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Abstract— Network robustness and throughput can be improved 
by routing each source-to-terminal (s, t) demand via two link-
disjoint paths (TLDP). However, the use of TLDP incurs higher 
energy cost.  Henceforth, we address the problem of minimizing 
the energy usage of networks that use TLDP.  Specifically, our 
problem is to maximally switch off redundant network links 
while maintaining at least 0≤T≤100% of (s, t) TLDP in the 
network, for a given T, and limiting the maximum link utilization 
(MLU) to no greater than a configured threshold. To address this 
problem, we present a fast heuristic, called TLDP by Shortest 
Path First (TLDP-SPF), and extensively evaluate its performance 
on both real and/or synthetic topologies and traffic demands. Our 
simulation results show that TLDP-SPF can reduce network 
energy usage, on average, by more than 20%, even for MLU 
below 50%. As compared to using Shortest Path routing, while 
reducing energy by about 20%, TLDP-SPF does not significantly 
affect (s, t) path length, even for MLU<50%. 

Keywords – algorithm; robustness; thoughput; power savings; 
routing; maximum link utilization; two link-disjoint paths 

I.  INTRODUCTION 
Increasing the robustness and reliability of networks are of 

concern to Internet Service Providers (ISPs), especially given 
the recent emergence of real time applications such as video on 
demand and voice over IP [1, 2, 3, 4]. To this end, previous 
studies [5, 6, 7] have combined link/node-disjoint paths with 
QoS routing to guarantee various performance requirements, 
i.e., reliability and delay. The authors of [5] and [7] consider 
restorable QoS routing.  Specifically, the algorithm in [7] 
constructs a restoration topology containing a set of bridges, 
each of which provides backup for a portion of the primary 
QoS path. In [6], the authors present a problem, called multiple 
constrained link-disjoint path pair (MCLPP), to find link/node-
disjoint paths in multiple dimensions, and prove its NP-
Completeness when one or more link metrics are used.  The 
existence of high path redundancy means there is opportunity 
to save energy via power-aware traffic engineering [8].  

 Our paper describes an optimization problem that aims to 
reduce the energy usage of networks that support two link-
disjoint paths (TLDP). Specifically, our problem aims to 
reduce network energy usage while ensuring that a network 
maintains at least 0≤T≤Tmax percent of all possible (s, t) TLDP 
and each link’s maximum link utilization (MLU) is at most 
0≤UT≤1.0; Tmax is the percentage of the total number of (s, t) 
paths that have at least one TLDP. Specifically, to provide 
energy efficient, fault-tolerant and high bandwidth routing 

service to upper layer applications, we route each (s, t) demand 
through its (s, t) TLDP, if one exists, while powering off 
idle/unused links to reduce energy expenditure. The MLU 
constraint is important because ISPs typically bound links’ 
MLU in order to minimize forwarding delay and to absorb any 
spike in traffic resulting from network failures [10]. In 
summary, our contributions are twofold: firstly, we pose a 
problem, called Energy-Aware Two Link-Disjoint Paths 
Routing (EAR-TLDP). Our problem is important in reducing 
the energy usage of networks that employ TLDP to improve 
fault-tolerance and/or bandwidth/throughput; secondly, we 
propose a novel algorithm, called Two Link-Disjoint Paths by 
Shortest Path First (TLDP-SPF), to solve EAR-TLDP. Our 
algorithm identifies network links that can be powered-off 
under two constraints: the threshold T and the maximum link 
utilization UT. To the best of our knowledge, this is the first 
algorithm that jointly reduces the number of links in a wired 
network whilst satisfying these two constraints. We note that 
reference [8] and [9] have proposed power-aware routing 
algorithms, but they do not require their generated paths to be 
link disjoint. 

The rest of the paper is organized as follows. Section II 
defines notations and EAR-TLDP. Section III describes TLDP-
SPF. Section IV evaluates TLDP-SPF using both real and/or 
synthetic topologies and data.  Finally, Section V concludes the 
paper. 

II. PROBLEM FORMULATION 

In this section, we first outline all definitions and notations, 
before formalizing the problem at hand.   
A. Notation 

Consider a computer network that is represented by a 
weighted directed graph G(V,E), where V is the set of n nodes, 
and E is the set of m links. Each node in V represents a router, 
and each link e∈E between nodes vi and vj (vi, vj∈V, vi≠vj) 
represents a communication channel with finite capacity/ 
bandwidth c(e)>0. For edge e, let f(e) be the total flow on an 
edge e that has 0≤f(e)≤c(e), and hence, its utilization is given 
by u(e)=f(e)/c(e).  This utilization is bound by a given threshold 
0≤UT≤1.0; i.e., any u(e) cannot be larger than UT. A link’s 
remaining capacity is defined as r(e)=UT*c(e)-f(e)≥0. We 
assume each link e can be switched-off independently.  

