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Abstract 10 

Porosity and permeability of deep unmineable coal seams are key parameters in the context 11 

of (enhanced) coalbed methane recovery and CO2 geo-storage in coal beds as they determine 12 

productivity and injection rate. Porosity and permeability are again determined by the micro-13 

structure of the coal, and the cleat network-coal matrix system. Furthermore, it is well 14 

established that swelling of the coal matrix due to water adsorption can significantly reduce 15 

permeability. However, the exact effect of swelling due to water adsorption on the coal 16 

micro-structure is only poorly understood, and how this microstructural change impacts on 17 

the permeability and porosity characteristics of the coal. We thus imaged dry coal plugs and 18 

swollen coal plugs (swollen due to brine adsorption) at high resolution (3.43 μm)
3
 in 3D with 19 

an X-ray micro-computed tomograph (microCT). On the microCT images two types of cleats 20 

were identified; cleats in the coal matrix and cleats syngeneic with the mineral phase. 21 

Approximately 80% of the coal matrix cleats closed upon water adsorption, while the cleats 22 

in the mineral phase were not affected. This cleat closure by water adsorption dramatically 23 
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reduced porosity and particularly permeability, consistent with dynamic permeability core-24 

flood measurements. 25 

 26 
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 28 

1. Introduction 29 

Coalbed methane recovery (CBM) has gained substantial interest in recent years. Essentially 30 

CBM is a method to produce natural gas from deep unmineable coal seams, and it utilizes 31 

pressure-driven fluid flow for hydrocarbon recovery, often in combination with hydraulic 32 

fracturing [1] or N2/CO2 injection for enhanced production (ECBM) [2, 3]. However, the coal 33 

permeability is dramatically reduced by several orders of magnitude [4, 5] due to water [6, 7] 34 

or gas [8, 5] adsorption, which cause coal swelling and seriously limits the application of this 35 

technology [8]. Water adsorption, on which we focus here, has also been suggested to 36 

decrease the sorption capacity of CO2/CH4/N2 in CBM/ECBM and storage volume for CO2 37 

geo-sequestration [9,10]. Water encroachment and associated water adsorption, however, is 38 

natural during CBM/ECBM and CO2 storage in coal seams [11]. 39 

 40 

To address these issues and to predict CBM production, several coal swelling – permeability 41 

models were built, and the swelling characteristics are typically simulated by coal matrix 42 

strain change (e.g. [12], [13]). However, these models failed to explain stress controlled 43 

swelling laboratory test results [14] and thus newer strain model [15] have been tuned to 44 

match the laboratory results. These models, however, still have significant limitations with 45 

respect to predicting the effect of water swelling on porosity and permeability. Specifically, 46 

these models treat the swelling effect as independent of the fracture system, i.e. the cleats are 47 



fixed or only change due to effective stress changes; while it has been suggested that swelling 48 

may close the cleats and thus reduce permeability [16, 17, 18]. 49 

 50 

Thus to fully understand the cleat system is of vital importance. Note that typically macro 51 

cleats and micro cleats (< 20 μm), on which we focus here, are distinguished. Such micro 52 

cleats have been analysed with medical x-ray computed tomography (medicalCT) (e.g. [19, 53 

20]) and SEM (e.g. [21-24]). However, medicalCT has a relatively low resolution (~500 μm)
3
 54 

[25] and  the coal microstructure (i.e. micro cleat system) cannot be resolved; while SEM 55 

only produces 2D information of the sample surface, and that usually at vacuum conditions. 56 

The detailed 3D morphological characteristics are, however, vital as 2D space has 57 

significantly different fluid mechanical properties (e.g. the percolation threshold is much 58 

lower in 3D than in 2D, [26] ). More recently, x-ray micro-computed tomography (microCT) 59 

– which has a significantly higher resolution than medicalCT - has been increasingly used in 60 

petrophysical studies (e.g. compare the reviews by [27], [28] or [29] or for example [30], 61 

[31]), and the micro structure of coal was imaged (e.g. [24], [32], [33]). However, there is a 62 

serious lack of information regarding the effects of water swelling on the microstructure. We 63 

thus now expanded on this microCT analysis and investigated how water swelling influences 64 

the 3D morphology of coal at the micro-meter level.  65 

 66 

2. Experimental Methodology 67 

2.1. Materials    68 

A coal block was acquired from a depth of 750m in the Pingdingshan Ten coal mine, Henan 69 

