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Abstract

Important economic and environmental decisions are routinely based on spa-

tial/temporal models. This thesis studies the uncertainty in the predictions of

three such models caused by uncertainty propagation. This is considered im-

portant as it quantifies the sensitivity of a model’s prediction to uncertainty in

other components of the model, such as the model’s inputs. Furthermore, many

software packages that implement these models do not permit users to easily vi-

sualize either the uncertainty in the data inputs, the effects of the model on the

magnitude of that uncertainty, or the sensitivity of the uncertainty to individ-

ual data layers. In this thesis, emphasis has been placed on demonstrating the

methods used to quantify and then, to a lesser extent, visualize the sensitivity

of the models. Also, the key questions required to be resolved with regards to

the source of the uncertainty and the structure of the model is investigated. For

all models investigated, the propagation paths that most influence the uncer-

tainty in the prediction were determined. How the influence of these paths can

be minimised, or removed, is also discussed.

Two different methods commonly used to analyse uncertainty propagation

were investigated. The first is the analytical Taylor series method, which can

be applied to models with continuous functions. The second is the Monte Carlo

simulation method which can be used on most types of models. Also, the later

can be used to investigate how the uncertainty propagation changes when the

distribution of model uncertainty is non Gaussian. This is not possible with the

Taylor method.

The models tested were two continuous Precision Agriculture models and one

ecological niche statistical model. The Precision Agriculture models studied were

the nitrogen (N) availability component of the SPLAT model and the Mitscher-

lich precision agricultural model. The third, called BIOCLIM, is a probabilistic

model that can be used to investigate and predict species distributions for both

native and agricultural species.

It was generally expected that, for a specific model, the results from the



Taylor method and the Monte Carlo will agree. However, it was found that

the structure of the model in fact influences this agreement, especially in the

Mitscherlich Model which has more complex non linear functions. Several non-

normal input uncertainty distributions were investigated to see if they could

improve the agreement between these methods. The uncertainty and skew of

the Monte Carlo results relative to the prediction of the model was also useful

in highlighting how the distribution of model inputs and the models structure

itself, may bias the results.

The version of BIOCLIM used in this study uses three basic spatial climatic

input layers (monthly maximum and minimum temperature and precipitation

layers) and a dataset describing the current spatial distribution of the species of

interest. The thesis investigated how uncertainty in the input data propagates

through to the estimated spatial distribution for Field Peas (Pisum sativum)

in the agriculturally significant region of south west Western Australia. The

results clearly show the effect of uncertainty in the input layers on the predicted

specie’s distribution map. In places the uncertainty significantly influences the

final validity of the result and the spatial distribution of the validity also varies

significantly.
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Chapter 1

Introduction

With increasing frequency, decisions are made with inputs that are the result

of modeled real world situations. In a historical context, modeling can be seen

as a relatively new tool that has evolved with advances in science, mathematics

and statistics. The degree to which a model accurately reflects a true system is

dependent on a range of factors including the quality of the data from which the

model was developed and the understanding of the “laws” that control the system

being modeled. For example, modeling the motion of a ball down a smooth slope

is easy as the physical laws of motion are well understood. In a complex system

this is rarely the case, especially in an earth/biological system where there can be

many unknowns in the interactions that occur within the system. For these, the

model developed is usually empirical and hence based upon observations rather

than physical and biophysical laws. Ideally, in the physical sciences, physically

based models are preferred. However, if a system is complex and data limited,

statistical or combined physical models are used. Extensive decades of research

have found that these models, if well tested, can simulate a true system even

though the system’s components are not well understood.

The models used to study the Earth’s systems can be classified as Geospatial

Information System (GIS) models, which is the application of the Geographi-

cal Information Science. Traditionally, this was not the case as most models

evolved from studies in the older established sciences. For example, climate

1
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models evolved primarily from the work of physical scientists, statisticians and

mathematicians. But, as they are a representation of the earth’s climate, they

are also temporal geospatial models. The same could be said for most fields

where a spatial component is included in an analysis, such as models used in the

the study of agriculture and biophysical systems.

All models have a level of uncertainty in their prediction and minimising this

uncertainty is an important aim of a model developer. The initial way to test

this is to see how well a model simulates a true situation with no uncertainty

in the model’s input data. If the prediction’s accuracy is high then it can be

assumed that the knowledge of the system, and the algorithms in the model’s

construction, are mostly correct. However, as there is always uncertainty in

the input data, another key question arises: Is the model’s accuracy sensitive

to the uncertainties in the inputs? This is important as it raises two important

questions.

1. How does the prediction change in the domain of these uncertainties.

2. How does the uncertainty of the prediction change in this domain.

In the first, the prediction will change depending on where, within the range

determined by the uncertainty, the input(s) values are taken. The prediction

may be correct or incorrect in this range, so models are tested against a known

situation. For example, if a meteorologic model accurately predicts the path of

all cyclones which occurred in the last fifty years, then it will be more trusted

in predicting the path of a tropical cyclone during the next summer period. In

short, what is important is the degree to which the uncertainty determined range

in the known meteorological inputs changes the prediction of the cyclone’s path.

This must be minimal, or the influence of the uncertainty well quantified, for the

model to be trusted.

The second question regards the sensitivity of the prediction’s uncertainty to

a change in the model inputs. This is important as the prediction’s uncertainty

can be more sensitive to the input uncertainty than the prediction. Therefore,
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a small change in the model inputs may result in a large change in the uncer-

tainty of the prediction. Also, the sensitivity of the uncertainty of the prediction

may change significantly across the models domain. In recent decades, in the

Geospatial Sciences, there has been an increasing interest in this, with research

aimed at more accurately quantifying this relationship. This additional infor-

mation can contribute to the assessment of the model’s validity, improvement in

its development and the degree to which an end user can trust the model. In

the literature, this area of research is often referred to as error or uncertainty

propagation analysis.

The degree to which an end user’s trust of a model is influenced by the un-

certainty propagation analysis does depend in part on the background of the

user, how much they understand about what a model tells them and whether

they consider the uncertainty significant in their use of the model. Also, as the

prediction may be used along with other data in making a decision, it becomes a

part of a broader assessment of a risk. In non-scientific fields such as insurance,

assessing a problem from this viewpoint is normal. The same can be said in

many other fields, including agriculture. This does not mean that uncertainty

propagation analysis may not be of value in the traditional risk analysis method-

ology. In fact, it can be argued that the opposite is the case as it quantifies the

trustworthiness of the prediction provided by the model, which in turn helps in

the assessment of risk. Uncertainty and risk are further discussed in Chapter 2.

1.0.1 The Models Investigated

Modeling is extensively used in a wide range of environmental study areas. These

include meteorological and oceanographic studies (e.g. “Adjoint Models” for

sensitivity analysis (Errico 1997) and their use in 3-D and 4-D data assimila-

tion models (Pu, Kalnay, Derber & Sela 1997)), species distribution and abun-

dance models using climatic variables, spatial prediction and surface modeling

(as discussed by Atkinson (2005)), spatio-temporal analysis using multiple scale

ecoregionalisation (Handcock & Csillag 2004) and agricultural models.
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This thesis investigates uncertainty propagation in two Precision Agriculture

models and the Ecological Niche BIOCLIM model described in Nix (1986). For

the Precision Agriculture models, two different analysis methods are applied;

the Taylor Series and Monte Carlo simulation methods - which are often used

in the investigation of uncertainty propagation. The algorithms in the Precision

Agriculture models have been published, so the details of how the model is

structured and the underlying theory can be seen. These models are continuous

and are not probabilistic so the Taylor Series method can be used as well as the

Monte Carlo method (which is not constrained by these factors). The Ecological

Niche model is more complex, has continuous and noncontinuous functions and

also has a probabilistic component. Therefore the only method that can be

applied in its analysis is the Monte Carlo method. In complex models, even when

the functions are non probabilistic and continuous, the Monte Carlo Method is

the method of choice because it is generally easier to apply.

1.1 Project Aims

Accordingly, the aims of this research are to:

1. Investigate the methods used to quantify a model’s sensitivity to propa-

gated uncertainty. If the results are not clearly visible in the plots and

images of the results, investigate methods to resolve this.

2. Assess the sensitivity of two types of GIS models. To increase the scien-

tific and applied practical value of this thesis, the chosen models are very

different in their structure and applied purposes.

3. When both the Taylor and Monte Carlo methods can be used, compare

results. It is assumed that the analysis methods should produce the same

results. Therefore, if there is a difference, determine why it occurred and

if it can be explained by the structure of the model.
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4. Where possible, investigate how the model’s structure influences the sensi-

tivity of the uncertainty of the model.

5. Where possible, investigate the components of the models that are con-

tributing to the uncertainty in input − prediction relationship. This in-

cludes the domain of the input uncertainty and its distribution.

6. Combine these to produce a result that improves the confidence that a user

will have in their understanding of the models accuracy.

1.2 Thesis Outline

The thesis has three parts. The first introduces the reader to the theory of uncer-

tainty and how this knowledge is applied in this thesis. The second describes the

theory, methods and results of the analysis of the Precision Agriculture models

and the third describes the same for the Ecological Niche Model investigated:

Uncertainty Theory

Chapter 2 discusses uncertainty and risk. Uncertainty propagation and the

methods used in its analysis are detailed as are questions relevant to the estimated

uncertainties in the input data layers in a spatial model. The models studied in

this thesis are further discussed.

Precision Agriculture Models

Chapter 3 discusses the theory of Precision Agriculture and the influence of

uncertainty on their predictions. The models studied in this thesis are described

in this chapter. Section 3.5 discusses the uncertainty in the model inputs and

details how their propagation was analysed using the Taylor and Monte Carlo

Methods.

Chapter 4 presents the results and conclusions of the analysis.

Ecological Niche Model

Chapter 5 discusses the basic theory of ecological niche models. It discusses

the key factors which determine their accuracy. BIOCLIM, the Ecological Niche
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model studied in this thesis, is detailed.

Chapter 6 discusses the input climate grids of the BIOCLIM model. The

interpolation methods used in their generation is detailed as are the estimated

uncertainty in these interpolated grids. This is one source of uncertainty included

in this thesis.

Chapter 7 describes the application and testing of the Monte Carlo method

in the analysis of the BIOCLIM model. Also, as the climate grids represent a

monthly and seasonal climatology, this section describes how the uncertainty in

these, caused by inter-decadel variation in rainfall and temperature, was quanti-

fied and a second uncertainty grid interpolated (for this thesis).

Chapter 8 presents the uncertainty propagation analysis of the BIOCLIM

model in several scenarios. Briefly, one group of predictions was made for a

current climate. The difference was only in the uncertainties in the input climate

grids. The second group investigated if the uncertainties in the input climate

grids had significant influence on the conclusion that could be made from future

BIOCLIM predictions. The sensitivity of the prediction to the uncertainty in

the input grids is not linear, so conclusions were not easy to make from simple

plots. Therefore, this Section also describes the method used to quantify this

relationship and conclusions made are discussed.

Chapter 9 analyses why the observations, in the present prediction Model

discussed in Chapter 8, are occurring. This analysis focuses on the structure of

the model.

Summary of Thesis

Chapter 10 provides a summary of the thesis’ conclusions and contains sug-

gestions for future research.



Chapter 2

Uncertainty Theory in Modeling

While there are uncertainties in all the components of a model, the uncertainty in

the model’s result is of primary interest to most end users. For the model’s devel-

oper, minimising as well as effectively communicating this uncertainty requires

knowledge and understanding of:

1. The system that the model is simulating.

2. The known sources of uncertainty in the model, especially in the model

inputs.

3. If possible, the algorithms in the model and their known limitations.

4. The methods that can be applied in testing the sensitivity of a model to

these limitations and all known uncertainties.

In a complex model the influence of these components can be intertwined and

unclear, which then makes the methodology that can be applied in their analysis

difficult to choose. Therefore, the initial step is to clearly understand and then

categorise the components of the uncertainty.

2.1 Defining Uncertainty

As discussed by Rowe (1994), uncertainties can be classified into four groupings:

7
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Temporal

Uncertainty in future states and past states. The sources of this are variable,

ranging from the inherent randomness of nature, inconsistent human behaviour,

non-linear dynamic (chaotic) systems behaviour and the uncertainty associated

with measurement such as sparse rare events and rare events embedded in noise.

Metrical

Uncertainty due to measurement. We make observations about the empirical

world using nominal, ordinal, cardinal or ratio scale (Rowe 1994). Accuracy

addresses how correctly we have measured and interpreted measurement about

scale values. Statistical models are used to describe the results, but one must keep

in mind that the accuracy of the model is heavily influenced by the underlying

process by which the data are generated.

Structural

Uncertainty due to complexity. This falls into two classes: The first, Retrod-

iction, which includes variables such as incomplete historical data (measurement

error) and changing system parameters (systematic error). The second, interpre-

tation of data, includes factors such as a lack of external data references (which

limits the validity of the data), imposition of political correctness and conflicting

reports.

Translational

Uncertainty in explaining uncertain results. This is caused by the poor com-

munication of results to the “stakeholders.” As the final users have differing

degrees of knowledge (regarding the issue studied) and differing interests and

biases, the method by which the results are displayed can be critical in their

accurate use.

In all situations, all four of these classes occur. But, the dominance of each

class will vary depending on the situation. Furthermore, even though it is con-

sidered that although each of these classes is not necessarily independent, the

nature of each of the classes is quite different and hence each class can be ad-

dressed separately and then their interaction examined (Rowe 1994).
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The user of a model’s results should have an understanding of the uncertainty

in the models results. But, the way that this uncertainty is communicated de-

pends on the user of the information. If the end user has little understanding or

experience with the model, then an easily understandable communication of the

uncertainty is very important, as this information is critical to understanding

the “risk” associated with using model outputs. Quantifying or visualising this

“risk” is especially important when the output is considered key information by

commercial and government decision makers. On the other hand, if the end user

has an understanding of the model and the limitations of its inputs, then the un-

certainty propagation analysis results are more important. Scientific researchers

and model developers/programmers generally fall into this grouping. In either

case, the calculation and communication of the uncertainty is of fundamental

importance.

2.2 Uncertainty and Risk

The analysis of risk is important in many decision making areas. This section will

discuss its relevance to the models used in commercial and research fields, which

are studied in this thesis: Precision Agriculture - Chapter 3 and Ecological Niche

Modeling - Chapter 5. The former’s primary aim is to improve the efficiency of a

farm’s output. The later’s aim is to understand ecological systems and use this

information to predict where a species (both commercial and non commercial) is

most likely to thrive. It may also be used in the prediction of how crop viability

is likely to change due to a change in the climate of an area.

In both of these, there is a commonality in the approach that is taken to

access the risk and then determine if the risk is acceptable. This requires the

propagation of the data uncertainty into decision uncertainty, which is followed

by a formal risk scenario identification and analysis. An example of this decision

making analysis is discussed by Agumya and Hunter (2002) and is summarised

Figure 2.1. That work aimed to understand uncertainty so as to (a) avoid data
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which is not suitable for intended purposes i.e. data whose consequences are

unacceptable, (b) to reduce undesirable consequences to an acceptable level and

(c) devise ways of living with undesirable data when the adverse consequences

of using this data do not alter the ultimate decision choice. In their work the

method used to achieve this is called “the risk management approach” which

concentrates on minimising the parts of the three part risk function:

1. Reduction of the likelihood of a risk scenario occurring (directly related to

uncertainty in data, the algorithms in the model and the decision model

used to produce the product).

2. Reduction of the consequences of a risk scenario (to the end user, the

magnitude of the risk and its cost or value (Dobran 1995)).

3. Reduction in the degree of data utilisation i.e. continue to use the dataset

but put less reliance on it which, in turn, will minimise the influence of the

uncertainty in this data.

It then concludes that “by providing data users with a broad range of re-

sponses for dealing with this impact, risk management offers them greater flexi-

bility in containing and responding to the consequences of any adverse scenarios

that might occur” (Agumya & Hunter 2002). In this conclusion, “impact” refers

to the impact of geographical data uncertainty, as this was their field of interest.

This is valuable for the research aims of this thesis, as well as being applicable

to other fields.

2.2.1 Risk in Agricultural and Ecosystem Analysis

There is extensive research on how uncertainty and risk assessment has been

applied in determining the impact of climate change on environmental sys-

tems and resources. This is of special interest as, since the early 1990’s, it

has been recognised that climate change would negatively impact developing
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Figure 2.1: Risk-management of the impact of data uncertainty (Agumya &
Hunter 2002).
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countries to a larger extent than developed countries. Examples of relevant re-

search include ecosystem studies (Hulme, Mitchell, Ingram, Lowe, Johns, New &

Viner 1999), food security (Hulme et al. 1999, Parry, Rosenzweig, Iglesias, Fischer

& Livermore 1999, Parry, Rosenzweig, Iglesias, Livermore & Fischer 2004, Rosen-

zweig & Parry 1994), malaria (vector born pathogens) and coastal flooding

(Hulme et al. 1999). Other relevant areas investigated include carbon sinks

(White, Cannell & Friend 1999), carbon dioxide fertilization of crops (Darwin &

Kennedy 2000) and water security (Arnell 1999).

Studies such as these use future climate projections, which are calculated

using global climate models, such as the United Kingdom Hadley Centre’s third

generation coupled atmosphere-ocean global climate model (HadCM3) (Johns,

Gregory, Ingram, Johnson, Jones, Lowe, Mitchell, Roberts, Sexton, Stevenson,

Tett & Woodage 2003). The uncertainties in these model’s future predictions

are quantified and the limitation in the accuracy of the future climate scenarios

is important and extensively covered in the literature. For example, as discussed

in Hulme (1999) “limitations should be recognised when interpreting the results

of the impacts studies that make use of climate scenarios described here. A full

risk assessment of climate change impact would attempt to sample the various

sources of uncertainty mentioned ...”

2.3 Spatial Models

In most literature, a spatial model is described as a model of a terrestrial system.

This name suggests that these models are representative of an area or location

in space at a certain point in time. But, spatial models have also been developed

to study changes over time. Therefore, and not unexpectedly, the complexity of

these models varies significantly. However, the main component(s) of a model’s

can be categorised into two groups:

Interpolation Models.

The purpose of an interpolation model is to generate an accurate layer in
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an area of interest by analysing known data from that area. The interpolated

layer could be an end product of an analysis, or a step within a more complex

model (such as - but not only - a process model). Interpolation models vary

in their complexity depending on the system being studied. For example, the

Kriging family of linearised regression techniques is a complex method that has

multiple versions for specific purposes. The commonly known ones are Simple

Kriging (which is the mathematically least complicated), Ordinary Kriging, Uni-

versal Kriging, Block Kriging and Cokriging (Davis 2002). They require a prior

knowledge of the area being studied in the form a semivariogram (Burrough &

McDonnell 1998, Davis 2002), which is a statistical estimation of the relationship

between the known data points.

Process Models.

A process model is a model that aims to simulate a complete system, such as

an ecological or coupled atmospheric-oceanographic climate system. In theory, a

model would represent the complete system, or at least all the principal compo-

nents of that system. In practice, it is usually limited by the availability of data

and the understanding of the system being modeled. Also, the more complex

the modeled system, the more likely it is to be a combination of differing model

types such as statistical and physical models. Therefore, a process model could

also contain interpolation steps.

2.4 Uncertainty Propagation in Spatial Models

In all models, the structure of their algorithms will contribute to uncertainty

propagation. The often unique spatial algorithms, in what can loosely be de-

fined as a “spatial model,” introduce unique uncertainty influencing factors. For

example - and very important - is that input point data is usually gridded with

each grid representing a large area. Also, each grid location is often referred to

as a point confusing its true spatial character. This gridded data can be further

interpolated to produce a higher spatial resolution model input layer, which may
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be adequate if it is a true representative of the courser input grid. If this is not

the case, then the interpolated surface will contain a greater level of uncertainty.

Also, the aggregation of input data by a process model can have a negative in-

fluence on a process model’s output. In some scenarios this can be minimised

by aggregating the process models results rather than its inputs. Therefore, this

question can be simplified as to whether the model input or its outputs should

be interpolated. A step wise representation of the two paths in this process are

shown in Figure 2.2.

This interpolate first - calculate later or calculate first - interpolate later

question is important when process modeling a spatial system and it must be

addressed specific to the process model being studied. For example, if the point

locations of the input layers are different then an interpolation step must occur

first. Examples of studies where this decision step was considered important are

Stein, Staritsky, Bouma, van Eijnsbergen and Bregt (1991), Bosma, Marinussen

and van der Zee (1994) and Addiscott and Tuck (1996).

Further examples of work aimed at improving the accuracy of spatial models

include the papers by:

1. Kerry and Oliver (2007a, 2007b), which investigate the influence of asym-

metric data on a variogram - of key importance for kriging interpolation.

2. Wratt et al. (2006), which discusses the preparation of GIS maps used in

agricultural modeling (using inputs such as climate and soil properties).

Of particular relevance (to this thesis), is its discussion on the range of

variables used and the typical uncertainties of these climate mapping tech-

niques.

3. Refsgaard et al. (2007), which discusses the terminology and typology

of uncertainty and presents a framework for the modeling process - its

interaction with the broader water management process and the role of

uncertainty at different stages.
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outputs are interpolated.
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2.5 Analysis of Uncertainty in Spatial Models

The quality of results from quantitative mathematical and statistical models that

involve the combination of data sets depends on the following factors (Heuvelink

& Burrough 2002, Burrough & McDonnell 1998):

1. the quality of data,

2. the quality of the model used in processing the data,

3. the way data and model interact.

Therefore, to get reliable results it is important to know how uncertainties in

both the model parameters and in the input data propagate through the model.

Hence analysis of uncertainty propagation requires estimates of the sources of

uncertainty and an uncertainty propagation theory and tools usable in the models

analysis. The following section (2.5.1) describes the fundamentals of uncertainty

when studying spatial systems. Section 2.7 describes the basic mathematical and

statistical methods used in this thesis.

2.5.1 Description of Uncertainty

Although we are aware that a particular attribute of interest in a spatial system

(such as the seasonal rainfall totals in the south west of Western Australian)

has one fixed deterministic value, the uncertainty about that fixed value al-

lows us to treat it as the outcome of some random mechanism. To understand

this mechanism we must proceed to define the constants, variables and statisti-

cal/mathematical rules that are applied in the analysis of the spatial system.

Uncertainty at a Single Location

In general, the definition of uncertainty at one point in space, is simply the

arithmetic difference

v(x) = a(x) − b(x), (2.1)
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where the true value of a(x) is unknown and b(x) is the known estimate of

a(x). This model of uncertainty refers to a stochastic or statistical representation

of attribute uncertainty, whose range of values is based upon the known range of

what the value for a(x) should be and hence the uncertainty v(x) is based upon

this known (or assumed) range. This assumed knowledge of the uncertainty

v(x) then allows it to represented as a random variable V (x), even though this

variable is determined from the deterministic variable a(x). This assumption can

be made as our uncertainty about a(x) allows us to treat is as the outcome of some

random mechanism A(x). Therefore, the simple uncertainty model becomes:

A(x) = b(x) + V (x) (2.2)

where A(x) and V (x) are random variables and b(x) is a deterministic vari-

able.

For uncertainty at a single location, the mean and variance of V (x) are de-

noted by E[V (x)] = ξ(x). and var(V (x)) = σ2(x). As discussed by Heuvelink

(1998), “The mean ξ(x) is often referred to as the systematic error or bias, be-

cause it says how much b(x) systematically differs from A(x). The standard

deviation σ(x) of V (x) characterises the non-systematic, random component of

the error V (x).” As implied by Equation 2.2, the attribute A(x) and error V (x)

have the same distribution, except for a change in the mean. This reflects the

assumption in standard uncertainty analysis that uncertainty always follows the

normal (Gaussian) distribution, as defined in the central limit theorem (Ott &

Longnecker 2001, Davis 2002).

For this random statistical model to be valid, we must specify with a solid level

of certainty, the rules of the random mechanism (such as the size and distribution

of the uncertainty). The importance of these is logical enough. However, the

assumption that the uncertainty is always normally distributed can be incorrect,

especially in environmental systems.
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Multi Layer Spatial Model

The expansion of single point model into multidimensional space is defined as

A(·) ≡ A(x) | ǫD on the domain of interest D in n-dimensional space R, where

we refer to the value of A(·) at a specific location xǫD as A(x). The single point

uncertainty model then becomes:

A(x) = b(x) + V (x) for allxǫD (2.3)

Let x and x′ be elements of D, where these elements are either in the same

data layer or in another layer. The correlation of two points in a single layer,

ρ(x, x′) of V (x) and V (x′), defined as:

ρ(x, x′) =
R(x, x′)

σ(x)σ(x′)
(2.4)

where R(x, x′) is the covariance of V (x) and V (x′). The expansion of this

to a multivariate (multiple layer) stochastic model has multiple attributes Ai(x)

and uncertainties Vi(x), i = 1, ...., m. As discussed in Heuvelink (1998), “for each

of the attributes an uncertainty model Ai(x) = bi(x) + Vi(x) is defined, where

the” uncertainty “Vi(x) follows some distribution with mean ξi(x) and variance

σ2
i (x). Let ρi,j(x, x′) be the correlation of Vi(x) and Vj(x

′), defined as:

ρi,j(x, x′) =
Ri,j(x, x′)

σi(x)σj(x)′
(2.5)

where Ri,j(x, x′) is the covariance of Vi(i) and Vj(x
′). The cross-covariance

function Ri,j(·, ·) thus defines the covariance of different attribute uncertainties,

possibly at different locations.” This relationship is graphically illustrated in

Figure 2.3.

In many situations it is not possible or necessary to determine all the dimen-
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Figure 2.3: Graphical representation of the differences between the correlations
ρi,j(x, x), ρi,j(x, x′) and ρi,j(x, x′). (Heuvelink 1998).

sions of this relationship. For example, in cases where the relationship between

known attributes at the same location is considered of greatest importance. So,

as discussed by Heuvelink (Heuvelink 1998) “the correlation between attributes

at the same location ” will be of particular interest. However, where there is

a significant relationship between variables at different geographical locations,

these locations should be included in the uncertainty model as well.

2.6 Skewed Spatial Uncertainty Patterns

As discussed by Heuvelink (1998), Aguilar, Aguilar and Agüera (2007), Lucas

(2010) and Wang, Chen, Wu, Feng and Pu (2010), the uncertainty in an envi-

ronmental data set may not be normally distributed. For example, the potential

sources of Digital Elevation Map (DEM) uncertainties are ascribable to the un-

certainties in sample data error, the sum of the interpolation error and error due

to sampling the continuous terrain surface with a finite grid interval (Aguilar,

Aguilar & Aguera 2007). Most models used to compute the residuals in a DEM

assume a Gaussian Distribution of the residuals but this is “sometimes incom-

patible with the fact that vertical errors in DEM often follow a non-normal

distribution” (Aguilar et al. 2007).
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How interpolation methods and sampling locations can influence uncertainty

distributions is shown in Marinelli (2009). In that study, the input data used

in the interpolations was sourced from a DEM of western Australia: Latitude

116o16′ − 117o14′ E., Longitude 27o10′ − 27o8′ S. This DEM has a resolution of

692 by 735 pixels with each pixel covering an area of 86.73 metres squared. The

maximum and minimum values in the map are 537 and 323m above sea level.

This image was derived from the Skylab 3 S-190B Earth Terrain Camera.

In order to investigate the effect of different interpolation models data was

sampled from regularly and randomly spaced grid cells which, in both cases,

equaled to 0.1% of the original DEM surface. The interpolation methods used

were inverse distance weighting (IDW), spline and ordinary kriging. These layers

were subtracted from the original DEM to generate difference layers showing

how much the interpolated surfaces differed from the original DEM and the

spatial distribution of this difference (Figure 2.4). Their associated histograms

are illustrated in Figure 2.5. The actual uncertainty (per cell) in the input DEM

layer was unknown and hence could not included in this analysis.

Error Randomly spaced Equally spaced
Statistics samples samples

Skew Kurtosis Skew Kurtosis
IDW 2.66 14.22 2.73 14.26
spline 1.51 9.50 1.14 12.36
kriging 3.36 21.34 2.28 15.68

Table 2.1: Skew and Kurtosis of Interpolated Surfaces.

For the spline and kriging techniques, the uncertainty layers with the low-

est skew (and hence higher normality) occurred when the sampled points were

equally spaced (Table 2.1). The exception was the result for the IDW, which was

less skewed (but not by a large extent when compared with the other changes

observed). It is also noted that the greatest agreement between these three meth-

ods occurred when the sampled data were evenly spaced. A general statement

that can be made from these results is that most of the results appear relatively

normally distributed. But, there are some points in the generated data layers
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inverse distance weighting

spline

ordinary kriging

Random Equal

-20 -12 -8 -4 0 4 8 12 20 40 60 (m)

Figure 2.4: Uncertainty in Interpolated Digital Elevation Map from randomly
and equally spaced samples.
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Figure 2.5: Interpolated DEM error distributions from random and equal sam-
pling distances.

where the difference from the original DEM is considerably higher in the positive

range. This non normal distribution is reflected in the skew of the uncertainty

results.

Several questions relating to the accuracy of an interpolated data layer arise from

these results:

1. What interpolation method gives the most accurate interpolated surface

(and hence the least uncertainty).

2. Is the skew a true representation of the distribution of the uncertainty and

therefore,

3. Can the skew be used in a data simulation to generate a valid random data

set from which uncertainty propagation can be investigated.

These may be answered if the interpolated data layer can be compared to

sufficient field measurements which, in environmental and agricultural studies,

is often not the case. Finally, if the distribution of the uncertainty is known,

it could determine which method can be applied in the uncertainty sensitivity

analysis.
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2.7 Analysis of Uncertainty Sensitivity

The way in which the uncertainty propagates through a spatial process model de-

pends on a number of factors in the structure of the model. In models where the

algorithms are known and continuous (in a data range that is valid), analysing

uncertainty propagation can be done mathematically or statistically using a num-

ber of techniques. In models that are statistical or have discontinuities in the

algorithms, the methods are limited to statistical analysis techniques. This is

also the case in a model that has “black box” components where the algorithms

are unknown.

