesting height used in the field and to 

reduce trash handling.  

 

The microorganisms tested in the thresher experiment were E. coli, S. enterica and 

bacteriophage (MS2), cultured and prepared as described in Section 3.3, p. 54. The 

final suspensions had final cell counts of 1 x 10
6
 cfu mL 

-1
 of E. coli, 1 x 10

5
 cfu mL 

-

1
 of S. enterica and 1 x 10

6
 pfu mL 

-1
 of MS2. Inoculants were seeded onto the 

spikelets with a fine-mist atomiser using three applications with 10-15 min drying 

time allowed between applications.  

 

The pathways undertaken by microorganisms throughout the process of threshing 

and harvest is important to understand the potential exposure pathways (of 

pathogens) to humans or livestock from wheat crops cultivated where biosolids have 

been applied. The target microorganisms (E. coli, S. enterica and MS2) were seeded 

onto wheat spikelets and their dispersal following threshing was examined.  An 

initial experiment was conducted in 2007 (unpublished data) where E. coli, S. 
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enterica and MS2 were inoculated onto spikelets and their numbers were tested in 

the dust samples. Following threshing (in the 2007 test), a 5-log10 cfu g
-1

 loss across 

all microorganisms had occurred. This initial (unpublished) experiment highlighted 

the need to investigate whether microorganisms were being deposited onto other 

threshing products such as the grains and chaff during threshing or whether they 

were being inactivated.  Following this, the samples for the present study were then 

collected from the threshing drum, chaff and grains.   

 

Samples were collected during operation of the thresher across a time period of 

approximately 2 h. At each sampling event, samples from each treatment were 

collected (i.e. spikelets, drum swabs, grains, chaff and dust) to a total of seven 

samples per treatment.  

 

Swab tests were collected on 90 mm filter paper (Qualitative Advantec) from inside 

the threshing drum (Figure 8-4) and placed immediately into sterile, pre-weighed 

Bag Filter® bags (Interscience). Grain samples were collected from the seed outlet of 

the thresher (Figure 8-2) and placed into sterile plastic bags. A large sterile plastic 

bag was attached to the chaff outlet (to the rear of the thresher, not shown) to capture 

the chaff samples. To capture dust samples, each BioSampler® was loaded with 25 

mL of sterile distilled water and clamped onto the dust outlet of the thresher (Figure 

8-2). Samples were collected for 2 min during each operation, while spikelets were 

being processed through the thresher. BioSamplers® were sterilised and flushed with 

sterile water between runs. Following collection, samples were aseptically removed 

from the sample basin and placed into sterile 50 mL polypropylene centrifuge tubes 

(Sarstedt).  All samples were transported on ice to the CSIRO Microbiology 

Laboratory, Floreat, WA for processing within 24 h.  
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Figure 8-5: An example of wheat spikelets with encasing around the grains that later becomes 

chaff following threshing. 

 

Figure 8-6: The Case IH 8010 Axial-Flow harvester used to generate dust. 

 

Spikelets 

Chaff 

casing 
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8.2.4. Harvest (dust) experiment 

The harvester study was designed to compare the numbers of individual bacteria at 

two sites to determine any effect of biosolids application to bacteria levels. The two 

treatments tested were a wheat crop previously applied with biosolids (i.e. the first 

trial in 2008 where biosolids had been applied 3 years prior, and the second trial in 

2009 where biosolids had been applied in the same year) and a wheat crop where no 

biosolids had been applied (unamended). Dust samples were collected while the 

wheat crop was being harvested. A Case IH 8010 Axial-Flow harvester was used to 

harvest the wheat crop and to generate the wheat dust (Figure 8-6). In each year, the 

nil-biosolids site was harvested first followed by the biosolids-application site to 

avoid any cross-contamination.  

 

Dust samples were examined for the presence of indigenous E. coli, enterococci and 

heterotrophic bacteria. E. coli and enterococci are known to be present in biosolids in 

Western Australia and they have been detected in the soil where biosolids have been 

applied in previous work (Crute 2004). Heterotrophic bacteria was selected as a 

relative indicator of the overall presence of aerosolised microorganisms, as was also 

studied in Brooks et al. (2004). Collectively, this selection of microorganisms 

enabled comparisons to be made across the biosolids application sites and the 

unamended sites.  

 

At each harvesting site, site samples of the clean air, soil and spikelets were collected 

prior to the harvester entering the site. Soil samples were collected by randomly 

selecting three to six core samples from the topsoil (at 0-10 cm depth) and were 

placed directly into sterile plastic bags. Spikelet samples were collected by randomly 

selecting approximately six standing wheat plants (6 plants = 1 sample) in triplicate 

(n = 6 samples in 2008 and 3 samples in 2009) for each treatment, cutting them 

approximately 25 cm below the seed head and placing the samples directly into 

sterile paper bags. Clean air samples were collected in triplicate using three SKC 

BioSamplers® with Vac-U-Go pumps as described in Section 8.2.2. BioSamplers® 

were sterilised with ethanol and flushed between runs with deionised distilled water.   
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Dust samples were collected downwind (20-30 m) from the operating harvester over 

a period of approximately 5 h. At each sample event in 2008, four samples were 

collected in triplicate (n = 12 samples) for each treatment. In 2009, two samples 

were collected in triplicate (n = 6 samples) for each treatment. 

 

Dust samples were collected using three SKC BioSamplers® with Vac-U-Go pumps 

as described in the thresher study (Figure 8-1). BioSamplers® were clamped 

approximately 30 cm apart and mounted onto the frame of a Toyota Landcruiser 

utility above approximate human breathing height at 2 m (Figure 8-7). Samplers 

were filled with 25 mL of sterile distilled water as collection media and the 

collection basins were covered with alfoil to eliminate the effect of UV light on 

microorganism survival. Samplers were run for 2 min and samples were aseptically 

removed from the sample basin and placed into sterile polypropylene 50 mL 

centrifuge tubes (Sarstedt). BioSamplers® were sterilised with ethanol and flushed 

between runs.  

 

At each site, chaff and grain samples were collected following harvesting operations. 

Chaff samples were collected by randomly selecting three grab-samples of plant 

material deposited by the harvester at each site. Samples were placed directly into 

sterile paper bags. Grain samples were collected from the field storage bin following 

dispatch from the harvester using collection buckets. All samples were placed on ice 

(~4˚C) and transported to the CSIRO Microbiology Laboratory, Floreat, WA for 

processing within 24 h. 

8.2.5. Climatic conditions 

At each site, wind speed (km/h), temperature (˚C), relative humidity (%), wind chill 

(˚C), heat index (%), dew point (˚C), wet bulb (˚C) and barometric pressure (hPa) 

were automatically recorded using a Kestral® Communicator 4000 Pocket Weather 

Station Version 1.4 (Nielsen-Kellerman Co., Boothwyn, PA.). Data was recorded at 

2 h intervals in 2008 (by error in the instrument setup) and every 2 min in 2009.  
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Figure 8-7: Attaching BioSamplers® to the mounting frame. 

8.2.6. Enumeration of microorganisms from thresher and harvester samples 

All sample contents for the spikelets (~10 g), chaff (~5 g), grains (~40 to 60 g) and 

soil (~30 g) were transferred into pre-weighed sterile polypropylene tubes (Sarstedt) 

and net weights were obtained. After addition of P-buffer (30 mL) samples were 

placed in a stomacher (Bag Mixer®, Interscience). Samples were stomached for 2 

min (speed no. 7) and then the supernatant was aseptically collected. Net weights for 

the thresher swab samples (in pre-weighed stomacher bags) and field soil samples 

were obtained (~3 g) and P-buffer (30 mL) was added. Swab samples were placed 

into the stomacher and the supernatant collected. Soil samples were vortexed for 2 

min, left to settle, then vortexed again for 1 min. One mL samples of the resulting 

supernatant from the soil samples were collected without disturbing the pellet. 

