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Abstract

The increasing demand for mobile applications such as streaming media,

software updates, and location-based services involving group communica-

tions has prompted the need for wireless communication technologies that

can support reliable high data rates. However, wireless channel is subject to

signal fading that severely degrades the system spectral efficiency. By ex-

ploiting the spatial diversity, multiple-input multiple-output (MIMO) tech-

niques can provide both theoretically attractive and technically practical

solutions to combat channel fading. Moreover, in the case of long source-

destination distance, single or multiple MIMO relay node(s) is necessary to

combat the pathloss and/or shadowing effects of wireless channel and relay

signals from the source to the destination.

In this thesis, we focus on multiuser MIMO relay systems. We first present

joint source, relay, and receiver optimization algorithms for the uplink sys-

tem based on the minimum mean-squared error (MMSE) criterion subjecting

to individual power constraints at the source and the relay nodes. The pro-

posed algorithms outperform the existing techniques in terms of both MSE

and bit-error-rate (BER). Next, in the downlink system, we consider multi-

casting multiple data streams among a group of users with the aid of a relay

node, where all the nodes are equipped with multiple antennas. The down-

link system performance is optimized subjecting to both power constraints

at the source and the relay nodes and quality-of-service (QoS) constraints

at the receivers.

Then we present the duality between the uplink and the downlink of a multi-

hop MIMO relay system. Based on this duality, we propose an optimal

design of the source precoding matrix and relay amplifying matrices for

multi-hop MIMO relay system with a nonlinear dirty paper coding (DPC)-

based transmitter at the source node. The proposed nonlinear transmitter



algorithm outperforms the existing decision feedback equalizer (DFE)-based

receiver schemes.

Multiuser MIMO relaying is then considered in an interference system where

a group of transmitters communicate simultaneously with their desired des-

tination nodes with the aid of multiple relay nodes, all equipped with mul-

tiple antennas. Transmit-relay-receive beamforming technique is exploited

to minimize the total source and relay transmit power in conjunction with

transmit power control such that a minimum QoS threshold is maintained

at each receiver. The proposed scheme generalizes the existing single-hop

MIMO interference systems and the single-antenna, dual-hop interference

relay systems to the dual-hop interference MIMO relay systems with any

number of source, relay, and destination nodes, all equipped with multiple

antennas.

The above algorithms are developed assuming that the instantaneous chan-

nel state information (CSI) knowledge of both the source-relay link and

the relay-destination link is available at the scheduler. However, in practical

relay communication systems, the instantaneous CSI is unknown, and there-

fore, has to be estimated. Hence, we finally propose a bandwidth efficient

MIMO channel estimation algorithm that provides the destination node with

full knowledge of all channel matrices involved in a dual-hop MIMO commu-

nication. The proposed approach attains smaller channel estimation error

and is applicable for both one-way and two-way MIMO relay systems.
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Chapter 1

Introduction

In next generation wireless systems, it is expected that multiple users equipped with

multiple antennas will communicate simultaneously with the base station (BS) equipped

with multiple receive antennas [1–4]. This thesis aims at developing advanced signal pro-

cessing algorithms for multiuser multiple-input multiple-output (MIMO) relay commu-

nication systems. In this introductory chapter, we briefly present necessary background

on multiuser MIMO relay systems and overview the contributions of the thesis.

1.1 Overview of MIMO Communication Systems

Due to the emerging demand on new multimedia applications, next-generation wireless

systems are expected to support higher data rates compared to the existing systems.

The bandwidth limitation of wireless communication prompts the need for spectrally

efficient methods of communication. MIMO systems can provide an effective means

to increase system spectral efficiency through exploiting multiple antennas at trans-

mitting and receiving ends. By spatially multiplexing several data streams onto the

MIMO channel, the system can provide an additional degree-of-freedom which leads to

an increase in the channel capacity [1, 2, 5–9]. In a rich scattering environment, the

capacity of such a MIMO channel with N transmit and N receive antennas is N times

that of a conventional single-antenna channel [1]. On the other hand, the random scat-

tering in wireless channels results in multipath fading which is traditionally a pitfall

of wireless transmission. A key feature of MIMO systems is the ability to turn multi-

path propagation into a benefit for the user [5, 10–12]. The performance improvements
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resulting from the use of MIMO systems are due to the following unique features of

MIMO configuration [1, 8].

• Array gain that is achievable through processing at the transmitter and the re-

ceiver and results in an increase in average receive signal-to-noise ratio (SNR)

due to a coherent combining effect. Transmit and/or receive array gain requires

channel knowledge at the transmitter and receiver, respectively, and depends on

the number of transmit and receive antennas.

• Diversity gain that is favorable to mitigating the fading effects of wireless chan-

nels. Diversity techniques rely on transmitting the signal over multiple indepen-

dently fading paths in time, frequency, or space. Spatial diversity is preferred

over time/frequency diversity as it does not incur any cost in transmission time

or bandwidth. A MIMO system with NT transmit and NR receive antennas can

achieve NTNRth-order diversity.

• Spatial multiplexing gain that is achievable by transmitting independent data

streams from different antennas. Under rich scattered channel conditions, the

receiver can separate the different streams, and the capacity scales linearly with

Nmin where Nmin is the minimum of the number of transmit antennas NT and the

number of receive antennas NR [1, 10].

• When multiple antennas are used, spatial filters preserve the signals coming from

a certain spatial location, while suppressing signals from other spatial locations

(interferences). Therefore, MIMO transceivers can separate signals which differ in

spatial signatures, just as a conventional filter which can separate signals occupy-

ing different frequency band. Interference suppression can also be implemented at

the transmitter, where the goal is to minimize the interference power sent toward

the cochannel users while delivering the signal to the desired user.

However, it is important to note that in general it may not be possible to exploit

all the leverages of MIMO technology simultaneously due to conflicting demands on the

spatial degrees of freedom between diversity gain and spatial multiplexing gain. The

degree to which these conflicts are resolved depends upon the signaling scheme and

transceiver design [8]. A tradeoff between the two gains can be an effective solution for

practical applications [13].
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MIMO technologies have evolved to become an inherent component in the next-

generation wireless standards including the cellular systems, long-term evolution (LTE)

systems, and the IEEE 802.xx family of standards 802.16e, 802.16j, 802.16m, and

802.11n [14]. Future enhancements to these standards will use MIMO techniques to

achieve required data rates in the order of hundreds of Mbps and spectral efficiencies in

the order of tens of bps/Hz. Potential MIMO applications include, but are not limited

to, large files backup, high definition (HD) video streaming, online interactive gam-

ing, home entertainment, radio-frequency identification (RFID), digital home and so

on. MIMO systems can reliably connect video devices, computer networking devices,

broadband connections, phone lines, music and storage devices, etc.

1.2 MIMO Relay Communication Systems

In the case of long transmitter-receiver distance, some intermediate nodes, which we

term as relay nodes, are necessary to efficiently combat the pathloss of wireless channels.

Relays can receive and forward data from source to destination. Since they implement

a subset of BS functions, relays are a low cost and low complexity solution to meet the

requirement of higher capacity, extended coverage and improved link reliability [15, 16].

In a cellular environment, relays can be deployed in areas with significant shadowing

effects [17], such as inside buildings, mines and tunnels as well as areas far from the

base station at the cell edge. Recently, relaying and cooperative communications are

being considered for several industrial standards such as IEEE802.16j [18].

However, conventional relay techniques are mainly developed for networks with sin-

gle antenna nodes. Incorporating relays in a MIMO network can significantly extend the

coverage and improve the link reliability of the network [19–28] compared with point-

to-point (P2P) MIMO systems. Both regenerative [19, 20] and non-regenerative [21–28]

relaying strategies have been considered in the existing works. For the non-regenerative

strategy, the relay nodes only amplify and retransmit their received signals. While in

regenerative strategies, the relay nodes first decode the received signals, then re-encode

and forward the signals to the destination node. Thus, for MIMO relay networks, the

complexity of the non-regenerative strategy is much lower than that of the regenera-

tive strategy, since decoding and encoding multiple data streams involves great com-

putational efforts. Consequently, compared with regenerative relays, non-regenerative

relays are more cost-effective, and have a less end-to-end delay, thus it has attracted
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much research interest [21–28]. However, a hybrid relaying concept for MIMO relay

channels has also been proposed [20], which combines the benefits of regenerative and

non-regenerative relaying schemes.

1.3 Multiuser MIMO Communication Systems

In a large wireless network, multiple users may concurrently intend to communicate

with the same base station. Thus in a practical wireless system, multiple user interfer-

ence (MUI) inevitably occurs. MUI refers to the interference from unintended users to

the user of interest. MUI is a major factor which limits the capacity and performance

of wireless communication systems [29, 30]. While the MUI caused by any one user

is generally small, as the number of interferers or their power increases, MUI becomes

significant. MUI thus has to be taken into account in system design and schemes to

mitigate its effect need to be developed. The conventional single-user detectors do not

take into account the existence of MUI. In single-user detection algorithms, each user

is detected separately without regard for other users. The MUI should be taken into

consideration in the detection process which is termed as multiuser detection (also re-

ferred to as interference cancelation). In multiuser detectors, information about multiple

users is used jointly to better detect each individual user’s signal. The utilization of

multiuser detection algorithms in MIMO systems has the potential to provide significant

additional benefits for wireless communication systems [29, 31, 32].

Recently, multiuser MIMO (MU-MIMO) techniques are being extensively investi-

gated [1, 3, 4, 31, 33–41] because of several key advantages over single-user MIMO

(SU-MIMO) communications [31].

• MU-MIMO schemes allow for a significant improvement in multiple access capacity

which is proportional to the minimum of the number of BS antennas and the sum

of the number of users times the number of antennas per user.

• Geographical separation of the users can afford some means to combat antenna

correlation in MIMO setup. Additionally, line-of-sight (LOS) propagation, which

causes severe performance degradation in single-user spatial multiplexing schemes,

is no longer a problem in MU-MIMO setting.

• MU-MIMO allows the spatial multiplexing gain at the BS to be obtained without

the need for multiple antenna terminals.
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• The reduction of MUI on the uplink may translate to some reduction in the

required transmit power of the mobiles. Alternatively, the same transmit power

may be used to extend the size of the coverage region.

Table 1.1: An overview of MIMO research topics with key references

P2P systems Relay systems

SU-MIMO [1, 2, 5–13, 42] [19–28, 43–47]

MU-MIMO [1, 3, 4, 31, 33, 34] Focus of this thesis

1.4 Thesis Overview and Contributions

In next generation wireless systems, multiple users equipped with multiple antennas

will transmit simultaneously to the base station with multiple receive antennas and vice

versa [3, 4]. However, in the case of long transmitter-receiver distance, relay node(s)

is necessary to efficiently combat the pathloss of wireless channel. MIMO relays are

particularly useful in extending the network coverage and improving the link reliability

of the network. In this thesis, advanced signal processing algorithms for multiuser

MIMO relay communication systems are presented considering non-regenerative relaying

schemes (Table 1.1). The joint source and relay optimization problems for multiuser

MIMO relay systems are highly nonconvex, in general. One of the major contributions

of this thesis is transforming the nonconvex problems into suitable forms which can

be efficiently solved using standard convex optimization techniques. In Chapter 2, we

address the joint transceiver and relay design problem for uplink multiuser MIMO relay

systems. Chapter 3 studies multicast beamforming problems for downlink multiuser

MIMO relay systems. The uplink-downlink duality of multi-hop MIMO relay systems

is investigated in Chapter 4 in order to design nonlinear dirty paper coding (DPC)-based

transmitters from decision feedback equalizer (DFE)-based receivers. Chapter 5 studies

the joint power control and beamforming problem for interference (multiuser) MIMO

relay systems. In Chapter 6, we propose a novel channel estimation algorithm for dual-

hop MIMO relay systems using the parallel factor (PARAFAC) analysis. Chapter 7

summarizes the thesis and gives the outlook to some interesting future works.
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Chapter 2: Uplink Multiuser MIMO Relay Communication Systems

In this chapter, we develop two iterative methods to solve the highly nonconvex joint

source, relay, and receiver optimization problem for uplink multiuser MIMO relay com-

munication systems based on minimal mean-squared error (MMSE) criterion. In the

first approach, we iteratively optimize the source, relay, and receiver matrices. In order

to reduce the overall computational complexity, we propose a simplified algorithm in the

second approach. Compared with the existing techniques for uplink multiuser MIMO

relay systems, the proposed algorithms perform much better in terms of bit-error-rate

(BER) and mean-squared error (MSE) of signal waveform estimation at the destination

node.

Chapter 2 is based on the journal publication:

• M. R. A. Khandaker and Y. Rong, “Joint Transceiver Optimization for Multiuser

MIMO Relay Communication Systems”, IEEE Trans. Signal Process., to appear,

2012.

and two conference publications:

• M. R. A. Khandaker and Y. Rong, “Joint Source and Relay Optimization for

Multiuser MIMO Relay Communication Systems”, in Proc. 4th Int. Conf. Signal

Processing Communication Systems (ICSPCS’2010), Gold Coast, Australia, Dec.

13-15, 2010.

• M. R. A. Khandaker and Y. Rong, “Performance Measure of Multi-User Detection

Algorithms for MIMO Relay Network”, in Proc. 10th Postgraduate Electrical

Engineerig and Computing Symposium (PEECS’2009), Perth, Australia, Oct. 1,

2009.

Chapter 3: Multicasting MIMO Relay Communication Systems

The increasing demand for mobile applications such as streaming media, software up-

dates, and location-based services involving group communications has triggered the

need for wireless multicasting technology. The broadcasting nature of the wireless chan-

nel makes it naturally suitable for multicasting applications, since a single transmission

may be simultaneously received by a number of users. However, wireless channel is sub-

ject to signal fading. By exploiting the spatial diversity, multi-antenna techniques can

be applied to combat channel fading [1]. Hence, in this chapter, we focus on the joint

transmit and relay precoding design problems for multicasting multiple data streams
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in the downlink multiuser MIMO relay systems based on two design criteria. In the

first scheme, we aim at minimizing the maximal MSE of the signal waveform estimation

among all receivers subjecting to power constraints at the transmitter and the relay

node. In the second scheme, we propose a total source and relay transmission power

minimization strategy subjecting to quality-of-service (QoS) constraints.

The material in Chapter 3 is based on the journal submission:

• M. R. A. Khandaker and Y. Rong, “Precoding Design for MIMO Relay Multicas-

ting”, IEEE Trans. Signal Process., submitted, Jul. 2012.

and the conference publication:

• M. R. A. Khandaker and Y. Rong, “Multicasting MIMO Relay Optimization

Based on Min-Max MSE Criterion”, Proc. IEEE ICCS, Singapore, Nov. 21-23,

2012.

Chapter 4: Duality in Multi-Hop MIMO Relay Channel

There is an interesting duality between the uplink and the downlink in a MIMO system,

and by exploiting this duality, one can map each receive architecture for the uplink

to a corresponding transmit architecture for the downlink. We define duality as the

achievement of identical signal-to-interference-plus-noise ratios (SINRs) at the uplink

and the downlink systems with the same amount of total network transmission power.

Recently, the uplink-downlink duality of two-hop amplify-and-forward (AF) MIMO

relay systems has been derived in [48]. We extend the uplink-downlink duality results

in [48–51] to multi-hop AF-MIMO relay systems with any number of hops and any

number of antennas at each node. In particular, we show that the duality can be

achieved by two approaches. First, with the same total network transmission power

constraint, one simply applies Hermitian transposed uplink relay amplifying matrices

at relay nodes in the downlink system. Second, with transmission power constraint at

each node of the relay network, one can use scaled and Hermitian transposed uplink relay

amplifying matrices in the downlink system, with scaling factors obtained by switching

power constraints at different nodes of the uplink system. As an application of the

uplink-downlink duality, we propose an optimal design of the source precoding matrix

and relay amplifying matrices for multi-hop MIMO relay system with a nonlinear DPC

transmitter at the source node.

Chapter 4 is based on the journal publication:
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• Y. Rong and M. R. A. Khandaker, “On Uplink-Downlink Duality of Multi-Hop

MIMO Relay Channel”, IEEE Trans. Wireless Commun., vol. 10, pp. 1923-1931,

Jun. 2011.

and the conference publication:

• M. R. A. Khandaker and Y. Rong, “Dirty Paper Coding Based Optimal MIMO

Relay Communications”, in Proc. 16th Asia-Pacific Conference on Communica-

tions (APCC’2010), Auckland, New Zealand, Nov. 1-3, 2010, pp. 328-333. (Best

Paper Award)

Chapter 5: Interference MIMO Relay Systems

In a large wireless network with many nodes, multiple source-destination links must

share a common frequency band concurrently to ensure a high spectral efficiency of

the whole network [1]. In such network, cochannel interference (CCI) is one of the

main impairments that degrades the system performance. Developing schemes that

mitigate the CCI is therefore important. We consider an interference MIMO relay

system where multiple source nodes communicate with their desired destination nodes

concurrently with the aid of distributed relay nodes all equipped with multiple antennas.

We aim at minimizing the total source and relay transmit power such that a minimum

SINR threshold is maintained at each receiver. An iterative joint power control and

beamforming algorithm is developed to achieve this goal. The proposed algorithm

exploits transmit-relay-receive beamforming technique to mitigate the interferences from

the unintended sources in conjunction with transmit power control.

The material in Chapter 5 is based on one journal publication:

• M. R. A. Khandaker and Y. Rong, “Interference MIMO Relay Channel: Joint

Power Control and Transceiver-Relay Beamforming”, IEEE Trans. Signal Pro-

cess., to appear, 2012.

and two conference publications:

• M. R. A. Khandaker and Y. Rong, “Joint Power Control and Beamforming for

Peer-to-Peer MIMO Relay Systems”, in Proc. Int. Conf. Wireless Commun.

Signal Process. (WCSP), Nanjing, China, Nov. 9-11, 2011.

• M. R. A. Khandaker and Y. Rong, “Joint Power Control and Beamforming for

Interference MIMO Relay Channel”, in Proc. 17th Asia-Pacific Conference on

Communications (APCC’2011), Sabah, Malaysia, Oct. 2-5, 2011.
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Chapter 6: Channel Estimation of Dual-Hop MIMO Relay System

The optimal source precoding matrix and relay amplifying matrix developed in Chap-

ter 2 to Chapter 5 require the instantaneous channel state information (CSI). How-

ever, in practical relay communication systems, the instantaneous CSI is unknown, and

therefore, has to be estimated at the destination node. We develop a novel channel

estimation algorithm for two-hop MIMO relay systems using the PARAFAC analysis.

The proposed algorithm provides the destination node with full knowledge of all channel

matrices involved in the communication. The number of training data blocks required

in the proposed channel estimation algorithm can be less than the number of relay nodes

(antennas). In particular, we show that when the number of relay nodes (antennas) is

smaller than the number of antennas at the source node and the destination node, as

few as two training data blocks are sufficient to estimate all channels. Thus, the pro-

posed algorithm has a higher spectral efficiency compared to the existing techniques.

Moreover, the initial estimation of channel matrices is improved by a linear MMSE

algorithm, which yields a smaller estimation error.

Chapter 6 is based on the journal publication:

• Y. Rong, M. R. A. Khandaker, and Y. Xiang, “Channel Estimation of Dual-

Hop MIMO Relay Systems via Parallel Factor Analysis”, IEEE Trans. Wireless

Commun., vol. 11, pp. 2224-2233, Jun. 2012.

and the conference publication:

• Y. Rong and M. R. A. Khandaker, “Channel Estimation of Dual-Hop MIMO Relay

Systems Using Parallel Factor Analysis”, in Proc. 17th Asia-Pacific Conference

on Communications (APCC’2011), Sabah, Malaysia, Oct. 2-5, 2011.

1.5 Notations

The notations used in this thesis are as follows: Lower case letters are used to denote

scalars, e.g. s, n. Bold face lower case letters denote vectors, e.g. s, n. Bold face upper

case letters are reserved for matrices, e.g. S, N. For matrices, (·)T , (·)∗, (·)H , (·)−1, and

(·)† denote transpose, conjugate, Hermitian transpose, inverse, and pseudo-inverse oper-

ations, respectively. rank(·) and tr(·) denote the rank and trace of matrices, respectively.

E[·] represents the statistical expectation and blkdiag(·) stands for a block-diagonal ma-

trix. An N dimensional identity matrix is denoted as either IN or I. Note that the

scope of any variable in each chapter is limited to that particular chapter.





