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Abstract 

 

Smoothed Particle Hydrodynamics (SPH) is a mesh-free Lagrangian computational 

method suited to modelling fluids with a freely deforming surface. This thesis describes 

the development, validation and application of a two-dimensional Smoothed Particle 

Hydrodynamics algorithm to the problem of ship bow slamming in regular ocean waves. 

Slam events often occur in rough seas and have the potential to cause significant 

structural and payload damage due to the loads and subsequent whipping experienced by 

the ship. SPH is well suited to modelling ship bow slamming because the interaction 

between the bow of the ship and the water surface is of a freely deforming transient 

nature.  

 

The developed SPH algorithm was subjected to an extensive validation using both 

analytical and experimental data as a basis for comparison. The influence of each 

numerical correction – necessary for SPH stability – was evaluated using two theoretical 

problems free from the influence of external forces: the evolution of initially circular and 

square patches of fluid. Solid boundaries treated by the ghost particle technique were 

introduced and evaluated by way of the hydrostatic tank and the two-dimensional dam 

break. 

 

Still water impacts of two-dimensional wedges and hull cross-sections were simulated 

using the SPH algorithm and the results were compared with the experimental data of 

Aarsnes (1996), Whelan (2004) and Breder (2005). The complexity of the slamming 

problem was then increased by imposing the relative vertical velocity profile (between 

the hull and the water surface) measured during the ocean wave basin experiments of 

Hermundstad and Moan (2005) on a hull cross-section. Reasonable agreement between 

the simulated and experimental slamming pressures confirmed that the two-dimensional 

SPH algorithm could be applied to a three-dimensional problem through the use of a 

relative vertical velocity profile. 
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Finally, the commercial ship motion prediction software SEAWAY and the validated 

SPH algorithm were combined in a 2D + t method to simulate bow slamming of a 

slender hull. The relative motion between the bow and the free water surface was 

extracted from the ship motion data and then imposed on a cross-section of a given hull 

form. Satisfactory agreement with the peak pressures measured on a model V-form hull 

in regular waves (Ochi, 1958) demonstrated that the developed two-dimensional SPH 

code is capable of modelling three-dimensional ship bow slamming.  
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Chapter  1  

Introduction 

 

1.1 Background and motivation 

Numerical modelling of ships in rough seas has met with limited success using 

available techniques in Computational Fluid Dynamics (CFD), particularly when 

wave impacts are involved. An understanding of the sea loads on ships is essential to 

ensuring the structural design criteria are met and assessing the fatigue life of the 

structure. In this thesis, a two-dimensional Smoothed Particle Hydrodynamics (SPH) 

algorithm has been wholly developed and validated for use as a tool for predicting 

impact loads on a slender ship. 

 

1.1.1 Slamming 

The interaction between floating bodies and free surface waves is of great 

importance in the structural design of marine vessels. Of particular significance is the 

strongly nonlinear free surface problem of water impacting with large force on a 

ship’s hull, commonly referred to as slamming. Often occurring in rough seas, 

slamming can potentially cause significant damage to a ship, typically near the bow 

where the relative velocity between the ship and the water surface is greatest. The 

subsequent whipping along hull girders - observed as a vibration on board the ship - 

can also cause antennae, masts and other appendages to be damaged or even 

dislodged (Faltinsen, 2005). 

 

The slamming problem is not confined to the violent interaction between ships and 

ocean waves. An analysis of the impact of seaplane floats during landing was one of 

the first studies completed on slamming (von Karman, 1929). Another example is the 
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sloshing of fluid contained in ship tanks, which can cause significant loads on the 

tank structure when the ship is experiencing large motions. This problem is of 

particular importance to operators of liquefied natural gas carriers. Offshore 

platforms often experience high slamming pressures when breaking waves strike the 

support columns (Faltinsen, 1990). In extreme weather conditions, offshore 

platforms can also experience wave impacts on the underside of the platform and 

green water on the platform deck.  
 

 

 
 

Figure 1.1 – A 56.8 m Armidale class patrol boat is known to have 

excellent seakeeping qualities despite experiencing hull bottom slamming 

in rough seas (photographs courtesy of Austal, Australia, 2010).  
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Many factors contribute to the strongly nonlinear fluid-body slamming problem. The 

fluid compressibility, air entrainment, bubble formation and the form and 

hydroelasticity of the structure all play a part in the complex interaction (Whelan, 

2004). Furthermore, the formation and separation of the fluid jets produced during 

impact is particularly dependent upon impact velocity and the acceleration of the 

moving body. 

 

Ship hull slamming can be categorised into four major types; bottom (see Figure 

1.1), bow flare, bow stem or breaking wave, and wet-deck slamming (Korobkin, 

1996). Bottom slamming occurs when the keel of the ship rises out of the water 

surface and impacts heavily upon re-entry. Bow flare slamming does not necessarily 

require the keel to emerge from the water surface as the high loads are experienced 

nearer the chine. Bow stem or breaking wave slamming occurs when a wave breaks 

on the fore part of the ship’s structure and lastly, wet-deck slamming refers to the 

impact between the water surface and the cross deck structure of a multi-hulled 

vessel. 

 

Slamming is a greater problem for ships with large block coefficients than for fine 

ships and often occurs more on ships in ballast compared to those that are fully 

loaded (Faltinsen, 1990).  There is no threshold for the occurrence of slamming on a 

given hull form at a certain forward speed, so as a guide most ship masters will 

reduce a ship’s speed if slams occur in three out of every hundred waves encountered 

(Faltinsen, 1990).     

 

1.1.2 Experimental methods 

Ship slamming has previously been studied experimentally using a variety of 

techniques. Yamamoto et al. (1985) examined the damage suffered by mono-hulled 

vessels caused by slam events in high sea states, while a number of other authors 

have instrumented ships with strain gauges and pressure sensors and actively pursued 

weather conditions conducive to slamming (Andrew and Lloyd, 1981; Vulovich et 

al., 1989). This approach is not easily repeatable as ocean waves have a range of 

periods, heights and directions and the exact wave conditions at the ship are not 

easily measured. Furthermore this type of study carries with it inherent dangers that 
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have the potential to cause irreversible damage to the subject vessel (see Section 2.1 

for a review of previous full-scale slamming trials).  

 

To simplify the problem, models of ship’s hulls are often tested in towing tanks and 

ocean wave basins (see Section 2.2.4). These models are instrumented with a number 

of pressure sensors and accelerometers and are either towed or driven under their 

own power. In typical towing tanks the models are exposed to regular head or 

following seas with wave periods and heights that produce conditions likely to cause 

slamming. In an ocean wave basin the model is propelled through regular waves at a 

number of headings, allowing the contributions of yaw and roll to the slam event to 

be measured. 

 

The maximum slamming pressure and load on individual sections of a three-

dimensional hull can be difficult to determine in tow tank and ocean wave basin tests 

due to the number of sensors required. Furthermore, theoretical calculations of 

slamming loads on a three-dimensional model are still in their infancy. To simplify 

the problem, measurements of slamming loads on a body have been obtained by 

dropping a given hull section into still water from varying heights. Most of these 

drop tests approximate two-dimensional flow by taking a cross-section of the 

examined hull. This is particularly useful for measurements of bow flare slamming 

and hull bottom slamming. A two-dimensional wedge or a circular cylinder can 

approximate the shape of a hull bottom, which is advantageous because theoretical 

methods can be used to calculate the load, pressure and free surface position during 

the water entry. 

 

1.1.3 Numerical methods 

Computational fluid dynamics methods are classified into two major groups; mesh-

based and mesh-free. The following is a summary of the numerical methods that 

have previously been employed to study ship slam events. 

 

Mesh based methods 

The most widely used numerical methods for fluid flows rely on solving the mass, 

momentum and energy conservation equations using a grid spread over the 
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computational domain. These CFD methods can be categorized into two types: 

Eulerian or fixed mesh methods and Lagrangian or moving mesh methods. Eulerian 

methods, for example the Finite Difference Method (FDM) and the Finite Volume 

Method (FVM), overlay the computational domain with a grid that is fixed in space 

and time. The fluid properties of each cell are evaluated from the flux equations for 

mass, momentum and energy. While proven to be effective for most problems, the 

Eulerian methods struggle to model deformable boundaries such as a free surface and 

require a very large grid, which is not computationally efficient. 

 

Lagrangian mesh based methods such as the Finite Element Method (FEM) fix the 

grid to the material, so the grid moves and deforms as the material does. For any 

given part of the material, mass, energy and momentum are transported with the 

movement of the grid cells.  While the time history of a given cell can be tracked and 

boundary conditions easily applied, the method cannot deal with severe distortion 

and material fracturing without re-meshing the computational domain. For this 

reason FEM is rarely used for fluid dynamics problems. However, as there is no need 

to mesh areas surrounding the material, FEM is computationally efficient and is 

widely used for studying the behaviour of solid structures. 

 

The Boundary Element Method (BEM) uses potential flow theory to solve for the 

fluid flow. Unlike the FEM, FVM and FDM, only the fluid boundary is meshed into 

discrete nodes or elements. Each element consists of a source and a sink, and their 

strength is solved using the imposed boundary conditions. The properties of a given 

fluid particle located anywhere in the fluid are easily inferred by combining the 

strengths of each source and sink doublet. As only the boundary is meshed into 

discrete elements, the BEM is computationally very efficient. 

  

Mesh based methods are not particularly suited to modelling ship slam events, 

although Sun (2007) has used the BEM for two-dimensional simulations. Mesh 

generation is time consuming and can be difficult for Eulerian models with complex 

moving boundaries such as a hull section. Furthermore, resolving the free surface 

position during impact is difficult with an Eulerian grid. Lagrangian models struggle 

to resolve the formation and subsequent fragmentation of a fluid jet without constant 
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re-meshing. For these reasons, this thesis is focused on using a mesh-free method to 

accurately simulate hull bottom and bow flare slamming. 

 

Mesh-free methods 

The major distinction between mesh based and mesh-free methods is the treatment of 

the individual computational nodes. Mesh-free methods calculate the solution to a set 

of integral or partial differential equations at arbitrarily distributed points that are 

free to move through time and space. Implementing a mesh-free method reduces 

preprocessing time as there is no longer the need to develop a potentially complex 

grid. Without a mesh, the nodes - in most methods generally referred to as particles - 

are free to move through space and time. If large deformations in the fluid occur, re-

meshing is not required, which also improves computational efficiency. 

 

Early mesh-free methods still employed a grid, but it was not used in the same way 

as the traditional mesh based methods. Particle in Cell (PIC) and Marker and Cell 

(MAC) methods use a fixed Eulerian grid to solve the Navier-Stokes equations and 

then move evenly distributed marker particles by the local fluid velocity. Key 

elements of the fluid flow such as a free surface are then easily identifiable. Both 

methods suffered from dissipation in their early forms, however the introduction of a 

number of corrections have allowed these methods to be applied to solid and fluid 

mechanics problems. 

 

The Volume of Fluid (VOF) method also uses a fixed Eulerian grid, but focuses on 

tracking the position of the free surface with time while conserving mass.  This 

method introduces a function that has the value of one for any point in the fluid 

domain that is occupied by a fluid particle and zero otherwise. The average value of 

this function at any given cell determines the volume of the cell occupied by fluid. 

Despite the dependence on a fixed grid, VOF has successfully been used to model 

free surface flows. 

 

Smoothed Particle Hydrodynamics (SPH) – developed independently by Lucy (1977) 

and Gingold and Monaghan (1977) as a tool for simulating gas dynamics in stellar 

objects – was one of the first methods to use a set of arbitrarily defined particles 

without the assistance of a grid (see Chapter 3).  Each SPH particle has constant 
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mass and is free to move about the problem domain. The pressure, density and 

momentum of each particle are interpolated from the properties of the other particles 

in its immediate neighbourhood through the use of a smoothing function. Boundary 

conditions are easily enforced in the SPH method, particularly at a free surface as the 

kinematic and dynamic conditions are implicitly satisfied (see Section 3.6.1). SPH is 

therefore particularly suited to modelling free surface flows (see Section 4.4). 

 

Since the SPH method was introduced in 1977, it has been used to model a variety of 

different problems. Some recent applications include; 

 Chemo-dynamical formation of stars in disk galaxies (Berczik, 1999),  

 High pressure die casting of automotive parts (Cleary et al., 2006),  

 Fluid-structure interaction (Anghileri et al., 2005; Antoci et al., 2007), 

 Green water overtopping on a marine platform (Gomez-Gesteira et al., 2005) 

and waves breaking on a beach (Dalrymple and Rogers, 2006),  

 Underwater explosions (Liu et al., 2003), 

 Sloshing of fluid contained in ship tanks (Pakozdi, 2008; Delorme et al., 

2009; Landrini et al., 2003) and, 

 The overflow of a dam caused by a landslide (Roubtsova and Kahawita, 

2005). 

 

Every one of the previous SPH studies mentioned has involved a free surface that 

constantly deforms throughout the simulation. SPH has been implemented to model 

ship slam events in this thesis because the water surface deforms significantly during 

the water entry process. 

 

2D + t theory 

Solving the three-dimensional problem of a ship moving in waves with available 

CFD methods requires considerable computing time to obtain a solution even at 

relatively low resolution. For this reason the problem is often approximated by a set 

of time-dependent two-dimensional hull cross-section simulations lying in earth-

fixed coordinates, commonly referred to as the 2D + t or 2.5D method. It is assumed 

that the fluid flow at any cross-section is influenced only by that upstream beginning 

at the bow, and the variation in fluid flow along the length of the hull is small when 
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compared to changes in the cross-sectional fluid flow (Faltinsen, 2005). This enables 

the model to partly consider three-dimensional effects using an essentially two-

dimensional approach.  

 

Strip theory, originally developed by Korvin-Kroukovsky and Jacobs (1957), is a 

commonly used 2D + t method for determining the global motions of a ship. The 

method breaks the ship’s hull into a series of two-dimensional cross-sections, known 

as slices or strips (Lloyd, 1989). The global hull motions are obtained by evaluating 

the local hydrodynamic properties at each strip only, ignoring the contribution of 

neighbouring hull cross-sections. Therefore the method is limited to calculating 

global motions as it ignores three-dimensional effects such as flow leaking around 

the ends of the ship.  

 

SEAWAY is one such example of commercial rigid-ship strip theory code used for 

seakeeping calculations. Originally developed at Delft University of Technology in 

the Netherlands, SEAWAY is now marketed by Amarcon as part of the OCTOPUS 

suite of software. In SEAWAY the wave excitation forces are calculated using the 

diffraction method, taking into account the modification of the wave field as it 

diffracts around the hull (Journée and Adegeest 2003). 

 

Tulin and Landrini (2001) and Colagrossi (2004) utilised a simple 2D + t method in 

conjunction with a SPH algorithm to model breaking bow waves on slender ships. In 

this thesis SEAWAY has been used in conjunction with SPH to approximate the 

slamming loads on a typical merchant vessel (see Chapter 6). 

 

1.2 Scope of the thesis 

The present work describes the development of the SPH model including a review of 

the current state-of-the-art, the comprehensive validation process and the application 

of the validated algorithm to ship slam events. Chapter 2 reviews a number of 

published experimental slamming studies at full-scale, including an analysis of the 

damage suffered by ships in rough seas and sea trials that specifically targeted 

slamming. Also included is a review of a range of published model scale 

experiments, from simple vertical drop tests of wedges, cylinders and generic hull 
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forms, through to complicated ocean wave basin trials. The experimental studies are 

supported by various numerical investigations such as the simple added mass 

theories of von Karman (1929) and Wagner (1932), boundary element methods and 

smoothed particle hydrodynamics. 

 

The history of the weakly compressible SPH method is discussed in Chapter 3. 

Particular attention has been paid to the wide range of interpolation kernels 

implemented by many authors as well as the variational consistency of the different 

density evolution and momentum conservation equations. A detailed review of the 

available solid boundary treatments is also provided, including an extension to the 

boundary intersection method proposed by Colagrossi et al. (2007). An outline of the 

SPH code - wholly developed by the author - is provided in Section 3.7. 

 

An extensive validation of the developed SPH code was completed and the results 

are outlined in Chapter 4. Free surface problems in the absence of external forces 

were studied in detail along with gravity driven flows such as the classical dam 

break. In Chapter 5, the validated SPH code has been applied to constant velocity 

and variable velocity water entries of wedge shaped sections. The results have been 

compared against the experimental results of Breder (2005) and Whelan (2004) as 

well as the theoretical approximation of Wagner (1932). A more complex geometry 

that represents a typical flared bow section was also introduced in Chapter 5 and the 

results compared with the experimental data of Aarsnes (1996) and the BEM 

approximation of Sun (2007). 

 

In Chapter 6 the typical merchant V-form hull studied by Ochi (1958) was modelled 

using an approach inspired by 2D + t theory. The ship motions were determined 

using the seakeeping software SEAWAY (Journée and Adegeest, 2003) and the 

relative vertical motions at three forward stations calculated. The loads at the stations 

were then calculated by simulating the local fluid flow with the SPH algorithm. 

Finally, the conclusions and recommendations for future work are outlined in chapter 

7. 
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Chapter  2  

Literature Review 

 

The slamming behaviour of ships in rough seas has previously been investigated by a 

variety of different methods. At full-scale, a number of authors have performed sea 

trials on ships of varying size and shape. In the pursuit of a full analytical solution, 

the problem has been simplified by considering the constant and variable velocity 

water entry of wedges and circular cylinders. Two-dimensional approximations of 

the water entry of a typical hull section have also been studied numerically and 

experimentally. This chapter aims to review many of the previously published works, 

both numerical and experimental, on ship slam events with particular emphasis on 

SPH techniques. 

 

2.1 Slamming studies of full-scale ships 

The effect ocean wave slamming can have on a ship’s structure was studied by 

Yamamoto et al. (1985). In January 1978, a 175 m high-speed containership was 

caught in heavy seas due to the presence of cyclones in the North Pacific Ocean. 

After suffering a number of severe slams near the bow, the ship developed 

corrugations in the hull plating on both sides and a long crack on the starboard side. 

Further plastic deformation was noticed on the deck and in the fore bulkheads. Upon 

analysis of the damage Yamamoto et al. (1985) recommended reducing the bow flare 

angle in future designs to prevent further incidents occurring. This study focused on 

the damage caused, but did not give any indication of the loads and pressures 

experienced by the hull during a large slam event. For this reason a number of 

authors have instrumented a variety of ships with strain gauges to determine the 

loads experienced by the hull during slamming. 
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Vulovich et al. (1989) measured the characteristics of hull stresses due to rough seas 

on the large containership Sea-Land Independence in the North Pacific Ocean from 

December 1985 through to March 1986. The bow of the Sea-Land Independence had 

a considerable flare leaving it vulnerable to significant slam loads. A number of 

strain and ship motion gauges were placed around the ship, with many concentrated 

near the bow. The impact pressures were derived from the strain sensors that were 

placed on the bow flare hull plating. Vulovich et al. (1989) found that the 

longitudinal stress at the fore deck was generally far greater than that experienced in 

the mid section. The mid section of the ship was only experiencing stress due to 

whipping through the hull structure, while the bow was suffering from large, short 

duration forces due to the localised water impact. 

 

The slamming loads experienced at sea by military vessels have also been studied by 

several authors. Sea trials of an aluminium torpedo boat were used by Heller and 

Jasper (1961) as the basis for developing simple design procedures for planing craft. 

The trial was conducted at 35 knots in waves between 1 m and 2 m in height and the 

data recorded by a number of pressure gauges, strain gauges and accelerometers was 

used to develop design rules for planing hulls. Andrew & Lloyd (1981) reported on 

the sea trials of two larger ships: a 110 m Leander class frigate and a 107 m Tribal 

class frigate. The study was conducted in the North Atlantic Ocean south-west of 

Ireland in June 1977. The ships were selected because of their similar size yet 

different seakeeping qualities. Each ship was fitted with twelve strain gauges 

mounted to the longitudinal girders at various locations. It was assumed that the 

occurrence of a slam was associated with high frequency whipping recorded at the 

bridge as this is how a typical observer would recognise a slam event. The number of 

slams recorded in head seas with a characteristic period of 10 s and an average 

significant wave height of 8 m was found to increase with ship speed up to a 

maximum of 20 kts. At this speed the Tribal class frigate abandoned the trials 

because severe slams had damaged pipework and machinery mounts. By analysing 

the data recorded during the Leander and Tribal sea trials, Clarke (1982) noted that 

the probability of a slam event occurring rose rapidly above a ship speed of 10 kts, 

but the distribution of induced whipping stress did not change. It became more and 

more difficult to determine the difference between a small slam and continuing  
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structural whipping from a previous slam as the ship speed was increased (Clarke, 

1982). Hay et al. (1994) performed a similar study on a 173 m CG-47 class guided 

missile cruiser in sea state 6 in the North Atlantic in January 1991. The authors 

believed most of the recorded slams to be the result of bow flare slamming as 

opposed to hull bottom slamming. The resultant whipping through the structure for 

the most severe slams was found to exceed the design limits of the ship. 

 

The incidence of slamming on passenger ships has also been reported. Sebastiani et 

al. (2001) monitored the motions experienced by the 146 m Aries from June 1998 

through to December 1999 on its regular services from mainland Italy to the island of 

Sardinia. Long base strain gauges accompanied by pressure sensors were placed at 

twelve locations on the forward part of the hull. The authors attempted to replicate 

the sea trials with a 1:28 scale model and also developed a correlation formula for the 

prediction of peak impact pressure at differing forward speeds and wave conditions. 

The correlation formula used two-dimensional wedge theory (see Section 2.1.2) with 

a three dimensional forward speed correction and found reasonable agreement with 

both the full scale and model scale peak pressures. 

 

Ship slamming studies have not just been confined to single hulled vessels. In fact 

the slamming problem is potentially of greater importance in the design of multi-

hulled ships due to the possibility of the cross deck structure enclosing water 

between the hulls. To study the slamming loads experienced by a catamaran, 

Steinmann et al. (1999) monitored the June 1997 delivery voyage of the 86 m Austal 

aluminium vehicle and passenger ferry Adan Menderes from Fremantle, Western 

Australia to Istanbul, Turkey. A combination of strain gauges, accelerometers, pitch 

and roll gyros and on-board wave meters were fitted at various locations around the 

vessel. The authors noted that the structure located nearest the slam event 

experienced a high forced response to the slam, yet sections of the hull structure 

located further from the point of impact responded only at the hull’s modal 

frequencies. Thomas et al. (2003) performed a similar study on an 86 m Incat 

aluminium ferry during a segment of its delivery voyage from Sydney, New South 

Wales to Fremantle, Western Australia. To identify a slam event, the raw data 

recorded at a number of strain gauges was high pass filtered at 0.6 Hz in order to 
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remove the global wave load signal. For this particular vessel, slams occurred when 

the significant wave height reached 0.9 m and were most commonly wet deck slams 

rather than bottom or bow flare. Slams also occurred in series, with the first event 

predominantly more severe than the second (Thomas et al, 2003). A similar study 

undertaken during the delivery voyages of two Incat catamarans (81 m and 86 m) 

was presented by Roberts et al. (1997). 

 

The full-scale slamming sea trials reviewed in this section have provided detailed 

information about the behaviour of a variety of vessels in rough seas, however there 

are some limitations. The loads and pressures measured on a hull at sea are often 

difficult to repeat due to the large number of variables affecting the motion of the 

ship and an indication of the wave motion causing the slam event is not easy to 

ascertain. Furthermore, the trials are performed after a ship has been built, making it 

difficult to decrease the ship’s susceptibility to slamming due to the hull design in a 

given sea state. For this reason, slamming studies of many hull sections have been 

completed experimentally in drop or tow tanks and numerically using a variety of 

computational fluid dynamics techniques. 

 

2.2 Model-scale slamming studies 

Predicting slamming loads based on full-scale studies is a difficult and complex task, 

therefore the problem has been simplified by some researchers to simpler two-

dimensional water entries of vee wedges and circular cylinders. This is particularly 

useful as ships often have elements of both shapes in their design. A brief review of 

previously published model scale tests is presented here; for a more detailed outline 

of early experimental and numerical wedge water entry studies see Korobkin and 

Pukhnachov (1988). 

 

2.2.1 Water entry of two-dimensional wedges 

The water entry of two-dimensional ship hull models has long been the principal 

technique used to investigate the slamming problem. However, it was the impact of 

sea plane floats during landing that originally inspired the first theoretical study by 

von Karman (1929).  The process was simplified by von Karman (1929) to the 



Literature Review 

15 
 

incompressible water entry of a two dimensional wedge section of any given 

deadrise angle (the angle between the horizontal and the underside of the wedge). 

The total force on the wedge was derived from the momentum theorem, assuming 

that during impact some of the momentum of the wedge would be imparted onto a 

mass of water (commonly termed the added mass method). Despite assuming that the 

pressure along the surface of the wedge was uniform during impact, the model 

showed reasonable agreement with the experimental force on a 20 deadrise wedge. 

 

Wagner (1932) extended the study of von Karman (1929), reasoning that the 

formation of a jet and spray was caused by the pile-up of water near the surface of 

the wedge. This effectively increased the wetted area and therefore the net force 

during water entry. Wagner (1932) was able to predict the coefficient of maximum 

pressure ܥ௣ ௠௔௫ experienced by a wedge of deadrise angle ߚ஽ by, 

 

௣ ௠௔௫ܥ  ൌ
ଶߨ

4
cotanଶߚ஽ 

(2.1)

 

Garabedian (1953) developed a self-similar theory extension of Wagner’s (1932) 

work using conformal mapping. An object is said to be self-similar if its properties 

can be written in terms of dimensionless time and space parameters. In the context of 

the impact of a wedge, the water surface constantly expands away from the vertex in 

time. Assuming that the free surface shape is self-similar through time allows the 

local fluid properties to be determined easily. Borg (1957) implemented an exact 

relaxation solution (an iterative method for solving partial differential equations) to 

Laplace’s equation for the unsymmetrical water entry of a wedge. Borg (1957) 

compared the results with experimental water entries of an 80 deadrise wedge and a 

45 deadrise wedge with reasonable results. The self-similar approach of Garabedian 

was developed further by Dobrovol’skaya (1969) to produce the first analytical 

solution for the water entry of a two-dimensional wedge. While all of these authors 

were able to predict the water pile up immediately adjacent to the wedge, the 

separation of the water jet and formation of spray was not able to be modelled. 
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Bisplinghoff and Doherty (1952) filmed vertical drop tests of a number of vee 

wedges, ranging in deadrise angle from 10 through to 50, using a 1500 fps high-

speed camera. The peak accelerations and added mass were found to agree well with 

the values expected by Wagner (1932) for all models except the 10 deadrise wedge. 

At the lower deadrise angles significant air compression effects resulted in the 

experiment recording much lower peak pressures and accelerations than those 

expected from the theoretical approach. Further experimental studies were required 

to study the influence of air during the impact of wedges at deadrise angles less than 

10°. 

 

Chuang (1966, 1967) dropped a flat plate into still water and found that the fluid 

pressures measured were considerably less than those expected by von Karman 

(1929) due to the air beneath the plate compressing and forming a cushion. Chuang 

(1967) investigated the air cushion effect further by dropping a range of wedges (1 

through to 15 deadrise) and measuring the impact pressure and acceleration. The 

maximum fluid pressure was recorded when testing the 3 deadrise wedge.  At this 

deadrise angle the trapped air was allowed to vent more easily than wedges with a 

lower deadrise angle. However, a reduction in fluid pressure when compared with 

the theoretical values of von Karman (1929) was still noted up to and including the 

15 deadrise wedge. This implies that a CFD algorithm will only be able to 

accurately model wedges with a deadrise angle greater than 15° when using a single 

fluid model. Lower deadrise wedges require a complicated coupled algorithm 

including both air and water. Chuang (1969) also investigated theoretical slamming 

of three-dimensional high deadrise angle cone shaped objects without including a 

correction for trapped air. A solution similar to the Wagner (1932) approximation of 

the pressure distribution was obtained by approximating the cone with an equivalent 

flat plate using conformal mapping. 

 

In 1981, Payne reviewed the developments of various added mass theories and 

compared the more advanced corrected versions of the von Karman (1929) and 

Wagner (1932) approximations with their original formulations. Using the 

experimental data of Bisplinghoff and Doherty (1952) as a reference, Payne (1981)  
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found that the simple von Karman (1929) and Wagner (1932) methods produced 

more accurate results than the newer corrected versions. An estimation of the spray 

volume in the Bisplinghoff and Doherty (1952) experiments was made and a force 

component was added into the numerical approximation. A reasonable improvement 

on the existing numerical model (Wagner, 1932) was achieved, however this method 

was not able to predict the separation of the water jet and the formation of the spray. 

 

Cauchy’s theorem for the integral of an analytic function around a closed loop was 

applied to two-dimensional wedge water entries by Vinje and Brevig (1980) and 

Greenhow (1987). In this case the analytic function was the complex potential; a 

combination of the fluid velocity potential and the stream function. Good agreement 

was found between drop tests of wedges at deadrise angles of 45, 60 and 81 and 

the Cauchy method. Arai and Tasaki (1987) departed from the Wagner (1932) added 

mass approach and used a finite difference method on a regular grid to determine the 

loads on a free falling wedge. It was noted that the method could be easily applied to 

generic bow shapes, which is not easily done with evolutions of the Wagner (1932) 

method. While able to determine the pressure and loads on the bow section, the FDM 

cannot resolve large free surface deformation and fracture (see Section 1.1.3) 

because it is grid based.  

 

Arai et al. (1994) used a fractional volume of fluid method over a body fitted 

coordinate system to solve for the transient deformation of the free surface. A 

circular cylinder, a 30 deadrise wedge, a 45 deadrise wedge and a ship bow section 

were simulated. Comparisons against the Wagner (1932) method showed reasonable 

agreement for all sections except the bow, as its motions could not be calculated via 

the added mass method. The same VOF method was applied by Arai et al. (1995a) to 

minimise slamming loads on the horizontal members of offshore structures. The 

investigation found that parabolic members had the potential to reduce impact loads 

to approximately half that of a cylinder. Arai et al. (1995b) then focused the method 

on studies of U-form, V-form and flared bow sections. The flared section was found 

to experience more violent slam events, while the V form was least susceptible to 

damage from an impact. 
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Zhao et al. (1997) presented two numerical methods for predicting slam events. The 

first was a fully nonlinear potential flow theory solver that allowed for fluid 

separation at the knuckles of a wedge or at predefined points along a curved surface. 

The second method was an extension of Wagner’s (1932) solution that did not 

account for separation of the water jet. Both models were compared against an 

experimental drop test of a 30 deadrise wedge with reasonable agreement. The 

simple von Karman (1929) method was shown to give a low maximum and poor 

time history of the force. 

 

In recent years a number of new experimental studies into the still water impact of a 

two-dimensional wedge have been reported. The advent of more sensitive 

instruments able to sample at higher rates has allowed for detailed time histories of 

the force and pressure on a wedge to be measured. Whelan (2004) dropped two 

wedges of equal beam but differing deadrise angle (15 and 25) vertically 

(constrained in roll) into still water from varying drop heights. The time histories of 

pressure and force have been used as a validation case in this thesis (see Section 5.3). 

The water entry process was simplified further by Breder (2005) and Tveitnes et al. 

(2008) by imposing a constant velocity on the wedge during impact. Breder (2005) 

produced time histories of the still water impact of a marine panel at a number of 

angles and velocities which have also been used to validate the present SPH 

algorithm (see Section 5.2). Tveitnes et al. (2008) conducted an experimental 

program for validating CFD and momentum theory wedge results, ultimately to 

predict the behaviour of planing hulls in waves. The program consisted of water 

entry, exit and wet chine oscillation tests and found that the wetting factor (the ratio 

of the wetted width of the wedge surface to its wetted width from the initial still 

water level) was strongly dependent on the deadrise angle. However, the testing rig 

was subject to significant dynamic noise, limiting the accuracy of the results. 