Thresher dust samples (in 25 mL sterile distilled water) were vortexed and then serial 

10-fold dilutions were made in P-buffer for the spikelet, chaff, grains, soil, dust and 

swab samples. A total of 5 mL of the sample buffer (in triplicate) was screened for 

the quantification of E. coli and enterococci in air and dust samples collected from 

the harvesting sites by passing through a vacuum manifold filtration system (PALL) 

using 0.45 μm membrane filters (Millipore). The quantification of pathogens was 

performed as described in Section 3.4, p. 55.  
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8.3. Data analysis 

8.3.1. Data preparation 

 

Prior to statistical analysis, pathogen counts were normalised from the raw data as 

described in Section 3.5, p. 62. This was carried out to adjust for the variations due to 

different sample volumes used, different dilutions, plating volumes and phosphate 

buffer levels. Box plots were performed in Origin® 6.1 (OriginLab Corporation 

1991-2000). Bacterial number in bioaerosol samples were determined as cfu per 

cubic meter (m
3
) of air based on the following conversion formula (Equation 11): 

 

Equation 11 

 

Pump flow rate x operating time (min) ÷ 1000 L (or 1 m
3
)             (11) 

 

 

The microorganism numbers in the swab samples were determined as cfu or pfu per 

cm
2 

of area based on the following conversion formula (Equation 12): 

 

Equation 12 

 

Average cfu ÷ area of the swab (i.e. 225,000 mm
2
)             (12) 
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8.3.2. Statistical analysis 

A generalised linear ANOVA model was used to identify significant variation 

sources affecting final pathogen counts (log10 Count) in individual microorganisms 

or sites as well as across microorganisms or sites. All analyses were performed using 

a GLM model in SAS package version 9.1 (SAS Institute, 2005). The least-square 

effects of all the fixed factors were estimated and examined for their significance.  

 

8.3.2.1 Analysis of variation sources for individual microorganisms 

The variation sources in the thresher and harvester experiments included the effects 

of treatment and individual sample within a treatment. The model can be written as 

described in Section 5.3.1 (Equation 4), p. 85 with the following modifications: 

 

Log10Yiln = μ + Ti + Cl (T)i + eiln 

     

 where, Ti is the treatment effect and i =1, 2 corresponds to biosolid and nil-biosolid 

treatment. Cl is the sample effect within each treatment and l =1, 2, ..5 represents 

chaff, dust, grain, spikelet or swab in the thresher study and l =1, 2, 3…..12 

corresponds to air, chaff, dust, grain, soil and spikelet at the biosolids-amended 

harvesting site or the nil-biosolids harvesting site. 

 

8.3.2.2 Comparison of microorganisms numbers  

The generalised linear ANOVA model as described in Section 4.3.1.2 (Equation 3), 

p. 70 was used to compare significant effects within the individual trial across 

microorganisms in the thresher study with the following modifications where, Ti =1, 

2, 3…..5 corresponds to the treatments chaff, dust, grain, spikelet or swab samples. 

 

The same equation was used for the harvester study with the modification that Cl =1, 

2, 3…..12 corresponds to air, chaff, dust, grain, soil and spikelets at the biosolids-

amended harvesting site or at the nil-biosolids harvesting site); and Om is replaced by 

Sm to provide the ‘site’ effect of the mth organism (m=E. coli, S. enterica or MS2). 
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8.4. Results 

8.4.1. Environmental conditions during harvest 

The climatic parameters during harvest in 2008 and 2009 are presented in Table 8-1. 

Mean wind speeds were 6 and 7 km h
-1

 with a range of maximum speeds of 15 to 27 

km h
-1

. Average air temperatures were 24 to 25ºC across the sampling days during 

both seasons. Maximum daily temperature ranged from 24 to 35ºC with minimum 

daily temperature ranging from 18 to 20ºC. Average relative humidity was 28 to 32% 

and average altitude was 270 to 271 m. Average heat index on the sampling days 

ranged from 22 to 23ºC with a maximum of 32ºC at Sites C and D. No rainfall events 

occurred during either of the sampling events. 

 

Table 8-1: Climatic parameters from experimental sites during harvesting in 2008 and 2009. 

 
 

Sites NA and BB  

(2008) 

 

Sites NC and BD  

(2009) 

 

Measurement 

 

Average 

 

Max 

 

Min 

 

Average 

 

Max 

 

Min 

 

Wind speed (km h
-1

) 

 

6 

 

15 

 

2 

 

7 

 

27 

 

0 
 

Temperature (ºC) 

 

24 

 

24 

 

20 

 

25 

 

35 

 

18 
 

Relative humidity (%) 

 

32 

 

44 

 

22 

 

28 

 

49 

 

15 
 

Barometric press. (hPa) 

 

981 

 

984 

 

979 

 

981 

 

986 

 

978 
 

Altitude (m) 

 

270 

 

289 

 

239 

 

271 

 

297 

 

226 
 

Dew point (ºC) 

 

5 

 

8 

 

1 

 

4 

 

13 

 

0 
 

Heat index (ºC) 

 

22 

 

22 

 

18 

 

23 

 

32 

 

16 
 

Wet bulb (ºC) 

 

14 

 

14 

 

12 

 

14 

 

20 

 

12 
 

Wind chill (ºC) 

 

24 

 

24 

 

20 

 

25 

 

35 

 

18 
 

Density altitude (m) 

 

681 

 

698 

 

540 

 

718 

 

1074 

 

459 
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8.4.2. Survival patterns of enteric microorganisms at threshing 

The observed changes in E. coli, S. enterica and MS2 numbers throughout the 

process of threshing are presented in Figure 8-8. It can be seen that the 

microorganism numbers on the spikelets were highest prior to threshing, as expected 

following inoculation. Following threshing, E. coli, S. enterica and MS2 numbers on 

the grains had reduced the most, with less reduction seen on the chaff. The means of 

the study microorganisms is presented in Table 8-2. The seeded spikelets had the 

highest number (P<0.001) of E. coli and S. enterica prior to threshing with mean 

values of 6.56 and 4.86 log10 cfu g
-1

, respectively; however, the highest number of 

MS2 was found on the chaff samples following threshing (i.e. 7.01 log10 cfu g
-1

) 

(Table 8-2 and Figure 8-8).  

 

Following threshing, the E. coli, S. enterica and MS2 on the chaff were significantly 

higher than those on the grains (P<0.001). The study microorganisms on the grains 

were the lowest in number compared with those detected on the chaff or the spikelets 

(Table 8-2 and Figure 8-8). The higher number of MS2 on the chaff compared with 

the spikelets was not statistically significant (P=0.10).  

 

The numbers of E. coli, S. enterica and MS2 from the thresher drum (swab) and in 

the wheat dust samples following threshing are presented in Table 8-3. The drum 

swab samples contained 7.99 x 10
2
 cfu per cm

2
 of E. coli, 4.67 x 10

0
 cfu per cm

2
 of 

S. enterica and 1.20 x 10
3
 pfu per cm

2
 of MS2 after threshing. Dust generated during 

threshing contained 1.19 x 10
5
 cfu per m

3
 of E. coli, nil S. enterica, and 4.18 x 10

6
 

pfu per m
3
 of MS2. 
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Figure 8-8: Microorganism numbers from thresher study on inoculated spikelets and on grain 

and chaff following threshing where (a) is E. coli, (b) is S. enterica, and (c) is MS2. Standard 

error bars are shown. 

 

(a) 

(b) 

(c) 
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Table 8-2: Estimated least square means of microorganisms across treatments (Log count).  

 
 

Least square means (Log10 cfu g
-1

 dw) 
 

 

 

Sample type 
 

 

E. coli 
 

 

S. enterica 
 

 

MS2 
 

 

Chaff 
 

 

5.74 (± 0.01) 
 

 

3.59 (± 0.13) 
 

 

7.01 (± 0.03) 

 

Grain 
 

 

3.69 (± 0.01) 
 

 

1.21 (± 0.13) 
 

 

5.60 (± 0.03) 

 

Spikelets (seeded) 
 

 

6.56 (± 0.01) 
 

 

4.86 (± 0.13) 
 

 

6.67 (± 0.03) 

 

 

 

Table 8-3: Summary of E. coli, S. enterica and bacteriophage numbers present in the threshing 

drum and dust samples following threshing. 

 
 

Cfu or pfu per area sampled 
 

 

Sample type 
 

 

E. coli 

 

S. enterica 

 

MS2 

 

Drum swab (per cm
2
)* 

 

 

7.99 x 10
2
 

 

4.67 x 10
0
 

 

1.20 x 10
3
 

 

Dust (per m
3
)* 

 

 

1.19 x 10
5
 

 

Nil 

 

4.18 x 10
6
 

 

*Note: different volumes for swabs as for dust samples 
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8.4.3. The presence of bacterial microorganisms at harvest  

This study was conducted to compare bacterial numbers in aerosols through the 

cereal harvesting process at biosolids application sites with unamended sites. Clean 

air, spikelet and soil samples were taken prior to harvest, the dust samples were 

collected during harvesting, and the chaff and grain samples were collected 

following harvest.  

 

No E. coli were detected in the clean air, soil, spikelet, wheat dust, chaff or grain 

samples at either the biosolids-amended site or the unamended site (Sites NA and 

BB) at harvest time. For this reason, the nil results were not presented. Sites NC and 

BD were not tested for E. coli in 2009. 

