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Abstract

Development of a hydrocarbon reservoir requires information about the type of �uid that

saturates the pore space, and the permeability distribution that determines how the �uid

can be extracted. The presence of fractures in a reservoir can be useful for obtaining this

information. The main objectives of this thesis are to investigate how fracturing can be

detected remotely using exploration seismology. Fracturing will e¤ect seismic data in

a number of ways. Firstly, if the fractures are aligned preferentially in some direction,

the medium will exhibit long wavelength anisotropy. In turn, if wave propagation is

not aligned with one of the symmetry axes of the e¤ective medium then shear wave

splitting will depend upon the properties of the fracture �lling �uid. Secondly, elastic

waves will experience attenuation and dispersion due to scattering and wave-induced

�uid �ow between the fractures and matrix porosity. This occurs because the fractures

are more compliant than the background medium and therefore there will be a pressure

gradient formed during passage of the wave, causing �uid to �ow between fractures and

background.

If the direction of shear-wave propagation is not perpendicular or parallel to the

plane of fracturing, the wave polarized in the plane perpendicular to the fractures is a

quasi-shear mode, and therefore the shear-wave splitting will be sensitive to the �uid

bulk modulus. The magnitude of this sensitivity depends upon the extent to which �uid

pressure can equilibrate between pores and fractures during the period of the deformation.

In this thesis I use the anisotropic Gassmann equations and existing formulations for the

excess compliance due to fracturing to estimate the splitting of vertically propagating

shear-waves as a function of the �uid modulus for a porous medium with a single set

of dipping fractures and with two conjugate fracture sets dipping with opposite dips to

the vertical. This is achieved using two alternative approaches. In the �rst approach

it is assumed that the deformation taking place is quasi-static. That is, the frequency

of the elastic disturbance is low enough to allow enough time for �uid to �ow between

both the fractures and the pore space throughout the medium. In the second approach

1



I assume that the frequency is low enough to allow �uid �ow between a fracture set and

the surrounding pore space, but high enough so that there is not enough time during the

period of the elastic disturbance for �uid �ow between di¤erent fracture sets to occur.

It is found that the second approach yields a much stronger dependency of shear-wave

splitting on the �uid modulus than the �rst one. This is a consequence of the fact that

at higher wave frequencies there is not enough time for �uid pressure to equilibrate and

therefore the elastic properties of the �uid have a greater e¤ect on the magnitude of the

shear-wave splitting. I conclude that the dependency of the shear-wave splitting on the

�uid bulk modulus will be at its minimum for quasi-static deformations, and will increase

with increasing wave frequency.

In order to treat the problem of dispersion and attenuation due to wave-induced

�uid �ow I consider interaction of a normally incident time-harmonic longitudinal plane

wave with a circular crack imbedded in a porous medium governed by Biot�s equations

of dynamic poroelasticity. The problem is formulated in cylindrical coordinates as a

system of dual integral equations for the Hankel transform of the wave �eld, which is

then reduced to a single Fredholm integral equation of the second kind. It is found that

the scattering that takes place is predominantly due to wave induced �uid �ow between

the pores and the crack. The scattering magnitude depends on the size of the crack

relative to the slow wave wavelength and has it�s maximum value when they are of the

same order. I conclude that this poroelastic e¤ect should not be neglected, at least at

seismic frequencies.

Using the solution of the scattering problem for a single crack and multiple-scattering

theory I estimate the attenuation and dispersion of elastic waves taking place in a porous

medium containing a sparse distribution of such cracks. I obtain from this analysis

an e¤ective velocity which at low frequencies reduces to the known static Gassmann

result and a characteristic attenuation peak at the frequency such that the crack size

and the slow wave wavelength are of the same order. When comparing with a similar

model in which multiple scattering e¤ects are neglected I �nd that there is agreement
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at high frequencies and discrepancies at low frequencies. I conclude that the interaction

between cracks should not be neglected at low frequencies, even in the limit of weak

crack density. Since the models only agree with each other at high frequencies, when the

time available for �uid di¤usion is small, I conclude that the interaction between cracks

that takes place as a result of �uid di¤usion is negligible at high frequencies. I also

compare my results with a model for spherical inclusions and �nd that the attenuation

for spherical inclusions has exactly the same dependence upon frequency, but a di¤erence

in magnitude that depends upon frequency. Since the attenuation curves are very close

at low frequencies I conclude that the e¤ective medium properties are not sensitive to

the shape of an inclusion at wavelengths that are large compared to the inclusion size.

However at frequencies such that the wavelength is comparable to or smaller than the

inclusion size the e¤ective properties are sensitive to the greater compliance of the �at

cracks, and more attenuation occurs at a given frequency as a result.
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Chapter 1

Introduction

1.1 Motivation

Development of a hydrocarbon reservoir requires information about the type of �uid that

saturates the pore space, and the permeability that determines how easily the �uid can

be extracted. The presence of fractures in a reservoir can be useful for obtaining this

information. If the response of the fractures to elastic deformation is dependent upon

the properties of the �uid occupying the fracture porosity we may be able to deduce the

nature of this �uid using seismic investigations. Additionally, if the fractures are open

their presence can signi�cantly increase the e¤ective permeability of the reservoir as they

will provide a pathway for �uid �ow between regions that may have been unconnected in

the absence of fracturing. Knowledge of the orientation of the fractures can be obtained

from seismic data, which will allow the design of a drilling program to penetrate the plane

of the fracturing and therefore eliminate the need to drill multiple wells into hydraulically

isolated regions of the reservoir.

Fractured reservoirs have been classi�ed according to how the fracturing in�uences

the quality of the reservoir. Relating the porosity and permeability contributions of

the matrix and the fractures, Nelson (2001) recognises four types of fractured reservoir.

Type I reservoirs have a fracture system that contributes reservoir storage, porosity and
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permeability. Type II reservoirs have a matrix that contributes reservoir storage and

porosity. The fracture system contributes the required permeability to an otherwise un-

productive reservoir. Type III reservoirs have a matrix that contributes reservoir storage,

porosity and permeability. The fracture system contributes additional permeability to a

productive reservoir. Type IV reservoirs have a fracture system that forms impermeable

barriers, inhibits �uid �ow and causes reservoir anisotropy. The fractures contribute no

additional porosity or permeability. The fractured reservoirs I am interested in are those

of Type II, where the fracturing is required to make production economical.

1.2 Aim

The main objectives of this thesis are to investigate how fracturing can be detected

remotely using exploration seismology. Fracturing will e¤ect seismic data in a number

of ways. Firstly, if the fractures are aligned preferentially in some direction, the medium

will exhibit long wavelength anisotropy. In turn, if wave propagation is not aligned with

one of the symmetry axes of the e¤ective medium then shear wave splitting will depend

upon the properties of the fracture �lling �uid. Secondly, elastic waves will experience

attenuation and dispersion due to scattering and wave-induced �uid �ow between the

fractures and matrix porosity. This occurs because the fractures are more compliant

than the background medium and therefore there will be a pressure gradient formed

during passage of the wave, causing �uid to �ow between fractures and background.

1.3 Previous Work

There are two primary methods used to model fracturing of a medium. "Linear slip" the-

ory treats fractures as being planes of weakness across which displacement discontinuities

may occur, and gives e¤ective medium properties based on the assumption of a linear

relationship between traction and displacement discontinuity (slip) across the fracture.
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"Penny-shaped" crack theory simulates fracturing using a distribution of very thin oblate

spheroidal inclusions containing a material that is more compliant than the background.

E¤ective medium properties are obtained by considering the scattering from a single

crack and using a multiple-scattering theorem to estimate the e¤ect of a distribution of

cracks.

1.3.1 Linear slip theory

The general linear-slip model of the elastic medium with parallel fractures has been

formulated in terms of the excess compliance that exists due to the presence of weak

planar fracturing (Schoenberg & Douma (1988); Schoenberg & Sayers (1995); Sayers &

Kachanov (1995)). One of it�s advantages is that it requires no assumptions regarding the

microscopic details of the fracturing. The excess compliance that de�nes the fracturing

is determined using physically intuitive relationships between stress and displacement

discontinuity across the fractures.

Since in the low-frequency limit a linear-slip medium is equivalent to one with trans-

verse isotropy, Gurevich (2003) was able to derive expressions for the low-frequency

elastic constants of the fractured porous medium saturated with a given �uid using the

anisotropic Gassmann (1951) equations of static poroelasticity. Brajanovski et al. (2005)

model a fractured medium as very thin, highly porous layers in a porous background.

Their model implies that these fractures are of in�nite extent and therefore is valid when

fracture spacing is much smaller than fracture length (diameter). This model uses Biot�s

equations of dynamic poroelasticity, and so frequency e¤ects can be analysed.

1.3.2 Penny-shaped crack theory

The problem of scattering by a crack in an elastic medium has been investigated previ-

ously (Robertson (1967); Garbin & Knopo¤ (1973); Piau (1979)). In particular, Robert-

son (1967) formulated this problem in cylindrical co-ordinates as a system of dual integral

equations in the Hankel transform of the wave �eld, which was then reduced to a Fred-
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holm equation of the second kind. The overall elastic properties of a medium containing

a distribution of cracks was treated by Hudson (1980).

In the limit of low frequencies static models can be used to obtain the e¤ective elastic

moduli of the �uid-saturated medium in terms of the properties of the dry skeleton

and the saturating �uid (Gassmann (1951); Brown & Korringa (1975); Thomsen (1995);

Gurevich (2003); Cardona (2002)). For these models to be valid, �uid pressure must

have time to fully equilibrate throughout the connected porespace which will only be the

case at low frequencies. At higher frequencies pressure equlibration will be incomplete

causing frequency dependent attenuation and dispersion. The analysis of these e¤ects

require a dynamic model of interaction of an elastic wave with an ensemble of fractures

in a porous medium.

A number of schemes tackling this dynamic problem in fractured porous rocks are cur-

rently available. The case of �nite-size fractures was considered by Hudson et al. (1996),

who model fractures as thin penny-shaped voids, and account for �uid �ow e¤ects by

applying the di¤usion equation to a single crack and ignoring interaction between cracks

(referred to as the equant porosity model, EPM, later in the thesis). This approximation

however leads to some unphysical e¤ects, such as the result that the anisotropy of the

�uid-saturated fractured and porous rock in the low frequency limit is the same as for

the dry rock (Hudson et al. (2001); Chapman (2003); Brown & Gurevich (2004)).

Maultzsch et al. (2003) analyse frequency-dependent anisotropy caused by the pres-

ence of meso-scale fractures in a porous rock, by considering connectivity of individual

fractures, pores and microcracks. A more general computational model which can take

account of pores and fractures of any size and shape was proposed by Jakobsen et al.

(2003) using the T-matrix approximation, commonly used to study e¤ective properties of

heterogeneous media. In the T-matrix approximation the e¤ect of voids (pores, fractures)

is introduced as a perturbation of the solution for the elastic background medium.

An alternative approach is to model the e¤ect of fractures as a perturbation with

respect to an isotropic porous background medium. This approach seems attractive
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because it allows us to use all the machinery of the theory of wave propagation in �uid-

saturated porous media, known as the theory of poroelasticity ((Biot, 1962)), without

specifying individual shapes of grains or pores. It also seems logical to assume that the

perturbation of the porous medium caused by the introduction of fractures will be much

smaller than the perturbation caused by putting all the pores and fractures into an elastic

solid. Recently, similar problems have been investigated in the �elds of poroelasticity

and the mathematically analogous thermoelasticity. Jin & Zhong (2002) investigated the

dynamic stress intensity factor of a circular crack in an in�nite poroelastic solid, however

they only treated the case of impermeable crack surfaces. Sherief & El-Maghraby (2003)

solve a dynamical problem for an in�nite thermoelastic solid with an internal circular

crack which is subjected to prescribed temperature and stress distributions.

1.4 Thesis Structure

The second chapter of this thesis provides a theoretical background to the techniques

employed in later chapters. In Chapter 3 the dependency of shear-wave splitting on

the elastic properties of the fracture-�lling �uid is investigated. In Chapter 4 I con-

sider interaction of a normally incident time-harmonic longitudinal plane wave with a

circular crack imbedded in a porous medium governed by Biot�s equations of dynamic

poroelasticity. Chapter 5 contains the derivation of the long wavelength e¤ective medium

properties that can be obtained using the single scattering solution of Chapter 4 and a

multiple-scattering theorem. Conclusions and Recommendations follow in Chapter 6.
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Chapter 2

Background Theory

In this Chapter I provide a background to the existing theory that is used in Chapters

3-5.

2.1 Elastic Properties of Fractured Media

The most general way to describe the e¤ect of fractures in an elastic medium is to

specify overall weakness or compliance that they give to the host medium. Following the

formulation of Sayers & Kachanov (1995), the elastic compliance of a fractured medium

may be expressed in the tensor form,

Sijkl = S
0
ijkl +�Sijkl; (2.1)

where S0ijkl is the elastic compliance tensor of the unfractured background medium, and

�Sijkl is the excess compliance due to the presence of fractures. When fracture interac-

tions and pressure communication between fractures can be neglected, i.e., for moderate

fracture densities, the excess compliance �Sijkl may be expressed as

�Sijkl =
1

4
(�ik�jl + �il�jk + �jk�il + �jl�ik) + �ijkl: (2.2)
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Here �ij is a second-rank tensor and �ijkl is a fourth-rank tensor, de�ned by

�ij =
1

V

X
r

B
(r)
T n

(r)
i n

(r)
j A

(r); (2.3)

�ijkl =
1

V

X
r

�
B
(r)
N �B(r)T

�
n
(r)
i n

(r)
j n

(r)
k n

(r)
l A

(r): (2.4)

B
(r)
N and B(r)T are the normal and shear compliances of the rth fracture in volume V , n(r)i

is the ith component of the normal to the fracture, A(r) is the area of the fracture, and �mn

is Kronecker�s delta (Sayers & Kachanov, 1995). Without the assumption of no fracture

interaction, B(r)N and B(r)T would themselves depend upon n(r)i . The tangential compliance

is assumed to be independent of the direction of the shear traction that occurs within

the plane of the fracture. This implies that each fracture set is, on average, rotationally

symmetric. This means that the present theory may not be applicable to large-scale

joints (which are bed-limited in height, but may be very long). However, it has been

shown (Grechka & Kachanov, 2006) that fractures with random in-plane irregularities

are adequately represented by rotationally invariant ones. It is important to note that �ij

and �ijkl are symmetric with respect to all rearrangements of the indices. The sti¤ness

tensor for a medium of any desired symmetry can be found by inverting the compliance

tensor (2.1).

2.2 E¤ect of Porosity and Fluid

If the fractures are embedded in a porous, permeable and �uid-saturated background,

they can no longer be described by the above formalism, as the e¤ect of fractures will be

in�uenced by the �uid �ow between pores and fractures. However the above formalism

can still be used to describe the properties of the dry medium. The sti¤ness matrix

of the dry medium is here de�ned as cdryij using the conventional two-subscript 6 � 6

matrix notation (Nye, 1985). For low frequencies the sti¤ness matrix csatij of the �uid-
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saturated medium can be related to the bulk modulus of the solid grain material Kg,

�uid bulk modulus Kf , and porosity � of the isotropic background medium using the

anisotropic version of the Gassmann equations (Gassmann (1951); Brown & Korringa

(1975); Gurevich (2003)),

csatij = c
dry
ij +

�

D� bibj; i; j = 1; 2; :::; 6 (2.5)

where

bi = "i �
cdry1i + c

dry
2i + c

dry
3i

3Kg

; i = 1; 2; :::; 6; (2.6)

D� = 1 +
�

3Kg

(b1 + b2 + b3) ; (2.7)

1

�
= �

�
1

Kf

� 1

Kg

�
; (2.8)

and

�1 = �2 = �3 = 1 (2.9)

�4 = �5 = �6 = 0:

2.3 E¤ect of Frequency

The description of the e¤ects of fractures given above is applicable in the low-frequency

limit, that is, when both the wavelength and the �uid di¤usion length are much larger

than the size of the pores and fractures. When we look at higher frequencies, we must take

into account the actual �nite geometry of the fractures in order to obtain e¤ective medium

properties. The simplest geometry that can be used to represent fracturing is the �at,

circular (or "penny-shaped") crack. This crack geometry is e¤ectively an oblate spheroid.

The ingredient required to obtain e¤ective medium properties for a distribution of such

cracks is the solution for scattering from a single crack. The classical problem of scattering

from a single crack embedded in an elastic medium was solved by Robertson (1967).
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He considered an incident plane normal compressional wave propagating in an elastic

medium along the z-axis of a cylindrical co-ordinate system with the axial displacement

uinz = u0e
ik1z, where k1 is the wavenumber (time dependency e�i!t is assumed). He

obtained the secondary (scattered) �eld u(r) resulting from interaction of the incident

wave with the crack occupying the circle r � a in the plane z = 0. The total �eld is

therefore uT (r) = uinz ez + u(r), where ez is a unit vector in the z-direction. Both the

scattered and total �elds must each satisfy the following equation of elasticity in the

semi-in�nite elastic medium z � 0:

(�+ 2�)rr � u��r�r� u+ �!2u = 0; (2.10)

where � and � are the elastic constants, ! is the angular frequency and � is the density.