 

2.2.2 Water entry of two-dimensional circular cylinders 

Wave impact loads on circular cylinders were studied experimentally by Sarpkaya 

(1978). The test cylinders were initially placed so that the bottom was just touching 

the free surface. The cylinder was then subjected to vertical oscillatory motion and 

the forces were recorded. The total force consisted of a slamming load and a drag 
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load and the calculated slamming coefficient was found to match that predicted by 

Wagner (1932). One of the test cylinders had a rough surface, which had no effect on 

the slam coefficient but did affect the rise time of the jet and resultant drag force. 

 

A numerical study of the incompressible water entry of a rigid cylinder was 

completed by Armand and Cointe (1987). The method used matched asymptotic 

expansions, where the flow in an inner domain (immediately surrounding the 

cylinder) is matched to that of an outer domain in order to determine the thickness of 

the water jet. The results have justified the wetting, or pile-up, correction 

implemented by Wagner (1932). Previously, the method was used for planing craft 

and flow past blunt ships, but Faltinsen (2002) has since used it for modelling the 

impact of a two-dimensional wedge. The results were shown to be in agreement with 

the calculations made by Wagner (1932). 

 

The water entry of a circular cylinder is an attractive SPH validation case, 

particularly for curved boundaries. Some of the hull sections considered in Chapter 6 

of this thesis are similar in shape to a circular cylinder, however experimental force 

and pressure time series required to complete a validation of the water entry of a 

circular cylinder were not readily available. 

 

2.2.3 Water entry of two-dimensional hull sections 

The previous studies of two-dimensional wedges and circular cylinders are 

particularly relevant to this thesis as many bow sections are similar in form to both 

shapes. One early experimental study used a cylindrical form, but did not examine 

the hull of a ship. Baker and Westine (1967) measured the structural response due to 

still water impact of the Apollo space vehicle command module. The models, shaped 

like a spherical segment, were constructed from aluminium, which was less rigid 

(dimensionless) than the full-scale stainless steel prototype. The load data was 

compared with full-scale measurements and found to be in agreement, even with the 

use of dissimilar, less rigid materials. 

 

Cross-sections representing the form of a generic flared bow section have been tested 

experimentally by a number of authors. One section studied by Aarsnes (1996) and 
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reported by Zhao et al. (1997) has been used as a case for comparison in this thesis. 

Aarsnes (1996) instrumented the test section with four pressure sensors and two 

force transducers producing a series of pressure, load and velocity traces for varying 

drop heights (see Section 5.4). Manganelli et al. (2003) performed rotating drop tests 

on a model of an Open 60’ class yacht instrumented with slam patches (large area 

pressure transducers) on the hull plating. Large patches were used instead of small 

piezoelectric sensors because the patches gave an average pressure that correlates 

well with the measured load. The 1:7 scale hull model was fixed at the transom and 

allowed to rotate towards the water surface through differing angles above the 

horizontal. The rotating drop tests in calm water confirmed the relationship between 

impact pressure and structural response. As the hull section rotated into the water 

three-dimensional effects were significant, so the data recorded was not suitable for 

validating SPH drop test models. 

 

Davis and Whelan (2007) examined the water entry of two-dimensional catamaran 

hull sections experimentally. Real slam events depend on the way in which the hull 

strikes the water surface, particularly for catamarans as the effects of air venting and 

entrainment must be considered. The loads measured during the two-dimensional 

drop tests were found to be three times that of full-scale measurements made on an 

86 m Incat catamaran. The drop tests allowed some air to vent through the ends of 

the model, whereas at full scale residual air mixed with the water near the free 

surface causes a decrease in the measured load. This occurs over the whole period of 

the slam and is characterised by the compressibility of the entrained air (Davis and 

Whelan, 2007). As the SPH algorithm presented in this thesis can only model a 

single fluid, the data recorded by Davis and Whelan (2007) were not suitable for use 

in the validation process. However, the experimental drop test data would be very 

useful in validating future two fluid extensions to the SPH algorithm. 

 

To calculate the pressures and loads on a given monohull section, Wraith (1998) 

modified von Karman’s (1929) added mass method. The new method allowed curved 

hulls to be studied numerically and the results were shown to relate well to the 

damage suffered by sailing yachts after a slam event. Wraith (1998) found that the 

effect of hull curvature was insignificant but the relative angle between the hull and 
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the water surface was significant. Furthermore, the model mass was found to have a 

small effect on peak pressures. 

 

An arbitrary hull section was studied numerically by Zhao and Faltinsen (1993) 

using a nonlinear boundary element method with a jet flow approximation. The BEM 

was verified by comparing the results with the self-similarity solution for constant 

velocity entry developed by Dobrovol’skaya (1969). Lu et al. (2000) extended the 

work of Zhao and Faltinsen (1993) by adding hydroelasticity to the analysis of the 

impact of a two-dimensional wedge. The model was said to be in development but 

the initial results presented were promising. 

 

The boundary element method was also used by Chihua and Yousheng (1997) to 

model the constant velocity entry of the flared bow section studied by Zhao and 

Faltinsen (1993). It was concluded that a ship with a flared bow section would suffer 

more damage due to slamming in rough seas than a ship with a U-form section. Sun 

(2007) modelled the Aarsnes (1996) hull section using a combination of BEM and 

Wagner’s (1932) formulation. The initial stages of the water entry were resolved 

using the Wagner (1932) method, then after a short time (less than 0.01s after initial 

impact) the model switched to the BEM to complete the solution (see Section 5.4.1). 

Wedges and circular cylinders were also included for validation purposes with a 

correction for hydroelasticity. The effect of heel angle for the same hull section was 

reported by Sun and Faltinsen (2008) and the model was found to be in reasonable 

agreement with experimental results. While the BEM is able to resolve the loads and 

pressures to within reasonable agreement of published experimental work, it does 

lack the ability to accurately model large deformation and fragmentation of the free 

surface. 

 

2.2.4 Slamming of hull models in tow tanks 

The water entry of a two-dimensional body does not always give an accurate 

indication of the slamming pressures and loads experienced by a ship at full scale. 

The two-dimensional experiments miss three-dimensional effects such as forward 

speed, longitudinal hull slope, dynamic swell up and free surface slope. For this 
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reason, many hull forms have been tested in tow tanks or ocean wave basins at a 

variety of different wave heights, wave headings and ship speeds.  

 

Ochi (1958) was one of the first to publish the results of slamming investigations on 

slender hulls in a tow tank environment. A number of tests on two hulls were 

performed at various ship speeds, drafts, wavelengths and wave heights. Each hull, 

similar to a typical merchant ship, was identical aft of midships but differed in the 

bow with either a V-form or U-form section. Ochi (1958) fitted the 6.0 m long 

models with a number of brass diaphragm pressure sensors and towed the models 

through regular waves in a 200 m towing tank. The maximum slamming pressure 

was found to occur near the keel indicating that the ship was predominantly 

experiencing hull bottom slamming. An increase in forward speed pushed the 

location of maximum pressure aft. While the maximum pressures were published by 

Ochi (1958), the time series of the fluid pressure at each sensor was not. Numerical 

validation work using this study is therefore limited. 

 

More recently Hermundstad and Moan (2005) conducted model tests of the 120m car 

carrier Autoprestige in the 80 m by 50 m ocean wave tank at MARINTEK, Norway. 

The 5.8 m self propelled model was fitted with slamming panels to determine the 

mean pressure on the bow flare 5% of the ship length aft of the forward 

perpendicular. Slamming was observed on the panels when the ship was in head to 

bow quartering regular waves at a period of 9.0 s and a wave height of 2.5 m (full 

scale). This study is particularly useful because the relative wave elevation was 

measured using an optical system, allowing the experiments to be reproduced 

numerically (see Chapter 6). 

 

Dessi and Mariani (2008) carried out a similar study on a fast Ro-Ro ferry built by 

Fincantieri at the 220 m INSEAN towing tank basin in Italy. The work was focused 

on measuring the slamming loads and bending moments of the ship, so the model 

was divided into six segments all attached to a strain gauged elastic beam. The 4.3 m 

model was free to heave and pitch in regular waves of differing wave lengths at a 

variety of ship speeds. The model tests were used as a benchmark to test a numerical 

simulation using a joint analytical added mass and BEM approach. The numerical 
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model included an estimation of the effective wetted length and calculated loads that 

were found to be in reasonable agreement with the towing tank tests. 

 

2.2.5 Use of model tests in slamming prediction software 

Seakeeping software packages such as SEAWAY (Journée and Adegeest, 2003) 

often use one of two methods for the prediction of bow slamming. Ochi (1964) 

proposed a critical vertical velocity condition to define bow slamming by analysing 

experimental tow tank studies. The method calculates the emergence of the hull from 

the water surface 10% of the ship length aft of the forward perpendicular and then 

determines the relative vertical velocity between the hull and the water surface. If the 

bottom of the hull emerges from the water surface and the relative vertical velocity at 

impact is higher than the critical value ݒ௦௟௔௠ ൌ 0.093ඥ݃ܮ௣௣ – where ݃ is the 

acceleration due to gravity and ܮ௣௣ is the length between the ship’s perpendiculars – 

a slam event is deemed to have occurred. The second method proposed by Conolly 

(1974) defined the emergence in the same way as Ochi (1964) but used a critical 

pressure as opposed to velocity. If the local fluid pressure exceeds ௦ܲ௟௔௠ ൌ

௘௡௧௥௬ݒߩ௉ܥ0.5
ଶ  – where ܥ௉ is a pressure coefficient determined from experimental 

drop tests of model hull forms and ݒ௘௡௧௥௬ is the vertical water entry velocity – 

Conolly (1974) categorises the water entry as a slam event.  

 

2.3 SPH slamming studies 

A weakly compressible smoothed particle hydrodynamics algorithm has previously 

been used in the prediction of slamming loads on wedge shaped bodies by Oger et al. 

(2005). The computational domain was filled with 200 000 particles concentrated in 

the region surrounding the wedge and more sparsely separated in the far field. The 

model sampled the pressure of particles immediately adjacent to the surface of the 

wedge in order to determine the vertical load and subsequent change in velocity. The 

load on a 30 deadrise wedge was compared with the experimental and numerical 

results quoted in Zhao et al. (1997). The SPH model was also extended to allow the 

wedge to move in all degrees of freedom.  
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Shao (2009) developed an incompressible SPH method for modelling the slamming 

of two-dimensional wedges. The particle resolution was coarse, only 20 000 particles 

in the computational domain, but the load on a 30 wedge was comparable to that 

published by Zhao et al. (1997). Shao (2009) noted that a finer particle resolution 

was required to correctly resolve the pressure at discrete points on the wedge surface 

and the form of smaller flow features such as jets. 

 

The experimental hull drop tests of Aarsnes (1996) and Zhao et al. (2007) were used 

as a validation case for the SPH and VOF models published by Viviani et al. (2009). 

At the time of publication, the SPH model was in the early stages of development. 

The initial results of the free drop tests of a 30 deadrise wedge were in satisfactory 

agreement with the experimental results. However, the SPH algorithm employed the 

simple repulsive particle technique to model the solid boundaries (see Section 3.6.2), 

which has the potential to corrupt the pressure field of the entire fluid domain over 

time (see Section 3.3.3).   

 

Kalis (2007) used a coupled SPH/FEM algorithm to study the water entry of two-

dimensional circular cylinders and found that the displacement of the cylinder with 

time matched theoretical and experimental data sets. However, pressure contours of 

the fluid domain showed considerable pressure waves propagating away from the 

surface of the cylinder during impact, gradually degrading the pressure field. Kalis’ 

(2007) study was extended to model the three-dimensional free fall water entry of a 

lifeboat. By comparing against experimental studies, the simulation was found to 

overpredict the pressure and loads on the hull of the lifeboat, significantly affecting 

its trajectory after impact with the water surface. Cartwright et al. (2004 and 2006) 

used the same method for seakeeping calculations on a variety of single and multi-

hulled vessels with limited success. The coarse fluid particle resolution required for 

three-dimensional calculations caused significant wave energy dissipation and only 

allowed for global load predictions. The authors recommended that further validation 

work be undertaken in order to prevent the wave energy from dissipating and allow 

for the calculation of local fluid loads on the ship. To date, no other SPH studies of 

three-dimensional ship motions or slamming have been found by the author of this 

thesis. 
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2.4 Summary 

This chapter has reviewed a wide variety of experimental and numerical methods 

previously used to study ship slam events. Full-scale sea trials provide valuable 

information on the behaviour of a ship’s hull during a slam event, however this is not 

easily repeatable due to the variable nature and difficulty in measuring the properties 

of ocean waves. For this reason, many ship models have been towed through regular 

waves or simply dropped from a height into still water to gain an understanding of 

the loads and pressures experienced during a slam. Two-dimensional drop tests of 

simpler shapes such as wedges and circular cylinders have allowed for the validation 

of a number of numerical models. 

 

Numerical and analytical methods for modelling ship slamming have been developed 

in order to enable a wide variety of hull shapes to be studied prior to construction. 

Many of the analytical methods, such as that proposed by Wagner (1932), are able to 

predict the global loads and the local fluid pressure but lack the ability to model the 

evolution and fragmentation of the free surface. Eulerian methods such as FDM 

(Arai and Tasaki, 1987) and BEM (Zhao and Faltinsen, 1993) can predict the local 

fluid properties but also lack the ability to resolve the large deformation and 

fragmentation of the free surface.  

 

SPH has already been successfully used to model free surface deformation and local 

fluid pressures due to the water entry of a two-dimensional wedge (Oger et al., 

2005). Current three-dimensional SPH simulations of ship slamming are of low 

resolution and have not accurately modelled the local fluid pressure distribution or 

the loads on the vessel (Kalis, 2007). Therefore in order to predict slamming loads on 

three-dimensional hulls, this thesis employs a 2D + t method. Individual two-

dimensional cross-sections are modelled at good resolution and then combined to 

give an indication of the loads experienced by the bow during a slam event. 
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Chapter  3  

Smoothed Particle Hydrodynamics 

 

The following is a detailed introduction to the mesh-free lagrangian method 

Smoothed Particle Hydrodynamics (SPH). Originally developed independently by 

Lucy (1977) and Gingold and Monaghan (1977), the heart of the method is a 

numerical interpolation governed by a smoothing function known as the kernel 

(Section 3.1). The interpolation is a key element of the SPH governing equations 

which are defined in Section 3.2 and corrected for numerical stability in Section 3.3. 

 

Section 3.4 summarises a number of time stepping techniques for evolving the 

properties of the fluid particles, with particular emphasis placed on the modified 

Euler predictor-corrector scheme. An overview of the nearest neighbouring particle 

searching techniques (essential to the interpolation) is included in Section 3.5, 

followed by a discussion on the treatment of both the free surface and solid wall 

boundaries encountered in the latter chapters of the thesis (Section 3.6).  

 

The SPH code utilised in this thesis is a blend of all of the elements described in this 

chapter. A guide to the implementation of the SPH code can be found in Section 3.7. 

 

3.1 SPH integral interpolation 

3.1.1 SPH interpolation in the continuum 

Smoothed Particle Hydrodynamics is an integral interpolation method which uses the 

values of a function at a set of disordered points represented by particles to determine 

its value at any arbitrary point r in the space Ω. 
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The interpolation of any given function ݂ is based on the expression, 

 ݂ሺܚሻ ൌ න ݂ሺܚԢሻߜሺܚ െ ԢܚԢሻ݀ܚ
Ω

 (3.1)  

where ߜሺܚ െ  :ᇱሻ is the Dirac delta function which has the following propertiesܚ

ܚሺߜ  െ ᇱሻܚ ൌ ൜ ∞, ܚ ൌ Ԣܚ
0, ܚ ് Ԣܚ

 (3.2) 

 න ܚሺߜ െ Ԣܚᇱሻ݀ܚ ൌ 1 (3.3) 

The approximation of a given function ݂ۃሺܚሻۄ at the point of interest r is exact when 

utilising the Dirac delta function.  In order to encompass a number of particles in the 

region surrounding the point of interest a slightly broader smoothing function or 

kernel ܹሺܚ െ ;ᇱܚ ݄ሻ is implemented.  

ۄሻܚሺ݂ۃ  ൌ න ݂ሺܚԢሻܹሺܚ െ ;ᇱܚ ݄ሻ݀ܚԢ
Ω

 (3.4) 

 

Figure 3.1 – The properties of a particle of interest (red) are determined 

from the properties of its nearest neighbours (blue). The kernel, or 

smoothing function, determines the level of influence that each 

neighbouring particle has on the particle of interest. 
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The kernel is chosen such that as h - a measure of the support of ܹሺܚ െ ;ᇱܚ ݄ሻ, 

commonly termed the smoothing length - approaches zero, the kernel function tends 

towards a Dirac delta function. There are no formal restrictions on the choice of 

kernel, however in practice a number of requirements are necessary in order to 

correctly reproduce a function at any given point. For mathematical simplicity and 

computational efficiency, SPH kernels are characterised by a compact support 

defined by equation (3.5), 

 ܹሺܚ െ ;ᇱܚ ݄ሻ ൌ 0 ݂݅ ܚ| െ |ᇱܚ ൒ ݄ߢ  (3.5)

where ߢ is typically set to 2 or 3 depending on the type of kernel in use (see Section 

3.1.4). Within the compact support the kernel must be positive and normalised to 1 

(3.6) in order to ensure the reproduced function is formed with a physically 

meaningful result.  

 න ܹሺܚ െ ;ᇱܚ ݄ሻ݀ܚԢ ൌ 1 (3.6)

The kernel must also monotonically decrease away from r, guaranteeing the level of 

influence of a neighbouring particle reduces as the separation between the pair 

increases. It is equally important to make certain the kernel is an even function so 

equally spaced particle pairs will interact symmetrically. This also enables the 

discrete integral approximations to be simplified when using a smoothing length of 

constant size. 

 

The gradient in one dimension of any function can also be reproduced via a valid 

kernel and the integral interpolant, similar to equation (3.4). In the approximation of 

the gradient, the differential acts only on the kernel, 

ۃ 
߲݂
ݔ߲

ۄ ൌ න ݂ሺܚᇱሻ
߲ܹ
ݔ߲

ሺܚ െ ;ᇱܚ ݄ሻ݀ܚᇱ

Ω
 (3.7)

Rewriting (3.7) with the partial differential of ሺܚ െ ;ᇱܚ ݄ሻ over x’ instead of x gives, 

ۃ 
߲݂
ݔ߲

ۄ ൌ െ න ݂ሺܚᇱሻ
߲ܹ
Ԣݔ߲

ሺܚ െ ;ᇱܚ ݄ሻ݀ܚᇱ

Ω
 (3.8)
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In multiple dimensions, the approximation of the gradient of the given function 

݂ሺܚሻ can be written, 

ۄሻܚሺ݂׏ۃ  ൌ ܚ׏ න ݂ሺܚᇱሻܹሺܚ െ ;ᇱܚ ݄ሻ݀ܚᇱ

Ω
 (3.9) 

Applying Gauss’ theorem to the integral interpolant in equation (3.9) gives, 

ۄሻܚሺ݂׏ۃ  ൌ න ݂ሺܚᇱሻܹሺܚ െ ;ᇱܚ ݄ሻܵ݀ܖ െ
பΩ

න ݂ሺܚᇱሻܚ׏ᇲܹሺܚ െ ;ᇱܚ ݄ሻ݀ܚᇱ

Ω
 (3.10) 

where ∂Ω represents the surface of the problem domain. This approximation is 

simplified by ignoring the surface integral, assuming the kernel with compact 

support does not overlap any boundaries of the space Ω, 

ۄሻܚሺ݂׏ۃ  ൌ െ න ݂ሺܚᇱሻܚ׏ᇲܹሺܚ െ ;ᇱܚ ݄ሻ݀ܚᇱ

Ω
 (3.11) 

Here, the gradient operator has been transferred from the function and now acts only 

on the kernel. Furthermore, the kernel is an even function which leads to, 

ۄሻܚሺ݂׏ۃ  ൌ ܚ׏ න ݂ሺܚᇱሻܹሺܚ െ ;ᇱܚ ݄ሻ݀ܚᇱ

Ω
ൌ  (3.12) ۄሻܚሺ݂ۃ׏

Likewise the divergence of a vector function F can also be expressed as a product of 

the original function and the gradient of the kernel. Starting with the simple 

interpolation for the divergence of F,  

સۃ  · ۴ሺܚሻۄ ൌ સܚ · න ۴ሺܚᇱሻܹሺܚ െ ;ᇱܚ ݄ሻ݀ܚᇱ

Ω
 (3.13) 

and then applying the divergence theorem gives, 

સۃ  · ۴ሺܚሻۄ ൌ න ۴ሺܚԢሻܹሺܚ െ ;ᇱܚ ݄ሻ · ܵ݀ܖ
பΩ

െ න ۴ሺܚԢሻ · ሾܚ׏ᇲܹሺܚ െ ;ᇱܚ ݄ሻሿ݀ܚԢ
Ω

 

Once again the surface integral is eliminated assuming the compact support does not 

overlap any boundaries, 

સۃ  · ۴ሺܚሻۄ ൌ െ න ۴ሺܚԢሻ · ሾܚ׏ᇲܹሺܚ െ ;ᇱܚ ݄ሻሿ݀ܚԢ
Ω

 (3.14) 
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Similar to equation (3.11) for the gradient of any function, the gradient operator for 

the divergence of a vector field now acts only on the kernel, considerably simplifying 

the approximation. 

 

3.1.2 Discrete SPH interpolation 

In practice, the continuum approach to the SPH interpolation is not appropriate as the 

fluid domain is divided into a set of discrete particles. Replacing the integrand in 

equation (3.4) with a summation allows for the approximation of the function ݂ over 

a set of disordered particles in the space Ω, 

ۄሻܚሺ݂ۃ  ൌ ෍ ݂ሺܚԢሻܹሺܚ െ ;ᇱܚ ݄ሻ݀ܚԢ
Ω

 (3.15)

By implementing a kernel with compact support the approximation becomes, 

ۄ௔ሻܚሺ݂ۃ  ൌ ෍ ݂ሺܚ௕ሻܹሺܚ௔ െ ;௕ܚ ݄ሻ݀ ௕ܸ

ே್

௕ୀଵ

 (3.16)

where ௕ܰ is the total number of neighbouring particles. Equation (3.16) can also be 

written, 

ۄ௔ሻܚሺ݂ۃ  ൌ ෍ ݂ሺܚ௕ሻ
݉௕

௕ߩ
௔ܹ௕

ே್

௕ୀଵ

 (3.17)

where a is the particle of interest for which the function f is unknown, b is a 

neighbouring particle with mass ݉௕ and density ߩ௕, and ௔ܹ௕ is equivalent to 

ܹሺܚ௔ െ ;௕ܚ ݄ሻ. Despite the transformation to a discrete approximation, the kernel is 

still bound by the same rules as it was in the continuum, for example for regularly 

spaced data points, 

 ෍ ௔ܹ௕݀ ௕ܸ

ே್

௕ୀଵ

ൌ 1 (3.18)

Therefore the discrete derivative of the function ݂ሺܚ௔ሻ is similar to the continuum 
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formulation (3.11), 

ۄ௔ሻܚሺ݂׏ۃ  ൌ െ ෍ ݂ሺܚ௕ሻ
݉௕

௕ߩ
ୟ׏ ௔ܹ௕

ே್

ୠୀଵ

 (3.19) 

and for regularly spaced data points, the sum of the kernels gradient over all points 

within the compact support is zero. 

 ෍ ୟ׏ ௔ܹ௕݀ ௕ܸ

ே್

௕ୀଵ

ൌ ૙ (3.20) 

Likewise the discrete divergence of ݂ሺܚ௔ሻ from equation (3.14) becomes, 

સۃ  · ۴ሺܚ௔ሻۄ ൌ െ ෍
݉௕

௕ߩ
۴ሺܚ௕ሻ · ሾસୟ ௔ܹ௕ሿ

ே್

௕ୀଵ

 (3.21) 

 

3.1.3 Kernel corrections 

Solving the discrete SPH equations for particles distributed evenly along a lattice 

results in a good approximation of the function ݂ሺܚ௔ሻ or its derivatives at a given 

point. As most problems suited to SPH are of a transient, freely deforming nature, the 

particle nodes can easily become disordered, failing conditions such as (3.18). 

Spurious gradients and other numerical errors can propagate throughout the solution 

(Colagrossi, 2004) as the SPH equations become less consistent. This inconsistency 

arises because the derivative approximations do not necessarily converge to the 

continuum values as the separation of particle nodes approaches zero. 

 

Establishing if the method is consistent requires an examination of the reproducing 

properties of the discrete interpolation. Belytschko et al. (1998) relates the 

convergence of the SPH method directly to its ability to reproduce a given 

polynomial of order k. As the original form of SPH suffers from a lack of zero order 

consistency when the particles are disordered, a number of techniques have been 

developed to ensure that it satisfies the required reproducing conditions. 
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Shepard (1968) introduced a two-dimensional approximation function for general use 

on disordered data. An SPH variant widely used in the filtering process is the 

following, 

ۄ௔ሻܚሺ݂ۃ  ൌ ෍ ݂ሺܚ௕ሻ
݉௕

௕ߩ
ܹௌሺܚ௔ െ ;௕ܚ ݄ሻ

ே್

௕ୀଵ

 (3.22)

where ܹௌሺܚ௔ െ ;௕ܚ ݄ሻ is the Shepard filtered kernel, which attempts to renormalise 

the kernel through all the neighbouring data points c and is given by, 

 ܹௌሺܚ௔ െ ;௕ܚ ݄ሻ ൌ
ܹሺܚ௔ െ ;௕ܚ ݄ሻ

∑ ܹሺܚ௔ െ ;௖ܚ ݄ሻ݀ ௖ܸ
ே೎
௖ୀଵ

 (3.23)

This allows functions such as ݂ሺܚ௔ሻ to be reproduced exactly, as for disordered data 

points both (3.18) and (3.20) are satisfied, 

 ෍ ௔ܹ௕
ௌ ݀ ௕ܸ

ே್

௕ୀଵ

ൌ 1 (3.24)

 ෍ ୟ׏ ௔ܹ௕
ௌ ݀ ௕ܸ

ே್

௕ୀଵ

ൌ 0 (3.25)

Dilts (1999) proposed a moving least squares (MLS) interpolation to restore 

consistency of any order to the SPH equations. At randomly distributed points in two 

dimensions, MLS interpolants exactly reproduce a set of polynomials given by, 

ሻTܚሺܘ  ൌ ሾ1, ,ݔ ,ݕ ,ଶݔ ,ݕݔ … ሿ (3.26)

A linear approximation of the MLS interpolant can be obtained by introducing the 

operator ߚሺܚ௔ሻ such that, 

 
௔ܹ௕
ெ௅ௌ ൌ ௔ሻܚሺߚ · ௕ሻܚሺܘ ௔ܹ௕ 

௔ܹ௕
ெ௅ௌ ൌ ሾߚ଴ሺܚ௔ሻ ൅ ௔ݔ௔ሻሺܚଵሺߚ െ ௕ሻݔ ൅ ௔ݕ௔ሻሺܚଶሺߚ െ ௕ሻሿݕ ௔ܹ௕ (3.27)
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where Belytschko (1998) has defined the two dimensional first order operator ߚሺܚ௔ሻ, 

௔ሻܚሺߚ  ൌ ቎
௔ሻܚ଴ሺߚ
௔ሻܚଵሺߚ
௔ሻܚଶሺߚ

቏ (3.28) 

Designed to correctly reproduce linear functions while satisfying (3.18) and (3.20), 

the actual values of the operator ߚሺܚ௔ሻ are established from the solution of the 

following expression for each data point, 

௔ሻܚሺߚ  ൌ ௔ሻܚଵሺିۯ ൥
1
0
0

൩ (3.29) 

where for a first order approximation, ۯሺܚ௔ሻ is given by, 

௔ሻܚሺۯ  ൌ ෍ ௕ሻTܚሺܘ௕ሻܚሺܘ
௔ܹ௕݀ ௕ܸ

ே್

௕ୀଵ

 (3.30) 

௔ሻܚሺۯ ൌ ෍ ቎
1 ௔ݔ െ ௕ݔ ௔ݕ െ ௕ݕ

௔ݔ െ ௕ݔ ሺݔ௔ െ ௕ሻଶݔ ሺݔ௔ െ ௔ݕ௕ሻሺݔ െ ௕ሻݕ
௔ݕ െ ௕ݕ ሺݔ௔ െ ௔ݕ௕ሻሺݔ െ ௕ሻݕ ሺݕ௔ െ ௕ሻଶݕ

቏ ௔ܹ௕݀ ௕ܸ

ே್

௕ୀଵ

 

 

Implementing the improved MLS kernel produces consistent approximations of any 

given field and its spatial derivatives (Dilts, 1999). From (3.19), the consistency of 

the gradient of any function can be improved by exchanging the original kernel with 

the MLS kernel, 

ۄ௔ሻܚሺ݂׏ۃ  ൌ ෍ ݂ሺܚ௕ሻ׏௔ ௔ܹ௕
ெ௅ௌ݀ ௕ܸ

ே್

௕ୀଵ

 (3.31) 

To calculate the gradient of the MLS kernel, it is split into a vector consisting of both 

partial derivatives in two dimensions. 

௔׏  ௔ܹ௕
ெ௅ௌ ൌ

ۏ
ێ
ێ
ۍ

߲
ݔ߲ ௔ܹ௕

ெ௅ௌ

߲
ݕ߲ ௔ܹ௕

ெ௅ௌ

ے
ۑ
ۑ
ې
 (3.32) 
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Colagrossi (2004) demonstrated that if the kernel is assumed to be Gaussian, the 

vector can be rewritten, 

௔׏  ௔ܹ௕
ெ௅ௌ ൌ ൤

௔ሻܚ௫ሺߚ · ௕ሻܚሺܘ ௔ܹ௕

௔ሻܚ௬ሺߚ · ௕ሻܚሺܘ ௔ܹ௕
൨ (3.33)

where, 

 

௔ሻܚ௫ሺߚ ൌ  ቎
௔ሻܚଷሺߚ
௔ሻܚସሺߚ
௔ሻܚହሺߚ

቏  

௔ሻܚ௬ሺߚ    ൌ  ቎
௔ሻܚ଺ሺߚ
௔ሻܚ଻ሺߚ
௔ሻܚሺ଼ߚ

቏ 

(3.34)

By performing the dot product on each component of (3.33), the partial derivatives of 

the MLS corrected kernel can be expressed as, 

 

߲
ݔ߲ ௔ܹ௕

ெ௅ௌ ൌ ሾߚଷሺܚ௔ሻ ൅ ௔ݔ௔ሻሺܚସሺߚ െ ௕ሻݔ ൅ ௔ݕ௔ሻሺܚହሺߚ െ ௕ሻሿݕ ௔ܹ௕ 

߲
ݕ߲ ௔ܹ௕

ெ௅ௌ ൌ ሾߚ଺ሺܚ௔ሻ ൅ ௔ݔ௔ሻሺܚ଻ሺߚ െ ௕ሻݔ ൅ ௔ݕ௔ሻሺܚሺ଼ߚ െ ௕ሻሿݕ ௔ܹ௕ 

(3.35)

The elements of ߚ௫ሺܚ௔ሻ and ߚ௬ሺܚ௔ሻ are then solved using the same matrix operation 

as described in (3.29) and (3.30), but with one minor change to the right hand side. 

This operation ultimately ensures that equation (3.20) is satisfied for disordered data 

points when the MLS correction is put into practice. 

