
Copyright © 2013 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

Energy-Aware Two Link-Disjoint Paths Routing
Gongqi Lin, Sieteng Soh, Mihai Lazarescu

Department of Computing
Curtin University of Technology

Perth, Australia
{gongqi.lin@postgrad., s.soh@,

m.lazarescu@}curtin.edu.au

Kwan-Wu Chin
University of Wollongong

Wollongong Australia
kwanwu@uow.edu.au

Abstract— Network robustness and throughput can be improved
by routing each source-to-terminal (s, t) demand via two link-
disjoint paths (TLDP). However, the use of TLDP incurs higher
energy cost. Henceforth, we address the problem of minimizing
the energy usage of networks that use TLDP. Specifically, our
problem is to maximally switch off redundant network links
while maintaining at least 0≤T≤100% of (s, t) TLDP in the
network, for a given T, and limiting the maximum link utilization
(MLU) to no greater than a configured threshold. To address this
problem, we present a fast heuristic, called TLDP by Shortest
Path First (TLDP-SPF), and extensively evaluate its performance
on both real and/or synthetic topologies and traffic demands. Our
simulation results show that TLDP-SPF can reduce network
energy usage, on average, by more than 20%, even for MLU
below 50%. As compared to using Shortest Path routing, while
reducing energy by about 20%, TLDP-SPF does not significantly
affect (s, t) path length, even for MLU<50%.

Keywords – algorithm; robustness; thoughput; power savings;
routing; maximum link utilization; two link-disjoint paths

I. INTRODUCTION
Increasing the robustness and reliability of networks are of

concern to Internet Service Providers (ISPs), especially given
the recent emergence of real time applications such as video on
demand and voice over IP [1, 2, 3, 4]. To this end, previous
studies [5, 6, 7] have combined link/node-disjoint paths with
QoS routing to guarantee various performance requirements,
i.e., reliability and delay. The authors of [5] and [7] consider
restorable QoS routing. Specifically, the algorithm in [7]
constructs a restoration topology containing a set of bridges,
each of which provides backup for a portion of the primary
QoS path. In [6], the authors present a problem, called multiple
constrained link-disjoint path pair (MCLPP), to find link/node-
disjoint paths in multiple dimensions, and prove its NP-
Completeness when one or more link metrics are used. The
existence of high path redundancy means there is opportunity
to save energy via power-aware traffic engineering [8].

 Our paper describes an optimization problem that aims to
reduce the energy usage of networks that support two link-
disjoint paths (TLDP). Specifically, our problem aims to
reduce network energy usage while ensuring that a network
maintains at least 0≤T≤Tmax percent of all possible (s, t) TLDP
and each link’s maximum link utilization (MLU) is at most
0≤UT≤1.0; Tmax is the percentage of the total number of (s, t)
paths that have at least one TLDP. Specifically, to provide
energy efficient, fault-tolerant and high bandwidth routing

service to upper layer applications, we route each (s, t) demand
through its (s, t) TLDP, if one exists, while powering off
idle/unused links to reduce energy expenditure. The MLU
constraint is important because ISPs typically bound links’
MLU in order to minimize forwarding delay and to absorb any
spike in traffic resulting from network failures [10]. In
summary, our contributions are twofold: firstly, we pose a
problem, called Energy-Aware Two Link-Disjoint Paths
Routing (EAR-TLDP). Our problem is important in reducing
the energy usage of networks that employ TLDP to improve
fault-tolerance and/or bandwidth/throughput; secondly, we
propose a novel algorithm, called Two Link-Disjoint Paths by
Shortest Path First (TLDP-SPF), to solve EAR-TLDP. Our
algorithm identifies network links that can be powered-off
under two constraints: the threshold T and the maximum link
utilization UT. To the best of our knowledge, this is the first
algorithm that jointly reduces the number of links in a wired
network whilst satisfying these two constraints. We note that
reference [8] and [9] have proposed power-aware routing
algorithms, but they do not require their generated paths to be
link disjoint.

The rest of the paper is organized as follows. Section II
defines notations and EAR-TLDP. Section III describes TLDP-
SPF. Section IV evaluates TLDP-SPF using both real and/or
synthetic topologies and data. Finally, Section V concludes the
paper.