The distribution of displacements and stresses, �ij; in the neighborhood of the crack

is the same as that produced in a semi-in�nite elastic medium z � 0 when its free surface

is subject to the following boundary conditions:

�rz = 0 0 � r <1; (2.11)

�zz = p0 0 � r < a; (2.12)

uz = 0 r > a; (2.13)

where p0 is the incident pressure. The general solution of the equation of motion in cylin-

drical coordinates can be obtained by representing the two axial and radial components

uz and ur of the displacements in the form of an inverse Hankel transform with respect

to the radial coordinate r, e.g.

ui(z; r) =

Z 1

0

eui(z; y)yJ0(yr)dy i = z; r: (2.14)

Substitution of these representations into the equation of motion (2.10) yields a system
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of ordinary second-order di¤erential equations with constant coe¢ cients for the functions

ui(z; r), in the independent variable z with radial wave number y as a parameter. These

equations can be readily integrated, giving general solutions of the form

eui(z; y) = Ai1(y)e�qiz + Ai2(y)e�q2z; (2.15)

where q1 and q2 are vertical wavenumbers of the compressional and shear waves respec-

tively. Then boundary conditions (2.11)-(2.13) yield a system of integral equations for

the unknown wave amplitudes Aij(y). The condition (2.11) can be used to eliminate the

shear wave amplitude, resulting in the following system of dual integral equations for the

normal compressional wave amplitude B(y) = 2�(1� g)k2sy(2y2 � k2s)�1Az1(y):Z 1

0

y [1 + T (y)]B(y)J0 (yr) dy = �p0 0 � r � a; (2.16)

Z 1

0

B(y)J0 (yr) dy = 0 a < r <1; (2.17)

where T (y) is a known transfer function between stress and displacement arising from

the mixed nature of the boundary conditions, J0 is the zero order Bessel function of the

�rst kind, ks is the shearwave wavenumber and g = �=(�+ 2�):

As shown by Noble (1963), if T (y) tends to zero as y tends to in�nity then

B(y) =
2

�

Z a

0

�(�) sin(�y)d�; (2.18)

where �(�) satisifes the Fredholm equation of the second kind

�(z) +
1

�

Z a

0

M(z; �)�(�)d� = �p0z; (2.19)

and

M(z; �) = �(z�)
1
2

Z 1

0

yT (y)J 1
2
(zy)J 1

2
(�y)dy: (2.20)
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2.4 Multiple Scattering

Using the solution of the problem of scattering of an elastic wave by a single crack, I can

obtain the approximate properties of a medium containing a system of randomly placed

but perfectly aligned cracks. When one has a distribution of cracks, to obtain e¤ective

medium properties one must take into account the multiple events of scattering that will

take place. The multiple scattering theorem of Waterman & Truell (1961) provides the

method to compute attenuation and dispersion of elastic waves propagating in a medium

with randomly distributed inhomogeneities. According to Waterman & Truell (1961),

e¤ective wave number may be calculated from the amplitudes of the scattered �eld as

�
k�

k1

�2
=

�
1 +

2�n0f(0)

k21

�2
�
�
2�n0f(�)

k21

�2
; (2.21)

where k1 is the real wave number of the fast compressional wave, n0 is the density or

number of scatterers per unit volume and f(0), f(�) are amplitudes of the wave scattered

in the forward and backward direction (with respect to the incident wave) by a single

inclusion. For a su¢ ciently small concentration of inclusions the quadratic terms in (2.21)

can be neglected, which yields

k� = k1

�
1 +

4�n0f(0)

k21

�1=2
� k1

�
1 +

2�n0f(0)

k21

�
: (2.22)

The real part of (2.22) gives the e¤ective velocity v� in media with a low concentration

of scatterers
1

v�
=
1

v1

�
1 +

2�n0
k21

Re ff(0)g
�
: (2.23)

The imaginary part of (2.22) gives the dimensionless attenuation (inverse quality factor)

Q�1 =
4�n0
k21

Im ff(0)g : (2.24)
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2.5 Biot�s Equations of Dynamic Poroelasticity

When we wish to allow for the e¤ect of background porosity and �uid at higher frequen-

cies, we can no longer use the static formulation of Gassmann (1951). At su¢ ciently high

frequencies �uid pressure does not have time to fully equilibrate throughout the connected

porespace and there will be dispersion and attenuation taking place due to wave-induced

�uid �ow. To model these e¤ects we must use a dynamic model of mechanical behaviour

in an isotropic �uid-saturated porous medium. The governing equations I use to model

wave propagation in �uid-saturated porous media are those of Biot (1962):

r � � = �!2
�
�u+�fw

�
; (2.25)

rp = !2
�
�fu+ qw

�
; (2.26)

where w = � (U� u) is the relative �uid displacement, � is the medium porosity, U

is the average absolute �uid displacement, ! is the angular wave frequency, �f and �

are the densities of the �uid and of the overall medium (Biot, 1962). At low frequencies

q (!) t i�=�! (Biot, 1956) is a frequency-dependent coe¢ cient responsible for viscous

and inertial coupling between the solid and �uid displacements where � is the �uid

viscosity and � is the intrinsic permeability of the medium. � and p are the total

stress tensor and �uid pressure, which are related to the displacement vectors via the

constitutive relations

� = [(H � 2�)r � u+ �Mr �w] I+ �
h
ru+ (ru)T

i
; (2.27)

p = ��Mr � u�Mr �w: (2.28)
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In equations (2.27) and (2.28) � is the shear modulus of the solid frame, � = 1�K=Kg

is the Biot-Willis coe¢ cient (Biot & Willis, 1957),

M =

�
(�� �)
Kg

+
�

Kf

��1
(2.29)

is the so-called pore space modulus,

H = Ksat +
4

3
� (2.30)

is the P-wave modulus of the saturated poroelastic medium and Ksat is the bulk modulus

of the saturated medium which is related to the bulk moduli of the �uid Kf , solid Kg,

and dry skeleton K by the Gassmann (1951) equation

Ksat = K + �2M: (2.31)

In the next chapter I will analyse the dependency of shear-wave splitting on the �uid

�lling the fractures that give rise to e¤ective anisotropy.
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Chapter 3

Fluid-dependent Shear-wave

Splitting in a Fractured Poroelastic

Medium

3.1 Introduction

Naturally fractured reservoirs are becoming increasingly important for oil and gas ex-

ploration in many areas of the World. The presence of aligned fractures in a reservoir

can be a main cause of azimuthal anisotropy of its elastic properties. There is, therefore,

considerable interest in the use of measurements of seismic anisotropy to estimate the

orientation and density of fracture networks. One of the methods used to estimate seismic

anisotropy relies on measuring the magnitude of shear-wave splitting, that is, the time

delay between two shear-waves propagating in the same direction with di¤erent polar-

izations (e.g. Crampin (1985)). According to commonly used fracture models (Hudson

(1980); Schoenberg (1980)), in a medium permeated by fractures that are aligned parallel

to a single vertical plane, vertical shear-wave splitting is independent of the �uid �ll and

can be used as a direct indicator of fracture density. However, recently, for a relatively

thick fractured carbonate, a higher shear-wave splitting and a lower shear-wave velocity
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were observed in the gas-saturated region of the reservoir than the oil-saturated region

(Guest et al. (1998); van der Kolk et al. (2001)). These results suggest the sensitivity of

shear-wave splitting to the �uid type in fractured media.

A number of possible explanations of this phenomenon have been proposed. In par-

ticular, Guest et al. (1998) and van der Kolk et al. (2001) suggested that the e¤ect of

�uid on shear-wave splitting is caused by the frequency dependence of seismic velocities

in a medium with large fracture density (this explanation is challenged by Hudson &

Crampin (2003).) Bakulin et al. (2000b) and Cardona et al. (2001) showed that vertical

shear-wave splitting in a medium permeated by vertical fractures will not be in�uenced

by the saturating �uid if the fractures are rotationally symmetric. This is understand-

able, as in this case both shear-waves are pure modes with velocities dependent only on

the tangential fracture compliance BT , which is independent of the �uid �ll (Schoen-

berg & Douma, 1988). Bakulin et al. (2000b) also showed that even vertical fracturing

may lead to �uid-dependent shear-wave splitting if for some reason the fractures are not

rotationally invariant. For example, fractures may not be rotationally invariant if a non-

hydrostatic stress �eld acts at an angle to the fracture system (Nakagawa et al., 2000). If,

however, the direction of wave propagation is not parallel or perpendicular to the fractur-

ing, the wave polarized in the plane perpendicular to the fractures is a quasi-shear mode,

and therefore is also a¤ected by the normal fracture compliance BN . Consequently, the

shear-wave splitting depends on both BN and BT . This e¤ect was analysed by Sayers

(2002) who showed that shear-wave splitting decreases with decreasing BN=BT and this

decrease is approximately proportional to the fracture dip. Additionally unlike BT , nor-

mal fracture compliance BN decreases with increasing �uid bulk modulus in a way that

depends on the permeability of the background medium (Hudson (1981); Schoenberg &

Douma (1988); Hudson et al. (1996); Pointer et al. (2000); Hudson et al. (2001)). Based

on this, Sayers (2002) concluded that fractures �lled with higher bulk modulus �uids

results in smaller shear-wave splitting.

The results of Sayers (2002) show the trend of shear-wave splitting versus �uid bulk
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modulus, but do not give a magnitude or shape of this dependency. Quantitative analysis

of this dependency requires an explicit relationship between normal fracture compliance

BN and the bulk modulus of the �uid. For isolated penny-shaped fractures in an elastic

medium, these relationships are straightforward: if isolated aligned fractures contain gas,

then BN is expected to be of the same order of magnitude as BT . If the �uid is liquid

(brine, oil), then BN is expected to be much smaller than BT (Hudson (1981); Sayers &

Kachanov (1995); Schoenberg & Douma (1988)).

More relevant to the petroleum industry are reservoirs containing fractures that are

embedded in an already porous background, with pores providing most of the storage

and fractures acting as permeability conduits (Hudson, 1981). If the system of pores

and fractures in a �uid-saturated rock is interconnected, forming a so-called double-

porosity medium, then �uid �ow between pores and fractures will a¤ect the overall elastic

properties and must be taken into account (O�Connell & Budiansky (1974); Auriault &

Boutin (1994); Pride & Berryman (2003)). The e¤ect of such wave-induced �uid �ow on

elastic properties is frequency dependent. If the wave frequency is su¢ ciently high, then

�uid does not have time to �ow between fractures and pores as the wave passes, and

the e¤ective medium representation using isolated fractures applies. Conversely, at lower

frequencies the �uid pressure has time to partially or fully equilibrate between pores and

fractures and theoretical models for fractures in non-porous elastic media do not apply

(Thomsen (1995); Hudson et al. (2001)). Therefore, quantitative analysis of the e¤ect of

�uid on shear-wave splitting at low (e.g. seismic) frequencies requires an understanding

of how the modi�ed elastic properties due to the presence of fractures depend on the

background porosity.

It has been understood for some time (Schoenberg & Douma, 1988) that �uid com-

munication between fractures and background porosity results in an increase of the nor-

mal excess fracture compliance, BN: The �rst quantitative analysis of this e¤ect was

performed by Thomsen (1995) who obtained approximate closed-form expressions of

fracture-induced anisotropy parameters (related to BN) as functions of fracture den-
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sity, �uid compressibility and background porosity. The results of Thomsen (1995) were

derived using a version of self-consistent e¤ective medium theory (Hoenig, 1979) and are

limited to small fracture densities. Recently, Gurevich (2003) and Cardona (2002) showed

that fracture-induced compliance of �uid-saturated porous media with aligned fractures

can be obtained using the anisotropic variant of the Gassmann equations (Gassmann

(1951); Brown & Korringa (1975)). An essential feature of this approach is that it gives

an exact expression (not limited to small fracture density) for the sti¤ness tensor as a

function of �uid compressibility and porosity, provided the fracture compliances for dry

fractured rock are known.

In this chapter I use the anisotropic Gassmann theory described above to quantify

the e¤ect of hydraulic interaction on shear-wave splitting. Speci�cally, I consider the

splitting of vertically propagating shear-waves (1) in a porous medium with a single set

of dipping fractures and (2) with two oppositely dipping conjugate fracture sets. First, I

consider a dry porous medium with a single set of parallel fractures, Figure 3-1, and de�ne

its normal and tangential excess fracture compliances BN and BT . Using explicit �uid

substitution expressions given by Gurevich (2003) I then obtain the sti¤ness tensor of the

same fractured, porous medium but saturated with a �uid. If expressed in the coordinate

system associated with the fracture plane, this tensor is transversely isotropic and two

shear-wave velocities can be computed as a function of angle between the propagation

direction and the normal to the fracture plane. For vertically propagating waves this

angle corresponds to the fracture dip. Thus, by calculating the relative di¤erence between

orthogonally polarized shear-wave velocities one should be able to obtain the dependence

of shear-wave splitting on the fracture dip and �uid bulk modulus.

For a system of two conjugate fracture sets (that is, two oppositely dipping fracture

sets, Figures 3-2 and 3-3), I start by de�ning dry normal and tangential excess fracture

compliances BN and BT for each of the fracture sets. I explore two alternative work�ows.

In the �rst approach, I construct the compliance tensor for the dry medium with two

fracture sets. Following Sayers (2002), this is done using the tensor form of the elastic
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θ

x3

Figure 3-1: A single set of aligned fractures which dip at angle � with respect to the
vertical.
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θ−θ

x3

Figure 3-2: Two conjugate sets of aligned fractures which dip at angle � with respect to
the vertical.

linear-slip theory (Sayers & Kachanov, 1995), which is applicable in this case as the

medium is dry and therefore elastic. Once the dry sti¤ness tensor is known, the sti¤ness

of the saturated material is computed using anisotropic versions of the Gassmann (1951)

equations. The second alternative is to construct compliance tensors for each fracture

set, apply anisotropic Gassmann equations to them separately and only then compute

the saturated compliance tensor using the Sayers & Kachanov (1995) formalism. The

applicability of each of these two approaches depends on whether or not �uid pressure

is equilibrated between the two fracture sets, and hence on the frequency of the elastic

disturbance. This is further analysed in the Discussion section.
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θ−θ

x3

Figure 3-3: Two sets of fractures in which the orientation of neighboring fractures are
correlated such that the fracture system can be considered as consisting of domains of
aligned fractures.

In the following I use equations (2.1)-(2.4) from Chapter 2 to compute the shear-

wave splitting in porous media �rst with a single fracture set and subsequently with two

conjugate fracture sets.

3.2 Shear-wave Splitting in PorousMedia with a Sin-

gle Set of Aligned Fractures

The simplest example of a fractured medium in which splitting of vertically propagat-

ing shear-waves is a function of the normal fracture compliance is an isotropic porous

background permeated by a set of aligned fractures which dip with respect to the vertical

(Figure 3-1). The symmetry of this medium is transverse isotropy with a symmetry plane

perpendicular to the fracture set present. In this case, the theory of Sayers & Kachanov

(1995) yields explicit expressions for the elastic sti¤ness tensor of the dry medium derived

earlier by Schoenberg & Douma (1988). The elastic sti¤ness tensor of the dry medium
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is given by (Schoenberg & Douma (1988))

cdryij =

26666666666664

L (1��N) � (1��N) � (1��N) 0 0 0

� (1��N) L
�
1�

�
�
L

�2
�N

�
�
�
1� �

L
�N

�
0 0 0

� (1��N) �
�
1� �

L
�N

�
L
�
1�

�
�
L

�2
�N

�
0 0 0

0 0 0 � 0 0

0 0 0 0 � (1��T ) 0

0 0 0 0 0 � (1��T )

37777777777775
(3.1)

in the 6�6 matrix notation where L = �+2� is the compressional wave modulus, K and

� are the dry bulk and shear moduli of the background porous rock, and � = K� 2
3
�. The

e¤ect of the fractures is described in (3.1) through the dimensionless fracture weaknesses

�N and �T (Hsu & Schoenberg (1993); Bakulin et al. (2000a)),

�N =
(�+ 2�)BN

1 + (�+ 2�)BN
; (3.2)

and

�T =
�BT

1 + �BT
; (3.3)

where BN and BT are normal and tangential fracture compliances in the dry rock, aver-

aged over all sizes and shapes. Equation (3.1) assumes that the fractures are rotationally

symmetric, lie in the vertical plane and are perpendicular to the x1 direction.

To compute the elastic properties of the �uid-saturated medium, the dry sti¤ness

tensor given by equation (3.1) needs to be substituted into the anisotropic Gassmann

equations (2.5)-(2.9). This has been done by Gurevich (2003) who derived explicit ana-

lytical expressions for the low-frequency elastic sti¤ness tensor of a saturated porous TI

medium as a function of the background porous matrix, the normal and shear fracture

excess compliances and the �uid bulk modulus. The �ve independent components of this
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tensor are:

csat11 =
L

D

�
d1� +

Kf

�KgL

�
L1�

0 � 16
9

�2�0
L
�N

��
; (3.4)

csat33 =
L

D

�
d2� +

Kf

�KgL

�
L1�

0 � 4
9

�2�0
L
�N

��
; (3.5)

csat13 =
�

D

�
d1� +

Kf

�Kg�

�
�1�

0 +
8

9

�2�0
L
�N

��
; (3.6)

csat44 = �; (3.7)

csat55 = � (1��T ) ; (3.8)

where

D = 1 +
Kf

Kg�

�
�0 � �+

K2�N

KgL

�
; (3.9)

� = 1� Kf

Kg

; (3.10)

�0 = �0 +
K2

KgL
�N ; (3.11)

L1 = Kg +
4

3
�; (3.12)

�1 = Kg �
2

3
�; (3.13)

d1 = 1��N ; (3.14)

d2 = 1�
�2

L2
�N ; (3.15)

and

�0 = 1�
K

Kg

: (3.16)

Note that due to the simple TI symmetry of the medium with a single set of fractures,

csat44 and c
sat
55 are not a¤ected by the �uid.

