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Abstract

In this thesis we present an incremental learning algorithm for learning and clas-
sifying the pattern of movement of multiple objects in a dynamic scene. The
method that we describe is based on symbolic representations of the patterns.
The typical representation has a spatial component that describes the relation-
ships of the objects and a temporal component that describes the ordering of the
actions of the objects in the scene. The incremental learning algorithm (ILF) uses
evidence based forgetting, generates compact concept structures and can track

concept drift.

We also present two novel algorithms that combine incremental learning and im-
age analysis. The first algorithm is used in an American Football application
and shows how natural Ianguage.parsing can be combined with image processing
and expert background knowledge to address the difficult problem of classifying
and learning American Football plays. We present in detail the model developed
to represent American Football plays, the parser used to process the transcript
of the American Football commentary and the algorithms developed to label the
players and classify the queries. The second algorithmn is used in a cricket applica-
tion. It combines incremental machine learning and camera motion estimation to
classify and learn common cricket shots. We describe the method used to extract
and convert the the camera motion parameter values to symbolic form and the

processing involved in learning the shots.
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Finally, we explore the issues that arise from combining incremental learning with
incremental recognition. Two methods that combine incremental recognition and
incremental learning are presented along with a comparison between the two

algorithms.
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1. Introduction 1

Chapter 1

Introduction

For over three decades researchers in computer vision have been investigating
image processing and image understanding. The focus of the research has been
mainly on single frame analysis due to the complex and time consuming process-
ing involved. Continuing advances in computer hardware have reduced previous
limitations in image processing and allowed research on entire video sequences.
One computer vision field that involves processing of video sequences is video in-
dexing in which the goal is to develop systems that can automatically understand
and index video data. The problem with video processing is that it is, in most
cases, processed as a simple sequence of images and so far few applications use
context knowledge to help in the video data analysis and other sources. Further-
more once the video data is processed, no attempt is made to learn from it. One
of the greatest challenges in video indexing is to develop systems that can auto-
matically annotate footage of complex situations such as team sports, for example
American Football. This is a very complex problem as it involves understanding
the movements of multiple objects in a dynamic scene in situations where the
objects can be occluded and have erratic movement. Though numerous methods
have been developed, none of the methods can accomplish this task consistently.

To address the problem of video indexing of footage from sport it is necessary to
use all the information available from the video data. For example the information
extracted from the low level image processing, the clues extracted from the audio
data corresponding to the video segment and the context information. Finally, it
is desirable to learn from the current data to improve the recognition ability of
the system. Using this approach, the work described in this thesis attempts to
demonstrate the advantages of combining data from several sources of information
and machine learning to index video data.
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1.1 Aims and Approaches

This thesis has four major aims. The first aim is to develop algorithms that
can classify and learn complex spatio-temporal patterns. The second aim is to
show that a complex problem such as classifying American Football plays can be
solved by combining image processing, text processing and learning. The third
aim is to demonstrate that camera parameter estimation and learning can be
used to recognise and learn cricket shots. Finally, the fourth aim of this thesis is
to investigate combining incremental learning and incremental recognition.

The work on incremental learning presented in this thesis addresses three impor-
tant issues in machine learning: memory size, forgetting and concept drift. In
this thesis we do not treat the three issues independently (as is the general rule)
but rather in combination and the reason for selecting these particular issues is
that the patterns that we attempt to recognise and learn are complex and evolve
over time. The aim is to develop an algorithm that generates compact concept
hierarchies, uses forgetting to keep the concepts consistent with the stream of
information and tracks concept drift making it suitable for real world applica-
tions. To this end, the algorithm was evaluated in three applications: American
Football, cricket and fighter combat.

The work on American Football combines image analysis, natural language pro-
cessing and learning. The application does not treat video as a simple collection
of images. Instead it uses background knowledge to select the low-level processing
required and complements the information extracted from the video with clues
obtained from the transcript of the audio track associated with the video seg-
ment. The transcript of the commentary is essentially an expert description of
the dynamic scene in the video segment and therefore a great deal of information
can be extracted through simple text parsing. The aim of using a combination
of video and text information is to reduce the complexity of the play classifi-
cation task and to prevent the system being dependent on only one source of
information. Incremental learning is also used to learn from previous examples in
order to improve the classification performance of the system and to handle cases
involving data that has not been encountered previously. To demonstrate the
benefits of combining image analysis, natural language processing and learning,
both simulation and real-world data are used.

The work on cricket combines image analysis and learning to classify cricket shots.
The image analysis in this application uses camera motion estimation and does
not involve any background knowledge. Learning is again used to improve the
classification performance of the system and to better handle cases involving shots
that have not been encountered previously.

The fourth aim of this thesis is to investigate combining incremental learning and
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incremental recognition. This is necessary to deal with patterns and situations
that cannot be isolated form the data stream and global features determined.

Two methods of incremental learning and incremental recognition are presented.
Each method uses a different procedure to update the concepts in the hierarchy.
The aim is to resolve the issues that need to be considered when attempting to
dynamically update concepts when using these two methods.

1.2 Contributions

The major contributions of this thesis include the development of an incremental
learning algorithm, the production of novel algorithms for image processing, text
processing and machine learning as applied to video indexing and for the recog-
nition and learning of the pattern of movement of multiple labelled objects in a
dynamic scene.

First, an incremental learning algorithm is proposed to recognise and learn the
pattern of movement of multiple labelled objects in a dynamic scene. The al-
gorithm addresses three important issues in incremental learning, specifically,
memory size, forgetting and concept drift. The algorithm generates compact
conceptual hierarchies that are particularly useful in data intensive domains. For-
getting is an important part of the algorithm as it is used to keep the concept
structure compact by removing irrelevant or out of date information. The incre-
mental learning algorithm also uses forgetting to help in tracking concept drift
by keeping existing concepts consistent with the incoming stream of data.

Second, it is shown that relatively simple text and novel image processing can be
used to classify American Football plays. The text processing involves parsing for
clues about the plays and can be used to determine the type of play, the action
(such as pass, run or punt) of the play, the players and their positions (such as
quarterback or tail-back) involved and whether the play was successful or not.
Novel image processing algorithms are used to determine the player formation
(initial setup) and the movement of the players over the duration of the play.

Third, a method that uses camera motion estimation and incremental learning
to classify cricket shots is presented. The image analysis used in the application
does not involve tracking any specific objects in the shots (such as the players
or the ball) but rather uses camera motion and reasoning to determine the most
probable cricket shot in the video segment.

The final contribution is an investigation into and novel algorithms for combining
incremental learning and incremental recognition. We describe two algorithms
that use incremental learning and incremental recognition. The first algorithm
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updates the concepts in the hierarchy dynamically (as the data is analysed). The
second algorithm updates the concepts only after all data is available.

1.3 Outline of the thesis

This thesis is organised as follows:

Chapter 2 presents a survey of the machine learning literature relevant to the
work presented in this thesis.

Chapter 3 presents the incremental learning algorithm — ILF (incremental learn-
ing with forgetting). The algorithm generates compact concept structures, uses
forgetting to keep known concepts consistent with the observed data and can
track concept drift.

Chapter 4 describes in detail the knowledge structure used to represent American
Football plays. The play model combines expert knowledge, domain knowledge,
spatial knowledge and temporal knowledge.

Chapter 5 describes the procedure used to label players in American Football
plays. The labelling method uses information extracted from video combined
with context knowledge to determine the label of the players in the initial setup.

Chapter 6 presents the algorithm used to answer queries about American Football
plays. The algorithm uses clues from the text of the transcript of the natural
language commentary of the game and information extracted from the video to
compare a query to a model play.

Chapter 7 describes the algorithm used by ILF to generalise the spatial and
temporal information.

Chapter 8 presents the application of ILF to cricket where the objective is to
classify and learn common cricket shots.

Chapter 9 presents an augmented version of ILF that can perform incremental
recognition and learning. Two methods of learning are described: a model based
method and time instance based method. This is applied to 3D trajectories that
do not have well defined start and end points in time like American Football and
cricket.

Chapter 10 presents a summary of the main contributions of this thesis.

In addition to the previous chapters, three additional Appendices are included:
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Appendix A presents more results obtained from classifying American Football
plays.

Appendix B presents the keywords used by the parser used to extract information
from the transcript of the natural commentary of American Football games.

Appendix C presents the patterns used by the parser to generate information
frames about American Football plays and players.
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Chapter 2

Related Work

2.1 Introduction

The work described in this thesis is of relevance to the research areas of machine
learning, object tracking, camera motion parameter estimation and systems that
combine natural language processing with image analysis. The machine learning
component of the work in this thesis is used in applications that combine learning
with object tracking, camera parameter estimation and images analysis.

In this chapter we present past work in the area of machine learning. The back-
ground work done in object tracking and systems that combine natural language
processing and image analysis is presented in chapter 4, whilst in chapter 8 we
present previous work done in the field of camera parameter estimation.

The layout of the chapter is as follows: Section 2 describes incremental and one-
step learning. In Section 3 we present the issues of importance in incremental
learning. Section 4 describes some of the best known incremental learning sys-
tems.

2.2 Machine Learning

Learning is a many-faceted phenomenon. Learning processes include
the acquisition of new declarative knowledge, the development of mo-
tor and cognitive skills through instruction or practice, the organisa-
tion of new knowledge into general, effective representations, and the
discovery of new facts and theories through observations and experi-
mentation [19].
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One can classify machine learning systems using different dimensions. We have
chosen three dimensions as particularly meaningful [19]:

e Classification on the basis of the underlying learning strategies used.

e (Classification on the basis of the representation of knowledge or skill ac-
quired by the learner.

e Classification in terms of the application domain for which the knowledge
is acquired.

Of relevance to the work described in this thesis is the first dimension which
includes learning from ezamples. Learning can be a one-step process (or one-
trial) or incremental. In the case of one-step learning the general procedure is as
follows: all the training examples are presented to the system at the beginning of
the learning process and the system develops, from the input data, a set of rules
[90, 91] or a decision tree/lattice [92, 87] that best classify the instances present
in the training set [20], [17]. This type of learning has been shown to produce
effective, eflicient and good concept descriptions from a given set of examples
and is often used in a wide number of applications such as medical diagnosis [78].
One-step learning is well suited to batch learning as long as the data is relatively
small.

Two of the most successful non-incremental learning algorithms are ID3 [90] and
C4.5 [93]. The ID3 algorithm creates a decision tree by performing a recursive se-
lection of attributes from a given set. ID3 was designed to handle large induction
tasks and is based on an information gain function. Partitioning at each level
of the tree is achieved by finding the attribute that maximises the information
gained in selecting that attribute. A test partitioning the objects into separate
values of the attribute then becomes the root of the tree, with the leaf nodes
being the partitioned subsets. For example consider the case where attribute A
has values Ay, Ay, Az, ..., A, and attribute A is selected as a decision attribute
at the root of the tree. The training set B will be partitioned into subsets By, Bs,
Bs, ..., B, where B; contains those objects in B that have value A; for attribute
A. However, these types of systems are limited since they do not have the ability
to modify concept descriptions that are contradicted by new examples, and must
rebuild the concept completely in order to accommodate new facts.

Incremental learning does not have this limitation as it allows the concept de-
scriptions to be modified to reflect new learning events. Incremental learning
is also useful when dealing with data intensive domains {millions of examples).
For this reason incremental learning is also more suited to real-world situations.
Human learning is incremental. A human develops concept descriptions based on
the facts available at a given time and incrementally updates those descriptions as
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new facts become available. There are essentially two reasons why human beings
learn incrementally: the facts are generally received in the form of a sequential
flow of information (typically the information received comes in steps and the
human has to learn how to deal with a situation long before all the facts are
available). Humans have limited memory and processing power (humans do not
store everything they are exposed to, but rather only what they perceive as the
most significant facts and generalisations) {97].

Several issues have been identified in incremental learning. They are described
in detail below.

2.2.1 Bias

Bias is an important issue in incremental learning because it has impact on both
the process of choosing hypotheses and on the ordering of the data used in the
training period. The first definition of bias was given by [82] as being any basis
for choosing one generalisation over another, other than the strict consistency
with the instances. Gordon and desJardins [40] expanded Mitchell’s definition to
include any factor (including consistency with the instances) that influences the
definition or selection of inductive hypotheses. Essentially there are two types of
bias: representational and procedural. The representational bias defines the
states in a search space. The representational bias also specifies:

¢ a language — disjunctive normal form (DNF},
¢ an implementation for the language, and

e a set of primitive terms that describe the allowable features, their types and
their values which thereby defines the set of possible states [40, 110].

The procedural bias determines the order in which the states present in the
space defined by the representational bias are traversed. A simple example of
a procedural bias is the preference for a simple or specific hypothesis [110].

There are two main attributes that are typically associated with a representa-
tional bias. The first attribute is strength. A strong representational bias
defines a small hypothesis space while a weak representational bias defines a
large hypothesis space [119]. The second attribute is correctness. A correct
bias defines a space that includes the target concept. A strong correct bias is usu-
ally desirable because it restricts the number of hypotheses from which a choice
has to be made and, therefore, the system can converge more quickly to the target
concept. The procedural bias determines the order in which the states present in
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the space defined by the representational bias are traversed. A simple example
of a procedural bias is the preference for a simple or specific hypothesis [40].

Both the procedural and representational biases can be evaluated empirically or
analytically by determining what effect they have, or are expected to have, on
the learning performance. Bias selection essentially involves the use of the results
generated by the evaluation process to determine what is the appropriate bias or
in some instances the appropriate sequence of biases, that should be used during
the learning process. Shifting bias refers to the special case where bias selection
occurs again after the learning process has already begun. In this case, the system
may simply choose the next bias in a bias sequence that was established before
the learning process started, or may use the results of the learning performed so
far to evaluate potential alternative biases. In both instances there is a need to
incorporate the knowledge that has already been learned to initialise and guide
the search through the space defined by the new bias [40].

To demonstrate the importance of choosing the appropriate representational bias,
congider the following example in which a set of features must be selected for
expressing hypotheses. Let us say that the target concept which we desire is
a description of blocks that are stable when placed on a table, and that the
stability of the blocks depends on the shape of the blocks (the system has been
told of this dependency). The blocks have three main attributes: size, colour
and shape. Two examples are given to the system: a small, blue cube that is a
positive instance and a small, red sphere that is a negative instance since it is
not stable (it rolls off the table). If the system chooses a bias that prefers size
and colour over shape in constructing concept definitions, the system may form
the following hypothesis: Small, blue blocks are positive and small red blocks are
negative. However, if the system were to choose a bias that prefers shape over size
and colour, the system might form the following hypothesis: Cubes are positive
and spheres are negative. The hypotheses generated by the system in the two
instances are consistent with the training examples described so far. Consider
the case in which a new example is given to the system that says that a small,
blue sphere has been observed. The first hypothesis developed will predict that
it will be stable while the second hypothesis will predict the contrary. Of the
two hypotheses, the second one is clearly the better predictor of the concept of
stability, thus proving that by choosing the right bias the predictive accuracy of
the learner can be improved. Choosing the right bias also has the benefits of
improved efficiency and readability.

Basically there are two types of bias evaluation methods: generate-and-test
(the methods are online and empirical) and theoretical studies (the
processing is done off-line and is analytical) [110]. The generate-and-test
methods are important in the knowledge-poor situations where it is necessary to
gather knowledge. The predictive theoretical analyses are important when they
do not make too many simplifying assumptions [110].
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2.2.2 Concept Drift

In many real-world domains, the context in which some concepts of interest de-
pend may change, resulting in more or less abrupt and radical changes in the
definition of the target concept [126, 123].

Consider the example of climate conditions in different parts of the globe. If
one examines the climate at the Equator, one can identify climate conditions
which are specific to the region. For example an average temperature of 28
degrees, high humidity and so on. Therefore it is possible to build a concept
about the climate at the Equator. However, as one examines the change in
climate conditions from the Equator as one travels to the North Pole, one can
observe that the conditions change. The average temperature drops, the humidity
changes and consequently the concept built based on the conditions encountered
at the Equator are no longer valid. The concept needs to be changed in order to
reflect the new conditions.

As another example, consider measuring devices or sensors which may alter their
characteristics over long periods of time, resulting in a perceived change of the
world and the necessity to modify prediction rules that rely on these measure-
ments. In such situations it is necessary for the system to be able to track and
adapt to these changes in the environment. The problem of tracking these envi-
ronment changes is known as concept drift.

The major problem in incremental learning is how to distinguish between a real
concept drift and a wvirtual concept drift which typically results from slight ir-
regularities of the data. If the learning method is designed to react quickly to
the first signs of concept drift, it may be misled into over-reacting to noise, er-
roneously interpreting it as concept drift. This leads to unstable behaviour and
low predictive accuracy in noisy environments [126].

On the other hand, an incremental learner that is designed primarily to be highly
robust against noise runs the risk of not recognising real changes in the target
concepts and may thus adjust to changing conditions very slowly, or only when
the concepts change radically. The ideal incremental learner needs to trade sta-
bility and robustness against noise with flexible and effective context tracking

capabilities, but unfortunately these two requirements seem to oppose each other
[126].

Real concept drift reflects changes in world knowledge, while virtual concept
drift occurs as a function of the representation and procedures used to generate
concepts (virtual concept drift indicates only temporary changes in the conditions
and the problem can be addressed by having an in-built reluctance to modify
known concepts).
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Incremental learning is usually defined in terms of how many contexts exist in
the world, how to discern them, what is their ordering, and what impact they
exercise on the concept drift. Sometimes, the drift consists of changed values of
some variables, but sometimes the relevance of individual variables or predicates
can dramatically change. Moreover, the transition is usually only gradual with
rather fuzzy boundaries between two different concept interpretations [125].

There are many different kinds of concept drift in the real world. Characteris-
tic atiribute values may change, the value domains of attributes may evolve over
time, attributes once important may become meaningless, new ones may emerge;
differences between successive concepls may be drastic or affect only some small
facet; some concepts change only gradually, creating phases of ambiguity and un-
certainty between periods of stability, other concepts may change overnight [124].

The notion of concept drift has received some attention in the literature on com-
putational learning theory in recent years. For instance, Helmbold and Long [125]
have explicitly investigated various conditions under which effective drift track-
ing is possible. They start from the observation that drift tracking is strictly
impossible if there are no restrictions on the type of concept changes allowed (as
an extreme example, consider a sequence of concepts that randomly alternates
between the constant function 1 and the constant function O after every exam-
ple). They then go on to study various restrictions on the severity (eztent) or the
frequency (rete} of concept changes.

In particular, Helmbold and Long [48] assumed a permanent (possibly with each
example) but very slight drift. Their main results were:

e 3 general algorithm that tolerates concept drift of extent up to
A < Cye/(dIn(1/e));

e a randomized version of this algorithm which is potentially more efficient
computationally but tolerates drift of lower extent (A < Cye?/d%In(1/¢)));

e upper bounds on the tolerable amount of drift for two particular concept
classes (halfspaces and axis-aligned rectangles), which essentially say that
no algorithm can track concept drift greater than Cse?/n (where n is the
dimension of the example space), if the prediction error is to stay below e.

Here, the C;'s are positive constants, € is the maximum allowed probability of
misclassifying the next incoming example, and d is the Vapnik-Chervonenkis
dimension of the target class. The extent of concept drift € is measured in terms
of the relative error of two successive concepts (i.e. the probability that they will
disagree on a randomly drawn example).

The problem of tracking the concept drift is primarily caused by not knowing
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what to forget and when to forget. Forgetting was implemented in the original
FLORA system [125, 124, 122, 127, 65| in the form of a window of fixed size thus
delimiting the number of samples in “working memory”. However, the method
proved to be incapable of dealing with some types of concept drift. A heuristic
routine that controlled the size of the window was introduced in the later versions
of the FLORA system to increase the system’s ability to better track concept drift.

An alternative to a time window as a means of controlling forgetting is ageing
of knowledge. This method was used in the FAVORIT system [66], where each
exemplar is assigned a weight which slowly decays with time. If the same exemplar
reappears, the weight is incremented. Exemplars whose weight drops below some
threshold are forgotten.

2.2.3 Context

The context also plays a major part in incremental learning and in detecting real
concept drifts.

Context is essential because it determines which attributes to use for a given
problem out of many available, and consequently, as the context of a problem
changes, there is a corresponding change in the set of attributes which are con-
sidered relevant [26, 118, 28).

To understand the role of context, one only has to consider the reasoning used by
doctors when diagnosing a patient. Doctors seldom use all the information that
is necessary to specify a diagnosis of a flu or yellow fever. Rather, they are able
to exploit the information obtained from a small number of basic attributes and
then supplement them with contextual information — yellow fever is uncommon
in the Ottawa region so it can probably be ezcluded as a possible cause.

For another example, consider the case in which a system has to learn to detect
oil spills on the sea surface by scanning satellite radar images. In this task, the
only reasonable approach to assess the learner is to train on one set of images,
and test on a different set of images. The learning task involves a large number of
attributes which are used to describe the objects in the images in terms of their
characteristics produced by a set of vision modules. These vision characteristics
describe the average brightness of the pixels in the object, the jaggedness of
the object’s contour, the sharpness of its edges, etc. Early experimentation has
shown that these vision attributes are not sufficient to classify objects into spills
and non-spills with adequate accuracy. The domain experts pointed out that
other data such as meteorological conditions, the angle of the radar beam that
produces the image and even the proximity of the object to land can improve
predictive accuracy. This is a typical example where the context information has
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to be taken into account. Context is important in the learning process and that
in many cases the learning task may not be satisfactorily resolved if the context
is ignored [77)].

Matwin and Kubat [77] defined three classes of concepts in terms of the concept’s
dependency on the context.

e The absolute concept class. The concepts belonging to this class do not
depend on any context and are unambiguosly defined, such as: even number,
abelian group or quadratic equation.

o The relative concept class. The concepts belonging to this class do not
possess any property that is present under all circumstances. The meaning
can be totally different in different contexts. Poverty, beauty, and high
speed seem to represent relative concepts.

o The partially relative concept class. The concepts belonging to this class
are characterized by a set of some context-sensitive properties that vary in
different contexts. For instance, a swimming suit will always consist of the
same bagic components, but its color, shape, size and material will follow
the dictates of fashion.

The learning process can become considerably harder if the concepts of inter-
est depend on some hidden conterf. Mild weather means something different
in Siberia and in Central Africa; Beatles fans had a different idea of fashion-
able hair-cut than the Depeche-Mode generation. Or consider weather prediction
rules which may vary radically depending on the season. Changes in the hidden
context can induce more or less radical changes in the target concepts. Effective
learning in environments with hidden contexts and concept drift requires that the
learning algorithm be able to:

1. detect context changes without being explicitly informed about them,

2. quickly recover from a context change and adjust hypotheses to a new
context, and

3. make use of previous experience in situations where old contexts and
corresponding concepts reappear.

The most common approach used to deal with the problem of hidden contexts has
been suggested by Widmer and Kubat (and also implemented in their FLORA
family of algorithms). The method uses a window which moves over recent past
instances and uses the learned concepts for prediction only in the immediate
future.
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The rationale for windowing approaches is that the window is likely to contain
mainly instances from the most recent context, and thus will allow the most
current concept to be correctly learned. The assumption made is that instances
of a context are contiguous in time and hence the intervals of time can be used
to delineate contexts. As the context is known to vary in time, the learner trusts
only the latest examples — their set is referred to as the window [43]. Newly
arrived examples are added to the window and the oldest ones tend to be deleted.
Both of these actions (addition and deletion) trigger modifications to the current
concept hypothesis to keep it consistent with the examples in the window. In the
simplest case, the window is of fixed size, and the oldest example will be dropped
whenever a new one comes in (this is also known as time based forgetting). The
system also maintains a store of concept descriptions or hypotheses pertaining to
previously encountered contexts. When the learner suspects a context change,
it will examine the potential of previously stored descriptions to see if there is a

match for the current situation, or it will start developing an entirely new one
[124].

Another approach is used by Widmer (implemented in the Metal.(B) system)
[122]. The approach is based on the assumption that data may in fact contain
explicit clues that would allow one to identify the current context, if one knew
what these clues are. Technically, such clues would be attributes or combinations
of attributes whose values are characteristic of the current context; more or less
systematic changes in their values might then indicate a context change. As a
simple example, consider the license plates attached to vehicles in a particular
country. An agent crossing the border between, say, Austria and Germany might
notice that all of a sudden the license plates look different, in a systematic way,
and that might lead it to suspect that it is now in a different environment where
some of the rules it has learned before may not be valid any more. Other example
of contextual clues include climate or season in weather prediction and speaker
nationality in speech processing.

2.2.4 Forgetting

Forgetting is another important aspect of incremental learning [66, 116, 22]. Due
to the very nature of the learning, some of the data aquired previously becomes
outdated or irrelevant and therefore it can be forgotten {discarded). The several
advantages that forgetting offers include [66]:

o It helps to restructure aquired knowledge.
o It helps to prune the noise and irrelevant knowledge.

e It helps to reduce the amount of memory necessary for processing.
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o It helps shorten the retrieval time.

2.2.5 Memory Size

There are three major models of system used in incremental learning systems.

Full Memory — In this model the system remembers all the training examples.
It 1s the most popular model since, in general, it has the highest probability of
generating an accurate hypothesis. The problem is that the system needs large
amounts of space and memory to remember and process the training data. In
some cases the system needs special routines to reduce the time necessary to
search the stored information. There is also the question of whether it is really
necessary to remember everything. In a constantly changing world, events and
facts recorded in the past can simply become irrelevant and hence should be
forgotten.

Partial Memory — In this model, as the name suggests, the system remembers
only a part of the training examples. The most common approach used in partial
memory systems is to build their concept definition from a window that moves
over the stream of examples. The rationale for the window approach is that
the window is likely to contain mainly instances from the most recent context,
and thus will allow the most current concept to be correctly learnt. The main
assumption made is that instances of a context are contiguous in time and hence,
intervals can be used to delineate contexts. In the simplest case the size of the
window is fixed and the oldest example is dropped from the window whenever a
new example comes in. This method is also known as fime-based forgetting. In
more complex approaches the window can have a variable size which is controlled
by special heuristic procedures/statistical methods. The major problem is what
to forget. It is very easy to dismiss a fact as useless simply because it did not seem
to be of any use for a given period of time. However, this fact may possibly be
part of a bigger picture and by dismissing it as irrelevant we may lose important
information.

Selective Memory + Summary Statistics — This model is probably the closest
to emulating the way humans remember data. The system remembers important
training instances and keeps statistics of the data thought to be less important.

2.2.6 Incremental Learning Systems

Several incremental learning systems have been developed to deal with the issues
presented above. Below we describe some the best known systems.
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GEM — GEM (Generalization of Examples by Machine} is an extended ver-
sion of the AQ) covering algorithm that allowed incremental formation of concept
descriptions. The system was full memory, which meant that while the system
allowed concept descriptions to be modified to accommodate new facts, none of
the facts seen were ever forgotten which in turn required increasing amounts of
memory over time [97].

COBWEB — Conceptual clustering, introduced by Michalski [81, 18, 80] is used
in COBWEB. The system is full memory — no forgetting is possible (just as is
the case with GEM). Unlike the GEM algorithm, COBWEB uses a probabilistic
measure of the features in the instances to build its concept hierarchy. Another
characteristic of COBWERB is that all the nodes in the conceptual hierarchy share
the same features and therefore the system is able to perform better in cases of
missing data [97]. The original algorithm has the limitation that it is restricted
to only symbolic data, but this limitation has been addressed in the COBWEDB
variant CLASSIT, which is able to handle symbolic and real valued attributes
[37].

UNIMEM — uses an incremental concept clustering algorithm that allows forget-
ting. The system organises the concepts in a hierarchy that permits multiple tests
to be performed on new instances at each node and which simulates forgetting
through the use of feature indexing. Each time a feature is matched, its index is
incremented (the feature value is strengthened) while each time a feature is not
matched, its index is decremented. If a feature’s index reaches a low threshold
(set by the user) then it is removed from the tree, and is effectively forgotten [37].

FLORA — [125, 124, 122, 65| assumes an incremental concept learning scenario,
where a stream of training examples (positive and negative of a target concept)
is input. Examples are processed one by one and the system updates its concept
hypotheses after each instance. The representational language is propositional:
examples are described by attribute-value pairs, and generalizations/hypotheses
are sets or disjunctions of conjunctive expressions. The system is specifically
targeted at learning problems exhibiting concept drift. The main components of
the FLORA3 method are [126, 127]:

e concept representation in the form of three description sets,

o 3 forgetting operator and a time window over the incoming examples to
control forgetting,

a heuristic algorithm that automatically and dynamically adjusts the size
of this window during learning, and

a method to store concepts and re-use them in new contexts.
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The concept hypothesis is represented by three description sets called ADES,
PDES and NDES. ADES contains generalisations that are consistent with the
examples, NDES contains generalizations that consistently describe negative in-
stances while PDES contains generalizations that were once useful and might
become relevant again. The description items in ADES and PDES are gener-
ated by incremental generalization in response to positive and negative instances.
When new instances are added to or deleted from the current window, some items
will be moved from one set to another. In particular, the set PDES of ‘potential
hypotheses’ contains items that were once in ADES or NDES, but are contra-
dicted by some examples. They are kept in PDES in the hope that they may
become relevant again when old instances are dropped from the window. PDES
acts as a reservoir of potentially useful hypotheses. More precisely, modifications
to the window can affect the contents of the description sets in the following ways:

¢ Adding a positive example to the window may cause a new description item
to be included in ADES, or some existing items to be either ‘confirmed’ or

generalized to accommodate the new instance, and/or existing items to be
transferred from NDES to PDES.

¢ Adding a negative example to the window may cause a new description
item to be included in NDES, or some existing items to be ‘reinforced’ or
generalized, or existing items to be transferred from ADES to PDES.

¢ Forgetting an example (dropping it from the window) can cause a new
description item to be weakened (the corresponding counters are decre-
mented), or even deleted from the current description set (if the counter
drops to zero), or moved from PDES to ADES (if the example was the only
negative instance covered) or to NDES (if the example was the only positive
one).

STAGGER — The main idea behind STAGGER’s learning method is a dis-
tributed concept representation composed of a set of dually weighted, symbolic
characterizations. As each new instance is processed, a cumulative expectation of
its identity is formed by using the pair of weights and generation of new Boolean
characterizations. This latter process constructs more general, more specific, and
inverted versions of existing concept description elements. These characteriza-
tions compete for inclusion in the concept description with the elements that
were combined to form them [104, 105].

Concepts are represented in STAGGER as a set of dually weighted, symbolic
characterizations. Each element of the concept description is a Boolean function
of attribute-value pairs represented by a disjunct of conjuncts. An example ele-
ment matching either small blue figures or square ones would be represented as
(size small and color blue) or shape square. These characterizations are dually
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weighted in order to capture positive and negative implication. One weight repre-
sents the sufficiency of a characterization for prediction and the other represents
its necessity [105].

STAGGER uses logical sufficiency (LS), or positive likelihood ratio, as measure of
sufficiency. Similarly, logical necessity (LIN), or negative likelihood ratio, serves
to measure necessity. The dual weights associated with each characterization
are used together with estimated prior odds to calculate the odds that a given
instance is positive. Expectation is the product of the prior odds of a positive
instance and the LS values of all matched characterizations and the LN values
of all unmatched ones. The resulting number represents the odds in favour of a
positive instance [105].

