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Abstract 

 
The morphological properties of rock fractures may have a significant influence on their 

hydromechanical behaviour. Fracture surface roughness could change the fluid flow regime 

from laminar to turbulent, while it causes the flow properties to deviate from cubic law for 

smooth channels due to a change in fracture equivalent hydraulic aperture. Different empirical 

(including the well known Joint Roughness Coefficient, JRC) and statistical methods have 

been proposed for surface roughness characterisation in an attempt to link them to the 

hydromechanical behaviour of fractures. 

This thesis aims to investigate the potential for assessment of fluid behaviour by 

studying its surface geometrical properties. DR1 and DR2, the 2D and 3D roughness parameters 

developed recently using Riemannian geometry, were used to correlate fracture geometry to 

its flow behaviour. Also, the 2D Riemannian isotropy parameter (IR2) was used to correlate 

surface roughness anisotropy with directionality in fluid flow behaviour along different 

directions.   

Numerical simulations in both 2D and 3D were performed assuming the laminar flow 

regime using FLUENT software. This assumption is, to a large extent, acceptable for 

situations where the height to length ratios of a fracture is very small. 2D analysis of synthetic 

profiles with different geometries demonstrated how a change in profile roughness can affect 

flow response, for example, the pressure drop. JRC flow channels developed in this work as 

combinations of pairs of JRC profiles were simulated numerically. The analysis results 

indicated that channels with a similar JRC average for the upper and lower walls but a 

different JRC profile number responded differently when they were subjected to fluid flow. 

Therefore, assuming special fluid properties, correlations developed using the pressure drop 

of a fracture can be estimated by its analogy to JRC flow channels. 

3D simulations of a corrugated plane were performed assuming different asperity height 

distributions, for fluid travelling along different directions with respect to surface geometry 

and at different shear displacements. No asperity contact and failure is assumed in the analysis 

performed in this work. DR2 analysis results of the corrugated plane indicated how fluid flow 

could be related to surface geometry. For instance, it was observed that the pressure drop was 

maximised along the direction of maximum roughness and reduced to its minimum along a 
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perpendicular direction which shows anisotropy in fluid flow behaviour. Significant changes 

in pressure drop due to shear offset indicated the importance of fracture wall displacements 

with respect to each other. A detailed analysis of one synthetically generated surface, and also 

five surfaces with identical statistical parameters except their correlation distances being 

different, further confirmed the above concepts. This was followed by analysing a real rock 

like fracture which was studied elsewhere for fracture shear tests in the lab. Simulation of this 

surface was performed with particular interest in identifying the locations where the velocity 

magnitude reduced to nearly zero after the fracture was subjected to a shear offset 

corresponding to maximum shear stress. These areas were found to be very similar to the 

locations of asperity degradations as observed through lab experiments. The roughness 

analysis of the surface was in agreement with the correlation found between the mechanical 

and hydraulic behaviour of the surface.  

The results of this research demonstrate how detailed analysis of surface geometry 

could provide valuable information with respect to surface flow behaviour. Detailed 

discussions and interpretations of the results will be presented and various conclusions will be 

made.    
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Fluid flow analysis in a single channel  

 

 

The hydraulic mechanism of rock fractures can be considered an important aspect 

in many engineering fields such as petroleum and mining. In particular, the petroleum 

engineering production from a fractured reservoir is strongly related to the arrangement 

of a network of natural fractures. However, in contrary to a smooth channel, the two 

walls in rock fractures are typically rough and this has a great impact on the fluid flow 

through the fracture. Therefore, a proper study of fluid flow in rock fractures requires a 

coupling of the fluid mechanics with rock mechanics. Most of the developed models 

used for rock fractures employ the fundamental concept of fluid flow in a smooth 

channel, which is referred to as a ‘parallel plane’ model in the literature. Therefore, in 

this Chapter, after a brief review of the fluid flow in a smooth channel, the importance 

of fracture surface morphology on flow response of fluid will be discussed and the need 

for further study regaridng this concept will be highlighted. The rest of this Chapter 

summarises the outline, objectives and significance of this research work and the thesis 

structure.   

1.1 Fluid flow in smooth channels 

A study of the fluid flow in a smooth channel comprising two parallel plates is 

perhaps the simplest flow scenario in a single channel. The flow equations for this 

scenario can be obtained from the general Navier-Stokes equations (Kleinstreuer, 

1997).The parallel plane flow is categorised as Couette flow and Poiseuille flow. The 

Poiseuille flow can be produced by a pressure gradient, in which the top and lower 

walls of the channel are fixed (i.e. zero average velocity). In contrast, the Couette flow 

occurs when two parallel plates have a relative motion with the pure shear flow 

produced by a constant pressure field. Figure 1.1 shows the velocity profiles 

(streamlines) corresponding to Couette and Poiseuille flows in a smooth channel, 

respectively. From this figure, it can be seen that the velocity profile in Poiseuille flow 

is parabolic, whereas for the Couette flow, it is dissimilar. Considering that during the 

flow of fluid in natural rock fractures the two walls are not in motion, we will only 

consider Poiseuille equations in this thesis. This is discussed in the next subsection. 

1 
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Figure 1.1 Velocity profiles for (a) Couette, and (b) Poiseuille flow in a smooth channel 

1.1.1 Parallel plane flow and Cubic Law 

We assume a Newtonian fluid which is laminar, incompressible, isothermal, single 

phase, viscous, unsteady and parabolic. These assumptions, without the gravity effect, 

will reduce the Navier-Stokes equation to the simple form of  

 
2

2

x

V

x

P

t

V










   (1.1) 

where,  is the fluid density, V is the velocity, P is the pressure with x and y 

components, and  is the fluid viscosity. 

The left term in equation 1.1 is the nonlinear convective inertia force which 

represents the acceleration component of fluid motion. The presence of this term in a 

steady state flow can be described as the fluid velocity of particles which can be 

changed or accelerated because of the fluid tendency to move to a position with a 

different velocity. Equating the inertia term to zero means that fluid particles are 

moving in pure translation with a constant velocity, which is a result of zero 

acceleration for these particles. This results in a flow which follows straight path lines 

(i.e. streamlines), in which the dependency of each particle can only be on coordinates 

perpendicular to the direction of the flow (Constantinescu, 1995) and is referred to as 

‘parallel’ flow. 

Discarding the inertia or acceleration term, equation 1.1 reduces to  

 
2

2

y

V

x

P x






   (1.2)        

where, Vx is the fluid velocity in x direction.  
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The no slip boundary condition is applied for Poiseuille flow in a non-porous medium, 

in which Vx= 0 for both y=0 and y=h (see Figure 1.1). Applying these boundary 

conditions, equation 1.2 reduces to a parabolic velocity profile in the form of  

 yhy
dx

dp
Vx 

2

1
  (1.3) 

Equation 1.3 shows that velocity is only a function of fluid viscosity and the pressure 

gradient. The maximum parabolic velocity in Poiseuille flow takes place at the middle 

of the flow channel (see Figure 1.1). By substituting y=h/2 in equation 1.3, the 

maximum velocity as occurs at the centre of the channel (see Figure 1.1 (a)), is obtained 

as 

 
dx

dph
Vx 8

2

 .   (1.4) 

Also, the average velocity in x direction ( xV ) is derived as the ratio of volumetric 

flow rate in the x direction (Qx), and the separation distance of the parallel plates of the 

channel or plate opening (h), i.e. 

 
wh

Q
V x

x   (1.5) 

where w is the width of the parallel plate channel. For a parallel plate channel with a 

unit width (w=1)  

h

Q
V x

x  .      (1.6) 

Replacing Qx from  

 
h

xx dyVwQ
0

 (1.7) 

and Vx from Equation 1.3 into Equation 1.6, the average velocity in the x direction for a 

parallel plate with a unit width is obtained as 

 
dx

dph
Vx 12

2

 .  (1.8) 

As the continuity equation is applied in Poiseuille flow (i.e. Qx is constant), the pressure 

gradient must be constant and is defined as a linear function of x (Constantinescu, 

1995), corresponding to Figure 1.1, i.e.  

 
L

PP

dx

dp 21  . (1.9) 
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In this equation, L is the length of the parallel plate channel in the x direction, and P1 

and P2 are the uniform pressures into two opposite cross sections in the parallel plate 

channel.  

From equations 1.6 and 1.8, the volumetric flow rate of a parallel plate channel 

with a unit width (w=1) can be derived as 

 
dx

dph
Qx 12

3

 .  (1.10)  

Equation 1.10 is well known as ‘Cubic Law’ and is vastly used in studying fluid flow 

through smooth parallel plate channels with aperture h. According to cubic law, the 

flow rate is proportional to the aperture cubed, with the velocity profile of flow between 

the two smooth walls being parabolic.  

Cubic law is a fundamental equation used largely for fluid flow analysis in 

channels and pipes. This equation has also been applied by many people (for example, 

Zimmerman, 1996) to study fluid flow in a single natural fracture. However, as the 

walls of rock fractures are usually rough, modifications have been proposed to account 

for the effect of surface morphology. In the following subsection, a brief introduction to 

the effect of surface roughness and its effect on fluid flow will be given. A detailed 

review of literature relevant to rock fractures will be given in the next Chapter.  

1.2 Effect of surface morphology on fluid flow 

The great impact of morphology of the channel (or fracture in this study) through 

which the fluid flows have been discussed and studied by many researchers (Brown, 

1987; Brown, 1989; Brown et al., 1995; Enru, 2005; Ge, 1997; Neuzil and Tracy, 1981; 

Patir and Cheng, 1978; Tsang, 1984; Zimmerman and Bodvarsson1996; Zimmerman 

and Yeo, 2000). The surface irregularity (roughness) can be defined as the surface 

height distribution or the shape of the surfaces (Olson and Barton, 2001). Brady and 

Brown (2004) defined roughness as ‘a measure of the inherent surface unevenness and 

waviness’. To realise the complexity associated with characterising roughness, it is 

perhaps useful to note a statement by Thomas (1999): “roughness seems to be such a 

property, with the added difficulty that it is not always so easy to define as a concept”.  

An immediate influence that surface irregularities may cause to flow 

characteristics is the change of fluid regime, i.e. from laminar to turbulent, as 

schematically shown in Figure 1.2. From this figure, one would expect regularly layered 
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streamlines of fluid passing through a smooth channel, whereas the flow streamlines 

deviate from being parallel as the channel walls become rough.  

 

  
Figure 1.2 Streamlines in a smooth (Top) and a rough walled channel (Bottom) 

 

The presence of surface roughness also causes a deviation from cubic law as 

introduced in the previous section for smooth walled channels. In rough channels, or 

rock fractures in our study, apertures are distributed irregularly and they are not constant 

along the profile geometry. This makes it difficult to assign a proper single value as the 

aperture of the channel (h) into a cubic law equation. This is significantly important as 

the aperture appears with a power of three in the cubic law equation (see equation 1.10). 

Figure 1.3 (a) shows that for a synthetic triangular profile, the mid distance between the 

top and bottom wall, or mean aperture (hm), can be replaced with h in the cubic law, this 

is not true for real fractures as can be seen from Figure 1.3 (b). Several attempts have 

been made to introduce an appropriate value for the equivalent opening of a rough 

channel to be used in cubic law. This is while the appropriateness of using cubic law for 

fluid flow study of real fractures is still debatable.  

 

 
Figure 1.3 Mean aperture concept (hm) (a) synthetic and (b) and rock fracture 
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Witherspoon et al. (1980) investigated the validity of cubic law for fluid flow in a 

deformable rock fracture experimentally. They reported an apparent reduction in flow 

due to a deviation from the parallel plane model. To account for this effect, they 

proposed a correction factor in the cubic law equation.  Accordingly, they concluded 

that their modified cubic law held true for open or closed fractures in which the normal 

stress was below 20 MPa and was independent of rock types. Tsang and Witherspoon 

(1983) developed a single fracture represented by a collection of voids and the closure 

of the fractures resulted in deformation of these voids. Their purpose was to understand 

the effect of normal stress on fluid flow through a single fracture. They suggested using 

an equivalent version of cubic law by replacing the weighted average, <h3>, with the 

single value of the fracture, h. They summarised that in cooperating the roughness into 

fluid flow study on deformable rock fractures under stress, the parallel plane was 

inadequate. Neuzil and Tracy (1981) modelled a real fracture as a combination of a 

number of parallel plates and therefore modified the cubic law equation by proposing a 

log of normal aperture frequency distribution for fractures.  

Brown (1987) proposed applying the concept of the mean value of the aperture 

(mean aperture) into the cubic law based on his numerical studies. According to his 

results, when the surface walls were separated by one standard deviation, the modified 

cubic law underestimated the flow rate from about 40% to 60%. The concept of mean 

aperture has also been used to estimate flow characteristics such as transmissitivity of 

rock fractures (Brown, 1987; Patir and Cheng, 1978; Zimmerman et al., 1991). 

However, as it shown in Figure 1.3, estimating the mean aperture for real rock fractures 

is not straightforward.  

The Reynolds equation was employed as an alternative to cubic law by Brown 

(1987), Patir and Cheng (1978), and Zimmerman and Bodvarsson (1996) to analyse the 

fluid flow in rock fractures where the aperture varies only in the direction of the applied 

pressure gradient. They also suggested substituting the hydraulic aperture hH with 

opening h in the Reynolds equation. “The hydraulic aperture is defined as the equivalent 

parallel plate aperture which would permit a given volumetric flow rate under an 

assigned pressure gradient”, as stated by Federico (1998). 

The results reported by these investigators suggest the need for modification of 

the cubic law for its application in the study of real fractures. Also, in most of these 

studies, laminar flow is assumed for studying fluid flow.   
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The assumption of laminar flow has been widely used by people for fluid flow 

study in various applications, and in particular in fractured reservoirs (Sarkar, 2002). 

This assumption can capture to a large extent the effect of large scale roughness or 

tortuosity of fractures. However, when the effect of small scale roughness is significant, 

for example in the case of fluid flow around a wellbore, a turbulent flow regime is to be 

applied into the models. In this work, the objective is to simulate large scale roughness 

and therefore a laminar flow assumption has been adopted in all models. 

To simply investigate the validity of this assumption, we recall the Reynold’s 

number as  

 
A

LQVL







Re . (1.1) 

While a wide range of Reynold’s numbers have been proposed for transition 

between laminar to turbulent flow in rock fractures (Bear, 1988; Sarkar et al., 2004), 

assumption of a Reynold’s number of unity is found to be for applications concerned 

with petroleum engineering, i.e. fluid flow through fractures reservoirs. For a flow 

channel with a unit width, or for a 2D geometry, the area (A) is identical to the fracture 

height (h). Therefore the above equation can be rearranged as 

 

Q

L

h
 . (1.2) 

From this equation, assuming water with =1000 kg/m3 and =0.001 cp, the 

ratio of height to length of the fracture at the transition flow regime will be 1.0Lh . 

When this ratio is less than 0.1, it indicates that the flow regime is likely to be laminar. 

In reservoir engineering applications, the viscosity of the oil as the hydrocarbon is much 

less than water (i.e. 1.0Lh ), and therefore assuming that water is the most critical 

and conservative case in the above calculations. This implies that the assumption of 

laminar flow, when the ratio of h/L is small, is reasonable. This is the basic assumption 

for all simulations carried out in this study.   

In addition to the mean aperture and hydraulic aperture parameters in fluid flow 

analysis of rock fractures, other statistical parameters, such as fractals and empirical 

methods, and mainly the joint roughness coefficient (JRC) have been proposed to 

consider the effect of surface roughness. In this research, an attempt is made to use a 

recently developed parameter for roughness characterisation in the fluid flow analysis of 

rock fractures. DR1 and DR2 are the 2D and 3D Riemannian roughness parameters 

recently proposed by Rasouli (2002) and Rasouli and Harrison (2010), which allow an 
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investigation of the roughness of linear profiles and fracture surfaces, respectively. 

Also, IR2 is the isotropy parameter which will be used for studying the anisotropy in 

roughness determination. These parameters will be introduced briefly in Chapters 2 and 

5 respectively.   

1.3 Objective of this thesis 

According to the problems briefly introduced in the above sections, the objectives 

of this PhD thesis can be summarised as below. 

1) Identify the strengths and shortcomings of the available techniques and methods 

for fluid analysis of rock fractures through a comprehensive review of the 

literature. 

2) Simulate a number of synthetic profiles numerically to obtain a correlation for 

pressure drop estimation as a function of profile geometry and fluid properties. 

FLUENT software will be used for the numerical simulations in this study.  

3) Develop JRC flow channels as combinations of pairs of JRC profiles and simulate 

them to study responses to fluid flow and develop correlations between flow 

properties and JRC.  

4) Find correlations between DR1 and fluid flow properties by simulating real 

fracture profiles. 

5) Investigate the correlation between fluid flow behavior of 2D fractures and profile 

roughness (i.e. DR1). This includes synthetic and real rock profiles. 

6) Perform 3D numerical simulations of a corrugated plane, as well as statistically 

generated rock fractures to study the change in surface roughness on fluid flow 

behavior. This is followed by an analysis of a real rock like fracture. The 

anisotropy and the effect of shear displacement of fractures on fluid flow response 

will be investigated for all these surfaces. The effect of stresses is not included in 

this work and therefore no asperity failure is considered. 

7) Calculate the Riemannian roughness and anisotropy parameters (DR2 and IR2) for 

surfaces simulated earlier to investigate any correlation between surface 

geometrical properties and fluid flow behavior.  



Chapter 1  Fluid flow analysis in a single channel 

 9

1.4 Significant of this research 

 Fluid flow in a rough fracture is a problem which has been the subject of many 

theoretical, computational, and experimental investigations and is as yet far from being 

thoroughly understood. Mathematically, it would be desirable to have a clearer 

understanding of the conditions under which the governing Navier-Stokes equations can 

be replaced by simpler and more tractable governing equations such as stokes equations 

(creeping flow) or the Reynolds lubrication equation.  

Before studying a complex network of fractures, it is logical to understand how 

fluid flows through a single rough-walled rock fracture. This has been studied by a 

number of researchers before, as mentioned in Sections 1.1 and 1.2. However, in all of 

these works, the effect of roughness of fracture surfaces has been taken into account in 

fluid flow formulae using simple parameters such as JRC or statistical parameters. 

These parameters are unable to adequately incorporate the effect of fracture geometry 

into fluid flow behaviour.  

The use of FLUENT software in this work in both 2D and 3D simulations is in 

fact, one of a few attempts made for the simulation of real rock fractures. The 

simulation results obtained in this research will highlight the capabilities of this 

software for the analysis of real rock fractures. The hydraulic aperture back calculated 

from FLUENT considers the real cross section against the fluid path and thus the 

correlations developed for synthetic profiles have a high level of high accuracy.  

The extensive simulation and modelling of JRC flow channels carried out in this 

work using FLUENT will indicate why enough care must be practiced when this 

approach is used for the roughness characterisation of real rock profiles and their use in 

fluid flow analysis of rock fractures. This is also an attempt made for the first time. 

In this thesis, an attempt is made to investigate the correlation between newly 

developed roughness and isotropy parameters in both 2D and 3D (Rasouli, 2002 and 

Rasouli and Harrison, 2010) in fluid flow formulae for real fractures. These roughness 

parameters are believed to be better representatives of surface roughness for real rock 

fractures. In particular, the 3D simulations and roughness calculations carried out in 

Chapter 5 indicate how extracting geometrical properties of a fracture surface enables us 

to understand fluid flow behaviour of the surface. This includes information on the 

directional dependency of fluid flow when it travels along different directions, the effect 

of small and large scale roughness, and the influence of shear displacement on flow 

response. 
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The above are all innovative concepts which are going to be practiced for the first 

time in this research work and the results are expected to advance the fundamental 

science in this subject.     

1.5 Thesis structure 

Based on the objectives of this work, this thesis is structured in different Chapters 

which are explained briefly below. 

In Chapter 2, different approaches and models proposed for the fluid flow analysis 

in rock fractures will be reviewed. In particular, the use of the Joint Roughness 

Coefficient (JRC) and statistical parameters in fluid flow analysis of real fractures will 

be discussed. Also, a brief review of the new roughness parameter (DR1) is given.  

An introduction to the Computational Fluid Dynamics code (CFD) which is used 

by FLUENT software in fluid flow analysis of channels will be covered at the 

beginning of Chapter 3. The output results of the simulation of some synthetic profiles 

using FLUENT will be given in this Chapter. This will be followed by the development 

of a new correlation for synthetic profiles using which the hydraulic aperture will be 

estimated. Pressure drop can thus be estimated from profile geometrical properties and 

fluid characteristics. These formulae include DR1 which accounts for the effect of 

surface morphology.  

In Chapter 4, a detailed analysis of JRC flow channels using FLUENT will be 

reported. The digitised elevation data of JRC profiles will be used to build JRC flow 

channels as a combination of two similar or dissimilar profiles. Correlations developed 

between DR1 and pressure drops of JRC profiles will be given. The usefulness of the 

JRC approach used for pressure drop estimation of real fractures will be shown at the 

end of this Chapter.     

3D simulations of a corrugated plane, as well as a number of statistically 

generated surfaces, will be reported in Chapter 5. Here, the roughness and isotropy 

parameters corresponding to these surfaces will be calculated and correlations between 

surface morphology and fluid flow behaviour will be investigated. The results of a real 

rock like fracture will be presented and the fluid flow results will be compared with the 

lab shear test experiments carried out on this fracture elsewhere.     

In Chapter 6, the conclusions and recommendation from this PhD thesis will be 

presented. 

 



Chapter 1  Fluid flow analysis in a single channel 

 11

 

 

 

Figure 1.4 Structure of the thesis. 

 

Chapter 1: Flow analysis of fluid in a single channel 
A brief review of fluid flow in smooth channels and the importance of surface 
morphology on flow response of rough fractures are presented. 

Chapter 2: Fluid flow in rock fractures 
  A review of existing literature regarding fluid flow studies of rough fracture 

surfaces. 
  A brief introduction of roughness characterisation methods including JRC, 

statistical methods and DR1, 1D Riemannian roughness parameter. 
  Analytical solutions of equivalent hydraulic aperture for channels with 

synthetic geometries are reviewed and correlated with the profile’s DR1.  

Chapter 4: Fluid flow response of JRC exemplar profiles 
JRC flow channels are developed as combinations of pairs of JRC exemplars 
and simulations of these channels are carried out using FLUENT. Correlations 
are developed assuming a specific set of fluid properties which estimates the 
fracture pressure drop based on average channel JRC. 

Chapter 3: Pressure drop estimation for 2D synthetic fractures  
  A brief introduction to FLUENT software used for fluid flow simulations. 
  Synthetic channels with symmetric and asymmetric triangular geometries are 

simulated and hydraulic behaviour with respect to a channel’s geometrical 
properties is investigated.   

