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Abstract—For two-hop amplify-and-forward (AF) multiple-
input multiple-output (MIMO) relay systems, the uplink-
downlink duality has been recently investigated. In this paper,
we establish the duality between uplink and downlink multi-
hop AF-MIMO relay channels with any number of hops and
any number of antennas at each node, which is a further
generalization of several previously established results. We show
that in the downlink relay system, signal-to-interference-noise
ratios (SINRs) identical to those in the uplink relay system, and
vice versa, can be achieved by two approaches. First, with the
same total network transmission power constraint, one simply
applies Hermitian transposed uplink relay amplifying matrices
at relay nodes in the downlink system. Second, with transmission
power constraint at each node of the relay network, one can
use scaled and Hermitian transposed uplink relay amplifying
matrices in the downlink system, with scaling factors obtained
by switching power constraints at different nodes of the uplink
system. As an application of the uplink-downlink duality, we
propose an optimal design of the source precoding matrix and
relay amplifying matrices for multi-hop MIMO relay system with
a dirty paper coding (DPC) transmitter at the source node.

Index Terms—Uplink-downlink duality, MIMO relay, amplify-
and-forward.

I. INTRODUCTION

Relay communication is well known for being a cost-
effective approach in improving the energy-efficiency of com-
munication system in the case of long source-destination
distance. When nodes in the relay network are equipped
with multiple antennas, we call such system a multiple-input
multiple-output (MIMO) relay system [1]-[3]. MIMO relays
are particularly useful in extending the network coverage and
improving the link reliability of the network. For a two-
hop amplify-and-forward (AF) MIMO relay system with a
linear minimal mean-squared error (MMSE) receiver used
at the destination node, the structure of the optimal source
precoding matrix and the optimal relay amplifying matrix has
been derived for a broad class of objective functions [3].
In [4], the optimal source and relay matrices of a multi-
hop AF-MIMO relay system with a successive interference
cancellation (SIC) receiver [5] employed at the destination
node have been developed.
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Recently, the uplink-downlink duality of two-hop AF-
MIMO relay systems has been derived in [6]. It is shown that
for any relay amplifying matrix used in the uplink channel,
duality holds when a scaled Hermitian transpose of this matrix
is employed in the downlink channel, where the scaling factor
is obtained by switching the transmission power constraints
at the source and the relay nodes. This result can be seen as
a generalization of the well-known duality result for single-
hop MIMO systems [7], [8]. For a multi-hop AF-MIMO relay
network with single antenna source and destination nodes, the
uplink-downlink duality has been established in [9].

In this paper, we extend the uplink-downlink duality results
in [6]-[9] to multi-hop AF-MIMO relay systems with any
number of hops and any number of antennas at each node.
We define duality as the achievement of identical signal-
to-interference-noise ratios (SINRs) at the uplink and the
downlink systems with the same amount of total network
transmission power. The reasons of considering SINR are two
folds: First, SINR is an important parameter in communication
system in the sense that it directly determines the quality-
of-service (QoS) of each data stream. Second, many other
parameters such as the achievable data rate and the MSE
of signal estimation are closely related to SINR [10]. In
particular, we show that for any number of hops, duality
can be achieved by two approaches. First, if there is only
total network transmission power constraint and no power
constraint at individual nodes, then duality holds if Fl and
FH

L−l, l = 1, · · · , L − 1, are used as the relay amplifying
matrices at the lth relay node of the downlink and the uplink
MIMO relay systems, respectively. Here (·)H denotes matrix
Hermitian transpose, and L is the number of hops of the relay
network. Second, with transmission power constraint at each
node of the relay network, duality can be achieved by applying
clFl and FH

L−l respectively as the amplifying matrices at the
lth relay node of the downlink and the uplink relay systems,
l = 1, · · · , L − 1, where the scaling factor cl is obtained by
switching the power constraints at the lth node of the downlink
system and the (L + 1 − l)-th node of the uplink system,
l = 1, · · · , L. For both approaches, the source precoding
matrix and the destination receiving matrix in the downlink
system are swapped with the destination receiving matrix and
the source precoding matrix at the uplink system, respectively.

Furthermore, we prove that the two approaches devel-
oped above are not only valid for relay systems with linear
transceivers at the source and the destination nodes, but also
hold if an SIC-based receiver is used at the destination node
of the uplink MIMO relay system, and a transmitter based on
dirty paper coding (DPC) [11] is employed at the source node
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of the downlink MIMO relay channel. Interestingly, we show
that the two duality approaches can be extended to multiuser
AF-MIMO relay systems with any number of multi-antenna
users.

As an application of the uplink-downlink duality theorem,
we propose an optimal design of the source precoding matrix
and relay amplifying matrices for multi-hop AF-MIMO relay
systems with a DPC-based transmitter at the source node, by
exploiting the results obtained for the dual uplink relay system
[4]. Simulation results demonstrate that the optimal DPC-
based MIMO relay system has a better bit-error-rate (BER)
performance compared with the optimal relay system using
the SIC receiver, because the SIC receiver suffers from the
error propagation effect, while the DPC transmitter does not.