௔ሻܚ௫ሺߚ  ൌ ௔ሻܚଵሺିۯ  ൥
0
1
0

൩ ; ௔ሻܚ௬ሺߚ           ൌ ௔ሻܚଵሺିۯ  ൥
0
0
1

൩ (3.36)

Higher orders of completeness can be achieved using a similar technique for both the 

field and its spatial derivatives. Second order and higher MLS kernel corrections 

have not been implemented in this thesis, but detailed derivations can be found in 

Pakozdi (2008) and Belytschko et al. (1998). 
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3.1.4 Kernel functions 

Historically, SPH authors have used a variety of kernel functions ranging from the 

simple Gaussian kernel through to complex 3rd and 5th order spline functions. In the 

original publication by Gingold and Monaghan (1977), a number of typical kernel 

functions were proposed for use including the Gaussian kernel,  

 ܹሺܚ െ ,Ԣܚ ݄ሻ ൌ
ߪ

݄௡ ݁ି௤మ
 (3.37) 

where n denotes the number of dimensions, the normalisation constant ߪ ൌ 1 ൫√ߨ൯
௡

⁄  

and ݍ ൌ ܚ| െ |Ԣܚ ݄⁄ . The interpolation kernel must be accurate, smooth and 

computationally efficient for it to be viable in SPH (Monaghan and Lattanzio, 1985). 

The Gaussian kernel while accurate and smooth, is not computationally efficient as it 

suffers from a lack of compact support.  

 

Early in the development of SPH considerable effort was focused on determining a 

suitable replacement for the Gaussian kernel that naturally had compact support 

while closely resembling its predecessor. By far one of the most commonly used 

kernels is the piecewise cubic spline (see Figure 3.2), with continuous first and 

second derivatives (Monaghan, 2005).  

 

 

 

Figure 3.2 – Comparison between the cubic spline and Gaussian  

kernels (a) and their derivatives (b). 
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Equation (3.38) is an example of a third order spline function. 

 

 ܹሺܚ െ ,Ԣܚ ݄ሻ ൌ
ߪ

݄௡ ቐ
ሺ2 െ ሻଷݍ െ 4ሺ1 െ ;ሻଷݍ 0 ൑ ݍ ൑ 1
ሺ2 െ ;ሻଷݍ 1 ൏ ݍ ൑ 2 
0; ݍ ൐ 2          

  (3.38)

 

The normalisation constant ߪ varies with the number of dimensions n and has the 

value 1 6⁄  in one dimension, 15 ⁄ߨ14  in two dimensions and 1 ⁄ߨ4  in three 

dimensions. Morris et al. (1997) noted that the stability of SPH was strongly 

dependent on the derivative of the kernel, which for common applications of the 

cubic spline results in density variations of approximately 1%.  

 

Employing higher-order spline functions that more closely approximate a Gaussian 

function reduces the instabilities related to the kernel. Fifth and seventh order spline 

functions have superior stability to the cubic spline but also have a larger compact 

support, therefore slightly increasing the computational cost. 

 

The fifth order spline function is given by,  

 

 
ܹሺܚ െ ,Ԣܚ ݄ሻ ൌ

ߪ
݄௡

ە
ۖ
۔

ۖ
ሺ3ۓ െ ሻହݍ െ 6ሺ2 െ ሻହݍ ൅ 15ሺ2 െ ;ሻହݍ 0 ൑ ݍ  ൑ 1

ሺ3 െ ሻହݍ െ 6ሺ2 െ ;ሻହݍ 1 ൏ ݍ  ൑ 2
ሺ3 െ ;ሻହݍ 2 ൏ ݍ  ൑ 3
0; ݍ ൐ 3

 (3.39)

To produce a more stable kernel Landrini et al. (2003) introduced a cut-off limit to 

the Gaussian at some q value δ. The kernel is set to zero at this point by subtracting 

the value ܹሺߜሻ from the regular Gaussian function (3.37), in effect not allowing any 

operations between particle pairs if their separation is greater than δ or less than –δ 

(see Figure 3.3a). Finally, the new cut-off Gaussian kernel is renormalised to 1 (see 

Figure 3.3b) in order to satisfy the kernel conditions described in Section 3.1.1.  

 ܹሺܚ െ ,Ԣܚ ݄ሻ ൌ
ߪ

݄݊ ݁ି௤మ
െ ܹሺߜሻ (3.40)

  



Chapter 3 

38 
 

 

 

 

Figure 3.3 – The Gaussian cut-off kernel prior to (a) and post 

renormalisation (b). To demonstrate the vertical shift of the Gaussian 

function, the value of δ has been set at 1.5. 

 

Landrini et al. (2003) noted that the Gaussian kernel and its first derivative reduce to 

less than 0.05% of their maxima near q = 3. The relative influence of any particle 

beyond this separation on the particle of interest is minimal and so the cut-off limit δ 

was set to 3.  

 

Following (3.40), the value of the kernel at δ = 3 is subtracted from the original to 

give, 

 ܹሺܚ െ ,Ԣܚ ݄ሻ ൌ
ߪ

݄݊ ൫݁ି௤మ
െ ݁ିఋమ

൯ (3.41) 

 ܹሺܚ െ ,Ԣܚ ݄ሻ ൌ
ߪ

݄݊ ൫݁ି௤మ
െ ݁ିଽ൯ (3.42) 

Renormalising to find the constant ߪ in two dimensions yields, 

ߪ  ൌ
1

ߨ2 ׬ ൫݁ି௤మݍ െ ݁ିఋమ൯݀ݍ
ఋ

଴

 (3.43) 
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which reduces to: 

 

ߪ ൌ
1

൫1ߨ െ ሺ1 ൅ ଶሻ݁ିఋమ൯ߜ
 

ߪ ൌ
1

ሺ1ߨ െ 10݁ିଽሻ
 

(3.44)

Pakozdi (2008) performed a detailed error analysis of the modified Gaussian cut-off 

kernel in one, two and three dimensions verifying the validity of the approach. 

 

3.2 SPH governing equations 

The discrete SPH governing equations are derived using a variety of approaches, yet 

they all stem from the Euler equations for the rates of change of velocity, density and 

position. The discrete forms of the equations are dependent on the assumptions and 

simplifications made.  

 

The motion of each particle is prescribed by the acceleration vector ܉௔ which is 

governed by Newton’s second law of motion, 

௔܉  ൌ
۴௔

݉௔
൅

௔܂

݉௔
 (3.45)

where ۴௔ is the sum of the external forces acting on particle a and ܂௔ represents the 

total internal force, typically due to the stress in the fluid. 

 

3.2.1 Continuity equation 

Early in the development of SPH, the equation for mass conservation was a simple 

summation of the density field surrounding the particle or point of interest,  

௔ߩ  ൌ ෍ ௕ߩ ௔ܹ௕݀ ௕ܸ

ே್

௕ୀଵ

 (3.46)

where ௔ܹ௕ is equivalent to ܹሺܚ െ ,௕ܚ ݄ሻ with units of inverse volume and ݀ ௕ܸ ൌ

݉௕ ⁄௕ߩ . This approach was widely used for astrophysical problems where physical 

external boundaries were not of great importance. Despite the intrinsic conservation 
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of mass, the interpolation is poor near fluid boundaries due to a loss of mass density. 

Rewriting (3.46) yields the pure conservation of mass equation, 

௔ߩ  ൌ ෍ ݉௕ ௔ܹ௕

ே್

௕ୀଵ

 (3.47) 

The continuity equation can also be used to conserve mass through the rate of change 

of density. The Euler equation for the rate of change of density with time is given by, 

 
ߩ݀
ݐ݀

ൌ െ׏ߩ ·  (3.48) ܝ

Noting the discrete SPH formulation for the velocity of a particle, 

௔ܝ  ൌ ෍ ௕ܝ ௔ܹ௕݀ ௕ܸ

ே್

௕ୀଵ

 (3.49) 

The variation in density with respect to time can be found by substituting the discrete 

velocity formulation into the continuity equation, 

௔ߩ݀ 

ݐ݀
ൌ െߩ௔સ௔. ෍ ௕ܝ ௔ܹ௕݀ ௕ܸ

ே್

௕ୀଵ

 (3.50) 

Applying the gradient operator to the summation yields, 

 
௔ߩ݀

ݐ݀
ൌ െߩ௔ ෍ ݀ ௕ܸܝ௕. સ௔ ௔ܹ௕

ே್

௕ୀଵ

 (3.51) 

Alternatively, the right hand side of the continuity equation (3.48) can be expressed 

by use of the divergence theorem as, 

 
െ׏ߩ · ܝ ൌ െሺܝ · ߩ׏ ൅ ׏ߩ · ܝ െ ܝ · ሻߩ׏

െ׏ߩ · ܝ ൌ െሺ׏ · ሺܝߩሻ െ ܝ ·  ሻߩ׏
(3.52) 

Using the above identity the discrete integral interpolant becomes: 

 െ׏ߩ · ܝ ൌ െ ෍
܊݉

܊ߩ
௕ܝ௕ߩ · ௔׏ ௔ܹ௕

ே್

௕ୀଵ

൅ ௔ܝ ෍
܊݉

܊ߩ
௔׏௕ߩ ௔ܹ௕

ே್

௕ୀଵ

 (3.53) 
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which can be written, 

 
௔ߩ݀

ݐ݀
ൌ െ ෍ ݉௕ሺܝ௔ െ ௕ሻܝ · ௔׏ ௔ܹ௕

ே್

௕ୀଵ

 (3.54)

Therefore the rate of change of density with time can be expressed as a summation of 

the product of the neighbouring particles change in volume and velocity in (3.51) or 

as a summation of the mass and relative difference in velocity (3.54). Despite the 

difference, both equations ensure that the divergence of the velocity field is zero if 

the fluid velocity is constant. 

 

3.2.2 Momentum equation 

Like the discrete density formulation, the change in momentum of an individual 

particle can be expressed in multiple ways. The Euler equation for the rate of change 

of velocity is given by,  

 
ܝ݀
ݐ݀

ൌ െ
1
ߩ

ܲ׏ ൅ (3.55) ܏

The original formulation of the SPH momentum equation is discretised (3.55) 

directly by writing, 

 
௔ܝ݀

ݐ݀
ൌ െ

1
௔ߩ

෍ ௕ܲ׏௔ ௔ܹ௕݀ ௕ܸ

ே್

௕ୀଵ

 (3.56)

Monaghan (2005) demonstrated that the acceleration in (3.56) does not conserve 

linear or angular momentum. Performing the calculation above on a system of two 

particles, it can be shown that the force on particle a is not equal and opposite to the 

force on particle b, thereby contradicting a fundamental law of motion. This problem 

can be alleviated by symmetrising (3.56) using the following vanishing summation, 

1׏  ൌ න ܚሺܹ׏1 െ ,ᇱܚ ݄ሻ݀ܚԢ ൎ ෍ ௕ܸ׏௔ ௔ܹ௕

ே್

௕ୀଵΩ
ൎ 0 (3.57)
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Adding the product of the zero term and ௔ܲ ⁄௔ߩ  to the right hand side of (3.57) yields 

the symmetric expression for the acceleration of particle a. 

௔ܝ݀ 

ݐ݀
ൌ െ

1
௔ߩ

෍ ௕ܲ׏௔ ௔ܹ௕݀ ௕ܸ

ே್

௕ୀଵ

൅
1

௔ߩ
෍ ௔ܲ׏௔ ௔ܹ௕݀ ௕ܸ

ே್

௕ୀଵ

 (3.58) 

௔ܝ݀ 

ݐ݀
ൌ െ

1
௔ߩ

෍ሺ ௔ܲ ൅ ௕ܲሻ׏௔ ௔ܹ௕݀ ௕ܸ

ே್

௕ୀଵ

 (3.59) 

Therefore the total internal force on particle a can be expressed as, 

௔܂  ൌ െ ෍
݉௔

௔ߩ
ሺ ௔ܲ ൅ ௕ܲሻ׏௔ ௔ܹ௕݀ ௕ܸ

ே್

௕ୀଵ

 (3.60) 

Another approach described by Gingold and Monaghan (1982) obtained a slightly 

different symmetric expression for the acceleration of particle a. From the Euler 

equation for acceleration (3.55), 

 
1
ߩ

ܲ׏ ൌ
ܲ׏ߩ
ଶߩ  (3.61) 

 
ߩ׏ܲ
ଶߩ ൅

1
ߩ

ܲ׏ ൌ
ܲ׏ߩ
ଶߩ ൅

ߩ׏ܲ
ଶߩ  (3.62) 

 
1
ߩ

ܲ׏ െ
ߩ׏ܲ
ଶߩ ൌ

ܲ׏ߩ െ ߩ׏ܲ
ଶߩ  (3.63) 

Rearranging (3.63) and applying the quotient rule in reverse gives, 

 
1
ߩ

ܲ׏ ൌ ׏
ܲ
ߩ

൅
ܲ
ଶߩ  (3.64) ߩ׏

Applying the discrete SPH interpolant to (3.64), 

 1
௔ߩ

׏ ௔ܲ ൌ ෍
݉௕

௕ߩ

௕ܲ

௕ߩ
௔׏ ௔ܹ௕

ே್

௕ୀଵ

൅ ௔ܲ

௔ߩ
ଶ ෍

݉௕

௕ߩ
௔׏௕ߩ ௔ܹ௕

ே್

௕ୀଵ

 (3.65) 

yields the final formulation of the Euler equation for acceleration in the discrete SPH  
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form, 

 
௔ܝ݀

ݐ݀
ൌ െ ෍ ݉௕ ቆ ௔ܲ

௔ߩ
ଶ ൅ ௕ܲ

௕ߩ
ଶቇ ௔׏ ௔ܹ௕

ே್

௕ୀଵ

 (3.66)

Performing the calculation on a system of two particles, the force on particle b is 

equal and opposite of that on a. Consequently, linear and angular momentum are 

conserved. Therefore, the total internal force using the Euler equation can be 

expressed as, 

௔܂  ൌ െ ෍ ݉௔݉௕ ቆ ௔ܲ

௔ߩ
ଶ ൅ ௕ܲ

௕ߩ
ଶቇ ௔׏ ௔ܹ௕

ே್

௕ୀଵ

 (3.67)

 

3.2.3 Discrete SPH variational consistency 

The discrete SPH equations for density and momentum described in the previous 

section may only be used in certain combinations. Bonet and Lok (1999) performed a 

variational analysis on a range of combinations of governing equations and found 

that if they were applied in an inconsistent manner, the form of the simulation 

produced was quite poor. It is therefore important to verify that the arrangement of 

momentum and density equations used in the present SPH algorithm is consistent.  

 

The variation, or directional derivative, describing the gradient of any function ݂ሺܚሻ 

at r is given by, 

ሿܝߜሻሾܚሺ݂ࡰ  ൌ
݀

ߝ݀
݂ሺܚ െ ሻฬܝߜߝ

ߝ ൌ 0
 (3.68)

where ܝߜ is the virtual velocity field that describes the possible movement of a set of 

fluid particles in the small virtual time period ߝ. When the virtual velocity field 

matches that of the actual velocity field, the time derivative of the function ݂ can be 

obtained. 

 
݂݀ሺܚሻ

ݐ݀
ൌ ሿ (3.69)ܝߜሻሾܚሺ݂ࡰ
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To ensure the SPH equations of motion are consistent with variation, the internal 

energy of the system is evaluated following Bonet and Lok (1999). Let ܴ௏ be the 

volume ratio between the current and initial state of the fluid, 

 ܴ௏ ൌ
ܸ

଴ܸ
ൌ

଴ߩ

ߩ
 (3.70) 

For adiabatic processes, the pressure can be evaluated by differentiating the energy 

per unit volume stored in the system ܷሺܴ௏ሻ with respect to the volume ratio such 

that, 

 ܲ ൌ
ܷ݀

ܴ݀௏
 (3.71) 

Following the chain rule equation (3.71) becomes, 

 

ܲ ൌ
ܷ݀
ߩ݀

ߩ݀
ܴ݀௏

 

ܷ݀
ߩ݀

ൌ ܲ
ܴ݀௏

ߩ݀
 

ܷ݀
ߩ݀

ൌ െܲ
௢ߩ

 ଶߩ
(3.72) 

The total internal energy of the system can now be expressed as a summation of the 

stored energy per unit volume multiplied by the volume of each individual fluid 

particle, 

 ܳ௜௡௧ሺܚሻ ൌ ෍ ଴ܸ௔ܷሺܴ௩௔ሻ
ே

௔ୀଵ

 (3.73) 

The variation of the internal energy is then calculated by replacing ݂ሺܚሻ in equation 

(3.68) with ܳ௜௡௧, 

ሿܝߜ௜௡௧ሾܳࡰ  ൌ ࡰ ෍ ଴ܸ௔ܷሺܴ௩௔ሻ
ே

௔ୀଵ

ሾܝߜሿ (3.74) 
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Applying the directional derivative along r enables (3.74) to be expressed as, 

 

ሿܝߜ௜௡௧ሾܳࡰ ൌ ෍ ଴ܸ௔
ܷ݀ሺܴ௩௔ሻ

ܚ݀

ே

௔ୀଵ

ሾܝߜሿ 

ሿܝߜ௜௡௧ሾܳࡰ ൌ ෍ ଴ܸ௔
ܷ݀ሺܴ௩௔ሻ

௔ߩ݀

௔ߩ݀

ܚ݀

ே

௔ୀଵ

ሾܝߜሿ 

ሿܝߜ௜௡௧ሾܳࡰ ൌ െ ෍ ଴ܸ௔ ௔ܲ
଴௔ߩ

௔ߩ
ଶ

௔ߩ݀

ܚ݀

ே

௔ୀଵ

ሾܝߜሿ 

ሿܝߜ௜௡௧ሾܳࡰ ൌ െ ෍ ݉௔
௔ܲ

௔ߩ
ଶ ௔ߩࡰ

ே

௔ୀଵ

ሾܝߜሿ 
(3.75)

The directional derivative on the right hand side of (3.75) now acts only upon the 

density of a given fluid particle a. In order to find a momentum equation that is 

consistent with the traditional summation approach for determining the density, ߩ௔ is 

replaced with (3.47) and the directional derivate of the density, ߩࡰ௔ሾܝߜሿ, can be 

written, 

 

ሿܝߜ௔ሾߩࡰ ൌ ෍ ݉௕
1

௔௕ݎ

ܹ݀
ݎ݀

ே

௕ୀଵ

ሺܚ௔ െ  ሿܝߜ௕ሻሾܚ

ሿܝߜ௔ሾߩࡰ ൌ ෍ ݉௕સ௔ ௔ܹ௕

ே

௕ୀଵ

ሾܝߜሿ 
(3.76)

Substituting the above equation in to (3.75) gives, 

ሿܝߜ௜௡௧ሾܳࡰ ൌ െ ෍ ݉௔
௔ܲ

௔ߩ
ଶ ෍ ݉௕સ௔ ௔ܹ௕

ே

௕ୀଵ

ሾܝߜሿ
ே

௔ୀଵ

 

ሿܝߜ௜௡௧ሾܳࡰ ൌ െ ෍ ෍ ݉௔݉௕
௔ܲ

௔ߩ
ଶ સ௔ ௔ܹ௕

ே

௕ୀଵ

ሺܝߜ௔ െ ௕ሻܝߜ
ே

௔ୀଵ

 

which equates to, 

ሿܝߜ௜௡௧ሾܳࡰ  ൌ െ ෍ ݉௔݉௕
௔ܲ

௔ߩ
ଶ સ௔ ௔ܹ௕ܝߜ௔

ே

௔,௕

൅ ෍ ݉௔݉௕
௔ܲ

௔ߩ
ଶ સ௔ ௔ܹ௕ܝߜ௕

ே

௔,௕

 (3.77)
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The gradient of the kernel સ௔ ௔ܹ௕ is equal and opposite to સ௕ ௕ܹ௔, which results in 

the following, 

 

ሿܝߜ௜௡௧ሾܳࡰ ൌ െ ෍ ෍ ݉௔݉௕
௔ܲ

௔ߩ
ଶ સࢇ ௔ܹ௕

ே

௕ୀଵ

௔ܝߜ

ே

௔ୀଵ

െ ෍ ෍ ݉௕݉௔
௕ܲ

௕ߩ
ଶ સ௕ ௕ܹ௔

ே

௔ୀଵ

௔ܝߜ

ே

௕ୀଵ

 

(3.78) 

Rearranging (3.78) yields the final expression for the directional derivative of the 

internal energy, 

ሿܝߜ௜௡௧ሾܳࡰ  ൌ ෍ ൥െ ෍ ݉௔݉௕ ቆ ௔ܲ

௔ߩ
ଶ ൅ ௕ܲ

௕ߩ
ଶቇ સ௔ ௔ܹ௕

ே

௕ୀଵ

൩

ே

௔ୀଵ

 ௔ (3.79)ܝߜ

Including equation (3.67), the final expression for the directional derivative of the 

internal energy is, 

ሿܝߜ௜௡௧ሾܳࡰ  ൌ ෍  ௔܂

ே

௔ୀଵ

 ௔ (3.80)ܝߜ

Therefore by taking the directional derivative of ܳ௜௡௧ with respect to r, an expression 

containing the internal force described by Gingold and Monaghan (1982), ܂௔ , is 

obtained. As a result the traditional SPH approach for calculating the density directly 

from the particle mass (equation 3.47) is said to be variationally consistent with the 

symmetric approach for determining the acceleration on a particle, equation (3.66).  

 

Similarly, the variational approach can be used to determine which momentum 

equation should be implemented alongside the continuity equation. The continuum 

form of the continuity equation (3.48) can be rewritten in terms of the directional 

time derivative (3.69) by replacing the actual velocity of the SPH particle with the 

virtual velocity described in (3.68), 

ሿܝߜሾߩࡰ  ൌ െߩસ ·  (3.81) ܝߜ
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Substituting this in to the variational derivative of the internal energy equation (3.75) 

gives, 

 

ሿܝߜ௜௡௧ሾܳࡰ ൌ െ ෍ ݉௔
௔ܲ

௔ߩ
ଶ ௔ߩࡰ

ே

௔ୀଵ

ሾܝߜሿ 

ሿܝߜ௜௡௧ሾܳࡰ ൌ െ ෍ ݉௔
௔ܲ

௔ߩ
ଶ

ே

௔ୀଵ

ሺെߩ௔ሻસ௔ሾܝߜሿ 
(3.82)

Introducing the SPH equation for the divergence of the velocity field – a derivation 

of (3.54) - yields, 

 

ܳ௜௡௧ሾܝߜሿ ൌ ෍ ݉௔
௔ܲ

௔ߩ
ଶ

ே

௔ୀଵ

ሺെߩ௔ሻ
1

௔ߩ
෍ ݉௕ሺܝߜ௔ െ ௕ሻܝߜ · સ௔ ௔ܹ௕

ே

௕

 

ܳ௜௡௧ሾܝߜሿ ൌ െ ෍ ݉௔
௔ܲ

௔ߩ
ଶ

ே

௔ୀଵ

෍ ݉௕ሺܝߜ௔ െ ௕ሻܝߜ · સ௔ ௔ܹ௕

ே

௕ୀଵ

 

ܳ௜௡௧ሾܝߜሿ ൌ െ ෍ ݉௔݉௕
௔ܲ

௔ߩ
ଶ સ௔ ௔ܹ௕ܝߜ௔

ே

௔,௕

൅ ෍ ݉௔݉௕
௔ܲ

௔ߩ
ଶ સ௔ ௔ܹ௕ܝߜ௕

ே

௔,௕

 
(3.83)

which is identical to the previous variational analysis using the traditional direct 

density SPH approach (3.79). Therefore the final directional derivative of the internal 

energy equation is, 

ሿܝߜ௜௡௧ሾܳࡰ  ൌ ෍ ൥െ ෍ ݉௔݉௕ ቆ ௔ܲ

௔ߩ
ଶ ൅ ௕ܲ

௕ߩ
ଶቇ સ௔ ௔ܹ௕

ே

௕ୀଵ

൩

ே

௔ୀଵ

௔ (3.84)ܝߜ

This proves that the continuity equation is variationally consistent with the 

symmetrical momentum equation (3.64) described by Gingold and Monaghan 

(1982), as the term in the square parentheses is identical to the internal force (3.65). 

Pakozdi (2008) describes how the continuity equation approach for calculating the 

density of a fluid particle is also consistent with the direct discretisation of the Euler 

equation (3.57), however this form of the SPH momentum equation has not been 

implemented in this thesis and as such the variational analysis is not described here. 
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3.2.4 Equation of state 

The speed of sound in seawater (a near incompressible fluid) is in most cases much 

greater than the maximum fluid flow velocity. This high sound speed demands a very 

small time step by the Courant–Friedrichs–Lewy condition (3.104), which in turn 

forces a long inefficient computation time (see Appendix A). To decrease the 

computation time the sound speed is reduced, in effect approximating the real fluid 

with one that is artificially more compressible. The approximation of the 

incompressible fluid is valid if the maximum fluid flow velocity is less than Mach 

0.1 to prevent compression effects and it is implemented through a modified state 

equation. 

 

Equation (3.85) is the equation of state used in most single phase SPH algorithms,  

 ௔ܲ ൌ ௌܲ ൬൬
௔ߩ

଴ߩ
൰

ఊ

െ 1൰ (3.85) 

where the values of ߛ (typically 7, the same value as in the sea water equation of 

state) and the scale factor ௌܲ are chosen so that the fluctuations in density are no 

more than 1% of the reference value ߩ଴. The scale factor ௌܲ is directly related to the 

sound speed, so in order to reduce the computation time ௌܲ is then defined using the 

modified sound speed through (3.86). 

 ௌܲ ൌ
ܿ௦

ଶߩ଴

ߛ
 (3.86) 

 

3.3 Numerical corrections essential for stability 

Applying the pure SPH equations of motion to a system of disordered particles will 

in most cases lead to numerical drift and an inherent lack of stability. Consequently 

since the inception of SPH considerable effort has been placed on correcting the 

method in order to obtain physically accurate results. A number of the SPH 

corrections are discussed here. 

 

3.3.1 Artificial viscosity 

This expression introduces a small shear and bulk viscosity to the momentum 

equation (3.66) in order to simulate shock problems, but for small values of the 
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coefficients α and β, the artificial viscosity Πୟୠ (equation 3.88) simply stabilises the 

algorithm, particularly the global fluid motion. The momentum equation can now be 

expressed as, 

 
௔ܝ݀

ݐ݀
ൌ െ ෍ ݉௕ ቆ ௔ܲ

௔ߩ
ଶ ൅ ௕ܲ

௕ߩ
ଶ ൅ Πୟୠቇ ௔׏ ௔ܹ௕

ே್

௕ୀଵ

 (3.87)

Where Πୟୠ is given by, 

 Πୟୠ ൌ ቐ
െܿߙҧ௔௕ߤ௔௕ ൅ ௔௕ߤߚ

ଶ

ҧ௔௕ߩ
, ௔௕ܝ · ௔௕ܚ ൏ 0

0 , ௔௕ܝ · ௔௕ܚ ൐ 0
 (3.88)

௔௕ߤ  ൌ
௔௕ܝ݄ · ௔௕ܚ

௔௕ܚ
ଶ ൅ ௔݄ଶ (3.89)ߝ

The double subscripts ab in (3.88) and (3.89) represent the interaction between the 

particle of interest a and a neighbour b (e.g. the relative velocity ܝ௔௕ and the average 

density ߩҧ௔௕).   

 

Typical values for α and β in problems not involving shocks are 0.01-0.10 and 0 

respectively, but can be as high as 1.0 or 2.0 for complex shock simulations 

(Monaghan, 2005). Colagrossi and Landrini (2003) compared values of α in a range 

from 0.005 to 0.1 using a two-dimensional dam break and found 0.03 to be the most 

appropriate value, maintaining stability without introducing a considerable bulk fluid 

viscosity. The value of ߝ௔ in (3.89) is small, typically 0.01, and is placed here to 

avoid a singularity in the unlikely event of the particle separation ܚ௔௕ approaching 

zero. Landrini et al. (2003) modified the artificial viscous term by introducing a rate 

of strain tensor designed to reduce the generation of spurious entropy due to a 

disordered particle distribution and rotation in the velocity field. Colagrossi (2004) 

reported improved results with the new form however it has not been included in this 

thesis. 

 

It should be noted that the magnitude of the artificial viscosity is dependent upon the 

fluid sound speed, which can potentially cause large fluid motion damping when 

using the aforementioned values of α and β (see Appendix A).  
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3.3.2 Tensile stability 

Smoothed particle hydrodynamics carries with it an inherent tensile instability, which 

in certain situations can result in artificial clustering of fluid particles. Under normal 

positive pressure conditions, a repelling force is applied between fluid particles via 

the momentum equation. However, if the local fluid pressure drops below zero 

(where the zero datum pressure is typically atmospheric pressure) the particles can 

attract. This results in an instability which becomes evident when small groups of 

particles cluster together in a higher particle number density not reflected in the fluid 

density. 

 

A number of attempts to counter this tensile instability have been published, 

including an introduction of dissipative terms by Randles and Libersky (1996). 

Monaghan (2000) described a repulsive term inspired by physical forces between the 

molecules of a fluid or solid in order to eliminate the possibility of artificial particle 

clustering. This repulsive force term ܴ௔௕ ௔݂௕
௞  is included in the extended SPH 

momentum equation (3.87), 

 
௔ܝ݀

ݐ݀
ൌ െ ෍ ݉௕ ቆ ௔ܲ

௔ߩ
ଶ ൅ ௕ܲ

௕ߩ
ଶ ൅ Πୟୠ ൅ ܴ௔௕ ௔݂௕

௞ ቇ ௔׏ ௔ܹ௕

ே್

௕ୀଵ

 (3.90) 

The ܴ௔௕ component of the repulsive force is related directly to the pressure and can 

be written, 

 ܴ௔௕ ൌ ቐ
0.01 ቆ ௔ܲ

௔ߩ
ଶ ൅ ௕ܲ

௕ߩ
ଶቇ ; if ௔ܲ ൐ 0 and ௕ܲ ൐ 0

ܴ௔ ൅ ܴ௕  ; otherwise
 (3.91) 

where ܴ௔ and ܴ௕ are evaluated in a similar manner, 

 ܴ௔ ൌ ቐ
߳ ൬ ௔ܲ

௔ߩ
ଶ൰ ; if ௔ܲ ൏ 0

0 ; otherwise
 (3.92) 

The value of ܴ௕ is obtained from (3.92) by replacing the pressure and density of 

particle a with that of particle b. A typical value chosen for ߳ is 0.2, but this may 

vary depending on the type of problem to be modelled (see Section 4.2). Equation 

(3.91) contains an expression for ܴ௔௕ for use when both particles have a positive 
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pressure and is designed to prevent the development of linear particle groupings. The 

coefficient ߳ is in this case reduced to 0.01. 

 

To complete the repulsive force, a second component directly related to the kernel, 

௔݂௕ is introduced. This term is designed to increase as the separation between the two 

particles in the pair decreases and takes the form, 

 ௔݂௕ ൌ ௔ܹ௕

ܹሺݎ଴ሻ
 (3.93)

where ݎ଴ is the initial particle spacing in the region surrounding particle a. Monaghan 

(2000) suggests that for fluid dynamics simulations, ௔݂௕ be raised to the power k 

(3.90) forcing the term to decrease rapidly as the separation between the particle pair 

increases. In the present work k has been set to 4 as recommended by Monaghan 

(2000). 

 

3.3.3 Reintialisation of the density field 

Evolving the density field through the discrete SPH form of the continuity equation 

(3.54) does not exactly enforce consistency between the particle mass, volume and 

density (Colagrossi and Landrini, 2003). In regions where the compact support of the 

standard kernel is not entirely filled with particles – near solid boundaries or a free 

surface – the direct density approach (3.47) produces a density that is smaller than its 

value at the previous step in time. By calculating a reduced density value, the 

pressure at the same particle would be lower than expected and ultimately the entire 

velocity field would become corrupt. 