Let D = {di=(s, t, dst) | demand i from a source node s = 1, 
…, n to a terminal node t = 1,…, n  that has traffic flow dst}. 



TLDP-SPF(G(V,E),D,T,UT)  
Begin 
Ed = 𝜱,  Er = E;  
/*Phase 1*/ 
1) Generate KSPi in G(V,E) for each demand di; 
2) Call TLDP-Routing(G(V, E), D, T, KSP); 
/*Phase 2*/ 
3) For each e∈Er  do 

  If   f(e) = 0 then  
Ed = Ed + e; Er = Er – e; // remove e 

     Else 
 r(e) = UT*c(e) – f(e); // update the remaining capacity 
End-For 

4) For each e ∈ Er in descending order of its r(e) do 
                 //routing D in G with one less edge is feasible  
             If TLDP-Routing(G(V, Er-e),D,T, KSP) = true then  
      Ed = Ed + e; Er = Er – e; // remove e 
                       Go to 3);     

 End-For 
 Return Ed  

End 

TLDP-Routing(G(V, Er),D,T, KSP) 
Begin 
count =0; 
     For each di ∈D do 
  /* Sub-Part 1 */ 

    Call TLDPP(G(V, Er), KSPi) to generate TLDi; //KSPi ∈ KSP 
  /* Sub-Part 2 */                         
           If count < T*|D| then  
                 If |TLDi| >0 then           

      If Distribute_TLD (KSPi , TLDi, dst)=true then 
                         count++;  
                 Else If Distribute_SP(KSPi, dst) = false then 

                                Return false; 
    Else  

   If Distribute_SP(KSPi, dst) = false then     
                         Return false;   
      End-For 
      Return true;   
End 
 

TLDPP(G(V, Er), KSPi) 
Begin 
      For each spix ∈ KSPi do 
           Generate G1(V, E1) from G(V, Er) by deleting all edges in spix; 

       Generate spiy, the (s,t) shortest path from G1; 
       If G1 contains spiy then 
                Store (spix, spiy) into TLDi 
   End-For 

       Return TLDi. 
End 

For each demand di, let SPi={spiq | all (s, t) path for di indexed 
by q>0}, and TLDi={tldip| all (s, t) TLDP for di indexed by 
p>0}. Note that tldip={spix, spiy}, where spix, spiy ∈SPi have no 
common links. Let Rj be a possible set j that contains |D| 
number of (s, t) single or multi paths with sufficient capacity to 
route all demands in D, i.e., Rj={Rji | a set of one or more paths 
in SPi and/or in TLDi that can be used to route di}. The set of 
all possible solutions to route all demands in D is denoted as 
R={Rj | j=1, 2, …, |R|}. The length of Rji, L(Rji), is equal to the 
maximum hop count among all paths in Rji for di, while its 
bandwidth, B(Rji), is calculated from the sum of the smallest 
r(e) for each path in Rji, and by the definition of Rji, we have 
B(Rji)≥dst. We assume the network has sufficient resources, i.e., 
link capacities, to route all demands. Let TPj⊆Rj be the set of 
all Rji∈Rj that include at least one tldip∈TLDi, and M(Rj) be the 
percentage of the total number of (s, t) pairs in Rj  that are 
routed over TLDPs, i.e., M(Rj)=|TPj|/|Rj|*100%. Finally, let 
S(Rj) be the total number of links used in set Rj and 
U(Rj)=max{f(e)/c(e)| ∀e∈Rj } be the maximum link utilization 
of Rj. 

B. Problem Statement  
Consider a tuple (G, D, T, UT), where G (V, E) is a network 

topology, D is a set of traffic demands, 0≤T≤Tmax is a given 
threshold, where 0≤Tmax≤100% is the percentage of the total 
number of (s, t) pairs that have at least one TLDP, i.e., 
Tmax=MAX{M(Rj)| j=1, 2, …, |R|}, and UT is the maximum link 
utilization threshold. Our Energy Aware Two Link-Disjoint 
Paths Routing (EAR-TLDP) problem is defined as follows. 