The rest of this paper is organized as follows. In Section II,
we introduce the model of uplink and downlink multi-hop AF-
MIMO relay communication systems. The duality theorems
are proven in Section III. An optimal multi-hop MIMO relay
system with a DPC-based transmitter at the source node
is developed in Section IV. In Section V, we show some
numerical examples. Conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a wireless communication system with one
source node, one destination node, and L − 1 (L ≥ 2) relay
nodes. We assume that due to the propagation path-loss, the
signal transmitted by the lth node can only be received by its
direct forward node, i.e., the (l + 1)-th node. Thus, signals
transmitted by the source node pass through L hops until they
reach the destination node. We also assume that the number of
antennas at each node is Nl, l = 1, · · · , L + 1, and the number
of source symbols in each transmission is Nb. A linear non-
regenerative relay matrix is used at each relay node to amplify
and forward the received signals. The system block diagrams
of downlink and uplink multi-hop AF-MIMO relay systems
are shown in Fig. 1.

Fig. 1. Block diagrams of downlink and uplink multi-hop AF-MIMO relay
systems.

We would like to mention that for AF-MIMO relay systems
with linear transceivers at the source and destination nodes,
there should be Nb ≤ min(N1, N2, · · · , NL+1) in order to
support Nb data streams in one transmission. However, if a
nonlinear transmitter is installed at the source node or a non-
linear receiver is installed at the destination node of a MIMO
relay system, Nb can be greater than min(N1, N2, · · · , NL+1)
[4].

In the case of downlink communication, the Nb × 1 source
symbol vector sD = [s1, s2, · · · , sNb

]T at the source node
is linearly precoded by the N1 × Nb matrix UQ

1
2 , where

Q = diag(q1, q2, · · · , qNb
) and U = [u1,u2, · · · ,uNb

] with
‖ui‖2 = 1, i = 1, · · · , Nb. Here (·)T stands for matrix
(vector) transpose, diag(·) denotes a diagonal matrix, ‖ · ‖2
stands for the vector Euclidean norm, and qi, i = 1, · · · , Nb,
is the power assigned to the ith data stream. We assume
that E[sDsH

D ] = INb
, where E[·] stands for the statistical

expectation, and In is an n × n identity matrix. The N1 × 1
linearly precoded symbol vector xD

1 = UQ
1
2 sD is transmitted

by the source node. The Nl × 1 signal vector received at the
lth node is written as

yD
l = Hl−1xD

l−1 + nl, l = 2, · · · , L + 1 (1)

where Hl, l = 1, · · · , L, is the Nl+1 × Nl MIMO channel
matrix between the (l + 1)-th and the lth node, i.e., the lth
hop, nl is the Nl × 1 independent and identically distributed
(i.i.d.) additive white Gaussian noise (AWGN) vector at the
lth node, and xD

l−1 is the Nl−1 × 1 signal vector transmitted
by the (l−1)-th node. We assume that all noises are complex
circularly symmetric with zero mean and unit variance.

Using the AF scheme, the input-output relationship at node
l is given by

xD
l = cl−1Fl−1yD

l , l = 2, · · · , L (2)

where cl−1Fl−1 is the Nl × Nl amplifying matrix at node
l (the (l − 1)-th relay node), cl > 0 is a scaling coefficient
which is important for studying the uplink-downlink duality
[6] and will be explained later. Combining (1) and (2), the
received signal vector at the lth node of the downlink MIMO
relay channel is given by

yD
2 = H1UQ

1
2 sD + n2 (3)

yD
l+1 = Hl

1⊗

m=l−1

(cmFmHm)UQ
1
2 sD + nl+1

+
l∑

k=2

k⊗

m=l

(cm−1HmFm−1)nk, l = 2, · · · , L (4)

where for matrices Ai,
⊗k

i=l(Ai) , Al · · ·Ak. At the
destination node, a linear receiver with an NL+1×Nb weight
matrix V is used to estimate the source symbol vector sD.
The estimated symbol vector ŝD is given by

ŝD = VHyD
L+1. (5)

Since scaling the columns of V does not change the SINRs
at the destination node, we assume that ‖vi‖2 = 1, i =
1, · · · , Nb.

For the uplink MIMO relay system, the communication
direction is reversed, and the roles of the source node and
the destination node are swapped. The channel matrices are
replaced by the Hermitian transpose of channel matrices in
the downlink channel. Now the source node applies VP

1
2

to precode the uplink source symbol vector sU , where P =
diag(p1, p2, · · · , pNb

), and pi, i = 1, · · · , Nb, is the power
assigned to the ith data stream. The lth node, l = 2, · · · , L,
uses FH

L+1−l to amplify and forward received signals. Similar
to (3) and (4), the received signal vector at the lth node of the
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uplink MIMO relay system can be written as

yU
2 = HH

L VP
1
2 sU + nL (6)

yU
L+2−l =

L−1⊗

m=l

(HH
mFH

m)HH
L VP

1
2 sU + nl

+
L−1∑

k=l

k⊗

m=l

(HH
mFH

m)nk+1, l = 1, · · · , L− 1. (7)

Finally, the destination node applies U to estimate the trans-
mitted symbol vector with

ŝU = UHyU
L+1. (8)

We would like to note that at this point, for both the downlink
and uplink systems, there is no specific design for U, V, and
Fl, l = 1, · · · , L− 1.