Having obtained the sti¤ness tensor for a �uid-saturated porous TI medium, one can

calculate the phase velocity of vertically propagating shear-waves using the equations
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(Mavko et al. (1998), adjusted for the di¤erent coordinate system used here),

VS1 =

s
csat44 sin

2 � + csat55 cos
2 �

�
; (3.17)

VS2 =

s
csat33 sin

2 � + csat11 cos
2 � + csat55 �

p
M

2�
; (3.18)

where

M =
��
csat33 � csat55

�
sin2 � �

�
csat11 � csat55

�
cos2 �

�2
+
�
csat13 + c

sat
55

�2
sin2 2�; (3.19)

� is the angle between the wave vector and the axis of symmetry, and � is the density

of the �uid-saturated medium. Here VS1 is the phase velocity of the shear-wave with

particle motion parallel to the fracture plane and VS2 is the phase velocity of the shear-

wave with particle motion having a component perpendicular to the fracture plane. For

vertical fractures and vertical propagation, VS1>VS2, although this is not necessarily true

at large angles. For an axis of symmetry that is perpendicular to the fracture set, the

angle between the fracture set and the vertical is, therefore, �
2
� �.

I now illustrate the behavior of the two shear-wave velocities for a medium described

by the following properties: Kg = 70GPa (calcite), �g = 2870kgm�3, � = 10%, �f =

1kgm�3, Kf = 2:25GPa; V dryP = 4000ms�1, V dryS1 = 1700ms�1 and V dryS2 = 1445ms�1.

Following Schoenberg & Sayers (1995), I assume as a rough approximation that in the

dry rock the normal, BN , and tangential, BT , fracture compliances are equal so that

�ijkl (2.4) is also zero, simplifying the result. Figure 3-4 shows VS1 and VS2 versus Kf

for vertical propagation and fracture dips ranging from 0� to 90�. Because the particle

motion that takes place during the passage of the S1 wave is parallel to the fracture

plane, it is not a¤ected by the presence of fracturing. Particle motion for the S2 wave is

perpendicular to the fracture planes, and therefore VS2 is a¤ected by the fracturing. It is

apparent from Figure 3-4 that VS2 varies with Kf , except for the vertical fracture case.
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Figure 3-5 shows the shear-wave splitting parameter, de�ned as

s =
V 2S1 � V 2S2
V 2S1 + V

2
S2

; (3.20)

as a function of �uid modulus Kf for the same range of dips as used in Figure 3-4. For

vertical fracturing, shear-wave splitting is independent of the �uid bulk modulus, whereas

for horizontal fracturing the splitting vanishes because both shear-waves are associated

with particle motion in the plane of fracturing. An interesting feature that can be seen

in Figure 3-5 for the near-horizontal fracture cases is that the splitting experiences a

sign reversal, with the S2 polarisation achieving a greater phase velocity than the S1

polarisation. This is, in fact, a common feature of transverse isotropy (Thomsen (1986),

Thomsen (1995)).

3.3 Two Conjugate Sets of Fractures

In nature, fractures often occur in two conjugate sets dipping with opposite dips of ��

as shown in Figure 3-2 (Reiss (1980); Nelson (2001)). Such fractures may form due to

shear displacement along the fractures, contrasted with extensile displacement of vertical

joints. The aim of this section is to analyze the dependency of shear-wave splitting on the

�uid bulk modulus for such a system of conjugate fracture sets embedded in a porous and

permeable isotropic background rock. This can be done by applying a combination of the

Sayers & Kachanov (1995) approach and anisotropic Gassmann equations. I investigate

this phenomenon using two alternative approaches.

In the �rst approach I assume that the deformation is quasi-static, so that at any

time the �uid pressure is equilibrated between the two fracture sets and the pores. Thus

the elastic properties can be obtained by �rst computing the sti¤ness matrix of the dry

rock using the Sayers-Kachanov formalism, and then applying anisotropic Gassmann

equations to obtain the elastic properties of the �uid saturated rock. This would apply

when the two sets of fractures are in full pressure communication, as illustrated in Figure
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Figure 3-4: VS1 (dashed line) and VS2 (solid line) vs Kf for the case of a single fracture
set and � = 0�; 15�; 30�; 45�; 60�; 75� and 90�. VS1 is independent of Kf .
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Figure 3-5: s vs Kf for the case of a single fracture set and � = 0�, 15�, 30�, 45�, 60�, 75�

and 90�. For � = 0� (horizontal fractures), s = 0 whereas for � = 90� (vertical fractures),
s is not sensitive to Kf . For all other values of �, s is sensitive to Kf .
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3-2. A similar approach for a single set of aligned fractures was suggested by Thomsen

(1995). In the second approach I assume that the wave frequency is low enough so that

the two fracture sets are in hydraulic equilibrium with the surrounding pore space, but

not with each other. I consider the physical meaning of this approach in the Discussion.

Thus the saturated fracture compliances may be calculated for each of the two fracture

sets individually, and can then be substituted into the Sayers-Kachanov equations (2.1)-

(2.4) to compute the overall properties of the saturated fractured system. This approach

would apply when the fracture system can be considered as consisting of domains of

aligned fractures as illustrated in Figure 3-3. Below I consider these two approaches in

greater detail.

3.3.1 Fractures in full pressure equilibrium

A dry rock with two conjugate fracture sets with opposite dips but the same strike can

exhibit monoclinic symmetry whereby its elastic tensor takes the form

cij =

26666666666664

c11 c12 c13 0 c15 0

c12 c22 c23 0 c25 0

c13 c23 c33 0 c35 0

0 0 0 c44 0 c46

c15 c25 c35 0 c55 0

0 0 0 c46 0 c66

37777777777775
; (3.21)

in the 6 � 6 matrix notation. Note that the coordinate system here is the same as on

Figure 3-3. The elements of this matrix can be de�ned by inverting the compliance matrix

obtained using equations (2.1)-(2.4). For two conjugate fracture sets (each rotationally

symmetric) the tensors �ij and �ijkl reduce to the form (Sayers, 2002),

�ij = A1n
(1)
i n

(1)
j + A2n

(2)
i n

(2)
j (3.22)
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and

�ijkl = B1n
(1)
i n

(1)
j n

(1)
k n

(1)
l +B2n

(2)
i n

(2)
j n

(2)
k n

(2)
l : (3.23)

Here,

A =
1

V

X
r

B
(r)
T A

(r); (3.24)

and

B =
1

V

X
r

�
B
(r)
N �B(r)T

�
A(r); (3.25)

where  = 1 for fracture set 1 and  = 2 for fracture set 2, so that n(1)1 = cos �,

n
(1)
3 = � sin � and n(2)1 = cos �, n(2)3 = sin �. It then follows from (3.22) and (3.23) that

the non-vanishing components of �ij and �ijkl are �11, �13, �33, �1111, �1113, �1133 = �1313,

�1333 and �3333. These non-vanishing components may be written in the form

�11 = (A1 + A2) cos
2 �; (3.26)

�13 = (A2 � A1) cos � sin �; (3.27)

�33 = (A1 + A2) sin
2 �; (3.28)

�1111 = (B1 +B2) cos
4 �; (3.29)

�1113 = (B2 �B1) cos3 � sin �; (3.30)

�1133 = �1313 = (B1 +B2) cos
2 � sin2 �; (3.31)

�1333 = (B2 �B1) cos � sin3 �; (3.32)

and

�3333 = (B1 +B2) sin
4 �: (3.33)

For de�nitiveness, similarly to the case of a single fracture set, I assume that for each frac-

ture set in the dry rock normal fracture compliance is equal to the tangential compliance,

so that B1 = B2 = 0 and the fourth-rank tensor �ijkl is identically zero. Substitution of
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expressions (3.26)-(3.28) for �ij and zero for �ijkl into (2.2) yields the excess compliance

tensor �Sijkl due to the fractures and hence the compliance of the fractured medium,

Sijkl (2.1). The elastic sti¤ness tensor of the dry fractured medium is then obtained by

calculating the inverse compliance tensor, S�1ijkl, and then transforming to the two-index

6� 6 notation to obtain the sti¤ness matrix cdryij of the dry fractured material. The sat-

urated sti¤ness matrix csatij can now be computed using anisotropic Gassmann equations

(2.5)-(2.9).

The phase velocities for vertically propagating shear-waves in the associated �uid-

saturated medium are,

VS1 =

r
�

�
; (3.34)

and

VS2 =

vuut2

�

csat33 c
sat
55 � csat35 2

csat33 + c
sat
55 +

q
(csat33 � csat55 )

2 + 4csat35
2

; (3.35)

(see e.g., Helbig (1994)). The shear-wave splitting parameter can then be computed

using de�nition (3.20). Figure 3-6 shows the splitting parameter as a function of the

�uid modulus and fracture dip for BT2=BT1 = 1=2. There is a weak dependence of

splitting on Kf for this ratio of compliances and the sign reversal observed in Figure 3-5

is not present.

3.3.2 Non-interacting fracture sets

In the second scenario it is assumed that the two fracture sets (Figure 3-3) are in hy-

draulic interaction with the surrounding pores but not with each other, since they are

separated into di¤ering domains. Thus one can apply Gassmann equations independently

to each fracture set to obtain e¤ective saturated fracture compliances, which can then

be substituted into the Sayers-Kachanov equations (2.1)-(2.4). First, note that the back-

ground medium in this approach is the �uid-saturated rock, whose bulk modulus is given
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Figure 3-6: s vsKf for the case of two conjugate fracture sets in full pressure equilibrium,
BT2=BT1 = 1=2 and � = 0�, 15�, 30�, 45�, 60�, 75� and 90�: s is weakly dependent on Kf

for this compliance ratio.
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by the isotropic Gassmann equation,

Ksat = K +
�20

�0 � �
Kg

+
�

Kf

: (3.36)

For each fracture set, the saturated fracture compliance can be obtained by inverting

the sti¤ness matrix given by equations (2.5)-(2.9) to obtain the corresponding compliance

matrix, then subtracting the compliance matrix for an isotropic saturated background

rock with bulk and shear moduli Ksat and �. This gives (Gurevich (2003)),

BsatN = BN
Lsat (�+ �)

L
�
�sat + �

� 1� Kf

Kg

+
1

3

Kf��0
�Kg (�+ �)

1� Kf

Kg

+
Kf

(1��N)�KgL

��
Kg +

4

3
�

��
�0 +

K2

KgL
�N

�
� 16
9

�2�0
L
�N

� ;
(3.37)

where �sat = Ksat � 2�=3, Lsat = �sat + 2�, �N is de�ned in (3.2), and � is the shear

modulus. Once the saturated excess compliances have been obtained for each of the

two conjugate fracture sets, they can be substituted into equations (2.3) and (2.4) to

obtain second and fourth rank tensors �ij and �ijkl (note that now equations (2.3) and

(2.4) are used for the saturated rock, for which normal and tangential compliances are

di¤erent, and therefore the fourth rank tensor �ijkl is non-zero). The sti¤ness matrix

of the saturated medium with two conjugate fracture sets can then be calculated by

inverting the compliance tensor given by equations (2.1) and (2.2), where the background

compliance tensor S0ijkl is again de�ned by the saturated moduli K
sat and �. Figure 3-7

shows the splitting parameter as a function of the �uid modulus and fracture dip (always

opposite and symmetrical) for BT2=BT1 = 1. The splitting is dependent upon Kf in this

case. Figure 3-8 shows the shear-wave splitting as a function of Kf for BT2=BT1 = 1=2.

Comparing with Figure 3-6, the dependency of splitting on Kf is much stronger here and

a sign reversal similar to that present in Figure 3-5 can be seen. This case of incomplete

pressure communication may not occur in the low-frequency limit, but may take place

at �nite frequency, as discussed in the next section.
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Figure 3-7: s vs Kf for the case of two conjugate fracture sets that are non-interacting,
BT2=BT1 = 1 and � = 0�, 15�, 30�, 45�, 60�, 75� and 90�. In this degenerate case of equal
compliances, s is dependent on Kf .
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Figure 3-8: s vs Kf for the case of two conjugate fracture sets that are non-interacting,
BT2=BT1 = 1=2 and � = 0�, 15�, 30�, 45�, 60�, 75� and 90�. s is dependent on Kf for
this compliance ratio.
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3.4 Discussion

As Figures 3-4 to 3-8 illustrate, the shear-wave splitting depends upon the elastic prop-

erties of the �uid �lling the fractures except for the cases of wave propagation parallel

or perpendicular to the plane of fracturing. This is because at the scale of the seismic

wavelength the fractured medium is e¤ectively anisotropic, therefore a pure shear-wave

only exists when the elastic wave propagates along one of the symmetry axes. In any

other direction the elastic wave is a quasi-shear mode. Hence a small amount of compres-

sional deformation is taking place during passage of the wave and therefore the splitting

is in�uenced by the �uid bulk modulus. The magnitude of this in�uence depends upon

the frequency of the deformation, as is illustrated by the two alternative approaches for

the case of conjugate fracture sets. In the �rst approach, the deformation is quasi-static,

that is, it occurs slowly enough so that within the wave period there is enough time for

the �uid to �ow and equilibrate pressure throughout pores and both fracture sets. In

this case Gassmann (1951) theory applies, and the magnitude of shear-wave splitting is

controlled by the elastic symmetry of the dry matrix. In particular, when the two conju-

gate fracture sets have equal excess compliances, the medium is orthotropic, the vertical

axis is a symmetry direction, and the vertically propagating shear-wave is again a pure

shear-wave with no in�uence from the �uid.

In contrast, for some higher frequencies there may be enough time for pressure equi-

libration between fractures and surrounding pores, but not between the two fractures

sets. More precisely, at �nite frequency each fracture set may be in pressure equilibrium

with the pore space in its immediate vicinity, but the pressure may not have time to

equilibrate throughout the pore space. In that case the in�uence of each fracture set has

to be considered separately. This situation is simulated by the second approach where

each fracture set contributes to the �uid e¤ect on the shear-wave splitting, resulting in a

substantially larger splitting magnitude as shown in Figure 3-7.

Because of fracture intersections in Figure 3-2, this is only plausible for a fracture

system of the type shown in Figure 3-3. This system has two characteristic wave propa-
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gation frequencies (frequencies above which there is �uid �ow and below which there is

not) f1 and f2 which can be derived using a 1D analysis of the di¤usion equation parallel

to the normal to the fractures in a given domain as follows.

According to Biot�s theory of poroelasticity, the equilibration of pressure p in a porous

medium is governed by the di¤usion equation (Biot (1962); Rice & Cleary (1976))

D
@2p

@x2
=
@p

@t
; (3.38)

where D is Biot�s slow wave di¤usivity given by

D =

�M

�
K +

4

3
�

�
�

�
KSAT +

4

3
�

� ; (3.39)

M =
�0 � �
Kg

+
�

Kf

; (3.40)

� is the permeability, � is the dynamic viscosity of the �uid, and KSAT is the undrained

modulus of the saturated rock given by the Gassmann (1951) equation,KSAT = K+�
2M .

If the characteristic length scale in the problem is lc, and the characteristic time tc = 1=fc

(where fc is the characteristic frequency), then approximating both sides of equation

(3.38) by �nite di¤erences we have

D
�p

l2c
=
�p

tc
; (3.41)

so that

tc =
l2c
D
: (3.42)

For Kf � K;� equation (3.42) reduces to

fc =
�Kf

��l2c
: (3.43)
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Taking lc = L, the characteristic width of a domain of aligned fractures, gives

f1 =
�Kf

��L2
: (3.44)

Taking lc = c=�, the thickness of a layer within the porous medium having the same pore

volume as the fracture (the porosity of the fracture is assumed to be unity) where c is

the width of the fracture, gives

f2 =
��Kf

�c2
: (3.45)

If f � f2, the fractures appear isolated with respect to �uid �ow. If f1 � f � f2,

the fractures within a domain can be considered as being in pressure equilibrium with

the surrounding medium, but not in equilibrium with fractures in neighboring domains.

If f � f1, the fractures are in pressure equilibrium with the pore space and with each

other. Figure 3-9 plots f1 and f2, against matrix permeability, �, for the case c = 1mm;

L = 10m, Kf = 2GPa, � = 0:001Pas, and � = 0:1. The values of � chosen are typical

of low permeability reservoirs for which the fractures are essential to make production

economic. It is seen that, for the parameters chosen, the critical frequency f1 lies below

the seismic band, implying that the fractures within a domain can be considered as being

in equilibrium with the surrounding medium, but not in equilibrium with fractures in

neighboring domains.