In this thesis, precision agriculture models and an ecological niche model are

investigated. In the first case, the algorithm’s mathematical structure is known,

differentiable and continuous (see Chapter 3). In the second a component of the

model is a “black box” and so some of its algorithms are unknown. Also, many

of the known algorithms are statistical and have step functions (see Chapter 5).

In this thesis, the analysis methods used are the Taylor Series and Monte Carlo

Simulations.

2.7.1 Taylor Power Series.

The Taylor Series is a convergence power series (Stewart 2003, Anton 1984)

used extensively to closely approximate the sensitivity of an algorithms output

relative to its input. More specifically, by analysing the partial derivatives of the

algorithms in a process model, the uncertainties in the input(s) which cause the

greatest change in the output can be determined. For example, in the sciences

it is used extensively in areas such as ocean current and atmospheric modeling

(Errico 1997). In these and other fields of research, the term “sensitivity analysis”

is commonly used when discussing the application of this method, as its users

aim to quantify which of the model inputs cause the greatest change in the

output. As discussed in Heuvelink (1998, 1989), Burrough and McDonnell (1998)

and Marinelli (2009), Taylor series is used in the sensitivity analysis of spatial
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science/environmental/agriculture models.

2.7.2 Theory

The Taylor series estimates the value of a function f about a, where a is a range

of normally distributed (Gaussian) values on axis x (such as the uncertainty

defined in Section 2.5.1). If the function can be differentiated an infinite number

of times at a, then the n-th Taylor function for f about x = a is defined as

f(x) =
∞

∑

n=0

f (n)(a)

n!
(x − a)n (2.6)

As with all convergent power series, “this means that f(x) is the limit of the

sequence of partial sums” (Stewart 2003), which for the Taylor series are

Tn(x) =
n

∑

i=0

f (i)(a)

i!
(x − a)i

= f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)2 + ... +

f (n)(a)

n!
(x − a)n. (2.7)

Where Tn(x) is a polynomial of degree n called the nth-degree Taylor polynomial

of f at a. For example, for

f(x) = ex, (2.8)

the Taylor polynomials at 0 with n = 1, 2, 3 are

T1(x) = 1 + x (2.9)
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T2(x) = 1 + x +
x2

2!
(2.10)

T3(x) = 1 + x +
x2

2!
+

x3

3!
(2.11)

as drawn in Figure 2.6.

f(x) = ex
T3(x)
T2(x)

T1(x)

Figure 2.6: The graph of the f(x) = ex and its first Taylor polynomials, T1..3(x),
when there is no uncertainty in the x values.

As is clear, as n increases, Tn(x) appears to approach ex. As discussed in

Stewart (2003), “this suggests that this function is equal to the sum of its Taylor

series”, which is why it can be used to estimate the value of a function at a value

or across a range of values, such as is defined in an uncertainty value 1.

A function’s range of values is dependent on the sensitivity of the function

to uncertainty about a. However, this is dependent on the functions structure

(Arras 1998). A simple example where the function f has only only one input is

illustrated in Figure 2.7, where the uncertainty X is normally distributed, mean

1When there is no uncertainty in x, the Taylor Polynomial is the same as the Maclaurin
Polynomial.
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µx and standard deviation σx.

It can be seen that the shaded interval on x, which is the 34% probability

interval [Ux − σx, Ux + σx], propagates through function (or model) f(.) and

maps onto the y axis as a non Gaussian (asymmetric) distribution. The first

order Taylor Series expansion approximates f(X) about the point X = µx,

Y ≈ f(µx) +
∂f

∂X
|X=µx

(X − µx), (2.12)

which is the linear relationship illustrated in Figure 2.7. From this can be deter-

mined its parameters µx and σx (Anton 1984, Stewart 2003, Arras 1998),

µy = f(µx), (2.13)

µσ =
∂f

∂X
|X=µx

σx. (2.14)

The output distributions represented by µx and σx are a representation of some

unknown truth which is non linear, non normal and assymetric.

As illustrated in Figure 2.8, the sensitivity of output distributions is depen-

dent on the shape of the function, with the approximation of uncertainty being

substantially larger when a function is non linear, steep and concave upwards.

Therefore, it is reasonable to assume that either in a simple function f(x) whose

range varies across the domain of x, or in more complex function f which has

two variables x1 and x2, two unique functions and most likely, two domains. As

illustrated in Figure 2.8(a), in the first of these functions, the output distribu-

tions µx and σx will vary depending on the value of x. In the second case, there

will be two output distributions which will have a combined effect on the output

distribution of f (Figure 2.8(b)).
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xµ−θ +θ

f(x)

f(µ) + f ′(µ)(µ ± θ)

Asymmetric
Uncertainty

Concavea

xµ−θ +θ

f(x)

f(µ) + f ′(µ)(µ ± θ)

Asymmetric
Uncertainty

Convexb

Figure 2.7: A graph of uncertainty propagation as determined by the first order
Taylor Method for two simple non linear functions. These concave and convex
non linear functions have one symmetrically distributed input and one asym-
metric (non Gaussian) output - as graphically illustrated in the green coloured
histogram.
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xµa ± θa µb ± θa

f(x)

Uncertainty at f(a)

Uncertainty at f(b)

a

function f.

f(x1)

f(x2)

x1µ ± θ

x2µ ± θ

-- Final output distribution of f .

b

Figure 2.8: Uncertainty propagation analysis using the first order Taylor method;
a simple and more complex function: (a) f(x) is a simple function with a convex
upward and concave downward component. The possible distribution of f(x),
for two mean values and uncertainty on x, is shown. (b) Concave and convex
components of the more complex function f ; which has two independent variables
x1 and x2. As is clear, the output distributions of these two components is
different. The final f output distribution µx1,x2

and σx1,x2
will result from these.
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2.7.3 Application in the Analysis of a GIS Model

Theoretically, in GIS models, the output point map U(·) can be calculated from

the point maps Ai(·) by means of the GIS point operation model g(·):

U = g(A(1)(·), ..., A(m)(·)) (2.15)

The input maps of this GIS operation are the random fields Ai(·) as defined by

some domain D and satisfy the equation Ai(·) = bi(·) + Vi(·). The output map

U(·) is effectively a randomly distributed field of values, represented by its mean

ζ(·) and variance τ 2(·) (Heuvelink 1998, Burrough & McDonnell 1998, Bailey &

Gatrell 1995). In a real situation where the number of locations in a polygon

map or grid cell are finite, this equation becomes:

U = g(A(1)(x), ..., A(m)(x)) (2.16)

Uncertainty propagation with point operations are in fact a non spatial problem

so “x plays a dummy role in the analysis” (Heuvelink 1998). Therefore, for the

rest of this section the index x is omitted.

When studying uncertainty propagation, the main interest is in the influence

of the difference Ai − bi, on the models output. Using the Taylor Series to

determine this first requires defining the Taylor series of g(·) around b,

U = g(b) +
n

∑

i=1

{(Ai − bi)g
′

i(b)} + remainder (2.17)

where g′

i(·) is the first derivative of g(·) with respect to its i-th argument, where

the number of arguments is equivalent to the number of propagation paths in the

model. The remainder of the equation contains the higher order Taylor terms of

g(·). The first order terms of the variance of U is
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τ 2 = E[(U − E[U ])2] ≈ E[(g(b) +

n
∑

i=1

{(Ai − bi)g
′

i(b)} − g(b))2] (2.18)

Note that to obtain only the uncertainty τ 2, g(b) is subtracted from (Ai−bi)g
′

i(b).

This simplifies the equation to

τ 2 = E[(U − E[U ])2] ≈ E[

n
∑

i=1

{(Ai − bi)g
′

i(b)}]. (2.19)

When the model contains multiple variables n, which may or may not be

independent of each other, the equation expands to

τ 2 = E[(
n

∑

i=1

{(Ai − bi)g
′

i(b)}) · (
n

∑

j=1

{(Aj − bj)g
′

j(b)})]

=
∑

i=1

∑

j=1

ρijσiσjg
′

i(b)g
′

j(b) (2.20)

where the variance of U is the sum of several terms containing the correlations (ρ)

and standard deviations (σ) of Ai and the first derivatives of g(·) at b. Therefore,

as discussed in 2.7.2, τ 2 depends on the variance of, and correlations between,

the inputs of the function g(·) as well as the sensitivity of the model’s output

to its inputs. To reduce the approximation in τ 2, the Taylor series could be

extended to include higher order derivatives. However, the first and second

order is considered adequate for most GIS models.

A Taylor Series Example

A simple example analysing the sensitivity of a two fields (inputs) is presented

in Burrough and McDonnell (1998):
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G = Y × P (2.21)

where G is the gross returns from a wheat farm, Y is the yield and P is the crop

price. The partial derivatives of the gross returns function are:

∂G

∂Y
= 1 × P (2.22)

∂G

∂P
= Y × 1. (2.23)

For each field in the farm, Y is 6±2 tonnes per hectare and P is 100±10 currency

units per tonne of wheat. So the gross return is equal to 600 currency units with

a standard deviation of:

σ =
√

{P 2 · σ2
Y + Y 2 · σ2

P}

=
√

{10000 · 4 + 36 · 100}

= 208.81 (2.24)

currency units.

2.7.4 Monte Carlo Simulation Method.

As described in the general modeling and Geospatial Information Science liter-

ature (e.g. Metropolis and Ulam (1949), Burrough and McDonnell (1998) and

Heuvelink (Heuvelink 1998)), the name Monte Carlo is given to a widely-used

class of approaches which model a physical or mathematical system. It is an

approach which tends to follow a particular pattern:
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1. Define a domain of possible inputs.

2. Generate inputs randomly from the domain using a certain specified prob-

ability distribution.

3. Perform a deterministic computation using the inputs.

4. Aggregate the results of the individual computations into the final result.

Therefore, the idea of this methodology when applied to a GIS model, is

to compute the results for the model repeatedly from inputs that are randomly

sampled from their known distributions. In relation to the aims of this thesis,

this “domain of possible inputs” and the final result are of primary importance.

The first is equivalent to the values of f about a, as discussed in the Taylor Series

method description (section 2.7.2). Each realisation gi, i = 1, ..., m will result in

a unique value for each gi which in turn results in a unique u = g(a1, ..., am). If

there are N simulations, there will be N outputs of U from which the statistics

of the Monte Carlo simulation will be calculated, as graphically illustrated in

Figure 2.9.

The Monte Carlo method allows the domain of the input uncertainty to con-

tain any valid probability distribution about a . In contrast, the Taylor method

calculates only the sensitivity analysis result of an uncertainty with a Gaussian

distribution. Additional reasons favouring the Monte Carlo method are that it

allows the investigation of complex models containing many types of algorithms

as well as those which have a “black box” component. The number of simula-

tions N required for the final result to accurately represent the studied system

will vary depending on the structure and complexity of the model. The test for

this is when N is sufficiently high to produce a consistent result. That is, when

the result from > N simulations is sufficiently close to the result from N + 1

simulations.
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Figure 2.9: Illustration of the Monte Carlo Simulation Method

2.8 Summary

Spatial process models are used in a broad range of applications. They vary

in type, complexity and often contain a combination of both interpolation and

process models. To study their sensitivity to uncertainty propagation, the uncer-

tainty in their input fields must first be represented by a stochastic or statistical

uncertainty model. Then, the method used to quantify the sensitivity of the

spatial process model to input uncertainty is limited by a combination of fac-

tors. If its algorithms are complex in structure, not continuous, contain step

functions or are statistical, then the Monte Carlo Method is preferentially used.

Furthermore, if the model contains components who’s algorithms are not known,

then the Monte Carlo method is the only option. The other method discussed in

this section, the Taylor Method, is only used if the algorithms are differentiable

and continuous within the domain of interest. Also, with the Taylor series, the

uncertainty in the models input fields must be normally distributed.



Chapter 3

Precision Agriculture Models

3.1 Introduction

Precision agriculture is an agricultural concept that uses suitable technologies

to improve agricultural practices and achieve targeted aims. The data input

sets must embrace a range of crop, soil, landscape and other environmental at-

tributes over significant areas (McBratney, Whelan, Walvoort & Minasny 1999).

The technologies used to extract and then further analyse/interpret these data

include traditional in-situ measurement and analysis techniques such as measur-

ing soil attributes (soil nutrient levels, salinity and acidity etc.) and the use of

modern technologies such as global positioning systems (GPS), remote sensing

(Corner 1997), information management tools (GIS) and modeling of the agri-

cultural region of interest. These more recent technologies are especially useful

when studying large areas as they allow estimation of a variable’s spatial distri-

bution from point data measurements. Furthermore, the combination of these

technologies has moved land assessment agencies from a regime of traditional

mapping towards quantitative methods of land resource assessment as discussed

in Corner, Hickey and Cook (2002).

The final aims of this scientific field vary depending on the unique character-

istics of an agricultural region. For example, where the environmental conditions

are good, such as good soil quality and consistent predictable rain pattern, the

34
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primary aim may be to improve the production output while maintaining or low-

ering input costs. However, in an area with poor soils and less consistent rainfall

patterns, the aim may be to minimise costs, maintaining previous yields and to

minimise soil degradation. Furthermore, the degree and the reasons for the use

of precision agriculture can be influenced by other priorities. For example, in the

American Midwest agricultural region precision agriculture’s primary attraction

to farmers is to minimise costs by allowing map controlled variable rate fertiliser

application across a field (The map is calculated on the known nutrient compo-

sition of the field). In Europe, the aim of minimising costs is also important,

but an additional aim has been to minimise the environmental impact of modern

farming practices. Originally, the purpose of this was to minimise nutrient levels

in river systems and coastal run-off areas with the aim of avoiding or repairing

“dead zones” (as they are commonly referred to). This was the main reason

why, since the 1980’s, European Union and member state fertilizer-use regula-

tions aimed at reducing nutrient surpluses have become increasingly stringent

(Vitousek, Naylor, Crews, David, Drinkwater, Holland, Johnes, Katzenberger,

Martinelli, Matson, Nziguheba, Ojima, Palm, Robertson, Sanchez, Townsend &

Zhang 2009). However, since that time, the aims have broadened to include, for

example, reducing the contribution of modern agricultural practices to green-

house gases.

The methodologies used in precision agriculture can also be used to minimise

other agriculture-related environmental damage, while aiming to maximise yield.

However, this is often referred to as “sustainable agriculture,” even though there

are clear overlaps between the fields. Sustainable agriculture will not be further

discussed.

3.2 Application in Western Australia

In Western Australia, precision agriculture has been applied mostly in cereal

grain crops grown in the “Wheat Belt” agricultural region (see Figure 3.1).
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Wheat is the primary crop grown in this region, with pulses being the most

prominent secondary crop (Leff, Ramankutty & Foley 2004). Nutrient run-off is

not a major influence on the environment in this region and so precision agricul-

ture methods have not been applied for environmental management purposes.

Instead, it has been used primarily with the aim of increasing farming efficiency

in a region that is low in production (per hectare) by world standards but still

significant due to its spatial size.

Wheat Belt Region
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Figure 3.1: The “Wheat Belt” in Western Australia. This cleared agricultural
area is clearly visible in this satellite image (Geoscience Australia (2011)), with
the blue line showing its approximate north eastern border. The darker green
area in the state’s south west corner is mostly uncleared forest.

The two major controlling factors in the low productivity levels of this region

are nutrient poor soils and the lack of a continuous water source such as a major

river system. Therefore, the agriculture in this region is “rain fed,” being de-

pendent on the natural precipitation brought by the passage of the cold winter

fronts which travel west to east from the Indian Ocean. Sufficient consistency

in this precipitation during the mid year months is critical to a good yield in

this area. There is summer rainfall which occurs due to the south-east monsoon



CHAPTER 3. PRECISION AGRICULTURE MODELS 37

during the southern hemisphere summer months. But, it is sporadic and not

suitable for these crops. Also, the lack of a permanent water source makes this

region unsuitable for crop growth during this period. Therefore, the main limit-

ing factor(s) which can be directly controlled are the nutrient level of the soils

(by the addition of artificial fertiliser) and the control of pests and weeds using

pesticides and herbicides.

In nutrient poor soils, the critical nutrients are nitrogen (N) and phospho-

rous (P ). But, other nutrients may be lacking in a particular soil type (such as

potassium (K)) and so may also be included in the Model. For example, the

influence of P content in the yield of clover was investigated by Brennan and

Bolland (2003). This work clearly showed the P to yield relationship and how

it can vary depending on the soil type, as illustrated in Figure 3.2, which shows

the P to relative yield response. This information is used in models such as the

Mitscherlich Fertiliser requirement model (Wong, Corner & Cook 2001, Brennan

& Bolland 2003), a model that uses both in-situ measurements and inputs calcu-

lated from information measured by remote sensing. More specifically, this model

requires an estimated desired yield as a proportion of the maximum achievable

yield in the calculation of the required fertiliser (see Chapter 4 for more details

on the algorithm of this model). The maximum achievable yield is taken as input

from the Normalised Difference Vegetation Index (NDVI), which is an estimation

of green biomass.

NDV I =
(NIR − V IS)

(NIR + V IS)
(3.1)

This method uses remote sensing to measure the adsorption in the visible

(VIS) wavelengths (400 − 700 nm) by chlorophyll and associated pigments and

the increased reflectance in the near infra-red (NIR) (750 − 850 nm), which is

due to multiple scattering by leaf tissue (Smith, Wallace, Hick, Gilmore, Belford,

Portmann, Regan & Turner 1994).
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Figure 3.2: Relationship between percentage of maximum (relative) yield of dried
clover shoots and the amount of P applied for 5 soils. Diagram from Brennan
and Bolland (2003).
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The application of Precision Agriculture to determining the optimum fertilizer

requirement for an agricultural field is a clear example of how it can be used to

help resolve a traditional question in agriculture, “How much fertilizer should

I add?” More broadly, it can be used to increase the yield and/or efficiency of

production by investigating a range of other factors. For example, in the Western

Australian wheat belt region, as well as other regions of Australia that do not

have irrigation, there has been research aimed at improving our understanding

of how moisture content in soils influences yield response, and how this moisture

content can be maintained between the seasons. Also of importance is the rate at

which moisture is lost from the row crop canopies. For example, earlier work in

this field by Ritche (1972) developed a model to predict daily evaporation rates

from a row crop with incomplete cover. In later work by French and Schultz

(1984), work was done to quantify the relationship between wheat yield and

water use in Mediterranean like climates. Understanding this relationship is

important in the development of crop growth models, predicting yield and the

general use of water in similar environments. This is especially the case in areas

where there is a very clear relationship between yield and rainfall (Stephens &

Lyons 1998).

3.3 Influence of Uncertainties in Precision Agri-

culture Models

The influence of uncertainties in precision agricultural models is often discussed

in the literature. For example:

1. The precision of the input data varies in quality and spatial density. In

some cases, this uncertainty is unknown and, as discussed in McBratney

et al. (1999), “While there is no doubting the quality/density of data

obtainable from modern crop yield sensors, the quality and density of data

gathered on other variables is less than optimal. The ultimate solution is
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the development of real-time sensors to measure these attributes” and

2. The mathematical structure of a model may make it more sensitive to in-

put uncertainties, as discussed in Purnomo, Corner and Adams (Purnomo,

Corner & Adams 2003).

These uncertainties fall broadly into the temporal, metrical and structural classes

of uncertainty (discussed in Chapter 2.1). Quantifying this uncertainty in a “less

than optimal” agricultural situation is complex as they are not easily identified

or measurable. Furthermore, the input data mapping methodology adopted by

a farmer may mask the scale of the input uncertainty. For example, in modern

farming, fertilizer equipment variable rate technology allows a mapped applica-

tion of fertilizer that can be made to constantly change depending on the true

quality of the soil. This is only possible if there is high spatial density of data for

the field of interest and that the interpolation method used (and its limitations)

is adequately understood - the combination of which results in an accurate input

map of the field of interest. Unfortunately, it is often the practice to partition a

field into aggregated zones, resulting in a stepped application of fertilizer. This

aggregation of the input data has the effect of at best smoothing or, at worst,

disregarding the uncertainty in the inputs, which in turn introduces another level

of uncertainty in the calculated fertilizer requirement of a field. The practical

effect of this is that the nutrient input is less likely to be optimal.

The practice of aggregation into zones also falls into the “translational error”

class as it may reflect a lack of understanding of a models or technologies limita-

tions. If these limitations were communicated more clearly it may encourage the

end user to minimize the uncertainties in a model’s inputs as well as increase the

user’s trust, understanding and acceptance of a model’s results. Also, commu-

nicating the level of uncertainty will, depending on the environment, determine

which model is best to use. For example, in data-poor situations knowledge

driven models may be preferred (by a farmer) but in data rich situations, data

driven models may be more appropriate (Adams, Cook & Corner 2000).
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To summarise, four broad classes of uncertainty must be considered when de-

termining how uncertainty may influence the accuracy of a precision agriculture

model and how this can be minimised. In a complex precision agriculture model

that is part of a GIS software package, this could require a multiple stage (input

- algorithm - visualize result) approach to resolve. However, in a complex model

that provides an easily useable result (such as the specified nutrient level input

to a GPS guided agricultural tool), the main question to resolve and quantify is

the model’s sensitivity to uncertainties in the inputs.

3.4 The Precision Agriculture Models Investi-

gated

The precision agriculture models studied in this thesis are the nitrogen (N) avail-

ability component of the SPLAT model (Adams, Cook & Bowden 2000) and the

Mitscherlich precision agricultural model (often referred to as the “Mitscherlich

Equation”). The N -availability (in soil) model is linear whereas the Mitscher-

lich is not, a key factor expected to effect the shape and size of the propagated

uncertainty. This, their continuity (through their valid input range) and their

relative simplicity qualifies them as ideal for sensitivity to uncertainty analysis

using both Taylor and Monte Carlo uncertainty propagation analysis techniques.

The details of the models are:

N-availability.

N(available) = (RON × RONDep(T − 1) × RONEff) + 10000 ×

(OC × (1 − GravProp) × SONEff) + (15 × FerTeff)

where the input data layers are the residual organic nitrogen (RON),organic

carbon in the soil (OC) and the gravel proportion in the soil (GravProp). The

other four parameters are the RONDep depletion coefficient and three efficiency
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coefficients RONEff , SonEff and FertEff . These coefficients are constants

that were determined by productivity trials. The known uncertainties of the

input layers and the coefficients were obtained from discussion with experts in

soil testing. The other variable is time (T ) in years, since the last lupin crop.

The N -available is in Kg/Ha.

The Mitscherlich model.

An inverted form of this model (Edwards 1997) has been proposed (Wong

et al. 2001) as a method of determining the spatially variable potassium fertiliser

requirements for wheat. This relationship, which describes the response of wheat

plants to potassium, is shown in Equation 3.2,

Y = A − B−CR (3.2)

where Y is the yield in Tonnes per Hectare; A is the maximum achievable yield

with no other limitations; B is the response to potassium; C is a curvature

parameter; and R is the rate of applied fertiliser.

It has been shown (Edwards 1997) that the response, B, to potassium fertiliser

for a range of paddocks in the Australian wheat belt may be determined by

Equation 3.3,

B = A(0.95 + 2.6 × e−0.095×K0) (3.3)

where K0 is the soil potassium level. Substituting Equation 3.3 into Equation

3.2 and inverting provides a means of calculating the potassium requirements for

any location with any given soil potassium value. This is shown in Equation 3.4,

R =
−1

C
× ln(

Y t − A

−A(0.95 + 2.6e(−0.095K0)
)) (3.4)

where R is the fertiliser requirement (Kg/Ha) to achieve a target yield of Yt

Tonnes per Hectare.
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3.5 Propagation Analysis: Data and Methods

This section describes the input data of the Precision Agriculture models and the

methodology used to apply the Taylor and Monte Carlo Methods of uncertainty

propagation analysis.

3.6 Input Data Layers

The input data layers of the N -availability equation were constructed from data

collected at a 20 hectare paddock in the northern wheat belt. The data for

the Mitsherlich model is from an 80 hectare paddock in the central wheat belt,

where potassium fertilization is often required. Achievable yield was calculated

by aggregating NDVI representations of biomass, derived from Landsat five im-

ages over a period of three years and estimating water limited achievable yield

using the method of French and Schultz (1984). This method of deriving achiev-

able yield is described in greater detail in Wong et al. (2001). Soil potassium

was determined at 74 regularly spaced sample points using the Colwell K test

(Rayment & Higginson 1992). These values were interpolated into a potassium

surface using Inverse Distance Weighting. All data were assembled as raster lay-

ers with a spatial resolution of 25m. For the work described here a Target Yield

of two Tones per Hectare was set. This is within the Achievable Yield value for

97% of the paddock.

3.7 Application of Uncertainty Propagation

Analysis

As discussed in Section 2.7, the analysis of a Precision Agriculture model’s sen-

sitivity to input uncertainty was done with both the Taylor Series methods and

the Monte Carlo Simulation methods. The results will be assessed to (a) deter-

mine how the input uncertainties propagate through the models and (b) how the
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results of this analysis differs between the analysis methods.

3.7.1 The Taylor Series Method

The Taylor series method relies on using either the first, or both first and second,

differentials of the function under investigation (Stewart 2003). In the case of

when the uncertainty is normally distributed and the algorithm is continuous, it

is effectively considered a “gold standard” and widely used. Its main limitation

is that it can only be used in the analysis of the parts of an algorithm which

are continuous. Since the functions in the two investigated Precision Agriculture

models are continuous and differentiable, that is not a constraint here. The par-

tial derivatives of these functions, and the matrix data used in their analysis, are

in Appendix A. This was implemented in a procedure written in the Interactive

Data Language (IDL) (Research Systems, 2006).

The N Availability Model

The variables in the N availability model are the residual organic nitrogen

(RON), the organic carbon fraction (OC), the gravel proportion (GravProp).

The RONeff , SONeff and FertEff efficiency coefficients are constants, by

do have a quantified uncertainty. Equation 3.2 was partially differentiated with

respect to each of these inputs, to the first order. These variables were converted

to spatially variable data layers by combining with an absolute uncertainty layer.

These uncertainty layers were generated as follows:

1. For the RON, OC and Grav Prop a relative uncertainty of ±10% has been

chosen for each data point. Therefore, the uncertainty was first calculated

by multiplying the data by 0.1. This value was assumed to represent the

full width of the normally distributed uncertainty distribution. In order to

provide the same approximate uncertainty magnitude as is being used in the

Monte Carlo simulations (described below) the uncertainty was represented

by 3.33% being equivalent to 1 standard deviation.

2. The RONeff , SONeff and FertEff efficiency coefficients are not spa-
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tially variable and nor are their estimated uncertainties of ±0.4, 0.025 and

0.025 respectively. These were divided by their respective coefficients to

obtain an uncertainty ratio representing the full width of an uncertainty

distribution. From this, the values representing three standard deviations

from the mean were calculated as the difference between the fertiliser coef-

ficients and their extreme values (the coefficients plus their uncertainties).

3. The uncertainty in the RONdep depletion coefficient is difficult to quantify

and so was not included in this study.

4. The output generated using the Taylor Series method is an uncertainty

error surface for N-availability.

The Mitscherlich Model

The input variables in the Mitsherlich model are the achievable yield (Ay),

the soil potassium level (K0) and the curvature term (C). Equation 3.2 was

partially differentiated with respect to each of these inputs to both the first and

second order. The Uncertainties in these layers were generated as follows:

1. For the A and the K0 data layers a relative error of ±10% was assumed for

each data point.

2. Curvature term C is not spatially variable but is known to contain uncer-

tainty. In this case, the value is derived from a series of regional experiments

on potassium uptake by wheat crops and is quoted in the literature as hav-

ing a value of between 0.011 and 0.015 for Australian Standard Wheat

(Edwards 1997). The work described here used the mean of those two val-

ues as the “true value” for C. Using the same logic as above, the absolute

error was regarded as being one third of the difference between the mean

and the extreme values quoted.

3. The output generated using the Taylor Series method is an absolute uncer-

tainty surface for R. The uncertainty surface produced incorporated any
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correlation which exists between the data layers. Correlation was only able

to be determined between the A and K0 input surfaces, with a ρ value of

0.53. There may be other cross correlated variables. But, these could not

be included in the analysis because they could not be quantified.

3.7.2 Monte Carlo Method

The Monte Carlo method of uncertainty propagation analysis assumes that the

distribution of the uncertainty at each grid cell in all input data layers is known.

The distribution is frequently assumed to be Gaussian with no positive or neg-

ative bias. For each of the data layers an uncertainty surface is simulated by

drawing, at random, from an uncertainty pool defined by this distribution. Those

uncertainty surfaces are added to the input data layers and the model is run us-

ing the resulting combined data layers as input. The process is repeated many

times with a new realisation of an uncertainty surface being generated for each

input data layer. The results of each run are accumulated and both a running

mean and a surface representing deviation from that mean are calculated. Since

the uncertainty surfaces are zero centered, the stable running mean may be taken

as the true model output surface, and the deviation surface as an estimate of the

uncertainty in that surface. Another important point is that the Monte Carlo

method can be used in the analysis of disjoint functions, whereas the Taylor

method can not. Again, the reader is referred to Heuvelink (1998) for a full

description.

It reality, uncertainties in input data layers are not always evenly distributed.