 

Clean air vs. dust 

The observed numbers of heterotrophic bacteria (and enterococci) in the clean air 

and dust samples are presented in Table 8-4. Heterotrophic bacteria numbers in the 

clean air samples, taken prior to harvesting operations, were significantly lower 

(P<0.001) than those in the dust samples at all sites.  

 

Heterotrophic numbers in the clean air samples at the unamended sites (NA and NC) 

were lower than those at the biosolids sites (BB and BD) in 2008 (Table 8-4). In 

2008, this difference was significant (P<0.001) but in 2009, this difference was not 

significant (P=0.97). In 2009, the heterotrophic bacteria in the dust at the unamended 

site (NC) was significantly lower (P<0.001) than that at the biosolids site (BD). The 

results of the heterotrophic bacteria in the dust samples at the biosolids-application 

site in 2008 were not available due to a laboratory processing error.  

 

Total heterotrophic bacteria 

The numbers of heterotrophic bacteria on the spikelets, chaff, grains and soil at the 

biosolids site and the nil-biosolids site are presented in Figures 8-9 and 8-10. Across 

both sites, the chaff contained the highest number of heterotrophic bacteria (Table 8-

5, Figures 8-9 and 8-10). In 2008, heterotrophic bacteria numbers (Figure 8-9) were 

significantly (P=0.05) higher in the chaff at the unamended site compared with the 

biosolids site (Table 8-5). There was no significant difference in 2008 between the 
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heterotrophic bacteria numbers found in the soil (P=0.15), on the spikelets (P=0.46) 

or on the grains (P=0.18) at the nil-biosolids site compared with the biosolids site. 

Apart from the chaff, the application of biosolids did not significantly affect 

heterotrophic bacteria numbers. 

 

In 2009, the heterotrophic bacteria numbers (Figure 8-10) on the grains and in the 

soil were significantly higher at the biosolids application site compared with the nil-

biosolids site (P<0.001). There was no significant difference between the 

heterotrophic bacteria numbers on the chaff (P=0.21) or the spikelets (P=0.08) 

between sites.   

 

Table 8-4: Summary of heterotrophic bacteria and enterococci numbers in air and dust samples 

at the Moora field sites in 2008 and 2009.  

 
 

Heterotrophic bacteria 

(cfu m
3
) 

 

 

Enterococci  

(cfu m
3
) 

 

Harvesting site 
 

 

Clean air 

 

Dust 

 

Clean air 

 

Dust 

 

2008 Site NA 

Nil-biosolids 
 

 

 

1.00 x 10
4
 

 

 

1.93 x 10
5
 

 

# 

 

# 

 

2008 Site BB 

Biosolids-amended 
 

 

 

1.89 x 10
4
 

 

 

Not available 

 

# 

 

# 

 

2009 Site NC 

Nil-biosolids 
 

 

 

2.24 x 10
4
 

 

 

3.10 x 10
5
 

 

 

Nil 

 

 

7.27 x 10
2
 

 

2009 Site BD 

Biosolids-amended 
 

 

 

5.37 x 10
4
 

 

 

4.57 x 10
5
 

 

 

Nil 

 

 

2.71 x 10
3
 

# Enterococci not tested in 2008 
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Table 8-5: Least square means for heterotrophic bacteria (on Log numbers) on plant and soil 

samples at both sites. 

 
 

Least square means for heterotrophic bacteria  

(Log numbers) 
 

 

Sample type 
 

 

2008 

 

2009 

 

Chaff 
 

5.09 (± 0.17) 6.51(± 0.13) 
 

Grain 
 

4.25 (± 0.17) 5.28 (± 0.13) 
 

Spikelet 
 

4.24 (± 0.12) 5.74 (± 0.13) 
 

Soil 
 

4.19 (± 0.12) 5.04 (± 0.13) 
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Figure 8-9: The mean total heterotrophic numbers on spikelets, soil, chaff and grains at harvest 

time in 2008 where (a) is Site NA with nil-biosolids applied; and (b) is Site BB with biosolids 

applied in May 2006. Standard error bars are shown. 

(a) 

(b) 
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Figure 8-10: The mean total heterotrophic numbers on spikelets, soil, chaff and grains samples 

at harvest 2009 where (a) is Site NC with nil-biosolids applied; and (b) is Site BD with biosolids 

applied in May 2009. Standard error bars are shown. 

 

(a) 

(b) 
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Enterococci  

The dust samples in 2009 contained enterococci (Table 8-4) and although the 

numbers tested were lower at the nil-biosolids site (7.27 x 10
2
 cfu per m

3
) compared 

with the biosolids site (2.71 x 10
3
 cfu per m

3
) this difference was not significant 

(P=0.22). There were no enterococci detected in the clean air samples at either site 

prior to harvesting. Sites NA and BB were not tested for enterococci in 2008. 

 

The observed numbers of enterococci on the spikelets, soil, grain and chaff samples 

for both sites is presented in Figure 8-11. A similar trend occurred for the 

heterotrophic bacteria, where enterococci numbers were significantly the highest 

(P<0.001) in the chaff samples compared with the spikelets, soil and grains (Table 8-

6). Also, the enterococci numbers on the chaff were significantly higher (P=0.04) at 

the nil-biosolids site compared with the biosolids site. In the soil, enterococci 

numbers at the biosolids site were significantly (P<0.001) higher than those at the 

nil-biosolids site (since there were no enterococci detected at the nil site). A general 

trend occurred where the enterococci numbers on the grains and spikelets were 

higher at the biosolids site compared with the nil site, but this was not significant 

(P=0.96 and P=1.00).  

 

Table 8-6: Least square means for treatment effect for enterococci (on Log numbers) on plant 

and soil samples at Moora in 2009. 

 
 

Least square means for enterococci  

(Log numbers) 
 

 

Sample  
 

 

Biosolids site (NC) 

 

Nil-biosolids site (BD) 

 

Chaff 
 

 

1.69 (± 0.21) 

 

1.96 (± 0.21) 

 

Grain 
 

 

1.21 (± 0.22) 

 

0.36 (± 0.22) 

 

Spikelet 
 

 

0.70 (± 0.11) 

 

0.00 (± 0.11) 

 

Soil 
 

 

1.58 (± 0.04) 

 

0.00 (± 0.04) 
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Figure 8-11: Enterococci numbers in the harvester study on the spikelets, soil, chaff and grains 

in 2009 where (a) is the nil-biosolids application site; and (b) is the biosolids application site. 

Standard error bars are shown. 

(b) 

(a) 
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8.5. Discussion 

8.5.1. The effect of threshing on microorganisms 

The results from the thresher study indicated that most microorganisms were 

distributed from the wheat plant to areas such as the threshing drum, chaff and grains 

and that only a low level of microorganisms passed out of the thresher as bioaerosols 

in the wheat dust (Tables 8-2 and 8-3).  The observed low numbers of 

microorganisms in the dust (reduced rapidly over a short period of time) suggest that 

decrease in numbers is most likely associated with gravitational settling (that is, the 

drag or frictional force exerted on that particle) rather than biological inactivation 

alone (Pillai and Ricke 2002). 

 

Forcier (2002) suggested that the shorter the transportation time, the less effect the 

inactivation processes would have on microbial numbers. In the present study, the 

microorganisms appeared to have attached to other sources during threshing before 

they became airborne, rather than undergoing the processes of inactivation since the 

threshing time was less than one minute. The microorganisms on the grain samples 

were higher than those in the dust samples which suggest that microorganisms could 

have bound onto the grains. If so, they may pose more risk to humans and livestock 

at consumption of the grains rather than be of risk as airborne contaminants present 

in the dust.  

8.5.2. Survival patterns of bacteria and bacteriophage MS2 

In the present study, the surrogate virus (MS2) was more stable on the wheat grains 

and chaff throughout the process of threshing than the bacteria. High numbers of 

MS2 were detected in the dust samples following threshing.  In aerosols, viruses may 

be more stable than bacteria due to their ability to remain airborne for prolonged 

periods because of their low settling velocity (Tellier 2006).  

 

In the present study, no S. enterica were detected in the dust samples. Brooks et al. 

(2005a) found that bacteria, particularly Gram negative, were inactivated much more 

quickly than the virus (coliphage). Also, E. coli did not survive aerosolisation but 

coliphages could be routinely detected. In Carducci et al. (2000), the rate of viral 
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isolation was higher than bacterial and coliform counts. And, in Fannin et al. (1977), 

coliforms were less stable than coliphages in the airborne state. Tanner et al. (2005) 

also found that more coliphages than coliforms were able to be detected in samples 

collected downwind of a biosolids application site. This suggests that viruses could 

be of greater risk to humans and therefore further studies should be conducted 

(Carducci et al. 2000). 