Province of China. The coal was a typical sub-bituminous coal (medium rank) with carbon 70 

content 54(± 2) % and volatile matter content 36(± 1) %, measured by Chinese Standards 71 

GB/T 212-2008 and DL/T 1030-2006. Stripes of white minerals were identified visually with 72 



sporadic distribution on the coal sample surface. Small samples were cut from adjacent 73 

positions from the block, and subjected to SEM and EDS analysis, Fig. 1. The coal had a 74 

relatively high oxygen content (30 wt%; cp. points A and D in Fig. 1); the minerals were 75 

identified as CaCO3 (cp. points B and C in Fig. 1). Furthermore, a small dry coal plug (5mm 76 

diameter, 10 mm length) was cut, again from the same block and a position adjacent to the 77 

other samples, and this plug (Sample A) was imaged with an x-ray micro-computed 78 

tomography (Xradia Versa-XRM) at a high resolution of (3.43 μm)
3
. X-ray accelerating 79 

voltage was chosen as 40 kV, the x-ray beam size was approximately 0.3 μm, and a 1000 x 80 

1000 pixel detector was used for radiograph acquisition Total time for 3D imaging of the 81 

sample was  4 hours.   82 



 83 

Fig. 1. SEM images of the coal sample with elemental compositions (wt % measured by 84 

EDS) for different points A, B, C and D indicated. 85 

 86 



2.2 Permeability measurements and image processing 87 

An experimental core flood apparatus was built for gas and brine permeability measurements 88 

(Fig. 2). The small coal plug was mounted into an X-ray transparent flow cell, and the whole 89 

apparatus was vacuumed for 12 hours to ensure that there is no air inside the plug sample or 90 

the tube system. A confining pressure of 5 MPa was applied, and subsequently more than 91 

7000 pore volumes (PV) of brine (5 wt% NaCl in deionized water) were injected at a flow 92 

rate of 0.02 mL/min through the plug with a high precision syringe pump (Teledyne ISCO 93 

500D) at 296 K; and the pressure drop across the plug was continuously measured with high 94 

accuracy pressure sensors (Keller PAA-33X, accuracy 0.1%). Permeability was then 95 

calculated using Darcy’s law. This test was repeated thrice to test repeatability; all the three 96 

samples (Sample A, Sample B and Sample C) were cut from the same coal block. 97 

 98 

 99 

Fig. 2. Experimental apparatus used; (A) injection pump, (B) production pump, (C) confining 100 

pressure pump, (D) core holder, (E) pressure data acquisition, (F) microCT, (G) microCT 101 

images processing. 102 



Injection was stopped after 120 hours flooding time (when the permeability reduced by > 103 

80%, Fig. 11), and the brine saturated plug was microCT imaged again at the same high 104 

resolution (without confining stress). . Note that the plug was mechanically fixed inside the 105 

microCT cell; thus the same sample volume was imaged. All microCT images were filtered 106 

with a non-local means filter [34] and segmented with a watershed algorithm [35] [36] Fig. 3. 107 

 108 

Fig. 3. Axial slices through the segmented microCT coal sample image: (A) calcium 109 

carbonate minerals (red), (B) coal matrix (red), (C) micro cleats (red). 110 



3. Results and Discussion 112 

3.1 Microstructure characteristics and segmented phases 113 

Three phases were clearly identified in the raw and segmented 2D/3D microCT images: 114 

micro cleats (black), coal matrix (grey) and minerals (white) in raw images (Fig. 4a); with 115 

white, blue and red in the segmented images (Fig. 4b). The widths of the micro cleats in the 116 

dry plug were 5-10 µm (no confining stress), while lengths up to 2 mm were measured. These 117 

micro-cleats can be divided into two groups according to their location in the sample: they 118 



can be a) in the coal matrix (e.g. A in Fig. 4a or A in Fig. 1) or b) in the mineral phase (e.g. B 119 

in Fig. 4a or C in Fig. 1). Clearly, the coal sample’s microstructure is highly heterogeneous.  120 