Therefore, for the Mitsherlich model, uncertainty simulations were drawn from

distributions that were skewed to differing degrees. The skewed distribution was

generated using the “RANDOMN” command in IDL with the “Gamma” option

set to differing levels. This produces a family of curves with a variety of skews;

a selection of these and an unbiased normal distribution are compared in Figure

3.3.
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µ

(a)

(b) (c)

Figure 3.3: (a) Normal (Gaussian), (b) Gamma and (c) typical soil test distribu-
tions. In (a), the positions of the mean (µ) and ± 1st, 2nd, 3rd and 4th standard
deviations are marked on the horizontal axis.

3.8 Implementation

A procedure was written in IDL to perform the process described above. Sim-

ulated random data sets were generated for the appropriate inputs with the

incorporation of appropriate uncertainty realisations. For each run, 100000 sim-

ulated data values were generated for each valid grid cell in each of the input

data layers and coefficients. From these, the mean, absolute error and relative

error for R was calculated for each grid cell. The number of simulations chosen

was the minimum required to obtain stable statistical results at each each grid

cell.

For the Mitsherlich model, in some cells either the achievable yield (Ay) is

less than the target yield (Yt) or soil K values are adequate for the achievable
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yield and hence a calculation of the fertiliser requirement (R) returns a negative

value. Where this happened the result was classified as invalid and the cell value

set to null. For the N -availability, the same procedure was implemented if the

values in the input layers or the simulated results where less than zero.

The level of agreement between the calculated values of N -availability and

fertiliser recommendation (R) and their associated error surfaces calculated by

the error propagation methods was determined by performing pair-wise linear

regressions between the various outputs. Two surfaces that agree completely

should have a slope of 1 and a correlation coefficient of 1.

3.9 Summary

Precision Agriculture is an agricultural concept that uses suitable technologies

to improve agricultural practices and achieve targeted aims and has been applied

in the wheat belt region of Western Australian.

The influence of uncertainties on the accuracy of Precision Agricultural mod-

els is discussed in the literature. This thesis aims to expand this knowledge by

investigating the sensitivity to uncertainty of the algorithms in the SPLAT and

Mitscherlich Equations.



Chapter 4

Precision Agriculture Results

The sensivity analysis of the simple and linear N -available model and the more

complex Mitsherlich Model are discussed in the following sections. For both,

when the uncertainty distribution was Gaussian, both analysis methods were

applied and their results compared. When the distribution was skewed only the

Monte Carlo method could be applied.

4.1 N-availability Linear Algorithm

For the Monte Carlo synthesised results, there is a high agreement between the

N -available results calculated from the default (no uncertainty added) input

layers and the synthesised input layers (correlation: 0.999, slope 0.999). In the

synthesised results, there is also a high agreement in the calculated uncertainty

even though the number of simulations investigated varied significantly (2000 to

100000, see Figure 4.1(a)). Also, in all cases the mean prediction to uncertainty

relationship is almost linear with a small upward trend in the uncertainty vs mean

N -availability relationship. Therefore, it can be concluded that the function does

not significantly change the uncertainty of the N -available result.

This is further reflected in the skew of the synthesised results (per point,

see Figure 4.1(b) and (c)). At first impression, it would appear that there is

a significant difference in these skew results. However, closer inspection shows

49
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(a.)

(b.) (c.)

Figure 4.1: Mean N -availability versus Standard Deviation (a) and Skew (b)
and (c). The skew plots show the difference between when 2000 and 100000
simulations occur.
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that for the low and high values of N , the centre of the skew is approximately

the same (∼0.4 and 0.6 respectively). The major difference is the range of the

skew results, which is lower for the greater number of simulations suggesting

that a higher number of simulations is required for a more accurate and easily

interpreted results e.g. as seen in Figure 4.1(b), the increase in skew with higher

N -availability is more easily seen.

Also of note is the fact that the skew is not centered on zero. As the skew of

the synthesised input layers are centred on zero this suggests that the model itself

is influencing not only the propagated uncertainty results but also the shape of

the synthesised results. This influence is most likely to be greater in the more

complex, non linear Mitsherlich model (as may also be the case for non normal

inputs) and both are investigated in the following sections.

There is a good linear fit between the Taylor and Monte Carlo simulated

uncertainty results, with a slope of 1.0 and correlation of 0.999. The relative

uncertainty is also small, with a minimum and maximum of 0.048 (4.8%) and

0.078 (7.8%) respectively. This agrees with the change in % uncertainty observed

in the Monte Carlo analysis results, allowing a greater confidence in the conclu-

sion that the N-availability component of the SPLAT model does not propagate

uncertainty to any large or varying degree.

4.2 Mitsherlich Non Linear Model

Figure 4.2 shows the uncertainty of the Monte Carlo synthesised results versus the

Taylor Methods results, for both a Gaussian and Gamma distribution (+ and −
distribution, Gamma = 2 and 100000; a high and low skewed distribution). The

maximum number of simulations (per grid point) is 100000 for all the following

results.

Clearly, greatest agreement between the methods is when the uncertainty

per grid cell calculated is low. The greatest agreement (with the Taylor method)

is with the Gaussian distribution as would be expected. Closer inspection of
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Figure 4.2: A comparison of the uncertainty of fertiliser requirement R (Kg/Ha),
simulated (Monte Carlo) and Taylor methods.

the results show that the best agreement occurs at points where the fertiliser

requirement R is less than or equal to 100 Kg/Ha (calculated uncertainty <30;

regression analysis in this range gives a slope of 0.93). Also, in this uncertainty

range the Gamma distribution of 100000 gives a similar result of 0.93. However,

as is clearly seen, at higher values of R the Taylor Method error results increase

significantly.

The heavily skewed distributions (Gamma = 2) clearly are in even less agree-

ment with the Taylor Method result. Furthermore, in this case the positive and

negative Gamma distributions are not in agreement. This is reflected (to a lesser

degree) in Figure 4.3, which shows fertiliser recommendation values (R) plotted

against Gaussian and Gamma distribution results. As one might expect, for the

most part the best agreement occurs with the mean R calculated from the Gaus-

sian distribution (slope of 0.935). However, above a value of 250 there is greater

agreement with the negative (and to a lesser degree with the positive) Gamma

distribution. The reason for this is due to the Gaussian distribution model pro-

ducing simulations where R results are invalid and filtered out e.g. where A is
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less than Yt. This weighs the calculated mean in a negative direction. More im-

portantly it highlights how biased results may occur depending on the structure

of the model and the skew of the input variables. This is further discussed in the

following sections.

Uncertainty relative to R

Figure 4.4 compares the calculated mean and standard deviations representing

1 σ of R per cell from the Gaussian and Gamma distribution synthesised inputs.

It can be seen that there appears to be a similar pattern for all three distri-

butions, with notable changes occurring in the R vs. uncertainty relationship

at approximately 100−200 Kg/Ha and then at 250−400 Kg/Ha. The second of

these changes is most likely due to the bias in the results due to the decrease

in the number of valid data points. However, the first change suggests that at

a point where one or more of the inputs contribute to a higher output R, a

significant increase occurs in the uncertainty associated with that result. Also

notable is that both positive and negative skew gamma inputs generally have

lower uncertainty. This is most likely due to the concentration of the simulated

inputs into a smaller range than occurs in a Gaussian distribution.

Figure 4.4(b) shows the results for a skewed distribution for which the gamma

value is 100000. The R vs. uncertainty relationship is essentially the same as

when gamma is set to 2, but notably smoother in the curve (as R increases).

There is also very good agreement between the Gaussian and Gamma distribution

results. This is expected as the gamma distribution of 100000 is equally biased

(and hence the skew is very close to 0).

Skew relative to R

The skew in the R results calculated from the synthesised datasets show three

features:

1. As in the uncertainty results, the skew values appear to remain approxi-

mately the same when R is equal to or less than 100, but then increases
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Figure 4.3: Comparison of simulated and directly calculated R values (Gamma
= 2).

(a.) (b.)

Figure 4.4: Mean synthesised R versus uncertainty. (a) Gamma = 2 (b) Gamma
= 100000. For comparison a Gauss distribution is included in both plots.
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(see Figure 4.5). Three of the four Gamma distributions investigated even-

tually peak and then fall. However the negatively skewed Gamma=−2

distribution continues to increase. This mirrors the valid results pattern

discussed earlier.

2. The heavily non normal distribution in the inputs is reflected in the position

of the skew results relative to the Gaussian skew results, easily seen in

Figure 4.5(a).

3. As shown in Figure 4.5(b), the skew of the Gaussian and equally weighted

Gamma distribution is not centred on 0, even when the values of R are low

(and hence considered valid) and the skew of the input layers is insignif-

icant. Analysis of the Mitsherlich model shows that this is a due to the

mathematical structure of the model and this is important as it may bias

R and its associated uncertainty.

4.3 Conclusions

The values of N -available (nitrogen available) and R (fertiliser requirement) cal-

culated from the given data layers are in close agreement with the mean values

calculated from the Monte Carlo synthesised datasets under a Gaussian assump-

tion. The exception occurs at grid cells where the higher mean R occurs, which

is also where the lower number of valid simulation results occur.

As is more likely the case for linear models, uncertainty propagation in the

linear N-available model is negligible. However, the model structure did influence

the skew of the N -available results (calculated from the synthesised input layers).

For the Mitsherlich model, uncertainty propagation increases as R increases and

the rate of this increase can vary significantly and abruptly. In the case of this

non-linear model, there appears to be several reasons for this which are dependent

on how the input/model interaction can change as the input values change.
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(a.) (b.)

Figure 4.5: Mean synthesised R versus skew. (a) Gamma = 2 (b) Gamma =
100000. For comparison a Gauss distribution is included in both plots.

The closest agreement in the absolute uncertainty trends is seen between the

combined 1st and 2nd order Taylor series results and the Monte Carlo Gaussian

distribution for calculated R values of less than or equal to 100. Above this value,

there is considerably less agreement.

For the skewed Gamma distribution, the best in the calculated R agreement

is seen when the synthesised dataset has little positive or negative bias (within

a given valid range for R). However, the heavily negatively skewed distribution

produces results that are less prone to the models bias at higher R values.

Both the uncertainty and skew statistical results (for the calculated R) can

give an insight into how a model and/or its inputs may influence the validity of

the final results.
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Niche Envelope Models

5.1 Distribution Modeling

Species distribution models (SDM) are models relating field observations 1 to

environmental predictor variables (Guisan & Zimmermann 2000) to calculate

the species distribution, which could then be used to predict the suitability of

any other site for said species. Much effort has been put into the development

of these models in the field of ecology as they elucidate spatial and temporal

patterns of organism behavior and system dynamics. This type of analysis is

also frequently referred to as “Bioclimatic Modeling.” A list of commonly used

models, their classification method and limitations is given in Table 5.1. A

schematic description of two of these models is illustrated in Figure 5.1.

The “envelope of a species” is the set of environments within which it is be-

lieved a species can live (Walker & Cocks 1991). This ‘delineation’ of a species’

distribution is frequently used to predict the full geographical range (of a species),

particularly when an estimate of the probability of occurrence or the relative

suitability at a given site is required (Guisan & Thuiller 2005). Most modeling

approaches developed for predicting animal and plant distributions have their ori-

1Field observations are often described as, or part of, the entities of the system being studied.
For example, Segers, Branquart, Caudron and Tack (Segers, Branquart, Caudron & Tack
2001) discusses the “entities of biodiversity” required for accurate and reliable “biodiversity
indicators,” where the “chosen indicators do not indicate biodiversity per se, but selected
aspects or entities of biodiversity.”

57
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Model type Example Classification method Features
Boxcar BIOCLIM multilevel rectilinear

envelope
dimensions treated in-
dependently
performs poorly on co-
variate data
includes some dissimi-
lar sites
excludes some similar
sites
easily implemented
simply described enve-
lope

Convex hull HABITAT binary convex envelope tightly constrained en-
velope
excludes many similar
sites
difficult to implement
computationally expen-
sive

Distance Based DOMAIN continuous point-to- variable sensitivity
point symmetric performs well with lim-

ited site data
gives similarity value to
all sites
easily implemented

Table 5.1: Commonly used model types. Modification of table from Carpenter
et al. (1993)
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Figure 5.1: Schematic description of predicting the distribution of a species un-
der different climates using two climate envelope models, Bioclim, and Domain.
There are 15 sites, with different climates in the two time periods. The true
requirements of the species are constant and indicated with an ellipsoid. The
inferred requirements do not fully overlap with the true requirements because
there are insufficient sites where the species has been observed and/or because
parts of the true niche are currently not present on the landscape, and because
the model methods are imperfect. Under future conditions, model performance is
diminished because some sites are incorrectly classified as not having the species
(false negatives) (Hijmans & Graham 2006).
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gins in quantifying species−environment relationships (Guisan & Thuiller 2005).

The development of these models occurred in three phases: Firstly, non-spatial

statistical quantification of species-environment relationship based on empirical

data, secondly expert based (non-statistical, non empirical) spatial modeling of a

species distribution and thirdly, spatially explicit statistical and empirical mod-

eling of species distribution.

As summarised in Elith and Leathwich (Elith & Leathwick 2010) and Gra-

ham et al. (Graham, Elith, Hijmans, Guisan, Peterson, Loiselle & Group 2008),

SDM’s are used in both applied and theoretical research to predict how species

are distributed and to understand attributes of species’ environmental require-

ments. For example, species distribution modeling has been used to manage

species of conservation concern (Gabert, Papes & Peterson 2006), create rich-

ness maps for conservation planning (Loiselle, Howell, Graham, Goerck, Brooks,

Smith & Williams 2003, Rissler, Hijmans, Graham, Moritz & Wake 2006) and

predict the geographical spread of invasive species (Peterson 2003). Among the

earliest found examples of modeling using correlations between species and cli-

mate are the prediction of the invasive spread of a cactus species in Australia by

Johnson (1924) and the assessment of climatic determinants in the distribution

of several European species by Hittinka (1963). This area has continued to evolve

with the technique now applied in the analysis of ecology, biogeography, evolu-

tion, conservation biology and climate change research (Guisan & Thuiller 2005)

(see Table 1 in Guisan and Thuiller (2005) for additional applications and de-

tails).The data required for these models vary depending on the model type, its

complexity and structure. However, the inputs generally include species occur-

rence data and environmental spatial data layers which are then processed to

create the species predictive model.

5.1.1 Species Distribution Modeling Theory

Bioclimatic models are generally static and probabilistic in nature since they

statistically relate to the geographical distribution of species or communities
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to their present environment. Traditionally, they have been correlative rather

than mechanistic; an approach which characterises - in a statistical sense - the

complex response of a species to a complex, changing (as the process/species

relationship may vary) process (Barry & Elith 2006). The method relies on

the niche concept (Guisan & Zimmermann 2000), where the concept is seen as

either driven by the environmental requirements (the “requirement” niche) or

by the impact the species can have on the environment (the “impact” niche)

(Leibold 1995). As these concepts apply to different scales, only the requirement

concepts and environmental niche (see Austin (1992)) are usually considered in

SDM’s. The classification of a model is determined by its intrinsic properties

(Figure 5.2).

The bioclimate envelope modeling approach has its foundations in the ecologi-

cal niche theory (Pearson & Dawson 2003). As described by Pearson and Dawson

(2003), Hutchinson (1957) defined the fundamental ecological niche as comprising

“those environmental conditions within which a species can survive and grow.”

Furthermore, Hutchinson proposed that the fundamental niche would completely

define the ecological properties of a species as a “conceptual space whose axes

include all of the environmental variables effecting that species” (Austin, Nicholls

& Margules 1990, Leibold 1995).

The adequacy of models is dependent on ecological processes driving the true

distribution and the processes used to observe and model it. Understanding

these factors requires an understanding of the combined effects of a species’

ecology and the measurement-prediction process; and we must also distinguish

ecological patterns from statistical artifacts (McPherson, Jetz & Rogers 2004).

As discussed in Section 5.1.3, the validity of bioclimatic modeling for certain

applications therefore contributes to this uncertainty.

Ecological theory and observation suggest that the association between envi-

ronmental variables and species presence and abundance should be non random

(Barry & Elith 2006). However, the processes in this relationship are generally

complex with both abiotic and biotic factors possibly influencing the distribution
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and abundance of a species (Leathwick & Austin 2001). To compound this, and

despite the wide use of predictive models, many applications give insufficient

considerations to the error and uncertainty. These sources of “modeling error”

result from the interactions of two broad error groupings (1) deficiencies in the

data and (2) deficiencies in the model’s ecological realism.

5.1.2 Empirical and Mechanistic Models

Species distribution models can be loosely classed as either empirical or mecha-

nistic (Figure 5.2):

Empirical

In its purest form a bioclimate envelope can be defined as constituting the

climatic component of the fundamental ecological niche, or the ‘climatic niche.’

Therefore, this bioclimatic model in its purest form considers only climatic vari-

ables in their processing and not other environmental factors. Bioclimatic models

of this type are based on empirical relationships where the climate variable is cor-

related with the species distribution i.e., the best indicator of a species’ climatic

requirements is its current location. These correlation models then characterise

bioclimatic envelopes based on the realized niche since the observed species

distributions are, in reality, constrained by non climatic factors, including biotic

interactions (Austin et al. 1990, Guisan & Zimmermann 2000, Guisan, Theurillat

& Kienast 1998).

This methodology is used in the study of both present and future climate

scenarios. For example, the study by Hutley et al. (1995) showed that the

principal determinant of the distribution of eight European plant species, in

the present climate envelope, was the macro climate. In the case of possible

future climate envelopes, Bakkenes et al. (2002) modeled the climate envelope

for 1400 plant species by multiple regression analysis and used this to obtain

predictions about plant diversity and distributions in 2050; Peterson et al. (2001)

modeled the effect of climate change on the ecological niches of a bird family; and

Pearson et al. (Pearson, Dawson & P. M. Berry 2002) developed a model which
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Figure 5.2: A classification of models based on their intrinsic properties (Guisan
& Zimmermann 2000).

couples an artificial neural network with a climate-hydrological process model

to ensure “encapsulation of the full extent of future climate scenarios within

Great Britain without extrapolating outside of the models training dataset.” In

a later work (Pearson, Dawson & Lui 2003) a modeling framework was developed

which integrated land-cover data into a correlative bioclimatic model in a scale-

dependent hierarchical manner. In this, Artificial Neural Networks were used to

“characterise species’ climatic requirements at the European scale and land-cover

requirements at the British scale.”

Finally, these types of models are used extensively in predicting how climate

change will affect the world’s food crop productivity in the future. The results

of these are then used in policy development. For example, Parry et al. (2004)

considers the projected effects of “climate change on global food supply under

different pathways of future socio-economic development” using complex models.

Rosenzweig and Parry (1994) discusses how future scenarios, as calculated from

such models, might impact world food supply and how this will vary across the



CHAPTER 5. NICHE ENVELOPE MODELS 64

world.

Mechanistic

Other research has concentrated on determining the fundamental niche based

on the physiologically based mechanistic relationship between climate param-

eters and species response. Examples of this include the model developed by

Prentice et al. (1992) “to predict the global patterns in vegetation physiognomy

from physiological considerations influencing the distributions of different func-

tional types of plant;” the study by Haxeltine and Prentice (1996) which couples

vegetation distribution directly to biogeochemistry and the study by Sykes et

al. (1996); which developed a model to map the distribution of northern Euro-

pean major trees both in present and future climate scenarios. These bioclimatic

models aim to identify “the realized niche by modeling the physiological limiting

mechanisms in a species’ climatic requirements” (Pearson & Dawson 2003).

5.1.3 Limitations of Bioclimatic Modeling

There are fundamental limitations to the predictive capacity (the Model’s Real-

ism) of a bioclimatic model, regardless of the methodology used to characterise

the bioclimatic envelope (Pearson & Dawson 2003). Once a model is fitted, the

next logical step is to evaluate its fit to the modeling data and/or its predictive

ability. To determine the discrepancies between the model and data and/or its

predictive ability, a number of measures are available. However, it is important

to remember that the end use of the model dictates the most relevant measures

and datasets for evaluation (Barry & Elith 2006). For example, if a bioclimatic

model is used to predict a region’s viability for a particular crop, several factors

such as climate, soil type and nutrient levels are very important. However, given

that the last two variables can be ameliorated but climate cannot, the climate

variables − species’ distribution relationship is critical in choosing the model and

then in the assessment of the model’s limitations.
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Biotic Interactions

The difference between how a species functions on its own and when in the pres-

ence of other species (i.e. the inter-species interactions) can be significant but is

absent from most examples of SDM research (Guisan & Thuiller 2005). This was

seen as a significant flaw in bioclimate envelope modeling techniques by Davis

et al. (1998). Earlier, the work by Leibold (1995) highlighted the importance of

“environmental requirements and environmental impacts of species to highlight

the dichotomy between the responses of organisms to the environment and their

effects upon it.” However, when these models are applied at macro-scales the

impact of biotic interactions are minimised (Pearson & Dawson 2003). This is

most likely due to the dominance of the climate influences on species distribu-

tions at larger scales, a possibility that is supported by the success of bioclimatic

fundamental niche models in calculating present distributions across large ar-

eas. Examples of this include the hard-fern (Blechnum spicant) European scale

comparison of observed and simulated distributions by Pearson et al. (2002)

and the study by Beerling et al. (1995) which investigated the predictive ca-

pacity of climate response surfaces for the distribution of Japanese knotweed

(Fallopia japonica). Close agreement between observed and simulated distribu-

tions was observed, suggesting that the European distribution of this species was

climatically determined. Therefore, on a macro-scale bioclimatic models may be

suitable for making broad predictions as to the likely impact of climate change

on the distribution of a species (Pearson & Dawson 2003).

Evolutionary Change

It is usually expected that evolutionary change occurs over long time scales and

that the tolerance range of a species does not change as it changes its geographical

range. Because of this, in literature covering the biotic effects of past and poten-

tial future climate change, the genetic adaptation of a species is rarely considered

(as range shifts were frequently seen as the expected response). In both cases this

is not necessarily the case. With regard to the first case, the importance of the
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potential of rapid evolutionary change has been shown by studies of several but-

terfly species and the emergence of dispersive phenotypes (Thomas, Bodsworth,

Wilson, Simmons, Davies, Musche & Conradt 2001). These evolutionary changes

have emerged during the recent change in climate and are now showing a greater

ability to cross previous barriers. This is showing that rapid evolutionary change

is not confined to the range margins of highly dispersive species. There is also

growing evidence of species’ ability to rapidly adapt to regions outside its known

geographical boundaries. For example, the study by Woodward et al. (1990)

of transplant population experiments has shown the rapid in-situ adaptation of

the navelwort (Umbilicus rupestris) to a new geographical range. This winter-

green species occurs naturally on the western maritime areas of southern Britain

and, as a study of the impact of lower winter temperatures on this species, was

transplanted to the cooler climate of Sussex (Crowburrough) at an elevation of

157m (a location outside the natural climate range of the species).

The implications of rapid evolutionary change for bioclimate envelope mod-

eling are important since, for species that can rapidly adapt, the assumption of

niche conservatism (where adaptation is assumed slower than the rate of climate

change), will be wrong. However, it would be incorrect to assume that all species

have this ability, as scientific research suggests that many plant’s evolutionary

rates are to slow (e.g. Etterson and Shaw (2001)). Bioclimate studies have also

been used to show that adaptation to future climates will not occur for some

species (e.g. Huntley et al. (1989, 1995)).

In conclusion, niche models cannot account for adaptive changes in bioclimate

response. This limits the effectiveness of the models to species which are not

expected to undergo rapid evolutionary changes over the time-scale being studied.

Species Dispersal

The unprecedented rates of climate changes anticipated to occur in the future,

coupled with land use changes that impede gene flow, can be expected to disrupt

the interplay of adaptation and migration of a species. This may be of less
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significance when using bioclimate mapping for future crop predictions, but it

is important when studying a specie’s ability to adapt to environmental change

and the ability of the species to disperse, especially in longer time-scales. For

example, palaeoecological studies of the late-Quartery have shown that terrestrial

plant and animal species adapt to long-term climate change by migrating to track

the changing environment rather than evolving to adapt to it (Collingham, Hill

& Huntley 1996).

The ability of a species to adapt to changing climate is determined by the in-

dividual dispersal characteristics of a species. Bioclimate envelope models do not

account for species dispersal mechanisms, but instead aim to predict the poten-

tial range of organisms under changed climate. Though there is great potential to

couple bioclimate envelope models and dispersal simulations (Carey 1996, Peter-

son, Sanchez-Cordero, Sobero’n, Bartley, Buddemeier & Navarro-Siguenza 2001),

it is apparent that current predictions of potential distributions may differ greatly

from actual future distributions due to migration limitations (Midgleya, Hannah,

Millara, Thuiller & Booth 2003).

The ability of a species to disperse is also a function of the structure of

the landscape (such as mountain ranges) and fragmentation of natural land-

scapes (through human induced land use changes that impede gene flow and

can be expected to disrupt the interplay of adaptation and migration (Davis &

Shaw 2001)). In these cases predictions derived from bioclimate models will be

erroneous. Therefore, for these predictions to be accurate, it will be necessary

to have a good understanding of a species’ ability to migrate through dynamic

heterogeneous landscapes within the constraint of changing bioclimate envelopes

(Pearson & Dawson 2003). It is also important to remember that bioclimate

studies across long time frames (such as the study by Davis and Shaw (2001),

which studied the last 25 thousand years - the late Quaternary Period) will not

provide the detail required to study subcontinental changes across a shorter time

frame, such as 100 years.

These models may also identify the broader distribution trends but not the
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finer details which may be due to human influenced disruption of species-climate

equilibrium. Therefore, the degree to which a species can occupy its full ecological

niche depends on the scale of the model, the dispersal ability of the organisms

and the history and biology of the species (Pulliam 2000, Tyre, Possingham &

Lindenmayer 2001).

Model Specification Error

As discussed by Barry and Elith (2006), “With a well-specified model and an

adequately large random variable sample from the population, the statistical

component of error is easily quantified and incorporated into predictions. But

in most practical settings, the data sample is rarely random and the model not

fully adequate, and these factors combine to induce error in the final predictions.”

Therefore, the principal questions relating to a model’s accuracy are:

(1) Does our model approach the true model ?

Most studies conclude that, provided the ‘true’ model is nested within the model

specification, the model estimated using maximum likelihood or other consistent

techniques will converge to the true model as the sample size increases (Welsh

1996). If the ‘true’ relationship is not contained in the model, then over and

underestimation will typically result in different parts of the covariate matrix.

This will result in errors in inference and prediction and cannot be fixed by

increasing the sample size.

(2) How do we estimate the response surface ?

A response surface maps how the probability of a species’ presence varies within

the environmental variables. For example, Figure 5.3 shows a hypothetical re-

sponse surface where probability of occurrence depends on rainfall and tempera-

ture. Different techniques approach the problem of trying to estimate a complex

surface with limited data in different ways, but all try to approximate the surface

by simple components. For example, as discussed by Barry and Elith (2006), in

climate envelope approaches:

1. The shape of the response surface is mostly ignored.
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Figure 5.3: A response surface showing the response of the species to rainfall (rf)
and temperature (temp). Diagram from Barry et al. (2006)

2. The use of percentiles implies a belief in core and non-core habitat and

presupposes uni-modality of response pattern to a gradient.

3. Envelope approaches seek to delineate the non-zero components of the re-

sponse along each gradient.

4. The region is assumed to be rectilinear and oriented with the environmental

axes.

5. Distance-based approaches use observations close to the point that is being

predicted to asses suitability. Thus they attempt to model the response

surface as a local smoothing.

Generally, regardless of the model and its type, errors in model specifications

are essentially ubiquitous and the majority of models are typically simpler than

the real-world complexities they seek to describe.
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5.1.4 Present and Future Predictions: Empirical versus

Physiologically Based Models

It may be argued that the bioclimate envelope determined with a physiologically

based model will better represent a species’ absolute climate limits than that

identified through the empirical (correlative) approach (which assumes equilib-

rium). Examples of work investigating this not-in-equilibrium situation can be

found in Woodward (1990) and Peterson et al. (1999). This situation exist

in many Australian ecosystems such as the Tasmanian temperate rain-forests,

which have remnants of species from an earlier, wetter climate period, as well

as the Eucalyptus species. Therefore, a large event (such as a severe bushfire)

would shift the equilibrium in favor of the more fire tolerant species, resulting in

the system being dominated by the Eucalyptus.

Despite the advantages of these more complex models, when using a phys-

iologically based model type, the limitations of the model’s ability to account

for nonclimatic influences should be well understood as they will increase the

model’s inaccuracies (Pearson & Dawson 2003). More specifically, when applied

to the prediction of future distribution: (1) Predicted future species distribu-

tions based on the physiologically determined fundamental niche are unlikely to

be as accurate as those based on correlations between the observed distribution

and the current realised niche and (2), there is increased evidence that the con-

cept of undifferentiated species comprising individuals with broad tolerances is

not correct as intra-species variation makes it impossible to define precise limits

to a species’ climatic tolerance. The potential importance of rapid evolution-

ary change means that some species’ climatic tolerance may alter in the future,

making the fundamental niche unstable over time.

All correlative species distribution models assume that the modeled species

is in a pseudo-equilibrium with its environment (Barry & Elith 2006, Guisan &

Thuiller 2005, Guisan & Theurillat 2000). This issue has been raised in the liter-

ature (see Araújo et al. (2005)) but this has not been extensively covered. There-
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fore, an important criticism of this is that species distributions as observed today

may not be in equilibrium with the current climate, nor indeed are they necessar-

ily determined primarily by climate (Pearson & Dawson 2003, Woodward 1990).

The limit on species distribution may be determined by a physiological response

to the environment, but the strength of this response may be influenced by inter-

actions with other species (Leathwick & Austin 2001). Other influencing factors

may be physical barriers to dispersal and/or human management. As a result of

this, fundamental niches in correlative bioclimate envelope methodologies may

not represent absolute limits to species-ranges resulting in present and future

distributions showing very different realised niches (Pearson & Dawson 2003).