 

The moving least squares approach described by Belytschko et al. (1998) and Dilts 

(1999) was implemented by Colagrossi and Landrini (2003) in a procedure designed 

to restore the consistency between particle mass, density and volume by periodically 

reinitialising  the  density  field. Equation (3.47) was modified to include the MLS 

kernel described in Section 3.1.3, 

௔ߩ  ൌ ෍ ݉௕ ௔ܹ௕
ெ௅ௌ

ே್

௕ୀଵ

 (3.94)
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Colagrossi and Landrini (2003) applied the density reinitialisation procedure every 

20 time steps to a free-surface dam break test problem (see Section 4.4) with only a 

slight increase in computation time reported. Results showed an improved, more 

regular pressure distribution and improved energy conservation when used in 

conjunction with the artificial viscosity (see Section 4.1).  

 

3.3.4 Particle motion 

The uncorrected SPH method does not include any limiting factors on the space 

occupied by a given particle which can give rise to the possibility of two or more 

particles occupying the same space. Penetration of neighbouring particles is a 

problem, particularly with high Mach number flows, and can quickly corrupt the 

density, pressure and velocity fields. 

 

Monaghan (1989, 1994) proposed a solution, known as the XSPH variant, to the 

penetration problem by adding a correcting factor ∆ܝ௔ to the rate of change of 

position (3.95). To maintain consistency, the new corrected velocity is carried though 

to the continuity equation. 

 
௔ܚ݀

ݐ݀
ൌ ௔ܝ ൅  ௔ (3.95)ܝ∆

where 

௔ܝ∆  ൌ ௑ߝ ෍ ݉௕
ሺܝ௕ െ ௔ሻܝ

ҧ௔௕ߩ
௔ܹ௕

ே್

௕ୀଵ

 (3.96) 

It can be seen in (3.96) that the XSPH variant is summed over all neighbouring 

particles within the compact support of the kernel ௔ܹ௕ using the mean density of the 

particle pair ߩҧ௔௕. Typically the constant ߝ௑ is chosen to be 0.5, which is strong 

enough to encourage particles in the local area to move with a similar velocity. 

Monaghan (1994) states that the correction is not necessarily important for placid 

flows such as the free-surface dam-break (see Section 4.4) but does become critical 

for complex flows such as the formation of jets. 
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3.4 Time stepping 

Like many other computational fluid dynamics techniques, the discrete SPH 

equations can be solved using a variety of different methods. As the equations of 

motion in SPH reduce to a set of ordinary differential equations, simple time 

stepping schemes such as the first order Euler method can be used for the solution.  

 

While efficient in memory use, the first order Euler method can be quite unstable so 

Monaghan (1989) described an improved predictor-corrector Euler method which 

has been implemented in this thesis for its simplicity and improved accuracy. Other 

SPH authors (Colagrossi, 2004 and Pakozdi, 2008) have employed higher order 

Runge-Kutta schemes which allow for larger time steps at the expense of 

computational efficiency in the evaluation of the forces on individual particles.  

 

The predictor-corrector scheme moves the particle positions through the full time 

step ∆ݐ based on the instantaneous particle velocity and acceleration, 

௖ܚ  ൌ ௧ܚ ൅ ݐ∆௧ܝ ൅
1
2

௧ܝ݀

ݐ݀
ሺ∆ݐሻଶ (3.97)

The particle velocity is first predicted using the standard Euler approach, 

௣ܝ  ൌ ௧ܝ ൅
௧ܝ݀

ݐ݀
(3.98) ݐ∆

Likewise the predicted density is evaluated from the time derivative of the density ߩ௧ 

at the current time step, 

௣ߩ  ൌ ௧ߩ ൅
௧ߩ݀

ݐ݀
(3.99) ݐ∆

Using the predicted quantities, the change in density and velocity with time is 

evaluated for a second time. The final corrected velocity is then obtained using the 

average of the initial and predicted acceleration, 

௖ܝ  ൌ ௧ܝ ൅
1
2

൬
௣ܝ݀

ݐ݀
൅

௧ܝ݀

ݐ݀
൰ (3.100) ݐ∆
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Likewise the final corrected density is, 

௖ߩ  ൌ ௧ߩ ൅
1
2

൬
௣ߩ݀

ݐ݀
൅

௧ߩ݀

ݐ݀
൰  (3.101) ݐ∆

Rearranging (3.98) and (3.99), and replacing the initial values of the density and 

velocity in (3.100) and (3.101) with expressions containing the predicted values 

gives the final equations for the corrected velocity and density, 

௖ܝ  ൌ ௣ܝ ൅
1
2

൬
௣ܝ݀

ݐ݀
െ

௧ܝ݀

ݐ݀
൰  (3.102) ݐ∆

௖ߩ  ൌ ௣ߩ ൅
1
2

൬
௣ߩ݀

ݐ݀
െ

௧ߩ݀

ݐ݀
൰  (3.103) ݐ∆

Following Monaghan (1999), the time step ∆ݐ is governed by the Courant-

Fredreichs-Lewy stability condition which is based on the smoothing length h, the 

speed of sound in the fluid ܿ௦ and a viscosity condition, 

ݐ∆  ൌ ௧min௔ߚ ൬
݄

ܿ௦ ൅ ௔ߪ
൰ (3.104) 

where ߪ௔ is similar to ߤ௔௕ in equation (3.89) and provides the maximum viscosity 

component expected through the duration of the simulation,  

௔ߪ  ൌ max௕ ቆ݄
ሺܝ௕ െ ௔ሻܝ · ሺܚ௕ െ ௔ሻܚ

|ሺܚ௕ െ ௔ሻ|ଶܚ ቇ (3.105) 

The value of ߚ௧ in equation (3.104) is dependent upon the type of time stepping 

scheme. Colagrossi (2004) set ߚ௧ to 2.5 when employing a fourth-order Runge-Kutta 

scheme for modelling two phase flows, while Monaghan (1999) recommends 0.3 for 

the predictor-corrector improved Euler approach. Following Feldman (2006), the 

value of ߚ௧ in this thesis has been set at 0.1, with the aim of enhancing the accuracy 

of the algorithm. 
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3.5 Nearest neighbour particle search method 

Kernel functions in the SPH method - as described previously in Section 3.1 - have a 

compact support in which only a finite number of particles are able to interact with 

the particle of interest. Due to the Lagrangian nature of the method, particles can 

move in and out of another particle’s compact support freely. Consequently a 

suitable nearest neighbour searching strategy is required in order to locate those 

particles lying within the compact support of a given particle of interest. A number of 

approaches have been reported in the literature including the simple all-pair search, 

the linked list algorithm and the tree search. 

 

Without doubt the simplest, albeit naive method for creating a list of nearest 

neighbours is the all-pair search. Often criticised for its computational inefficiency, 

this method was used in this thesis as part of the early validation models due to its 

simplicity. For any given particle of interest, the distance to every particle within the 

computational domain is calculated. If this separation is less than or equal to the 

radius of the compact support, and the smoothing length of each particle is equal, the 

two particles are recorded as an interacting particle pair. By searching over N 

particles for each particle of interest, the time taken is of order N2 and becomes 

particularly time consuming as the number of particles in the domain increases. 

 

To improve the computational efficiency of the SPH solver, the all-pair search was 

replaced with a linked list algorithm. This is implemented by laying a grid over the 

computational domain and assigning fluid particles to a cell. Each cell is of equal 

height and width that as a rule must be greater than or equal to the compact support 

radius of the kernel. The grid search process then steps across each cell from left to 

right and along every row from bottom to top, building a list of the particles located 

within the cell and linking it to a list of particles in the eight neighbouring cells (see 

Figure 3.4a). A periodic search similar to the all-pair search is then actioned on the 

listed particles.  

  

With a constant smoothing length in use each pair interaction will be symmetric, 

which reduces the number of cells required to be searched. Figure 3.4b demonstrates 

that particles in the red cell need only search for neighbours in the cells immediately 
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north-west, north, north-east and east. Particles in the other immediate cells labelled 

x have previously searched the red cell for nearest neighbours. This reduces the 

number of cells searched from eight to four, further increasing the computational 

efficiency (see Figure 3.4b). 

 

Employing the linked list algorithm reduces the time taken towards order N if the 

size of each cell is sufficiently small. In practice however, the cells are set with sides 

approximately 25% larger than the radius of the kernel to allow a number of time 

steps to be completed between linked list allocations. This is also true for the 

subsequent nearest neighbour search as it is much more efficient in terms of time, 

with only a slight increase in memory use. 

 

For more complex SPH simulations involving variable smoothing lengths and/or 

variable particle sizes, using the linked list algorithm can be problematic. Some 

authors have implemented a tree search algorithm which has a complexity of order 

݋݈ܰ ଵ݃଴ܰ and is hence considerably more efficient than the simple all pair approach. 

By repeatedly splitting the problem domain into quadrants (Figure 3.5b), the tree 

algorithm moves through multiple levels until a cell is occupied by only a single 

particle.  

 

 

Figure 3.4 – The linked list search algorithm describing (a) the initial grid 

overlay with neighbouring cells and (b) the simplified approach for a 

constant smoothing length. The cells labelled x have already  

searched the red cell of interest for neighbouring particles. 
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Figure 3.5 – The structure produced using the tree search algorithm (a) 

for a given particle distribution (b). 

 

The nearest neighbour search is completed by stepping down each level of the tree 

through individual branches. At each level a check is made to see if the compact 

support of the particle of interest overlaps the given quadrant. If there is an overlap, 

the descent continues until the quadrant represents a single particle.  Without an 

overlap, the descent stops and moves on to the next branch of the tree (Figure 3.5a). 

Alimi et al. (2003) used this method to search for nearest neighbours and determine 

the gravitational forces on particles in the formation of a star. 

 

All problems modelled in this thesis have used a uniform particle size and smoothing 

length throughout the fluid domain. Therefore the tree search algorithm is not 

required, but instead the simpler linked list process has been implemented because of 

its efficiency. 

 

3.6 Treatment of boundaries 

In this thesis two major boundary conditions have been enforced, the free surface and 

the solid boundary. Other typical CFD boundary conditions such as the periodic 

boundary were not required and so will not be discussed here.   
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3.6.1 Free surface 

Described as the most complex boundary condition by White (1999), the free surface  

(or liquid-gas interface) has its position in two dimensions described by, 

௙௦ݕ  ൌ ,ݔሺߟ  ሻ (3.106)ݐ

The transition from liquid to gas is instantaneous and so the vertical velocity of both 

fluids must be equal across the interface, 

௟௜௤ܞ  ൌ ௚௔௦ܞ ൌ
ߟ݀
ݐ݀

ൌ
ߟ߲
ݐ߲

൅ ௙௦ܝ
ߟ߲
ݔ߲

 (3.107) 

Equation (3.107) is referred to as the kinematic free surface condition. For single 

phase flows in SPH, this condition is satisfied implicitly as liquid particles on the 

free surface stay on the free surface. Mechanical equilibrium is also be enforced 

across the free surface, but because the present SPH model is inviscid all viscous 

stresses can be ignored. Pressure on the other hand cannot be ignored and must be an 

equal and continuous function. Known as the dynamic free surface condition, it is 

defined by, 

 ௟ܲ௜௤ ൌ ௚ܲ௔௦ (3.108) 

 
߲ܲ

௙௦ݕ߲
ൌ 0 (3.109) 

The dynamic condition is easily enforced in single phase SPH. Initial conditions are 

set such that the pressure of any free surface particle is zero in order to match the 

atmospheric pressure outside the liquid (3.85). Applying the direct form of the 

discrete density approximation (3.47) would result in negative pressures at the free 

surface as the compact support cannot be filled by particles. In order to avoid this 

clear violation of the dynamic condition, the discrete form of the continuity equation 

(3.54) is used (Colagrossi et. al, 2007). The divergence of the velocity field and the 

time derivative of the density at this location are both zero for regularly spaced 

particles. In practice, variations in particle spacing will result in a non-zero 

divergence of the velocity field. However, in comparison with the failings of the 

direct density approach, these small variations are negligible. For regularly spaced 

particles in a uniform velocity field the dynamic condition is implicitly satisfied. 
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3.6.2 Solid boundaries 

Boundary particle method 

A number of different solid boundary treatments have been developed for use in 

SPH. One of the earliest methods utilised by Monaghan (1994) involved boundary 

particles. Fixed along the boundary’s edge at approximately half the spacing of the 

fluid particles (see Figure 3.6), the boundary particles do not contribute to the density 

and momentum equations, but simply exert a repulsive force on the fluid inspired by 

the known forces between molecules.  

 

The force per unit mass ࢌ on a fluid particle separated by a distance r from the 

boundary particle takes the Lennard-Jones form, 

ࢌ  ൌ ஻ܦ ൤ቀ
଴ݎ

ݎ
ቁ

௣భ

െ ቀ
଴ݎ

ݎ
ቁ

௣మ

൨
ܖ
ଶ (3.110)ݎ

where n is the vector normal to the boundary. This force is purely repulsive and is 

zero if the initial particle separation ݎ଴ is greater than the separation of the fluid 

particle and the boundary. Monaghan (1994) suggests that the values of ݌ଵ and ݌ଶ be 

set to 4 and 2 respectively, however reasonable results have been obtained with other 

values provided ݌ଵ is greater than ݌ଶ. The coefficient D has units m2 s2⁄ , is problem-

dependent and is usually related to the depth of the fluid for problems involving 

dams and tanks.  

 

Figure 3.6 – The Lennard-Jones method for determining the  

boundary forces on fluid particles (blue) due to the  

neighbouring boundary particles (red). 
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A more advanced repulsive force using a function similar to the kernel was described 

by Monaghan (2005). Here, the force per unit mass f is given by, 

ࢌ  ൌ Γሺݕሻ߯ሺݔሻ(3.111) ܖ 

The function ߯ሺݔሻ ensures that a fluid particle moving parallel to a boundary (fixed 

along the x axis) always experiences the same force, independent of where it lies 

between boundary particles, 

 ߯ሺݔሻ ൌ ൝
൬1 െ

ݔ
Δ݌

൰ ݂݅ 0 ൏ ݔ ൏ ݌∆

0; otherwise
 (3.112) 

where Δ݌ is the boundary particle separation and x is the tangential distance along 

the boundary surface between the fluid and boundary particles. Assuming the cubic 

spline kernel is in use, Γሺݕሻ takes a form similar to the gradient of the cubic spline, 

 Γሺݕሻ ൌ ஻ܤ

ە
ۖ
۔

ۖ
ۓ

ଶ
ଷ

; if 0 ൏ ݍ ൏ ଶ
ଷ

ቀ2ݍ െ ଷ
ଶ
; ଶቁݍ if ଶ

ଷ
൏ ݍ ൏ 1

ଵ
ଶ
ሺ2 െ ሻଶ ;  if 1ݍ ൏ ݍ ൏ 2

0 ; otherwise

 (3.113) 

where ݍ ൌ ݕ ݄⁄  and ܤ஻ is 0.02ܿ௦
ଶ ⁄ݕ . Introducing the coefficient ܤ஻ ensures that 

particles will not penetrate the boundary as the value of Γሺݕሻ increases as y 

approaches zero. 

 

The boundary particle method described by Monaghan (1994, 2005) has been 

utilised in many free surface models, however these particles do not contribute to the 

density of the fluid. In addition the particle number density near a boundary falls as 

the compact support stretches in to areas not occupied by any fluid particles. Without 

a regular reinitialisation of the density field, the solution would progressively 

become corrupt.  

 

Feldman and Bonet (2007) proposed an improved boundary force method – known 

as the Contact Force – using a Lagrangian that also prevents a reduction in the fluid 

particle density due to the presence of the boundary.  If the compact support near a 

boundary is not filled (e.g. equation (3.18) is not satisfied) then the fluid particle 

density is renormalised using a method similar to the Shepard filter (3.23). The same 
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scale factor is then included in the calculation of the internal force on a given fluid 

particle (3.67) in order to force it away from the solid boundary. A more detailed 

description of boundary treatment using the Contact Force method can be found in 

Feldman and Bonet (2007). 

 

Filled boundary method 

Morris et al. (1997) developed a method that filled non-fluid regions of the problem 

domain with particles to avoid an unfilled compact support (Figure 3.7). These 

boundary particles are effectively fluid particles fixed on a Cartesian lattice that 

allow their density and pressure to evolve with time via the standard SPH equations 

of motion. In order to correctly evolve the density of a fluid particle a by the 

continuity equation, the fixed boundary particles require a velocity. For the case of a 

no-slip stationary boundary, the boundary particles are assigned an artificial velocity 

based on the normal distance ݀௕ to each boundary particle and the velocity of the 

fluid particle extrapolated across the boundary, 

௕ܝ  ൌ െ
݀௕

݀௔
௔ (3.114)ܝ

Filled boundary regions can easily cope with complex geometries just like the 

Monaghan repulsive force method. Curved boundaries are treated slightly differently 

by using a local tangent line to extrapolate the fluid velocity across the boundary 

(Morris et al., 1997). A global boundary velocity can also be applied by replacing 

 .௔ with the fluid velocity relative to the boundary surfaceܝ
 

 

Figure 3.7 – The filled boundary method. Fluid particles (blue) can be 

randomly distributed unlike the boundary particles (red) that are  

fixed on a regularly spaced lattice. 
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Ghost particle method 

The ghost particle method is inspired by the treatment of sources, sinks, vortices and 

other flow patterns near a boundary in potential flow. The image method in potential 

flow replaces the physical wall boundary with a mirror image of the local fluid. The 

fluid then behaves as if a solid wall boundary existed at the line of symmetry. In 

SPH, creating ghost particles that mirror the fluid particles about the solid boundary 

has the same advantage as the image method in potential flow.  

 

Like the filled boundary region, the ghost particle approach is designed to encourage 

smoother behaviour amongst fluid particles within close proximity of a solid 

boundary. Despite the similarities between the two methods there is one major 

difference which sets them apart. Filled boundary particles are positioned on a 

regular lattice and are fixed inside the reference frame of the boundary region (Figure 

3.7), whereas the positions, velocities, pressures and densities of ghost or image 

particles are directly related to the properties of the neighbouring fluid particles.   

 

For the simple case of a single straight wall section fixed in space and time, every 

fluid particle within a kernel’s radius ݄ߢ of the wall creates an artificial ghost particle 

directly opposite the boundary with the same density and pressure (Figure 3.8). In 

order to enforce the free slip condition, the ghost velocity component parallel to the 

wall is set to match that of the corresponding fluid particle. To prevent any fluid 

particles from penetrating the boundary, the velocity component along the normal 

directly opposes that of the fluid particle. 

 

In practice not every wall boundary is treated as simply as the stationary vertical wall 

in Figure 3.8. If the boundary is moving with a velocity along the normal ܝ௪, then 

the normal ܝ௡௕ and tangential ܝ௧௕ velocity components of the ghost particle are,  

௡௕ܝ  ൌ ௪ܝ2 െ  ௡௔ (3.115)ܝ

௧௕ܝ  ൌ  ௧௔ (3.116)ܝ

where ܝ௧௔ and ܝ௡௔ are the tangential and normal components of the fluid particle 

velocity. 
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Figure 3.8 – Ghost particles (red) created about a stationary vertical 

boundary due to the presence of neighbouring fluid particles (blue). 

 

Allocation of ghost velocities is more complicated if the boundary velocity is not 

along the normal. In this case the ghost velocity is found by transforming the 

reference frame from the global fluid domain to one in which the wall boundary is 

stationary. Velocities of the ghost particles are calculated in the new stationary wall 

reference frame before transforming back to the global fluid domain. 

 

The pressure and density of a ghost particle mirrored about a vertical boundary is 

typically kept the same as the corresponding fluid particle. Ghost particles at 

horizontal boundaries, or any boundary not lying in the vertical plane, require further 

manipulation. For problems involving a gravitational acceleration, any relative 

difference in vertical separation between the ghost and fluid particles must contribute 

to the ghost particle pressure. To maintain a constant hydrostatic pressure gradient 

across a solid wall boundary, the pressure of any ghost particle b due to its 

corresponding fluid particle a is, 

 ௕ܲ ൌ ௔ܲ ൅ ௔ݕ଴݃ሺߩ െ ௕ሻ (3.117)ݕ

Occasionally the ghost method does not prevent particles from penetrating a wall 

boundary. Typically this occurs in areas where the total number of fluid and ghost 

particles is not sufficient to entirely fill the compact support. Any particle that moves 
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to within half of its radius of the wall is forced into a simple bounce back algorithm. 

The velocity of the fluid particle normal to the boundary is reversed to force it away 

from the wall preventing it from leaving the problem domain whilst conserving the 

energy of the system. 

 

Unfortunately the ghost particle method does suffer from a lack of flexibility.  As the 

geometry increases in complexity, so does the method for creating ghost particles. 

One of the simpler cases is that of fluid contained between two walls meeting at right 

angles. Left alone, the compact support of a fluid particle located within a kernel’s 

radius ݄ߢ of the intersection will not be entirely filled. As such the pressure gradient 

forcing the particle away from the walls will be reduced, potentially allowing 

particles to leak through the intersection point.  

 

Figure 3.9 describes the method for ensuring the compact support of any particle 

near a right angle intersection remains filled. Any fluid particle located close to an 

intersection is reflected about both walls as described previously. However, if the 

particle lies within a kernels’ radius of the intersection a ghost is created directly 

opposite (see Figure 3.9b). This ghost follows the hydrostatic pressure rule (3.117) 

and has a velocity equal in magnitude but opposite in direction to the fluid particle.  

 

 

Figure 3.9 – Ghost Particles formed at internal right angle corners if the 

fluid particle is (a) located outside a kernel’s radius ݄ߢ of the intersection 

point and (b) inside ݄ߢ of the intersection. 
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The other extreme is the opposite of Figure 3.9, where the ghost particles are located 

inside an obtuse intersection angle (see Figure 3.10). Fluid particles within a kernel’s 

radius of each wall create a ghost particle in the same manner as in equations (3.115) 

to (3.117). To maintain a smooth approximation of the fluid properties near the 

intersection between the wall boundaries, fluid particles located directly adjacent to 

the intersection also create ghosts.  

 

Unfortunately at this type of intersection the particle number density in the ghost 

region can be up to three times that of the fluid (see Figure 3.10). This can cause an 

artificial local increase in fluid pressure and ultimately degrade the model if left 

untreated. The solution for right angle intersections presented by Colagrossi et al. 

(2007) and generalised here, scales the kernel function for each ghost-fluid particle 

pair depending on the location of the fluid particle. 

 

Ghost particles are created by both wall boundaries and the intersection point, 

overlapping in the region opposite the intersection from 2 in Figure 3.11. The 

calculated kernel for any ghost particle and fluid particle pair (if the ghost particle 

lies within the overlapping region) is multiplied by a scale factor ௜ܵ, where i is the 

boundary or intersection point for which the ghost was created.  

 

 

Figure 3.10 – Ghost particles located inside the obtuse angle between 

wall boundaries at an intersection point. A visible increase in ghost 

particle number density is identified. 
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Figure 3.11 – Scaling of ghost particle interactions at obtuse 

intersections. Ghost regions overlap in the region opposite 2 spanned  

by the angle ߶, forcing the kernel’s strength associated with a  

ghost particle and fluid particle pair to be scaled. 

 

Equations (3.118) through to (3.120) describe the scaling functions, 

 Sଵ ൌ  

ە
۔

ۓ
 

1 ; θ ൏ ሺπ െ ሻ׎
1
2

cos ቆ
π
׎

ሺθ ൅ ߶ െ ሻቇߨ ൅
1
2

; ሺπ െ ሻ׎ ൑ θ ൑  π

0 ; θ ൐ π

 (3.118) 
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 (3.119) 
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 (3.120) 

Here ߶ is the angle swept out by the overlapping region and θ is the bearing from the 

line bisecting the intersection point to the fluid particle. Therefore if the fluid particle 
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were to move from right to left in Figure 3.11, the influence of ghost particles created 

due to fluid particles in region 1 would be gradually reduced and the influence of 

ghost particles created due to the intersection would become more prominent. Figure 

3.12 describes the scaling functions as a function of the bearing for two wall 

boundaries intersecting at 30° and 90°. 

 

Curved solid wall boundaries are approximated by using a series of short straight line 

segments and the intersection scaling routine. The only restriction placed on the 

length of the straight sections is that they be longer than three times the smoothing 

length. This restriction was imposed to avoid an increase in computation time from 

having to perform a large number of kernel scaling routines every time step. Each 

section of curved solid wall modelled in this thesis was defined by a set of arbitrarily 

spaced nodes, no less than 3݄ apart.  

 

Despite the more computationally demanding corrections and scaling functions, the 

ghost particle approach has been chosen over all the other wall boundary methods for 

use in this thesis. This choice is primarily due to the far smoother behaviour 

exhibited by fluid particles near a boundary treated by ghost particles.  

 

 

 

Figure 3.12 – Scaling functions for two solid wall boundaries 

intersecting at (a) 30° and (b) 90°. 
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3.6.3 Dynamic response of solid boundaries 

Most general fluid problems that involve the solid boundaries of a stationary or 

moving structure require a calculation of the local fluid pressure. Oger et. al. (2005) 

developed a projection method for evaluating the forces on a solid object due to 

neighbouring SPH fluid particles.  

 

The method presented here is a simplification of that published by Oger et. al (2005) 

as the wall boundaries modelled in this thesis are typically a combination of linear 

segments. Each wall is divided into a series of small pressure sensors, approximately 

a smoothing length in width, and the pressure of each fluid particle located within a 

distance d (typically between 3h and 6h) of the boundary is referenced. The mean 

pressure is calculated through a summation of the fluid particle pressures, with more 

weight given to those particles closer to the wall. The total force per unit width on 

the wall at the pressure sensor i over ௝ܰ fluid particles is given by, 

࢏ࡲ  ൌ ݄
∑ ௝ܲ

ேೕ

௝ୀଵ

௝ܰ
 (3.121) 

Arranging these small pressure cells along the surface of any object enables it to 

respond to the local fluid pressure. The response is calculated via a simple vector 

summation of the pressure sensors. 

 

 

 

Figure 3.13 – Pressure sensors along a linear wall boundary. 
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3.7 Implementation of the algorithm 

The SPH method and its corrections stated in the previous subchapters have been 

implemented in an algorithm constructed using the commercial software Matlab and 

C++. All simulations are begun by first describing the model geometry and initial 

fluid conditions in Matlab before setting the time step according to the CFL 

condition (see Section 3.4). Dependent on the particle resolution, maximum fluid 

velocities and the time step size, the following routine is run every 10 to 50 time 

steps, 

 

 For problems involving solid wall boundaries, ghost particles are assigned 

with the properties described in 3.6.2. 

 A fixed grid is positioned over the computational domain and all particles are 

assigned to cells. The linked list nearest neighbour search is performed and 

the particle pairs stored in an array (see Section 3.5). 

 

Following this, the data is exported to C++ via a “mex” function and the density 

reinitialisation routine (see Section 3.3.3) is performed over all fluid particles to 

restore consistency. A number of time steps are then completed in parallel on a dual 

core desktop PC, 

 

 Moving wall boundary positions are updated based on the fluid pressures 

calculated in the previous time step (see Section 3.6.3). 

 The Gaussian cut-off kernel (3.41) is calculated for each particle pair and 

scaled for those pairs including a ghost particle at a wall boundary 

intersection point. 

 Fluid particle pressures are calculated based on the density at the previous 

time step and the new change in density calculated via the continuity equation 

(3.54).  

 The acceleration of every fluid particle is determined by way of the 

momentum equation (3.90), including the artificial viscosity and tensile 

stability control. 
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 The particle positions, velocities and densities are updated using the motion 

equations for the half time step in the predictor-corrector method (see Section 

3.4). 

 This list is then repeated using the predicted particle properties and the 

corrected values calculated for the full time step. 

 

Finally, the calculated fluid properties, boundary positions and boundary forces are 

returned to Matlab and periodically saved. This SPH algorithm has been validated in 

the following chapter and applied to a number of fluid dynamic problems in Chapters 

5 and 6.  
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Chapter  4  

Validation of the Numerical Model 

 

The present SPH method has been validated for a variety of free surface problems 

through analytical and experimental comparisons. Four benchmark validation test 

cases were examined: 

 The evolution of an initially circular drop of fluid, 

 The evolution of a rotating square fluid patch, 

 The tank of hydrostatic fluid, and 

 The breaking dam. 

 

Colagrossi et al. (2007) describes the first two benchmark validation test cases as the 

most suitable for validating a newly developed SPH model. The circular drop and 

rotating patch – modelled in a void in the absence of external forces – were designed 

to determine if the kinematic and dynamic free surface boundary conditions were 

met. Both cases were also used to investigate the algorithm’s sensitivity to the 

artificial viscosity, XSPH and density reinitialisation corrections. The ability of the 

modified SPH algorithm to manage a tensile instability has also been evaluated 

through the rotating square fluid patch.  

 

External forces were included in the next two benchmark validation test cases. The 

contained tank of fluid and the classic two-dimensional dam break were simulated in 

order to examine the influence of solid boundaries using the ghost particle technique. 

Experimental data obtained by Martin and Moyce (1952) and Zhou et. al (1999) has 

been compared to the SPH dam break model with particular attention paid to the 

fluid pressures along the wall and the depth of the advancing fluid. 
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4.1 Evolution of an initially circular fluid patch 

The first validation test case consists of a freely deforming initially circular drop of 

fluid that is completely surrounded by a void (Figure 4.1). The drop of fluid is 

inviscid and initially subjected to a prescribed velocity field illustrated in Figure 4.1 

and given by, 

,ݔ଴ሺܝ  ሻݕ ൌ ଴ܑݑ ൅  (4.1) ܒ଴ݒ

where  

 
,ݔ଴ሺݑ ሻݕ ൌ െܣ଴ݔ

,ݔ଴ሺݒ ሻݕ ൌ  ݕ଴ܣ
(4.2) 

The incompressible, irrotational fluid drop of radius R satisfies the Bernoulli 

equation, 

 ଴ܲ ൅
1
2
଴ݑሺߩ

ଶ ൅ ଴ݒ
ଶሻ ൌ const (4.3) 

 

 

Figure 4.1 – Initial positions ܚ ܴ⁄ , velocity vectors and pressure 

ܲ ሺߩ଴ܣ଴
ଶܴଶሻ⁄  of the SPH particles for the initially circular fluid drop.  
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At the free surface the fluid pressure is zero (due to the surrounding void) and the 

fluid velocity is a maximum ሺ|ܝ଴ሺܴሻ| ൌ ଴ܣ
ଶܴଶሻ. Therefore the constant on the right 

hand side of (4.3) is a function of the density and velocity. The Bernoulli equation 

can then be written, 

 ଴ܲ ൅
1
2
଴ܣ଴ߩ

ଶሺݔଶ ൅ ଶሻݕ ൌ
1
2
଴ܣ଴ߩ

ଶܴଶ (4.4)

Rearranging (4.4) leads to an expression for the pressure at any point within the 

fluid, 

 ଴ܲ ൌ
1
2
଴ܣߩ

ଶሾܴଶ െ ሺݔଶ ൅ ଶሻሿ (4.5)ݕ

The irrotational drop problem is a particularly attractive validation case as an 

analytical solution for an incompressible fluid is easily attainable. Despite the fact 

that the applied SPH algorithm is most suited to compressible fluids, an 

approximation of an incompressible fluid can easily be made. This is achieved by 

setting the speed of sound to be at least an order of magnitude more than the 

maximum flow velocity.  With a Mach number less than 0.1, the approximated fluid 

is termed weakly compressible as compression effects are negligible. 

