Impact of Power Transformer Insulating Mineral Oil Degradation on FRA Polar Plot

Omar M Aljohani, Ahmed Abu-siada
Electrical and Computer Engineering Department
Curtin University
Perth, Australia
omaljohani@hotmail.com and a.abusiada@curtin.edu.au

Abstract—Frequency response analysis (FRA) has been employed as an effective tool for the detection of various mechanical winding and core deformations within electrical power transformer. Traditional FRA signature interpretation relies on the magnitude of the FRA plot although all practical frequency response analyzers are able to provide both magnitude and angle of the FRA signal in wide frequency range. Moreover, no attention has been given to the impact of power transformer insulating oil degradation on the FRA signature. This paper presents is aimed at introducing a new interpretation approach of the FRA signature using polar plot which is obtained by incorporating FRA signature magnitude and phase into one plot. The paper also investigates the impact of insulating mineral oil degradation on the proposed polar plot signature. Digital image processing (DIP) technique is developed to automate the interpretation process. In this regard, the physical geometrical dimension of a single-phase transformer filled with insulating mineral oil is simulated using three-dimensional finite element analysis to emulate real transformer operation. FRA polar plot signatures are measured and analyzed for various health conditions of the mineral oil. Results show that insulating mineral oil degradation has an impact on the transformer FRA polar plot signature. The proposed FRA polar plot technique is easy to implement within any frequency response analyzer.

Keywords—power transformer; Mineral insulating oil; Frequency response analysis; Polar plot; Digital Image Processing.

I. INTRODUCTION

The bulk of global power transformers were commenced into service prior to 1980 and as a result they are approaching or have already exceeded their proposed design life [1-3]. The likelihood of failures is significantly increasing with transformer aging, consequently it is an essential to adopt a reliable diagnostic tool to identify the current health condition and to take timely and proper remedial action to avoid any possible catastrophic failures [2, 4-6]. Various diagnostic techniques are currently used worldwide to detect faults within power transformers [7-10]. Among these techniques, frequency response analysis (FRA) has been widely recognized as the most reliable tool to diagnose mechanical deformation within power transformers [11, 12]. FRA is based on the fact that transformer components including the core, windings and insulation can be modelled as a network of capacitance, resistance, and self and mutual inductances whose values change when internal mechanical deformation takes place within the transformer. This change can be detected externally through the variation in the resonance frequencies of the transformer FRA signature. Transformer insulation dielectric characteristics deteriorate over time due to oil/paper degradation and moisture ingress which may have an impact on the transformer FRA signature as well [13]. FRA testing is conducted by applying a sweep variable frequency AC voltage of low amplitude to one terminal of a transformer winding and measuring the response voltage across the other terminal of the winding with reference to the tank [4, 14]. The measured FRA signature could be in the form of impedance, admittance, or transfer function (V_{out}/V_{in} in dB) as a function of wide frequency range. Because FRA signatures rely on graphical analysis, interpretation process is a highly specialised area that motivated researchers to investigate the impact of various mechanical winding deformations on the FRA signature in order to develop stander codes for FRA signature identification and quantification [15-17]. While transformer FRA signature is provided as magnitude and phase angle of the measured signal, only magnitude is currently used for signal interpretation. Furthermore, no attention has been given to investigate the impact of insulating oil condition on the FRA signature. This paper introduces a new approach for FRA signature interpretation by incorporating both magnitude and phase angle of the measured signal in one polar plot that exhibits most of the measured signal features and facilitate the use of digital image processing (DIP). The new approach is used to investigate the impact of mineral insulating oil degradation on the transformer FRA signature.

II. TRANSFORMER MINERAL OIL INSULATION

The insulation system within power transformers consists of paper insulation immersed in insulating oil which involves different physical, dielectric, and thermal properties. Mineral oil is the most popular fluid used for insulating electrical equipment, such as power transformers [1]. Researchers have attempted to improve the technical attributes of mineral oil to overcome some of its drawbacks which include a lack of eco-friendliness and the expected increase in its price due to the shortage of petroleum products [1, 2]. Various characteristics of mineral oil as a transformer dielectric are listed in Table A-I in the Appendix [1-6]. Due to the high electrical and thermal
stresses that in-service transformers exhibit, paper and oil decomposition takes place causing a change in oil dielectric properties such as oil breakdown voltage, acidity, viscosity, conductivity, and permittivity. Oil deterioration can be simulated by changing some of the oil dielectric characteristics such as conductivity and permittivity. While dielectric permittivity (ε) affects insulation material behavior under transient electrical conditions, electric conductivity (σ) is a vital oil characteristic which specifies the dielectric strength of insulating oil [3]. The electrical conductivity of mineral oil can be assessed to evaluate oil health condition and aging [7]. Because variations in dielectric permittivity and electrical conductivity have a significant effect on the oil capacitance [8], oil degradation/aging is expected to affect the transformer FRA signature particularly in the high frequency range.