The preceding analysis is limited to two �xed frequency ranges: a low-frequency

range where the �rst approach applies, and a higher frequency range where the second

approach is more suitable. The e¤ect of frequency has not been considered explicitly. An

explicit analysis of the frequency dependency of shear-wave splitting would require use

of dynamic models of wave propagation in porous fractured media (Hudson et al. (2001);

Tod (2001); Chapman (2003); Maultzsch et al. (2003); Brajanovski et al. (2005) ; Galvin

& Gurevich (2006)) and will be treated in the next two chapters.
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Figure 3-9: Plot of f1 and f2, against matrix permeability, �, for the case c = 1mm,
L = 10m, Kf = 2GPa, � = 0:001Pas, and � = 0:1. The values of � chosen are typical
of low permeability reservoirs for which the fractures are essential to make production
economic.
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Chapter 4

Scattering by a Single Crack in a

Poroelastic Medium

4.1 Introduction

The description of the e¤ects of fractures given in the previous chapter is applicable

in the low-frequency limit, that is, when both the wavelength and the �uid di¤usion

length are much larger than the size of the pores and fractures. When we look at higher

frequencies, we must take into account the actual �nite geometry of the fractures in

order to obtain e¤ective medium properties. The simplest geometry that can be used to

represent fracturing is the �at, circular (or "penny-shaped") crack. This crack geometry

is e¤ectively an oblate spheroid. The e¤ect of a distribution of cracks on the passing wave

can be estimated using multiple-scattering theory. This approach requires knowledge of

the scattering that takes place due to the presence of a single crack, which is the subject

of this chapter.

I consider the interaction of a plane longitudinal wave in a �uid-saturated porous

medium with an open oblate spheroidal crack of radius a and small thickness 2c � a

placed perpendicular to the direction of wave propagation. The background porous

medium is assumed to be governed by Biot�s equations of dynamic poroelasticity (Biot,
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1962). This poroelastic problem is analogous to the problem of scattering by a crack

in an elastic medium (Robertson (1967); Garbin & Knopo¤ (1973); Piau (1979)). In

particular, Robertson (1967) formulated this problem in cylindrical co-ordinates as a

system of dual integral equations in the Hankel transform of the wave �eld, which was

then reduced to a Fredholm equation of the second kind. For �uid-saturated porous

materials the interaction di¤ers from that of the corresponding elastic scattering, as it

involves �ow of the pore �uid between the crack and the host medium, induced by the

passing wave. This e¤ect is particularly signi�cant for thin cracks, as their high compli-

ance (compared to that of the relatively sti¤ pores) causes the �uid to �ow in and out

of the crack during rarefaction and compression wave cycles. Recently, similar problems

have been investigated in the �elds of poroelasticity and the mathematically analogous

thermoelasticity. Jin & Zhong (2002) investigated the dynamic stress intensity factor

of a circular crack in an in�nite poroelastic solid, however they only treated the case

of impermeable crack surfaces. Sherief & El-Maghraby (2003) solve a dynamical prob-

lem for an in�nite thermoelastic solid with an internal circular crack which is subjected

to prescribed temperature and stress distributions. I apply a similar approach to the

scattering by a crack in a porous medium.

I restrict the analysis to frequencies that are small compared to Biot�s characteristic

frequency. For typical porous materials such as reservoir rocks and soils this assumption

is appropriate for frequencies of up to 10-100 kHz.

4.2 Problem Formulation

4.2.1 Equations of Poroelasticity

I consider an incident plane longitudinal wave, harmonic in time, propagating in a �uid-

saturated porous medium in the positive direction of the z-axis of a cylindrical coordinate

system. This wave can be represented as the displacement �eld u(i)z = u0e
ik1z, where k1

is the wavenumber. I aim to derive the scattered �eld u (r) that results from interaction
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between the incident wave and the crack, which occupies the circle 0 � r � a in the

plane z = 0. The total displacement �eld is therefore u(t) (r) = u(i)z az + u (r), where az

is a unit vector directed along the z-axis.

Since there exists geometrical symmetry about the crack plane z = 0, both the

scattered and total displacement �elds satisfy Biot�s equations (as outlined in Chapter

2) in the semi-in�nite poroelastic medium z � 0.

Because of the axial symmetry, there is no dependency upon the transverse angle

�: Using equations (2.27) and (2.28) one can therefore decompose equations (2.25) and

(2.26) into scalar equations in cylindrical coordinates (r; �; z):

�

�
r2 � 1

r2

�
ur + (�+ �)

@e

@r
+ �!2ur � �

@p

@r
= 0; (4.1)

�r2uz + (�+ �)
@e

@z
+ �!2uz � �

@p

@z
= 0; (4.2)

r2p+
i!b

M
p+ i�b!e = 0; (4.3)

where � = K � 4�=3; b = �=�, and e is the cubical dilatation

e = r � u = 1

r

@

@r
(rur) +

@uz
@z
: (4.4)

Equations (4.1)-(4.3) are supplemented by the constitutive relations

�zz = 2�
@uz
@z

+ �e� �p; (4.5)

�rz = �

�
@ur
@z

+
@uz
@r

�
; (4.6)

and using equation (2.26)

wz =
1

i!b

�
@p

@z
� �f!2uz

�
: (4.7)
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4.2.2 General Solution

Similarly to Sherief & El-Maghraby (2003) one can obtain the general solution of equa-

tions (4.1)-(4.3). I �rst obtain an equation containing p as its only unknown. Substituting

equations (2.27) and (2.28) into equations (2.25) and (2.26) and combining them in the

low frequency limit I arrive at the equation

�
Lr2 + �!2

�
e� �r2p = 0; (4.8)

where L = �+ 2�. Eliminating e from equations (4.3) and (4.8) results in

�
r4 +

�
k21 + k

2
2

�
r2 + k21k

2
2

�
p = 0; (4.9)

where k0 =
p
�!2=L, k1 =

p
�!2=H is the wavenumber of the fast compressional wave

and k2 =
p
i!bH=LM is the wavenumber of the slow compressional wave. In this low

frequency limit of Biot�s equations the wavelength of the slow compressional wave is small

compared to that of the fast compressional wave,

k1 � jk2j : (4.10)

Factorising equation (4.9) into the form

�
r2 + k21

� �
r2 + k22

�
p = 0 (4.11)

allows one to write the solution of equation (4.9) in the form p = p1 + p2 where pi is the

solution of the equation �
r2 + k2i

�
pi = 0 i = 1; 2: (4.12)

In order to obtain the solution p one must reduce the partial di¤erential equation (4.12)

to an ordinary one. I can do this by applying the Hankel transform with respect to the
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radial coordinate r:

f � (y; z) = H [f (r; z)] =
Z 1

0

f (r; z) rJ0 (yr) dr; (4.13)

where J0 is the Bessel function of the �rst kind of order zero and y is a radial wavenumber.

The inverse Hankel transform is given by

f (r; z) = H�1 [f � (y; z)] =

Z 1

0

f � (y; z) yJ0 (yr) dy: (4.14)

Taking the Hankel transform of equation (4.12) and using the operational relationship

H
�
@2f (r; z)

@r2
+
1

r

@f (r; z)

@r

�
= �y2f � (y; z) (4.15)

I obtain the ordinary di¤erential equation

�
@2

@z2
+ k2i � y2

�
p�i = 0 i = 1; 2: (4.16)

Due to the symmetrical nature of the problem, the solution to equation (4.16) can be

written as

p =

Z 1

0

"
2X
i=1

Ai (y)
�
k20 � k2i

�
e�qiz

#
yJ0 (yr) dy (4.17)

where qi =
p
y2 � k2i (so that iqi =

p
k2i � y2 is the axial wavenumber). I can now obtain

all other �eld variables using solution (4.17) and the governing and constitutive relations.

An equation for e can be obtained by applying the Hankel transform to equation (4.8)

and substituting (4.17):

e = ��
L

Z 1

0

"
2X
i=1

Ai (y) k
2
i e
�qiz

#
yJ0 (yr) dy: (4.18)
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The expression for uz is obtained from equation (4.2) using solutions (4.17) and (4.18):

uz =

Z 1

0

"
A3 (y) e

�q3z � �
L

2X
i=1

Ai (y) qie
�qiz

#
yJ0 (yr) dy: (4.19)

In similar fashion, making use of the Bessel function identity

xJ 0n(x)� nJn(x) = �xJn�1(x) (4.20)

I obtain an expression for ur:

ur =

Z 1

0

"
A3 (y) q3e

�q3z � �y
2

L

2X
i=1

Ai (y) e
�qiz

#
J1 (yr) dy (4.21)

where J1 is the Bessel function of the �rst kind of order one. Substituting equations

(4.17), (4.18), (4.19) and (4.21) into constitutive relations (4.5) and (4.6) and using

identity (4.20) I obtain the components of the stress tensor:

�zz = �

Z 1

0

"
� (2y2 � k23)

L

2X
i=1

Ai (y) e
�qiz � 2A3 (y) q3e�q3z

#
yJ0 (yr) dy (4.22)

and

�rz = �

Z 1

0

"
2y2�

L

2X
i=1

Ai (y) qie
�qiz � A3 (y)

�
2y2 � k23

�
e�q3z

#
J1 (yr) dy: (4.23)

Equations (4.17)-(4.23) give the complete solution of the scattering problem in terms of

the three scalar spectral amplitude functions A1(y); A2(y); and A3(y): In order to �nd

the unknown Ai(y), i = 1; 2; 3; one must derive the boundary conditions that are valid

for this problem at z = 0:
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4.2.3 Boundary Conditions

I assume that the circular crack is in hydraulic communication with the surrounding

porous medium. The general boundary conditions for an interface between a porous

medium and a porous inclusion are well known (Deresiewicz & Skalak, 1963). These

conditions, written in cylindrical co-ordinates for the special case of a �uid-�lled crack,

are:

(i) continuity of total normal stress

�zz = �p0 (4.24)

(ii) continuity of total tangential stress

�rz = 0 (4.25)

(iii) continuity of �uid pressure

p = p0 (4.26)

(iv) continuity of the normal component of the �uid displacement

(1� �)uz + �Uz = U 0z (4.27)

where the primed quantities refer to the free �uid in the crack.

Due to the planar symmetry of the problem I only need to obtain the boundary

conditions that are applied at the surface z = 0 of the semi-in�nite porous medium

z > 0: Here and below I neglect the compressibility of the �uid in the crack (but not in
the pores!). As shown in Hudson (1981), this assumption is valid when the change in

volume of the crack-�lling �uid is negligibly small, which in turn requires that

Kf

�
� c

a
; (4.28)
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where as before Kf is the bulk modulus of the �uid in the crack, � is the shear modulus

of the background medium, and c=a is the aspect ratio of the crack. Note that in an

elastic medium a crack �lled with an incompressible �uid does not cause any scattering

of a normally incident P-wave. Analogously, in a porous medium such a crack will not

cause any scattering of a normally incident P-wave at frequencies where the size of the

crack a is comparable to the wavelength of the incident wave. However, there may still

be scattering of incident energy due to �uid �ow between the crack and the pore space.

As will be seen, this e¤ect occurs at much lower frequencies where the crack radius is

comparable to the wavelength of Biot�s slow wave.

For an incompressible �uid in the crack, the volume-fraction-average of the normal

displacement (1 � �)uz + �Uz = uz + wz at the face of the crack must be equal to

zero. Boundary condition (4.24) tells me that both �(t)zz and p(t) in the total �eld at

z = 0+ must be equal to the pressure of the crack-�lling �uid, p(c); so that �(t)zz = p(t) or

�zz � p = �(�(i)zz � p(i)): Also, analogously to the elastic case, �rz is everywhere zero, and

uz = wz = 0 due to symmetry considerations. Expressing stress and �uid pressure in

terms of displacement via constitutive relations (4.5) and (2.28) the boundary conditions

can be written:

�rz = 0 0 � r <1; (4.29)

uz = 0 a < r <1; (4.30)

wz = 0 a < r <1; (4.31)

uz + wz = 0 0 � r � a; (4.32)

and

�zz + p = �ik1(H � �M)u0 0 � r � a; (4.33)

where it is noted that conditions (4.30)-(4.32) can be combined to give the single condition

uz + wz = 0 0 � r � 1: (4.34)
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Equations (4.17)-(4.23) together with boundary conditions (4.29)-(4.33) provide a com-

plete formulation of the scattering problem.

4.3 Method of solution

The �rst step is to express two of the three unknown Ai(y) in terms of the third, say,

A1(y): Substituting equation (4.23) into condition (4.29) gives me the relation

A3(y) =
2y2�

L(2y2 � k23)

2X
i=1

Ai(y)qi: (4.35)

Using condition (4.34) and equations (4.7) and (4.35) I obtain for A2(y):

A2(y) = �
q1

q2k22L

2y2L(k21 � k20) + i�b!k23
2y2 � k23(1� �M

H
)

A1(y): (4.36)

I can now substitute equations (4.19), (4.22) and (4.17) into the remaining boundary

conditions (4.30) and (4.33) and use relations (4.35) and (4.36) to obtain a pair of dual

integral equations in the unknown function A1(y):Z 1

0

[F1(y)� F2(y)]A1(y)yJ0 (yr) dy = �ik1(H � �M)u0 0 � r � a; (4.37)

�k23
L

Z 1

0

q1

2y2 � k23(1� �M
H
)
A1(y)yJ0 (yr) dy = 0 a < r <1; (4.38)

where

F1(y) =
�g
h
(2y2 � k23)

2 � 4y2q1q3
i
+ (2y2 � k23) (k20 � k21)

2y2 � k23
; (4.39)

F2(y) =
q1
q2

[2y2L(k21 � k20) + i�b!k23] [4�gy2(y2 � q2q3)� k22 (2y2 � k23)]
k22L (2y

2 � k23)
�
2y2 � k23(1� �M

H
)
� ; (4.40)

and g = �=L. Dual integral equations (4.37) and (4.38) can be reduced to the form

discussed by Noble (1963) by substituting for a new unknown B(y); related to A1(y)
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through the equation

B(y) = � 2��(1� g)k23q1y
L
�
2y2 � k23(1� �M

H
)
�A1(y): (4.41)

This substitution yields

Z 1

0

y [1 + T (y)]B(y)J0 (yr) dy = �p0 0 � r � a; (4.42)

Z 1

0

B(y)J0 (yr) dy = 0 a < r <1; (4.43)

where

T (y) =

�
1 +

�Mk23
H (2y2 � k23)

�
[T1(y)� T2(y)]� 1; (4.44)

T1(y) =
M(k22L� 2��y2) [4�gy2(y2 � q2q3)� k22 (2y2 � k23)]

2�H(1� g)k22q2y
�
2y2 � k23(1� �M

H
)
� ; (4.45)

T2(y) =
�g
h
(2y2 � k23)

2 � 4y2q1q3
i
+ (2y2 � k23) (k20 � k21)

2�g(1� g)k23q1y
; (4.46)

and p0 = ik1(H � �M)u0: Note that the factor �2�(1 � g) was included in de�nition

(4.41) to ensure that

lim
y!1

T (y) = 0; (4.47)

which is required in order to follow Noble�s solution method.

As shown in Chapter 2, a pair of dual integral equations (4.42) and (4.43) with

lim
y!1

T (y) = 0 (4.48)

are equivalent to a single Fredholm equation of the second kind

�(z) +
1

�

Z a

0

M(z; �)�(�)d� = �p0z; (4.49)
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where

M(z; �) = �(z�)
1
2

Z 1

0

yT (y)J 1
2
(zy)J 1

2
(�y)dy; (4.50)

and

B(y) =
2

�

Z a

0

�(�) sin(�y)d�: (4.51)

I now manipulate these equations in order to express the Fredholm equation directly in

terms of B: Substituting for the Bessel functions in equation (4.50) using the relationship

J 1
2
(x) =

r
2

�x
sin x; (4.52)

changing the order of integration in equation (4.49) and then using equation (4.51) I

obtain

�(z) +

Z 1

0

T (y) sin(zy)B(y)dy = �p0z: (4.53)

I then multiply (4.53) through by (2=�) sin(xz) and integrate from 0 to a with respect to

z. Changing the order of integration to evaluate
Z a

0

sin(zy) sin(zx)dx and then evaluating

the RHS using integration by parts yields:

B(x) +
1

�

Z 1

0

R(x; y)T (y)B(y)dy = �p0S(x); (4.54)

where

R(x; y) =
sin a(x� y)
x� y � sin a(x+ y)

x+ y
(4.55)

and

S(x) =
2

�

sin ax� ax cos ax
x2

: (4.56)

Since an analytical solution to equation (4.54) exists only when its kernal function

R(x; y)T (y) is separable, in general one must obtain B(y) via numerical methods.
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4.4 Discussion

I obtain B(y) numerically using the method of quadratures. Having obtained B(y) one

can calculate any �eld quantity of interest using the relationships given in the previous

sections. Of particular interest are the scattering cross-section and the displacement of

�uid relative to the solid, w, as it represents the fundamental di¤erence between elasticity

and poroelasticity.

The scattering cross-section is a measure of the proportion of incident energy that

becomes scattered. Analogously to the elastic case (see Robertson (1967)) the scattering

cross-section �p for a normally-incident longitudinal wave is given by

�p =
4�

k1
Im g(0; 0); (4.57)

where g(0; 0) is the far-�eld amplitude of the scattered longitudinal wave in the direction

of the incident wave. As in Robertson (1967) I can determine g(0; 0) by considering the

far-�eld asymptotics of equation (4.19):

g(0; 0) =
i�k1q1
L

A1(0): (4.58)

Figure 4-1 shows the scattering cross section as a function of dimensionless frequency,

taking its maximum value around the dimensionless frequency jk2aj2 = 1.