8.5.3. The microorganism levels in chaff 

In the thresher study, a general trend occurred where E. coli, S. enterica and MS2 

numbers were higher in the chaff samples following threshing than the grains. The 

same trend occurred in the harvesting experiment where heterotrophic bacteria were 

significantly higher on the chaff samples, compared with the other samples. One 

possible explanation for this in the thresher study was that the microorganisms were 

sprayed directly onto the spikelets (grain heads) at the beginning of the experiment 

and the chaff, being the outer casing of the grains, absorbed the majority of the 

inoculant. In the field, it is possible that bacteria may be present on the spikelets from 

aerosols or rain splash (and thus the chaff), and consequently, higher bacterial 

numbers may be found on the chaff. Therefore, it could be expected that any natural 

contamination that may occur in the field should also be present primarily on the 

chaff. The spikelets may provide a ‘protective effect’ for any enteric microorganisms 

lodged inside the grain and chaff areas; however, results from Chapter 7 

demonstrated that the decay times of enteric pathogens were shorter on the spikelets 

(where chaff is located) compared with the plant leaves.  

8.5.4. The effect of the biosolids application site on bacteria numbers 

One of the main reasons for conducting the experiments reported in this chapter was 

to examine the effect that biosolids application had on the levels of bacteria in 

bioaerosols at harvest time. To achieve this, the bacteria numbers in dust samples 

from the biosolids application site were compared with an unamended site. The 

hypothesis under examination was that the numbers of indigenous bacteria in 

aerosols at the biosolids application site would be higher than those at the 

unamended site.   
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In the present study, enterococci were present in the soil and the spikelets at the 

biosolids application site but not at the unamended site. Despite this, enterococci 

were still present in the dust, chaff and grain samples at both sites. The enterococci 

numbers were significantly higher in the spikelet, soil, dust and grain samples at the 

biosolids site when compared with the unamended sites. Therefore, the presence of 

biosolids in the soil resulted in higher numbers of enterococci at these sites. 

 

Heterotrophic bacteria, already present in the environment, were selected to compare 

the overall potential transfer of bacteria from soil and spikelet to dust, grains and 

chaff at a biosolids site compared with an unamended site. In the first season (2008), 

heterotrophic bacteria numbers in the chaff were significantly higher at the nil-

biosolids site than at the biosolids site. An opposite trend occurred in the second 

season (2009) where heterotrophic bacteria were significantly higher at the biosolids-

application site in the grains and soil samples compared with the nil-biosolids site. 

This suggests that the presence of biosolids in the soil increased the heterotrophic 

bacterial levels at the site, as it did with enterococci; however, this suggestion is non-

conclusive. Since in 2009 the biosolids were applied to the soil in the same year as 

the harvesting experiment (May 2009), it may be possible that the enterococci and 

heterotrophic bacterial numbers may only be higher at biosolids application sites 

where biosolids have been applied in the same year. This was suggested since the 

same trend did not occur in the spikelet, soil, chaff and grains samples where 

biosolids had been applied to the site more than two years before to the harvesting 

experiment in 2008 (i.e. where heterotrophic numbers were higher at the nil-biosolids 

site) and thus any microorganisms present at the site would have had a longer period 

of time to decay.     

 

In a study by Brooks et al. (2004), significant numbers of heterotrophic bacteria were 

found in air samples during biosolids application and therefore it was suggested that 

the bacteria may have arisen from soil particles being aerosolised at application. It 

was also inferred that aerosolised soil might contribute to the number of aerosolised 

microorganisms since soil particles are small in particle size and low in mass and 

may be able to aerosolise more readily. However, in their work the aerosolised 

heterotrophic bacteria at the biosolids application site were similar to those found at 
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the non-biosolids site, which suggests that the bioaerosols tested were present at both 

sites in similar number and that biosolids do not contribute any bacteria into aerosols. 

No E. coli were detected in the samples collected from the first season. One possible 

explanation was that the biosolids were applied to the site (Site BB) in May 2006, 

which was more than two and a half years before the experiment occurred in 

December 2008. It is possible that any E. coli present in the field, from biosolids 

applications, were not able to persist across three summers. Indeed, this has been 

found in other studies, particularly with environmental strains of Salmonella spp. and 

E. coli such as Eamens et al. 2006, Eamens and Waldron 2008 and Horswell et al. 

2007. 

 

In the present study, harvest was selected for the aerosol study since it is the main 

time of the cropping year, apart from seeding, where farmers or workers may be 

exposed to bioaerosols from land-applied biosolids. Brooks et al. (2007) stated that 

the levels of aerosolised culturable microorganisms were shown to be greatly 

reduced where soils were moist. Aerosol samples were not collected during biosolids 

application since the soils are normally moist for seeding (autumn). In addition, the 

biosolids contained approximately 20% solid material (unlike sprayed wastewater) 

and, as a result, little or no dust spray was expected during spreading. Between 

seeding time and harvest in WA, wheat crops are usually only accessed for herbicide, 

fertiliser and insecticide spray applications. During this time the soil is not disturbed, 

therefore this period of time (i.e. June to October) was not tested.   

 

The use of large-scale spray application of inoculants for the field study was not 

considered necessary for this project since extensive research has already been 

carried out by Moore et al. (1979), the Water Environment Research Foundation 

(Peccia and Paez-Rubio 2007), Brooks et al. (2004; 2006), Brooks et al. (2005a), 

Brooks et al. (2005b) and Tanner et al. (2005). For the present study, the research 

plan was designed to represent similar conditions to the operations that normally 

occur where biosolids are used in agriculture. In this way, the research reported in 

this chapter is unique and specific to the climatic conditions, harvesting methods, 

biosolids-type and agricultural land for the Australian wheatbelt.   
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8.5.5. The risk of bacteria in aerosols 

It was observed that only a low level of bacteria could be detected in the dust and air 

samples during both experiments, indicating that only a portion of the 

microorganisms present on surfaces such as spikelets and soil were able to become 

airborne. The incidence of low levels or no levels of aerosolized biological agents 

present in air samples was raised by Brooks et al. (2005a) who suggested that this 

may be because no biological contaminants were present, since microbial numbers in 

aerosols in their study were consistently below the detection limits. In the thresher 

and harvest experiments conducted in the present study, the low levels of bacteria in 

the dust and air samples demonstrated that the process of threshing may significantly 

reduce pathogen numbers and therefore decrease the risk to the farmer or field 

worker.  

 

At this point, it must also be noted that the dust generated from a harvester does not 

originate from the soil, but is wheat dust generated from the threshing of chaff. 

Therefore, any enteric pathogens present in the (biosolids-amended) soil at the time 

of harvest are not likely to be transferred onto the chaff and grains from the process 

of harvesting. In contrast, any enteric pathogens already present on the chaff are 

threshed and are able to become airborne, therefore are at risk of becoming 

bioaerosols. To ascertain the levels of risk, it is recommended that the numbers of 

enteric pathogens on the chaff in the field should first be tested.   

8.5.6. The effect of climatic conditions 

In the present study, the average wind speed was low (6 to 7 km h
-1

) and relative 

humidity levels were low (28 to 32%) at all field sites. The average temperature on 

the sampling days was approximately 25ºC with maximum heat indexes of 22 to 

32ºC. Biological parameters may not appear to have any evident correlation with 

meteorological factors such as temperature, relative humidity or wind characteristics 

(Carducci et al. 2000), and yet, several studies have found that relative humidity may 

affect bacterial and virus survival in aerosols (Fannin et al. 1977; Pillai and Ricke 

2002; Brooks et al. 2004; Tellier 2006; Karra and Katsivela 2007). Microbial 

populations may be inactivated by environmental stresses such as UV radiation, 

temperature and desiccation (Lighthart and Frisch 1976; Brooks et al. 2005a; Paez-
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Rubio and Peccia 2005; Karra and Katsivela 2007). Bacteria such as E. coli and 

enterococci are known to rapidly decline (in soils) at temperatures above 22 to 25ºC 

(Wang et al. 1996; Holley et al. 2006; Vidovic et al. 2007) and simarly, temperatures 

at harvest time do not favour the survival of bacteria. 

 

The chance of transferring pathogens to humans may be more likely through the 

handling of biosolids, particularly during loading operations (Brooks et al. 2004), 

than from the pathogens becoming airborne (Forcier 2002; Pillai and Ricke 2002). 

This risk of transmission (of airborne pathogens) has been reported to be low where 

biosolids and municipal sludges have been applied to land (Sorber et al. 1984; Pillai 

et al. 1996; Brooks et al. 2004; Brooks et al. 2005b; Tanner et al. 2005; Rusin et al. 

2003). Nevertheless, while earlier studies have failed to show significant levels of 

enteric microorganisms present during spray applications, there could still be a 

potential for low-level transmission of pathogens during application (Dowd et al. 