Chapter 2

Uplink Multiuser MIMO Relay

Communication Systems

In this chapter, we address the optimal source, relay, and receive matrices design for

linear non-regenerative uplink multiuser MIMO relay communication systems. The

MMSE of the signal waveform estimation at the destination node is adopted as our

design criterion. After a review of existing works in Section 2.1, the system model of

an uplink multiuser MIMO relay network is introduced in Section 2.2. Two iterative

methods to solve the highly nonconvex joint source, relay, and receiver optimization

problem are proposed in Section 2.3. Simulation results are presented in Section 2.4 to

justify the significance of the proposed algorithms before summarizing the chapter in

Section 2.5. The proof of Theorem 2.1 is given in Section 2.A.

2.1 Overview of Existing Techniques

In next generation wireless systems, multiple users equipped with multiple antennas

will transmit simultaneously to the base station with multiple receive antennas and vice

versa [3, 4]. Transceiver design for multiuser MIMO systems has been studied in [3].

The capacity of multiuser MIMO systems was investigated for flat fading channels in

[4] using real channel measurement data.

Incorporating relays in a MIMO network can significantly extend the coverage and

improve the link reliability of the network [19, 21–28]. The capacity of a single-user non-

regenerative MIMO relay channel has been studied in [21]. In [22] and [23], the optimal
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relay amplifying matrix maximizing the mutual information (MI) between source and

destination was derived assuming that the source covariance matrix is an identity matrix.

In [24] and [25], MMSE-based approaches for MIMO relay systems have been studied.

In [26], an iterative tri-step source precoder, relay amplifying matrix and destination

equalizer design algorithm has been proposed for a single-user MIMO relay system with

channel uncertainties. A unified framework was developed in [27] and [28] to jointly

optimize the source precoding matrix and the relay amplifying matrices for a broad

class of frequently used objective functions in MIMO relay system design.

For a multiuser MIMO relay system, the achievable sum rate has been derived in [52]

using non-regenerative relaying scheme. In [53], both non-regenerative and regenerative

relays have been considered in a multiuser MIMO network without optimizing the power

loading schemes at the relay and the source nodes. An adaptive relay power allocation

algorithm has been developed in [54] to mitigate the self-interference. An MMSE-

based joint filter design has been proposed for a multiuser non-regenerative MIMO relay

system in [55]. All these works [52]-[55] assume that each user is equipped with a single

antenna. Several recent works have addressed multiuser MIMO relay systems where

users also have multiple antennas. In [56], the optimal source and relay matrices were

developed to maximize the source-destination MI. The non-regenerative MIMO relay

technique has been applied to multi-cellular (interference) systems in [57]. The joint

source and relay optimization problem has been addressed in [41] for multiple-antenna

users using the MMSE criterion. The authors in [58] addressed the joint transceiver

and relay design problem in a downlink (broadcast) multiuser system.

The main contribution of this chapter is the joint source, relay, and receiver opti-

mization for multiuser MIMO relay communication systems under the MMSE criterion

where all nodes (users, relay, and destination) are equipped with possibly different

number of multiple antennas. In contrast to [58], we consider an uplink (multiaccess)

multiuser MIMO relay system. Note that although we consider the joint transceiver

design problem for an uplink system, transceivers in a downlink system can be obtained

by exploiting the uplink-downlink duality of MIMO relay channel [48, 59]. This problem

has not been addressed in [19]-[57]. In particular, [19]-[28] considered the transceiver

and/or relay design problems for single-user MIMO relay systems whereas [52]-[55] con-

sidered multiuser MIMO relay design problems with single-antenna transmitters. The

problems addressed in [56] and [57] are also different from our problem. In this chapter,

we derive the optimal structure of the source precoding matrix of each user and the
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relay amplifying matrix to jointly minimize the MSE of the signal waveform estimation

at the destination node in a multiuser MIMO relay system. The original optimization

problem is highly nonconvex and a closed-form solution is intractable. To overcome

this difficulty, we develop a Tri-Step iterative algorithm to jointly optimize the source,

relay, and receive matrices through solving convex subproblems. It is shown that this

algorithm is guaranteed to converge to (at least) a locally optimal solution. Note that

the Tri-Step algorithm is not presented in [41].

To reduce the computational complexity of the Tri-Step algorithm, we develop a

simplified Bi-Step algorithm, where the source and relay matrices are optimized in an

alternating fashion. The receive matrix is not updated in each iteration, and instead,

it is obtained as an MMSE receiver after the convergence of the Bi-Step algorithm.

We show that for given source precoding matrices, the optimal relay amplifying matrix

diagonalizes the source-relay-destination channel. While for fixed relay matrix and

source matrices of all other users, the source matrix of each user has a beamforming

structure. Simulation results demonstrate that both the proposed Tri-Step and Bi-Step

iterative algorithms perform much better than existing techniques in terms of both

MSE and BER. Moreover, it is shown that compared with the Tri-Step algorithm, the

Bi-Step algorithm requires less number of iterations till convergence with only a small

degradation in MSE and BER. Such performance-complexity tradeoff is very important

for practical multiuser MIMO relay communication systems. We would like to mention

that such Bi-Step algorithm is not considered in [58].

2.2 Uplink Multiuser MIMO Relay System Model

We consider a two-hop multiuser MIMO relay communication system as illustrated

in Fig. 2.1 where K users transmit information to the same destination node with

the aid of one relay node. The ith user, i = 1, · · · ,K, the relay and the destination

nodes are equipped with Ni, Nr, and Nd antennas, respectively. We denote Nb =
∑K

i=1Ni as the total number of independent data streams from all users, and assume

that Nb ≤ min(Nr, Nd), since otherwise the system cannot supportNb independent data

streams simultaneously. For simplicity, as in [22]-[56], a linear non-regenerative strategy

is applied at the relay node to process and forward the received signal.

We assume that the relay node works in the practical half-duplex mode. Thus, the

communication between the users and the destination is completed in two time slots.
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Figure 2.1: Block diagram of aK-user linear non-regenerativeMIMO relay communication

system.

In the first time slot, the Ni × 1 modulated signal vector si is linearly precoded at the

ith user by the Ni ×Ni source precoding matrix Bi. The precoded signal vector

xi = Bisi (2.1)

is transmitted to the relay node from the ith user. The received signal vector at the

relay node can be written as

yr =

K
∑

i=1

Hixi + nr (2.2)

where Hi is the Nr × Ni MIMO channel matrix between the ith user and the relay,

yr and nr are the received signal and the additive Gaussian noise vectors at the relay

node, respectively. Substituting (2.1) into (2.2), we have

yr =

K
∑

i=1

HiBisi + nr = H̄s+ nr (2.3)

where H̄ , [H1B1, · · · ,HKBK ] is the equivalent multiaccess MIMO channel matrix of

the source-relay link and s ,
[

sT1 , · · · , sTK
]T

is the equivalent transmitted signal vector.

We assume that E
[

ssH
]

= INb
.

./ch2_uplink/system_model.eps
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In the second time slot, the users remain silent and the relay node multiplies (linearly

precodes) the received signal vector yr by an Nr × Nr relay amplifying matrix F and

transmits the signal vector

xr = Fyr (2.4)

to the destination node. The received signal vector at the destination node can be

written as

yd =Gxr + nd (2.5)

where G is the Nd ×Nr MIMO channel matrix between the relay and the destination

nodes, yd and nd are the received signal and the additive Gaussian noise vectors at the

destination node, respectively.

Substituting (2.3) and (2.4) into (2.5), we obtain

yd =GF

K
∑

i=1

HiBisi +GFnr + nd

= [GFH1B1, · · · ,GFHKBK ] s+GFnr + nd = Hs+ n (2.6)

where H , [GFH1B1, · · · ,GFHKBK ] = GFH̄ is the equivalent MIMO channel matrix

of the source-relay-destination link, and n , GFnr+nd is the equivalent noise vector at

the destination. We assume that the channel matrices Hi, i = 1, · · · ,K, and G are all

quasi-static, i.e., the channel matrices are constant throughout a block of transmission

and known to the relay and the destination nodes. In practice, the CSI of G can

be obtained at the destination node through standard training method. The relay

node can have the CSI of Hi, i = 1, · · · ,K, through channel training, and obtain the

CSI of G by a feedback from the destination node. The quasi-static channel model

is valid in practice when the mobility of all communicating nodes is relatively slow.

As a result, we can obtain the necessary CSI with a reasonably high precision during

the channel training period. The relay node calculates the optimal source matrices

{Bi} , {Bi, i = 1, · · · ,K}, and the relay matrix F, and forwards Bi to the ith source

node and forwards F and Hi, i = 1, · · · ,K to the destination node. Note that individual

users do not require any channel knowledge. This is a very important assumption for

multiuser communication since in a multiuser scenario the users are distributed and

cannot cooperate. We assume that all noises are independent and identically distributed

(i.i.d.) complex circularly symmetric Gaussian noise with zero mean and unit variance.
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Due to its simplicity, a linear receiver is used at the destination node to retrieve the

transmitted signals. Denoting W as an Nd × Nb weight matrix, the estimated signal

vector ŝ is given by

ŝ = WHyd . (2.7)

2.3 Proposed Source, Relay, and Receive Matrices Design

Algorithm

In this section we develop the optimal source precoding matrices {Bi}, the relay am-

plifying matrix F, and the destination receive matrix W to minimize the MSE of the

signal waveform estimation. Using (2.6) and (2.7), the MSE of the signal waveform

estimation at the destination is given by

MSE = tr
(

E
[

(ŝ− s)(ŝ− s)H
])

= tr
(

(

WHH− INb

) (

WHH− INb

)H
+WHCnW

)

(2.8)

where Cn is the equivalent noise covariance matrix given by

Cn = E
[

nnH
]

= E
[

(GFnr + nd) (GFnr + nd)
H
]

= GFFHGH + INd
.

From (2.4), the power of the signal transmitted by the relay node can be expressed as

tr
(

E
[

xrx
H
r

])

= tr

(

F

(

K
∑

i=1

HiBiB
H
i HH

i + INr

)

FH

)

. (2.9)

From (2.8) and (2.9), the joint source, relay, and receive matrices optimization prob-

lem for the linear non-regenerative multiuser MIMO relay system can be formulated as

min
{Bi},F,W

tr
(

(

WHH− INb

) (

WHH− INb

)H
+WHCnW

)

(2.10a)

s.t. tr

(

F

(

K
∑

i=1

HiBiB
H
i HH

i + INr

)

FH

)

≤ Pr (2.10b)

tr
(

BiB
H
i

)

≤ Pi, i = 1, · · · ,K (2.10c)

where (2.10b) and (2.10c) are the constraints for the transmission power at the relay

and the ith user, respectively, and Pr > 0, Pi > 0 are the power budget available at the

relay and the ith source node, respectively. The optimization problem (2.10) is highly
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nonconvex and a closed-form solution to this problem is intractable. In the following,

we develop two iterative algorithms namely the Tri-Step and the Bi-Step algorithms

to optimize the source, relay, and receive matrices. In the Tri-Step algorithm, the

source, relay, and receive matrices are optimized iteratively through solving convex

sub-problems. In the Bi-Step algorithm, the source and relay matrices are optimized

alternatingly and the MMSE receive matrix is calculated after the convergence of the

source and relay matrices. In particular, the relay matrix is optimized by the Lagrange

multiplier method in the Tri-Step algorithm, and by the majorization theory in the

Bi-Step algorithm. The optimal source matrices are obtained by solving semidefinite

programming (SDP) problem in the Bi-Step algorithm, and by solving quadratically

constrained quadratic programming (QCQP) problem in the Tri-Step algorithm.

2.3.1 Iterative optimization of source, relay, and receive matrices (Tri-

Step Algorithm)

This algorithm starts at a random F and {Bi} satisfying (2.10b) and (2.10c). In each

iteration, the source, relay, and receive matrices are updated alternatingly through

solving convex subproblems. Firstly, with given F and {Bi}, the optimal W is obtained

by solving the unconstrained convex problem (2.10a), since W does not appear in

constraints (2.10b) and (2.10c). The solution is the well-known MMSE receiver given

by [60]

W =
(

HHH +Cn

)−1
H. (2.11)

Secondly, with given W and {Bi}, F can be updated by solving the following prob-

lem

min
F

tr
((

ḠFH̄− INb

)(

ḠFH̄− INb

)H
+ ḠFFHḠH

)

(2.12a)

s.t. tr
(

F
(

H̄H̄H + INr

)

FH
)

≤ Pr (2.12b)

where Ḡ , WHG is the equivalent relay-destination MIMO channel. Using the La-

grange multiplier method, we obtain F from (2.12) as

F = ḠH(ḠḠH + µINb
)−1H̄H(H̄H̄H + INr)

−1 (2.13)

where µ ≥ 0 is the Lagrange multiplier associated with the power constraint (2.12b).

Interestingly, (2.13) can be viewed as F = F2F1, where F1 = H̄H(H̄H̄H + INr)
−1 is

the weight matrix of the MMSE receiver for the equivalent first-hop multiaccess MIMO
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channel at the relay node given in (2.3), and F2 = ḠH(ḠḠH+µINb
)−1 can be viewed as

the transmit precoding matrix for the effective second-hop MIMO system y = ḠF2x+v,

where x is the transmitted signal vector with E[xxH ] = INb
, and v is the noise vector

with covariance matrix Cv = E[vvH ]. In this MIMO system, the MSE of estimating x

is given by tr
(

E[(y−x)(y−x)H ]
)

= tr
((

ḠF2− INb

)(

ḠF2− INb

)H
+Cv

)

. The optimal

F2 that minimizes the MSE can be obtained by solving the following problem

min
F2

tr
((

ḠF2 − INb

)(

ḠF2 − INb

)H)
s.t. tr

(

F2F
H
2

)

≤ Px

where Px is the transmission power constraint. Using the Lagrange multiplier method

to solve the problem above, we obtain F2 = ḠH(ḠḠH + µINb
)−1.

The Lagrange multiplier µ in (2.13) can be found from the following complementary

slackness condition

µ
(

tr
(

F
(

H̄H̄H + INr

)

FH
)

− Pr

)

= 0. (2.14)

Assuming µ = 0, we have the following F from (2.13)

F = ḠH(ḠḠH)−1H̄H(H̄H̄H + INr)
−1. (2.15)

Since in this case (2.14) is already satisfied, if F in (2.15) satisfies the constraint (2.12b),

then (2.15) is the solution to the problem (2.12). Otherwise, there must be µ > 0, and

from (2.14) we can see that tr
(

F
(

H̄H̄H + INr

)

FH
)

= Pr must hold. In this case, µ can

be obtained from (2.12b) by solving the following nonlinear equation

tr
(

ḠH(ḠḠH + µINb
)−1H̄H(H̄H̄H+INr)

−1H̄(ḠḠH+µINb
)−1Ḡ

)

= Pr. (2.16)

Let us now define the singular value decomposition (SVD) of Ḡ , UΛVH , where the

dimensions of U, Λ, V are Nb ×Nb, Nb ×Nr, and Nr ×Nr, respectively. Then we have

from (2.16) that

tr
(

Λ(Λ2 + µINb
)−1UHH̄H(H̄H̄H + INr)

−1H̄U(Λ2 + µINb
)−1Λ

)

= Pr. (2.17)

Denoting Φ , UHH̄H(H̄H̄H + INr)
−1H̄U, (2.17) can be equivalently written as

Nb
∑

i=1

λ2iΦi,i
(

λ2i + µ
)2 = Pr (2.18)

where λi and Φi,i are the ith main diagonal elements of Λ and Φ, respectively. Since

the left-hand side of (2.18) is a monotonically decreasing function of µ > 0, it can be

efficiently solved using the bisection method [61].
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Thirdly, with givenW and F, we reformulate the problem (2.10) as a QCQP problem

[61] to update bi, i = 1, · · · ,K, where bi = vec(Bi) stands for a vector obtained by

stacking all column vectors of Bi on top of each other. Let Ai , WHGFHi and Aii

be a matrix containing the
(
∑i−1

j=1Nj + 1
)

-th to
(
∑i

j=1Nj

)

-th rows of Ai. Using the

identity of vec(ABC) = (CT ⊗A)vec(B) [62], where ⊗ denotes the matrix Kronecker

product, we obtain that

tr
(

WHGFHiBiB
H
i HH

i FHGHW
)

= tr
(

AiBiB
H
i AH

i

)

= bH
i

(

INi
⊗ (AH

i Ai)
)

bi, i = 1, · · · ,K

tr
(

WHGF[H1B1, · · · ,HKBK ]
)

= tr([A1B1, · · · ,AKBK ])

=

K
∑

i=1

tr(AiiBi)

=
K
∑

i=1

(

vec(AT
ii)
)T

bi.

Thus the MSE in (2.8) can be expressed as

MSE = tr

(

WHGF

(

K
∑

i=1

HiBiB
H
i HH

i

)

FHGHW−WHGF[H1B1, · · · ,HKBK ]

−
(

WHGF [H1B1, · · · ,HKBK ]
)H

+ INb
+WH(GFFHGH + INd

)W
)

=

K
∑

i=1

bH
i

(

INi
⊗ (AH

i Ai)
)

bi −
K
∑

i=1

(

vec(AT
ii)
)T

bi −
K
∑

i=1

bH
i vec(AH

ii ) + t

, bHAb− cHb− bHc+ t (2.19)

where t , tr(INb
+ WH(GFFHGH + INd

)W), A , blkdiag
(

IN1
⊗(AH

1A1), · · · , INK
⊗

(AH
KAK)

)

, b ,
[

bT
1 , · · · ,bT

K

]T
, and c ,

[

(

vec(AH
11)
)T
, · · · ,

(

vec(AH
KK)

)T
]T

. Now the

MSE in (2.19) can be equivalently rewritten as

MSE = bHA
1

2A
1

2b− cHA− 1

2A
1

2b− bHA
1

2A− 1

2 c+ cHA− 1

2A− 1

2 c− cHA−1c+ t

=
(

bHA
1

2 − cHA− 1

2

)(

A
1

2b−A− 1

2c
)

− cHA−1c+ t

where A
1

2A
1

2 = A and A
1

2 = A
H
2 . Note that we can ignore the term t − cHA−1c

while optimizing b with given W and F, since it is free of the optimization variable b.

Assuming Ci , FHi, i = 1, · · · ,K, the relay transmit power constraint in (2.10b) can

be rewritten as

bHCb ≤ Pr − tr
(

FFH
)
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where C , blkdiag
(

IN1
⊗ (CH

1 C1), · · · , INK
⊗ (CH

KCK)
)

. Thus the optimization prob-

lem (2.10) can be equivalently rewritten as the following QCQP problem

min
b

(

A
1

2b−A− 1

2c
)H(

A
1

2b−A− 1

2c
)

(2.20a)

s.t. bHCb ≤ Pr − tr
(

FFH
)

(2.20b)

bHDib ≤ Pi, i = 1, · · · ,K (2.20c)

where Di , blkdiag
(

D̃i1, D̃i2, · · · , D̃iK

)

with D̃ii = INi
and D̃ij = 0, j = 1, · · · ,K, j 6=

i. The QCQP problem (2.20) can be efficiently solved by the disciplined convex pro-

gramming toolbox CVX [63] where interior-point method-based solvers such as SeDuMi

and SDPT3 are called internally. Since all subproblems (2.10a), (2.12), and (2.20) are

convex, the solution to each subproblem is optimal. Thus, the value of the objective

function (2.10a) decreases (or at least maintains) after each iteration. Moreover, the

objective function is lower bounded by at least zero.

Now, assuming that W0, {Bi,0}, and F0 are the optimal solution for each subprob-

lem, we have

tr(∇WJ(X0)
T (W −W0)) ≥ 0 (2.21)

tr(∇Bi
J(X0)

T (Bi −Bi,0)) ≥ 0 (2.22)

tr(∇FJ(X0)
T (F− F0)) ≥ 0 (2.23)

where X0 , [W0, {Bi,0},F0] and ∇AJ(X0) is the gradient of the objective function (10)

along the direction of A ∈ {W, {Bi},F} at X0. Summing up (2.21)-(2.23), we obtain

tr(∇J(X0)
T (X−X0)) ≥ 0, indicating that X0 is a stationary point of (10). Moreover,

it can be seen that X0 must be on the edge of the feasible set specified by inequalities in

(2.10b) and (2.10c) (i.e., (2.10b) and (2.10c) must be satisfied with equality at X0, since

otherwise, one can simply scale F0 and Bi,0 such that the value of (2.10a) is decreased

without violating (2.10b) and (2.10c)). This indicates that X0 cannot be a saddle point

and is indeed the local-optimal solution. Therefore, the proposed iterative algorithm

monotonically converges to (at least) a locally optimal solution. The procedure of

solving the problem (2.10) using the proposed Tri-Step iterative algorithm is listed in

Table 2.1, where ‖ · ‖1 denotes the matrix maximum absolute column sum norm, ε is

a small positive number close to zero and the superscript (n) denotes the number of

iterations.
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Table 2.1: Procedure of solving the problem (2.10) by the Tri-Step algorithm

1. Initialize the algorithm with B
(0)
i =

√

Pi/Ni INi
, i = 1, · · · ,K, and F(0) =

√

Pr/tr(H̄H̄H + INr
) INr

; Set n = 0.