Even though biological system are complex, the successful use of biocli-

matic envelope models to simulate the distributions of vascular plants in Europe

(Beerling, Huntley & Bailey 1995, Pearson et al. 2002, Huntley, Berry, Cramer

& Mcdonald 1995) supports the hypothesis that continental-scale distributions

are principally determined by climate (but this may not apply to all species).

These models may also identify the broader distribution trends but not the finer

details which may be due to human influenced disruption of species-climate equi-

librium. Therefore, the degree to which a species can occupy it full ecological

niche depends on the scale of the model, the dispersal ability of the organisms

and the history and biology of the species (Pulliam 2000, Tyre et al. 2001).

While it is argued that physiologically based methods are superior, they also

have limitations that, when applied at appropriate scales, make them no more

accurate than correlative techniques. The constricting of fundamental response

curves (in realised niche models) has been investigated (Austin et al. 1990), but

the uni-laterality of biotic versus abiotic pressures has only rarely been discussed

in the literature (Guisan et al. 1998). Correlative techniques also have the advan-

tage of not requiring physiological data and hence can be applied to a larger num-

ber of species. This enables conclusions, regarding potential impacts of climate

change, to be made on a wide range of species, including current and potential

crop species (Jarvisa, Lanec & Hijmans 2008, Hijmans & Graham 2006).
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5.1.5 Application of SDM and the Hierarchical Modeling

Framework

Pearson and Dawson (2003) suggested that the use of bioclimate envelope models

to identify a species’ suitable climate space should form an important step in

a broader modeling framework. The framework would be a hierarchy of factors

operating at different scales. Therefore, the bioclimate envelope models would be

used at a continental scale where climate is the dominant factor. Providing that

the higher level conditions are satisfied, the factors further down the scale can be

included such as topography and land type at local scales. Figure 5.4 illustrates

how this might apply to a specific area, where there is sufficient information about

the environmental variables. As one would expect, there would be differences in

the ‘scales domains’ between different continental regions.

5.2 Uncertainties in Ecological Modeling: Data

Introduced Error

This section summarises the principal ways in which uncertainty in input data

can influence the prediction results of a model.

Missing Predictor Layers

No study aims to use a comprehensive suite of all known direct predictor data

layers as, even with all these covariates known, prediction is not perfect because of

other variations (Tyre et al. 2001) such as low genetic diversity in a crop species.

The predictor variables of models are almost always incomplete in time and

space, over the range of scales at which the processes operate. They may also be

insufficient to explain the suite of species’ interactions and historical and current

disturbances that can affect a species’ occurrence (Horne 1983, levin 1992). This

lack of predictor variables missing from most models (i.e the missing covariates),

generally reflects a lack of knowledge of which environmental factors constrain



CHAPTER 5. NICHE ENVELOPE MODELS 73

Figure 5.4: Schematic example of how different factors may affect the distribution
of species across varying spatial scales. Characteristic scale domains are proposed
within which certain variables can be identified as having a dominant control
over species distributions. Approximate spatial extents have been assigned to
categories of scale based in part on Willis & Whittaker (2002). It is assumed
that large spatial extents are associated with coarse data resolutions, and small
extents with fine data resolutions. Diagram from Pearson et al. (2003)

the distribution of a species throughout its range and a lack of spatial data

sets describing attributes known to be important. As specified by Barry and

Smith (2006), a “sufficient” set of covariates may be defined as that which allows

a model to be specified that does not have significant spatial errors or global

errors, with respect to a specific context and end use. Unfortunately, even for

mechanisms that are well understood, directly relevant quantitative data that can

be used for modeling are often unavailable. As discussed by Ferrier, Drielsma,

Manion and Watson (2002), these entities of complex ecological systems that

“have not yet been discovered, let alone had their distributions mapped at a

spatial scale appropriate for regional conservation planning.” To minimise this

limitation, “a widely applied solution to this problem is to use those entities for

which we do have distributional information as surrogates for spatial pattern

in biodiversity as a whole. However, even for a surrogate species or groups of

species, available information on fine-scaled spatial distribution is usually far

from complete.”

Small sample size in known predictor layers

As expected, in the layers chosen for the bioclimate mapping, the existence of

adequate information on the spatial distribution of biodiversity is very important.
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For example, models that have a spatial interpolation component need adequate

local sampling in the species spatial range as this cannot be estimated accurately

with small or unevenly distributed samples. Unfortunately, such information is

usually grossly incomplete and problematic because absence data are generally

unavailable, sample sizes are often small and geographic bias and spatial error in

the data are generally known but not corrected or simply unknown (Hijmans &

Spooner 2001, Graham, Ferrier, Huettman, Moritz & Peterson 2004, Wieczorek,

Guo & Hijmans 2004, Rowe 2005). Also, small sample sizes will be a limitation if

it is insufficient for a particular type of model. For example, in presence absence-

data, sample size needs to be assessed in relation to the least frequent class rather

than a count of the total number of sites (where that class is found). A species

may be genuinely rare (i.e. not due to lack of measurements), but still be an

inadequate sample for these modeling methods (Barry & Elith 2006).

In order to help resolve this limitation, the availability of collected data has

become more easily accessible as a result of data generation, improvement and

sharing initiatives between natural history museums and the broader scientific

and conservation communities (Graham et al. 2004, Tsutsui 2004). Also, work is

being done to document the effects of data sparsity on a model’s accuracy. For

example, Elith et al. (Elith, Graham, Anderson, Dudk, Ferrier, Guisan, Hijmans,

Huettmann, Leathwick, Lehmann, Li, Lohmann, Loiselle, Manion, Moritz, Naka-

mura, Nakazawa, Overton, Peterson, Phillips, Richardson, Scachetti-Pereira,

Schapire, Soberon, Williams, Wisz & Zimmermann 2006) showed that accurate

models can be made with presence-only data and other studies have explored

how the number of occurrences and a bias in data influences a model’s accuracy

(e.g. see Mcpherson et al. (2004) and Hernandez et al. (Hernandez, Graham,

Master & Albert 2006)).

In summary, modeling options for a small number of presence records or

limited predictor layers include (1), create a habitat suitability index model.

This method is based on the judgments of experts who identify critical variables

that can be used to identify suitable habitat through a conceptual model of how
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the species responds to the environment. (2), Use a statistical model where

the number of candidate variables is limited to those that can be supported

numerically. However, restricting a model to few predictor variables averages the

response over all the omitted variables, and may result in a misleading model.

(3) Use models that can be used to model either the collective properties of the

biota (Ferrier, Watson, Pearce & Michael 2002), or to make predictions for an

individual species from these collective properties. This type of model, which

is called a “community” model, uses information from a wider set of species to

construct a context in which individual species are described (Barry & Elith

2006).

Biased samples

The ideal data for modeling are collected using a planned sampling regime, struc-

tured to sample the major environmental gradients likely to be important for

the species and covering the spatial extent of the region of interest (Austin &

Heylingers 1989, Cawsey, Austin & Baker 2002). Unfortunately this ideal is

seldom (if ever) achieved as:

1. Species data may not have been collected for the purpose of the study

and may comprise of an ad-hoc collection of existing data that is biased in

geographical and environmental space.

2. The modeled relationships are dominated by the patterns at sampled sites,

rather than the true pattern of the entire study area. This can lead to

marked spatial variation in prediction uncertainty (spatial error).

3. In situ samples can be biased by inappropriate sampling techniques and

less than adequate samples, which could introduce unknown biases.

The most obvious way to minimise bias related error is to supplement the

current datasets with new data from targeted areas. The other is to use ex-

ploratory statistical techniques to diagnose the bias. These include making plots
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in geographical space, analysing site density in environmental strata and using

statistics to measure distances between sets of sites in multivariate environmental

space.

Lack of absence records

Ecological theory and observation suggest that the association between environ-

mental variables and species presence and absence should be non random (Barry

& Elith 2006). However, the processes in this relationship are generally complex,

with the reason for the absence of a species being just as important as the reason

for its presence. This presence-absence relationship is often not directly related,

as the abundance and distribution of a species can be due to a combination of

both abiotic and biotic factors (Leathwick & Austin 2001). Therefore, a model

fitted with presence-absence data is most likely to give a superior result to pres-

ence only models (Barry & Elith 2006). Despite this, bioclimate models that use

presence-only data are still commonly used, in part, because of the limitations of

available data sets. Data sets without absence records are common, particularly

in natural history collections, and their development and application is ongoing.

Errors in variables

Predictor variables can have errors that can be random and/or biased. This can

occur when input layers are interpolated from point data and will have errors

consistent with those of the interpolation method and the quality of the original

point data. As stated in Barry and Elith (2006), “the problem of such errors

in predictor variables can become overwhelming, and a common reaction is to

ignore them, an approach that can have some justification in a statistical sense.”

An example of when “ignoring” is valid is where the errors at the prediction sites

are the same errors as those for model building. In this case the error can be

ignored as “in cases where the prediction sites have the same errors as those used

for model building, the model will already reflect the errors and the predictions

will be consistent with the data.” (Barry & Elith 2006).
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However, even when such errors are ignored, large errors in the result can

arise if there is error (in the input layers) of differing structure. For example, the

relationship between “proximal” or “distal” variables may change significantly

with location across the area being studied (Austin 2002, Barry & Elith 2006).

Subtle errors related to this phenomenon are particularly likely when predictions

are made for a geographical area X, from a model that was built using data

describing a geographical area Y . Another possible source of error that can

compound this problem is that strong spatial patterns in predictor variable errors

will inevitably produce local prediction errors.

Interactions between data errors and model mis-specification

“Interactions between data and model errors can be illustrated through the im-

pacts of missing covariates on a model robustness (Barry & Elith 2006).” A

missing covariate is a variable that would provide additional predictive power if

it was known and observed. As these are often poorly described, “the covari-

ates in most models are typically coarse correlates with more proximate (closer)

factors” controlling the species’ prediction distribution (Barry & Elith 2006), as

described in (Austin 2002).

Therefore, as the use of a correlated variable assumes that the correlation

structure between the fitted predictor and it more proximate components is sta-

ble throughout the sampling domain, departures from this will result in spatially

correlated errors. Also, significant spatial patterning in residuals (i.e. large local

errors) are likely if missing covariates have a non random spatial distribution.

This is a feature commonly observed in soil attributes illustrated in Figure 5.5.

The impacts of this are summarised in Table 5.2. This example shows the value

of the information in the soil properties layer. However, as is clear from the

discussion in Chapter 3.3 (but relevant to scientific fields beyond Precision Agri-

culture) the quality of the soil property map is just as important as its presence.
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Figure 5.5: An illustration of the impact of a missing covariate on modeled
predictions of species abundance. The X axis is in geographical space and cir-
cles represent the observations. When the covariate is missing, predictions are
averaged across both soil types. Diagram from Barry and Elith. (2006)

Model Model form error Impact of missing co-
variates

Modeling recommenda-
tions

boxcar High. Assumes in-
dependent rectilinear
bounds and that all
variables are known.
Will cause over predic-
tion with few variables
and under prediction
with many variables.

Increase area predicted
introducing spurious
predictions

Distance-
based

Medium. Esti-
mates model non-
parametrically but
difficulties arise with
data density and the
definition of distance.

Algorithm will not
choose the appropriate
data points as being
‘close’ and biases will
result.

Work needs to be
performed to assess
best distance measure.
Cross validation?

Regression High-low. Flexible
techniques exists such
as GAM and boosting.
Simple model may suf-
fer from considerable
specification bias.

Spatial correlation in
residuals.

Use flexible models un-
less clear theoretical
reasons to ignore. Con-
sider spatial patterns of
errors to diagnose mod-
els problems. Truncate
response range.

Table 5.2: Summary of types of model error and impact of missing covariates.
Modification of table from Barry & Elith (2006).
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5.3 Emperical Bioclimatic Models

As discussed in Section 5.1.1, Emperical Bioclimatic Models define the ecolog-

ical niche primarily by the climate of the area being studied. These models

use distribution records as surrogates for explicit organism performance param-

eters. Therefore, relatively modest data requirements allow this class of model

to be applied to a wide variety of ecological estimates of potential distribu-

tions (Carpenter, Gillison & Winter 1993). However, the fundamental niche

species distribution modeling techniques which fall into this category do vary

significantly in their analysis methodology and data inputs. More specifically,

the species data can be simple presence, presence-absence or abundance obser-

vations based on random or stratified field samplings or observations obtained

opportunistically.

Modeling techniques that require absence or background data include the

Generalised Linear Models (GLMs), Generalise Additive Models (GAMs) and

Multivariate adaptive regression splines (MARS) (Hastie, Tibshirani & Friedman

2001, Guisan, Edwards & Hastie 2002) − these are “Regression models”, a class

of methods which, in a univariate setting, fit a curve through a set of points

using some goodness-of-fit criterion (Barry & Elith 2006, Yee & Mitchell 1991).

Other commonly used modeling techniques are Classification and Regression Tree

analysis (CART) and Artificial Neural Networks (ANN) (Thuiller 2003).

Community models which fall under the empirical classification include gener-

alised dissimilarity modeling (Ferrier, Drielsma, Manion & Watson 2002), neural

networks (e.g. where Olden (2003) applied community predictive models that ex-

plicitly considered species membership, and thus each species’ functional role, in

the community) and multivariate adaptive regression splines (e.g. where Leath-

wich, Rowe, Richardson, Elith and Hastie (2005) used the multivariate adaptive

regression splines (MARS) technique to describe non-linear relationships between

species environment variables.

Modeling techniques that require only presence data include BIOCLIM (Nix
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1986, Busby 1991): a Climate Envelope Model that uses species presence records

to create a hyper-space which summarize how these records are distributed with

respect to environmental variables, DOMAIN (Carpenter et al. 1993): a distance-

based technique that estimates the environmental similarity using the Gower

distance metric, between a site of interest and the nearest presence record in

environmental space and LIVES (Carpenter et al. 1993): which uses a limiting

factor method that postulates that the occurrence of a species is determined only

by the environmental factor that most limits is distribution. This class of pre-

dictive models is used extensively for a range of practical and scientific purposes

as it has the ability to cope with presence only data, a common limitation of

biological datasets.

5.3.1 Climate Envelope Models

As described by Farber (2003), climate envelope models “involve two conceptual

steps. The first step is the projection of the recording sites from the map into

a multidimensional space defined by a set of climatic variables. The purpose

of this step is to identify the climatic niche (also termed ‘climatic envelope’

or ‘climatic profile’) of the target species. The second step is the projection

of the climatic niche from the multidimensional climatic space back into a two

dimensional geographic space (i.e. a map).” The second step mentioned is

termed “homoclime matching .... since a grid of the study area is scanned for

locations with similar conditions to those of the species climatic profile” (Farber

& Kadmon 2003). As described in Faber (2003), “the basic procedure applied

for constructing these rectilinear models consisted of five steps...”

1. assembling the presence observations of the relevant species,

2. determining the climatic characteristics of each observation

3. removing outliers by choosing a percentile range
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4. constructing a rectilinear climatic envelope based on the distribution of the

remaining observations within the climatic space, and

5. projecting the climatic envelope back to the geographic space.

With the major limitations of climate envelope models summarised as:

1. The rectilinear nature of the climatic envelope, which bounds the cli-

matic niche of the species within the multidimensional space by straight

lines/surfaces. This enveloping approach may overestimate the distribu-

tion boundaries of the modeled species if climatic variables are correlated

(Skidmore, Gauld & Walker 1996).

2. The fact that all climatic combinations within the boundaries of the cli-

matic envelope are considered equally suitable for the modeled species

(Shao & Haplin 1995).

3. Sensitivity to outliers, which originates from the boundaries of the climatic

envelope being defined by the outermost observations. To reduce the im-

pact of outlying observations on model predictions, users of climate enve-

lope models often chop the outermost values of each climatic variable by us-

ing only a certain percentile range of the data (Busby 1991, Kershaw 1997)

(see Figure 5.6). By reducing the performance of models by reducing the

probability of making false predictions, this procedure may improve. How-

ever, it may also cause deterioration in predictive accuracy by increasing

the rate of incorrect predictions of absences (Farber & Kadmon 2003).

BIOCLIM

The BIOCLIM “boxcar” ecological niche bioclimatic model is a popular and

relatively statistically simple empirical climate envelope model, that is often used

to predict the distribution of a species in a chosen area (Nix 1986, Beaumont,

Hughes & Poulsen 2005). It uses the presence records and environmental data
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Figure 5.6: Schematic illustrations of some limitations of rectilinear models. Cir-
cles represent the distribution of observations in a climatic space defined by two
hypothetical variables. Gray circles are observations recognized as outliers. (a)
In cases of correlations or interactions between climatic variables, the rectilinear
model tends to overestimate the domain of climatic combinations represented by
the data. (b) The boundaries of the climatic envelope are determined by the out-
ermost data, and are therefore, sensitive to outliers. Using a certain percentile
range (e.g. 5-95%) can reduce the impact of such outlying observations on model
predictions. (c) Removal of outliers using the percentiles-range method may
prove inadequate if observations are outliers in a multidimensional sense without
being outliers (marginal) in any single dimension (Farber & Kadmon 2003).
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of temperature max, temperature min and precipitation to form a profile for a

species that summarizes how the known presences are distributed with respect to

the environmental variables. The envelope defined specifies the model in terms

of upper and lower tolerances, and does not allow for regions of absence (i.e.

“holes”) within the envelope. Also, as the distribution is solely predicted on the

basis of bioclimate (and providing a first approximation to limits to distribution)

the influence of other environmental factors and interactions are excluded (Nix

1986). A BIOCLIM model has two steps:

(1). The first is the calculation of the bioclimatic variables for each raster cell in

the area being studied. They are calculated from the temperature and precipita-

tion records of each month to give, for example, the mean temperature of the grid

points or the maximum rainfall in the coldest month of the year. These, often

referred to as the BIO layers, are the bioclimatic environmental variables that

form the multi-dimensional space (a hyper-rectangle or environmental envelope)

that defines the environmental domain of the species.

The number of bioclimate layers used in the model, and their importance

in a particular study, varies. For example, Beaumont et. al. (2005) discusses

how BIOCLIM can summarise up to 35 bioclimatic variables, but that they may

not all be needed (or relevant) for the study of a particular specie’s distribution.

This is considered important as it may lead to over-fitting of the model, which

in turn may result in misrepresentations of a species’ potential range. The im-

plementation of the BIOCLIM model used in this study uses a maximum of 19

layers:

1 = Annual Mean Temperature

2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))

3 = Isothermality ((bioclimate 2/bioclimate 7) * 100)

4 = Temperature Seasonality (standard deviation * 100)

5 = Max Temperature of Warmest Month

6 = Min Temperature of Coldest Month

7 = Temperature Annual Range (bioclimate 5 - bioclimate 6)
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8 = Mean Temperature of Wettest Quarter

9 = Mean Temperature of Driest Quarter

10 = Mean Temperature of Warmest Quarter

11 = Mean Temperature of Coldest Quarter

12 = Annual Precipitation

13 = Precipitation of Wettest Month

14 = Precipitation of Driest Month

15 = Precipitation Seasonality (Coefficient of Variation)

16 = Precipitation of Wettest Quarter

17 = Precipitation of Driest Quarter

18 = Precipitation of Warmest Quarter

19 = Precipitation of Coldest Quarter

These layers represent annual trends, seasonality and extreme or limiting

environmental variables. A quarter of the year (a three month period) is defined

as a “quarter.” Most of the algorithms that calculate these rasters are not

continuous functions and therefore not differentiable. Therefore, the sensitivity

of the BIOCLIM model to uncertainty in the temperature and precipitation input

layers can only be investigated using the Monte Carlo simulation method. The

algorithms which calculate the Bioclimate Grids are described in Appendix B.

(2). The second step is the statistical component of the model that calculates

the ecological niche. It calculates this habitat map by ranking each location

according to its position in the species environmental profile. To calculate this

profile, the model treats the bioclimate raster data values at the locations where

the species is known to occur, as multiple one-tailed percentile distributions; that

is, it creates a percentile distribution for each bioclimate layer (see Figure 5.7).

As the percentile distributions are one tailed, the 5th percentile is treated the

same as the 95th percentile in the calculation of the prediction.

From the information in these distributions, a prediction value can be assigned

across the area being studied. For each raster cell in this area, the values of

each bioclimate layer variable are assessed to determine their position in the
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Figure 5.7: The frequency distribution for the Annual Mean Temperature at grid
locations where a species is known to survive. Plot taken from (DIVA-GIS 2005).

percentile distribution. The lowest score across environmental values for a grid

cell is mapped and can be “null” (outside the observed range of values) or range

from 0 (low) to the theoretical maximum of 50 (very high). Therefore, the

percentile assigned to the grid cell is the minimum percentile that is matched

in all bioclimatic parameters. If one or more of the bioclimate layers at a grid

location has no agreement within the chosen span, then the prediction assigned

(to that grid location) will be null. Alternatively, if the minimum percentile is 5

for one bioclimate layer, but the others are higher, the grid location will be set to

the 5th percentile. Finally, the maps produced by this process are grid-based and

classify each cell into one of several ranked classes of environmental suitability

for the species (Barry & Elith 2006).

A graphical representation of the BIOCLIM model, climate prediction of

the known current climate, is shown in Figure 5.8. Its components are (a) the

current climate rasters, (b) the bioclimate layer generation algorithms (c), the

known species location file (d) the component of the model which determines the

ecological niches and (e) the species presence prediction grid map.
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For a study of BIOCLIM’s sensitivity to input uncertainty to be represen-

tative of the uncertainties in the input data rasters, several factors should be

known. These include the source of the raw data (such as a temperature mea-

surement stations) and the methods used in preparation of raster inputs (such

as another model) from that raw data. Also, the uncertainty and limitations in

either the raw data or the models used is usually documented in the literature.

Knowing these, an estimation of how representative an input raster is of a real

environment, can be calculated.

5.4 Summary

To summarise, the ecological niche models relate field observations to environ-

mental predictor variables to calculate the species distribution model of that

species. This modeling is also frequently referred to as “Bioclimatic Modeling.”

There are several types of models which fall into this classification, each with

their own strengths that best suite the system to be studied.

There is extensive literature on the use, limitations and continuing develop-

ment of these models. Also, the influence of uncertainty and error in the model’s

inputs, on the accuracy of its prediction is a growing area of research.

The BIOCLIM “boxcar” ecological niche bioclimatic model, is a popular and

relatively statistically simple empirical climate envelope model, that is often

used to predict the distribution of a species in a chosen area. Therefore, there

is ongoing research into improving the accuracy of its predictions as well as

understanding its limitations.

To accurately quantify this accuracy requires detailed historical knowledge of

the input raw data and how this data has been processed to produce the input

grids of the model. Of particular importance are the models and/or spatial

statistical methods used to produce the climate input grids, their accuracy and

limitations.



Chapter 6

Input Climate Layers

As discussed in Section 5.3.1, the BIOCLIM model inputs are (a) bioclimate grid

layers and (b) a species presence point layer. The bioclimate grids are calculated

from twelve temperature maximum, twelve temperature minimum and twelve

precipitation grids (one for each month in each case, thirty six total). These

grids were calculated from the data collected at meteorological stations that

have passed the necessary quality control criteria (this climate grid generation

step is the equivalent of process step 1 discussed in Section 2.4 and illustrated in

Figure 2.2). This chapter discusses:

1. the accuracy of the climate point data,

2. the interpolation method(s) used to generate these monthly climate grids

(from the station data) and

3. briefly discusses the uncertainties in future predictions.

The monthly climate grids used are the “Worldclim - Gobal Climate Data”

grids (Worldclim - Global Climate Data 2009) and represent (a) current condi-

tions (interpolations of observed data, representative of 1950-2000) and (b) two

future conditions (downscaled from the Global Climate Model (GCM) output,

IPPC 3rd Assessment Report (2001)). Present and future grids were downloaded

from http://www.worldclim.org/current and

88
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http://www.worldclim.org/futdown respectively. The data grids used have a

spatial resolution of 2.5 and 5.0 arc minutes.

The current conditions WorldClim grids were interpolated by Hijmans, Cameron,

Parra, Jones and Jarvis (2005), primarily from the Global Historical Climatology

Network (GHCN) climate dataset. The monthly future climate projection grids

were calculated from the future climates modeled by the CCCMA, CSIRO and

HADCM3 models (Flato et al. (2000); Gordon et al. (2000)) and the emission

scenarios reported in the Special Report on Emissions Scenarios (SRES) by the

Intergovernmental Panel on Climate Change, IPCC (http://www.grida.no/

climate/ipcc/emission/). From these, the CSIRO model A2a and B2a 2050 grids

were used. Each future scenario described one possible demographic, politico-

economic, social and technological future as expected for the year 2050. As

discussed by Rödder (2009), “scenario B2a emphasizes more environmentally

conscious, more regionalized solutions to economic, social and environmental

sustainability. Compared to B2a, scenario A2a also emphasizes regionalized so-

lutions to economic and social development, but it is less environmentally con-

scious.” Therefore, of these two scenarios, the A2a grids represent the warmer

climate conditions as expected with higher emissions.

The research methods applied to minimise the uncertainty in the data grids

is discussed in the following Sections: Section (6.1) summarises the history of

the GHCN (meteorological station) point data and the statistical quality control

methods used to select which meteorological stations were of sufficient quality

for use. Section 6.2 discusses the interpolation methods used by Hijmans et al.

(Hijmans, Cameron, Parra, Jones & Jarvis 2005) to generate the WorldClim

current grids from the point data and the uncertainty in the generated grids.

Uncertainty in the future climate predictions is discussed in Section 6.3.

The other input layer shows where the species of interest are known to ex-

ist. The spatial uncertainty in this input is insignificant when compared to the

climate raster grid cell size and has, for this reason, has been excluded in this

study.
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6.1 The Global Historical Climatology Network

The Global Historical Climatology Network (GHCN Monthly) “contains histor-

ical temperature, precipitation, and pressure data for thousands of land sta-

tions worldwide” (NOAA 2010a). Its aims are a continuation of many efforts

to produce long−term monthly global climate databases. The earliest temper-

ature record is greater than 100 years, with the average being ≈60 years old.

Examples of where data has been sourced include the World Weather Record

which started in 1923, the National Centre for Atmospheric Research’s annually

published World Monthly Surface Station Climatology dataset and the Jones

dataset (Jones 1994, Jones 1995). The first release of the GHCN was in 1992

(Vose, Schmoyer, Steurer, Peterson, Heim, Karl & Eischeid 1992) and contained

quality−controlled monthly climatic time series from 6039 land based temper-

ature stations world wide. This information has been used extensively in basic

form and derived products such as gridded temperature anomalies (Peterson &

Vose 1997). It is a an important and popular dataset in climate change research

(e.g. Brown et al. (1993); Groisman Karl and Night (1994)).

This database was later enhanced to the GHCN Version 2, which is used in

this thesis. Improvements in the Version 2 dataset (a) the increased number of

data points included, (b) the new suite of quality control checks and (c) the homo-

geneity testing and adjusting techniques (Peterson & Easterling 1994, Easterling

& Peterson 1995, Easterling, Peterson & Karl 1996) applied to the data. As

discussed in Peterson and Easterling (1994) and Easterling and Peterson (1995),

for some stations “adjusted” data has been through several homogeneity control

procedures (Hijmans, Cameron, Parra, Jones & Jarvis 2005). The geographical

locations of all the stations used is shown in Figure 6.1

6.1.1 Dataset Extent and Quality

A principal aims of the GHCN project is the continuing improvement of the

GHCN dataset quality and size (number of stations, temporaral length of record).
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A

B

C

Figure 6.1: Locations of weather stations from which data was used in the in-
terpolations. (A) precipitation (47 554 stations); (B) mean temperature (24 542
stations); (C) maximum or minimum temperature (14 930 stations). Diagram
from Hijmans et al. (2005)



CHAPTER 6. INPUT CLIMATE LAYERS 92

Resulting from this work, the main enhancements in the second version of the

GHCN dataset include:

1. Data from additional stations to improve regional scale analysis.

2. The addition of maximum−minimum temperature data to provide impor-

tant climate information not available in mean temperature alone.

3. Detailed assessments of data quality to increase the confidence in research

results.

4. Rigorous and objective homogeneity adjustments (in both space and time)

to decrease the effect of non climatic factors on the time series.

5. Detailed meta data such as topography and population.

6. An infrastructure for updating the archive at regular intervals.

The theory and methods applied in the preparation of the GHCN dataset is

discussed in Peterson and Vose (1997). The methodology used to address the

limitations in the data quality is discussed in Peterson and Griffiths (1997) and

Peterson et al. (1998). The majority of these and other publications discuss

improving the quality of the temperature record, so the majority of the following

sections will discuss the methods used in testing the quality of the temperature

record (Section 6.1.2). Section 6.1.3 discusses the methods applied to increase the

number and quality of high quality precipitation stations in the GHCN dataset

Durre, Matthew, Menne, Gleason, Houston and Vose (2010). Durre et al. (2010)

discusses the most recent development of the statistical analysis methods and

software development to automate this analysis.

6.1.2 Temperature Record Improvement

As cited in the GHCN Monthly Version 2 temperature records website (NOAA

2010c), the methodology used in the quality control of the GHCN temperature
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data is discussed in Peterson and Vose (1997) and Peterson, Vose, Schmoyer and

Razuvaev (1998). It has three steps:

Examination for clearly visible low quality data

Quality compromised by, for example, (a) homogeneity-adjusted data which

could not be quality tested by comparison with the original data, (b) monthly

data that were derived from incomplete synoptic reports (which caused unac-

ceptable biases and errors) and (c) significant processing errors.