2000; Gerba and Smith 2005; Nikaeen et al. 2009).  
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8.6. Conclusions 

The following conclusions were made from this chapter: 

 No E. coli were detected at the biosolids application site or the unamended site 

at harvest in 2008; 

 Low levels of enterococci were detected in the dust samples in 2009. These 

levels were slightly higher at the biosolids application site than the unamended 

site, but this was not significant;  

 The number of heterotrophic bacteria and enterococci were highest in the chaff 

and a general trend occurred where these bacteria were higher in the chaff at the 

nil-biosolids site; 

 The bacteria numbers were higher in the dust samples compared with the clean 

air samples; 

 The number of heterotrophic bacteria and enterococci was higher in dust and air 

samples at the biosolids application site compared with the unamended site; 

 Apart from the spikelets (which were inoculated), the enteric microorganism 

numbers in the thresher study were higher on the chaff samples than on the 

grains samples following threshing; 

 In the field, the same trend occurred as in the thresher study where bacterial 

levels were highest on the chaff samples; 

 In the thresher study, low levels of seeded E. coli and MS2 passed through the 

stationary thresher into the dust samples. S. enterica was not able to be detected 

in the dust samples following threshing; 

 Bacteriophage numbers were more stable than bacteria throughout the process 

of threshing and resulted in higher numbers on the grains and chaff following 

threshing;  

 The highest numbers of microbial contaminants were found on the chaff in the 

field and, as a result, this region of the plant should be tested first for any 

potential contaminants that could become airborne in wheat dust; 

 Overall, since the process of threshing was found to reduce enteric 

microorganism numbers, the risks of unsafe levels of bioaerosols in the dust at 

harvest was considered to be low. 
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CHAPTER 9 GENERAL DISCUSSION 

 

9.1. Research significance  

The die-off rate of enteric pathogens introduced into the soil after biosolids 

application provides the final barrier to transmission in a multi-barrier risk 

management approach, thus affecting the permissibility for biosolids to be applied to 

agricultural land around the world. The reduction of pathogen numbers during sludge 

treatment is also critical in this approach, along with the crop-types to which 

biosolids are applied. Efficient processes to remove high levels of pathogenic 

contaminants at treatment plants, along with fast rates of inactivation once 

introduced into the soil, decrease the risk of dissemination of disease-causing 

microorganisms and optimise the opportunities for biosolids reuse. However, the 

survival patterns of enteric pathogens once introduced into field conditions, 

particularly in Australia, is not fully understood. 

 

The research in this thesis originated because there is very little scientific data 

available on the fate of enteric pathogens in agricultural soil following the land 

application of biosolids in Australia. Since a large proportion of biosolids throughout 

Australia are already being applied to land, there was a significant gap in the 

knowledge as to the survival patterns of pathogens once introduced to the soil.  

 

The scientific knowledge gained on the risks of using biosolids where food crops are 

grown is important. There is a potential that the producers of food crops are at risk 

during application of biosolids and when accessing the sites, including at harvest. 

The consumers of the produce may also be considered to be at risk if pathogens are 

ingested. Similarly, the global markets for cereal grains produced from biosolids-

amended soil may be at risk. The implications of this lack of knowledge may lead to 

negative perceptions influencing grain markets (i.e. international customers 

discontinuing to import grain and hay products produced off biosolids-amended land, 

or domestic customers rejecting grain products normally used to supply local flour 

mills and feedlots). Such types of outcomes could result in the practice of biosolids 

land-application being discontinued. Therefore, the survivability of pathogenic 
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contaminants across the growing season of the grains (and further supply chain if 

necessary) needed to be examined. 

9.2. Current land release practices  

Currently, the level of pathogenic contaminants in biosolids is graded according to 

microbiological criteria. Pathogen grading may restrict the possible end uses for the 

product. For example in Western Australia, the release of sewage sludge for use as 

biosolids is determined by the levels of just one or two bacteria (i.e. usually thermo-

tolerant coliform (TTC) and Salmonella) in the sludge. In addition, TTC are more 

sensitive to wastewater treatment processes and environmental changes than other 

more resistant bacteria, viruses, protozoan cysts and Helminth eggs (Toze 1997) and 

therefore may not be a true reflection of other pathogenic contaminants present.  

 

While these levels are only used as a guide, they do not represent the whole suite of 

pathogens that may be present in any batch of biosolids. Along with this, no data is 

available on the individual survival times or the types of the pathogens present in the 

sludge. This is important for land release since some viruses, helminths and protozoa 

can persist in the soil for longer than bacteria (Sorber and Moore 1987; Sidhu and 

Toze 2009).  

 

Once the acceptable bacterial (and other contaminant) levels are reached and the 

biosolids are dispatched and land-applied, there is no current monitoring system to 

ensure the further reduction of pathogens. Some consider this unnecessary as the 

cropping and harvesting restrictions are designed to be very conservative to allow the 

natural loss of viability of pathogens to take place. Instead, withholding periods are 

applied to prevent public access to the biosolids application sites for a periods such 

as 30 to 45 d for grazing animals, 30 d before crops are permitted to be harvested, 1 y 

for turf farms and 12 months for forestry sites (DEP et al. 2002). The withholding 

periods are not established for all types of pathogens and they are not specific to the 

conditions that may occur in each region. In addition, most of the guidelines used 

around the world are based on the United States Environmental Protection Agency 

(USEPA) guidelines where the conditions differ from other countries such as 

Australia.  
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These guidelines (i.e. USEPA) were established more than a decade ago based on 

what we know about the survival times of pathogens in soil and on plants. The main 

requirements from the standards are that sludge be treated to two class types. Class A 

ensures that sludge is treated to eliminate pathogens and Class B sludges are treated 

to a lesser degree and may contain residual numbers. Land use restrictions apply to 

Class B biosolids but are unnecessary for Class A biosolids. In this way, sludge is 

treated to reduce pathogenic microorganisms to below acceptable limits before being 

applied to land. Alternatively, the treatment processes may be reduced provided that 

adequate time is allowed for natural attenuation of pathogens to occur from the soil 

before public are allowed to access the area or food crops are grown at the site 

(Gerba and Smith 2005). The guidelines are not exact and specific to individual 

locations, conditions, sludge type or soil types, nor can they be expected to be, 

therefore a method suitable for field monitoring of several pathogen types is 

desirable in order to reduce any potential environmental health risks.  

9.3. Field monitoring method  

Because there is currently no standard method for monitoring the decay times of 

enteric pathogens in the field, there is very little comparable scientific data available 

on the persistence of various pathogens such as viruses, protozoa or helminths in 

biosolids-amended soils given different locations, soil types and climates. To obtain 

quantitative estimates of the effect that biosolids may have on the persistence of 

individual enteric pathogens in agricultural soil, adequate methodology for field 

sampling and processing the samples in the laboratory was needed. This method was 

required to enable individual regions to test their own pathogen decay times over 

time so that safe withholding periods could be more accurately estimated and 

biosolids managed more specifically. In addition, a more accurate method for 

determining decay times from the data collected in the field (where biosolids are 

normally applied) was also required (i.e. the use of the quadratic model). 

 

The sentinel chamber (Jenkins et al. 1999) was developed from commercially-

available products. It was selected to provide a more controlled environment for the 

biosolids and microorganisms in the field where conditions are often unable to be 

controlled. In particular, in the present study the aim of the chambers was to reduce 

variability and heterogeneity.  
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The methodology used in the research reported in this thesis was based on: 

(1) The development of a soil microcosm (sentinel chamber) to eliminate the 

possibility of loss of pathogens via leaching; 

(2) The ratio of biosolids to soil (or application rate); 

(3) The number of enteric pathogens present in the soils (i.e. inoculums) so 

that patterns of decay could be examined over a sufficient time period; 

(4) The ability to enumerate the enteric microorganisms in the laboratory to 

enable quantification and the plotting of the data over time; 

(5) The statistical analysis method to estimate decay times (T90’s) more 

accurately;  

(6) The choice of field sites (location) and the relationship to soil type and 

climatic conditions at these sites; 

(7) Suitable methodology so that the experimental plots could be managed 

from remote distances. 

 

For this research, extraction methods were developed from wastewater protocol for 

the processing of soil and biosolids samples in the laboratory. This allowed for the 

microorganism numbers to be quantified at each sampling event and the data plotted. 

The resulting data enabled the decay times for enteric bacteria and viruses to be 

estimated. It was not possible, however to estimate the decay times of a whole suite 

of enteric pathogens or determine the absolute reasons for the difference in decay 

times across different conditions. Theoretically, these decay times could be estimated 

through a modelling system using inputs such as climatic data from each site; 

however, this research project has shown that this would be very difficult to do 

accurately due to varying conditions, seasons, soil types, biosolids-types etc.  