III. FINE ELEMENT ANALYSIS

Finite element analysis (FEA) has been utilized as a physical environment to emulate different dynamic systems such as power transformer [9]. In this paper, the physical dimension for a single-phase transformer is simulated using FEA, as shown in Fig.1 (all specifications/dimensions are given in Table A-II in the Appendix). The 3D transformer model shown in Fig. 2 is solved in magneto-static and electro-static solvers using Maxwell’s equations to extract the inductance, and capacitance matrices of the relevant transformer components. Resistance and conductance calculations are carried out by applying the eddy current, magnetic transient and electric DC conduction solvers.

![Fig. 1. Schematic diagram of the investigated transformer model (all dimensions are in mm).](image1)

Transformer parameters were calculated using FEA and used to simulate the high frequency equivalent electrical transformer model shown in Fig. 3. This model comprises series inductance (L_s), and series resistance (R_s), representing the high voltage (HV) and low voltage (LV) windings. Winding insulation is modeled by shunt capacitance (C_{sh}) and conductance (G_{sh}). Mutual inductances (M) between relevant coils are also simulated. The insulation between the HV and LV windings is modeled by series capacitance (C_{HL}) shunted by dielectric conductance (G_{HL}). Series capacitances (C_{H0}), (C_{L0}) shunted by dielectric conductances (G_{H0}), (G_{L0}), model the dielectric insulation between HV / LV windings and the earthed tank / core, respectively.

![Fig. 2. (a) 3D transformer model, (b) Single leg with coils and insulation paper, and (c) Meshed entire model.](image2)

![Fig. 3. Transformer distributed parameters model.](image3)

Parameters of the transfer function of the transformer model shown in Fig. 3 are obtained using FEA of the 3D transformer model of Fig. 2 as briefly illustrated below:

Capacitive component calculation is carried out using the electro-static solver where voltage v is applied on one conductor, while the voltage level is maintained at a level of zero on the other conductor. The electrostatic field energy (W) between the two conductors can be calculated as follows [10-12]:

$$W_{ij} = 0.5 \int_D D_i \times E_j d\Omega$$ \hspace{1cm} (1)
Where \(W_i \) is the electrical field energy between conductors \(i \) and \(j \), \(D_i \) is the electrical flux density of conductor \(i \) and \(E_j \) is the electrical field intensity of conductor \(j \).

The capacitance \(C \) between two conductors \(i \) and \(j \) can then be calculated as:

\[
C = 2\times W_i / \sigma
\]

Inductive components are calculated based on the average of the magnetic field energy (\(W_{avg} \)) and the corresponding peak current passing through the winding (\(I_p \)) as follows [12]:

\[
W_{avg} = 0.25 \int_B \nu \times H \, dm
\]

\[
L = (4\pi W_{avg})/(I_p)^2
\]

where \(B \) is the magnetic field density, \(H \) is the magnetic field intensity, and \(m \) is the conductor volume.

Resistive components are calculated based on power losses \((P_{loss} \) depending on conductor conductivity \((\sigma) \) and current density \((J) \) as given in (5) and (6) below [12]:

\[
P_{loss} = 1/(2\pi) \int_a J \nu \, dm
\]

\[
R = P_{loss} / (I_{rms})^2
\]

Table A-III in the Appendix lists the calculated transformer equivalent circuit parameters.

IV. PROPOSED POLAR PLOT AND DIGITAL IMAGE PROCESSING TECHNIQUE

Fig. 4 shows a typical FRA signature which comprises magnitude and phase angle of the transfer function of the HV winding. To capture most of the frequency features and to facilitate the use of DIP, both plots (magnitude /phase) are incorporated into one polar plot as shown in Fig. 5. Any point on the polar plot is represented by magnitude \(r \) and angle \(\theta \), corresponding to a particular frequency[13]. The aim of DIP is to improve the interpretation of pictorial information using electronic devices [14, 15]. Any digital image is represented as a two-dimensional (2D) matrix, \([A]_{X\times Y}\), which consists of a finite number of pixels with a dimension of \(X\times Y\). In the polar plot, each point can be written as \(a(x_1, y_1) \), where \(a \) represents image intensity at point \(a \), and \(x_1, y_1 \) are the spatial location with respect to coordinates \(X \) and \(Y \), respectively[14]. The developed DIP is built in accordance to the following steps:

- Pre-processing the image by resizing it and adjusting the colour format [15].
- Segmentation and edge detection is used to detect a region of interest (ROI) within the processed image [14].
- Feature extraction which is the crux of DIP technique. In this paper, number of pixel (NP) of polar plot signatures is used as the image extracted feature, and is given as:

\[
NP = \sum_{a=0}^{X-1} \sum_{b=0}^{Y-1} a_{ROI}(x,y)
\]

- The final task is comparing the extracted feature of the current condition with the healthy condition to identify any variation in the signature.