EAR-TLDP: Find a set of paths Rmin∈R that can be used to 
route all demands in D such that  

  S(Rmin) = MIN {S(R1), S(R2), …, S(R|R|) }, Ri∈R         (1)                        
  M(Rmin) ≥ T                                                                     (2) 
  U(Rmin) ≤ UT                                                                   (3)               

Eq. (1) computes the solution, i.e., to find Rmin that contains 
the minimum number of total power-on links. Eq. (2) states 
that the ratio of the total number of (s, t) pairs that use TLDP 
for routing in Rmin must be no less than a given threshold T. Eq. 
(3) ensures the MLU of links must be no greater than UT. Each 
link e in Rmin can be either on or off, and therefore our EAR-
TLDP is a mixed integer-programming (MIP) problem, a well-
known NP-hard problem [11]. 

III. GREEN ROUTING ALGORITHMS 
We now present our heuristic called Two Link-Disjoint 

Paths by Shortest Path First (TLDP-SPF), see Fig. 1, to solve 
EAR-TLDP. Initially, the set of deleted (remaining) links Ed 
(Er) is an empty set (E); TLDP-SPF produces Ed as its output. 

A. TLDP-SPF Algorithm 
As shown in Fig. 1, TLDP-SPF has four main steps, divided 

into two phases: initialization and re-routing. The initialization 
phase first generates a set of candidate paths (Step 1), and then 
uses function TLDP-Routing(), described later,  to distribute 
the traffic of all demands in D through candidate paths (Step 2), 
and calculate Tmax. The second phase determines the links that 
have to be switched off such that remaining links are sufficient 

to route all traffic demands while satisfying the threshold 
0≤T≤Tmax and MLU constraints.  

One can use Yen’s algorithm [12] in Step l to generate the 
k≥1 shortest paths, KSPi={spi1, spi2, …, spik}, for each demand 
di; we assume each link has a delay of one unit, and thus each 
(s, t) path length is equal to its (s, t) hop count. Note that for 
each demand di, we have KSPi⊆SPi. Let KSP={KSPi| 
i=1,…,|D|} be the set of all k-shortest paths for all demands in 
D. In Step 2, our algorithm calls function TLDP-Routing(), 
shown in Fig. 2, that contains two sub-parts to distribute traffic 
in the network.  

Figure 1.  TLDP-SPF algorithm 

Figure 2.  Function TLDP-Routing() 

Figure 3.  Function TLDPP() 



Distribute_TLD (KSPi , TLDi, dst) 
Begin 
 //Distribute traffic with TLD; let tldip ={spix, spiy} 

  For each tldip∈ TLDi in ascending order of L(tldip ) do                       
 If dst /2 ≤ B(spix) then  //let   B(spix) ≤ B(spiy) 

// Route traffic flow dst/2 through spiyand spix 
Increase f(e) of each edge e in  spix and spiy  by dst/2;  
Insert spiy and spix in Rji; 
Return true;  

   End-For  
//there is no tldip with enough capacity, use the shortest tldip ; i.e., p=1 

Increase f(e) of each edge e in  spix by B(spix);  
Increase f(e) of each edge e in  spiy  by B(spix); 

    Insert spiy and spix in Rji; 
    Return Distribute_SP(KSPi, dst – 2*B(spix)); 
End             

Distribute_SP(KSPi, dx) 
Begin 
   //Distribute traffic with multiple paths routing  
   For each spiq ∈KSPi in ascending order of its length do     
        If dx ≤ B(spiq) then       
              Insert spiq in Rji; 

          Increase f(e) of each edge e in  spiq by dx; 
              Return true; 
         Else 
              Route B(spiq) flow of the traffic through spiq; 
              Insert spiq in Rji; 
              dx = dx - B(spiq); 

End-For 
End 

Sub-Part 1 uses function TLDPP(), shown in Fig. 3, to 
generate two-link-disjoint paths, tldip, from each spix in KSPi. 
The function stores each tldip for di in set TLDi in increasing 
path length order. Sub-Part 2 aims to distribute each traffic 
demand in D through its TLDP, if possible, i.e., when 

|TLDi|>0; otherwise, it calls function Distribute_SP(), shown 
in Fig. 4, to distribute the traffic volume dx through one or more 
paths in its KSPi.  