Time series analysis

The second stage examined individual station time series for anomalies such

as stations that were temporally out of phase. Methods used include clima-

tological evaluation (which compared the stations’ data to the climatology of

that location (Legates & Wilmott 1990, Peterson & Vose 1997)) and the cu-

mulative sum test (to look for changes in the mean as an indicator of gross

discontinuities). As described in Peterson (1998) and demonstrated by Rhoades

and Salinger (1993), this method is used in determining the homogeneity of a

station.

Individual data points

The final stage, using statistical methods, determined if the data points were

outliers in both time and space (temporal spatial). As described in Lazante

(1996), this method flags all data points that have greater than 2.5 standard

deviations (σ). These were then compared to neighbouring stations to determine

if the extreme value was an extreme climate event in the region. It was found

that over 85% of the points were valid. Those that were invalid were removed

from the main GHCN data file.

This method gives less weight to an observation the further it is from the

centre of the distribution (Lanzante 1996), with values over 5 σ from the median

being flagged with a 0 weight. It is a robust method because it uses almost all

the data and the weighting factor makes it resistant to outliers. However, as with

other methods, the more data points one has the more reliable the assessment of

data. Therefore, the variance of each month was determined by also using the
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data from the months before and after the month (of interest). As mentioned

in Peterson et al. (1998), this three month approach produced excellent σ for

the quality control of the temperature data. This statistical method, for quality

control purposes, can have limits due to its sensitivity to outliers. In particular,

a large outlier can inflate the σ such that smaller outliers are not identified

(Peterson, Vose, Schmoyer & Razuvaev 1998). To reduce this problem, the data

which was three to five times the σ was flagged and removed from a re-calculation

of the σ (Boyer & Levitus 1994).

Given these method’s sensitivity to outliers, defining an accurate outlier, or

more specifically its threshold, is very important. The σ threshold is often set

at 3 to 5, but a common practice is to also set a 3σ limit (e.g Guttman and

Quayle (1990)), as it has been observed that the fraction of the data that are

bad is highest at the most extreme outliers and decreases as data gets closer

to the mean. Therefore, the worst data should be able to be found where the

datum is bad. As described in Peterson et al. (1998), “it was decided that

that positive outliers greater than 1.5σ could be considered bad only if all of the

nearest five neighboring stations had negative anomalies for that month and vice

versa for cold outliers.” This work is based on the assumption that five regional

neighbours represent the same regional climate as the studied station, and that

the stations where this is not true should produce a background error rate that

is independent of the magnitude of the outlier. The work concluded that any

data that starts at 2.5σ’s may be classified as suspect (see Lanzante (1996)),

but “great care must be taken not to throw away good data that happens to

be extreme” as these may “represent very important aspects of the climate.”

(Peterson et al. 1998)

Another method applied is the interquartile range (I.Q.R.), which measured

the difference between the first quartile and fourth quartile. The results show

that results, when using the I.Q.R. and σ to study large numbers of normally

distributed data points, were comparable. However, the I.Q.R. is resistant to

outliers, which is why it has been used in the quality control of climate data
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(Eischeid, Baker, Karl & Diaz 1995), but it is not very robust when the time

series are fairly short (Peterson et al. 1998).

6.1.3 Precipitation Record Improvement

As discussed in on the GHCN Monthly Version 2 precipitation records website

(NOAA 2010b) the methods used to assemble the GHCN-Monthly precipitation

dataset are “generally comparable to those used in developing the temperature

dataset.” The main objectives when applying these methods to the precipitation

data is to (a) eliminate duplicates records using a range of methods and (b)

quality control using the methods:

1. Comparing stations with a gridded climatology and plotting the stations

for visual inspection.

2. The cummulative sum test (which looks for changes in the mean).

3. An analogous test that looks for changes in the variance or scale.

4. Evaluated for runs of three or more months of the same nonzero value.

5. Precipitation total was evaluated to determine if it was an outlier in space

and/or time using a variety of nonparametric statistics.

6.2 Generation of the Current Conditions Grids

The WorldClim current climate data grids were interpolated from temperature

maximum, minimum and precipitation meteorological inputs, covering the pe-

riod 1950−2000. The thin-plate spline algorithm was the preferred technique

(Hijmans, Cameron, Parra, Jones & Jarvis 2005) and the main data used was

the GHCN dataset. The monthly GHCN dataset was preferred as it had under-

gone the most explicit quality control, but other data from other stations were

included if they complied with certain criteria (see Hijmans et al. (2005) for
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more details). Uncertainty layers where also calculated, as illustrated in Figure

6.2.

There are a number of different statistical interpolation methods which can

be used to interpolate a surface. For example, three widely used methods in-

clude inverse distance weighting, kriging and splines (Davis 2002). Of these,

thin plate smoothing splines was used in the generation of the WorldClim sur-

faces (Hijmans, Cameron, Parra, Jones & Jarvis 2005) as this procedure has

been used in similar global studies (New et al. (1999, 2002)) and performed

well in comparative tests of multiple interpolation techniques (Hartkamp, Beurs,

Stein & White 1999). The procedure is further described in Hutchinson (1995).

Splines share close connections with other geostatistical interpolation techniques,

so there has been comparisons between these methods (e.g. Hutchinson and

Gessler (1994) and Laslett (1994)) to evaluate the best method to use. As de-

scribed in Hutchinson (1995), the main advantage that thin plate splines has

(over competing geostatistical techniques) is that “splines do not require prior

estimation of spatial auto−covariance structure,” a structure which may be dif-

ficult to validate.

6.2.1 Uncertainties in the Worldclim Grids

As discussed by Hijmans (2005), the uncertainty and error in the datasets used

to generate the Worldclim layers was minimised. Therefore, the uncertainty that

is not due to natural variation across short time scales (months), in the GHCN

data, is considered minimal. However, as discussed in Section 3.3 of Hijamns

(2005), the uncertainty in the interpolated Worlclim current climate layers was

mapped in Section 3.3 of Hijamns et al. (2005). In these course resolution

maps, in all the grids in the western Australian study region, the uncertainty in

the precipitation and temperature are the same, 2.5mm and 1.5◦C. respectively.

These uncertainties are included in this study.

The other significant potential source of uncertainty in the Worldclim Layers,

is their representation of the natural variation in a regions climate. As this has
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Figure 6.2: Uncertainty in the climate surfaces. Mean cross-validation deviations
for precipitation (A) and mean temperature (C) and deviations when partitioning
data in test and training sets for precipitation (B) and mean temperature (D).
Values are averaged across 12 months and by 2-degree grid cell. Diagram from
Hijmans et al. (2005)
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not been quantified by other research in the areas studied in this thesis, it will

done by examining how the decadel means (1950-59, 1960-69,..., 1990-99) vary

from the 50 year mean, at each relevant station. The largest absolute differences

calculated will then be used to interpolate uncertainty climate surfaces.

How the uncertainty-related data required for this analysis, of these two un-

certainty sources, was determined and the method used to study their influence

(on the BIOCLIM prediction) is discussed in Chapter 7. The results are discussed

in Chapters 8 and 9.

6.3 Uncertainties in the Future Worldclim

Layers

The uncertainty of the future climate grids is determined by the accuracy of

the future climate model. As discused in the IPCC Third Assesment Report

(2001), Section 9.2.2.4 “Projections of climate change are affected by a range of

uncertainties and there is a need to discuss and to quantify uncertainty in so far

as is possible. Uncertainty in projected climate change arises from three main

sources; uncertainty in forcing scenarios, uncertainty in modeled responses to

given forcing scenarios, and uncertainty due to missing or misrepresented physical

processes in models.” The complexity of these uncertainties makes generating a

single grid that represents all uncertainties difficult. For example, as discussed

“the ensemble standard deviation and the range are used as available indications

of uncertainty in model results for a given forcing, although they are by no means

a complete characterisation of the uncertainty.”

While these uncertainties will influence the BIOCLIM prediction, the degree

of this influence has not been investigated due to its complexity. Also, if a

BIOCLIM user is interested in the difference between future predictions, the

uncertainties in the future climate grids will not be relevant (as the difference

between modeled scenarios is significant (Corner & Marinelli 2008)). What may

be more important is what influence the uncertainties in the present climate



CHAPTER 6. INPUT CLIMATE LAYERS 99

grids have on the future predictions. For example, will the difference between

the two future climate (A2a and B2a, 2050) BIOCLIM predictions be significantly

changed with the presence of uncertainties to the present climate grids? This

is investigated using the Monte Carlo method (see Section 7.4 for a graphical

representation of this model) and the results discussed in Section 8.3.2.

6.4 Summary

The Wordlcim data layers and their data sources, have been rigourously studied

and uncertainty and error minimised using peer reviewed statistical methods.

The uncertainty in the Worldclim layers has been quantified and its influence on

the accuracy of the BIOCLIM model investigated. Also, the decadel variation

in the Global Historical Climate Network datasets, at the relevant stations, will

also be included as a source of uncertainty.



Chapter 7

Analysis Methods

The BIOCLIM ecological niche model studied is the version in the DIVA-GIS

Geographical Information System, version 5.2 (DIVA-GIS 2005, Hijmans, Guar-

ino, Jarvis, OBrien, Mathur, Bussink, Cruz, Barrantes & Rojas 2005). The

ecological niche modeling option calculates and saves the bioclimate raster grids,

inputs them into the BIOCLIM model and produces one prediction grid of the

ecological niche. The Disk Operating System (dos) version of this software is

AVID-GIS (version 4.3). Using the dos version requires that the bioclimate grids

are initially generated and saved using DIVA-GIS or some other purpose writ-

ten code. These are then read by AVID when its distrubution model option is

executed with the following command:

DISTMODEL model in stack out stack points output

where:

model The ecological niche model to execute (BIOCLIM or DOMAIN).

in stack A .grs file which contains the names of the present climate bioclimatic

grids to include in the model.

out stack A .grs file containing the names of other bioclimatic grid files. For

present predictions, the in stack and out stack .grs files are the same. For future

predictions, these are future bioclimate grids (which were generated using the

A2a or B2a climate grids).

100
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point A .csv file which contains the location (latitude/longitude) of where the

species/crop is known to grow/be present.

output The BIOCLIM prediction output raster grid (image.grd) and its associ-

ated header file (image.gri).

In DIVA-GIS, the bioclimate generating algorithm was ported from the Arc

Macro Language (AML) format bioclimate code, as documented at the DIVA-

GIS website and authored by Robert Hijmans in 2004 (seen appendix B). For

this thesis, it was ported into an IDL procedure which will be referred to as

IDL-bioclimate. In both DIVA-GIS and IDL-bioclimate, the bioclimate products

were saved in the DIVA-GIS default format, as this is the only AVID compatible

format (for its bioclimate inputs).

DIVA-GIS can not generate predictions for multiple climatic conditions in an

automated multiple prediction process, so it can not be used to study uncertainty

propagation using the Monte Carlo method. However, the Dos version does allow

this, as it can be spawned from a mother program which is written to carry out

the Monte Carlo method. A combined IDL-AVID program (which also contained

the IDL-bioclimate code) were written for this.

The initial IDL-AVID program written replicated what the DIVA-GIS BIO-

CLIM tool does, that is, make a prediction under one climate and species location

scenario. As discussed in Section 7.2, this allowed an IDL-AVID prediction to

be checked against its DIVA-GIS equivalent as they must be the same. Then,

the IDL-AVID program was further developed to allow the Monte Carlo method

to be applied. The quality control results of this and the methods used to de-

termine valid climatic uncertainties as needed for the Monte Carlo simulation, is

discussed in Section 7.3.

Finally, the bioclimate layers and the DIVA-GIS and AVID-GIS predictions

are by default rounded to one decimal place.



CHAPTER 7. ANALYSIS METHODS 102

7.1 Data Formats

Two data type conversions occurred for, or in, the IDL-AVID program:

1. The Worldclim input climate rasters are in the Band Interleaved by Line

(.bil) format, which can be read by DIVA-GIS but not by IDL-AVID (due

to a lack of a suitable IDL input filter). This was resolved by converting

the worldclim data to the GeoTIFF format using the ENVI data conversion

tools (ENVI 4.4 2007). Geotiff is a “TIFF based interchange format for

georeferenced raster imagery,” (http://trac.osgeo.org/geotiff/).

2. The geospatial analysis of IDL-AVID predictions was performed using the

ENVI software package. As ENVI can not read the AVID-GIS format files,

the IDL-AVID prediction’s statistical analysis grids were also saved in the

ENVI format by default.

In both cases their products where compared with the original or default

format (geotiff with .bil; and ENVI with DIVA-GIS) to check for any anomalies.

7.2 Quality Testing IDL-AVID

Testing the IDL-AVID code was performed by comparing its (a) bioclimate and

(b) BIOCLIM prediction gridded products with the DIVA-GIS equivalents. Fig-

ure 7.1 shows a graphical representation of the quality control steps. In both

cases, the contents of their grids and associated header files must be identical.

7.2.1 The Bioclimate Grids

Bioclimate raster and header files were generated with both DIVA-GIS and the

IDL-bioclimate code. The header files were compared by manual inspection and

the data files compared using mapping and analysis tools in AVID-GIS as well

as purpose written IDL statistical analysis programs. As .gri data files are in
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Figure 7.1: Steps in the comparison of IDL-Bioclimate and Avid-GIS Grids with
DIVA-GIS Grids

binary format, to be read correctly (by AVID-GIS), the contents of their header

files must be correct.

Appendix C contains an example of the bioclimate raster 1 (Annual Mean

Temperature) header file. Note that in the AML code, as well as in the biocli-

mate rasters generated by DIVA-GIS, they are named as BIO 1, ..., BIO 19. The

entries in the header files are separated into groups. Of these, the ones that can

affect the prediction are the Georefference, Data and Application groups. The

Data and Georefference groups are very important as their information will de-

termine if the binary data is correctly read and then assigned to a correctly sized -

and geographically postitioned - raster grid. Therefore, the entries in these three

header groups, as calculated by the IDL-bioclimate script, were manually com-

pared to their DIVA-GIS produced equivalents and any anomalies isolated and

removed (by further IDL-bioclimate development). These tests were repeated at

several different geographic areas to further test for anomalies. The other groups

in the header files do not influence the BIOCLIM prediction as they are only
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required by the DIVA-GIS visualisation tools (scale and colour settings).

If the header file entries agreed, but the AVID-GIS and IDL-bioclimate gen-

erated data raster grids did not, this showed that there were other errors in

IDL-bioclimate. Detailed code inspection showed that, in most cases, the anoma-

lies in the data were the product of minor errors in the code’s structure and/or

rounding related problems. In particular, a floating point number that was incor-

rectly rounded to a single significant digit was a common problem found in the

IDL-bioclimate code. The source of these and other errors were determined and

removed. The final test compared the AVID-GIS BIOCLIM predictions made

with DIVA-GIS and AVID-bioclimate generated bioclimate input grids, as the

results must be the same.

7.2.2 BIOCLIM Prediction

The BIOCLIM ecological niche prediction, made with the Worldclim current

climate layers, were generated using the DIVA-GIS and IDL-AVID models. The

input climate layers were the same, except for the difference in format (.bil and

geotiff). In both models, the output predictions were saved in the DIVA-GIS

format and then compared using DIVA-GIS. These results were converted to

and/or also saved in ENVI format, allowing statistical comparison using ENVI

tools if required.

The first test of IDL-AVID replicated example 2 from the DIVA-GIS Exercises

website, “Modeling the distribution of wild peanuts (Arachis spp.)” (2005). The

result of this exercise is a prediction of where wild peanuts should grow in South

America. As this is a documented example and the results are known, it was

repeated for the comparison of AVID-GIS and IDL-AVID predictions.

This geographical area and the known location of wild peanuts in it, is shown

in Figure 7.2(a). The default DIVA-GIS and IDL-AVIS predictions are mapped

and in Figure 7.3(a and b) and compared in the plots shown. As described in

(DIVA-GIS 2005), predictions equaling 0 are labeled ND in the images. For

consistency, this labeling format is used in this thesis.
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South America Western Australia

Figure 7.2: The areas studied in South America and Western Australia are within
the red bordered region. The known locations of the Wild Peanuts and Field
Peas in each respective study area are shown.
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As expected the images are the same, the co-plots are linear and the correla-

tion is 1.0. This was also the case when this test was repeated for the Western

Australian region of interest (Figure 7.2(b) and 7.3(e-g)). The species of interest

in the Western Australian region was the Field Pea agricultural crop. The loca-

tions of this crop used in this study were at the Western Australian Department

of Agriculture and Food (http://www.agric.wa.gov.au/) field test sites as shown

in Figure 7.2(b).

Futher testing included scenarios where the model had:

1. Future prediction out stack entries.

2. Not all bioclimate layers were included.

In all cases tested, the DIVA-GIS and IDL-AVID predictions were the same.

Therefore, it was concluded that the IDL-AVID program could be further devel-

oped for uncertainty-sensitivity analysis using the Monte Carlo method.

7.3 Monte Carlo Model

IDL-AVID was further developed to quantify BIOCLIM’s sensitivity to uncer-

tainty in the climate inputs, using the Monte Carlo method. This required that

multiple simulations could be realised, with each having thirty six:

1. Random number grids (one for each climate grid); generated using the same

methodology as described in the Precision Agriculture Methods Section

(3.7.2).

2. Unique uncertainty grids; generated by multiplying constant uncertainty

layers with the random number grids.

3. Unique climate grids; generated by adding the unique uncertainty grids to

the present climate grids.
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Figure 7.3: Prediction Grids and associated comparison plots, DIVA-GIS and
IDL-AVID BIOCLIM Predictions: (a) South America and (b) Western Australia.
As described in Section 7.2.2, Default or Mean predictions equaling 0 are labeled
as ND.
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Each simulation will produce a unique realisation of an ecological niche. For

these predictions to sit within a range that is a propogated product of a realistic

uncertainty, it is neccesary to accurately map the constant uncertainty grids.

The methods used to determine the constant uncertainty grid was applied and

tested in both the South American and Western Australian regions. However,

as the area of interest in this thesis is in Western Australia, further discussion

will be limited to the Western Australian results.

7.3.1 Constant Uncertainty Rasters

Uncertainty raster grids were generated for two sources of uncertainty in the

Worldclim Raster layer. The first source of uncertainty is due to the limitations

of the interpolation model used to generate the Worldclim layers. The second

source is the accuracy in the Worldclim surfaces representation of the climate of

the period 1950 to 2000. That is, the uncertainty due to the natural temporal

variation in climate. As with all datasets, there are other uncertainties in the

GHCN dataset. However, as discussed in Section 6.1.1, extensive work has been

done in minimising the uncertainties in these datasets, so their influence on

BIOCLIM predictions will be minimal and hence has not been included in this

thesis.

(1). The uncertainty in the Worldclim Grids.

The uncertainty in the worldClim climate rasters has been investigated using

data partitioning and cross validation (Hijmans, Cameron, Parra, Jones & Jarvis

2005) (see Figure 6.2). The data-partitioning method resulted in the highest

deviations from the observed data due, in part, to it using only half the available

data. The cross validation method is a leaveoneoutmethod which uses all of the

available data and for this reason was used to estimate the error in the worldclim

grids, despite the fact that it calculates lower uncertainties. A single value for

each grid was used as the error for the geographic area of interest is the same. For

Western Australia this was 1.5oC (temperature minimum and maximum) and 2.5

mm (precipitation). Three raster grids containing these values were generated
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and were called the “Worldclim” Uncertainty Grids.

(2). Uncertainty due to Temporal Variation.

One source of uncertainty in the WorldClim Grids is the natural variation of

climate over time. This temporal uncertainty was estimated by analysis of the

GHCN monthly mean point data (calculated from a maximum of 50 years of

point measurements). In this case, “point” refers to measurement station. The

GHCN location number and coordinates are in Table 7.1 and 7.2 and mapped

in Figure 7.4. These stations were chosen as they occur across an area that

exceeded in spatial extent, the area where the species are known to occur.

From these GHCN stations, all the points which had more than 42 years of

data over all months (e.g 1950 to 1992, all months) were selected. This number

of years was chosen so that the five decades from 1950 to 2000 were represented.

Some stations did not have data post 1992, but these were considered adequate

as they covered most of the 50 year period. For each station, the mean of all

available data in the period 1950 to 1999 was calculated (maximum of 50 years,

all months). The mean for each decade in this period was then calculated (e.g

1950-1959, 1960-69 etc, all months) and then subtracted from the overall 50 year

mean to give five decadel difference values. The maximum of these values was

then divided by the 50 year mean, converted to the absolute value and then as-

signed as the maximum decadel variation ratio (for that station, see Table 7.1 and

7.1). These maximum decadel values, for each station, were used to interpolate

an uncertainty surface using the splining interpolation technique. This method

was used as it was the method used in generating the Worldclim grids (Hijmans,

Cameron, Parra, Jones & Jarvis 2005). Also, it is a preferred method when the

number of data locations is low (such as the number of GHCN temperature sta-

tions in Western Australia) and is often used in climate related areas of research

(Hutchinson 2004, Hutchinson & Gessler 1994, Hutchinson 1995). These surfaces

were interpolated with the interpolation tools in ArcMap (ARCMAP 9.2 2004),

using default settings. Therefore, three decadel uncertainty raster grids were

generated, (1) temperature maximum, (2) temperature minimum and (3) pre-
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cipitation; which will be referred to as the “GHCN” uncertainty grids (Figure

7.4.

As discussed in Section 2.6, the distribution of an interpolated surface is

influenced by the number and spatial distribution of the interpolation input

points. With surfaces interpolated from a low number of points, the edges of

the uncertainty surfaces may be inaccurately skewed at their extremes (such as

the north-west inland region). However, in these areas the uncertainty in the

BIOCLIM prediction is 0, as the prediction is also always 0 due to there being

no Field Pea sites in these climatic areas. Of greater significance to this study

was the accuracy of the temperature uncertainty grid at, or between locations

where Field Peas had been trialled but where there are no GHCN temperature

stations, such as in the northern section of the Western Australian wheat belt.

As can be seen in Figure 7.4(e), this area has negative values which are in part

due to the high absolute decadel uncertainty at stations close to the coast or in

the north east. These negative values are, as absolute values, not significantly

different to the uncertainty which occurs at the same geographical location as

the Field Pea trial sites. Therefore, it was still considered valid for this study.

7.4 Unique Uncertainty Layers

For a particular grid (max temp, min temp or precipitation) for a particular

month, the unique uncertainty grid is either one of, or a summation of both, the

corresponding GHCN and Worldclim unique uncertainty layers. As discussed in

Section 7.3, these were generated by multiplying the constant uncertainty layers

by a random number grid. As described in Section 3.7.2, the random numbers

generated were either (a) normally (Gaussian) or (b) positively or negatively

skewed. For the normal distribution, the random number values ranged from

+1 to −1 and the IDL-AVID code written such that the resulting uncertainty

surfaces represented +/−3 standard deviations. As in Section 3.7.2, the skewed

distribution, random number setting is +/ − 2 gamma (see Figure 3.3 for this
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a b c

d e

0 0.05 0.1 0 0.15 0.3

Figure 7.4: The sampling stations for (a) The Field Pea , (b) GHCN Temperature
and (c) GHCN Precipitation. The red rectangle shows the modeled area of
Western Australia. (d) Temperature and (e) Precipitation interpolated GHCN
absolute ratio uncertainty surfaces.
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GHCN Station No. Absolute Location
Deviation Ratio (deg S/E)

S E
50194403 0.0122 28o47′ 114o42′

50194428 0.0461 27o44′ 117o52′

50194430 0.0183 26o36′ 118o32′

50194439 0.0299 26o35′ 120o13′

50194448 0.0133 28o52′ 121o19′

50194600 0.0234 33o35′ 115o10′

50194601 0.0143 34o22′ 115o7′

50194608 0.0529 31o57′ 115o52′

50194610 0.0338 31o54′ 116o0′

50194616 0.0195 33o57′ 116o8′

50194626 0.0114 31o38′ 117o28′

50194629 0.0177 33o45′ 117o21′

50194632 0.0148 30o48′ 117o51′

50194633 0.0083 32o19′ 117o52′

50194634 0.0078 31o13′ 119o19′

50194637 0.0111 30o52′ 121o19′

50194639 0.0165 32o12′ 121o47′

50194802 0.0193 34o59′ 117o50′

Table 7.1: Absolute deviation in temperature as a ratio, WA region

distribution’s histogram).

As the constant uncertainty grid is a ratio of uncertainty (or % uncertainty if

multiplied by 100), the unique uncertainty grid in correct units (T or mm) was

generated by multiplying the ratio of uncertainty by the related climate grid.

It is this final unique uncertainty grid that is added to the Worldclim climate

grids to generate the unique climate raster for each month. This is repeated for

each climate surface, so there are 36 IDL-AVID input climate layers for each

simulation. A single simulation of the IDL-DIVA executed BIOCLIM model

is illustrated in Figure 7.5. A representation of the future-climate conditions

BIOCLIM model is shown in Figure 7.6. As discussed in Section 6.3 uncertainty

in the modeled future climate layers cannot be quantified simply. Therefore, for

the future predictions the future A2a and B2a Climate Grids are constant. .

Each unique simulation was saved and, when the simulation was completed,

the mean, standard deviation, skew and variance of every raster grid cell was

calculated. Therefore, if 5000 simulations were created the statistics will be

calculated from 5000 numbers for each grid cell. Finally the statistical result
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GHCN Absolute Location GHCN Absolute Location
Station No. Deviation (deg S/E) Station No. Deviation (deg S/E)

Ratio S E Ratio S E
50194402 0.1259 26o15′ 113o50′ 50194403 0.1017 28o47′ 114o45′

50194404 0.1289 29o36′ 117o46′ 50194410 0.2664 25o13′ 115o13′

50194411 0.1809 28o10′ 116o4′ 50194415 0.11 29o41′ 115o53′

50194416 0.0875 29o12′ 115o45′ 50194422 0.1991 26o53′ 116o22′

50194428 0.2294 27o55′ 117o48′ 50194430 0.2584 26o25′ 117o57′

50194439 0.3005 26o35′ 120o13′ 50194440 0.25 27o17′ 120o6′

50194446 0.3135 29o35′ 121o26′ 50194448 0.216 28o50′ 121o22′

50194600 0.0641 33o35′ 115o11′ 50194604 0.115 33o26′ 115o56′

50194605 0.0862 32o34′ 115o49′ 50194609 0.0716 32o12′ 115o49′

50194610 0.0911 31o54′ 116o0′ 50194611 0.1143 30o40′ 116o1′

50194612 0.0787 31o31′ 115o58′ 50194616 0.0603 33o56′ 115o59′

50194617 0.062 34o13′ 116o21′ 50194619 0.1407 30o17′ 116o40′

50194620 0.0923 32o43′ 116o4′ 50194621 0.0871 31o32′ 116o42′

50194622 0.0683 30o57′ 116o57′ 50194623 0.1805 31o55′ 116o54′

50194624 0.0683 32o44′ 116o33′ 50194625 0.0788 32o20′ 117o0′

50194626 0.0994 31o39′ 117o26′ 50194627 0.041 32o59′ 117o2′

50194629 0.0684 33o49′ 117o33′ 50194630 0.0501 34o32′ 117o38′

50194632 0.0794 30o54′ 117o43′ 50194633 0.0464 32o10′ 117o54′

50194634 0.2021 31o14′ 119o20′ 50194635 0.0905 33o6′ 118o28′

50194636 0.0261 33o46′ 120o5′ 50194637 0.2701 30o50′ 121o28′

50194639 0.193 32o12′ 121o47′ 50194802 0.0685 34o58′ 117o44′

50195400 0.3733 25o22′ 118o56′ 50195608 0.0569 33o33′ 115o57′

50195610 0.0788 31o58′ 116o10′ 50195611 0.1025 34o37′ 118o38′

50195613 0.0543 34o27′ 116o3′ 50195614 0.0747 32o23′ 116o4′

50195618 0.0669 33o18′ 117o11′ 50195624 0.1104 31o21′ 118o10′

50195626 0.0952 32o4′ 118o24′ 50195627 0.1332 32o28′ 119o8′

50195628 0.0947 33o58′ 118o29′ 50195636 0.0521 34o14′ 119o11′

50195638 0.2327 33o34′ 121o42′

Table 7.2: Abslolute deviation in precipitation as a ratio, WA region

raster was saved in DIVA-GIS and ENVI format.

7.4.1 Influence of Number of Simulations

For the Monte Carlo Model to produce enough simulations to represent a real

situation, the simulations must be repeated until the statistical results of the

BIOCLIM predictions at each grid cell stabilises. Investigation concluded that

4500 simulations was sufficient to achieve this. For example, when compared

to the 4500 simulation result, a prediction made with greater than 4500 simu-

lations produced insignificantly small differences in the descriptive statistics of

the predictions. As illustrated in Figure 7.7(a and b) this is seen in the high
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agreement of the mean and standard deviation of the prediction grids, 4500 and

7000 simulations (correlation of 0.99).

As shown in Figure 7.8 the predictions at almost all grid cells were skewed

to some degree. This may explain why there was always some difference in the

mean and standard deviation predictions. For most of the area (coloured red),

the skew is negative but still relatively low. More notable is that the greater

the skew value is from zero, there is a large disagreement, especially at values

< −20 and > 20. Also, where this greater disagreement occurs is mostly along

the border of where the BIOCLIM predictions greater than 0 occurs. Repeating

this test with a higher number of simulations did not appear to change this,

so it can not be attributed to the number of simulations. Also, this pattern is

clearly present when the uncertainty grids are skewed. The same tests applied to

the South American region produced the same diverging pattern, suggests that

this was not a geographically influenced anomaly. Where and why this may be

occurring is discussed in Chapters 8 and 9.

7.5 Prediction Examples

Figure 7.9 shows two examples of BIOCLIM model predictions, executed with

the IDL-AVID program:

(a) The default prediction for the Western Australian region as discussed in

Section 7.2.2.