  Correlations are developed between geometrical and fluid parameters of a unit 
hydraulic cell (UHC) based on flow simulations of several geometries. The 
analysis is based on specific fluid properties. The correlations can be used to 
estimate the pressure drop of a real rough fracture assuming the profile has a 
combination of a number of UHCs.   

Chapter 5: 3D fluid flow simulations of rough rock fractures 
3D simulations of a corrugated plane plus a number of statistically generated 
surfaces will be presented. The effect of roughness and isotropy parameters on 
fluid flow characteristics corresponding to these surfaces will be studied. The 
3D simulation results of a number of statistically generated surfaces and a real 
rock like fracture will be presented. The directionality of fluid flow when it 
travels along different orientations, the effect of a fracture’s small and large 
scale roughness and the shear displacement effect on flow response of the 
fracture will be studied.     

Chapter 6: Conclusion and future work

References
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Fluid flow in rock fractures 

 

 

In the previous Chapter, the importance of fracture surface morphology on fluid 

flow characteristics was briefly reviewed. In this study, fluid flow analysis of a single 

fracture in 2D and 3D will be considered. This fundamental is required to understand 

the fluid flow behavior in complex fracture network geometries, such as in naturally 

fractured reservoirs.  

In this Chapter, different models proposed for fluid flow analysis in rough rock 

fractures are briefly reviewed. In particular, the use of the joint roughness coefficient 

(JRC) and statistical parameters in fluid flow analysis of real fractures will be covered. 

Analytical formulae developed for synthetic profiles will be introduced and their 

applications to study real rock fractures will be assessed. This will be followed by an 

introduction to roughness parameter (DR1) which is used for characterisation of 

roughness of 2D profiles. Analogous to this parameter, the 3D roughness and isotropy 

parameters will be introduced briefly in Chapter 5, where a 3D simulation of rough 

fractures will be presented.    

2.1 Modeling fluid flow in rough fractures 

The existing models which study the fluid flow in rough fractures are briefly 

reviewed in this section. These are explained in four classes of mechanical and 

numerical models, statistical methods and the well known joint roughness coefficient 

(JRC).  

2.1.1 Mechanical models  

Perhaps one of the first attempts in studying fluid flow through rough fractures 

was made by Lomize (1951), who conducted experimental works using parallel glass 

plates with rough surfaces.  

Tsang (1984) investigated the effect of path tortuosity and connectivity on fluid 

flow rate through a single rough fracture. He presented 2D dimensional electrical 

resistors for flow paths and used different resistances in terms of the inverse of the 

fracture aperture cubed. His results indicated that a decrease in the flow rate (caused by 

2 
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the effect of path tortuosity) was dependent on the roughness characteristics of the 

fracture. Accordingly, the larger effect of tortuosity was in small aperture distribution. 

He also concluded that small apertures manipulated the permeability of the fracture 

which had a great effect on tortuosity. 

Assuming laminar flow in a rock fracture, a simple approach to model fluid flow 

characteristics such as transmissivity or permeability can be achieved by employing 

cubic law coupled with Darcy's law (Brown, 1987; Jaeger et al., 2007; Zimmerman and 

Yeo, 2000; Zimmerman and Bodvarsson, 1996). The use of cubic law for real rock 

fractures has been examined by many researchers. 

Cubic law was validated experimentally by Witherspoon et al. (1980) for laminar 

flow of fluids through open fractures consisting of parallel planar plates. They 

introduced a simplified form of the cubic law by deriving the following equation: 

  3Hyd h
f

C
hQ   (2.1) 

in which Q is the flow rate (m3/s), hHyd is the difference in hydraulic head (m), C is a 

constant that depends on the flow geometry and flow rate, h is the fracture aperture 

assumed to be planar planes, and f is a fracture surface characteristic factor which is 

constant and varies between 1.04 and 1.65, where f =1 corresponds to a smooth channel. 

They reported that since the flow rate was proportional to h3, a slight change in aperture 

can significantly influence flow behavior. In their model, it was assumed the planar 

surfaces representing the two walls of the fracture remained parallel and thus were not 

in contact at any point.  

The lubrication theory has been used by Zimmerman et al. (1991) to study the 

permeability of rough-walled rock fractures. They studied an idealised model of fracture 

geometry, in which the roughness followed a sinusoidal variation. This study concluded 

that in order for the lubrication approximation to be valid, the fracture walls should be 

smooth over lengths in the order of one standard deviation of the aperture, which is a 

much less restrictive condition than had previously been thought (e.g. Brown, 1987). 

      Zimmerman and Bodvarsson (1996) studied and quantified various geometric and 

kinematics conditions that were necessary in order for the Navier-Stokes equations to be 

replaced by a more tractable lubrication or Hele-Shaw equations. They found that the 

reduced Reynolds number, 
eR , which is defined as  

 12   hVR avee ,         (2.2) 
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needed to be much less than one in order for the lubrication equation for a smooth 

channel to be valid. In this equation  is the fluid density (kg/m3), Vave is the average 

velocity along the fracture (m/s), h is the parallel plane opening (m), is the fluid 

viscosity (kg/ms), and  is the characteristic length of the channel in the direction of the 

flow (m). The above assumption is reasonably valid in the case of real rock fractures, as 

the ratio of h/ is usually much less than one. Several similar studies have been 

undertaken to evaluate the validity of Reynolds equation in rock fracture applications 

(Brown, 1987; Sisavath et al., 2003; Zimmerman et al., 1991; Zimmerman and 

Bodvarsson, 1996).  

Ge (1997) studied fluid flow through sinusoidal fracture geometries with an 

amplitude of hm as shown in Figure 2.1. The fracture wavelength is  with its mean 

aperture being hm. The results of his study are given in Figure 2.2 and indicate the 

normalised pressure gradient in x direction,   xQhp 123
m , varies periodically along the 

fracture and it increases as fracture relative roughness, , becomes larger (i.e. increasing 

mh  in Figure 2.2). This conclusion is contrary to the results expected from cubic 

law which predict a constant pressure gradient according to the assumption of a constant 

fracture opening along the x direction.  

 

Figure 2.1 Fluid flow in a fracture with sinusoidal surface geometry (After Ge, 1997). 
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Figure 2.2 Normalised pressure gradient in a sinusoidal fracture with respect to roughness and in x 

direction (After Ge, 1997). 

  

Oron and Berkowitz (1998) did a fluid flow study of fractures in an impermeable 

rock. For a section of a fracture, shown in Figure 2.3, they defined a geometric aspect 

ratio parameter as  

 LB
G

/ ,     (2.3) 

where, B is a half-aperture, L is the distance between the inlet and outlet along the 

fracture geometry, and δG is the geometric aspect ratio. They found the local cubic law 

was an adequate first-approximation of the flow, when 12
G  and the local relative 

roughness parameter, , was much less than unity. This led them to conclude that in 

cubic law, the aperture should be measured as an average over a distance, L, normal to 

the mean trend of the walls. 

 

Figure 2.3 A self affine fracture cross section,  =0.1. (After Oron and Berkowitz, 1998). 
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Yeo and Ge (2005) examined the applicability of the Reynolds equation in fluid 

flow analysis by studying a fracture with sinusoidal wall geometry, as shown in Figure 

2.4. In this Figure, it can be seen that the aperture varies along the profile.   

Figure 2.4 A sinusoidal flow channel with true aperture (hn), vertical aperture (hv), mean aperture (hm) 
and amplitude () (After Yeo and Ge, 2005). 

Proposing parameter  

 )/).(/( m h                (2.4) 

in which,  is the amplitude of oscillated fracture roughness, hm/ represents roughness, 

and / is a measure of tortuosity, they found Reynolds equation to be applicable in 

rock fractures when (hm/)/(/)<0.01. They also reported that the presence of 

roughness, and neglecting the tortuosity and true aperture, are reasons for 

overestimation of flow when the Reynolds equation in Darcy flow is being used.  

2.1.2 Numerical models 

Brown (1987) simulated the laminar flow between rough surfaces numerically 

using the finite-difference method. His simulation was based on the Reynolds equation 

as a particular form of Naiver-Stokes equations with the objective of developing an 

expression which explicitly accounts for surface roughness. From the results of his 

studies, he stated that, “the parallel plane model can be considered only as a qualitative 

description of flow though real fractures”.  

Using a finite difference code, Thompson and Brown (1991) solved the Reynolds 

equation for different generated 3D fracture geometries to investigate the effect of 

surface roughness anisotropy on fluid flow. Their results showed the existence of a 

relationship between the flow rate and contact areas due to a reduced fracture opening.  

Yeo et al. (1998), using experiments and finite element analysis solved Reynolds 

equation to investigate the effect of shear displacement on natural sandstone fractures. 

They used radial and unidirectional flow with a different shear displacement of 0, 1, and 



Chapter 2 Fluid flow in rock fractures 

 17

2 mm in their experimental study. They showed that by increasing shear displacement 

the fluid flow anisotropy could change. Their studies also showed that the permeability 

was less in the direction parallel to shear displacement than the direction of transverse to 

the shear displacement. 

Jing (2003) reviewed the applied numerical modeling in rock mechanics 

applications. He described the Discrete Element Method (DEM) as a powerful 

numerical modelling tool due to its flexibility to handle a moderately large number of 

fractures, for purely mechanical problems.  

The effects of fracture roughness and aperture on the hydraulic and mechanical 

properties of fractured rock masses have also been investigated by Enru (2005). His 

work further highlights the difficulty in quantifying parameters which control the fluid 

flow from seismic data. He found that hydraulic aperture primarily controlled the fluid 

flow and that the mechanical aperture (arithmetic average of aperture distributions) was 

a key parameter to describe the fracture compliances which determined the elastic 

response of fractured rock masses.  

Sarkar et al. (2004) studied fluid flow through fractures using numerical 

simulations and addressed the challenging issue of characterising hydraulic properties 

of fractures. They used Computational Fluid Dynamics (CFD) code, available in 

commercial software FLUENT, using a finite-volume based discretisation scheme. 

They applied steady-state, viscous, laminar flow simulations for a Newtonian fluid in 

both 2D and 3D fracture models. According to their results, for hydraulic 

characterisation purposes, fluid flow in fractures can be sufficiently modelled using 

both Stokes and Navier-Stokes equations for flows with a Reynolds number of up to 

approximately 100. They also concluded that numerical solutions of either Stokes or 

Navier-Stokes equations could be used to model the slow flow of viscous and 

Newtonian fluids (e.g. oil and water) in subsurface fractures. According to their 

investigations, “for complicated 3D fracture geometries, or for complex 2D or 3D 

fracture networks, flow simulation may be the only way to estimate the true equivalent 

hydraulic aperture of the fractured medium”. 

In another study by Sarkar (2002), he studied the fluid flow in fractures using a 

finite difference approach, and analysed the effects of fracture properties (e.g. fracture 

geometry) on flow and its effect on flow paths at a micro scale. His approach was 

similar to the discrete fracture network (DFN) models for studying the fluid flow 

through fractures, with a non-porous rock matrix surrounded by an impermeable 
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surface. He employed the Stokes equation and the ERFLAC simulator and examined his 

computation by different case studies on dissimilar reservoirs, each with a flow path 

distinction. He reported permeability values only for those directions along which the 

actual transmission of fluid through the rock occurred. Accordingly, he suggested 

permeability was inversely proportional to the complexity of the flow path. He also 

concluded that permeability was a strong function of the ease of flow through a fracture. 

FLUENT simulation was also applied by Nazridoust et al. (2006), to analyse flow 

conditions through fracture sections for different flow rates. They studied the accuracy 

of parallel plane models to estimate pressure drops through the fractures. On the basis of 

the CFD simulation data, they developed a new expression for the friction factor for 

flow through fractures for a Reynolds number ( Re ) much less than 10 as  

  687.0
F 12.01

123
e

e

R
R

f  ,    (2.5) 

 

Q

Re   (2.6) 

where, fF is the fracture friction coefficient, Re is the Reynolds number, which is 

constant at every section of the fracture and defined as the ratio of the flow rate per unit 

width (Q), and the fluid  kinematic viscosity (. This study showed that the pressure 

drop was dominated by the smallest aperture passages of the fracture. They also stated 

that the parallel plane flow model with the use of an appropriate effective fracture 

aperture and inclusion of the tortuosity factor () could provide reasonable estimates 

for pressure drops in the fracture.  

A recent study on laminar, single phase flow along the fracture was carried out by 

Crandall et al. (2010a) for permeable Berea sandstone using FLUENT software. Their 

study was based on the fracture profiles which were similar to Brownian fractal 

structures. Accordingly, they developed an equation to estimate the friction factor by 

applying the tortuosity factor (), as defined by Nazirdoust etal. (2006), and Tsang 

(1984).Their equation is 
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where, is the tortuosity factor , Le is the distance between inlet and outlet boundary 

(i.e. profile length) , L is the fracture length, hD is the formation height from Darcy’s 

law, k is the matrix permeability of fracture (i.e. k=0 for impermeable rock fracture), 

and H  is the effective fracture aperture .Their study indicated that the occurrence of 

largest pressure drops is in smallest apertures along a fracture.  

Schmittbuhl et al. (2008) modelled the viscous flow through a fracture by 

approaching a finite difference scheme of the Stokes equation (i.e. Low Reynolds 

number) with a lubrication approximation. They also carried out experimental 

measurements of the flux through the fracture of a mixture of glycerol and water with a 

different average fracture aperture and compared the results of these methods. In this 

study, the fracture hydraulic conductivity was computed as  

 PQK H  / ,     (2.9) 

where, is viscosity, Q is the flow rate, and P is the pressure gradients.  Also, with 

holding cubic law at a large scale for fracture aperture, the hydraulic conductivity was 

expressed as  

     12/3
mhK H  ,      (2.10) 

where, hm is the mechanical (mean) aperture. In this study, the concept of critical 

mechanical aperture (hm
c) was proposed as being the smallest mechanical aperture. The 

plot of hydraulic conductivity, as obtained from equations 2.9 and 2.10, is given in 

Figure 2.5. This figure shows a significant departure from cubic law at a small closure 

of the fracture in which hmhm
c. The results also indicated that in viscous flow with a 

sufficiently open fracture, the influence on the flow through its aperture and hydraulic 

conductivity was significantly controlled only by long wavelengths of the fracture 

morphology. 
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Figure 2.5 Hydraulic conductivity, K, versus mechanical aperture hm. The vertical dashed line indicates 

the aperture at rigid contact hm
c (After Schmittbuhl et al., 2008). 

 

Koyama et al. (2008) applied the finite element method (FEM) to study the hydro 

mechanical behaviour of fluid flow due to shearing of the fracture and particle transport 

for 2D fracture geometry. Their numerical simulation was based on solving both the 

Navier–Stokes and the Reynolds equation and comparing those results to demonstrate 

the degree of validity of the Reynolds equation. The results obtained for different 

hydraulic pressures of 1, 10, 100 Pa and 1 Pa and shear displacements of 0 and 2 mm 

indicated similar results where the maximum velocity occurred at the centre of the 

fracture. However, they observed some deviation of maximum velocity from the centre 

line when the Navier–Stokes equation was used. They interpreted this as being due to a 

sudden change in the fracture geometry (i.e. difference in wall roughness). The results 

shown in Figure 2.6 indicated that the Reynolds equation overestimated the total flow 

rate in which the velocity profile was assumed to be parabolic by five to 10 percent. 
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Figure 2.6 Flow simulation results for different shear displacements from NS: Navier-Stokes equation, 

and ideal: Reynolds equation (After Koyama et al., 2008). 

 

Nemoto et al. (2009) presented experimental and bi-directional flow simulations 

to measure the contact area and study the anisotropic flow behaviour in granite fractures 

with varied shear displacements at normal stresses of up to approximately 100MPa. 

Their study was based on the Watanabe et al. (2008) study for artificially generated 
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granite tensile fractures. The observed results showed that a less tortuous flow path in 

the perpendicular direction was due to the distribution of the contacting asperities. They 

defined the permeability ratio, kr, as 

 
Pa

Pr

k

k
kr    ,   (2.11) 

Where, kPr and kPa are the permeabilities in the directions perpendicular and parallel 

to shear displacement, correspondingly. 

According to the results plotted in Figure 2.7, they obtained significant 

permeability in the direction perpendicular to the shear displacement. They also showed 

that permeability decreased as a result of increasing the normal stress. 

 
Figure 2.7 Estimated permeability based on the numerical results (a) different direction to the shear 

displacement and (b) permeability ratio (After Nemoto et al., 2009). 

 

Using the finite element method (FEM) and laboratory experiments, Koyama et 

al. (2009) considered the effect of shear displacement on aperture distribution and 

transmissivity under different normal stresses and normal stiffness conditions. They 

introduced a special algorithm for treatment of the contact areas with a zero-aperture 
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which captured the tortuous flow fields and channelling effects under normal stress and 

stiffness conditions during shearing, which is important for particle transport 

simulations in fractures. Their results indicated that the Reynolds equation can be used 

for all stages of shear displacement and the hydraulic properties can be back calculated 

from the Reynolds equation. 

Kristinof et al. (2010) simulated air and water flow through a granite block with a 

single fracture, using both numerical and experimental approaches to consider the effect 

of in situ stresses on fluid flow. They employed triaxial loading experiments and cubic 

law in their studies. Their results showed a different trend for pressure in the fracture 

itself and the block adjacent to it. 

Petchsingto and Karpyn (2009) employed CFD to investigate single-phase flow 

dynamics in an impermeable rough fracture using the high-resolution X-ray computed 

tomography images for a Berea sandstone core. They compared the 3D FLUENT 

simulation results for a rough fracture with a smooth parallel plane which had the 

similar mean aperture of the rough fracture. Their simulation results indicated a non-

uniform decrease for pressure profiles in a real fracture compared to a uniform change 

of pressure in a parallel plane model. They described this phenomenon as a result of the 

existence of flow barriers in rough fractures caused by asperities. According to Figure 

2.8, they concluded that a similar hydraulic aperture for a parallel plane and real fracture 

showed a similar pressure drop, in contrast to when a similar mean aperture is used. 

 
Figure 2.8 Pressure drop of a real rough fracture compare to a parallel plane model (After Petchsingto 

and Karpyn, 2009). 
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Sarifzadeh et al. (2009) used the FLUENT software to study the effect of 

roughness on velocity fields through rough fractures. They simulated the turbulent flow 

through an artificial 3D rock fracture using a different range of velocities between 0.01 

to 1 m/s. They normalised the average velocity by dividing it by the inlet velocity. Their 

simulation results for a different range of Reynolds numbers from 4.5 to 450 indicated a 

non-linear disparity for static pressure. They also observed that the acceleration results 

from inertial effect could occur from a fluid flow convergence-divergence effect and 

could occur at sharp corners of the fracture in which the aperture changed suddenly. 

Their results also showed that by increasing the Reynolds number corresponding to the 

inlet velocity, the normalised velocity decreased if the normalised aperture was 

increased. 

2.1.3 Statistical and Geo-statistical models  

Since fracture roughness can be expressed as the ratio between the arithmetic 

mean hm and standard deviation of the aperture in a non-dimensional form (Zimmerman 

et al., 1991), statistical and geo-statistical methods have been employed to analyse the 

aperture variation in rock fractures.  

Neuzil and Tracy (1981) proposed a fluid flow model in a fracture in which the 

fracture was presented by a set of parallel plane openings with different apertures, as 

shown in Figure 2.9. They derived a modified Poiseuille equation by employing an 

aperture frequency distribution, f (hV), as  

 



0 VV

3
V )(

12
dhhfhLJQ f 


,    (2.11) 

where Qf is the flux through fracture (m3/s), L is the total length of the fracture normal 

to flow (m), J is the gradient of piezometric head (dimensionless),  is the specific 

weight of water, g, (kg/m2s2), and hV is the vertical fracture aperture.  

Consequently, they approximated f (hV) by a log normal density function and 

derived the following equation in relation to the standard deviation ():  

    )2(93exp
12

23
f 




 lLJQ .             (2.12) 

In this equation, [l] is the unit length, is the log normal distribution parameter 

(dimensionless), and is also the log normal distribution parameter (which 

corresponds to the simple poiseuille equation if it is zero. They also defined the mean 

aperture in their proposed model as  



Chapter 2 Fluid flow in rock fractures 

 25

    2(exp 2
m   lh .                                 (2.13) 

According to the modified Poiseuille equation, they suggested that the flow in a 

fracture could be predicted as long as the distribution parameters (i.e. and ) were 

known. They also concluded that flow was affected by the largest apertures due to the 

proportionality between flow and the cubic power of aperture.  

 

Figure 2.9 Schematic of a fracture model (After Neuzil and Tracy, 1981). 

 

Early attempts to find a correlation between hydraulic aperture (hH) and mean 

aperture (hm) were done by Lomize (1951) based on experimental studies. He 

introduced a normalised permeability parameter as   

  
  5.1

m

3
mH

2171

1

h
hh


 ,                              (2.14) 

with being the standard deviation of fracture apertures. 

A similar correlation was suggested by Patier and Cheng (1978) which carried the 

assumption that the fracture asperities had a Gaussian height distribution. This is in the 

form of 

  m56.03
mH 9.01)/( hehh  .                               (2.15) 

A fractal dimension (Df) has been used by number of researchers to consider the 

effect of fracture surface roughness in fluid flow analysis. For example, Brown (1987) 

reported that the fractal dimension of fractures he examined numerically changed from 

two to 2.5, which covered a wide range of roughness. His study was based on a local 

surface height with a Gaussian random variable distribution having a standard deviation 

.  His studies indicated that in general the larger the fractal dimension, the higher the 

hydraulic aperture (hH). Plotting the results of simulations for fractures with different 

fractal dimensions, as shown in Figure 2.10, he concluded that the normalised 
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permeability (hH/hm) 3 at small standardised mean apertures (hm/) showed noticeable 

deviations from cubic law.  

 
Figure 2.10 Comparison of hydraulic aperture, hH, with the mean aperture, hm (Brown, 1978). 

 

In a similar attempt, Zimmerman et al. (1991) proposed the following equation 

which relates normalised permeability to hm/ for a fracture with sinusoidal geometry:   

 2
m

3
mH )/(5.11)( hhh  . (2.16)  

Similar studies carried out by Enru (2005) resulted in a nonlinear relationship 

between normalised permeability and the ratio of /hm:  

 232
m

3
mH ))(1()(  hhh  .                         (2.17) 

Renshaw (1995) derived a nonlinear relationship between hydraulic and 

mechanical aperture (mean aperture) in a fracture whose aperture distribution obeyed a 

log normal distribution. The correlation is in the form of  

    2exp 2
BmH hh                                (2.18) 

    
      2/12

B
2
B

2
B

bm
12σexp2σexp

2exp




h ,      (2.19) 

where, B
2 and b

2 are the variance of the log aperture and the fracture aperture 

distribution, respectively.  