In addition to representing concepts in a distributed manner and using Bayesian
measures to compute an expectation value, STAGGER. incrementally modifies
both the weights associated with individual characterizations and the structure
of the characterizations themselves. These two latter abilities allow STAGGER
to adapt its concept description to better reflect the concept [105].

STAGGER’s incremental learning method tolerates systematic noise and concept
drift. It begins with simple characterizations and can learn complex character-
izations by conducting a middle-out beam search through the space of possible
conjuctive, disjunctive, and negated characterizations [105].

AQ15 — This system uses full memory of past examples [13]. Each time a new
example arrives, the system considers all the previously seen examples before it
modifies the current hypothesis. AQ15 is based on the star methodology that
includes numerous generalization, specialization, and reformulation rules. These
rules are used to enable the system to perform a chain of inferences, in order to
derive new descriptors for inclusion in concept descriptions. The generalization
rules transform a description into a more general description, one that tautolog-
ically implies the initial description, whereas specialization rules make the oppo-
site transformation: given a description, they generate logical consequences from
it. Reformulation rules transform a description into another logically equivalent
description [17].

AQ15 essentially attempts to find the most general rule in the rule space that dis-
criminates the training instances of one class from training instances in all other
classes. It has a generality parameter that allows it to develop descriptions rang-
ing from maximally general to maximally specific. It is also capable of learning
concepts incrementally from data that is either erroneous or inconsistent [17].

YAILS — This system is based on a search algorithm which involves two major
steps. Given a new example to learn, the first step consists of modifying the
current concept in order to adapt it to the new example. If it does not succeed,
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it starts the second step which tries to invent a new rule that covers the example.
Essentially, the learning can be regarded as a search over the space of all pos-
sible conjunctions within the language of the problem. The search is guided by
an evaluation function and it employs two types of search transformations: spe-
cialization and generalization. Consequently, the system has two specialization
(and generalization) operators. The first is adding (removing) one condition to a
rule. The second is the restriction (enlargement) of a numerical interval within
the rule. The purpose of the evaluation function is to assess the quality of some
tentative rule. YAILS uses an evaluation function which relates two properties of
a conjunction of conditions: consistency and completeness [115].

YAILS is able to deal with two types of unknown information. The first arises
when the value of some attribute is unknown and the second when the value is
irrelevant. While the first case is interpreted as a kind of noise, the second one is
treated as a don’t care situation [115].

Systems such as AQ} use a covering strategy during learning. This means that the
system attempts to cover all known examples and that whenever some example
has been covered it is removed. The system would consider a rule useless if it
covered examples that are already covered by other rules and as a result it removes
the rule. YAILS uses a different approach. Whenever the current theory does
not cover a new example, new rules are created. The goal of this procedure is to
find a “good” rule that covers the example. However, the introduced rule may
cover examples already covered by other examples. The only criterion used to
consider a rule is its quality. Therefore, the system usually generates more rules
than other systems. The advantage of the greater number of rules is that some
of the redundant rules may become useful. This means that by not discarding a
redundant rule the system can save learning time. In addition the redundant rules
may help deal with some of the uncertainty that arises during the classification.
Consider the case in which a rule cannot be used to classify an example because it
tests attributes whose values are unknown in the example. If redundant rules are
admitted, it is possible that one such rule can be found to classify the example.
YAILS uses a simple mechanism to control redundancy. The goal is to obtain
the advantages of redundancy (better efficiency and higher accuracy) while at the
same time minimising the number of rules used in classification. This mechanism
consists of splitting the learned rules in two sets: the foreground rules and the
background rules. This split is guided by a user-definable parameter (minimal
utility) which acts as a way of controlling redundancy. The utility of one rule
is calculated as the ratio of the number of examples uniquely covered by the
rule, divided by the total number of examples covered by the rule. The higher
the minimal utility threshold, the less redundant is the theory in the foreground.
The redundancy present in the foreground set of rules is called static redundancy.
YAILS uses only the foreground set of rules during the classification. Only when
it is not able to classify an example does it try to find a rule in the background
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set. If such a rule is found, the system transfers it from the background set to
the foreground set so that in the end the foreground set contains the rules used
during the classification of the examples. This latter type of redundancy is called
dynamic redundancy. The advantage of this strategy is the minimisation of the
introduction of the redundant rules [115].

AQUA — This is a story understanding program that learns about terrorism by
reading newspaper stories about unusual terrorist incidents. The system uses
case-based reasoning to understand and learn from novel situations. This is done
according to the following process:

o Use the problem description to get reminded of an old case.

Retrieve the results (lessons, explanations, plans) of processing the old case
and give them to the understander, planner or problem-solver.

Adapt the results from the old case to the specifics of the new situation.

Apply the adapted results to the new situation.

The intent behind case-based reasoning is to avoid the effort involved in re-
deriving these lessons, explanations or plans by simply reusing the results from
previous cases. However, this process assumes that past cases are well under-
stood and provide good lessons to be used for future situations, since it is these
very cases that determine the performance of the system in new situations. This
assumption is usually false when one is learning about a novel domain since cases
encountered previously in the domain might not have been understood com-
pletely. Instead, it is reasonable to assume that the reasoner would have gaps
in the knowledge represented by these cases. Even if past cases are not well un-
derstood, they can still be used to guide processing in new situations. However,
in addition to using the past case to understand the new situation, a reasoner
can also learn more about the old case itself, and thus improve its understand-
ing of the domain. The learning process is therefore incremental, since the gaps
are filled through experience. AQUA learns exactly the same way. The system
retrieves past explanations from situations already in memory, and uses them
to build explanations to understand novel situations encountered in newspaper
stories about terrorism. Therefore, it fills the gaps in the retrieved explanation
that is being used as a precedent in understanding the new situation. What is
done with the newly learned information depends on the kind of knowledge gap
the system is trying to fill. The new piece of knowledge could {95, 94, 27, 22]:

e result in a new explanation in memory,

e it could be used to fill in a gap in an existing explanation,
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¢ it could be used to elaborate an existing explanation, if that explanation
was not detailed enough to deal with the new situation, or

e it could be used to reorganize or re-index knowledge in the memory.

In doing so, the system refines its understanding of the domain by filling gaps in
these explanations, by elaborating explanations, by learning new indices for the
explanations, or by specializing abstract explanations to form new explanations
for specific situations. The system learns incrementally since it improves its
explanatory knowledge of the domain in an incremental fashion rather than by
learning complete new explanations from scratch [95, 94].

PREDICTOR — This system uses a method that consists of a bias tester and
an adjuster to address the issue of bias. The approach used to perform the bias
testing uses formal definitions of assumptions about the bias which are used as
a guide in the analysis of why the bias is inappropriate for learning the target
concept. The bias tester is active since it tests the bias using queries to an
oracle. The bias adjuster then records the analysis results and adjusts the bias
accordingly. The main advantage of this approach is that it enables the system
to minimally weaken the bias while correcting it [39].

2.3 Summary

In this chapter we have described previous work done in the area of machine
learning that is of great relevance to one of the problems addressed in this thesis,
specifically incremental machine learning. There are three other areas of research
that are relevant to this the work presented in this thesis: systems that combine
natural language processing and image analysis, object tracking and camera mo-
tion parameter estimation. The research done in these area is covered in chapters
4 and 8 where we describe two applications that use the incremental learning
algorithm described in the next chapter.

We have covered, in this chapter, the known incremental learning algorithms and
described in detail the important issues that need to be considered when devel-
oping an incremental learning algorithm. The incremental learning algorithms
have been designed to address one {memory size — UNIMEM, bias — PRE-
DICTOR) and in some cases two (concept drift and context — FLORA) of the
important issues in incremental learning. The problems we attempted to address
in this thesis required an incremental learning algorithm to address the issues of
memory size, forgetting and concept drift but at present there is no algorithm
available that can address all three issues. In the following chapter we describe a
new incremental learning algorithm -— ILF — that address the issues of memory
size, forgetting and concept drift.



3. ILF - Incremental Learning with Forgetting 22

Chapter 3

ILF - Incremental Learning with
Forgetting

3.1 Introduction

A goal of this thesis is to develop an incremental algorithm that can be used to
learn the pattern of movement of multiple labelled objects in a dynamic scene.
The application domains are assumed to be data intensive with many attributes
and attribute values. There are three issues which we consider to be most relevant
to our work, specifically memory size (data related), data pruning (data related)
and concept drift (dynamic environment related).

The algorithm developed (called ILF: incremental learning with forgetting) has
three main aims:

e To generate concept hierarchies — To generate concept hierarchies which
are compact and do not store instances;

o To forget — To use an advanced evidence based forgetting, and

o To track concept drift — To generate concepts which use generalizations of
the instances observed rather than storing the instances allowing a more
accurate tracking of concept drift.

The first two issues deal with the way in which the data observed is stored and
processed. The third issue deals with the way in which the concepts can change
over time. In our work we have considered concept drift to be the way a concept
evolves as new data is observed and integrated into the concept.
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A concept is a collection of attributes or features and their associated values and
in [2] it was pointed out that in fact if the data stored in the concept changes then
it is simply attribute drift. While it is true that in fact it is the attribute data
that changes, we believe that once the concept has undergone a certain amount of
change that concept itself changes — essentially a different concept has evolved
from the original concept — hence the concept drifts.

To demonstrate the advantages of ILF over UNIMEM and COBWEB we will
describe each of the algorithms in detail and then we will analyse their differences.

The layout of this chapter is as follows: Section 1 presents the incremental learn-
ing systems UNIMEM and COBWEB. In Section 2, we present the incremental
learning with forgetting algorithm — ILF. We compare ILF with UNIMEM and
COBWERB in Section 3, whilst in Section 4 we discuss the differences between
ILF, UNIMEM and COBWEB.

3.2 UNIMEM and COBWEB

3.2.1 UNIMEM

UNIMEM is an incremental conceptual clustering system which was designed
to handle complex tasks such as natural language understanding and inference.
The instances are represented in UNIMEM as conjunctions of features that can
be numeric and symbolic.

UNIMEM organises its knowledge into a concept hierarchy through which it sorts
new instances. The nodes high in the concept hierarchy represent more general
concepts while their children represent more specific variants of the concepts.
Each concept has an associated set of instances and they represent the leaf nodes
in the concept hierarchy. Each instance can be stored in several feature nodes
[37]. The nodes can specify the results of multiple tests which allow the system to
handle instances with missing attributes. Each feature on a link has an associated
integer score that specifies the number of links on which that feature occurs [37].

UNIMEM combines learning and classification as it sorts a new instance through
its concept hierarchy, modifying the hierarchy in the process. The full UNIMEM
algorithm is shown in Figures 3.1 and 3.2.

The algorithm has three functions: UNIMEM, GENERALIZE and EVALUATE.
The UNIMEM function controls the processing of the instances. The FVALU-
ATE function updates the predictability values of the attributes in the concepts,
while the GENERALIZE function adds, removes or updates the attributes in
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Input: The current node N of the concept hierarchy.
The name of an unclassified instance I.
The set of I’s unaccounted features F,
Results: The concept hierarchy that classifies the instanca.
Top-level call: Unimem{Top-node,I,F).
Variables: N and C are nodes in the hierarchy.
G, H and K are sets of features (attribute values).
J is an instance stored on a node.
5 is a list of nodes.

Let G be the met of features stored on N.
Let H be the features in F that match features in G,
Let K be the features that do not match features in G.

If N is not the root node,
Then If EVALUATE(N,H,K) returns TRUE or there are too few features in H,
Then return the empty list.
Let 8 be the empty list.
For each child C of node N,
If ¢ is indexed by a feature in K,
Then let S be Union(S,Unimem{C,I,K)).
If S is the empty list,
Then for each instance J of node N,
Let S be Union(5,GENERALIZE{(N,J,I,F)).
If 5 is the empty list,
Then store I as instance of node N with features K,
For each feature J in F serving as in index to N,
Increment the predictivness score R of J by 1.
If R is high enough,
Then remove J as an index leading to K.
Return N.

Figure 3.1: The UNIMEM algorithm — copied from [37].

concepts as required.

As UNIMEM checks the nodes in its hierarchy, it uses features on cach node to
match the instance. If the instance matches the description on the node closely
enough, then it sends the instance down those links that contain features in
the instance, and continues the process with the relevant children nodes until it
gets to a leaf node (or image node). Successful recognition occurs if the instance
matches a node in the tree. The number of features necessary for a match and the
threshold used to determine whether two values match, are system parameters.
Whether or not the instance successfully matches, UNIMEM uses an EVALUATE
procedure to update the node’s scores. Therefore each time a new training instance
is seen, all potential matches in the UNIMEM hierarchy will undergo a feature
value update (either increment or decrement — forgetting). Essentially each new
instance seen affects all concepts so the effect is not localised {37].

When UNIMEM reaches a node that matches the instance but none of whose
children match, it compares all the instances stored in that node with the new
instance. If an old instance stored in the node matches the new instance closely
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Variables: N and C are nodes in the hierarchy.
F,G,H and K are sets of features (attribute values).
I and J are the names of instances.
S and T are predictivness score of a node’s feature.

et ¢ ba the features in instance J.
Lot H be the features in F that match features in G.
If H contains enough features,
Then create a new child C of node N.
Index and describe C by the features in H.
For each feature K serving as index to C,
Increment the predictivness score R of K by 1.
If R is high enough,
Then remove K as an index.
Remove J as an instance of N.
Let G’ be the features in G that are not in H.
Let F’ be the features in F that are not in H.
Store J as an instance of C with features G'.
Store I as an instance of C with features F’.
Return C.

For each nonpermanent feature F in H,
Raise the predictability score 5 for F on N.
If 5 is high enough,
Then make F a permanent feature of N.
For each nonpermanent feature G in K,
Lower the predictability score T for G on N.
If T is low enough,
Then remove the features ¢ from N.
IfT N has too few features,
Then Temove N from its parent’s list of children.
Return TRUE.
Return FALSE.

Figure 3.2: The UNIMEM algorithm (continued) — copied from {37].

enough, then UNIMEM builds a new node based on the common features between
the two instances and stores the instances (the new instance plus the instance
matched in the node) with the newly created node. When this happens, the
system also updates the predictiveness value for each feature indexing the newly
built node. UNIMEM compares the new instance to each one of the instances
stored with the node, and as a result it can build multiple nodes. If the new
instance does not match any of the instances in the node, then the system stores
it with the current node [37].

UNIMEM is an incremental learning system that has the advantage that it does
not use full memory — it forgets irrelevant instances. However UNIMEM does
have a significant disadvantage as it requires the user to set the system parameters
to make clustering decisions [37].
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3.2.2 COBWEB

COBWESB is an incremental system for hierarchical conceptual clustering. The
system carries out a hill-climbing search through a space of hierarchical classifica-
tion schemes using operators that enable bidirectional travel through this space

32, 31, 96].

COBWERB represents input instances as a set of attribute-value pairs. Each
attribute can have only one value of symbolic type. The concepts built by COB-
WEB can be described in terms of their attributes, values and associated weights.
Each concept has a probability value associated with it. All nodes in the hierar-
chy from top to bottom share every attribute observed in the training instances.
Also associated with each attribute is every possible value for that attribute.
COBWEB’s concept hierarchy has more general nodes at the top and more spe-
cific nodes at the bottom. The leaf nodes represent the specific instances that it
has encountered. COBWEB never deletes instances and therefore it does not
forget any of the data seen [37, 108].

There are four components that make up the COBWEB system [33]. The first
component is a heuristic evaluation measure called category utility, which is used
to guide the search. The method was originally developed as a means of predicting
the basic level in human classification hierarchies. Research suggests that some
categories are more basic than others and are retrieved more rapidly and more
frequently.

COBWEB incrementally incorporates objects into a classification tree, where
each node is a probabilistic concept that represents a class. The incorporation of
an object is the process of classifying the object by descending the tree along an
appropriate path, updating counts along the way, and performing one of several
operators at each level. There are four operators:

Operator 1 — classifying the object with respect to an existing class. Perhaps
the most natural way of updating a set of classes is to simply place a new object
in an existing class. In order to determine which category best hosts a new
object, COBWEB tentatively places the object in each category. The partition
that results from adding the object to a given node is evaluated using a category
utility. The node that results in the best partition is identified as the best existing
host for the new object [33].

Operator 2 — creating a new class. In addition to placing objects in existing
classes, there is a way to create new classes. Specifically, the quality of the
partition resulting from placing the object in the best existing host is compared
to the partition resulting from creating a new singleton class containing the object.
Depending on which partition is best with respect to category utility, the object
is placed in the best existing class or a new class is created. This operator allows
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COBWEB to automatically adjust the number of classes in a partition [33].

Operator 3 — combining two classes into a single class. COBWEB uses this
operator (combined with the split operator) to deal with the effects of skewed
data. The operator merges two nodes in the hope that the relevant partition
is of a better quality. Merging the two nodes involves creating a new node and
summing the attribute-value counts of the nodes being merged. The two original
nodes are made children of the newly created node [33).

Operator 4 — dividing a class into several classes. As in the case of node
merging, splitting may also increase partition quality. In the split process, a node
of a partition (containing n nodes) may be deleted and its children promoted,
resulting in a partition of n 4+ m - 1 nodes, where the deleted node had m
children nodes [33].

The last component of COBWERB is the control function which is shown in Figure
3.3. For each new instance, COBWEDB uses the control function to compute four
probability scores {one score for each one of the operators described above). The
highest score determines if a new node is built, an existing node is modified or
an existing node is removed from the hierarchy.

FUNCTION COBWEB(Object, Root [of a classification tree])
1)Update counts of the Root
2)IF the root is a leaf
THEN Return the expanded leaf to accommodate Object
ELSE Find that child of Root that best hosts Object
and perform one of the following
a) Comsider creating a new class and do so if
appropriate
b) Consider node merging and de so if appropriate
and call COBWEB{Object, Merged Node)
¢) Consider node splitting and do sc if appropriate
and call COBWEB(Object, Root)
d) IF none of the above {(a, b or ¢} were performed
THEN call COBWEB(Object, Best child of Root)

Figure 3.3: The COBWEB control function.

The advantage offered by COBWEB is that it uses a well defined evaluation
function to guide it through the classification (unlike UNIMEM which has a user
defined parameter) and the incremental learning process. However COBWEB
has the disadvantage that it does not delete any of the instances seen and that
it assumes that each instance consists of a single object (thus it avoids issues of
finding mappings between analogous components) [33].
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3.3 Incremental Learning with Forgetting (ILF)

ILF is designed to deal with complex (data intensive) spatio-temporal patterns
and all the data is assumed to be symbolic (it is possible to have numeric data
as long as some form of indexing for the numeric data is provided). Hence our
algorithm was developed for data with a high number of symbolic attributes.
Anocther major assumption we make is that each concept has several distinct
variants and that it can drift over time.

Since the data has a high number of attributes and the concept undergoes changes
over time, an important part in our algorithm is forgetting. The problem with
UNIMEM is that it has no concept of different types of memory; i.e. there should
be a method by which a common concept is treated differently from a concept
that occurs infrequently.

I.L.F uses a representation similar to COBWLEDB’s, where all concepts consist of
the same number of features (which is equal to the number of features observed
in the instances). This is because this type of representation allows an easier
handling of missing data.

Finally, unlike UNIMEM or COBWEB, our algorithm does not store training
instances and always generalises.

3.3.1 Data Structure

The concepts developed by our algorithm are stored in a hierarchy in which all
nodes share all the features observed in the training instances. For example if the
instance observed has six features, then all nodes in the hierarchy will have six
features. The nodes in our structure do not store the individual instances as is the
case with UNIMEM or COBWERB. Instead any feature’s range of values is defined
with the help of a set which covers all the values encountered in the training
instances which were used in the generalisation process. There are several reasons
for choosing this type of representation. The first reason is that if a learner retains
some of the early instances, the concept tends to become fragmented when dealing
with several distinct variants and so the system is no longer able to recognise
the actual concept or track its drift {(one of the problems with UNIMEM). The
second reason is that by using all cbserved features to build the concepts, the
system is able to handle cases of missing or noisy data. The third reason is that
it substantially reduces the size of the concept and as a result the amount of
memory required to store the hierarchy is reduced.

The system sorts the instances in a similar manner to UNIMEM. Each new in-
stance is compared with the current node in the hierarchy to determine if there is
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enough evidence to justify the update of the current node. Each node produces
an evidence score which determines whether the instance does or does not match
the current node. The score is computed as a function of age. In our concept
representation, each feature has a set of values associated with it and each one of
the values in the set has an age associated with it. An example of a concept with
two features (first feature has two values, the second feature has only one value)
is shown below:

Concept(Age) = {
Feature 1
Feature 2

}

{(Valuel,Age), (Value2,Age)}
{(Value3,Age)}

Consider the case in which the system contains the concept shown above and is
attempting to match it against the instance given below:

Instance = {
Feature 1
Feature 2

}

H

{(Valuel,Age)}
{(Value4,Age)}

]

Let us assume that there is enough evidence to update the concept. In this case
the feature values and their associated age values can be updated in three ways
depending on whether the feature values match the corresponding values in the
new instance. If the value of a feature is matched by its corresponding value in
the instance, then its age is decremented. For example the first value of Feature
1 {Valuel) in the concept matches the instance. Hence its age is incremented.
If the value of the feature is not matched by the value in the instance but the
value has been observed before then its age is incremented. In the example, the
second value of Feature 1 does not match the value in the instance. However,
the value in the instance has been observed before since it is included in the
set of values for Feature 1. Hence the age of the second value for Feature 1 is
decremented. Finally if the value of the feature is not maiched by the value in the
instance and the value has not been observed before then the new value 15 added
to the feature value set. Also the other values in the set have their respective
age values decremented. In our example, the value of Feature 2 in the concept
does not match the value in the instance and has not been encountered before.
Therefore the new value in the instance is added to the feature value set (Feature
2 becomes {(Value3,Age), (Valued,Age)}), and the age of the previous value in
the set (Value3) is decremented.

If the system does not find enough evidence to modify the current node, then
the node is left unchanged and the next node in the hierarchy is considered. The
next node is also considered even if the node is modified.
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In this way multiple concepts/nodes can be updated (provided enough evidence
was found) by the same instance. While this procedure results in the system
updating nodes which should not be updated when one considers the overall set
of instances, results show that over time the unnecessary modifications are “aged
out” of the concepts. The main reason for choosing to update multiple nodes
is that it is a simple way of representing multiple matches between the concept
and the instance which is more appropriate than a single match and it allows for
ambiguity.

Finally, it is possible to merge two similar concepts into a single more general
concept. The way in which this is achieved is by tracking the similarity scores
computed by the system when analysing new instances. If the scores computed
for concepts over a set number of instances is higher than a set threshold, then
the system checks to see whether there is enough evidence to combine the two
nodes into a single node (similar to the way in which COBWEB merges nodes).
If evidence is found to justify the merger, the system builds a new node which
combines the feature values along with their updated associated age, computes
a new age for the new concept and finally, removes the two concepts that have
been merged.

The algorithm for ILF is shown in Figures 3.4 and 3.5. The processing is con-
trolled by the ILF function. For each new instance a score is computed by
applying function Maich. If the function Maich indicates a match then ILF at-
tempts to update the current node. The system computes a Similarity_Score and
if the score is greater than or equal to the Similarity_Threshold (which is a system
parameter and is set at 75%) If the similarity conditions is satisfied the two nodes
in the hierarchy are merged by applying the Merge function.

3.3.2 Forgetting
Forgetting offers the following advantages:

e [t helps prune out old or irrelevant data.
o It helps restructure the acquired knowledge.
e It helps in reducing the memory size necessary for processing.
e It helps shorten the retrieval time.
In our algorithm we bave essentially taken the UNIMEM type of forgetting and

changed it in a way that is more similar to the human style of forgetting. Research
in cognitive psychology [114, 130, 41, 29, 121] suggests that human beings have
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Input: Hede N of the concept hierarchy.
Cl, C2, ..., Cm children necdes cof N.
Instance I.

High_Siml = Q; High Bim2 = 0; Node_Idi = -1; Node_Id2 = -1;

if N = Root then
fori=1toem
ILF(Ci,I).
endfor
alse
if Match(N,I) = True then
Update(N,1).
endif
endif
if High Siml > 0 && High_Sim2 > 0 then
Marge{Node_Idl, Node_Id2);
endif

Let A1,A2, ..., An be features of N and
B1.,B2, ..., Bn be features of I.

Match(N,I).

Similarity_Score = 0;

for i =1ten
if N(Value(A1)) = I{Value{Bi)) then
Similarity_Score++;
endif

endfor

if Similarity_Score » Similarity_Threshold then
if High_Siml = O then
High_Siml = Similarity_Score; Neode_Idl = N;
olse if High Sim2 = 0 then
High Sim2 = Similarity_Score; Node_Id2 = N;
else if High_Simi < Similarity_Score than
High_Simi = Similarity_Score; Node_Idl = N;
else if High_Sim2 < Similarity_Score then
High_Sim2 = Similarity_Score; Node_Id2 = N;
raturn Truse;
else
return False;
endif

Figure 3.4: The ILF algorithm.
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Let A1,A2, ..., An be featurea of N,
Bi,B2, ..., Bn be features of I,
NValue-1(A1), NMValue-2(A1), ..., NValue-p(Al) be the values of feature Al in N,
IV{(B1), IV(B2), ..., IV(B) be the values of featurass Bi, B2, ..., Bn and
Age(Value-1{(41)), Age{Value-2(A1}), ..., Age(Value-k{(41))} be the ages of values
1, 2, ..., k of feature Al.

Update(N,I).

for i =1 ton
for j=1¢toep
if IV(Bi) = NValue-j(Ai) then
Update_Age (Age(Value—j(Ai}),Trua);

else
Update_Age(Age(Value-j(Ai)) ,False);
endfor
endfor
Let Al1,A2, ..., An be features of Node_Idi,

B1,B2, ..., Bn be features of Node_Id2,
NiValua-1{41), NiValue-2(A1}, ..., N1Value-p(Al) be the values of feature Al in
Node_Idi,
N2Value-1{B1), N2Value-2(Bl), ..., NValue-s{(Bl) be the valuas of feature Bl in
Node_Idl,
Age(Value-1(A1)), Age(Value-2(A1)), ..., Age{Value-m(Al1)) be the ages of values
1, 2, ..., m of feature Al.

Merge (Node _Idl, Node_Id2).

Merge_Score = 0;

for i =1ton
for j =1tep
for k =1 to s
if NiValue-j{Ai) = N2Value-k(Bi) then
Merge_Score++;
endif
andfor
endfor
endfor

if Merge_Score > Threshold then
for i =1 ton
for =1 top
for k =1 to s
if NiValue-j(Ai) = N2Value-k(Bi) then
Update_Age (Age(Value-j(Ai)),True);
endif
endfor
endfor
endfor

Figure 3.5: The ILF algorithm continued. The Update_Age function is shown in
3.6.
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an immediate memory used to store information for only a couple of seconds,
a short term memory which is used to store information (in a ordered manner)
for time intervals ranging from minutes to hours and a long term memory which
is used to store information in an associative and highly structured manner for
very long periods of time (years). Information is passed (after some processing)
from the immediate memory to the short term memory and eventually to the
long term memory depending on the level of reinforcement or in some cases on
the nature of the information (emotion plays an important factor in the way in
which the same fact is dealt with — for example narrowly escaping a car crash
is generally remembered well without reinforcement).

We have implemented an ageing procedure which simulates short-term mem-
ory (set of facts just observed and which can be discarded if not reinforced),
medium-term memory (concepts already reinforced but not up to the level justi-
fying permanent storage and which can still be forgotten) and permanent memory
{concepts which have been reinforced so many times that it justifies permanent
storage and which cannot be forgotten).

The algorithm uses ageing at two levels: the data level and the concept level. The
data level refers to the data which is contained in the concept. Each attribute in
the model has one or more generalised symbolic descriptions and each description
has an age value associated with it. Similarly the concepts in the hierarchy have
an age value associated with each of them. The age value of the concept is
computed by calculating the average age of the attributes in the concept.

There are three stages at the data level: system-seen (equivalent to the human im-
mediate memory), system-learned (equivalent to the human short-term memory)
and ezpert-learned (equivalent to the human long-term memory). The difference
between the three stages is the way in which the age of the data is updated. Any
data that has reached the erpert-learned stage no longer ages and therefore it
cannot be forgotten. The difference between system-seen and system-learned is
the amount by which the age of the data increases or decreases.

The age of the data in a given concept is updated only when the condition, that
the system evaluates that there is enough evidence for the given concept to be
modified, is satisfied.

If the new instance is found to be similar to the model, then the age of each of
the attribute values (provided it is at the system-seen or system-learned stage)
is reassessed. If there is an attribute value in the concept which matches its
corresponding value in the new instance, then that attribute value is reinforced
and its age is decreased. If the attribute value in the concept does not match its
corresponding value in the instance, then the age of the value is increased. The
basic algorithm for updating the age of the feature values is shown in Figure 3.6:
There are six user set parameter values. The six values are:
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Vf - feature value F - feature

Data age levels - System_Seen, System_Learned, Expert_Learned

Match{x,y) - compare values x and y and returns TRUE if x matches (has the same
symbolic value as) y

Age_Level(F.,x) - returns the age level of value x for feature F

Age_Update(F.x,y)} - updates the value x of feature F by amount y

IncreVall - Increment wvalue at tha System_Seen level

IncreVal2 - Increment valus at the System_Learned level

DecreVal - Dacrement value at the System_Seen/System_Learned level

if (Match = True)

if {Age_Level(F,Vf) = System_Seen)
Age_Update(F,Vf,IncreVall);

if (Age_Laval(F,Vf) = System_Learned)
Age_Update(F,Vf,Increval2);

it (Age_Level(F,Vf) = Expert_Learned)

if (Match = False)

if ({Age_Level{F,Vf) = System Seen) || (Age_Level(F,Vf) = System_Learned))
Age_Update(F,Vf,DecreVal);

if {(Age_Level(F,Vf) = Expert_Lsarned)

Figure 3.6: Ageing algorithm used by ILF.

e Forget/Prune Threshold.

o System_Seen — System_Learned Age Threshold (SST).

o System_Learned — Expert_Learned Age Threshold (SLT).

o Feature/Attribute Initial Age (FAIA).

o Age Increment Rate at the System_Seen Level — IncreVall.

e Age Increment Rate ot the System_Learned Level — Incre Val2.

o Age Decrement Rate at the System_Seen Lewvel/System.Learned Level —
DecreVal.

To demonstrate how the ageing algorithm works consider the following case in
which the seven values are set as follows: Forget Threshold (-200), SST (-100),
SLT (0), FAIA (-190), IncreVall (+2.5), IncreVal2 (+5) and DecreVal (-2.5).
These are the values that were used in the N.F.L. application (described in the
next three chapters).

Data seen by the system for the first time is given the age of -190. Every time
that data is seen again, the age is decreased by 2.5. Similarly if the data is not
seen the age is increased by 2.5. Once the data seen reaches the age of -100,
it reaches the stage of system-learned and we increment/decrement the age by
different amounts (+5 and -2.5). If the data reaches the value of 0, it reaches the
stage of experi-learned and cannot be forgotten. If the age value falls below -100,
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it gets to the stage of system-seen. Finally, if the age falls below -200 the data is
no longer considered relevant and it is discarded.

The concept age is computed using the age of the data contained in the concept
(average of the features). When the age of a concept reaches the value of -200,
the concept is removed from the hierarchy.

