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ABSTRACT

Integer carrier phase ambiguity resolution is the key to
fast and high-precision global navigation satellite system
(GNSS) positioning and navigation. It is the process of
resolving the unknown cycle ambiguities of the double-
differenced carrier phase data as integers. For the problem
of estimating the ambiguities as integers a rigorous theory
is available. The user can choose from a whole class of in-
teger estimators, from which integer least-squares is known
to perform best in the sense that no other integer estimator
exists which will have a higher success rate.

Next to the integer estimation step, also the integer valida-
tion plays a crucial role in the process of ambiguity resolu-
tion. Various validation procedures have been proposed in
the literature. One of the earliest and most popular ways of
validating the integer ambiguity solution is to make use of
the so-called Ratio Test.

In this contribution we will study the properties and under-
lying concept of the popular Ratio Test. This will be done
in two parts. First we will criticize some of the properties
and underlying principles which have been assigned in the
literature to the Ratio Test. Despite this criticism however,
we will show that the Ratio Test itself is still an important,
albeit not optimal, candidate for validating the integer solu-
tion. That is, we will also show that the procedure under-
lying the Ratio Test can indeed be given a firm theoretical
footing. This is made possible by the recently introduced
theory of Integer Aperture Inference. The necessary ingre-
dients of this theory will be briefly described. It will also
be shown that one can do better than the Ratio Test. The
optimal test will be given and the difference between the
optimal test and the Ratio Test will be discussed and illus-
trated.

1 INTRODUCTION

Integer carrier phase ambiguity resolution is the key to
fast and high-precision global navigation satellite system
(GNSS) positioning and navigation. It applies to a great
variety of current and future models of GPS, modernized
GPS and Galileo, with applications in surveying, naviga-
tion, geodesy and geophysics. These models may dif-
fer greatly in complexity and diversity. They range from
single-baseline models used for kinematic positioning to
multi-baseline models used as a tool for studying geody-
namic phenomena. The models may or may not have the
relative receiver-satellite geometry included. They may
also be discriminated as to whether the slave receiver(s)
is stationary or in motion, or whether or not the differen-
tial atmospheric delays (ionosphere and troposphere) are in-
cluded as unknowns. An overview of these models can be
found in textbooks like (Hofmann-Wellenhof et al., 2001;
Leick, 2003; Parkinson and Spilker, 1996; Strang and
Borre, 1997; Teunissen and Kleusberg, 1998).

Any linear(ized) GNSS model can be cast in the following
system of linearized observation equations:

E{y} = Aa + Bb , a ∈ Z
n, b ∈ R

p (1)

with E{.} the mathematical expectation operator, y the m-
vector of observables, a the n-vector of unknown integer
parameters and b the p-vector of unknown real-valued pa-
rameters. The data vector y will then usually consist of
the ’observed minus computed’ single- or multi-frequency
double-difference (DD) phase and/or pseudorange (code)
observations accumulated over all observation epochs. The
entries of vector a are then the DD carrier phase ambigu-
ities, expressed in units of cycles rather than range, while
the entries of the vector b will consist of the remaining
unknown parameters, such as for instance baseline compo-
nents (coordinates) and possibly atmospheric delay param-
eters (troposphere, ionosphere).

The procedure for solving the above GNSS model can be
divided conceptually into three steps. In the first step one
simply discards the integer constraints a ∈ Z

n and per-



forms a standard adjustment. As a result one obtains the so-
called ’float’ solution â and b̂. This solution is real-valued.
Then in the second step the float solution â is further ad-
justed so as to take in some pre-defined way the integerness
of the ambiguities into account. This gives

ǎ = S(â) (2)

in which S is an n-dimensional mapping that in some way
takes the integerness of the ambiguities into account. This
estimator is then used in the final step to adjust the float
estimator b̂. As a result one obtains the so-called ’fixed’
estimator of b as

b̌ = b̂ − Q
b̂â

Q−1

â (â − ǎ) (3)

in which Qâ denotes the vc-matrix of â and Q
b̂â

denotes
the covariance matrix of b̂ and â.

The above three-step procedure is still ambiguous in the
sense that it leaves room for choosing the n-dimensional
map S. Different choices for S will lead to different ambi-
guity estimators and thus also to different baseline estima-
tors b̌. One can therefore now think of constructing a family
of maps S with certain desirable properties.

Next to the integer estimation step, also integer validation
plays a crucial role in the process of ambiguity resolution.
After all, even when one uses an optimal, or close to opti-
mal, integer ambiguity estimator, one can still come up with
an unacceptable integer solution. Unfortunately, however,
there does not yet exist a rigorous probabilistic theory for
the validation of the integer ambiguities. Various valida-
tion procedures have been proposed in the literature. Some
seem to have a good performance, others however can be
shown to perform poorly, while still others perform poor in
some cases while good in other cases. One of the earliest
and most popular ways of validating the integer ambiguity
solution is to make use of the so-called Ratio Test. The
test statistic of the Ratio Test is defined as the ratio of the
squared norm of the ’second-best’ ambiguity residual vec-
tor and the squared norm of the ’best’ ambiguity residual
vector. The computed integer ambiguity solution is then re-
jected in favor of the float solution when this ratio is below
a certain user-defined threshold.