Figures 4-2 and 4-3 show the spectral amplitudes of the components of w at z = 0 as

functions of normalised horizontal slowness y= jk2j plotted for a range of dimensionless

frequencies. For frequencies such that the crack is small compared to the wavelength,

wz is distributed uniformly amongst the radial wavenumbers. As frequencies increase,

however, the dominant radial wavenumbers are those closer to zero. wz achieves it�s

maximum value around the frequency jk2aj2 = 1: wr decreases with increasing frequency.

In the next chapter I will use the single scattering result derived here to estimate the

e¤ective properties of a medium containing a distribution of cracks.
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Figure 4-1: Scattering cross-section as a function of dimensionless frequency.
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Figure 4-2: Vertical relative �uid displacement wz vs normalised horizontal slowness
y= jk2j for a range of dimensionless frequencies.
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for a range of dimensionless frequencies.
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Chapter 5

E¤ective Properties of a Poroelastic

Medium Containing a Distribution

of Aligned Cracks

5.1 Introduction

In Chapter 4 I derived the scattering by a single crack in a poroelastic medium. I can

now use this single scattering result to estimate the e¤ective properties of a medium con-

taining a distribution of cracks. As mentioned in the Introduction, a number of schemes

tackling this dynamic problem in fractured porous rocks are currently available. Bra-

janovski et al. (2005) model a fractured medium as very thin, highly porous layers in a

porous background. Their model implies that these fractures are of in�nite extent and

therefore is valid when fracture spacing is much smaller than fracture length (diame-

ter). The case of �nite-size fractures was considered by Hudson et al. (1996), who model

fractures as thin penny-shaped voids, and account for �uid �ow e¤ects by applying the

di¤usion equation to a single crack and ignoring interaction between cracks. This approx-

imation however leads to some unphysical e¤ects, such as the result that the anisotropy

of the �uid-saturated fractured and porous rock in the low frequency limit is the same

62



as for the dry rock (Hudson et al. (2001); Chapman (2003); Brown & Gurevich (2004)).

Chapman (2003) and Maultzsch et al. (2003) analyse frequency-dependent anisotropy

caused by the presence of meso-scale fractures in a porous rock, by considering connectiv-

ity of individual fractures, pores and microcracks. A more general computational model

which can take account of pores and fractures of any size and shape was proposed by

Jakobsen et al. (2003) using the T-matrix approximation, commonly used to study ef-

fective properties of heterogeneous media. In the T-matrix approximation the e¤ect of

voids (pores, fractures) is introduced as a perturbation of the solution for the elastic

background medium.

The approach presented in this chapter is to model the e¤ect of fractures as a per-

turbation with respect to an isotropic porous background medium. This approach seems

attractive because it allows one to use all the machinery of the theory of wave propaga-

tion in �uid-saturated porous media, (Biot, 1962), without specifying individual shapes

of grains or pores. It also seems logical to assume that the perturbation of the porous

medium caused by the introduction of fractures will be much smaller than the perturba-

tion caused by putting all the pores and fractures into an elastic solid.

In this chapter I simulate the e¤ect of fractures by considering them to be thin

circular cracks in a poroelastic background. I assume that the cracks are mesoscopic

(large compared to the pore size, but small compared to the fast wave wavelength).

Using the solution of the scattering problem for a single crack obtained in Chapter 4 and

the multiple-scattering theory of Waterman & Truell (1961) (outlined in Chapter 2) I

estimate the attenuation and dispersion of elastic waves taking place in a porous medium

containing a sparse distribution of such cracks (Figure 5-1).

5.2 A Sparse Distribution of Cracks

The multiple scattering expressions (2.23) and (2.24) allow one to model the dispersion

and attenuation due to the scattering of a plane elastic wave by cracks randomly dis-
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Figure 5-1: A porous medium containing a sparse distribution of cracks.
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tributed throughout a poroelastic medium. I investigate the special case of dispersion

and attenuation due to aligned cracks using the solution for the scattering by a circular

crack derived in the previous section. My f(0) is obtained analogously to the elastic case

(Robertson, 1967) by considering the far-�eld asymptotics of

uz =

Z 1

0

"
A3 (y) e

�q3z � �
L

2X
i=1

Ai (y) qie
�qiz

#
yJ0 (yr) dy; (5.1)

where the Ai(y) are the spectral amplitudes of the fast, slow and shear waves for a single

crack as discussed in Chapter 4, and is given by

f(0) =
i�k1q1
L

A1(0) = �
ik1
u0

(H � �M)
2�H(1� g) limy!0

B(y)

y
: (5.2)

5.3 Results

5.3.1 Numerical solution

The solution for intermediate frequencies was obtained numerically by the method of

quadratures. Figures 5-2 and 5-3 show this solution in terms of e¤ective velocity v(!) =

!=Re k� (normalized) and dimensionless attenuation Q�1 = 2Re k�= Im k� as functions

of dimensionless frequency. Also shown in Figure 5-3 are asymptotic solutions in the

low- and high-frequency limits (explained in the following sections), the equant porosity

model of Hudson et al. (1996), and the result for spherical inclusions (Ciz et al., 2006)

for comparison. The solution exhibits a typical relaxation peak around a normalized

frequency !0 of about 10, or at circular frequency f = !=2� ' 2�M(K + 4�=3)=H�a2,

the frequency where the �uid di¤usion length 1= jk2j is of the order of the crack radius a

.
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Figure 5-2: Dimensionless velocity as a function of dimensionless frequency: numerical
solution (asterisks), low-frequency asymptotic (solid line), high-frequency asymptotic
(dashed line) and the Hudson et al. (1996) equant porosity model (dots).
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Figure 5-3: Dimensionless attenuation as a function of dimensionless frequency: numer-
ical solution (asterisks), low-frequency asymptotic (circles), high-frequency asymptotic
(dashed line), the Hudson et al. (1996) equant porosity model (dots) and the result for
spherical inclusions (solid line).
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5.3.2 Analytical solution

Mesoscopic cracks

The kernel function T (y) (derived in Chapter 4, see equation 4.44) is general with regards

to the size of the crack relative to the incident wavelength. However we are mainly

interested in situations where the scattering is due to wave-induced �uid �ow to and from

the cracks (ie. the slow wave). For the scattering to be predominantly due to �uid �ow,

the crack size must be small relative to the wavelength of the incident compressional wave,

k1a � 1 (mesoscopic cracks), so that scattering into the slow wave mode is dominant.

For signi�cant slow wave scattering to take place the radial wavenumber y should be of

the order of 1=a; or in other words y � k1 and I can approximate expression (4.44) as

T (y) �M (2�gy2 � k22)2 � 2yq2�g [k22(�g � 2) + 2�y2g]
2Hg(g � 1)yq2k22

: (5.3)

I now obtain asymptotic solutions in the low and high frequency limits. Note that we

are still in the low frequency regime of Biot theory, the low and high frequency limits I

evaluate here are with respect to the extent to which �uid is able to di¤use between crack

and pore space during passage of the wave �eld. That is, in the low frequency limit there

is plenty of time available for �uid �ow to occur, the di¤usion length can be taken large

compared with the crack radius, or jk2j a � 1: At increasingly high frequencies there is

no time available for appreciable �uid �ow to occur and therefore the di¤usion length

can be taken as small compared with the crack radius, jk2j a� 1:

Low frequency asymptote

For low frequencies jk2j a � 1: Then S(y) only contributes signi�cantly to the integral

in equation (4.54) for y of the order 1=a: For y � 1=a; S(y) is small. Thus T (y) only

contributes to the integral in (4.54) for y � jk2j : In this case (5.3) can be simpli�ed to

give

Tlow(y) �
�Mk22(2L2 + 3�2�2 � 4��L)

4H�(L� �)y2 : (5.4)
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At low frequencies the contribution of the integral in (4.54) is small relative to the RHS

and therefore equation (4.54) can be solved by iteration . That is, assuming an initial

solution B(x) = �p0S(x) and then substituting B(y) = �p0S(y) and T (y) � Tlow(y)

into (4.54), yields

B(x) = �p0S(x) +
p0
�

Z 1

0

R(x; y)T (y)S(y)dy: (5.5)

Because I actually require the limit of B(x)=x as x ! 0 I can simplify the integral in

equation (5.5) by rewriting it

lim
x!0

B(x)

x
= �p0 lim

x!0

S(x)

x
+
p0
�

Z 1

0

lim
x!0

R(x; y)

x
T (y)S(y)dy (5.6)

and then evaluating the limits on the RHS. Expanding R(x; y)=x using the trigonometric

identity

sin(A�B) = sinA cosB � cosA sinB; (5.7)

I obtain
R(x; y)

x
=
2 (y sin ax cos ay � x cos ax sin ay)

x(x2 � y2) : (5.8)

As x! 0; sin ax � ax and cos ax � 1 so that equation (5.8) simpli�es to

R(x; y)

x
� 2 (sin ay � ay cos ay)

y2
= �S(y): (5.9)

At small x;

sin ax� ax cos ax � (ax)3

3
(5.10)

and hence
S(x)

x
� 2a3

3�
: (5.11)
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Therefore equation (5.6) simpli�es to

lim
x!0

B(x)

x
= �2p0a

3

3�
+ p0

Z 1

0

Tlow(y)[S(y)]
2dy (5.12)

which, upon evaluation of the integral, yields

lim
x!0

B(x)

x
=
p0a

3 [M(k2a)
2(4��L� 2L2 � 3�2�2)� 10H�(L� �)]

15�H�(L� �) : (5.13)

Thus equation (5.2) yields

flow(0) =

h
5 + M(2�4�g+3�2g2)(k2a)2

2Hg(1�g)

i
(H � �M)2k21a3

15��H(1� g) : (5.14)

By substituting (5.14) into (2.23) and taking the real part, one can obtain an expression

for e¤ective velocity in the low frequency limit

v� = v1

�
1� 2"(H � �M)

2

3�H(1� g)

�
: (5.15)

In (5.15) v1 = !=k1 = (H=�)1=2 is the velocity of the fast compressional wave in the

porous host (crack-free �uid-saturated porous medium) and " = n0a
3 = (3=4�)(a=b)�c

is the crack density parameter (Hudson, 1980) where �c = (4=3)�a
2bn0 is the additional

porosity present due to the cracks.

Low-frequency attenuation Q�1 is de�ned by the imaginary part of the function

flow(0),

Q�1low =
2M(H � �M)2(2� 4�g + 3�2g2) jk2aj2 "

15�H2g(1� g)2 ; (5.16)

and is proportional to jk2aj2, that is, to the �rst power of frequency.
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High frequency asymptote

For high frequencies jk2j a � 1: To analyse this case we note that function R(x; y) as

given by (4.55) is a function oscillating with a period of 2�=a and decaying with y as y�1:

At the same time, T is also a function decaying with a positive power of y: Thus most of

the contribution to the integral in equation (4.54) comes from the interval 0 < y < y0;that

is,

B(x) +
1

�

Z y0

0

R(x; y)T (y)B(y)dy � �p0S(x); (5.17)

where y0 is on the order of 1=a: For high frequencies jk2j a� 1 and thus y0 � jk2j : Hence

I can simplify expression (5.3) assuming that y � jk2j,

Thigh(y) �
�iML2k2

2H�(L� �)y : (5.18)

In this limit I can obtain an analytical solution directly from dual equations (4.42) and

(4.43). Since Thigh(y) is much larger than 1 in equation (4.42), substituting Thigh(y) yields

a single integral equation for B(y):

Z 1

0

B(y)J0 (yr) dy = D(r); (5.19)

where

D(r) =

�2igH(1�g)p0
Mk2

0 � r � a

0 a < r � 1
: (5.20)

Note that the left hand side of (5.19) is simply the Hankel transform of the function

B(y)=y: Thus B(y)=y can be obtained as the inverse Hankel transform of the right hand

side,
B(y)

y
=

Z 1

0

D(r)J0 (yr) rdr =
�2igH(1� g)p0

Mk2

Z a

0

J0 (yr) rdr:
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For equation (5.2) I only need the limit of B(y)=y for small y: Noting that J0 (yr) ! 1

for small arguments, I obtain

lim
y!0

B(y)

y
=
�igH(1� g)p0a2

Mk2
: (5.21)

Substitution of this result into equation (5.2) yields:

fhigh(0) = �
i(k1a)

2(H � �M)2
2MLk2

: (5.22)

By substituting this expression into the dispersion equation (2.23) one can see that its

relative contribution to the real part of the e¤ective wavenumber vanishes in the high

frequency limit, implying that the velocity in that limit tends to the velocity in the porous

crack-free medium. This result is logical as at su¢ ciently high frequencies the �uid has

no time to move between pores and cracks, and therefore the cracks behave as if they

were isolated. In particular, the dry case is excluded, except in the static limit.

Attenuation at high frequencies reads

Q�1high =

p
2�"(H � �M)2
ML jk2aj

; (5.23)

and thus scales with !�1=2.

5.4 Discussion

5.4.1 The dry limit

Generally speaking, the results of the preceding sections are based on the assumption

Kf=� � c=a, and therefore do not apply in the dry limit Kf ! 0: Indeed, at �nite

frequencies a dry limit does not make sense because this is a dynamic situation in which

the overall medium takes on an additional sti¤ness as a result of the �uid in the crack

resisting compression of the pore space. I can take this limit in the low-fequency limit,
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however. At low frequencies I have a quasi-static situation in which �uid pressure has

plenty of time to equilibrate throughout all of the porosity in response to deformation of

the medium, whether that be background equant pores or penny-shaped cracks. Since

the �uid in the crack has adequate time to �ow it doesn�t signi�cantly a¤ect the elastic

properties of the overall medium. Thus, for dry open cracks, Kf =M = 0, H = K+4�=3

and equation (5.15) simpli�es to

v� = v1

�
1� 2"

3g(1� g)

�
; (5.24)

which coincides with the well-known expression for the velocity of compressional waves

propagating perpendicular to a system of dry open cracks in an elastic medium in the

limit of low crack density (Hudson, 1980). This agreement makes sense because in the

case of a dry medium, assumptions about �uid �ow are irrelevant.

5.4.2 Gassmann consistency

In the low frequency limit the pressure throughout the pore space and fractures should be

equlibrated. In his seminal paper Gassmann (1951) showed that in this case the elastic

properties of the saturated medium are uniquely de�ned by the elastic properties of the

dry frame, porosity, and the bulk moduli of the solid grain material and the saturating

�uid. For the isotropic case Gassmann derived his famous equation for the undrained

bulk modulus of the saturated medium which is widely used for �uid substitution in

porous rocks. But Gassmann (1951) also derived a more general equation for the case

where the frame is macroscopically anisotropic (but is still made up of a single isotropic

solid material). This equation was later generalised by Brown & Korringa (1975) to

materials made of anisotropic and microheterogeneous solid material.

A porous medium with aligned fractures is macroscopically anisotropic (transversely

isotropic) and is made of one isotropic solid and therefore should be consistent with the

anisotropic Gassmann (1951) equation. This particular case was analysed by Gurevich
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(2003) who derived explicit expressions for the sti¤ness tensor of the saturated medium

as a function of porosity and elastic moduli of the background medium, solid and �uid

bulk moduli, and fracture weakness (which can be related to fracture density for sparsely

populated cracks).

The results of Gurevich (2003) are exact expressions valid for any fracture weakness.

In order to compare my low-frequency result with the expression of Gurevich (2003), I

expand that expression in powers of fracture density and retain only the linear term. The

resulting expression for the plane deformation sti¤fness csat33 along the symmetry axis z is

csat33 = H

�
1� 4"(H � �M)

2

3�H(1� g)

�
: (5.25)

For compressional velocity along the z axis equation (5.25) is identical to (5.15) (again,

for small crack density). This con�rms that my result at low frequencies is asymptotically

(e.g., in the sparse limit) consistent with Gassmann�s theory. This Gassmann consistency

is an important feature of the model presented here and shows that the hydraulic inter-

action between cracks is accounted for.

5.4.3 Comparison with the equant porosity model of Hudson

et al. (1996)

I can compare the predictions of my model with the equant porosity model (EPM) of

Hudson et al. (1996) as the two models di¤er only in the assumptions that have been

made regarding �uid �ow, all the parameters are the same. The e¤ective velocity for

wave propagation in the EPM is

v�H = v1H

�
1� 4"L2

3�(1 +KH)(L� �)

�
; (5.26)

where for thin cracks

KH �
�
1 + i

3

�
L

�

�
Kf

L� �

�
a

J
; (5.27)
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and

J2 =
�Kf�

2!�
: (5.28)

Figure 5-2 shows the dispersion predicted by both models as well as high and low fre-

quency asymptotes for my model. At high frequencies both models predict no deviation

from the background velocity. This is logical as in the high frequency limit of both mod-

els there is no time available for appreciable �uid �ow to occur, and hence there will be

no �ow-induced dispersion. At low frequencies our model is consistent with the static

Gassmann theory, whereas the EPM is not. The reason for this disagreement is that

hydraulic interaction between cracks is not accounted for in the EPM.

Figure 5-3 shows the attenuation curves for both models, and the low and high fre-

quency asymptotes for my model. The attenuation asymptotes for the EPM are

Q�1lowH =
8
p
2"a

9�g(1� g)2

s
Kf�!