II. PROBLEM FORMULATION

In this section, we first outline all definitions and notations,
before formalizing the problem at hand.
A. Notation

Consider a computer network that is represented by a
weighted directed graph G(V,E), where V is the set of n nodes,
and E is the set of m links. Each node in V represents a router,
and each link e∈E between nodes vi and vj (vi, vj∈V, vi≠vj)
represents a communication channel with finite capacity/
bandwidth c(e)>0. For edge e, let f(e) be the total flow on an
edge e that has 0≤f(e)≤c(e), and hence, its utilization is given
by u(e)=f(e)/c(e). This utilization is bound by a given threshold
0≤UT≤1.0; i.e., any u(e) cannot be larger than UT. A link’s
remaining capacity is defined as r(e)=UT*c(e)-f(e)≥0. We
assume each link e can be switched-off independently.

Let D = {di=(s, t, dst) | demand i from a source node s = 1,
…, n to a terminal node t = 1,…, n that has traffic flow dst}.

TLDP-SPF(G(V,E),D,T,UT)
Begin
Ed = 𝜱, Er = E;
/*Phase 1*/
1) Generate KSPi in G(V,E) for each demand di;
2) Call TLDP-Routing(G(V, E), D, T, KSP);
/*Phase 2*/
3) For each e∈Er do

 If f(e) = 0 then
Ed = Ed + e; Er = Er – e; // remove e

 Else
 r(e) = UT*c(e) – f(e); // update the remaining capacity
End-For

4) For each e ∈ Er in descending order of its r(e) do
 //routing D in G with one less edge is feasible
 If TLDP-Routing(G(V, Er-e),D,T, KSP) = true then
 Ed = Ed + e; Er = Er – e; // remove e
 Go to 3);

 End-For
 Return Ed

End

TLDP-Routing(G(V, Er),D,T, KSP)
Begin
count =0;
 For each di ∈D do
 /* Sub-Part 1 */

 Call TLDPP(G(V, Er), KSPi) to generate TLDi; //KSPi ∈ KSP
 /* Sub-Part 2 */
 If count < T*|D| then
 If |TLDi| >0 then

 If Distribute_TLD (KSPi , TLDi, dst)=true then
 count++;
 Else If Distribute_SP(KSPi, dst) = false then

 Return false;
 Else

 If Distribute_SP(KSPi, dst) = false then
 Return false;
 End-For
 Return true;
End

TLDPP(G(V, Er), KSPi)
Begin
 For each spix ∈ KSPi do
 Generate G1(V, E1) from G(V, Er) by deleting all edges in spix;

 Generate spiy, the (s,t) shortest path from G1;
 If G1 contains spiy then
 Store (spix, spiy) into TLDi
 End-For

 Return TLDi.
End

For each demand di, let SPi={spiq | all (s, t) path for di indexed
by q>0}, and TLDi={tldip| all (s, t) TLDP for di indexed by
p>0}. Note that tldip={spix, spiy}, where spix, spiy ∈SPi have no
common links. Let Rj be a possible set j that contains |D|
number of (s, t) single or multi paths with sufficient capacity to
route all demands in D, i.e., Rj={Rji | a set of one or more paths
in SPi and/or in TLDi that can be used to route di}. The set of
all possible solutions to route all demands in D is denoted as
R={Rj | j=1, 2, …, |R|}. The length of Rji, L(Rji), is equal to the
maximum hop count among all paths in Rji for di, while its
bandwidth, B(Rji), is calculated from the sum of the smallest
r(e) for each path in Rji, and by the definition of Rji, we have
B(Rji)≥dst. We assume the network has sufficient resources, i.e.,
link capacities, to route all demands. Let TPj⊆Rj be the set of
all Rji∈Rj that include at least one tldip∈TLDi, and M(Rj) be the
percentage of the total number of (s, t) pairs in Rj that are
routed over TLDPs, i.e., M(Rj)=|TPj|/|Rj|*100%. Finally, let
S(Rj) be the total number of links used in set Rj and
U(Rj)=max{f(e)/c(e)| ∀e∈Rj } be the maximum link utilization
of Rj.