In equations 2.18 and 2.19, B is calculated using the equation for variance of log 

normal distribution which is derived as  
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   22 2
B 1   Bee  (2.20) 

where,  is the variance and B  is the mean value of normal distribution for apertures, 

respectively. 

Figure 2.11 compares the results obtained from equations 2.15, 2.16, 2.17, and 

2.18 with the latter correlation proposed by Renshaw (1995). A close agreement 

between different proposed models is seen from this figure. 

 

 
Figure 2.11 Normalised permeability of a fracture as a function of standard deviation of roughness, 

proposed by different authors. 

 

Using a similar approach to previously mentioned studies, Ge (1997) developed 

equations for laminar fluid flow through a channel whose geometry is shown in Figure 

2.12. The lower wall of the channel is flat, whereas the upper wall has a symmetric 

triangular geometry with an asperity angle of Assuming that cubic law holds, he 

proposed the following correlation:  
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Figure 2.12  Nonparallel planar fracture geometry with opening hin and asperity height, 2 (After Ge, 
1997). 

 

Figure 2.13 shows the results obtained by Ge (1997). From this, he concluded that 

the absolute error in permeability increased by increasing the inclination angle of the 

asperity. He suggested the error in the permeability estimation was small for nearly 

parallel surfaces, but increased rapidly as a result of increasing the asperity inclination 

angle.   

 

 
Figure 2.13 Normalised permeability as a function of standard deviation of roughness and the inclination 

angle of the upper surface (After Ge, 1997). 
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2.1.4 Joint Roughness Coefficient (JRC) 

The joint roughness coefficient (JRC) proposed by Barton and Choubey (1977), is 

perhaps the most commonly used parameter for quantifying fracture surface roughness. 

Based on their extensive lab experiments, they proposed 10 typical rock profiles with 

different roughness and waviness as being representative of real rock fracture 

geometries. The considered ten profiles, ordered from smoothest to the roughest, were 

assigned different JRC values ranging from 1 to 20. By undertaking a visual comparison 

of a real fracture surface, a profile with closest geometry to the fracture should be 

chosen and assigned the same JRC value to the real fracture surface. The exemplar JRC 

profiles are shown in Figure 2.14. JRC has been correlated to the mechanical and 

hydraulic properties of rock fractures. For this reason, and also the simple application of 

this approach, JRC has been widely used in different rock engineering applications to 

study the hydro-mechanical properties of fractures, even though it is well known that 

JRC is a subjective method which suffers from a number of other deficiencies (Rasouli, 

2003).  

Following their experimental analysis, Barton and Choubey (1977) obtained the 

JRC values by back-calculation from the shear strength of fracture () as 

 )/(
10

bn

nlog

)tan(



JCSJRC


  ,  (2.23) 

where, n is the effective normal stress, JCS is the joint wall compressive strength,  is  

the maximum amplitude for a measured profile length ( Le ), and b is the basic function  

angle which is obtained from residual shear tests on a flat un-weathered rock surface. 
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Profile No        
( )JRCi

JRC Value 
( )JRC

a

1 1

2 3

3 5

4 7

5 9

6 11

7 13

8 15

9 17

10 19

10 cm
 

Figure 2.14 JRC exemplar profiles (After Barton and Choubey, 1977). 

 

Barton et al. (1985) performed an experimental analysis on the fluid flow coupled 

with the shear-flow behaviour of rock fractures and compared their results with data 

used by other researchers (see Figure 2.15). From this study, they proposed the 

following correlation between mechanical aperture (hm), and hydraulic aperture, or 

theoretical parallel plate analogy (hH) in relation to JRC: 

 
 2Hm

5.2

H
hh

JRC
h              (2.24) 

or 

 
5.2

2
m

H JRC

h
h  .   

In equation 2.24, hm and hH are expressed in m. It should be noted that this 

equation is only valid for hm hH. From this equation, and as seen from Figure 2.16, as 
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fracture surface becomes rougher, the difference between the mechanical and hydraulic 

aperture increases (i.e. larger hm / hH ratios). Also, the ratio of hm / hH even for smooth 

natural joints is likely to be higher than 1.0, which is believed to be due to the influence 

of the roughness and the tortuosity of the flow channel which causes an increase in the 

head losses. 

Figure 2.15 also shows that even for very rough profiles, the influence of 

roughness and tortuosity decreases as the fracture opens and the ratio of hm/hH 

approaches 1.0 (Barton, 1982). During shearing of a fracture, equation 2.24 only applies 

to pre-peak regions corresponding to a maximum shear displacement, usp. Further 

studies regarding this concept were also carried out by Barton and de Quadros (1997), 

and Olson and Barton (2001). 

 

 
Figure 2.15 Relationship between fracture wall aperture and hm/hH as a function of JRC data (After 

Barton, 1982). 

 

The latter researchers extended the application of Equation 2.24 to a post peak 

region where the shear displacement was larger than approximately 0.75 usp. In this 

situation, the profile had undergone some failure and roughness of the profile was 

expected to be reduced. They therefore suggested that instead of the original profile 

JRC, the mobilised JRC denoted as JRCmob should be utilised and accordingly proposed 

the following correlation for the post peak phase:  
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Figure 2.16 gives an example output plot of equations 2.24 and 2.25. The starting 

point of the shear test is shown by (o), which depends on an initial assumed mechanical 

aperture (hm0). The boundary between pre-peak and peak shear strength is shown by (●). 

 

 

Figure 2.16 Hydraulic aperture, hH, versus ratio for both normal loading/unloading, hm/hH (Olson and 
Barton, 2001). 

 

Through their laboratory experiments, Barton and de Quadros (1997) introduced 

relative hydraulic roughness (K/2hm), similar to that originally proposed by Louis 

(1969) to develop the isotropic coefficient of hydraulic conductivity (KH) as 

 
C

gh
K

1

12

2
H

H 
        (2.26) 

where 

 5.1
m )2( hKbaC  .  (2.27) 

In the above equations, K is the difference between the highest peak and the 

lowest valley of the physical wall roughness, C is the hydraulic roughness coefficient, g 

is the gravity (m/s2), hm is the joint mechanical aperture (m), v is the coefficient of 
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kinematic viscosity of the fluid (m2/s), and a and b are the constants of the equation. 

Also, 

 hm ≥ 15.15 K or K/2hm  ≤ 0.033    (2.28) 

Figure 2.17 shows the relationship between the relative roughness and the 

roughness coefficient, as proposed by different people. This figure shows that the 

validity of the above developed equation is when K/2hm ≤ 0.033, in which case when the 

roughness coefficient, C, tends towards unity. 

 

 
Figure 2.17 Coefficient of roughness (C) versus relative roughness K/2hm (After Barton and Quadros, 

1997). 

 

On further investigation, Barton and de Quadros (1997) correlated the relative 

hydraulic roughness to JRC through the correlation below:  

 2
m

5.3

m 8002 h

LJRC

h

K
 .                                          (2.29) 

In this equation, L (mm) is the measured profile length. According to their 

observations, assuming the upholding of cubic law, this correlation is valid for low 

values of K/2hm for flow in joints with correlated and uncorrelated rock surfaces.                               

Scesi and Gattinoni (2007) proposed relationships to estimate the hydraulic 

conductivity tensor in order to study water flow in fractured rock masses. They derived 

different hydraulic conductivity equations, based on the relative roughness (/Dh) which 

was initially proposed by Louis (1967) in relation to the JRC from Equation 2.24, 
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proposed by Barton et al. (1985). Their derived equations are for a profile geometry 

shown in Figure 2.18 for different fluid flow conditions (i.e. laminar, inertia and 

turbulent). Here, Dh is the hydraulic diameter of the non-circular channel (i.e. K per 

twice the hm in rock fractures).   

 

 

Figure 2.18 Fracture geometry used by Scesi and Gattinoni (2007). 

 

The plot of mechanical aperture (hm), versus hydraulic conductivity (KH) shown in 

Figure 2.19 indicates a reduction in hydraulic conductivity as a result of increasing JRC, 

or profile roughness for inertia flow. That is, the general expectation from laminar flow 

passing through a rough channel. In that situation, fluid is moving through the tortuous 

pathways. However, profile roughness is less influential at large aperture values in 

laminar flows. Therefore, Scesi and Gattinoni (2007) proposed the use of a following 

simplified equation for Poiseuille flow through fracture planes to estimate hydraulic 

aperture as  

 122

iHi ghK H   ,   (2.30) 

where, subscript i refers to ith fracture.   



Chapter 2 Fluid flow in rock fractures 

 35

 
Figure 2.19 Hydraulic conductivity as a function of aperture and JRC for non-parallel laminar conditions 

(After Scesi and Gattinoni, 2007). 

 

They also showed the range of validity of their equations by plotting the 

mechanical aperture (hm) versus JRC which is shown in Figure 2.20. 

  

 
Figure 2.20 Fracture aperture as a function of JRC (After Scesi and Gattinoni, 2007). 

 

According to Figure 2.20, they obtained a maximum aperture for each series of 

JRCs where the effect of roughness was considerable in the laminar flow regime. Their 
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results indicated that the maximum aperture for JRC = 2, 4, 6 (i.e. with not very marked 

asperities) was roughly 10−4 m, for JRC = 8, 10, 12, 14, (i.e. intermediate roughness) 

was between 10−4 and 10−3 m, and for JRC = 16, 18, 20 (with high roughness) was 

around10−3 m. 

Giacomini et al. (2008) studied steady-state flows in a porous medium using the 

3D FEM code ABAQUS and compared their numerical study results with mechanical 

shear stress tests proposed originally by an earlier study. They applied Darcy’s law for a 

saturated porous rock and developed a model based on the cubic law to investigate the 

flow anisotropy through a natural joint. They also used JRC and Z2 proposed by Tse and 

Cruden (1979) to estimate the micro scale roughness and the hydraulic aperture (i.e. 

equation 2.24) for each element of their numerical model. Their results indicated higher 

values of isotropic distribution of flow obtained from numerical models and the 

Reynolds equation compared to experimental results. However, they reported the 

overestimation of flow rate values by Reynolds equation by two orders of magnitude 

compared to their numerical model. 

Using CFD with three dimensional meshes, Crandall et al. (2010b) examined the 

relation of macroscopic roughness parameters JRC and fractal (Df) with the effective 

flow through the fractures in Berea sandstone. They recorded the pressure drop from the 

simulation and estimated the hH by back calculating from the cubic law. Their CFD 

simulation for water flow and low Reynolds number flow (i.e. Re<1), indicated that 

fractures with a higher JRC and Df showed tortuous pathways and 35 times smaller 

transmissivity compared to the smaller  JRC and  Df. According to Figure 2.21, they 

reported a linear relationship between JRC and transmissivity. 

 
Figure 2.21 Transmissivity, T, versus JRC (After Crandall et al. 2010b). 
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They also showed that the hydraulic aperture (hH) could be approximated by the 

average vertical distance between each segment of the top and bottom surface of the 

fracture, hV, (i.e. vertical aperture) which is in contrast for rougher fractures with higher 

JRC’s due to the effect of roughness on fluid resistance properties. Their results 

presented as normalised hydraulic aperture and this is shown in Figure 2.22. 

 

 
Figure 2.22 Normalized hH versus JRC (Crandall et al., 2010b). 

 

The above literature indicates that JRC has been extensively used to consider the 

effect of surface morphology in the hydraulic response of fractures. However, the 

subjective nature of JRC for quantitative characterisation of roughness remains 

debatable. This is perhaps the reason for attempts being made to propose an objective 

statistical parameter for roughness determination after JRC proposed, some of which 

were presented in subsection 2.1.3.  

In this research, a new roughness parameter recently developed using Riemannian 

geometry (Rasouli and Harrison, 2010) in fluid flow studies of rough profiles will be 

used. In the next subsection, a brief review of Riemannian dispersion parameters as a 

new roughness measurement parameter is given.  

2.1.5 Riemannian roughness parameter, DR1 

The idea of characterising the roughness of a rough fracture based on the 

distribution of deviation angles from a smooth plate was firstly introduced by Barton 

(1971). Fecker and Rengers (1971), through their practical measurements using a 
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compass mounted on a smooth plate, also found that as the base plate (sampling scale) 

increased, the scatter of the measurements decreased. Therefore, statistical analysis of 

deviation angles is in fact an approach that can quantify surface roughness and, for 

example, the standard deviation of angles of the plate measured at different scales and at 

different orientations could lead to a parameter for characterising roughness at different 

scales and orientations. This brief explanation indicates two important properties in 

roughness measurement: scale dependency and anisotropy.  

By extracting unit normal vectors from a surface, Rasouli and Harrison (2010) 

analysed these vectors statistically to characterise surface roughness. In the simple case 

of a linear profile, introducing a hypothetical connected pin sampling device, the unit 

normal vectors to the profile can be extracted at different scales and on a random 

sampling basis. This is shown in Figure 2.23. 

 

Figure 2.23 Profile sampling technique using a connected pin (Rasouli and Harrison, 2010). 

 

Rasouli and Harrison (2010) argued these normal vectors were all located on a 

periphery of a unit circle, i.e. these vectors were circular data and therefore statistical 

analysis of such data was to be carried out in Riemannian space, rather than in 

Euclidean space, as is a common approach. A simple difficulty with Euclidean 

geometry is that, for example, the mean of two unit vectors (0.0, 1.0) and (1.0, 0.0) is 

(0.50, 0.50), which corresponds to a point located inside the circle, while the original 

data are points located on the circle. This means that Euclidean geometry does not take 

into account the shape of the data distribution.  

As shown in Figure 2.24, the transfer of 2D Euclidean data in Riemannian space 

is obtained by unwrapping the circle. In this 1D space, the data are points located on a 

line called the principal chart, with their coordinates being defined by the distance from 

a point defined in this line. For the two vectors mentioned above, the corresponding 

coordinates in Riemannian space are points with lengths of 0 and /2, i.e. the curved 

length on the circle. The simplest 2D geometry in Euclidean space is a unit circle and its 



Chapter 2 Fluid flow in rock fractures 

 39

correspondence in Riemannian space is a 1D line. All statistical analysis of vectors 

(including data mean and variance) can now be performed in 1D Riemannian space. For 

the two example vectors, the mean value is /4. Once the calculations are completed, 

the data can be transferred back to the Euclidean space, i.e. corresponding to the unit 

circle. In this case for example, the mean of the data will be located on the unit circle. In 

the above simple example, the mean vector as is transferred back to the circle shows 

point (0.50, 0.50) but this time it is located on the circle. In other words, for the case of 

linear profiles, the data can be considered as their angles with respect to a datum axis. In 

the example here, the representations of the two vectors in Riemannian space are 0 and 

/2, corresponding to the angle identifying vectors (0.0, 1.0) and (1.0, 0.0). 

 

Figure 2.24 Riemannian representation of a 2D unit vector in Euclidean space (Rasouli and Harrison, 
2010). 

 

Similar to what was explained for a 2D linear profile above, the unit vectors 

extracted from a rock surface using a hypothetical sampling device will be located on 

the surface of a unit sphere. The Riemannian representation of a unit sphere is a 2D 

plane. Transformation of data from a unit sphere to its corresponding Riemannian space 
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is not straightforward and requires complicated mathematical computations. The reader 

is referred to Rasouli and Harrison (2010) for a detailed discussion on this. 

For linear profiles, Rasouli and Harrison (2010)  proposed the 1D Riemannian 

dispersion parameter (DR1) corresponding to the standard deviation of unit normal 

vectors calculated on the principal chart as a measure of profile roughness. The larger 

the DR1, the rougher the profile will be.  

For a synthetic symmetric triangular profile shown in Figure 2.25, 

   KDR 2tan-1
1  . (2.31) 

which shows that for such a profile the base angle (represented in radians) of the profile 

is the measure of roughness in Riemannian space. DR1 changes between 0 and /2 but in 

real rock profiles the base angle is less likely to be greater than about 10 degrees (i.e. 

0.175).     

 

Figure 2.25 Unit normal vectors to a symmetric synthetic profile (Rasouli and Harrison, 2010). 

 

In Figure 2.26, an asymmetric synthetic triangular profile is shown. The geometry 

of this profile is identified using two angles 1  and 2  corresponding to chords c1 and c2, 

respectively. For such a profile DR1 is obtained as 
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where 

      2111

2122
22

2122
11 ,, cccKhchc   . (2.33) 

As the symmetry ratio (1/2) increases towards unity (12=), it can be seen that 

equation 2.32 approaches equation 2.33, i.e. roughness of a symmetric triangular 

profile.     
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Figure 2.26 Unit normal vectors to an asymmetric synthetic profile (Rasouli and Harrison, 2010). 

       

For a sinusoidal profile in the general form of bxz sin , with amplitude 2 and 

wavelength b 2  (or aspect ratio /), as shown in Figure 2.27, calculations of 

DR1 results in 

         231
21

31212
11 2tan
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2
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3
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








 RR SD , (2.34) 

which indicates that profile roughness increases as the wavelength () decreases or 

amplitude (2) increases, but not as a linear proportion. From this equation, the 

maximum value of roughness is 1.6074. By comparing this equation to equation 2.31, it 

can be found that geometrically, a sinusoidal profile shows a larger range of roughness 

values than a synthetic symmetric profile. This is because the maximum deviation of 

normals on a sinusoidal profile is larger than on the corresponding symmetric profile 

(Rasouli and Harisson, 2010).   

 

Figure 2.27 Unit normal vectors to a sinusoidal profile (Rasouli and Harisson, 2010). 
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2.2 Hydraulic aperture estimation for synthetic profiles 

Analytical formulae have been proposed to estimate hydraulic aperture (hH) for 

profiles with synthetic geometries. A review of these analytical solutions will assist in 

understanding the effect of geometrical properties of a rough channel on fluid flow. 

Some researchers have suggested simulating real rock fractures with synthetic channels 

and used similar formulae to estimate hydraulic aperture and pressure drop along the 

profile (Elswoorth and Goodman, 1986; Zimmerman et al., 1991). Hence, in this section 

a brief review of analytical solutions proposed for flow channels with sinusoidal and 

triangular wall geometries are given.  

2.1.6 Series and parallel flow 

The direction of fluid flow through a fracture can be considered either parallel or 

perpendicular to the aperture variation. These are referred to as series and parallel flows 

(Bear, 1988; Federico, 1998; Zimmerman and Bodvarsson, 1996) respectively, as 

shown in Figure 2.28. From this figure, it is easy to see the effect of surface morphology 

or roughness is more important in series flow compared to parallel flow. Therefore, in 

this work, only the formulae for series flow will be given as this is also more likely to 

occur in natural fractures. 

 

 
Figure 2.28 Parallel and series flow. 

 

In series flow, the total pressure (P) in a channel with length L can be assumed 

as the summation of pressure in N discrete segments with individual length Li. Each 

segment contains constant aperture ih  and the total fracture width (w) (Bear, 1988). Thus  
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Assuming the applied pressure gradient between the inlet and outlet being 

     LLPPP  0 , the flow rate in each segment, which is equal to the total flow rate 

in the case of series flow, is obtained as (Federico, 1998):  
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where  denotes the average aperture of the rough profile which will be replaced in 

the cubic law. In comparison, the flow rate for parallel flow is obtained as  

 3

12
h

Pw
Q




  .                  (2.36)  

In the above equations 
13 h and 3h determine the hydraulic aperture for series and 

parallel flows, respectively. The hydraulic aperture in series and parallel flow is also 

referred to as the harmonic and arithmetic mean, respectively (Zimmerman and 

Bodvarsson, 1996). 

It is also well known that the actual effective conductivity is bounded between the 

series flow (as the lower limit) and the parallel flow (as the upper limit). In real cases, a 

mixture of these two occurs and therefore Zimmerman et al. (1991) proposed the use of 

the geometric mean (hg) of the conductivities as  

 3133 hhhg 
 . (2.37) 

2.1.7 Sinusoidal profiles 

Letalleur et al. (2002) developed an analytical model to study the effects of 

lubricant film flow where the fluid is assumed it is undergoing pressure while sheared 

between two parallel sinusoidal wavy surfaces in a sliding motion. Figure 2.29 shows 

the geometry of the profile with the bottom and top surface velocities of U1 and U2, 

respectively. We refer to this geometry as a non-mate channel as there is a half 

wavelength phase difference between the two wall geometries. In contrast, the mate 

geometry is the one with both walls being parallel to each other. Also, it is assumed that 

there is no contact between asperities of upper and lower walls. 
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Figure 2.29 Geometry of a sinusoidal surface (After Letalleur et al., 2002). 

   

The aperture field, h(x) is obtained as the area between the top and bottom wall of 

the fracture, i.e. 

      xhxhxh 12  ,    (2.38) 

where h1(x) and h2(x) are the geometry equation of the bottom and top surfaces, 

respectively. This was proposed by Letalleur (2002) as  

     





  iixii0i

2
sin2, 


 tUxhtxh  ,                         (2.39) 

Where, 0ih is the mean planes of surface i, i   is the surface phase (i.e. amount of shear 

displacement) at initial time 0t , and is the root mean square (r.m.s) roughness of each 

surface. The r.m.s roughness (is similar for both top and bottom surfaces and can be 

defined in relation to its relative roughness (i.e. t or b, in Figure 2.30) as 222
ii    

with ibeing the relative roughness for each top and bottom surface.                                              

In Poiseuille flow, which is the flow type appropriate for our studies (see Section 

1.1.1), the walls remain static and therefore U1= U2 =0. Considering this assumption, 

equations 2.38 and 2.39 lead to  

                


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2
sin 





 xxhxh Bm .     (2.40) 

In this equation, hm is the mean distance between the two surfaces. 

Also for a non-mate sinusoidal geometry, as shown in Figure 2.30, for the lower 

and upper wall of fracture 1=0 and 2=2n/, respectively. Here, n is the shear offset 

of the lower wall with respect to the upper wall, which changes between 0 and . 

Hence, 2 has a range between 0 and 2. Considering this and performing some 

mathematical calculations (see Letalleur et al., 2002 for details), the aperture field 

equation for a non-mate sinusoidal profile is obtained as  
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Figure 2.30 Geometry of a non-mate sinusoidal surface.  

 

It is to be noted that in equation 2.41 the term 2Tis twice the relative roughness of the 

top surface (or bottom surface) and is sometimes referred to as roughness (K).  