In this contribution we will study the properties and under-
lying concept of the popular Ratio Test. This will be done in
two parts. First we will criticize some of the properties and
underlying principles which have been assigned in the liter-
ature to the Ratio Test. This criticism will be substantiated
by means of counter examples. Topics to which this criti-
cism applies are, for example, the use of the classical the-
ory of hypothesis testing for ’deriving’ the Ratio Test, the
probability distribution which is often assigned to the test
statistic of the Ratio Test, and the lack of being able to give
a rigorous overall probabilistic evaluation of the combina-
tion of integer estimation and integer validation when using
the Ratio Test. Despite this criticism however, we will show
that the Ratio Test itself is still an important, albeit not op-
timal, candidate for validating the integer solution. That is,
we will also show that the procedure underlying the Ratio
Test can indeed be given a firm theoretical footing, but one
that differs significantly from the ones described in the lit-
erature. For the practical user of the Ratio Test this has the
important consequence that the Ratio Test has to be evalu-
ated differently as thought so far.

The firm theoretical basis that can be given to the Ratio
Test is made possible by the recently introduced theory of
Integer Aperture Inference (Teunissen, 2003b; Teunissen,
2004). The necessary ingredients of this theory will be
briefly described. It will be shown that the procedure under-
lying the Ratio Test is a member from the class of integer
aperture estimators. This allows us (i) to quantify and qual-
ify the acceptance region of the Ratio Test, (ii) to give an
exact and overall probabilistic evaluation of the combined
integer estimation and validation solution when using the
Ratio Test, and (iii) to show the user how he/she needs to
compute the critical value of the Ratio Test. However, it
will also be shown that one can do better than the Ratio
Test. The optimal test will be given and the difference be-
tween the optimal test and the Ratio Test will be discussed
and illustrated. Having the practical user in mind, we also
present the concrete procedure together with the implemen-
tation steps.

The outline of this contribution is as follows. First, the the-
ory of integer estimation is reviewed. In section 3 the prop-
erties and concept of the Ratio Test are described and crit-
icized. Next it will be shown that a firm theoretical basis
for the Ratio Test can be given by the introduction of the
class of Integer Aperture estimators in section 5. The op-
timal test will be presented in section 4. Finally, section 7
presents some examples in order to illustrate the principles
and properties of the Ratio Test and the optimal test.

2 INTEGER ESTIMATION

In section 1 the procedure for solving the GNSS model was
outlined. The second step was the integer estimation of the
ambiguities. The space of integers, Z

n, is of a discrete na-
ture, which implies that the map S in (2) must be a many-
to-one map, and not one-to-one. In other words, different
real-valued ambiguity vectors a will be mapped to the same
integer vector. Therefore, a subset Sz ⊂ R

n can be as-
signed to each integer vector z ∈ Z

n:

Sz = {x ∈ R
n | z = S(x)} , z ∈ Z

n (4)

This subset Sz contains all real-valued float ambiguity vec-
tors that will be mapped to the same integer vector z, and it
is called the pull-in region of z (Jonkman, 1998; Teunissen,
1998).

The integer estimator is completely defined by the pull-in
region Sz , so that it is possible to define different classes
of integer estimators by imposing various conditions on the
pull-in regions. An integer estimator, ǎ, is said to be admis-
sible when its pull-in region, Sz , satisfies:



(i)
⋃

z∈Zn

Sz = R
n

(ii) Int(Su) ∩ Int(Sz) = ∅, ∀u, z ∈ Z
n, u 6= z

(iii) Sz = z + S0, ∀z ∈ Z
n

(5)

where ’Int’ denotes the interior of the subset.

In (Teunissen, 1998) the motivation for this definition is
given. The first condition states that the collection of all
pull-in regions should cover the complete space R

n, so that
indeed all real-valued vectors will be mapped to an integer
vector. The second condition states that the pull-in regions
should be disjunct, i.e. there should be no overlap between
the pull-in regions, so that the float solution is mapped to
just one integer vector. Finally, the third condition is that of
translational invariance, which means that if the float solu-
tion is perturbed by z ∈ Z

n, the corresponding integer solu-
tion is perturbed by the same amount: S(â+z) = S(â)+z.
This allows one to apply the integer remove-restore tech-
nique: S(â − z) + z = S(â).