In this paper, the channel state information (CSI) require-
ment is the same as that in [4]. Basically, we assume that the
source node has the CSI knowledge of the first-hop channel,
the destination node knows the receiver weight matrix and
each relay node knows the CSI of its backward channel and
its forward channel. In practice, the backward CSI can be
obtained through standard training methods. The forward CSI
required at one relay node is exactly the backward CSI at
its direct forward relay node, and thus can be obtained by a
feedback from its direct forward relay node.

III. UPLINK-DOWNLINK DUALITY

In this section, we investigate the duality between the uplink
and the downlink multi-hop AF-MIMO relay systems with
any number of hops and any number of antennas at each
node. It can be seen from Section II that given an uplink
MIMO relay system, constructing its dual downlink MIMO
relay system boils down to determining the appropriate relay
scaling factors cl, l = 1, · · · , L − 1, and the source power
loading matrices Q. The following two theorems establish the
uplink-downlink duality property of multi-hop MIMO relay
communication system with any number of hops.

THEOREM 1: If linear transceivers are used at the source
and destination nodes of the uplink and the downlink systems,
and there is no specific transmission power constraint at each
node, then for any L ≥ 2, the uplink-downlink duality can
be achieved by cl = 1, l = 1, · · · , L − 1. With transmission
power constraint at individual nodes, duality is attained by
setting ρU

L+1−l = ρD
l , l = 1, · · · , L, and cl, l = 1, · · · , L− 1,

are obtained by transmission power constraints. Here ρU
l ≥ 0

and ρD
l ≥ 0, l = 1, · · · , L, are the power budgets at the lth

node of the uplink and the downlink systems, respectively.
PROOF: See Appendix A. ¤
It can be seen from Theorem 1 that if there is only

total network transmission power constraint and no power
constraint at individual nodes, then duality holds if Fl and
FH

L−l, l = 1, · · · , L− 1, are used as the amplifying matrix at
the lth relay node of the downlink and the uplink MIMO relay
systems, respectively. However, in some practical applications,
there is transmission power constraint at each node of the relay
network. In such case, as suggested by Theorem 1, duality can
be achieved by applying clFl and FH

L−l respectively as the

amplifying matrix at the lth relay node of the downlink and
the uplink relay systems, l = 1, · · · , L− 1, where the scaling
factor cl is determined by switching the power constraints at
the lth node of the downlink system and the (L + 1 − l)-th
node of the uplink system, l = 1, · · · , L. It is worth noting
that Theorem 1 holds for any transceiver matrices U, V, and
relay amplifying matrices Fl, l = 1, · · · , L− 1. However, for
the uplink MIMO relay system, if a linear MMSE receiver is
used, the optimal U, V, and Fl, l = 1, · · · , L−1, are derived
in [12].

Interestingly, Theorem 1 includes the results in [6]-[9] as
special cases. It extends the uplink-downlink duality results
from single-hop MIMO systems and two-hop AF-MIMO
relay systems to multi-hop AF-MIMO relay systems with any
number of hops and any number of antennas at each node.

THEOREM 2: If a DPC-based transmitter is used at the
source node of the downlink MIMO relay system, and an
SIC-based receiver is employed at the destination node of
the uplink MIMO relay system, the uplink-downlink duality
can be achieved by cl = 1, l = 1, · · · , L − 1, when there
is no specific transmission power constraint at each node.
With transmission power constraint at individual nodes, duality
can be attained by setting ρU

L+1−l = ρD
l , l = 1, · · · , L, and

cl, l = 1, · · · , L − 1, are obtained by transmission power
constraints.

PROOF: See Appendix B. ¤
Theorem 2 extends the duality results in Theorem 1 to the

scenario where nonlinear transceivers are used at the source
node of the downlink channel and the destination node of the
uplink channel, respectively. Similar to Theorem 1, Theorem 2
holds for any transceiver matrices U, V, and relay amplifying
matrices Fl, l = 1, · · · , L−1. However, if a nonlinear MMSE-
SIC receiver is used at the uplink MIMO relay system, the
optimal U, V, and Fl, l = 1, · · · , L − 1, can be found
in [4]. Interestingly, both Theorem 1 and Theorem 2 also
hold for multiuser MIMO relay scenario as explained below.
In a broadcast channel (BC), a central station broadcasts
information through L hops to M users each having Rm

antennas, m = 1, · · · ,M , while in a multiaccess channel
(MAC), M users each having Tm antennas, m = 1, · · · ,M ,
send information to a central station via L hops. The BC
channel can be equivalently treated as a downlink multi-
hop MIMO relay channel by grouping all users to form a
“super” destination node with NL+1 =

∑M
m=1 Rm antennas.

Accordingly, one can view the MAC channel as an uplink
multi-hop MIMO channel with N1 =

∑M
m=1 Tm antennas

at the source node. Obviously, duality holds for the BC and
MAC, provided that V (the destination receiving matrix in the
BC and the source precoding matrix in the MAC) is chosen
as a block diagonal matrix.