 

4.1.1 Analytical solution 

The initial velocity field described by (4.2) suggests the fluid will form an ellipse 

over time. Assuming the fluid drop does maintain an elliptical form and the velocity 

field remains irrotational throughout the entire simulation, the position of a particle at 

any time t is given by, 

ሻݐሺܚ  ൌ ൞
ሻݐሺݔ ൌ

ܽሺݐሻ

ܴ
଴ݔ

ሻݐሺݕ ൌ
ܾሺݐሻ

ܴ
଴ݕ

 (4.6)

where ܽሺݐሻ and ܾሺݐሻ respectively denote the instantaneous semi-minor and semi-

major axes of the elliptical fluid domain, and ݔ଴ and ݕ଴ are the components of the 

initial position of a generic SPH particle. Time differentiating (4.6) gives the initial 
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velocity field, 

ሻݐሺܝ  ൌ

ە
ۖ
۔

ۖ
,ݔሺݑۓ ሻݐ ൌ

݀ܽ
ݐ݀

ሻݐሺݔ

ܽሺݐሻ

,ݕሺݒ ሻݐ ൌ
ܾ݀
ݐ݀
ሻݐሺݕ

ܾሺݐሻ

 (4.7) 

In order to conserve mass, the product of the semi-major and semi-minor axes must 

be constant. The derivative of the product of the two axes is therefore, 

 
݀
ݐ݀
൫ܽሺݐሻܾሺݐሻ൯ ൌ 0 (4.8) 

Applying the product rule and rewriting (4.8) gives, 

 

݀ܽ
ݐ݀
ܾሺݐሻ ൅

ܾ݀
ݐ݀
ܽሺݐሻ ൌ 0 

െ
݀ܽ
ݐ݀

1
ܽሺݐሻ

ൌ
ܾ݀
ݐ݀

1
ܾሺݐሻ

 
(4.9) 

The expression for the velocity field (4.7) can be simplified by replacing (4.9) with 

the function ܣሺݐሻ such that, 

ሻݐሺܣ  ൌ െ
݀ܽ
ݐ݀

1
ܽሺݐሻ

ൌ
ܾ݀
ݐ݀

1
ܾሺݐሻ

 (4.10) 

So the velocity field at any time t becomes, 

ሻݐሺܝ  ൌ ቊ
,ݔሺݑ ሻݐ ൌ െܣሺݐሻݔሺݐሻ

,ݕሺݒ ሻݐ ൌ ሻݐሺݕሻݐሺܣ
 (4.11) 

Initially at the point ሺݔ, ሻݕ ൌ ሺܴ, 0ሻ the fluid velocity in the x direction is െܣ଴ܴ 

(4.2). Therefore (4.11) has the initial condition ܣሺ0ሻ ൌ   .଴  (Colagrossi, 2004)ܣ

 

An analytical solution for the pressure of the incompressible fluid at any time can be 

found by including the velocity field (4.11) in the Euler equation. The governing  
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incompressible Euler equation is given by, 

 
ܝ݀
ݐ݀

ൌ െ
1
ߩ
(4.12) ܲ׏

The Euler equation can also be expressed as, 

 െ
1
ߩ
ܲ׏ ൌ

ܝ߲
ݐ߲

൅ ሺܝ · સሻ(4.13) ܝ

Partially differentiating in the x direction yields an expression for the pressure 

gradient, 

 

െ
1
ߩ
߲ܲ
ݔ߲

ൌ
,ݔሺݑ߲ ሻݐ

ݐ߲
൅ ,ݔሺݑ ሻݐ

,ݔሺݑ߲ ሻݐ

ݔ߲
൅ ,ݕሺݒ ሻݐ

,ݔሺݑ߲ ሻݐ

ݕ߲
 

߲ܲ
ݔ߲

ൌ ߩ ൤
ܣ݀
ݐ݀

ሻݐሺݔ െ ሻ൨ (4.14)ݐሺݔሻଶݐሺܣ

Likewise the pressure gradient in the y direction is given by, 

 
߲ܲ
ݕ߲

ൌ െߩ ൤
ܣ݀
ݐ݀

ሻݐሺݕ ൅ ሻ൨ (4.15)ݐሺݕሻଶݐሺܣ

Integrating both components of the pressure gradient gives two expressions for the 

pressure field, 

 ܲ ൌ ߩ ൬
ܣ݀
ݐ݀

െ ሻଶ൰ݐሺܣ
ሻଶݐሺݔ

2
൅ ଵ݂ሺݕ, ሻ (4.16)ݐ

     ܲ ൌ െߩ ൬
ܣ݀
ݐ݀

൅ ሻଶ൰ݐሺܣ
ሻଶݐሺݕ

2
൅ ଶ݂ሺݔ, ሻ (4.17)ݐ

Both (4.16) and (4.17) must be true for all time, therefore the pressure field is given 

by, 

 ܲ ൌ
ߩ
2
൤൬
ܣ݀
ݐ݀

െ ሻଶ൰ݐሺܣ ሻଶݐሺݔ െ ൬
ܣ݀
ݐ݀

൅ ሻଶ൰ݐሺܣ ሻଶ൨ݐሺݕ ൅ ܿሺݐሻ (4.18)

The function ܿሺݐሻ can be determined for any value of t by including the initial 

pressure at ሺܽሺݐሻ, 0ሻ. Here the pressure is zero as this point lies on the free surface,  
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therefore (4.18) reduces to,  

 ܲ ൌ
ߩ
2
൤൬
ܣ݀
ݐ݀

െ ሻଶ൰ݐሺܣ ሺݔሺݐሻଶ െ ܽሺݐሻଶሻ െ ൬
ܣ݀
ݐ݀

൅ ሻଶ൰ݐሺܣ  ሻଶ൨ (4.19)ݐሺݕ

Equation (4.19) allows the pressure at any location within the incompressible fluid to 

be determined at any time. However, the values of ܽሺݐሻ, ܾሺݐሻ, the function ܣሺݐሻ and 

its derivative with respect to time are still unknown. So, by noting that the fluid 

pressure at ൫0, ܾሺݐሻ൯ must always be zero, the expression inside the square 

parentheses can be written, 

 ൬
ܣ݀
ݐ݀

െ ሻଶ൰ݐሺܣ ܽሺݐሻଶ ൌ െܾሺݐሻଶ ൬
ܣ݀
ݐ݀

൅  ሻଶ൰ (4.20)ݐሺܣ

Differentiating both sides of (4.19) by the product rule leads to, 

 
݀ଶܣ
ଶݐ݀

െ ሻݐሺܣ4
ܣ݀
ݐ݀

൅ ሻଷݐሺܣ2 ൌ െ
ܾሺݐሻଶ

ܽሺݐሻଶ
ቆ
݀ଶܣ
ଶݐ݀

൅ ሻݐሺܣ4
ܣ݀
ݐ݀

൅  ሻଷቇ (4.21)ݐሺܣ2

Replacing the ܽሺݐሻ and ܾሺݐሻ terms with ܣሺݐሻ and its derivatives (4.10) gives the 

following differential equation, 

 ݀ଶܣ
ଶݐ݀

ሻݐሺܣ െ 4 ൬
ܣ݀
ݐ݀
൰
ଶ

൅ ሻସݐሺܣ2 ൌ 0 (4.22) 

The analytical solution of (4.22) was established numerically by way of a predictor-

corrector algorithm with the initial conditions ܣሺ0ሻ ൌ ܣ݀  ଴ andܣ ⁄ݐ݀ ൌ 0 following 

Colagrossi (2004). After solving for ܣሺݐሻ the values of ܽሺݐሻ and ܽ ൌ ܾሺݐሻ are found 

via, 

   ܽሺݐሻ ൌ ׬ିܴ݁ ஺ሺ௧ሻௗ௧
೟
బ  (4.23) 

 ܾሺݐሻ ൌ ׬ܴ݁ ஺ሺ௧ሻௗ௧
೟
బ  (4.24) 

By implementing this analytical approach it is possible to solve for the position of 

the free surface or any given particle, the pressure field and the velocity field at any 

time.  
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4.1.2 SPH simulation 

The SPH algorithm outlined in Section 3.7 was used to model the evolution of the 

initially circular fluid patch at a number of particle resolutions. Equations (4.2) and 

(4.3) describe the initial velocity and pressure fields, where ܣ଴ is set to 100 sିଵ, the 

radius R is 1 m and the density of the fluid is 1025 kg mିଷ. Four models of varying 

particle resolution (ܴ ⁄଴ݎ ൌ 50, 100, 150 and 250) were simulated using a 

smoothing length of ݄ ൌ  ଴ for a period of 0.02 s (which equates to aݎ1.33

dimensionless time of ܣݐ଴ ൌ 2.0). The analytical solution of (4.22) predicts the free 

surface will accelerate to a maximum velocity of 1.4ܴܣ଴ along the semi-major axis. 

This speed is not exceeded anywhere within the fluid domain, so to keep the 

maximum Mach number less than 0.1, the sound speed in the fluid was set to 

଴ܣ14ܴ ൌ 1400 m/s (Colagrossi 2004).  

 

Every numerical correction described in Section 3.3 was put into practice when 

modelling the evolution of the ellipse. In this test case the artificial viscosity 

coefficient ߙ was set to 0.03 and the density reinitialisation routine was applied every 

20 time steps so as to preserve smooth density and pressure fields. The tensile 

stability correction has also been applied with ߳ set to 0.2, however in this test case 

the fluid particle pressure rarely drops below zero so the correction has very little 

effect on the simulation. 

 

Figure 4.2 describes the position of the free surface and the fluid pressure at a 

number of dimensionless time instants. All of the SPH fluid particles are contained 

within the line predicted by the analytical solution to be the location of the free 

surface. Furthermore the fluid pressure at the free surface was initially defined to be 

zero and has maintained this throughout the simulation. Therefore the model satisfies 

the free surface dynamic boundary condition as the pressure at the free surface 

remains constant. 

 

The fluid particles were initially arranged on a Cartesian lattice similar to that 

described in Figure 4.1. Beginning the simulation with this initial condition can 

produce poor results as the velocity field forces the particle separation in the x  

direction to decrease while simultaneously increasing in the y direction (see Figure 
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4.3 a and b). Long widely spaced strings of particles form, causing a slight artificial 

increase in the local fluid pressure. At ܣݐ଴ ൌ 1.0 the free surface fluid particles begin 

to redistribute in a more random pattern, but by this point in time the free surface 

particles lie outside the analytical free surface position (see Figure 4.3). This is not a 

violation of the kinematic free surface condition, but the predicted free surface 

position is no longer accurate. 

 

 

 

 

 

Figure 4.2 – Dimensionless positions and pressure, ܲ ሺߩ଴ܣ଴
ଶܴଶሻ⁄ , of 

70681 SPH particles (ܴ ⁄଴ݎ ൌ 150) at time instants (a) ܣݐ଴ ൌ 0 , (b) 

଴ܣݐ ൌ 0.5 , (c) ܣݐ଴ ൌ 1.0  and (d) ܣݐ଴ ൌ 1.5 . The red dashed line 

indicates the analytical free surface position. 
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Figure 4.3 – Magnified particle positions of the 7845 particle model 

(ܴ ⁄଴ݎ ൌ 50) without (top) and with (bottom) noise applied to the initial 

positions. The red dash line indicates the analytical position of the free 

surface at two time instants, ܣݐ଴ ൌ 0.5 (left) and ܣݐ଴ ൌ 1.0 (right). 

 

To alleviate this problem, each particle’s initial position was adjusted by introducing 

a small random variation – typically a maximum of 2% of the initial semi-major axis 

– in order to encourage the particles to redistribute easily. In Figure 4.3c, the 

particles at ܣݐ଴ ൌ 0.5 still appear to be well ordered on a Cartesian lattice with a few 

exceptions, but by ܣݐ଴ ൌ 1.5 (Figure 4.3d) the particles have scattered into a much 

more evenly spaced system. The prediction of the free surface at ܣݐ଴ ൌ 1.5 now 
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agrees well with the analytical solution. Furthermore, the fluid particles located on 

the free surface at ܣݐ଴ ൌ 0 have remained on the free surface for the duration of the 

simulation, hence satisfying the kinematic free surface boundary condition. 

 

The particle number density at the free surface is still slightly higher than in the 

remainder of the computational domain because the pressure of individual particles is 

near, or at times less than, zero. In this case the force on an individual particle can be 

attractive resulting in an artificial clustering of particles. This is particularly evident 

if the tensile stability correction is not included as the higher number density causes a 

significant distortion of the free surface.  

 

The analytical approach also provides a solution for the pressure at any point in the 

fluid through equation (4.19). A numerical gauge was placed at the centre of the drop 

(0,0) and the pressure was determined by smoothing over all particles located within 

3݄ of the gauge using the Gaussian cut-off kernel. At the lowest resolution, ܴ ⁄଴ݎ ൌ

50, the SPH pressure signal oscillates about the analytical solution, for the most part 

without a discernable frequency (see Figure 4.4). As the particle resolution increases, 

the oscillations in the pressure signal become more regular with larger amplitude. 

The frequency of oscillation of the ܴ ⁄଴ݎ ൌ 250 model containing 196 321 fluid 

particles varied from 6.3ܣ଴ near ܣݐ଴ ൌ 0.5 up to 12.7ܣ଴ at ܣ଴ ൌ 2.0 . Colagrossi 

(2004) notes that the resonant acoustic frequency has a dominant mode with a 

wavelength of  ߣ ൌ 4ܽሺݐሻ, and so the expected frequency at any time throughout the 

simulation can be found from, 

 ݂ ൌ
ܿ௦
ߣ
ൌ
଴ܣ14ܴ
4ܽሺݐሻ

 (4.25) 

Evaluating (4.25) at ܣݐ଴ ൌ 2.0 yields an expectant resonant frequency of 12.9ܣ଴, 

which compares well with the simulated value. These natural modes of vibration are 

evident in most SPH simulations and will be investigated further in Section 4.3. 

 

The clearly defined pressure signals observed in Figure 4.4 would not be possible if 

not for the smoothing nature of the density reinitialisation correction. Figure 4.5 

illustrates the noise that progressively destroys the pressure field when the 
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reinitialisation is not implemented. Early in the simulation, the pressure field is very 

similar to that illustrated in Figure 4.2, albeit with some random noise, particularly 

near the free surface. This is primarily due to the, at best, half-full compact support 

of the free surface particles slightly disturbing the calculated density. These small 

disturbances can also be caused by particles not necessarily located on, but within a 

compact support of the free surface as they too have a compact support which in part 

is not occupied by fluid particles. Over time the noise propagates through the 

solution, spoiling the otherwise smooth pressure and density fields.  

 

 

 

 

 

Figure 4.4 – Dimensionless pressure of the elliptical drop at point  

(0,0) with dimensionless time ܣݐ଴ for a particle resolution of (a) 

 ܴ ⁄଴ݎ ൌ 50, (b) ܴ ⁄଴ݎ ൌ 100, (c) ܴ ⁄଴ݎ ൌ 150 and (d) ܴ ⁄଴ݎ ൌ 250. 
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Figure 4.5 – Dimensionless positions and pressure, ܲ ሺߩ଴ܣ଴
ଶܴଶሻ⁄ , of 

70681 SPH particles (ܴ ⁄଴ݎ ൌ 150 ) without density reinitialisation at (a) 

଴ܣݐ ൌ 0, (b) ܣݐ଴ ൌ 0.5, (c) ܣݐ଴ ൌ 1.0 and (d) ܣݐ଴ ൌ 1.5. 

 

Another two gauge points were placed at (0.5R, 0) and (0, 0.5R) in order to record 

the fluid velocity as the drop evolved. Figure 4.6 describes the fluid velocity at both 

gauge points for varying particle resolution and compares the weakly compressible 

SPH model to the calculated velocities of the analytical incompressible solution. To 

determine the SPH fluid velocity at the gauge, the Gaussian cut-off kernel was used 

to perform a summation of the velocities of the individual fluid particles located 

within a compact support radius.  
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Figure 4.6 – Dimensionless velocity of the elliptical drop at points (0.5R, 

0) and (0, 0.5R) with dimensionless time for particle spacing of (a) 

ܴ ⁄଴ݎ ൌ 50, (b) ܴ ⁄଴ݎ ൌ 100, (c) ܴ ⁄଴ݎ ൌ 150 and (d) ܴ ⁄଴ݎ ൌ 250. 

 

At (0, 0.5R), all four SPH models agree well with the analytical fluid velocity for the 

entire simulation while at (0.5R, 0) the solutions are in agreement up until ܣݐ଴ ൌ 0.8. 

The sharp change in the analytical fluid velocity coincides with the passage of the 

free surface. After the free surface had passed the sensor location the velocity of the 

fluid was undefined, but in order to illustrate the difference at each resolution (see 

Figure 4.6) the fluid velocity after this point in time was set to zero. At low 

resolution, the SPH free surface passes this point ܣݐ଴ ൌ 0.2 after the analytical. 
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However the SPH model appears to converge towards the incompressible solution as 

the resolution is increased, to the point where the free surface of the ܴ ⁄଴ݎ ൌ 150 

model crosses (0.5R, 0) just ܣݐ଴ ൌ 0.04 after the analytical. Increasing the resolution 

decreases the size of the fluid particles, resulting in a more accurate estimation of the 

moment the free surface crosses the gauge point. 

 

Energy in the SPH method is not entirely conserved, particularly at low particle 

resolution. Figure 4.7 illustrates the ratio of the total kinetic energy at any given 

point in time to that of the initial system of particles. At low resolution the energy 

drops to 95% of its initial value by ܣݐ଴ ൌ 2,  which can be attributed to the influence 

of the artificial viscosity term. Colagrossi (2004) notes that as the resolution 

increases the energy conservation improves due to the smaller size of the compact 

support radius. Unfortunately due to the inherent SPH instabilities requiring 

correction via the artificial viscosity, some energy loss is unavoidable. 

 

 

Figure 4.7 – Total kinetic energy ratio of the elliptical fluid drop at  

a number of particle resolutions. 
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4.2 Evolution of a rotating square fluid patch 

The second free surface problem considered as part of the validation process was the 

rotating square fluid patch. Modelled in a void of zero pressure, this test case is 

designed to test the response of the SPH algorithm to large negative fluid pressure 

and large vorticity. Like the elliptical drop problem, the fluid is inviscid and is 

governed by the Euler equation. Following Colagrossi (2004), the initial positions, 

pressures and velocity vectors of the SPH particles are described in Figure 4.8. 

 

The square fluid patch with sides of length L was subjected to solid                       

body rotation about (0,0) with constant angular velocity ߱଴. The initial velocity field 

was given by, 

 

,ݔ଴ሺܝ ሻݕ ൌ ߱଴ܚ 

,ݔ଴ሺܝ ሻݕ ൌ ቊ
,ݔ଴ሺݑ ሻݕ ൌ െ߱଴ݕ

,ݔ଴ሺݒ ሻݕ ൌ ߱଴ݔ
 

(4.26)

 

 

Figure 4.8 – Initial positions and velocity vectors of SPH particles 

coloured by dimensionless pressure, ܲ ሺߩ଴߱଴
ଶܮଶሻ⁄ , for the  

rotating square fluid patch. 
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It is convenient to write the initial velocity field in tensor form as, 

,ݔ଴ሺܝ׏  ሻݕ ൌ ൤
0 ߱଴

െ߱଴ 0 ൨ (4.27) 

Evaluating the curl of the velocity tensor yields an expression for the vorticity ߞ of 

the incompressible fluid, 

ߞ  ൌ સ ൈ ,ݔ૙ሺܝ ሻݕ ൌ 2߱଴ (4.28) 

By Kelvin’s theorem for inviscid, barotropic flow, the circulation around a closed 

loop - without crossing any boundaries - must be constant in time (White, 1999). So, 

the vorticity of the rotating fluid patch remains unchanged in space and time. 

 

4.2.1 Analytical solution 

A full analytical solution for the rotating square patch is yet to be found, however by 

considering the dynamic and kinematic conditions for free surface flow it is possible 

to predict the motion of some of the fluid particles. For an inviscid, incompressible 

fluid, the vorticity is conserved by Kelvin’s theorem and, following the dynamic 

condition, the pressure at the free surface must be zero. This implies that the particles 

initially placed on a vertex remain on a vertex, and that each vertex particle 

maintains the velocity defined by the initial condition. 

 

The initial pressure field must satisfy the pressure Posisson equation defined by 

Colagrossi (2004), 

 
1
ߩ
સଶܲ ൌ ሺસ ൈ ሻܝ െ સܝ: સ(4.29) ܝ 

Including the vorticity (4.28) and the inner product of the initial velocity tensor 

yields, 

 
1
ߩ
સଶ ଴ܲ ൌ 2߱଴

ଶ (4.30) 

The solution to (4.30) was obtained by expanding ଴ܲ in a series of sine functions to  
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give (Colagrossi, 2004), 

 ଴ܲሺݔ, ሻݕ ൌ െߩ෍෍
32߱଴

ଶ

ଶߨ݆݅ ቆቀ
ߨ݆
ܮ ቁ

ଶ
൅ ቀ݅ܮߨ ቁ

ଶ
ቇ

ஶ

௝

ஶ

௜

߮ (4.31)

where, 

 ߮ ൌ sin ൬
ݔߨ݅
ܮ
൅
ߨ݅
2
൰ sin ൬

ݕ݆
ܮ
൅
ߨ݆
2
൰ (4.32)

The initial pressure field is found by summing over the odd integers i and j, where L 

is the length of one side of the patch. Equations (4.31) and (4.32) converge to a 

solution after just a few iterations.   

 

4.2.2 SPH simulation 

A similar method to that employed to simulate the evolution of the initially circular 

fluid drop was used to model the evolution of the square fluid patch. The initial 

angular velocity was set to ߱଴ ൌ 100 rad/sିଵ for a square with sides of length 1 m. 

Particles located on the vertices move with a maximum velocity of 0.7ܣܮ଴, which 

requires a sound speed of at least 7ܣܮ଴ ൌ 700 m/s to avoid compressibility effects. 

However in order to be consistent with the initially circular drop test case, the sound 

speed in the rotating patch was set to 14ܣܮ଴ ൌ 1400 m/s (Colagrossi 2004). Four 

models of varying particle resolution (ܮ ⁄଴ݎ ൌ 50, 100, 150 and 200) were modelled 

over a period of 0.02 s (߱ݐ଴ ൌ 2.0) using a smoothing length of ݄ ൌ   .଴ݎ1.33

 

The dimensionless positions and pressures of the SPH particles at multiple time 

instants are illustrated in Figure 4.9. In order to compare against the analytical 

solution, the initial position of the free surface of the patch is depicted by the black 

dashed line. The blue dots and dashed lines are the theoretical positions and 

trajectories of the vertex particles respectively. Early in the simulation, particularly at 

the first two time instants, the particles initially located on the free surface do follow 

the expected trajectory. However as the patch evolves further in time the vertex 

particles depart from their expected path. When the strength of the artificial viscosity  
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is increased by increasing the coefficient ߙ in equation (3.88) the vertex particles 

depart further from the expected path (see Figure 4.10). Removing the artificial 

viscosity altogether allows the particles to maintain a trajectory very near that 

expected, but does add significant noise to the pressure field particularly near the free 

surface. 

 

 

 

 

 

Figure 4.9 – Positions of SPH fluid particles at a resolution of  

ܮ ⁄଴ݎ ൌ 150 coloured by dimensionless pressure ܲ ሺߩ଴߱଴
ଶܮଶሻ⁄  at four 

time instants (a) ߱ݐ଴ ൌ 0.5 (b) ߱ݐ଴ ൌ 1.0 (c) ߱ݐ଴ ൌ 1.5 and (d) ߱ݐ଴ ൌ

2.0. The blue dashed lines are the expected trajectories of the vertices 

and the black dashed line describes the initial free surface position. 
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Figure 4.10 – Free surface position for three values of ܮ) ߙ ⁄଴ݎ ൌ 150) at 

଴߱ݐ ൌ 2.0. The blue dot indicates the theoretical position of the vertex. 

 

At the centre of the patch, the pressure gradually increases towards zero with time. It 

is not possible to predict the pressure at any point in the fluid domain, so Colagrossi 

(2004) implemented a Boundary Element Method (BEM) algorithm based on that 

used by Greco (2001) in order to compare the pressures of the SPH particles against 

a reference solution. The BEM is one of the more accurate solvers when modelling 

free surface flows but it does require the free surface to be unbroken and free of any 

fragmentation throughout the course of the simulation. The rotating square patch 

maintains an unbroken free surface and so the very efficient BEM is well suited to 

solving the problem and providing a reference solution.  

 

A numerical pressure gauge was placed at the centre of the patch ሺ0,0ሻ in a similar 

fashion to the initially circular drop. Figure 4.11 describes the pressure at ሺ0,0ሻ with 

time for a number of simulations with varying particle resolution. The BEM solution 

for the pressure (Colagrossi, 2004) follows an upward trend similar to that of a weak 

exponential decay function. Each SPH solution follows a similar trend, oscillating 

about a mean value slightly lower than that predicted by the BEM model. The 

acoustic resonant frequency of the ܮ ⁄଴ݎ ൌ 100 model starts at 9.7߱଴ and increases 

to 12.0߱଴ as the patch evolves through time. Increasing the particle resolution from 

ܮ ⁄଴ݎ ൌ 50 through to ܮ ⁄଴ݎ ൌ 200 yields a pressure signal of smaller amplitude that 

more closely approximates the reference BEM solution.  
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Figure 4.11 – Pressure at the centre of the square fluid patch compared 

with the BEM solution of Colagrossi (2004) at varying particle resolution 

(a) ܮ ⁄଴ݎ ൌ 50, (b) ܮ ⁄଴ݎ ൌ 100, (c) ܮ ⁄଴ݎ ൌ 150 and (d) ܮ ⁄଴ݎ ൌ 200. 

 

The smooth pressure field and regular particle spacing illustrated in Figure 4.9 is 

achieved only by including the density reinitialisation routine and the correction for 

tensile stability. Removing both of these corrections has a detrimental effect that can 

be seen in Figure 4.12. The negative pressure at the centre of the patch encourages 

the fluid particles - via the momentum equation (3.66) - to cluster together in a high 

particle number density that is not reflected in the fluid density. The tensile stability 

correction prevents this artificial clustering from occurring by including a repulsive 

term in the momentum equation (see Section 3.3.2). Removing the density  
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Figure 4.12 – Positions of SPH fluid particles at a resolution of  

ܮ ⁄଴ݎ ൌ 150 without density reinitialisation and the correction for tensile 

stability.  Particles are coloured by dimensionless ܲ ሺߩ଴߱଴
ଶܮଶሻ⁄  pressure 

at (a) ߱ݐ଴ ൌ 0.5 (b) ߱ݐ଴ ൌ 1.0 (c) ߱ݐ଴ ൌ 1.5 and (d) ߱ݐ଴ ൌ 2.0. 

 

reinitialisation routine gradually degrades the pressure field when the particles are 

ordered, but as the particles begin to cluster in the absence of the tensile stability 

control the pressure of the entire field quickly approaches zero. Figure 4.13a outlines 

the pressure at the centre of the patch for two cases, with tensile stability (߳ ൌ 0.2) 

and without (߳ ൌ 0.0ሻ. The pressure initially has a similar trend to the BEM solution, 

but without the tensile stability correction the pressure at the gauge quickly rises to 
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zero. At this point small voids have begun to form in the fluid, leaving some particles 

without a filled compact support. This in turn forces the local pressure, and over time 

the global pressure, to tend towards zero. 

 

The SPH system kinetic energy shown in Figure 4.13b does not maintain a constant 

value as expected for an inviscid simulation. The models studied in this thesis with 

all corrections implemented lost between 2 and 5 percent of their initial energy over 

଴߱ݐ ൌ 2.0 in a similar trend, but there is a noticeable difference between the models 

with and without the tensile stability control. The total energy of the SPH model 

without tensile stability control drops sharply as soon as voids begin to appear at 

଴߱ݐ ൌ 0.3. From this point on, the particles at the centre of the patch lose angular 

momentum as the clusters develop. So to prevent any corruption of the pressure field 

and artificial clustering of fluid particles, the tensile stability correction (with ߳ ൌ

0.2) and the density reinitialisation procedure have been included in all models 

described throughout the remainder of this thesis. 

 

 

Figure 4.13 – The dimensionless pressure (a) and system kinetic energy 

ratio (b) for two SPH models with (߳ ൌ 0.2) and without (߳ ൌ 0.0ሻ 

tensile stability at a particle resolution of ܮ ⁄଴ݎ ൌ 150. 
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4.3 Contained hydrostatic fluid 

The analysis of fluid-structure interaction is also of major importance in SPH 

simulations and so it is vital that the boundary methods be investigated thoroughly 

before modelling complex geometries. One of the simplest cases suited for testing 

the boundary methods outlined in Section 3.6.2 is an open-topped stationary 

rectangular tank filled with water (Pakozdi, 2008). In this test case the rigid wall 

boundary condition is enforced by applying the ghost particle method. 

 

As for the elliptical drop and the rotating patch, the motion of the fluid in the tank is 

also governed by the Euler equation (3.55), but in this test case the gravitational 

force component has now been included. The gravitational force is also responsible 

for the initial hydrostatic pressure field (see Figure 4.14) given by, 

 ܲሺݔ, ሻݕ ൌ ܪ଴݃ሺߩ െ ሻ (4.33)ݕ

where H is the depth of the fluid and ߩ଴ is the density of the fluid at standard 

temperature and pressure. 

 

 

Figure 4.14 – Initial SPH particle positions and pressure for the contained 

tank problem. Particle positions and pressures are quoted as 

dimensionless variables ݔ ⁄ܪ  and ܲ ሺߩ଴݃ܪሻ⁄  respectively. 
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Studying the behaviour of an incompressible fluid using the weakly compressible 

SPH method can be problematic. For instance, if the weakly compressible fluid is 

made too compressible, the fluid can compress under its own weight (Pakozdi, 

2008). This becomes obvious, particularly near the solid wall at the bottom of the 

tank, as the fluid particles located near the boundary are forced closer. The separation 

between the fluid and ghost particles near the horizontal boundary reduces, so in turn 

the local fluid pressure rises. Finally the fluid particles are pushed away from the 

boundary due to the increase in pressure. This can be detrimental to the simulation or 

can simply manifest itself as periodic oscillations in the potential energy of the fluid. 

Pakozdi (2008) defines the set of natural frequencies of oscillation for the static tank 

as, 

 ݂ ൌ
ܿ௦
2
ඨ൬

2݉௩

ܮ
൰
ଶ

൅ ൬
2݊௩ ൅ 1
ܪ2

൰
ଶ

 (4.34) 

where ݉௩ and ݊௩ describe the mode of vibration in the horizontal and vertical planes 

respectively and L is the width of the tank.  

 

4.3.1 SPH simulation 

In order to model the fluid in the tank, the SPH algorithm used to simulate the 

elliptical drop and the rotating patch was extended to include ghost particles. Four 

models of varying particle resolution (ܪ ⁄଴ݎ ൌ 50, 100, 150 and 200) were modelled 

for a depth of ܪ ൌ 1 m over a period of 4.0 s using a smoothing length of ݄ ൌ

 ଴ (following Pakozdi, 2008). If one of the side walls was removed and the fluidݎ1.33

allowed to flow out along a horizontal surface, the maximum speed of the surge front 

would be ඥ2݃ܪ. So in order to prevent any compression effects, the fluid sound 

speed was set to ܿ௦ ൌ 11ඥ2݃ܪ (Pakozdi, 2008). 

 

At a sound speed of 48.7 m/s, the potential energy of the system was calculated and 

compared against the initial value (see Figure 4.15). Every model studied follows a 

similar trend over time; the potential energy drops from its initial value (by less than 

0.02%) and then in all cases but the lowest resolution, the system energy gradually  
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begins to climb. The small oscillations in the potential energy ratio (less than 0.01%) 

are due to the slight compression experienced at the base of the tank as a result of the 

weakly compressible approximation. A fast Fourier transform of the energy ratio at 

ܪ ⁄଴ݎ ൌ 200 found a dominant frequency at 3.90ඥ݃ ⁄ܪ  and a secondary peak at 

11.70ඥ݃ ⁄ܪ  (see Figure 4.17). These compare well with the expected resonant 

frequency, 3.88ඥ݃ ⁄ܪ , and the first harmonic, 11.66ඥ݃ ⁄ܪ , calculated from equation 

(4.34). 