Examples of integer estimators that belong to the class of
admissible integer estimators are integer rounding, integer
bootstrapping, and integer least-squares (ILS). The latter is
shown to be optimal, cf.(Teunissen, 1999), which means
that the probability of correct integer estimation is maxi-
mized. The integer least-squares estimator is defined as:

ǎ = arg min
z∈Zn

‖â − z‖2

Qâ
(6)

with the squared norm ‖ · ‖2

Q = (·)T Q−1(·), and where
ǎ ∈ Z

n is the fixed ILS ambiguity solution. The pull-in
region that belongs to the integer z follows as:

Sz =
{

x ∈ R
n | ‖x − z‖2

Qâ
≤ ‖x − u‖2

Qâ
, ∀u ∈ Z

n
}

(7)

If we use:

‖x−z‖2

Qâ
≤ ‖x − u‖2

Qâ
⇐⇒

(u − z)T Q−1

â (x − z) ≤
1

2
‖u − z‖2

Qâ
, ∀u ∈ Z

n

it follows that

Sz =
⋂

c∈Zn

{x ∈ R
n | |cT Q−1

â (x − z)| ≤
1

2
‖c‖2

Qâ
} (8)

The ILS pull-in regions are thus constructed as intersecting
half-spaces, which are bounded by the plane orthogonal to
(u − z), u ∈ Z

n and passing through 1

2
(u + z). It can be

shown that at the most 2n − 1 pairs of such half-spaces are
needed for the construction.

The fixed solution should only be used if there is enough
confidence in this solution. Therefore, the probability that
the ambiguities are fixed to the correct integers, the success
rate, is a very important measure. It is given by:

Ps,ILS = P (ǎ = a) =

∫

Sa

fâ(x)dx (9)
where P (ǎ = a) is the probability that ǎ = a, and fâ(x)
is the probability density function of the float ambiguities,
for which in practice the normal (Gaussian) distribution is
used.

3 INTEGER VALIDATION

A parameter resolution theory cannot be considered com-
plete without rigorous measures for validating the param-
eter solution. In the classical theory of linear estimation,
the vc-matrices provide sufficient information on the preci-
sion of the estimated parameters. The reason is that a linear
model applied to normally distributed (Gaussian) data, pro-
vides linear estimators that are also normally distributed,
and the peakedness of the multivariate normal distribution
is completely captured by the vc-matrix.

Unfortunately, this relatively simple approach cannot be ap-
plied in case integer parameters are involved in the esti-
mation process, since the integer estimators do not have a
Gaussian distribution, even if the model is linear and the
data are normally distributed. Instead of the vc-matrices,
the parameter distribution itself has to be used in order to
obtain the appropriate measures that can be used to validate
the integer parameter solution.

In the past, the problem of non-Gaussian parameter distri-
butions was circumvented by simply ignoring the random-
ness of the fixed ambiguities. Several testing procedures
for the validation of the fixed solution have been proposed
using this approach. An overview of these procedures and
their pitfalls was given in (Verhagen, 2004).

Discrimination tests are used in order to compare the likeli-
hood of the fixed solution to that of another set of integers.
Of course it is known that the likelihood of the fixed so-
lution ǎ is always larger than the likelihood of any other
integer vector in case it was obtained with integer least-
squares estimation. However, if the likelihood of ǎ is not
sufficiently larger than the likelihood of ǎ′, the two solu-
tions cannot be discriminated with enough confidence.

3.1 The Ratio Test

A very popular discrimination test is the one introduced by
Euler and Schaffrin (1990). It is given by:

Accept ǎ iff:
‖â − ǎ2‖

2

Qâ

‖â − ǎ‖2

Qâ

=
R2

R1

≥ c (10)

where the notation Ri is used for the squared norm of ambi-
guity residuals of the best (i = 1), and second-best (i = 2)
integer solution, ǎ and ǎ2 respectively, as measured by the
squared norm of the ambiguity residual vector.

It is derived by applying the classical theory of hypothesis
testing. Three hypotheses are considered:

H0 : a = â, H1 : a = ǎ H2 : a = ǎ2 (11)

In order to determine the critical value c it was assumed



that:

(m − n − p)Ri

n‖ê‖2

Qy

∼ F (n,m − n − p, λi), i = 1, 2 (12)

with ê the residuals of the float solution, and F (n,m −
n−p, λi) denotes the non-central F -distribution with n and
m − n − p degrees of freedom and non-centrality parame-
ter λi. Hence, from eq.(12) follows that it is assumed that
‖ê‖2

Qy
and Ri are independent. In principle, however, this

assumption is not allowed. Firstly, because the entries of
ǎ, ǎ2 and ê depend on the same vector y. If y changes,
also ǎ and ǎ2 will change. Secondly, since the vector y is
assumed to be random, also the fixed ambiguities obtained
with integer least-squares estimation will be stochastic.

Another problem with this approach is that the determina-
tion of the critical value is not straightforward. Euler and
Schaffrin (1990) used test computations, from which fol-
lowed that a critical value between 5 and 10 should be cho-
sen depending on the degrees of freedom.

The conclusion is that it is not possible to use the classical
theory of hypothesis testing for deriving the Ratio Test. For
that purpose the probabilistic characteristics of the param-
eters should be taken into account, which is not possible
here.

Other approaches have also been proposed in literature, all
based on choosing a fixed critical value for test (10).

Wei and Schwarz (1995) propose to use the test with a crit-
ical value of c = 2. They do not claim that there is a the-
oretical justification for using this test. Moreover, they ac-
knowledge that it is risky to apply the test to an individual
epoch in the case of poor satellite geometry or noisy ob-
servations. Therefore, it is proposed to apply the test to all
epochs in a time period of 30-60 seconds, and only accept
the integer solution if the same solution is accepted for all
epochs. It is mentioned that the test is conservative.