Figure 4.  Function Distribute_SP() 

Figure 5.  Function Distribute_TLD()  

For each demand with |TLDi|>0, Distribute_TLD(), shown 
in Fig. 5, routes traffic demand dst similar to ECMP [13].  That 
is, it aims to route the traffic of di evenly through the two paths 
in tldip={spix, spiy}, i.e., with dst/2 of the traffic in each path and 
we assume B(spix) ≤ B(spiy). Note, B(spiq)= min {r(e)| e∈spiq}. 
Specifically, Distribute_TLD() assumes the application 
requires two link-disjoint paths to carry the same sized traffic 
since both of them can be a protection path for each other. If 
dst/2≤ B(spix), then each path carries traffic size dst/2, and the 
selected TLDP is put into Rji; otherwise, each path carries 
traffic of size B(spix), and the remaining traffic, e.g., dst-2* 
B(spix) is routed through one or more paths in TLDi and/or KSPi. 
The function updates flow f(e) of each edge e in the selected 
paths.  

Function TLDP-Routing() returns true if it can 
successfully route all demands in D. For this case, it updates 
only Rji for each affected demand di  and the total flows on each 
edge e, f(e), used for the demand. Otherwise, it returns false. 
Notice that, for Phase 1, we assume the network contains 
sufficient bandwidth to carry the traffic demands, and thus it 
never returns false. Further, we set T=1 so that each demand 

can be routed through its TLDP whenever possible, and Tmax, 
the maximum ratio between the number of demands with 
|TLDi|>0 and the total number of demands, as shown in Fig. 2, 
is set to Tmax =count/|D|.  

Phase 2 uses the initial distribution of traffic and Tmax 
produced by Phase 1 as its inputs, and produces a set of 
switched-off links and the routes of all demands in D. Step 3 
switches off each link that is not used to carry any traffic in 
Phase 1; i.e., each link with f(e)=0; otherwise, for all links with 
f(e)>0, it calculates their spare capacity r(e)=UT*c(e)–f(e). Step 
4 aims to remove a link e with the largest spare capacity since 
rerouting traffic that goes through the link is more probable. 
This step uses TLDP-Routing() to check if all traffic can be 
routed through the remaining edges in Er, excluding e, while 
satisfying the constraints that there are at least T*|D| demands 
that are routed through their TLDP and each link utilization 
does not exceed UT.  If the function returns true (feasible), then 
the step removes e from Er, and stores it into Ed. Note that for 
this case the function has changed the total flow of each 
affected edge, and therefore Step 3 is reused to update Er, Ed 
and the remaining capacity of each edge before repeating Step 
4 for the next candidate e to be switched off. If TLDP-
Routing() fails in Step 4, it recovers the status of link e, and 
continue with the remaining edges in Er. Thus, Step 4 is 
iterated no more than |E| times. 

B. Time Complexity 
Yen’s algorithm [12], used in Step 1 of TLDP-SPF, requires 

O(kn(m+nlogn)) time to generate k shortest paths in a network 
with m links and n nodes for each demand di; thus Step 1 
requires O((|D|*kn(m+nlogn))= O((kn3(m+nlogn)) since |D|≤n2. 
In Step 2, function TLDPP(), used in TDP-Routing(), requires 
O(k*n2) time for each demand di, and thus requires O(n2*k*n2) 
for all demands. Further, either function Distribute_TLD() or 
Distribute_SP() requires, in the worst case, O(k*m) time to 
route the flow of each di through its TLD or multiple paths, 
respectively. Therefore the time complexity of Step 2, i.e., 
function TDP-Routing(), is O(k*n4+ k*m*n2). Step 3 is based 
on the set of edges, so they take O(m) time. Step 4 takes O(m) 
time to choose a candidate edge and call function TDP-
Routing(); therefore the total complexity of Step 4 is 
O(m*(k*n4+ k*m*n2). Lastly, the total complexity of TDP-SPF 
is O((m+1)*(k*n4+k*m*n2)+kn3(m+nlogn)) = O(k*m*n4+ 
k*m2*n2)= O(k*n6) since m=O(n2).    

IV. EVALUATION 
In this section, we provide experimental findings and 

present numerical results to confirm the effectiveness of TLDP-
SPF. We show that it can achieve considerable power savings 
in real networks with low impact on network performance, 
such as delay and maximum link utilization.  