IV. DPC-BASED OPTIMAL MULTI-HOP MIMO RELAY
DESIGN

In a DPC-based multi-hop MIMO relay system, the source
symbol vector sD is formed by encoding the information-
bearing symbols µi, i = 1, · · · , Nb, successively by removing
the interference from the symbols already encoded. Thus,



4

compared with a MIMO relay system using a linear transmitter
at the source node, the DPC-based relay system should have
a better BER performance.

The DPC-based optimal multi-hop MIMO relay design
problem can be formulated as

min
U,Q,{clFl}

f(U,Q, {clFl}) (9)

s.t. PD
l ≤ ρD

l , l = 1, · · · , L (10)

where f(·) stands for a unified objective function [3], and
PD

l , l = 1, · · · , L, is the power consumed by the lth node
in the downlink system given by (27)-(29) in Appendix A.
Function f(·) includes a broad class of frequently used objec-
tive functions in MIMO system design such as the negative
source-destination mutual information, and the MSE of the
signal waveform estimation at the destination. Directly solving
the problem of (9) and (10) is difficult for a unified objective
function f(·) and MIMO relay systems with a DPC transmit-
ter, even for a single-hop (point-to-point) MIMO system [10].
Based on our knowledge, the problem of (9) and (10) has not
been directly solved in literature. Now we apply Theorem 2
to optimize the DPC-based MIMO relay system. First, the
optimization problem for the dual SIC-based uplink MIMO
relay system can be written as

min
V,P,{FH

L−l}
f(V,P, {FH

L−l}) (11)

s.t. PU
l ≤ ρD

L+1−l, l = 1, · · · , L (12)

where PU
l , l = 1, · · · , L, is the power consumed by the lth

node in the uplink system given by (22)-(24) in Appendix A.
Applying the majorization theory [13], the problem of (11)
and (12) has been solved in [4] for a broad class of objective
functions f(·). The optimal feed-forward matrix W at the
destination node of the uplink MIMO relay system has also
been developed in [4]. Note that for a single-hop MIMO
system, the uplink-downlink duality has been applied in [10]
to optimize the DPC-based transceiver design.

In this section, we take the optimal V, P, and Fl, l =
1, · · · , L − 1, from [4]. Based on Theorem 2, the optimal
source precoding matrix in the DPC-based downlink relay sys-
tem can be written as UQ

1
2 , where U = [w̄1, w̄2, · · · , w̄Nb

],
and w̄i, i = 1, · · · , Nb, are obtained by scaling columns
of W such that ‖w̄i‖2 = 1, i = 1, · · · , Nb. The optimal
amplifying matrix at the lth relay node of the DPC-based
relay system is clFl, where the scalar cl is determined by the
transmission power budget ρD

l+1 as explained later. The optimal
receiving matrix at the destination node of the DPC-based
relay system is VΓ, where Γ = diag(γ1, γ2, · · · , γNb

) with γi

chosen such that γi
√

qi vH
i HL

⊗1
m=L−1(cmFmHm)w̄i = 1,

i = 1, · · · , Nb.
Now the task is to obtain the unknown quantities qi, i =

1, · · · , Nb, and cl, l = 1, · · · , L − 1. Towards this goal, we
assume for the moment that Γ = INb

, since scaling the
receiving vector vi does not change SINRD

i , i = 1, · · · , Nb,
in (40) of Appendix B. With a DPC encoder at the source
node, the information-bearing symbol µi is encoded into
si by treating

∑i−1
j=1

√
qj vH

i HL

⊗1
m=L−1(cmFmHm)w̄jsj

as the interference known at the transmitter. Note that the

interference term
∑Nb

j=i+1

√
qj vH

i HL

⊗1
m=L−1(cmFmHm)

w̄jsj is unknown at this stage. At the destination node, after
applying the linear filter V and the DPC decoder, the estimated
information-bearing symbol can be written as

µ̂i =
√

qi vH
i HL

1⊗

m=L−1

(cmFmHm)w̄iµi

+
Nb∑

j=i+1

√
qj vH

i HL

1⊗

m=L−1

(cmFmHm)w̄jsj

+vH
i

( L∑

l=2

l⊗

m=L

(cm−1HmFm−1)nl+nL+1

)
, i = 1, · · · , Nb

with the output SINR βi as

βi =
di,iqi∑Nb

j=i+1 di,jqj + ei + gT
i θ

, i = 1, · · · , Nb (13)

where θ is an (L − 1) × 1 vector with elements
θl = 1/

∏l
m=1 c2

m, l = 1, · · · , L − 1, gi is an (L −
1) × 1 vector with elements given by gi,L−1 = 1,
gi,l = vH

i

⊗l+2
m=L(HmFm−1)

⊗L
m=l+2(F

H
m−1H

H
m)vi, l =

1, · · · , L− 2, and

di,j ,
∣∣vH

i HL

⊗1
m=L−1(FmHm)w̄j

∣∣2, j = i, · · · , Nb

ei , vH
i

⊗2
m=L(HmFm−1)

⊗L
m=2(F

H
m−1H

H
m)vi.