(b) The mean prediction of the Monte Carlo Similation (per raster grid);

normally distributed uncertainty. (c) and (d) showing the standard deviation

and skew of the predictions.

Figure 7.10(a) graphs the difference in the predictions of these two process

models. As seen on the x axis, the default prediction has 23 distinct values from

0 to 28.8 percentiles. The y axis values shows how the prediction has changed as

a result of the added uncertainty in the climate grids. Figure 7.10(b) shows the

mean prediction versus standard deviation relationship at each grid cell. Clearly,
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a

b

c

a

b

c

Gaussian Positively skewed (+2 gamma)

Figure 7.7: Comparison of BIOCLIM (a) mean, (b) standard deviation and (c)
skew. (a) 4500 versus 7000 simulations. Normal and positively skewed uncer-
tainty distribution model.
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4500 simulations 7000 simulations

Figure 7.8: Comparison of the skew in two BIOCLIM models at each grid cell.
4500 and 7000 simulations, Gaussian Distribution. The colours in the maps
illustrate the regions where skew values occur.
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no relationships can be determined from this graph alone. However, combining

the interpretation of both these graphs can be used to put the predictions into

specific spatial regions boxes, from which conclusions can be more easily drawn.

This is discussed, and its use illustrated, in Section 8.1.1. The ENVI regions of

interest tools were used for this.

7.6 Summary

To summarise, the Monte Carlo Simulation method is used to test BIOCLIM’s

sensitivity to uncertainty in the climate grids. With each simulation, new un-

certainty grids are added to the Worldclim climate grids producing a unique

prediction grid. For a stable statistical result, at least 4500 simulations per

grid cell is required. Therefore, 4500 prediction layers were simulated and then

statistically analysed.

Most statistical results, at each grid cell, are very similar above this number

of simulations, with the exception of the skew at its higher values. This anomaly

does not be appear to be due to any geographical or climatological reason.

Interpretation of the mean to standard deviation relationship of a prediction

could not be easily determined. Grouping data into spatial regions boxes allowed

further investigation of this relationship.



CHAPTER 7. ANALYSIS METHODS 121

a b

Figure 7.10: Plots of (a) default versus mean prediction and (b) mean versus
standard deviation.. See Figure 7.9 for images of results.



Chapter 8

Sensitivity of Bioclim Predictions

The initial study of uncertainty propagation through the BIOCLIM statistical

model (Section 7.5) clearly showed that (a) the model can change both the size

and spatial distribution of the uncertainty and (b) that the distribution of the

error or uncertainty (in each grid cell) in an input layer can also change both the

prediction and its uncertainty. This chapter aims to increase the understanding

of why this is occurring in the BIOCLIM model in the south west of Western

Australia, which is a substantial and important agricultural area. The region is

relatively flat so change in elevation will have minimal effect on the climate and

hence a minimal effect on the prediction result. Instead, in Western Australia,

the annual rainfall and temperature patterns will be the primary influence of the

suitability of an area for a specific crop.

The south western region of Western Australia was, before the arrival of Eu-

ropeans, largely covered by forests of differing densities and species. This region

is now mostly used for agriculture, with a significant part of it used for wheat,

barley and other suitable crops. This region is known as the “Wheat Belt”, and

is an important agricultural area. The rainfall in this region ranges from 200 to

1200mm, with rainfed broadacre agriculture being practiced in the range of 350

to 700mm. This rain occurs with the passage of cold fronts from west to east

during winter, due to the passage of the high and low meteorological atmospheric

pressure gradients which dominate during the mid year period. Therefore, in the

122
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region of Western Australia studied, the greatest rainfall occurs in the south

west, with the highest measurements being along the southern coast and in the

western region’s relatively close to the coast. This area of Western Australia is

most suitable for the Field Pea (see Figure 8.1). It is possible to have high but

patchy rainfall during the hot summer period, but this is not suitable for this

crop’s production.

There has been a significant drop in the rainfall in this region since 1970

which has already had a strong impact on the agriculture and native species of

the region. Therefore, there is a significant interest in what impact the projected

future climate scenarios will have on the region’s suitability to traditional crops

in the future.

The other most important variable is soil quality. However, this can be con-

trolled and uncertainty effectively removed by, for example, controlling nutrient

levels with well controlled use of fertilizers. Therefore, quantifying uncertainty

in the soil quality is not as important as the uncertainty in climatic variables,

especially when using tools such as BIOCLIM, which predict (using only climate

data) which sections of a large area may be suitable for use in growing a partic-

ular crop. Also, because BIOCLIM is most accurate when modeling large areas,

small regional studies were not included in this thesis.

This chapter discusses:

1. The propagation of uncertainty through the BIOCLIM model for both

present and future predictions. The resulting uncertainty in the prediction

will be referred to as “uncertainty” in this chapter and Chapter 9.

2. How the distribution and size of uncertainty changes (and hence influences

the validity of the models results).

Chapter 9 discusses:

1. Why these changes may be occurring in the present prediction model which

has a normal distribution of uncertainty and

2. How they might be minimised.
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a

b c

Figure 8.1: (a) Field Pea sampling stations, area of Australia studied (red bor-
dered region), average (b) maximum temperature and (c) rainfall in Western
Australia.

8.1 Present Predictions in the Western Aus-

tralian Region: Gaussian Uncertainties

Figure 8.2 shows the default prediction for the Western Australian region. The

reasons for the difference in predictions between the north-east and south-west/

southern regions of the Wheat Belt region is because the highest and most consis-

tent mid year rainfall occurs along the western boundary (the western coastline)

and in the south of this region. As with the study of the South American region,

there are some differences between the default prediction and the uncertainty-

included predictions (see Figure 8.2, Table 8.4 has a statistical comparison of

the influence of the uncertainty layers on the mean and uncertainty for the bio-

climatic present prediction). There is a high correlation between the mean re-

sult layers predicted when both the GHCN and Wordlclim uncertainty grids are

added and when only the GHCN uncertainty layer is added. This suggests that

the strongest uncertainty influence is from the GHCN uncertainty alone.

As is clearly seen in Figure 8.2, there is a relatively high agreement between
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Default Present Prediction (no uncertainty in inputs)

(a) Mean (b) Uncertainty (c) Skewness

ND 0 2.5 5 10 20 28 0 2 4 6 8 10
(Percentiles)

-68 -51 -34 -17 0 17 34 51 68

Figure 8.2: BIOCLIM present prediction results: (a) Mean, (b) Uncertainty
and (c) Skewness. Error simulated, 4500 simulations. Middle row, GHCN and
WorldClim uncertainty added. Bottom row, GHCN uncertainty added.
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Normal Dis-
tribution
(Worldclim
and GHCN)

Normal Dis-
tribution
(GHCN)

+skewed
(GHCN)

-skewed
(GHCN)

0.9756 0.9766 0.9869 0.9859

Table 8.1: Correlation between the Default predictions and predictions when
uncertainty is present in the model.

the predictions made with and without uncertainty in the model input (with a

correlation between predictions of 0.9756 (Table 8.1)), but there are some points

of difference. The similarities are clearly where the areas of highest, medium and

low prediction occurs, such as the high predictions made for the “northern” region

and for the “south west” region. However, there are some significant differences

such as the smaller spatial extent of the higher prediction in the northern region.

The other significant difference - which is perhaps expected - is that the groups

into which the predictions are boxed are less clear when uncertainty is added to

the model inputs, as clearly shown when the default prediction is plotted against

the uncertainty-included prediction (Figure 8.3(a) and (b)). In the default model,

it is clear that the predictions have been boxed and that this clarity is lost when

uncertainty is added to the precipitation and temperature model inputs.

A result of this fuzziness, which occurs when uncertainty is included in the

models inputs, is that a percentile of less than 2.5 is calculated. A large fraction

of this covers a large area where the default prediction was 0. In these areas the

uncertainty is similar to the mean prediction at each grid cell, which suggests

that the prediction in this area is of a low certainty. In the areas where the

prediction is highest (≈20-30), the uncertainty is also higher but significantly

lower than the predicted value. However, it is clear that there is no simple linear

or easily interpretable spatial relationship between the mean and uncertainty of

the prediction across the Western Australian region. Also, the uncertainty visibly

increases and decreases in an “arc” like relationship to the increasing mean (for

some grid cells).

There is a close agreement (correlation of 0.9817; and clearly seen in Figure
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8.2) in the skewness of the Prediction results (from which the mean Prediction

was calculated), whether the Worldclim uncertainty layer is included or excluded.

The skewness is mostly in the range of −17 to +17, with large continuous areas

being clearly in the positive or negative. The spatial distribution of the Worldclim

and GHCN uncertainty surfaces do not mirror this pattern and the synthesised

uncertainty inputs were normally distributed.

8.1.1 Analysis of Uncertainty

As shown in Figure 8.3(a), the default prediction for the Western Australian

region has 23 percentile values, as shown in Table 8.2). There appears to be a

grouping of the results into six larger bins. Region of interest (ROI) 1 is where

the default predicted value is 0 but, with uncertainty added, has results greater

than this (see Figure 8.3(b)). Similarly, the predicted results for the other default

locations also vary around the default value. For example, at the locations where

the default prediction was 2.9 Percentile (ROI 2), the values range from 0.7 to

9.4, have a mean of 2.8 and a standard deviation of 1.1 Percentile. As seen in

the analysis of the other ROI, there is a clear skew in the prediction such that

the means are lower than the default values (see Table 8.3).

The uncertainty in the predictions, grouped into the ROI’s, is shown in Fig-

ure 8.3(c). The highest variation in these results is clearly in the region of lowest

prediction, but they are not evenly skewed. The greatest agreement in the uncer-

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
0 2.9 7.7 13.5 21.2 28.8

3.8 8.7 14.4 22.1
6.7 15.4 23.1
7.7 16.3 24.0
8.7 17.3 25.0
9.6 18.3 26.0
10.6 19.2
11.5

Table 8.2: Default Predictions in the Western Australian Region (Percentiles).
The maximum possible prediction is 50 Percentiles. The predictions are rounded
to one decimal place.
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tainty occurs in the ROI where the highest values were predicted. There appear

to be ROI where the grids cells have a lower uncertainty. This is more clearly

seen in Figure 8.3(d), where there are points where the uncertainty reduces, as

the mean increases, before increasing again. The reason for this “arc” like rela-

tionship cannot be easily determined from the plot, especially considering that it

is information across a two dimensional area. However, one conclusion that can

be drawn is that the lower uncertainties which occur as the prediction increases

suggests that some prediction range(s) are less influenced by the uncertainty in

the climate inputs.

To understand the relationship between the prediction mean and its uncer-

tainty, the uncertainty at each grid cell in a particular ROI was investigated

independently. As shown in Table 8.3, a ROI corresponds with the point where

a particular default prediction occurred in the Western Australian region. As

expected, the number of locations within each ROI varies considerably. The

mean Prediction results which are in the ROI were then subdivided into four

categories:

(1) minimum prediction, to default prediction minus one standard deviation

(red).

(2) default prediction minus one standard deviation, to default prediction (green).

(3) default prediction, to default prediction plus one standard deviation (blue)

(4) default prediction plus one standard deviation, to maximum prediction (ma-

genta).

The standard deviation of the predictions, within the ROI of interest, was

chosen as a box within which most measurments should lie. However, the centre

of the study range is set to the default prediction (which defined the ROI).

The mean versus uncertainty relationship for the only ROI in Group 1 (the

“0” ROI), is shown in Figure 8.4. The predictions are always ≥ 0, so there

are no red or green areas. For almost all of the locations in this ROI, the

uncertainty increases with increasing prediction. Relative to the mean prediction,

the uncertainty is clearly greatest where the mean is lowest. This relationship
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Region of
Interest

Default
Prediction

Number of
grid cells

Min Max Mean Standard
Deviation

1 0 3126 0.01 5.56 0.66 0.79
2 2.9 867 0.74 9.49 2.82 1.11
3 3.8 1280 1.58 9.61 3.71 1.06
4 6.7 433 3.27 12.23 6.36 1.31
5 7.7 381 3.24 12.23 7.01 1.40
6 8.7 31 4.52 10.49 8.08 1.08
7 9.7 246 4.53 14.77 8.89 1.76
8 10.6 100 4.92 12.76 9.84 1.76
9 11.5 171 6.13 17.14 10.06 1.63
10 13.5 77 8.51 14.95 12.56 1.57
11 14.4 56 9.04 15.16 12.32 1.52
12 15.4 77 11.16 16.64 14.41 1.14
13 16.3 1 – – – –
14 17.3 124 10.00 18.50 13.81 1.90
15 18.3 34 13.28 19.91 16.40 1.97
16 19.2 8 – – – –
17 21.2 14 – – – –
18 22.1 48 15.88 24.28 20.30 1.71
19 23.1 29 19.17 26.04 22.00 1.50
20 24.0 11 – – – –
21 25.0 2 – – – –
22 26.0 8 – – – –
23 28.8 2 – – – –

Table 8.3: Statistics of Predictions at Default Prediction Grid Cells: Western
Australian Region
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then decrease as the prediction increases.

The general pattern observed for all ROI can be seen in Figure 8.5. The

lowest uncertainty is present in the green and blue sub-regions, with the lowest

of these values occurring as the prediction approaches the default prediction of

the ROI, in this case 2.9 and 3.8. In the 2.9 ROI, the red sub-region is relatively

small and has a lower uncertainty than many points in the green sub-region, even

though it is further from the default prediction. However, the lowest uncertainty

is clearly in the green and, to a greater extent, blue sub regions. In the points

where the uncertainty-included prediction is higher than the default prediction,

the uncertainty is clearly greater - especially the points in the majenta sub region.

The reason for this
√

shaped mean to uncertainty relationship, in the Bioclim

model, is relatively clear. As discussed in Section 5.1.1, the BIOCLIM climate

envelope model assigns the lowest bioclimatic layer result, for a particular grid

cell, as the final prediction (for that grid cell). For example, if the mean tempera-

ture bioclimate layer at a grid cell is in the 2.5 - 5.0 percentile span, but all other

bioclimate layers are in the 5.0 - 10 percentile span, it will be assigned a value of

“2.5 - 5.0” percentile. Therefore, adding uncertainty to the climate inputs that

are used to calculate the climatic layers causes the percentile value assigned to

change, especially when the climatic grid value is near the span boundaries. A

higher uncertainty in the predictions occurred in the grid cells in these regions,

because the likelihood of the predictions not falling into the same grouping is

higher. If, on the other hand, the grid cell’s climatic values are close to the me-

dian of the climatic envelope, the assigned percentile is not as likely to change

to the same degree and this will be reflected in a lower uncertainty value for the

prediction. An analysis of how this relationship influences the validity of the

results in each group is discussed in the following section.

8.1.2 Spatial Patterns

In Group 1, ROI 0.0 (region where all default points in image are equal to 0

(referred to as Null in the text or ND in the images)), the most consistent
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a
b

Figure 8.4: (a) Mean versus Uncertainty relationship in ROI 1. (b) ROI loca-
tion. Where there are no entries for Min, Max, Mean, Standard Deviation, the
predictions were not changed when uncertainty was added to the climate inputs.
For ROI colour classifications see categories described on Page 129.

patterns (in uncertainty size) and largest number of points, is along the north east

border region. For most of this area the default prediction is null. As expected,

the prediction when uncertainty is added, is in the lowest percentile range (see

Figure 8.2). This suggests that the range of predictions centres on the 0 − 2.5th

percentile range, but as the uncertainty is higher than the lowest predictions

for most of this region, the quality of the prediction is very low. The highest

uncertainty values occur at the boundaries of areas where the predictions are in

2.5−5.0th percentile range, the starting percentile of the default prediction. This

is consistent with the higher sensitivity to uncertainty observed at areas which

border areas of different predictions (as discussed in Section 8.1.1). However, this

is not a generalisation that can be applied to all of the default group borders.

For example, in the south west corner, where the prediction quickly (spatially)

increased from null to greater than 5th Percentile, the grid points with higher

uncertainty are not present. This suggests that:

1. The uncertainty in the climate in this area is low (see Figure 7.4). This is

likely in the south western region of the area studied due to the higher and
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more consistent rainfall of this region.

2. Bioclimate values at these grid cells fall in the centre of the range of the

percentile group.

The first of these is the most likely, given the climate of that area. How-

ever, the combination of these would further reduce the uncertainty in the final

prediction and should therefore be considered.

In the 3.8 ROI (Group 2), there is a repeat of the relationship observed in the

2.8 ROI sub-region pattern. However, the Uncertainty values are clearly much

lower, with it reducing to and then rising from almost zero, as the prediction

approaches and passes the default prediction value. There are points were there

are similar predictions in both ROI, but this is not always the case with the

prediction’s associated uncertainty. For example, there is similar uncertainty in

the red 3.8 sub-region and green 2.8 sub-region (just after the top of the first

arch). However, as the prediction in the 2.8 ROI enters its blue region this is not

the case, as the uncertainty is considerably higher (except for 3 points that have

mean predictions of 3.0 Percentile). The initial conclusions that can be drawn

from the patterns observed in Group 2 is (a), that some prediction “range” (in

this case centred on the 3.8th percentile) is less prone to uncertainty and (b) that

it is larger at points where predictions are higher than the default prediction (for

those points).

In the 3.8 ROI, the uncertainty can drop to close to zero, which clearly

shows that for grid locations in this ROI, the climatic layer results are in closer

agreement than for any of the grid locations in the 2.8 ROI. That is, they fall

into a smaller range of percentile spans, centred on 3.8. This difference (in

uncertainty patterns between the 2.8 and 3.8 ROI) are clear indicators of the

sensitivity of the models result to uncertainty in a models inputs. While the

pattern in the uncertainty may be similar i.e. dropping then increasing (as

the prediction value increases), the significant difference in the uncertainties for

each ROI clearly shows that the degree to which the climate envelope model’s
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a b

Figure 8.5: Mean versus Uncertainty Relationship in Group 2: (a) 2.9 (b) 3.8.
For ROI colour classifications see categories described on Page 129.
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sensitivity to uncertainty varies between the ROI’s. In summary, for group 2 the

results suggest that for the 2.9 ROI grid points, the climatic variables are close

to the boundaries in the specie’s climate profile for most of its grid points, even

when the prediction is close to 2.9. For the 3.8 ROI, this occurs in less grid points

as there are clearly points where the influence of uncertainty is significantly lower.

It is at these points where variation in climate inputs has least influence on the

validity of the Bioclim prediction results.

The mean to uncertainty relationship observed in the Group 2 ROI’s are

largely repeated in Group 3, as shown in Figure 8.6 and 8.7. This is most clear

in the 6.6, 7.7 and 9.6 ROI (as there are more points) than in the 10.6 and 11.5

ROI. The other ROI in this group are excluded due to a low number of points

(see Table 8.3 for details).

The reasons, related to the BIOCLIM envelope model’s structure, for why

this observed pattern is occurring are the same as for Group 2. However, the

climatic conditions in the grid points of Group 2 clearly vary from those of

Group 3 as the predictions are higher. The lowest uncertainty occurs in the 7.7

and 11.5 ROI, with a clear uncertainty to mean relationship as the prediction

rises. These minimum uncertainties (which are still of a significantly high value

as they occur at the top of the arcs) occur in the 6.6, 9.6 and 10.6 ROI. In these

there are grid cells in the blue area, with a mean prediction with a notably lower

uncertainty (6.3, 6.4 and 6.7 Percentiles), but the majority are notably higher

than in the green sub-region. This relationship mirrors the relationship observed

in the Group 2, (especially in the ROI which contain more grid cells), but the

lowest uncertainty is not as low as occurs in Group 3. This could be due to the

fact that most of the grid cells in Group 3 are not clearly grouped in one large

area, except for the larger “green” area in the south of the state (which also is

where the lowest uncertainty occurs).

The lowest uncertainty in Group 4 occurs in the 15.4 ROI (see Figure 8.8 and

8.9). Once again a similar pattern is observed as occurred in Groups 2 and 3,

but the lower number of points in Group 4 makes this less easily seen. It appears
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a b

Figure 8.7: Mean versus Uncertainty Relationship in Group 3: (a) 10.6 and (b)
11.5. For ROI colour classifications see categories described on Page 129.
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that the uncertainty values in the red sub-region are the highest, suggesting that

the model’s response to uncertainty changes as the prediction value increases.

This mirrors the default to uncertainty relationship, as seen in Figure 8.3(c).

The statistical analysis of grid cells in the 16.3 and 19.2 ROI was not carried out

because these predictions only occurred in 1 and 8 cells respectively.

The number of grid cells in Group 5 (Figure 8.10) is lower than Group 4, so

conclusions are even more difficult to make. However, it is still possible to see

some agreement in the mean prediction to uncertainty relationship observed in

Groups 2, 3 and 4. However, generally the uncertainty/mean ratio are lower than

in the Group 4. This suggests that uncertainty in the climatic inputs has less

influence on the validity of the percentile calculated for the grid cells in Group 5,

especially with respect to the relative uncertainty (uncertainty/mean at a grid

cell).

As discussed in Section 5.1.1, the BIOCLIM prediction result is determined

by the known crop point sites, the climate at those points and the climatic

similarity of these sites with the rest area of interest. As temperature varies

significantly from the south to north of the region studied, it can be concluded

that rainfall is the dominant climatic variable in these results. Therefore the

highest prediction occurs in grid cells that are most similar in rainfall patterns,

to where the Field Pea trial sites are. As discussed in Section 8.1 and shown

in Table 8.1, the introduction of uncertainty into the model’s climate inputs

does change the prediction to some, mostly small extent. Therefore, it can be

concluded that the model’s prediction is most sensitive to geographical related

changes in the climate and field sites and not the uncertainty in the climate

grids. However, the results of this section clearly show that the uncertainty of

the prediction can be significantly influenced by propagation of the climate grid

uncertainty, with very rapid changes occurring quite abruptly across geographical

space.
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a b

Figure 8.9: Mean versus Uncertainty Relationship in Group 4: (a) 17.3 and (b)
18.3. For ROI colour classifications see categories described on Page 129.
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a b

Figure 8.10: Mean versus Uncertainty Relationship in Group 5: (a) 22.1 and (b)
23.1. For ROI colour classifications see categories described on Page 129.
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8.2 Skewed Uncertainty Distributions

As discussed in Chapter 4, a skewed uncertainty distribution can change a preci-

sion agriculture models output and the uncertainty of that output. This analysis

was repeated on the BIOCLIM model and the results discussed in this section.

8.2.1 Quantified Similarities and Differences

The mean prediction and its associated uncertainty, when the added GHCN

uncertainty layers are non-normal, is displayed in Figure 8.11 (the Worldclim

uncertainty layer is not included in this analysis due to its small influence). As is

clear, the mean prediction results are lower than the default prediction irrespec-

tive of the skew direction, but still in high agreement with each other: Positively

and negatively skewed GHCN uncertainty - correlation of 0.9921 (see Table 8.4);

Correlation of the predictions made with normally distribution to positively and

negatively skewed GHCN uncertainty - 0.9934 and 0.9917 respectively. The high

values of these correlations suggest that the predictions are very close, irrespec-

tive of the direction of the skew or whether the uncertainty is skewed or not.

Similarly, the calculated statistical relationship in the uncertainty results is

very close: normally distributed to positively skewed GHCN uncertainty - cor-

relation of 0.9555, normally distributed to negatively skewed GHCN uncertainty

- correlation of 0.9441, positively and negatively skewed GHCN uncertainty -

correlation of 0.9560. As expected, in all cases the correlation between the un-

certainty results is less than between the mean results, but they are still high.

These correlation results are quite easily visible in the uncertainty images in

Figure 8.11, with differences in uncertainty being most easily visible where the

prediction is low (< 2.5 Percentile) or in areas where the prediction is generally

higher (> 5 Percentile).

As previously discussed, the degree of sensitivity of the model varies across

the region studied, but the general pattern(s) observed are consistent whether

the uncertainty inputs are skewed or normal. As before, the clearest examples



CHAPTER 8. SENSITIVITY OF BIOCLIM PREDICTIONS 143

Normal Distribution

Positive Skew

Negative Skew

Mean Uncertainty Skewness

ND 0 2.5 5 10 20 28 0 2 4 6 8 10
(Percentiles)

-68 -51 -34 -17 0 17 34 51 68

Figure 8.11: BIOCLIM present prediction results for normal vs skewed uncer-
tainty (GHCN only): (a) Mean, (b) Uncertainty and (c) Skew. Middle row,
GHCN and WorldClim uncertainty added. Top - Gaussian, Middle gamma +2,
Bottom gamma −2.
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of this are where both the mean and uncertainty are low, but the uncertainty

relative to the mean is high (and therefore important); and where the uncertainty

is high (but lower than the mean) and spatially quite variable (such as in the

“south western” region. Also of note is the area centred at ≈ 118o13′ E. 33o40′

S. (see Section 8.1) has a lower uncertainty, but is still clear in its spatial extent.

These results suggest:

1. That the uncertainty is generally lower when the GHCN uncertainty inputs

are skewed.

2. Similar to the results in Section 8.1, there are some regions where the

uncertainty is consistent, but across the whole region this generality can

not be made.

3. There is a higher correlation between uncertainty results for the normal-

uncertainty and positively-skewed uncertainty input BIOCLIM prediction.

This is not easily visible in the uncertainty result images (Figure 8.11), but

is in the plotted results, as the mean to uncertainty relationship is slightly

more linear and more consistent (Figure 8.12(a) and (b)).

Knowing how the BIOCLIM model calculates its predictions, it can be gen-

eralised that heavily skewed non-normal uncertainty will reduce the width of the

climate input layer uncertainty distribution of each grid cell. In turn, this favours

minimising the uncertainty in the prediction at each grid cell, regardless of the

direction of the skew (see Figure 8.12). This relationship reflects the conclusion

drawn from the analysis of the R component of the Mitscherlich Equation, as

discussed in Chapter 4.2, even though the models are quite different.

Analysis by Region of Interest

The mapped mean to uncertainty relationship, when the input uncertainty is

normally distributed, was discussed in Chapter 8.1.1 and 8.1.2. This section

applies the same ROI methodology to investigate how non-normally distributed

uncertainty changes this relationship.
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a b c

Figure 8.12: Uncertainty of Present Prediction in the Western Australian Re-
gion. Uncertainty Inputs: (a) Normal versus Positive Skew, (b) Normal versus
Negative Skew and (c) Positive versus Negative Skew

As seen in Figures 8.13, 8.14 and 8.15, changing the skew in the inputs uncer-

tainty does significantly change where the lowest uncertainty occurs. The mean

- uncertainty relationship does mirror what occurs when the uncertainty in the

input has a Gaussian distribution (generally lower when the mean is less than

the ROI value and higher in the opposite case). However, when the input uncer-

tainty is negatively skewed, the higher mean values can have a lower associated

uncertainty. This is most clear in the 2.9 ROI (the red region), but is also visible

in the 9.6 ROI in Figure 8.14 (Group 3, yellow region). The influence of non

normality on the inputs is most clear in Group 2 and 3. To summarise,

1. The
√

shaped prediction to uncertainty relationship is still clearly present.

However, more of the ROI (and hence more grid cells) have uncertainties

close to zero.

2. In Group 2, when the distribution is normal, the lowest uncertainty clearly

occurs in the 3.8 ROI (see Figure 8.5). Also, the 2.9 ROI is not distinguish-

able (in the plot), as the uncertainty for the 2.9 ROI is high. However,

when the input uncertainty is skewed the 2.9 ROI becomes easily seen as

the uncertainty, for part of this ROI, is lower.

3. In group 3, the uncertainty is clearly lower, with the 6.6, 7.7 and 9.6 ROI

having uncertainty values close to 0.
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Figure 8.13: Mean versus Uncertainty in Group 1 and 2, when uncertainty input
is positively and negatively skewed. For ROI colour classifications see Table 8.5
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This clearly shows that a lower uncertainty in the model’s output occurs when

the uncertainty in the climate grids is skewed and that this occurs in several

ROI. It also shows that the ROI with the lowest uncertainty can be significantly

influenced by the shape of the uncertainty distribution in the climate inputs.
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Group 4.

Figure 8.14: Mean versus Uncertainty in Group 3 and 4, when uncertainty input
is positively and negatively skewed. For ROI colour classifications see Table 8.5
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Figure 8.15: Mean versus Uncertainty in Group 5, when uncertainty input is
positively and negatively skewed. For ROI colour classifications see Table 8.5
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Group ROI Colour No of points
1 0 red 2126 and 2079 (+/- skew)
2 2.9 red 867

3.8 green 1280
3 6.7 red 433

7.7 green 381
8.7 blue 31
9.6 yellow 246
10.6 cyan 100
11.5 majenta 171

4 13.5 red 77
14.4 green 56
15.4 blue 77
16.3 – 1
17.3 yellow 124
18.3 cyan 34
19.2 – 8

5 21.2 red 14
22.1 green 48
23.1 blue 29
24.0 yellow 11
25.0 – 2
26.0 – 8

6 28.8 – 2

Table 8.5: Colour labels for the ROI in each group.

8.3 Influence of Uncertainty on Future Predic-

tions

As discussed in Section 6.3, the complexity of the uncertainty in future climate

predictions is not easily quantified and so has been excluded from the future

prediction BIOCLIM model. Therefore, as discussed in Section 7.4, in the future

prediction model uncertainty is present only in the present climate grids, the

Bioclimate layers, the tailed percentile distributions and the prediction. This, is

illustrated in Figure 7.6 and 8.16. In both figures the uncertainty propagation

pathways through the model is shown and, as expected, it does not include the

calculation of the future Bioclimate grids.

The areas predicted to be suitable for Field Pea in both present and the two

CSIRO (A2a and B2a) future climates are illustrated in Figure 8.17. The climate

grids are static i.e no uncertainty is present and will be referred to as default-A2a
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Uncertainty Propagation Path

��

Figure 8.16: Sections of the future model where uncertainty is present and is
not present. For the former, the components are in the grey boxed area and the
prediction. The green boxed area is the “black box” component of the model.
The uncertainty propagation path is shown.

and default-B2a. In both these future scenarios the area predicted as suitable

is considerably less and the maximum percentile calculated is ≤ 20 Percentile.