 

The development of a quadratic statistical model in this research provided more 

accurate estimates of decay times from the non-linear data. These decay times, along 

with the observed data, are now available to provide essential information to the key 

stakeholders such as the facility administrators, operators, regulators, politicians, 

scientific community, wastewater generators, users of biosolids and the general 

public, wherever it is required. The survival patterns for each enteric pathogen still 

needs to be adequately replicated at various sites to determine any reoccurring 

patterns and to further understand the factors that contribute to die-off in the field.  
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9.4. Comparison of decay times  

The research reported in this thesis collected scientific data from three field sites in 

Australia. From the studies reported in this thesis, decay rates (T90 values) of enteric 

pathogens were estimated. Quantitative estimates of enteric pathogen survival are 

necessary to enable accurate withholding periods to be applied in the interest of 

protecting public health. Comparison of pathogens and indicators (in biosolids) 

across other studies is difficult because there are no standardised analytical 

techniques, and sludge characteristics are diverse and subject to seasonal variation 

(Sidhu and Toze 2009). 

 

The estimated decay times from the present study were difficult to compare with 

other published studies conducted around the world. Most of the research on enteric 

pathogens in soils has been conducted in animal manures (Wang et al. 1996; Lau and 

Ingham 2001; Jiang et al. 2002; Hutchison et al. 2004; Holley et al. 2006), soil alone 

(Chandler and Craven 1980; Hurst et al. 1980; Gagliardi and Karns 2002; Vidovic et 

al. 2007) and different sludge types such as effluent (Sidhu et al. 2008), irrigation 

water or composted biosolids (Sidhu et al. 2001). They have been carried out in 

laboratories or glasshouses, using different sampling methods (as described in 

Chapter 4) and different methods of recovery and enumeration. Different methods 

for calculating decay times have also been used. Currently, the main research apart 

from this study on land-applied biosolids has been conducted in the United States of 

America (Pepper et al. 2006; Zerzghi et al. 2010), the United Kingdom (Lang et al. 

2007; Lang and Smith 2007), New Zealand (Horswell et al. 2007; Horswell et al. 

2010) and Australia (Crute 2004; Eamens and Waldron 2008; Schwarz et al. 2010). 

Very little scientific data is therefore available, specifically for Australia, adding 

importance to the outcomes of this current research.  

 

Despite this, the comparison of results from different regions (where different 

methodology has been used) is not as relevant as each region being able to collect 

their own scientific data specific to soil types, biosolids types and climatic 

conditions. The methods developed in this thesis mean that the decay times of enteric 

pathogens can be tested and repeated anywhere in the world. The experimental site in 

South Australia proved that the chambers can be constructed in a remote laboratory 
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(such as Western Australia), sent out to the site, inserted into the soil, collected 

periodically and shipped back to the analysis laboratory for processing.  

 

In addition, the use of the observed data is an important consideration for use in 

conjunction with the T90 decay times since it was found that the estimated decay 

times alone may not always reflect the survival patterns (to below detection) of the 

individual microorganisms at any given site.  

9.5. Major research findings and their implications  

The major findings and their implications discussed below, directly refer to the land 

application of biosolids and related findings, collated from the experiments 

conducted in the research reported in this thesis. Such findings have been derived 

across the growing season of wheat - from the field (soil) studies, the phyllosphere 

experiments, the grains experiments and the dust study – this being the unique aspect 

of this research.   

9.5.1. The effect of adding biosolids to soil 

One of the key areas of concern for biosolids stakeholders is that the application of 

biosolids to agricultural soil could result in prolonged persistence of human enteric 

pathogens. In the field experiments conducted in the present study, biosolids were 

applied at higher rates than are normally allowable under the guidelines. Despite this, 

no apparent trend was found where the inoculated microorganisms survived for 

longer in the soils where biosolids had been applied (compared with unamended 

soils). By contrast, it was often seen that the decay times for the study 

microorganisms were more rapid in the amended soils compared with the unamended 

soils, indicating that the application of biosolids to the soil may have actually 

increased the inactivation processes of the enteric microorganisms in the soil.  

 

For industry, this means that while the application of biosolids may introduce 

harmful enteric pathogens to the field, the pathogens (in biosolids-amended soils) are 

reduced over time. In addition, the climatic conditions that are typical for southern 

Australia are generally not favourable to the survival of enteric pathogens. When 

biosolids are applied in the summer or autumn months, and the sites are sown to 

grain crops, the enteric pathogens are rapidly reduced with the onset of spring and 
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summer climatic conditions. In the present study, it was demonstrated that the all of 

the study microorganisms (except for adenovirus) decreased rapidly with increasing 

soil temperatures and decreasing soil moisture (through reduced rainfall events).  

9.5.2. The decay times (soil) 

Another issue of concern for biosolids stakeholders is the accuracy of withholding 

periods. The established time periods, preventing public access to biosolids 

application sites, is important under the current legislation (i.e. with regard to duty-

of-care). 

 

The estimated decay times in this research, calculated from data collected in the 

field, are a result of overestimation rather than underestimation. The use of 

laboratory-cultured inoculants, seeded at high numbers, along with higher than 

normal biosolids application rates, provided for a worst-case scenario to be 

examined. Along with this the microorganisms were confined to sentinel chambers. 

It is possible that under normal field conditions they may have leached down through 

the soil profile, or have been re-distributed to other areas of the field through run-off 

during rainfall events, and therefore not be of such high risk at the soil’s surface. As 

a result, the decay times (at normal field application rates with normally-occurring 

pathogenic levels) may actually be shorter. Therefore, it could be assumed that the 

risk of enteric pathogens at biosolids-application sites may actually be lower than 

what is reflected in the results of the present study.  

 

To best determine this, the decay patterns of E. coli from outside the chambers 

should be viewed (Figure 6-17, p. 124). E. coli numbers at Moora in 2008 decreased 

approximately five-log10 cfu g
-1

 to below one-log10 cfu g
-1

 over approximately 100 

days. At Mt Compass, E. coli starting numbers were one-log10 cfu g
-1

 and decreased 

to below one-log10 cfu g
-1

 also over approximately 100 days. This indicates that E. 

coli numbers (normally found in biosolids) were decreased to safe levels within 

approximately 3 months in the field, bearing in mind that some of these E. coli may 

have been leached away, been re-distributed, or were not able to be cultured.  
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The current guidelines for Western Australia prevent public access (or grazing 

animals) at the biosolids application site for 30 to 45 d. Based on this, and the 

findings from this research, the following recommendations can be made: 

 

 That public access to the site be restricted to at least 6 to 7 months, based on 

the fact that the risk from E. coli may be present for 3 to 4 months but the risk 

from viruses may be longer (e.g. more than 6 or 7 months);   

 The risk of transfer of human enteric pathogens to livestock, and the presence 

of pathogens in biosolids that may affect livestock health (such as Clostridium 

perfringens), should be examined. Thereon, the current withholding periods for 

each region for grazing animals should also be reviewed; 

 That decay times be derived using normal district application rates with normal 

expected microorganism starting numbers; 

 That research be conducted in different regions with different climatic 

conditions such as Queensland. Tropical climatic conditions with summer 

rainfall, warmer temperatures and higher humidity levels, along with soils that 

contain higher clay content, may favour the survival (and potential regrowth) 

of enteric pathogens. This may result in different decay times, and thus 

different withholding periods, and therefore different guidelines; and  

 That the survival times of microorganisms across different biosolids types from 

different wastewater treatment plants across Australia be conducted. 

9.5.3. Survival of enteric pathogens on the phyllosphere 

Where fodder crops are grown for livestock feed, from biosoloids-amended 

paddocks, there is concern that pathogenic contaminants will transfer from the soil to 

the plant and be of risk at consumption.  The key areas of risk are evident where 

enteric pathogens may be transferred to livestock via hay and silage and then to 

humans across the supply chain. In the present study, the study microorganisms were 

detectable for longer in the soil (6 to 7 months) than on the plant leaves (less than 1 

month). It was also stated by Epstein (1998) that pathogens commonly survive for 

longer periods of time in the soil than on plant leaves.  

 

The phyllosphere can present a harsh environment for enteric pathogen survival 

(Aruscavage et al. 2008).  The plant microenvironment above the soil is considered 
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to be unfavourable for pathogen survival because of environmental factors such as 

humidity and temperature (Lindow and Brandl 2003). Choi et al. (2004) observed 

greater inactivation rates of bacteriophage (MS2 and PRD1) from the leaves of 

lettuce compared with the soil, due to the protective effect (of the soil) from 

environmental conditions such as solar radiation and desiccation. If cereal crops are 

used to make hay or silage, then correct airing and drying times would potentially 

further reduce pathogen numbers.  