B. Problem Statement
Consider a tuple (G, D, T, UT), where G (V, E) is a network

topology, D is a set of traffic demands, 0≤T≤Tmax is a given
threshold, where 0≤Tmax≤100% is the percentage of the total
number of (s, t) pairs that have at least one TLDP, i.e.,
Tmax=MAX{M(Rj)| j=1, 2, …, |R|}, and UT is the maximum link
utilization threshold. Our Energy Aware Two Link-Disjoint
Paths Routing (EAR-TLDP) problem is defined as follows.

EAR-TLDP: Find a set of paths Rmin∈R that can be used to
route all demands in D such that

 S(Rmin) = MIN {S(R1), S(R2), …, S(R|R|) }, Ri∈R (1)
 M(Rmin) ≥ T (2)
 U(Rmin) ≤ UT (3)

Eq. (1) computes the solution, i.e., to find Rmin that contains
the minimum number of total power-on links. Eq. (2) states
that the ratio of the total number of (s, t) pairs that use TLDP
for routing in Rmin must be no less than a given threshold T. Eq.
(3) ensures the MLU of links must be no greater than UT. Each
link e in Rmin can be either on or off, and therefore our EAR-
TLDP is a mixed integer-programming (MIP) problem, a well-
known NP-hard problem [11].

III. GREEN ROUTING ALGORITHMS
We now present our heuristic called Two Link-Disjoint

Paths by Shortest Path First (TLDP-SPF), see Fig. 1, to solve
EAR-TLDP. Initially, the set of deleted (remaining) links Ed
(Er) is an empty set (E); TLDP-SPF produces Ed as its output.

A. TLDP-SPF Algorithm
As shown in Fig. 1, TLDP-SPF has four main steps, divided

into two phases: initialization and re-routing. The initialization
phase first generates a set of candidate paths (Step 1), and then
uses function TLDP-Routing(), described later, to distribute
the traffic of all demands in D through candidate paths (Step 2),
and calculate Tmax. The second phase determines the links that
have to be switched off such that remaining links are sufficient

to route all traffic demands while satisfying the threshold
0≤T≤Tmax and MLU constraints.

One can use Yen’s algorithm [12] in Step l to generate the
k≥1 shortest paths, KSPi={spi1, spi2, …, spik}, for each demand
di; we assume each link has a delay of one unit, and thus each
(s, t) path length is equal to its (s, t) hop count. Note that for
each demand di, we have KSPi⊆SPi. Let KSP={KSPi|
i=1,…,|D|} be the set of all k-shortest paths for all demands in
D. In Step 2, our algorithm calls function TLDP-Routing(),
shown in Fig. 2, that contains two sub-parts to distribute traffic
in the network.

Figure 1. TLDP-SPF algorithm

Figure 2. Function TLDP-Routing()

Figure 3. Function TLDPP()

Distribute_TLD (KSPi , TLDi, dst)
Begin
 //Distribute traffic with TLD; let tldip ={spix, spiy}

 For each tldip∈ TLDi in ascending order of L(tldip) do
 If dst /2 ≤ B(spix) then //let B(spix) ≤ B(spiy)

// Route traffic flow dst/2 through spiyand spix
Increase f(e) of each edge e in spix and spiy by dst/2;
Insert spiy and spix in Rji;
Return true;

 End-For
//there is no tldip with enough capacity, use the shortest tldip ; i.e., p=1

Increase f(e) of each edge e in spix by B(spix);
Increase f(e) of each edge e in spiy by B(spix);

 Insert spiy and spix in Rji;
 Return Distribute_SP(KSPi, dst – 2*B(spix));
End

Distribute_SP(KSPi, dx)
Begin
 //Distribute traffic with multiple paths routing
 For each spiq ∈KSPi in ascending order of its length do
 If dx ≤ B(spiq) then
 Insert spiq in Rji;

 Increase f(e) of each edge e in spiq by dx;
 Return true;
 Else
 Route B(spiq) flow of the traffic through spiq;
 Insert spiq in Rji;
 dx = dx - B(spiq);

End-For
End

Sub-Part 1 uses function TLDPP(), shown in Fig. 3, to
generate two-link-disjoint paths, tldip, from each spix in KSPi.
The function stores each tldip for di in set TLDi in increasing
path length order. Sub-Part 2 aims to distribute each traffic
demand in D through its TLDP, if possible, i.e., when

|TLDi|>0; otherwise, it calls function Distribute_SP(), shown
in Fig. 4, to distribute the traffic volume dx through one or more
paths in its KSPi.