Collecting all equations in (13) for i = 1, · · · , Nb, we obtain
the following systems of linear equations

Φq + GT θ = −e (14)

where q , [q1, q2, · · · , qNb
]T , e , [e1, e2, · · · , eNb

]T , Φ is an
Nb×Nb upper-triangle matrix with elements of φi,j = 0, j =
1, · · · , i− 1, φi,i = −di,i/βi, φi,j = di,j , j = i + 1, · · · , Nb,
i = 1, · · · , Nb, and G is an (L − 1) × Nb matrix whose ith
column is given by gi in (13).

From the transmission power consumed at the relay nodes
(27) and (28) in Appendix A, we have

PD
l+1∏l

m=1c
2
m

= aT
l q + ξl,1 +

l−1∑

k=1

ξl,k+1∏k
m=1 c2

m

,

l = 2, · · · , L− 1 (15)
PD

2 /c2
1 = aT

1 q + ξ1,1 (16)

where al is an Nb × 1 vector with elements al,i =
w̄H

i

⊗l
m=1(H

H
mFH

m)
⊗1

m=l(FmHm)w̄i, i = 1, · · · , Nb, and

ξl,k ,
{ tr

(
Fl

⊗k+1
m=l(HmFm−1)

⊗l
m=k+1(F

H
m−1H

H
m)FH

l

)
,

k = 1, · · · , l − 1
tr(FlFH

l ), k = l

where tr(·) stands for matrix trace. Equation (15) can be
rewritten as

l−1∑

k=1

ξl,k+1∏k
m=1 c2

m

− PD
l+1∏l

m=1c
2
m

= −aT
l q− ξl,1

l = 2, · · · , L− 1. (17)
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Collecting all equations in (17) for l = 2, · · · , L− 1, and to-
gether with (16), we obtain the following system of equations

Ψθ = −AT q− ξ (18)

where Ψ is an (L − 1) × (L − 1) lower-triangle matrix with
elements of ψl,k = ξl,k+1, k = 1, · · · , l − 1, ψl,l = −PD

l+1,
ψl,k = 0, k = l + 1, · · · , L − 1, l = 1, · · · , L − 1, A is an
Nb × (L− 1) matrix whose lth column is given by al in (16)
and (17), and ξ , [ξ1,1, ξ2,1, · · · , ξL−1,1]T .

Now (14) and (18) form a system of linear equations of θ
and q. Solving (14) and (18), we obtain

q =(Φ−GT Ψ−1AT )−1(GT Ψ−1ξ − e) (19)
θ =−Ψ−1

[
ξ +AT(Φ−GT Ψ−1AT )−1(GT Ψ−1ξ − e)

]
.(20)

Note that Ψ−1 always exists because Ψ is a lower-triangle
matrix, and Φ−GT Ψ−1AT is invertible since Φ is an upper-
triangle matrix and Ψ−1 is a lower-triangle matrix. Finally,
cl can be obtained from (20) with c1 =

√
1/θ1 and cl =√

θl−1/θl, l = 2, · · · , L− 1.

V. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed
DPC-based source precoding matrix and relay amplifying
matrices through numerical simulations. To precode the ith
information-bearing symbol µi into the source symbol si, i =
1, · · · , Nb, we apply the Tomlinson-Harashima coding tech-
nique [14] and [15], which is a simple but suboptimal im-
plementation of the DPC scheme. The Tomlinson-Harashima
scheme makes use of the modulo operation to remove the
interference from the preceding symbols without increasing
the transmission power at the source node. Accordingly, the
length of the modulo ∆ is chosen to preserve the transmission
power consistency.

The source, destination, and all relay nodes are equipped
with multiple antennas. We simulate a flat Rayleigh fading
environment where the channel matrices have i.i.d. entries with
zero mean and variances σ2

l /Nl for Hl, l = 1, · · · , L. For each
channel realization, 1000 QAM-modulated symbols with Gray
mapping are transmitted at each data stream, and all simulation
results are averaged over 500 independent channel realizations.
We define SNRl , σ2

l ρD
l Nl+1/Nl as the signal-to-noise ratio

(SNR) of the lth hop, l = 1, · · · , L. The BER performance
of the proposed optimal DPC-based relay system is compared
with that of the optimal relay system using the SIC receiver
[4]. As a benchmark, we also show the performance of the
fictitious genie-aided SIC-based relay system, where the error
propagation at each layer of the SIC receiver is eliminated by
a genie.

In the first example, we simulate a relay system with L = 2
hops and choose Nl = 5, l = 1, 2, 3, and Nb = 5. The symbols
are modulated by the 16-QAM constellations. Fig. 2 shows
BERs of all systems versus SNR1 for SNR2 = 20dB. It can
be seen from Fig. 2 that the optimal DPC-based relay system
has a better BER performance compared with the relay system
using the SIC receiver, since the latter system suffers from
error propagation.
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Fig. 2. Example 1: Two hops. Nl = 5, l = 1, 2, 3, Nb = 5, 16-QAM,
SNR2 = 20dB.
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Fig. 3. Example 2: Five hops. Nl = 5, l = 1, · · · , 6, Nb = 4, 64-QAM,
SNRl = SNR, l = 1, · · · , 5.