A. Experiment Setup 
Our experiments are conducted over different network 

topologies and traffic matrices. We consider three topologies: 
Abilene [14], GÉANT [15], and the Sprint topology derived 
from Rocketfuel [16]. We used the Abilene topology and its 
288 traffic matrices measured on Sep. 5th, 2004 for every 5 
minutes within 24 hours – all of which are provided by the 
authors of [14]. For GÉANT, the 96 traffic matrices [15] used 



were collected on May 5th, 2005 at an interval of 15 minutes.  
For Sprint, we set its link capacity following the method in [8], 
i.e., links connecting Level-1 PoPs are 10Gb/s and the others 
are 2.5Gb/s, and randomly generate a traffic matrix using the 
gravity model [8].  

For each network, when using shortest path routing with all 
links switched-on, Phase 1 of our TLDP-SPF finds only up to 
Tmax=83.3%, 100%, and 37.4% of the demands in Abilene, 
GÉANT, and Sprint networks can be routed through their 
TLDP, respectively. We compute the power saving ratio as the 
total power of in-active links over the total power of all links in 
the network. The power consumption of line-cards used in our 
simulation is specified in [17]. We assume all links use OC3 
line cards.  Note that as the maximum delay of a single OC-3 
link is around 1 ms [18], the length of Rji, L(Rji), is reported in 
milliseconds. Our simulations were performed on a Linux PC 
with 3.07 GHz CPU and 8 GB RAM. TLDP-SPF requires 3.2, 
19.8, and 206.3 CPU seconds, to produce each result for 
Abilene, GÉANT and Sprint network, respectively. 

B. Research Network—Abilene and GÉANT 
Fig. 6(a) shows the power savings (top) and average delay 

(bottom) for the Abilene network when we set T=Tmax=83.3%, 
i.e., at its highest constraint, and UT from 0.1 to 1.0. 
Specifically, for each of the 10 levels of link utilization, we aim 
to study the effect of reducing energy, i.e., due to switched-off 
links, on the delay experienced by users while maintaining 
T=Tmax. Note that TLDP-SPF could not find any links to be 
switched off when we set UT≤0.2. For UT=0.3, TLDP-SPF can 
switch off between 16.5% and 20% of the links except at time 
16h due to insufficient network capacity during peak periods; 
see top of Fig. 6(a). Further, for UT≥0.4, TLDP-SPF is able to 
yield 20% energy saving while maintaining link utilization to 
no more than 40%. However, as shown in the bottom of Fig. 
6(a), switching off links may affect the average end-to-end 
delay. While setting UT≥0.5 does not affect delay, reducing UT 
from 0.5 to 0.4 forces TLDP-SPF to find longer alternative 
paths, and thus increases the average delay by up to 20%.  

Fig. 6(b) presents the power saving (top) and average delay 
(bottom) of GÉANT network when we set T=Tmax=100%. 
TLDP-SPF is able to switched off 24.67% of links in the 
GÉANT network for UT=0.3 to UT=1.0, and thus we only show 
the results for the threshold of MLU no less than 0.3, i.e., 
UT≥0.3. Notice that UT=0.2 and UT=0.3 produce the same 
energy saving but incur different delays. Although the power 
saving curve fluctuates during the day due to traffic changes, it 
always remains around 20.27% ~ 25.97%. However, as shown 
in the bottom of Fig. 6(b), reducing UT from 0.2 to 0.1 
increases the average delay.  

C. Commercial Network—Sprint 
Given the traffic matrix generated as described in Section 

IV.A, we scale the matrix using 10 scaling factors to generate 
10 different traffics such that when the demands in each matrix 
are routed using their shortest paths (SP) the MLU in the 
network is 10% to 100%, with an increment of 10%. We refer 
to each traffic matrix as TM_X under SP, where X is the MLU 
of the network due to the traffic; e.g., TM_40 is the traffic that 
produces MLU=40% when using SP to route demands in 

TM_40. Finally, for each TM_10 to TM_100, we set 
T=Tmax=37.4%, and run TLDP-SPF with UT from 0.1 to 1.0.  

We found that TLD_SPF produces the same set of routes 
for the network with TM_10, TM_20 and TM_30 since 
increasing MLU from 10% to 30% only raises most traffics 
slightly; hence we only report the result for TM_30.  We found 
similar situation for TM_40 to TM_60, and for TM_70 to 
TM_80. Note that TLD_SPF failed to save energy for TM_90 
and TM_100.   