Han and Rizos (1996) showed that good results can be ob-
tained with the Ratio Test with a critical value of c = 1.5 if
one can have confidence in the correctness of the stochas-
tic model. For their experiments this was accomplished by
applying satellite elevation-dependent weighting, with the
weights determined for the receiver at hand.

A final point of criticism is that the combined integer esti-
mation and validation solution lacks an overall probabilistic
evaluation.

Despite the criticism, integer validation based on the Ra-
tio Test often works satisfactorily. The reason is that the
stochasticity of ǎ may indeed be neglected if there is suf-
ficient probability mass located at one integer grid point of
Z

n, that is if the success rate is very close to one. Then an
empirically determined fixed critical value can be expected
to give good results. Therefore in many software packages
a fixed value for the ratio is used, e.g. c = 3 (Leick, 2003).
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Figure 1: Two-dimensional example of aperture pull-in regions
(red), together with the ILS pull-in regions (black).

4 INTEGER APERTURE ESTIMATION

4.1 The integer aperture estimator

In practice, a user will decide not to use the fixed solution
if either the probability of failure is too high, or if the dis-
crimination test is not passed. This gives rise to the thought
that it might be interesting to use an ambiguity estimator
defined such that three situations are distinguished: success
if the ambiguity is fixed correctly, failure if the ambigu-
ity is fixed incorrectly, and undecided if the float solution is
maintained. This can be accomplished by dropping the con-
dition that there are no gaps between the pull-in regions, so
that the only conditions on the pull-in regions are that they
should be disjunct and translational invariant. Then inte-
ger estimators can be determined that somehow regulate the
probability of each of the three situations mentioned above.

The new class of ambiguity estimators was introduced in
(Teunissen, 2003a; Teunissen, 2003c), and is called the
class of Integer Aperture (IA) estimators. It is defined as:

(i)
⋃

z∈Zn

Ωz = Ω

(ii) Int(Ωu) ∩ Int(Ωz) = ∅, ∀u, z ∈ Z
n, u 6= z

(iii) Ωz = z + Ω0, ∀z ∈ Z
n

(13)

Ω ⊂ R
n is called the aperture space. From (i) follows that

this space is built up of the Ωz , which will be referred to as
aperture pull-in regions. Conditions (ii) and (iii) state that
these aperture pull-in regions must be disjunct and transla-
tional invariant.

Figure 1 shows a two-dimensional example of aperture
pull-in regions that fulfill the conditions in (13), together
with the ILS pull-in regions fulfilling the conditions in (5).

The integer aperture estimator, ā, is now given by:

ā =
∑

z∈Zn

zωz(â) + â(1 −
∑

z∈Zn

ωz(â)) (14)



with the indicator function ωz(x) defined as:

ωz(x) =

{

1 if x ∈ Ωz

0 otherwise
(15)

So, when â ∈ Ω the ambiguity will be fixed using one of the
admissible integer estimators, otherwise the float solution
is maintained. This means that indeed the following three
cases can be distinguished:

â ∈ Ωa success: correct integer estimation
â ∈ Ω \ Ωa failure: incorrect integer estimation
â /∈ Ω undecided: ambiguity not fixed to an integer

The corresponding probabilities of success (s), failure (f )
and undecidedness (u) are given by:

Ps = P (ā = a) =

∫

Ωa

fâ(x)dx

Pf =
∑

z∈Zn\{a}

∫

Ωz

fâ(x)dx =

∫

Ω0

fε̌(x)dx −

∫

Ωa

fâ(x)dx

(16)

Pu = 1 − Ps − Pf = 1 −

∫

Ω0

fε̌(x)dx

The first two probabilities are referred to as success rate
and fail rate respectively. Note the difference with the ILS
success rate given in eq.(9), where the integration is over
the ILS pull-in region Sa ⊃ Ωa. The expression for the fail
rate is obtained by using the probability density function of
the ambiguity residuals ε̌ = â − ǎ:

fε̌(x) =
∑

z∈Zn

fâ(x + z)dxs0(x) (17)

with s0(x) = 1 if x ∈ S0 and s0(x) = 0 otherwise,
cf.(Teunissen, 2002; Verhagen and Teunissen, 2004).

4.2 Fixed fail rate approach

As mentioned in the beginning of this section, for a user
it is especially important that the probability of failure, the
fail rate, is below a certain limit. The approach of inte-
ger aperture estimation allows us now to choose a threshold
for the fail rate, and then determine the size of the aperture
pull-in regions such that indeed the fail rate will be equal to
or below this threshold. So, applying this approach means
that implicitely the ambiguity estimate is validated using
a sound criterion. However, there are still several options
left with respect to the choice of the shape of the aperture
pull-in regions.