Notice that while there is a difference in the increment applied at the System-Seen
and System-Learned stages (4+5 vs +2.5), there is no difference in the amount
of decrement applied (-2.5 vs -2.5}. This is to indicate that once a bit of data
has reached the System-Learned stage, then there is more evidence to strengthen
(increment) its age value then there is evidence to weaken (decrement) it.

Using expert set parameters offers advantages but also has some disadvantages.
The advantage is that ILF benefits from the user expertise since it is given a
good basis for learning — none of the parameters need to be determined by the
system.

The disadvantage is that the system will not work on new domains without the
user setting the parameter values — user input is required. This may be consid-
ered a significant disadvantage from the point of view of applications in previously
unseen domains since ILF lacks a mechanism to determine the parameter values
by itself. The reason for not developing such a mechanism is that we believe that
generally all learning is at some stage supervised. Consider the case of human
beings. In general humans rarely learn without supervision — even learning ba-
sic skills such as to walk requires a teacher and a significant amount of time and
practice. Humans are generally given clues as to what they need to do.

In the following section we show the differences between ILF, UNIMEM and
COBWEB for a particular example. This will highlight the differences in the
concept hierarchy, forgetting and concept drift.

3.4 ILF vs UNIMEM and COBWEB

3.4.1 Example

The data set for this example consists of five instances (with eight features)
of which three belong to class (or concept) A and two belong to class B. For
this example as well as all examples in the following chapters, we will use the
parameter values described in the previous section. The values are shown below:
Forget Threshold (-200), SST (-100), SLT (0), FAIA (-190), IncreVall (+2.5),
IncreVal2 (+5) and DecreVal (-2.5).
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At the start of the processing, the same threshold was set for a match between
a concept and an instance for both our system and UNIMEM. The threshold
value was 75% of the features (six out of eight features). In addition, to remove a
feature from the UNIMEM concept, the weight of the feature value would have to
be decremented four times. In the case of ILF similarly if a feature is decremented
four times then it is removed.

INDEX || CLASS || A1 || A2 | A3 || A4 || A5 | A6 || AT || A8
1 A 1 1 1 1 1 1 1 1
2 B 4 4 1 3 2 4 3 3
3 A 1 2 1 1 1 2 1 1
4 A 1 2 2 1 1 1 1 1
3 B 4 1 1 3 2 4 3 3

Table 3.1: The five instances along with the class to which they belong.

Comparing the attributes of the two classes (see Table 3.1), it is apparent that
the attributes of class A are generally 1’s and 2’s, while of those of class B contain
3’s and 4’s. Note that no two examples have exactly the same attribute values
although many do match. Also note the discrete (symbolic} makeup of the data.

When the first instance is seen by UNIMEM it builds a node for it with an
associated instance. COBWEB builds only a single class node that contains the
first instance and sets the probability of the class to 1.0. Our algorithm (ILF)
also builds a single node for the first instance. The hierarchies for the algorithms
after the first instance is processed are shown in Figures 3.7a, 3.7b and 3.8a. ILF
sets the initial age for the observed feature values to -190.

The second instance is distinctly different from the first one (less than 75% of
attributes match) so UNIMEM wupdates the values of the features in the existing
node in the hierarchy and builds a new node for the new instance. COBWEB
uses the category utility described previously to determine if a new class node
should be built for the second instance or if an existing class can be merged with
the instance. Creating a new class node is determined to be the best option, so
COBWERB generates a new class node. Both class nodes have the same probability
of occurrence: 0.5.

Our system simply builds a new node for the new instance. The hierarchies after
the second instance has been analysed are shown in Figures 3.9a, 3.9b and 3.8b.
In all cases the second class uses a new leaf each.

UNIMEM analyses the third instance and determines that it matches the node
built for the first instance (more than 75% of the attributes match). Therefore
it builds a new more general node that consists of the six features common to
the node and the new instance. It also stores both instances as its children. The
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Al A2 A3 A4 A5 AG AT A8
(a) «—————  Concept Node
Feature Value 111111 1
v T
Value Age
Feature Al 1 -190
Feature A2 t -190
Feature A3 1 -190
Feature A4 1 -1%0
Feature A5 1 -190
Feature Af 1 -190
Feature A7 1 -150
Feature A& 1 -1%0

Figure 3.7: Part (a) shows the UNIMEM structure while part (b) shows the
structure built by our algorithm.

Rl
Node No. 1 Clasa: C1
P(C1)=1.10
Aftributes: 1 23456 7 8
Values: 11111111
(a)

Node No. 1 Class: Cl1 Mode No. 2 Class; C2
P(C1) =0.5 P(C2) = 0.5
Attributes: 1 2 34 56 7 8 Aftributes: 1 2 34 56 7 8

Values: I } 111111 Values:4 41324373
(b)

Figure 3.8: Part (a) shows the COBWEB hierarchy after 1 instance while part
(b) shows the COBWEB structure after 2 instances.
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(a)

AT ALAD AL AT AS AT AR
Fv 4 4 | 33 4 313

ALATAI A4 AS AGATAS
F¥ L1 111 1 11

CONCEPT A CONCEFT B
((Root )
Value Age Value Aga
Feature Al 1 -l Feane Al 4 -190
Festore 42 1 180 Feanse A2 4 190
Feature 43 1 R Feature A3 1 190
Feature A4 1 -1se Feawns Ad » 100
Feature AS 1 190 Fenmrs A5 2 -150
Feature AS 1 -0 Featuce A6 4 190
Feature A7 1 0 Feature AT k! -1%0
Feature AR 1 -1 Feature AB 3 190
CONCEPT & CONCEPTB

Figure 3.9: Part (a) shows the UNIMEM structure after instance number 2 was
processed while part (b) shows the structure built by ILF after instance 2 was

analysed.

Concept Noue
@ ATX ATAd SN ATAT AT AZ A3 A4 AS A6 AT AB
R l|| ‘w441314331mm“
- -
Instances associaled with the concent node
Value Age Value Age
Feature Al 1 -181.5 Decrease Featura Al 4 e
Feature &2 lz -:%—5 Tnorease Fealure AT 4 -190
Feature A3 1 -1875 Peanuwe A1 1 R
Feature Ad 1 -187.5 Feanza Ad 3 190
Feaure 45 1 1873 Featae A5 z 100
Feature AS 1 -192.5 Foatiko A6 4 -150
2 199
Feswre AT ! -187.5 Feanure A7 3 -Ise
Foswre AR 1 1873 Featire AR 3 i
CONCEPT A CONCEPT B

Figure 3.10: Part (a) shows the UNIMEM structure after instance number 3 was
processed while part (b) shows the structure built by ILF after instance 3 was

analysed.
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[ Root]
NedeNo. L . Cigss: C1 Node No. 2 Class: C2
MCL =05 PC2) =035
Agtributes; 1 2345678 Attributes: 1 23 45678
(a) Values:llll 11 Vahies: 4 4132433
2
Node No. 3 Class: C3 Node No. 4 Class: C4
PCH =05 P(C4)H=D5
Attributes: 1 2 3 4 56 7 8 Auribues: 1 2345678
Values: 11111111 Values: 12111211
[ o]
NodeNo, 1 Class: C1 Node No. 2 Class: C2
HC) =05 MCH=08

Attribules: 8 234567 8 Attributes: 1 234567 8
433

(b} Values: 1 [iz]l 1@: 1 Values: 4 413 2
2

Node No. 3 Class: C3 Node No. 4 Class: C4
P(C})}=0.5 P(C4) = 0.5

Artributes: 1 2 34 56 T R Agtribites; 1 2 34 56 7 8§

Valwes: L1t11111 Va]uns;lZQ]l 11

Node Ne. 5 Class: C5 Nede No. 6 Class: C6
PICS)=0.5 P(CH) =05

Auributes: 1 234 56 7 8 Attributes: 1 2345673

Values:1 2111211 Valugs: 12211111

Figure 3.11: Part (a) shows the COBWEB hierarchy after instance number 3 was
processed while part (b) shows the COBWEB structure after instance number 4
was analysed.

new instance does not match the node built for the instance belonging to class B
so UNIMEM simply updates the values for the features in the node (in a sense
ageing them).

COBWERB uses the category utility to determine which one of the two existing
classes best matches the instance. Class 1 is the best match and COBWEB checks
to see if the new instance should be merged with class 1 or if a new partition
(new nodes) should be generated. COBWEB determines that it is best to create
a new partition so it updates the node containing class 1 making it more general.
The node’s probability remains 0.5. Two new nodes are created, one for the old
instance in class 1 and one for the new instance. Both nodes have a probability
of 0.5 and are the children nodes of the node containing class 1.

When our system analyses the third instance, it determines that the instance
matches the first concept in the hierarchy and it proceeds to update the concept.
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Each feature whose value is matched by the corresponding value in the new
instance has its age decremented. If the feature’s value is not matched then its
age is incremented. If the feature’s value is not matched and the feature’s range
of values does not contain the value in the new instance, the new values from
the instance are added (the new value is added to the feature’s value set) along
with an initial age of -190. No new nodes are built. The updated hierarchies are
shown in Figures 3.10a, 3.10b and 3.11a.

The fourth instance is compared by UNIMEM against both child nodes of the
root of the hierarchy. The first child node is the more general node built after
analysing the third instance. It has 6 features and only 5 of those features (1,4,5,7
and 8) match the features in the new instance. Hence only 63% of the features
in the new instance are matched which is not enough to send the instance down
this branch of the hierarchy. The matching process fails and UNIMEM updates
the values associated with the general node. The fourth instance also fails to
match the second child node of the root. The node is updated and since both
child nodes of the root node failed to match the new instance, a new node is built
which contains the instance.

COBWERB analyses the fourth instance and after applying the category utility it
determines that the best match is class 4. It updates the node containing class
4, making it more general while retaining the original probability of the node of
0.5. Two new nodes are created and each node has a probability of 0.5.

ILF matches successfully the fourth instance against the first concept in the hier-
archy. The concept’s feature values and their associated age values are updated
depending on whether or not they match the values in the new instance. The
resulting hierarchies after the fourth instance is processed are shown in Figures
3.12a, 3.12b and 3.11b.

Finally, UNIMEM compares the fifth instance against the three child nodes of the
root in the UNIMEM hierarchy. The child node representing the two instances
of clags A fails to match the new instance and its feature values are updated
accordingly. The same process is applied to the node created to accommodate the
fourth instance (also belonging to class A). The third child node which represents
the second instance does match the new instance. Hence the common features
are used to build a new more general node. The two instances belonging to class
B are stored as child nodes of the general node.

Just as in the case of the previous instance, COBWEB attempts to determine
whether to merge the fifth instance with one of the existing classes or whether a
new class should be generated. In this case, class 2 is updated to be more general
and two nodes are built, one for the old instance in cless 4 and one for instance
five.
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In the case of ILF, the fifth instance matches the second concept in the hierarchy.
Again the concept’s feature values and their associated age values are updated
depending on whether or not they match the values in the new instance. The
final hierarchies at the end of the processing are shown in Figures 3.13a. 3.13b
and 3.14.

(a}

i MﬂAJMMAEMM .\uzAs.u.UAo.ﬂu: -
R LR | |:WI2 112 | CONCEFT A

.
vai Age Vake Age
Feare Al t 188 Feane Al ] e
Fesasc A7 ' 193 Fesze A2 + 150
-1874
Feature A1 1 ams Fexre A3 1 -5
190
Fatore: Ad 1 -1E5 Fesowe Ad 3 190
Featie A5 1 185 Femure AS 2 19
Foume A 1 Bl Festure A + -1%0
1 -l
Peazure A7 t -18% Festue A7 3 190
Framie A% 1 -1 Fontire AE 1 190

CONCEET A CONCEFT B

-188

Figure 3.12: Part (a) shows the UNIMEM structure after instance number 4 was
processed while part (b) shows the structure built by ILF after instance 4 was
analysed.

The main difference between the UNIMEM hierarchy and that of ILF is that
UNIMEM has divided the concept A over several nodes and it essentially updates
the other existing concept feature values regardless of whether they match the
new data or not. The major disadvantage in dividing the concept over several
nodes is that the features are not strengthened as much as they would be if the
concept covered just one node. Hence data which might still be relevant could be
deleted since it was not reinforced.

Notice also that the number of nodes created by ILF is smaller than UNIMEM’s
(2 vs 7). COBWEB builds a total of 8 nodes (5 instance nodes) and therefore
uses the largest amount of memory when compared with ILF and UNIMEM.
Note also that it splits concept A just like UNIMEM.

In this example ILF is better than COBWEB as it generates only 2 nodes to
represent the same set of instances and it also has the capability to forget or
prune old and irrelevant data.
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Figure 3.13: Part (a) shows the structure build by our algorithm after instance
number 5 was processed while part (b) shows the structure built after instance 5

was analysed.

[ Root]

Node No. 1 Class: C1 Node No. 2 Class: C2
PIC1)=0.5 P(C2)= (.5
Aliributes: 1 23 4 5 6 7 Altributes: 1 23 4 5 6 7 8

Valucsl' . Vahm4@l32433

NodeNo. 3 Class: C3 Node No. 4 Class: C4 Node No. 7 Class: C7 Node No. 8 Class: C8
PIC3)=0.5 PICH=0.5 KCTy=0.5 PICB) = 0.5
Altribotes:1 234 56 7 8 Attributes: 1 23 4 5678 Attributes: £ 234 5678 Atiributes: 1 2 34 567 8
Values: 1 1 ¥ 11111 Valuele' E]l] Values:4 4 132433 Valves: 41132433

MNodeNo. 5 Class: C5 Node No. 6 Class: C6
PIC5H=05 PCay = 0.5
Altribigtes: 1 234 56 7 B Afiributes: § 234 56 78
Values: 1 2111211 Vaes:1 2211111

Figure 3.14: The COBWERB structure after 5 instances.

3.4.2 Results

We compared ILF with UNIMEM on several sets of data that we have generated
to determine our system’s performance in building concepts and tracking concept
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drift. The reasons why we compare our system with UNIMEM only {though our
system is in some ways similar to COBWEB) is because UNIMEM uses some form
of generalising and forgetting whereas COBWEB does not. Hence we consider it
to be the more appropriate system to deal with concept drift (needs forgetting) as
well as with data consisting of a large number of features (needs generalisation).

We conducted tests on seven sets of data generated based on simple spatio-
temporal data of four labelled objects positions over two frames. The data was
generated based on the typical queries encountered in the American Football
application that motivated the development of ILF.

The sets contain 120 to 160 instances in total and represent the relationships
between three labelled objects at two different time instances. Each set contains
instances which belong to one of three concepts/classes and each concept has
between four and ten variants. Figures 3.15 and 3.16 show for class 7 the dominant
concept, 5 variants and 4 new variants. The sets of instances consist of two
training stages: a training stage with no concept drift (60 instances) and a training
stage with concept drift (60-85 instances). In the first stage only the dominant
concept and the variants are used. For example for class 7 only the dominant
concept and the 5 variants were used. In the second training stage the new
variants are used to generate the concept drift. Hence in the case of class 7, 4
new variants were used. The new concept developed at the end of the training is
shown as last entry in Figure 3.16.

As detailed in the previous section, given concepts A and B, concept A is defined
to be a variant of concept B is the difference between concept A and B is smaller
than or equal to a set similarity threshold. The difference is determined by
performing a match between the attribute values of the two concepts.

We set the same threshold for a match between a concept and an instance for both
our system and UNIMEM at 75% of the features. To remove a feature from the
UNIMEM concept, the weight of the feature value would have to be decremented
4 times. For a true comparison, to remove a feature value from ILF the value has
also to be decremented 4 times. We compared the concept hierarchies generated
by ILF and UNIMEM after 60 instances have been examined (when all three
concepts should be well established) and at the end of the set of instances (when
one of the concepts should be modified to accommodate the concept drift, while
the other two concepts should remain largely unchanged). The results are shown
in Tables 3.2 and 3.3.

Each row shows results after training on the corresponding data set with the
number of nodes produced by ILF and UNIMEM. The first 7 rows in Tables 3.2
and 3.3 show the number of nodes at the end of the two stages of training. The
numbers in the parentheses indicate the number of image nodes {instance nodes)
built by UNIMEM. The next 7 rows show the number of nodes after the concept
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Figure 3.15: Class 7 and its variants.

drift data have been processed. Note that at the end of the training data for
the 6th data set, UNIMEM completely removed one of the classes from memory

(hence only two were left at the end of the training run).

At the end of the training, tests were conducted using the new variants as well
as the new concepts. The results obtained are shown in Table 3.4.

The results show that UNIMEM in general tends to build more nodes and discards
data faster than ILF. This results in UNIMEM performing less accurately as is
illustrated in Table 3.3, especially for the 6th data set.
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Figure 3.16: Two more variants of class 7 and the new version of class 7.

Data Set [[ ILF || UNIMEM
1 3 [ 13 (+14)
2 3 5 (+5)
3 3 7 (+6)
4 3 6 (+6)
5 3 8 (+8)
6 3 || 2(+2)*
7 3 7 (+8)

Table 3.2: The number of nodes created by ILF and UNIMEM for the 7 datasets

after 60 instances.

Data Set || ILF || UNIMEM
1 3 3 (+3)
2 3 14 (+4)
3 3 5 (+5)
4 3 | 13 (+13)
5 3 | 18 (+22)
6 3 7 (4+6)
7 3 6 (+7)

Table 3.3: The number of node created by ILF and UNIMEM for the 7 datasets
at the end of the training sets.
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Data Set || ILF || UNIMEM

1 90 38

2 160 36

3 100 48

4 90 88

5 84 41

6 71 20%*
L7 [ma] 57 |

Table 3.4: The percentage of correct classifications.

Examples of the hierarchies developed by ILF and UNIMEM for the seventh data
set are shown in Figures 3.17 and 3.18. UNIMEM develops 7 concept nodes and
8 image nodes after 60 instances. ILF develops only 3 concept nodes — one for
each class (the classes are 2, 5 and 7). When the second part of the data set
is processed, UNIMEM removes the original concept developed for class 7 and
splits the new variants of class 7 into two groups, new variants 2 — 3 in one group
and 1 — 2 into a separate group. A total of 6 concept nodes and 7 image nodes
are developed by UNIMEM. ILF on the other hand updates the original concept
with data from the new variants and maintains just 3 concept nodes.

The results we have obtained indicate that our system was able to accurately track
the changes in the concepts in the sets of data presented to it while producing a
very compact hierarchical structure. UNIMEM did not track the concept changes
in three of the seven sets because its concept descriptions were split. This resulted
in UNIMEM deleting significant data and in developing weaker and inaccurate
concepts.

3.5 Discussion

The algorithm we have developed shares the advantages of UNIMEM. It allows
multiple nodes to be modified, it allows concept overlapping (showing similar
attributes) and it allows data to be pruned from the conceptual hierarchy.

ILF builds concepts that are made up of all observed features as COBWEB does.
It also merges concepts similarly to COBWEB (find the best two candidates and
if there is enough evidence then merge the concepts).

The algorithm we have developed has several advantages over both UNIMEM
and COBWEB. The first advantage is that we use a more refined (and we believe
more appropriate) type of forgetting which is applied locally and only when there
is enough evidence to justify the update process.
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Figure 3.17: The conceptual hierarchies developed by UNIMEM and ILF after
60 instances.

UNIMEM forgets in a very simple manner. To do this it uses a feature value
increment-decrement mechanism. Each time a new training instance is seen, the
concepts at each level in the UNIMEM hierarchy will undergo a feature value up-
date (either increment or decrement). Essentially each new instance seen affects
all concepts so the effect is not localised.

COBWESB is a full memory system (stores all the instances) and therefore it does
not forget any of the instances given as input.

Unlike UNIMEM and COBWEB, our algorithim uses an advanced type of lo-
calised forgetting which updates the feature values at several levels using the
evidence gathered from the training data. We have implemented an aging proce-
dure involving three levels of data values which simulate short-term memory (set
of facts just observed and which can be discarded if not reinforced), medium-term
memory (concepts already reinforced but not up to the level justifying permanent
storage and which can still be forgotten) and permanent memory (concepts which
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Figure 3.18: The conceptual hierarchies developed by UNIMEM and ILF at the
end of the data set.

have been reinforced so many times justifying permanent storage and which can-
not be forgotten). Each level of data values involves a different type of value
re-enforcement. Also the concepts are updated only if there is evidence to do
so. One training instance affects only the concepts which are determined to be
similar to it so the update is done locally.

The second advantage is that concepts developed by ILF are compact since no
instances are stored, do not become fragmented and, are well suited for domains
involving large numbers of attributes and training instances. This also enables
fast and efficient access to the concepts developed. Unlike our algorithm, both
UNIMEM and COBWEB store instances in their concepts and as a result the
concepts developed require more memory and consequently are less well suited
to deal with data intensive domains. Also by storing instances, the concepts
built by UNIMEM and COBWEB, in many cases tend to become fragmented.
Furthermore since the hierarchy is more compact, the system requires less time
to access and update the concepts (when necessary).

ILF performs better than UNIMEM and COBWEB when attempting to track
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concept drift. UNIMEM and COBWEB develop concept hierarchies which store
training instances. In domains where a concept has several similar variants this
leads to the concept becoming fragmented and this makes the task of tracking
the concept drift more difficult. UNIMEM implements forgetting by updating
the concepts regardless of whether they match or not and, this leads to situations
where some concepts are modified when there is no need to do so. Hence relevant
data is pruned from the tree. COBWEB does not forget so the system updates its
hierarchy based on all the data it has seen. The problem of concept drift involves
tracking the changes in the target concept and performing the required concept
modifications to keep the concept consistent with the incoming data. When
considering all the data as COBWEB does, the changes in the target concept
become less obvious (essentially a window based approach is more appropriate)
and so keeping track of the concept drift becomes a more complex task.

3.6 Summary

In this chapter we have presented the incremental learning algorithm: ILF. The
algorithm generates compact conceptual hierarchies, uses an evidence based for-
getting method to prune old or irrelevant data and tracks concept drift. When
comparing ILF with two similar algorithms: UNIMEM and COBWEB, ILF per-
forms better in terms of classification performance, memory usage and tracking
concept drift. The algorithm has been used in two applications: an American
Football querying system and a cricket learning/classification system. In the
next chapter we cover the first application — American Football.
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Chapter 4

N.F.L. Application — Play
Model

4.1 Introduction

The first application of ILF is American Football. American Football was cho-
sen because it is a highly structured game and thus it allows accurate models of
plays to be built using a combination of spatio-temporal and background knowl-
edge. This is not possible for other sports such as soccer and rugby as they are
unstructured — no predefined pattern exists that can be modelled.

This application involves the recognition and learning of American Football plays
using information from two sources: natural language commentary and video.
The main benefit of combining image information from the American Football
tapes and natural language commentary is that it allows for information to be
fused from both sources. Thus, the play classification is not dependent on a single
source of information. Furthermore it allows semantic understanding of video at
a higher level than would be possible by looking at video images alone.

There are many levels of complexity at which this can be done. At the simplest
level, different types of information are extracted from the text and the video,
and these are combined in establishing the meaning. At more complex levels,
the information extracted from the text can be used to constrain and improve
image analysis, and vice-versa, analysis of events in the visual data can be used
to better analyse the text. In other words, the second system is more complex
as it examines the interconnection of two complex subsystems: text and image
analysis for understanding semantic content of images.

Combining natural language processing with video data analysis offers great ben-
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efits in determining the content of video. These benefits can be further enhanced
by combining them with learning. This is because, once the combined processing
of the types of data has been optimised the performance of the system cannot be
improved further. Moreover, the system does not have the ability to deal with
completely new situations or with plays in which the attribute values change over
time.

Learning has additional benefits. If the system has the ability to learn then it is
capable of continuously improving its classification performance as well as dealing
with new examples. Several methods of learning have been developed but the one
that is best suited for real world situations is incremental learning which has been
used in the ILF (incremental learning with forgetting) algorithm (see chapter 3).

In this application, ILF combines context knowledge, attribute selection and the
ageing of knowledge to keep the model representation of the plays consistent with
the information extracted from American Football video tapes.

In this chapter we cover the data structure used to represent and store the sym-
bolic descriplions of the American Football plays. The layout of this chapter is as
follows: in Section 2 we describe a number of systems that use natural language
processing and image analysis which are relevant to the work described in this
thesis. Section 3 presents work relevant to the American Football application in
the field of object tracking. The model used to represent American Football plays
is shown in Section 4, whilst in Section 5 we describe the hierarchy used to store
the play models. The work described in this chapter is only a part of the Amer-
ican Football application of ILF. The following two chapters cover the labelling
of the players in the initial setup and the play model recognition algorithm.

4.2 Systems that Combine Natural Language and
Image Analysis

Systems that have connected natural language and image analysis are relevant
to the work in this thesis as we combine natural language processing with image
processing in the American Football application. A relatively small number of
attempts have been made to connect image analysis and natural language and in
this chapter we describe some of the best known systems.

The VITRA (VIsual TRANslator) [50, 51, 6, 8, 9, 57, 36] is one of the few projects
that tries to integrate computer vision and the generation of natural language
expressions for the description of image sequences. The domains investigated in
the VITRA project have been traffic scenes and soccer sequences. The approach
used in VITRA was based on concurrent image sequence evaluation and natural
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language processing which was carried out on an incremental basis. A system
named SOCCER [51, 103, 102, 101} was developed, which describes short image
sequences of soccer games. The listener is assumed not to be watching the scene,
but to have prototypical knowledge about the static background. The system
does not require that all data be inputted at once.

The system has an incremental event recognition mechanism (as described in
[50, 49]) that analyses incoming geometrical data for the dynamic objects in the
scene and provides information in propositional form about the events occurring
at the moment. A selection/linearization component then selects the relevant
propositions, orders them and passes them on to the encoding component of the
system, which processes and transforms non-verbal information into an ordered
sequence of words. The output is either written or spoken German. As the
scene is described continuously, temporal aspects such as the duration of speech
generation were taken into consideration when coordinating event recognition and
language generation.

The events that took place in the image sequences were described conceptually
using event models. The event models were essentially a form of prior knowledge
representation about typical occurrences in a scene. The recognition of an event
occurring in a particular scene involved the instantiation of the respective generic
event model.

SOCCER has the assumption that the input images are relatively noise free and
that accurate and detailed data about the players can be easily extracted from
the input images (which is hardly the case in real world scenarios which involve
multiple objects).

The second system developed as part of the VITRA project that combines image
processing with natural language processing is CITYTOUR {7, 6, 9]. CITYTOUR
is a German question-answering system that simulates aspects of a fictitious sight-
seeing tour through an interesting part of a particular city. The questioner is
assumed to be sitting in the tour bus, and the system generates answers to the
questions based on the current position of the observer — the system uses the
position to determine the objects of importance in the scene and what parts of
the objects are visible to the observer.

The NAOS (Natural Language description of Object movements in a Street scene)
system presented by {86] also attempts to connect computer vision and natural
language. The goal in this project has been to derive a natural language de-
scription of traffic scenes. The approach in this project is different from VITRA
in that recognition of the scene is done after all the visual data is available (in
VITRA the descriptions are generated as the data becomes available).

A more recent project that combines natural language understanding with image
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processing is Informedia: News-on-Demand [128, 45]. The Informedia [55, 56,
23, 99, 63] digital video library project at Carnegie Mellon University is creating
a digital library of text, images, video and audio data available for full content
search and retrieval. News-on-Demand [47, 46] is a fully-automatic system that
monitors TV, radio and text news and allows selective retrieval of news stories
based on spoken queries. The user may choose among the retrieved stories and
play back news stories of interest.

The system uses three broad categories of technologies: text processing, image
analysis and speech analysis.

Text analysis looks at the textual representation of the words that were spoken,
as well as other text annotations. These may be derived from the transcript,
from the production notes or from the closed-captioning that might be available.
Text analysis can work on an existing transcript to help segment the text into
paragraphs. The analysis of keyword prominence allows us to identify important
sections in the transcript. Currently there two main techniques used for text
analysis.

e If a complete time aligned transcript is available from the closed-captioning
or through a human-generated transcription, natural structural text mark-
ers such as punctuation can be used to identify the news story boundaries.

¢ To identify and rank the contents of one news segment, TF/IDF (term
frequency /inverse document frequency) is used to identify critical keywords
and their relative importance for the video document {98].

Image analysis looks at the images in the video portion of the MPEG stream.
This analysis is used for the identification of scene breaks and to select static
frame icons that are representative of a scene. Image statistics are computed
for primitive image features such as colour histograms, and these are used for
indexing, matching and segmenting images.

CNN-AT-WORK [21] is system that is similar to News-On-Demand but is based
on a transcript of video instead of speech recognition. The system uses a special
digitizer that encodes and sends the video information in the INDEQ compressed
format. The users can store headlines together with the associated video clips
and retrieve them at a later date.

These are some of the systems that combine natural language and image analysis.
In the following section we describe a number techniques that are used in object
tracking.
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4.3 Object Tracking Techniques

4.3.1 Simple Object Tracking Techniques

The problem of object tracking is relevant to the work presented in this chap-
ter as the American Football requires a method of tracking players during the
plays. Several methods have been developed over the years to track objects in
images. Among the best known techniques are correlation tracking, structural
correspondence, space-time based tracking and motion tracking.

Correlation tracking [15] is performed by matching a region of one image to some
region in the next image. An initial template is generated from the image in
which the object is detected, and then the template is used to determine the
position of the object in the subsequent frames.

Structural correspondence [59] is also based on the concept of detecting features
that can be used to track the object. However, this method does not use the pixel
values directly. One the most frequent methods of structural correspondence is
the edge-line technique. The edge features in consecutive images are matched
based on a chosen property of the edge such as line length or orientation. Motion
is another type of feature that can be used. In this case, the difference is obtained
by subtracting the frame at each time step with a known background frame and
then subsequently thresholding it.

Space-time based tracking [59] is generally used when objects change shape and
position slowly between frames. Several frames are analysed together as a unit of
data from which the location and motion characteristics can be determined using
edge or curve detectors.

Motion tracking is a technique that generally uses some motion model [75, 113,
54, 106, 16, 100] to supplement the tracking information extracted from images.
One of the most common motion models is based on the assumption that the
object is moving with a constant velocity or a along a smoothly changing path.
One method that uses a smooth motion model is described by Huang and Wu
[54]. The trajectory of a moving object in an image sequence is determined
using a path and shape coherence constraint. Another algorithm based on the
smooth motion model is presented by Sethi and Jain [106]. The method uses an
extended frame sequence to establish the correspondence necessary to obtain the
trajectories of objects.

Another approach in motion tracking is using optical flow 53, 84] which uses the
distribution of apparent velocities of movement of brightness patterns. In this
way the optic flow motion methods can be used to predict the position of the
object without explicitly matching image features.
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The problem with the tracking methods described above is that they do not per-
form well when applied to complex scenes in sports (such as American Football).
This due to the unpredictable nature of the movement and shape of the players.
In general football players move quickly, change direction unpredictably and often
collide with other players. In addition, players are very difficult to model since
they are essentially non-rigid objects and shape can change significantly (player
standing vs player in a crouch position).

4.3.2 Object Tracking Techniques using Context
Knowledge

Attempts have been made to improve the performance of tracking methods by
using domain knowledge such as geometrical model knowledge or context knowl-
edge.

Methods using geometric knowledge use rigid models of the objects to track them
in image sequences. One of the most popular applications of geometrical model
knowledge has been vehicle tracking (geometric models for cars are relatively
easy due to the rigid shape of the object involved) and several applications that
attempt to track cars in traffic scenes have been developed such as the system
presented in [64].