The hydraulic aperture term, is estimated as 
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The solution of this integral is trivial and requires use of the Sommerfeld integrals 

(Constantinescu, 1995). The details of this can be found in (Maday, 2002) and results in 
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where C is a constant parameter  and in this case  
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Assuming K=hm for a sinusoidal profile (figure 2.30) with constant aperture 

(Zimmerman et al., 1991) in which  is the relative roughness for the top or bottom 

surface, equation 2.44 can be rewritten in the form of  
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Equation 2.46 allows calculation of hydraulic aperture at any relative shear 

displacement between the two walls of a sinusoidal shaped profile to be made. This 

equation indicates that for a mate channel geometry (i.e. n=0) 313
mhh 

 , the 

hydraulic aperture is equivalent to the mean aperture, as expected. For n=/2, the 

geometry shown in Figure 2. 31 will be changed to the geometry shown in Figure 2.30 

(i.e. a non-mate channel) with its hydraulic aperture being 
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 hh .       (2.47) 

It is noted that in deriving this equation, the effect of profile wavelength () has 

been neglected due to the assumption of the gradual aperture variations, i.e., 

 h/ << 1. This is why in equation 2.47 profile wavelength does not appear. Equation 

2.47 indicates that the hydraulic aperture in the series is less than the mean aperture, hm.  

The roughness value, , can be linked to Riemannian roughness parameter (DR1) 

introduced in Subsection 2.1.5 as  
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,                                          (2.48) 

and therefore the hydraulic aperture in terms of DR1 for series flow can be written as 

(from equations 2.46)  
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or in the special case of a mate channel geometry (i.e. a shear offset of n=/2), similar to 
equation 2.47 as 
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In Figure 2.31, the hydraulic aperture versus relative profile roughness () 

calculated from equations 2.47 and 2.50 is shown. To show the effect of changing 

profile roughness, in this plot a maximum aperture (the distance between the two peaks 

of upper and lower profile) of hmax=2 was assumed and for different values of roughness 
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the mean aperture (hm) was calculated as  222maxm  hh . It should be noted 

that the plot, shown in Figure 2.31, is based on an estimation of the hydraulic aperture 

by applying the different mean aperture (hm), as changing the relative roughness causes 

changes in the mean aperture (i.e. mean aperture increases by increasing the relative 

roughness). Also, the profile wavelength () is two in this example; however, as 

mentioned earlier, its effect is negligible in these calculations considering that the ratio 

of profile height to wavelength is high. For comparison purposes, the plot of DR1 versus 

hydraulic aperture is also shown in this figure. The results show a close agreement 

between the results of the two approaches, indicating applicability of DR1 in 

representing profile roughness effects in the hydraulic analysis of channels. However, 

for real rock profiles, it is more appropriate to use DR1 in characterising fracture 

roughness and hence it is a preferred parameter for use. 

 

Figure 2.31 Hydraulic aperture of a sinusoidal channel as a function of roughness.  

2.1.8 Symmetric triangular profiles 

Similar to the sinusoidal channels discussed in the previous subsection, analytical 

solutions can be developed to estimate hydraulic aperture in a fluid channel with 

symmetric triangular geometry walls. This is discussed here.  

In an early attempt, Elsworth and Goodman (1986) studied the effect of shear 

offset and normal closure on the hydraulic aperture and conductivity of rock joints by 

employing different profile geometries. They considered sinusoidal and triangular 

profile geometries as an approximate for observation of natural joints which was 

applied in both non-tortuous and tortuous flow under laminar and turbulent flow 



Chapter 2 Fluid flow in rock fractures 

 48

conditions. According to their study, they developed expressions to estimate hydraulic 

aperture under different geometry profiles. However, the proposed expression for non-

mate triangular profile (Figure 2.32) was applicable for parallel flow. For the purpose of 

this research, an equation is being developed to estimate hydraulic aperture for such a 

profile in a series flow based on the proposed expression by the Elsworth and Goodman 

(1986) study. The developed equation will then be applied to estimate the hydraulic 

aperture within a unit cell corresponding to a half wavelength of a symmetric triangular 

shaped channel later in this subsection. In that regard, the fluid is assumed to travel 

from left to right, and parallel to the aperture variation (i.e. series flow). 

 

Figure 2.32 Triangular geometry profile (After Elsworth and Goodman, 1986). 

 

In Figure 2.32, b1 is the vertical displacement of the top surface for a mate or non-

mate saw tooth profile. That parameter can be considered as the mean aperture (hm) for 

a mate saw tooth profile (Elsworth and Goodman, 1986). Accordingly, equation 2.51 

can be used to quantify the hydraulic aperture in series for a mate saw-tooth profile:  

        





















 




















  m
m

m
m

m
m

m
m

m

vhvh

u

vhvhmv

u
h

11

2

1
4

11

)1( 11 
  (2.51) 

where, u and v are the shear and normal displacement respectively, m is an arbitrary 

exponent (indicate the flow behavior) which is considered as three for laminar flow, hm 

is the mean aperture, and  is the wavelength of the triangular profile.  

The term u is assumed to be equal to /2 in which the top wall is shearing above 

the bottom wall, which indicates a non-mate saw tooth profile. 

The normal displacement, v, can be applied into Equation 2.51 for a non-mate 

saw tooth profile in the term of 
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 (2.52) 

or  
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 Kv   (2.53) 

The mean aperture also, can be define as (Zimmerman et al., 1991) 

  minhKhm   (2.54) 

Accordingly, Equation 2.51 can be reduced to  
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Where,   is the standard deviation of the height distribution and can be defined 

for a saw tooth profile as 32/K (Zimmerman et al., 1991). 

It should be noted that equation 2.55 can be used to estimate the hydraulic 

aperture in series flow for a unit hydraulic cell (UHC) with the wavelength of /2. To 

compare the estimated hydraulic aperture for triangular and sinusoidal profiles, the plot 

of hydraulic aperture versus roughness estimated from equations 2.47 and 2.55 is shown 

in Figure 2.33. Similar to the plot for sinusoidal profiles (Figure 2.31) a profile 

wavelength of 2, with hmax=2 was used in this example. The results indicate a reduction 

in hydraulic aperture as a result of increasing profile roughness, as expected. For 

comparison purposes, in this figure, the results for a corresponding sinusoidal profile 

(given in Figure 2.30) for a fixed mean aperture (hm=2) are also shown. That is because 

the effect of roughness and profile geometry on hydraulic aperture will be considered 

for different profile geometry types (i.e. sinusoidal and triangular). The results indicate 

that the hydraulic aperture for a flow channel with sinusoidal shaped walls is less than 

that of a symmetric triangular channel. This can be interpreted due to the larger real 

length of a sinusoidal profile compared to a triangular profile, which causes a larger 

pressure drop and therefore lesser hydraulic conductivity. DR1 is a useful statistical 

indicator for such a small difference, as it analyses the unit normal vectors extracted 

from a profile, which indirectly relates to the real profile length. Therefore, for real rock 

fracture profiles with a much more complicated geometry, it is believed that DR1 would 

be a more appropriate parameter for use in hydraulic calculations. This is discussed in 

further detail in the next two Chapters.     
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Figure 2.33 Hydraulic aperture versus roughness in channels with fixed mean aperture (hm) for 
symmetric triangular and sinusoidal geometries.  

2.3 Summary 

The first part of this Chapter presented a review of the roughness effect on fluid 

flow study through rock fractures. Different methods of integrating roughness in flow 

analysis were discussed. A new statistical parameter (DR1) was introduced for 

characterisation of profile roughness. In the next step, the analytical solutions for 

hydraulic aperture estimation of sinusoidal synthetic channels were presented. Similar 

formulae were extracted for channels with synthetic symmetric triangular channels. DR1 

was integrated in these equations and was shown to be able to represent channel 

hydraulic property changes with respect to its geometry. In the next Chapter, fluid flow 

simulation results for synthetic 2D channels will be presented. 
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Pressure drop estimation for 2D 
synthetic fractures  

 

In the previous Chapter, the importance of fracture geometry, or its roughness, on 

the fluid flow behaviour was discussed and existing approaches to study this effect were 

presented. In this Chapter, the results of the simulation of synthetic profiles, including 

symmetric and asymmetric triangular profiles using Computational Fluid Dynamics 

(CFD) code are presented. A brief introduction to CFD and its simulation software, 

known as FLUENT, will be given in the first section of this Chapter. Based on the CFD 

simulation analysis, correlations were developed where it was possible to predict the 

pressure drop. Pressure drop in these synthetic profiles were also linked with the new 

roughness parameter, DR1, and the results presented. The correlations will be applied to 

estimate pressure drop along rock fracture profiles. 

It should be noted that, in this study, the range of profile apertures were chosen to 

be between 0.01 cm and 1 cm. This is within the range of fracture apertures observed in 

naturally fractured reservoirs, based on the extracted data from the image log (Bahrami 

et al., 2008) as shown in Figure 3.1.  

 

Figure 3.1 Fracture aperture distribution in a section of a hydrocarbon reservoir (Bahrami, et al.  2008).  

 

 3 
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3.1 Computational Fluid Dynamics (CFD) 

CFD has been used for solving flow problems numerically in a wide range of 

engineering applications. FLUENT uses the finite element method to simulate fluid 

flow for compressible and incompressible fluids with capabilities that consider laminar 

and turbulent, steady-state, or transient fluid flow problems. The conservation equations 

for mass and momentum are solved in FLUENT to determine the fluid flow properties 

such as pressure drop or velocity magnitude for all kind of fluid flows. The flow 

simulation in FLUENT is performed using the generated mesh and employing different 

numerical solvers. Those settings and solvers used in this research will be described. 

The mesh generation uses Gambit software. 

For the purpose of this study, the flow in a fracture is assumed to be laminar, 

incompressible, isothermal and in a steady-state regime and for a viscous Newtonian 

fluid (Zimmerman and Bodvarsson, 1996).  

FLUENT software employs two different solver technologies: pressure based and 

density based. In this study incompressible flow is studied and the pressure based solver 

is used in all cases. 

In FLUENT, both single-precision and double-precision versions of FLUENT 

versions are available. Using double-precision solver, (2ddp) is applied for some 

applications such as a thin pipe with a long length, or for geometries with a high aspect-

ratio of grids which need sufficient transformation of boundary information. The 

floating point number in double-precision solver is representative of 64 bits of memory.  

To run a case in FLUENT, the mesh is imported and appropriate mesh scale and 

settings should be applied. The material and boundary conditions can then be set. There 

is a data base for different kinds of materials, where the physical properties of materials 

are stored and can be called upon. The main material properties are density, and 

viscosity.  

There are a wide range of boundary conditions (BC) available in FLUENT to 

simulate fluid flow. The boundary condition should be created in Gambit when the 

mesh is generated. However, it is possible to change the boundary conditions in 

FLUENT if necessary. Some of the boundary types used in this study are velocity inlet, 

mass flow inlet and pressure outlet.  

The velocity inlet boundary condition is proposed for incompressible flows and is 

used to define the flow velocity within all relevant scalar properties of the flow at the 

flow inlet. This kind of BC is used when the inlet velocity is known.  
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The simulation is then performed until the mass flow rate between the inlet and 

outlet boundary conditions becomes theoretically identical to satisfy continuity 

equations. Accordingly, the flow rate along the geometry is constant and the velocity in 

each segment of geometry is calculated by FLUENT to have a consistent flow rate. The 

boundary condition at the inlet is considered as the velocity inlet in the analysis carried 

out in this Chapter. However, the mass flow inlet is another possibility that could be 

used when the effect of fracture geometry is studied. This is what is used for the 

simulations of JRC flow channels in the next Chapter and also in the case of 3D 

simulations of rock fractures.  

The pressure outlet is the boundary condition needed for all models in this study  

required to specify the static (gauge) pressure at the outlet boundary. The gauge 

pressure is assumed to be zero in order to estimate the inlet and outlet pressures and 

then calculate the pressure drop. The pressure is also estimated using the SIMPLE 

algorithm (Semi-Implicit Method for Pressure-Linked Equations). 

In FLUENT, a different discretisation scheme for the convection terms of each 

governing equation is available. In this study, the second order upwind scheme is used 

for more accuracy and also to avoid the errors which may be caused based on the mesh 

shape and also to handle the large computational effort required in fine mesh grids. The 

reader is referred to the FLUENT manual for further information on various simulation 

aspects of this software (Fluent Inc., 2005).  

In the next section, applications of FLUENT in the simulation of fluid flow in 

synthetic profiles will be described. 

3.2 Symmetric triangular profiles 

Figure 3.2 shows fluid channels with their wall geometry as a symmetric 

triangular profile. To be consistent, the fluid channel shown in Figure 3.2 (a) will be 

referred to as a ‘mate’ fluid channel. In this geometry, there is no shear offset of the 

lower wall with respect to the upper wall. Similarly, Figure 3.2 (b) shows a ’non-mate‘ 

fluid channel with a lower wall shear offset of a half wavelength relative to the upper 

wall. 

In Figure 3.2, K is the asperity height, hin is the opening (or aperture), hH is the 

hydraulic aperture (or equivalent aperture) and  is the asperity angle. and Le are the 

projected (i.e. boundary length) and real profile lengths, respectively, which are related 

to each other as  
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Figure 3.2 Geometry of a (a) mate and a (b) non-mate symmetric triangular fluid channel. 

  

Several profiles, similar to those shown in Figure 3.2, were subjected to a fluid 

flow analysis using FLUENT software to determine pressure drops and perform 

sensitivity analyses on different geometrical and fluid properties. The ‘velocity inlet’ 

and ‘pressure outlet’ were considered as the two left and right boundaries with 

stationary walls in all models. In all simulations, the laminar fluid flow was applied 

from the left to the right side of the geometry profile (i.e. from velocity inlet BC to 

pressure outlet BC). The reason to choose laminar flow is that the water flow in 

reservoirs can be considered as laminar and it is more important in narrow fractures 

(Sarkar, 2002).  In all profiles, a constant length of =10 cm was used for consistency 

purposes and profile roughness was changed by choosing different Le, corresponding to 

a different asperity height (K).  

At this stage, and because the purpose of this study is to investigate the effect of 

profile geometry on pressure drop, water with a density of 998.1 kg/m3 is considered as 

the fluid flowing through the profile. The hydraulic input data used for the analysis of 

both profile geometries are given in Table 3.1.  

 

 Table 3.1   FLUENT input data for simulation of symmetric profiles 

Velocity 

(m/s×10-3) 

Volumetric flow rate 

(m3/s×10-7) 

Fluid Viscosity 

(Pa.s×10-3) 

1, 50, 400 1 , 50 , 400 Water 1 
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The results of FLUENT simulations are given for mate and non-mate fluid 

channels in the subsections below, respectively. 

3.2.1  Mate flow channels 

Sensitivity analyses were carried out to investigate the effect of profile geometry 

on pressure drop and the results are summarised below. 

Profile length (Le) 

Fluid channels with a constant opening of h=0.01 cm were chosen and FLUENT 

simulations were carried out. The simulations were repeated for different fluid velocities 

but as an example, the results are presented for a fluid velocity of 0.001 m/s. The results 

for other velocities show a similar trend. As plotted in Figure 3.3, the simulation results 

indicate that pressure drop increases as profile length becomes larger. This is equivalent 

to an increase in profile height, as the projected lengths of profiles are constant (L=10 

cm). Using the pressure drop obtained from simulation hydraulic aperture, (hH) was 

estimated for each profile length from cubic law (equation 1.10) and the results are also 

shown in Figure 3.3. It is important to note that for mate profiles, the profile length (Le) 

is to be used in the cubic law equation, as the laminar flow sees the whole profile 

length. It is noted that the hydraulic aperture reduces as a result of an increase in profile 

length.  

Figure 3.3 Flow simulation results for mate symmetric triangular channels with different profile length 
(Le). 
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The simulation results showed that for mate profiles, the pressure drop was 

similar for all profiles with equal lengths (Le). This means that profiles with a different 

number of asperities but a similar total profile length (this requires profiles to have 

different asperity heights) behaved similarly.  

As an example, Figure 3.4 shows the contours of total pressure and velocity 

magnitude for a profile with four asperities. The results of Figure 3.4 indicate that the 

total pressure, as expected, reduces as fluid moves toward the channel outlet. As the 

flow regime is laminar, velocity profile is parabolic: it is maximum at the centre of the 

channel and reduces to its lowest value at the two walls.  
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Figure 3.4 Contours of (Top) velocity magnitude and (Bottom) total pressure for a mate 
symmetric triangular profile.  
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Opening  

Figure 3.5 shows the results of the sensitivity analysis of pressure drop with 

respect to the fluid channel opening (hin) for a mate triangular profile with single 

asperity. The results of this figure show that, considering all other parameters are 

constant, pressure drop reduces as a result of the increasing profile inlet opening, which 

is in agreement with cubic law. The hydraulic aperture was then estimated using cubic 

law for each profile and the results are also presented in Figure 3.5, which show an 

increase as the profile opening becomes larger. As shown in this figure, hH is equivalent 

to the opening hin for different mate fluid channels and therefore calculation of pressure 

drop for these profiles is less cumbersome. However, it will be shown in the next 

subsection that this is not the case for non-mate profiles.  

 

Figure 3.5  Flow simulation results for mate symmetric triangular channels with different 
inlet openings (hin). 

3.2.2 Non-mate flow channels 

Fluid flow analysis of a non-mate profile whose geometry is shown in Figure 3.2 

(b) is not as simple as the mate profile discussed in the previous subsection. This is 

because the opening of a non-mate profile changes along the profile and is not constant. 

Therefore, contrary to the results shown for a mate profile in Figure 3.6, the hydraulic 

aperture is not equivalent to the profile opening. In this study, correlations are 

developed from several FLUENT simulation runs using an estimation of the equivalent 

hydraulic aperture of a non-mate symmetric profile. Figure 3.6 shows the example 

output contours of total pressure drop and velocity magnitude from a FLUENT 

simulation for a trianglur profile with real length, asperity height, and an opening of 10 
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cm, 0.10 cm, and 0.05 cm, respectively. The inlet velocity in this study was chosen to 

be 0.001 m/s. The results indicate how fluid pressure drops as the fluid moves towards 

the outlet boundary and that velocity is maximised where the channel throat is the least. 

In the following section, the results of a sensitivity analysis on different geometrical and 

hydraulic properties for non-mate symmetric profiles will be given.  
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Figure 3.6 Contours of (a): velocity magnitude, m/s and (b): total pressure (Pa), for a non-
mate symmetric triangular profile. 

Profile length (Le) 

The results of pressure drop for non-mate profiles with a different real length (Le) 

are given in Figure 3.7. Considering the constancy of all other parameters, and 

assuming that maximum opening along the profile is not constant, pressure drop 

decreases as profile length becomes longer. This is due to the fact that with larger 

asperities fluid faces a larger area to travel along the channel when the maximum 

opening (hmax) is not fixed. However, if the maximum opening is fixed, a reverse trend 

is expected (i.e. pressure drop increases as profile length increases). This is because 

with larger profile lengths, the asperities will be larger and hence fluid faces a more 

reduced throat along the channel. This reduced width causes larger pressure drops.  
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The results shown in Figure 3.7 are for a fluid velocity of 0.001 m/s, inlet opening 

of 0.01 cm and the volumetric flow rate of 1×10-0.7 m3/s. This figure also shows that for 

profiles with a larger number of asperities, but the same real length (i.e. lesser profile 

asperity height), pressure drop increases. This is because with larger asperities fluid 

faces more reduced throat along the channel. This reduced width is the reason for larger 

pressure drops for a higher number of asperities. 

 

Figure 3.7 Simulation results of pressure drop for symmetric profiles with different real profile 
lengths (Le) for (a) one, (b) four, and (c) eight number of asperities. 

 

Back calculation of hydraulic aperture from simulation results using the cubic law 

equation indicates that hH increases as Le increases and this increase is more severe for 

profiles with a larger number of asperities (see Figure 3.8). 
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Figure 3.8 Hydraulic aperture for non-mate symmetric profiles with different profile length (Le) for (a) 
one, (b) four, and (c) eight number of asperities.  

Opening 

By increasing the fluid channel opening and keeping all other parameters 

constant, this will result in a pressure drop reduction, as shown in Figure 3.9 for a non-

mate symmetric triangular profile with single asperity. This is simply because the fluid 

has a wider area to pass through if the opening is larger. Back calculation of hH from 

simulation results and using the cubic law equation indicates that hH increases as inlet 

channel opening (hin) increases but the relation is not linear as was the case for a mate 

profile (see Figure 3.6). This relationship becomes more difficult to predict once other 

parameters such as fluid velocity or asperity height are changed.  

 

 
Figure 3.9 Pressure drop for non-mate symmetric profiles with different inlet openings (hin).  

Fluid velocity 

Figure 3.10 shows the effect of changing fluid velocity on pressure drop from a 

FLUENT simulation and hydraulic aperture back calculated from the cubic law formula, 

for example, a channel with an asperity height (K) of 0.02 cm, four asperities, and 

different openings of 0.01, 0.05 and 0.1 cm. This figure indicates that by increasing 

fluid velocity, hH reduces. More interestingly, as the fluid velocity becomes very large, 

hH tends toward the channel opening (h) itself, i.e. identical to a channel with two flat 

walls. This is due to the fact that at large velocities the fluid does not see the profile 

geometry and tends to pass along a straight path directly from the inlet to the outlet 

through the centre part of the channel. 
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The results of Figure 3.10 show that as velocity increases, pressure drop increases 

too. Here, only the pressure drop for an opening of 0.01 cm is shown as an example but 

the pressure drop for a non-mate profile with a different inlet opening shows the same 

trend. Increasing velocity reduces both Le and hH but the effect of hH is larger according 

to the cubic law equation and hence the pressure drop shows an increase.  

 

Figure 3.10 Pressure drop and hH for non-mate symmetric profiles with different fluid velocities. 

 

Asperity height (roughness) 

The effect of asperity height (K) on pressure drop was simulated in FLUENT by 

changing this parameter while other variables were kept constant. Another major 

assumption is the variable maximum opening (hmax). Increasing the roughness also 

indicates an increasing of the profile length (Le). The results of such an analysis are 

shown in Figure 3.11 which indicates that as asperity height or profile roughness 

increases pressure drop reduces, which is because there is a wider area for fluid to pass 

through the channel. For such simple profile geometries a change in K corresponds 

directly to changing asperity angle , or roughness parameter DR1 as explained in 

Section 2.15 of Chapter 2. Therefore, a similar trend is observed in Figure 3.11 between 

pressure drop and DR1, i.e. as DR1 increases, pressure drop reduces. Hence, DR1 can be 

applied to a fluid flow analysis of rock fractures as a parameter to estimate the profile 

length. This aspect will be considered in the next Chapter. 
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Figure 3.11 Effect of roughness parameter (DR1) on pressure drop in a symmetric non-mate fluid 
channel for (a) hin=0.01 cm , (b) hin =0.05 cm , and (c) hin =0.1 cm. 