Figure 4. Function Distribute_SP()

Figure 5. Function Distribute_TLD()

For each demand with |TLDi|>0, Distribute_TLD(), shown
in Fig. 5, routes traffic demand dst similar to ECMP [13]. That
is, it aims to route the traffic of di evenly through the two paths
in tldip={spix, spiy}, i.e., with dst/2 of the traffic in each path and
we assume B(spix) ≤ B(spiy). Note, B(spiq)= min {r(e)| e∈spiq}.
Specifically, Distribute_TLD() assumes the application
requires two link-disjoint paths to carry the same sized traffic
since both of them can be a protection path for each other. If
dst/2≤ B(spix), then each path carries traffic size dst/2, and the
selected TLDP is put into Rji; otherwise, each path carries
traffic of size B(spix), and the remaining traffic, e.g., dst-2*
B(spix) is routed through one or more paths in TLDi and/or KSPi.
The function updates flow f(e) of each edge e in the selected
paths.

Function TLDP-Routing() returns true if it can
successfully route all demands in D. For this case, it updates
only Rji for each affected demand di and the total flows on each
edge e, f(e), used for the demand. Otherwise, it returns false.
Notice that, for Phase 1, we assume the network contains
sufficient bandwidth to carry the traffic demands, and thus it
never returns false. Further, we set T=1 so that each demand

can be routed through its TLDP whenever possible, and Tmax,
the maximum ratio between the number of demands with
|TLDi|>0 and the total number of demands, as shown in Fig. 2,
is set to Tmax =count/|D|.

Phase 2 uses the initial distribution of traffic and Tmax
produced by Phase 1 as its inputs, and produces a set of
switched-off links and the routes of all demands in D. Step 3
switches off each link that is not used to carry any traffic in
Phase 1; i.e., each link with f(e)=0; otherwise, for all links with
f(e)>0, it calculates their spare capacity r(e)=UT*c(e)–f(e). Step
4 aims to remove a link e with the largest spare capacity since
rerouting traffic that goes through the link is more probable.
This step uses TLDP-Routing() to check if all traffic can be
routed through the remaining edges in Er, excluding e, while
satisfying the constraints that there are at least T*|D| demands
that are routed through their TLDP and each link utilization
does not exceed UT. If the function returns true (feasible), then
the step removes e from Er, and stores it into Ed. Note that for
this case the function has changed the total flow of each
affected edge, and therefore Step 3 is reused to update Er, Ed
and the remaining capacity of each edge before repeating Step
4 for the next candidate e to be switched off. If TLDP-
Routing() fails in Step 4, it recovers the status of link e, and
continue with the remaining edges in Er. Thus, Step 4 is
iterated no more than |E| times.

B. Time Complexity
Yen’s algorithm [12], used in Step 1 of TLDP-SPF, requires

O(kn(m+nlogn)) time to generate k shortest paths in a network
with m links and n nodes for each demand di; thus Step 1
requires O((|D|*kn(m+nlogn))= O((kn3(m+nlogn)) since |D|≤n2.
In Step 2, function TLDPP(), used in TDP-Routing(), requires
O(k*n2) time for each demand di, and thus requires O(n2*k*n2)
for all demands. Further, either function Distribute_TLD() or
Distribute_SP() requires, in the worst case, O(k*m) time to
route the flow of each di through its TLD or multiple paths,
respectively. Therefore the time complexity of Step 2, i.e.,
function TDP-Routing(), is O(k*n4+ k*m*n2). Step 3 is based
on the set of edges, so they take O(m) time. Step 4 takes O(m)
time to choose a candidate edge and call function TDP-
Routing(); therefore the total complexity of Step 4 is
O(m*(k*n4+ k*m*n2). Lastly, the total complexity of TDP-SPF
is O((m+1)*(k*n4+k*m*n2)+kn3(m+nlogn)) = O(k*m*n4+
k*m2*n2)= O(k*n6) since m=O(n2).