Fig. 7(a) shows that the power saving with TM_30 
increases from 17.26% to 19.04% when UT is set from 0.3 to 
0.5, and remains at 19.04% for UT>0.5. However, the average 
delay increases to the highest level, i.e., 4.5 ms, when UT=0.4, 
decreases when 0.5≤UT≤0.6, and remains at 4.2 ms for UT>0.6. 
Fig. 7(b) and (c) show the results of TM_50 and TM_70 in 
terms of power saving and average delay respectively; as 
shown, they have the same trend as TM_30. However, the 
latter has a UT value, i.e., 0.5 for TM_50 and 0.6 for TM_70 
respectively, which means that TLDP_SPF fails to save energy 
for TM_30 and TM_50 when UT is set less than its lower 
bound on each of the two scenarios. Notice that average delay 
does not decrease monotonically when UT increases since our 
approach does not consider path delay when switching off links.  

D. The Effects on Link Utilization and Path Delay 
In this subsection, we show the effect of switching off links 

on link utilization and path delay. We compare the link 
utilization and delay when using TDLP-SPF against SP routing 
as benchmark. 

The top of Fig. 8(a) plots the Cumulative Distribution 
Function (CDF) of link utilization for the Abilene network.  
We see that more than 60% of links when using SP have 
utilization of at most 0.1, as compared to at most 30% in 
TDLP-SPF; thus SP is better for this case. However, while 
using only 80% of total links in Abilene, each switched-on link 
in TDLP-SPF has utilization of no more than 0.3, which is 
better than when using SP, where links may reach a utilization 
level of 0.5. We observe a similar trend for GÉANT. As shown 
in the top of Fig. 8(b), almost 90% of links in SP has utilization 
uij≤0.05, better than only 53.68% in TLDP-SPF. However, 
while able to switch off 22.97% of total links in the network, 
98.65% links in TLDP-SPF have uij≤0.1, better than 93.64% of 
all links for SP. The results for Abilene and GÉANT show that 
TDLP-SPF is able to distribute traffic flows more evenly than 
SP routing. The bottom of Fig. 8(a) and 8(b) plot the CDF of 
the path delay for Abilene and GÉANT, respectively. Both 
figures show shorter hop counts when using SP. This is 
expected because SP routes each traffic through its shortest 
path and hence is optimal in terms of path delay. Further, SP 
routes all traffic demands through more switched-on links, 
providing more options on shortest paths, than TLDP-SPF. 
However neither SP nor TLDP-SPF produces path longer than 
6 ms.  

E. The Effects of Threshold T on Energy Savings  
As shown in Fig. 9(a), the average energy saving on the 

Abilene network is 46.38%, when T is set to 0%, but reduces 
sharply to around 20% when T≥13.3%. Similarly, Fig. 9(b) and 
Fig. 9(c) show the average energy saving on GÉANT and 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sprint decreases by more than half, from 52.7% to 23.26% and 
from 39.29% to 19.05% when T increases from 0% to 100% 
and from 0% to 37.4%, respectively. Notice that for all three 
networks, after a sharp decline in energy saving at the 
following T values, T=13.3%, T=15%, and T=8% for Abilene, 

GEANT, and Sprint respectively, increasing T does not 
significantly affect their respective energy saving. Thus, 
networks that support TLDP should use TLDP-SPF with the 
highest T possible, i.e., set T=Tmax to optimize the fault-
tolerance and performance of applications. 

 
(a) Abilene (T=Tmax=83.3%)                                                                                      (b) GÉANT (T=Tmax=100%) 

Figure 6.  Energy saving and average delay on Abilene and GÉANT  

 
                       (a)TM_30                                                                         (b)TM_60                                                                          (c) TM_80  

Figure 7.  Energy saving and average delay on Sprint with different MLUs under SP 



   

                              (a) Abilene (T=Tmax=83.3% and UT≥0.5)                                                                                (b) GÉANT (T=Tmax=100% and UT≥0.3) 

Figure 8.  CDF of link utilization and path delay on Abilene and GÉANT 

                                 (a)Abilene                                                                             (b) GÉANT                                                                    (c) Sprint      
Figure 9.  Energy saving for different thresholds of T 

V. CONCLUSION 
We have presented a new energy-aware routing problem. 

To reduce energy expenditure, we aim to maximally switch off 
unnecessary links during off-peak periods such that the 
remaining powered on links are sufficient to route the given 
traffic demands under the constraints that the ratio of using 
TLDP is not less than a given threshold T and the maximum 
link utilization is not greater than a threshold UT. We have 
proposed an efficient and effective heuristic technique to solve 
the problem. Through extensive simulations on both real and 
synthetic network topologies and traffic demands, we have 
shown its benefits in reducing a network’s energy 
consumption.  
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