 

As mentioned earlier for non-mate profiles, due to its geometry the hydraulic 

aperture (hH) is a function of different parameters and needs to be estimated in order to 

calculate pressure drop. In the following subsection, a correlation is developed based on 

the simulation of several channels with a half wavelength which allows an estimation of 

hH to be made using more complicated geometries. Before representing the results, the 

analytical solutions developed for such simple geometry, similar to what was presented 

in Chapter 2 for sinusoidal profiles, will be developed in the next section. 

3.3 Analytical analysis of a unit hydraulic channel (UHC)  

Similar to the sinusoidal channels discussed in Section 2.1.7, analytical solutions 

can be developed to estimate hydraulic aperture in a fluid channel with symmetric 

triangular geometry walls. This is discussed here.  

A unit hydraulic cell (UHC) corresponding to a half wavelength of a symmetric 

triangular shaped channel is shown in Figure 3.12. It is assumed the fluid flows from 

left to right. 
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Figure 3.12 Geometry of a unit hydraulic cell (UHC). 

 

From this figure, the following relations are held between profile roughness of the 

top and bottom walls (KT, KB), length (λ ), and minimum and maximum distances 

between the two walls (i.e. hin and hmax):  

 BTin KKhh max                                   (3.2) 

 





 
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2

BT
inm

KK
hh .                                      (3.3) 

In Figure 3.12, the position of the top and bottom walls can be determined using 

their angles with respect to the y axis (i.e.  and , respectively). In this figure, the 

angle between the two walls is shown as . 

The standard deviation of the height distribution for such a profile can be 

estimated as (Zimmerman et al., 1991) 

 
3232

max BTin KKhh 



 ,                                  (3.4) 

which leads to  

 32 BT KK .                                         (3.5) 

 

The equations representing the bottom and top wall geometries of this synthetic 

channel can be written in the forms of   

 in
B

B hx
K

xh 



λ

)(                         (3.6)   

and                                                                     
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Accordingly, the aperture field is calculated as 

   inBTBT hxKKxhxhxh 

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λ

1
)()()( .                        (3.8) 

As discussed in Chapter 2 and similar to a sinusoidal profile, the hydraulic 

aperture in a series flow for half a wavelength of this channel is estimated as  

  

 0 3
3
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11
dx

xh
h .  (3.9) 

Substituting h(x) from Equation 3.8 in this equation leads to 
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Replacing hin from Equation 3.3 and simplifying this equation it reduces finally to  
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For a channel geometry with identical slopes (i.e. KT=KB=K) equations 3.11 and 3.12 

are simplified to  

 
m

m

m

m

h

h

h

Kh
h

222222
13 )3()( 





 . (3.13) 

This equation is what was originally proposed by Zimmerman et al. (1991).  

It can be shown that theoretically, the hydraulic aperture would be identical if the 

fluid travels from right to left as in Figure 3.12, i.e. the pressure drops are expected to 

be directionally independent. 

Equation 3.11 can be written in terms of angles , and  shown in Figure 3.12. 

From this figure 

 
αtan

λ
TK , (3.14) 
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βtan

λ
BK , (3.15) 

 αβγ  . (3.16) 

Substituting Equations 3.14 and 3.15 in Equation 3.11 results in  
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In order to investigate the effect of changes in channel geometry on hydraulic 

behaviour, in Figure 3.13 the variation of hydraulic aperture with respect to angle 

between the two walls () is plotted. In this figure, the top and bottom walls are located 

symmetrically about the x axis. In this example, a UHC with λ=1 cm and hm=0.01 cm 

was assumed for illustration purposes. The results of this figure show how hydraulic 

aperture increases as the channel walls deviate from each other.     

 

Figure 3.13 Hydraulic aperture as a function of wall distances. 

 

Equation 3.11 can be rewritten in terms of the UHC minimum opening, i.e. the 

inlet opening (hmin) as 

   222
min

min

13 1
KKh

Kh
h 




 , (3.18) 

where,   2BT KKK  . 

The maximum opening (i.e. at the UHC outlet) is a function of hin and can be 

simply calculated as  

 cotλ22max  inin hKhh . (3.19) 
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Figure 3.14 shows the plot of hH/hm as a function of hin/hmax. The results of this 

figure indicate that hydraulic aperture increases as the UHC inlet opening becomes 

larger, however, it approaches the mechanical aperture when hin becomes very large and 

thus the ratio of hin/hmax gets close to unity. It is important to note that this result is 

independent of the size of the top or bottom wall (or say, K) and is only dependent upon 

the ratio of the hin/hmax. While this result may be acceptable to some extent, it is 

important to note that the analytical equations developed here do not consider the flow 

properties but only look at the geometry of the UHC. For example, the flow rate is an 

important factor which can significantly influence the results. For a constant flow rate, 

increasing the ratio of hin/hmax is expected to cause an increase in hydraulic aperture, 

however, beyond a certain limit this trend may reverse and does not approach the 

mechanical aperture. This indicates why conducting an appropriate fluid flow analysis 

where hydraulic parameters are also integrated with geometrical properties of the 

channel is required. 

 

Figure 3.14 Hydraulic aperture as a function of channel geometry.  

  In order to take the effect of channel orientation into account, the UHC length 

along different directions needs to be included in equation 3.17. This could be simply 

assumed as the length of the line corresponding to angle 2γα   or 2γβ  , depending 

on the UHC orientation, which is equivalent to 

  2sin 




l . (3.20) 

A similar approach was used by Sarkar et al.  (2004) to estimate pressure drop for 

smooth channels aligned along different orientations.  
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From equation 3.20, the pressure drop changes are a direct function of length l and 

the hydraulic aperture changes inversely with respect to . Therefore, the modified 

hydraulic aperture, where the effect of UHC orientation is also taken into account, can 

be expressed as 

    
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This equation indicates that hydraulic aperture changes as a function of angle , 

or UHC orientation and its maximum occurs at angle 2γ90α   , i.e. when the UHC is 

symmetric about the x axis, corresponding to a minimum length for the UHC (i.e. λ ).  

In Figure 3.15, the plot of hydraulic aperture changes corresponding to UHCs 

with a different angle between the two walls and different orientations are shown. As an 

example, this plot is for a minimum aperture of hin=0.01cm. In this figure, the loci of 

maximum hydraulic aperture corresponding to UHCs oriented along different directions 

are shown.  

It is important to note that in these calculations the gravity effect is not considered 

and the results obtained here correspond to a change in UHC geometry only.  

 

 
Figure 3.15 Hydraulic aperture as a function of channel orientation.  

 

In Figure 3.16, the simulation results performed using FLUENT for a UHC with a 

different range of angle  when angle  changes between 25o and 130 o are compared 

with those obtained using the analytical solutions of Figure 3.15 with a constant 

Q=1×10-07 m3/s for all models. This figure shows a close agreement between the two 

approaches. From this figure, a lesser discrepancy is expected between the results of the 
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two approaches when  is less than 80 deg, and when angle  is enough large, i.e. the 

channel aperture is not large. This is due to the fact that the given constant flow rate 

becomes ineffective for large channel apertures. This demonstrates that the analytical 

formulae developed above can be used with a reasonable accuracy for the purpose of 

studying real rock fractures, assuming that a real fracture is a combination of several 

discrete UHC.  

 

Figure 3.16 Simulation results for a UHC. 

3.4 FLUENT simulation of a UHC 

In this section, the simulation result of UHCs with different geometries will be 

presented. The results are used to develop correlations between hydraulic apertures and 

UHC geometrical parameters. 

Figure 3.17 shows the generated mesh using Gambit for a UHC with hin=0.01 cm, 

and =30o (i.e.=120o). The use of high density quad mesh using different interval 

counts for each profile ensures a high accuracy for the results obtained from FLUENT. 

The contours of velocity magnitude and total pressure from FLUENT simulation 

corresponding to this UHC are shown in Figure 3.18. Water was used in this simulation 

and a constant mass flow rate of 9.982×10-5 kg/s was applied for modelling. The results 

indicate how fluid pressure drops as the fluid moves towards the outlet boundary and 

that velocity is maximised where the channel throat is the least. 
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Figure 3.17 The generated quad mesh in Gambit for UHC with hin=0.01 cm. 

 

Below, the FLUENT simulation results for UHCs corresponding to angle  which 

indicates the loci of maximum for the different angle  (i.e. 90o-/2) are outlined.  

In Figures 3.19 and 3.20, the hydraulic apertures back calculated from cubic law 

are shown for UHC with the different angle . Figure 3.19 shows the results for hin 

between 0.01 and 0.05 cm where, for illustration purposes, the results correspond to hin 

between 0.1 and 3 cm and are plotted in Figure 3.20. This figure shows that in general, 

hydraulic aperture approaches hin with =0, i.e. smooth channel with opening hin. 

However, when hin is greater than 0.1 cm this is no longer the case: the hydraulic 

aperture at =0 is less than hin. This is due to the fact that the flow rate is the same for all 

models and therefore at longer inlet sizes, the fluid velocity becomes very small and 

therefore, the fluid flow becomes less independent of channel geometry.  
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Figure 3.18 Contours of (Top): velocity magnitude, m/s and (Bottom): total pressure (Pa), hin=0.01 cm.  

 

Figure 3.19 Simulation results of hydraulic aperture for a unit hydraulic cell (UHC) with different hin less 
than 0.05 cm. 
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Figure 3.20 Simulation results of hydraulic aperture for a unit hydraulic cell (UHC) with hin between 0.1 
and  3.0 cm. 

 

The FLUENT output for contours of total pressure of UHC with hin=0.5 cm, and 

=30o are shown in Figure 3.21. This figure indicates that the larger pressures occur at 

the corners of the model. 
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Larger pressure at sharp corners 

 

Figure 3.21 Contours of total pressure (Pa) for a unit hydraulic cell (UHC) with hin = 0.5 cm. 

 



Chapter 3    Pressure drop estimation for 2D synthetic fractures 

 72

3.4.1 Developed Correlation 

Using multi-variable regression techniques, the relationship between hydraulic 

aperture of the UHC as a function of inlet opening (hin) and the angle between UHC 

walls () can be written as 

 3C
21H CC h  (3.22) 

Where coefficients C1, C2 and C3 are  
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   for hin  0.10cm.   (3.24) 

In these equations, hin is in cm and  is in degrees. It is also important to note that these 

correlations are developed for a UHC with a length of 1 cm and based on a constant 

flow rate of Q=1×10-7 m3/s. 

Having estimated hydraulic aperture from correlation 3.22, the pressure drop 

P(′=1cm) can be calculated for a UHC as  

  cmL PFP 1λ   (3.24) 

or 
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where,  (Pa.s) is the viscosity, λ  (cm) is the UHC projected length, Q (m3/s) is the 

volumetric flow rate , and hH (cm) is the equivalent hydraulic aperture. In equation 3.25, 

FL is the length correction factor, as the developed correlation was based on the analysis 

of profiles with λ=1 cm. FL is estimated as (see Figure 3.22) 

     2γCosαSinL

 



F .   (3.26) 
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Figure 3.22 Comparison of geometry of two UHCs. 

 

To assess the validity of the developed correlation, the pressure drops for a 

number of profiles with different geometries were calculated using equations 3.25 and 

the results compared against those obtained using the FLUENT simulation.  

In Figure 3.23, the geometry of two synthetically generated flow channels are 

shown. The asperity height of the upper and lower walls was generated based on a linear 

random generation of numbers. The channel can be considered as a combination of 18 

UHCs connected in the series. The channel pressure drop can be obtained as the sum of 

the pressure drop in each UHC. Therefore, the hydraulic aperture corresponding to each 

UHC was estimated from correlations 3.22 and 3.25, from which pressure drop 

corresponding to each UHC was calculated from the cubic law equation and then the 

total pressure drop was obtained. The results are shown for both flow channels in Table 

3.2. Each flow channel was separately subjected to the FLUENT analysis and the 

pressure drops obtained from the simulation are also given in Table 3.2. This table 

shows a very close agreement between the results obtained from the two approaches 

with less than 10% error. This demonstrates the applicability of the developed 

correlation for a good estimation of pressure drop in a 2D channel. 
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Figure 3.23 Two synthetically generated flow channels.  

 

Table 3.2  Pressure drop calculated from developed correlations and estimated from simulation.  

Geometry profile P-FLUENT 

(Pa) 

P-Correlation 

(Pa) 

Error 

(%) 

Symmetric    (Figure 3.23-a) 0.107 0.096 9.81 

Asymmetric  (Figure 3.23-b) 0.053 0.058 8.61 

3.5 Summary 

In this Chapter, a wide range of synthetic triangular profiles were subjected to 

fluid flow simulations using FLUENT software. Both mate and non-mate geometries 

were studied and the effect of a number of asperities and asymmetric profiles were 

investigated. Analytical calculations for a unit hydraulic cell were developed from 

which the equivalent hydraulic aperture can be estimated. It was discussed why the fluid 

parameters were needed to be included for hydraulic aperture estimation and therefore 

correlations were developed based on simulations of a wide range of UHC geometries 

for a particular set of fluid parameters. The developed correlation applied to the analysis 
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of two generated flow channels and comparison of the results with those obtained from 

direct FLUENT simulation demonstrated the applicability of the correlations. 

In the next Chapter, JRC flow channels developed from JRC profiles will be 

subjected to the fluid flow simulations of FLUENT and correlations will be derived for 

estimation of flow properties of real 2D rock fracture.  
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Fluid flow response of JRC exemplar 
profiles 

 

Numerical and analytical studies of fluid flow for synthetic channels (i.e. 

sinusoidal and triangular) were carried out in the last two Chapters. In this Chapter, to 

incorporate the effect of profile roughness in hydraulic behaviour of fractured rock 

masses, the joint roughness coefficient (JRC) proposed by Barton and Chobey (1977) is 

used (see Section 2.1.4).  

In this Chapter, JRC flow channels are developed and subjected to fluid analysis 

using FLUENT software. Correlations will be derived based on simulation results of 

which fluid flow parameters of 2D fractures can be estimated.    

4.1 Fluid flow analysis of single JRC flow channels 

JRC has been correlated to the mechanical and hydraulic properties of rock 

fractures (e.g. Barton et al., 1985). For this reason, and also the simple application of 

this approach, JRC has been widely used in different rock engineering applications to 

study the hydro-mechanical properties of fractures, even though it is well known that 

JRC is a subjective method and suffers from a number of deficiencies (Hosseinian et al., 

2010a; Liu and Sterling, 1990; Rasouli and Harrison, 2001). In real applications one 

should estimate the JRC of the top and bottom walls of a fracture and then use equation 

(2.24), to obtain estimation for hydraulic aperture (hH) of the fracture. The hydraulic 

aperture is then replaced with opening h in the cubic law equation for smooth channels 

to estimate the pressure drop along a fracture (see Subsection 1.1.1).   

There are two immediate difficulties associated with the above and similar 

approaches can be pointed out. The first issue is related to the subjective nature of JRC 

assessment as discussed earlier: different JRC values may be assigned to a rock profile 

by different people, which leads to different results for the fluid response of a fracture. 

To partly overcome this problem, the statistical parameters of rock profiles have been 

correlated to JRCs which allows a more objective assessment of roughness of rock 

surfaces to be made. This is discussed in detail in the next section and a new correlation 

4 
 



Chapter 4 Fluid flow response of JRC exemplar profiles 

 77

developed between JRC and the newly proposed roughness parameter (DR1) will be 

presented.  

The second difficulty in using the above approach is related to averaging JRC 

values of the top and bottom walls of the fracture. To explain this issue, four 

synthetically generated fractures are shown in Figure 4.1. The top and bottom walls of 

these fractures are profiles taken from JRC exemplars. Each fracture is referred to as 

JRCij where i and j are indices indicating the top and bottom wall of the JRC profile 

number. As seen from Figure 4.1, fractures shown in Figure 4.1(a) and 4.1 (b) are made 

up from JRC profiles number 5 and 9 but their position has been changed. This is the 

same for fractures in Figures 4.1 (c) and 4.1 (d) where JRC profiles six and eight 

constitute the top and bottom walls of these two channels. For each fracture, the JRC 

value corresponding to the top and bottom wall is also given in Figure 4.1. An important 

point is that for all these fractures the average JRC is similar and equivalent to JRCa=13. 

From Figure 4.1, one can immediately see a large difference between geometry of these 

fractures while their averaged JRC is similar.  

The above simple example shows a potentially large error in estimating fracture 

hydraulic parameters due to the averaging of JRC of the top and bottom walls of a 

fracture without considering the geometry and position of each wall individually. The 

importance of this becomes clearer if it is noted that 100 fractures with combinations of 

JRC profiles could be generated and in some cases the average JRC of five fractures 

may be similar (for instance JRCa = 11 represents five flow channels of JRC210, JRC39, 

JRC48, JRC57 and JRC66). However, the fluid flow properties corresponding to the 

averaged roughness parameter may also be useful in obtaining a mean expected 

response of the fracture.  

The study presented here was initiated as a result of the above findings and 

therefore JRC flow channels were developed with a combination of pairs of JRC 

profiles. These generated fractures were subjected to numerical analysis of fluid flow 

using FLUENT software. This is discussed in the following sections. 
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JRCij: i and j are JRC prof ile numbers for top and bottom walls , respectively
JRC , JRC : JRC values for top and bottom walls, respectively.  T B
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JRC =17B
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JRC =15T
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JRC ave rage (JRC
a
) is  13 for all  four generated JRC flow chann els  

    
Figure 4.1 Four generated JRC flow channels with JRCT (Top wall) and JRCB (Bottom wall). 

4.2 Development of JRC flow channels  

In this study, bearing in mind that JRCs are meant to represent the range of real 

rock surface geometries, a detailed analysis of JRC profiles with respect to fluid flow 

was carried out. For this purpose, JRC flow channels were developed where the top and 

bottom wall of each channel was taken to be one of the 10 JRC exemplars (see Figure 

2.14). The digital elevation of JRC profiles was extracted from the scan of printed 

images of the ten profiles at high resolution (Rasouli, 2002). 

Examples of JRC channels showed in Figure 4.1, where channel JRCij represents 

a fracture whose top and bottom walls are JRC profiles i and j, respectively. 

Considering 10 JRC profiles, a total of 100 JRC flow channels can be generated. It is 
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important to note that, as per the discussion in the previous section and from Figure 4.1, 

the fluid flow response of flow channel JRCij is not necessarily similar to that of JRCji. 

The 2D analysis of fluid flow requires no contact between the top and bottom wall 

at any point along the fracture length. In this study, in order to retain the consistency 

throughout the fluid analysis of different JRC flow channels a constant minimum 

closure distance (dmc) was assumed for all 100 flow channels. This allows for a 

disregard of the influence of minimum throat size on fluid flow behaviour and allows an 

investigation of the effect of channel geometry only. In Figure 4.2, dmc is shown for a 

typical JRC flow channel. However, to investigate the effect of the minimum closure on 

flow response, the analyses were performed for three different dmc of 0.01, 0.05 and 

0.1cm, respectively: this is thought to be comparable with real rock fractures and the 

results corresponded to lesser dmc which indicated they were highly affected by reduced 

opening size. Therefore 300 flow channels were analysed in total. It is important to note 

that for flow channels of JRCii, where the top and bottom walls are identical, it can be 

seen that in most cases a large departure from one wall is required to satisfy the 

condition of dmc>0 (Hosseinian et al., 2010a) . This is more intense in the case of JRC 

profiles which contain steep lag intervals and therefore it was found that within the dmc 

range of 0.01 to 0.1cm inclusion of the results of these profiles is inappropriate. This 

will not have an impact on the correlations developed here, as statistically reduction of 

100 cases to 90 will not result in a loss of general data trend. 

The average JRC value corresponding to a JRC flow channel (JRCa) is the 

average of the JRC value corresponding to the top and bottom wall. However, as also 

noted in the previous section, several channels may have similar JRCa depending on the 

JRC values of the top and bottom wall (for example flow channels JRC59 and JRC68 

shown in Figure 4.1). 

JRCij

JRCi 

JRCj 

dmc 

 
Figure 4.2 A typical JRC flow channel with minimum closure distance, hmin. 

 

The aim of this chapter is to analyse a large range of flow channels based on a 

combination of JRC profiles corresponding to real fractures and thus obtain correlations 
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between fracture mechanical and hydraulic parameters. Analysis of these simulated 

fractures will be conducted numerically using FLUENT software. 

4.3 Correlation between JRC and DR1 

The subjective nature of the JRC approach in characterising surface roughness 

was mentioned in Section 4.1. This was discussed to be important when JRC is used to 

estimate fracture hydro-mechanical properties. To partly overcome this difficulty 

several attempts have been made to correlate JRC with some statistical parameters. For 

example, Tse and Cruden (1979) investigated the relationship between different 

statistical parameters and JRC values. They found that the values of root mean square 

(RMS) slope () is correlated with JRC and therefore presented the following 

correlation for estimation of JRC of real rocks: 

 2log47.322.32JRC Z  (4.1) 

In the above equations Z2 is defined as  
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where L is the sampling length.  

Considering the potential advantages of DR1 as explained in Section 2.1.5 as a 

quantitative measure of roughness, an attempt is made in this study to correlate this 

parameter with JRC: this will allow an indirect estimation of JRC of a rock profile from 

its DR1 value. Accordingly, DR1 corresponding to 10 exemplar JRC profiles were 

estimated at a very small sampling size and the results are shown in Figure 4.3. This 

figure shows that, in general, DR1 increases as JRC becomes larger, although this trend 

is not consistently followed from one JRC profile to the next larger profile: for example 

DR1 reduces from JRC = 15 to JRC = 17. From Figure 4.3 it is also seen that JRC = 19 

shows a larger DR1 compared to other profiles. Discarding the point corresponding to 

JRC = 19, the following linear correlation fits the data best 

 1172.0JRC0069.0R1 D  (4.3) 

or 

 
 

0069.0

1172.0
JRC R1 

D
 (4.4) 
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The results of Z2 and DR1 estimated for some rock fractures will be compared in 

Section 4.6. However, it is important to mention that depending on the range of 

roughness of real rocks, DR1 can be up-scaled to be representative of larger Mahalanobis 

distances (Rasouli and Harrison, 2010) but this requires further research which is not 

the subject of this work. 

 

   

DR1 = 0.0069JRC + 0.1172
R² = 0.8381

0.10

0.15

0.20

0.25

0.30

0 2 4 6 8 10 12 14 16 18 20

D
R

1
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Figure 4.3 Correlation between JRC and Riemannian roughness parameter DR1.  