It is very important to note that Integer Aperture estimation
with a fixed fail rate is an overall approach of integer esti-
mation and validation, and allows for an exact and overall
probabilistic evaluation of the solution. With the traditional
approaches, e.g. the Ratio Test applied with a fixed criti-
cal value, this is not possible. Two important probabilistic
measures are the fail rate, which will never exceed the user-
defined threshold, and the probability that the fixed solution
is correct, ǎ = a, if the integer aperture solution is fixed,
ā = z:

Ps|ā=z = P (ǎ = a|ā = z)

=
P (ǎ = a, ā = z)

P (ā = z)
(18)

=
Ps

Ps + Pf

where the expressions for the success and fail rates in
eqs.(9) and (16) are used. Note that if Pf << Ps:

Ps|ā=z ≈ 1 (19)

This is an important result, since it means that with IA es-
timation it is not only guaranteed that the fail rate will be
below a given threshold, but also the probability that the in-
teger solution is correct will be close to one if IA estimation
results in a fix and Pf << Ps. If Ps is small, this is not nec-
essarily the case, but then the probability that the solution
will be fixed is also very small, since this probability equals
Ps + Pf .

5 THEORETICAL FOUNDATION FOR RATIO
TEST

Despite the criticism on the Ratio Test given in section 3 it
is possible to give a firm theoretical basis for this test. This
is made possible by the theory of Integer Aperture Inference
as presented in the previous section.

First, it will be shown that the procedure underlying the
Ratio Test is a member from the class of integer aperture
estimators. In the sequel the inverse of the test statistic of
eq.(10) will be used, so that the test becomes:

Accept ǎ iff:
R1

R2

≤ µ, 0 < µ ≤ 1 (20)

The critical value is denoted as µ.

It can now be shown that the Ratio Test is an IA estimator.
The acceptance region or aperture space is given as:

Ω = {x ∈ R
n | ‖x− x̌‖2

Qâ
≤ µ‖x− x̌2‖

2

Qâ
, 0 < µ ≤ 1}

(21)

with x̌ and x̌2 the best and second-best ILS estimator of x.
Let Ωz = Ω ∩ Sz , i.e. Ωz is the intersection of Ω with the
ILS pull-in region as defined in (7). Then all conditions of
(13) are fulfilled, since:

Ω0 = {x ∈ R
n | ‖x‖2

Qâ
≤ µ‖x − z‖2

Qâ
, ∀z ∈ Z

n \ {0}}

Ωz = Ω0 + z, ∀z ∈ Z
n (22)

Ω =
⋃

z∈Zn

Ωz

The proof was given in (Teunissen, 2003b).



The acceptance region of the Ratio Test consists thus of an
infinite number of regions, each one of which is an inte-
ger translated copy of Ω0 ⊂ S0. The acceptance region
plays the role of the aperture space, and µ plays the role of
aperture parameter since it controls the size of the aperture
pull-in regions.

It has now been shown that indeed there is a theoretical
basis for the Ratio Test, since the Ratio Test is an integer
aperture estimator and there is a sound criterion available
for choosing the critical value, or aperture parameter, by
means of the fixed fail rate approach described in section
4.2. This implies that the acceptance region is qualified and
quantified by means of eq.(21). Moreover, an exact and
overall probabilistic evaluation of the combined estimation
and validation solution is available

6 OPTIMAL INTEGER APERTURE ESTIMATION

The approach of integer aperture estimation with a fixed fail
rate has two important advantages. The first is that IA esti-
mation can always be applied, independent of the precision,
since the user does not have to be afraid that the fail rate is
too high. The second advantage is that for the first time
sound theoretical criteria are available for the validation of
the estimates. For that purpose, the Ratio Test can be used.
However, it will now be shown that also an optimal integer
aperture (OIA) estimator exists.

As with integer estimation, the optimality property would
be to maximize the success rate, but in this case for a fixed
fail rate. So, the optimization problem is to determine the
aperture space which fulfills:

max
Ω0⊂S0

Ps subject to: Pf = β (23)

where β is a chosen fixed value for the fail rate. The solu-
tion of the optimization problem is given by, cf.(Teunissen,
2003c; Teunissen, 2004):

Ω0 = {x ∈ S0 |
∑

z∈Zn

fâ(x + z) ≤ µfâ(x + a)} (24)

The best choice for S0 is the ILS pull-in region. The reason
is that Ps + Pf is independent of S0, but Ps is not. There-
fore, any choice of S0 which makes Ps larger, automatically
makes Pf smaller. The best choice for S0 follows from:

max
S0

∫

Ω∩Sa

fâ(x)dx subject to Ω = Ω + z, ∀z ∈ Z
n

as the ILS pull-in region, see (Teunissen, 1999).

From eq.(24) the optimal test follows as:

Accept ǎ iff:
fε̌(â − ǎ)

fâ(â − ǎ)
≤ µ (25)

where we used eq.(17).

Compare this result with the Ratio Test in eq.(20). Both test
statistics are defined as a ratio. In the case of the Ratio Test,
it only depends on ‖â−ǎ‖2

Qâ
and ‖â−ǎ2‖

2

Qâ
, whereas from

eq.(24) it follows that the optimal test statistic depends on
all ‖â−z‖2

Qâ
, z ∈ Z

n if it is assumed that the float solution
is normally distributed.