��
; (5.29)

for low frequencies and

Q�1highH =
2
p
2"L

Kfa

s
�Kf�

�!
; (5.30)

for high frequencies. I can more closely compare my asymptotes (5.16) and (5.23) with

the EPM by taking a rigid-frame approximation, which yields

Q�1low �
4(2� 4�g + 3�2g2)a2"�!

15�g(1� g)2� ; (5.31)

for low frequencies and

Q�1high �
p
2�"L

3Kfa

s
�Kf�

�!
; (5.32)

for high frequencies. At high frequencies the behaviour of my model is almost identical

to that of the EPM, apart from the factor of 2�=3: At low frequencies the predictions are

signi�cantly di¤erent, as my model predicts that Q�1will be proportional to ! whereas

the EPM predicts Q�1 being proportional to
p
!: The attenuation curves of Figure 5-3
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also show that both models predict an attenuation peak of the same magnitude, although

the EPM predicts the peak occurring at a lower frequency.

An approximation for the nature of the characteristic attenuation peaks shown in

Figure 5-3 can be obtained by considering the frequency at which the low and high

frequency asymptotes intersect. The intersection frequency for my model is

! =
�Kf

�a2�

 
5
p
2��2�2

2K2
f

!2=3
; (5.33)

and for the EPM is

! =
9���2(1� g)2
4�a2Kf

: (5.34)

These expressions have similar dependencies on permeability, �uid viscosity and crack

radius, but di¤er with regards to �uid modulus and porosity.

5.4.4 Comparison with spherical inclusions

The analogous scattering problem for the case of a sparse distribution of spherical inclu-

sions in a porous medium was treated by Ciz et al. (2006). The attenuation curve for

the case of identical material parameters and �uid �lled cavities is also shown in Figure

5-3. Note that the dependence on frequency is identical for the high and low frequency

asymptotic behaviour, only the magnitude is di¤erent. This is due to the fact that a

thin crack is more compliant to deformation than a sphere, and therefore there is always

going to be more �uid �ow induced attenuation taking place in the medium with cracks.

At low frequencies the curves are quite close, implying that at these wavelengths the

small scale di¤erences between a sphere and a crack of the same radius do not have a

great e¤ect on the attenuation, they are both behaving like point scatterers. At higher

frequencies however there is a larger di¤erence between spherical and crack-like inclusions

as wavelengths are small enough for the small scale di¤erences to be noticed.
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Chapter 6

Conclusions and Recommendations

In this thesis I have investigated the e¤ect that aligned fracturing has on the elastic

wave attenuation, dispersion and anisotropy in �uid-saturated porous media. I have

quanti�ed the long-wavelength e¤ective anisotropy that results from aligned fractures in

the presence of equant porosity and the attenuation and dispersion due to wave-induced

�uid �ow between the compliant fractures and the pores in the sti¤er host medium.

6.1 Fluid-dependent Shear-wave Splitting in a Frac-

tured Poroelastic Medium

One of the issues I addressed is the e¤ect of fracture-�lling �uid properties on the shear-

wave splitting taking place in a fractured porous medium. If shear deformation is in any

way coupled with compressional deformation, the shear-wave splitting will depend upon

the compressibility of the saturating �uid. In this case, the coupling is a result of the

e¤ective anisotropy brought about by the presence of aligned fracturing. If the fractures

and pores are hydraulically connected, the contribution of the �uid compressibility to

the overall elastic properties of the medium will depend upon the extent to which �uid

pressure can equilibrate during deformation. Hence I conclude that the dependency of

the shear-wave splitting on the �uid bulk modulus will be at its minimum for quasi-
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static deformations, and will increase with increasing wave frequency. Further studies

are needed to quantify this frequency dependency explicitly and to determine to what

extent the analysis of shear-wave splitting can determine the fracture-�lling �uid type..

6.2 Scattering by a Single Crack in a Poroelastic

Medium

In order to model fracturing using discrete �at circular cracks, I solved the scattering

problem for such a crack embedded in a �uid-saturated porous host. The fundamental

di¤erence between poroelasticity and elasticity is the phenomenon of �uid �ow occurring

relative to the solid skeleton. The scattering that occurs in this medium is predominantly

because of �uid di¤usion in and out of the crack, hence the scattering cross section takes

it�s maximum value around the dimensionless frequency jk2aj2 = 1, where the conversion

of incident energy into the slow wave is at it�s most e¢ cient. For frequencies such that

the crack is small compared to the wavelength, wz is distributed uniformly amongst the

radial wavenumbers so that the crack behaves like a point scatterer with no preferred

directionality. As frequencies increase, however, the dominant radial wavenumbers are

those closer to zero, as when the wavelength is comparable to the crack radius wz tends

to occur perpendicular to the crack surface, as would be expected. I conclude that this

poroelastic e¤ect should not be neglected, at least at seismic frequencies.

6.3 E¤ective Properties of a Poroelastic MediumCon-

taining a Distribution of Aligned Cracks

When the e¤ect of a distribution of cracks is considered, assumptions regarding the

interaction between individual cracks govern how realistic the model is. I estimate the

e¤ect of a distribution of cracks using the multiple-scattering theorem of Waterman
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& Truell (1961). This theory accounts for the interaction between scatterers (i.e the

multiple scattering) as long as the cracks are not too close together (small crack density).

I obtain from this analysis an e¤ective velocity which at low frequencies reduces to the

known static Gassmann result. When the interaction between cracks is neglected, such

as in the EPM of Hudson et al. (1996), a result is obtained that does not reduce to

the static Gassmann limit. Hence I conclude that the interaction between cracks should

not be neglected even in the limit of weak crack density. The disagreement between the

attenuation predicted by both models at low frequencies is also a manifestation of the

fundamental di¤erence between the two models regarding the interaction between cracks.

Since the models only agree with each other at high frequencies, when the time available

for �uid di¤usion is small, I conclude that the interaction between cracks that takes place

as a result of �uid di¤usion is negligible at high frequencies.

The comparison between the model presented here and the model for spherical in-

clusions sheds some light on the e¤ect of inclusion shape on the e¤ective properties of

the medium. As seen on the attenuation plot (Figure 5-3) the attenuation for spherical

inclusions has exactly the same dependence upon frequency, but a di¤erence in magni-

tude that depends upon frequency. Since the attenuation curves are very close at low

frequencies I conclude that the e¤ective medium properties are not sensitive to the shape

of an inclusion at wavelengths that are large compared to the inclusion size. However

at frequencies such that the wavelength is comparable to or smaller than the inclusion

size the e¤ective properties are sensitive to the greater compliance of the �at cracks, and

more attenuation occurs at a given frequency as a result.

The scattering analysis performed in this thesis was limited to the preliminary case

of normal incidence. It is recommended that the more general problem of scattering

of a wave at oblique incidence be treated, as this would allow the determination of the

e¤ective anisotropy of the medium due to the cracks. This problem has been treated for

elastic media by Garbin & Knopo¤ (1973). In a preliminary investigation performed at

the end of my research I found that the general solution to Biot�s equations can be found
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for the case of oblique incidence by using the more general Fourier-Bessel series solution

(see, for example, the Basic Formulation section of Shams-Zadeh-Amiri et al. (2003), who

treat an analogous electromagnetic radiation problem). The boundary conditions for the

case of oblique incidence will also be more complicated.

A limitation of the analysis performed in this thesis is that it is only valid for the

case of weak crack densities. A recommended topic for future research is to extend this

type of analysis to allow for higher crack densities, see for example Zhang & Achenbach

(1991).

80



Bibliography

Auriault, J.-L. & Boutin, C. (1994). Deformable porous media with double porosity III:

Acoustics. Transport in Porous Media, 14, 143�162.

Bakulin, A., Grechka, V., & Tsvankin, I. (2000a). Estimation of fracture parameters from

re�ection seismic data �Part I: HTI model due to a single fracture set. Geophysics,

65, 1788�1802.

Bakulin, A., Grechka, V., & Tsvankin, I. (2000b). Estimation of fracture parameters

from re�ection seismic data �Part III: Fractured models with monoclinic symmetry.

Geophysics, 65, 1818�1830.

Biot, M. A. (1956). Theory of propagation of elastic waves in a �uid-saturated porous

solid. I. Low-frequency range. J. Acoust. Soc. Amer., 28, 168�178.

Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media.

J. Appl. Phys., 33, 1482�1498.

Biot, M. A. &Willis, D. G. (1957). The elastic co-e¢ cients of the theory of consolidation.

J. App. Mech., 24, 594�601.

Brajanovski, M., Gurevich, B., & Schoenberg, M. (2005). A model for P-wave attenua-

tion and dispersion in a porous medium permeated by aligned fractures. Geophys. J.

Internat., 163, 372�384.

81



Brown, L. & Gurevich, B. (2004). Frequency-dependent seismic anisotropy of porous

rocks with penny-shaped cracks. Exploration Geophysics, 35(2), 111�115.

Brown, R. J. S. & Korringa, J. (1975). On the dependence of the elastic properties of a

porous rock on the compressibility of the pore �uid. Geophysics, 40, 608�616.

Cardona, R. (2002). Two theories for �uid substitution in porous rocks with aligned

cracks. In 72st Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts (pp.

173�176).

Cardona, R., Batzle, M., & Davis, T. (2001). Shear wave velocity dependence on �uid

saturation. In 71st Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts (pp.

1712�1715).

Chapman, M. (2003). Frequency dependent anisotropy due to meso-scale fractures in the

presence of equant porosity. Geophys. Prosp., 51, 369�379.

Ciz, R., Gurevich, B., & Markov, M. (2006). Seismic attenuation due to wave-induced

�uid �ow in a porous rock with spherical heterogeneities. Geophys. J. Internat., 165,

957�968.

Crampin, S. (1985). Evaluation of anisotropy by shear-wave splitting. Geophysics, 50,

142�152.

Deresiewicz, H. & Skalak, R. (1963). On uniqueness in dynamic poroelasicity. Bull.

Seismol. Soc. Amer., 53, 783�788.

Galvin, R. J. & Gurevich, B. (2006). Interaction of an elastic wave with a circular crack

in a �uid-saturated porous medium. Appl. Phys. Lett., 88, 061918.

Garbin, H. D. & Knopo¤, L. (1973). The compressional modulus of a material permeated

by a random distribution of circular cracks. Quart. App. Math., 30, 453�464.

82



Gassmann, F. (1951). Über die elastizität poröser medien. Viertel. Naturforsch. Ges.

Zürich, 96, 1�23.

Grechka, V. & Kachanov, M. (2006). E¤ective elasticity of fractured rocks. The Leading

Edge, 25, 152�155.

Guest, S., van der Kolk, C., & Potters, H. (1998). The e¤ect of fracture �lling liquids on

shear-wave propagation. In 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded

Abstracts.

Gurevich, B. (2003). Elastic properties of saturated porous rocks with aligned fractures.

Journal of Applied Geophysics, 54, 203�218.

Helbig, K. (1994). Foundations of Anisotropy for Exploration Seismics. Pergamon.

Hoenig, A. (1979). Elastic moduli of a non-randomly cracked body. International Journal

of Solids and Structures, 15, 137�154.

Hsu, C.-J. & Schoenberg, M. (1993). Elastic waves through a simulated fractured

medium. Geophysics, 58, 964�977.

Hudson, J., Pointer, T., & Liu, E. (2001). E¤ective-medium theories for �uid-saturated

materials with aligned cracks. Geophys. Prosp., 49, 509�522.

Hudson, J. A. (1980). Overall properties of a cracked solid. Math. Proc. Camb. Phil.

Soc., 88, 371�384.

Hudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing

cracks. Geophys. J. Roy. Astr. Soc., 64, 133�150.

Hudson, J. A. & Crampin, S. (2003). Comment on: �The 3D shear experiment over the

Natih �eld in Oman: the e¤ects of fracture-�lling �uids on shear propagation�by C.M.

van der Kolk, W.S. Guest and J.H.H.M. Potters. Geophysical Prospecting, 51, 365�368.

83



Hudson, J. A., Liu, E., & Crampin, S. (1996). The mechanical properties of materials

with interconnected cracks and pores. Geophys. J. Internat., 124, 105�112.

Jakobsen, M., Johansen, T. A., & McCann, C. (2003). The acoustic signature of �uid

�ow in complex porous media. Journal of Applied Geophysics, 54, 219�246.

Jin, B. & Zhong, Z. (2002). Dynamic stress intensity factor (mode I) of a penny-shaped

crack in an in�nite poroelastic solid. Int. J. Eng. Sci., 40, 637�646.

Maultzsch, S., Chapman, M., Liu, E., & Li, X. (2003). Modelling frequency-dependent

seismic anisotropy in �uid-saturated rock with aligned fractures: implication of fracture

size estimation from anisotropic measurements. Geophysical Prospecting, 51, 381�392.

Mavko, G., Mukerji, T., & Dvorkin, J. (1998). The Rock Physics Handbook: Tools for

Seismic Analysis in Porous Media. Cambridge University Press.

Nakagawa, S., Nihei, K. T., & Myer, L. R. (2000). Shear-induced conversion of seismic

waves across single fractures. International Journal of Rock Mechanics and Mining

Sciences, 37, 203�218.

Nelson, R. A. (2001). Geologic Analysis of Naturally Fractured Reservoirs. Boston: Gulf

Professional Publishing.

Noble, B. (1963). The solution of Bessel function dual integral equations by a multiplying-

factor method. Proc. Camb. Phil. Soc., 59, 351�362.

Nye, J. F. (1985). Physical Properties of Crystals. Oxford University Press.

O�Connell, R. J. & Budiansky, B. (1974). Seismic velocities in dry and saturated cracked

solids. J. Geophys. Res., 79, 5412�5426.

Piau, M. (1979). Attenuation of a plane compressional wave by a random distribution of

thin circular cracks. Int. J. Eng. Sci., 17, 151�167.

84



Pointer, T., Liu, E., & Hudson, J. A. (2000). Seismic wave propagation in cracked porous

media. Geophys. J. Internat., 142, 199�231.

Pride, S. R. & Berryman, J. G. (2003). Linear dynamics of double-porosity dual-

permeability materials, 1. governing equations and acoustic attenuation. Physical

Review E.

Reiss, L. H. (1980). The Reservoir Engineering Aspects of Fractured Formations. Paris:

Editions Technip.

Rice, J. R. & Cleary, M. P. (1976). Some basic stress di¤usion solutions for �uid-saturated

elastic porous media with compressible constituents. Reviews of Geophysics and Space

Physics, 14, 227�241.

Robertson, I. A. (1967). Di¤raction of a plane longitudinal wave by a penny-shaped

crack. Proc. Camb. Phil. Soc., 63, 229�238.

Sayers, C. M. (2002). Fluid-dependent shear-wave splitting in fractured media. Geophys-

ical Prospecting, 50, 393�401.

Sayers, C. M. & Kachanov, M. (1995). Microcrack-induced elastic wave anisotropy of

brittle rocks. Journal of Geophysical Research, B 100, 4149�4156.

Schoenberg, M. (1980). Elastic wave behavior across linear slip interfaces. J. Acoust.

Soc. Amer., 68, 1516�1521.

Schoenberg, M. & Douma, J. (1988). Elastic-wave propagation in media with parallel

fractures and aligned cracks. Geophys. Prosp., 36, 571�590.

Schoenberg, M. & Sayers, C. M. (1995). Seismic anisotropy of fractured rock. Geophysics,

60, 204�211.

Shams-Zadeh-Amiri, A. M., Li, X., & Huang, W. (2003). Hankel transform-domain

analysis of scattered �elds in multilayer planar waveguides and lasers with circular

gratings. IEEE Journal of Quantum Electronics, 39, 1086�1098.

85



Sherief, H. H. & El-Maghraby, N. M. (2003). An internal penny-shaped crack in an

in�nite thermoelastic solid. J. Therm. Stresses, 26, 333�352.

Thomsen, L. (1986). Weak elastic anisotropy. Geophysics, 51, 1954�1966.

Thomsen, L. (1995). Elastic anisotropy due to aligned cracks in porous rock. Geophysical

Prospecting, 43, 805�829.

Tod, S. R. (2001). The e¤ects on seismic waves of interconnected nearly aligned cracks.

Geophys. J. Internat., 146, 249�263.

van der Kolk, C., Guest, W. S., & Potters, J. H. H. M. (2001). The 3D shear experiment

over the Natih �eld in Oman: the e¤ect of fracture-�lling �uids on shear propagation.

Geophysical Prospecting, 49, 179�197.

Waterman, P. C. & Truell, R. (1961). Multiple scattering of waves. J. Math. Phys., 2,

512�537.

Zhang, C. & Achenbach, J. D. (1991). E¤ective wave velocity and attenuation in a

material with distributed penny-shaped cracks. International Journal of Solids and

Structures, 27, 751�767.

Every reasonable e¤ort has been made to acknowledge the owners of copyright ma-

terial. I would be pleased to hear from any copyright owner who has been omitted or

incorrectly acknowledged.

86



Appendix A

Chapter 3 MATLAB Code

This appendix contains the MATLAB code used to produce the results of Chapter 3.

"singlefracture.m" calculates the shear-wave velocities and splitting for the case of a single

fracture set. "pressureequilibrium.m" calculates the shear-wave velocities and splitting

for the case of conjugate fracture sets in full pressure communication. "noninteracting.m"

calculates the shear-wave velocities and splitting for the case of non-interacting fracture

sets.