In the second example, a multi-hop MIMO relay system
with L = 5 and Nl = 5, l = 1, · · · , 6, and Nb = 4 is
simulated. Each hop has the same SNR, i.e., SNRl = SNR,
l = 1, · · · , 5. The 64-QAM constellations are used to modulate
the symbols. Fig. 3 displays the BER performance of all three
systems versus SNR. Obviously, for multi-hop systems, the
DPC-based relay design outperforms the relay system using
the SIC receiver by removing the error propagation effect.
From Figs. 2 and 3, we observe a slight SNR loss of the
DPC-based relay system compared with the genie-aided SIC-
based relay system. This is mainly due to the inherent power
loss and modulo loss of the Tomlinson-Harashima precoder
[16].

The reason for the error floor effect displayed in Fig. 2 for
both the SIC-based system and the DPC-based system is that
the relay system is fully-loaded in the sense that Nl = Nb,
l = 1, 2, 3. It is well-known that for a one-hop (point-to-point)
MIMO system with an SIC receiver, the diversity order for
the first decoded stream is only one if the transmitter and the
receiver have the same number of antennas. Compared with
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that in Fig. 2, the system shown in Fig. 3 is under-loaded
since Nl > Nb, l = 1, · · · , 6. Thus, the error floor effect is
not observed in Fig. 3.

VI. CONCLUSIONS

We have established the uplink-downlink duality of multi-
hop AF-MIMO relay systems with any number of hops and
any number of antennas at each node, which generalizes
several previously established results. Based on such duality,
we proposed an optimal design of the source precoding matrix
and relay amplifying matrices for multi-hop AF-MIMO relay
systems with a DPC-based transmitter at the source node.
Simulation results show that the optimal DPC-based MIMO
relay system has a lower BER than the optimal relay system
using the SIC receiver.

APPENDIX A
PROOF OF THEOREM 1

The basic idea of the proof is to show under which
conditions of P, Q, and cl, l = 1, · · · , L − 1, the uplink
and downlink channels achieve identical SINRs. The proof is
conducted in three steps. First, for both the uplink MIMO relay
channel (6)-(8) and the downlink MIMO relay channel (3)-(5),
we write the SINR for each data stream and the required total
transmission power. Second, we rewrite the total transmission
power of the downlink system based on the definition of
duality that both channels should achieve identical SINRs.
Finally, we find under which P, Q, and cl, l = 1, · · · , L− 1,
the total transmission power consumed by both systems is
identical.

Based on (7), the SINRs of data streams at the destination
node of the uplink MIMO relay channel are given by (21)
shown at the bottom of the next page. The transmission power
PU

l consumed by the lth node, l = 1, · · · , L, in the uplink
relay system can be calculated using (6) and (7) as

PU
L+2−l = FH

l−1E
[
yU

L+2−l(y
U
L+2−l)

H
]
Fl−1

= tr

(
L⊗

m=l

(FH
m−1H

H
m)VPVH

l⊗

m=L

(HmFm−1)

+FH
l−1

( L−1∑

k=l

k⊗

m=l

(HH
mFH

m)
l⊗

m=k

(FmHm)

+INl

)
Fl−1

)
, l = 2, · · · , L− 1 (22)

PU
2 = tr

(
FH

L−1(H
H
L VPVHHL + INL

)FL−1

)
(23)

PU
1 = tr(P). (24)

The total transmission power consumed by the uplink MIMO
relay system can be obtained by the sum of (22)-(24) and
written as

PU
T =

Nb∑

i=1

pi

(
1 + vH

i

L∑

l=2

( l⊗

m=L

(HmFm−1)

L⊗

m=l

(FH
m−1H

H
m)

)
vi

)
+

L−1∑

l=2

tr
(
FH

l−1

L−1∑

k=l

( k⊗

m=l

(HH
mFH

m)

l⊗

m=k

(FmHm)
)
Fl−1

)
+

L−1∑

l=1

tr(FH
l Fl). (25)

Similarly, using (4), the SINRs of data streams at the
destination node of the downlink relay channel are given by
(26) shown at the bottom of the next page. The transmission
power PD

l consumed by the lth node, l = 1, · · · , L, in the
downlink system can be obtained from (3) and (4) as

PD
l+1 = FlE

[
yD

l+1(y
D
l+1)

H
]
FH

l

= tr

(
1⊗

m=l

(cmFmHm)UQUH
l⊗

m=1

(cmHH
mFH

m) + c2
l

×Fl

( l∑

k=2

k⊗

m=l

(cm−1HmFm−1)
l⊗

m=k

(cm−1FH
m−1H

H
m)

+INl+1

)
FH

l

)
, l = 2, · · · , L− 1 (27)

PD
2 = tr

(
c2
1F1(H1UQUHHH

1 + IN2)F
H
1

)
(28)

PD
1 = tr(Q). (29)

The total transmission power consumed by the downlink
MIMO relay system is obtained by the sum of (27)-(29) and
given by

PD
T =

Nb∑

i=1

qi

(
1 + uH

i

L−1∑

l=1

( l⊗
m=1

(cmHH
mFH

m)
1⊗

m=l

(cmFmHm)
)

×ui

)
+

L−1∑

l=2

tr
(
c2
l Fl

l∑

k=2

( k⊗

m=l

(cm−1HmFm−1)

l⊗

m=k

(cm−1FH
m−1H

H
m)

)
FH

l

)
+

L−1∑

l=1

tr(c2
l FlFH

l ). (30)

To achieve identical SINRs at the uplink and the downlink
systems, we should have SINRU

i = SINRD
i , i = 1, · · · , Nb.