 

The main consumers of plant leaves at flowering (for spring crops) are livestock. 

Cereal crops may be cut, raked and baled for hay or silage and contamination from 

any pathogens such as pathogenic enterobacteria Salmonella and toxin-producing E. 

coli may affect the safety and quality of forage crops and silage (Weinberg et al. 

2004). The distance between the ground (where biosolids are present) and the edible 

portion of the crop is also important when considering potential risk of transmission 

(Abdulraheem 1989). 

 

In the present study, the bacteria persisted for longer than the virus on the leaves. 

Enteric pathogens on plant leaves would mostly be of risk to livestock if grazed as a 

fodder crop, but pathogen ingestion is usually considered low where withholding 

periods are followed (Eamens and Waldron 2008). Still, very little is known about 

the risk to domestic grazing animals (Toze 2004) particularly from bacterial 

pathogens that may infect livestock. 

 

The results of the soil field studies (Chapter 6) showed that inoculated bacteria were 

generally below four-log10 cfu g
-1

 by the spring time (at approximately 110 d). For 

hay, fodder or silage crops this would be the time when crops would be cut, raked 

and baled. In the phyllosphere experiment, the bacteria survived the longest on the 

plant leaves (compared with the virus and the bacteria and virus on the spikelets). 

Based on the estimated decay times (T90) for E. coli and S. enterica on wheat leaves 

(Table 7-2, p. 157) of 72 and 57 h (respectively) to a one-log10 reduction, these 

bacteria should theoretically fall below detection (from four-log10 cfu g
-1

) within 9 to 

12 d. Given favourable weather conditions for hay and silage production, the time 

from cutting to baling is approximately 1 week and therefore the risks to livestock 

from enteric pathogens is considered low. Having said this, further research should 
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be conducted on pathogen survival for hay and silage products across the stages of 

production. 

 

For pastures where animals are grazed, current withholding periods (under the WA 

guidelines) are approximately 30 to 45 d. Given that pastures would normally be 

grazed within only months following sowing, these withholding periods may be 

considered too liberal. Ruminants, particularly sheep, graze closely to the ground and 

if biosolids have been applied within the same year, would be at risk of direct 

ingestion of biosolids and any pathogenic contaminants present. Further research is 

required specific to the types of pathogens (found in Australia) that may be of direct 

risk to sheep and cattle, and specific to lactating or pregnant livestock. This is 

important to ensure that the biosolids-to-pathogen-to-livestock/humans-to-biosolids 

cycle of disease transmission does not occur (refer to pathways of transfer, Table 2-6, 

p. 18).  

9.5.4. Decay of enteric pathogens from stored grains 

There is a concern that any enteric pathogens present in biosolids may survive the 

growing season in the soil and be present on the end-product, the grains, at harvest 

time. This is important scientific data to have available in the event that grain buyers 

are concerned about the safety of the grains produced for human consumption. 

 

In the present study, the decay times (T90) for bacteria on stored grains was 9 to 12 d 

(Table 7-3, p. 157). Based on starting numbers of seven to eight-log10 cfu g
-1

, the 

total estimated time required for E. coli and S. enterica to fall below detection would 

be approximately 80 to 90 d. The virus (MS2) persisted for longer with decay times 

(T90) of 60 to 71 d. Based on high starting numbers of more than eight-log10 cfu g
-1

, 

the total estimated time for MS2 to fall below detection would be approximately 604 

d or 20 months. Since viruses are often highly contagious and result in a high rate of 

transmission (Koopmans and Duizer 2004) they may be of greatest risk to humans at 

consumption (of the grains). However, the risk of disease transmission should be 

considered in relation to the initial concentrations present in the grains, the storage 

period and the processing methods of the grains prior to consumption.  
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The risk of pathogenic contaminants in stored grains needs to be placed into context. 

Based on the results of the field studies, the enteric microorganisms in the soil were 

reduced to low levels by harvest time. At harvest time (approximately 170 d), E. coli 

and MS2 numbers were below two-log10 cfu g
-1

, S. enterica were below detection 

and adenovirus was below four-log10 pdu g
-1

. Based on a worse-case scenario, using 

the decay times of MS2 inoculated onto stored grains (two-log10 pdu g
-1

) and given 

that all of the viruses could transfer from the soil onto the grains, the total estimated 

time to below detection would be approximately 142 d or almost 5 months. Since 

grains consumed by humans and livestock are usually stored for several months, 

transported by truck or rail, warehoused and then shipped, and then subjected to 

further processing methods, such as milling to produce flours or flakes (Zhang et al. 

1997; Toze 2004; Fastnaught et al. 2006), this level of risk is considered to be low. 

In addition, the time period from harvesting (of the grains) to consumption is 

normally several months. During this period, it would be expected that the numbers 

of any enteric pathogens present, would be reduced to safe levels or have completely 

died off; however, some cross-contamination could still be a cause for concern. 

9.5.5. The risk of bioaerosols during harvest 

Another concern relating to the land application of biosolids to agricultural soil is the 

risk of transfer of airborne (pathogenic) contaminants from the soil to field workers 

during harvesting. Results from the dust study (in Chapter 8) showed that indigenous 

heterotrophic bacteria and enterococci numbers at the site where biosolids had been 

applied in the same year were higher than where no biosolids had been applied. It 

was also found that the highest numbers of bacteria (and inoculated microorganisms) 

were found on the chaff region of the plant. Despite this, it was determined that the 

process of threshing also significantly reduced microorganism numbers on wheat. 

 

As discussed above (in Section 9.5.4), the study microorganisms in the soil (after 

inoculation at seeding time) were at low levels (<two-log10 cfu g
-1

) by harvest time. 

Since it is difficult to test aerosol samples for every type of enteric pathogen (due to 

the logistics and inconvenience subjected on the farmer), it is suggested from the 

harvest results, that chaff be tested instead. It was found that any pathogens that may 

be present in aerosols would first be found in highest numbers on the chaff. 
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Provided that most field workers remain inside vehicles at harvest time (in sealed 

cabs of harvesters, trucks and utes) or use dust protection, the risks from bioaerosols 

in wheat dust is considered to be low. In addition, the climatic conditions in the field 

at harvest time do not favour the prolonged survival of bioaerosols due to high 

summer temperatures, low humidity and dry conditions. 

9.6. Research limitations  

The main research limitation associated with the research reported in this thesis was 

the ability to extract and enumerate pathogens from soil and biosolids samples. For 

example, experimentation was carried out on protozoa in this study but difficulties 

were encountered with visibility of the oocysts under the microscope because of the 

viscous and muddy nature of the biosolids. Other difficulties have been encountered 

with virus extraction using molecular methods because of PCR inhibitors. Bacterial 

colonies can become overgrown on agar plates with indigenous populations thus 

affecting the ability for quantification. Despite the many challenges, many 

improvements were also made to the method over the course of this research period 

by adapting wastewater protocols to the processing of biosolids and soil samples.  

However, more work is required to further develop laboratory methods suitable for 

processing more enteric pathogen types from soil and biosolids. This work is 

intensive and requires much experimentation and therefore is also expensive. 

The use of indicator microorganisms to represent enteric pathogens has long been an 

issue of debate. In the present study, indicator bacteria (E. coli) and a virus 

(bacteriophage MS2) were selected for testing alongside pathogenic bacteria (S. 

enterica) and a virus (adenovirus). It was demonstrated that each microorganism 

behaved differently. While it is not possible to extract and enumerate any enteric 

pathogen of choice from biosolids (for reasons discussed above), it is obvious that 

each type of microorganism (indicator or pathogenic) had its own decay time. In 

addition, when placed into different soil types, seasons and locations these decay 

patterns varied. Therefore indicator microorganisms, particularly E. coli, are not an 

accurate representation for enteric pathogens within the same pathogen group. This 

agrees with Sidhu et al. 2009 that survival characteristics vary in the environment 

therefore no single microorganism can indicate the patterns or presence of all 

pathogens.  
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The benefits of using E. coli as a bacterial indicator in soil-amended biosolids (in this 

research) were the following: 1) they were easy to detect and quantify; 2) E. coli are 

consistently present in faecal matter; 3) they are unable to multiply outside the host, 

apart from possible regrowth; 4) survival times were not too short (compared with 

Salmonella); and 5) they don’t originate from sources other than of faecal origin 

(Sidhu et al. 2009). 