 121 

Fig. 4a. Axial 2D slice through the dry coal (3.43 µm resolution; raw image); the different 122 

features can be clearly identified:  (A) micro cleat in the coal matrix, (B) cleat inside mineral, 123 

(C) mineral phase.  124 



 125 

Fig. 4b. 2D and 3D views of the segmented coal sample; three phases were identified: micro 126 

cleats (white); mineral phase (red); and coal matrix (blue). 127 

 128 

3.2 Microstructure evolution due to swelling 129 

3.2.1 Qualitative analysis 130 

A clear change in the micro-structure was observed on the microCT images before and after 131 

swelling (Fig. 5). Essentially the cleats in the coal matrix disappeared after the sample was 132 

saturated with brine. However, no significant change was observed in terms of the mineral 133 

phase and the cleats inside the mineral phase.  In this context the concept of “internal 134 

swelling stress” was proposed [37]; essentially, the coal “internal swelling stress” closed the 135 

cleats; at the same time, the mineral phase had no such “internal swelling stress” and it is less 136 

compressible, thus the open cleats were protected from closure by the mineral phase. The 137 

micro cleats and generally the pore volume decreased significantly when the sample was 138 

saturated, this is clearer in the segmented images (Fig. 6).  All these evidence indicated that 139 

water absorption into the coal matrix and associated coal matrix swelling. 140 



 141 

 142 

Fig. 5. Axial 2D image slices through the coal plug (raw image); (A) dry sample, (B) brine 143 

saturated sample (same slice), (C and D) zoomed-into image A: the cleats and minerals can 144 

be seen clearly, (E and F) the sample area as shown in C and D: the cleats disappeared but the 145 

mineral phase did not change, (G and H) the cleats inside minerals showed no change before 146 

and after brine saturation. 147 

 148 



 149 

Fig. 6. 3D images of the three segmented phases; (A) micro cleats, dry plug; (B) micro cleats, 150 

brine saturated plug; (C) coal matrix (shown in grey), dry plug; (D) coal matrix, brine 151 

saturated plug; (E) mineral phase, dry plug; (F) mineral phase, saturated plug.  152 

 153 

3.2.2 Quantitative analysis 154 

The microCT images were further analysed and the volume fractions of the different phases 155 

were measured before and after brine saturation. The micro cleat volume shrank significantly 156 

(by ~ 75%) due to brine saturation, while the coal matrix volume increased by the same 157 

nominal amount, but the mineral fraction volume stayed approximately constant, Table 1.  158 

 159 

Table 1 160 

Volume fractions of the different phases in the coal plug measured on the micro-CT images. 161 



 Dry plug Saturated plug 

Micro cleats total (%) 2.85 % 0.71 % 

Micro cleats – 

Below threshold size (%)
* 

1.20 % 0.19 % 

Micro cleats – 

Above threshold size (%)
*
 

1.65 % 0.52 % 

Minerals (%) 28.79 % 28.83 % 

Coal matrix (%) 68.36 % 70.46 % 

Effective cleat porosity
*
 1.19 % 0.19 % 

*
Cross-sectional threshold value = 50000 µm

2
.  162 

 163 

The 3D topographies (A and B in Fig. 7) illustrate how the micro cleats changed due to brine 164 

saturation. The cross sectional area (µm
2
) was chose as the threshold value which is better 165 

description for the morphology of cleats (thin and long) than the volume (µm
3
) value, We 166 

further divided small micro cleats (C and D in Fig. 7; all void cross-sectional areas  50000 167 

μm
2
) and larger micro cleats (E and F in Fig. 7) for better visualization; all void space 168 

significantly shrank due to brine saturation, furthermore almost all larger micro cleats were 169 

oriented vertically where along the coal bed. The absolute porosity () for each image slice 170 

was computed, and ϕ was clearly reduced by swelling throughout the plug (Fig. 8). We 171 

further analysed the effective porosity (e); e also dramatically decreased (from 1.19 % to 172 

0.19 %).This is consistent with our pore size distribution measurements on the microCT 173 

images: all micro-cleats shrank, particularly the larger ones (Fig. 9). Finally we extracted a 174 

pore network for the dry and brine saturated plug with a skeletonization algorithm [38], 175 