Contextual information is a very powerful tool that can aid in the selection of im-
age processing techniques [111, 89, 12]. This is demonstrated by Fu [34] with the
system named SHOPPER. The system uses the context to guide its search when
attempting to find objects in a scene — the current context determines which one
of three different search routines is to be applied to the images. When SHOPPER
attempts to find products like pancake mix it uses contextual information such
as cereals are grouped together and cereals sit on shelves.

A method for tracking players in American Football greyscale images that makes
use of context knowledge is described by Intille [58, 59]. In his work, Intille
proposes the use of “closed-world” [60, 61, 14] analysis to incorporate contextual
knowledge into low-level tracking. A closed world is defined as a space-time region
of an image where contextual information such the number and type of objects
within the region is known. The internal state of the closed world is unknown,
e.g. the positions of the players, and must be determined from the visual data.
The visual routines for computing the internal state of the world are selected
using context restricted domain knowledge and any information that has already
been learned about the state within the world from previous processing. There
are two types of entities in the closed-world: objects and image regions. The
objects are the physical things (such as the players) that the system must monitor
to develop a useful interpretation. The knowledge of the domain dictates how
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objects interact and is independent of the scene. The image regions are simply
image data, or the objects projected onto the image plane. Though the tracking
method in general produces good results, it is still likely to fail in situations
where the player models are imprecise, spatial resolution is low or when the
object tracked is very close in appearance to some nearby feature.

Condor (112, 111] is another system that makes use of context knowledge and
uses the output of many simple vision processes and local context in the scene
for recognition of outdoor imagery. Condor treats objects as component parts of
larger contexts from which they cannot be separated, that is objects do not have
an independent existence.

Overall, tracking players consistently in complex scenes such as American Football
is still a largely unsolved problem. Progress has been made in the last few years
by combining contextual knowledge with image processing as demonstrated by
Intille. Recently a new approach is being tried to solve the problem of player
tracking by completely abandoning image processing. This involves the use of
tags on players to determine their positions on the field and has already been
tested in soccer games.

This section presented techniques used to track objects in dynamic scenes. The
work presented has great relevance to our American Football application that
involves tracking players during the plays. In the following section we describe
the first part of the American Football application that connects natural language
with image analysis.

4.4 Play Model

American Football plays are very complex and involve a well defined set of move-
ments and actions, with each player attempting to complete his task (which can
vary from protecting the quarterback to receiving the ball). To recognise the
plays we have combined expert knowledge, domain knowledge (game rules), spa-
tial knowledge (player relationships) and temporal knowledge (action sequencing
in individual plays) into a model which identifies a particular play.

The play model description used to represent an American Football play has sev-
eral components which describe the play action in terms of player significance,
player relationships, player movements, player actions, player positions and the
temporal sequencing of the player actions and movements. The significant char-
acteristic of the play model representation is that it is mainly made up of symbolic
data.
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The play model has the following features:

e The play class — there are three classes of plays in American Football that
are defined by the main action that takes place in the play. In a play each
one of the players in the team performs some action but generally there is
only one action of particular importance for the play. For example, in an
offensive pass play the main action is the pass between the quarterback and
the receiver. The possible play classes are defined by set A where: A =
{offensive, defensive, special}.

e The significant players and actions in the play — each play involves
significant players performing predefined tasks. We define as significant the
players whose actions are very likely to have a major impact on the main
action and outcome of the play. For example, in a pass play, the players we
consider to be significant are the quarterback and the receivers since they
are the players involved in the main action of the play. The significance of
the players can range from low to very-high depending on how much impact
they are likely to have on the play. The player significance is determined
by the expert and is defined by set B where: B = {low, average, high,
very-high}.

An example of the significance of the players involved in a typical Pass Play
is shown in Figure 4.1.

Position Significance Action
Quarterback | Very-High pass-ball
Receiver Very-High catch-ball
Wide-Receiver | Very-High catch-ball
Guard High block-player
Corner-Back Average block-player
Blocker Low block-player

Figure 4.1: Player Position and Significance for a typical Pass Play.

In an analogous manner, the player position, significance and action is de-
fined for all plays. The possible actions are defined by set C' where: C =
{pass, toss, give, hand, catch, get, receive, fake, tackle, block, push, grab,
intercept }.

¢ The player combination — each play (offensive/defensive/special) re-
quires a specific combination of players. For example an offensive pass play
might have the following player combination: 4 blockers, 2 corner-backs, 2
receivers, 1 guard, 1 snap and 1 quarterback.

e The temporal sequencing of the actions in the play — in each play
certain actions take place at specific times and in a certain order. For
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example, in a running play the quarterback will pass the ball immediately
to the running back at the same time as the blockers tackle the opposing
defence line and once the running back gets the ball, he waits for a breach
to appear in the opposing defence line in order to start his run. In a pass
play however the quarterback does not pass the ball immediately, instead,
he waits for the receivers to break free of their markers and then gets rid of
the ball. The temporal representation of the play model is based on a set
of simple movements combined with a play action. The play action is the
main action in the play already defined in the first part of the play model
(see significant players and actions definitions). The movement describes
the type of movement of a given player at an instance in time. A player
can either move to a position P or make a turn.

The quantitative value of position P towards which the player is moving is
not important — we use it in the model descriptions to indicate players are
moving towards separate positions.

The movements turn-left and turn-right are relative to the direction in
which the football player is facing.

To determine when the player is turning or moving to a new position we
segment the video frames using a colour based segmentation method. The
reason for selecting a colour based segmentation method is that the teams in
American Football have distinct colours which can used to identify /segment
the players in the video frames. The coordinates of the centroids of the
players of interest to the system, are extracted by hand and complied into
a list used to:

— Generate the spatial relationships between the players.
— Generate the temporal sequencing of the player actions.

— Generate a symbolic description of the movement of the player over
the duration of the play in terms of turns and moves.

The coordinates extracted from the image are rectified using the grid lines
on the field. For each frame, we manually segmented the grid lines on the
pitch and we used a camera model to transform the coordinates so the
image plane is parallel to the pitch. This process is shown in Figure 4.2.

The movement of the player is tracked over each frame in the video sequence
and a change in the movement that occurs indicates a turn. The change
(if any occurred) in the movement of the player is computed by taking the
difference in the coordinates extracted from the video frames. The change
has to be reinforced for at least 3 consecutive video frames and be above
a threshold to indicate a turn. An example is shown is Figure 4.3 where
the heading of the player was recorded for each one of the 18 frames — the
player made three turns, at frames 3, 9 and 15.
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Figure 4.4: The movement of a player over the duration of the play can be
described as sequence of Moves and Turns.

by the set E where: E = {before, after, during, meets, equals}.

We define the temporal models in terms of time instances. We define a
time instance to be one in which a change in a player’s actions {turn or
move) occurs. The time instance definition is very important as it allows
the system to compare two separate but similar actions without considering
the number of frames involved. For example, consider two player movements
shown in Figure 4.6. In Play A, player 1 moves to position P1, turns left
and then moves to position P2. Player 2 in Play A moves to position P3,
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turns left and then moves to position P4. Therefore, in play A, six actions
occurred (two move actions and one turn action for each of the players).
Therefore the movement can be described in terms of six times instances
(one time instance per action). The order in which the actions occur is
very important. To maintain the temporal order of the actions we analyse
the duration of the actions. Player 1 moved to position P1 over 12 frames,
turned left in three frames and then moved to position P2 in seven frames.
Player 2 moved to position P3 in 10 frames, turned right in four frames and
then moved to position P4 in 12 frames. Both players move out in the same
time. Player 2 reaches position P3 while player 1 is still moving to position
P1. Therefore the first time instance is set at the end of the movement
of player 2 to position 3. Player 1 reaches position P1 while player 2 is
turning right so the second time instance is set when player 1 completes his
movement to position 1. As player 1 is turning left, player 2 finishes his
turn right and this sets time instance three. The rest of player movement
is processed in a similar way. Now consider the 2 player movements shown
in Figure 4.6 — Play B. The players in Play B perform the same actions as
those in Play A but uses more time/video frames. If the system attempts to
compare the actions of the players in the two plays, frame by frame, then it
will determine that the actions and their temporal ordering do not match,
which is incorrect. However, when the system generates a description of
the movement based on the time instance definition, it determines that the
actions of the players in Play B are the same, use six time instances and
occur in the same temporal order. Hence it determines that the two plays
match.

The time and general sequencing of the moves by the players used in the
temporal models of the plays were recorded from football games. Then using
the temporal primitives we derived symbolic text descriptions of the actions
of the players such as player!{move position P2) equals player5(move po-
sition. P8). In English the actions can be described as follows: player! was
mowving to position P2 while player5 was moving to position PS.

Consider the following example. Assume that we require the temporal de-
scription of the actions of quarterback (@) and the left corner-back (CB)
involved in the pass play shown in in Figures 4.7 and 4.8 (notice that the
model has only six time instances — this is because some of the changes in
the movement of the players occurs in the same time and therefore share
the time instance).

Both the quarterback and the corner-back perform very simple movements
over the play duration. The corner-back moves to the predefined position
P4 while the gquarterback moves to the predefined position P9.

The movements of the corner-backs and the quarterback are represented by
the players which have positions in the temporal model denoted by CB and

@
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Figure 4.5: Player movements in plays A and B consist of the same actions but
the actions in play A occur over a smaller number of frames than in play B.

The movement (as obtained from the timing observed in recorded video)
of the corner-back finishes before that of the quarterback. The temporal
actions of the corner-back and the quarterback can be described as: corner-
back(move position P4) during quarterback(move position P9).

The English description of the action is: The player Corner-Back moved to
Position P4 while the player Quarterback was moving to Position P9.

e The movement of individual players in the play — players generally
have specific movement patterns in specific plays. For example, in a shot-
gun pass play, the receivers tend to move very fast in a forward direction
and across the ground while the linebackers move backward protecting the
quarterback. In a Hail-Mary pass play however, both the receivers and
linebackers move forward straight in an attempt to give the quarterback as
many passing options as possible. The movement of the player over the en-
tire play period is described in terms of shape and distance. The shape of the
movement indicates whether the movement is straight or contains_turns.
Figure 4.9 shows the movement of a player who makes three turns.

The distance covered by the player during the play can be either short
or long. To determine the type of distance, the system uses the player’s
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PLAY A

Player 2 Player 1

PLAYB
Player 2 Player 1

PLAY A
Player 2 Player 1

PLAY B
Player 2 Player 1

Player 2 Player 2 Player 1 Player 1

PLAYER ACTION COMPARISON

12 15 22
Move PI | Turn | Move P2 |
[Left | |
10 14 26
Move P3 | Tum | Move P4 |
| Rignt | |
Video Frames
17 21 10
Move P1 | Turn | Move P2 |
L] |
16 19 5
Move P3 | Tomn | Move P4 |
| Right| |
Video Frames
' '
: Information converted from video frames to :
' time instances. '
{ '
T2 T4 TS
Move P1 | Turn I Move P2 |
| Left | |
Tt T3 T6
MoveP3 | Tum | Move P4 |
| Righ | {
Time Instances
T2 T4 TS
Move P1 | Turn ] Move P2 |
Left | |
T1 T3 Té
Move P3 I Turn | Move P4 |
| Right| |
Time Instances
]
i '
] 1
! The actions of the players are compared !
' based on the time instance at which they
took place. ‘
TS
Move P1 T2 Turn T4 Move P2
Left
:
Move P1 \ Turn Move P2 T3
T2 Left T4
Move P3 T Tum T3 Move P4 T6
Right
Move P3 T1] Tum | T3 Move P4 16
Right

Time Instances \

The actions of the players match since they

occured at the same time instances.

Figure 4.6: The temporal representation of the player actions, in play A and B,
instances solves the problem of frame based action comparison.

using time
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Figure 4.7: Spatial model of a Pass Play.

starting and finishing positions and the position of the defensive line. If the
player started behind or on the same line as the defensive line and finished
in-front of the defensive line then, the distance covered is considered to
be long, otherwise the distance is short (see Figure 4.10). The possible
overall movements are shown in Figure 4.11 and are defined by set F where:
F ={short-and-straight, short-and-turn, short-and-many-turns, long-and-
straight, long-and-turn, long-and-many-turns}.

e The relationships between a player and the other team mates at dif-
ferent instances throughout the duration of play are described symbolically
and derived from four reference points which are assumed to be known at
all times. These are the left boundary, the right boundary, the opponent’s
goal and the team’s own goal line. They produce the following six relation-
ships: in-front, behind, to-the-left, to-the-right, in-line-with-horizontal and
in-line-with-vertical. Figure 4.12 shows how the relationships are generated,
the positions of two players and the corresponding the relationships gener-
ated for these two players. The references are dependent on which way the
attacking team is facing.

The possible relationships are defined by the set G where: G = {in-front, be-
hind, to-the-left, to-the-right, in-line-with-horizontel, in-line-with-vertical}.

Of the six features described in the play model, the last two (temporal sequencing
and the relationships between players) are adding a level of complexity to the play
which makes a search based on just the last two features very difficult and time
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Figure 4.8: Temporal Model of the Pass Play.

consuming. The problem is the representation of actions in temporal terms and
the player relationships at different instances in the play. There are so many
combinations of action sequences and player relationships that a detailed play
description that covers all possibilities is not feasible. We have decided to use
only a subset of all the possible actions and player relationships that covers the
actions of the significant players in the plays. This is because we believe that
by capturing only the most important aspects of the play (which always involve
the significant players) we can still obtain consistent play model recognition. The
schematic of a typical play model is shown in Figure 4.16 while a sample of the
symbolic data stored in the model is shown Figures 4.13, 4.14 and 4.15.

To build the play models we have created a database of play information, which
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Turn 1

Figure 4.9: Player movement with 3 turns.

includes data about the player combinations, play actions, player significance
and player movement over the duration of a “by the book” play. The information
about the plays {which has been used to build the text and schematic descriptions
of the play models as shown in Figures 4.13, 4.14, 4.15 and 4.16), has been
gathered from several sources which include Gridiron play manuals [24, 85, 83],
Gridiron tapes [11] and Gridiron computer games [10, 109]. The information
about the players (positions and significance) are used to generate the play model
description.
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Figure 4.10: Long movement and short movement. The players P2 and P3 have
long movement since they started behind /in-line with the defensive line and their
finishing positions were in front of the defensive line. Player P1 has short move-
ment as he started behind the defensive line and finished behind the defensive
line.

short-and-straight
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movement
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Figure 4.11: The six types of movements of the players.
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Figure 4.12: The arcas used to define the player relationships. In the example
shown Player P1 is in-front and fo-the-right of Player P2.
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Play Name : X-SHOTGUN

Play Class : DFFENSIVE - PASS

Players Inveolvad

linebackers
blockers
guards
wide-receivers
quarterback
snap

RN N W

Significant Players Position
1) Quarterback

2) Wide-receiver

3) Guard

Significant Action
1) PASS (quarterback - receiver)

Player Movement

1) Position : linebacker -> straight-short-no-turns
2) Position : linebacker -> straight-short-no-turns
3) Position : linebacker -> straight-short-no-turns
4) Position : blocker -> straight-short-no-turns

5) Position : blocker -» straight-short-no-turns

6) Position : guard -> long-and-turn

7) Position : guard -> long_and_turn

8) Position : wide-receiver -> straight-long

9) Position : wide-receiver -»> straight-long

10) Pesition : quarterback -> straight—short

11) Position : snap -> straight-short

Figure 4.13: Play Model for a Pass Play.

4.5 The Play Model Hierarchy

The system uses a well defined semi-dynamic hierarchical structure to store the
models of the American Football plays. It is semi-dynamic because only two
of the three levels in the hierarchy can be updated. The hierarchy shown in
Figure 4.17 has three levels: a class level, a condition level and model level {a
more detailed figure describing the hierarchy was not included as the actual play
hierarchy is too large - 15 megabytes of text).

The class level defines the type of play and no updates are allowed at this level.
There are three classes: offensive, defensive and special. The condition level
defines the spatial setup of the players at the start of the play and the player
combination. Learning at this level is possible as new setups can be encountered
or old setups can be updated.

The model level contains the detailed spatio-temporal information about each
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Action Sequence

DCCUR{shotgun-pass {quarterback receiver-type) T) —>

[(OCCUR(move (Linebacker positionl position2) T1) ->
DCCUR{move-to(linebacker position3 position4) T2)
DCCUR{move-to(linebacker position5 pesition6) T3)
DCCUR (move-to(blocker position? position8) T4)
DCCUR{move-to(blocker position® positioni0) T5)
DCCUR{move~to(guard positionll positioni2) T6)
DCCUR(move-to(guard positionl3 positioni4) T7)
DCCUR{move-to(wide-receiver positionl5 positionif) T8)
DCCUR{move-to(wide-Teceiver positionl7 positioniB8) TQ)
DCCUR (move-to(quarterback positionlS position20)} T10)
DCCUR{move-to(snap position2l position22) T11}

and

(T1 quring T and
T2 during T and
T3 during T and
T4 during T and
T5 during T and
T6 during T and
T7 during T and
T8 during T and
T9 during T and

T10 during T and
T1i during T)

DCCUR(pase (quartarback receiver-type) T12) ->
[HOLDS-FOR(moved-from{wide-receiver positioni5) T13) OR
HOLDS-FOR{moved-from{wide-receiver positionl7) Ti4) OR
HOLDS-FOR(moved—from{guard positionil) T15) OR
HOLDS-FOR(moved-from{guard position13) T16) AND
HOLDS-FOR{moved-from{quarterback positioni®) Ti7)

and

([T8 atarts T13] or [T13 during T8])
([T9 starts T14] or [T14 during T91)
([T6 starts T15] or [T16 during T61)
([T7 starts T16] or [T16 during T7])
([T10 meets T12] and [T17 overlaps T101)

)

Figure 4.14: Play Model for a Pass Play.

play as described in the previous section. The system can perform three oper-
ations at this level. It can build a new model if necessary, it can update the
spatio-temporal information in existing models, and finally, it can remove models
that are no longer of any use.

ILF was used to build the class tree without forgetting. The play model repre-
sentations were derived using data from coaching books and video. The data did
not have any concept drift (hence no forgetting was necessary).
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Player Relationship
Instance 1 =->
Player Position : wide-receiver{1) IS

TO-THE-LEFT of : wide-receiver2, guardl, guard2, gquarterback, linebackerl, linebacker2,
linebackerd, bleckerl, bleockerZ, snap

TO-THE-RIGHT of :

BEHIND :

IN-FRONT-OF : guardl, guardz, quarterback, snap

IN-LINE-WITH : wide-receiver2, linebackerl, linebacker2, linebacker3, blockerl, blocker2

Player Positicn : snap IS

TO-THE-LEFT of : wide-receiverl, blocker2, linebacker3d, guardl

TO-THE-RIGHT of : wide-receiver2, linebackerl, limnebacker?, guard2

BEHIND : wide-receiverl, wide-receiver2, blockerl, blocker2, linebackerli, linebacker?,
linebacker3

IN-FRONT-OF : guardl, guard2, quarterback, snap

IN-LINE-WITH :

Instance 2 —>

Player Positioen : wide-receiver(1) IS
TO-THE~-LEFT of :

Figure 4.15: Play Model for a Pass Play.

The player initial setup (labeled circles)

and movement (arrows) for a
pass play

=

® 00006 | @

Figure 4.16: Pass Play.
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OFFENSIVE DEFENSIVE SPECIAL Level 1

CONDITION | | CONDITION || CONDITION | .. CONDITION | Level2

MODEL Level 3

Figure 4.17: The play model hierarchy.

| MODEL || MODEL | ...

4.6 Summary

In this chapter we covered the knowledge structure used to represent American
Football plays. The models contains spatio-temporal information about the play
extracted from domain knowledge and expert knowledge. In the following chapter
we describe the low level analysis used to determine the labelling of the players
necessary to determine the play information described in this chapter.
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Chapter 5

N.F.L. Application — Player
Labelling

5.1 Introduction

In this chapter we present the method used to label players in the initial setup
of American Football plays. In chapter 4 we presented a number tracking of
methods used to track objects in a dynamic scenes. However, the object tracking
methods presented in chapter 4 cannot track objects in complex scenes such as in
American Football games because of the unpredictable nature of the movement
and shape of the players. To classify and learn American Football plays requires us
to obtain as much information as possible about the movement of the players and
their actions. Since we cannot track the players in American Football plays, we
combine natural language processing and image analysis to address the problem of
player tracking. An important part of our method is player labelling. At present
there are no systems available to automatically label the players in American
Football plays. The problem has been investigated for some time but currently
the player labelling is still done by hand. In this chapter we propose a method
to automatically label players in American Football plays.

The labelling process entails establishing labels for the blobs segmented from the
video. To do this we use background knowledge about the game of American
Football combined with the spatial knowledge about the initial setup of the play-
ers in the query. The process is very complex as it involves analysing all valid
label combinations (sometimes several hundred combinations are possible) and
selecting the most appropriate one.

The layout of the chapter is as follows: in Section 2 we describe in detail the
processing involved in generating labels for the players in the initial setup. Section
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3 shows the results obtained when the method was tested with data from actual
American Football plays. A summary of the method is presented in Section 4.

5.2 Labelling Method

The initial setup of the players at the start of the play is very important as
it provides valuable information about the type of play likely to occur. Plays in
American Football can in some cases be identified based on the starting formation.
Each formation has in turn a number of variations and it is to each one of these
variations that we refer to as the initial setup of the play.

The initial setup is used to determine:

¢ The general offensive formation — the offensive formations can be divided
into two classes: one player back class and two player back class.

e The type of play — short gain play and long gain play.

s The labels of the players.

At the beginning of the labelling stage, the image is processed as described in
chapter 4 and the coordinates of the players in the query are converted to a scale
of 100x100. Normalising (typically 320x200 pixels) to 100x100 grid enables
crude determination of same player positions. For example the receiver takes
position near the left or right boundaries of the playing field. Therefore the system
considers any player that has a y coordinate value greater than or equal to 90,
or smaller than or equal to 10 to be a potential receiver. Once the normalization
has been done, the system analyses the player coordinates to determine which
players are wn line. This done by computing the FEuclidean distance between
players and cross-checking it with the number of vertical and horizontal lines
(lines are explained further on).

The system then sorts the player coordinates into ascending order for the following
reasons. The first reason is to determine whether the number of players at the back
of the formation is one or two. The number of players at the back of the formation
determines what rules are applied later on in the process of disambiguating the
labels generated for the players.

The second reason is to determine which players occupy:

¢ The leftmost position in the formation or the closest position to the left
boundary of the playing field.
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e The rightmost position in the formation or the closest position to the right
boundary of the playing field.

e The forward-most position in the formation.

e The backward-most position in the formation.

The players in the forward-most position are labelled as receivers or wide re-
cetvers. The players in the leftmost and rightmost positions are given two labels:
flanker and receiver. If the player is positioned in the area considered to be close
to the boundary as described above, then the label of flanker is removed. The
players in the backward-most position are labelled according to how many players
are at the back of the formation. If there is only one player at the back of the
formation, then the player is a potential candidate for three labels: running-back,
tail-back, guard. If there are two players at the back of the formation, then both
players are given the label of running-back.

The third reason is to determine how many lines of players are in the initial setup.
There are two types of lines: wertical and horizontal. For example, the initial
setup shown in Figure 5.1 is made up of five vertical lines and four horizontal
lines. The system uses the lines in four ways. The first way is to determine which
is the centermost horizontal line. The players in this line are labelled as potential
quarterback candidates. The second way is to determine which side of the initial
setup is “heavier”. In many plays, the initial setup of the players is arranged in
such a way that more players are grouped toward one of the boundaries of the
playing field. Iigure 5.2 shows the initial setup for a pass play that is “heavy”
on the left hand side of the playing field. The third way in which the system
uses the lines is to determine how many players are to the left and right of the
centermost line.

The fourth reason is to constrain the number of possible labels for a player. The
lines are used as a filter to allocate labels for the players based on the order in
which you would expect to see them. As the system processes the vertical lines
from right to left, the first players are likely to be receivers as they are positioned
at the front of the formation. However once the first two vertical lines from
the right are processed, the players are labelled as guards/tight-ends. As more
lines are processed, the preferred label changes from guard/tight-end to running-
back/tail-back. The horizontal lines are used in a similar way. The only difference
is that as the system processes the lines from top to bottom, the likely labels vary
as follows: receiver —— > guard —— > running-back/quarterback —— > guard
—— > receiver.

Once the lines are identified, the system attempts to label those remaining players
in the query that do not have a label yet. The system labels the players using
the information extracted from the lines combined with the information on the
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Figure 5.1: Typical query initial setup with 6 players arranged along 5 vertical
lines and 4 horizontal lines.

labels currently allocated. For example, consider the initial setup shown in Figure
5.3a. After the lines are identified, the system has labelled players 1, 2 and 3 as
receivers and player b as a running-back or quarterback. Player 4 does not have a
label. The system determines that the play is heavy on the left and that there are
3 players to the left of the centermost line in the initial setup — the centermost
line in this case is the vertical line with player 5. Player 4 is positioned to the
left of the centermost line. He is also behind the receivers and furthermore is
positioned to the right of the receivers on the left hand side of the field. Therefore
player 4 is labelled as a #ight-end. The last stage in the labelling process involves
removing any ambiguity as to the label of a given player as well as validating the
label of a player. As mentioned above, some players may have multiple labels.
For this reason the system uses spatial information in the form of player symbolic
relationships to solve the ambiguity in the player labels. If a player has two labels,
the system generates a symbolic description of the relationships with his team
mates for each one of the labels. Then the system takes each set of relationships
at a time and compares them with the relationships of the corresponding player
in the model. A score is computed for each set of relationships generated for each
label. The comparison process is simple as it involves a straight match between
two symbelic values. If a match is found then the score for the current label is
incremented, else the score is left unchanged. When the scores for all labels are
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Formaton (initial setup)
that is heavy on the left
side.

Figure 5.2: Pass initial setup with 2 receivers on the left hand side of the playing
field. Image provided with the permission of Wide World of Sports - Channel 9
Australia.

computed. the svstem selects the highest scoring label as the valid label. Afier
the labelling is completed a more detailed set of labels is obtained by analysing
on what side of the field is the position of plaver. For example, if a playver gets
the label of wide receiver and is positioned on the left side of the field then the
more detailed label becomes left wide receiver.

Overall the labelling module of the system resembles an expert svstem that con-
sists of sets of rules, which fire based on the information extracted from the initial
setup of the players in the video. There are several hundred rules (generated man-
uallv) in the labelling module and for this reason we show in Figure 5.4 only a
sample of the rules used to classify the plavers in a initial setup arranged in F
vertical lines and 3 horizontal lines with one player at the back of the formation.
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Figure 5.3: (a) Before labelling, (b) After labelling.

The advantage of labelling the players in the query play is that it constrains the
search for player matches in the subsequent frames. The play models describe
where the players are positioned and what they are doing from the first frame to
the last frame — hence we can predict where the player in the query should be
positioned and what he should be doing in the rest of the frames.

While labelling the players allows faster matching it has a drawback — if the
labelling is incorrect then the solution returned by the system is also likely to be
incorrect. Analysing many labellings reveals that misclassification occurs in 10%
of initial setups. To further reduce the misclassification is very difficult as more
information about the player initial setup is required and more rules need to be
generated (all the players need to be segmented out to determine the combination
of defensive players in the initial setups — this is not possible since the defensive
players are occluded). However even in these 10%, the system still accurately
labelled two or more of the players in the setups. Hence we regard this degree of
misclassification as having little significance.

5.3 Results

The labelling method has been tested using initial player setups extracted from
N.F.L. footage. The tests were conducted as follows. One video frame containing
the initial player setup was segmented and the coordinates of the players were
extracted as described in the previous chapter. The player coordinates were then
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Let P1, P2, ..

Let Line_Laft

.. Pn be the players in the Query.
be the horizental lines with the lowest y valuae,

Line_Right be the horizontal lines with the highest y value,
Line_Front be the vertical lines with the higheat x valua,

Line_Back
P1(LL) be
P1{LR) bs
P1{LF) be
P1{LB) b=

be the vertical lines with the lowest x valus,

the number of horizontal lines left player P1,

the number of horizontal lines right player P1,

the number of vertical lines in front of player P1,
the number of vertical lines behind player P1,

P1(x}, P1(y) be the coordinates of player Pi.

if Vertical Lines == 5 then
if Horizontal_Linea == 3 then
for i = 1 ton
compute P1(LL}, P1(LR}, P1(LF), P1(LB);
if Pi on Line_Left then
if Pi on Line_Front then

if Pi(y) < 10 then

Pi is left wide raceivar;

else

Pi is left receiver;

else if Pi(y} < 10 then

Pi is left wide receiver;

if Pi on Line Right then
if Pi on Line_Front then

if Pi(y) > 90 then

Pi is right wide receiver;

else

Pi is right receiver;

else if Pi(y) < 90 then

Pi is right wide receiver;

if Pi(LL) == 1 and Pi{LR) == 1 then
if Pi(LF)} == 4 then

Pi

is tail back;

if Pi(LL) == and Pi{LR) == 1 then
if Pi{LF) == 3 then

Pi

is full back;

if Pi({LL) == 1 and Pi{LR) == 1 then
if Pi(LF) == 2 then

Pi

is quarterback;

Figure 5.4: Rules used for the case of 5 vertical lines, 3 horizontal lines and one
player back formation.

given as input to the labelling module of the system to generate labels for the
players in the query. The video frames and the generated labels are shown in
Figures 5.5 to 5.14. The labels show the general positions of the players on the

field.

The labelling method generated correct labels 27 of the 30 setups. The incorrect
labels are highlighted by a bounding box around the label. Notice that though
the system failed to generate a completely accurate set of labels for the players
in the remaining 3 setups, the system was still able to generate a valid label for
at least two of the players.
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Flanker @

(D) Tail Back

Flanker (3)

Wide Receiver @

Tail Back (1)

Full Back (2)

® Flanker

@ Wide Receiver

@ Receiver

Running Back @

Running Back @

@ Flanker

Figure 5.5: Setups 1 - 3. Images provided with the permission of Wide World of
Sports - Channel 9 Australia.
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@ Running Back

@ Flanker

@ Receiver

@ Wide Receiver

Tail Back (1)

@ Receiver

@ Receiver

Running Back @

Running Back @

@ Flanker

Figure 5.6: Setups 4 - 6. Images provided with the permission of Wide World of
Sports - Channel 9 Australia.
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Figure 5.7: Setups 7 - 9. Images provided with the permission of Wide World of
Sports - Channel 9 Australia.
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@ Receiver

@ Wide Receiver

(4) Flanker

Running Back @

Running Back @

@ Flanker
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Figure 5.8: Setups 10 - 12. Images provided with the permission of Wide World
of Sports - Channel 9 Australia.
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Figure 5.9: Setups 13 - 15. Images provided with the permission of Wide World
of Sports - Channel 9 Australia.