 

Based on the detailed discussions given in the two previous sections, similar JRC 

average values for a fracture could be obtained as a result of different combinations of 

JRC profiles forming the top and bottom walls of the fracture. Therefore, to obtain a 

more representative correlation for estimating JRC with its particular applications in 

fluid flow analysis, we calculated DR1 for different profiles with a 20 cm length as being 

the combined length of the top and bottom walls corresponding to each JRC flow 

channel. As for each channel, changing the position of the top and bottom walls did not 

change the roughness of the combined profile. A total of 55 profiles with a length of 20 

cm were generated. Each combined profile represented an average JRC value. These 

profiles represented a range of geometry of rock fractures and therefore their average 

was expected to be a more appropriate value for use in the fluid flow analysis of rock 

fractures. As an example, Figure 4.4 shows a combined JRC profile produced from the 

JRC96 flow channel. The average JRC for this profile is JRCa = 14. 



Chapter 4 Fluid flow response of JRC exemplar profiles 

 82

   

JRC96

JRC9

JRC6

JRC9 JRC6

10 cm

20 cm

A combine JRC profile produced from top and bottom walls of a JRC flow channel 
 

Figure 4.4 A combined JRC profile. 

All 55 combined JRC profiles were subjected to DR1 analysis. The plot of DR1 

versus average JRC value corresponding to each profile is shown in Figure 4.5. This 

figure shows an increasing trend for DR1 as JRC increases. Also, Figure 4.5 

demonstrates how fractures with similar averaged JRC values may differ in their 

roughness and therefore a range of roughness is expected for an averaged JRC value. 

For example, as can be found from Figure 4.5, DR1 changes between 0.1806 and 0.2238 

for JRC=10 depending on which combination of JRC profiles form the top and bottom 

walls of the fracture. In this example, the minimum JRCa belongs to combined profile 

JRC38 with JRC110 being the roughest channel. A linear correlation between DR1 and 

JRCa is obtained in the form of 55 combined JRC profiles were subjected to DR1 

analysis. The plot of DR1 versus average JRC value corresponding to each profile is 

shown in Figure 4.5. This figure shows an increasing trend for DR1 as JRC increases. 

Also, Figure 4.5 demonstrates how fractures with similar averaged JRC values may 

differ in their roughness and therefore a range of roughness is expected for an averaged 

JRC value. For example, as can be found from Figure 4.5, DR1 changes between 0.1806 

and 0.2238 for JRC=10 depending on which combination of JRC profiles form the top 

and bottom walls of the fracture. In this example, the minimum JRCa belongs to 

combined profile JRC38 with JRC110 being the roughest channel. A linear correlation 

between DR1 and JRCa is obtained in the form of   

 1185.0JRC0071.0R1  aD , (4.5) 

or 
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From Figure 4.5 the upper and lower bounds for JRCa variation could be defined as 

below: 

    
0064.0

1072.0
LLJRC R1 

D
a  (4.7) 

and 
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Figure 4.5 DR1 for combined JRC profiles. 

 

The mean JRC estimated from Equation 4.6 provides close results to that of 

Equation 4.4, but gives a window within which the JRC may change. The above 

analysis shows a wide range for JRCa depending on the roughness of the two walls of 

the fractures and therefore it is more appropriate to assign a range, instead of a unique 

number, within which the JRCa varies. This range of JRCa can be used for fluid flow 

analysis which in turn determines a possible range for flow parameters, for example 

mean hydraulic aperture or fracture pressure drops. This will be discussed in section 

seven where applications for some real rock profiles are given. 

As explained above, a proposition will be made to estimate JRCa for a fracture 

from DR1 corresponding to combined length of the two walls, but not as an average of 

JRC corresponding to each wall, which is common practice. The results of our analysis 

indicate that JRCa, estimated from the proposed approach here, provides slightly larger 
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values for JRC of the fracture and that is a better parameter when it is linked with 

hydraulic parameters of the fractures. 

4.4 Fluid flow simulation using FLUENT 

All JRC flow channels were subjected to fluid flow analysis to obtain a 

representative range for flow response of real rock fractures. The analysis carried out for 

three minimum closure distances (dmc) of 0.01, 0.05 and 0.10cm. The simulations were 

performed numerically using FLUENT software.  

Table 4.1 shows the parameters used for simulations of JRC flow channels, 

similar to those properties used for synthetic geometries in the previous Chapters. 

 

Table 4.1 FLUENT input data for simulations of JRC flow channels 

 
Boundary Conditions: 
 
Inlet 
 
Outlet 

 
 
Mass flow inlet 
 
Pressure outlet 

 
Fluid: 
 
Density (kg/m3) 
 
Viscosity (kg/ms)

Water 
 
998.2  
 
0.001

 
Volumetric flow rate (m3/s) 1×10-7

 

 

In order to perform all simulations consistently and efficiently in terms of running 

time, journal files were written in a text user interface (TUI) format for both Gambit and 

FLUENT. A journal file contains a series of TUI commands written in a text file using a 

text editor or generated by FLUENT as a transcript of the commands given to FLUENT. 

Using journal files is very useful when a series of similar simulations need to be 

executed, as it provides a shortcut (FLUENT inc., 2005). 

Figure 4.6 shows an example of generated mesh using Gambit for one JRC flow 

channel. The use of high density quad meshes (a total of 5000 nodes along the profile 

length and 25 nodes across the profile) ensures a high accuracy for the results obtained 

from FLUENT. 
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Gambit mesh for JRC  flow channel37

 
  

Figure 4.6 An example output of Gambit mesh for JRC37 flow channel. 

 

All meshes were imported to FLUENT and subjected to fluid flow analysis. 

Various hydraulic properties can be presented graphically in FLUENT including 

pressure and velocity contours. As an example, the contours of total pressure and 

average velocity magnitude corresponding to JRC37 are shown in Figure 4.7. Figure 4.7 

(a) shows how total pressure reduces as the fluid moves to the right, i.e. from channel 

inlet towards the outlet. The total pressure changes from a maximum of 1.43 Pa at the 

inlet to a minimum of 0 Pa when it arrives at the channel outlet: i.e. a total pressure drop 

of 1.43 Pa. The small range of pressure values are due to a small value of flow rate 

assumed for the simulations. This is unimportant in this study as the main objective of 

this work is to compare the response of different JRC flow channels. However, one may 

normalise the pressure values by dividing them by pressure drop of a smooth channel 

with its opening being equivalent to the minimum closure distance (dmc) of the given 

JRC flow channel. Considering that the length of all JRC flow channels are identical 

(i.e. 10cm) and for a unit width, the pressure drop corresponding to three dmc of 0.01, 

0.05 and 0.1cm would be obtained from equation 1.10 as 120, 0.96 and 0.12 Pa, 

respectively. 
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Figure 4.7 An example contours of total pressure and (b) velocity magnitude for JRC flow channel 

JRC37 with hmin=0.01cm.  

 

In Figure 4.7 (b) the contours of velocity magnitude shown for a small interval of 

this fracture, where the maximum velocity occurs, indicates a variation range between 0 

and 0.001467 m/s. As expected, it can be seen that larger velocities occur at lower 

openings along the channel with its maximum being at the point where the opening is 

equal to dmc, i.e. the lowest opening along the fracture. Also, considering the flow is 

laminar with a hyperbolic velocity profile, it is clear that getting closer to channel walls 

makes the velocity reduce and finally become zero. 

4.5 Data analysis of JRC flow channels  

In this section, the results of fluid flow analysis of JRC flow channels performed 

using FLUENT are presented. However, in order to interpret the results given here, it is 

important to note that in this study we have considered a constant minimum closure 

distance (dmc) for all JRC flow channels. This was done to discard the significant impact 

of the maximum reduction in channel size on flow response and to allow an 

investigation of the effect of channel roughness on flow response. Therefore, it is 

expected, that as the JRC flow channel walls become rougher, i.e. larger JRCa, the 
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mechanical aperture of the channel increases, which in general results in a smaller 

pressure drop or average fluid velocity, assuming that the flow rate is constant. In other 

words, in presented JRC flow channels the maximum distance between the two walls is 

not constant and changes based on the assumed dmc.  

The pressure drop for JRC flow channels was extracted directly from FLUENT 

simulations. This data was used to estimate the hydraulic aperture (hH) from back 

analysis of the cubic law given in equation 3.   

As an example, Figure 4.8 shows the results of mechanical aperture calculated for 

JRC flow channels. In this example, the minimum closure distance is dmc=0.01cm. As 

seen from this figure, hm increases as JRCa become larger. The power correlation fitted 

to the data in Figure 10 allows estimating hm from JRCa. A window shown in Figure 4.8 

determines the range of data variation for mechanical aperture. The mechanical aperture 

can also be estimated from the ratio A/L (A is the area between the two walls of the 

fracture and L is fracture length) (Hosseinian et al., 2010b). 

Similar trends were observed for two other cases with dmc=0.05cm and 

dmc=0.1cm, where mechanical aperture increases with dmc. Therefore, the following 

correlations were developed based on the normalised aperture (i.e. the aperture divided 

by the dmc): 
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Figure 4.8 Mechanical aperture for JRC flow channels with hmin=0.01cm.  
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An increase in dmc is expected to increase the hydraulic aperture but with a 

different trend to that of the mechanical aperture. Figure 4.9 shows the plots of 

hydraulic aperture versus JRCa corresponding to three dmc of 0.01, 0.05, and 0.1cm, 

respectively. The power correlations fitted to the data are shown in Figure 4.9. It can 

also be seen from this figure that the data varies within a window of ±0.012 to ±0.03 

and to ±0.04 from Figure 4.9(a) to 4.9(c).  
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Figure 4.9 Hydraulic aperture for JRC flow channels with different hmin. 
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From the correlations obtained in Figure 4.9, the following correlation was 

developed for hH
n  as a function of JRCa and dmc:     

 60.0
0.58
mc

H JRC
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1 a
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d
h   (4.11) 

with data being distributed in a window of 
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In the above equations dmc is in cm. Equation 4.11 shows that regardless of the 

roughness of the JRC flow channel, if dmc becomes very large the normalised hydraulic 

aperture approaches to unity, i.e. hydraulic aperture will be equivalent to dmc.  

A plot of hm versus hH shown in Figure 4.10 shows a gradual increase in hH as hm 

increases. This figure shows the results corresponding to dmc = 0.01 cm, however, 

similar trends were observed for two other cases where dmc is equal to 0.05 cm and 0.10 

cm. Accordingly, the power correlation below was derived between normalised 

mechanical and hydraulic aperture: 
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A variation window similar to equation 4.12 was found to be appropriate for Figure 

4.10, which shows the range of changes of hH as a function of hm. 
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Figure 4.10 Mechanical aperture for JRC flow channels with hmin=0.01cm.  
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Figure 4.11 presents the plots of (hH/hm) 3 versus JRCa for different flow channels.  
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Figure 4.11 Permeability of JRC flow channels with different hmin. 

 

The results indicate that larger channel roughness leads to smaller hydraulic 

conductivity. Also, in comparing Figures 4.11 (a) to 4.11 (c), the larger the dmc the 
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larger the channel permeability. The best fit to the data is shown in Figure 4.11 

including the window in which data distributes. Generalising the results obtained from 

this figure, a correlation between JRC flow channel permeability as a function of JRCa 

and dmc is obtained in the form of 

   ad
h

h

m

H JRC565.0
mc

3

03.01 



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


 (4.14) 

As this equation shows, and is seen from Figure 4.11, permeability reduces 

significantly when dmc get closer to zero and approaches unity for very large values of 

dmc regardless of the channel roughness.  

For real rocks, JRCa can be estimated in relation to DR1 from equation 4.6, in 

order to obtain permeability through Equation 4.14. 

A plot of permeability as a function of hm/, where  is the standard deviation 

corresponding to JRCa can also be produced (Zimmerman et al., 1991). Figure 4.12 

shows such a plot for three different dmc. This plot shows how a range of data 

distribution increases as dmc or hm increases. In general, permeability increases as the 

ratio of hm/ becomes larger but this is more consistent for dmc = 0.10cm compared to 

two other smaller openings and for ratios of hm/ greater than approximately 3. The 

results presented here are similar to those reported by other researchers as discussed in 

Section 2.1.3 (see Figure 2.11 in Chapter 2). 

From Figure 4.12, a correlation between permeability of JRC flow channels and 

hm/ is obtained as  

 
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where the data changes within a window with a lower limit of   

 

















m

3

LL

1
hh

h

m

H 
 (4.16) 

and an upper limit of  
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From equations 4.15 to 4.17, it can be seen that as hm/ becomes larger, the channel 

roughness reduces and therefore permeability increases. 



Chapter 4 Fluid flow response of JRC exemplar profiles 

 92

For very large values of hm/the permeability approaches unity (i.e. hH=hm), 

which corresponds to a smooth channel. On the other hand, as roughness increases, the 

deviation between hydraulic and mechanical aperture increases. 
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Figure 4.12 Permeability of JRC flow channels with different hmin as a function of hm/ 

 

In Figure 4.13 (a), the results of average velocity magnitude (Vn ) for JRC flow 

channels are plotted. The velocity values are normalised with respect to the velocity of a 

smooth channel with an opening of dmc. As seen from this figure, channels with larger 

JRCa show a lesser Vn because the average area of the channel subjected to the flow is 

larger. Similarly, Figure 4.13 (a) shows the larger the dmc, the higher the average 

velocity. Correlations between Vn and JRCa corresponding to three minimum closure 

distances are given in Figure 4.13, which can be used as a guide. Similar interpretations 

can be made from Figure 4.13 (b) where the plot of Vn versus hm/ is presented. A 

larger velocity is expected as dmc increases and also a larger roughness for the flow 

channel (i.e. lesser hm/) results in a lesser Vn. 
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Figure 4.13 Normalised velocity magnitude versus (a) JRCa and (b) hm/ for JRC flow channels with 
different hmin. 

 

The results of normalised pressure drop (Pn) for JRC flow channels are plotted 

in Figure 4.14 for data corresponding to channels having a dmc = 0.10 cm, with a larger 

range of values compared to the other two channel openings. This figure shows a 

reduction in pressure drop as the average JRC of the channel increases: this is due to the 

fact that the dmc is constant in all cases but the two walls depart further away from each 

other. Also, a variation range of between approximately +0.10 and -0.05 is observed for 

pressure drop changes. 
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Figure 4.14 Normalised pressure drop versus JRCa for JRC flow channels with hmin=0.10 cm. 

 

A similar trend was observed for JRC flow channels with a dmc = 0.01 cm and 

0.05 cm and accordingly, the following correlation was developed between pressure 

drop and JRCa as a function of dmc: 

    adddP JRC0.32-
mcmcmcn 15.011  , (4.18) 

where pressure drop changes within a window of  
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 (4.19)   

In this equation, dmc is in cm. Equation 4.18 indicates that, regardless of the 

roughness of the flow channel, pressure drop increases significantly when dmc becomes 

very small, but approaches unity if dmc increases largely: the latter corresponds to the 

pressure drop of a smooth channel with opening dmc. As can be seen, equation 4.18 

satisfies the limit conditions (i.e. P approaches infinity if dmc tends towards zero) and 

appears to give a good estimation of the pressure drop of rock fractures. This will be 

assessed in Section 4.6, where applications of this correlation in some rock fractures are 

presented. 

Several similar correlations could be developed between various geometrical and 

hydraulic parameters of JRC flow channels depending on the particular application 

required. However, the results of JRC flow channels show how it may be possible to 
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obtain a more generalised flow response of real rock surfaces by analysing a large range 

of simulated fractures.  

Using the developed correlations above, it is possible to estimate the average JRCa 

values of the fracture walls using correlations 4.1 or 4.6 from corresponding Z2 or DR1 

values. Then, the hydraulic aperture can be calculated from equation 4.11 and pressure 

drop can be estimated through equation 4.18.  

It is important to note the input parameters used (see Table 4.1) to derive these 

correlations. If a fracture is analysed with properties different to those used here, the 

flow parameters should be modified accordingly.  

The developed correlations will be applied to the analysis of several real rock 

fractures in the next section. 

4.6 Analysis of rock fractures 

In order to examine the range of applications of the developed correlations in the 

previous section, several real rock fractures with a wide range of average roughness 

were studied using these correlations. Here the results corresponding to nine fractures 

taken from a granite block are presented and compared with those obtained from direct 

simulation of these fractures using FLUENT software.    

In order to demonstrate the applicability of the correlations developed here, an 

attempt was made to extract 2D profiles with a wide range of roughness along different 

directions across the granite block. The geometry of nine fractures (F1 to F9) used for 

this study is shown in Figure 4.15.  

The length of all fractures was taken to be 10 cm, similar to the JRC flow 

channels. The minimum closure distance (dmc) was different for these fractures (ranging 

from 0.03 to 0.10 cm). A selection of smaller dmc was found to be inappropriate for 

illustration purposes as, in this situation the fracture response would be significantly 

affected by a sudden reduction of the fracture opening. 
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Figure 4.15 Geometry of nine rock fractures F1 to F9 used for fluid analysis.  

 

In Table 4.2, dmc, together with statistical parameters Z2 and DR1 introduced in 

Section 4, are estimated for these fractures and shown. It is interesting to note that 

fracture F5 and F6 have a similar roughness (i.e. DR1) but their dmc is different: it is 0.10 

and 0.07 for fracture F5 and F6, respectively. The data in Table 4.2 was used to estimate 

JRCa for these fractures from Equation 4.1 and 4.6, respectively, and these values are 

also shown in Table 4.2 and plotted in Figure 4.16. From this figure, it appears that for 

these fractures DR1 generally overestimates JRCa compared to those obtained from Z2. 

Table 4.2 Roughness parameters calculated for nine rock fractures F1 to F9 

Fracture dmc DR1 
JRCa  

(from DR1) 
JRCa  

(from ) 

F1 0.054 0.1652 6.58 5.06 
F2 0.034 0.1700 7.25 5.55 
F3 0.076 0.2271 15.30 9.08 
F4 0.073 0.2290 15.56 10.36 
F5 0.102 0.2352 16.43 10.36 
F6 0.071 0.2347 16.37 11.48 
F7 0.077 0.2458 17.93 11.04 
F8 0.071 0.2500 18.52 11.48 
F9 0.067 0.2612 20.00 13.63 
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Figure 4.16 Roughness assessment for fractures F1 to F9. 

 

Fractures F1 to F9 were subjected to FLUENT analysis and correlations were also 

developed in the previous section and applied to estimate their flow parameters. In 

Figure 4.17 (a), the normalised mechanical apertures (hm
n) for these fractures estimated 

through correlation 4.9 is compared against those obtained from FLUENT simulations. 

Similarly, Figure 4.17(b) shows hydraulic apertures (hH
n) corresponding to fractures 

estimated from correlation 4.11 and simulations. In Figure 4.17, the upper and lower 

limits for apertures obtained from correlations 4.10 and 4.12, respectively, are marked. 

This figure indicates a very good agreement between the results obtained through the 

developed correlations and simulation, as most of the data is distributed alongside the 

line with a 45° slope and is within the expected limits. 
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Figure 4.17 Comparison of normalised (a) Mechanical and (b) hydraulic aperture for fractures F1 to F9 
obtained from developed correlations and simulation. 

 

Figure 4.18 presents the results of normalised pressure drop for fractures F1 to F9 

obtained from the simulation and correlation 4.18. The expected limits for data variation 

estimated from correlation 4.19 are marked in Figure 4.18. This figure shows a good 

prediction made by the developed correlation for fracture pressure drop based on the 

JRC flow channels.   
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Figure 4.18 Comparison of normalised pressure drop for fractures F1 to F9 obtained from developed 

correlations and simulation. 

The results of Figures 4.17 and 4.18 demonstrate the applications of developed 

correlations based on JRC flow channels to estimate hydraulic parameters of rough rock 

fractures. In Figure 4.19, the normalised mechanical (hm) and hydraulic (hH) apertures 

estimated for given fractures are plotted against their roughness parameter DR1. From 

this figure, it can be seen that generally both mechanical and hydraulic apertures 

increase from fracture F1 to F9, i.e. as fractures become rougher. Correspondingly, the 

pressure drop reduces as we move from fracture F1 to F9, as depicted in Figure 4.20. In 

Figure 4.20, it is interesting to note that fracture F5 indicates a larger pressure drop than 

F6 although their roughness is identical. Looking at the geometry of these two fractures, 

it is seen that in Figure 4.15 fracture F5 experiences a large reduction in its opening 

which results in a larger aperture and hence pressure drop.   
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Figure 4.19 Normalised mechanical and hydraulic aperture versus DR1 for rock fractures F1 to F9. 
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Figure 4.20  Normalised pressure drop versus DR1 for rock fractures F1 to F9. 

In Figure 4.21, the plot of fracture permeability is shown with respect to DR1. 

From this figure, it is expected that in general fracture permeability reduces from F1 to 

F9 due to a lesser area being exposed to fluid flow when the fracture becomes rougher. 

This figure indicates a larger permeability for fracture F5 than F6. This is due to the fact 

that fracture F5 has a larger dmc compared to F6 (see Table 4.2) which results in a larger 

transmissivity. 
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Figure 4.21 Permeability versus DR1 for rock fractures F1 to F9. 

The above discussions and conclusions demonstrate the capability of developed 

correlations in considering different factors (e.g. minimum closure distance, roughness, 

etc) in order to estimate the hydraulic parameters of fractures. Further investigations are 

currently being carried out to expand such applications.    
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4.7 Summary 

In this Chapter, through simple examples, it was shown how different flow 

channels with different geometries could have a similar averaged roughness value (or 

JRC). It was also illustrated how changing the position of the top and bottom walls of a 

fracture could lead to a different fracture geometry and thus different flow responses, 

while averaged roughness was identical in both cases.  

The analysis of combined JRC profiles resulted in a more generalised correlation 

between averaged JRCa and roughness parameter DR1. By having DR1 for a real rock 

fracture, this correlation could be used to estimate average JRCa. The results indicated 

how wide the range of JRCa could be depending on which combination of JRC profiles 

were presented as the top and bottom wall of the fracture. 

From the analysis of JRC flow channels, various correlations between channel 

geometrical and hydraulic properties were developed. In order to only investigate the 

roughness effect, the minimum closure distance for the channels was kept to be 

constant. The results showed how pressure drop reduced as average JRCa increased and 

this corresponded to an increase in fracture mechanical and hydraulic apertures. 

When comparing the results obtained for the nine real fractures from developed 

correlations and direct simulation using FLUENT software, the applicability of the 

proposed formulae was demonstrated to a large extent. Further research is ongoing to 

study additional real fractures. 

Having established a number of fundamental concepts of fluid flow in 2D rough 

fractures, the next Chapter will discuss 3D simulations of rock fractures and the results 

will be presented.  

  



Chapter 5 3D fluid flow simulations of rough rock fractures 

 102

3D fluid flow simulations of rough 
rock fractures 

 

In previous Chapters, the analysis of fluid flow in 2D rock profiles was discussed. 