 

 

 

 

 

Figure 4.15 – Potential energy of the fluid at four different  

particle resolutions (a) ܪ ⁄଴ݎ ൌ 50, (b) ܪ ⁄଴ݎ ൌ 100,  

(c) ܪ ⁄଴ݎ ൌ 150  and (d) ܪ ⁄଴ݎ ൌ 200. 
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Numerical pressure sensors (similar to that used in Section 4.1) were placed down 

the centreline of the tank at depths of 0.33H and 0.66H in order to measure the fluid 

pressure. Figure 4.16 illustrates the pressure as a function of time measured at each 

of the sensor locations with a particle resolution of ܪ ⁄଴ݎ ൌ 200. At each sensor the 

pressure oscillated about a mean value close to that expected with a maximum 

amplitude of approximately 2-3%. Like the potential energy, the noise in the pressure 

signal is due primarily to compressibility effects as the frequency of oscillation has 

been related directly to the prescribed speed of sound. The first two peaks in the fast 

Fourier transform of the pressure signal are at the same frequencies as those 

calculated from the potential energy, however the fast Fourier transform of the 

pressure signal at the centre of the tank clearly indicates that there is indeed another 

harmonic at 19.50ඥ݃ ⁄ܪ . The simulated third harmonic agrees well with the 

expected result for ݉௩ = 0 and ݊௩ = 2 in equation (4.34), 19.44ඥ݃ ⁄ܪ .  

 

Although the potential energy and pressure traces oscillate about their mean and 

expected values, the approximation of an incompressible fluid with a weakly 

compressible one is valid as these variations are very small. Therefore, for the case 

of fluid contained in a static tank, compressibility effects when using a sound speed 

at least one order of magnitude greater than the maximum fluid velocity are 

negligible. 

 

 

Figure 4.16 – Pressure variation at two points in the tank (a) (0.5L, 

0.33H) and (b) (0.5L, 0.66H) at a particle resolution of ܪ ⁄଴ݎ ൌ 200. 
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Figure 4.17 – FFT of (a) the system energy and (b) the pressure variation 

at 0.33H at a particle resolution of ܪ ⁄଴ݎ ൌ 200. 

4.4 The breaking dam 

One of the most widely used SPH validation test cases is the breaking dam. Many 

SPH authors have used this example as a primary model for validating their 

numerical algorithm due to its simplicity and the availability of experimental data. 

Martin and Moyce (1952) performed this experiment in a Perspex lined channel 

using a paper diaphragm to hold the reservoir (of equal length and depth) in place. 

When the diaphragm was released, the resultant fluid flow was photographed at 300 

frames per second in order to determine the position of the surge front.  

 

Zhou et al. (1999) extended the experiment of Martin and Moyce (1952) by 

measuring and simulating the height of the surge front using a number of water depth 

probes, two of which are located at points A and B, 1.03 m and 1.53 m respectively 

from the reservoir (see Figure 4.18). In this case the reservoir (ܮ ൌ 1.2 m wide and 

ܪ ൌ 0.6 m deep) was held in place by a plastic flap which was lifted rapidly in order 

to allow the water to flow into the flume and strike the far wall. To determine the 

loads on the far wall a number of pressure sensors were placed at different heights 

along the wall, where C (0.16 m above the channel floor) is the lowest gauge. Data 

from these three sensors have been used as a basis for the validation of the SPH 

algorithm. 
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Figure 4.18 – Schematic diagram of the dam break experiment  

conducted by Zhou et al. (1999). 

4.4.1 SPH simulation 

The experiment conducted by Martin and Moyce (1952) was replicated by setting the 

initial depth of the fluid H and the width of the reservoir L to 1.0 m. At time ݐ ൌ 0 

the retaining wall was removed and the fluid allowed to flow into an infinitely long 

channel. Like the tank problem described in Section 4.3, the sound speed was set 

such that the maximum expected fluid velocity did not exceed 0.1ܿ௦ in an attempt to 

minimise compression effects. In a dam break situation, the surge front accelerates to 

a maximum velocity of ඥ2݃ܪ which yields a sound speed of ܿ௦ ൌ 11ඥ2݃ܪ. As 

recommended by Colagrossi and Landrini (2003), the artificial viscosity was 

included (ߙ ൌ 0.03) and the density field was reinitialised every 20 time steps.  

 

When held behind the reservoir wall the pressure field takes the same hydrostatic 

form as the initial condition for the fluid contained in a motionless tank. If the 

reservoir wall is removed after the SPH simulation has begun, the fluid pressure at 

the newly exposed free surface quickly drops to zero. This sudden drop in pressure 

on the side of the reservoir causes a large pressure wave to propagate through the 

fluid domain, reflecting off the solid walls and over time destroying the expected 

near-hydrostatic pressure field. To prevent this from occurring, the dam is initially 

set with the reservoir wall removed and a pressure field (see Figure 4.19) originally  
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developed by Pohle (1950) given by, 

 ܲሺݔ, ሻݕ ൌ ݕ݃ߩ െ
ܪ݃ߩ8
ଶߨ

ܵ௉ (4.30)

where, 

 ܵ௉ ൌ ෍
1

ሺ2݊ ൅ 1ሻଶ
e

ሺଶ௡ାଵሻగቆ௫ିቀ௅ି஻ଶቁቇ

ଶு cos ൭
ሺ2݊ ൅ 1ሻ

ܪ2
ݕሺߨ ൅ ሻ൱ܪ

ஶ

௡ୀ଴

 (4.31)

Greco (2001) implemented this analytical solution for the pressure field as part of a 

BEM study of the two dimensional dam break. Pohle (1950) defines this pressure 

field for a reservoir of infinite length, however Greco has shown that (4.42) can be 

successfully applied if the reservoir length L is greater than or equal to 3H. In this 

thesis the analytical solution has been applied to dam breaks with a length less than 

3H by including the ghost particles opposite the left wall in the initial pressure field. 

This approximation serves well to preserve a smooth, near hydrostatic pressure field 

throughout the simulation.  

 

 

Figure 4.19 – Initial positions and dimensionless pressure (ܲ ሺߩ଴݃ܪሻ⁄ )  

of SPH particles for a dam break.  
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40000 SPH particles (ܪ r଴⁄ ൌ 200) initially placed on a Cartesian lattice in a dam of 

aspect ratio 1 were released at time ݐ ൌ 0 and allowed to flow into the adjacent 

channel. The position of the leading particle was plotted over time and compared 

against the SPH results of Colagrossi (2004) and the experimental findings of Martin 

and Moyce (1952). Colagrossi’s SPH algorithm is very similar to the method used 

here and this is reflected in the plot of the surge front position with time (see Figure 

4.20). One reasonable explanation for the considerable over-estimation of the 

experimental surge front position by both SPH models is the lack of viscosity. No 

other plausible explanation has been found. 

 

Martin and Moyce (1952) only provided information on the surge front position, not 

its form nor the pressure that the surge exerts on the channel floor. The experimental 

results of Zhou et al. (1999) provide an indication of the shape of the surge by 

measuring its height above the channel at points A and B (see Figure 4.18). Figure 

4.21 describes the height of the surge at the two sensors and compares the SPH 

simulation with the experimental and BEM study performed by Greco (2001) for a 

reservoir with an initial aspect ratio of 2.  
 

 

Figure 4.20 – Surge front position with time of the ܮ ൌ 1 and ܪ ൌ 1  

dam break compared against the SPH results of Colagrossi (2004) and 

the experimental data of Martin and Moyce (1950). 
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Figure 4.21 – Water depth at points A and B with reference to Zhou et al. 

(1999) and the BEM simulation of Greco (2001) for 80000 fluid particles 

at a resolution of (ܪ r଴⁄ ൌ 200), where ܪ ൌ 1 m and ܮ ൌ 2 m. 

 

The initial rise in water height at both sensors coincides with the passage of the toe 

of the surge front. The toe height measured by the experiment is slightly greater than 

that predicted by both numerical methods, suggesting that the advancing surge 

measured by Zhou et al. (1999) was breaking rather than flowing smoothly. It is 

worth noting that the boundary element method requires the free surface of the fluid 

to be smooth and unbroken in order to resolve the properties of the fluid. So, when 

the free surface fragments after striking the far wall, running up it and overturning as 

a breaking wave (see Figure 4.22) the BEM solution ends. Until this point, 

ሺ݃ݐ ⁄ܪ ሻ଴.ହ ൌ 6.0 (dimensionless time instant), the SPH simulation almost exactly 

matches the BEM data at both height sensors with the exception of a slight 

disagreement after ݐሺ݃ ⁄ܪ ሻ଴.ହ ൌ 5.6 at sensor B.  

 

The heights measured by Zhou et al. (1999) differ slightly from the BEM and SPH 

simulations as the toe passes each sensor. Beyond this point, until the fluid overturns 

and breaks at ݐሺ݃ ⁄ܪ ሻ଴.ହ ൌ 6.0, the surge heights are quite similar. After the water 

overturns there is considerable difference in the fluid depth as the SPH model is 

single phase and therefore neglects any influence air may have on the shape of the 

free surface.  
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Figure 4.22 – The Zhou et al. (1996) dam break simulation at two 

dimensionless time instants (a) ݐඥ݃ ⁄ܪ ൌ 2 and (b) ݐඥ݃ ⁄ܪ ൌ 6. Each of 

the 80000 fluid particles is coloured by dimensionless pressure, ܲ ⁄ܪ଴݃ߩ .  

 

The pressure field ݐඥ݃ ⁄ܪ ൌ 2 after the retaining wall was released (see Figure 

4.22a) has a smooth, almost hydrostatic, form. This is carried through to ݐඥ݃ ⁄ܪ ൌ

6, with the exception of the high pressure region located around the bottom right 

corner of the channel. Figure 4.23 compares the pressure measured by Zhou et al. 

(1999) at point C, 0.16 m above the channel floor (see Figure 4.18), with the pressure 

simulated by both the BEM and SPH methods. The numerical pressure sensors used 

a simple averaging technique to determine the local fluid pressure. Each sensor had a 
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diameter of 4݄ (26.6 mm) and sampled any particles located within 5݄ (33.3 mm) of 

the solid wall. To reduce the numerical noise outliers were removed and the final 

pressure was calculated by determining the mean pressure of the particles remaining 

inside the sensor.  

 

All three pressure traces begin to measure fluid pressure above atmospheric a short 

moment after the toe meets the wall (ݐඥ݃ ⁄ܪ ൌ 2.5) and climb with similar gradient. 

While the BEM slightly under-predicts the initial pressure peak, the SPH solution is 

comparable to the experimental value. From here on the SPH simulation slightly over 

predicts the pressure at point C until the fluid overturns and breaks. Without air in 

the problem domain, the SPH fluid pressure climbs artificially as the fluid collapses 

upon itself, generating a pressure peak approximately 20% greater than the 

experimental pressure. 

 

 

 

 

Figure 4.23 – Fluid pressure on the wall at point C with reference to the 

experiments of Zhou et al. (1999) and the BEM simulation of Greco 

(2001) for 80000 fluid particles at a resolution of ܪ r଴⁄ ൌ 200. 
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Figure 4.24 – Free surface comparison with the BEM study of  

Greco (2001) at ݐඥ݃ ⁄ܪ ൌ 5.6 (left plots) and ݐඥ݃ ⁄ܪ ൌ 6.2  

(right plots) with varying particle resolution. 
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Like the three previous validation test cases, the dam break was modelled at varying 

particle resolution to study the convergence of the SPH method. Figure 4.24 

examines the particle positions at two time instants,  ݐඥ݃ ⁄ܪ ൌ 5.6 and ݐඥ݃ ⁄ܪ ൌ

6.2, after the fluid strikes the far wall. Increasing the particle resolution brings the 

free surface slightly closer to that predicted by the BEM, however the SPH 

simulation does appear to lead the BEM solution at each time instant. The definition 

of the free surface becomes clearer as the resolution is increased, particularly the 

early formation of the jet after impact. Although the differences between each 

particle resolution are subtle, greater variation between the coarse and fine resolution 

models can be seen in the system energy traces (see Figure 4.26). 

 

Modelling the dam break using a single phase model predicts the motion of the fluid 

and the pressure at the far wall favourably, until the point where the overturning 

wave strikes the water surface. Beyond this moment the simulation suffers without 

air, particularly in the formation of the breaking wave. Typically air would become 

trapped in the void somewhat cushioning its collapse. Without air, the void collapses 

and generates large pressure shock waves as illustrated in Figure 4.25. Beyond 

ඥ݃ݐ ⁄ܪ ൌ 8.4 the pressure field loses its smooth appearance resulting in large 

variations in the pressure measured at the gauges. Further flow-on effects are seen in 

the height traces (Figure 4.21) which do not follow the experimental data after the 

fluid has overturned. The collapsing void changes the dynamics of the problem and 

the lack of viscosity encourages the jet to reach higher above the channel floor while 

leaving a lower than expected water level behind. 

 

At each particle resolution the total system energy was also monitored. As in the 

previous validation cases, the SPH models containing a low number of particles tend 

to lose far more mechanical energy with time. Figure 4.26 shows that the SPH dam 

break system energy reduces sharply at three different moments in time, coinciding 

with major changes in the fluid flow. The first major shift at ݐඥ݃ ⁄ܪ ൌ 2.4 occurs at 

the point when the surge front initially strikes the far right wall. More energy is lost 

at ݐඥ݃ ⁄ܪ ൌ 6.0 when the overturning wave initially strikes the water surface and 

finally after ݐඥ݃ ⁄ܪ ൌ 8.4 as the void formed by the overturning wave collapses. In 
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the experiment conducted by Zhou et al. (1999) some of the fluid energy would be 

lost to the environment, however in the SPH simulation the fluid changes both linear 

and angular momentum rapidly at each of these moments in time. Where the 

difference in velocity between two particles is greater, the artificial viscosity term in 

the momentum equation becomes more influential. This in turn has a detrimental 

effect on energy conservation, forcing a greater reduction in the system energy in the 

SPH simulation than would be seen in an experiment. 

 

 

 

 

 

Figure 4.25 – Collapse of the void formed after the fluid overturns at the 

vertical wall. Depicted at two dimensionless time instants (a) ݐඥ݃ ⁄ܪ ൌ

8.0 and (b) ݐඥ݃ ⁄ܪ ൌ 8.4, the fluid consists of 80000 particles (ܪ r଴⁄ ൌ

200) coloured by dimensionless pressure, ܲ ⁄ܪ଴݃ߩ . 
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Figure 4.26 – SPH system energy ratio of the Zhou et al. (1999) dam 

break configuration at a number of particle resolutions. 

 

4.5 Summary  

In this chapter the SPH algorithm was validated for free surface flows by modelling 

four benchmark test cases. The first of these, the evolution of an initially circular 

patch of fluid, demonstrated that the present SPH algorithm met the kinematic and 

dynamic free surface conditions. The free surface definition improved with an 

increase in resolution and a smooth pressure field was maintained by introducing the 

density reinitialisation routine. Good agreement with the analytical solution for the 

pressure at the centre of the patch and the position of the free surface was found. 

 

The effect of the tensile stability correction was studied by modelling the evolution 

of the initially square patch of fluid. Without this correction, the large negative 

pressure at the centre of the patch forces the fluid particles to attract, forming long 

tightly spaced strings and large voids. Implementing the correction forced the fluid 
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particles to maintain regular spacing and prevented the formation of voids. While 

there was no analytical solution available for comparison, the pressure at the centre 

of the patch compared well with the BEM solution of Colagrossi (2004).  This good 

agreement would not have been possible were it not for the stabilising characteristics 

of each of the numerical corrections (see Section 3.3). 

 

Solid boundaries, enforced by the ghost particle method, were introduced to the free 

surface flow validation process by modelling the fluid contained within a static tank. 

Small oscillations were noted in the total potential energy, suggesting that the 

particles periodically rise and fall over time. Despite this, a smooth hydrostatic 

pressure field was maintained throughout the simulation. This smooth pressure field 

was also noted during the dam break simulation prior to impact with the far wall. The 

height of the free surface above two points on the tank floor and the pressure 

recorded during impact at the far wall were found to agree with the experimental 

results of Zhou et al. (1999). After the water overturned and impacted upon itself a 

reduction in the system energy was noted, suggesting that the influence of air during 

the experiments was significant.  

 

In conclusion, the validation process showed that the present SPH algorithm was 

capable of modelling broken free surface flows with reasonable accuracy. 
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Chapter  5  

Water Entry of Wedge and Ship Bow 

Sections in Two Dimensions 
 

5.1 Introduction 

The water entry of a two-dimensional hull section is validated in this chapter. The 

impact of fluid against a stationary boundary was validated in Section 4.4, and this 

has been extended to the problem of a wedge entering still water vertically at 

constant speed. Experimental results reported by Breder (2005) were used as a 

benchmark for wedges of varying deadrise angle impacting a still water surface at a 

range of velocities. While constant velocity impacts are a good example for 

validation, they are rarely seen in real world applications. The motions of a full scale 

hull are partially influenced by a slam event; therefore the SPH algorithm was 

extended to allow the falling body to dynamically respond to the loads experienced. 

The drop tests of 15° and 25° deadrise wedges completed by Whelan (2004) were 

used as a point of reference. The water entry of a flat plate was not considered in the 

present SPH study due to the air cushion effect noted by Chuang (1966) (see Section 

2.2.1), which cannot be accounted for in a single phase algorithm. 

 

Wedge shaped sections are widely used for planing craft but not for displacement 

vessels. So the flared bow section studied by Aarsnes (1996) – consisting of a 

rounded keel and a constant deadrise segment towards the knuckle – was modelled 

using the SPH algorithm and the results compared with the BEM investigation 

completed by Sun (2007). This two-dimensional model provides a basic insight into 

the transient entry of a bow section, but does ignore three-dimensional effects such 

as forward speed and the shape of the water surface. Some three-dimensional effects 

are considered using a similar hull form in Chapter 6. 
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5.2 Constant velocity wedge impacts 

The ability of the present SPH algorithm to resolve the fluid pressure directly 

adjacent to a stationary solid boundary was evaluated using the dam break validation 

case (Section 4.4). A ship hull form striking a still water surface requires the 

application of moving solid walls (see Section 3.6), so to assess the algorithm’s 

ability to correctly resolve the local pressure field during an impact, the simple case 

of a two-dimensional triangular wedge has been simulated.  

 

At full scale, the relative motion between a ship hull and the water surface in regular 

head seas follows a time varying, near sinusoidal pattern. Therefore the relative 

vertical velocity between the hull and the water surface will also change in time due 

to the pitch and heave motions of the ship, which in turn are affected by the loads 

experienced by the hull. For the simple case of a two-dimensional wedge dropped 

from a height into still water, the velocity profile is governed purely by the 

gravitational acceleration and the loads experienced during the entry process. The 

load on the wedge can be derived from the local pressure in the fluid, which is 

validated here for a moving boundary. To simplify the process further, a number of 

wedges of differing deadrise angle striking a still water surface at constant velocity 

have been simulated using the SPH algorithm. 

 

5.2.1 Experimental study 

Breder (2005) conducted a number of experiments of slamming pressures and loads 

on a carbon fibre, epoxy and balsa sandwich hull panel as part of a Master’s thesis 

(see Section 2.2.1). The results of this experimental programme have been used as a 

validation benchmark for the constant velocity SPH simulations. The constant 

velocity impacts were conducted in a cylindrical tank of diameter 3.5 m and typical 

water depth 1.5 m. Each panel was attached to a hydraulic ram capable of 

maintaining a constant velocity within a 5% tolerance limit up to and including 5 m/s 

for a wedge with a dead rise angle of 10°. The panels stretched 0.605 m from keel to 

chine and were made of a carbon fibre composite with a mass of 75 kg (see Figure 

5.1).  
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Three further panels were also fixed on the hydraulic ram to constrain the fluid flow. 

One panel, lying in the vertical plane, was attached to the keel of the test panel and 

acted as a plane of symmetry. This allows the experiment to be approximated by a 

two-dimensional wedge of the same deadrise angle as the flow is symmetrical. The 

other two panels, also lying in the vertical plane, were attached to the ends of the test 

panel to prevent the fluid from venting.  

 

Breder (2005) drilled holes in each hull panel to accommodate a number of 

piezoelectric pressure sensors. Five sensors, the first 60 mm from the keel, were 

spaced 107.5 mm apart along the middle of the panel and labelled ଵܲ through to ହܲ 

(see Figure 5.1). A load cell was mounted between the panel and the ram and an 

accelerometer was attached. This accelerometer fed back load information to the 

control system so a constant velocity could be maintained. No correction was made 

for hydroelasticity in the load calculations, but Beder (2005) did note that the 

measured pressures could be up to 12.3% higher for a completely rigid 10 deadrise 

panel at entry speeds above 6.0 m/s. 

 

 

 
 

Figure 5.1 – Schematic diagram of the Breder (2005) experimental 

apparatus. The carbon fibre panel contains five equally spaced pressure 

sensors labelled ଵܲ through to ହܲ and moves downwards with speed ݒentry. 

The testing tank is not shown in this diagram. 
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5.2.2 SPH simulation 

To simulate the constant velocity impacts of Breder (2005), a two-dimensional tank 

of width 3.5 m and water depth 1.5 m was filled with 210 000 SPH particles at a 

resolution of 200 particles per metre, the maximum resolution at which the dam 

break was modelled (see Section 4.4). The experimental test panel with the limiting 

vertical panel along the keel was replaced with a wedge of the same deadrise angle 

and beam (varying between 1.04 m and 1.18 m depending on the deadrise angle). 

The model simulations were started with the keel of the wedge one compact support 

radius (3݄) above the water surface (see Table 5.1 for a summary of the models 

simulated). To determine a suitable sound speed, the 30° deadrise wedge was forced 

into the centre of the free surface at 5 m/s and the maximum fluid velocity measured 

was found to be 20 m/s. So to avoid compressibility effects, the sound speed for all 

models was set to 200 m/s (see Section 3.2.4). For consistency, the artificial 

viscosity, tensile stability and XSPH corrections used the same coefficients as the 

dam break (see Section 4.4).  

 

Wedge Impact Speed Duration 

 1.0 m/s 0.12 s 

10° Deadrise 2.0 m/s 0.06 s 

 3.0 m/s 0.06 s 

 2.0 m/s 0.11 s 

20° Deadrise 3.0 m/s 0.08 s 

 4.0 m/s 0.06 s 

 2.0 m/s 0.14 s 

30° Deadrise 4.0 m/s 0.08 s 

 5.0 m/s 0.05 s 

 

Table 5.1 – Summary of the SPH simulations completed in the  

constant velocity wedge impact program. 

 

The numerical pressure sensors used the same averaging technique as described in 

Section 4.4. All of the numerical pressure sensors sampled at 1.75 kHz, considerably 

lower than the experimental pressure sensors (20 kHz). Breder (2005) did not 
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indicate whether or not the experimental pressure traces were filtered, so the raw 

numerical pressure traces were used for the first comparison. However, considerable 

noise was found after the initial peak in the numerical pressure trace, so a low pass 

filter was applied. The cut-off frequency was varied in an attempt to remove the 

noise without altering the overall trend and 400 Hz was found to produce the best 

result. 

 

A similar method to that used to measure the local fluid pressure was employed to 

calculate the total load on the wedge. At each time step, the surface of the wedge was 

divided into a series of pressure sensors two smoothing lengths wide and five deep 

(see Section 3.6.3). The mean pressure was calculated at each sensor and the total 

load found by summing across all pressure sensors. As this was performed at each 

time step (see Section 3.4), the load was sampled at 21 kHz, slightly higher than the 

experimental study. Breder (2005) smoothed the load traces using a 400 Hz low pass 

filter, so for consistency the same was applied to the load calculated using the SPH 

algorithm.  

 

5.2.3 SPH results 

Figure 5.2 depicts the local pressure field surrounding a 30° deadrise wedge 

impacting the initially still free surface at three time instants. At ݐ ൌ 0.03s the 

pressure immediately adjacent to the keel rises to approximately 10 kPa while a 

small region of much higher fluid pressure can be seen at the still water level. At 

each moment in time the pressure field is smooth near the keel, indicating that the 

scaling function designed to eliminate excess ghost mass (see Section 3.6.2) is 

functioning correctly. Furthermore, as the jet passes the knuckle of the wedge it 

continues on approximately the same trajectory, having not been affected by the local 

excess in ghost mass.  

 

As the wedge sinks further into the tank, the small high pressure region seen at the 

initial still water level at ݐ ൌ 0.03s tracks along the surface of the wedge. This area 

of high pressure remains on the still water level until the knuckle drops below it. It is 

responsible for the large pressure peaks seen in both the experimental and numerical 

pressure traces as the sensor passes the still water level (see Figure 5.6).  
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Figure 5.2 – SPH simulation of a 30o deadrise wedge impacting the free 

surface at a constant 2.0 m/s. The pressure field is illustrated at (a) 0.03s, 

(b) 0.08s and (c) 0.13s after initial impact with the free surface. The tank 

walls are located at ݔ ൌ 0 m and ݔ ൌ 3.5 m. 
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Since the high pressure region immediately adjacent to the surface is small in 

comparison to the size of the wedge, the number of particles within it is low. 

Consequently, some of the particles develop an abnormally high pressure compared 

to those in their immediate surrounds, and so the peak pressure recorded can vary 

from sensor to sensor (see Figure 5.6). 

 

Figure 5.3 describes the fluid flow speed field of the same case: a 30o deadrise wedge 

impacting the free surface at a constant velocity of 2.0 m/s. The high pressure region 

immediately surrounding the wedge in Figure 5.2 causes a jet to form. A small 

number of particles are propelled along the surface of the wedge at a maximum 

speed of 10.0 m/s, while the majority of the fluid particles remain almost stationary 

for the entire simulation. 

 

The load on a 10° deadrise wedge impacting the free surface at 2.0 m/s is described 

in Figure 5.4. At this shallow deadrise angle, the wedge is similar in geometry to a 

flat plate. In an experiment, the wedge will experience some air cushioning 

immediately before it strikes the water surface. The SPH simulation does not include 

air compressibility effects, so the force calculated is approximately twice that of the 

measured value. The air cushion effect is also reflected in the pressure traces as the 

SPH pressure is approximately twice as large as the experimental after the initial 

peak. Furthermore, Breder (2005) noted that the panels used in the experiment were 

able to flex slightly on impact. Fully rigid panels (such as the SPH models) could 

experience pressures up to 16% larger than those measured in the experiment. 

 

Increasing the deadrise angle to 20° (Figure 5.5) reduces the air cushion effect. Here 

the load calculated by the SPH simulation agrees well with that measured in the 

experiment. The maximum load experienced has dropped significantly to 12.0 kN 

(SPH) and 10.5 kN (Breder, 2005) when compared with the peak load of 30 kN on 

the 10° wedge. The SPH peak pressures measured at each sensor are still slightly 

higher than those measured experimentally, however this could be due to the 

flexibility of the experimental panel. Better agreement between the SPH model and 

the experiment is found when the deadrise is increased to 30° (see Figure 5.6). A 

plausible explanation for this is a reduction in the flex in the experimental panel due 

to the decrease in the measured load with increasing deadrise angle (Breder, 2005). 
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Figure 5.3 – SPH simulation of a 30o deadrise wedge impacting the free 

surface at a constant 2.0 m/s. The flow speed is illustrated at (a) 0.03s, (b) 

0.08s and (c) 0.13s after initial impact with the free surface. The tank  

walls are located at ݔ ൌ 0 m and ݔ ൌ 3.5 m. 
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Figure 5.4 – Vertical force and pressure sensor traces of a 10° deadrise  

wedge impacting the still water surface at 2.0 m/s. 
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Figure 5.5 – Vertical force and pressure sensor traces of a 20° deadrise  

wedge impacting the still water surface at 2.0 m/s. 
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Figure 5.6 – Vertical force and pressure sensor traces of a 30° deadrise  

wedge impacting the still water surface at 2.0 m/s. 
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Figure 5.7 – Vertical force and pressure sensor traces of a 30° deadrise  

wedge impacting the still water surface at 4.0 m/s. 
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Figure 5.8 – Vertical force and pressure sensor traces of a 30° deadrise  

wedge impacting the still water surface at 5.0 m/s. 
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Figures 5.6 to 5.8 demonstrate the effect entry speed has on the load and pressures 

experienced by a 30° deadrise wedge. The simulated peak load on the wedge 

increases from 6.3 kN at 2.0 m/s through to 34.5 kN at 5.0 m/s. Likewise, the 

maximum pressures measured at each pressure sensor occur sooner, from 0.10 s at 

2.0 m/s through to 0.04 s at 4.0 m/s. However, it is worth noting that with the low 

sample rate used in the SPH simulation, the peak size may not be captured perfectly. 

 

The peak SPH pressure recorded over all the sensors is compared with the theoretical 

values determined by Wagner’s (1932) added mass method (see Section 2.2.1) and 

those measured experimentally by Breder (2005) in Figure 5.9.  For both the 20° and 

30° deadrise wedges, the Wagner prediction over-estimates the measured peak 

pressure. At 20° deadrise the SPH values lie close to the Wagner curve, however at 

30° the SPH peaks over-estimate both the theoretical and experimental pressure. Due 

to the low sample rate and the 400 Hz low pass filtering, the actual SPH peaks could 

easily be much larger than displayed in Figure 5.9, but there is a general agreement 

between all three techniques. Furthermore the low number of particles contained 

within the sensor can also contribute to the variation in peak pressure if any one 

particle has a considerably lower or higher pressure than the others. 

 

 

Figure 5.9 – The peak SPH pressure compared against the theoretical 

added mass method of Wagner (1932) and the experimental results of 

Breder (2005). Results are shown for the (a) 20° deadrise  

wedge and the (b) 30° deadrise wedge. 
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Similarities were noted in the behaviour of the pressure traces for all models. Small 

amplitude oscillations can be seen in the pressure traces, particularly at low deadrise 

angles. These oscillations are caused by the pressure waves, generated at the moment 

the keel strikes the water surface, reflecting off the base and sides of the tank. It is 

also noted that the experimental pressure peaks lag behind that predicted by the SPH 

algorithm, particularly at sensors ସܲ and ହܲ. While the experiment attempted to 

maintain a constant velocity, the wedge decelerated by up to 5% due to the load on 

the panel, forcing the fluid to reach each sensor at a later time (Breder, 2005). 

 

In summary, the SPH simulations agree well with the loads and pressures measured 

by Breder (2005) for both the 20° and 30° deadrise wedges over a range of entry 

velocities. The peak pressures measured experimentally and simulated using SPH 

also agree well with Wagner’s (1932) theoretical added mass method (see Section 

2.2.1). At lower deadrise angles the SPH algorithm grossly over-predicts the loads 

and pressures measured in the experiment, possibly because the effect of air on the 

model is ignored. 

 

5.3 Variable velocity wedge impacts 

The ability of the SPH algorithm to resolve the local pressure field near a moving 

solid boundary was evaluated in the previous Section. However during most hull 

section drop tests the model does not move at a constant velocity, so the local SPH 

pressure field must be fed back in to the algorithm in order to determine the motions 

of the model. The experimental study of Whelan (2004) was used as a basis for the 

validation of the now dynamically responsive solid wall boundaries. 

 

5.3.1 Experimental study 

Whelan (2004) included two wedge shaped cross-sections of 15° and 25° deadrise in 

a study of wet-deck slamming on catamaran hull cross-sections (see Figure 5.10). 