Another issue of debate is the use of laboratory-cultured strains versus strains 

originating from the environment. In the present study, it was demonstrated that 

similar patterns of decay occurred for the laboratory-cultured strain of E. coli used 

inside the chambers compared with the E. coli found outside the chambers (Figures 

6-20 and 6-21, p. 127. This is a matter requiring further research and multiple sets of 

scientific data if suitable indicators (or pathogens) are to be selected for field 

monitoring.  
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9.7. Further research  

From the research conducted in this thesis, key areas for further research have been 

identified. Further studies on the disease transmission from biosolids to food crops 

would augment the present knowledge of pathways from pre-harvest sources, 

aerosols and post-harvest sources. Such pathways may include: 

 

 Grazing animals on pastures fertilised with biosolids. Even though this practice 

may not be common, the pathogens of harm to sheep and cattle particularly 

pregnant or lactating animals, needs to be examined. The pathogens specific to 

the location from which they are tested (for example Cryptosporidium, 

Salmonella spp., Campylobacter and toxigenic E. coli) need to be selected with 

the intention of preventing the cycle of infection occurring from biosolids use;  

  The potential for, and levels of, enteric pathogens that may transfer onto food 

plants via rain splash where biosolids have been applied needs to be studied; and 

 The fate of protozoa is an important area where more information is needed due 

to their recognised presence in biosolids (Pepper et al. 2006; Sidhu and Toze 

2009) and their ability to infect both humans and animals (DuPont et al. 1995; 

Bradford and Schijven 2002).  

 

Further work is required in the laboratory to develop methods for extraction and 

quantification of enteric pathogens from biosolids-amended soil samples. This would 

enable more scientific data to be collated on the decay patterns of such 

microorganisms, where introduced into agricultural soil from use of biosolids. In 

particular, enteric pathogens that may persist for prolonged periods of time in the soil 

such as viruses, helminths and protozoa needs to be examined. There are a number of 

factors in the laboratory that affect the ability for such microorganisms to be 

enumerated from biosolids/soil samples. These include factors such as inhibitors, 

visibility, background flora, recovery efficiencies, ability to culture and source the 

pathogens and the pathogens binding onto soil or biosolids particles. In addition, the 

decay patterns of laboratory-cultured strains compared with environmental strains 

needs to be examined for selection of suitable indicators for monitoring. The use of 
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PCR is an area requiring further development in terms of the ability to determine 

infective cells as opposed to the detection of non-viable cells.  

 

The effect of different biosolids types on enteric pathogen survival times needs to be 

understood. Biosolids produced from different wastewater treatment plants possess 

different characteristics such as solids to moisture ratios, nutrient levels, pH levels 

and carbon content, and this may influence the decay times of enteric pathogens 

across different locations. In addition, the decay patterns of enteric pathogens in a 

variety of soil types, climatic conditions and locations needs to be tested to find any 

reoccurring patterns or conclusive results.  

 

Further scientific data on the effect that biosolids have on decay times in soil needs 

to be collected. This includes the testing of different application rates to determine 

the absolute influence that biosolids incorporated with the soil may have on pathogen 

inactivation. The results from the present study suggested that biosolids do not 

‘protect’ the pathogens nor prolong their survival. For this reason it may be possible 

that the addition of biosolids to soil may actually result in an increased rate of 

inactivation of pathogens in the soil, and this therefore, would be a positive argument 

for biosolids reuse. 
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9.8. Conclusions  

Following the research conducted under this project, several objectives were 

addressed and key outcomes attained. The research objectives are discussed below: 

 A method was developed to enable the decay times of enteric microorganisms 

(both indicator and pathogenic) to be examined across the growing season of 

wheat, from soil and biosolids-amended soil samples. While the external 

environmental conditions could not be exactly matched, sentinel chambers 

provided suitable microcosms to allow gaseous and moisture exchange to occur 

without the loss of microorganisms. This key outcome was demonstrated by 

similar decay patterns of E. coli inside the chambers (inoculated) with the E. coli 

naturally occurring in biosolids applied to the topsoil in the field (Figures 6-20 

and 6-21). In addition, soil moisture changes inside the chamber were similar to 

the changes in soil moisture (topsoil) outside the chambers (Figures 6-10, 6-11, 

6-14 and 6-15); 

 The methodology for enumeration of enteric microorganisms in soil and 

biosolids samples was tested and initial decay times for S. enterica and MS2 

were obtained.  Similar decay times were found for S. enterica (T90=25 d in 

glasshouse (Table 4-1) and 21 d and 25 d in the field (Table 6-6), both using 

Moora biosolids-amended soil) and MS2 (T90=29 d in the glasshouse (Table 4-1) 

and 36 d and 29 d in the field (Table 6-6), both in Moora biosolids-amended soil) 

(Table 6-6), in the pot experiment (Chapter 4) compared with the field 

experiments (Chapter 6). This demonstrated the key outcome of this objective 

being a method capable of representing decay patterns both in field and 

glasshouse conditions; 

 Decay times (T90) are commonly used to describe time (d) for a one-log10 

reduction of microorganisms in environmental samples. However, when decay 

patterns are non-linear, this line of regression can be inaccurate. Three statistical 

models were compared to determine the most appropriate model for obtaining 

decay times (T90). For the purpose of this research, the quadratic equation was 

found to best describe decay patterns and provide a decay time (T90) or days 

required for a one-log10 reduction to occur. This research objective was explored 

and further work is needed to refine the use of this model; 
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 The decay times of E. coli (indicator bacteria), S. enterica (pathogenic bacteria), 

bacteriophage MS2 (surrogate virus) and human adenovirus (pathogenic virus) in 

biosolids-amended agricultural soil were obtained. The key outcome of this 

objective was that the enteric microorganisms decayed faster in soils amended 

with biosolids compared with soil where no biosolids were present. This 

indicated that biosolids incorporated into soil increased the inactivation of 

pathogens. In addition, it was found that decay times are specific to 

microorganism type; 

 It was observed that microorganism decay was correlated to the changes in soil 

moisture and soil temperature in the field. A key outcome from this objective 

found that enteric microorganism decay patterns are mostly influenced by 

declining soil moisture (particularly bacteria), and viruses are mainly influenced 

by increasing soil temperature; 

 No particular effect of soil type or site was found to influence enteric 

microorganism decay patterns; however, the decay patterns can differ for each 

type of microorganism present in biosolids-amended soils; 

 The effect of plant location (i.e. spikelet, leaves) on microorganism decay (on 

wheat plants at the flowering stage) was examined. The key outcome from this 

experiment demonstrated that microorganism decay was faster from the spikelet 

(grain-bearing region) than the leaves (less than 2 d) and thus the risk to humans 

or livestock at consumption was considered low. In addition, grain variety 

influenced microorganism decay times, along with microorganism type; 

 The effect of threshing on enteric microorganisms inoculated onto mature wheat 

plants was examined. The outcomes of this objective were that threshing 

significantly reduced microorganism numbers, in particular S. enterica; and the 

highest level of microorganisms were found to be deposited onto the chaff post-

threshing. The inactivation of microorganisms was, again, influenced by 

microorganism type as bacteriophage (surrogate virus) was more stable than the 

bacteria following the process of threshing. The key outcome of this experiment 

was that threshing reduced enteric microorganism numbers significantly and the 

risks of unsafe levels of bioaerosols in dust samples were considered to be low; 

and 

 The presence/absence of bacteria - heterotrophic, E. coli and enterococci – in a 

mature wheat crop at harvest was examined. The outcomes of this objective were 
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that no E. coli were present at the site following biosolids application in the same 

season; bacteria levels (enterococci and heterotrophic bacteria) were highest on 

the chaff, particularly at the unamended site; the harvester generated higher 

numbers of bacteria into the dust than were found in the clean air samples; and 

these bacteria were higher in number at the biosolids-amended site compared 

with the unamended site. Overall, bacterial contamination in dust from biosolids 

application was not considered a high risk and the key outcome from these 

experiments was that microorganism numbers were highest on the chaff, and thus 

chaff could be sampled instead of air or dust samples to determine bioaerosol risk 

at crop sites.  

 

From the studies presented in this thesis, it is concluded that pathogens from 

biosolids are of greatest risk to humans immediately following dispatch from the 

wastewater treatment plant.  Microbial contamination levels are highest during this 

time and thus transport providers, handlers, spreaders, farmers and workers are at 

greatest risk of exposure to disease-causing pathogens. In addition, the climatic 

conditions common for southern Australia do not favour the prolonged survival of 

enteric pathogens in the soil, particularly from spring to summer, due to 1) 

decreasing soil moisture content (i.e. long dry periods with minimal rainfall events) 

and  2) increasing temperatures. 

 

While biosolids are incorporated with the soil, the pathways to ingestion are low 

where withholding periods are maintained. Therefore, the main pathway to 

transmission may be more prevalent from poor hygienic practices such as food 

consumption following handling or the transfer of biosolids into vehicles or homes. 
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