5.3 Results

Receiver @

Flanker @

(1) Tail Back

@ Flanker

@ Flanker

@ Running Back

@ Running Back

@ Receiver

@ Receiver

@ Running Back

(2) Running Back

@ Flanker

Figure 5.10: Setups 16 - 18. Images provided with the permission of Wide World
of Sports - Channel 9 Australia.
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Receiver @
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(3) Flanker

Running Back @
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Running Back @
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Figure 5.11: Setups 19 - 21. Images provided with the permission of Wide World
of Sports - Channel 9 Australia.
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(2 Full Back

(D) Tail Back

@ Wide Receiver

@ Wide Receiver

@ Flanker
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Figure 5.12: Setups 22 - 24. Images provided with the permission of Wide World
of Sports - Channel 9 Australia.
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@ Flanker
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Figure 5.13: Setups 25 - 27. Images provided with the permission of Wide World
of Sports - Channel 9 Australia.
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Figure 5.14: Setups 28 - 30. Images provided with the permission of Wide World

of Sports - Channel 9 Australia.
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5.4 Summary

In this chapter, we described the process of labelling the players in the query.
The process involves the use of background knowledge about the game of Amer-
ican Football combined with the spatial knowledge about the initial setup of
the players in the query. The final part of the American Football application
— the recognition and classification algorithm of American Football plays — is
presented in the next chapter.
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Chapter 6

N.F.L. Application — Model
Recognition

6.1 Introduction

This chapter describes the play model recognition process. The process is built
around the play model representation and consists of three stages that check
whether the query play is similar to any of the known plays and if it is similar,
then it determines the degree of similarity. We refer to a play as a known play if
the system already has a model representing the play.

The recognition task is essentially to identify which play model, if any exists in
the hierarchy (described in chapter 4), best matches the commentary segment
and the geometric data extracted from the corresponding video sequence. The
chapter is organised as follows: in Section 2 we describe the processing involved
in extracting data from the text and video. Section 3 presents the algorithm used

in the model recognition process. Some classification results are shown in Section
4.

6.2 Data Inputs

We use three sources of information: the transcript of the natural language com-
mentary of the football game derived from the audio track of the video, geomet-
rical information about the play derived from the video and domain knowledge.
The low level video processing was discussed in chapters 4 and 5 of this thesis.
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6.2.1 Extraction of Information from Text

The transcript of the natural language commentary plays a crucial role in recog-
nition because it is an expert description of the action in the video and therefore
can be used to obtain much information about the play.

The commentary text provides three clues about the play in the video. The first
clue, is the type of action that takes place in the game, such as “the ball was
passed”.

The second clue gives the name and the type of the players that have heen
involved in the play action. For example, the text “PlayerX throws the ball high
to receiver PlayerY” describes a play “pass”, in which one of the player’s position
on the field is that of a receiver by the name of PlayerY.

The third clue that can be obtained from the natural language text is the game
statistics. It is possible to extract the score of the game, the time remaining in
the game, etc. This information essentially describes the status of the game and
by and large dictates the course of action taken by the team in possession of the
ball. For example, if the team in possession of the ball is behind and there is
little time left in the game, then the team is bound to try to score quickly and
hence choose from only a certain subset of the possible types of plays.

Note that it is not the intention here to understand all the text, just the relevant
key phrases that are relevant to our goal of understanding the play. This signifi-
cantly reduces the complexity and enables the use of simple grammar tools (LEX
and YACC). The system uses a transcript parser that is essentially a finite state
machine {as shown in Figures 6.1 and 6.2). The parser has been built using the
UNIX tools LEX and YACC, to search the input commentary for a predefined
set of keywords. The keywords found in the commentary are then passed onto a
module that attempts to assemble the keywords into predefined patterns that de-
scribe various aspects of the game ranging from player positions to play actions.
The parser searches the text for two general types of patterns in the text: a play
pattern and game statistics pattern (e.g. yard line pattern).

The play pattern (Figure 6.1a) can be of four types: offensive, defensive, special
and empty list. The most common offensive play patterns (Figure 6.1b) are
throw, pass, lob and hit. Each one of the offensive play pattern types involves
an action and one or two player components. The action can consist of one to
three keywords. The player component can be lead type or receiver type. The
lead type (Figure 6.1c) consists of a position and a name. The position is a single
keyword. The name can be one or two keywords. In general, the play patterns
consist of an action component and one or two player components. The action
component and the player component vary depending on the type of play pattern
(offensive, defensive or special).
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The game statistics pattern consists of several types patterns of which the most
common are vard line, time left, time period and score. The yard line pattern
(Figure 6.1e) is made up of seven specific patterns and each one of the patterns
is made of between one and four keywords.

The most common defensive plays (Figure 6.2a) are cover, tackle, block and
intercept. Each one of the defensive play patterns consists of an action and one
or two player components. The player component can be defender type or receiver
type. The defender type (Figure 6.2d) consists of a position (Figure 6.2¢) and a
name (Figure 6.2¢).

The special play patterns are similar to the offensive and defensive play patterns
and are shown in Figure 6.2b.

The patterns extracted from the commentary text are then used to fill two types of
frames: a player frame and a play frame. Appendix A shows the list of keywords.

Two typical information frames are shown in Figures 6.3 and 6.4.

6.2.2 Extraction of Information from Video Data

There are two stages in the processing of the video data. In the first stage the
system attempts to determine the size of the temporal window in terms of frames
that contains the American Football play, that is the start and end of the shot
sequence containing the play. The play shot starts after the players have taken
their positions in a predefined pattern on the playing field. Just before the play
starts all players stand still and for this reason the beginning of the play shot
is characterised by a period of time when there is little movement in the scene
Le. a frame with little movement indicates the start of the play. The play action
involves heavy player movement in the scene and it ends when the camera focuses
on one player, the crowd or when the game/player statistics or advertisments are
shown. The time length of a play varies depending on the play. For example,
running plays generally take longer than pass plays. In terms of frames, a play
can take from 19 to 120 frames. In conclusion a play start is indicated by little
movement in the scene and a play end is indicated by the camera focusing on a
player or when a cut is detected (game statistics or advertisments are shown).

In the second stage the frames are segmented and the geometrical information
extracted from the video frames used to compile a list of unlabelled player co-
ordinates from the frames in the video sequence. This information is used to
determine direction of movement of the players in the video as well as the initial
and final player setups and positions (see Figure 6.5). As shown in the previous
two chapters, the centroids of the blobs (which represent the unlabelled players
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[ Namel [I Name2 || Position J[ Action [| Team || Flay-Type || I1d || Instance ]|
[ PlayerX |[ FlayerY || Quarterback [[ Pass-ball || Teaml [[ Offensive [ 15 || 19

Figure 6.3: Player Frame with an example.

Play-name Blitz
Offensive-team Teaml
Defensive-team Team?2

Down-No. 2nd

Yards-to-go 2

Time 4:15
Playerl PlayerX
Player2 PlayerY

Playerl-Type Linebacker
Player2-Type Quarterback
Instance 68

Figure 6.4: Play Frame with an example.

in the video frames) at time instances T and T + 1 are extracted and compiled
into lists of coordinates. The pairs of coordinates can then be used to determine
a general heading (H) for each player. In the case shown in Figure 6.5a the
coordinates of three players at times T and T+1 are extracted from the images
and compiled into a list (the players are labelled P1, P2, P3 and P4). In Figure
6.5b the coordinates obtained previously are used to compute the heading of the
three players.

Using the information from the video, three symbolic descriptions of the player’s
movement are derived. The first description details the movement of the player
for the entire play as a series of moves and turns (as described in chapter 4). The
description is used in the temporal part of the play model. The second description
is used to keep track of the player’s movement at each instance in time and is
used to reconstruct the dynamics of the play. The third description details the
player movement over the entire play in terms of shape and distance.

The information from the video is assumed to be incomplete and can possibly
contain noisy data about the player coordinates at different frames in the video.

6.3 Model Matching

Once the system has processed the football commentary and the video data to ex-
tract information, it proceeds to search the solution lattice (shown in Figure 6.6)
for potential matches and outputs a list of plays identified as potential matches
in ascending order (best match first). If the system has successfully branched
down to the fourth level (where the labelling is done) then a solution exists for
the query. The lower levels are then used to refine the solution. The three general
levels match those in Figure 4.17.



6.3 Model Matching

97

8 P1173.49
P P279.122

a) &3 p3 111,140

8 P4 160,253

P1 173,49 P279,122 P3 111,140 P4 160,253

?PZ

& 50013

P4 187253

P1 192,50 ‘

84,122

P1192,30 P284,122 P3 122,138 P4 187.253

//
O ot
_________ H1 Position of player
_.> P1 at time T4+1
O _—
b) H2
| O-mnnm
H3
O R & H4

Position of player
Pl at time T

Figure 6.5: Extracting Information from Video Frames.

In the class level information is exfracted from the commentary text. The other
two levels involve the derivation and analysis of symbolic data from the geometric
information. Fach of these levels is deseribed in detail in the following sections.
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play class

CLASS LEVEL <

action type

players involved

CONDITION LEVEL
player position (labelling)
player movement
player significance
MODEL LEVEL player relationship

player action

action sequencing

Figure 6.6: The general solution lattice used in the recognition routine.
6.3.1 Level 1: Comparing the Text Information

Initially, all plays are assumed to match the query. As the system descends the
first three levels in the lattice, it determines the class of the play, the action in
the play and the players involved in the play. Using this information the system
eliminates (or prunes) potential play candidates that do not agree with the clues
obtained from the different data sources. The candidates remaining after the
system reaches the fourth level in the lattice, have their similarity scores updated
after each successive level of processing until the system reaches the leaf nodes.
The first four stages in the recognition process (represented by the first four levels
in the decision tree) have to be performed in the given order. The rest of the
stages are independent of each other and they can be carried out in any order.

In the majority of cases the text analysis provides the system with important
clues on the type of play class occurring in the video sequence. However, there
are instances when the commentary will not reveal any information about the
play type. In these cases the actual matching is entirely based on the initial
setup of the team at the beginning of the play. It is possible to determine from
the player positions the general type of play (such as offensive running play) but
the accuracy of the recognition process is greatly reduced. Also, teams sometimes
use running play setups to disguise pass plays. If the system does not get any
clues from the commentary (even the name of an offensive player involved in
the action can help the system in determining the type of play) it is difficult to
determine the actual play.
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6.3.2 Level 2: Player Position Labelling

The initial setup of each model is compared with the initial setup of the query
to label the players. The process is described in detail in chapter 5 and involves
generating one or more hypotheses about the positions of the players in the query.

6.3.3 Level 2: Player Relationship Comparison

We test the relationships between the players at each instance in the play action.
For each instance in the query play we take one player and develop a symbolic
representation of his relationship with his teammates. For example, we take the
player labelled receiver in the query play, develop the symbolic description of
the relationships with his teammates and then compare these relationships with
those of the player labelled receiver in the play model. If the relationships match
then the similarity score of the candidate model is incremented, else the score is
left unmodified. Consider the following example. Player P1 is left-of and in-front
of player P2 in the query. In the model, Player P1 is left-of and behind player
P2. The relationship left-of matches, so the similarity score is incremented. The
relationship in-front does not match and the similarity score is left unchanged
(the relationships of P1 in the query only partially match those of player P1 in
the model).

6.3.4 Level 3: Temporal Data Comparison

The third level deals with the temporal occurrence and sequencing of the actions
of the players in the query play. The system aligns the end points of the time
intervals in the query and play model on a single axis (as shown in Figure 6.7).
Then for each sub-interval, if the action in the query matches the action in the
play model, the similarity score is incremented, otherwise the score is unchanged.
Also, for each sequence of actions for each consecutive pair found in both the query
and the model the similarity score is incremented. The process is repeated for
each player.

Consider the example shown in Figure 6.7. It shows the actions of Player 1 in the
model and the query. In the model, Player 1 moves to position P1 and then turns
left. In the query, Player 1 also moves to position P1 and then turns left but the
duration of the move action is longer than in the model although the ordering
of the actions is the same in the model and query. Since the actions and the
ordering of the actions in the query also match the model, the system increments
the score of the model each time the action of Player 1 occurs at the same time
instance. Notice that we do not consider duration of importance. In this case the
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systein increments the score twice as the players moved at time instance 1 and
turned lefi at time instance 2.

1
(a)
T2
‘;_g" Move P1 11 Turn Left ° PLAY MODEL
E 1
B X
Video Frames :
A i
: 5 (®)
- Move P1 :‘1 R Turn Left i. QUERY
] T T2
3 : :
-8
Video Frames -
(c)
PROJECTION
Match Match :
*r— ® »

Time T
ime Instances -

Figure 6.7: The action of Player 1 in (a) the play model and (b) the query are
shown. The two actions are aligned as shown in (¢).

After the third level in the recognition routine has been completed, the plays are
arranged in order of descending similarity score and the candidate plays with the
best five scores are returned as solutions. There are two reasons for returning the
best five solutions.

One reason the best five solutions are returned is that the system in some cases
does not find a good match for the query — only partial matches. A partial
match is found when the system finds a match for only part of the information
in the query — some of the spatio-temporal information in the query is different
from that in the candidate model. For example if the relationships of a given
query player P1 (Query) match only half of the corresponding model player P1
(Model) in the model, then P1 (Query) is considered to be a partial match for P1
(Model). In case the system finds only a partial match, there are two options: to
return a model solution that is just a partial match or to return that no complete
match for the query has been found. Rather than returning no solutions, the
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system sorts the best five partial matches and returns the possible solutions.

In addition there are American Football plays, specifically short running plays,
where there are only small differences between different plays. The information
from the query is incomplete as it contains information about 3 to 6 players and
an accurate match in this case is not possible. In such cases it is more appropriate
to provide more than one of the matches.

The algorithm to compute the similarity score between the query and the candi-
date model has 3 stages: a text stage (corresponding to the class level), a spatial
relationship stage (corresponding to the condition level and spatial conditions
in the model level) and a temporal stage (corresponding to the temporal condi-
tions in the model level). The values used to increment the Similarity Score at
the three levels are system parameters. The values used in the application have
been: IncreText 5, IncreRel 1 and IncreTemporal 5. The algorithm is shown in
Figures 6.8 and 6.9.

For a more detailed explanation of how the system process queries, consider the
following example.

6.3.5 Test Sequence 1
6.3.5.1 Input

The input to the system consists of a paragraph of American Football commentary
(see Figure 6.10) and the video frames shown in Figures 6.11, 6.12 and 6.13. The
query is “what is the offensive play in the video sequence?”

6.3.5.2 Extracting Information from the Text

The system uses LEX and YACC to extract the relevant keywords from the text
and to build frames with information about the players and the plays described
in the commentary paragraph.

The system identifies (using the LEX list of keywords) that there is an action
described in the text which involves the players PlayerX and PlayerY (from the
words “PlayerX lob PlayerY”) and another action which involves the player Play-
erZ (from the words “PlayerZ on coverage”).

By using the predefined YACC patterns (shown in Appendix A), the system
determines that PlayerX’s position is that of a quarterback since only the quar-
terback can pass/lob the ball. Similarly it determines that PlayerY’s position is
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Leval 1. -—-  TEXT DATA ---
Let P1, P2, ..., Pn be the labels of the players in the {Query and
POS1, POS2, ..., POSm be the labels of the players in the candidate Model.

Similarity_Score = 0;

for i =1 ten
for j=1tom
if Pi == POSj then
if POSj is significant then
Simjlarity_Score = Similarity _Score + IncreText;

Let P1, P2, ..., Pn be the labels of the players in the Query.
Let P1{Reli)P2, P1(Rel2)P2, P1{Rel3)P2, P1(Reld)P2, P1{Rel5)P2 and P1{RelB)P2 bs the
six valid relationships between players Pl and P2, where Rell is Left-0f,
Ral2 is Right-0f,
Rel3 is In-Front-0f,
Rel4d is Behind,
Relbs is In-Line-Horizontal,
Rel6 is In-Line-Vertical.
Let P1{Rell1)P2 == True is P1 is Left-0f P2.

Let PD31, POS2, ..., POSm ba the labels of the players im the Model.
Let PDS1(Rel1)P0S2, POS1{Rel2)P032, P0S1(Rel3)P0S2, POS1(Rel4)PDS2, P0S1(Rel5)PO0S2 and
POS1(Rel6)POS2 be the six valid relationships between players POS1 and P0S2,
where Rell is Left-0f,
Rel2 is Right-0f,
Reld is In-Front-0Of,
Rel4 is Behind,
Relb is In-Line-Horizontal,
Rel6 is In-Line~Vertical.

Let PO31(Rell)P0S2 == True is PDS1 is Left-0Of POS2.

for i=1¢ten
for j=1tom
if Pi == POSj then
for k=1 ton
for p=1 tom
if Pk == POSp and i !'= k and m != p then
for s = 1 to 6
if Pi(Rels)Pk == True and POSm(Rels)PDSp == True then
Similarity_Score++;

Figure 6.8: The algorithm used to compute the Similarity Score.
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Level 3. === TEMPORAL DATA ---

Let P1, P2, ..., Pn be the labels of the players in the Query.

Let P031, POS2, ..., PDSm be the labels of the players in the candidats Model.

Let P1{A1), P1(A2}, ..., P1{AK) be the ordered actions of player labelled P1 in the
Query.

Let POS1(B1), POS1(B2), ..., POS1({Bk) be the ordered actions of player labelled POS1

in the Model.

for i =1 ton
for J=1tom
if Pi == POSj then
forp=1tok
if Pi(Ap) == P0Sj(Bp) then
Similarity_Score = Similarity_Score + IncreTemporal;
if Pi{ap-1) == P05j(Bp-1)} then
Similarity_Score = Similarity_Score + IncreTemporal;

Figure 6.9: The algorithm used to compute the Similarity Score (continued).

On 3rd and 8 or a long 7. 4 wide receivers, PlayerX lobs it high and
over the stretching try of PlayerY the former Teaml star, PlayerZ on
the coverage.

Figure 6.10: American Football commentary.

that of a receiver. The action is described as a lob which is in fact a high pass.
The action in the play is therefore a pass and the action is an offensive action.

The system also has the information that the position of PlayerZ is that of a
linebacker so the system determines that the second action described is a defensive
action.

When the system concludes extracting the information from the text, it builds
two frames, one for the offensive action and for the defensive action. The frames
are shown in Figures 6.14 and 6.15.

The query states that the system should find the best match for an offensive
play and as a result the relevant action is the offensive action described in the
commentary paragraph. Hence the first play frame will be used in the text
analysis.
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Figure 6.11: Vidceo frames from test sequence 1.

6.3.5.3 Text Analysis

Using the frame describing the offensive action, the system proceeds to search for
a play model that best matches the play described in the commentary.

At the start of the search all the play models in the system’s memory are con-
sidered to be possible solutions to the query, regardless of the play model class
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Figure 6.12: Video frames from test sequence 1. Tmages provided with the per-
mission of Wide World of Sports - Channel 9 Australia.

(offensive, defensive and special).

The search for a solution involves the pruning of a solution tree which contains all
the plays in the system’s memory. The frame built in the previous stage describes
an offensive play and therefore the class of the play is offensive. The play model
must share the same class with the play in the query so the svstem prunes the
branches in the solution tree which contain defensive and special play models.
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Figure 6.13: Video frames from test sequence 1. Images provided with the per-
mission of Wide World of Sports - Channel 9 Australia.

Play-name Pass
Offensive-team -
Defensive-team -

Down-No. 3rd

Yards-to-go 7
Tirme -
Playerl PlayerX
Player2 PlayverY
Player1l-Type Quarterback
Player2-Type Receiver
Instance 1

Figure 6.14: Frame for offensive action.

The action described in the query play frame is a pass so the svstem further
constrains the search by removing all offensive plays from the solution tree whose
action type is not a pass.

The frame describing the querv is then nsed by the system to determine the
positions of the plavers involved in the play action. In the text, the players are
quarterback and receiver. The svstem then uses the player positions to reduce
the number of possible solutions by removing the offensive plays whose action did
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Play-name Tackle
Offensive-team -
Defensive-team -

Dowmn-No. 3rd

Yards-to-go 7

Time -
Playerl -
Player2 PlayerZ

Playerl-Type Linebacker
Player2-Typc -
Instance 2

Figure 6.15: Frame for defensive action.

not involve a quarterback and a receiver.

At the end of this stage the solution tree still contains 5 play models and this
indicates that the query play is similar to the 5 play models. We will show the
processing performed by the system considering one of the candidate play models:
the Single Back Formalion: Break-In play model.

The player initial setup (labelled circles)
and movement (arvows) for the play
Break-In

©L99399

Figure 6.16: Break-In play model.

6.3.5.4 Video Analysis

The video frames are processed and the coordinates of the players are extracted
and compiled into a list. The segmented players are highlighted with a bounding
box. At the start of the play, 5 players are segmented out. As the play develops,
the players progressively move out of the camera view and as a result after 19
frames only one of the original players is possible to segment out. The segmen-
tation of the players stops when the last player is occluded and the play shot
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The player initial seinp (labelled circles)
and movement (arvows} over the
duration of the play

QD (@9
® @
P1 - player 1 P& - player d PE5 - player 6
P2.player 2 P4 - player 4

Figure 6.17: Query play.

ends with the camera focusing on the player that catches the ball thrown by the
quarterback.

The coordinates are used to build the spatio-temporal description of the query
shown in Figure 6.18.

The player initial setup (labelled circles}
and movement (arrows) over the
duration of the play

./ °
Pl - player 1 P3 -player 3 Pb - player &
P2 - player 2 P4 - player 4

Figure 6.18: The movement and starting positions of the players in the query.

The solution list contains five candidate play models and to determine which is
the best match, the system uses the information extracted from the video. It first
attempts to label the players in the query.

Player Labelling — The coordinates of the players in the query in the first frame
(see Figure 6.19 of the video sequence) are used to label the players (see chapter
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5). The process is repeated for each candidate play model. The system first
considers Single Back Formation Break In which is the (4wr — 4 wide receivers)
play model (see Figure 6.20 for player starting positions). Players 1 and 2 are

[

FRAME 1
Query

@)

P1 - player 1 P3 - player 3 PS5 - player 5
P2. player 2 P4 - player 4

\

Figure 6.19: The starting position of players in the query at the start of the play.

FRAME 1
Break-In

Figure 6.20: The starting positions of the players in the Break-In play model (at
frame 1).

close to the left boundary. This restricts the possible matches in the model to just
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the players on the left hand side. Next the system analyses the player’s spatial
relationships to his team mates and labels both of them as receivers. Similarly
players 4 and 5 (close to the right boundary) are labelled as receivers. Player 3
is in the last line of players (there is no player behind him) and gets the label of
tail back.

When the labelling has been completed, the system considers each play model
one at a time and performs a series of tests (described below) which determines
the degree of similarity between the query and the play model. Each candidate
model starts with a score of 0 and after each test, if appropriate, the similarity
score is incremented. The play model with the highest similarity score is the best
match.

Player Movement — The system uses the information extracted from the video
sequence to develop a symbolic description of the player movement in the query as
described in chapter 4. Players 1, 2, 4 and 5 start in_line or behind the defensive
line and finish their movement in front of the defensive line hence the system
determines that their movement is long. Player 3 is starting behind the defensive
line and finishes behind the defensive line. His movement is therefore short. The
movement of Players 1, 2, 4 and 5 is straight while the movement of Player 3 has
a turn. The symbolic description of movement in the query is: Player 1 — long-
and-straight, Player 2 — long-and-straight, Player 3 — short-and-turn, Player 4
— long-and-straight, Player 5 — long-and-straight.

Each one of the candidate play models is considered at a time and the movement of
the players in the query is compared with the movement of the respective players
in the play model. If the movement of a player in the query is similar to that of
the respective player in the play model, the similarity score is incremented by 5
(the amount by which the score is incremented has been chosen to be 5 because
the information evaluated is of great significance).

In the case of the Break-In play model the movement of Receiver 1 is long-
and-turn. When compared with the movement of Player 1 the system discovers
that the movement is not similar and the similarity score remains 0. Similarly
the movement of Player 4 is different and the score is not incremented. The
movements of Players 2, 3 and 5 are similar to those of the respective players in
the Break-In model. Therefore the score is incremented by 15 (5 for each of the
3 players). At the end of the player movement comparison the similarity score
for the Break-In play model is 15.

Player Significance — The system uses the significance of the players in the query
to further differentiate between the candidate play models. For each significant
player in the query the similarity score is incremented by 5. When the players in
the query were labelled using the Break-In play model, the labels were: receiverl,
recewer?, tail back, receiver3 and receiver4. All the players are significant and
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the system increments the similarity score of the Break-In play model by 25.

Player Relationships — The system then analyses the relationships between the
players in all the frames in the video sequence. For each time instance in the
query play the system takes one player and develops a symbolic representation
of his relationship with his teammates. It then compares the relationships with
those of his matching player in the known play model and each time a relationship
match is found the similarity score is incremented by 1 (the amount by which
the score is incremented has been chosen to be 1 because the information that
evaluates is of smaller significance).

The relationships of the players in the query at time instance 1 are as follows:
Player 1 —

BEHIND: Player 2, 3, 4, 5;
TO-THE-RIGHT: Player 2, 3, 4, b;
IN-LINE-WITH-HORIZONTAL: Player 4,
Player 2 —

IN-FRONT: Player 1, 4;

BEHIND: Player 3, 5;

TO-THE-RIGHT: Player 3, 4 5;
TO-THE-LEFT: Player 1,

Player 3 —

IN-FRONT: Player 1, 2, 4, 5;
TO-THE-RIGHT: Player 4, 5;
TO-THE-LEFT: Player 1, 2,

Player 4 —

BEHIND: Player 2, 3, 5;
TO-THE-RIGHT: Player 5;
TQO-THE-LEFT: Player 1, 2, 3;

IN-LINE-WITH-HORIZONTAL: Player 1,
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Player 5 —
BEHIND: Player 3;
IN-FRONT: Player 1, 2, 4;

TO-THE-LEFT: Player 1, 2, 3, 4.

-
FRAME 1
Query

P1 - player 1 P3 - player 8 P5 - player §
P2 - player 2 P4 - player 4

Figure 6.21: The position of the players in the query at time instance 1.

Now consider The Break-In model. The system compares the relationships of
recetver! in the play model with the relationships of player 1 in the query. The
relationships of receiver! are:

BEHIND: receiver 2, 3, running-back;
TO-THE-RIGHT: Player receiver 2, 3, 4, running back;
IN-LINE-WITH-HORIZONTAL: receiver 4.

The difference between the relationships of receiver! and player 1 from the query
are: receiverl is IN-LINE-WITH-HORIZONTAL with receiver4 (which is player
5 in the query), receiver! is not IN-LINE-WITH-HORIZONTAL with receiverd
(which is player 4 in the query), and receiver? is not IN-FRONT-OF receiver.

The rest of the relationships for receiver! are the same as those of player 1 in
the query and the score is incremented by 7 (7 relationships match — for each
relationship that matches, the score is incremented by 1). The remaining players
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FRAME. 1
Break-In

]

Figure 6.22: The position of the players in the Break-In play model at time
instance 1.

are also considered by the system and the score is incremented by 26. The total
evidence for the Break-In play model after the first time instance was considered
is 73. This is repeated for each time instance in the video sequence (6 instances)
and after all the instances have been considered the total score for the play is
181.

The five remaining candidates are processed in a similar fashion and the scores
for the play models after the player relationships are examined are shown in Table
6.1.

Play-Model-Name Play Similarity Score
HB-Draw (4wr) 239
Break-In {4wr) 181

In-Out (dwr) 176

Quick-Slant (3wr) 168

Quick-Slant (normal) 159

Table 6.1: Similarity score for the play models after the player relationships were
considered.

When this stage has been completed, the model emerging as the best solution
is HB-Draw. Though the differences in score between HB-Draw and the rest of
the candidate plays is large, this is not always the case and more processing is
necessary to increase the confidence in the classification of the query.
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6.3.5.5 Temporal Analysis

To perform the temporal analysis the system takes the movement of each player
in the query and describes it as a series of moves and turns. The descriptions of
the player movements are afterwards used to build the temporal description of
the query play (see Figure 6.23).

4
PLAYER POSITION
Action |I Pass (Quarterback - Receiver Type) I

Move P1

Pl I

P2 Move P2 l

P3 Turn-Right I Move P3 I
Move P4

P4 ‘I
Move P&

P5 |

-]

! TIME INSTANCE (T)

Figure 6.23: Temporal description for the query.

Bach player from the query has his movement compared to that of the corre-
sponding player in the candidate model and if the same action occurs in a similar
time interval, the similarity score for the candidate play model is incremented by
5.

The Break-In play model (see Figure 6.24 for a temporal description of the play
model) is considered by the system and Player 1 in the query has his movement
compared to the movement of Recesver 1 in the model (see Figure 6.25).
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Pass (Querterback - Receiver Type)
Action ! |
Move P1 | e tl
Rl T 1
Move P2 |
R2 1
Move P3 |
'z L i
M. P4
E B ove {
Move P3
w S I
O Move P&
A Q@ l
\Ri Move p7
E RB Turn:-Right I I
Move P8
5 B {
p.' L Move P9 ]I
RS Move P10 !
Move P11 :l‘urn-[.eft |
R4 T 1
B I I I I |
1 2 5 4 B 8
TIME (T)

Figure 6.24: The temporal description of the Break-In play model.

Both players move in the same time to predefined positions so the action matches.
The score is incremented by 5. In the candidate model temporal description,
Receiver 1 makes a turn while Player 1 in the query continues his movement
so the action does not match. Players 2, 3, 4 and 5 are processed in the same
manner. The similarity score after the time analysis for the Break-In play is 201.
The results for all candidate plays are shown in Table 6.2.

Play-Model-Name Play Evidence Score
HB-Draw (4wr) 264
Break-In (4wr) 201

In-Out (4wr) 191

Quick-Slant (3wr) 188

Quick-Slant (normal) 174

Table 6.2: Final Result. The best is match the HB-Draw play.

This shows that the temporal analysis improved the difference between the best
and the next best interpretation, increasing the the confidence in this result.
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Figure 6.25: The aligment of the actions of Player 1 and Receiver 1.
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6.4 Classification Results

Several tests were conducted. We describe two more results in detail and include
the others in Appendix C.

6.4.1 Test Sequence 2

The video frames of the play are shown in Figures 6.27 and 6.28 and the transcript
of the text for the play is in Figure 6.26. Four players have been segmented and
the text processing reveals the play frame in Table 6.3.

PlayerX to the 25 yard line for another Team1 1st down .

Figure 6.26: Transcript of the commentary for the play shown in Figures 6.27
and 6.28.

Play-name Run
Offensive-team
Defensive-team

Down-No.

Yards-to-go
Time -
Playerl PlayerX
Player2 -
Playerl-Type Running-Back
Player2-Type -
Instance 1

Table 6.3: Play frame.

The solutions returned by the system are shown in Table 6.4.
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Figure 6.27: Video frames from test sequence 2. ITmages provided with the per-
mission of Wide World of Sports - Channel 9 Australia.
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Figure 6.28: Video frames from test sequence 2. Images provided with the per-
mission of Wide World of Sports - Channel 9 Australia.




6.4 Classification Results

120

Play-Model-Name

Play Similarity Score

Single-Back (normal) 245
Single-Back (3wr) 219
HB-Draw 211
Belly-Strong 194
HB-Dive 174

Table 6.4: The solutions and their respective similarity scores.
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6.4.2 Test Sequence 3

The video frames of the play are shown in Figures 6.30 and 6.31 and the transcript
of the text for the play is in Figure 6.29. Three players have been segmented and
the text processing generates two play frames shown in Tables 6.5 and 6.6.

PlayerX had enough speed to get to the 39 yard line, PlayerY made the tackle .

Figure 6.29: Transcript of the commentary for the play shown in Figures 6.30
and 6.31.

Play-name Run
Offensive-team
Defensive-team

Down-No.

Yards-to-go
Time -
Playerl PlayerX
Player2 -
Playerl-Type Running-Back
Player2-Type -
Instance 1

Table 6.5: Offensive Play Frame.