A.1 singlefracture.m

clear all;

figure;

grid on;

hold;

count=1;

for i=0:0.0025*10^9:2.5*10^9

Kf(count)=i+0.00001;

87



count=count+1;

end

for THETA=0:pi/12:pi/2

for i=1:length(Kf)

Vp_dry=4000;

Vs_fast_dry=1700;

Vs_slow_dry=1445;

phi_b=0.1;

% calcite

rho_m=2870;

rho_dry=rho_m*(1-phi_b);

mu_dry=Vs_fast_dry^2*rho_dry;

Kdry=Vp_dry^2*rho_dry-4*mu_dry/3;

Km=70*10^9;

alpha0=1-Kdry/Km;

gamma0=((Vs_fast_dry-Vs_slow_dry)/Vs_fast_dry);

deltaT=2*gamma0/(2*gamma0+1);

Zt=deltaT/(mu_dry-deltaT*mu_dry);

% assume Zn=Zt

Zn=Zt;

lambda_dry=Kdry-2*mu_dry/3;

lambda=lambda_dry;
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deltaN=(lambda_dry+2*mu_dry)*Zn/(1+(lambda_dry+2*mu_dry)*Zn);

L=lambda_dry+2*mu_dry;

epsilon0=2*mu_dry*(lambda_dry+mu_dry)*deltaN/(L^2*(1-deltaN));

phi_c=0;

rho_f=1000;

rho_sat=rho_dry+(phi_b+phi_c)*rho_f;

phi=phi_b+phi_c;

M=1/((alpha0-phi)/Km+phi/Kf(i));

Ksat=Kdry+alpha0^2*M;

Lsat=Ksat+4*mu_dry/3;

lambda_sat=Lsat-2*mu_dry;

D=1+(Kf(i)/(Km*phi))*(alpha0-phi+(Kdry^2*deltaN)/(Km*L));

theta=1-(Kf(i)/Km);

alpha_prime=alpha0+(Kdry^2/(Km*L))*deltaN;

L1=Km+4*mu_dry/3;

lambda1=Km-2*mu_dry/3;

d1=1-deltaN;

d2=1-lambda_dry^2*deltaN/L^2;

c11sat=(L/D)*(d1*theta+(Kf(i)/(phi*Km*L))*(L1*alpha_prime-...

(16*mu_dry^2*alpha0*deltaN)/(9*L)));

c33sat=(L/D)*(d2*theta+(Kf(i)/(phi*Km*L))*(L1*alpha_prime-...

(4*mu_dry^2*alpha0*deltaN)/(9*L)));

c13sat=(lambda/D)*(d1*theta+(Kf(i)/(phi*Km*lambda))*...

(lambda1*alpha_prime+(8*mu_dry^2*alpha0*deltaN)/(9*L)));

c13sat-lambda*(1-deltaN)

c44sat=mu_dry;

c55sat=mu_dry*(1-deltaT);

m=sqrt(((c33sat-c55sat)*sin(THETA)^2-(c11sat-c55sat)*cos(THETA)^2)...

89



^2+(c13sat+c55sat)^2*sin(2*THETA)^2);

Vp_sat(i)=sqrt(c33sat*sin(THETA)^2+c11sat*cos(THETA)^2+c55sat+m)...

/sqrt(2*rho_sat);

Vs2_sat=sqrt(c33sat*sin(THETA)^2+c11sat*cos(THETA)^2+c55sat-m)...

/sqrt(2*rho_sat);

VS2(i)=Vs2_sat;

Vs1_sat=sqrt((c44sat*sin(THETA)^2+c55sat*cos(THETA)^2)/rho_sat);

VS1(i)=Vs1_sat;

epsilon_sat=(c33sat-c11sat)/(2*c11sat);

gamma_sat=(c44sat-c55sat)/(2*c55sat);

delta_sat=((c13sat+c55sat)^2-(c11sat-c55sat)^2)/(2*c11sat*...

(c11sat-c55sat));

Zn_sat=Zn*Lsat*(lambda+mu_dry)*epsilon_sat/(L*(lambda_sat+mu_dry)...

*epsilon0);

splitting(i)=(Vs1_sat^2-Vs2_sat^2)/(Vs1_sat^2+Vs2_sat^2);

end

plot(Kf,VS1,�--�,Kf,VS2);

plot(Kf,splitting);

% axis([0 2.5*10^9 -0.05 0.25]);

% axis normal;

xlabel(�K_f�)

ylabel(�s�)

% ylabel(�Vp�);

end
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A.2 pressureequilibrium.m

clear all;

figure;

hold;

count=1;

for i=0:0.025*10^9:2.5*10^9

Kf(count)=i+0.00001;

count=count+1;

end

for theta=0:pi/12:pi/2

for i=1:length(Kf)

Vp_dry=4000;

Vs_fast_dry=1700;

Vs_slow_dry=1445;

phi_b=0.1;

% calcite

rho_m=2870;

rho_dry=rho_m*(1-phi_b);

mu_dry=Vs_fast_dry^2*rho_dry;

mu=mu_dry;

Kdry=Vp_dry^2*rho_dry-4*mu_dry/3;

Km=70*10^9;
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alpha0=1-Kdry/Km;

gamma0=((Vs_fast_dry-Vs_slow_dry)/Vs_fast_dry);

deltaT=2*gamma0/(2*gamma0+1);

Zt=deltaT/(mu_dry-deltaT*mu_dry);

% assume Zn=Zt

Zn=Zt;

lambda_dry=Kdry-2*mu_dry/3;

lambda=lambda_dry;

deltaN=(lambda_dry+2*mu_dry)*Zn/(1+(lambda_dry+2*mu_dry)*Zn);

L=lambda_dry+2*mu_dry;

%epsilon0=2*mu_dry*(lambda_dry+mu_dry)*deltaN/(L^2*(1-deltaN));

phi_c=0;

rho_f=1000;

rho_sat=rho_dry+(phi_b+phi_c)*rho_f;

phi=(phi_b+phi_c);

Zt1=Zt;

Zt2=0.5*Zt1;

alpha11=(Zt1+Zt2)*cos(theta)^2;

alpha13=(Zt2-Zt1)*cos(theta)*sin(theta);

alpha33=(Zt1+Zt2)*sin(theta)^2;

S011=(lambda+mu)/(mu*(3*lambda+2*mu));

S012=-1*lambda/(2*mu*(3*lambda+2*mu));

S013=S012;

S021=S012;

S022=S011;

S023=S012;
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S031=S012;

S032=S012;

S033=S011;

S044=1/mu;

S055=S044;

S066=S044;

S0=[S011 S012 S013 0 0 0

S021 S022 S023 0 0 0

S031 S032 S033 0 0 0

0 0 0 S044 0 0

0 0 0 0 S055 0

0 0 0 0 0 S066];

deltaS11=alpha11;

deltaS33=alpha33;

deltaS44=alpha33;

deltaS46=alpha13;

deltaS55=alpha33+alpha11;

deltaS66=alpha11;

deltaS15=alpha13;

deltaS35=alpha13;

deltaS=[deltaS11 0 0 0 deltaS15 0

0 0 0 0 0 0

0 0 deltaS33 0 deltaS35 0

0 0 0 deltaS44 0 deltaS46

deltaS15 0 deltaS35 0 deltaS55 0
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0 0 0 deltaS46 0 deltaS66];

S=S0+deltaS;

C=inv(S);

% Effect of saturating fluid

alpha=1/(phi*(1/Kf(i)-1/Km));

b1=1-(C(1,1)+C(1,2)+C(1,3))/(3*Km);

b2=1-(C(2,1)+C(2,2)+C(2,3))/(3*Km);

b3=1-(C(3,1)+C(3,2)+C(3,3))/(3*Km);

b4=-1*(C(4,1)+C(4,2)+C(4,3))/(3*Km);

b5=-1*(C(5,1)+C(5,2)+C(5,3))/(3*Km);

b6=-1*(C(6,1)+C(6,2)+C(6,3))/(3*Km);

Dstar=1+(alpha/(3*Km))*(b1+b2+b3);

c11sat=C(1,1)+b1^2*alpha/Dstar;

c22sat=C(2,2)+b2^2*alpha/Dstar;

c33sat=C(3,3)+b3^2*alpha/Dstar;

c44sat=C(4,4)+b4^2*alpha/Dstar;

c55sat=C(5,5)+b5^2*alpha/Dstar;

c66sat=C(6,6)+b6^2*alpha/Dstar;

c12sat=C(1,2)+b1*b2*alpha/Dstar;

c13sat=C(1,3)+b1*b3*alpha/Dstar;

c14sat=C(1,4)+b1*b4*alpha/Dstar;

c15sat=C(1,5)+b1*b5*alpha/Dstar;

c16sat=C(1,6)+b1*b6*alpha/Dstar;

c23sat=C(2,3)+b2*b3*alpha/Dstar;

c24sat=C(2,4)+b2*b4*alpha/Dstar;
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c25sat=C(2,5)+b2*b5*alpha/Dstar;

c26sat=C(2,6)+b2*b6*alpha/Dstar;

c34sat=C(3,4)+b3*b4*alpha/Dstar;

c35sat=C(3,5)+b3*b5*alpha/Dstar;

c36sat=C(3,6)+b3*b6*alpha/Dstar;

c45sat=C(4,5)+b4*b5*alpha/Dstar;

c46sat=C(4,6)+b4*b6*alpha/Dstar;

c56sat=C(5,6)+b5*b6*alpha/Dstar;

Vs2=sqrt((2/rho_sat)*(c33sat*c55sat-c35sat^2)/(c33sat+c55sat+...

sqrt((c33sat-c55sat)^2+4*c35sat^2)));

VS2(i)=Vs2;

Vs1=sqrt(c44sat/rho_sat);

VS1(i)=Vs1;

splitting(i)=(Vs1^2-Vs2^2)/(Vs1^2+Vs2^2);

end

% plot(Kf,VS2);

% plot(Kf,Vs2_sat);

plot(Kf,splitting);

xlabel(�K_f�)

ylabel(�s�)

% ylabel(�Vs�)

end
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A.3 noninteracting.m

clear all;

format short

figure;

hold;

count=1;

for i=0:0.025*10^9:2.5*10^9

Kf(count)=i+0.00001;

count=count+1;

end

for THETA=0:pi/12:pi/2;

for i=1:length(Kf)

Vp_dry=4000;

Vs_fast_dry=1700;

Vs_slow_dry=1445;

phi_b=0.1;

% calcite

rho_m=2870;

rho_dry=rho_m*(1-phi_b);

mu_dry=Vs_fast_dry^2*rho_dry;

mu=mu_dry;

Kdry=Vp_dry^2*rho_dry-4*mu_dry/3;

Km=70*10^9;
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alpha0=1-Kdry/Km;

gamma0=((Vs_fast_dry-Vs_slow_dry)/Vs_fast_dry);

deltaT=2*gamma0/(2*gamma0+1);

Zt=deltaT/(mu_dry-deltaT*mu_dry);

% assume Zn=Zt

Zn=Zt;

lambda_dry=Kdry-2*mu_dry/3;

lambda=lambda_dry;

phi_c=0;

phi=(phi_b+phi_c);

C0=[lambda+2*mu lambda lambda 0 0 0

lambda lambda+2*mu lambda 0 0 0

lambda lambda lambda+2*mu 0 0 0

0 0 0 mu 0 0

0 0 0 0 mu 0

0 0 0 0 0 mu];

% Effect of saturating fluid

alpha=1/(phi*(1/Kf(i)-1/Km));

b1=1-(C0(1,1)+C0(1,2)+C0(1,3))/(3*Km);

b2=1-(C0(2,1)+C0(2,2)+C0(2,3))/(3*Km);

b3=1-(C0(3,1)+C0(3,2)+C0(3,3))/(3*Km);

b4=-1*(C0(4,1)+C0(4,2)+C0(4,3))/(3*Km);

b5=-1*(C0(5,1)+C0(5,2)+C0(5,3))/(3*Km);
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b6=-1*(C0(6,1)+C0(6,2)+C0(6,3))/(3*Km);

Dstar=1+(alpha/(3*Km))*(b1+b2+b3);

c11satB=C0(1,1)+b1^2*alpha/Dstar;

c22satB=C0(2,2)+b2^2*alpha/Dstar;

c33satB=C0(3,3)+b3^2*alpha/Dstar;

c44satB=C0(4,4)+b4^2*alpha/Dstar;

c55satB=C0(5,5)+b5^2*alpha/Dstar;

c66satB=C0(6,6)+b6^2*alpha/Dstar;

c12satB=C0(1,2)+b1*b2*alpha/Dstar;

c13satB=C0(1,3)+b1*b3*alpha/Dstar;

c14satB=C0(1,4)+b1*b4*alpha/Dstar;

c15satB=C0(1,5)+b1*b5*alpha/Dstar;

c16satB=C0(1,6)+b1*b6*alpha/Dstar;

c23satB=C0(2,3)+b2*b3*alpha/Dstar;

c24satB=C0(2,4)+b2*b4*alpha/Dstar;

c25satB=C0(2,5)+b2*b5*alpha/Dstar;

c26satB=C0(2,6)+b2*b6*alpha/Dstar;

c34satB=C0(3,4)+b3*b4*alpha/Dstar;

c35satB=C0(3,5)+b3*b5*alpha/Dstar;

c36satB=C0(3,6)+b3*b6*alpha/Dstar;

c45satB=C0(4,5)+b4*b5*alpha/Dstar;

c46satB=C0(4,6)+b4*b6*alpha/Dstar;

c56satB=C0(5,6)+b5*b6*alpha/Dstar;

Cb=[c11satB c12satB c13satB c14satB c15satB c16satB

c12satB c22satB c23satB c24satB c25satB c26satB

c13satB c23satB c33satB c34satB c35satB c36satB

c14satB c24satB c34satB c44satB c45satB c46satB
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c15satB c25satB c35satB c45satB c55satB c56satB

c16satB c26satB c36satB c46satB c56satB c66satB];

deltaN=(lambda_dry+2*mu_dry)*Zn/(1+(lambda_dry+2*mu_dry)*Zn);

L=lambda_dry+2*mu_dry;

epsilon0=2*mu_dry*(lambda_dry+mu_dry)*deltaN/(L^2*(1-deltaN));

phi_c=0;

rho_f=1000;

rho_sat=rho_dry+(phi_b+phi_c)*rho_f;

phi=(phi_b+phi_c);

M=1/((alpha0-phi)/Km+phi/Kf(i));

Ksat=Kdry+alpha0^2*M;

Lsat=Ksat+4*mu_dry/3;

lambda_sat=Lsat-2*mu_dry;

D=1+(Kf(i)/(Km*phi))*(alpha0-phi+(Kdry^2*deltaN)/(Km*L));

theta=1-(Kf(i)/Km);

alpha_prime=alpha0+(Kdry^2/(Km*L))*deltaN;

L1=Km+4*mu_dry/3;

lambda1=Km-2*mu_dry/3;

d1=1-deltaN;

d2=1-lambda_dry^2*deltaN/L^2;

c11sat=(L/D)*(d1*theta+(Kf(i)/(phi*Km*L))*(L1*alpha_prime-...

(16*mu_dry^2*alpha0*deltaN)/(9*L)));

c33sat=(L/D)*(d2*theta+(Kf(i)/(phi*Km*L))*(L1*alpha_prime-...

(4*mu_dry^2*alpha0*deltaN)/(9*L)));

c13sat=(lambda/D)*(d1*theta+(Kf(i)/(phi*Km*lambda))*(lambda1...

*alpha_prime+(8*mu_dry^2*alpha0*deltaN)/(9*L)));

c13sat-lambda*(1-deltaN);
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c44sat=mu_dry;

c55sat=mu_dry*(1-deltaT);

epsilon_sat=(c33sat-c11sat)/(2*c11sat);

gamma_sat=(c44sat-c55sat)/(2*c55sat);

delta_sat=((c13sat+c55sat)^2-(c11sat-c55sat)^2)/(2*c11sat*...