The two wedges were dropped and allowed to fall freely from a range of heights into 

a tank of still water measuring 0.3 m wide, 1.2 m deep and 2.4 m long. The tank was 

filled to a depth of 1.0 m and the model was attached to the base of a centre post that 

had been restrained in all degrees of freedom except the vertical. The mass of the 

entire falling rig was 74.0 kg.  
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Figure 5.10 – The model geometry of the (a) 15° and (b) 25° deadrise 

wedges. Pressure sensors are located at each of the black dots. 

 

Both wedge models were moulded from a single sheet of 5 mm thick aluminium 

plate. The width of each model was approximately 0.02 m less than the width of the 

tank to allow for some venting of air and water at the ends of the wedge, without 

compromising the two dimensional approximation along the centre. A number of 

holes were drilled along the middle of the wedge stretching from the keel to the chine 

in order to accommodate up to four piezoelectric pressure sensors. Each sensor had a 

face diameter of 3.8 mm and was capable of measuring up to 3.4 MPa (see Figure 

5.10). An accelerometer (±30g) was fixed to the centre post to measure the load on 

the model and determine the velocity and position of the wedge with time.  

 

Full scale ship slamming occurs at a wide range of relative velocities (between the 

ship bow and the water surface) so Whelan (2004) dropped the wedge models from a 

range of heights to gain an understanding of the loads expected at varying impact 

velocities. With the intention of replicating a full-scale slam at model scale, the drop 

heights were normalised by the beam to achieve a comparable relative impact 

velocity. Equivalent to an effective Froude number, the normalised drop height כܪ is, 

ுܪ 
כ ൌ ඨ

ுܪ2

ுܤ
 (5.1) 
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where ܪு is the initial vertical distance from the still water surface to the keel and 

 ு is the beam of the wedge. The vertical velocity expected from the drop height atܤ

the moment the wedge strikes the water surface was never achieved due to friction 

between the centre post and its guide. So to compensate for the reduced velocity, all 

SPH simulations were initialised using the impact velocity measured in the 

experiment. 

 

5.3.2 SPH simulation 

In an attempt to simulate Whelan’s investigation, the SPH study was carried out in a 

tank measuring 1.2 m deep and 2.4 m long using wedges with a beam of 0.5 m. The 

wedges used in the constant velocity impacts (Section 5.2) varied in beam from 1.04 

m through to 1.18 m; more than twice that of the wedges used in the present study. 

Therefore to keep a comparable particle resolution, the tank was filled with 384 000 

SPH particles at a resolution of 400 particles per metre. To determine a suitable 

sound speed the 25° deadrise wedge was dropped from a normalised drop height of 

1.01 and the maximum fluid speed was measured. The fluid speed was found to not 

exceed 10 m/s so the sound speed for all of the models simulated was set to 100 m/s. 

For consistency, the artificial viscosity, tensile stability and XSPH corrections used 

the same coefficients as the constant velocity wedge and the dam break (see Sections 

4.4 and 5.2). 

 

Wedge Normalised Drop Height ܪு
כ  Initial Impact Speed 

 0.62 1.32 m/s 

15° Deadrise 0.73 1.57 m/s 

 0.93 1.96 m/s 

 0.47 0.93 m/s 

25° Deadrise 
0.61 1.26 m/s 

0.84 1.74 m/s 

 1.01 2.11 m/s 
 

Table 5.2 – Summary of the SPH simulations completed in the variable 

velocity wedge impact program.  
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Table 5.2 outlines the wedge models simulated using the SPH algorithm. All of the 

simulations were conducted with a fixed wedge mass, although Whelan (2004) did 

perform a number of further drop tests with differing mass.  

 

5.3.3 SPH results 

Figure 5.11 illustrates the pressure field at a number of time instants during the 

impact of a 25° deadrise wedge dropped from a normalised height of ܪு
כ ൌ 0.61. At 

ݐ ൌ 0.03 s after impact (Figure 5.11a), a high pressure region can be seen directly 

adjacent to the surface of the wedge at the initial still water level. This high pressure 

region tracks along the surface of the wedge and is responsible for the large peaks 

seen at each pressure sensor in Figure 5.14. By ݐ ൌ 0.06 s, the pressure field 

immediately surrounding the wedge has reduced in value, a jet has formed and the 

underside of the wedge is completely wetted. At this moment in time the vertical 

acceleration experienced by the wedge has reached a maximum, a trend that was 

noticed in all of the drop tests by Whelan (2004). At ݐ ൌ 0.09 s, the knuckles of the 

wedge have passed the initial still water level and the acceleration has reduced to a 

near constant value just above zero. By this time the pressure field has also begun to 

return to a near hydrostatic state.  

 

The flow speed field for the same time instants is illustrated in Figure 5.12. The high 

pressure region immediately adjacent to the wedge at the still water level forces the 

fluid to form a jet travelling parallel to the wedge at high velocity. The jet reaches a 

maximum speed of 6.5 m/s, which is approximately five times that of the maximum 

wedge speed. The speed of the jet decreases as the deadrise angle of the wedge is 

increased, but increases with drop height.  

 

The acceleration, velocity and pressure traces for a wedge with a deadrise angle of 

15° (Figure 5.13) were compared with those of a 25° deadrise wedge (Figure 5.14).  

The distance from the knuckle to the water surface was the same for both wedges. 

However because the depth of each wedge model was different, the normalised drop 

height was 0.73 for the 15° deadrise wedge and 0.61 for the 25° deadrise wedge. To 

remove any numerical noise, the acceleration and pressure traces calculated using the 

SPH algorithm were smoothed using a 500 Hz low pass filter. 
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Figure 5.11 – SPH particles coloured by pressure during the impact of a 

25° deadrise wedge dropped from a normalised height of ܪு
כ ൌ 0.61.  

Images are taken (a) 0.03 s, (b) 0.06 s and (c) 0.09 s after  

initial impact with the free surface. 
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Figure 5.12 – SPH particles coloured by flow speed during the impact of a 

25° deadrise wedge dropped from a normalised height of ܪு
כ ൌ 0.61.  

Images are taken (a) 0.03 s, (b) 0.06 s and (c) 0.09 s  

after initial impact with the free surface. 
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Figure 5.13 – The vertical acceleration, vertical velocity and pressure at 

three pressure sensors of a 15° deadrise wedge dropped from ܪு
כ ൌ 0.73. 
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Figure 5.14 – The vertical acceleration, vertical velocity and pressure at 

four pressure sensors of a 25° deadrise wedge dropped from ܪு
כ ൌ 0.61. 
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Figure 5.15 – The vertical acceleration, vertical velocity and pressure at 

four pressure sensors of a 25° deadrise wedge dropped from ܪு
כ ൌ 0.84. 
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Figure 5.16 – The vertical acceleration, vertical velocity and pressure at 

four pressure sensors of a 25° deadrise wedge dropped from ܪு
כ ൌ 1.01. 
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The acceleration trace of the simulated 15° deadrise wedge initially matches the 

experimental trace, but continues to climb higher after 0.01 s. The predicted 

acceleration peak occurs sooner and has a higher value than the experimental. The 

most probable cause of this is the lack of air cushioning in the SPH model as the 

wedge initially breaks through the free surface. At 25 deadrise angle, the 

acceleration traces are in good agreement as air cushion effects become negligible 

(Chuang, 1967). The velocity of the 15° deadrise wedge is also in agreement 

initially, but as the velocity of the body is directly integrated from the acceleration, 

the vertical speed predicted by the SPH model is slightly less than that measured 

experimentally. Furthermore the slower entry speed shifts the pressure peaks 

measured at each sensor to a slightly later time1. 

 

Generally the experimental and numerical pressure traces of the 15° deadrise wedge  

agree well, with the exception of the peak pressures at ଵܲ and ଷܲ. Whelan (2004) 

sampled the pressure at approximately 7.0kHz, while the SPH pressure has only been 

sampled at 2.1kHz. Therefore it is possible that the SPH peak at ଵܲ has occurred 

between two sample points, resulting in the slight under prediction of the peak 

pressure. Conversely at ଷܲ the SPH pressure peak is slightly over-estimated, possibly 

due to numerical error in the evaluation of the pressure of the fluid particles. 

 

The drop height affects the impact velocity, and hence the acceleration and fluid 

pressure experienced during impact. Figures 5.13 through to 5.15 illustrate the 

acceleration, velocity and the pressure experienced by the 25° deadrise wedge at 

ுܪ
כ ൌ 0.47, 0.61 and 1.06 respectively. All three SPH acceleration traces agree well 

with those of Whelan (2004). The peak acceleration occurs sooner as the drop height 

is increased, with some air cushion effect visible at ܪு
כ ൌ 1.01 (see Figure 5.16a). 

The pressure peaks follow a similar pattern due to the increased entry velocity. 

 

The pressure peaks of the 15° deadrise wedge were found to be considerably larger 

than those of the 25° deadrise wedge (see Figure 5.17). An increase in deadrise angle 

of just 10° has dropped the maximum pressure peak measured from 21.0 kPa 

  

                                                 
1 A comparison between variable and constant velocity water entries of a 15° deadrise wedge can be 
found in Appendix B. 
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Figure 5.17 – The peak SPH pressure recorded at a number of entry speeds 

compared against the theoretical added mass method of Wagner (1932) 

and the experimental results of Whelan (2004). Results are shown for the 

15° deadrise wedge (a) and the 25° deadrise wedge (b). 

 

(experiment) and 28.5 kPa (SPH) to 11.6 kPa (experiment and SPH). The measured 

peak pressures increase as the drop height and subsequent impact velocity increase, 

following the theoretical trend described by Wagner (1932). The SPH peaks do not 

consistently over or under estimate the theoretical or experimental values. This 

scatter is possibly due to the low SPH pressure sample rate causing the actual peak to 

be missed. However by examining Figure 5.17, it can be concluded that both the 

SPH and theoretical peak pressures agree well with the maximum pressures recorded 

in the experiment. 

 

In summary, the SPH simulations agree well with the experimental acceleration, 

velocity and pressure sensor data for both the 15° and 25° deadrise wedges over a 

range of entry velocities. The peak pressures predicted by Wagner (1932) also agree 

well with the maximum pressure recorded over all the SPH pressure sensors.). 

However, the present SPH algorithm is limited to modelling large deadrise angles as 

air is not present in the model and any compression effects are therefore ignored. 
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5.4 Variable velocity mono-hull impacts 

Sections 5.2 and 5.3 focused on validating the moving boundary method for both 

constant velocity and dynamically responsive wedge impacts. The wedge shapes 

approximate the hull of a planing craft, however most large ships have a more 

complex hull form, particularly near the bow. A typical flared bow section has been 

modelled using the SPH algorithm and the results compared with previous 

experimental and numerical studies.  

 

5.4.1 Experimental study 

Aarsnes (1996) performed a series of drop tests using a 30° deadrise wedge and a 

sample ship bow section. The ship bow section measured 1.0 m in length and 

consisted of a 0.1 m measurement section with two 0.45 m dummy sections attached 

at either end. The beam of the measurement section was 0.32 m and the mass of the 

total falling rig was 261 kg. Four pressure sensors were placed in a line stretching 

from the keel to the hard chine at the middle of the hull section (see Figure 5.18) and 

two force transducers were positioned between the model section and the falling rig 

in order to determine the total load during impact. 

 

 

Figure 5.18 – The ship bow section studied by Aarsnes (1996). The red 

dots indicate the intersections between straight line segments that 

approximate the curvature of the hull and the black dots show  

the locations of the pressure sensors. 
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Sun (2007) performed a BEM analysis of the same drop tests and the results have 

been used here as a reference numerical solution.  The initial stage of Sun’s 

numerical hull impact was modelled using von Karman’s (1929) theory. After the 

keel had passed the still water level (0.0008s to 0.003s into the simulation) and the 

maximum pressure was calculated, the BEM simulation was started. 

 

5.4.2 SPH simulation 

The Aarsnes (1996) hull form was approximated by a series of small straight line 

segments with a length no shorter than 3݄ (see Figure 5.18 for the locations of the 

short line segment intersection points and Section 3.6.2). Four drop tests were 

simulated using the SPH algorithm from a range of normalised drop heights (see 

Table 5.3). To be consistent with the wedge drop tests analysed in Section 5.3, the 

normalised height was calculated from the beam and the vertical distance between 

the keel and the still water surface by equation (5.1). 

 

The size of the tank in which the experimental drop tests occurred was unknown, so 

the same tank used to simulate the Whelan (2004) experiments was also used here. 

Although the beam of the Aarsnes (1996) hull section is 36% less than the Whelan 

wedges, the same particle resolution (400 particles per metre) was used here for 

computational efficiency. It is worth noting that the wetted perimeters of the 25° 

wedge and the hull section are the same (0.55 m).  

 

 

Section Normalised Drop Height ܪு
כ  Initial Impact Speed 

Aarsnes (1996) 

0.34 0.58 m/s 

0.35 0.61 m/s 

0.86 1.48 m/s 

1.41 2.43 m/s 
 

Table 5.3 – Outline of the variable velocity mono-hull impacts  

modelled using the SPH algorithm. 
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5.4.3 SPH results 

Figures 5.19 and 5.20 illustrate the pressure and velocity fields at three moments in 

time after the hull section, dropped from a normalised height of ܪு
כ ൌ 0.35, strikes 

the initially still water surface. As the surface of the hull is steep near the keel, the 

pressure field immediately surrounding the hull at 0.1 s increases only slightly from 

its initial hydrostatic value. The fluid velocity at this point reaches a maximum of 1.5 

m/s as a small jet – caused by the increase in local fluid pressure – begins to form. In 

the next time instant (0.13 s after impact), the flared section of the bow strikes the 

water surface and the local fluid pressure increases. A small region of high pressure 

fluid tracks along the surface of the hull, encouraging the formation of the jet. By the 

third time instant, the jet has separated from the surface of the hull section and 

propagates away with a maximum velocity of 5 m/s. At greater drop heights, the 

maximum velocity in the jet increases up to 9.5 m/s (at ܪு
כ ൌ 1.41). A sustained high 

pressure region in the concave section of the hull drives the fluid particles away from 

the hull surface, an element not seen in any of the wedge impacts studied in the 

Sections 5.2 and 5.3. 

 

The same method described in Section 5.1.2 for determining the load and the 

pressure at each sensor was also used for Aarsnes’ (1996) hull section (see Figure 

5.18). All experimental measurements were smoothed using a low pass filter of 300 

Hz, so a filter with the same cut-off frequency was used in the SPH calculation. The 

experimental vertical force still shows obvious oscillations with a frequency of 

approximately 100 Hz at a normalised drop height of 1.16, believed to be due to 

vibrations in the drop rig (see Figures 5.21 to 5.23). 

 

The SPH vertical force traces at all drop heights agree well with the experimental 

and BEM results. In each case the BEM peak is approximately 10-15% higher than 

that calculated using SPH. The experimental peak is matched by the SPH algorithm 

at a normalised drop height of 0.35 (Figure 5.21), however the SPH peak is 

considerably less than the experimental peak at 0.86 (Figure 5.22). This variation in 

the experimental results could be due to the excitation of the drop rig affecting the 

measured load (Sun, 2007). The BEM and SPH peaks also agree well in  
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time, but the experimental peak load lags slightly behind. This lag is primarily due to 

friction between the drop rig and its guide (Sun, 2007), which is accounted for by 

initialising the simulation with the impact velocity measured in the experiment.  

 

Pressure sensors ଶܲ and ଷܲ display similar behaviour at each drop height. As each 

sensor becomes wetted, the pressure increases quickly to a rounded peak before 

easing slightly as the chine passes the still water level (see Figure 5.19c and Figure 

5.21). However ଵܲ – in all models except כܪ ൌ 0.35 – recorded a very short peak the 

moment the keel struck the water surface, which was typically the maximum 

pressure recorded anywhere in the fluid during the simulation (see Figures 5.21 to 

5.23). Generally the SPH solution for the pressure is in good agreement with the 

BEM solution. Conversely the SPH pressure appears to overestimate the 

experimental pressure by 10-15% for all time except for the initial pressure peak at 

ଵܲ. The low sample frequency (2.1 kHz) is a possible cause for this low pressure 

calculation as the actual peak could have occurred between samples (the peak was 

typically no more than three data points wide). 

  

The impact of the hull section with the water surface does generate pressure waves 

that propagate throughout the tank in the SPH simulation. These waves reflect off the 

side walls and the base, resulting in the observation of some noise in the pressure 

signals. The frequencies of oscillation are consistent with the natural modes of 

vibration of the tank (see chapter 4.3) and are a predominant feature of the weakly-

compressible SPH method. Pressure waves are also present in the real case but have 

much smaller amplitude and are not noticeable.  

 

Both numerical methods successfully predicted the acceleration and pressures 

experienced by the Aarsnes (1996) hull section during water entry. However the 

pressure field resolved by the weakly-compressible SPH method is characterised by 

large amplitude pressure waves. The BEM does not suffer from this problem, but 

unlike SPH the BEM cannot simulate fracturing of the free surface. While both 

methods have negative aspects, they are both capable of simulating the water entry of 

two-dimensional bodies. 
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Figure 5.19 – SPH particles coloured by pressure after the impact of the 

Aarsnes (1996) hull cross-section dropped from ܪு
כ ൌ 0.35.  Images are 

shown at (a) 0.10 s, (b) 0.13 s and (c) 0.16 s after impact. 
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Figure 5.20 – SPH particles coloured by flow speed after the impact of the 

Aarsnes (1996) hull cross-section dropped from ܪு
כ ൌ 0.35.  Images are 

shown at (a) 0.10 s, (b) 0.13 s and (c) 0.16 s after impact. 
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Figure 5.21 – Vertical force, hull velocity and pressure sensor traces of the 

Aarsnes (1996) ship bow section at ܪு
כ ൌ 0.35. 
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Figure 5.22 – Vertical force, hull velocity and pressure sensor traces of the 

Aarsnes (1996) ship bow section at ܪு
כ ൌ 0.86. 
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Figure 5.23 – Vertical force, hull velocity and pressure sensor traces of the 

Aarsnes (1996) ship bow section at ܪு
כ ൌ 1.41. 
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5.5 Summary 

The water entries of arbitrary two-dimensional bodies were modelled using the 

present SPH algorithm in this chapter. Wedges moving at constant vertical speed 

were forced into initially still water to simulate the experiments of Breder (2005). 

Good agreement between the SPH and experimental results was found for the 20° 

and 30° deadrise angle wedges, however the SPH algorithm considerably 

overestimated the load on the 10° deadrise wedge. This discrepancy is due to air 

compressibility and entrainment effects that influence the load on the experimental 

wedge, so a two fluid algorithm should be developed to accurately simulate the water 

entry of a low deadrise angle wedge. 

 

Whelan (2004) dropped 15° and 25° deadrise wedges that were free to move in the 

vertical direction from a range of heights. The results of these drop tests were used as 

a benchmark for comparison with the dynamically responding SPH wedges. The 

SPH load and pressure sensor measurements corresponded with the results of 

Whelan (2004), but small air compression effects were noted during drop tests of the 

15° deadrise wedge. The SPH wedge water entry simulations were also found to 

agree well with the theoretical peak pressures of Wagner (1932).  

 

The results achieved for both the variable and constant velocity wedges allowed the 

complexity of the falling body’s geometry to be increased. An SPH model of the 

Aarsnes (1996) flared bow section was created and the total load and the fluid 

pressure at a number of sensors was recorded. The experimental (Aarsnes, 1996) and 

BEM results of Sun (2007) were compared against the data recorded during the SPH 

simulation and all were found to be in agreement.  

 

The simulations performed in this chapter, be it variable or constant velocity, 

supported the ability of the SPH algorithm to resolve the water entry of two-

dimensional bodies.  
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Chapter  6  

Slamming of a Slender Ship in  

Regular Waves 
 

6.1 Introduction 

The global motion of a large slender ship in regular waves is only slightly affected by 

slamming at the bow, with the exception of extremely violent slam events. The 

relative motion between the bow and the water surface follows a near sinusoidal 

pattern during impact, which is evident in the model scale experiments of 

Hermundstad and Moan (2005) and Sebastiani et al. (2001). The two-dimensional 

SPH slamming study completed in Chapter 5 focused on simulating the water entry 

of hull sections at both constant and variable (governed by the local fluid pressure) 

velocity. The loads and peak pressures measured in SPH simulations of both types of 

water entry are very different (see Appendix B) and neither follows the near 

sinusoidal profile noted in the ocean wave basin experiments of Hermundstad and 

Moan (2005). So in order to accurately simulate the three-dimensional bow 

slamming experiments, the hull section should follow a vertical speed profile 

determined from the relative motion between the bow and the water surface.  

 

In this chapter the relative vertical velocity profile measured by Hermundstad and 

Moan (2005) at a single cross-section on a bulbous bow has been imposed on a two-

dimensional SPH model. The purpose of this was to test the ability of the SPH 

algorithm to resolve the local fluid pressure surrounding a hull section under the 

influence of a prescribed vertical velocity profile. Completion of this validation 

allowed for the introduction of a more complex 2D + t approach to simulate bow 

slamming.  
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Divided into two parts, the 2D + t method calculates the motions of the hull – caused 

by the ship moving through regular waves – using the commercial seakeeping (strip 

theory) software package SEAWAY (Journée and Adegeest 2003) and then 

determines the relative vertical velocity between the hull and the water surface. 

Secondly, the relative vertical velocity profiles are then imposed on two-dimensional 

hull cross-sections in order to simulate the water entry process using SPH.  

 

The tow tank experiments conducted on a slender V-form hull by Ochi (1958) were 

used to test the validity of this 2D + t approach. While the data available for 

comparison was limited, the result of this study is a method that can be used to 

visualise a slam on a three-dimensional ship using a combination of strip theory and 

two-dimensional SPH. The maximum slamming pressure and load at any location 

along a slender ship’s hull can also be determined using the 2D + t method. 

 

6.2 Slamming with relative vertical velocity 

SPH simulations of the water entry of a two dimensional hull section were validated 

against experimental drop test data in Section 5.4. The drop tests of Aarsnes (1996) 

allowed the hull section to respond to the local fluid pressure, causing the entry speed 

to vary over time. An example of the relative vertical velocity measured by Aarsnes 

(1996) throughout a drop test is illustrated in Figure 6.1a. During ocean wave basin 

 

 

Figure 6.1 – Relative vertical velocity between the hull and the water 

surface during (a) the drop test of a bow section (Aarsnes, 1996) and (b) 

the ocean wave basin experiments of Hermundstad and Moan (2005). 
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experiments on a slender ship model (Hermundstad and Moan, 2005), the relative 

motion was found to follow a near sinusoidal pattern (Figure 6.1b). Construction of a 

2D + t method for simulating bow slamming requires each hull section to follow a 

velocity profile based on this sinusoidal motion. So the water entry of a hull under 

the influence of a prescribed velocity profile is validated in this Section. 

 

6.2.1 Experimental study 

Hermundstad and Moan (2005) studied the motions of a 1:21.6 scale model of the 

120 m car carrier Autoprestige in the 80 m by 50 m ocean wave basin at 

MARINTEK, Norway. The model was self-propelled at 2.2 m/s through regular 

waves of height 0.1 m and period 1.9 s; conditions that produced regular bow flare 

slamming. To measure the slamming-induced loads on the bow the authors placed 

two identical slam panels (large area pressure gauges) near the top of the flared bow 

section, 0.05ܮ௣௣ aft of the forward perpendicular (see Figure 6.2). Each panel was 

mounted to a force transducer with a natural period that was not known, but was 

assumed to be at least an order of magnitude less than the rise time from zero to 

maximum slamming pressure. The ship motions were measured using an optical 

system that sampled the relative elevation between the flared bow section and the 

water surface at 500 Hz. By differentiating the relative elevation time series, the 

relative vertical velocity was obtained. 

 

 

Figure 6.2 – The Hermundstad and Moan (2005) hull geometry (a) 

 ௣௣ aft of the forward perpendicular and (b) the measured relativeܮ0.05

vertical velocity profile between the hull and the water surface. 
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The overall ship motions were also calculated by Hermundstad and Moan (2005) 

using a nonlinear rigid-ship strip theory model. In head seas the combination of just 

the calculated heave and pitch motions of the Autoprestige enabled the absolute 

vertical motion of the hull to be determined. Including the surge of the model ship 

and the incident wave elevation allowed for the calculation of the relative vertical 

velocity between any given hull cross-section and the water surface. The 

longitudinally flat keel of the Autoprestige allows this relative vertical velocity 

profile to be used for two-dimensional slamming pressure calculations. 

 

The time series of the relative vertical velocity was used to calculate the slamming 

pressure at each patch via the simplified two-dimensional potential flow theory of 

Zhao et al. (1996). The method included ship generated waves – which were found to 

have minimal effect – and assumed the hull motion was not affected by the onset of 

whipping immediately after the slam event occurred. The calculated maximum 

slamming pressure agreed with that measured in the experiment, however the 

calculated peak lagged approximately 0.1 s behind the experimental.  

 

Hermundstad and Moan (2005) demonstrated that a potential flow method could be 

used to accurately calculate the slamming pressure from a relative vertical velocity 

time series. In spite of this the method cannot accurately simulate extreme free 

surface fragmentation and deformation. To enable the free surface problem to be 

visualised, the hull section of the  0.05ܮ௣௣ aft of the Autoprestige’s forward 

perpendicular has been modelled using the SPH algorithm. 

 

6.2.2 SPH simulation 

The hull section of the Autoprestige 0.05ܮ௣௣ aft of the forward perpendicular was 

digitised at model scale (see Figure 6.2) from the hull body plan published by 

Hermundstad and Moan (2005). The curved segments of the hull section were 

approximated by a series of small straight line wall boundaries in a method similar to 

that described in Section 5.4. The beam of the model measured 0.82 m, so the hull 

section was forced into a tank of water 3.5 m wide and 1.5 m deep in order to be 

consistent with Breder’s (2005) 1.1 m wide constant velocity wedge water entries 

(see Section 5.2). Each constant velocity wedge water entry in Section 5.2 was 
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modelled at a particle resolution of 200 particles per unit length. The beam of the 

wedges modelled in Section 5.2 varied, but were approximately 1.3 times larger than 

the model Autoprestige hull section. Consequently the particle resolution for the 

Autoprestige model was increased to 260 particles per unit length to maintain a 

similar number of particles across the beam as in Section 5.2.  

 

The model was initially placed a distance of 3݄ above the still water level and then 

subjected to the velocity profile illustrated in Figure 6.2b. Preliminary investigations 

found that the water speed in the jet rarely exceeded 4.0 m/s, so the sound speed 

could be set as low as 40 m/s without incurring compressibility effects. However the 

sound speed was set to 100 m/s, in order to be consistent with the dynamically 

responsive drop tests conducted in Chapter 5. 

 

Figure 6.3 and Figure 6.4 describe the pressure and velocity fields at a number of 

time instants during the water entry process. As the bulb breaks through the free 

surface the neighbouring pressure field does not rise far above hydrostatic pressure 

due to the steep local deadrise angle; although the slight increase in pressure does 

generate low amplitude pressure waves that propagate throughout the fluid domain. 

The bottom of the hull section directs the fluid away from the model boundary at 

approximately 1.0 m/s causing a void to be formed immediately above the bulb. 

Approximately 0.12 s later, the fluid displaced during the initial impact strikes the 

lower part of the flare and the void collapses in on itself at 3.5 m/s. Water then 

impacts the vertical section above the bulb causing an increase in pressure (see 

Figure 6.3b) and as a result pressure waves propagate through the tank with an 

amplitude significantly larger than those caused by the impact of the bulb. Finally, as 

the flared section becomes fully wetted (see Figure 6.3c) a jet forms in a similar 

fashion to that seen during the wedge water entry simulations (see Chapter 5). By 

this time the vertical speed of the hull section has reduced to 0.8 m/s, resulting in a 

much lower local pressure than that recorded during the wedge simulations. 

 

The pressure at each slamming panel was calculated using a similar method to that 

described in Section 5.2.2. In this case the width of the SPH pressure sensor was 

increased to 0.067 m, matching the size of the Hermundstad and Moan (2005)  
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Figure 6.3 – The SPH pressure field during the water entry of the 

Autoprestige hull section. The field is illustrated at three time instants;  

(a) 0.12 s, (b) 0.24 s and (c) 0.36 s after the initial impact. 
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Figure 6.4 – The SPH flow speed field during the water entry of the 

Autoprestige hull section. The field is illustrated at three time instants;  

(a) 0.12 s, (b) 0.24 s and (c) 0.36 s after the initial impact. 
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Figure 6.5 – The SPH and experimental pressure signals (Hermundstad 

and Moan, 2005) recorded at slamming panels (a) ଵܲ and (b) ଶܲ.  

 

slamming panels. The slamming pressure measurements in the experiment were 

sampled at 2.50 kHz but the authors gave no indication of the filtering, if any, that 

was applied to the pressure signals. Each SPH pressure signal was sampled at a lower 

frequency (1.11 kHz) producing a very noisy trace caused by the small differences in 

pressure between individual particles at each time step. As the peak pressure 

recorded on the Autoprestige model is approximately an order of magnitude less than 

those measured in Chapter 5, this noise appears to be much more significant. In order 

to remove the noise the signals were smoothed using a 100 Hz low pass filter. 

 

The slamming pressure recorded at both panels over time is illustrated in Figure 6.5. 

Despite the application of the low pass filter, the pressure signals still show 

considerable oscillations during impact, particularly at ଵܲ. Both SPH pressure signals 

agree well with the impact pressure measured during the experiment, however the 

SPH does lag behind the experimental by 0.02 s at ଵܲ. The flared section of the bow 

is similar in shape to a wedge of deadrise angle 37° so it is possible to compare 

against the Wagner (1932) approximation for maximum pressure. The flared section 

of the bow initially strikes the free surface 0.21 s after the keel at a speed of 1.4 m/s, 

resulting in a maximum expected fluid pressure of 4.2 kPa via equation (2.1). This is 

much greater than the 3.2 kPa predicted by SPH and the 2.4 kPa recorded during the 

tow tank experiment, possibly because the local fluid is already in motion and 

follows a smooth path on to the flared section, rather than a sudden impact. 
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In conclusion, the present SPH algorithm has been successfully applied to the water 

entry of a two-dimensional flared bow section under the influence of an imposed 

velocity profile. The SPH pressure at each slamming panel agreed with the 

experimental measurements despite the presence of large pressure waves caused by 

the fluid impacting the vertical structure immediately above the bulb. The reasonable 

agreement between the SPH model and the experimental data allows for the 

development of a 2D + t method that can predict slamming loads via two-

dimensional SPH cross-sections and commercial seakeeping software. 

 

6.3 Slamming with motions predicted by strip theory 

The two-dimensional hull model in the previous Section was forced into initially still 

water with a prescribed velocity profile determined from the experiments of 

Hermundstad and Moan (2005). Only one section of the hull was studied by 

Hermundstad and Moan (2005), limiting the amount of data available for 

comparison. Ochi (1958) instrumented a model V-form hull with pressure sensors at 

a number of locations and tested its susceptibility to slamming in regular head seas, 

but no indication of the hull motions was provided. With the aim of modelling 

slamming of this V-form hull using SPH, the ship motions were calculated using the 

commercial software package SEAWAY. The relative velocity between the hull and 

the water surface was then easily determined, enabling the impact to be modelled 

using a 2D + t method (see Section 1.1.3). 

 

6.3.1 Model experiments 

Two 6 m brass model hulls were self-propelled through regular waves in the 200 m 

Mejiro experimental tow tank in Tokyo, Japan by Ochi (1958). Both model hulls, a 

U-form and a V-form, were identical aft of midships but differed slightly in the bow. 