Please note that we do not assume that all data streams have
identical SINR, i.e., it is possible that SINRU

i 6= SINRU
j , for

i 6= j. Using (21) and (26) we obtain from
∑Nb

i=1 SINRU
i =∑Nb

i=1 SINRD
i that

Nb∑

i=1




L−1∏

l=1

c2
l qi

( Nb∑
j=1
j 6=i

∣∣∣uH
i

L−1⊗

l=1

(HH
l FH

l )HH
L vj

∣∣∣
2

pj

+uH
i

L−1∑

l=1

( l⊗
m=1

(HH
mFH

m)
1⊗

m=l

(FmHm)
)
ui+1

))
=

Nb∑

i=1

pi




Nb∑
j=1
j 6=i

∣∣∣vH
i HL

1⊗

l=L−1

(clFlHl)uj

∣∣∣
2

qj + vH
i

×
L∑

l=2

( l⊗

m=L

(cm−1HmFm−1)
L⊗

m=l

(cm−1FH
m−1H

H
m)

)
vi+1

)
.(31)

By using the identity of

Nb∑

i=1

Nb∑

j=1,j 6=i

qi

∣∣∣uH
i

L−1⊗

l=1

(clHH
l FH

l )HH
L vj

∣∣∣
2

pj

=
Nb∑

i=1

Nb∑

j=1,j 6=i

pi

∣∣∣vH
i HL

1⊗

l=L−1

(clFlHl)uj

∣∣∣
2

qj
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we obtain from (31) that

L−1∏

l=1

c2
l

Nb∑

i=1

qi

(
uH

i

L−1∑

l=1

( l⊗
m=1

(HH
mFH

m)
1⊗

m=l

(FmHm)
)
ui+1

)

=
Nb∑

i=1

pi

(
vH

i

L∑

l=2

( l⊗

m=L

(cm−1HmFm−1)

L⊗

m=l

(cm−1FH
m−1H

H
m)

)
vi+1

)
. (32)

Substituting (32) back into (30), we can rewrite PD
T as

PD
T = tr

(
L∑

l=2

L∏

m=l

c2
m−1

L⊗

m=l

(FH
m−1H

H
m)VPVH

l⊗

m=L

(HmFm−1) + P

)
+ tr

(
L−2∑

l=1

(
1−

L−1∏

m=l+1

c2
m

)

l⊗
m=1

(cmHH
mFH

m)
1⊗

m=l

(cmFmHm)UQUH

+
(
1−

L−1∏
m=1

c2
m

)
UQUH

)

+
L−1∑

l=2

tr
(
c2
l Fl

l∑

k=2

( k⊗

m=l

(cm−1HmFm−1)

l⊗

m=k

(cm−1FH
m−1H

H
m)

)
FH

l

)
+

L−1∑

l=1

tr(c2
l FlFH

l ). (33)

For notational simplicity, let us denote

al , tr
(
c2
l Fl

l∑

k=2

( k⊗

m=l

(cm−1HmFm−1)

l⊗

m=k

(cm−1FH
m−1H

H
m)

)
FH

l

)
, l = 2, · · · , L− 1. (34)

Then with some manipulations, we have

L−1∑

l=2

al =
L−1∑

l=2

L−1∏

m=l+1

c2
mal +

L−1∑

l=2

(
1−

L−1∏

m=l+1

c2
m

)
al

=
L−1∑

l=2

L−1∑

k=l

L−1∏

m=k+1

c2
m tr

(
c2
kFk

l⊗

m=k

(cm−1HmFm−1)

k⊗

m=l

(cm−1FH
m−1H

H
m)FH

k

)
+

L−1∑

l=2

(
1−

L−1∏

m=l+1

c2
m

)
al

=
L−1∑

l=2

L−1∑

k=l

L−1∏

m=k+1

c2
m tr

(
c2
l−1F

H
l−1

k⊗

m=l

(cmHH
mFH

m)

l⊗

m=k

(cmFmHm)Fl−1

)
+

L−1∑

l=2

(
1−

L−1∏

m=l+1

c2
m

)
al

=
L−1∑

l=2

L∏

m=l

c2
m−1

L−1∑

k=l

tr
(
FH

l−1

k⊗

m=l

(HH
mFH

m)

l⊗

m=k

(FmHm)Fl−1

)
+

L−1∑

l=2

(
1−

L−1∏

m=l+1

c2
m

)
al (35)

and L−1∑

l=1

tr(c2
l FlFH

l ) =
L∑

l=2

L∏

m=l

c2
m−1tr(F

H
l−1Fl−1)

+
L−1∑

l=1

(
1−

L−1∏

m=l+1

c2
m

)
tr(c2

l FlFH
l ). (36)

Substituting (35) and (36) back into (33) and after rearrang-
ing terms, we can rewrite PD

T as

PD
T =

L−1∑

l=2

L∏

m=l

c2
m−1tr

(
L⊗

m=l

(FH
m−1H

H
m)VPVH

l⊗

m=L

(HmFm−1)