2. Update W(n) using {B(n)
i } and F(n) as in (2.11).

3. Update F(n+1) as in (2.13) using given W(n) and {B(n)
i }.

4. Solve the subproblem (2.20) using known F(n+1) andW(n) to obtainB
(n+1)
i , i = 1, · · · ,K.

5. If maxi
∥

∥B
(n+1)
i −B

(n)
i

∥

∥

1
≤ ε, then end.

Otherwise, let n := n+ 1 and go to step 2.

2.3.2 Simplified source and relay matrices design (Bi-Step Algorithm)

In this subsection, we propose an iterative source and relay matrices design algorithm

which has a smaller computational complexity than the Tri-Step algorithm developed in

the previous subsection. In particular, using the MMSE receiver (2.11) at the destination

node, the MSE of the signal waveform estimation (2.8) becomes a function of {Bi} and

F as

MMSE = tr
(

[

INb
+HHC−1

n H
]−1
)

. (2.24)

Thus, the joint source and relay optimization problem is given by

min
{Bi},F

tr
(

[

INb
+HHC−1

n H
]−1
)

(2.25a)

s.t. tr

(

F

(

K
∑

i=1

HiBiB
H
i HH

i + INr

)

FH

)

≤ Pr (2.25b)

tr
(

BiB
H
i

)

≤ Pi, i = 1, · · · ,K. (2.25c)

In this Bi-Step algorithm, we update the source and the relay matrices in an alternating

fashion. In each iteration, for given source matrices {Bi} satisfying (2.25c), we optimize

the relay matrix F by solving the following problem

min
F

tr
(

[

INb
+HHC−1

n H
]−1
)

(2.26a)

s.t. tr

(

F

(

K
∑

i=1

HiBiB
H
i HH

i + INr

)

FH

)

≤ Pr. (2.26b)
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Then using this F, we solve the problem (2.25) (with only {Bi} as the optimization

variables) to obtain optimal source precoding matrices {Bi}. Finally, the receive matrix

W is obtained as (2.11) using the value of {Bi} and F at the convergence point.

Let us now define the following SVDs

H̄ = UsΛsV
H
s , G = UrΛrV

H
r

where the dimensions of Us, Λs, Vs are Nr ×Nr, Nr ×Nb, Nb ×Nb, respectively, and

the dimensions of Ur, Λr, Vr are given as Nd × Nd, Nd × Nr, Nr × Nr, respectively.

We assume that the main diagonal elements of Λs and Λr are arranged in a decreasing

order. Based on Theorem 1 in [27], the optimal structure of F obtained from solving

the problem (2.26) is given by

F = Vr,1ΛfU
H
s,1 (2.27)

where Λf is an Nb×Nb diagonal matrix, Vr,1 and Us,1 contain the leftmost Nb columns

from Vr and Us, respectively.

It can be seen from (2.27) that the optimal F diagonalizes the equivalent source-

relay-destination MIMO channel H. Substituting (2.27) back into (2.26a) and (2.26b),

we obtain the problem of optimizing Λf as

min
{λf,i}

Nb
∑

i=1

(

1 +
λ2s,iλ

2
r,iλ

2
f,i

1 + λ2r,iλ
2
f,i

)−1

(2.28a)

s.t.

Nb
∑

i=1

λ2f,i(λ
2
s,i + 1) ≤ Pr, λf,i ≥ 0, i = 1, · · · , Nb (2.28b)

where λs,i, λf,i, and λr,i are the ith main diagonal elements of Λs, Λf , and Λr, respec-

tively. The problem (2.28) has a water-filling solution which is given by

λf,i =
1

λr,i





1

λ2s,i + 1





λs,iλr,i
[

(λ2s,i + 1)ν
]
1

2

− 1





+



1

2

, i = 1, · · · , Nb (2.29)

where for a real-valued number x, (x)+ , max(x, 0), and ν > 0 is the solution to the

nonlinear problem of

Nb
∑

i=1

1

λ2r,i





λs,iλr,i
[

(λ2s,i + 1)ν
] 1

2

− 1





+

= Pr. (2.30)

Since (2.30) is a monotonically decreasing function of ν, it can be efficiently solved using

the bisection method [61].
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Using the identity of tr
([

Im+Am×nBn×m

]−1)
= tr

([

In+Bn×mAm×n

]−1)
+m−n,

for a given feasible F, the objective function (2.24) can be rewritten as

MMSE = tr
(

[

INd
+HHHC−1

n

]−1
)

+Nb −Nd

= tr

(

[

INd
+C

− 1

2
n HHHC

− 1

2
n

]−1
)

+Nb −Nd

= tr





[

INd
+C

− 1

2
n GF

K
∑

i=1

HiBiB
H
i HH

i FHGHC
− 1

2
n

]−1


+Nb −Nd

= tr





[

INd
+

K
∑

i=1

H̃iQiH̃
H
i

]−1


+Nb −Nd

where H̃i , C
− 1

2
n GFHi and Qi = BiB

H
i is the source covariance matrix of the ith

user. In the following, we focus on optimizing Qi. Once we obtain the optimal Qi, the

optimal Bi is calculated as Bi = ΘiΛ
1

2

i Φi, where ΘiΛiΘ
H
i is the eigenvalue decompo-

sition (EVD) of Qi, and Φi is an arbitrary Ni × Ni unitary matrix. Considering the

transmission power constraints in (2.25b) and (2.25c), the source covariance matrices

{Qi} , {Qi, i = 1, · · · ,K} can be optimized by solving the following problem

min
{Qi}

tr





[

INd
+

K
∑

i=1

H̃iQiH̃
H
i

]−1


 (2.31a)

s.t. tr

(

K
∑

i=1

QiΨi

)

≤ P̄r (2.31b)

tr(Qi) ≤ Pi, Qi < 0, i = 1, · · · ,K (2.31c)

where Ψi , HH
i FHFHi, P̄r , Pr − tr(FFH), and for a matrix A, A < 0 means that A

is a positive semi-definite (PSD) matrix.

Let us now introduce a PSD matrix X that satisfies

[

INd
+

K
∑

i=1

H̃iQiH̃
H
i

]−1

4 X (2.32)

where for two matrices A and B, B < A means that B − A < 0. By using (2.32)

and the Schur complement [61], the problem (2.31) can be equivalently converted to the
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following SDP problem

min
{Qi},X

tr (X) (2.33a)

s.t.

[

X INd

INd
INd

+
∑K

i=1 H̃iQiH̃
H
i

]

< 0 (2.33b)

tr

(

K
∑

i=1

QiΨi

)

≤ P̄r (2.33c)

tr(Qi) ≤ Pi, Qi < 0, i = 1, · · · ,K . (2.33d)

We use the CVX software package [63] to solve the problem (2.33). Now the original

source and relay matrices optimization problem (2.25) can be solved by an iterative

technique as shown in Table 2.2.

Table 2.2: Procedure of solving the problem (2.25) by the Bi-Step algorithm

1. Initialize the algorithm with Q
(0)
i = Pi/NiINi

, i = 1, · · · ,K; Set n = 0.

2. Solve the subproblem (2.26) using given Q
(n)
i , i = 1, · · · ,K, to obtain F(n) as in (2.27).

3. Solve the subproblem (2.33) using known F(n) to obtain Q
(n+1)
i , i = 1, · · · ,K.

4. If maxi
∥

∥Q
(n+1)
i −Q

(n)
i

∥

∥

1
≤ ε, then end.

Otherwise, let n := n+ 1 and go to step 2.

Since the problem (2.28) is a convex optimization problem, the conditional update

of F(n) will not increase (2.28a) and hence the objective function (2.25a). Similarly, the

problem (2.33) is also convex, and the conditional update ofQ
(n)
i cannot increase (2.33a)

and hence the value of (2.25a). Therefore, each conditional update of F(n) andQ
(n)
i may

either decrease or maintain but cannot increase the objective function (2.25a). Note

that the constraints in the problem (2.25) are always satisfied with every conditional

update. Similar to the justification for the Tri-Step algorithm, a monotonic convergence

of F(n) and Q
(n)
i towards (at least) a locally optimal solution follows directly from this

observation.

The numerical solution to the problem (2.33) does not provide sufficient insight to

the structure of the optimal Qi. Interestingly, by solving the problem (2.31) applying

the Lagrange multiplier method, we obtain the following theorem for the structure of

the optimal Qi.
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Theorem 2.1 The optimal source covariance matrix Qi for the ith user as the solution

to the problem (2.31) has the following general beamforming structure

Qi = Vhi
Λ−1

hi,1
UH

hi,1
(ViJiV

H
i −Di)

♯Uhi,1Λ
−1
hi,1

VH
hi
, i = 1, · · · ,K (2.34)

where Di , INd
+
∑K

j=1,j 6=i H̃jQjH̃
H
j , (·)♯ stands for the projection to the set of Nd×Nd

PSD matrices, H̃i = [Uhi,1 Uhi,2 ][Λhi,1 0 ]TVH
hi

and K−1
i H̃H

i = Ui[Σi 0 ]VH
i are

the SVDs of H̃i and K−1
i H̃H

i , respectively, and Ji , blkdiag(Σi,∆i,2). Here KiK
H
i =

λ1Ψi + λ2INi
, λ1 ≥ 0, λ2 ≥ 0 are the Lagrange multipliers, and ∆i,2 is an (Nd −Ni)×

(Nd −Ni) diagonal matrix.

Proof: See Appendix 2.A. �

The unknown Lagrange multipliers λ1 and λ2 in (2.34) can be found by solving

the dual optimization problem associated with the problem (2.35) in Appendix 2.A.

Note that the optimal structure of the source covariance matrices in (2.34) can be

viewed as Qi = H̃
†
iΛi

(

H̃
†
i

)H
, i = 1, · · · ,K, where Λi , (ViJiV

H
i −Di)

♯ is the power-

loading matrix. Note that (2.34) indicates that the power distribution at each user

needs to be adapted to the current power levels of all other users. The pseudo-inverse

in Qi, i = 1, · · · ,K, indicates that the source covariance matrix of the ith user needs to

match the corresponding source-relay-destination channel.

In summary, matrices W, F, and {Bi} are optimized in each iteration of the Tri-Step

algorithm, where the major computation task lies in solving the QCQP problem (2.20).

The amount of computation required for updatingW and F is negligible compared with

that of solving the QCQP problem. The complexity order of solving the problem (2.20)

using the interior point method [64] is O
(

(
∑K

i=1N
2
i )

3
)

.

In each iteration of the Bi-Step algorithm, F and {Bi} are optimized. Here the major

computation task is solving the SDP problem (2.33), which has a complexity order of

O
(

(
∑K

i=1N
2
i )

3.5
)

using the interior point method [64]. Therefore, the per iteration

computational complexity of the Bi-Step algorithm is slightly higher than that of the

Tri-Step algorithm. However, the overall computational complexity of both iterative

algorithms also depends on the number of iterations they need till convergence, which

will be studied in Section 2.4 (see Table 2.3). Note that in the Tri-Step algorithm,

the source, relay, and receive matrices are optimized iteratively while in the Bi-Step

algorithm, the source and relay matrices are optimized alternatingly and the MMSE

receive matrix is calculated after the convergence of the source and relay matrices.

Thus the Bi-Step approach has a fast convergence than the Tri-Step algorithm.
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2.4 Numerical Examples

In this section, we study the performance of the proposed optimal multiuser MIMO

relay algorithms through numerical simulations. For simplicity, we consider a system

with two users. The extension to K > 2 users is straight-forward. The two users,

relay and destination nodes are all equipped with multiple antennas. We simulate a flat

Rayleigh fading environment where the channel matrices have entries with zero mean

and variances σ2g/Nr, σ
2
h,i/Ni, for G, Hi, i = 1, 2, respectively. We define

SNRr−d ,
σ2gPrNd

Nr
, SNRsi−r ,

σ2h,iPiNr

Ni
, i = 1, 2

as the SNR of the relay-destination and user-i-relay links, i = 1, 2, respectively. For

simplicity, we assume N1 = N2 = Ns and SNRs1−r = SNRs2−r = SNRs−r throughout

the simulations. All simulation results are averaged over 1000 independent channel

realizations.

We compare the performance of the proposed Tri-Step and Bi-Step algorithms with

the naive amplify-and-forward (NAF) algorithm, and the pseudo match-and-forward

(PMF) algorithm in terms of both MSE and BER. For the Tri-Step algorithm, the proce-

dure in Table 2.1 is carried out to obtain the optimal relay and source matrices, whereas

for the Bi-Step algorithm, the steps defined in Table 2.2 are followed. For both algo-

rithms, we use the CVX Matlab toolbox for disciplined convex programming [63] to find

the optimal source precoding matrices. For the NAF scheme, we use Bi =
√

Pi/Ni INi
,

i = 1, 2, and F =
√

Pr/tr(H̄H̄H + INr) INr . For the PMF algorithm, the same Bi in

the NAF algorithm is taken and F =
√

Pr/tr((H̄G)H(H̄H̄H + INr)H̄G) (H̄G)H . Both

the NAF and the PMF algorithms use the MMSE receiver at the destination node.

In the first two examples, we compare the performance of the proposed algorithms

with the other two approaches in terms of MSE normalized by the number of data

streams (NMSE) for Ns = 2, Nr = 4, and Nd = 4. Fig. 2.2 shows the MSE performance

of all tested algorithms versus SNRs−r with SNRr−d = 20dB, whereas Fig. 2.3 illustrates

the MSE performance of tested algorithms versus SNRr−d for an SNRs−r fixed at 20dB.

Our results clearly demonstrate the better performance of the proposed iterative joint

source and relay optimization algorithms. It can be seen that the proposed optimal

algorithms consistently yield the lowest MSE over the entire SNRs−r and SNRr−d region.

The NAF and PMF algorithms have much higher MSE compared with the proposed

schemes even at very high SNR. Note that the MSE performance of both the Tri-Step

algorithm and the Bi-Step algorithm are almost similar to each other.
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Figure 2.2: Example 1: Normalized MSE versus SNRs−r. Ns = 2, Nr = 4, Nd = 4,

SNRr−d = 20dB.
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Figure 2.3: Example 2: Normalized MSE versus SNRr−d. Ns = 2, Nr = 4, Nd = 4,

SNRs−r = 20dB.

./ch2_uplink/mse_snr_s.eps
./ch2_uplink/mse_snr_r.eps


28 Chapter 2. Uplink Multiuser MIMO Relay Communication Systems

0 5 10 15 20 25 30
10

−2

10
−1

10
0

SNR(dB):Source−Relay Link

B
E

R

 

 

PMF Algorithm
NAF Algorithm
Bi−Step Algorithm
Tri−Step Algorithm

Figure 2.4: Example 3: BER versus SNRs−r. Ns = 3, Nr = 6, Nd = 6, SNRr−d = 20dB.

In the next example, we compare the performance of the four algorithms in terms of

BER. QPSK signal constellations are used to modulate the transmitted signals. We set

Ns = 3, Nr = 6, Nd = 6, and transmit 3000 randomly generated bits from each user in

each channel realization. Fig. 2.4 shows the BER performance of all algorithms versus

SNRs−r for SNRr−d = 20dB.

In the fourth example, we compare the BER performance of the algorithms varying

the SNR in the relay-destination channel. This time we set Ns = 2, Nr = 6, Nd = 8, and

transmit 3000 randomly generated bits from each user in each channel realization using

QPSK signal constellations. Fig. 2.5 shows the BER performance of the algorithms

versus SNRr−d for SNRs−r = 20dB. Note that in contrast to other three schemes, the

PMF algorithm requires Nb = Nd, and thus, its performance cannot be included in

Fig. 2.5.

It can be seen from Fig. 2.4 and Fig. 2.5 that the proposed joint source and relay

optimization algorithms obtain the lowest BERs compared with the other approaches.

Interestingly, the BER performance of the Tri-Step algorithm is slightly better than

that of the Bi-Step algorithm, especially at the high SNR region. The reason is that

in the Tri-Step algorithm, we update the receiver weight matrix at each iteration in

addition to the source and relay matrices. Note that since QPSK constellations are

used to modulate the transmitting signals, it is possible that the bit error of the two
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Figure 2.5: Example 4: BER versus SNRr−d. Ns = 2, Nr = 6, Nd = 8, SNRs−r = 20dB.

algorithms are different when the receiver demodulates the transmitted signals, even

though the errors of signal waveform estimation are almost identical. Although the

Tri-Step algorithm performs better than the Bi-Step algorithm, the former algorithm

requires a larger number of iterations than the latter one to converge to the same ε.

For comparison, the number of iterations both algorithms require in a typical run to

converge up to ε = 10−3 are listed in Table 2.3. Here we set Ns = 2, Nr = 6, Nd = 6 and

SNRr−d = 20dB. Therefore, based on the per iteration complexity of two algorithms

discussed in Section 2.3 and the number of iterations they need to converge, the overall

computational complexity of the Bi-Step algorithm is smaller than that of the Tri-

Step algorithm when the number of antennas at each user is small (which is the case

in practical uplink multiuser communication systems). Such performance-complexity

tradeoff is very important for practical multiuser MIMO relay communication systems.

Table 2.3: Iterations required till convergence in the proposed algorithms

SNRs−r (dB) 0 5 10 15 20

Bi-Step algorithm 2 3 3 5 6

Tri-Step algorithm 6 6 10 19 22

Note that both the Bi-Step and Tri-Step approaches achieve an error floor at the
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Figure 2.6: Example 5: BER versus SNRr−d. Varying number of antennas, SNRs−r =

20dB.

BER of 6 × 10−2 in Fig. 2.4, but no error floor can be seen in Fig. 2.5. The reason is

that the MIMO relay system simulated in Fig. 2.4 is fully-loaded while the system in

Fig. 2.5 is under-loaded in terms of data streams. In particular, the total number of

data streams Nb = 6 = Nr = Nd in Fig. 2.4 and Nb = 4 < Nr, Nd in Fig. 2.5. Thus the

system in Fig. 2.5 has a higher spatial diversity order, which overcomes the saturation

effect of the BER curve observed in Fig. 2.4.

In the last example, we compare the BER performance of the proposed algorithms

for different number of antennas at the relay and the destination nodes with a fixed

number of antennas at the source nodes. Fig. 2.6 compares the BER performance of

the proposed algorithms versus SNRr−d for SNRs−r = 20dB with different number of

antennas. It can be clearly seen from Fig. 2.6 that as we increase the number of antennas

at the relay and/or destination node(s), the performance of the proposed algorithms

improve significantly.

2.5 Chapter Summary

In this chapter, we developed the optimal structure of the source precoding matrices

and the relay amplifying matrix in a multiuser MIMO relay network to jointly minimize
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the MSE of the signal waveform estimation. We proposed two iterative algorithms to

optimize the source, relay, and receive matrices. Simulation results demonstrate that

the proposed algorithms outperform the existing techniques in terms of both MSE and

BER.

2.A Proof of Theorem 2.1

To determine the structure of the optimal source covariance matrix Qi for the ith user,

we rewrite the problem (2.31) with given Qj, j = 1, · · · ,K, j 6= i as

min
Qi

tr

(

[

Di + H̃iQiH̃
H
i

]−1
)

(2.35a)

s.t. tr(QiΨi) ≤ P̃r (2.35b)

tr(Qi) ≤ Pi, Qi < 0 (2.35c)

where P̃r , P̄r − tr
(

∑K
j=1,j 6=iQjΨj

)

. The Lagrangian function associated with the

problem (2.35) is given by

L = tr

(

[

Di + H̃iQiH̃
H
i

]−1
)

+ λ1

(

tr(QiΨi)− P̃r

)

+ λ2 (tr(Qi)− Pi)

where λ1 ≥ 0 and λ2 ≥ 0 are the Lagrange multipliers. Making the derivative of L with

respect to Qi be zero, we obtain

∂L

∂Qi
= −H̃H

i

(

Di + H̃iQiH̃
H
i

)−2
H̃i + λ1Ψi + λ2INi

= 0. (2.36)

By introducing an invertible matrix Ki with KiK
H
i = λ1Ψi + λ2INi

, (2.36) becomes

K−1
i H̃H

i

(

Di + H̃iQiH̃
H
i

)−2
H̃iK

−H
i = INi

. (2.37)

Obviously, (2.37) is valid if and only if

K−1
i H̃H

i = Pi

(

Di + H̃iQiH̃
H
i

)

(2.38)

where Pi is an Ni ×Nd semi-unitary matrix with PiP
H
i = INi

.