Play-name Tackle
Offensive-team
Defensive-team

Down-No.

Yards-to-go
Time -
Playerl PlayerY
Player2 -
Playerl-Type Linebacker
Player2-Type -
Instance 2

(NN N

Table 6.6: Defensive Play Frame.

The solutions found by the system are shown in Table 6.7.

We have carried out on the recognition system using real data. Of the 20 tests
the system performed correctly 18 times. It failed when the text was irrelevant
to the game. If only video analysis is used, it correctly classifies only 12 of the
20 plays which demonstrates that by combining natural language processing with
video processing the accuracy of the classification is improved.
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Figure 6.30: Video frames from test sequence 3. Tmages provided with the per-
mission of Wide World of Sports - Channel 9 Australia.
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Figure 6.31: Video frames from test sequence 3. Tmages provided with the per-
mission of Wide World of Sports - Channel 9 Australia.
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Play-Model-Name || Play Evidence Score
In-Out 261
Quick-Outs 236
Square-In 224
HB-Draw 210
HB-Dive-Right 198

Table 6.7: Solution table for test sequence 3.

6.5 Summary

This chapter has described processing and results for American Football using ILF
with no emphasis on the learning used. ILF was used to generate the concept
hierarchy that stores the play models but no forgetting was used. The reason
for using only the learning part of ILF is that the models used to build the
hierarchy were generated from data extracted from coaching books and video —
no forgetting was necessary (all the knowledge used in the models was expert
knowledge). Classification of the query plays is only part of the application.
The system also has the capacity to learn from the data it processes and update
existing American Football play models. This is necessary as play models evolve
over time (over a game, over a season) requiring concept drift (in this case play
model drift) tracking. The following chapter describes how the system learns
spatio-temporal information from the queries it processes and how it continuously
updates its models.
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Chapter 7

Incrementally Learning
Spatio-Temporal Patterns

7.1 Introduction

The previous chapter describes the recognition of N.F.L. plays using a complex
decision tree generated by the system using play information only from coaching
books. In this chapter we explore issues of machine learning using ILF. Specifi-
cally we are concerned with how the system can learn new facts from the input
data by either modifying a known model, by building a completely new model, or
by filling in the knowledge gaps that may be present in previously built models.

When the system examines a new query, it attempts to find the best match for
it in the memory. If the system is successful in finding a model that matches the
query, it checks its similarity coefficient. If the coefficient is greater than or equal
to a threshold (in the work described in this thesis, the threshold is 0.75) the
system searches for any existing differences between the model and query. The
differences found are then used to build generalised descriptions, which include
the old facts from the model and new facts from the query.

If the coefficient is smaller than a threshold then there is not enough evidence to
justify the update of the model. The system therefore builds a new model that
is based on the query.

Another case for which the system builds a new concept is when the search for a
model that matches the query is unsuccessful.

When a new concept is necessary, the system assigns the values and descriptions
generated from the input data to the attributes in the model structure described
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previously. The query data is not complete and in the best case the query will
contain information about five or six players. All American Football plays involve
11 players and hence gaps in the knowledge will be present in any newly created
concept. These gaps can only be filled in the future when the system will learn
new facts from similar queries.

When the model has to be updated to be consistent with the new query, the
spatial and temporal attribute descriptions go through a process of generalisation.
The layout of the chapter is as follows: in Section 2 we describe the process
used to generalise spatial information. Section 3 presents the process involved in
generalising temporal information. In Section 4 we show the classification results
without learning while in Section b we cover the classification results with learning
and forgetting.

7.2 Generalising the Spatial Information

In the American Football example there are two spatial attributes in the play
model: the player movement and the player relationship.

Generalising the description of the player movement is simple and involves the
union of the player movement description in the model with that of the corre-
sponding player in the query. For example if the player movement description in
the model was short-and-straight and the movement of the corresponding player
in the query was defined as short-and-turn, then the new generalised description
of the player becomes short-and-straight or short-and-turn.

The process of updating the relationship description requires that the order in
which the relationships changes occur is preserved. For example consider the
relationships of Player! and Player? in Figure 7.1. Figure 7.1a shows how the
relationships between the two players are changing over the duration of the play
in the case of the model while Figure 7.1b shows the relationships between the
two players in the query.

When the generalisation takes place the system attempts to enlarge the descrip-
tion by adding to it those relationships in the query which are different from those
in the model while still keeping the time index at which they took place. The
updated description is shown in Figure 7.1c. Notice that now the relationships
that occur both in the query and the model can be represented — Player2 now
has two patterns.
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(b)

»1
Playerl Player2 Playerl Player2 Player] Player2

Model Query Updated Model

Figure 7.1: The filled circles indicate the position of the players at different
instances 1n time for the entire duration of the play. To update the model (a)
the new facts from the query (b) have to be incorporated into the relationship
description. After this is done, Player2 has two patterns in the description (c).

7.3 Generalising the Temporal Information

The temporal description is updated in a similar fashion to the spatial relation-
ship. However, in the case of the temporal description the system deals with
actions (movement, turns and path crossing) and the occurrence of the actions
is defined using Allen’s temporal primitives. Consider the movement and actions
of the players 1 and 2 in Figures 7.2. The movement of the players in the model
is simple when compared to that of the players in the query. For example the
movement of player 1 in the query consists of six moves and five turns whereas
the movement of player 1 in the model is made up of only four moves and three
turns. The systems updates the model to include the new information from the
query by adding the new actions as well as maintaining the temporal ordering
between the actions. Figure 7.3 shows the model after the update.
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Figure 7.2: The movement and actions of Playerl and Player2 is similar in both
the model and the query up to the instance when they cross each other’s path.
From that instance on the movement and actions are different in the query.

The algorithm to generalise the spatial and temporal information is shown in
Figure 7.4 and 7.5. It has five functions. The Generalise function controls the
processing of new instances. The Match_Spatial function determines if two sets
of actions are similar while the Update_Spatial adds the new information consid-
ered to be relevant from the query to the model. Similarly the Match_Temporal

R
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Figure 7.3: To reflect the new data from the query the system updates the tem-
poral description by adding the different movements and actions from the query.
The resulting patterns that can be recognised after the changes are made are
shown along with the new model.

function determines if two sets of actions are similar while the Update. Temporal
adds the new temporal information extracted from the query.

7.4 Learning and Classification Results

Over 303 tests were carried out on the system using generated data. Initially
the system had a training session in which instances of 50 basic plays were
input. The play models developed covered 5 basic formations (Pro-formation,
I-formation, Single-Back-formation, Goal-line-formation and Far-formation) per-
forming a combination of 43 running and passing plays. At the end of the training
stage the system’s memory contained 43 play models.
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Let Query-~Objecti, Query-Object2, ..., Query-Objectn be the labels of the objects in the Query.
Let Model-Objectl, Model-Objectj2, ..., Model-Objectm be the labels of the objects in the Model.
Let Query-Objecti(Reli)fQuery-Dbject2, Query-Objectl(Rel2)(uery-Object2,
(uery-Objecti{Reld)Query-0bject2, Query-Objectl(Rel4)Query-Object2,
Query-Objecti{Relb)Query-Object2 and Query-Objectl(Rel6)Query-Object2 be the six
valid relationships betwean cbjects Quary-Objectl and Query-Object2 where
Rell iz Left-of, Rel2 is Right-of, Rel3 is In-Front, Rel4 is Behind, RelbE is
In-Line~Horizontal and Rel6 is In-Line-Vertical.

Let Query-Objectl(Reli)Query-Object? == True is Query-Objectl is Left-0f Query-Object2.

Let Model-Objectl, Model-Object2, ..., Modal-Objaectm be the labels of the players in the Model.
Let Model-Dbjectl(Rell)Model-Ubject2, Modsl-OUbjectl{Rel2)Model-Objact2,
Model-Objectl{Reld)Model-Object2, Model-Object1{Reld)Model-Object2,
Model-Objectl{Rel5)Model-Object2 and Model-Objecti(Rel§)}Model-Object2 be the six
valid relationships between players Model-Objectl and Model-Object2 where
Rell is Left-of, Rel2 is Right-of, Reld is In-Front, Rel4 is Behind, Rel5 is
In-Line-Horizontal and Relf is In-Line-Vertical.

Let Model-Objectl(Rell)Model-Object2 == True is Model-Objectl is Left-0f Model-Object2.

Let Query-Objecti(Al), Query-Cbject1(42), ..., Query-Objecti(Ak) be the actions of object
Query-Objectl in the Query.

Let Model-Objectl(B1), Model-Object1{B2), ..., Model-Object1(Bk) bse the actions of object
Model-Objectl in the Model.

Similarity_Score = 0;
Match_Spatial (Query-Object,Model-Object).
Match_Temporal (Query-Object,Model-bject).

if (Similarity_Score »= Thrashold) then
Update_Spatial; Update_Temporal;

for i=1ton
for j=1tom
if Query-Objecti == Model-Objectj then
for k=1 ton
for p=1+tom
if Query-Objectk == Model-Dbjectp and i != k and m != p then
for 8 = 1 to 6
if Query-Objecti{Rals)Query-Objectk == True and
Model-Objectm(Rels)Model~Objectp == True then
Similarity_Score++;

Update_Spatial (Query-Object,Model-Object).

for i =1 ton
for j=1tom
if Query-Objecti == Model-Objectj then
for k = 1 ton
for p=1 tom
if Query-Objectk == Model-Objectp and i != k and m != p then
for s =1 to 6
if Query-Objecti{Rels)Query-Dbjectk != True and
Model-Objectm(Rele)Model—-Dbjactp == True then
add Query-Objecti(Rels)Query-Objectk to Model-Objectm(Rels)Model-Dbjectp;

Figure 7.4: The algorithm to generalise the spatio-temporal information.
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Match_Temporal({Query-Dbject,Medel-Dbject).

for i =1ton
for j=1toem
if Query-Objecti == Medel-Objectj then
for p=1tok
if Query-Objecti(Ap) == Model-Objectj(Bp)} then
Similarity_Score++;
if Query-Objecti(Ap-1) == Model-Objectj{(Bp-1) then
Similarity_Score++;

Update_Temporal (Query-Object,Model-Object) .

for i =1 ton
for j=1+tom
if Query-Objecti == Model-Objectj then
for p=1tok
if Query-Ubjecti(Ap) != Model-Dbjectj(Bp} then
add Query-Objecti(Ap} to action set of Model-Objectj;

Figure 7.5: The algorithm to generalise the spatio-temporal information (contin-

ued).

7.5 Test Data

The test input data consisted of query plays which contained information about
3, 4 or 5 players (the information was in the form of lists of coordinates which
represented a series of video frames). Also the queries were arranged into two sets.
The first set contained “easy” queries with only one of the players in the query
having a different movement to that in the play model. The second set contained
“hard” queries with one, two or three players having different movements. A
detailed run of what the system learns from a simple query is described next.

A test consists of inputting a query play (which could be either easy or hard)
which the system would attempt to match against the play models in the system’s
memory. The best five matches are returned as possible solutions to the query. A
total of 303 different queries were used for the tests (103 easy queries and 200 hard
queries). When the classification is carried out without any learning the results
obtained are shown in Tables 7.1 and 7.2. For the first set the recognition success
rate is 65% but for the second set, the success rate is only 49%. In most cases
where it failed, the system is still able to identify the correct basic formation.

Basic Formation No. of Tests Run || Caorrect Classification || Incorrect Classification
Pro-formation 40 28 12
I-formation 40 26 14
Single-Back-formation 23 13 10

Table 7.1: First set of tests — No Learning (Easy Queries).
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Basic Formation

No. of Tests Run

Correct Classification

Incorrect Classification

Pro-formation 80 45 35
I-formation 60 27 33
Single-Back-formation 40 18 22
Goal-line-formation 20 8 12

Table 7.2: Second set of tests — No Learning (Hard Queries).

When the classification is carried out with incremental learning the system pro-
duced the results shown in Tables 7.3 and 7.4. For the first set the recognition
success rate is 80% while for the second set the success rate is 64%.

Basic Formation

Noa. of Tests Run

Correct, Classification

Incorrect Classification

Pro-formation 40 36 4
I-formation 40 33 7
Single-Back-formation 23 14 )

Table 7.3: First set of tests — with Incremental Learning (Easy Queries).

Basic Formation

No. of Tests Run

Correct Classification

Incorrect Classification

Pro-formation 80 52 28
I-formation 60 42 18
Single-Back-formation 40 21 19
Goal-line-formation 20 13 T

Table 7.4: Second set of tests — with Incremental Learning (Hard Queries).

The accuracy of the classification is significantly affected by the hypothesis gen-
erated by the system. In many of the cases where it fails to accurately classify the
query, the system generates a hypothesis which makes it difficult to distinguish
between the basic formations. This is due to the fact that the formations Far-
formation and Pro-formation, as well as I-formation and Goal-line-formation are
very sunilar.

The main difference between the two cases (with vs without learning) is that the
system with learning is able to handle the situations where the variations between
the query and model are significant more successfully (such as the case where the
query contains information about 5 players and where 3 of the players are moving
differently when compared with the model).

7.6 Summary

In this chapter we have described how ILF is used to learn spatio-temporal pat-
terns. We also presented how we assessed ILF in the task of learning and classi-
fying American Football plays.

In the next chapter we show how ILF can be used to classify and learn cricket
shots. The cricket application uses camera motion parameters to generate sym-
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bolic descriptions of the cricket shots. Unlike the case of American Football, the
system does not use any natural language in the processing.
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Chapter 8

An application: Cricket

8.1 Introduction

We describe another application of ILF— cricket. For American Football nat-
ural language understanding was combined with image processing and machine
learning. For cricket, we concentrated on image processing and learning. The
reason for choosing cricket is that though cricket is a lot simpler than Ameri-
can Football, it still involves well defined discrete actions — ericket shots — for
which accurate representations can be built. We attempted to extend the Amer-
ican Football learning and classification techniques to other sports and initially
it was intended to apply the same techniques as developed for American Foot-
ball to cricket. However, because of the different nature of the game, a different
approach is required.

We define a cricket shot as the way in which the batsman hits the ball in terms of
the direction in which the ball is hit and the distance covered by the ball. Then
we combine camera motion estimation with incremental learning to classify and
learn the cricket shots.

‘The problem of estimating motion parameters has been researched extensively in
the past since it can provide a simple, fast and accurate way to search multimedia
databases for specific shots (for example a shot of a landscape is likely to involve
a significant amount of pan, whilst a shot of an aerobatic sequence is likely to
contain roll).

To learn the description of the cricket shots we use the ILF algorithm. The layout
of this chapter is as follows: in Section 2 we present some of the techniques used to
extract camera motion parameters and are relevant to the application described
in this chapter. Section 3 describes the processing involved in extracting and
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converting the camera motion parameters. In Section 4 we describe a method to
classify and learn cricket shots using ILF whilst, in Section 5 we show the results
obtained from testing the system using real data.

8.2 Motion Parameter Estimation

The problem of estimating motion parameters has been researched extensively in
the past since it provides a simple, fast and accurate way to search multimedia
databases for specific shots (for example a shot of a landscape is likely to involve
a significant amount of pan, whilst a shot of an aerobatic sequence is likely to
contain roll). Estimating camera motion parameters is of great relevance to the
work described in this chapter because an important part of the cricket application
is extracting camera motion parameters. In this section we describe a number of
methods that have been used to estimate motion parameters.

The method of Bergen et al. [62] is based on two models: a global model that
constrains the overall motion estimated and a local model that is used in the
estimation process. Affine flow, planar flow, rigid body motion and general optic
flow are the four specific models chosen. The same objective function is used in all
models and the minimisation is performed with respect to different parameters.

Akutsu ef al. [1] have proposed a method based on analysing the distribution of
motion vectors in Hough space. Seven categories of camera motion are estimated:
pan, tilt, zoom, pan and tilt, pan and zoom, tilt and zoom, and pan, tilt and
zoom. Estimation of the motion parameters is based on Hough-transformed optic-
flow vectors measured from the image sequence and determining which of the
signatures best matches the data in a least squares sense.

Park ef al. [88] describe a method of estimating camera parameters that es-
tablishes feature based correspondence between frames. The camera parameters
representing zoom, focal length and 3D rotation are estimated by fitting the cor-
respondence data to a transformation model based on perspective projection.

Tse and Baker [117] present an algorithm to compensate for camera zoom and
pan. The global motion in each frame is modelled by just two parameters: a
zoom factor and a pan and tilt factor based on local displacement vectors found
by conventional means.

Wu and Kittler [129] present a technique to extract rotation, change of scale,
and translation from an image sequence without establishing correspondence. A
multi-resolution iterative algorithm that uses a Taylor series approximation of
the spatial and temporal gradient of the image is used.
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Hoetler [52] describes a differential motion estimation technique in which the
global motion in the image due to zoom and pan are estimated. A three-parameter
motion model is used and a reduction in the systematic estimation errors due to
displacement measurement is reported.

To extract the camera motion parameters from a sequence of images we use a
method developed by Srinivasan ef al [76]. The method uses residual optic flow
to detect and estimate camera pan, tilt, zoom, roll, and horizontal and vertical
tracking. Unlike most other comparable techniques, this method can distinguish
pan from horizontal tracking, and tilt from vertical tracking. The procedure used
to extract and process camera motion parameters for the cricket application is
described in the next section.

8.3 Extracting and Converting the Camera
Motion Parameters

There are two ways in which a cricket shot can be determined. One method
involves segmenting out either the batsman or the ball. Unlike American Football
where it is possible to track some of the players in the play, in cricket it is much
more difficult to track the batsman because of two reasons: the high speed of the
shot (few frames and too much blur as shown in Figure 8.1) and the batsman is
often confused with the wicket keeper. Furthermore, even if the batsman could
be consistently segmented out from the image, it is still difficult to distinguish
the action of the batsman (the bat cannot be identified consistently so its pattern
of movement cannot be accurately classified). It is similarly difficult to segment
out the cricket ball in video especially since the cricket ball is small and difficult
to distinguish from the background (generally there is no significant difference
between the ball and background). An alternative method is to use the camera
motion parameters to determine the path of the ball because throughout the
cricket game the camera generally focuses on the ball trajectory and hence it is
possible to generate a hypothesis on the type of cricket shot based on the camera
motion parameters, which in turn define the direction of the ball.

The algorithm to process the camera motion parameters has three stages and is
shown in Figures 8.2 and 8.3.

In the first stage the system attempts to determine the size of the temporal
window that contains the cricket shot, that is the start and end frames of the
shot sequence containing the shot (the camera position is assumed to be behind
one of the two bowling ends of the cricket ground to capture the bowling action).
The cricket action consists of two parts: the bowler action and the batsman
action. The bowler’s action is defined by a sequence of frames in which there is
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SEQUENCE 1

Trame 2 Trame 3 Trame 4

Frame 6 Frame 7

SEQUENCE 2

Frame 3

Frame 4

Figure 8.1: Two tvpical sequences of a batsman attempting a shot. Tmages
provided with the permission of Wide World of Sports - Channel 9 Australia.

a substantial amount of zoom and tilt but little pan. This is because the camera
is tracking and zooming on the bowler and the cricket ball. Both the bowler
and the ball move fairly straight and hence there is no substantial panning. The
batsman action is defined by a sudden change in the direction of the ball which
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STAGE 1. Cricket Shot Window Detection

Let Pan(V1), Pan(V2), ..., Pan{V¥n) be tha values of the pan camera parameter over a video
saquence of n frames and,

Tilt(V1), Tilt(¥2), ..., Tilt(Vn) be the values of the tilt camera parameter over a videc

sequence of n frames and,

Roll(V1), Roll{¥V2), ..., Roll{(Vn) be the values of the roll camera parameter over a video

sequence of n frames and,

Zoom(V1), Zoom(V2), ..., Zoom(Vn) be the values of the zoom camera parameter over a video

sequence of n frames.
Let Panl, Pan2, Pan3, Tilt1, Tilt2, Tilt3, Relll, Roll2, Roll3, Zoomi, Zoom2 and Zoom3 be
temporary values of the Pan, Tilt, Roll and Zoom camera parameters.

Let DirectionX be the direction in which the camera is moving along the x - axis (left/right).
DirectionY be the direction in which the camera is moving along the y - axis (zoom in/out).

DirectionZ be the direction in which the camera is moving along the z - axis (up/down).
Rotation be the direction in which the camera is rotating {clockwise/anticlockwise).

Let T_DirectionX, T_DirectionY, T_DirectionZ and T_Rotation be temporary values of the
movemant and rotation of the camera.

Panl = Pan(V1), Pan2 = Pan(V2), Pan3 = Pan{V3).
Tiltl = Tilt(Vi), Tiit2 = Tilt{V2), Tilt3 = Tilt{V3).
Rolli = Roll(V1), Roll2 = Roll{(V2), Roll3 = Roll(V3).
Zooml = Zoom{V1), Zoom2 = Zoom{(V2), Zoom3 = Zoom{V3).
DirectionX = {Panl + Pan2 + Pan3)/3; DirectionY = (Tiltl + Tilt2 + Tilt3)/3;
DirectionZ = (Zooml + Zoom2 + Zoom3)/3; Rotation = (Rolll + Roll2 + Rolld)/3;
for i =4 ton
T_DirectionX = DirectionX; T_DirectionY = DiractionY; T_DirectionZ = DirectionZ;
T_Rotation = Rotation;
Update(DirectionX,i); Update{(DirectionY,i); Update{DirectionZ,i); Update{Rotation,i};
it (Sign of T_DirectionX != Zign of DirectionX) || (T_DirectionX/DirectionX > Threshold)
Change = True;
if (Sign of T_DirectionY != Sign of DirectionY) || (T_DirectionY/DirectionY > Threshold)
Change = True;
if (Sign of T_DirectienZ != Sign of DirectionZ) || (T_DirectionZ/DirectionZ > Thresheld)
Change = True;
if (8ign of T_Rotation != Sign of Rotation) || (T_Retation/Rotation > Threshold) then
Change = True;

STAGE 2. Dominant Motion Detection

Let Positive Pan, Negative Pan, Positive Tilt, Negative_Tilt, Positive_Zoom, Negative_Zoom,
Pogitive_Roll and Negative_Roll be the counters of positive and nagative values of the
camera motion parameter values.

for i = frame_start to frame_and
if (Pan{(Vi) »= 0) Positive_Pan++; if (Pan(Vi) < Q) Negative_Pan++;
if (Tilt(Vi) >= 0) Positive_Tilt++; if (Tilt{Vi) < 0) Negative_ Tilt++;
if (Zoom(Vi) >= Q) Pesitive_Zcom++; if (Zoom(Vi) < 0) Negative_Zoom++;
if (Roll{(Vi) >= Q) Pesitive_Roll++; if (Roll{Vi) < 0) Negative_Roll++;

if Positive_Pan > Negative_Pan then
Pan_Motion is Right;

elsa
Pan_Motion is Left

if Positive_Tilt > Negative_Tilt then
Tilt_Motion is Up

elsa
Tilt_Motion is Down

if Positive_Zoom > Negative_Zoom then
Zoom_Motion is Zoom In

else
Zoom_Motion is Zoom Out

if Positive_Roll > Negative_Roll then
Roll_Motion ie Clockwise

elsa
Roll_Motion is Anticlockwise

Figure 8.2: Stages 1 and 2 of the camera processing algorithm.

then

then

then
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STAGE 3. Average Value Computation.

Let Pan(V1), Pan(V2), ..., Pan{¥n) be the valuas of the pan camera parameter over a video
saquence of n frames and,
Tilt(V1), Tilt(V2)}, ..., Tilt{(¥Vn) be the values of the tilt camera parameter over a video
sequence of n frames and,
Roll(V1), Roll(V2}), ..., Roll(Vn) be the values of the roll camera parameter over a video
sequence of n frames and,
Zoom(V1), Zoom(V2}, ..., Zoom(¥n) be the values of the zoom camera parameter over a video

saquence of n frames,

for i = frame_start to frame_end

if (Pan{(Vi) Sign == Pan_Motion Sign) then
Sum_Pan = Sum_Pan + Pan(Vi); Pan_Count++;

if (Tilt(Vi) Sign== Tilt_Motion Sign) then
Sum_Tilt = Sum_Tilt + Tilt(Vi); Tilt_Count++;
if (Roll(Vi) Sign == Roll_Motion Sign) then
Sum_Roll = Sum_Roll + Roll(Vi}; Roll_Count++;
if (Zoom(Vi) Sign == Zoom_Motion Sign) then
Sum_Zoom = Sum_Zoom + Zoom(Vi); Zoom_Count++;

Average_Pan = Sum_Pan/Pan_Count; Average Tilt = Sum_Tilt/Tilt_Count;
Average_Zoom = Sum_Zoom/Zoom_Count ; Average_Roll = Sum_Roll/Roll_Ccunt;

Figure 8.3: Stage 3 of the camera processing algorithm.

involves a significant amount of pan. The cricket shot ends with a cut when the
camera focuses on the crowd, the ground or a player who has fielded the cricket
ball. The cricket shot window therefore starts at the frame where the system has
detected a sudden change in the camera parameters and ends at the frame where
the system detects a cut. An example is shown in Figure 8.4. The second stage
involves determining the dominant motion of the camera in the cricket shot. The
reason for checking for a dominant motion is that the movement of the camera
during a shot is not always smooth and contains varying amounts of zoom and
tilt as it all depends on how good the camera man is at tracking the ball: the
more experienced, the smoother the action. Hence it is quite likely that a drive
on the left side will contain some small movement to the right which occurs while
the camera man attempted to track the ball. Such movement is essentially noise
and must be eliminated to be able to determine the real camera movement. The
system analyses the entire sequence and determines the dominant movement of
the camera (for example whether the overall movement was to the left or to the
right) by computing the frequency of the negative and pesitive values for the
camera parameters. The most frequent sign determines the dominani motion
for that category of camera parameters. For example if the values for the pan
parameter are mostly positive then the dominant motion is to the right otherwise
the movement is to the left. The symbolic values classifying the dominant motion
for all camera parameters are shown in Table 8.1 — the actual pan/tilt/roll value
is not considered at this stage when converting it to symbolic form - just the
sign. The third stage involves a more refined classification of the camera motion.
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CRICKET SHOT WINDOW

Irame 1 Trame 2 Trame 3 Trame 4

Frame 18
Camera Parameters change
Start of cricket shot
Frame § Frame 10 Frame 15 window

Frame 32

Frame 20 . o Frame 24

Frame 50

F'rc 0 ._ o . 7 Frame 70

Frame 100
Camera focuses on
a player
End of cricket shot

Frame 85 Frame 90 Frame 95 window

Figure 8.4: The cricket shot window.
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Camera Symbolic Value
Parameter Value Sign
Pan Right Positive
Pan Left Negative
Tilt Up Positive
Tilt Down Negative
Roll Clockwise Positive
Roll Anticlockwise || Negative
Zoom Zoom-In Positive
Zoom Zoom-Out Negative

Table 8.1: Symbolic values classifying the dominant camera motion.

Once the dominant motion has been identified much of the noise is removed.
This is done by eliminating all the camera parameter values that have a different
sign to the one indicated by the dominant motion. For example, if the dominant
pan movement is determined to be to the right, then all negative pan values are
removed from the data. The percentage of values removed varies from 2% to 10%
— it generally depends on the length of the cricket shot and on the ability of
the camera man (how smooth he/she is able to track the ball). Then for each
camera parameter in turn, the system collects all the values from the sequence
and computes an average. This average value indicates how far and how fast the
camera moved during the cricket shot. The average value is computed as follows:
a cumulative histogram is computed and we determine the bins that contribute
70% of the data. The average value is then computed using these bins. The
histogram generated from a processed sequence with a majority of values close
to zero is shown in Figure 8.5. Figure 8.6 is shows the histogram generated from
a sequence consisting in majority of high negative values (to get the threshold
we use the bins that contain 70% of the data — the number of bins considered
varies depending on the spread of the data, for example in Figure 8.5 only 4
bins are considered, while in Figure 8.6 5 bins are considered). Table 8.2 shows
the symbolic values used to describe the average camera parameter values. The
average value is converted into a symbolic value by thresholding. The threshold
values are fixed at plus or minus 0.8 with values smaller than -0.8 or greater than
0.8 indicating significant movement.
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120 T T | | | T T T T
*histol’ —
100 - —

80 -

60 -

20

0 1 2 3 4 5 6 7 8 9 10

Figure 8.5: Histogram generated for the pan values of sequence where there was
little pan movement — the majority of values are close to zero.

20 T 1 1 1 1 1 1 1 !
18 'histo2’

16 |- -

14 |- — —

0 ] ] ] 1 L | ] 1 I

Figure 8.6: Histogram generated for the pan values of sequence where there was
significant pan movement to the left — the sequence is made up of mostly high
negative values.
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Camera Symbolic Average
Parameter Value Value

Pan Right High Positive Values
Pan Left High Negative Values
Pan Middle Close To Zero
Tilt Up High Positive Values
Tilt Down High Negative Values
Tilt Centered Close To Zero
Roll Clockwise High Positive Values
Roll Anticlockwise || High Negative Values
Roll Static Close To Zero
Zoom Zoom-In High Positive Values
Zoom Zoom-Out High Negative Values
Zoom Steady Close To Zero

Table 8.2: Symbolic values for the average camera motion parameter value.
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Each shot can, therefore, be expressed as a sequence of symbolic values of domi-
nant and average motion. In addition to the 8 attributes {dominant and average
motion) for each of pan, tilt, roll and zoom, the cricket shot length is needed. The
length of the shot is simply derived from the duration of the video shot sequence
(the number of frames in a shot).

Figure 8.7 shows types of cricket shot which the system is attempting to identify
using these motions and shot length. For example consider the shots long straight
drive (on the left side) and right pull. One possible set of symbolic values for the
camera parameters is shown in Tables 8.3 and 8.4. The values shown in the tables
were obtained after the system was trained with 63 cricket shots. However the

Camera | Dominant Average
Parameter Motion Value
Pan Left Close To Zero
Tilt Down High Negative Value
Roll Clockwise | High Positive Value
Zoom Zoom-Out || High Negative Value

Camera || Dominant Average
Parameter Motion Value
Pan Right High Positive Values
Tilt Up High Positive Value
Roll Clockwise || High Positive Value
Zoom Zoom-Out || High Negative Value

Table 8.3: Symbolic values classifying the dominant camera motion and average
motion for a long straight drive (on the left side).

Table 8.4: Symbolic values classifying the dominant camera motion and average
motion for a right pull shot.

values of two of the parameters with which a shot is classified, namely dominant
motion and average camera motion, vary from game to game. This is due to the
following factors:

e (Camera position varies on different cricket grounds mainly in the angle at

which the shot is captured (right behind the wicket or at a slight angle)
and the perspective from which the shot is taken (low down or high up in

the stands).

o Ground shape and size also varies on different cricket grounds (for example
the Brisbane Gabba Cricket Ground is smaller than the Melbourne Cricket
Ground and a shot such as a drive involves slightly different camera motion
— different pan and zoom values).
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LEFT/RIGHT GLANCE

LEFT CUT ] RIGHT PULL

LEFT DRIVE

RIGHT DRIVE

STRAIGHT  DRIVE

Figure 8.7: The six cricket shots the system attempts to identify: the drive shot
(left, right or straight), the pull shot (left or right) and the hook shot.

The goal of our work is to build general cricket shot descriptions to enable the
system to classify shots from different cricket grounds and therefore any ground
specific information needs to be removed. To deal with variations in the param-
eters we use incremental learning. We build representations of the shots using
symbolic data and update these representations when necessary.