The closer agreement between the future predictions, at each grid cell, is seen

in the statistical correlation between each (present−A2a: 0.4257, present−B2a:

0.3027, A2a−B2a: 0.7956). The spatial distribution of all grid cells with non

null values, for both future scenarios, are also in closer agreement. However, in

all three cases there are clear similarities, the most notable being the area where

the highest prediction occurs i.e. in the “south western” region.

When compared to a present prediction, where the reduction in productive

area has occurred is not unexpected (due to the predicted decrease in precipita-

tion across the south of Western Australia). However, there is one clear anomaly
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Present A2a B2a

ND 0 2.5 5 10 20 28 (Percentiles)

Figure 8.17: Default BIOCLIM predictions: Present, CSIRO A2a and B2a mod-
els. The white boxed area, at ≈ 116o E. 32o S., is approximately where produc-
tivity is greater than 0 in future predictions, but not in the present prediction.

in this pattern along the western boundary (centred at ≈ 116o E. 32o0′ S., see

Figure 8.17) that, in the future, is considered to be more suitable than at present.

For a user of the BIOCLIM model to understand why this may be valid, would

require a closer look at the future climate scenario in that area and an under-

standing of the conditions favourable to the Field Pea.

8.3.1 Future: CSIRO A2a and B2a Scenarios with Nor-

mally Distributed Uncertainty

As in the present scenario for the Western Australia region, the future predictions

are clearly boxed at values ≥ 2.5 and < 20 Percentiles (except for one grid cell in

A2a, see Figure 8.17). But, as discussed in Section 8.1, when uncertainty is added

to the climate inputs, the prediction become less well defined (Figure 8.18 and

8.19 (Mean)). Also, there is a close agreement between outputs when the normal-

distribution Worldclim uncertainty layer is present or excluded (correlation, A2a:

0.99997, B2a: 0.99998). Therefore, all following discussion and conclusions refer

to the situation in only the GHCN uncertainty layer is added to the BIOCLIM
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climate inputs.

When uncertainty is added, there is a considerable increase in the spatial

extent of the area classified as ≤ 2.5 Percentile. This is most notable for the

A2a future prediction, where the “grey” areas has significantly extended into

areas that are graded as unsuitable (black) or ≥ 2.5 to ≤ 5 (green) when no

uncertainty is added. The same does occur for the B2a future prediction, but to

a much lesser extent. However, in the B2a future, the highest predictions cover

a larger area at ≈ 117o5′0′′ E. 32o52′30′′ S and ≈ 117o47′30′′ E. 33o47′30′′ S (red

rectangled area in Figure 8.19, B2a mean prediction map). This suggests that

the propagation of present climate input uncertainty has a differing influence on

the future predictions, depending on which of the future climate inputs is input

(to the model). This difference is clear in the changes in both the prediction

values and their spatial extent.

A summary of the uncertainty associated with the future predictions is:

1. The highest uncertainty does occur where the higher prediction occurs,

most notably in the B2a model. But, there is also an almost equally high

uncertainty where the predictions of ≈ 2 percentile occur.

2. The highest uncertainties of the simulated future prediction(s) are less than

one third the uncertainty associated with the present prediction. For both

scenarios (A2a and B2a), the lowest values (≤ 0.5) are on the north east

border region (where the prediction is also lowest), but also occurs in other

low prediction border regions.

3. In the south there is a border region where the uncertainty is low, but the

prediction here is consistently in the range of 2.5 to 5 Percentile. Heading

south or south west, this prediction quickly drops to 0, with associated

uncertainty as high as 2 Percentile (at various grid locations along this

border).

4. In the south west of both future predicted regions (A2a and B2a), there is a

“strip” and other grid locations in which the uncertainty is equal to 0, even
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A2a B2a

Figure 8.18: Comparison of CSIRO A2a and B2a Predictions, with and without
added uncertainty.

though the prediction is as high as 5 Percentile. This clearly indicates that

the input uncertainty (in the present climate surfaces) have no influence

on the prediction in this sub region.

5. There are areas where the prediction is very low, but the uncertainty is

high. This indicates that the model is sensitive to uncertainty in these

regions. Where these sensitive sub regions occur is not neccesariy the same

for the A2a or B2a future scenarios.

6. As in the present predictions results discussed in Chapter 8.1, the highest

uncertainty mostly occurs where the highest predictions occur (see Figure

8.20), most notably in the B2a model. But, there is also an almost equally

high uncertainty where the predictions of ≈ 2 percentile occur.

7. Finally, the
√

shaped relationship between the prediction and uncertainty

is clearly present.

For both of the future scenarios, the uncertainty to mean relationship appears

to follow that observed in the present prediction (8.21). In the A2a and B2a

scenario, this is most clear up to the Prediction of ≈ 4.5 and ≈ 3.5 respectively
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A2a

B2a

default Mean Uncertainty

ND 0 2.5 5 10 20 28 (Percentiles) 0 0.5 1 1.5 2 2.5 3

Figure 8.19: BIOCLIM Future Prediction CSIRO A2a and B2a. Default (no
uncertainty in present climate grids). Mean and Uncertainty (with uncertainty).
The white boxed area in the B2a mean map shows an area where the prediction
has increased, as discussed in Section 8.3.1.
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A2a

B2a

Mean Uncertainty

ND 0 2.5 5 10 20 28 0 0.5 1 1.5 2 2.5 3
(Percentiles)

Figure 8.20: Mean and Uncertainty, BIOCLIM Future CSIRO A2a and B2a
model predictions.
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(coloured red and blue respectively), but less clear above those values (mirroring

the higher prediction pattern in the present scenario).

Also as occurs in the present prediction, the highest uncertainty occurs where

the highest prediction occurs. However, as previously discussed, the maximum

uncertainty reached is considerably lower. Also notable is the relative lack of a

“cloud” of uncertainty values above the mean versus uncertainty arcs.

8.3.2 Future: CSIRO A2a and B2a Scenarios with Skewed

Uncertainty

A non-Gaussian distribution of the BIOCLIM climate inputs produces two con-

sistent patterns in the predictions. More specifically, when compared to the

Gaussian prediction, for both A2a and B2a, a positive skew in the uncertainty

produces a prediction which is in slightly higher agreement with the default fu-

ture prediction. The opposite is the case for B2a. This can be seen in Figure

8.22 and in the correlation between the mean and default predictions (see Ta-

ble 8.6). In short, the greatest difference from the default predictions, for both

future scenarios, occurs when the uncertainty in climate inputs are negatively

skewed, with the greatest agreement occurring when the inputs are positively

skewed (but there is not a large difference between uncertainty in the Gaussian

model and positively skewed model).

The mean and default prediction results, when the inputs are positively

skewed, is shown in Figure 8.23. In these plots, the closer the agreement be-

tween predictions, the lower the variation in the predicted results. As expected

from the correlation results, this is most clearly seen in the positively skewed A2a

normal + skew - skew
A2a 0.976619 0.980089 0.947932
B2a 0.965691 0.977722 0.941394

Table 8.6: Correlation of Future Predictions, default (no uncertainty) to Simu-
lated Inputs (GHCN uncertainty added)
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A2a

B2a

Figure 8.21: Mean versus Uncertainty. A2a and B2a Future Predictions, GHCN
Gaussian Uncertainty distribution.
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prediction, which is more clearly linear and has a higher maximum prediction.

But, the variation does appear significantly higher than when the same analysis

was applied to the present predictions (Section 8.2). Therefore, for future predic-

tions, the input uncertainty’s distribution (per grid cell) has a stronger influence

on the value of the prediction made than on the uncertainty of this prediction.

As expected, the levels of agreement between the prediction layers is reflected

in the uncertainty results (Figure 8.22 and Table 8.7). This is most notable in

the A2a prediction (correlation for A2a: normal - positive skew, 0.7959; normal

- negative skew, 0.8451; positive to negative skew, 0.5420), where the “positive

skew” result clearly covers less of a spatial area and this area is close to the area

covered by the default prediction. In general, the spatial patterns are reasonably

consistent (such as the lower uncertainty on the north eastern border and the

high uncertainty in areas where the prediction is higher). As expected, the same

is observed when the inputs are positively skewed in the future B2a prediction,

with the spatial area it covers being less.

The mean - uncertainty relationship in these scenarios is shown in Figure 8.24

and appears to follow the same “arc” like relationship observed in other predic-

tions. Similar to the uncertainty of the normally distributed future predictions,

the size of the uncertainty is much less and does not have the “cloud” of higher

uncertainty.

8.4 Summary and Conclusions

A summary of BIOCLIM’s sensitivity to uncertainty in the climate inputs is as

follows:

Present predictions

Spatially, the uncertainty in the BIOCLIM prediction varies considerably, as

does the prediction. The uncertainty does not have a clear relationship with the

prediction, either spatially or with the predictions size. At some grid points,

the uncertainty in the prediction can be very high relative to prediction, clearly
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A2a

B2a

(+) (−)

Figure 8.23: A comparison of Default and A2a or B2a Future Predictions. Posi-
tive and negative skewed uncertainty inputs.
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A2a

B2a

(+) (−)

Figure 8.24: Mean Prediction versus Uncertainty, A2a and B2a future predic-
tions. Positively and negatively skewed uncertainty.
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GHCN GHCN GHCN
(normal) (skew +2) (skew -2)

Present
GHCN (normal) 1.000000 0.955554 0.944184
GHCN (skew +2) 0.955554 1.000000 0.955979
GHCN (skew -2) 0.944184 0.955979 1.000000
Future A2a
GHCN (normal) 1.000000 0.795861 0.845098
GHCN (skew +2) 0.795861 1.000000 0.541974
GHCN (skew -2) 0.845098 0.541974 1.000000
Future B2a
GHCN (normal) 1.000000 0.874284 0.895760
GHCN (skew +2) 0.874284 1.000000 0.707967
GHCN (skew -2) 0.895760 0.707967 1.000000

Table 8.7: Correlation of Uncertainty: Future Predictions, Normal and Skewed
Input Uncertainty.

Figure 8.25: Percentage of future uncertainty accounted for by uncertainty in
current inputs, as discussed by Corner and Marinelli (2008).
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showing the low validity of the predictions. On the other hand, at grid points

relatively close to these, the uncertainty can drop significantly as the prediction

increases. This is most likely due to predictions crossing a threshold after which

the uncertainty is significantly less. It seems reasonable to suggest that this is

mostly caused by BIOCLIM’s boxing of predictions, as the changes in the uncer-

tainty grids are relatively smooth, so variation in them alone can not explain this

observation. However, relative to the prediction, the highest uncertainty occurs

in grid cells where the prediction is lowest, such as the north east boundary.

Skewed non-normal uncertainty reduces the uncertainty in the prediction as

well as where this occurs. Also, the uncertainty in the prediction at each grid

cell is reduced, regardless of the direction of the skew.

Future predictions

All the future predictions fall into a narrower range, 0 to 20th Percentile.

This is expected given the reduced rainfall predicted for the south of Western

Australia.

Uncertainty in the present climate grids of the future models does change the

prediction, but not to the same extent as occurs in the present climate model.

This suggests that the predictions of the grid cells in the simulated bioclimate

layers fall mostly within a narrower or more evenly distributed range.

The mean versus uncertainty relationship is similar to what occurs in the

present BIOCLIM model. More specifically, (1) the
√

mean versus uncertainty

relationship, (2) the size of this uncertainty can be significant relative to the size

of the prediction and (3) the size of the uncertainty appears to change randomly

in many areas while remaining constant across others.

The difference between the two future climate predictions is significant and

easily exceeds any difference that occurs when uncertainty is added to the present

condition climate grids. Therefore, if BIOCLIM is used to predict the ecological

niches for a range of different future climate conditions, the accuracy of the model

used to calculate the future climate grids is more critical.

This final point does not suggest that uncertainty in the present condition’s
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inputs is not important if comparing the two future condition predictions, only

that it may be less important depending on what an end user is interested in

knowing. For example, Figure 8.25 illustrates the percentage of the difference

between the two future predictions that can be accounted for by the uncertainty

in the present climate condition grids (Corner & Marinelli 2008). For the major-

ity of the prediction it is under 50% (which may be condidered low) and in some

areas very high. Therefore, the difference between the two future scenarios is

large and so minimising the uncertainty in the input climate grids is not going to

improve this to a significant degree. However, as future climate predictions con-

tinue to converge with the development of future climate models, the importance

of quantifying climate grid uncertainty propagation becomes important.

The similarity in the mean - uncertainty relationship in all the scenarios dis-

cussed suggests that the reason for this is mostly related to the models structure.

Therefore, further investigation of why the observed relationships are occurring

will be only on the present prediction, normally distributed uncertainty (Chapter

9)



Chapter 9

Uncertainty Propagation Path

Analysis

As discussed in Chapter 8, the presence of a normally (or Gaussian) distributed

uncertainty within the temperature and precipitation grids has a strong influence

on the uncertainty of the present BIOCLIM Model prediction (hereafter this

type of model is referred to as the GaussianPresent model). The uncertainty

− mean relationship varies spatially, is clearly more sensitive at the borders

between the default prediction “regions of interest” and has some characteristic

patterns (such as the skewed
√

shaped decrease → increase in uncertainty, as the

prediction value increases). As discussed in Section 5.3.1, the total BIOCLIM

model has three sections, which (1) calculates the the bioclimate grids and then

(2) calculates the frequency distribution of the bioclimate values at the grid cells

where the species are known to occur. These distributions are then used to (3)

calculate where the species should occur in the other grid cells being studied.

As the frequency distribution and hence the final prediction is a result of the

values in the Bioclimate grids, it is clear that understanding how uncertainty

in the Bioclimate grids can influence a prediction is important. For example, if

there is high variability in the precipitation of the warmest months, this is not

intuitively expected to influence the prediction of crops not grown in this period

167
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Figure 9.1: Unique uncertainty propagation sensitivity analysis models.

of the year1. However, this model can not exclude the climate of these months

from its analysis so the climate of the warmest months is a part of the prediction

model and so, this uncertainty propagation path must also be analysed.

To do this, uncertainty propagation through the 19 Bioclimate grids was

individually analysed. That is, the Monte Carlo simulation model was repeated

19 times where in each case, the uncertainty propagation was limited to one

Bioclimate grid pathway. These 19 models will be referred to as the single-

biogrid models. In each simulation, 18 bioclimate grids are constant as are the

frequency histograms generated from them. For this study, in these 19 Single-

Biogrid models, only the Gaussian Present model was investigated.

The statistical analyses of these models were compared for similarities in

their prediction-uncertainty relationship, with particular interest being if the
√

shaped mean − uncertainty relationship was visible, or components of it.

From this it was possible to group the Bioclimate algorithms and investigate the

resulting models to see the cumulative effect of having more than one uncertainty

propagation path (see Figure 9.1 for a simple representation of such a model).

1Unless this period’s rainfall is known to improve the moisture content in the soil signifi-
cantly.
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These simulations are discussed in Section 9.1 and its results, combined with

other known information (such as when the crop is planted), are then used to

help draw some final conclusions on the sensitivity of the model to the spatial

patterns of the known input uncertainty (Section 9.2).

In this chapter the known uncertainty propagation paths are discussed since

their structure is known and their importance in the prediction’s accuracy is

high. However, there is a likelihood that other paths within the “black box”

component of the model may be contributing to the results of this study. But,

as these algorithms are known in general but not known in detail, they cannot

be further investigated or immediate questions raised (by knowing their math-

ematical or statistical algorithm). However, possible conclusions on their effect

will be hypothesised.

9.1 Prediction Statistics and Spatial Patterns

The grid cells sensitive to uncertainty in the input climate grids, when propagat-

ing through only 1 of the 19 Bioclimate algorithms, is shown in Figure 9.3(A1)

- (A19). The number of grid cells affected and the highest uncertainty in those

grid cells is written in Table 9.1. From these, it can be seen that:

1. the number of grid cells affected, and the maximum uncertainty which

occurs, varies significantly between each single-biogrid model.

2. the locations where the prediction has some uncertainty varies significantly

across the area where the predictions are positive for the default model.

The overlap in the areas covered by the uncertainty-present grid cells is il-

lustrated in Figure 9.3(B1). The theoretical maximum is 19 (per grid cell), but

the maximum which actually occurred was 14, with most having 6 or less. So,

if there is a cumulative 2 effect on the Gaussian model’s uncertainty, it appears

that it will not be as a result of the uncertainty in all 19 Bioclimate layers, at

2Cumulative refers to the combined effect of uncertainty propagation paths.
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any one grid cell. However, given how BIOCLIM calculates its predictions, the

uncertainty will also be dependent on the uncertainty at the climate grid cells at

which the Field Pea trial sites are located, as this introduces an uncertainty to

the frequency histograms. This results in the prediction being influenced by mul-

tiple uncertainty propagation paths. An example of this is graphically illustrated

in Figure 9.2, where uncertainty propagation paths a and b are the Bioclimate

grid generation and histogram generation paths respectively. The section of the

model which calculates the histograms is in the black box component of the

model. But, as the histograms are calculated from cells in the Bioclimate grid,

these two paths are not independent. Also, this relationship will vary across the

area studied.

The agreement between the uncertainty in the full Gaussian model and the

uncertainty in the single-Biogrid models is shown in Table 9.2. The comparisons

of all grid cells in the study area had a low correlation of less than 0.5 which is

due, in part, to most of the single-biogrid models having no uncertainty at most

grid cells. When the grid cells compared are limited to those where uncertainty

is present in both models compared, the correlation can be lower or higher. The

most notable difference is in 3, 5, 12 (lower) and 7, 9, 13, 14, 16 (higher). The

high correlation suggests that, in these models, the uncertainty is mostly (but

not only) due to the uncertainty propagating in both models through the same

path(s). For example, this may be the case for the single-biogrid model 13, which

has a comparatively high correlation of 0.77 with the Gaussian present model. On

the other hand, if the correlation is low, the uncertainty in the Gaussian present

model cannot be explained in this way. Therefore, it is most likely due to the

cumulative effect of multiple uncertainty propagation paths. That is, for the

uncertainty at these grid cells, there is a stronger cross correlation component,

or relationship, between the uncertainty at grids cells at differing locations in the

Gaussian Present model.

The greater number of cells with a positive prediction, that occurs when

uncertainty propagation is modeled, was discussed in Section 8.1. Therefore, the
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Figure 9.2: Two uncertainty propagation paths in the BIOCLIM model. These
calculate (a) the Bioclimate grids and (b) the 19 frequency histograms.
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a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

a17 a18 a19 b1

2 4 6 8 10 12 14
counts

Where the uncertainty is greater than 0.

Figure 9.3: (a1 ... a19) Grid cells where the Single-Biogrid prediction has uncer-
tainty. (b1) Frequency of occurrence.
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cumulative relationship not only affects the magnitude of the uncertainty at a

grid cell, but the number of grid cells with a positive prediction and uncertainty

greater than 0. This is clearly seen in the comparison of 3 BIOCLIM model

outputs (Figure 9.4); (a) the default model and (b) the Gaussian Present model

discussed in Section 8.1; (c) mean and (d) standard deviation (at each grid cell)

of the 19 single-biogrid models. In (d), the maximum value is 1.8 Percentile, with

95% of the grid cells having standard deviations greater than 0 and less than 0.7

Percentile. Therefore, the single-biogrid predictions are in very close agreement,

which in turn is reflected in their similar correlations with the Gaussian Present

model prediction (Table 9.2, all > 0.97).

However, the mean of these 19 single-biogrid model predictions at each grid

cell; (c) have a higher agreement with the default model (a) than with the Gaus-

sian Present model (b) (correlation of 0.99 and 0.97 respectively). In the later,

the lower correlation is reflected in the lower maximum prediction and larger

number of grids cells where the prediction increases from null (most notable in

the circled areas of Figure 9.4, but also evident on the border areas highlighted in

Section 8.1, such as the north-east of the Wheat Belt). This clearly shows the cu-

mulative spatial effect of multiple uncertainty paths, through the 19 Bioclimate

algorithms, that are present in the Guassian Present model.

To better understand which Bioclimate algorithms, and their correlative re-

lationship, are most likely to be contributing to the changes in uncertainty (size

and spatial extent), the mean - uncertainty relationship in each single-biogrid

model was examined for similarities with the relationship discussed in Section

8.1.1. Of particular interest is whether the
√

relationship was a product of all

Bioclimate uncertainty paths, or is a result of a lesser number of propagation

paths. Initial results showed two clear relationship types:

1. A reduction in the uncertainty as the prediction increased.

2. A reduction and then increase as the prediction increased,
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a.

b.
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Figure 9.4: Comparison of Models (Percentile). (a) Default model, (b) Gaussian
Present model, (c) mean and (d) standard deviation of the 19 Single-Biogrid
models. Circled areas are examples of where the predictions are higher in the
Gaussian and Single-Biogrid models.
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as shown in Figure 9.6 to 9.24. This is discussed in the following three Sections,

with the Groups of Regions of Interest investigated in Chapter 8.1.2 being further

grouped into three “super groups” (Table 9.3): Super Group A − Group 2 and

3, Super Group B − Group 4 and Super Group C − Group 5 and 6. Group 1 is

excluded. The colour labels assigned to each ROI in each Super Group is shown

in Table 9.4.

9.1.1 Super Group A

In Super Group A, the differences in the mean versus uncertainty relationship

are clearly visible. Firstly, when uncertainty propagates through one of the

six Bioclimate grids - 1, 3, 7, 9, 14, or 19 3; the uncertainty reduces as the

prediction approaches the default prediction value and, for most of the grid cells,

the prediction is lower than or equal to the default prediction. Therefore, it can

be concluded that the influence of uncertainty, when propagated through any one

of these bioclimate grids, will (a) cause the prediction to be lower at most grid

cells and (b) the uncertainty in the mean prediction decreases as that prediction

approaches the default prediction. When, in a BIOCLIM Monte Carlo model,

uncertainty simultaneously propagates through all six of these Bioclimate grids

(referred to as the Bioclimate-Group-1 model), there is a clear cumulative effect

on the prediction’s uncertainty, as the size of the uncertainty is higher. Also, the

reduction to 0 as the mean prediction approaches the default value is still clearly

visible (Figure 9.25(a)).

When uncertainty propagates through one of the 13 Bioclimate grids - 2, 4,

3The names of the Bioclimate Grid are in Table 9.2; see Section 5.3.1 for a detailed descrip-
tion of the Bioclimate Grids.

Super Group Groups
A 2 and 3
B 4
C 5 and 6

Table 9.3: Grouping of Groups 2 to 6
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5, 6, 8, 10, 11, 12 , 13, 15, 16 , 17 or 18; the
√

shaped relationship is seen to

differing degrees and the uncertainty of the prediction at each grid cell is mostly

larger. When uncertainty simultaneously propagates through all of these grids

(referred to as the Bioclimate-Group-2 model), this relationship is much more

clearly visible and the uncertainty is much higher (Figure 9.25(b)).

For the Bioclimate-Group-1 and Bioclimate-Group-2 models, the number of

grid cells where the prediction equals the default model prediction and which

have an uncertainty of 0 is shown in Table 9.4 and mapped in Figure 9.5. It is

significant that the number of prediction grid cells influenced by uncertainty is

considerably higher in the Bioclimate-Group-2 model.

Also, the large number of grid cells that are not influenced by uncertainty

in the Bioclimate-Group-1 model are mostly in the south west of the area stud-

ied. At these grid cells the prediction is the same as the default prediction from

which it can be concluded that at some grid cells the propagation of uncertainty,

through some of the bioclimate grids, does not influence the prediction. This

suggests that with each simulation the Bioclimate values at (a) these grid cells

and (b) the Field Pea test site grid cells (keeping in mind that these two groups

of grid cells are not mutually exclusive) does not change the prediction assigned.

Therefore, it can be concluded that the changes that do occur in these Biocli-

mate grids and the 19 frequency histograms (with each simulation) must not be

sufficiently large to change where the predictions are boxed.

This also occurs in the Bioclimate-Group-2 model, but to a much smaller

extent. What is more significant is that it occurs at different grid cells. Therefore,

the various bioclimate algorithms influence both the uncertainty and its location

in the prediction, as discussed in Section 9.1.

9.1.2 Super Group B

In Super Group B, for all Bioclimate layers, the uncertainty decreases as the

prediction approaches the default prediction, with the exception of Bioclimate

grid 6 and 11. This suggests that the uncertainty in these 2 Bioclimate grids
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Group Region of
Interest

Default
Prediction

Bioclimate-
Group-1

Bioclimate-
Group-2

Colour
Label

2 2.9 867 383 15 red
3.8 1280 86 58 green

3 6.7 433 163 1 blue
7.7 381 13 0 yellow
8.7 31 0 0 cyan
9.6 246 85 0 magenta
10.6 100 10 0 maroon
11.5 171 4 0 sea grass

4 13.5 77 51 0 red
14.4 56 0 0 green
15.4 77 34 0 blue
16.3 1 0 0 yellow
17.3 124 12 0 cyan
18.3 34 0 0 magenta
19.2 8 0 0 maroon

5 21.2 14 0 0 red
22.1 48 0 0 green
23.1 29 0 0 blue
24.0 11 0 0 yellow
25.0 2 0 0 cyan
26.0 8 0 0 magenta

6 28.8 2 0 0 maroon

Table 9.4: Number of grid cells where default prediction occurs in Default Pre-
diction, Bioclimate-Group-1 and Bioclimate-Group-2 models. The colour labels
assigned to each Region of Interest in each Group is shown.
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Figure 9.5: The red coloured grid cells are where the prediction is not changed by
uncertainty in the Bioclimate grids: Bioclimate-Group-1 and Bioclimate-Group-
2.

has a significant influence on the uncertainty in the grid cells of Group 4; as

the uncertainty propagation is clearly greater in Bioclimate-Group-2 than in

Bioclimate-Group-1, with more grid cells having higher uncertainty results and

none having the value of 0.

9.1.3 Super Group C

In Super Group C, the only clearly visible
√

shape is in the blue region. Also, it

is more notable in the Bioclimate-Group-1 model than in the Bioclimate-Group-

2 model. This is possibly due to the propagation of the uncertainty through

the Bioclimate 9 grid (Figure 9.14). However, as discussed in Section 8.1.2, the

low number of grid cells in Group 4 and 5 makes it difficult to draw a definite

conclusion.
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9.2 Discussion

This Section aims to clarify how the models structure influences the uncertainty

in the prediction, expanding on the analysis in the previous Section (9.1). As

discussed, it is clear that these Bioclimate algorithms can be grouped into two

subsets of the default BIOCLIM model (Bioclimate-Group-1 and Bioclimate-

Group-2). The following points describe why these differences are occurring

by (a) considering the structure of the algorithms and (b) what the algorithm

calculates and its relevance to the crop of interest being predicted. In drawing

a conclusion from both of these, it is important to consider how uncertainty

related changes in the Bioclimate grids can tip the prediction from one sub-

group to another. Therefore, the effect of the discreet method of prediction, in

the “black box” component of the BIOCLIM model, should be considered.

Not all the Bioclimate grids are discussed as there are similarities in their

sensitivity to uncertainty propagation. Instead, those discussed here most clearly

influence the uncertainty in the prediction (away from 0).

Bioclimate-Group-1

1. The uncertainty in the Bioclimate-Group-1 model prediction is either non-

existent, or exists in grid cells where the prediction has been reduced (with

the introduction of climate uncertainty into the model). In the first case,

this suggests that the change in the Bioclimate grids and the BIOCLIM

frequency histogram distributions is not sufficient to change the prediction

(as discussed in Section 9.1.1). In the second case, the uncertainty of the

mean prediction can start relatively high before decreasing as the mean

prediction tends towards the default value. Also, and of significance, is

that the prediction does not ever exceed the default prediction.

2. The reason for this mean to uncertainty relationship is most likely due

to: (a) The simple mathematical and statistical algorithms in the known

uncertainty paths of this model (such as Bioclimate 1, annual mean temp)

and (b) that these Bioclimate algorithms do not assess the temperature or
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precipitation climates across the temporal periods that are important to

the species being modeled - in this case the Field Pea - so the prediction

does not change.

3. The exceptions to this (in the Bioclimate-Group-1 model) are the Biocli-

mate 9 (Mean temperature of the driest quarter) and 19 (Precipitation of

the coldest quarter) grids. These do produce notably higher uncertainty in

predictions at some grid cells, especially in Super Group A (where lower

predictions occur). This is expected as the grids where lowest predictions

occur are the most sensitive to introduced uncertainty, as discussed in Sec-

tion 8.1.1.

4. The structure of the Bioclimate 9 and 19 climate grid’s algorithms is not

significantly different in complexity or structure from the other Bioclimate

algorithms, so it can be concluded that these algorithms structures is not

the only cause of the higher sensitivity of the predictions. Instead, it is

likely to be the result of the influence that these climates, have on the

prediction of a certain crop or species. For example, the precipitation of

the coldest quarter is important to the Field Pea as it is a winter crop in

Western Australia. Also, but less obvious, is that the mean temperature of

the driest quarter is also important as a hot summer will affect the amount

of moisture in the soil.

Bioclimate-Group-2

1. The uncertainty in the Bioclimate-Group-2 model prediction is (a) present

in a much larger number of grid cells and (b) has a high value in a larger

number of grid cells. Therefore, in a larger number of grid cells than

occurs in Bioclimate-Group-1, the change in the Bioclimate grids and the

BIOCLIM frequency histogram distributions is sufficient to change the

prediction in a larger number of grid cells. Also, the uncertainty in the

predictions is significantly higher in a greater number of grid cells where

higher predictions occur.
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2. Also, unlike what occurs in the Bioclimate-Group-1 model, at a significant

number of grid cells the prediction does exceed the default prediction. This

is seen in the skewed
√

mean versus uncertainty relationship (at each

grid cell). From this, it can be concluded that the uncertainty paths in

the Bioclimate-Group-2 model are the most likely contributors to the non

linear prediction−uncertainty relationship discussed in earlier sections of

this chapter and Chapter 8.