Let us introduce the following SVD and EVD

K−1
i H̃H

i = Ui[Σi 0 ]VH
i , Di + H̃iQiH̃

H
i = [Li,1 Li,2 ]blkdiag(∆i,1,∆i,2)L

H
i

(2.39)

where the dimensions of Ui, Vi, Li are Ni ×Ni, Nd ×Nd, and Nd × Nd, respectively,

Li,1 and Li,2 contain the leftmost Ni columns and the rightmost Nd − Ni columns of
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Li, respectively, and Σi, ∆i,1, ∆i,2 are Ni × Ni, Ni × Ni, and (Nd − Ni) × (Nd − Ni)

diagonal matrices, respectively. Substituting (2.39) back into (2.38), we have

Ui[Σi 0 ]VH
i = [PiLi,1∆i,1 PiLi,2∆i,2 ]L

H
i . (2.40)

Equation (2.40) holds if and only if Pi = UiL
H
i,1, ∆i,1 = Σi, and Li = Vi. Thus, from

(2.39) we have that

Di + H̃iQiH̃
H
i = ViJiV

H
i (2.41)

where Ji , blkdiag(Σi,∆i,2). Let us introduce the SVD of H̃i as

H̃i = [Uhi,1 Uhi,2 ][Λhi,1 0 ]TVH
hi

(2.42)

where the dimensions of Uhi,1, Uhi,2, Vhi
are Nd ×Ni, Nd × (Nd −Ni), and Ni ×Ni,

respectively, Λhi,1 is an Ni×Ni diagonal matrix. By substituting (2.42) back into (2.41)

and solving (2.41) for Qi, we have Qi = Vhi
Λ−1

hi,1
UH

hi,1
(ViJiV

H
i − Di)Uhi,1Λ

−1
hi,1

VH
hi
.

Finally, taking into account the constraint (2.35c), we obtain (2.34).



Chapter 3

Multicasting MIMO Relay

Communication Systems

In many practical communication systems, the transmitter often needs to send common

message to a group of receivers simultaneously, which is commonly referred to as multi-

cast broadcasting. In this chapter, we focus on multicasting in the downlink multiuser

MIMO relay systems where one transmitter multicasts common message to multiple re-

ceivers with the aid of a relay node, and all nodes are equipped with multiple antennas.

In Section 3.1, we give a brief overview of the known multicasting techniques exploiting

spatial diversity. The system model of a two-hop multicasting MIMO relay network

is introduced in Section 3.2. The joint transmit and relay precoding matrices design

algorithms are developed in Section 3.3 for the general case of multiple data streams

multicasting based on two design criteria. In the first scheme, we aim at minimizing

the maximal MSE of the signal waveform estimation among all receivers subjecting to

power constraints at the transmitter and the relay node. In the second scheme, we pro-

pose a total transmission power minimization strategy subjecting to QoS constraints.

In Section 3.4, we study the joint transmit and relay beamforming for the special case

of single data stream multicasting through two-hop MIMO relay systems. Interestingly,

we show that for the case of single data stream multicasting, the relay precoding ma-

trix optimization problem can be equivalently converted to the transmit beamforming

problem for single-hop multicasting systems. Section 3.5 shows the simulation results

which justify the significance of the proposed algorithms under various scenarios. The

chapter is briefly summarized in Section 3.6.
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3.1 Existing Multicasting Techniques

The broadcasting nature of the wireless channel makes it naturally suitable for mul-

ticasting applications, since a single transmission may be simultaneously received by

a number of users. Recently, wireless multicasting technology has triggered great in-

terest among researchers across the world, due to the increasing demand for mobile

applications such as streaming media, software updates, and location-based services in-

volving group communications. However, wireless channel is subject to signal fading.

By exploiting the spatial diversity, multi-antenna techniques can be applied to combat

channel fading [1]. Next generation wireless standards such as WiMAX 802.16m and

3GPP LTE-Advanced have already included technologies which enable better multicas-

ting solutions based on multi-antenna and beamforming techniques [65].

The problem of designing optimal beamforming vectors for multicasting is hard in

general, mainly due to its nonconvex nature. The authors of [66] have designed transmit

beamformers for physical layer multicasting using rank relaxations. The information

theoretic capacity of the multi-antenna multicasting channel is studied in [67] with a

particular focus on the scaling of the capacity and achievable rates as the number of

antennas and/or users approaches infinity. The asymptotic capacity limits of multi-

antenna physical layer multicasting has been studied in [68] based on antenna subset

selection. The effect of channel spatial correlation on the multicasting capacity has

been investigated in [69]. The authors of [70] investigated transmit precoding design for

multi-antenna multicasting systems where the CSI is obtained via limited feedback. The

authors of [71] considered transmit covariance design for a secrecy rate maximization

problem under a multicasting scenario, where a multi-antenna transmitter delivers a

common confidential message to multiple single-antenna receivers in the presence of

multiple multi-antenna eavesdroppers.

The works in [66]-[71] solved the max-min SNR/rate beamforming problems with the

aid of semidefinite relaxation (SDR) and rank-one approximation (which is suboptimal,

in general). In [72], a stochastic beamforming strategy is proposed for multi-antenna

physical layer multicasting where the randomization is guided by SDR, but without

the need of rank-one approximation. The authors of [72] adopted an achievable rate

perspective, and showed that the gaps between the rates of the proposed stochastic

beamformers and the optimal multicasting capacity are no greater than 0.8314 bps/Hz.

The fundamental limit of the max-min beamforming is that as the number of users

grows to infinity, the achievable rate decreases to zero [67]. To cure this problem, a
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joint beamforming and admission control problem has been considered in [73] and [74],

where a subset of users is selected so that certain QoS requirements can be satisfied.

An iterative transmit beamforming strategy has been proposed in [74] for multiple

cochannel multicasting groups to minimize the total power transmitted by the antenna

array subjecting to SINR constraints at the receivers. It has been shown that the

problem can be approximated by a second-order cone programming (SOCP) problem

which does not require rank relaxations.

While the works in [66]-[74] investigated multicasting systems with single-antenna

receivers, recently multi-antenna receivers have been considered for multicasting systems

[75]-[76]. In particular, coordinated beamforming techniques have been investigated in

[75] to facilitate physical layer multicasting with multi-antenna receivers, and a general-

ized form of block diagonalization has been proposed to make orthogonal transmissions

to distinct multicasting antenna groups. In [77], non-iterative nearly optimal transmit

beamformers are designed for wireless link layer multicasting with real-valued channels,

and for complex-valued channels an upper-bound on the multicasting rate is derived.

The scaling of the achievable rate for increasing number of users is investigated in [76]

for MIMO multicasting where the transmission is coded at the application layer over a

number of channel realizations.

The above works [65]-[76] considered single-hop multicasting systems. However, in

the case of long transmitter-receiver distance, relay node(s) is necessary to efficiently

combat the pathloss of wireless channel. The concept of multiuser peer-to-peer relay

network has been generalized to that of a multi-group multicasting relay network in [78]

and a distributed beamforming algorithm is proposed to minimize the total relay power

where each node is equipped with a single antenna. In [79], the authors investigated

multicast scheduling with multiple sessions and multiple channels where the base sta-

tion may multicast data in two sessions using MIMO simultaneously through the same

channel leading to a higher multicasting rate than single-session transmissions, and the

users are allowed to cooperatively help each other on orthogonal channels. The authors

in [80] studied the lower-bound for the outage probability of cooperative multi-antenna

multicasting schemes based on the AF strategy where the users are equipped with a

single antenna.

In this chapter, we consider a two-hop multicasting MIMO relay system where one

transmitter multicasts common message to multiple receivers with the aid of a relay
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node. The transmitter, relay node, and receivers are all equipped with multiple anten-

nas. To the best of our knowledge, such two-hop multicasting MIMO relay system has

not been investigated in existing works. For the sake of the implementation simplicity,

we choose the AF relaying strategy. We consider the joint transmit and relay precod-

ing design problem based on two criteria. In the first scheme, we aim at minimizing

the maximal MSE of the signal waveform estimation among all receivers subjecting to

power constraints at the transmitter and the relay node. In order to facilitate low-

power transmissions, in the second scheme, we propose a total transmitter and relay

transmission power minimization strategy subjecting to QoS constraints in terms of the

MSE of the signal waveform estimation at each receiver. Both problems are highly

nonconvex with matrix variables and the exactly optimal solutions are very difficult to

obtain. By exploiting the optimal structure of the relay precoding matrix, we propose

low-complexity solutions to both problems under some mild approximation. In partic-

ular, we show that under (moderately) high first-hop SNR assumption, both problems

can be solved using standard SDP techniques. Numerical simulations demonstrate the

effectiveness of the proposed algorithms. Note that both algorithms support multicas-

ting multiple data streams in contrast to the existing single data stream multicasting

schemes [65]-[79]. Interestingly, we show that for the special case of single data stream

multicasting, the relay precoding matrix optimization problem can be equivalently con-

verted to the transmit beamforming problem for single-hop broadcasting systems. In

this chapter, for notational convenience, we consider a narrow-band single-carrier sys-

tem. However, our results can be straightforwardly generalized to each subcarrier of a

broadband multi-carrier multicasting MIMO relay system.

3.2 System Model

We consider a two-hop MIMO multicasting system with L receivers as illustrated in

Fig. 3.1. The transmitter and the relay node are equipped with Ns and Nr antennas,

respectively. For the sake of notational simplicity, we assume that each receiver has

Nd antennas. The algorithms developed in this chapter can be straightforwardly ex-

tended to multicasting systems where receivers have different number of antennas. The

transmitter multicasts its information-carrying symbols to all receivers with the aid of

a relay node. The direct links between the transmitter and the receivers are not con-

sidered since we assume that these direct links undergo much larger path attenuations
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compared with the links via the relay node.
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Figure 3.1: Block diagram of a two-hop multicasting MIMO relay system.

We assume that the relay node works in half-duplex mode. Thus the communication

between the transmitter and receivers is accomplished in two time slots. In the first time

slot, the transmitter linearly precodes an Nb × 1 modulated signal vector s (common

message to all receivers) by an Ns×Nb precoding matrix B and transmits the precoded

vector x = Bs to the relay node. We assume that E[ssH ] = INb
. The received signal

vector at the relay node is given by

yr = HBs+ nr (3.1)

where H is the Nr × Ns MIMO channel matrix between the transmitter and the relay

node, yr and nr are the Nr × 1 received signal and additive Gaussian noise vectors

introduced at the relay node, respectively.

In the second time slot, the transmitter remains silent and the relay node multiplies

(linearly precodes) the received signal vector yr by an Nr ×Nr relay precoding matrix

F and multicasts the precoded signal vector

xr = Fyr (3.2)

to all L receivers. From (3.1) and (3.2), the received signal vector at the ith receiver

can be written as

yd,i = GiF (HBs+ nr) + nd,i , Ais+ ni, i = 1, · · · , L (3.3)
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where Gi is the Nd × Nr MIMO channel matrix between the relay node and the ith

receiver and nd,i is the additive Gaussian noise vector at the ith receiver. Here Ai ,

GiFHB is the equivalent MIMO channel between the transmitter and the ith receiver,

and ni , GiFnr + nd,i is the equivalent noise vector at the ith receiver. All noises are

independent and identically distributed (i.i.d.) complex circularly symmetric Gaussian

noise with zero mean and unit variance.

We assume that all channels are quasi-static, i.e., the channel matrices H andGi, i =

1, · · · , L, are constant throughout a block of transmission. In practice, the CSI of

Gi, i = 1, · · · , L, can be obtained at the ith receiver through standard training methods.

The relay node can have the CSI of H through channel training, and obtain the CSI of

Gi, i = 1, · · · , L, by a feedback from the ith receiver. The quasi-static channel model is

valid in practice when the mobility among all communicating nodes is relatively slow.

Therefore, we can obtain the necessary CSI with a reasonably high precision during the

channel training period. The relay node calculates the optimal transmit matrix B and

the relay matrix F, and forwards B to the transmitter and forwards F and H to all

receivers. Note that the transmitter does not need any channel knowledge and each

receiver only needs the CSI of its own channel with the relay and that of the first-hop

channel. This is a very important assumption for multicasting communication since in

a multicasting scenario the receivers are distributed and cannot cooperate.

We aim at improving the system performance through optimizing the transmit and

relay precoding matrices. Usually, the system performance is quantified by its QoS and

the resources it consumes. The most commonly used QoS metrics include the MSE of the

signal waveform estimation, BER, system capacity and the output SNR. Interestingly,

the aforementioned QoS measures can be expressed in terms of MSE [42]. On the

other hand, resources that a multicasting system consumes include the spectrum and

transmission power. In the next section, we study two types of optimization problems

for two-hop multicasting MIMO relay systems. The first problem deals with minimizing

the MSE of the signal waveform estimation subjecting to transmission power constraints

at the transmitter and the relay node. While the second problem investigates how to

achieve given MSEs using a minimal possible total network transmission power.



3.3. Proposed Transmitter and Relay Design Algorithms 39

3.3 Proposed Transmitter and Relay Design Algorithms

Due to its simplicity, a linear receiver is used at each receiver to retrieve the transmitted

signals. Denoting Wi as an Nd × Nb weight matrix at the ith receiver, the estimated

signal vector ŝi is given by

ŝi = WH
i yd,i, i = 1, · · · , L . (3.4)

From (3.4), the MSE of the signal waveform estimation at the ith receiver is given by

Ei = tr
(

E
[

(ŝi − s)(ŝi − s)H
])

= tr
(

(WH
i Ai − INb

)(WH
i Ai − INb

)H+WH
i CiWi

)

, i = 1, · · · , L (3.5)

where Ci , E[nin
H
i ] = GiFF

HGH
i + INd

is the covariance matrix of ni. Obviously,

the power consumed by the transmitter is tr(BBH). And from (3.1) and (3.2), the

transmission power consumed by the relay node is given by tr(F(HBBHHH +INr
)FH).

In the following, we consider two design strategies for optimizing the transmit and

relay matrices. The first optimization strategy is to minimize the maximal MSE among

all receivers subjecting to power constraints at the transmitter and the relay node.

The second strategy minimizes the total network transmission power subjecting to QoS

constraints.

3.3.1 Min-max MSE-based transmitter and relay design

Given the power constraints at the transmitter and the relay node, we aim at minimizing

the maximal MSE of the signal waveform estimations among all receivers. This problem

formulation is important when the power consumption is a strict system constraint that

cannot be relaxed. In this case, the transmit, relay, and receive matrices optimization

problem can be formulated as

min
B,F,{Wi}

max
i

Ei (3.6a)

s.t. tr(F(HBBHHH + INr
)FH) ≤ Pr (3.6b)

tr(BBH) ≤ Ps (3.6c)

where {Wi} , {Wi, i = 1, · · · , L}, (3.6b) and (3.6c) are the transmission power con-

straints at the relay node and the transmitter, respectively, and Pr > 0, Ps > 0 are the

corresponding power budgets.
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For any given B and F, the receiver Wi minimizing Ei in (3.5) is the linear MMSE

filter [60] and given by

Wi =
(

AiA
H
i +Ci

)−1
Ai, i = 1, · · · , L. (3.7)

By substituting (3.7) back into (3.5), we have

Ei = tr
(

[

INb
+AH

i C−1
i Ai

]−1
)

= tr

(

[

INb
+BHHHFHGH

i

(

GiFF
HGH

i + INd

)−1
GiFHB

]−1
)

, i = 1, · · · , L.(3.8)

Therefore, we can equivalently rewrite the problem (3.6) as

min
B,F

max
i

tr
(

[

INb
+AH

i C−1
i Ai

]−1
)

(3.9a)

s.t. tr(F(HBBHHH + INr
)FH) ≤ Pr (3.9b)

tr(BBH) ≤ Ps. (3.9c)

The min-max problem (3.9) is highly nonconvex with matrix variables, and an exactly

optimal solution is very hard to obtain with a reasonable computational complexity

(non-exhaustive searching). In the following, we propose a low complexity solution to

the problem (3.9).

It can be shown similar to [81] that for any B, the optimal F for each link with the

input-output relationship given by (3.3) has the generic structure of

F = TDH (3.10)

where D = (HBBHHH + INr
)−1HB. Interestingly, D can be viewed as the weight

matrix of the linear MMSE receiver for the first-hop MIMO channel at the relay node

given by (3.1), and T can be treated as the transmit precoding matrix for the effective

second-hop MIMO multicasting system yi = GiTx + vi, i = 1, · · · , L, where x is the

transmitted signal vector and vi is the noise vector.

Using the optimal F in (3.10), the MSE of the signal waveform estimation at the

ith receiver in (3.8) can be equivalently rewritten as the sum of two individual MSEs

Ei = tr
(

[

INb
+BHHHHB

]−1
)

+ tr
(

[

R−1 +THGH
i GiT

]−1
)

, i = 1, · · · , L (3.11)

where

R = BHHH(HBBHHH + INr
)−1HB. (3.12)
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Note that the first term in (3.11) tr
([

INb
+ BHHHHB

]−1)
is actually the MSE of

estimating the signal vector s from the received signal vector (3.1) at the relay node using

the linear MMSE receiver D, while the second term in (3.11) tr
([

R−1+THGH
i GiT

]−1)

can be viewed as the increment of the MSE introduced by the second-hop. Interestingly,

matrix R in (3.12) is in fact the covariance matrix of z , DHyr as R = E[zzH ] =

DHE[yry
H
r ]D. It can be seen from (3.11) that the effect of noise in the first-hop is

reflected by INb
in the first term and that of the second-hop is reflected by R−1 in the

second term. Using the optimal structure of F in (3.10), the relay power consumption

tr(F(HBBHHH + INr
)FH) is equivalent to tr(TRTH). Therefore, the problem (3.9)

can be equivalently rewritten as

min
B,T

max
i

tr
(

[

INb
+BHHHHB

]−1
)

+ tr
(

[

R−1 +THGH
i GiT

]−1
)

(3.13a)

s.t. tr(TRTH) ≤ Pr (3.13b)

tr(BBH ) ≤ Ps. (3.13c)

By applying the matrix inversion lemma (A+BCD)−1 = A−1 −A−1B
(

DA−1B

+C−1
)−1

DA−1, matrix R can be rewritten as

R = BHHH
(

INr
−HB

(

BHHHHB+ INb

)−1
BHHH

)

HB

= BHHHHB
(

BHHHHB+ INb

)−1
. (3.14)

An interesting observation from (3.14) is that with increasing first-hop SNR, the term

BHHHHB approaches to infinity. And at a (moderately) high SNR level, there is

BHHHHB ≫ INb
. Thus we can approximate R as INb

for the high SNR case [82]. As

a consequence, tr
([

R−1 + THGH
i GiT

]−1)
in (3.13a) is upper-bounded by tr

([

INb
+

THGH
i GiT

]−1)
, i = 1, · · · , L, and the tightness of this bound increases with the first-

hop SNR. Therefore, the problem (3.13) can be approximated as

min
B,T

max
i

tr
(

[

INb
+BHHHHB

]−1
)

+ tr
(

[

INb
+THGH

i GiT
]−1
)

(3.15a)

s.t. tr(TTH) ≤ Pr (3.15b)

tr(BBH) ≤ Ps. (3.15c)

We would like to mention that since tr(TTH) > tr(TRTH), if tr(TTH) = p, then

tr(TRTH) < p. This indicates that due to the approximation in (3.15b), the transmis-

sion power available at the relay node is not fully utilized in the case of the low first-hop

SNR. We can simply scale the relay matrix obtained from solving the problem (3.15) to
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compensate such loss and make the best use of the available power budget at the relay

node.

Interestingly, it can be seen from the problem (3.15) that T does not affect the first

term of the objective function (3.15a) and B is irrelevant to the second term of (3.15a).