Figure 10; clearly the number of fluid conduits was significantly reduced by brine saturation. 176 



 177 

Fig. 7. 3D visualization of the micro cleat system before (left) and after (right) brine 178 

saturation; a threshold value of 50000 μm
2
 was set for the cleat cross-sectional area to 179 



distinguish smaller and larger cleats; (A) micro cleats, dry sample; (B) micro cleats, brine 180 

saturated plug; (C)  micro cleats ( 50000 μm
2
), dry sample; (D)  micro cleats ( 50000 μm

2
), 181 

saturated plug; (E)  micro cleats (> 50000 μm
2
), dry sample; (F)  micro cleats (> 50000 μm

2
), 182 

saturated plug. 183 

 184 

 185 

Fig. 8. Porosity versus sample height. 186 

 187 

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

P
o
ro

si
ty

  
(%

) 

Sample height (mm) 

Dry coal sample

Saturated coal sample



 188 

Fig. 9. Cleat size distributions before and after swelling (caused by brine saturation); (a) all 189 

cleats; (b) cleats  50000 μm
2
; (c) cleats > 50000 μm

2
. 50000 μm

2
 is the threshold value of 190 

cross-sectional void area. 191 

 192 



 193 

Fig. 10. Pore networks extracted by skeletonization algorithm [38], no confining stress; (A) 194 

dry coal sample; (B) brine saturated coal sample. 195 

 196 

3.3 Permeability evolution 197 

The dynamic permeability during brine injection was measured on three separate plugs 198 

(Sample A, B and C), see above in the methodology section. Permeability consistently 199 

dropped rapidly in the first 60 hours of the experiment ( 3700 PV of brine injected), Figure 200 

11. This permeability drop can be fitted with logarithmic curves (printed onto the graphs in 201 

Fig. 11). However, the plugs had significantly different absolute permeabilities; which is 202 

expected as coal is a rather heterogeneous material (cp. section 3.1). The graphs were quite 203 

similar though, all samples underwent a >80% permeability loss after injection of ~ 7300 PV 204 

of brine. This permeability drop is consistent with the microCT analysis above: porosity 205 

significantly reduced during the water absorption process (from 2.85% to 0.81%); and 206 



permeability loss was caused by closure of 80% of the micro cleats (cp. Fig. 10), which was 207 

induced by coal matrix swelling.    208 

 209 

 210 

 211 
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Fig. 11. Dynamic permeability versus brine injection time for the three coal samples tested 213 

(confining stress = 5 MPa), brine was injected at a flow rate of 0.02 mL/min (i.e. 100h 214 

correspond to ~6200 PV of brine injected); A for sample A, B for sample B and C for sample 215 

C. 216 

 217 

4. Conclusions 218 

Coal porosity and permeability are key parameters as they control natural gas production 219 

from deep (unmineable) coal seams [39, 40, 41]. However, the microstructure of the coal – 220 

which ultimately determines coal porosity and permeability – is only poorly understood. This 221 

is especially true for the effect of swelling on the microstructure (e.g. [42]) – which is a well-222 

known cause for permeability change (e.g. [17]) 223 

 224 

Thus we imaged dry and swollen (due to brine absorption) coal plugs with 3D microCT at a 225 

high voxel resolution (3.4 μm)
3
. The dry images were similar to those acquired by [33] and 226 

[24]; and the medium rank coal was highly heterogeneous and had a low porosity (2.85 % ± 227 

1%) and permeability (~0.1 mD -10 mD) and a significant mineral content. Micro cleats were 228 

visible in the coal matrix and the mineral phase, consistent with SEM imaging (cp. Fig. 1). 229 

However, when brine was injected into a dry coal plug, more than 80% of these cleats closed 230 

due to swelling, which caused a dramatic reduction in porosity and particularly permeability. 231 

But the cleats in the mineral phase were still open after the coal matrix swelling; this could be 232 

explained by the lower internal stress in the mineral and the lower compressibility of the 233 

mineral.  234 

 235 



We conclude that water absorption into dry coal causes significant swelling effects. This 236 

swelling drastically alters the microstructure of the coal; which again drastically reduces coal 237 

permeability.  238 

 239 
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