8.4 Classifying and Learning Cricket Shots

Training data is extracted from a video sequence, such that several shots are
extracted and their descriptions are derived in terms of the symbolic attributes
described in the section 8.3. Classifying and learning uses the incremental learning
algorithm ILF described in chapter 3.

The way in which the system learns from the incoming cricket shot descriptions
is as follows. The symbolic descriptions generated by the data analysis module
are passed on to the incremental learning module which first attempts to find a
match for the shot in the existing hierarchy of shots. Each new shot description
is compared with the current description in the hierarchy to determine if there is
enough evidence to justify the update of the current description. Each description
in the hierarchy produces an evidence score which determines whether the shot
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does or does not match the current description. The general format of the cricket
shot type description is shown in Figure 8.8. This shows that there are n shots,
with shot 3, for example, having m generalised examples in its description. A
description of a cricket shot has 9 attributes. Each attribute in the description can
have a set of values. Each one of the values has an age value associated with it (see
ILF concept structure description in chapter 3). The set of values possible for the
dominant motion attributes is defined by set A = {Positive, Negative}. The set of
values for the average camera motion is defined by set B = {High Positive, High
Negative, Close to Zero}. In this way multiple descriptions (i.e. more than one
type of shot) can be updated (provided enough evidence was found) by the same
shot. While this procedure results in the system updating descriptions which
should not be updated when one considers the overall set of shots, results show
that over time the unnecessary modifications are “aged out” of the descriptions.
That is unless a particular shot description gets reinforced by other similar ones,
it is forgotten. The main reason for choosing to update multiple descriptions
is that it is a simple way of representing a multiple match between the existing
description and the input cricket shot which is more appropriate than an absolute
match (as we mentioned above, the camera parameters vary from game to game).
In essence, we keep as much information as possible to catch infrequent shots. The
update process is based on data ageing (see chapter 3 for a detailed description
of how ILF uses ageing in the update process). The algorithm uses ageing at two
levels: the dafa level and the description level.

When a new cricket shot is processed there are three possible outcomes. The
first is that the system finds a match for it in the existing hierarchy of shot
descriptions. The description that matches the input cricket shot is updated to
be congistent with the new data. The second outcome is that the system does
not find a match for the new cricket shot so a new description is added to the
hierarchy while updating the existing shot descriptions. The third outcome from
processing a new cricket shot is that one (or possibly more) descriptions in the
hierarchy get removed since the data is “aged out”.

8.5 Results

We have trained the system on 76 cricket shots and tested it on 82 shots. The
video segments used in our work had a length varying from 24 to 190 frames.
The shots have been collected from five cricket games and cover six types of
shots. Two of the shots occur rarely {drive and glance) and as a result very
few instances were present in either the training or the test sets. The make-up
of the training data is shown in Table 8.5 and the classification tree generated
for the data consisted of four cricket shot descriptions (all training data was
correctly classified). The test data used is shown in Table 8.6. The results of
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X

Shot Shot Shot
Description 1 Attributes| |Deseription 2 Attributes Description n  Attributes
Age Age ) Age
" Shot
Attribute Pan Attribute Pan Description 3 Attributes
Dominant Motion Age Average Value Apge \. Age
Value 1 Agel Vatue 1 Age ]
Value 2 Age? Value 2 Agel
Value m Agem Value m Agem
Attribute Tilt Adttribute Tilt
Dominant Motion Age Average Value Age
Value 1 Age ] Value 1 Agel
Value 2 Ape2 Value 2 Age?
Value m Agem Value m Agem
Attribute Roll Attribute Rofl

Dominant Motion Age Average Value Age

Value 1 Agel Value 1 Agel
Value 2 Age2 Value 2 Age2
Value m Agem Value m Agem
Attribute Zoom Attribute Zoom
Dominant Motion Age Average Value Age
Value 1 Agel Value 1 Age 1
Value 2 Agel Value 2 Age2
Value m Agem Value m Agem
Attribute Length Age
Value 1 Age L
Value 2 Age2
Value m Agem

Figure 8.8: A typical description hierarchy used by the incremental learning
algorithm. Each shot description has an age and 9 attributes and each one of the
attributes has a set of data values+age values associated with it.

Number of Shots || Side | Shot Type
25 Right Drive
15 Left Drive
18 Right Pull
14 Left Pull

Table 8.5: The training data.
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Number of Shots i| Side | Shot Type
24 Right Drive
20 Left Drive
20 Right Pull
18 Left Pull

Table 8.6: The test data.

the classifications are shown in Table 8.7. The system performed very well when

Side | Shot Type || Correct || Incorrect
Right Drive 19 )

Left Drive 18 2
Right Pull 15 5

Left Pull 12 6

Table 8.7: The results on the test data.

classifying four types of shots: the pull shot (left and right) and drive shot (left
and right). The general description generated by the system for the right pull
shot is: (Left, Left) - (Down, Up) - (Clockwise, Clockwise) - (Zoom-Out, Zoom-
QOut) - (Short). An example of a right pull shot is shown in Figure 8.9. For the
right drive shot, the general description generated is: (Left, Right) - (Up, Up) -
(Clockwise, Clockwise) - (Zoom-Out, Zoom-Qut) - (Short). A right drive shot is
shown in Figure 8.10. In the case of the left pull shot, the description generated
is: (Right, Right) - (Down, Up) - (Clockwise, Clockwise) - (Zoom-In, Zoom-In) -
(Long). A typical right pull shot is shown in Figure 8.11. Finally, the description
generated for a left drive shot is:(Left, Right) - (Up, Up) - (Clockwise, Clockwise)
- {Zoom-Out, Zoom-In) - (Short). An example of a left drive shot is shown in
Figure 8.12.

The overall success rate averaged at 77%. The results also show that the system
was not able to build an accurate description for the straight drive shot and hence
it was unable to accurately classify it in the test data. The system has simply
been unable to identify any significant differences between the camera parameters
for a straight drive and a drive on each side of the ground (the pan values do not
vary as much as expected).

8.6 Summary

This chapter has explored the application of the ILF algorithm to the problem of
recognising cricket shots from video data. The methods developed for American
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Trame 1

Frame 90

Figure 8.9: Example of a right pull shot. The symbolic description is: (Left,Left)
- (Down,Up) - (Clockwise,Clockwise) - (Zoom-Out,Zoom-Out) - (Short).

Football were not snitahle for this application so other techniques have been de-
veloped althongh theyv still use symbolic attributes. As for the American Football,
the start and finish of each shot or play is well defined.

In the following chapter we investigate how incremental learning can be combined
with incremental recognition to solve classification tasks where the two main
assumptions used in learning for American Football and cricket are no longer
applicable, The first is that the system always knows that the starting point in
the training data is alwayvs the same as the one in the classes/concepts stored
in the knowledge base and therefore the system is able to attempt a comparison
straight away. The second is that all the information on the example/query is
known before any classification is attempted.
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Figure 8.10: Example of a right drive shot. The symbolic description
is: (Left,Right) - (Up,Up) - (Clockwise,Clockwise) - (Zoom-QOut,Zoom-Out) -
(Short).
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Frame 1

Figure 8.11: Example of left pull shot. The symbolic description is: (Right,Right)
- (Down,Up) - (Clockwise,Clockwise) - (Zoom-In,Zoom-In) - (Long).
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TFrame 1 Frame 10 Frame 20

Frame 30 Frame 40 Frame 45

Frame 50 Frame 55 Frame 70

Frame 75 Frame 80

Fignre 8.12: Example of the left drive shot. The symbolic description
is:  (Right,Right) - (Up,Up) - (Clockwise,Clockwise) - (Zoom-Out,Zoom-In) -
(Short).
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Chapter 9

Incremental Recognition and
Learning

9.1 Introduction

The last issue we explore is the combination of incremental recognition and in-
cremental learning. In this chapter we describe an extended version of the ILF
algorithm which has been modified to do incremental recognition of queries.

Incremental recognition is a progressive classification (possibly involving back-
tracking) which considers the data at each time instance in the query and thus
provides a probable answer before all the query information becomes available.
ILF has been also augmented to enable learning in either a stepwise fashion (the
system learns after each time instance) or an overall best match fashion (the
system only learns when all time instances have been acquired).

Two main assumptions are generally made for both incremental learning and
non-incremental learning.

The first assumption is that the system always knows that the starting point in
the training data is always the same as the one in the classes/concepts stored in
the knowledge base and therefore the system is able to attempt a correspondence
and comparison straight away. This was the case for American Football and
cricket. For example in American Football, the play has a defined start (the
players move) and finish (the camera zooms on a player or advertisments are
shown).

The second assumption is that all the information about the example/query is
known before any classification is attempted. That is, all feature values have
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been acquired. This is usual for situations which have definite identifiable begin
and end points so the features are determined once the end point is reached.

Learning is generally concerned with the recognition of independent patterns
acquired at a particular time. There are however situations where sequences of
patterns need to be recognised i.e. for each time step we have a multidimensional
pattern. Furthermore it is possible that the start of the sequence is unknown.

Counsider the following example. A radar station monitoring the movement of
hostile aircraft detects that some of the planes seem to be moving towards an
important. strategic installation. To formulate the appropriate response action,
the radar controller needs to know what is the actual intention of the enemy (it
is possible that the enemy might simply attempt to draw valuable resources from
another area). In this situation, analysing previous enemy attacks is useful but
the traditional classification method no longer applies — the response has to be
formulated to counter the enemy attack as soon as possible (before the enemy
has finished carrying out its attack).

Incremental recognition and learning of situations such as the one described above
is desirable as it would allow a better and more efficient response to be formulated.
But there are two problems that have to be addressed. The first problem is that
one cannot precisely define the starting point of the scenario (the starting point
of the sequence) while the second problem is that the scenario is dynamic and
one has to reach a solution before all data is known (before the enemy bombs the
target). It is these problems that are now addressed using ILF.

The layout of this chapter is as follows: Section 2 covers the concept of incre-
mental recognition of multidimensional patterns whilst, in Section 3 we describe
two incremental learning methods that use incremental recognition. In Section
4 we compare the two learning methods and show their advantages and disad-
vantages. Section 5 covers results of classification of fighter combat manoeuvers
using incremental learning and incremental recognition.

9.2 ILF and Incremental Recognition

ILF was augmented to enable it to carry out the incremental recognition and
classification of queries. The main differences between the original classification
and the augmented classification and recognition process used by ILF are that
the augmented recognition processing allows it to search for a starting point for
a sequence of patterns in the models in the hierarchy, and that it can backtrack
to search for a better solution as shown in the following example.
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9.2.1 Example of Incremental Recognition

The general format of an example E; for ¢ = 1,2,3,..,m models used in our
research is an ordered collection of data over n time instances T; where ¢ =
1,2,8,...,n where each time instance T; is a conjunction of feature-value pairs

(F;Vy) where j = 1,2,3,...,p and k = 1,2,3,...,5 as shown below:
E; = Ty(F1,V1),(F, Vo), ,(Fp, V),
To(F1,V1),(F2,V3) s (Fp, Vi)
To(F1,V1),(F2,Va)ys(Fp, V).

The models and the query contain the spatial relationships between the objects
in the scene as well as their temporal ordering. The spatio-temporal relationships
are derived as in the case of the American Football application.

The processing of a query involves a labelling stage as the system attempts to
address the correspondence problem of the objects in the model and query. It
is possible to have a large number of hypotheses for a single model (see Figure
9.1). A hypothesis is one of the valid mappings of the objects in the query onto
the objects in the model. The example shown in Figure 9.1 shows a model that
contains 7 objects organised in two separate “four-finger” formations. The query
contains only 3 unlabelled objects but their arrangement is also in a four-finger
formation. When considering the spatial relationships between the objects, sev-
eral hypotheses or mappings can be derived to label the objects in the query with
the best two hypotheses being [(a,1), (b,2) (¢,3)] and [{a,5), {b,6), (c,7)].

Now consider the case in which the system’s conceptual hierarchy is made up of
three models with each model consisting of four objects and five time instances as
shown in Figure 9.2. The query consists of three objects and four time instances
(Figure 9.3). The processing is done as follows. The system first attempts to
determine what is the equivalent instance in the model for the first instance in
the query starting with the first instance in Model 1.

Less than 75% of the relationships between the objects in the model match the
relationships in the query so Model 1 is discarded. The system proceeds then to
analyse the first instance of Model 2. The two instances do not match and Model
2 is also discarded. Similarly the first instance of Model 3 fails to match the first
instance in the query, so the system starts analysing the second instance in the
models.

The second instance of Model 1 matches the first instance in the query (100%
similarity) so the system has determined that the starting point is instance 2 in
the models. Model 1 is marked as a match for the query and the score generated
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MODEL QUERY

Figure 9.1: Several hypotheses can be generated for the 3 planes in the query
when their spatial relationships are compared to the planes in the model.

for the second instance is recorded.

The first instance in the query also matches the second instance in Model 2 but
does not match Model 3. Model 2 is also marked as a match and the associated
score is recorded.

The second instance in the query becomes available and is shown in Figure 9.3.
The system attempts to match the second instance in the query by comparing it
against the third instance in the marked models (Model 1 and 2). Both models
match the query so their scores are updated. When the second instance in the
query has been considered, the probable solutions are still models 1 and 2. When
information about the third instance in the query is available, the system attempts
to match it against the fourth instance in the marked models. Model 1 matches
while Model 2 does not. Therefore the system changes the mark on Model 2 to
not matched and only the score of Model 1 is updated. After the third instance in
the query has been processed, there is only one possible solution — Model 1. The
fourth instance in the query is matched by the system against the fifth instance in
Model 1 but no match is found. The system changes the match mark on Model
1 to not matched and backtracks to the fourth instance in the models (third
instance in the query). The system attempts to build a new list of candidate
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Figure 9.2: The models stored in the concept hierarchy.

models by analysing all the models that are not marked. Both Model 1 and 2
are marked, so Model 3 is the only potential candidate. The fourth instance in
Model 3 matches the third instance in the query, so the model is marked as a
match and the associated similarity score is recorded. The last instance in the
query also matches the fifth instance of Model 3. Therefore at instance 4 in the
query the most likely solution is Model 3.

As demonstrated with this example, by using the information available at each
step, the system generates a list of solutions which changes according to the new
data. This offers the advantages that a solution list is available at all the steps
in the query and the system can backtrack each time the current solutions are
determined to be inaccurate. The disadvantage of this method is that many
solutions which appear to be accurate for several steps can lead to dead ends.

This configuration gives the most consistent match for each of the time instances
in the query and not the overall match for the whole query. This allows queries
to change halfway through, i.e. Models 1 and 3 are the best partial matches. If
the best overall match is important then in this example, Model 1 is the best
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Figure 9.3: The time instances in the query.

match.

9.3 Incremental Learning using Incremental
Recognition

Incremental learning using ILF can be used to update the conceptual hierarchy
using two methods. The first modification enables it to carry out the incremental
recognition/classification of queries while the second modification enables it to
learn using two methods:

e Best Overall Model — the system only learns is when all time instances are
analysed — the algorithm is shown in Figures 9.4, 9.5).

o Time Instance Based Method — the system learns after each time instance
— the algorithm is shown in Figure 9.6.
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Let example E and be an ordered collection of time instances T1,T2,T3,..,.Tn where each time
instance is a conjunction of features F1,F2,F3,...,Fp.

Lat Model Mi and be an ordered collection of time instances T1,T2,T3,..,.Tn where sach time
instance is a conjunction of features F1,F2,F3,...,Fp.

Bast-Model = -1; Bast-Score = -1;
Start-Instance = -1;

STAGE A.

for Model Mi, i = 0 to n de
for Time Instance Ij, j = 1 to n do
Similarity-Score = 0
compare Model Mi, Instance Ij with Example, Instance I1 and compute Similarity-Score
if Bimilarity-Score »= Similarity-Threshold then
S5tart-Instance = j;
Exit;
end-if
end-for
end-for

STAGE B.

if Start-Instance != -1 then
Backtrack-Flag = Q;
while Time Instance, Ij < n deo
Instance-Similarity-Score = 0;
for Model Mi, i = 1 to n do
if 1 > 1 then
if Model Mi is marked and Backtrack-Flag = 0 then
compars Model Mi, Instance I(j+Start-Point) with Example, Instance Ij and
compute Similarity-Score
if 8imilarity-Score »= Similarity-Threshold then
Model Mi{Score) = Similarity-Score + Model Mi(Score};
Modsel Mi is marked;
if (Instance-Similarity-Score == Q) then
Instance-Similarity-Score = 1;

end-if
end-if
end-if

else
compara Model Mi, Instance I(j+Start-Point) with Example, Instance Ij and
compute Similarity-Score
if Similarity-Score >= Similarity-Threshold then
Model Mi(Score) = Similarity-Score + Model Mi(Scora);
Model Mi is marked;
if (Instance-Similarity-Score == 0} then
Instance-Similarity-Score = 1;
end=-if
ond-if
end-if
end-for
if Best-Score < Model) Mi(Bcore) then
Best—-Score = Model Mi{Scora);
Best-Modal = i;
end-if
if {Instance-Similarity-Score != 0)
j = j + 1; Backtrack-Flag = 0;
else
j = j; Backtrack-Flag = 1;
and-if
end-while
end-if

Figure 9.4: Best Overall Model — Algorithm.
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STAGE C.

if Bast-Model I= -1 then
for Time Instance Ij, j = 1 to n do
if Similarity-Score > Similarity-Thresheld then
update Modsl M{Best-Model), Time Instance I{j+Start-Point)
alsa
add new condition to Model M{Bsst-Modsl), Time Instance I(j+Start-Point)
end-if
end-for
end-if

Figure 9.5: Best Overall Model — Algorithm (continued).

The first method is similar to traditional incremental learning where all the
modifications (if any are necessary) are done after the entire query has been
processed. This method involves a search for the models which best match the
query over its entire set of instances. The algorithm (shown in Figures 9.4 and
9.5) has three stages.

In stage A, the system attempts to determine which time instance in the query
to use in the matching process. It starts by comparing the first instance in the
query with the first instance in the models. If this fails, it tries the next time
instance in the query. The process is repeated until there are no more instances
left in the query or a match is found.

In stage B, the system attempts to identify which candidate model best matches
the query. The system builds a candidate list that is dynamically updated based
on the evidence from the matching process. If all solutions lead to dead ends,
the system backtracks one time instance and attempts to generate a new list of
candidates. The process continues until all the query instances are processed or
until the candidate list is empty.

In stage C, the system updates the model which best matches the query. The
update process is done if the Similarity-Threshold condition is satisfied.

Consider the following example. Let us say the system is processing a query
which consists of 30 time instances and that it generates 6 solutions for the
first instance in the query. After 10 instances, the system determines that all
the original solutions are leading to dead ends, so backtracks one instance and
generates 4 new solutions. The last 20 instances of the query are processed and
the system determines that 2 of the 4 solutions match the query. Therefore the
best solutions are not the ones generated at instance 1 (6 solutions) but the ones
generated at instance 9 (2 out of 4 solutions) — the ones which match the latter



9.3 Incremental Learning using Incremental

Recognition 161
Let example E and be an ordered collection of time instances T1,T2,T3,..,.Tn where each time
instance is a conjunction of featurea F1,F2,F3,...,Fp.

Let Model Mi and be an ordered collection of time instances T1,T2,T3,..,.Tn where each time
instance is a conjunction of features F1,F2,F3,...,Fp.

Start-Instance = -1;

STAGE A.

for Model Mi, i = Q to n do
for Time Imnstance Ij, j =1 to n do
Similarity-Score = 0;
compare Model Mi, Instance Ij with Example, Instance Il and compute Similarity-Score
if Similarity-Score >= Similarity-Threshold then
Start—Instance = j;
Exit;
and-if
end-for
end-for

STAGE B.

if Start-Instance != -1 then
Backtrack-Flag = 0;
while Time Instance, Ij < n do
Instance-Similarity-Scora = 0;
for Model Mi, i = 1 to n do
if 1 > 1 then
if Model Mi is marked and Backtrack-Flag == 0 then
compare Medel Mi, Instance I{j+Start-Point) with Example, Instance Ij and
compute Similarity-Score
if Similarity-Score >= Similarity-Threshold then
Model Mi(Score) = Similarity-Score + Model Mi(Score);
Model Mi is marked;
update Model Mi, Time Instance I(j+Start-Point);
if (Instance-3imilarity-Score == 0) then
Instance-Similarity-Score = 1;

end-if
end-if
and-if

elee
compare Model Mi, Instance I{j+Start-Point) with Example, Instance Ij and
compute Similarity-Score
if Similarity-Score »= Similaerity-Threshold then
Model Mi{Score) = Similarity-Score + Model Mi(Score);
Model Mi is marked;
update Model Mi, Time Instance I(j+Start-Point);
if (Instance-Similarity-Score == 0) then
Instance-3imilarity-Score = 1;
end-if
end-if
and-if
end-for
if (Instance-Similarity-Score != 0)
j = Jj + 1; Backtrack-Flag = 0;
else
j = j; Backtrack-Flag = 1;
end-if
end-while
end-if

Figure 9.6: Best Time Instance — Algorithm.
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part of the query. Therefore the main difference between the traditional and the
new learning method is that the best solutions found match to only the latter
part of the query and backtracking is necessary.

The second method involves updating the conceptual hierarchy after each instance
in the query has been processed. The assumption in this case is that once the
current set of solutions is reinforced at the current instance the system has found
enough evidence to justify the update of the model’s information for the previous
time instance.

'The algorithm is shown in Figure 9.6. In stage A, the system searches for the
time instance in the query that can be used in the matching process. It starts by
comparing the first instance in the query with the first instance in the models.
If this fails, it tries the next time instance in the query. The process is repeated
until there are no more time instances left in the query or a match is found.

In stage B, the system processes the query and model time instances by time
instance. At each step it checks to see which models match the query at the
current time instance. Any model matching the query is marked. All marked
models that match the query at the current time instance as well as the previous
time instance, and satisfy the Similarity-Threshold condition, are updated. In
case the system does not find any matches in the candidate list at a given time,
it backtracks to the previous time and generates a new list of candidates. The
matching process continues until all time instances in the query are processed or
no candidates exist.

Consider the following example. The system is analysing the first instance in the
query and builds a list of solutions which contains 3 models, say Model 1, 2 and
3. The system is then processing the second instance in the query and checks
the models in the solution list. After matching the query against Model 1, 2 and
3, the system determines that Model 1 and 3 match the query, but that Model
2 does not. In this case the assumption is that since the system has confirmed
that Model 1 and 3 are still possible solutions, then there is enough evidence to
backtrack to instance 1 in the two models and update them (if necessary).

9.4 Discussion

These learning methods have their own sets of advantages and disadvantages.
The first method has the advantage that it involves the update of the conceptual
hierarchy only after all the information on the query becomes available and when
the best solution has been found. Another advantage is the number of models
updated is kept to a minimum so the conceptual hierarchy remains compact. The
dilemma in this method is how to update the concepts. The system always selects
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the best candidates but, as it is shown above, it is possible that the best solution
only matches part of the query so should the entire model be updated or only
the parts that match the query? If only parts of the model are updated then
potentially useful information could be lost. If the entire model is updated (all
instances including the ones which do not match) then it is likely that the model
will also contain irrelevant or out of date information. ILF implements the latter
type of updating and the reasoning behind this choice is twofold. It is the safest
method {(no potentially useful information is lost) and with an effective forgetting
mechanism the incorrect/noisy data can be “aged out” from the models.

The second method offers the advantage that the update operations are done only
when there 18 evidence to do so and therefore the amount of incorrect or useless
data added is kept to a minimum. The update operation is also more dynamic
and reflects better the incoming stream of information from the query. The
disadvantage of this method of learning is that the number of models modified is
potentially very large and therefore the amount of memory required to store the
conceptual hierarchy is increased significantly.

To demonstrate the differences between the methods consider the following ex-
ample. Let us assume that the concept hierarchy consists of the 3 models shown
in Figure 9.2 and that the query consists of the time instances as shown in Figure
9.3. The threshold value for a match between the query and the model is set at
67% (two out of three features must match). The start age for all new time in-
stance representations is set to -190 while the age for the original representations
1s set to 0. The lowest age a representation can reach before it is removed is -200.

To show the effects on the models and the time instance representations, we will
assume that the same query is processed by the system 5 times. If the processing
is done using the first method when the system analyses the query, it selects
Model 1 as the best overall match. The system then modifies the representations
for instances 2, 3 and 4 in Model 1. Apart from the original condition, the
system adds the new hypotheses generated for each time instance. Notice that
time instance 5 in Model 1 has a new representation. The system could not
generate a hypothesis for time instance 5 in the Model and since it determined
that the Model and the query are similar, it added time instance 4 in the query
to time instance 5 in Model 1. The new updated model is shown in Figure 9.7.
The modifications made contain both correct data — such as Hypothesis 1 for
instance 3 — and incorrect data — such as Hypothesis 4 for time instance number
2. The age associated with each representation is shown in Table 9.1.

The second time the query is processed, the system again selects Model 1 as the
best overall match and attempts to make the necessary modifications. The model
now contains all the possible hypotheses for the query, so the process is now to
determine which representation best matches the query. For example the query
matches 100% of the original representation with Hypothesis 2 but does not match
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Figure 9.7: Model 1 after the query was processed for the first time.

Hypothesis 1, 3 and 4 at time instance 2. The system checks all representations
and updates the age values as required. The age values of the representations
after the query was processed the second time are shown in Table 9.2. The
representations which are a good match for the query get reinforced while the
ones which are not a good match get their associated age values decremented.
As the same query is processed another three times, hypotheses which were not
a good match get “aged out” and the representations left in the model have the
age values shown in Table 9.3.
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Table 9.1: Age of Representations after the query was processed once.

Table 9.2: Age of Representations after the query was processed twice.

Representation || Time Instance || Age
Original 1 0
Original 2 0

Hypothesis 1 2 -190
Hypothesis 2 2 -190
Hypothesis 3 2 -190
Hypothesis 4 2 -190
Original 3 0
Hypothesis 1 3 -190
Hypothesis 2 3 -190
QOriginal 4 0
Hypothesis 1 4 -190
Hypothesis 2 4 -190
Hypothesis 3 4 -190
Hypothesis 4 4 -190
Original 5 0
New Rep 5 -190

Representation || Time Instance | Age
Original 1 0
Original 2 0

Hypothesis 1 P -192.5
Hypothesis 2 2 -187.5
Hypothesis 3 2 -192.5
Hypothesis 4 2 -192.5
Original 3 0
Hypothesis 1 3 -187.5
Hypothesis 2 3 -192.5
Original 4 0
Hypothesis 1 4 -192.5
Hypothesis 2 4 -192.5
Hypothesis 3 4 -187.5
Hypothesis 4 4 -187.5
QOriginal 5 0
New Rep 3 -187.5
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Representation | Time Instance | Age
Qriginal 1 0
Original 2 0

Hypothesis 2 2 -177.5
Original 3 0
Hypothesis 1 3 -177.5
Original 4 0
Hypothesis 3 4 -177.5
Hypothesis 4 4 -177.5
Original 5 0

New Rep ) -177.5

Table 9.3: Age of Representations after the query was processed 5 times.

The resulting Model 1 is shown in Figure 9.8. The original conditions have been
augmented by the hypotheses shown on the right. Significantly, a new model
pattern has been added.

If the second method of learning is used all three models in the concept hierarchy
would be modified. When the system analyses the query for the first time, it
determines that the query matches time instances 2, 3 and 4 in Model 1, time
instances 2 and 3 in Model 2 and time instance 5 in Model 3. The updated
Models are shown in Figures 9.9 to 9.11.  The age of the representations is
shown in Tables 9.4 to 9.6. The second time the query is processed, the system
attempts to determine which representations in the models best match the query.
For example the query matches 100% of the original representation in Hypothesis
1 but does not match Hypothesis 2 at time instance 5 for Model 3. The system
processes all representations of one model — one instance at a time and modifies
the associated age values as required. The new age values are shown in Tables
9.7 to 9.9. The age values of the models after the query was processed 5 times
are shown in Tables 9.10 to 9.12.

From the example it can be seen that the two types of learning offer different
advantages — memory requirement and less processing vs more accurate repre-
sentation of the flow of information.

9.5 Results

The extended version of ILF which uses the best model update method was used
in a fighter combat application. Unlike the sports domain, the data used for the
fighter combat simulation uses only 3D spatio-temporal features.



9.5 Results

167

Time
Instance
1

Time
Instance

Time
Instance

3

Time
Instance

Time

Instance

Original Condition

BB

Original Condition

Original Condition

Original Condition

Hypothesis 2

Hypothesis 1

Hypothesis 3 Hypothesis 4

[ 5

3

=
1l

b=3

[e]
]
.

Bn
B'

New Representation

Figure 9.8: Model 1 after the query was processed 5 times.
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Representation || Time Instance || Age
Original 1 0
Original 2 0

Hypothesis 1 2 -190
Hypothesis 2 2 -190
Hypothesis 3 2 -190
Hypothesis 4 2 -190
Original 3 0
Hypothesis 1 3 -190
Hypothesis 2 3 -190
Original 4 0
Hypothesis 1 4 -190
Hypothesis 2 4 -190
Hypothesis 3 4 -190
Hypothesis 4 4 -190
|| Original 5 0 |

Table 9.4: Age of Representations after the query was processed once for Model

1.

Representation || Time Instance || Age
Original 1 0
Original 2 0

Hypothesis 1 2 -190
Hypothesis 2 2 -190
Hypothesis 3 2 -190
Hypothesis 4 2 -190
Hypothesis 5 2 -190
Original 3 0
Hypothesis 1 3 -190
Hypothesis 2 3 -190
|| Original 4 0
[ Orignal 5 T 0 |

Table 9.5: Age of Representations after the query was processed once for Model

2.

Representation || Time Instance || Age
Original 1 0
| Original 2 0 |
Original 3 [ o |
Original 4 I 0 |
Original 5 0
Hypothesis 1 5 -190
Hypothesis 2 5 -190

Table 9.6: Age of Representations after the query was processed once for Model

3.
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Representation | Time Instance | Age
Original 1 0
Original 2 0

Hypothesis 1 2 -192.5
Hypothesis 2 2 -187.9
Hypothesis 3 2 -192.5
Hypothesis 4 2 -192.5
Original 3 0
Hypothesis 1 3 -187.5
Hypothesis 2 3 -192.5
Original 4 0
Hypothesis 1 4 -192.5
Hypothesis 2 4 -192.5
Hypothesis 3 4 -187.5
Hypothesis 4 4 -187.5
Original 5 0

Table 9.7: Age of Representations after the query was processed twice for Model

1.

Representation || Time Instance | Age
Original 1 0
Original 2 0
Hypothesis 1 2 -192.5
Hypothesis 2 2 -192.5
Hypothesis 3 2 -192.5
Hypothesis 4 2 -187.5
Hypothesis 5 2 -187.5

Original 3 0
Hypothesis 1 3 -187.5
Hypothesis 2 3 -192.5

| Original | 4 0

| Original || 5 0

‘Table 9.8: Age of Representations after the query was processed twice for Model

2.

Representation

Time Instance

Original

Original

Original

Original

Original

cur:c:c:c:u;%>
4]

Hypothesis 1

-187.5

Hypothesis 2

R O O B || Q| DD

-192.5

Table 9.9: Age of Representations after the query was processed twice for Model

3.
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Figure 9.9: Model 1 after the query was processed the first time.