This fact implies that the objective function (3.15a) and the constraints (3.15b) and

(3.15c) are decoupled with respect to the optimization variables B and T. In this case,

matrix B can be determined independent of T, and vice-versa, which greatly simplifies

the design of the transmit and relay matrices. Therefore, with the (relatively) high

first-hop SNR assumption, the problem (3.15) can be decomposed into the following

transmit precoding matrix optimization problem

min
B

tr
(

[

INb
+BHHHHB

]−1
)

(3.16a)

s.t. tr(BBH) ≤ Ps (3.16b)

and the relay precoding matrix optimization problem

min
T

max
i

tr
(

[

INb
+THGH

i GiT
]−1
)

(3.17a)

s.t. tr(TTH) ≤ Pr. (3.17b)

Let H = UhΛhV
H
h denote the SVD of H, where the dimensions of Uh, Λh, and Vh

are Nr × Nr, Nr × Ns, and Ns × Ns, respectively. We assume that the main diagonal

elements of Λh are arranged in decreasing order. According to Lemma 2 in [81], the

transmitter optimization problem (3.16) has a closed form solution with the optimal

structure of B given by

B = Vh,1Λb (3.18)

where Vh,1 contains the leftmost Nb columns of Vh and Λb is an Nb × Nb diagonal

power loading matrix. Substituting the optimal B in (3.18) back into (3.16) and using

the Lagrangian multiplier method [61], we find that the ith diagonal element of Λb is

given by

λb,i =

[

1

λh,i

(
√

λh,i/µ − 1
)+
]

1

2

, i = 1, · · · , Nb

where (x)+ , max(x, 0), λh,i is the ith diagonal element of Λh, and µ > 0 is the

Lagrangian multiplier and the solution to the nonlinear equation of
∑Nb

i=1
1

λh,i

(√

λh,i/µ−
1
)+

= Ps.
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By introducing TTH , Q, the problem (3.17) can be equivalently rewritten as

min
Q

max
i

tr
(

[

INd
+GiQGH

i

]−1
)

+Nb −Nd (3.19a)

s.t. tr(Q) ≤ Pr (3.19b)

Q < 0. (3.19c)

By introducing
[

INd
+GiQGH

i

]−1
4 Yi, i = 1, · · · , L, and a real-valued slack variable

t, the problem (3.19) can be equivalently transformed to

min
t,Q,{Yi}

t (3.20a)

s.t. tr(Yi) ≤ t, i = 1, · · · , L (3.20b)

tr(Q) ≤ Pr (3.20c)
(

Yi INd

INd
INd

+GiQGH
i

)

< 0, i = 1, · · · , L (3.20d)

t ≥ 0, Q < 0 (3.20e)

where {Yi} , {Yi, i = 1, · · · , L} and we use the Schur complement to obtain (3.20d).

Note that in the above formulation, t provides an MSE upper-bound for the relay-

receiver channels. The problem (3.20) is an SDP problem which can be efficiently

solved by the disciplined convex programming toolbox CVX [63], where interior-point

method-based solvers such as SeDuMi or SDPT3 are called internally, at a maximal

complexity order of O
(

(N2
r + L + 1)3.5

)

[64]. Since most of the computation task in

solving the problem (3.16) involves performing SVD and calculating the power loading

parameters, the computation overhead is negligible compared with that of solving the

problem (3.20). Note that the problem (3.15) can also be directly formulated as an SDP

problem which can be solved using interior point-based solvers at a complexity order

that is at most O
(

(N2
s +N

2
r +L+2)3.5

)

. Therefore, solving the decoupled transmit and

relay precoding problems (3.16) and (3.17) has a much smaller computational complexity

compared with directly solving the problem (3.15).

3.3.2 Minimal total power-based transmitter and relay design

In this scheme, we aim at minimizing the total transmitter and relay power consumption

satisfying the target QoS requirements at all receivers. This criterion is important when

certain QoS level must be maintained at each receiver. We choose the MSE of the

signal waveform estimation at the receiver as the QoS metric. The multicasting MIMO
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relay system tries to satisfy the given required QoS (maximal allowable MSE) with the

minimal total transmission power. Thus the optimization problem can be written as

min
B,F

tr(F(HBBHHH + INr
)FH) + tr(BBH) (3.21a)

s.t. tr
(

[

INb
+AH

i C−1
i Ai

]−1
)

≤ εi, i = 1, · · · , L (3.21b)

where εi is the maximal allowable MSE at the ith receiver. Similar to the problem (3.9),

the problem (3.21) is highly nonconvex with matrix variables.

It can be shown similar to [81] that the optimal structure of F for the problem

(3.21) is given by (3.10). Then, the problem (3.21) can be equivalently converted to the

following problem

min
B,T

tr(TRTH) + tr(BBH) (3.22a)

s.t. tr
(

[

INb
+BHHHHB

]−1
)

+ tr
(

[

R−1 +THGH
i GiT

]−1
)

≤ εi, i = 1, · · · , L.

(3.22b)

Similar to Section 3.3.1, we have tr
([

R−1+THGH
i GiT

]−1) ≤ tr
([

INb
+THGH

i GiT
]−1)

,

and at a relatively high first-hop SNR, the problem (3.22) can be approximated (relaxed)

to the problem of

min
B,T

tr(TTH) + tr(BBH) (3.23a)

s.t. tr
(

[

INb
+BHHHHB

]−1
)

+ tr
(

[

INb
+THGH

i GiT
]−1
)

≤ εi, i = 1, · · · , L.

(3.23b)

By introducing BBH , P and
[

INr
+HPHH

]−1
4 X, the problem (3.23) can be

transformed to the following SDP problem

min
P,Q,X,{Yi}

tr(P) + tr(Q) (3.24a)

s.t. tr(X) + tr(Yi) ≤ εi +Nr −Nb, i = 1, · · · , L (3.24b)
(

X INr

INr
INr

+HPHH

)

< 0 (3.24c)

(

Yi INd

INd
INd

+GiQGH
i

)

< 0, i = 1, · · · , L (3.24d)

P < 0, Q < 0 (3.24e)

where the Schur complement is used to obtain (3.24c). Note that unlike the problem

(3.15), the problem (3.24) is not decoupled due to the constraint (3.24b) which couples



3.4. Transmitter and Relay Optimization for Single Data Stream

Multicasting 45

tr(X) and tr(Yi). However, we can use the CVX software package [63] to solve the SDP

problem (3.24) at a complexity order that is at most O
(

(N2
s +N

2
r +L)

3.5
)

and is usually

much less [66].

We would like to mention that for a point-to-point two-hop MIMO relay system,

it has been shown in [82] through numerical examples that the high first-hop SNR ap-

proximation provides negligible performance loss in all SNR range in comparison to the

optimal designs. For the multicasting MIMO relay system addressed in this chapter, the

exactly optimal solution for the transmit and relay precoding matrices are intractable.

However, by using the high first-hop SNR approximation, the nearly optimal transmit

and relay matrices can be designed with a significantly reduced computational complex-

ity.

3.4 Transmitter and Relay Optimization for Single Data

Stream Multicasting

In this section, we derive the solution for the min-max MSE and the total power mini-

mization problems for single data stream multicasting in two-hop MIMO relay systems.

In the case where the transmitter multicasts a single data stream s, i.e., Nb = 1, the

received signal vector at the ith receiver can be written as

yd,i =GiF (Hbs+ nr) + nd,i, i = 1, · · · , L (3.25)

where b is the Ns × 1 transmit beamforming vector. In the following, we solve the

min-max MSE and the total network transmission power minimization problems for

this system. In particular, we show that the relay precoding matrix design for the MSE

minimization problem is equivalent to the transmit beamforming problem for single-hop

multicasting [66] and the power minimization problem can be solved by a combination

of one-dimensional searching and SDR techniques.

3.4.1 Min-max MSE-based transmitter and relay design

Using a linear MMSE receiver wi ((3.7) with Nb = 1) at the ith receiver to estimate

s from (3.25), it can be shown similar to (3.8) that the MSE of the signal waveform

estimation can be written as

ei =
[

1 + bHHHFHGH
i

(

GiFF
HGH

i + INd

)−1
GiFHb

]−1
, i = 1, · · · , L. (3.26)
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Similar to Section 3.3.1, the worst-case MSE minimization problem for a single data

stream multicasting MIMO relay system can be formulated as

min
b,F

max
i

[

1 + bHHHFHGH
i

(

GiFF
HGH

i + INd

)−1
GiFHb

]−1
(3.27a)

s.t. tr(F(HbbHHH + INr
)FH) ≤ Pr (3.27b)

bHb ≤ Ps. (3.27c)

We would like to mention that for the single data stream multicasting case, minimizing

the MSE of the signal waveform estimation is equivalent to maximizing the receive SNR,

and thus, the transmitter-receiver MI.

Let Gi = UiΛiV
H
i denote the SVD of Gi, i = 1, · · · , L, where the dimensions of

Ui, Λi, and Vi are Nd × Nd, Nd × Nr, and Nr × Nr, respectively. We assume that

the main diagonal elements of Λi are arranged in decreasing order. According to the

unified framework developed in [27], the optimal transmitter forms a “beam” along

the direction of the strongest singular value of the source-relay channel and hence, the

transmit beamforming vector is given by

b = vh,1

√

Ps (3.28)

where vh,1 is the leftmost column of Vh. Moreover, the optimal relay precoding matrix

is given by F = αivi,1u
H
h,1 for the ith receiver [27], where αi, i = 1, · · · , L, is the power

loading factor at the relay node, uh,1 and vi,1 are the leftmost columns of Uh and

Vi, i = 1, · · · , L, respectively.
Although the optimal F for the ith receiver depends on Gi, it can be seen from the

discussion above that for each user, F has the generic optimal structure of

F = fuH
h,1 (3.29)

where vector f remains to be optimized. Using (3.28) and (3.29), the MSE in (3.26) can

be rewritten as

ei =
[

1 + Psλ
2
h,1f

HGH
i

(

Giff
HGH

i + INd

)−1
Gif

]−1
, i = 1, · · · , L (3.30)

where λh,1 is the largest singular value of H. From (3.28) and (3.29), the relay transmit

power (3.27b) becomes

tr
(

Psλ
2
h,1ff

H + ffH
)

= fHf
(

Psλ
2
h,1 + 1

)

.



3.4. Transmitter and Relay Optimization for Single Data Stream

Multicasting 47

Applying the matrix inversion lemma, (3.30) can be equivalently rewritten as

ei =

[

1 +
Psλ

2
h,1f

HGH
i Gif

fHGH
i Gif + 1

]−1

=

[

1 + Psλ
2
h,1 −

Psλ
2
h,1

fHGH
i Gif + 1

]−1

, i = 1, · · · , L.(3.31)

Note that minimizing the MSE in (3.31) is equivalent to maximizing fHGH
i Gif which

in fact determines the SNR at the ith receiver in a single-hop (relay-receiver channel in

this case) MIMO multicasting system. Therefore, the min-max MSE problem (3.27) is

equivalent to the following max-min SNR optimization problem

max
f

min
i

fHGH
i Gif (3.32a)

s.t. fHf ≤ Pr

Psλ
2
h,1 + 1

. (3.32b)

Interestingly, problem (3.32) is essentially a max-min transmit beamforming problem

for a single-hop multicasting system [66], which can be efficiently solved using standard

techniques such as rank relaxations at a maximal complexity order of O
(

(N2
r +L+1)3.5

)

[66].

3.4.2 Minimal total power-based transmitter and relay design

For single data stream multicasting, the design of the transmit beamformer and the

relay precoding matrix that minimize the total network transmission power, subjecting

to constraints on the MSE of the signal waveform estimation at each user (3.26), can

be written as the following problem

min
b,F

tr(F(HbbHHH + INr
)FH) + bHb (3.33a)

s.t.
[

1 + bHHHFHGH
i

(

GiFF
HGH

i + INd

)−1
GiFHb

]−1
≤ εi, i = 1, · · · , L.

(3.33b)

It can be shown similar to [83] that the optimal transmit beamformer and relay precod-

ing matrix as the solution to problem (3.33) has the generic structure of b = vh,1

√
P1

and F = fuH
h,1, respectively, where P1 > 0 is the power required at the transmitter for

multicasting a single data stream and remains to be optimized.

Based on the optimal structure of b and F, and using (3.31), the QoS-constrained

problem (3.33) can be equivalently converted to the following problem

min
P1,f

P1 +
(

P1λ
2
h,1 + 1

)

fHf (3.34a)

s.t.
P1λ

2
h,1f

HGH
i Gif

fHGH
i Gif + 1

≥ ηi, i = 1, · · · , L (3.34b)
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where ηi ,
1
εi
− 1 can be viewed as the minimal SNR required at the ith receiver. The

problem (3.34) is still nonconvex. However, it can be seen from (3.34b) that for a given

P1, there is fHGH
i Gif ≥ βi for βi ,

ηi
P1λ

2
h,1

−ηi
> 0, i = 1, · · · , L. Thus, for a given P1,

the problem (3.34) reduces to

min
f

fHf (3.35a)

s.t. fHGH
i Gif ≥ βi, i = 1, · · · , L. (3.35b)

The problem (3.35) is equivalent to the minimal transmission power beamforming prob-

lem for a single-hop multicasting system [66]. Note that the problem (3.35) can be solved

using standard SDR techniques at a complexity order that is at most O
(

(N2
r + L)3.5

)

[66].
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Figure 3.2: Function (3.34a) versus P1. L = 6, Ns = 6, Nr = 3, Nd = 3, λh,1 = 1.5345,

ηi = η = 20dB.

Now we show some insights on the optimal P1 by considering the objective function

(3.34a). Obviously, it can be seen from the definition of βi that P1λ
2
h,1 > ηi, i = 1, · · · , L.

In other words, the lower-bound of the feasible region of P1 is maxi(ηi/λ
2
h,1). A plot

of the objective function (3.34a) over the range of feasible values of P1 is generated in

Fig. 3.2 for the case of L = 6, Ns = 6, Nr = 3, Nd = 3, λh,1 = 1.5345, and ηi = η is

set to be 20dB. Here for each P1, the problem (3.35) is solved to obtain the optimal
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f . It can be observed from Fig. 3.2 that the objective function (3.34a) is a unimodal

function of P1, i.e., the function has only one local minimum [61]. An efficient method

of locating the minimal value of a unimodal function is the golden section searching

(GSS) algorithm [84]. Hence, the optimal P1 for the problem (3.34) can be obtained by

applying the GSS technique.

3.5 Numerical Examples

In this section, we study the performance of the proposed two-hop multicasting MIMO

relay optimization algorithms through numerical simulations. The transmitter, relay

node, and receivers are equipped with Ns, Nr, and Nd antennas, respectively. We

simulate a flat Rayleigh fading environment where the channel matrices have entries

with zero mean and variances 1/Ns and 1/Nr, for H and Gi, i = 1, · · · , L, respectively.
All simulation results are averaged over 500 independent channel realizations.

We compare the performance of the proposed min-max MSE algorithm in Sec-

tion 3.3.1 with the NAF algorithm and the PMF algorithm in terms of both MSE

and BER. For the NAF scheme, we use

B =
√

Ps/Ns INs
, F =

√

Pr/tr(HBBHHH + INr
) INr

.

For the PMF algorithm, the same B in the NAF algorithm is taken and

F =

√

Pr/tr((HG)H(HBBHHH + INr
)HG) (HG)H

where we randomly pick G from among the relay-receiver channels Gi, i = 1, · · · , L.
Both the NAF and the PMF algorithms adopt the MMSE receiver at all users.

In the first example, we compare the performance of the proposed algorithm with the

other two approaches in terms of the MSE normalized by the number of data streams for

L = 4 and Nb = Ns = Nr = Nd = 3. Fig. 3.3 shows the MSE performance of all tested

algorithms versus Ps with Pr = 20dB, whereas Fig. 3.4 illustrates the MSE performance

of tested algorithms versus Pr for a Ps fixed at 20dB. For the proposed algorithm, we

plot the NMSE of the user with the worst channel (Worst) and the average of all the

users (Avg.) along with the MSE upper-bound (UB), which is t in (3.20a). Our results

clearly demonstrate the better performance of the proposed joint transmitter and relay

optimization algorithm. It can be seen that the proposed algorithm consistently yields

the lowest average MSE over the entire Ps and Pr region. The worst-user MSE is always
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Figure 3.3: Example 1: Normalized MSE versus Ps. L = 4, Nb = Ns = Nr = Nd = 3,

Pr = 20dB.
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Figure 3.4: Example 1: Normalized MSE versus Pr. L = 4, Nb = Ns = Nr = Nd = 3,

Ps = 20dB.

better than the MSE upper-bound. The NAF and PMF algorithms have much higher

MSE compared with the proposed scheme even with very high transmission power.
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Figure 3.5: Example 2: Normalized MSE versus Ps. Varying number of receivers, Nb =

Ns = Nr = Nd = 3, Pr = 20dB.
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Figure 3.6: Example 2: Normalized MSE versus Pr. Varying number of receivers, Nb =

Ns = Nr = Nd = 3, Ps = 20dB.

In the second example, we compare the MSE performance of the proposed algorithm

for different number of receivers. We set Nb = Ns = Nr = Nd = 3. Fig. 3.5 shows the
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MSE upper-bound and the worst-user MSE of the proposed algorithm versus Ps with

Pr = 20dB, whereas Fig. 3.6 illustrates the same performance versus Pr for Ps = 20dB.

It can be clearly seen from Figs. 3.5 and 3.6 that as the number of receivers increases,

the MSE upper-bound and the worst-user MSE keep increasing. This is reasonable since

it is more likely to find a worse relay-receiver channel among the increased number of

users and we choose the worst-user MSE as the objective function.
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Figure 3.7: Example 3: BER versus Ps. L = 2, Nb = 2, Ns = 4, Nr = 2, Nd = 4,

Pr = 20dB.

In the next example, we compare the performance of the min-max MSE algorithm

with the NAF and PMF algorithms in terms of BER. QPSK signal constellations are

used to modulate the transmitted signals. We set L = 2, Nb = 2, Ns = 4, Nr = 2,

Nd = 4, and multicast Nb × 1000 randomly generated bits from the transmitter in

each channel realization. Fig. 3.7 shows the BER performance of all tested algorithms

versus Ps with Pr = 20dB, whereas Fig. 3.8 illustrates the BER performance of tested

algorithms versus Pr for a Ps fixed at 20dB. It can be seen from Figs. 3.7 and 3.8

that the proposed joint transmitter and relay optimization algorithm obtains the lowest

BER compared with the other approaches. Even the worst-user BER of the proposed

algorithm is always much better than that of the NAF and the PMF schemes.

In the next example, we compare the average- and the worse-user BERs of the

proposed algorithm for different number of receivers. This time we set Nb = 2, Ns = 4,
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Figure 3.8: Example 3: BER versus Pr. L = 2, Nb = 2, Ns = 4, Nr = 2, Nd = 4,

Ps = 20dB.
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Figure 3.9: Example 4: BER versus Ps. Varying number of receivers, Nb = 2, Ns = 4,

Nr = 2, Nd = 4, Pr = 20dB.

./ch3_downlink/berL2r.eps
./ch3_downlink/ber_diffLs.eps


54 Chapter 3. Multicasting MIMO Relay Communication Systems

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

Pr (dB)

B
E

R

 

 

L = 2 (Worst)
L = 2 (Avg.)
L = 4 (Worst)
L = 4 (Avg.)
L = 6 (Worst)
L = 6 (Avg.)

Figure 3.10: Example 4: BER versus Pr. Varying number of receivers, Nb = 2, Ns = 4,

Nr = 2, Nd = 4, Ps = 20dB.

Nr = 2, and Nd = 4. Fig. 3.9 shows the BER performance of the proposed algorithm

versus Ps with Pr = 20dB, whereas Fig. 3.10 illustrates the BER performance versus Pr

for Ps = 20dB for different number of receivers. It can be clearly seen from Figs. 3.9 and

3.10 that as we increase the number of receivers, the worst-user BER keeps increasing

which is analogous to the MSE performance that we observed in Figs. 3.5 and 3.6.

However, the average BERs of the users are almost similar for different number of

receivers. Note that the varying Pr affects the effective noise at the receiving nodes in

Figs. 3.8 and 3.10. Thus there are some error floors of BER in Figs. 3.8 and 3.10, but

no error floor can be seen in Fig. 3.9.

In the fifth example, we study the performance of the total power minimization

algorithm proposed in Section 3.3.2 for different number of receivers. For simplicity,

we assume εi = ε, i = 1, · · · , L. Fig. 3.11 shows the total network transmission power

versus the target MSE threshold ε for Nb = Ns = Nr = Nd = 3. Here the UB refers

to (3.24a). From Fig. 3.11, it is obvious that more transmission power is required to

multicast to a larger number of receivers assuring the same minimal MSE threshold at

each receiver. The reason is that the proposed algorithm applies transmission power to

satisfy the MSE requirement at all receivers. As the number of users increases, more

transmission power is needed to combat the worst relay-receiver channel.
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Figure 3.11: Example 5: Total power versus target MSE ε. Varying number of receivers,

Nb = Ns = Nr = Nd = 3.
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Figure 3.12: Example 6: Per-user MI versus Ps. L = 6, Nb = 1, Ns = 6, Nr = 3, Nd = 3,

Pr = 20dB.

In the next two examples, we study the MI performance of the proposed single data

stream two-hop multicasting MIMO relay algorithm developed in Section 3.4.1. The
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Figure 3.13: Example 7: Per-user MI versus number of users L. Nb = 1, Ns = 6, Nr = 3,

Nd = 3, Ps = Pr = 20dB.