7 EVALUATION OF THE TESTS

7.1 Performance in the 2-D case

In order to illustrate the principle and the properties of the
Ratio Test and optimal test, examples will be given here.
These examples are also used to illustrate the differences
between the tests.

Simulations were carried out to generate 500,000 samples
of the float range and ambiguities. The following vc-
matrices Qâ are used:

Q1 =

[

0.0577 −0.0242
−0.0242 0.0564

]

, Q2 = 1.5Q1, Q3 = 6Q1

Q4 = Q2 +

[

0.8 0
0 0

]

The first three vc-matrices correspond to a dual-frequency
GPS model for one satellite-receiver pair, where the undif-
ferenced standard deviations of the code and phase observ-
ables are varied.

The first step is to use a random generator to generate n
independent samples from the univariate standard normal
distribution N(0, 1), and then collect these in a vector x.
This vector is transformed by means of â = Gx, with G
equal to the Cholesky factor of Qâ = GGT . The result is
a sample â from N(0, Qâ), and this sample is used as input
for integer least-squares estimation and the validation test.
Three outcomes can be distinguished:

success (s) : ǎ = 0 and is accepted;
failure (f ) : ǎ 6= 0 and is accepted;
undecided (u) : estimate is rejected.

This process can be repeated an N number of times, and
one can count how many times each of the outcomes is ob-
tained, say Ns, Nf and Nu times. The approximations of
the success rate and fail rate follow then as:

Ps =
Ns

N
, Pf =

Nf

N

In order to get good approximations, the number of samples
N must be chosen sufficiently large, see (Teunissen, 1998).

In figures 2-5 the following parameters are plotted as func-
tion of the fail rate:

Ps : success rates
Pid : percentage of Ratio Test and Optimal IA solutions

identical to each other
µ : aperture parameters
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Figure 2: Q1. Top to bottom: Success rate as function of fail rate;
Percentage of solutions identical to OIA solution; µ as function of
the fail rate; Aperture pull-in regions for: a) the µ that results in
the smallest percentage of solutions identical to the optimal test;
b) µR = 0.5; c) Pf = 0.025. Blue: optimal test. Red: Ratio Test.

Note that the maximum fail rate and success rate are equal
to those obtained with integer least-squares.

Obviously, the differences between the success rates of the
Ratio Test and the optimal IA estimator are very small. Pid

is very high if the precision is good, which is the case for
Q1 and Q2. For Q4 the Ratio Test IA estimator clearly
performs somewhat poorer, since a difference between the
success rates of both estimators can be seen and Pid is much
lower than with the other vc-matrices.

In order to explain the differences in the performance of
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Figure 3: Q2. Top to bottom: Success rate as function of fail rate;
Percentage of solutions identical to OIA solution; µ as function of
the fail rate; Aperture pull-in regions for: a) the µ that results in
the smallest percentage of solutions identical to the optimal test;
b) µR = 0.5; c) Pf = 0.025. Blue: optimal test. Red: Ratio Test.

the Ratio Test and the optimal test, three aperture pull-in
regions for both tests are plotted for each vc-matrix. They
correspond to the following three situations:

a : µ chosen such that for both tests the fail rate is obtained
for which Pid is minimum

b : Ratio Test with fixed critical value of µ = 0.5,
µ for optimal test chosen such that fail rates of
both tests are equal

c : Ratio Test and Optimal Test both with fixed fail rate of
Pf = 0.025
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Figure 4: Q3. Top to bottom: Success rate as function of fail rate;
Percentage of solutions identical to OIA solution; µ as function of
the fail rate; Aperture pull-in regions for: a) the µ that results in
the smallest percentage of solutions identical to the optimal test;
b) µR = 0.5; c) Pf = 0.025. Blue: optimal test. Red: Ratio Test.

The aperture pull-in regions are shown in the bottom panels
of figures 2-5. The corresponding fail rates and Pid are
depicted with the stars in the graphs second from top.

It follows that the first situation, smallest Pid for the same
fail rate, in general occurs when the OIA pull-in region just
touches the ILS pull-in region, and thus the aperture pa-
rameter is large. The reason is that for a large aperture pa-
rameter the shape of the Ratio Test pull-in region starts to
resemble the shape of the ILS pull-in region and is larger
in the direction of the corner points of the ILS pull-in re-
gions where little probability mass is located. The OIA
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Figure 5: Q4. Top to bottom: Success rate as function of fail rate;
Percentage of solutions identical to OIA solution; µ as function of
the fail rate; Aperture pull-in regions for: a) the µ that results in
the smallest percentage of solutions identical to the optimal test;
b) µR = 0.5; c) Pf = 0.025. Blue: optimal test. Red: Ratio Test.

pull-in region, on the other hand, touches the ILS pull-in
regions there where more probability mass is located in Sa,
since fâ(x) is elliptically shaped. Only for vc-matrix Q1

the smallest Pid is not obtained for a large aperture pull-in
region, because the precision is so high that fâ(x) is peaked
and the probability mass close to the boundary of the ILS
pull-in region is very low.