IV. EVALUATION
In this section, we provide experimental findings and

present numerical results to confirm the effectiveness of TLDP-
SPF. We show that it can achieve considerable power savings
in real networks with low impact on network performance,
such as delay and maximum link utilization.

A. Experiment Setup
Our experiments are conducted over different network

topologies and traffic matrices. We consider three topologies:
Abilene [14], GÉANT [15], and the Sprint topology derived
from Rocketfuel [16]. We used the Abilene topology and its
288 traffic matrices measured on Sep. 5th, 2004 for every 5
minutes within 24 hours – all of which are provided by the
authors of [14]. For GÉANT, the 96 traffic matrices [15] used

were collected on May 5th, 2005 at an interval of 15 minutes.
For Sprint, we set its link capacity following the method in [8],
i.e., links connecting Level-1 PoPs are 10Gb/s and the others
are 2.5Gb/s, and randomly generate a traffic matrix using the
gravity model [8].

For each network, when using shortest path routing with all
links switched-on, Phase 1 of our TLDP-SPF finds only up to
Tmax=83.3%, 100%, and 37.4% of the demands in Abilene,
GÉANT, and Sprint networks can be routed through their
TLDP, respectively. We compute the power saving ratio as the
total power of in-active links over the total power of all links in
the network. The power consumption of line-cards used in our
simulation is specified in [17]. We assume all links use OC3
line cards. Note that as the maximum delay of a single OC-3
link is around 1 ms [18], the length of Rji, L(Rji), is reported in
milliseconds. Our simulations were performed on a Linux PC
with 3.07 GHz CPU and 8 GB RAM. TLDP-SPF requires 3.2,
19.8, and 206.3 CPU seconds, to produce each result for
Abilene, GÉANT and Sprint network, respectively.

B. Research Network—Abilene and GÉANT
Fig. 6(a) shows the power savings (top) and average delay

(bottom) for the Abilene network when we set T=Tmax=83.3%,
i.e., at its highest constraint, and UT from 0.1 to 1.0.
Specifically, for each of the 10 levels of link utilization, we aim
to study the effect of reducing energy, i.e., due to switched-off
links, on the delay experienced by users while maintaining
T=Tmax. Note that TLDP-SPF could not find any links to be
switched off when we set UT≤0.2. For UT=0.3, TLDP-SPF can
switch off between 16.5% and 20% of the links except at time
16h due to insufficient network capacity during peak periods;
see top of Fig. 6(a). Further, for UT≥0.4, TLDP-SPF is able to
yield 20% energy saving while maintaining link utilization to
no more than 40%. However, as shown in the bottom of Fig.
6(a), switching off links may affect the average end-to-end
delay. While setting UT≥0.5 does not affect delay, reducing UT
from 0.5 to 0.4 forces TLDP-SPF to find longer alternative
paths, and thus increases the average delay by up to 20%.

Fig. 6(b) presents the power saving (top) and average delay
(bottom) of GÉANT network when we set T=Tmax=100%.
TLDP-SPF is able to switched off 24.67% of links in the
GÉANT network for UT=0.3 to UT=1.0, and thus we only show
the results for the threshold of MLU no less than 0.3, i.e.,
UT≥0.3. Notice that UT=0.2 and UT=0.3 produce the same
energy saving but incur different delays. Although the power
saving curve fluctuates during the day due to traffic changes, it
always remains around 20.27% ~ 25.97%. However, as shown
in the bottom of Fig. 6(b), reducing UT from 0.2 to 0.1
increases the average delay.