(c11sat-c55sat));

Zn_sat=Zn*Lsat*(lambda+mu_dry)*epsilon_sat/(L*(lambda_sat+...

mu_dry)*epsilon0);

Zt1=Zt;

Zt2=0.5*Zt1;

ZnSat1=Zn_sat;

ZnSat2=0.5*ZnSat1;

alpha11=(Zt1+Zt2)*cos(THETA)^2;

alpha13=(Zt2-Zt1)*cos(THETA)*sin(THETA);

alpha33=(Zt1+Zt2)*sin(THETA)^2;

B1=ZnSat1-Zt1;

B2=ZnSat2-Zt2;

beta1111=(B1+B2)*cos(THETA)^4;

beta1113=(B2-B1)*cos(THETA)^3*sin(THETA);

beta1133=(B1+B2)*cos(THETA)^2*sin(THETA)^2;

beta1313=beta1133;

beta1333=(B2-B1)*cos(THETA)*sin(THETA)^3;

beta3333=(B1+B2)*sin(THETA)^4;

S0=inv(Cb);

deltaS11=alpha11+beta1111;

deltaS33=alpha33+beta3333;

deltaS44=alpha33;

deltaS13=beta1133;
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deltaS46=alpha13;

deltaS55=alpha33+alpha11+4*beta1313;

deltaS66=alpha11;

deltaS15=alpha13;

deltaS35=alpha13;

deltaS=[deltaS11 0 deltaS13 0 deltaS15 0

0 0 0 0 0 0

deltaS13 0 deltaS33 0 deltaS35 0

0 0 0 deltaS44 0 deltaS46

deltaS15 0 deltaS35 0 deltaS55 0

0 0 0 deltaS46 0 deltaS66];

S=S0+deltaS;

C=inv(S);

Vs2=sqrt((2/rho_sat)*(C(3,3)*C(5,5)-C(3,5)^2)/(C(3,3)+C(5,5)+...

sqrt((C(3,3)-C(5,5))^2+4*C(3,5)^2)));

VS2(i)=Vs2;

Vs1=sqrt(C(4,4)/rho_sat);

VS1(i)=Vs1;

splitting(i)=(Vs1^2-Vs2^2)/(Vs1^2+Vs2^2);

end

% plot(Kf,VS2);

% plot(Kf,Vs2_sat);

plot(Kf,splitting);
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xlabel(�K_f�)

ylabel(�s�)

% ylabel(�Vs�)

end
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Appendix B

Chapter 4 MATLAB Code

This appendix contains the MATLAB code used to produce the results of Chapter 4. "sin-

glescattering.m" numerically solves the Fredholm integral equation obtained in Chapter

4 which allows computation of the scattered �eld. "lambdaK_generalf.m" is a function

�le referred to by "singlescattering.m". It is e¤ectively the kernal of the Fredholm equa-

tion. "gf.m" is a function �le referred to by "singlescattering.m". It is the RHS of the

Fredholm equation.

B.1 singlescattering.m

clear all;

global kk_e h tau L_e Ldim_e mu_e k0 k1 k2 k3 kk k2_g visc perm b bdim I;

global rrr oo Kg mug Kf porosity alpha Kdry mudry taudry L Kstar M HBiot;

global Mdim HBiotdim Ldim rhodrydim A1_g A2_g q1 q2;

I=sqrt(-1);

n0=0.01;

a=1;

Kg=37*10^9;
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mug=44*10^9;

Kf=2.25*10^9;

porosity=0.3;

visc=1e-3;

perm=1e-12;

rhof=1e3;

rhos=2.65e3;

rhodry=(1-porosity)*rhos;

rho=(1-porosity)*rhos+porosity*rhof;

b=visc/perm;

alpha=1-(1-porosity)^(3/(1-porosity));

Kdry=Kg*(1-alpha);

mudry=mug*(1-alpha);

bdim=b/sqrt(rho*mudry);

L=Kdry+4*mudry/3;

taudry=sqrt(mudry/L);

M=Kg/((1-Kdry/Kg)-porosity*(1-Kg/Kf));

HBiot=L+alpha^2*M;

Mdim=M/mudry;

HBiotdim=HBiot/mudry;

Ldim=L/mudry;

rhodrydim=rhodry/rho;

omegadim=[0.0001 10^-3.5 0.001 10^-2.5 0.01 10^-1.5 0.1 10^-0.5 1 ...

10^0.5 10 10^1.5 100 10^2.5 1000 10^3.5 10000];

for q=1:length(omegadim)

oo=omegadim(q);
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c0=sqrt(Ldim/rhodrydim);

k0=oo/sqrt(Ldim);

c1=sqrt(HBiotdim);

k1=oo/c1;

k2=sqrt(I*oo*bdim*HBiotdim/(Ldim*Mdim));

k3=oo;

kk=abs(k2);

omeg(q)=kk^2;

h=k1;

x1=0;

if kk <= 1

spac=2*kk;

x2=4;

x2=200*spac;

spac=0.1*kk;

else

spac=0.002*kk;

x2=40;

end

x2=max(4,kk*10);

p=-1*(HBiotdim-alpha*Mdim);

NMAX=200;

omk=eye(NMAX);
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% CALCULATE GAUSS-LEGENDRE WEIGHTS

m=(NMAX+1)/2;

xm=(x2+x1)/2;

xl=(x2-x1)/2;

for i=1:m

Z=cos(pi*(i-1/4)/(NMAX+1/2));

Z1=Z-1;

while (Z-Z1) > 3d-14

p1=1;

p2=0;

for j=1:NMAX

p3=p2;

p2=p1;

p1=((2*j-1)*Z*p2-(j-1)*p3)/j;

end

pp=NMAX*(Z*p1-p2)/(Z^2-1);

Z1=Z;

Z=Z1-p1/pp;

end

x(i)=xm-xl*Z;

x(NMAX+1-i)=xm+xl*Z;

w(i)=2*xl/((1-Z^2)*pp^2);

w(NMAX+1-i)=w(i);

end
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for i=1:NMAX

u(i)=x(i);

end

for j=1:NMAX

z(j)=x(j);

end

for i=1:NMAX

for j=1:NMAX

omkk_g(i,j)=omk(i,j)-lambdaK_generalf(u(i),z(j))*w(i);

end

end

for j=1:NMAX

gmat(j)=gf(z(j));

end

f_g=linsolve(omkk_g.�,gmat.�);

B0=2*f_g(1)/(pi);

A0=-1*(1-alpha*Mdim/HBiotdim)*B0/(2*(1-taudry^2));

kappa=1+2*pi*n0*A0;

Q(q)=-2*imag(kappa)/real(kappa);

sigmaP=4*pi*imag(I*k1*A0)/k1;
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sigmaPP(q)=sigmaP;

for i=1:length(f_g)

B_g(i)=2*f_g(i)/(pi);

if u(i)<=k1

q1=-I*sqrt(k1^2-u(i)^2);

else

q1=sqrt(u(i)^2-k1^2);

end

q2=-I*sqrt(k2^2-u(i)^2);

AR_g(i,q)=-1*(2*u(i)^2-oo^2*(1-alpha*Mdim/HBiotdim))*B_g(i)/(2*...

(1-taudry^2)*(-1)*oo^2);

A1_g(i,q)=(-1/(alpha*taudry^2*q1))*(-1)*(oo^2*(1-alpha*Mdim/HBiotdim))...

*B_g(i)/(2*(1-taudry^2)*(-1)*oo^2);

A2_g(i,q)=-1*A1_g(i,q)*q1/q2*k2^2*(2*u(i)^2*(k1^2-k0^2)-b*alpha*...

taudry^2*(I*oo^3))/(k2^2*(2*u(i)^2-oo^2)-b*alpha*taudry^2*(I*oo^3));

A3_g(i,q)=(2*u(i)^2*alpha*taudry^2/(2*u(i)^2-oo^2))*(A1_g(i,q)*q1+...

A2_g(i,q)*q2);

rrr=1;

wz_spectrum(i,q)=(-1/(I*oo*bdim))*(A1_g(i,q)*q1*(k0^2-k1^2)+...

A2_g(i,q)*q2*(k0^2-k2^2));

wz_spectrum(i,q)=(-1/(I*oo*bdim))*(A2_g(i,q)*(-k2^2)/(k2/q2)^8);

wr_spectrum(i,q)=wz_spectrum(i,q)/q2;

uz1(i,q)=-1*alpha/Ldim*A1_g(i,q)*q1;
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uz2(i,q)=-1*alpha/Ldim*A2_g(i,q)*q2;

uz3(i,q)=A3_g(i,q);

freq(i,q)=oo;

uarr(i,q)=u(i);

uarrk1(i,q)=u(i)/k1;

uarrkk(i,q)=u(i)/kk;

uarrk3(i,q)=u(i)/k3;

A0_g=-1*(1-alpha*Mdim/HBiotdim)*B_g(1)/(2*(1-taudry^2));

uz0(i,q)=-1*A0_g;

end

end

figure;

plot(uarrkk,wz_spectrum);

grid on;

axis([0 1 -4 7]);

xlabel(�Horizontal Slowness�);

ylabel(�w_z�);

legend(�0.0001�,�0.001�,�0.01�,�0.1�,�1�,�10�,�100�,�1000�,�10000�,0)

% set(legend,�FontSize�,22);

figure;

plot(uarrkk,wr_spectrum.*uarr);

grid on;

axis([0 1 -0.5 1]);

109



xlabel(�Horizontal Slowness�);

ylabel(�w_r�);

legend(�0.0001�,�0.001�,�0.01�,�0.1�,�1�,�10�,�100�,�1000�,�10000�,0)

% set(legend,�FontSize�,22);

figure; plot(log10(omegadim),-Q/n0,�*�);hold on;

xlabel (�Frequency�)

ylabel (�Scattering Cross-section�)

grid on;

grid on;

B.2 lambdaK_generalf.m

function lambdaK_general = lambdaK_generalf(u,z)

global k0 k1 k2 k3 visc perm b bdim I oo Kg mug Kf porosity alpha Kdry;

global mudry taudry L Kstar M HBiot Mdim HBiotdim Ldim rhodrydim;

if z==u

K=(-1/pi)*(1-sin(z+u)/(z+u));

else

K=(-1/pi)*(sin(z-u)/(z-u)-sin(z+u)/(z+u));

end
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k0=oo/sqrt(Ldim);

c1=sqrt(HBiotdim);

k1=oo/c1;

k2=sqrt(I*oo*bdim*HBiotdim/(Ldim*Mdim));

k3=oo;

if u<=k1

q1=-I*sqrt(k1^2-u^2);

else q1=sqrt(u^2-k1^2);

end

q2=-I*sqrt(k2^2-u^2);

if u<=k3

q3=-I*sqrt(k3^2-u^2);

else q3=sqrt(u^2-k3^2);

end

H1=1+alpha*Mdim*oo^2/(HBiotdim*(2*u^2-oo^2));

H2=(2*u^2-oo^2)^2-4*u^2*q3*q1-(k1^2-k0^2)*(2*u^2-oo^2)/(alpha*taudry^2);

H3=-2*(1-taudry^2)*oo^2*q1*u;

H4=2*u^2*alpha^2*Mdim-HBiotdim*bdim*alpha*I*oo;

H5=(2*u^2-oo^2)^2-4*u^2*q3*q2-1*k2^2*(2*u^2-oo^2)/(alpha*taudry^2);

H6=2*HBiotdim*(Ldim-1)*q2*u*(-1)*k2^2;

H7=2*u^2-oo^2*(1-alpha*Mdim/HBiotdim);

H=H1*(H2/H3+H4*H5/(H6*H7))-1;

lambdaK_general=K*H*u/z;
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B.3 gf.m

function g = gf(z)

global I kk Kg mug Kf porosity alpha Kdry mudry taudry L Kstar M HBiot;

global Mdim HBiotdim Ldim;

T=(sin(z)-z*cos(z))/z^3;

p=-1*(HBiotdim-alpha*Mdim);

g=p*T;
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Appendix C

Chapter 5 MATLAB Code

This appendix contains the MATLAB code used to produce the results of Chapter 5.

"sparsedistribution.m" uses the single scattering solution from "singlescattering.m" to

calculate the e¤ective properties of a medium containing a sparse distribution of cracks.

Note that this code also refers to the function �les "lambdaK_generalf.m" and "gf.m".

C.1 sparsedistribution.m

clear all;

global I kk Kg mug Kf porosity alpha Kdry mudry taudry L Kstar M;

global HBiot Mdim HBiotdim Ldim;

I=sqrt(-1);

n0=0.01;

Kg=37*10^9;

mug=44*10^9;

Kf=2.25*10^9;

porosity=0.3;
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alpha=1-(1-porosity)^(3/(1-porosity));

Kdry=Kg*(1-alpha);

mudry=mug*(1-alpha);

L=Kdry+4*mudry/3;

taudry=sqrt(mudry/L);

M=Kg/((1-Kdry/Kg)-porosity*(1-Kg/Kf));

HBiot=L+alpha^2*M;

tausat=sqrt(mudry/HBiot);

Mdim=M/mudry;

HBiotdim=HBiot/mudry;

Ldim=L/mudry;

Kfdim=Kf/mudry;

N=4;

fspac=0.15;

NN=N/fspac;

for i=1:1:NN

ord=(i-1)*fspac-1;

k(i)=10^ord;

end

for q=1:length(k)

kk=k(q);

k2=-kk*sqrt(I)*I;

x1=0;

if kk <= 1

spac=2*kk;
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x2=4;

x2=200*spac;

spac=0.1*kk;

else

spac=0.002*kk;

x2=40;

end

x2=max(4,kk*10);

p=-1*(HBiotdim-alpha*Mdim);

NMAX=200;

omk=eye(NMAX);

% CALCULATE GAUSS-LEGENDRE WEIGHTS

m=(NMAX+1)/2;

xm=(x2+x1)/2;

xl=(x2-x1)/2;

for i=1:m

Z=cos(pi*(i-1/4)/(NMAX+1/2));

Z1=Z-1;

while (Z-Z1) > 3d-14

p1=1;

p2=0;

for j=1:NMAX

p3=p2;
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p2=p1;

p1=((2*j-1)*Z*p2-(j-1)*p3)/j;

end

pp=NMAX*(Z*p1-p2)/(Z^2-1);

Z1=Z;

Z=Z1-p1/pp;

end

x(i)=xm-xl*Z;

x(NMAX+1-i)=xm+xl*Z;

w(i)=2*xl/((1-Z^2)*pp^2);

w(NMAX+1-i)=w(i);

end

for i=1:NMAX

u(i)=x(i);

end

for j=1:NMAX

z(j)=x(j);

end

for i=1:NMAX

for j=1:NMAX
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omkk(i,j)=omk(i,j)-lambdaKf(u(i),z(j))*w(i);

end

end

for j=1:NMAX

gmat(j)=gf(z(j));

end

f=linsolve(omkk�,gmat�);

B0=2*f(1)/(pi);

A0=-1*(1-alpha*Mdim/HBiotdim)*B0/(2*(1-taudry^2));

kappa=1+2*pi*n0*A0;

% Complicated asymptote

%kappaAlowf=1-2*n0*(HBiotdim-alpha*Mdim)*(-1/3*HBiotdim+1/3*...

% alpha*Mdim+1/30*(HBiotdim-alpha*Mdim)*Mdim*k2^2*(2*Ldim^2+3*...

% alpha^2-4*alpha*Ldim)/(HBiotdim*(Ldim-1)*(1+1/8*Mdim*k2^2*...

% (2*Ldim^2+3*alpha^2-4*alpha*Ldim)/(HBiotdim*(Ldim-1)))))/...

% (HBiotdim*(1-taudry^2));

% Simple asymptote

kappaAlowf=1-2*n0*(HBiotdim-alpha*Mdim)*(-1/3*HBiotdim+1/3*alpha...

*Mdim+1/30*(HBiotdim-alpha*Mdim)*Mdim*k2^2*(2*Ldim^2+3*alpha^2-...

4*alpha*Ldim)/(HBiotdim*(Ldim-1)*(1)))/(HBiotdim*(1-taudry^2));

% Complicated asymptote

%kappaAhighf=1-2*n0*(HBiotdim-alpha*Mdim)*(-1/3*HBiotdim+1/3*...

% alpha*Mdim+1/3*(HBiotdim-alpha*Mdim)*Mdim*Ldim^2*k2/(HBiotdim...
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% *(Ldim-1)*(1+Mdim*Ldim^2*k2/(pi*HBiotdim*(Ldim-1)))*pi))/(...

% HBiotdim*(1-taudry^2));

% kappaAhighf=1+2/3*n0*(HBiotdim-alpha*Mdim)^2*(-HBiotdim+...

% alpha*Mdim)*pi*(Ldim-1)/k2/(Mdim*Ldim^2*(1-taudry^2));

% Simple asymptote

% kappaAhighf=1-2/3*n0*(HBiotdim-alpha*Mdim)*(-HBiotdim+alpha*...

% Mdim)*pi*(Ldim-1)/(Mdim*Ldim^2*(1-taudry^2))/k2;

kappaAhighf = 1+pi*n0*(-HBiotdim+alpha*Mdim)^2/(Ldim*Mdim*k2);

J=sqrt(porosity*Kfdim*HBiotdim/(kk^2*2*Ldim*Mdim));

KH=((1+I)/3)*Ldim*(Kfdim/(Ldim-1))*(1/J);

kappaH=1/sqrt(1-(4/3)*Ldim^2*n0/((Ldim-1)*(1+KH)));

KKH(q)=abs(KH);

JJ(q)=1/J^2;

v(q)=1/real(kappa);

vH(q)=1/real(kappaH);

vlow(q)=1/real(kappaAlowf);

vhigh(q)=1/real(kappaAhighf);

Q(q)=-2*imag(kappa)/real(kappa);

QH(q)=-2*imag(kappaH)/real(kappaH);

Qlow(q)=2*imag(kappaAlowf)/real(kappaAlowf);

Qhigh(q)=2*imag(kappaAhighf)/real(kappaAhighf);

QHhigh(q)=2*n0*Ldim*J/(Kfdim);

end % Frequency (q) loop

118



figure; semilogx((k.^2),(v),�k *�,k.^2,vlow,k.^2,vhigh,�--�...

,k.^2,vH,�.�);grid on;

% axis([ 1e-2 1e6 0.975 1.005]);

xlabel(�Frequency�)

ylabel(�Velocity�)

hold on;

plot(log10(k.^2),log10(Q),�k *�,log10(k.^2),log10(Qlow),�o�,...

log10(k.^2),log10(Qhigh),�--�,log10(k.^2),log10(QH),�.�);grid on;

axis([ -2 6 -5 -1 ]);
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