If the aperture pull-in regions are chosen even larger than
shown in figures 2-5, the OIA pull-in region is cut off by
the ILS pull-in region. So, if µ is increased the OIA pull-in
region cannot expand in all directions, and therefore the fail



rate will not change much. This explains why for high fail
rates µ suddenly starts to increase much faster, as can be
seen in the graphs showing µ as function of the fail rate.

The aperture pull-in regions of the Ratio Test and optimal
test are especially different in the direction of the vertices of
the ILS pull-in region. That is because in those directions
there are two integers, ǎ2 and ǎ3 with the same distance
to â, but only ‖â − ǎ2‖

2

Qâ
is considered by the Ratio Test,

whereas with the optimal test the likelihood of all integers
is considered, see section 6.

In the graphs showing Pid as function of the fail rate, it can
be seen that using a fixed critical value for the Ratio Test
(b) results in very different and sometimes large fail rates,
depending on the vc-matrix. The reason is that the size of
the aperture pull-in regions is not adjusted if the precision
changes. This can be seen for Q1, Q2, and Q3 which are
scaled versions of each other: the Ratio Test aperture pull-
in regions corresponding to situation b are all equal.

The fixed fail rate approach works much better than using
a fixed critical value for the Ratio Test, because the size
of the aperture pull-in region is nicely adjusted in case of
a fixed fail rate, as can be seen by comparing the results
corresponding to situation c for Q1, Q2, and Q3. In prac-
tice the choice of a fixed µ often works satisfactorily, but
that is because either the value is chosen very conservative,
cf. (Han, 1997), or it is required that the ILS success rate
is close to one before an attempt to fix the ambiguities is
made.

7.2 Performance in the geometry-based case

The performance of the Ratio Test and optimal test was
evaluated and compared for the simple 2-D case in the pre-
ceding section, since it is then possible to analyze and illus-
trate the results by looking at the pull-in regions. The ques-
tion is now whether or not the conclusions from these ex-
amples are also valid for the higher-dimensional, geometry-
based GNSS models in which users will be interested.
Therefore, also simulations are used for several geometry-
based models. The GPS constellation is based on the
Yuma almanac for GPS week 184 and a cut-off elevation
of 15o. Undifferenced standard deviations of σp = 30cm
and σφ = 3mm are used for both frequencies. The GPS
model is set up for a single epoch for two different locations
and times. In one case 4 satellites are visible and a medium
baseline length is considered; in the other case 6 satellites
are visible and a longer baseline is considered. For the fol-
lowing epochs it is simply assumed that

Qk =
1

k
Q1

with k the epoch number. This relation is valid when the
satellite geometry is not changed.

The aperture parameters, success rates and fail rates as
function of the number of epochs are determined using sim-
ulations, similarly as in section 7.1. The following ap-
proaches are considered:
• Optimal IA estimation, fixed fail rate Pf = 0.005;

• Ratio Test IA estimation, fixed fail rate Pf = 0.005;

• Ratio Test, fixed critical value µ = 1

3
;

• Ratio Test, fixed critical value µ = 1

2
and

fixed solution is only accepted if Ps,ILS ≥ 0.99;

• fixed solution is only accepted if Ps,ILS ≥ 0.995.

If the ILS fail rate is smaller than 0.005, all solutions are
accepted with the first two IA estimators, i.e. Ω0 = S0,ILS .
Note that the last approach also guarantees that the fail rate
will never exceed 0.005.

For (near) real-time applications it is important that the time
to first fix is as short as possible. The probability that a fix
is made at a certain epoch equals:

Pfix = Ps + Pf (26)

Figures 6 and 7 show Pfix and Ps|ā=z obtained with the 5
approaches as function of the number of epochs. Obviously,
IA estimation with a fixed fail rate result in the highest Pfix.
Again, it follows that the performance of the Ratio Test IA
estimator is close to optimal only with the fixed fail rate
approach.

Applying the Ratio Test with a fixed critical value of 1/3
(green line) may give comparable probabilities Pfix in the
first epochs. Note that if the success rate is higher than the
one obtained with the fixed fail rate, this implies that the
corresponding fail rate is higher than 0.005. In later epochs
the fixed critical value is far too conservative, so that the
time to first fix may be unnecessarily long.

For the first epoch the probability Ps|ā=z is always low for
the examples considered here. The reason is that the suc-
cess rate Ps is very low, and thus the approximation (19)
is not valid. For later epochs Ps|ā=z becomes reasonably
high with all approaches, and is highest for the fixed crit-
ical value approach. Note, however, that this is only the
case because this approach is too conservative; Pfix is very
low in the first epochs, so that if the solution is fixed it can
be expected to be correct since the aperture space, and thus
also the fail rate, is very small.

With the two approaches where it is required that the ILS
success rate exceeds a certain limit (black and light blue
lines) no attempt is made to fix the solution in the first
epochs. As soon as a fix is made, the probability Ps|ā=z

is high.