The fighter combat manoeuvers were simulated using information gathered from
two sources: fighter combat textbooks [107] and computer flight simulator manu-
als [44, 25]. The scenarios simulated were divided into an “easy” set and a “hard”
set.

The easy set involved between 2 and 6 planes per scenario and covered four basic
fighter manoeuvres: one circle turn fight, two circles turn fight, lead pursuit and
lag pursuit. The manoeuvres are shown in Figures 9.12, 9.16, 9.13, 9.17, 9.14,
9.18 and 9.15, 9.19. The figures show a plane view of the manoeuvres as well as
how the planes change their heights.
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Figure 9.10: Model 2 after the query was processed the first time.

The difference between a query and a model was that the query contained infor-
mation where 1 {or 2) of the planes were moving differently when compared to
the model. To recognise the four manoeuvres the system was trained using 134
examples. The data which made up an example consisted of the list of (x,y,z)
coordinates of the positions of the planes during the scenario. The processing of
an example has three steps. In the first step the system tentatively labels the
planes in the query. In the second step the system searches for the starting point
in the query and models in the database. When the system identifies the starting
points it processes all the time instances in the query and determines which is
the best matching model (if there are more than one candidate). If the similarity
between the best model and the query is greater than or equal to 75% then the
model is updated.

Once the training stage was completed, the system attempted to classify 120 new
examples of the manoeuvres. The results are shown in Table 9.13.
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Representation | Time Instance | Age
Original 1 0
Original 2 0
Hypothesis 2 2 -177.5
Original 3 0
Hypothesis 1 3 -177.5
Original 4 0
Hypothesis 3 4 -177.5
Hypothesis 4 4 -177.5
Original 5 0
Table 9.10: Age of Representations after the query was processed 5 times for
Model 1.
Representation | Time Instance | Age
Original 1 0
Original 2 0
Hypothesis 4 2 -177.5
Hypothesis b 2 -177.5
Original 3 0
Hypothesis 1 3 -177.5
[ Original 4 | o |
[ Original 5 i o 1|
Table 9.11: Age of Representations after the query was processed 5 times for
Model 2.
Representation || Time Instance | Age
Original 1 0
Original 2 0
| Original 3 0
| Original 4 0
Original 5 0
Hypothesis 1 5 -177.5

Table 9.12: Age of Representations after the query was processed 5 times for

Model 3.
Manoeuvre Number of Tests | Correct || Incorrect
One Circle Turn Fight 30 26 4
Twao Circles Turn Fight 30 24 6
Lead Pursuit Fight 30 25 5
Lag Pursuit Fight 30 24 6

Table 9.13: Easy Scenarios — Results.
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Figure 9.11: Model 3 after the query was processed the first time.
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Figure 9.12: One circle manoeuver.

Figure 9.13: Two circles manoeuver.
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Figure 9.14: Lag pursuit manoeuver.
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Figure 9.15: Lead pursuit manoceuver.
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Figure 9.16: One circle manoeuver.
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Figure 9.17: Two circles manoeuver.
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Figure 9.18: Lag pursuit manoeuver.
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Figure 9.19: Lead pursuit manoeuver.
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The hard set involved between 8 and 14 planes per scenario and covered the
following fighter manoeuvers: pince attack, single offset attack, champagne attack
and chainsaw attack. The manoeuvers are shown in Figures 9.20 9.24, 9.21, 9.25,

9.22, 9.26 and 9.23.

~

G o

Figure 9.20: Pince manoeuvre.

The difference between query and model was that the query contained information
where 8 (or more) of the planes were moving differently when compared with
the model. To recognise the four manoeuvres the system was trained using 172
examples and then tested on 120 new examples of the manoeuvres. The results
are shown in Table 9.14.

In both the easy and hard scenarios the system failed to correctly classify some
of the manoeuvres. In the case of the easy scenarios, the system misclassified
some of the manoeuvers due to the similarity between the data involved in the
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Figure 9.21: Single OffSet manoeuvre.

Manoeuver Number of Tests || Correct || Incorrect
Pince Attack 25 18 7
Single Offset Attack 25 20 5
Champagne Attack 35 26 9
Chainsaw Attack 35 23 12

Table 9.14: Hard Scenarios — Results.

scenarios (lag and lead pursuit are very similar manoeuvres — the main difference
is the approach angle). In the case of the hard scenarios, the system generated
new models to describe the manoeuvers. This was due to the complexity of the
scenarios (especially the case of chainsaw scenarios — a complex manoenvre that
involves several steps).

9.6 Summary

ILF has been extended to be able to do incremental recognition of queries. This
uses a progressive classification (possibly involving backtracking) which considers
the data at each time instance in the query and thus provides a probable answer
before all the query information becomes available. The extended version of ILF
has been also augmented to enable learning in either a stepwise fashion or an
overall best match fashion.
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Figure 9.22: Champagne manoeuvre.

Two major issues arise when attempting to combine incremental learning and
incremental recognition. The first issue is that of the overall goal. Both methods
can produce partial matches for a query but if the goal is to find the best overall
match for a query, the first method is more appropriate. However if the goal is
to find the best interpretation (or partial match) of data at a given instance in
time then the second method should be used.

The second issue is that of the concept update. In the example of incremental
recognition shown in this section, we have presented the concepts as an ordered
collection of time instances, where cach time instance had its own set of objects
having a well defined spatial arrangement.

This type of representation works well in cases where recognition or classification
and learning is performed after the entire query is processed. However once we
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Figure 9.23: Chainsaw manoeuvre.

try to combine incremental recognition with incremental learning, the question is
how should the model be updated? Should queries that partially match several
models become models themselves? Should the parts of the models which are
not matched be updated or not? One potential solution to the problem of model
updating is to change the representation of the spatial information and that
involves dividing the original model into its time instances — each time instance
becomes a model in its own right.
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Figure 9.24: Pince manoeuvre.
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Figure 9.25: Single OffSet manoeuvre.
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Figure 9.26: Champagne manoeuvre.
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Chapter 10

Conclusions and Future Work

10.1 Summary

This thesis has described research performed into the classification and indexing of
complex video using machine learning. The first aim was to develop an algorithm
that can classify and learn complex spatio-temporal patterns. The second aim
was to show that a complex problem such as classifying American Football plays
can be solved by combining image processing, text processing and learning. The
third aim was to demonstrate that camera parameter estimation and learning can
be used to recognise and learn cricket shots whilst, the fourth aim of this thesis
was to investigate combining incremental learning and incremental recognition.

Chapter 3 presented the incremental learning algorithm: ILF. The algorithm gen-
erates compact conceptual hierarchies, uses an evidence based forgetting method
to prune old or irrelevant data and tracks concept drift. When comparing ILF
with two similar algorithms — UNIMEM and COBWEB — ILF performs better.

In chapter 4, the knowledge structure to represent American Football plays was
presented. American Football plays are very complex and involve a well defined
set of movements and actions with each player attempting to complete his task
(which can vary from protecting the quarterback to receiving the ball). To cap-
ture the knowledge about the plays, a model structure has been developed that
combines expert knowledge, domain knowledge (game rules), spatial knowledge
(player relationships) and temporal knowledge (action sequencing in individual
plays). The play model has several components which describe the play action
in terms of player significance, player relationships, player movements, player
actions, and the temporal sequencing of the player actions and movements.

In chapter 5, it was shown that by combining simple low-level image processing
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with context knowledge it is possible to solve the complex problem of player
labelling. The labelling of the players was done with the help of an expert system
that uses over 1200 rules to generate the labels for the players based on the
information extracted from images.

Chapter 6 presented the algorithm used to recognise plays of American Foot-
ball. The algorithm has three stages: a text comparison stage (where the clues
from the transcript of the commentary are analysed), a spatial relationship stage
(where the relationships between the players are compared) and a temporal anal-
ysis stage (where the actions of the players and their temporal sequencing are
compared). The algorithm can return both complete and partial matches be-
tween two plays compared and demonstrates that combining image analysis, text
processing and background knowledge can help solve the problem of classifying
American Football plays.

In chapter 7, we described how ILF learns spatio-temporal patterns. The al-
gorithm generalises the spatial information by adding any new relationships en-
countered to a known set of relationships while maintaining the temporal order
in which they occurred. The temporal information is generalised in a similar
way. The algorithm is simple and demonstrates that symbolic data can be used
to describe complex spatio-temporal patterns.

Chapter 8 presented the application of the ILF algorithm to the problem of
recognising cricket shots from video data. The methods developed for American
Football were not suitable for this application so other techniques have been
developed although they still use symbolic attributes. The cricket application
shows that combining camera motion estimation and learning can be used to
classify and learn cricket shots.

In chapter 9, we explored how incremental learning could be combined with incre-
mental recognition to solve classification tasks where the two main assumptions
used in learning were no longer applicable. The first assumption was that the sys-
tem always knew that the starting point in the training data is always the same
as the one in classes/concepts stored in the knowledge base and therefore the
system would be able to attempt a comparison straight away. The second was
that all the information about the example/query was known before any clas-
sification was attempted. ILF was extended to enable incremental recognition
of queries. This used a progressive classification (which possibly involved back-
tracking) that considered the data at each time instance in the query and thus
providing a probable answer before all the query information became available.
The extended version of ILF was also augmented to enable learning in either a
stepwise fashion or an overall best match fashion. Two issues were identified:
overall goal and concept update.
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10.2 Future Work

The algorithm we have developed in this thesis addresses three issues in incre-
mental learning: concept drift, forgetting and memory size. However more work
could be done in the methods of data ageing. ILF uses an evidence based forget-
ting mechanism. Other forgetting techniques that can be used are exponential
decay ageing or time based ageing.

Another aspect of the work that can be further investigated is that of combining
incremental learning and incremental recognition. Qur investigations were in a
domain where the concepts were stable and one possible extension of the work
could be to apply the augmented ILF algorithm to domains where true concept
drift occurs (see chapter 3 for explanation). Another possible extension of the
work would be to investigate different ageing mechanism while attempting to
combine incremental learning and incremental recognition.
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Appendix A

A

A.1 Introduction

The parser used to process the transcript of the natural language commentary
from American Football games was developed using UNIX tools LEX and YACC.
LEX is a tool that recognizes lexical patterns in text. LEX reads the given input
files for regular expressions and whenever it finds one, it executes the correspond-
ing C code. YACC is used to generate rules that in combination the information
extracted by LEX from the text can be used to search the text for complex text
patterns. In this Appendix we present the type of keywords used by the parser.

A.2 Text Keywords

There are three classes of keywords that the system is parsing the commentary
for:

e Class 1 - keywords that may indicate the name of a player, play, team or
a player position.
¢ Class 2 - keywords that may indicate a play action.

o Class 3 - keywords that may indicate a game statistic such as score or
down number.

The keywords take the form of character strings which can be defined by the user
in three ways:
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o By specifying the entire character string such as ball

o By specifying a character string followed by character intervals. For example
(safet)([y]—[ies] where an acceptable match is either the string safety or
the string safeties.

By specifying character intervals such as [a-b][a-b]. Valid matches are ag,
ab, ba and bb.

By specifying any of the above followed the + or * wildcards. The + stand
for match anything of length 1 or more. The * wildcard character stands
for match anything of length 0 or more.

The four classes are described in more detail in the following sections.

A.2.1 Class 1 Keywords
A.2.1.1 Player Names

The assumption made before the parsing is started, is that a database of the
player’s names in the American Football League is available. The commentary is
searched for any strings that start with a capital letter. If the string is found in
the database then the string is identified as player name keyword.

A.2.1.2 Play Name

A database of American Football plays is also available before the parsing of the
commentary is done. The names of the plays were extracted from three sources:

e Coaching books

e Video tapes

There are general play names for each the three types of possible plays: offensive,
defensive or special. There are 42 plays names for the offensive plays and 38 for
the defensive plays. The names of the special plays are listed below:

e Punt
s Fake Punt
¢ Field Goal
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Conversion

Kick Off

Kick Return
Punt Return
Punt Block
Field Goal Block
Stop Clock

A.2.1.3 Team Name

o The full team name such Denver Broncos
e The name of the city where the team is based such as Denver

e The team name such as Broncos

The names of the teams are shown below:

New England Patriots
New York Jets
Buffalo Bilis

Miami Dolphins
Indianapolis Colts
Dallas Cowboys
Washington Redskins
New York Giants
Philadelphia Eagles
Arizona Cardinals
Jacksonville Jaguars

Pittsburgh Steelers

The names of the 30 teams are stored as part of the background knowledge. When
searching for the name of a team, the system looks for:
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A.2.1.4 Player Position Name

The positions of the players who take part in offensive plays are:

Baltimore Ravens
Cincinnati Bengals

Tennesse Qilers

Tampa Bay Bucanners

Green Bay Packers
Minnessota Vikings
Detroit Lions
Chicago Bears
Denver Broncos
Kansas City Chiefs
San Diego Chargers
Oakland Raiders
San Francisco 49
Carolina Panthers
Saint Louis Rams
New Orleans Saints

Atlanta Hawks

Quarterback
Guard
Receiver
Wide-Receiver
Half-Back

Running-Back
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o Blocker

e Corner-Back
¢ Linebacker
o Tight-End
s Kicker

e Punter

e Snap

e Full Back

o Tail Back

o Slot Back

o Flanker

e Right Tackle
o Left Tackle
¢ Right Guard
¢ Center

o Left Guard

Similarly the system is searching the text for 14 defensive players and 8 special
teams players.

A.2.2 Class 2 Keywords

Any verb that may describe an action in the play is a Class 2 keyword. There
three types of action: offensive, defensive and special. In the case of the offensive
action, the system searches for verb that indicate:

e That the ball was passed.

— Pass
— Throw

— Toss
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— Hit

— Lob

— Unload
— Telegraph
— Find

— Connect

— Target
e That the ball was handed
— Hand

— Give

— Leave
e That the ball was kicked

— Kick
— Punt

In the case of defensive action the system is looking for:

e Tackle
o Grab
e Push

o Hit

e Grill

¢ Hammer
o Flatten
e Shove
e Hold

¢ Block
e Cover

e Intercept

e Fumble
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e Level

¢ Blind

¢ Intervene
e Sack

e Stop

e Deflect

o Blitz

s Bump

e Qverpower
For the special plays, the releveant character strings are:

e Return
¢ Kick
e Fake

A.2.3 Class 3 Keywords

The system looks for both character strings and numerical strings. The keywords
of interest are shown below:

e 1st down

e 2nd down

e 3rd down

e 4th down

e yard number

e quarter number
e yard line

e time left
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Appendix B

B

B.1 Introduction

The keywords defined in Appendix A are used by YACC to recognise the pat-
terns two types of patterns: complex patterns and simple patterns. The complex
patterns are themselves constructed using simpler patterns and keywords while
the simple patterns are constructed using only keywords.

B.2 Text Patterns

The patterns are shown below (the text analysis starts with most complex pattern
and goes down the simplest pattern).

game : play gama

| statistics game
play
| statistics;

play : any_play play
| any_play;

any_play : offensive_play
defensive_play
| epecial_play
| empty_list;

offensive_play : throw_play

. for each verb describing an offensive action
. (ses Appendix A) there is a pattern such as the threw_play

| hit_play;
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special_play : kick_play

throw_play :

| receive_play
| punt_play;

lead_type THROW TD receiver_type
| lead_type THROW receiver_type
| lead_type THROW;

receiver_type : guard_position

| wide_receiver_peosition
| receiver_position

| tight_end_position

| running_back_pesition
| half_back_position;

guard_position : GUARD NAME NAME

| GUARD NAME
| NAME;

Similar patterns are defined for the rest of the receiver positions.

defensive_play : tackle_play

tackle_play

statistics :

yard_line :

. for each verb describing a defensive action (see Appendix
. 4) there is a pattern such as the cover_play
| cover_play;

receiver_type TACKLE BY defendar_type
lead_type TACKLE BY defender type
defender_type WITH TACKLE

TACKLE DN receiver_type BY defender_type
TACKLE DN lead_type BY defender_type
TACKLE BY defender_type;

yard_line
yards_gained
yards_lost
down_number

attack zone line
dafensive zone line
BCore

time period

time left;

NUMBER YARD

ON NUMBER YARD LINE
ON NUMBER YARD

AT NUMBER YARD LINE
AT NUMBER YARD

TO NUMBER YARD LINE
TO NUMBER YARD;

Similar patterns are defined for the rest of the statistics options.

empty_list

: TO empty_list

ON empty_list
ART empty_list
TO
oN
ART; _position;
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Appendix C

C

The results of the remaining 17 video sequences processed by the system are pre-
sented in this Appendix. The format of the results is: commentary, information
frames and result. The results marked by a * indicate that the text processing
failed, while the results marked by ** indicate that the video analysis failed to
choose the correct play.

C.1 Test Sequence 1

C.1.1 Commentary 1

3rd down and 1 . PlayerX to PlayerY , finally a 1st down and PlayerZ covering PlayerY .

Figure C.1: Transcript of the commentary for the play 1.

C.1.2 Information Frames
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Play-name Pass
Offensive-team -
Defensive-team -

Down-No. 3rd

Yards-to-go 1

Time 9
Playerl PlayerX
Player2 PlayerY

Playerl-Type Quarterback
Player2-Type Receiver
Instance 1

Table C.1: Play Frame.

Play-name Cover
Offensive-team -
Defensive-team -

Down-No. 3rd

Yards-to-go 9

Time 9
Playerl PlayerZ
Player2 PlayerY

Player1-Type Linebacker
Player2-Type Receiver
Instance 2

Table C.2: Play Frame.

Play-Model-Name

Play Evidence Score

Square-In (broken) 248
Pa-Pass (normal) 223
Weak-Flood (hb-back) 205
Quick-Outs 196
Quick-Slant (normal) 190

Table C.3: Result for test sequence 1.
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C.2 Test Sequence 2

C.2.1 Commentary 2

Took roughly 31 minutes for Teaml to get a 1st down , PlayerX , and PlayerY gets him into the
turf at the 45 yard line .

Figure C.2: Transcript of the commentary for the play 2.

C.2.2 Information Frames

Play-name Run
Offensive-team -
Defensive-team -

Down-No. -

Yards-to-go -

Time -
Playerl PlayerX
Player2 -

Playerl-Type -
FPlayer2-Type Running-Back
Instance 1

Table C.4: Play Frame.
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Play-name Tackle
Offensive-team -
Defensive-team

Down-No.
Yards-to-go -
Time 9
Playerl PlayerY
Player2 -

Playert-Type Linebacker
Player2-Type -
Instance 2

Table C.5: Play Frame.

Play-Model-Name Play Evidence Score**
HB-Off-Tackle (normal) 232
FB-Off-Tackle (normal) 210

HB-Of-Tackle (2te) 793
FB-Opt-Drive 186
HB-Hook 174

Table C.6: Result for test sequence 2.
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C.3 Test Sequence 3

C.3.1 Commentary 3

PlayerX to PlayerY this time , unsuccessful , PlayerZ made the tackle .

Figure C.3: Transcript of the commentary for the play 3.

C.3.2 Information Frames

Play-name Pass
Offensive-team -
Defengive-team -

Down-No. -

Yards-to-go -

Time -
Playerl PlayerX
Player2 PlayerY

Playerl-Type Quarterback
Player2-Type Receiver
Instance 1

Table C.7: Play Frame.
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Play-name Tackle
Offensive-team -
Defensive-team
Down-No.
Yards-to-go
Time -
Playerl PlayerZ
Player2 -
Playerl-Type Linebacker
Player2-Type -
Instance 2

Table C.8: Play Frame.

Play-Model-Name || Play Evidence Score**
HB-Off-Tackle 203
HB-Dive 184
Cross-Pass 178
FB-Inside-Run 169
HB-Toss 157

Table C.9: Result for test sequence 4.
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C.4 Test Sequence 4

C.4.1 Commentary 4*

3rd and 10 for PlayerX , PlayerY going forward . The throw to PlayerZ is complete and we have

a touchdown.

C.4.2 Information Frames 4

Figure C.4: Transcript of the commentary for the play 4.

Play-name Pass
Offensive-team -
Defensive-team -

Down-No. Jrd

Yards-to-go 10
Time -
Playerl PlayerX
Player2 PlayerY
Playerl-Type Quarterback
Player2-Type Running-Back
Instance 1

Table C.10: Play Frame.
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Play-name Pass
Offensive-team
Defensive-teamn -
Down-No. 3rd

Yards-to-go 10
Time -
Playerl PlayerZ
Player2 -

Playerl-Type Receiver
Player2-Type -
Instance 2

Table C.11: Play Frame.

Play-Model-Name | Play Evidence Score
In-Out 264
Square-In 242
Break-In 210
Pa-Pass 194
HB-Sprint-Draw 183

Table C.12: Result for test sequence 4.
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C.5 Test Sequence 5

C.5.1 Commentary 5%

PlayerX’s 4 touchdowns get him a seat on the bench and PlayerY from the Citadel or is it the
Citadel .

Figure C.5: Transcript of the commentary for the play 5.

C.5.2 Information Frame

Play-name -
Offensive-team -
Defensive-team -

Down-No. -

Yards-to-go -

Time -
Playerl PlayerX
Player2 PlayerY

Playerl-Type Quarterback
Player2-Type Quarterback
Instance 1

Table C.13: Play Frame.
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Play-Model-Name || Play Evidence Score™*
Belly-Weak 210
Square-In 180
Out-n-Ups 173
Quick-Slant 165
Power-Weak 160

Table C.14: Result for test sequence 5.
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C.6 Test Sequence 6

C.6.1 Commentary 6

PlayerX again and his jersey is on the ground , PlayerY made the tackle .

Figure C.6: Transcript of the commentary for the play 6.

C.6.2 Information Frames

Play-name Run
Offensive-team -
Defensive-team -

Daown-No. -

Yards-to-go -

Time 1]
Playerl PlayerX
Player2 -

Playerl-Type Running-Back
Player2-Type -
Instance 1

Table C.15: Play Frame.
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Play-name

Offensive-team

Tackle

Defensive-team

Down-No.

Yards-to-go

Time

Playerl

Player2

PlayerY

Playerl-Type

Player2-Type

Linebacker

Instance

2

Table C.16: Play Frame.

Play-Model-Name || Play Evidence Score
Square-In 257
HB-DIve-Left 245
HB-Draw 231
FB-Inside-Run 210
Power-Weak 187

Table C.17: Result for test sequence 6.
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C.7 Test Sequence 7

C.7.1 Commentary 7

Number 19 , PlayerX maybe gained about 2 yards .

Figure C.7: Transcript of the commentary for the play 7.

C.7.2 Information Frames 7

Play-name Run
(Offensive-team -
Defensive-team

Down-No.

Yards-to-go
Time -
Playerl PlayerX
Player2 -
Playerl-Type Running-Back
Player2-Type -
Instance 1

Table C.18: Play Frame.
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Play-Model-Name || Play Evidence Score
Square-In 256
FB-Inside-Run 210
HB-Toss 198
HB-Trap 194
HB-Draw 175

Table C.19: Result for test sequence 7.
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C.8 Test Sequence 8

C.8.1 Commentary 8

PlayerX to PlayerY . I think this game is going to make them become a better team . PlayerY
has 1st down at the 2T yard line .

Figure C.8: Transcript of the commentary for the play 8.

C.8.2 Information Frames 8

Play-name Pass
Offensive-team -
Defensive-team -

Down-No. -

Yards-to-go -

Time -
Playerl PlayerX
Player2 PlayerY

Playerl-Type Quarterback
Player2-Type Receiver
Instance 1

Table C.20: Play Frame.
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Play-Model-Name || Play Evidence Score
In-Out 256
HB-Hook 210
HB-Toss 198
HB-Toss-Pass 194
Quick-Outs 175

Table C.21: Result for test sequence 8.
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C.9 Test Sequence 9

C.9.1 Commentary 9

Teaml has the home field advantage and Team?2 is working on it . PlayerX and you might you
want to bring up the question Conferencel versus Conference2 .

Figure C.9: Transcript of the commentary for the play 9.

C.9.2 Information Frames 9

Play-name Pasg
Ofensive-team -
Defensive-team -

Down-No. -

Yards-to-go -
Time -
Playerl PlayerX
Player2 -
Playerl-Type Receiver
Player2-Type -
Instance 1

Table C.22: Play Frame.
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Play-Model-Name

Play Evidence Score**

FB-Off-Tackle 224
FB-Inside-Run 210
HB-Wham 187
Belly-Strong 179
Power-Weak 162

Table C.23: Result for test sequence 9.
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C.10 Test Sequence 10

C.10.1 Commentary 10

PlayerX, they call the grand cannon in State near the Grand Canyon and PlayerY has gone down
to the 49 yard line .

Figure C.10: Transcript of the commentary for the play 10.

C.10.2 Information Frames 10

Play-name Pass
Offensive-team -
Defensive-team -

Down-No. -

Yards-to-go -

Time -
Playerl PlayerX
Player2 PlayerY

Player1-Type Quarterback
Player2-Type Receiver
Instance 1

Table C.24: Play Frame.
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Play-Model-Name || Play Evidence Score**
HB-Hook 230
Belly-Weak 221
HB-Sprint-Draw 215
Power-Weak
FB-Inside-Run 184

Table C.25: Result for test sequence 10.
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C.11 Test Sequence 11

C.11.1 Commentary 11

Our congratulations to Teaml , Conferencel champions , as PlayerX has a 1st down at the Team1
47 yard line .

Figure C.11: Transcript of the commentary for the play 11.

C.11.2 Information Frames 11

Play-name Pass
Offensive-team
Defensive-team

Down-No.

Yards-to-go
Time -
Playerl PlayerX
Player2 -
Playerl-Type Recelver
Player2-Type -
Instance 1

Table C.26: Play Frame.



C.11 Test Sequence 11 220

Play-Model-Name || Play Evidence Score**
Belly-Weak 241
HB-Wham 227

HB-Sprint-Draw 220
FB-Inside-Run 215
Power-Weak 184

Table C.27: Result for test sequence 11.
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C.12 Test Sequence 12

C.12.1 Commentary 12

Teaml has lost T games in a row to Team2 in Texas Stadium . PlayerX underneath , incomplete
with 11 seconds left , PlayerY the intended receiver .

Figure C.12: Transcript of the commentary for the play 12.

C.12.2 Information Frames

Play-name Pazs
Offensive-team -
Defensive-team -

Down-No. -

Yards-to-go -

Time -
Playerl PlayerX
Player2 PlayerY

Playerl-Type Quarterback
Player2-Type Receiver
Instance 1

Table C.28: Play Frame.
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Play-Model-Name || Play Evidence Score**
Quick-Slant 236
Square-In 219
Cross-Pass 194
Quick-Outs 189
Pa-Curls 175

Table C.29: Result for test sequence 12,
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C.13 Test Sequence 13

C.13.1 Commentary 13

After the penalty the Teaml start inside their 8 . PlayerX on the goaline , the tail back , and
PlayerY to throw down the middle , incomplete as PlayerZ was unable to hang on at the 18 ,
PlayerW and PlayerU on the coverage .

Figure C.13: Transcript of the commentary for the play 13.

C.13.2 Information Frames

Play-name Pass
Offensive-team -
Defensive-team -

Down-No. -

Yards-to-go -

Time -
Playerl PlayerY
Player2 PlayerZ

Playerl-Type Quarterback
Player2-Type Receiver
Instance 1

Table C.30: Play Frame.
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Play-name

Offensive-team

Defensive-team

Down-No.

Yards-to-go

Time

Playerl

PlayerW

Player2

Playerl-Type

Linebacker

Player2-Type

Iustance

2

Table C.31: Play Frame.

Play-name

QOffensive-team

Defensive-team

Down-No.

Yards-to-go

Time

Playerl

PlayerlU

Player2

Playerl-Type

Linebacker

Player2-Type

Instance

3

Table C.32: Play Frame.

Play-Model-Name | Play Evidence Score
In-Out 249
Break-In 232
Square-In 225
Quick-Outs 210
HB-Draw 167

Table C.33: Result for test sequence 13.
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C.14 'Test Sequence 14

C.14.1 Commentary 14

2nd and 10 . PlayerX gets it and picks his way to the 10 maybe the 11 for a 3 yard gain .

Figure C.14: Transcript of the commentary for the play 14.

C.14.2 Information Frames 14

Play-name Run
Offensive-team -
Defensive-team -

Down-No. 2nd

Yards-to-go 10

Time 10
Playerl PlayerX
Player2 -

Playerl-Type Running-Back
Player2-Type -
Instance 1

Table C.34: Play Frame.
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Play-Model-Name

Play Evidence Score**

HB-Dive-Left 253
HB-Draw 240
Square-In 229
Break-In 208

FB-Inside-Run 197

Table C.35: Result for test sequence 14.
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C.15 Test Sequence 15

C.15.1 Commentary 15

Teaml against the Kansas crowd , and almost intercepted as PlayerX was hit as he throwed .
PlayerY , number 99 was on PlayerX .

Figure C.15: Transcript of the commentary for the play 15.

C.15.2 Information Frames

Play-name Pass
Offensive-team -
Defensive-team -

Down-No. -

Yards-to-go -

Time -
Playerl PlayerX
Player2 -

Playerl-Type Quarterback
Player2-Type -
Instance - 1

Table C.36: Play Frame.
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Play-name

Tackle

Offensive-team

Defensive-team

Down-No.

Yards-to-go

Time

Playerl

PlayerY

Player2

FPlayerl-Type

Linebacker

Player2-Type

Instance

2

Table C.37: Play Frame.

Play-Model-Name || Play Evidence Score**
Pa-Pass 209
In-Out 197
Pa-Curls 182
Quick-Outs 177
Break-In 166

Table C.38: Result for test sequence 15.
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C.16 Test Sequence 16

C.16.1 Commentary 16

PlayerX to throw again to the sidelines , incomplete , PlayerY unable to hang on , PlayerZ was
covering .

Figure C.16: Transcript of the commentary for the play 16.

C.16.2 Information Frames

Play-name Pass
Offensive-team -
Defensive-team -

Down-No. -

Yards-to-go -

Time -
Playerl PlayerX
Player2 PlayerY

Playerl-Type Quarterback
Player2-Type Receiver
Instance 1

Table C.39: Play Frame.
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Play-name Cover
Offensive-team
Defensive-team

Down-No.

Yards-to-go
Time -
Playerl PlayerZ
Player2 -
Playerl-Type Linebacker
Player2-Type -
Instance 2

Table C.40: Play Frame.

Play-Model-Name || Play Evidence Score
Quick-Outs 262
Cross-Pass 247
In-Out 225
Out-n-Ups 219
Quick-Slant 186

Table C.41: Result for test sequence 186.
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C.17 Test Sequence 17

C.17.1 Commentary 17

The 7ith game between these two teams , dead even with 38 wins each and 2 ties , but Teaml
dominating lately , winning 12 of the 13 as PlayerX bowling his way forward and earning a couple
of extra yards down to the 10 , 5 yards gained on the play.

Figure C.17: Transcript of the commentary for the play 17.

C.17.2 Information Frames

Play-name Run
Offensive-team -
Defensive-team -

Down-No. -

Yards-to-go -
Time -
Playerl PlayerX
Player2 -
Player1-Type Running-Back
Player2-Type -
Instance 1

Table C.42: Play Frame.
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Play-Model-Name

Play Evidence Score

HB-Wham 231
Belly-Strong 214
HB-Sprint-Draw 193
Power-Weak 185
HB-Off-Tackle 178

Table C.43: Result for test sequence 17.
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