While various concepts related to the effect of fracture geometry on fluid flow response 

of the channel could be demonstrated using 2D analysis, the appropriate approach is to 

carry out simulations in 3D. In this Chapter, the advantages of 3D over 2D simulations 

of fluid flow will be briefly explained. The 2D version of Riemannian roughness 

parameter, which is used to investigate the correlation between surface roughness and 

fluid flow response, will be introduced. The results of 3D simulations of a corrugated 

plane, some randomly generated surfaces, and real fracture surfaces will also be 

presented and discussed.   

5.1 3D versus 2D analysis 

In Chapter 2, a comprehensive review of different 2D models developed for fluid 

flow analysis of rock fractures were presented. Some of these models were correlated 

with JRC to encapsulate the effect of surface roughness in the fluid flow response of 

fractures. The use of 2D models is very useful in terms of demonstrating the effect of 

various surface geometrical properties on fluid flow in rough fractures. However, in real 

situations, a correct approach to study fluid flow is by the models developed in 3D. The 

main difficulty in using 2D models that fluid stops flowing when the aperture becomes 

zero, whereas in real situations it is very likely that fluid travels along parallel sections 

to a given direction. Studying fluid flow anisotropy also requires 3D simulations.  

Some researchers have tried to simulate and analyse fluid flow in rock fractures in 

3D (e.g. Giacomini et al., 2008; Komaya et al., 2008; Komaya et al., 2009; Kulatilake, 

2008). However, only a few of these studies have used FLUENT for their modelling 

(Crandal et al., 2010a; Crandal et al., 2010b; Nazridoust et al., 2006; Petchsingto and 

Karpyn, 2009; Sarkar et al., 2004). Considering the capabilities of FLUENT for fluid 

flow simulations, as discussed in the case of linear profiles in Chapters 3 and 4, in this 

Chapter the 3D version of FLUENT for analysis of a number of generated and real rock 

5 
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fractures will be used. In particular, the objective of this work is to investigate the 

relationship between surface roughness and the fluid flow response of fractures.   

Commonly, to produce a 3D contour map of a surface, a number of closely spaced 

traces are made, using an on-line digital computer connected to a roughness measuring 

instrument, or by using a Stereoscan electron microscope (Dagnall, 1980). 

Representation of a surface as a combination of several linear profiles is an indirect 

approach in the determination of surface properties, for example its roughness 

determination, and the parameters describing surface properties are called pseudo-bi-

dimensional parameters (Belem et al., 2000). Instead, an appropriate approach for 

investigating surface properties is the kind performed in a direct way (in-plane 

analysis). For example, in terms of roughness determination of a fracture surface, the 

first attempt was made by Fecker and Rengers (1971) who used a geological compass 

with a number of differently sized back plates to investigate the range in orientations of 

a rough surface at different scales. Belem et al. (2000) analysed fracture surface 

roughness using both direct and indirect methods, and with reference to the mechanical 

properties of the surface. As a result, they concluded that the results obtained from the 

indirect methods underestimated the characteristics of the surface. Therefore, 

considering the significant influence of roughness of fluid flow response of rock 

fractures, it would be appropriate to use a direct approach to correlate fracture 

geometry, or roughness, to its fluid flow behaviour. Hence, in this work, the 2D version 

of Riemannian roughness parameter (DR2) will be used to investigate relationships 

between fluid flow and geometry of rough fractures. In the next section, a brief 

introduction to DR2 is given.     

5.2 2D Riemannian roughness parameters  

In order to extract the distribution of unit normal vectors to a surface, analogy to a 

connected pin device was used for linear profiles (see Figure 2.23), Rasouli (2002) 

proposed the use of an equilateral tripod (see Figure 5.1.a) for sampling a surface 

randomly. It was expected that as the tripod size increased, the data dispersion reduced, 

as was also suggested by Fecker and Rengers (1971): this is known as the scale 

dependency in roughness assessments. As shown in Figure 1.b, the tripod size can be 

defined as the radius of the circumcircle to the tripod. Tripod orientation () is given by 

the angle from the X axis, as shown in this figure. By random sampling at different 

tripod orientations, roughness anisotropy can be studied in a direct way. From Figure 
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5.1.b, it can be seen that tripod orientations of   and   120o  (i.e. 0° and 120°, or 10° 

and 130°, and so on) are identical. This means that by sampling a surface using an 

equilateral tripod, the analysis only needs to be performed at orientations between zero 

and 120°. This means that in-plane analysis using an equilateral tripod involves less 

sampling than linear profiling. In Figure 5.1.c, the relation between different 

geometrical parameters of a tripod is given.  

 
 

 
           (c) 

 

Figure 5.1 Geometry of an equilateral tripod used for rock surfaces sampling. 
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The extracted unit normal vectors at a specific sampling size define points located 

on the surface of a unit hemisphere. There are spherical data (corresponding to circular 

data in 2D case) whose statistical analysis requires their transformation into Riemannian 

space in order to consider the curved length between data. The Riemannian space for 

3D Euclidean data is a 2D plane where the points in 3D are unwrapped into this plane. 

Statistical analysis of data is performed in this plane and the results are transferred back 

into the surface of the unit sphere. The Riemannian statistical parameters include data 

mean and variance, Mahalanobis distances and the Riemannian orientation (or variance-

covariance) matrix. The orientation matrix provides valuable information about data 

dispersion. The nonzero eigen values of the orientation matrix (e1 and e2) are related to 

the unit Mahalanobis distance of data, and are an indication of data dispersion. For two 

sets of data, the smaller the eigen values, the more concentrated will be the data, or in 

this work, the smoother the surface roughness will be. Therefore, Rasouli (2002) 

proposed the mean of e1 and e2 as a measure of dispersion of data and called this the 2D 

Riemannian dispersion (DR2) 

 
2
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ee
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
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Parameters e1 and e2 are in fact the size of diagonals of a 2D ellipse in 2D 

Riemannian space: the larger the size of the ellipse, the more dispersed the data. 

Similarly, the ratio of the two eigen values  12 ee  indicates the anisotropy of the data, 

or in this study the anisotropy in surface roughness. The closer this ratio is to unity, the 

more isotropic is the distribution. Thus, this ratio was proposed as a means of measuring 

the isotropy of a data set, or anisotropy in roughness determination, i.e. 
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In the subsequent sections, FLUENT software is used for 3D fluid flow 

simulations of a simple corrugated plane, some generated surfaces and real rock 

surfaces. Riemannian roughness and anisotropy parameters will be used to correlate 

fluid flow properties with surface geometry parameters. 
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5.3 Fluid flow analysis of a corrugated flow channel  

A corrugated plane, representing either the top or bottom face of a fluid channel, 

shown in Figure 5.2 is the simplest surface geometry which was used in this study. The 

aspect ratio (K/) of the surface is 0.1, which is thought to be comparable with that of 

real rock surfaces. From Figure 5.2, it appears that this surface has orthogonal principal 

directions of roughness (corresponding to X and Y directions). Similar to a synthetic 

symmetric triangular profile (see Section 3.2), both mate and non-mate geometries can 

be considered for this flow channel depending on the shear displacement of the top face 

with respect to the bottom face. The influence of roughness, fluid flow direction and 

shear displacement of the two faces on fluid flow parameters will be analysed and 

discussed in the following subsections.  

It is to be noted that similar fluid parameters to those used for 2D cases will be used 

in all 3D models in this Chapter to allow comparison of the results where possible. 

Here, a corrugated plane has a length and width of 6 cm with an aperture of 0.2 cm 

(Figure 5.3). A mass flow inlet and pressure outlet was used for the 3D simulations of 

the corrugated channel in FLUENT (see Figure 5.3) with a constant flow rate of 1×10-7 

m3/s. The simulation results, as well as the roughness analysis of the corrugated plane, 

are presented in the following subsections.   

 

 
               

Figure 5.2 A corrugated plane with orthogonal preferred orientations of roughness. 
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Figure 5.3 A corrugated flow channel used for fluid flow simulations using FLUENT. 

5.3.1 Effect of surface roughness   

A mate and non-mate corrugated flow channels were subjected to FLUENT 

simulations. The aperture in the case of the mate channel was assumed to be 0.2 cm: 

which is the minimum distance between the two faces in the case of a non-mate 

channel. Figure 5.4 shows the contours of pressure drop and velocity magnitudes for the 

mate channel.  

 

 
 

 
 

 

 
 

 
Figure 5.4 Contours of total pressure (Top) and velocity magnitude for a mate corrugated flow channel.  

 

Similar plots for the non-mate channel are shown in Figure 5.5. The results 

indicate how pressure reduces as fluid travels from inlet to outlet. Also, the laminar 

assumption for the flow regime is the reason for having a parabolic velocity profile 

where the maximum velocity occurs at the centre of the channel and reduces to zero 
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when it approaches the surface walls. For non-mate channel, the largest velocity occurs 

where the aperture is minimised.    

 
 
 

 
 

 
 

 
 

 
Figure 5.5 Contours of total pressure (Top) and velocity magnitude for a non-mate corrugated flow 

channel. 

 

5.3.2 Anisotropy in fluid flow behaviour  

As shown in the previous section, fluid flow response is influenced by surface 

roughness. This means that in real situations, fluid flow is directionally dependent while 

surface roughness is anisotropic (Rasouli and Harrison, 2000). However, the scale 

dependency in roughness determination, as explained in Section 2.1.5 and also in 

Section 5.2, results in different roughness values for a surface at different sampling 

sizes. To investigate this, analysis of fluid flow for a corrugated channel along different 

directions was performed. Due to the symmetric geometry of this surface, the analysis 

needs to be carried out for angles between 0° and 90°.  

Figure 5.6 shows corrugated flow channels with different orientations, indicated 

by the angle of crest line with respect to the Y axis. Also, the analyses were done for 

both mate and non-mate surfaces with a wavelength of 2.0 cm. Figures 5.7 and 5.8 show 

the results of pressure drops calculated when fluid is travelling along different 

directions for mate and non-mate corrugated channels, respectively. The results indicate 

how pressure drop reduces when fluid flows parallel (along the Y direction) in 
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comparison with flow in a series (i.e. along the X axis). This is due to a smaller length 

of surface against the fluid in 90° than 0°.  Also, the lesser the surface height 

distribution (i.e. roughness), the lesser the pressure drop as can be seen from these 

figures. The range of pressure drops for a mate channel (Figure 5.7) is larger than that of 

a non-mate channel (Figure 5.8) as the hydraulic aperture is larger for the latter surface 

geometry.    

These results indicate the relationship between surface morphology and fluid flow 

behaviour. The direction of extreme roughness values are easily understood for this 

surface, however, this is trivial for the case of real fracture surfaces and hence, the use 

of statistical parameters which objectively identifies roughness is essential.   

 

 
Figure 5.6 Geometry of corrugated flow channels with different orientations. 

 

 
Figure 5.7 Pressure drops for a mate corrugated channel when fluid flows along different orientations.  
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Figure 5.8 Pressure drops for a non-mate corrugated channel when fluid flows along different 

orientations. 
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being subjected to fluid as the two walls move with respect to each other. In this figure, 

it can be seen that when shear offset gets close to fracture half wavelength, i.e. 1.0 cm, 

the pressure drop tends to infinity as for this special geometry, the fracture becomes a 

non-mate channel with zero aperture at integer numbers of channel half wavelength. 

Contrary to this, when fluid flows along the Y axis direction, increased shear offsets 

correspond to reduced pressure drops and the larger the surface roughness, the less the 

pressure drop. The results of Figure 5.9 may appear to be misleading in the first 

instance, however, reduced pressure drops as shear offset and asperity height increase is 

due to increased hydraulic aperture. 

 
Figure 5.9 Pressure drop of corrugated channel at different shear offsets (flow in X axis). 

  

 
Figure 5.10 Pressure drop of corrugated channel at different shear offsets (flow in Y axis). 
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Figure 5.11 Velocity magnitude of a corrugated channel at different shear offsets (fluid flow from left to 

right). 
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In Figure 5.11, the plots of velocity magnitudes for the corrugate plane when fluid 

travels along the X direction from left to right are shown for different shear 

displacements (U) changing from /12 to /2, where is the wavelength of the 

corrugated plane. The results show how velocity profiles change as a result of fracture 

shear offset. Also, the maximum velocity (Vmax) increases as shear offset becomes larger 

and its maximum occurs for non-mate geometry.  

The above results indicate how surface geometry changes and the location of 

channel walls with respect to each other could significantly influence fluid flow 

response of the corrugated plane. In the next subsection, the result of roughness analysis 

of this surface is presented to investigate this concept further. 

5.3.4 Correlation between roughness and flow parameters 

From Figure 5.6 it can be noted that vertical cross sections of a corrugated plane 

along different directions define different asymmetric linear profiles with different 

aspect ratios (l1/l2) as discussed in Section 2.1.5. Therefore, using an indirect approach 

for analysis of a corrugated plane, DR1 can be estimated for this surface corresponding 

to profile geometry along different directions. Such results, presented by Rasouli 

(2002), are shown in Figure 5.12, which shows orthogonal directions for roughness of 

the corrugated plane: the maximum roughness is along the X direction whereas the 

surface appears to be completely smooth (DR1=0) along the Y direction. The surface 

roughness changes smoothly from a minimum to maximum roughness direction.  

A similar interpretation is expected to be obtained from a direct approach of 

surface characterisation, i.e. in-plane analysis using tripod sampling and Riemannian 

statistical methods, as presented in Section 5.2. Figure 5.13 shows the results of a 

Riemannian analysis of the corrugated surface. In this figure, DR2 corresponding to 

normal vectors extracted at different tripod sizes along orientation zero (i.e. X direction) 

is calculated. At this orientation, two legs of the tripod will be always touching similar 

surface elevations whereas the third leg will deviate along the X-Z plane, representing 

surface roughness at a given scale. However, when the tripod size is identical to an 

integer number times the wavelength of the corrugated plane (these are 1.34, 2.67, 5.34, 

etc as shown in Figure 5.13) all three legs have similar height coordinates regardless of 

the location of the tripod. In this situation, the normal vector to tripod would be always 

perpendicular to the X-Y plane, representing a smooth surface and as seen from Figure 
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5.12, DR2 is zero at these scales. From this figure it is also noted that, in general, 

roughness reduces as scale increases.        

 

     
Figure 5.12 Linear profiling analysis of a corrugated plane (Rasouli, 2004). 

 

 
Figure 5.13 In-plane roughness analysis of corrugated plane at orientation zero (Rasouli, 2002). 
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To show the anisotropy in the geometry of a corrugated plane, in Figure 5.14 the 

IR2 values are calculated corresponding to different orientations for the tripod and at 

three different scales. In general, lesser anisotropy is seen at larger scales, as noted from 

this figure, and is due to a reduced variation of normal vectors at larger sampling sizes. 

Zero isotropy at orientations of 0°, 60° and 120° is due to the fact that tripod geometry 

would be identical at these tripod locations for a corrugated plane and as explained 

earlier, at these orientations the tripod only deviates within the X-Z plane with zero 

changes in the X-Y plane.  

The roughness analysis presented here indicates how the periodicity of the 

corrugated plane can be recovered by finding the direction along which IR2 reduces to 

zero for all scales. In real rocks this may not be seen very clearly, but a similar approach 

can be applied. Having recovered the surface geometrical properties, it could be 

possible to obtain information about the fluid flow behaviour of the surface. This will be 

discussed further in the next sections by analysing a few generated surfaces whose 

statistical parameters are known. 

 
Figure 5.14 Anisotropy of a corrugated plane geometry (Rasouli, 2002). 

5.4 Simulations of generated fracture surfaces  

The analysis of a corrugated flow channel, as presented in the previous section, 

showed how surface geometry could influence the flow response of a surface. In this 

section, a similar analysis will be conducted on synthetic flow channels whose 

geometries are generated with different statistical parameters.  
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Figure 5.15 Geometry of a randomly generated surface for directional fluid flow simulations (top); and 

extracted geometry at direction zero (=0). 

 

A random surface generation algorithm using Gaussian statistics was used in this 

work to generate rough surfaces with different geometries. This is based on the method 

introduced by Garcia (1984), where an uncorrelated distribution of surface points using 

a random number generator (i.e. white noise) is convolved with a Gaussian filter to 

achieve correlation. This convolution was performed using the discrete Fast Fourier 

Transform (FFT) algorithm as used in MATLAB. 

As the objective of this study is to simulate the effect of large scale roughness, i.e. 

fracture tortuosity on fluid flow behaviour, surfaces with different roughness and 

waviness were generated. Similar to the corrugated channel, the effect of surface 

roughness and tortuosity, surface anisotropy and shear offset were studied. 

Figure 5.15 (top) shows the geometry of a synthetic surface generated for fluid 

flow analysis. The surface has an equal length and width of 15 cm in both X and Y 
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directions, respectively. The asperity height distribution ranges between 0 and 0.2 cm, 

with a correlation distance of 1.0 cm used for surface generation. The data was 

generated with a preferred deviation along Y axis, i.e. 90° direction.  

Assuming an identical surface, a flow channel was created when two surfaces 

were considered with a predefined aperture. This aperture was set to 0.11 cm in this 

study to ensure that after shearing the upper wall along the lower wall, they did not 

come into contact with each other. However, a zero aperture was allowed at some points 

between the two surfaces. The channel inlet and outlet could be identified simply when 

the fluid flowed along the X or Y directions. However, it is trivial to determine these 

flow boundaries when the fluid flows along any other direction. Therefore, for practical 

purposes we extracted data from part of this surface which was located inside a square 

placed at the centre of this surface with different orientations () and analysed 

corresponding channels to simulate fluid flow in different directions. The size of the 

square chosen was 10 cm, as shown in Figure 5.15 (bottom). As can be seen,  part of the 

data would be missed when data is extracted corresponding to different orientations, 

however, our comparative analysis indicated that this had a minor effect and would not 

cause significant changes to the fluid flow results. Figure 5.15 (bottom), shows, as an 

example, the extracted data at direction zero (=0).    

Fluid flow simulations were carried out using FLUENT for this synthetic channel. 

Figure 5.16 shows the total pressure and velocity magnitudes for this channel for a fluid 

flowing along the X direction and at zero shear offset. The results shown in this figure 

belong to a Z plane (0.2 cm) and therefore, the white areas are the locations where this 

plane does not have any intersection with fracture walls. The velocity magnitude 

changes significantly for this fracture at different points depending on the distance 

between the two walls at different locations. Figure 5.17 is the plot of velocity 

magnitudes when the fluid travels along the Y axis direction. When fluid flows in Y-

direction fluid particles are moving perpendicularly to the peaks and valley of the 

generated rough surface (Figure 5.15). The velocity legends of Figures 5.16 and 5.17 

show that the maximum velocity is higher for the case of flow in Y-direction (0.0012 

m/s) compared to the X-direction (0.0011 m/s), this contradicts what is stated in the last 

paragraph on page 117. The same thing is observed if one compares the maximum 

velocity values in Figure 5.18 and 5.19, i.e. VX,max=0.0022 m/s is less than VY,max 

=0.0026 m/s.  
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Figure 5.16 Top view of contours of total pressure (top) and velocity magnitude for synthetic 
channel at zero shear offset:  fluid flow in X axis direction.  
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Figure 5.17 Top view of contours of velocity magnitude for synthetic channel at zero shear 
offset: fluid flow in Y axis direction.  

 

 
 

 

Figure 5.18 Top view of sheared synthetic channel (U=0.6 cm) where at several point 
aperture reduces to zero: Fluid flow in X axis direction.  
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The results of velocity magnitudes for this surface corresponding to a X-Y plane 

when a shear offset of 0.60 cm is taken place are shown in Figures 5.18 and 5.19 for 

flow in X and Y directions, respectively.  In this situation, the upper surface is translated 

0.6 cm along the X axis with respect to the lower surface while the aperture is 0.11 cm. 

In comparing Figures 5.16 and 5.17, it can be seen how shear offset and flow direction 

can significantly change the flow behaviour of the fracture. The velocity magnitude 

changes across the plane section (shown in Figures 5.18 and 5.19) indicate how the 

velocity may reduce to zero at some point along this section as the aperture reduces to 

zero. In this situation, the fluid changes its direction and flows around this point. The 

results indicate how, as a result of fracture shearing, the fracture aperture may vary from 

one point to another and this causes a large impact on fluid flow response of the surface 

(for instance fluid velocity).  

The results of flow simulations along different orientations are given in Figure 

5.20. In this example, the shear offset is zero, i.e. a mate channel with a constant 

opening of 0.11 cm at different points. From this figure an increased pressure drop is 

noted as the fluid flow direction changes from a X to Y direction. Also, the larger the 

fracture height distribution (i.e. roughness), the higher the pressure drops.  

 

 
 

 

Figure 5.19 Top view of sheared synthetic channel (U=0.6 cm) where at several point 
aperture reduces to zero: fluid flow in Y axis direction.  
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Figure 5.20 Pressure drops of synthetic channel for fluid flow along different directions (shear offset=0). 

 

Figure 5.21 presents the results of flow simulations for the synthetic channel when 

one wall is sheared with respect to the other wall. In this example, the fracture height 

distribution changes between 0.0 and 0.2 cm. The results are also given for two cases 

where fluid flows along the X and Y axis, respectively. From this figure, it can be seen 

how pressure drop is a function of shear offset and also flow direction.  

 

 
Figure 5.21 Pressure drop changes of a synthetic channel due to shear offset when fluid flows along two 

perpendicular directions. 
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In order to investigate the relationship between fracture roughness and flow 

response for the synthetic channel simulated here, DR2 analysis was carried out. Tripod 

sampling of the surface (see Figure 5.15, bottom), as explained in Section 5.2, was 

performed at different scales and along different orientations and DR2 was calculated in 

each case. DR2 showed minor differences with respect to different directions and 

reduced as tripod size increased. The results shown in Figure 5.22 indicate that 

roughness of surfaces becomes substantially zero at scales larger than approximately 2.5 

cm.   

 
Figure 5.22 Roughness parameter DR2 calculated for synthetic surface. 

 

In Figure 5.23, the results of DR2 calculated at different tripod orientations are 

presented corresponding to range of tripod sizes of 0.1 to 1.0 cm. From this figure, it is 

shown how roughness of surface changes with scale and orientation. For example, at a 

scale of 0.1 cm for tripod size, the largest roughness appears to occur at orientations of 0 

and 90 degrees. As scale becomes larger, surface roughness becomes less anisotropic 

and also smaller.  