With the optimal test and the Ratio Test with a fixed fail
rate there is a very high probability that the solution will
be fixed much faster than with the other approaches, and
the Ratio Test performs close to optimal. At the same time
it is guaranteed that the fail rate will not exceed the user-
defined threshold. This is not the case if the Ratio Test with
a fixed critical value is used. It can be concluded that the
performance of the Ratio Test with a fixed fail rate is much
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Figure 6: Probabilities that solution will be fixed as function of the number of epochs with 5 different tests. Left: 4 visible satellites, Right: 6
visible satellites.
better than with a fixed critical value, especially when more
epochs of data become available. The reason is that using
a fixed critical value implies that the aperture pull-in region
Ω0 does not change as function of the number of epochs.
Recall that the success rate is given by:

Ps =

∫

Ω0

fâ(x + a)dx

So, if more epochs of data become available, the success
rate only increases because fâ(x+a) becomes more peaked
due to the improved precision. Using a fixed fail rate, on the
other hand, means that Ω0 becomes larger when the preci-
sion improves, and thus the success rate increases more than
with the fixed critical value approach.

8 IMPLEMENTATION ASPECTS

A problem not discussed so far is how to determine the
aperture parameter given the fixed fail rate. It will be clear
from the definition of the fail rate in eq.(16) and the aper-
ture pull-in region Ω0 in eqs.(21) and (24) that there is no
closed-form expression in order to compute this parameter.
The following approach can be used for Ratio Test Integer
Aperture estimation.
1. choose fixed fail rate: Pf = β

2. collect observations and apply least-squares adjust-
ment: â, Qâ;

3. apply integer least-squares estimation:
ǎ, ε̌, ‖â − ǎ‖2

Qâ
, ‖â − ǎ2‖

2

Qâ
;

4. determine µ′ =
‖â−ǎ‖2

Qâ

‖â−ǎ2‖2

Qâ

,

This means that â− ǎ lies on the boundary of the aper-
ture pull-in region Ω′

0 determined by µ′;

5. generate N samples of float ambiguities x̂i ∼
N(0, Qâ);

6. for each sample determine the ILS fixed solution x̌i

and µi =
‖x̂i−x̌i‖

2

Qâ

‖x̂i−x̌i,2‖2

Qâ

;

7. count number of samples Nf that are fixed incorrectly
but fall in Ω′

0: µi ≤ µ′ and x̌i 6= 0;

8. compute fail rate with µ′ as critical value:
Pf (µ′) =

Nf

N
;

9. if Pf (µ′) ≤ β: continue with step 10, otherwise use â;
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Figure 7: Success rates conditioned on ā = z as function of the number of epochs with 5 different tests. Left: 4 visible satellites, Right: 6
visible satellites.
10. count number of samples Ns that are correctly fixed
and fall in Ω′

0: µi ≤ µ′ and x̌i = 0

11. compute success rate: Ps(µ
′) = Ns

N
and Ps|ā=z;

12. if Ps|ā=z ≈ 1: accept ǎ.

This approach is allowed since Pf is monotonically increas-
ing with µ, and therefore:

Pf (µ′) ≤ β = Pf (µβ) ⇐⇒ µ′ =
‖â − ǎ‖2

Qâ

‖â − ǎ2‖2

Qâ

≤ µβ

(27)

and the latter inequality is the Ratio Test IA estimation cri-
terion which determines the aperture space.

The LAMBDA (Least-squares AMBiguity Decorrelation
Adjustment) method can be used for efficient determination
of the ILS solutions in steps 3 and 6, see e.g. (De Jonge and
Tiberius, 1996; Teunissen, 1993; Teunissen, 1995).

In order to get a good approximation of the fail rate in step
8 the number of samples must typically be chosen large,
N > 100, 000. But in order to reduce the computation time,
which is important in real-time applications, it has been in-
vestigated how much the results would differ with N much
smaller so that the computation time becomes acceptable. It
followed that already with a few thousand samples the re-
sults are quite good – same decision as with N much larger
in more than 99% of the cases –, and in any case better than
with the traditional approaches.

9 CONCLUDING REMARKS

In this contribution an overall approach is presented for
the problem of integer estimation and validation. This ap-
proach for the first time includes an exact and overall prob-
abilistic evaluation of the solution

This is made possible by the introduction of the theory of
Integer Aperture Inference, on which the theoretical justifi-
cation of the popular Ratio Test is based, but the theory also
allows for the definition of an optimal test.

Furthermore, rigorous measures are available for deciding
whether or not to use the fixed solution by using the fixed
fail rate approach. Simulations indicate that the Ratio Test
gives a close to optimal performance, which is another justi-
fication of its popularity. However, this justification is only
valid when the fixed fail rate approach is used, but not if the
classical approach of using a fixed critical value is used.



With this theory available, there is no need anymore to
make incorrect assumptions on the distribution of the pa-
rameters; until now it was simply assumed in the literature
that the fixed ambiguities are deterministic, which is only
a valid assumption when the precision is high. The Ratio
Test as it is currently used in practice is generally applied
with a fixed critical value, but this value will in general be
either too conservative, or only valid when the precision is
high.

Using the fixed fail rate approach implies that the criti-
cal value depends on the model (and thus the precision) at
hand. This means that the time to first fix will be shorter,
and at the same time it is guaranteed that the probability of
incorrect fixing is below a user-defined threshold.
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