MI is computed as log2(e
−1
i ), i = 1 · · · , L, where ei is obtained from (3.31). Firstly,

the average MI and the worst user MI of the proposed algorithm versus Ps are shown

in Fig. 3.12 for L = 6, Ns = 6, Nr = 3, Nd = 3, and Pr = 20dB. From Fig. 3.12, we

can see that even the worst-channel user can have a comparable MI performance with

the average MI. In Fig. 3.13, the MI performance of the proposed algorithm versus the

number of receivers L is plotted with Ns = 6, Nr = 3, Nd = 3, and Ps = Pr = 20dB.

Note that with the increasing number of receivers, the MI keeps decreasing as is also

observed in [67]. It can also be seen from Fig. 3.13 that the worst user MI decreases

slowly with increasing L. It has been shown in [67] that the multicast rate converges to

zero when the number of users L approaches to infinity.

In the last example, the total powers required for multicasting a single data stream

among different number of receivers are compared. We use the GSS algorithm [84]

to find the optimal P1 for each target SNR threshold. The optimal relay precoding

matrix is obtained by solving the problem (3.35) as is described in Section 3.4.2. For

simplicity, we assume ηi = η, i = 1, · · · , L. Fig. 3.14 illustrates the total powers required

for L = 2, 4, and 6 versus target SNR threshold η with Ns = 6, Nr = 3, and Nd = 3.

It is notable that as we increase the target SNR requirements, the gap among the total

powers required for different number of receivers reduces.
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Figure 3.14: Example 8: Total power versus target SNR η. Varying number of receivers,

Nb = 1, Ns = 6, Nr = 3, Nd = 3.

3.6 Chapter Summary

In this chapter, we considered a two-hop multicasting MIMO relay system with multi-

antenna nodes and proposed transmit and relay precoding matrices based on two design

criteria. Firstly, the worst-case MSE is minimized subjecting to power constraints at

the transmitter and the relay node. Secondly, we propose a total network transmis-

sion power minimization strategy subjecting to QoS constraints. Under some mild

approximation, we show that the problems can be solved with a significantly smaller

computational complexity. In addition, we show that for the special case of single data

stream multicasting, the relay precoding matrix optimization problem can be equiva-

lently converted to the transmit beamforming problem for single-hop multicasting sys-

tems. Simulation results demonstrate that the proposed transmitter and relay design

outperforms the existing techniques.
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Chapter 4

Duality in Multi-Hop MIMO

Relay Channel

In this chapter, we establish the duality between uplink and downlink multi-hop AF-

MIMO relay channels with any number of hops and any number of antennas at each

node. We show that in the downlink relay system, SINRs identical to those in the

uplink relay system, and vice versa, can be achieved under certain conditions. As an

application of the uplink-downlink duality, we propose an optimal design of the source

precoding matrix and relay amplifying matrices for multi-hop MIMO relay system with

a DPC transmitter at the source node.

The rest of this chapter is organized as follows. Existing works on the duality of

MIMO systems are briefly reviewed in Section 4.3. In Section 4.2, we introduce the

model of uplink and its downlink dual for the multi-hop AF-MIMO relay communica-

tion systems. The duality theorems are proven in Section 4.3. An optimal multi-hop

MIMO relay system with a DPC-based transmitter at the source node is developed in

Section 4.4. In Section 4.5, we show some numerical examples. Section 4.6 briefly sum-

marizes the chapter. The proofs of Theorem 4.1 and 4.2 are listed in Sections 4.A-4.B,

respectively.

4.1 Existing Works on Duality of MIMO Systems

Recently, the uplink-downlink duality of two-hop AF-MIMO relay systems has been

derived in [48]. It is shown that for any relay amplifying matrix used in the uplink



60 Chapter 4. Duality in Multi-Hop MIMO Relay Channel

channel, duality holds when a scaled Hermitian transpose of this matrix is employed in

the downlink channel, where the scaling factor is obtained by switching the transmission

power constraints at the source and the relay nodes. This result can be seen as a

generalization of the well-known duality result for single-hop MIMO systems [49], [50].

For a multi-hop AF-MIMO relay network with single antenna source and destination

nodes, the uplink-downlink duality has been established in [51].

In this chapter, we extend the uplink-downlink duality results in [48–51] to multi-

hop AF-MIMO relay systems with any number of hops and any number of antennas

at each node. We define duality as the achievement of identical SINRs at the uplink

and the downlink systems with the same amount of total network transmission power.

The reasons of considering SINR are two folds: First, SINR is an important parameter

in communication system in the sense that it directly determines the QoS of each data

stream. Second, many other parameters such as the achievable data rate and the MSE

of signal estimation are closely related to SINR [42]. In particular, we show that for

any number of hops, duality can be achieved by two approaches. First, if there is

only total network transmission power constraint and no power constraint at individual

nodes, then duality holds if Fl and FH
L−l, l = 1, · · · , L − 1, are used as the relay

amplifying matrices at the lth relay node of the downlink and the uplink MIMO relay

systems, respectively. Here L is the number of hops of the relay network. Second,

with transmission power constraint at each node of the relay network, duality can be

achieved by applying clFl and FH
L−l respectively as the amplifying matrices at the lth

relay node of the downlink and the uplink relay systems, l = 1, · · · , L − 1, where the

scaling factor cl is obtained by switching the power constraints at the lth node of the

downlink system and the (L + 1 − l)-th node of the uplink system, l = 1, · · · , L. For

both approaches, the source precoding matrix and the destination receiving matrix in

the downlink system are swapped with the destination receiving matrix and the source

precoding matrix at the uplink system, respectively.

Furthermore, we prove that the two approaches developed above are not only valid

for relay systems with linear transceivers at the source and the destination nodes, but

also hold if a successive interference cancellation (SIC)-based receiver is used at the

destination node of the uplink MIMO relay system, and a transmitter based on DPC

[85] is employed at the source node of the downlink MIMO relay channel. Interestingly,

we show that the two duality approaches can be extended to multiuser AF-MIMO relay

systems with any number of multi-antenna users.
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As an application of the uplink-downlink duality theorem, we propose an optimal

design of the source precoding matrix and relay amplifying matrices for multi-hop AF-

MIMO relay systems with a DPC-based transmitter at the source node, by exploiting

the results obtained for the dual uplink relay system [86]. Simulation results demon-

strate that the optimal DPC-based MIMO relay system has a better BER performance

compared with the optimal relay system using the SIC receiver, because the SIC receiver

suffers from the error propagation effect, while the DPC transmitter does not.

4.2 Multi-Hop MIMO Relay System Model

We consider a wireless communication system with one source node, one destination

node, and L−1 (L ≥ 2) relay nodes. We assume that due to the propagation path-loss,

the signal transmitted by the lth node can only be received by its direct forward node,

i.e., the (l + 1)-th node. Thus, signals transmitted by the source node pass through

L hops until they reach the destination node. We also assume that the number of

antennas at each node is Nl, l = 1, · · · , L+ 1, and the number of source symbols in each

transmission is Nb. A linear non-regenerative relay matrix is used at each relay node to

amplify and forward the received signals. The system block diagrams of downlink and

uplink multi-hop AF-MIMO relay systems are shown in Fig. 4.1.

Figure 4.1: Block diagrams of downlink and uplink multi-hop AF-MIMO relay systems.

We would like to mention that for AF-MIMO relay systems with linear transceivers

at the source and destination nodes, there should be Nb ≤ min(N1, N2, · · · , NL+1) in

order to supportNb data streams in one transmission. However, if a nonlinear transmit-

ter is installed at the source node or a nonlinear receiver is installed at the destination

node of a MIMO relay system, Nb can be greater than min(N1, N2, · · · , NL+1) [86].

./ch4_duality/Paper-TW-Jul-10-1366.R1_fig1.eps
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In the case of downlink communication, the Nb × 1 source symbol vector sD =

[s1, s2, · · · , sNb
]T at the source node is linearly precoded by the N1 ×Nb matrix UQ

1

2 ,

where Q = diag(q1, q2, · · · , qNb
) and U = [u1,u2, · · · ,uNb

] with ‖ui‖2 = 1, i =

1, · · · , Nb. Here diag(·) denotes a diagonal matrix, ‖ · ‖2 stands for the vector Eu-

clidean norm, and qi, i = 1, · · · , Nb, is the power assigned to the ith data stream. We

assume that E[sDs
H
D ] = INb

. The N1×1 linearly precoded symbol vector xD
1 = UQ

1

2 sD

is transmitted by the source node. The Nl × 1 signal vector received at the lth node is

written as

yD
l = Hl−1x

D
l−1 + nl, l = 2, · · · , L+ 1 (4.1)

where Hl, l = 1, · · · , L, is the Nl+1 ×Nl MIMO channel matrix between the (l + 1)-th

and the lth node, i.e., the lth hop, nl is the Nl × 1 i.i.d. additive white Gaussian noise

(AWGN) vector at the lth node, and xD
l−1 is the Nl−1 × 1 signal vector transmitted by

the (l − 1)-th node. We assume that all noises are complex circularly symmetric with

zero mean and unit variance.

Using the AF scheme, the input-output relationship at node l is given by

xD
l = cl−1Fl−1y

D
l , l = 2, · · · , L (4.2)

where cl−1Fl−1 is the Nl ×Nl amplifying matrix at node l (the (l − 1)-th relay node),

cl > 0 is a scaling coefficient which is important for studying the uplink-downlink duality

[48] and will be explained later. Combining (4.1) and (4.2), the received signal vector

at the lth node of the downlink MIMO relay channel is given by

yD
2 = H1UQ

1

2 sD + n2 (4.3)

yD
l+1 = Hl

1
⊗

m=l−1

(cmFmHm)UQ
1

2 sD +
l
∑

k=2

k
⊗

m=l

(cm−1HmFm−1)nk + nl+1, l = 2, · · · , L

(4.4)

where for matrices Ai,
⊗k

i=l(Ai) , Al · · ·Ak. At the destination node, a linear receiver

with an NL+1 ×Nb weight matrix V is used to estimate the source symbol vector sD.

The estimated symbol vector ŝD is given by

ŝD = VHyD
L+1. (4.5)

Since scaling the columns of V does not change the SINRs at the destination node, we

assume that ‖vi‖2 = 1, i = 1, · · · , Nb.



4.3. Uplink-Downlink Duality 63

For the uplink MIMO relay system, the communication direction is reversed, and the

roles of the source node and the destination node are swapped. The channel matrices

are replaced by the Hermitian transpose of channel matrices in the downlink channel.

Now the source node applies VP
1

2 to precode the uplink source symbol vector sU , where

P = diag(p1, p2, · · · , pNb
), and pi, i = 1, · · · , Nb, is the power assigned to the ith data

stream. The lth node, l = 2, · · · , L, uses FH
L+1−l to amplify and forward received signals.

Similar to (4.3) and (4.4), the received signal vector at the lth node of the uplink MIMO

relay system can be written as

yU
2 = HH

LVP
1

2 sU + nL (4.6)

yU
L+2−l =

L−1
⊗

m=l

(HH
mFH

m)HH
L VP

1

2 sU +
L−1
∑

k=l

k
⊗

m=l

(HH
mFH

m)nk+1 + nl, l = 1, · · · , L− 1.

(4.7)

Finally, the destination node applies U to estimate the transmitted symbol vector with

ŝU = UHyU
L+1. (4.8)

We would like to note that at this point, for both the downlink and uplink systems,

there is no specific design for U, V, and Fl, l = 1, · · · , L− 1.

In this chapter, the CSI requirement is the same as that in [86]. Basically, we assume

that the source node has the CSI knowledge of the first-hop channel, the destination node

knows the receiver weight matrix and each relay node knows the CSI of its backward

channel and its forward channel. In practice, the backward CSI can be obtained through

standard training methods. The forward CSI required at one relay node is exactly the

backward CSI at its direct forward relay node, and thus can be obtained by a feedback

from its direct forward relay node.

4.3 Uplink-Downlink Duality

In this section, we investigate the duality between the uplink and the downlink multi-

hop AF-MIMO relay systems with any number of hops and any number of antennas

at each node. It can be seen from Section 4.2 that given an uplink MIMO relay sys-

tem, constructing its dual downlink MIMO relay system boils down to determining the

appropriate relay scaling factors cl, l = 1, · · · , L− 1, and the source power loading ma-

trices Q. The following two theorems establish the uplink-downlink duality property of

multi-hop MIMO relay communication system with any number of hops.
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Theorem 4.1 If linear transceivers are used at the source and destination nodes of the

uplink and the downlink systems, and there is no specific transmission power constraint

at each node, then for any L ≥ 2, the uplink-downlink duality can be achieved by cl =

1, l = 1, · · · , L − 1. With transmission power constraint at individual nodes, duality is

attained by setting ρUL+1−l = ρDl , l = 1, · · · , L, and cl, l = 1, · · · , L − 1, are obtained by

transmission power constraints. Here ρUl ≥ 0 and ρDl ≥ 0, l = 1, · · · , L, are the power

budgets at the lth node of the uplink and the downlink systems, respectively.

Proof: See Appendix 4.A. �

It can be seen from Theorem 4.1 that if there is only total network transmission

power constraint and no power constraint at individual nodes, then duality holds if

Fl and FH
L−l, l = 1, · · · , L − 1, are used as the amplifying matrix at the lth relay

node of the downlink and the uplink MIMO relay systems, respectively. However, in

some practical applications, there is transmission power constraint at each node of the

relay network. In such case, as suggested by Theorem 4.1, duality can be achieved by

applying clFl and FH
L−l respectively as the amplifying matrix at the lth relay node of

the downlink and the uplink relay systems, l = 1, · · · , L− 1, where the scaling factor cl

is determined by switching the power constraints at the lth node of the downlink system

and the (L+ 1− l)-th node of the uplink system, l = 1, · · · , L. It is worth noting that

Theorem 4.1 holds for any transceiver matrices U, V, and relay amplifying matrices

Fl, l = 1, · · · , L − 1. However, for the uplink MIMO relay system, if a linear MMSE

receiver is used, the optimal U, V, and Fl, l = 1, · · · , L− 1, are derived in [28].

Interestingly, Theorem 4.1 includes the results in [48]-[51] as special cases. It extends

the uplink-downlink duality results from single-hop MIMO systems and two-hop AF-

MIMO relay systems to multi-hop AF-MIMO relay systems with any number of hops

and any number of antennas at each node.

Theorem 4.2 If a DPC-based transmitter is used at the source node of the downlink

MIMO relay system, and an SIC-based receiver is employed at the destination node of

the uplink MIMO relay system, the uplink-downlink duality can be achieved by cl = 1, l =

1, · · · , L−1, when there is no specific transmission power constraint at each node. With

transmission power constraint at individual nodes, duality can be attained by setting

ρUL+1−l = ρDl , l = 1, · · · , L, and cl, l = 1, · · · , L− 1, are obtained by transmission power

constraints.
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Proof: See Appendix 4.B. �

Theorem 4.2 extends the duality results in Theorem 4.1 to the scenario where nonlin-

ear transceivers are used at the source node of the downlink channel and the destination

node of the uplink channel, respectively. Similar to Theorem 4.1, Theorem 4.2 holds

for any transceiver matrices U, V, and relay amplifying matrices Fl, l = 1, · · · , L − 1.

However, if a nonlinear MMSE-SIC receiver is used at the uplink MIMO relay system,

the optimal U, V, and Fl, l = 1, · · · , L − 1, can be found in [86]. Interestingly, both

Theorem 4.1 and Theorem 4.2 also hold for multiuser MIMO relay scenario as explained

below. In a broadcast channel (BC), a central station broadcasts information through

L hops to M users each having Rm antennas, m = 1, · · · ,M , while in a multiaccess

channel (MAC), M users each having Tm antennas, m = 1, · · · ,M , send information to

a central station via L hops. The BC channel can be equivalently treated as a down-

link multi-hop MIMO relay channel by grouping all users to form a “super” destination

node with NL+1 =
∑M

m=1Rm antennas. Accordingly, one can view the MAC channel

as an uplink multi-hop MIMO channel with N1 =
∑M

m=1 Tm antennas at the source

node. Obviously, duality holds for the BC and MAC, provided that V (the destination

receiving matrix in the BC and the source precoding matrix in the MAC) is chosen as

a block diagonal matrix.

4.4 DPC-Based Optimal Multi-Hop MIMO Relay Design

In a DPC-based multi-hop MIMO relay system, the source symbol vector sD is formed by

encoding the information-bearing symbols µi, i = 1, · · · , Nb, successively by removing

the interference from the symbols already encoded. Thus, compared with a MIMO

relay system using a linear transmitter at the source node, the DPC-based relay system

should have a better BER performance.

The DPC-based optimal multi-hop MIMO relay design problem can be formulated

as

min
U,Q,{clFl}

f(U,Q, {clFl}) (4.9a)

s.t. PD
l ≤ ρDl , l = 1, · · · , L (4.9b)

where f(·) stands for a unified objective function [27], and PD
l , l = 1, · · · , L, is the

power consumed by the lth node in the downlink system given by (4.27)-(4.29) in Ap-

pendix 4.A. Function f(·) includes a broad class of frequently used objective functions
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in MIMO system design such as the negative source-destination mutual information,

and the MSE of the signal waveform estimation at the destination. Directly solving

the problem of (4.9) is difficult for a unified objective function f(·) and MIMO relay

systems with a DPC transmitter, even for a single-hop (point-to-point) MIMO system

[42]. Based on our knowledge, the problem of (4.9) has not been directly solved in

literature. Now we apply Theorem 4.2 to optimize the DPC-based MIMO relay system.

First, the optimization problem for the dual SIC-based uplink MIMO relay system can

be written as

min
V,P,{FH

L−l
}

f(V,P, {FH
L−l}) (4.10a)

s.t. PU
l ≤ ρDL+1−l, l = 1, · · · , L (4.10b)

where PU
l , l = 1, · · · , L, is the power consumed by the lth node in the uplink system

given by (4.22)-(4.24) in Appendix 4.A. Applying the majorization theory [87], the

problem of (4.10) has been solved in [86] for a broad class of objective functions f(·).
The optimal feed-forward matrix W at the destination node of the uplink MIMO relay

system has also been developed in [86]. Note that for a single-hop MIMO system, the

uplink-downlink duality has been applied in [42] to optimize the DPC-based transceiver

design.

In this section, we take the optimal V, P, and Fl, l = 1, · · · , L − 1, from [86].

Based on Theorem 4.2, the optimal source precoding matrix in the DPC-based downlink

relay system can be written as UQ
1

2 , where U = [w̄1, w̄2, · · · , w̄Nb
], and w̄i, i =

1, · · · , Nb, are obtained by scaling columns of W such that ‖w̄i‖2 = 1, i = 1, · · · , Nb.

The optimal amplifying matrix at the lth relay node of the DPC-based relay system

is clFl, where the scalar cl is determined by the transmission power budget ρDl+1 as

explained later. The optimal receiving matrix at the destination node of the DPC-

based relay system is VΓ, where Γ = diag(γ1, γ2, · · · , γNb
) with γi chosen such that

γi
√
qi v

H
i HL

⊗1
m=L−1(cmFmHm)w̄i = 1, i = 1, · · · , Nb.

Now the task is to obtain the unknown quantities qi, i = 1, · · · , Nb, and cl, l =

1, · · · , L − 1. Towards this goal, we assume for the moment that Γ = INb
, since

scaling the receiving vector vi does not change SINRD
i , i = 1, · · · , Nb, in (4.40) of

Appendix 4.B. With a DPC encoder at the source node, the information-bearing sym-

bol µi is encoded into si by treating
∑i−1

j=1
√
qj v

H
i HL

⊗1
m=L−1(cmFmHm)w̄jsj as the

interference known at the transmitter. Note that at this stage the interference term
∑Nb

j=i+1
√
qj v

H
i HL

⊗1
m=L−1(cmFmHm)w̄jsj is unknown. At the destination node, after
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applying the linear filter V and the DPC decoder, the estimated information-bearing

symbol can be written as

µ̂i =
√
qi v

H
i HL

1
⊗

m=L−1

(cmFmHm)w̄iµi +

Nb
∑

j=i+1

√
qj v

H
i HL

1
⊗

m=L−1

(cmFmHm)w̄jsj

+vH
i

(

L
∑

l=2

l
⊗

m=L

(cm−1HmFm−1)nl+nL+1

)

, i = 1, · · · , Nb

with the output SINR βi as

βi =
di,iqi

∑Nb

j=i+1 di,jqj + ei + gT
i θ

, i = 1, · · · , Nb (4.11)

where θ is an (L−1)×1 vector with elements θl = 1/
∏l

m=1 c
2
m, l = 1, · · · , L−1, gi is an

(L−1)×1 vector with elements given by gi,L−1 = 1, gi,l = vH
i

⊗l+2
m=L(HmFm−1)

⊗L
m=l+2

×(FH
m−1H

H
m)vi, l = 1, · · · , L− 2, and

di,j ,
∣

∣vH
i HL

⊗1
m=L−1(FmHm)w̄j

∣

∣

2
, j = i, · · · , Nb

ei , vH
i

⊗2
m=L(HmFm−1)

⊗L
m=2(F

H
m−1H

H
m)vi.