The results of roughness analysis for the synthetic surface are given in Figure 5.24 

in a rose diagram representation format. For presentation purposes, the results are 
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corresponding to six scales. It should be noted that due to the nature of tripod sampling, 

the results for 0° to 120° repeats for orientations of 120° to 240° and as well as 240° to 

0.00

0.01

0.02

0.03

0.04

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

D
R

2

Tripod Size (cm)

Roughness reduces as scale increases and this looked 
the same at different orientations due to random nature 
of the synthetically generated fracture

Roughness is substantially zero at tripod sizes larger than 2.5 cm 



Chapter 5 3D fluid flow simulations of rough rock fractures 

 123

360°. The results of this figure show again how roughness changes as scale increases 

from 0.1 to 2.4 cm and that roughness is directionally dependent.   

 

 

 
Figure 5.23 DR2 calculated for synthetic surface at different orientations and scales.  

 

Recalling the discussion given in Subsection 5.3.4 for the roughness of the 

corrugated plane, in order to investigate the existence of any small or large scale 
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less variable at different orientations and its dispersion reduces due to less variation in 
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A different representation of the results of Figure 5.25 is shown in Figure 5.26 

where IR2 is plotted versus sampling orientation for different tripod scales. Besides 

conclusions made from Figure 5.25, the most interesting observation from Figure 5.26 

is the fact that a general reduction in IR2 values is dominant at orientations of 30° and 

90° for most given scales. Similarly, the largest values for IR2 as seen from this figure 

occur at 0 and 60 degrees for tripod orientations. Comparing this conclusion with Figure 

5.14 for the corrugated plane, it indicates that this surface is most likely periodic along 

the Y axis direction (note that minimum IR2 values for the corrugated plane observed at 0 

and 60 degrees, when the plane was periodic along the X axis). As mentioned earlier, 

the synthetic surface was generated with a preferred angle of 90° and this confirms the 

results obtained here. It should be noted that a clear reduction to zero, as observed for 

the corrugated plane, is not expected for a randomly generated or real fracture but 

having relatively small values for IR2 and along different directions can be a strong 

indication of surface periodicity.    

The above results are comparable to fluid flow response of the synthetic channel. 

Having periodicity along the Y axis direction it is expected to have a larger surface 

against the fluid flowing in this direction (or correspondingly larger pressure drops) 

with a tendency to reduce as the fluid direction changes to the X axis. This is indeed in 

agreement with the simulation results presented in Figures 5.20 and 5.21 for this 

surface. This analysis shows the potential correlations between fracture morphology and 

its flow response.   



Chapter 5 3D fluid flow simulations of rough rock fractures 

 125

 

 

 

 
Figure 5.24 Rose diagram of DR2 for the synthetic surface at different orientations and scales.  
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Figure 5.25 Rose diagram of IR2 for the synthetic surface at different orientations and scales.  
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Figure 5.26 IR2 calculated for the synthetic surface at different orientations and scales. 

5.5 Simulation of five generated surfaces  

The results of fluid flow simulations and roughness analysis presented for the 

statistically generated fracture surface in the previous section indicated the potential 

correlation between fracture morphology and its fluid flow behaviour. It was also seen 

how DR2 analysis can reveal useful information about surface geometrical properties.  

For comparison purposes, five statistically generated surfaces are used for both 

fluid flow and roughness analysis in this section. The statistical parameters of all these 

surfaces are identical except the correlation distance which is varied. Also, a constant 

seed number was used in generation of these surfaces. The idea is to investigate 

dependency of surface height distribution at different correlation lengths.  

Figure 5.27 shows the wall geometry of five generated surfaces (GS1 to GS5). 

These surfaces were generated with a preferred roughness direction along 45°. This 

allows for validation of fluid flow and roughness analysis results. These surfaces have 

an equal length and width of 20 cm but data corresponding to 10 cm of this surface was 

selected for directional fluid flow analysis, as explained in the previous section. The 

height distribution for these surfaces is between 0 and 0.2 cm and the correlation lengths 

used here are 0.01, 1.0, 3.0, 5.0 and 10.0 cm, for surfaces GS1 to GS5, respectively. The 

fracture flow channels were created by replicating each surface and shifting the surface 

vertically with a displacement equal to the channel opening. The fracture opening at 

zero shear offset (i.e. mate channel geometry) is 0.11 cm.  
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Figure 5.27 Geometry of 5 generated surfaces used for fluid flow simulations. 

GS1: Correlation distance=0.01 cm

GS2: Correlation distance=1.0 cm

GS3: Correlation distance=3.0 cm

GS4: Correlation distance=5.0 cm

GS5: Correlation distance=10.0 cm
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Figure 5.28 Top view of contours of velocity magnitudes for surfaces GS1 to GS5. 

 

Figure 5.28 shows, as examples, the contours of velocity magnitudes for GS1 to 

GS5 along a Z plane when fluid is travelling from left to right along the X direction. The 

white coloured areas in this figure show those locations where the plane does not 

intersect the fracture surface. From this figure it can be seen that as correlation distance 
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increases from GS1 to GS5, the surface asperities have a larger intersection area with 

the Z plane indicating a lesser deviation of height distribution, or smoother surfaces.     

In Figure 5.29, the values of pressure drops when the fluid is flowing along 

different directions have been compared for GS1 to GS5. The results of this figure 

indicate different behaviours depending on the flow direction: this is the anisotropy in 

the fluid flow response, as discussed earlier. Also, it is seen that pressure drop reduces 

as correlation distance increases from 0.01 cm to 10.0 cm. This is due to the fact that at 

larger correlation distances, the fluctuation in height distributions reduces and the 

surface appears to have bumpiness with a larger wavelength. This corresponds to 

surface waviness or tortuosity, as a result of which the length of the surface subjected to 

the fluid flow reduces and this causes less of a pressure drop as observed in Figure 5.29. 

Another interesting point shown by this figure is that the largest pressure drop happens 

at an orientation of 45°. This is related to the fact that in generation of these surfaces, as 

mentioned before, the preferred direction was set to 45°: the results obtained here allow 

confirmation of a correlation between surface geometrical properties and fluid flow 

responses.  

 
Figure 5.29 Anisotropy in pressure drops of synthetic surfaces GS1 to GS5. 
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increase the area open to fluid flow. This concept can be used as an enhancement 

technique, in particular, in fractured reservoirs: depletion from one area of the reservoir 

may change the aperture of nearby fractures within the next zone of production. This 

requires further detailed analysis incorporating the magnitude and direction of in-situ 

stresses with respect to taking the fracture planes into account.     

Similar to the synthetic surface analysed in the previous section, here DR2 and IR2 

values corresponding to surfaces GS1 to GS5 are calculated at different scales and 

orientations. As an example, Figure 5.30 shows the results of DR2 for surfaces GS1 to 

GS4 (corresponding to correlation lengths of CL=0.01 to 5.0 cm). From this figure it 

can be seen that roughness shows a larger variation at a lesser correlation length but this 

becomes less significant at smaller scales and in this case, the results are very close for 

correlation lengths of less than 3.0 cm. In Figure 5.31, IR2 changes for these surfaces are 

shown, which reveal interesting information about the geometry of these surfaces. Clear 

reduction for IR2 at all scales for GS1 and GS2 at 45° is an indication of surface 

periodicity along this direction. At larger correlation distances (i.e. surfaces GS3 to 

GS5), surface periodicity becomes less visible due to larger surface waviness and the 

tripod size cannot capture this for the given size of the surfaces. At these larger 

correlation distances, IR2 appears to be anisotropic (changing between 0.4 and 0.6) but it 

is similar along different orientations.  

 
Figure 5.30 Roughness values calculated for surfaces GS1 to GS4.  
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Figure 5.31 Isotropy parameter, IR2, calculated for surfaces GS1 to GS3.  
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Figure 5.31 (cont’d) Isotropy parameter, IR2, calculated for surfaces GS4 and GS5.   
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Figure 5.32 Rose diagram of isotropy parameter corresponding to surfaces GS1(top) and GS2. 

 

0.0

0.2

0.4

0.6

0.8

1.0

IR2 varies in a wide range at 
small scales and look different 
at different directions

Surface GS1: CL=0.01cm
Plots of IR2 corresponding to 
scales of 0.1 to 0.6 outwards 
with an increment of 0.1 

0°

120°

240°

0.0

0.2

0.4

0.6

0.8

1.0

IR2 varies in a wide range at 
small scales and look different 
at different directions

Surface GS2: CL=1.0cm 
Plots of IR2 corresponding to 
scales of 0.1 to 0.6 outwards 
with an increment of 0.1 

0°

120°

240°



Chapter 5 3D fluid flow simulations of rough rock fractures 

 135

5.6 An example of a rock fracture analysis   

In this section, the results of fluid flow simulation as well as roughness analysis 

corresponding to a real rock like fracture will be presented. Similar to the discussions 

given for corrugated and random flow channels in the two previous sections, the effect 

of surface roughness, anisotropy in flow response and shear offset will be studied here. 

The real like rock fracture was used elsewhere for fracture shear studies in the lab 

(Asadi, 2010). The small and large roughness of this surface along the X axis direction 

has made this sample suitable for shear tests in opposite directions. The mortar sample 

replicates the geometry of a real fracture. Figure 5.33 shows different views of the rock 

block. Figure 5.34 presents the wireframe view of one side of this fracture whose digital 

elevations were extracted using digital photogrammetry. The sample has a length and 

width of 18 cm and 11 cm with its asperities changing between 0.0 and 0.3 cm. The 

periodic nature of the surface along the X axis direction is visible from this figure. 

Fluid flow simulations were carried out using FLUENT for this fracture surface, 

where the flow channel was composed of two identical surfaces with an aperture of 0.11 

cm. In Figure 5.35, the contours of total pressure and velocity magnitudes are shown for 

this fracture. It can be seen that due to the geometry of the surface, pressure and velocity 

are changing in a relatively wide range at different points.    

 

 
Figure 5.33 Artificial real like fracture made of mortar, used for shear tests in the lab (Asadi, 2010). 
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Figure 5.34 Geometry of lower wall of real like fracture used for fluid flow and roughness analysis. 

 

 
 

 
Figure 5.35 Contours of total pressure (Top) and velocity magnitude for real like fracture. 
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In order to perform directional fluid flow simulations similar to the synthetic 

surfaces analysed in the two previous sections, data within a square located at the centre 

of the surface was extracted. The side of the square used for this surface was 6 cm, due 

to the shorter length of the sample in the Y axis direction. Although a large number of 

data from the surface may be discarded using this approach, the results are expected to 

show the directional dependency of the fluid flow in the centre part of this surface. The 

results of such a study are presented in Figure 5.36. From this figure, it can be seen that 

the pressure drop reduces as the fluid flow direction changes from the X to Y axis: this is 

in agreement with the periodic nature of the surface along the X axis direction, as the 

surface tends to have a larger real length along this direction. 

The results of DR2 analysis of the entire surface along different directions are 

shown in Figure 5.37. In this figure, the results presented for tripod sizes of 1.0 to 6.0 

cm indicate a reduction of surface roughness at larger scales. At all scales, tendency of 

the surface to display more roughness above tripod orientations of 60° is apparent. 

Similar results are shown in a rose diagram plot in Figure 5.38.  

Figure 5.39 presents the results of IR2 for this surface, which reveal valuable 

information about geometrical properties of the surface. As expected, the surface shows 

the largest anisotropy in its roughness close to a 0° or 120° direction, i.e. the direction of 

maximum roughness (see Figure 5.14 for comparison with a corrugated plane). 

Roughness increases as orientation of tripod deviates from zero and as can be seen from 

Figure 5.39, IR2 shows a large increase at an orientation of between 35° and 50° at 

different scales. This indicates that surface roughness appears to be isotropic along this 

tripod orientation. Considering the periodic nature of the surface along the X axis (i.e. 

0°), such a behaviour can be justified. This can be better understood when the results are 

compared with Figure 5.14 for a corrugated plane. From this figure, IR2 = 0 for the 

corrugated plane at 0° and 60°, with its maximum occurring in between depending on 

the tripod size. This is because of the identical tripod sampling at these two orientations 

for a corrugated plane. For real surfaces where tripod sampling is identical for 

orientations of 0° and 120°, maximum IR2 will occur between these two orientations if 

the surface is periodic.  
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Figure 5.36 Directional fluid flow analysis for real rock fracture fluid flow analysis. 

 

 
Figure 5.37 DR2 analysis of rock fracture.   
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Figure 5.38 Rose diagram of DR2 for rock fracture.  

 

 
Figure 5.39 IR2 analysis of rock fracture.   
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Figure 5.40 View of rock fracture after shear experiment in the lab: 2.5 MPa normal stress and at two 
shearing cycles (Asadi, 2010). 

 

In this figure, the asperity degradations on both the upper and lower blocks are 

marked on the lower plot. These locations correspond to the areas of the two blocks 

which come into contact in the first instance when shearing occurs. This corresponds to 

a velocity magnitude of zero if the fluid travels inside this fracture. Figure 5.41 shows 

the plot of shear stress versus shear displacement where the maximum shear strength of 

about 4.8 MPa is obtained after approximately 0.50 cm of shear offset (Asadi, 2010).  

For comparison purposes, the upper wall of the fracture surface was sheared 

towards the left with a shear displacement of 0.50 cm and fluid flow simulations of the 

surface were performed. In Figure 5.42, the results of velocity magnitude are shown 

from which the positions on the surface (where the velocity reduces to close to zero) can 

be identified. These locations are marked in this figure and as can be seen, these are 

very close to the locations along the fracture surface where asperity degradations 

occurred. These results, demonstrate how the hydromechanical behaviour of a fracture 

surface may be related to its geometrical properties. Of course, establishing valid 

correlations requires further investigation of this topic, which is not the objective of this 

thesis. 



Chapter 5 3D fluid flow simulations of rough rock fractures 

 141

 
Figure 5.41 Shear stress versus shear displacement at 2.5 MPa normal stress for rock like block (Asadi, 

2010). 

 

 
Figure 5.42 Location of zero velocities for the fracture surface after applying shear offset. 
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synthetically generated surface. Analysis of five synthetic surfaces where only 

correlation distances were increased in generation of these surfaces also revealed how 

larger correlation lengths lead to lesser surface roughness, but larger waviness and 

tortuosity. This also corresponded to less pressure drops for the surface. A similar 

analysis was performed for a rock like fracture surface with a preferred orientation for 

its roughness and again correlations between fracture geometry and its flow responses 

were found. In addition, the results of the lab shearing test of this surface analysed 

elsewhere was presented for comparison purposes. The location of asperity degradations 

of the surface was very similar to points where velocity magnitude of the surface after 

shearing tended to zero. This demonstrated the correlation of surface geometrical 

parameters and its hydromechanical behavior.     
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Summary, conclusions and 
recommendations 

 

In this thesis, the effect of surface roughness on the fluid flow response of rock 

fractures was investigated. Numerical simulations using FLUENT were performed in 

both 2D and 3D and various conclusions were drawn.  

A detailed summary and conclusions made from this study are presented in 

Sections 6.1 to 6.4 with Section 6.5 outlining some of the future studies recommended 

as a continuation of this work. 

6.1 Analytical models 

 Analytical calculations of channels with synthetic sinusoidal profile geometries 

showed that changing the relative wall roughness could result in a changing of the 

mean aperture: the mean aperture increased as relative roughness became larger.  

 The 1D Riemannian dispersion parameter (DR1) proposed by Rasouli and Harrison 

(2010), was used to investigate correlations between geometrical properties and 

the hydraulic response of 2D flow channels.  

 The plot of DR1versus hydraulic aperture of sinusoidal profiles demonstrated a 

close agreement with the work conducted by Zimmerman et al., (1991), and 

indicated the potential applications of DR1 in encapsulating profile geometrical 

properties in hydraulic response of the flow channel. 

 The results of analytical solutions for synthetic geometries indicated that the 

hydraulic aperture was relatively higher for symmetric triangular profile than that 

of corresponding sinusoidal profiles. This showed the importance of slight profile 

geometry changes on fluid flow behaviour.  

6.2 2D Numerical simulations 

 Simulation results of symmetric triangular mate profiles using FLUENT showed 

that profiles with a different number of asperities but similar total lengths exhibit 

similar fluid flow responses.  

6 
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 From the simulations of triangular profiles, it was observed that the hydraulic 

aperture was equivalent to the opening for different mate fluid channels, as 

expected. 

 For non-mate channels with an increased number of asperities, but the same total 

length (i.e. lesser profile asperity height), pressure drop increased if the maximum 

opening was not fixed. It was found that in profiles with an increased number of 

asperities, fluid faced a more reduced throat size along the channel. This reduced 

width is the reason for larger pressure drops for a higher number of asperities. 

 Increased velocity in non-mate channel geometries resulted in lesser channel wall 

length being subjected to the fluid, however, the hydraulic aperture of the fracture 

reduced at the same time. As the effect of the hydraulic aperture was dominant 

compared to profile length, the pressure drop tended to increase.  

 Simulation results showed that as asperity height or profile roughness increased, 

pressure drop reduced in non-mate profiles, which is due to a wider area for fluid 

to pass through the channel.  

 Based on the analytical analysis of a unit hydraulic cell (UHC), which was 

performed to investigate the effect of changes in channel geometry on hydraulic 

behaviour, the hydraulic aperture showed an increasing trend as the channel walls 

deviated from each other.     

 The results also indicated that hydraulic aperture increased as the UHC inlet 

opening became larger, however, it approached the mechanical aperture when 

minimum aperture became very large. The results were found to be independent 

of the size of the top or bottom wall (or say, asperity height) and were only 

dependent upon the ratio of the minimum to maximum aperture. However, the 

analytical equations developed here did not consider the flow properties but only 

looked at the geometry of the UHC. 

 The plot of hydraulic aperture versus upper wall orientation for different UHCs, 

with two walls having different orientations, exhibited parabolic trends. 

 FLUENT simulations of UHCs with different wall orientations confirmed the 

analytical solutions developed. This demonstrated the developed analytical 

formulae could be used with reasonable accuracy for the purpose of studying real 

rock fractures, assuming that a real fracture is a combination of several discrete 

UHCs.  
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 Using multi-variable regression techniques and FLUENT simulations, the 

relationship between hydraulic aperture of the UHC as a function of inlet opening 

and the angle between UHC walls was developed. A very close agreement with 

less than 10% error was obtained between the results from developed correlations 

and the simulation of randomly generated profiles. This demonstrated the 

applicability of the developed correlation for a good estimation of pressure drop in 

a 2D channel. 

6.3 JRC flow channels   

 JRC flow channels were developed for fluid flow simulation purposes in order to 

derive correlations between hydraulic properties and average JRC value of the 

fracture. Each JRC channel is a combination of two JRC profiles. Accordingly, it 

can be imagined that different flow channels with different geometries could have 

a similar averaged roughness value (or JRC). Also, by changing the position of 

the top and bottom walls of a fracture, this could lead to different fracture 

geometries and thus different flow responses (while averaged roughness is 

identical in both cases).  

 The analysis of combined JRC profiles resulted in a more generalised correlation 

between averaged JRCa and roughness parameter DR1. By having DR1 for a real 

rock fracture, this correlation could be used to estimate average JRCa. The results 

indicated how wide the range of JRCa could be depending on which combination 

of JRC profiles were presented at the top and bottom wall of the fracture. 

 From an analysis of JRC flow channels, various correlations between channel 

geometrical and hydraulic properties were developed. In order to only investigate 

the roughness effect, the minimum closure distance for the channels was kept 

constant. The results showed how pressure drop reduced as average JRCa 

increased and this corresponded to an increase in fracture mechanical and 

hydraulic apertures. 

 In comparing the results obtained for nine real fractures from developed 

correlations and direct simulation using FLUENT software, the applicability of 

proposed formulae was demonstrated to a large extent.  
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6.4 3D simulations  

 3D numerical simulations of fluid flow in rough fractures and calculations of the 

Riemannian roughness and isotropy parameters (DR2 and IR2) were performed for 

synthetic and rock fracture surfaces.  The results demonstrated the existence of 

orientation between fracture geometrical parameters and its fluid flow behaviour. 

 The results for a corrugated plane indicated how geometrical properties (in 

particular periodicity) of the surface may be extracted from a roughness analysis 

and how this corresponded to fluid response of the surface. 

 The analysis of a generated fracture surface indicated that larger asperity height 

distribution (i.e. roughness) resulted in higher pressure drops. Also, the fracture 

fluid flow response was found to be directionally dependent when fluid travelled 

along different directions. These results were found to be in agreement with the 

surface geometrical parameters extracted from surface roughness and anisotropy 

analysis (i.e. DR2 and IR2 calculations for the surface).  

 Shear displacement of the corrugated plane as well as the analysed synthetic 

fracture was showed to have a significant impact on fluid flow behaviour of the 

surface.  

 An analysis of five synthetic surfaces, where only correlation distances were 

increased in generation to these surfaces, also revealed how larger correlation 

lengths lead to larger waviness and tortuosity. This corresponded to lesser 

pressure drops for the surface.  

 Analysis of a rock like fracture surface also revealed correlations between fracture 

geometry and its flow responses.  

 Comparing the results of flow analysis of the rock like fracture with lab shearing 

test results, which were available from another study, indicated that the location of 

asperity degradations of the surface was very similar to points where the velocity 

magnitude of the surface after shearing tends to zero. This demonstrated the 

correlation of surface geometrical parameters and its hydromechanical behavior.     

6.5 Recommendations for Future work 

The results presented in this thesis indicated how surface morphological 

parameters could be potentially used to estimate fracture hydraulic behaviour. The 

Riemannian roughness parameters were found to be robust tools in revealing useful 
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information about surface geometrical properties. However, further investigation is 

required in terms of analysing several other surfaces with more complicated geometries 

to obtain a better idea about the link between geometry and the hydraulic behaviour of 

real fractures.  

In an analysis performed in this study, the effect of asperity failure was not 

considered. The in-situ stresses could significantly influence aperture, which in turn 

changed the hydraulic behaviour of the fracture. Therefore, continuing research is 

needed to examine the stress effect with fluid flow response. 

The analysis presented here was based on the assumption of laminar flow and 

water as the fluid. For the purpose of this study this assumption was appropriate, 

although one could study the effect of turbulent flow (which is more likely to be the 

case near a wellbore) and use two or three phase fluid in the analysis. This is indeed 

another interesting line for future research. 

The preliminary results presented here for a rock like fracture indicated the 

potential correlation between asperity degradation and fluid behaviour. Further research 

is suggested along this line to couple the shearing mechanism of fractures with their 

fluid flow behaviour. This concept is to some extent related to the effect of in-situ 

stresses, as dependent on the magnitude of normal stress acting perpendicular to the 

plane of the fracture, the failure mechanism of the fracture may change from sliding to 

asperity failure and then failure of the intact rock. Each mechanism has a different 

influence on fluid behaviour of the fracture.  
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