3. This relationship occurs to differing degrees at different grid cell locations,

especially in Super Group A. It is also clear that (a) the size of the uncer-

tainty varies significantly and (b) the skewed
√

relationship is most visible

when uncertainty propagates through the Bioclimate 11 and 12 grids and

to a lesser extent the Bioclimate 13 grid (the purple grid cells).

4. When uncertainty propagates through Bioclimate grid 6 (minimum tem-

perature in coldest month) the mean to uncertainty relationship is notably

different in that the uncertainty only increases with increasing prediction.

These increases are large and clearly binned, most notably in Super Group

B and C. This discreetised output of uncertainty reflects the discreetised

decision structure of the BIOCLIM model.

5. In Super Group A, when uncertainty propagates through the Bioclimate

grids which represent quarterly (three month) climate information, the
√

prediction to uncertainty relationship is almost always present. For ex-

ample, when uncertainty is present in the Bioclimate grid 11 (Mean Tem-

perature of Coldest Quarter) grids. This analysis of shorter time periods

adds detail to the climate analysis of the region, so uncertainy in these

bioclimate grids are more likely to influence the accuracy of the prediction.

6. The sensitivity of the prediction, to uncertainty propagation through Bio-

climate grid 11, is possibly due to the fact that the temperature represented

in these grid cells is below the minimum required for flowering and podding
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(the Field Pea is particularly sensitive to late frosts during its flowering and

podding (Moore 1998)). This possible conclusion is supported by the Bio-

climate grid 6 analysis, which improves the spatial classification of where

the coldest periods of the year occur. The effect on the prediction’s uncer-

tainty, by the uncertainty propagation through these bioclimate grids (6

and 11), is most likely to be cumulative as its influence mostly occurs at

the same grid locations and in the same time of the year. However, these

locations mostly border the areas of higher productivity. From this it can

also be concluded that, in the grid cells where the prediction is highest, un-

certainty in these bioclimate grids has less (if any) effect on the uncertainty

in the prediction.

7. Also in Super Group A, the
√

relationship it very clear when uncertainty

propagates through the Bioclimate 12 grid (Annual Precipitation), which

investigates a long time period. What is significant is that the uncertainty

in the prediction is present in a large number of grid cells, but not where

the highest prediction occurs. This is expected as the higher predictions

occur closest to where where the crops were trialled.

8. As in Bioclimate-Group-1 model, the bioclimate algorithm’s complexity

alone can not explain the greater sensitivity of this model. So, determining

the climate related reasons that have created the uncertainty propagation

paths of significance is important in understanding what causes the uncer-

tainty observed at each grid cell.

9.3 Conclusion

To conclude, this analysis can be used to determine which components of the

model are most sensitive to propagation of uncertainty. This knowledge can be

used to improve the accuracy of the model’s results (by further model develop-

ment) or, to better understand the validity of the model for a specific study.
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From this Thesis’ results it is clear that minimising uncertainty propagation in

ecological niche models could be most easily achieved if (a) the uncertainty in the

climate grids could be reduced and (b) the models algorithm(s) could be mod-

ified to minimise uncertainty propagation without effecting overall predictions.

Finally (c), using the mapped statistical results and knowledge of the species be-

ing studied, modify the model to exclude uncertainty-sensitive Bioclimate grids.

The first of these may be difficult due to a number of reasons such as lack of

quality tested data. The second option may be possible if it is not constrained by

factors such as time (are results needed now?) and money (is funding available

for future model development?). The final option would need to be tested by

the model user specific to their requirements. For example, in this study the

highest uncertainty is occurring in grid cells where the Field Pea prediction is

low, so the crop will not be grown there regardless of the uncertainty of the

prediction. Alternatively, if the prediction is high then its uncertainty will not

influence the decision of where to plant the crop. Finally, if the model is known

to have an anomaly that causes the uncertainty to be higher at mapped grid

cells that border where the default predictions changed, then these results can

be excluded in the final decision making stage. However, this would require a

robust method of analysis and mapping of where this is occurring, similar to the

methodology discussed in Chapter 8.
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Group 2-3

Group 4

Group 5-6

Figure 9.6: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 1. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.7: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 2. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.8: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 3. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.9: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 4. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.10: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 5. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.11: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 6. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.12: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 7. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.13: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 8. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.14: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 9. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.15: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 10. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.16: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 11. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.17: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 12. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.18: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 13. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.19: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 14. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.20: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 15. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.21: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 16. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.22: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 17. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Group 2-3

Group 4

Group 5-6

Figure 9.23: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 18. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.



CHAPTER 9. UNCERTAINTY PROPAGATION PATH ANALYSIS 204

Group 2-3

Group 4

Group 5-6

Figure 9.24: Mean Prediction versus Uncertainty at each grid cell. Single-Biogrid
Model 19. For each region of interest, only where the uncertainty is greater than
0, is coloured. The colour labels assigned to each Region Of Interest in each
Group is shown in Table 9.4.
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Chapter 10

Conclusion

The aims of this study are outlined in Chapter 1, Section 1.1. To conclude, the

following outcomes have been achieved:

Computer programs have been developed to allow the analysis of uncertainty

propagation in the Models of interest. Those analysed are Precision Agriculture

and Ecological Niche models. The uncertainty propagated was, in all model’s,

in the model inputs.

The sensitivity of the models to uncertainty propagation has been quantified

using two commonly used methods, Taylor Series and Monte Carlo Modeling.

The results of this sensitivity analysis showed the degree to which the accuracy

of the model was influenced. Also, the difference between these tool’s results was

investigated. These results were used to understand which components of the

model’s, in which way, most influenced the uncertainty in the model’s product.

This will be further discussed in the following two sections.

The programs developed were largely designed to suit each model being anal-

ysed. For each analysis method, the basic structure of the program is the same,

so the major differences are in the unique functions or procedures written specif-

ically for each model.

207
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10.1 Precision Agriculture Models

For the Precision Agriculture models, both analysis methods were used because

both model’s algorithms were differentiable and continuous in the domain of

interest. Therefore, two analysis products were produced.

As expected for the linear N-availability model, both methods showed the

sensitivity of the prediction to input uncertainty to be low. Also, both methods

showed this relationship to be linear.

For the more complex non-linear Mitscherlich equation, most results from

both analysis methods were very similar when the uncertainty distribution of

the Monte Carlo model was Gaussian; except where the predictions are greater

than approximately 100 R. Further analysis showed this only occurred were the

predictions were invalid, due to a limitation of the model itself. In the domain

where the Mitscherlich equation is valid the uncertainty does grow linearly but

the variation of this uncertainty is high. This clearly showed that the sensitivity

to uncertainty in complex non linear models is higher. The combination of these

analyses are useful in illustrating the accuracy of the model and the need to

understand its limitations.

Using the Monte Carlo method, the distribution of the input uncertainty was

shown to have a significant influence on the result. The prediction did not change

to a great degree, but the uncertainty of that prediction very clearly did. The

direction of the skew also produced differing results.

10.2 The BIOCLIM Model

The gridded results of a single prediction of the BIOCLIM model across the

area of interest fall into clear prediction bins. With the introduction of normally

distributed uncertainty into the model inputs, this clarity is lost so, the BIOCLIM

model is clearly sensitive to uncertainty propagation. However, drawing an single

conclusion on this sensitivity across the area studied is not possible.

Where further analysis of the climate functions was possible (the known al-
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gorithms), it was concluded that their influence on the uncertainty-prediction

relationship fell clearly into two categories. In the first the prediction was re-

duced and its uncertainty increased, by the presence of uncertainty in the input -

but not at all the grid cells. In the second case, the area affected was significantly

larger, the prediction was both lower and higher, and not evenly distributed (in

size and spatial extent). Analysis of the functions in this second group showed

that they produced a more exact “mapping” of the climate envelope of the stud-

ied species, which in part explains these results.

The size of the uncertainty domain about each grid cell value is clearly a

critical component of the model. But, its size and spatial distribution is not

reflected in the final model result for most of the area. This was caused by

the combination of uncertainty propagation through the known functions of the

model and possibly by the algorithms in the black box component of the model.

Skewing the input uncertainty distribution does not change the BIOCLIM

predictions to any large degree, but it does change the uncertainties of the pre-

diction. As in the Mitscherlich Model, the direction of the skew also produces a

different sensitivity.

The uncertainty in the future predictions is low. This is expected as there is

a significant difference between the present and future climate grids. Therefore,

the uncertainty in the present grid is less likely to change where the BIOCLIM

model boxes the future predictions.

Limiting the parts of the model through which the uncertainty could propa-

gate allowed the most sensitive parts of the model to be isolated. In the BIO-

CLIM present model, the algorithms have two quite clear mean prediction versus

uncertainty relationships, showing which algorithms had the greatest negative in-

put on the validity of the prediction. Therefore, in aiming to minimise this, the

initial conclusions are to:

1. Minimise the propagation of uncertainty through these algorithms. This is,

in theory, most easily achieved if the uncertainty in the climate grids could

be reduced and the model’s algorithm(s) could be modified to minimise
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uncertainty propagation.

2. Remove these algorithms. As this would result in the prediction changing

in some grid locations, this is only possible if the changes occurring are

small or do not occur in geographical areas of interest. Communicating

this to an end user would be critical.

10.3 Future Research

The aim of this study was to quantify the uncertainty propagation in three dif-

ferent models, using two commonly used methods. These results were then used

to investigate which components of the model’s may have caused the uncertainty

sensitivity observed. How the application of this analysis’ results might be used

in either the use and/or improvement of the models was also discussed.

Research groups interested in either the models studied or in the improve-

ment of model accuracy, may have an interest in applying either the results and

methodologies of this thesis in their research. For example,

1. BIOCLIM is being used to make a future prediction and the researcher

wants to quantify the effects of uncertainty in future climate grids. This

would require adding an uncertainty component to the future climate grids,

such as those in the A2a projection. Unfortunately, there is no quantified

uncertainty for the A2a grids produced by the Hadley, CSIRO or Canadian

research group’s coupled climate models. However, the difference between

these three A2a projections does give an estimate of their uncertainty do-

main, or more specifically, the model’s uncertainty. From these fields, a

new prediction and associated uncertainty input could be calculated. If

this methodology was applied it would be important to classify the new

prediction as an estimate made from multiple model projections - not a

projection itself. But, it still has value as using its uncertainty may give

a valid domain across which to test the effect of uncertainty on future

predictions.
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2. Applying a rigorous statistical method that could map the relationship

between the input uncertainty and prediction uncertainty. For example,

principal component analysis is often used to quantify the relationships

between fields generated in the steps of a GIS analysis.

3. Also, in implementing this analysis method, programs could be developed

for use with other GIS packages and Models. Modules and filters specifi-

cally designed for each model will need to be developed. Ideally, a package

could be written to import these modules as required, the analysis per-

formed and then the results displayed. Alternatively, the analysis modules

could be designed to be called by a popular Geospatial Information Pack-

age.



Appendix A

Taylor Series Anaylsis of Models

This appendix contains the 1st and 2nd order partial derivatives of the Nitrogen

Availability Model and the fertiliser component of the Mitscherlich equation. If

the second order derivatives is equal to 0 it is not shown.

A.1 Nitrogen Availability

.

The Nitrogen availability model is

N(available) = (RON × RONDep(T − 1) × RONEff) + 10000 ×

(OC × (1 − GravProp) × SONEff) + (15 × FerTeff)

where the input data layers are the residual organic nitrogen (RON),organic

carbon in the soil (OC) and the gravel proportion in the soil (GravProp). The

other four parameters are the RONDep depletion coefficient and three efficiency

coefficients RONEff , SonEff and FertEff . These coefficients are constants

that were determined by productivity trials. The known uncertainties of the

input layers and the coefficients were obtained from discussion with experts in

soil testing. The other variable is time (T ) in years, since the last lupin crop.
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The N -available id in Kg/Ha.

A.1.1 Residual Organic Nitrogen

First Order.

∂N

∂RON
= (0.3(T−1)) × RONEff (A.1)

Second Order.

∂2N

∂RONEff ∂RON
= 0.3(T−1) (A.2)

A.1.2 RONEff

First Order.

∂N

∂RONEff
= RON × (0.3(T−1)) (A.3)

Second Order.

∂N

∂RON ∂RONEff
= 0.3(T−1) (A.4)

A.1.3 OC

First order.

∂N

∂OC
= 10000.0 × (1.0 − GravProp)× SonEff (A.5)

Second Order.

∂2N

∂GravProp ∂OC
= (−10000.0) × SonEff (A.6)
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∂2N

∂SonEff ∂OC
= SonEff = 10000.0 × (1.0 − GravProp) (A.7)

A.1.4 GravProp

First order.

∂N

∂GravProp
= (−10000.0) × OC × SonEff (A.8)

Second Order.

∂2N

∂OC ∂GravProp
= OC = (−10000) × SonEff (A.9)

∂2N

∂SonEff ∂GravProp
= SonEff = (−10000) × OC (A.10)

A.1.5 SONEff

First order.

∂N

∂SONEff
= 10000.0 × (OC ∗ (1.0 − GravProp)) (A.11)

Second Order.

∂2N

∂OC ∂SONEff
= OC = 10000.0× (1.0 − GravProp) (A.12)

∂2N

∂GravProp ∂SONEff
= GravProp = (−10000) × OC (A.13)

A.1.6 FerTeff

First order.
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∂N

∂FerTeff
= 15 (A.14)

A.2 The Mitscherlich model.

The fertiliser component of the Mitscherlich model is

Y = A − B−CR (A.15)

where Y is the yield in Tonnes per Hectare; A is the maximum achievable yield

with no other limitations; B is the response to potassium; C is a curvature

parameter; and R is the rate of applied fertiliser.

It has been shown (Edwards 1997) that the response, B, to potassium fertiliser

for a range of paddocks in the Australian wheat belt may be determined by

Equation 3.3,

B = A(0.95 + 2.6 × e−0.095×K0) (A.16)

where K0 is the soil potassium level. Substituting Equation 3.3 into Equation

3.2 and inverting provides a means of calculating the potassium requirements for

any location with any given soil potassium value. This is shown in Equation 3.4,

R =
−1

C
× ln[

Yt − A

−A(0.95 + 2.6e(−0.095K0))
] (A.17)

where R is the fertiliser requirement (Kg/Ha) to achieve a target yield of Yt

Tonnes per Hectare.

A.2.1 Curvature Parameter (C)

First order.

∂R

∂C
=

1

C2
× ln(

Yt − A

−1 × B
) (A.18)
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Second order.

∂2R

∂A ∂C
=

1

C2
× [

Yt

A × (Yt − A)
] (A.19)

∂2R

∂K ∂C
=

1

C2
× [

0.247 × ln (−0.095 × K0)

0.05 + (2.6 × ln(−0.095 × K0))
] (A.20)

∂2R

∂2C
=

−2

C3
× ln(

Yt − A

−1 × B
) (A.21)

A.2.2 Maximum Achieveable Yield (A)

First order.

∂R

∂A
=

−1

C
× [

Y t

A × (Yt − A)
] (A.22)

Second order.

∂2R

∂K ∂A
=

1

C
× [

1

(Yt − A)2
] (A.23)

∂2R

∂C ∂A
=

1

C2
× [

Yt

A × (Yt − A)
] (A.24)

∂2R

∂2A
=

−1 × Yt

C
× [

(2 × A) − Yt

A2 × (Yt − A)2
] (A.25)

A.2.3 Soil Potassium Level K0

First order.

∂R

∂K0
=

1

C
× 0.247 ln((−0.095) × K0)

0.05 + (2.6 ln((−0.095) × K0))
(A.26)

Second Order.
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∂2R

∂C ∂K0
=

−1

C2
× 0.247 ln((−0.095) × K0)

0.05 + (2.6 ln((−0.095) × K0))
(A.27)

∂2R

∂2K0
=

1

C
× (X + Y ) (A.28)

where

X =
0.023465 ln(−0.095 × K0)

0.05 + (2.6 ln(−0.095 × K0))
(A.29)

and

Y = −1 × [
(−0.247 ln(−0.095 × K0)) × (0.247 ln(−0.095 × K0))

(0.05 + (2.6 ln(−0.095 × K0)))2
] (A.30)
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AML BIOCLIM Variables Code

The 19 BIO layers used in this study and how they are calculated, is shown in

this appendix. It is a copy of the original documentation from the DIVA-GIS

website.

/* MkBCvars.AML
/* /*
/* Author Robert Hijmans
/* January 2006
/* rhijmans@uclink.berkeley.edu
/*
/* Version 2.3
/*
/* This AML creates the 19 BIOCLIM variables from
/* monthly Tmin, Tmax, and Precipitation grids
/* The results are rounded where integers would become reals
/* (I assume that input values were multiplied by 10
/* and stored as Integers to begin with)
/* P2 is first multiplied by 10
/* CVs are first multiplied by 100
/*
/* rounding of “x” is done with “int(floor(x + 0.5))”
/* because “int(x+0.5)” as suggested by ESRI (see INT in Arc Help), does not
/* round negative numbers correctly (-2.6 -> -2 intstead of -3).
/*
/* You must change the first four lines (input files and output directory)
/* If you do not have average temperature, create it with the lines that follow
/*
/* Also note that the AML removes some temporary grids if they exist
/* (the first “&do i = 0 &to 15” bit)
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/* Please make sure that you do not have files
/* with those names that you want to keep.
/*
/* BIO1 = Annual Mean Temperature
/* BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp))
/* BIO3 = Isothermality (P2/P7) (* 100)
/* BIO4 = Temperature Seasonality (standard deviation *100)
/* BIO5 = Max Temperature of Warmest Month
/* BIO6 = Min Temperature of Coldest Month
/* BIO7 = Temperature Annual Range (P5-P6)
/* BIO8 = Mean Temperature of Wettest Quarter
/* BIO9 = Mean Temperature of Driest Quarter
/* BIO10 = Mean Temperature of Warmest Quarter
/* BIO11 = Mean Temperature of Coldest Quarter
/* BIO12 = Annual Precipitation
/* BIO13 = Precipitation of Wettest Month
/* BIO14 = Precipitation of Driest Month
/* BIO15 = Precipitation Seasonality (Coefficient of Variation)
/* BIO16 = Precipitation of Wettest Quarter
/* BIO17 = Precipitation of Driest Quarter
/* BIO18 = Precipitation of Warmest Quarter
/* BIO19 = Precipitation of Coldest Quarter
/*
/* These summary Bioclimatic variables are after:
/* Nix, 1986. A biogeographic analysis of Australian elapid snakes. In: R. Long-
more (ed.).
/* Atlas of elapid snakes of Australia. Australian Flora and Fauna Series 7.
/* Australian Government Publishing Service, Canberra.
/*
/* and Expanded following the ANUCLIM manual
/*
/*
/* Temperature data is in units of oC * 10 because that allows me to store the
data as Integer values,
/* (with 0.1oC precision) which is more efficient than storing the data as Real
values.
/* However, you will want to report the data in oC. Precipitation data is in mm.
/*
/*

&TERMINAL 9999

&s program [locase [show program]]
&if %program% ˆ= grid &then grid
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&sv tn = tmin\tmin
&sv tx = tmax\tmax
&sv ta = tmean\tmean
&sv pt = prec\prec

/* if TAVG does not exist
&do j = 1 &to 12

&if [EXISTS %ta%%j% -grid] &then &type %ta%%j%
&else %ta%%j% = (%tn%%j% + %tx%%j%) / 2

&end

&do i = 0 &to 20
/* &if [exists BIO%i% -grid] &then kill P%i%
/* &if [exists P%i% -grid] &then kill P%i%
/* &if [exists tmp%i% -grid] &then kill tmp%i%
/* &if [exists x%i% -grid] &then kill x%i%
/* &if [exists q%i% -grid] &then kill q%i%
/* &if [exists t%i% -grid] &then kill t%i%
/* &if [exists mnt%i% -grid] &then kill mnt%i%
/* &if [exists dry%i% -grid] &then kill dry%i%
/* &if [exists wet%i% -grid] &then kill wet%i%
/* &if [exists hot%i% -grid] &then kill hot%i%
/* &if [exists cld%i% -grid] &then kill cld%i%
/* &if [exists x%i% -grid] &then kill x%i%
/* &if [exists y%i% -grid] &then kill y%i%
/* &if [exists rg%i% -grid] &then kill rg%i%
&end

&if [exists drym -grid] &then kill drym
&if [exists wetm -grid] &then kill wetm

&sv TAvar = %ta%1
&sv TXvar = %tx%1
&sv TNvar = %tn%1
&sv PTvar = %pt%1

&do j = 2 &to 12
&sv tavar = %tavar%,%ta%%j%
&sv txvar = %txvar%,%tx%%j%
&sv tnvar = %tnvar%,%tn%%j%
&sv ptvar = %ptvar%,%pt%%j%

&end

/* P1. Annual Mean Temperature
&if [exists p1 -grid] &then &type P1 exists
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&else
&do

P1 = int(floor(mean(%tavar%) + 0.5))
&type P1 done

&end

/* P4. Temperature Seasonality (standard deviation)
&if [exists p4 -grid] &then &type P4 exists
&else
&do

P4 = int(floor(100 * std(%tavar%) + 0.5))
&type P4 done

&end

/* P5. Max Temperature of Warmest Period
&if [exists p5 -grid] &then &type P5 exists
&else
&do

P5 = max(%txvar%)
&type P5 done

&end

/* P6. Min Temperature of Coldest Period
&if [exists p6 -grid] &then &type P6 exists
&else
&do

P6 = min(%tnvar%)
&type P6 done

&end

/* P7. Temperature Annual Range (P5-P6)
&if [exists p7 -grid] &then &type P7 exists
&else
&do

P7 = P5 - P6
&type P7 done

&end

/* P12. Annual Precipitation
&if [exists p12 -grid] &then &type P12 exists
&else
&do

P12 = sum(%ptvar%)
&type P12 done

&end
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/* P13. Precipitation of Wettest Period
&if [exists p13 -grid] &then &type P13 exists
&else
&do

P13 = max(%ptvar%)
&type P13 done

&end

/* P14. Precipitation of Driest Period
&if [exists p14 -grid] &then &type P14 exists
&else
&do

P14 = min(%ptvar%)
&type P14 done

&end

/* P15. Precipitation Seasonality(Coefficient of Variation)
/* the ”1 +” is to avoid strange CVs for areas where mean rainfaill is < 1)
&if [exists p15 -grid] &then &type P15 exists
&else
&do

P15 = int(floor(100 * std(%ptvar%) / (1 + P12 / 12) + 0.5))
&type P15 done

&end

&do i = 1 &to 12
&if [exists rg%i% -grid] &then &type rg%i% exists
&else rg%i% = %tx%%i% - %tn%%i%

&end

/* P2. Mean Diurnal Range(Mean(period max-min))
&if [exists p2 -grid] &then &type P2 exists
&else
&do

P2 = int(floor(mean(rg1,rg2,rg3,rg4,rg5,rg6,rg7,rg8,rg9,rg10,rg11,rg12)+ 0.5))
&type P2 done

&end

/* P3. Isothermality (P2 / P7)
&if [exists p3 -grid] &then &type P3 exists
&else
&do

P3 = int(floor(100 * P2 / P7) + 0.5)
&type P3 done
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&end

&do i = 1 &to 12
kill rg%i%
&end

&do i = 1 &to 12
&sv j = %i%
&sv k = [calc %i% + 1]
&sv l = [calc %i% + 2]
&if %k% > 12 &then &sv k = [calc %k% - 12]
&if %l% > 12 &then &sv l = [calc %l% - 12]
q%i% = %pt%%j% + %pt%%k% + %pt%%l%
t%i% = %ta%%j% + %ta%%k% + %ta%%l%

&end

mnt0 = con(isnull(q1),0,100)
mnt1 = setnull(mnt0 ¡ 1, 1)
wet1 = q1

&do i = 1 &to 11
&sv j = [calc %i% + 1]

/* &type i = %i% and j = %j%
mnt%j% = con(q%j% > wet%i%, [calc %j%], mnt%i%)
wet%j% = con(q%j% > wet%i%, q%j%, wet%i%)

&end
wetm = mnt12

/* P16. Precipitation of Wettest Quarter
&if [exists p16 -grid] &then &type P16 exists
&else
&do

P16 = wet12
&type P16 done

&end

&do i = 1 &to 12
kill mnt%i%
kill wet%i%

&end

mnt1 = setnull(mnt0 < 1, 1)
dry1 = q1
&do i = 1 &to 11

&sv j = [calc %i% + 1]
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mnt%j% = con(q%j% < dry%i%, [calc %j%], mnt%i%)
dry%j% = con(q%j% < dry%i%, q%j%, dry%i%)

&end
drym = mnt12

/* P17. Precipitation of Driest Quarter
&if [exists p17 -grid] &then &type P17 exists
&else
&do

P17 = dry12
&type P17 done

&end

&do i = 1 &to 12
kill mnt%i%
kill dry%i%

&end
kill mnt0

&do i = 1 &to 12
x%i% = con(wetm == %i%, t%i%, -9999)
y%i% = con(drym == %i%, t%i%, -9999)

&end

/* tmp1 = max(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12)
/* tmp2 = tmp1 / 3
/*P8 = int(floor(tmp2 + 0.5))

/* P8. Mean Temperature of Wettest Quarter
&if [exists p8 -grid] &then &type P8 exists
&else
&do

P8 = int(floor(max(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12) / 3 + 0.5))
&type P8 done

&end
/* tmp3 = max(y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12)
/* tmp4 = tmp3 / 3
/* P9 = int(floor(tmp4 + 0.5))

/* P9. Mean Temperature of Driest Quarter
P9 = int(floor(max(y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12) / 3 + 0.5))
&type P9 done

&do i = 1 &to 12
kill x%i%
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kill y%i%
&end
&do i = 1 &to 4
&if [exists tmp%i% -grid] &then kill tmp%i%
&end

mnt0 = con(isnull(t1),0,100)
mnt1 = setnull(mnt0 < 1, 1)
hot1 = t1
&do i = 1 &to 11

&sv j = [calc %i% + 1]
mnt%j% = con(t%j% > hot%i%, [calc %j%], mnt%i%)
hot%j% = con(t%j% > hot%i%, t%j%, hot%i%)

&end
hotm = mnt12

/* P10 Mean Temperature of Warmest Quarter
&if [exists p10 -grid] &then &type P10 exists
&else
&do

P10 = int(floor(hot12 / 3 + 0.5))
&type P10 done

&end

&do i = 1 &to 12
kill mnt%i%
kill hot%i%

&end

mnt1 = setnull(mnt0 < 1, 1)
cld1 = t1

&do i = 1 &to 11
&sv j = [calc %i% + 1]
mnt%j% = con(t%j% < cld%i%, [calc %j%], mnt%i%)
cld%j% = con(t%j% < cld%i%, t%j%, cld%i%)

&end
cldm = mnt12

/* P11 Mean Temperature of Coldest Quarter
&if [exists p11 -grid] &then &type P11 exists
&else
&do

P11 = int(floor(cld12 / 3 + 0.5))
&type P11 done
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&end

&do i = 1 &to 12
kill mnt%i%
kill cld%i%

&end
kill mnt0

&do i = 1 &to 12
x%i% = con(hotm == %i%, q%i%, -9999)
y%i% = con(cldm == %i%, q%i%, -9999)

&end

tmp1 = max(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12)

/* P18. Precipitation of Warmest Quarter
&if [exists p18 -grid] &then &type P18 exists
&else
&do

P18 = int(floor(tmp1 + 0.5))
&type P18 done

&end

tmp2 = max(y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12)

/* P19. Precipitation of Coldest Quarter
&if [exists p19 -grid] &then &type P19 exists
&else
&do

P19 = int(floor(tmp2 + 0.5))
&type P19 done

&end

&do i = 1 &to 12
kill x%i%
kill y%i%

&end

kill hotm
kill cldm
kill drym
kill wetm

kill tmp1 kill tmp2
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&do i = 1 &to 12
kill q%i%
kill t%i%

&end

&do i = 1 &to 19
rename p%i% bio %i%

&end

&type Done!
&return
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Annual Mean Temperature

Header

[General]
Creator=DIVA-GIS
Created=20081012
Title=BIO1

[GeoReference]
Projection=
Datum=
Mapunits=
Columns=171
Rows=203
MinX=114.66668
MaxX=121.79168
MinY=-35.000004
MaxY=-26.541670
ResolutionX=0.041666668
ResolutionY=0.041666668

[Data]
DataType=FLT4BYTES
MinValue=140.000
MaxValue=225.000
NoDataValue=-3.4E38
Transparent=0
Units=

[Application]
Opt0=Procedure: Climate data to map
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Opt1=Climate: frmClim2Grid
Opt2=Variable: Annual mean temperature range [1]

[ContLegend]
Count=2
Color1=16711680
Value1=140.000
Label1=
Color2=255
Value2=225.000
Label2=

[Legend]
Count=5
Color1=255
Min1=140
Max1=157
Label1=140.0 - 157.0
Color2=65450
Min2=157
Max2=174
Label2=157.0 - 174.0
Color3=65280
Min3=174
Max3=191
Label3=174.0 - 191.0
Color4=16755200
Min4=191
Max4=208
Label4=191.0 - 208.0
Color5=16711680
Min5=208
Max5=225
Label5=208.0 - 225.0
Transparent=0
NoDataColor=0
NoDataLabel=No Data
isContinuous=0
SpacedByColor=0
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