Collecting all equations in (4.11) for i = 1, · · · , Nb, we obtain the following systems of

linear equations

Φq+GTθ = −e (4.12)

where q , [q1, q2, · · · , qNb
]T , e , [e1, e2, · · · , eNb

]T , Φ is an Nb × Nb upper-triangle

matrix with elements of φi,j = 0, j = 1, · · · , i − 1, φi,i = −di,i/βi, φi,j = di,j, j =

i+1, · · · , Nb, i = 1, · · · , Nb, and G is an (L− 1)×Nb matrix whose ith column is given

by gi in (4.11).

From the transmission power consumed at the relay nodes (4.27) and (4.28) in

Appendix 4.A, we have

PD
l+1

∏l
m=1c

2
m

= aTl q+ ξl,1 +

l−1
∑

k=1

ξl,k+1
∏k

m=1 c
2
m

, l = 2, · · · , L− 1 (4.13)

PD
2 /c

2
1 = aT1 q+ ξ1,1 (4.14)

where al is an Nb× 1 vector with elements al,i = w̄H
i

⊗l
m=1(H

H
mFH

m)
⊗1

m=l(FmHm)w̄i,

i = 1, · · · , Nb, and

ξl,k ,

{

tr
(

Fl

⊗k+1
m=l(HmFm−1)

⊗l
m=k+1(F

H
m−1H

H
m)FH

l

)

, k = 1, · · · , l − 1
tr(FlF

H
l ), k = l

.
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Equation (4.13) can be rewritten as

l−1
∑

k=1

ξl,k+1
∏k

m=1 c
2
m

−
PD
l+1

∏l
m=1 c

2
m

= −aTl q− ξl,1, l = 2, · · · , L− 1. (4.15)

Collecting all equations in (4.15) for l = 2, · · · , L − 1, and together with (4.14), we

obtain the following system of equations

Ψθ = −ATq− ξ (4.16)

where Ψ is an (L − 1) × (L − 1) lower-triangle matrix with elements of ψl,k = ξl,k+1,

k = 1, · · · , l − 1, ψl,l = −PD
l+1, ψl,k = 0, k = l + 1, · · · , L − 1, l = 1, · · · , L − 1, A

is an Nb × (L − 1) matrix whose lth column is given by al in (4.14) and (4.15), and

ξ , [ξ1,1, ξ2,1, · · · , ξL−1,1]
T .

Now (4.12) and (4.16) form a system of linear equations of θ and q. Solving (4.12)

and (4.16), we obtain

q =(Φ−GTΨ−1AT )−1(GTΨ−1ξ − e) (4.17)

θ =−Ψ−1
[

ξ +AT(Φ−GTΨ−1AT )−1(GTΨ−1ξ − e)
]

. (4.18)

Note that Ψ−1 always exists because Ψ is a lower-triangle matrix, and Φ−GTΨ−1AT

is invertible since Φ is an upper-triangle matrix and Ψ−1 is a lower-triangle matrix.

Finally, cl can be obtained from (4.18) with c1 =
√

1/θ1 and cl =
√

θl−1/θl, l =

2, · · · , L− 1.

4.5 Numerical Examples

In this section, we study the performance of the proposed DPC-based source precoding

matrix and relay amplifying matrices through numerical simulations. To precode the

ith information-bearing symbol µi into the source symbol si, i = 1, · · · , Nb, we apply the

Tomlinson-Harashima coding technique [88] and [89], which is a simple but suboptimal

implementation of the DPC scheme. The Tomlinson-Harashima scheme makes use of

the modulo operation to remove the interference from the preceding symbols without

increasing the transmission power at the source node. Accordingly, the length of the

modulo ∆ is chosen to preserve the transmission power consistency.

The source, destination, and all relay nodes are equipped with multiple antennas.

We simulate a flat Rayleigh fading environment where the channel matrices have i.i.d.
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entries with zero mean and variances σ2l /Nl for Hl, l = 1, · · · , L. For each channel

realization, 1000 QAM-modulated symbols with Gray mapping are transmitted at each

data stream, and all simulation results are averaged over 500 independent channel real-

izations. We define SNRl , σ2l ρ
D
l Nl+1/Nl as the SNR of the lth hop, l = 1, · · · , L. The

BER performance of the proposed optimal DPC-based relay system is compared with

that of the optimal relay system using the SIC receiver [86]. As a benchmark, we also

show the performance of the fictitious genie-aided SIC-based relay system, where the

error propagation at each layer of the SIC receiver is eliminated by a genie.

In the first example, we simulate a relay system with L = 2 hops and choose Nl = 5,

l = 1, 2, 3, and Nb = 5. The symbols are modulated by the 16-QAM constellations.

Fig. 4.2 shows BERs of all systems versus SNR1 for SNR2 = 20dB. It can be seen

from Fig. 4.2 that the optimal DPC-based relay system has a better BER performance

compared with the relay system using the SIC receiver, since the latter system suffers

from error propagation.
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Figure 4.2: Example 1: Two hops. Nl = 5, l = 1, 2, 3, Nb = 5, 16-QAM, SNR2 = 20dB.

In the second example, a multi-hop MIMO relay system with L = 5 and Nl = 5,

l = 1, · · · , 6, and Nb = 4 is simulated. Each hop has the same SNR, i.e., SNRl = SNR,

l = 1, · · · , 5. The 64-QAM constellations are used to modulate the symbols. Fig. 4.3

displays the BER performance of all three systems versus SNR. Obviously, for multi-

hop systems, the DPC-based relay design outperforms the relay system using the SIC

./ch4_duality/Paper-TW-Jul-10-1366.R1_fig2.eps
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Figure 4.3: Example 2: Five hops. Nl = 5, l = 1, · · · , 6, Nb = 4, 64-QAM, SNRl = SNR,

l = 1, · · · , 5.

receiver by removing the error propagation effect. From Figs. 4.2 and 4.3, we observe

a slight SNR loss of the DPC-based relay system compared with the genie-aided SIC-

based relay system. This is mainly due to the inherent power loss and modulo loss of

the Tomlinson-Harashima precoder [90].

The reason for the error floor effect displayed in Fig. 4.2 for both the SIC-based

system and the DPC-based system is that the relay system is fully-loaded in the sense

that Nl = Nb, l = 1, 2, 3. It is well-known that for a one-hop (point-to-point) MIMO

system with an SIC receiver, the diversity order for the first decoded stream is only

one if the transmitter and the receiver have the same number of antennas. Compared

with that in Fig. 4.2, the system shown in Fig. 4.3 is under-loaded since Nl > Nb,

l = 1, · · · , 6. Thus, the error floor effect is not observed in Fig. 4.3.

4.6 Chapter Summary

In this chapter, we have established the uplink-downlink duality of multi-hop AF-MIMO

relay systems with any number of hops and any number of antennas at each node, which

generalizes several previously established results. Based on such duality, we proposed

an optimal design of the source precoding matrix and relay amplifying matrices for

./ch4_duality/Paper-TW-Jul-10-1366.R1_fig3.eps
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multi-hop AF-MIMO relay systems with a DPC-based transmitter at the source node.

Simulation results show that the optimal DPC-based MIMO relay system has a lower

BER than the optimal relay system using the SIC receiver.

4.A Proof of Theorem 4.1

The basic idea of the proof is to show under which conditions of P, Q, and cl, l =

1, · · · , L − 1, the uplink and downlink channels achieve identical SINRs. The proof

is conducted in three steps. First, for both the uplink MIMO relay channel (4.6)-

(4.8) and the downlink MIMO relay channel (4.3)-(4.5), we write the SINR for each

data stream and the required total transmission power. Second, we rewrite the total

transmission power of the downlink system based on the definition of duality that both

channels should achieve identical SINRs. Finally, we find under which P, Q, and cl,

l = 1, · · · , L− 1, the total transmission power consumed by both systems is identical.

Based on (4.7), the SINRs of data streams at the destination node of the uplink

MIMO relay channel are given by

SINRU
i =

∣

∣

∣uH
i

L−1
⊗

l=1

(HH
l FH

l )HH
L vi

∣

∣

∣

2
pi
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j=1

j 6=i
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∣uH
i
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(HH
l FH

l )HH
L vj
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∣

∣

2
pj+uH

i

L−1
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( l
⊗

m=1
(HH

mFH
m)

1
⊗

m=l

(FmHm)
)

ui+1

,

i = 1, · · · , Nb. (4.19)

The transmission power PU
l consumed by the lth node, l = 1, · · · , L, in the uplink relay

system can be calculated using (4.6) and (4.7) as

PU
L+2−l = FH

l−1E
[

yU
L+2−l(y

U
L+2−l)

H
]

Fl−1

= tr

(

L
⊗

m=l

(FH
m−1H

H
m)VPVH

l
⊗

m=L

(HmFm−1) + FH
l−1

(

L−1
∑

k=l

k
⊗

m=l

(HH
mFH

m)

l
⊗

m=k

(FmHm) + INl

)

Fl−1

)

, l = 2, · · · , L− 1 (4.22)

PU
2 = tr

(

FH
L−1(H

H
LVPVHHL + INL

)FL−1

)

(4.23)

PU
1 = tr(P). (4.24)

The total transmission power consumed by the uplink MIMO relay system can be ob-
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tained by the sum of (4.22)-(4.24) and written as

PU
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i=1

pi
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i
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)

+
L−1
∑

l=1

tr(FH
l Fl). (4.25)

Similarly, using (4.4), the SINRs of data streams at the destination node of the

downlink relay channel are given by

SINRD
i =

Ps,i

Pin,i
, i = 1, · · · , Nb, (4.26)

where Ps,i ,
∣
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∣
vH
i HL

1
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(clFlHl)ui
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2
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vi + 1. The transmission power PD
l

consumed by the lth node, l = 1, · · · , L, in the downlink system can be obtained from

(4.3) and (4.4) as

PD
l+1 = FlE

[

yD
l+1(y

D
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H
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= tr
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PD
2 = tr

(

c21F1(H1UQUHHH
1 + IN2

)FH
1

)

(4.28)

PD
1 = tr(Q). (4.29)

The total transmission power consumed by the downlink MIMO relay system is obtained

by the sum of (4.27)-(4.29) and given by
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l ). (4.30)

To achieve identical SINRs at the uplink and the downlink systems, we should have

SINRU
i = SINRD

i , i = 1, · · · , Nb. Please note that we do not assume that all data
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streams have identical SINR, i.e., it is possible that SINRU
i 6= SINRU

j , for i 6= j. Using

(4.19) and (4.26) we obtain from
∑Nb

i=1 SINR
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i =
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By using the identity of
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Substituting (4.32) back into (4.30), we can rewrite PD
T as
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For notational simplicity, let us denote
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Then with some manipulations, we have
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Substituting (4.35) and (4.36) back into (4.33) and after rearranging terms, we can

rewrite PD
T as
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Using the expressions of PU
l in (4.22)-(4.24) and PD

l in (4.27)-(4.29), l = 1, · · · , L,
(4.37) can be rewritten as
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Since the uplink and downlink systems should consume the same amount of total trans-

mission power, we have
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Obviously, for any L ≥ 2, (4.38) is true if
∏L−1

m=l c
2
m = 1 for l = 1, · · · , L − 1, which

is equivalent to cl = 1, l = 1, · · · , L − 1. Thus, the first part of Theorem 4.1 (without

transmission power constraint at each node) is proven. Moreover, (4.38) also holds if

PU
L+1−l = PD

l , l = 1, · · · , L − 1. Then we have PU
1 = PD

L due to PD
T = PU

T . With

transmission power constraint at individual nodes, there is PD
l ≤ ρDl and PU

l ≤ ρUl ,

l = 1, · · · , L. Obviously, to optimize the system performance, all available power should

be exploited, i.e., PD
l = ρDl and PU

l = ρUl , l = 1, · · · , L. Thus, we have ρUL+1−l = ρDl , l =

1, · · · , L, and the second part of Theorem 4.1 (with transmission power constraint at

individual nodes) is proven.

4.B Proof of Theorem 4.2

With an SIC receiver, the source symbols are detected successively with the last symbol

detected first and the first symbol detected last, and the interference from detected

symbols is subtracted. Therefore, the SINRs of data streams at the destination node

can be written as
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i = 1, · · · , Nb. (4.39)

For a MIMO relay system employing a DPC transmitter at the source node, the

information-bearing symbols are encoded successively with the first symbol encoded
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first and the last symbol encoded last, and the interference from encoded symbols is

removed. Thus, the SINRs of data streams at the destination node of the DPC-based

downlink MIMO relay channel is given by (4.40)
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m)
)

vi + 1. Using (4.39) and (4.40), and

the identity of

Nb
∑

i=1

i−1
∑

j=1

qi

∣

∣

∣
uH
i

L−1
⊗

l=1

(clH
H
l FH

l )HH
L vj

∣

∣

∣

2
pj =

Nb
∑

i=1

Nb
∑

j=i+1

pi

∣

∣

∣
vH
i HL

1
⊗

l=L−1

(clFlHl)uj

∣

∣

∣

2
qj

we obtain from
∑Nb

i=1 SINR
U
i =

∑Nb

i=1 SINR
D
i the expression of PD

T as in (4.33), and the

steps in (4.34)-(4.38) remain valid. Thus Theorem 4.2 is proven.



Chapter 5

Interference MIMO Relay

Systems

In this chapter, we consider an interference MIMO relay system where multiple source

nodes communicate with their desired destination nodes concurrently with the aid of

distributed relay nodes all equipped with multiple antennas. We provide a brief overview

of existing works on interference systems in Section 5.1. In Section 5.2, the system model

of an interference MIMO relay network is introduced. An iterative joint power control

and beamforming algorithm is developed in Section 5.3 to minimize the total source

and relay transmit power such that a minimum SINR threshold is maintained at each

receiver. Section 5.4 shows the simulation results which justify the effectiveness of the

proposed algorithm under various scenarios. The chapter is summarized in Section 5.5.

5.1 Overview of Existing Works on Interference Systems

In a large wireless network with many nodes, multiple source-destination links must

share a common frequency band concurrently to ensure a high spectral efficiency of

the whole network [1]. In such network, CCI is one of the main impairments that de-

grades the system performance. Developing schemes that mitigate the CCI is therefore

important.

By exploiting the spatial diversity, multi-antenna technique provides an efficient

approach to CCI minimization [1, 2]. When each source node has a single antenna and

the destination nodes are equipped with multiple antennas, a joint power control and
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receiver beamforming scheme is developed in [34] to meet the SINR threshold with the

minimal transmission power. A joint transmit-receive beamforming and power control

algorithm is proposed in [91], when the source nodes also have multiple antennas. Due

to the transmit diversity, the total transmit power required in [91] is less than that in

[34].

In addition to the transmit and/or receive beamforming considered in [34] and [91],

distributed/network beamforming technique [92] can further increase the reliability of

the communication link even if the direct path between the transmitter and the receiver

is subject to serious degradation, especially for long-distance communication. The net-

work beamforming scheme stems from the idea of cooperative diversity [93]-[94], where

users share their communication resources such as bandwidth and transmit power to

assist each other in data transmission. The optimal relay matrix design has been re-

cently studied for the MIMO broadcast channel [95] and the point-to-point MIMO relay

channel [22], [23]. In [96], a decentralized relay beamforming technique has been de-

veloped considering a network of one transmitter, one receiver, and several relay nodes

each having a single antenna. In [97], a wireless ad hoc network consisting of multiple

source-destination pairs and multiple relay nodes, each having a single antenna, is con-

sidered, where the network beamforming scheme is used to meet the SINR threshold

at all links with the minimal total transmission power consumed by all relay nodes.

Relay beamformers are designed in [98] for multiple-antenna relay nodes with single-

antenna source-destination pairs. The non-regenerative MIMO relay technique has been

applied to multi-cellular (interference) systems in [57] where transceiver beamformers

are designed using the partial zero-forcing (PZF) technique.

However, it is assumed in [57, 97, 98] that each source node uses its maximum

available transmit power. Such assumption not only raises the system transmit power

consumption, but also increases the interference from one user to all other users. This

indicates that the beamforming and the power control problem should be considered

jointly as in [34] and [91].

In this chapter, we consider a two-hop interference MIMO relay system consisting

of L source-destination pairs communicating with the aid of K relay nodes to enable

successful communication over a long distance. Each of the source, relay and destination

nodes is equipped with (possibly different number of) multiple antennas. The amplify-

and-forward scheme is used at each relay node due to its practical implementation
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simplicity. In fact, these relay nodes assist in CCI mitigation by performing distributed

network beamforming1.

We aim at developing a joint power control and beamforming algorithm such that the

total transmission power consumed by all source nodes and relay nodes are minimized

while maintaining the SINR at each receiver above a minimum threshold value. Com-

pared with [96]-[98], we not only use the network beamforming technique at the relay

nodes, but also apply the joint transmit-receive beamforming technique for multiple-

antenna users to mitigate the CCI. In contrast to [57], we develop an iterative technique

to solve the total power minimization problem rather than using the suboptimal PZF

approach. Moreover, transmit power control is used in our algorithm to minimize the

total transmit power and the interference to other users, which is not considered in

[57, 96–98].

A two-tier iterative algorithm is proposed to jointly optimize the source, relay and

receive beamformers, and the source transmission power. We update the relay beam-

former in the outer loop using fixed source power, transmit beamformers, and receive

beamformers. Since the relay beamforming optimization problem is nonconvex, we use

the SDR technique to transform the problem into an SDP problem which can be effi-

ciently solved by interior point-based methods. Then in each iteration of the inner loop,

we optimize the receive beamformers first with fixed transmit and relay beamformers

and source power. Next, we update the source power such that the target SINR is just

met with given transmit, relay and receive beamformers. Finally in the inner loop, we

update the transmit beamformers with known transmit power, relay beamformers, and

receive beamformers. Numerical simulations are carried out to evaluate the performance

of the proposed algorithm.

5.2 Interference MIMO Relay System Model

We consider a two-hop interference MIMO relay system with L source-destination pairs

as illustrated in Fig. 5.1. Each source node communicates with its corresponding

destination node with the aid of a network of K distributed relays in order to enable

1Although the relay beamforming matrices are optimized by a central processing unit in our algo-

rithm, the relay beamforming operation is indeed distributed in the sense that the relays are geographi-

cally distributed and they perform beamforming only using their own received signal without exploiting

the information on the received signals at other relay nodes.
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successful communication over a long distance. The direct links between the source

nodes and the destination nodes are not considered as they undergo much larger path

attenuations compared with the links via relays. The source and destination nodes of

the lth link are equipped with Ns,l and Nd,l antennas, respectively, whereas the kth relay

node is mounted with Nr,k antennas. Note that the sum of the transmitting antennas

of all source nodes must be smaller than the sum of the relay antennas. Also, for single-

stream transmission from each source node, the number of receiving antennas at each

destination node must at least equal to the total number of transmitters L in order to

suppress L− 1 independent interferences simultaneously.
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Figure 5.1: Block diagram of an interference MIMO relay system.

We assume that all relay nodes work in half-duplex mode as in [96]-[98]. Thus the

communication between the source-destination pairs is completed in two time slots. In

the first time slot, the lth source node transmits an Ns,l × 1 signal vector blsl, where

sl is the information-carrying symbol and bl is the transmit beamforming vector. The

received signal vector at the kth relay node is given by

yr,k =

L
∑

l=1

Hk,lblsl + nr,k, k = 1, · · · ,K

where Hk,l is the Nr,k ×Ns,l MIMO channel matrix between the lth transmitting node

and the kth relay node and nr,k is the Nr,k × 1 additive Gaussian noise vector at the

kth relay node.

In the second time slot, the kth relay node multiplies its received signal vector by

an Nr,k × Nr,k complex matrix Fk and transmits the amplitude- and phase-adjusted

version of its received signal. Thus the Nr,k × 1 signal vector xr,k transmitted by the

kth relay node is given by

xr,k = Fkyr,k, k = 1, · · · ,K. (5.1)

./ch5_inter_ch/system_model.eps
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The received signal at the lth destination node is obtained as the weighted sum of the

received signals at each antenna element of that node, and is given by

yd,l =wH
l

(

K
∑

k=1

Gl,kxr,k + nd,l

)

=wH
l

(

K
∑

k=1

Gl,kFk

(

L
∑

m=1

Hk,mbmsm + nr,k

)

+ nd,l

)

, l = 1, · · · , L (5.2)

where Gl,k is the Nd,l×Nr,k MIMO channel matrix between the kth relay node and the

lth destination node, wl and nd,l are the Nd,l×1 receive beamforming weight vector and

the additive Gaussian noise vector at the lth destination node, respectively. We assume

that all noises are independent and identically distributed (i.i.d.) complex Gaussian

noise with zero mean and variance σ2n.