C. Commercial Network—Sprint
Given the traffic matrix generated as described in Section

IV.A, we scale the matrix using 10 scaling factors to generate
10 different traffics such that when the demands in each matrix
are routed using their shortest paths (SP) the MLU in the
network is 10% to 100%, with an increment of 10%. We refer
to each traffic matrix as TM_X under SP, where X is the MLU
of the network due to the traffic; e.g., TM_40 is the traffic that
produces MLU=40% when using SP to route demands in

TM_40. Finally, for each TM_10 to TM_100, we set
T=Tmax=37.4%, and run TLDP-SPF with UT from 0.1 to 1.0.

We found that TLD_SPF produces the same set of routes
for the network with TM_10, TM_20 and TM_30 since
increasing MLU from 10% to 30% only raises most traffics
slightly; hence we only report the result for TM_30. We found
similar situation for TM_40 to TM_60, and for TM_70 to
TM_80. Note that TLD_SPF failed to save energy for TM_90
and TM_100.

Fig. 7(a) shows that the power saving with TM_30
increases from 17.26% to 19.04% when UT is set from 0.3 to
0.5, and remains at 19.04% for UT>0.5. However, the average
delay increases to the highest level, i.e., 4.5 ms, when UT=0.4,
decreases when 0.5≤UT≤0.6, and remains at 4.2 ms for UT>0.6.
Fig. 7(b) and (c) show the results of TM_50 and TM_70 in
terms of power saving and average delay respectively; as
shown, they have the same trend as TM_30. However, the
latter has a UT value, i.e., 0.5 for TM_50 and 0.6 for TM_70
respectively, which means that TLDP_SPF fails to save energy
for TM_30 and TM_50 when UT is set less than its lower
bound on each of the two scenarios. Notice that average delay
does not decrease monotonically when UT increases since our
approach does not consider path delay when switching off links.

D. The Effects on Link Utilization and Path Delay
In this subsection, we show the effect of switching off links

on link utilization and path delay. We compare the link
utilization and delay when using TDLP-SPF against SP routing
as benchmark.

The top of Fig. 8(a) plots the Cumulative Distribution
Function (CDF) of link utilization for the Abilene network.
We see that more than 60% of links when using SP have
utilization of at most 0.1, as compared to at most 30% in
TDLP-SPF; thus SP is better for this case. However, while
using only 80% of total links in Abilene, each switched-on link
in TDLP-SPF has utilization of no more than 0.3, which is
better than when using SP, where links may reach a utilization
level of 0.5. We observe a similar trend for GÉANT. As shown
in the top of Fig. 8(b), almost 90% of links in SP has utilization
uij≤0.05, better than only 53.68% in TLDP-SPF. However,
while able to switch off 22.97% of total links in the network,
98.65% links in TLDP-SPF have uij≤0.1, better than 93.64% of
all links for SP. The results for Abilene and GÉANT show that
TDLP-SPF is able to distribute traffic flows more evenly than
SP routing. The bottom of Fig. 8(a) and 8(b) plot the CDF of
the path delay for Abilene and GÉANT, respectively. Both
figures show shorter hop counts when using SP. This is
expected because SP routes each traffic through its shortest
path and hence is optimal in terms of path delay. Further, SP
routes all traffic demands through more switched-on links,
providing more options on shortest paths, than TLDP-SPF.
However neither SP nor TLDP-SPF produces path longer than
6 ms.

E. The Effects of Threshold T on Energy Savings
As shown in Fig. 9(a), the average energy saving on the

Abilene network is 46.38%, when T is set to 0%, but reduces
sharply to around 20% when T≥13.3%. Similarly, Fig. 9(b) and
Fig. 9(c) show the average energy saving on GÉANT and

Sprint decreases by more than half, from 52.7% to 23.26% and
from 39.29% to 19.05% when T increases from 0% to 100%
and from 0% to 37.4%, respectively. Notice that for all three
networks, after a sharp decline in energy saving at the
following T values, T=13.3%, T=15%, and T=8% for Abilene,

GEANT, and Sprint respectively, increasing T does not
significantly affect their respective energy saving. Thus,
networks that support TLDP should use TLDP-SPF with the
highest T possible, i.e., set T=Tmax to optimize the fault-
tolerance and performance of applications.