The U-form model was a 1:22 scale model of the MS Mizukawa-Maru (132 m) and 

had a rounded bow section, while the V-form (see Figure 6.6) was built to represent a 

number of typical merchant ships and was more wedge shaped at each bow cross-

section. Each ship model was riveted together with all of the usual structural 

elements such as the centreline girder, frames and beams, but did not contain the 

transverse bulkheads as they were assumed to have no direct influence on the 

longitudinal strength of the hull. 
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Figure 6.6 – Hull plan of the 6.0 m V-form merchant vessel model (a) 

and the two-dimensional cross-sections at (b) ଵܲ 0.093ܮ௣௣, (c) ଶܲ 

  ௣௣. The black dots indicate theܮ௣௣, and (d) ଷܲ 0.174ܮ0.133

position of the pressure sensors installed by Ochi (1958). 

 

The towed models were allowed to pitch, heave and surge in regular waves with the 

intention of determining the influence of wave height, wave length and ship draft on 

slamming. Ochi (1958) placed a total of 19 pressure sensors, each 0.02 m in 

diameter, around the hull with the majority concentrated near the bow. In particular, 

four cross-sections located 0.093ܮ௣௣, 0.133ܮ௣௣, 0.174ܮ௣௣ and 0.227ܮ௣௣ aft of the 

forward perpendicular were each instrumented with four pressure sensors. The data 

recorded by each sensor was used to determine the position and magnitude of the 

maximum slamming pressure over a range of forward speeds (see Figure 6.6). 
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Ochi’s (1958) study of the effect of forward speed on the slamming characteristics of 

the V-form model has been used as the benchmark for comparing the results of the 

2D + t SPH simulations. The model hull – set with a draft of 0.2 m and trimmed 

down 0.08 m by the stern – was self-propelled through 0.2 m high regular waves 

with a wavelength equal to the hull’s length (6 m). Ochi (1958) recorded the 

maximum pressure measured by the sensors at each forward speed but did not give 

any indication of the relative motion between the hull and the water surface.  

 

6.3.2 Ship motion calculations 

Simulating bow slamming of a three-dimensional hull with a predominantly flat keel 

using the two-dimensional SPH algorithm requires the relative vertical motion 

between the hull and the water surface to be known. To model the Ochi (1958) 

experiments, the relative motion was calculated using the commercial seakeeping 

software SEAWAY (see Section 1.1.3). The hull plan in Ochi (1958) was digitised, 

imported into SEAWAY and then interpolated, creating 100 evenly spaced cross-

sections along the ship’s length for use in the strip theory model. The properties of 

the hull (see Table 6.1) were calculated in SEAWAY after the interpolation and 

found to be within 2.5% of those measured by Ochi (1958).  

 

Characteristics Model (Ochi, 1958) Model (SEAWAY)

Length (ܮ௣௣) 6.0 m 6.0 m 

Beam (ܤுሻ 0.83 m 0.82 m 

Draft (max) 0.36 m 0.36 m 

Displacement 1334 kg 1331 kg 

Block Coefficient 0.74 0.74 

Prismatic Coefficient 0.75 0.75 

Midship Coefficient 0.99 0.99 

Water-plane Coefficient 0.83 0.84 

Pitch Period (Max Draft) 1.36 s (measured) 1.39 s 

Heave Period (Max Draft) 1.47 s (measured) 1.50 s 

 

Table 6.1 – Comparison between the properties of  

the experimental and numerical hulls. 
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The heave and pitch motions of the hull were then calculated by SEAWAY at 9 

forward speeds - ranging from 1.2 m/s through to 2.8 m/s (model scale) - in regular 

head seas of height 0.2 m and period 2.0 s. Combining the heave and pitch motions 

enabled the relative velocity between any given hull cross-section and the water 

surface to be determined. The absolute elevation of the keel, ݕுሺݖ,  ሻ at any point zכݐ

along the ship’s length and any time כݐ from an arbitrary fixed reference point was 

calculated by the following equation, 

,ݖுሺݕ  ሻכݐ ൌ כݐሺ߱ݏ݋ுܿܣ ൅ ߶ுሻ െ כݐሺ߱ݏ݋௉ܿܣݖ ൅ ߶௉ሻ (6.1)  

where ܣு, ߶ு, ܣ௉ and ߶௉ are the amplitude and phase of the heave and pitch 

motions respectively and ߱ is the wave encounter frequency. The keel amidships 

was placed on the origin and the relative vertical velocity between the hull and the 

water surface ݒ௘௡௧௥௬ was then determined via the following equation, 

௘௡௧௥௬ݒ  ൌ  
݀

כݐ݀ ሾݕுሺݖ, ሻכݐ െ ,ݖሺߟ  ሻሿ (6.2)כݐ

where ߟሺݖ,  .along the ship’s hull כݐ ሻ is the free surface position at any timeכݐ

Examples of the velocity profiles experienced by cross-sections ଵܲ, ଶܲ and ଷܲ at 

forward speeds of 1.6 m/s and 2.0 m/s can be seen in Figure 6.7, where t represents 

the time after initial impact with the still water surface. 

 

 

Figure 6.7 – Relative velocity profiles for each hull cross-section after 

initial impact ሺݐ ൌ 0ሻ calculated using the heave and pitch motions 

generated by SEAWAY at (a) 1.6 m/s and (b) 2.0 m/s forward speed. 
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6.3.3 SPH simulation 

Three cross-sections of the V-form hull were studied in detail using the SPH 

algorithm (see Figure 6.6). A fourth cross-section 0.227ܮ௣௣ aft of the forward 

perpendicular was not modelled using SPH as the keel was similar in shape to a flat 

plate, which can cause air compressibility effects that are unable to be resolved by 

the present algorithm.  

 

The width and depth of the Mejiro tow tank was unknown, so the same tank used to 

simulate the Whelan (2004) wedge experiments was also used here. The beam of the 

V-form hull was 0.83 m – approximately 65% larger than the Whelan (2004) wedges 

– but at maximum draft (0.36 m) the width of the cross-sections at the water line did 

not exceed 0.65 m. The 2.4 m wide and 1.0 m deep tank was considered large 

enough as the significant elements of the fluid flow were not affected by the presence 

of the solid tank boundaries. For consistency, the sound speed imposed on the 

Hermundstad and Moan (2005) SPH hull model was also used for the V-form hull 

simulations (100 m/s), as the maximum expected flow speed (7 m/s during the most 

extreme water entry of ଷܲ) did not exceed the mach number criterion. Furthermore 

the same coefficients applied to the artificial viscosity, XSPH and tensile instability 

corrections during the SPH dam break model were also implemented here. 

 

Each cross-section was initially placed a distance 3݄ above the free water surface. 

The tank was filled with 384 000 fluid particles at a resolution of 400 particles per 

metre and the relative vertical velocity profiles generated by SEAWAY were then 

imposed on each two-dimensional hull section. At nine forward speeds ranging from 

1.2 m/s through to 2.8 m/s, all three cross-sections were modelled and then combined 

to simulate the V-form hull slamming.  

 

Figures 6.8 and 6.9 show the bow striking the water surface (indicated by the solid 

blue line) at forward speeds of 1.6 m/s and 2.0 m/s respectively. At 1.6 m/s the third 

cross-section ଷܲ strikes the trough of the wave 0.05 s before ଶܲ and 0.10 s before ଵܲ. 

Figure 6.8b illustrates the initial formation of the jet 0.13 s after ଷܲ strikes the free 

surface, which due to the difference in impact time is more evolved at ଷܲ than ଵܲ.  
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Figure 6.8 – SPH particle positions at 1.6 m/s forward speed (a) 0.07 s, 

(b) 0.13 s and (c) 0.33 s after initial impact with the free surface. The 

blue line indicates the undisturbed instantaneous free surface elevation. 



Slamming of a Slender Ship in Regular Waves 

159 
 

 

 

 

 

 

Figure 6.9 – SPH particle positions at 2.0 m/s forward speed (a) 0.07 s, 

(b) 0.13 s and (c) 0.33 s after initial impact with the free surface. The 

blue line indicates the undisturbed instantaneous free surface elevation. 
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A further 0.2 s later the jet at ଷܲ has slowed and begun to fall back towards the free 

surface while the jets at the other two cross-sections have peaked in height above the 

initial still water level and begun to fragment. At a forward speed of 2.0 m/s, the 

cross-sections strike the water surface just 0.01 s apart as the incident wave begins to 

climb away from the trough. Pressure sensor ଵܲିଵ experiences a maximum pressure 

at this speed (see Figure 6.12a) due to the particularly violent fluid motion. Despite 

their differences in shape, each cross-section causes the fluid jets to exhibit similar 

behaviour. 

 

The pressure field immediately surrounding each hull cross-section 0.15 s after 

impacting the free surface at 2.0 m/s forward speed is illustrated in Figure 6.10. The 

relative motion between the hull and the water surface is much more pronounced at 

ଵܲ (1.06 m/s entry speed), yet the pressure field is less disturbed than that 

surrounding ଷܲ (0.58 m/s entry speed). Hull section ଷܲ has a much flatter keel 

causing a larger increase in fluid pressure during impact. The greater pressure then 

forces much larger amplitude pressure waves to propagate through the tank.  

 

The water entry of hull section ଶܲ (forward speed 2.0 m/s) is studied in detail in 

Figure 6.11. At the first time instant, 0.1 s after initial impact, the pressure 

immediately adjacent to the keel has risen above hydrostatic to approximately 3.0 

kPa. This higher pressure has forced pressure waves to propagate away from the 

surface, but 0.1 s later (Figure 6.11b) the waves have dissipated as the vertical speed 

has slowed significantly. By this point in time a jet has formed and began to 

fragment. Finally, 0.3 s after impact, the vertical speed of the hull section has 

reduced to 0 m/s and the pressure field has returned to a near hydrostatic profile.  

 

Ochi (1958) measured the peak pressure at the keel of each hull cross-section using 

0.02 m diameter brass resistance-type strain gauges (see Figure 6.12). The SPH 

pressures were measured using the same method described in Section 4.4 and 

smoothed using a 100 Hz low pass filter. The magnitude of the peak pressures 

predicted by the SPH algorithm at sections ଵܲ and ଶܲ were in fair agreement over the 

entire forward speed range, however it is worth noting that more information on the 

experimental motions would be required before concluding if the peak pressure 

differences are due to the calculated motions or the SPH simulation. 
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Figure 6.10 – Pressure field surrounding each section (a) ଵܲ 0.093ܮ௣௣, 

(b) ଶܲ 0.133ܮ௣௣, and (c) ଷܲ 0.174ܮ௣௣, 0.15 s after initially striking  

the water surface at a forward speed of 2.0 m/s. 
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Figure 6.11 – Pressure field surrounding the second section ଶܲ (a) 0.1 s, 

(b) 0.2 s and (c) 0.3 s after initial impact with the water surface.  

The model had a forward speed of 2.0 m/s. 
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Figure 6.12 – Peak pressure measured by the sensors located on the keel 

of sections (a) ଵܲ 0.093ܮ௣௣, (b) ଶܲ 0.133ܮ௣௣, and (c) ଷܲ 0.174ܮ௣௣.  

 

The peak SPH pressures recorded at ଷܲ (see Figure 6.12c), are approximately twice 

as large as the experimental values. This is primarily due to the flat shape of the keel 

compressing air between the hull and the water surface in the experiment. The 

present SPH algorithm is not yet able to accurately model the interaction between the 

two fluids and the hull section. 

 

Ochi (1958) also reported on the peak pressure measured at the other three pressure 

sensors at each cross-section, but only at a forward speed of 2.2 m/s. At this forward  
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speed the SPH peak pressure consistently overestimated the experimental peak 

pressure at all but one of the pressure sensors (see Figure 6.13). Three-dimensional 

effects (such as longitudinal water pile-up during the slam), incorrect calculation of 

the ship’s motions and/or the use of a single fluid model that neglects the presence of 

air are probable causes of the over-estimation. The latter is likely for pressure sensor 

ଷܲିଵ as it lies on the flat bottom of the third hull cross-section. Nevertheless, at the 

foremost sections the decreasing trend in peak pressure between each sensor is 

similar for both the SPH 2D + t approach and the experimental study of Ochi (1958). 

 

 
 

 
 

Figure 6.13 – Peak pressure measured by each sensor on cross-sections 

(a) ଵܲ 0.093ܮ௣௣, (b) ଶܲ 0.133ܮ௣௣, and (c) ଷܲ 0.174ܮ௣௣. The pressures 

were recorded at a forward speed of 2.2 m/s. 
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6.4 Summary 

In this chapter the SPH model was validated for use in the prediction of slamming 

loads for slender hulls in regular waves. The slamming data recorded on a model hull 

studied in an ocean wave basin by Hermundstad and Moan (2005) was used as a 

validation test case. During the experiments the relative vertical motion between the 

hull and the water surface was recorded and found to follow a near sinusoidal 

pattern, differing from the constant and variable velocity hull section water entries 

previously simulated in Chapter 5. Therefore to enable the SPH algorithm to simulate 

the Hermundstad and Moan (2005) hull section, the model was forced into still water 

with a prescribed velocity profile. The pressure recorded at two slamming panels 

during the experiment was found to agree with that sampled during the SPH 

simulation.  

 

The good validation results led to the development of a 2D + t SPH method. The 

method enabled the water entry of a V-form bow to be visualised at a number of 

different forward speeds based on the heave and pitch moments predicted by the 

commercial seekeeping software SEAWAY. The peak pressures recorded along the 

keel were comparable to those measured by Ochi (1958) across all forward speeds, 

however as the experimental data provided did not include full pressure traces or 

detailed measurements of the hull’s motions it is not possible to draw a conclusion 

on the viability of the model. The differences between the experimental and SPH 

pressure peaks are possibly due to the uncertainty introduced when using SEAWAY 

to predict the hull motions and because some three-dimensional effects are neglected. 

Furthermore the pressure of the fluid surrounding hull cross-sections with low 

deadrise angles during water entry is influenced by the presence of air during 

experimental studies, so the SPH model should be extended to include both air and 

water. Further validation work based on the recorded data of other model hull forms 

in tow tanks and ocean wave basins is recommended in order to fully understand the 

limitations of the 2D + t SPH model. 
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Chapter  7  

Conclusions and Recommendations 

 

7.1 Summary and conclusions 

A hybrid Matlab/C++ two-dimensional smoothed particle hydrodynamics algorithm 

was developed with the aim of modelling bow slamming of ships in regular ocean 

waves. The discrete forms of the symmetric momentum equation and the continuity 

equation formed the basis of the algorithm and were governed by the Gaussian cut-

off kernel. Applying the equations of motion to a set of disordered SPH particles 

leads to numerical drift and an inherent lack of stability, so a number of corrections 

were introduced to the algorithm in order to improve stability. The artificial 

viscosity, tensile stability correction, XSPH variant and density reinitialisation 

routine all contributed to the development of a stable SPH algorithm with little 

numerical drift. 

 

The SPH algorithm was successfully validated against two benchmark test cases that 

were free from the influence of external forces. The evolution of the initially circular 

drop of fluid with a prescribed initial velocity field confirmed that the algorithm 

satisfied the kinematic and dynamic free surface boundary conditions. The free 

surface definition improved with an increase in resolution and a smooth pressure 

field was maintained by introducing the density reinitialisation routine. The evolution 

of the initially square patch of fluid tested the influence of the tensile stability control 

by imposing a large negative pressure. Implementing the correction forced the fluid 

particles to maintain regular spacing and prevented the formation of voids. Both test 

cases were found to be in good agreement with their respective analytical solutions 

for the pressure field and free surface position. These results would not have been 

possible without the stabilising properties of the corrections. 
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Solid boundaries were introduced following the validation of the aforementioned free 

surface problems and were modelled using the ghost particle method. The 

effectiveness of the ghost particle method was evaluated by simulating fluid 

contained in a static tank and the two-dimensional dam break. A smooth hydrostatic 

pressure field was maintained in the tank despite small amplitude oscillations in the 

particle positions. The SPH dam break was found to agree with the height and 

pressure sensor results of Zhou et al. (1999) up until the void formed by the 

overturning fluid collapsed upon itself. A significant reduction in the system energy 

was noted after this point because the SPH algorithm was single phase and unable to 

include the effect of air on the model. 

 

The dam break and subsequent wall impact was an ideal preparation test case for 

simulating the impact of a falling body on an initially still water surface. The wedges 

and hull sections modelled consisted of a number of straight line solid boundaries 

which met at a series of sharp corners. Applying the standard ghost particle 

technique resulted in an increase in the particle number density at each intersection 

point. The introduction of a scaling function which acted on the kernel reduced the 

particle number density imbalance and prevented the formation of large amplitude 

pressure waves.  

 

The water entry of a wedge moving at a constant vertical speed was then modelled 

and the total load and neighbouring pressure field was found to be in agreement with 

the experimental results of Breder (2005). The wedges were then allowed to 

dynamically respond to the local pressure field and the simulated acceleration, 

velocity and pressure at a number of sensors on 15° and 25° deadrise wedges was 

recorded. The peak SPH pressures were found to be in agreement with the analytical 

approach proposed by Wagner (1932) and a comparison with the experimental data 

measured by Whelan (2004) also showed good agreement, which made it possible 

for the algorithm to be extended to free drop tests of hull sections with a more 

complex geometry. Aarsnes (1996) measured the load and pressure at a number of 

sensors on a typical flared bow section. An SPH model of the bow section was 

simulated and the total load and pressure at each sensor was found to agree with the 

experimental study. Each of the drop test simulations secured confidence in the 

ability of the SPH algorithm to resolve hull impact problems.  
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The complexity of the SPH slamming problem was increased by simulating the water 

entry of a given bow cross-section at forward speed. The ocean wave basin 

experiments of Hermundstad and Moan (2005) measured the relative vertical motion 

between a slender hull with a flared bow and the water surface. The slamming 

pressure at two panels on a model hull in regular waves was also recorded. Slamming 

was found to have negligible impact on the relative motions during the experiment, 

so the SPH model was forced into still water with the measured (Hermundstad and 

Moan, 2005) relative vertical velocity profile. The agreement found between the SPH 

and experimental pressure traces at each panel confirmed that the relative vertical 

velocity profile could be used to determine the slamming loads on a slender hull with 

a longitudinally flat keel in the bow section. 

 

Finally, a 2D + t method was implemented using a combination of the commercial 

seakeeping software SEAWAY and the SPH algorithm. SEAWAY was employed to 

calculate the motions of a slender hull in regular waves and the SPH algorithm then 

imposed these ship motions on model cross-sections to determine the slamming 

loads. Comparisons with the peak pressures measured on a V-form hull with a 

longitudinally flat keel (Ochi, 1958) showed that the 2D + t method can be used to 

predict slamming loads on a slender hull. Nevertheless the introduction of SEAWAY 

(Ochi (1958) did not publish the ship motion data) does introduce an uncertainty in 

the ship motion predictions that can carry through to the slamming load calculations. 

The 2D + t method also suffers from a lack of ability to resolve three-dimensional 

effects such as the longitudinal fluid velocity for non-flat keels. 

 

In conclusion the developed single fluid SPH algorithm has been shown to be 

suitable for the simulation of free surface flows with impact throughout the 

validation process. The application to three-dimensional bow slamming via a 2D + t 

method was satisfactory but carries with it several limitations, particularly when 

considering three-dimensional effects and the effect of air compressibility on low 

deadrise hull sections. Future work, as discussed in the next section, has the potential 

to resolve these limitations in forthcoming versions of the SPH algorithm. 
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7.2 Recommendations for future work 

The work presented in this thesis has the potential to be expanded in a number of 

different directions, the first of which is the development of a two-fluid SPH 

algorithm that is able to account for the effect of air during water impacts. Whelan 

(2004) drop tested a number of multi-hulled cross-sections as well as the two-

dimensional wedges described in Section 5.3. The presence of entrained air was 

noted after the arches of catamaran cross-sections fell below the still water level. The 

current SPH algorithm is unable to model air entrainment and cushion effects; which 

was evident in the simulation of a 25° deadrise wedge with side panels (see Figure 

7.1). 

 

 

 
 

Figure 7.1 – SPH particles coloured by pressure after a 25° deadrise 

wedge with side panels was dropped from a height of 0.06 m. Images are 

shown at (a) 0.06 s and (b) 0.08 s after initial impact with the surface. 
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The initial water entry of the 25° deadrise wedge with side panels is smooth and 

approximates the motion measured by Whelan (2004), however as the simulation 

progresses in time the arches fill rapidly and the local fluid pressure exceeds 20 kPa. 

This spike in pressure is much higher than the 10 kPa recorded in the experiments 

and causes large pressure waves to propagate through the tank. Including air in the 

model will enable the air compression and entrainment to be simulated and will have 

the potential to produce pressure and acceleration traces that more closely resemble 

those measured by Whelan (2004). 

 

Most of the catamaran hull sections examined by Whelan (2004) were not simple 

wedges with side panels attached. Some sections closely represented the curved 

catamaran hulls produced by Incat in Tasmania, Australia, but these are difficult to 

simulate using the ghost particle technique in SPH. The current method for applying 

ghost particles to curved sections is not well advanced and will need to be if mono 

and multi hulled cross-sections of considerable curvature are modelled. Other 

boundary methods such as the repulsive force method are already able to model 

curved sections but cannot maintain a relatively smooth pressure field like the ghost 

particle method. Development of a technique – possibly using conformal mapping – 

to apply ghost particles on a curved surface will improve the approximation of the 

fluid-structure interaction. 

 

Currently the SPH code applied in this thesis is limited to run on dual and quad core 

computers and has only been able to model approximately 400 000 particles within a 

reasonable time frame. The introduction of variable particle sizes and smoothing 

lengths would enable the same total number of particles to be modelled, but would 

concentrate smaller particles in areas of the greatest interest. The far field would then 

be approximated by larger particles. This will increase the number of particles 

located at each pressure sensor, improving the accuracy of the approximation. 

 

The current 2D + t algorithm was shown to be able to predict slamming loads on 

slender mono hulled ships, but it does miss three-dimensional effects. The model 

could be extended to include the horizontal component of the slam or the relative 

velocity along the normal of the keel in order to include these three-dimensional 

effects. Finally the capabilities of the SPH algorithm could be broadened so three-
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dimensional slamming of a slender mono hulled ship can be simulated. However, 

performing full three-dimensional studies requires a significantly larger number of 

particles, which will not be possible on standard dual and quad core computers. 

Therefore the algorithm must be divided into a parallel form that can run on high 

performance computing systems and/or graphical processing units. 

 

A parallelised version of a three-dimensional SPH algorithm could be used in 

conjunction with commercial seakeeping software such as SEAWAY to predict full 

three-dimensional bow slamming on a variety of ships. This approach would be ideal 

because SPH is most suited to modelling transient short time duration problems.  
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Appendix A 

SPH Sound Speed and Compressibility 

 

A.1 Introduction 

Smoothed Particle Hydrodynamics simulations of low-speed problems involving 

water are often conducted by approximating the real fluid with one that is artificially 

more compressible. This approximation is applied by reducing the fluid sound speed 

(see Section 3.2.4) and is possible if the speed of sound is much greater than the 

maximum expected fluid flow velocity. The approximation is also necessary because 

the full sound speed requires a very small time step by the Courant–Friedrichs–Lewy 

condition (3.104), which in turn forces a long, inefficient computation time (see 

Table A.1). In this thesis the fluid sound speed was reduced to between 5% and 20% 

of its typical value in order to model efficiently the fluid contained within a static 

tank (see Section 4.3), the breaking of a dam (see Section 4.4) and the still water 

impact of a variety of two-dimensional objects (see Chapters 5 and 6).  

 

To observe the effect the reduced sound speed had on the still water impact of a two-

dimensional body, the experimental drop test of a 25° deadrise wedge conducted by 

Whelan (2004) was simulated at sound speeds of 100 m/s (reduced) and 1500 m/s 

(full). Both wedges were dropped from a normalised height of ܪு
כ ൌ 0.61 and were 

modelled on a dual core, 2.40 GHz desktop PC, over an impact period of 0.15 s. The 

particle resolution was reduced from ܴ ܪ ൌ 400⁄  (see Section 5.3) to ܴ ܪ ൌ 150⁄  so 

that the actual sound speed simulation could be completed within a reasonable time. 

At this lower resolution, the wedge impact simulation with the full sound speed took 

approximately 15.5 times longer to complete than the reduced sound speed model 

(see Table A.1). Therefore using the full sound speed at a higher resolution is simply 

not feasible in terms of the required computation time. 
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Characteristics ܿ௦ ൌ 100 m/s ܿ௦ ൌ 1500 m/s 

Particle Resolution ܴ ܪ ൌ 150⁄  ܴ ܪ ൌ 150⁄  

Number of Particles 54000 54000 

Time Step Size 1.3 ൈ 10ିହ s 8.6 ൈ 10ି଻ s 

Total Time Elapsed 2 hrs 7 min 32 hrs 38 min 

 

Table A.1 – Characteristics of the two SPH wedge impact simulations. 

 

A.2 SPH results 

The pressure fields surrounding the 25° deadrise wedge modelled using sound speeds 

of 100 m/s and 1500 m/s are illustrated in Figure A.1 and Figure A.2. Both 

simulations appear to be quite different in form, particularly when looking at the 

particle spacing. At the low sound speed the particles are easily displaced from their 

initial Cartesian lattice and form a coarse jet which is visible 0.12 s after the keel 

strikes the still water surface (see Figure A.2a). However, at the full sound speed the 

particles appear to maintain long strings that deform, but do not break and form a jet.  

 

One possible explanation for the fluid particles maintaining these long structures is 

the artificial viscosity correction (see Section 3.3.1). The increase in sound speed is 

directly reflected in the strength of the artificial viscosity correction (3.88), therefore 

the particles are encouraged to maintain an even separation for the duration of the 

simulation. This also influences the local pressure field as the particles are 

compressed along the strings near where the wedge surface meets the initial still 

water level. The artificial viscosity has not allowed the particles to scatter and so the 

pressure further away from the wedge surface is greater than that seen at the lower 

sound speed.  

 

Despite the differences noted in the particle positions and the local pressure field, the 

wedge acceleration, velocity and pressure traces are very similar. Figure A.3a 

compares the acceleration recorded in the experiment with both the low and high 

sound speed SPH simulations. The high sound speed acceleration peaks slightly 

earlier in time at approximately the same level as that recorded during the low sound  
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speed simulation, and this is reflected in a reduction of the vertical impact speed of 

the wedge. The strength of the artificial viscosity is again the main probable cause of 

this difference as the strings of fluid particles are compressed in the high sound speed 

simulation, causing the local fluid pressure immediately adjacent to the keel to rise 

slightly above that of the low sound speed model. This slows the wedge and causes 

the delay in peak pressures – relative to the experimental and low sound speed data – 

seen at each of the individual pressure sensors.  

 

 

 

 

 

 

Figure A.1 – Pressure field surrounding the 25o deadrise wedge 0.06 s 

after initial impact with the free surface. The fluid sound speed was  

set at (a) ܿ௦ ൌ 100 m/s and (b) ܿ௦ ൌ 1500 m/s. 
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Figure A.2 – Pressure field surrounding the 25o deadrise wedge 0.12 s 

after initial impact with the free surface. The fluid sound speed was  

set at (a) ܿ௦ ൌ 100 m/s and (b) ܿ௦ ൌ 1500 m/s. 

 

Regardless of the lag, the peak pressures of the high sound speed model recorded at 

all four pressure sensors (see Figure 5.10b for pressure sensor locations) are 

comparable with the low sound speed and experimental peaks. However, after the 

peak the pressure recorded at each sensor of the high sound speed model is slightly 

higher than that recorded both in the experiment and the low sound speed model. 

This elevated pressure is again due to the increase in absolute artificial viscosity 

causing an artificial increase in the local fluid pressure. 
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Figure A.3 – The vertical acceleration, vertical velocity and pressure at 

four pressure sensors of a 25° deadrise wedge dropped from ܪு
כ ൌ 0.61. 
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An attempt was made to alleviate the influence of the artificial viscosity on the high 

sound speed simulation by reducing the value of the coefficient α in equation (3.88). 

Initial entry of the wedge was modelled successfully, but after 0.01 s the simulation 

deteriorated and the properties of the wedge and the fluid surrounding it could not be 

determined accurately. Numerical drift is one possible reason for this deterioration as 

the time step size was 150 times smaller than the low sound speed model. The 

weaker artificial viscosity was then no longer able to quell the influence of the very 

small numerical errors that can occur at each time step. Therefore with comparable 

artificial viscosity strength, the current version of the SPH code cannot resolve the 

water entry of a wedge using the full sound speed. 

 

A.3 Summary 

In conclusion the high sound speed and low sound speed SPH models were 

comparable in terms of the acceleration and peak pressures recorded during the still 

water impact of a two-dimensional wedge. However, some differences were noted in 

the particle positions, most probably due to an increase in the strength of the artificial 

viscosity correction. Reducing the artificial viscosity strength demonstrated that the 

full sound speed model suffered from numerical drift due to the very small time step. 

In spite of this, the comparison has shown that the SPH wedge water entry models 

conducted at the lower artificial sound speed do agree with those performed using the 

full sound speed, indicating that the weakly compressible approximation is valid.  
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Appendix B 

Constant and Variable Velocity Water 

Entries of a 15° Wedge 
 

The water entry of triangular wedges at both constant and variable entry speed was 

studied in Chapter 5 of this thesis. However the constant entry speed experiments of 

Breder (2005) and the variable entry speed drop tests of Whelan (2004) could not be 

compared directly because the wedges were not of a common deadrise angle. So in 

order to investigate the difference between the two types of water entries, the 15° 

deadrise wedge drop tested by Whelan (2004) was modelled at both variable and 

constant velocity using the SPH algorithm. 

 

The 15° deadrise wedge dropped by Whelan (2004) from a normalised height of 

ுܪ
כ ൌ 0.73 (see Section 5.3.2) impacted the initially still water surface at 1.57 m/s. 

The constant velocity water entry modelled using the SPH algorithm was forced into 

the water at this speed, while the variable velocity water entry was allowed to 

respond to the loads caused by the increase in local fluid pressure, causing the 

vertical speed of the wedge to decrease over time (see Figure 5.13b).  

 

The pressure recorded at three sensors located on the surface of the wedge (see 

Figure 5.10a) and the total vertical force is illustrated in Figure B.1. The vertical 

force measured during both SPH simulations rises at approximately the same rate as 

both wedges begin to break through the still water surface. After approximately 0.01s 

the variable velocity wedge begins to slow and the force peaks just below 3.0 kN. 

The force on the constant velocity wedge rises above 8.0 kN after 0.03 s (the point at 

which the wedge becomes fully wetted), which is considerably greater than the 

variable velocity water entries. 
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Figure B.1 – The vertical acceleration and fluid pressure at four  

sensors of a 15° deadrise wedge dropped from ܪு
כ ൌ 0.73. 

 

An explanation for the greater force on the constant velocity wedge can be found by 

studying the pressure measured at each of the sensors. The pressure sensor ଵܲ, 

located slightly above the keel, records peak pressures in both SPH models that are 

comparable to that measured by Whelan (2004) and in agreement with Wagner’s 

(1932) approximation (see Figure 5.17). However at ଶܲ and ଷܲ the peak pressure 

recorded during the constant velocity water entry is approximately the same, while 

the peak pressures recorded during both the experimental and numerical variable 

velocity entries have decreased. This decrease in pressure is due to the small high 

pressure region – found on the surface of the wedge at the initial still water level (see 
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Figure 5.11) – decreasing in magnitude as the wedge slows, also causing a reduction 

in the measured and modelled vertical force. 

 

In summary, the constant and variable velocity water entries display similar 

behaviour in terms of the pressure and vertical force traces early in the simulations. 

However, once the vertex entered the initially still water, the recorded pressure on 

the remainder of the wedge, and the resulting loads experienced, were much smaller 

for the variable entry speed case. 
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