+FH
l−1

( L−1∑

k=l

k⊗

m=l

(HH
mFH

m)
l⊗

m=k

(FmHm) + INl

)
Fl−1

)

+c2
L−1tr

(
FH

L−1(H
H
L VPVHHL + INL

)FL−1

)
+tr(P)

+
L−2∑

l=2

(
1−

L−1∏

m=l+1

c2
m

)
tr

(
l⊗

m=1

(cmHH
mFH

m)
1⊗

m=l

(cmFmHm)

×UQUH + c2
l Fl

( l∑

k=2

k⊗

m=l

(cm−1HmFm−1)

l⊗

m=k

(cm−1FH
m−1H

H
m)+INl+1

)
FH

l

)

+
(
1−

L−1∏
m=2

c2
m

)
tr

(
c2
1F1(H1UQUHHH

1 + IN2)F
H
1

)

+
(
1−

L−1∏
m=1

c2
m

)
tr(UQUH). (37)

SINRU
i =

∣∣∣uH
i

L−1⊗
l=1

(HH
l FH

l )HH
L vi

∣∣∣
2

pi

Nb∑
j=1
j 6=i

∣∣∣uH
i

L−1⊗
l=1

(HH
l FH

l )HH
L vj

∣∣∣
2

pj +uH
i

L−1∑
l=1

( l⊗
m=1

(HH
mFH

m)
1⊗

m=l

(FmHm)
)
ui+1

, i = 1, · · · , Nb. (21)

SINRD
i =

∣∣∣vH
i HL

1⊗
l=L−1

(clFlHl)ui

∣∣∣
2

qi

Nb∑
j=1
j 6=i

∣∣∣vH
i HL

1⊗
l=L−1

(clFlHl)uj

∣∣∣
2

qj + vH
i

L∑
l=2

( l⊗
m=L

(cm−1HmFm−1)
L⊗

m=l

(cm−1FH
m−1HH

m)
)
vi+1

, i = 1, · · · , Nb. (26)
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Using the expressions of PU
l in (22)-(24) and PD

l in (27)-(29),
l = 1, · · · , L, (37) can be rewritten as

PD
T =

L−1∑

l=2

L∏

m=l

c2
m−1P

U
L+2−l + c2

L−1P
U
2 + PU

1

+
L−2∑

l=2

(
1−

L−1∏

m=l+1

c2
m

)
PD

l+1 +
2∑

l=1

(
1−

L−1∏

m=l

c2
m

)
PD

l

=
L−1∑

l=1

L−1∏

m=l

c2
mPU

L+1−l + PU
1 +

L−1∑

l=1

(
1−

L−1∏

m=l

c2
m

)
PD

l .

Since the uplink and downlink systems should consume the
same amount of total transmission power, we have

PD
T − PU

T =
L−1∑

l=1

( L−1∏

m=l

c2
m − 1

)
(PU

L+1−l − PD
l ) = 0. (38)

Obviously, for any L ≥ 2, (38) is true if
∏L−1

m=l c
2
m = 1 for l =

1, · · · , L− 1, which is equivalent to cl = 1, l = 1, · · · , L− 1.
Thus, the first part of Theorem 1 (without transmission power
constraint at each node) is proven. Moreover, (38) also holds
if PU

L+1−l = PD
l , l = 1, · · · , L − 1. Then we have PU

1 =
PD

L due to PD
T = PU

T . With transmission power constraint
at individual nodes, there is PD

l ≤ ρD
l and PU

l ≤ ρU
l , l =

1, · · · , L. Obviously, to optimize the system performance, all
available power should be exploited, i.e., PD

l = ρD
l and PU

l =
ρU

l , l = 1, · · · , L. Thus, we have ρU
L+1−l = ρD

l , l = 1, · · · , L,
and the second part of Theorem 1 (with transmission power
constraint at individual nodes) is proven.

APPENDIX B
PROOF OF THEOREM 2

With an SIC receiver, the source symbols are detected
successively with the last symbol detected first and the first
symbol detected last, and the interference from detected sym-
bols is subtracted. Therefore, the SINRs of data streams at the
destination node can be written as (39) shown at the bottom
of this page. For a MIMO relay system employing a DPC
transmitter at the source node, the information-bearing sym-
bols are encoded successively with the first symbol encoded
first and the last symbol encoded last, and the interference
from encoded symbols is removed. Thus, the SINRs of data
streams at the destination node of the DPC-based downlink

MIMO relay channel is given by (40) shown at the bottom of
this page. Using (39) and (40), and the identity of

Nb∑

i=1

i−1∑

j=1

qi

∣∣∣uH
i

L−1⊗

l=1

(clHH
l FH

l )HH
L vj

∣∣∣
2

pj

=
Nb∑

i=1

Nb∑

j=i+1

pi

∣∣∣vH
i HL

1⊗

l=L−1

(clFlHl)uj

∣∣∣
2

qj

we obtain from
∑Nb

i=1 SINRU
i =

∑Nb

i=1 SINRD
i the expression

of PD
T as in (33), and the steps in (34)-(38) remain valid. Thus

Theorem 2 is proven.
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