(a) Abilene (T=Tmax=83.3%) (b) GÉANT (T=Tmax=100%)

Figure 6. Energy saving and average delay on Abilene and GÉANT

 (a)TM_30 (b)TM_60 (c) TM_80

Figure 7. Energy saving and average delay on Sprint with different MLUs under SP

 (a) Abilene (T=Tmax=83.3% and UT≥0.5) (b) GÉANT (T=Tmax=100% and UT≥0.3)

Figure 8. CDF of link utilization and path delay on Abilene and GÉANT

 (a)Abilene (b) GÉANT (c) Sprint
Figure 9. Energy saving for different thresholds of T

V. CONCLUSION
We have presented a new energy-aware routing problem.

To reduce energy expenditure, we aim to maximally switch off
unnecessary links during off-peak periods such that the
remaining powered on links are sufficient to route the given
traffic demands under the constraints that the ratio of using
TLDP is not less than a given threshold T and the maximum
link utilization is not greater than a threshold UT. We have
proposed an efficient and effective heuristic technique to solve
the problem. Through extensive simulations on both real and
synthetic network topologies and traffic demands, we have
shown its benefits in reducing a network’s energy
consumption.

REFERENCES
[1] K. Xiong, Z. D. Qiu, Y. Guo, and H. Zhang. “Multi-constrained shortest

disjoint paths for reliable QoS routing. ” ETRI Journal, 31(5): 534-544,
2009.

[2] G. Apostopoulos, R. Guerin, S. Kamat, and S.K. Tripathi. “Quality of
service based routing: A performance perspective.” In ACM SIGCOMM
1998, pp. 17-28.

[3] J. Chen, R. Sundaram, M. Marathe, and R. Rajaraman. “The confluent
capacity of the Internet: congestion vs. dilation.” In IEEE ICDCS 2006.

[4] W. Zhang, J. Tang, C. Wang, and S. D. Soysa. “Reliable adaptive
multipath provisiong with bandwidth and differential delay constraints.”
In IEEE INFOCOM 2010.

[5] M. Kodialam, T. V. Lakshman, “Restorable dynamic quality of service
routing”. In IEEE Communications Magazine 2002;72–81.

[6] Y. Guo, F. Kuipers and P. V. Meeghem. “Link-disjoint paths for reliable
QoS routing.” In Int. J. Commun. Syst., 26:779-798, 2003.

[7] Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi and A. Sprintson,
“Algorithms for computing QoS paths with restoration”. In IEEE
INFOCOM 2003.

[8] M. Zhang, C. Yi, B. Liu, and B. Zhang, “GreenTE: Power-Aware
Traffic Engineering”. In ICNP, 2010.

[9] W. Fisher, M. Suchara, and J. Rexford, “Greening backbone networks:
reducing energy consumption by shutting off cables in bundled links”. In
Green Networking, 2010.

[10] M. Kodialam, T. V. Lakshman, J. B. Orlin and S. Sengupta, “ Pre-
configuring IP-over-optical networks to handle router failures and
unpredictable traffic”. In IEEE INFOCOM 2006.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, “Introduction to
algorithms (Second Edition)”. MIT Press, 2005.

[12] J. Y. Yen, “Finding the K Shortest Loopless paths in a network”. In
Management Science, 17(11), 1971.

[13] Multipath Issues in Unicast and Multicast Next-Hop Selection, available
at http://www.ietf.org/rfc/rfc2991.txt.

[14] “Yin Zhang’s Abilene TM”. http://www.cs.utexas.edu/~yzhang/
research/ AbileneTM/.

[15] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing Public
Intradomain Traffic Matrices to the Research Community”. ACM
SIGCOMM Computer Communication Review, Vol. 36, no. 1, pp. 83-
86, January 2006.

[16] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
Topologies with Rocketfuel” In IEEE/ACM Transactions on
Networking, vol. 12, no. 1, pp.2-16, 2004.

[17] “Power Management for the Cisco 12000 Series Router.” [Online].
Available:http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/12s
power.html.

[18] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran and C. Diot,
“Measurement and Analysis of Single-Hop Delay on an IP Backbone
Network”. In IEEE Journal on Selected Areas on Communications, vol.
21, No. 6, Aug 2003.