V. IMPACT OF INSULATION OIL DEGRADATION ON TRANSFORMER FRA POLAR PLOT SIGNATURE

Mineral oil with five different levels of degradation is used to perform the analysis. The FRA polar plot signature for each oil health condition is obtained and analyzed. The transformer HV winding polar plot for new mineral oil insulation is shown in Fig. 5 and the extracted NP using the developed DIP technique is found to be 8,264 pixels. The high electrical and thermal stresses within operating transformers deteriorates the dielectric strength of insulation oil [16]. To show the impact of insulating oil degradation on the transformer FRA polar plot signature, the signature of the HV winding of the transformer model shown in Fig. 2 is plotted for five health conditions of transformer oil (incipient, slight, moderate, high, and significant deterioration). In the model under study, oil was degraded through changing its permittivity and conductivity. The impact of each insulation oil health condition on the proposed polar plot is shown in Figs. 6 through 10. Table A-IV in the Appendix shows the how those degradation levels
are simulated by controlling oil conductivity and permittivity. Results show that, more degraded oil leads to an increase in the NP of the polar plot image as can be shown in Table I and Fig. 11.

![Fig. 6. Incipient oil degradation impact on polar plot signature.](image1)

![Fig. 7. Slight oil degradation impact on polar plot signature.](image2)

![Fig. 8. Moderate oil degradation impact on polar plot signature.](image3)

![Fig. 9. High oil degradation impact on polar plot signature.](image4)

![Fig. 10. Significant oil degradation impact on FRA signature.](image5)

![Fig. 11. Bar chart for oil degradation.](image6)

<table>
<thead>
<tr>
<th>Oil degradation level</th>
<th>Number of pixels (NP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>8264</td>
</tr>
<tr>
<td>Incipient</td>
<td>8342</td>
</tr>
<tr>
<td>Slight</td>
<td>8762</td>
</tr>
<tr>
<td>Moderate</td>
<td>8823</td>
</tr>
<tr>
<td>High</td>
<td>8995</td>
</tr>
<tr>
<td>Significant</td>
<td>9513</td>
</tr>
</tbody>
</table>

The above results show that FRA polar plots have the potential to detect transformer oil aging/degradation. Through using DIM, The effect of oil degradation is noticeable in each level of degradation according to the image number of pixels. The impact is more pronounced with the increase in the oil degradation level.

VI. CONCLUSION

This paper introduces a new approach for frequency response (FRA) signature analysis using polar plot along with digital image processing technique (DIP). The use of polar plot is aimed at comprising most of the FRA signature features in one plot and to facilitate the use of DIP. The new proposed technique is employed to investigate the impact of insulation oil degradation on the FRA polar plot. Results show that transformer oil degradation introduces an increase in the number of pixels (NP) of the transformer FRA polar plot signature. The proposed technique can be extended to identify and quantify other mechanical faults within the power transformer. This technique is simple, reliable and easy to build within the current frequency response analyzers to automate the FRA interpretation process.
VII. APPENDIX

TABLE A-I CHARACTERISTICS OF INSULATION OIL [1, 2, 4, 5]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mineral oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric Breakdown, KV</td>
<td>30/85</td>
</tr>
<tr>
<td>Relative Permittivity at 25°C</td>
<td>2.5</td>
</tr>
<tr>
<td>Viscosity at 0°C, mm²/s</td>
<td><76</td>
</tr>
<tr>
<td>Viscosity at 40°C, mm²/s</td>
<td>3/16</td>
</tr>
<tr>
<td>Viscosity at 100°C, mm²/s</td>
<td>2/25</td>
</tr>
<tr>
<td>Pour Point, °C</td>
<td>-30/60</td>
</tr>
<tr>
<td>Flash Point, °C</td>
<td>100/170</td>
</tr>
<tr>
<td>Fire Point, °C</td>
<td>110/185</td>
</tr>
<tr>
<td>Density at 20°C, kg/m³</td>
<td>0.830/0.89</td>
</tr>
<tr>
<td>Thermal Conductivity, W/m·K</td>
<td>0.11/0.16</td>
</tr>
<tr>
<td>Expansion Coefficient, °C⁻¹</td>
<td>7/9</td>
</tr>
<tr>
<td>Electrical Conductivity, S/m</td>
<td>1.5×10⁻¹⁰</td>
</tr>
</tbody>
</table>

TABLE A-II SPECIFICATIONS AND DIMENSIONS OF THE 40MVA ONE PHASE THREE-LEGGED CORE TYPE POWER TRANSFORMER MODEL

<table>
<thead>
<tr>
<th>Degradation level</th>
<th>Electrical Conductivity, S/m⁻¹</th>
<th>Permittivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>1.50×10⁻¹⁰</td>
<td>2.50</td>
</tr>
<tr>
<td>Incipient</td>
<td>1.71×10⁻⁴</td>
<td>2.75</td>
</tr>
<tr>
<td>Slight</td>
<td>1.86×10⁻⁴</td>
<td>3.00</td>
</tr>
<tr>
<td>Moderate</td>
<td>2.02×10⁻⁴</td>
<td>3.25</td>
</tr>
<tr>
<td>High</td>
<td>2.17×10⁻⁴</td>
<td>3.50</td>
</tr>
<tr>
<td>Significant</td>
<td>2.33×10⁻⁴</td>
<td>3.75</td>
</tr>
</tbody>
</table>

REFERENCES

[21] M. Spohn, "COMPARISON OF MINERAL OIL WITH NATURAL AND SYNTHETIC OILS."