Let us introduce the following definitions

h̃l ,
[

(H1,lbl)
T , · · · , (HK,lbl)

T
]T

∈ CN̄r×1, l = 1, · · · , L

G̃l , [Gl,1, · · · ,Gl,K ] ∈ CNd,l×N̄r , l = 1, · · · , L

F , blkdiag (F1,F2, · · · ,FK) ∈ CN̄r×N̄r

ñr ,
[

nT
r,1, · · · ,nT

r,K

]T ∈ CN̄r×1

where N̄r ,
∑K

k=1Nr,k. Here h̃l can be viewed as the effective first-hop channel vector

between sl and all relay nodes, G̃l is the MIMO channel matrix between all relay nodes

and the lth receiver, F is the effective block-diagonal relay precoding matrix, and ñr is

a vector containing the noises at all relay nodes. Using these definitions, (5.2) can be

rewritten as

yd,l =wH
l G̃lF

(

L
∑

m=1

h̃msm + ñr

)

+wH
l nd,l

=wH
l

(

L
∑

m=1

ψmlsm + nl

)

, l = 1, · · · , L (5.3)

where ψml , G̃lFh̃m is the equivalent vector channel response between the mth source

node and the lth destination node, and nl , G̃lFñr+nd,l is the equivalent noise vector

at the lth receiver.

From (5.3), the total power of the received signal at the destination node of the lth

link is given by

E
[

yd,ly
∗
d,l

]

=
L
∑

m=1

pmwH
l ψmlψ

H
mlwl +wH

l Clwl, l = 1, · · · , L (5.4)
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where Cl , σ2nG̃lFF
HG̃H

l +σ2nINd,l
is the covariance matrix of nl. Here we assume that

E
[

|sl|2
]

= pl is the transmit power of the lth information-carrying symbol. Based on

(5.4), the SINR at the lth destination node is given by

Γl =
plw

H
l ψllψ

H
ll wl

∑L
m6=l pmwH

l ψmlψ
H
mlwl +wH

l Clwl

, l = 1, · · · , L. (5.5)

Using (5.1), the transmission power consumed by the kth relay node can be expressed

as

Pr,k = tr
(

E
[

xr,kx
H
r,k

])

= tr
(

FkRy,kF
H
k

)

, k = 1, · · · ,K (5.6)

where Ry,k , E
[

yr,ky
H
r,k

]

=
∑L

l=1 plHk,lblb
H
l HH

k,l + σ2nINr,k
is the covariance matrix of

the received signal vector at the kth relay node. Using (5.6), the total transmit power

consumed by the whole network can be expressed as

PT =

K
∑

k=1

Pr,k +

L
∑

l=1

plb
H
l bl. (5.7)

5.3 Joint Power Control and Beamforming

Let us define the relay beamforming vector f from the relay amplifying matrices F1, · · · ,
FK as

f =







f1 , vec(F1)
...

fK , vec(FK)






∈ CÑr×1 (5.8)

where Ñr ,
∑K

k=1N
2
r,k, and vec(·) stands for a vector obtained by stacking all col-

umn vectors of a matrix on top of each other. In this section, we design the source

transmit power vector p , [p1, p2, · · · , pL]T , the relay beamforming vector f , trans-

mit beamforming vectors {bl} , {bl, l = 1, · · · , L}, and receive beamforming vectors

{wl} , {wl, l = 1, · · · , L}, such that a target SINR threshold γl > 0, l = 1, · · · , L, is
maintained at the lth destination node with the minimal PT. The optimization problem

can be written as

min
p,f ,{bl},{wl}

PT (5.9a)

s.t. Γl ≥ γl, l = 1, · · · , L. (5.9b)

The problem (5.9) is nonconvex due to the constraints in (5.9b). We propose a two-

tier iterative algorithm to efficiently solve the problem (5.9). In the following, we solve

corresponding subproblems to optimize each variable.
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5.3.1 Receive beamforming

The optimal receive beamforming vectors wl, l = 1, · · · , L, for fixed p, f , and {bl}
can be obtained such that it minimizes the noise-plus-interference power at the receiver

under the condition of unity gain for the signal of interest, which can be written as

min
wl

L
∑

m6=l

pmwH
l ψmlψ

H
mlwl +wH

l Clwl (5.10a)

s.t. wH
l ψll = 1. (5.10b)

The unity gain condition ensures that the desired signal is unaffected by beamforming.

Using the Lagrangian multiplier method, the solution to the problem (5.10) is given by

wl =
Φ−1

l ψll

ψH
ll Φ

−1
l ψll

(5.11)

where Φl ,
∑L

m6=l pmψmlψ
H
ml + Cl is the interference-plus-noise covariance matrix at

the lth receiver.

5.3.2 Transmit power allocation

To obtain optimal p with given beamforming vectors f , {bl}, and {wl}, we reformulate

the problem (5.9) as

min
p

PT (5.12a)

s.t.
pl[H̄]l,l

∑L
m6=l pm[H̄]m,l + n̄l

≥ γl, l = 1, · · · , L (5.12b)

where H̄ is an L × L covariance matrix such that [H̄]m,l = wH
l ψmlψ

H
mlwl and n̄l ,

wH
l Clwl. Here for a matrix A, [A]i,j indicates the (i, j)th element of A. In the optimal

power allocation, the transmit power of each user is set to the minimum required level

such that the target SINR is just met [34], [91]. That is, the constraints in (5.12b)

should hold with equality as

pl[H̄]l,l
∑L

m6=l pm[H̄]m,l + n̄l
= γl, l = 1, · · · , L (5.13)

which can be equivalently rewritten as

pl =
γl

[H̄]l,l





L
∑

m6=l

pm[H̄]m,l + n̄l



 , l = 1, · · · , L. (5.14)
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Equation (5.14) can be written in matrix form as

p = H̆p+ u (5.15)

where [H̆]l,m =

{

0, m = l
γl[H̄]m,l/[H̄]l,l, m 6= l

, and u is an L×1 vector whose lth element is

given by γln̄l/[H̄]l,l, l = 1, · · · , L. From (5.15), it can be seen that the optimal solution

to the problem (5.12) is given by

p = (IL − H̆)−1u. (5.16)

5.3.3 Transmit beamforming

With given p, f and {wl}, the optimal {bl} can be obtained simply by swapping the

roles of the transmitters and the receivers as in [99]. First we rewrite the objective

function by substituting Pr,k in (5.6) into (5.7) as

PT =
L
∑

l=1

pl

[

K
∑

k=1

tr
(

Qk,lblb
H
l

)

+ bH
l bl

]

+ σ2n

K
∑

k=1

tr
(

FkF
H
k

)

(5.17)

where Qk,l , HH
k,lF

H
k FkHk,l. Let us now denote Ql ,

∑K
k=1Qk,l and b̃l ,

(

Ql +

INs,l

) 1

2bl. Thus (5.17) can be equivalently written as

PT =

L
∑

l=1

plb̃
H
l b̃l + σ2n

K
∑

k=1

tr
(

FkF
H
k

)

. (5.18)

Since the equivalent noise nl at the lth destination node is non-white, we need to

perform the pre-whitening operation before we swap the roles of the transmitting and

the receiving nodes. After the pre-whitening and receive beamforming operations, the

received signal at the lth destination node can be expressed as

ỹd,l =wH
l C

− 1

2

l G̃lF

(

L
∑

m=1

H̃mbmsm + ñr

)

+wH
l C

− 1

2

l nd,l

=wH
l

(

L
∑

m=1

Ḡm,lb̃msm +C
− 1

2

l G̃lFñr +C
− 1

2

l nd,l

)

, l = 1, · · · , L (5.19)

where H̃l ,
[

HT
1,l, · · · ,HT

K,l

]T

is the equivalent MIMO channel between the lth source

node and all relay nodes and Ḡm,l , C
− 1

2

l G̃lFH̃m

(

Qm + INs,m

)− 1

2 .
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It can be seen from (5.19) that the equivalent noise is now white, and the received

SINR in the lth virtual link (where b̃∗
l is the receive beamforming vector andw∗

l becomes

the transmit beamforming vector) can be expressed as

Γ̃l =
p̃lb̃

T
l ξllξ

H
ll b̃

∗
l

∑L
m6=l p̃mb̃T

l ξmlξ
H
mlb̃

∗
l + b̃T

l b̃
∗
l

, l = 1, · · · , L. (5.20)

Here ξml , ḠT
l,mw∗

m, p̃l is the transmit power in the lth virtual link. Note that since

the noise in the original link is pre-whitened before we swap the roles of transmitters

and receivers, the equivalent virtual link noise is also white with unit-variance. Thus,

the corresponding noise power after the receive beamforming is given by b̃T
l b̃

∗
l in (5.20).

The optimal {b̃∗
l } can be obtained from (5.20) by solving the following problem for

each l = 1, · · · , L

min
b̃l

L
∑

m6=l

p̃mb̃T
l ξmlξ

H
mlb̃

∗
l + b̃T

l b̃
∗
l (5.21a)

s.t. b̃T
l ξll = 1. (5.21b)

The solution to this problem is given by

b̃∗
l =

Θ−1
l ξll

ξHll Θ
−1
l ξll

(5.22)

where Θl ,
∑L

m6=l p̃mξmlξ
H
ml + INs,l

is the noise-plus-interference covariance matrix at

the lth receiver of the virtual link. The transmit power of the virtual link can be

obtained as

p̃ , (IL − Ğ)−1ũ (5.23)

where [Ğ]l,m =

{

0, m = l

γlb̃
T
l ξmlξ

H
mlb̃

∗
l /(b̃

T
l ξllξ

H
ll b̃

∗
l ), m 6= l

, and [ũ]l ,
γlb̃

T
l
b̃∗
l

b̃T
l
ξllξ

H
ll b̃

∗
l

, l =

1, · · · , L. Here for a vector v, [v]l stands for the lth element of v.

5.3.4 Relay beamforming

In this subsection we optimize the relay amplifying matrices such that the total relay

transmit power is minimized while satisfying the SINR constraints in (4.9b). First, (5.4)

can be rewritten as

E
[

yd,ly
∗
d,l

]

=

L
∑

m=1

pmtr
(

G̃H
l wlw

H
l G̃lFh̃mh̃H

mFH
)

+ σ2ntr
(

G̃H
l wlw

H
l G̃lFF

H
)

+ σ2nw
H
l wl

=
L
∑

m=1

tr
(

Rg,lFRh,mFH
)

+ σ2ntr
(

Rg,lFF
H
)

+ σ2nw
H
l wl, l = 1, · · · , L (5.24)
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where Rg,l , G̃H
l wlw

H
l G̃l, l = 1, · · · , L, and Rh,m , pmh̃mh̃H

m, m = 1, · · · , L. Using

(5.24), the SINR of the lth link in (5.5) can be expressed as

Γl =
tr
(

Rg,lFRh,lF
H
)

tr
(

Rg,lF
(
∑L

m6=l Rh,m + σ2nIN̄r

)

FH
)

+ σ2nw
H
l wl

, l = 1, · · · , L. (5.25)

Applying the fact that tr(AHBAC) = vec(A)H(CT
⊗

B)vec(A) [100], where
⊗

denotes the matrix Kronecker product, (5.25) can be expressed as

Γl =
vec(F)H

(

RT
h,l

⊗

Rg,l

)

vec(F)

vec(F)H
(

R̃T
h,l

⊗

Rg,l

)

vec(F) + σ2nw
H
l wl

, l = 1, · · · , L (5.26)

where R̃h,l ,
∑L

m6=l Rh,m + σ2nIN̄r
. Let us now introduce the link between f in (5.8)

and vec(F) as vec(F) = DFf , where DF ∈ RN̄2
r ×Ñr is a matrix of ones and zeros and is

constructed by observing the nonzero entries of vec(F). Note that DF does not depend

on the exact numeric value of vec(F), instead it depends on the way the entries of f are

taken to form vec(F). As an example, for a system with two relay nodes each having

two antennas, there is F =

[

F1 02×2

02×2 F2

]

with F1 = [f1,1, f1,2] and F2 = [f2,1, f2,2],

where fi,j, i, j = 1, 2, are 2× 1 vectors and 0m×n denotes an m×n matrix with all zero

elements. In this case, we have

vec(F) =
[

fT1,1,01×2, f
T
1,2,01×2,01×2, f

T
2,1,01×2, f

T
2,2

]T
, f =

[

fT1,1, f
T
1,2, f

T
2,1, f

T
2,2

]T
.

Therefore, to obtain vec(F) = DFf , matrix DF should be constructed as

DF =





I2 04×2 010×2 02×2

02×2 I2 I2 012×2

012×2 010×2 04×2 I2



 .

Now (5.26) can be rewritten as

Γl =
fHDT

F

(

RT
h,l

⊗

Rg,l

)

DFf

fHDT
F

(

R̃T
h,l

⊗

Rg,l

)

DFf + σ2nw
H
l wl

, l = 1, · · · , L. (5.27)

From (5.8), we have fk = Dkf , k = 1, · · · ,K, with Dk ∈ R
N2

r,k
×Ñr defined as Dk =

[Dk,1, · · · ,Dk,K ], where Dk,k = IN2
r,k

×N2
r,k

and Dk,j = 0N2
r,k

×N2
r,j
, j = 1, · · · ,K, j 6= k.

By using the identity of tr(AHAB) = vec(A)H
(

BT
⊗

In
)

vec(A) for A,B ∈ Cn×n [100],

the transmit power of the kth relay node in (5.6) can be expressed as

Pr,k = fHk
(

RT
y,k

⊗

INr,k

)

fk = fHDT
k

(

RT
y,k

⊗

INr,k

)

Dkf , k = 1, · · · ,K. (5.28)
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Using (5.27) and (5.28), with given p, {bl} and {wl}, the problem (5.9) can be refor-

mulated as the following nonconvex QCQP problem

min
f

fHAf (5.29a)

s.t. fHBlf ≥ γlσ
2
nw

H
l wl, l = 1, · · · , L (5.29b)

where we introduce

A ,
K
∑

k=1

DT
k

(

RT
y,k

⊗

INr,k

)

Dk, Bl , DT
F

(

RT
h,l

⊗

Rg,l − γlR̃
T
h,l

⊗

Rg,l

)

DF,

l = 1, · · · , L. (5.30)

The problem (5.29) is non-convex, since Bl in (5.30) can be indefinite. In the

following, we resort to the SDR technique [101]-[102] to solve the problem (5.29). By

introducing X = f fH , the problem (5.29) can be equivalently rewritten as

min
X

tr(AX) (5.31a)

s.t. tr(BlX) ≥ γlσ
2
nw

H
l wl, l = 1, · · · , L (5.31b)

X < 0 (5.31c)

rank(X) = 1. (5.31d)

Note that in the problem (5.31), the cost function is linear in X, the trace constraints

are linear inequalities in X, and the PSD matrix constraint is convex. However, the

rank constraint on X is not convex. Interestingly, the problem (5.31) can be solved by

the SDR technique [101]-[102] as explained in the following. First we drop the rank

constraint (5.31d) to obtain the following relaxed SDP problem which is convex in X.

min
X

tr(AX) (5.32a)

s.t. tr(BlX) ≥ γlσ
2
nw

H
l wl, l = 1, · · · , L (5.32b)

X < 0. (5.32c)

SDP problems like (5.32) can be conveniently solved by using interior point methods

at a complexity order that is at most O((L + Ñ2
r )

3.5) [66]. One can use, for example,

the CVX MATLAB toolbox for disciplined convex programming [63] to obtain the

optimal X. Due to the relaxation, Xopt obtained by solving the problem (5.32) is

not necessarily rank one in general. If it is, then its principal eigenvector (scaled by

the square root of the principal eigenvalue of Xopt) is the optimal solution fopt to the
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original problem (5.29). If rank(Xopt) ≥ 3 and L ≤ 4, the recent results on Hermitian

matrix rank-one decomposition in [103] can be used to generate the exact optimal

fopt for the problem (5.29) based on Xopt. Otherwise, we may resort to alternative

techniques such as randomization [101]-[102] to obtain a (suboptimal) f from Xopt.

Different randomization techniques have been studied in the literature [101]-[102]. The

one we choose is summarized in Table 5.1. Note that using this approach, some of the

constraints in (4.9b) may be violated after the randomization operation. However, a

feasible relay beamforming vector can be obtained by simply scaling f so that all the

constraints are satisfied.

Table 5.1: Randomization technique for semidefinite relaxation approach

1. Let X = UΣUH be the eigenvalue decomposition of X.

2. Choose an Ñr×1 random vector v whose elements are independent random variables, uni-

formly distributed on the unit circle in the complex plane, i.e., [v]i = ejθi , i = 1, · · · , Ñr,

where θi is independent and uniformly distributed on [0, 2π).

3. Choose f = UΣ
1

2v which ensures that fHf = tr(X).

Now the original total transmit power minimization problem (5.9) can be solved

by an iterative algorithm as shown in Table 5.2. Here εi, i = 1, 2, are small positive

numbers close to zero up to which convergence is acceptable, max stands for the maximal

element of a vector, and the superscript (m) and [n] denotes the number of iterations

at the outer loop and the inner loop, respectively. It can be seen from Table II that the

proposed algorithm iteratively optimizes two blocks of variables: (i) The relay weighting

coefficients f ; (ii) The transmit beamformer vectors {bl}, the receive beamformer vectors

{wl}, and the transmit power vector p. With fixed f , we solve the problem of optimizing

{bl}, {wl}, and p through step (3) in Table 5.2. In fact, this problem is similar to

the joint transceiver design problem in a single-hop MIMO interference channel [91].

Therefore, it can be shown similar to [91] that the inner iteration in step (3) converges

to the optimal solution of {bl}, {wl}, and p for a given f . With fixed {bl}, {wl}, and
p, we optimize f through step (2) in Table 5.2.

In numerical simulations we observe that the outer loop converges typically within

3 to 5 iterations, while the inner loop converges usually within 3 iterations. However,

a rigorous analysis on whether the outer loop converges to a locally optimal solution
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Table 5.2: Procedure of solving the problem (5.9) by the proposed iterative algorithm

1. Initialize the algorithm with an arbitrary forward link power vector p(0), virtual link

power vector p̃(0), and randomly generated transmit beamforming vectors {b(0)
l } and

receive beamforming vectors {w(0)
l }; Set m = 0.

2. Solve the subproblem (5.32) using known {b(m)
l }, {w(m)

l }, and p(m) to obtain X.

If rank(X) = 1, obtain f (m) as the principal eigenvector of X scaled by the square root of

its principal eigenvalue.

If rank(X) ≥ 3 and L ≤ 4, use the approaches in [103] to obtain f (m).

Otherwise

(a) Use the randomization technique in Table 5.1 to obtain f .

(b) Find the most violated constraint in the original problem (5.9) using such f .

(c) Scale f so that the most violated constraint is satisfied with equality to obtain f (m).

3. Set n = 0, p[0] = p(m), {b[0]
l } = {b(m)

l }, p̃[0] = p̃(m), and

(a) Solve the subproblem (5.10) using given p[n], {b[n]
l }, and f (m) to obtain {w[n+1]

l } as

in (5.11).

(b) Solve the subproblem (5.12) with fixed f (m), {b[n]
l }, and {w[n+1]

l } to obtain power

vector p[n+1] as in (5.16).

(c) Update the transmit beamforming vectors {b[n+1]
l } by solving the subproblem (5.21)

with given f (m), {w[n+1]
l }, and p̃[n].

(d) Update the virtual link transmit power p̃[n+1] with fixed {b[n+1]
l }, {w[n+1]

l }, and
f (m) as in (5.23).

(e) If max
∣

∣p[n+1]−p[n]
∣

∣ ≤ ε1, then p(m+1) = p[n+1], {b(m+1)
l } = {b[n+1]

l }, {w(m+1)
l } =

{w[n+1]
l }, p̃(m+1) = p̃[n+1]; end of step 3.

Otherwise, let n := n+ 1 and go to step 3a.

4. If max
∣

∣p(m+1) − p(m)
∣

∣ ≤ ε2, then end.

Otherwise, let m := m+ 1 and go to step 2.

is difficult, due to the coupling between the optimization variables in (4.9b). We also

observe that the proposed algorithm requires less iterations till convergence for lower

target SINR thresholds. Moreover, it can be seen from Table 5.2 that the amount
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of computations required for the convergence of the inner loop is much smaller than

the computation involved in solving the SDP problem in the outer loop. Therefore,

the overall computational complexity of the proposed algorithm can be estimated as

O(c(L+ Ñ2
r )

3.5) with c between 3 and 5.

Before moving to the next section, we would like to comment on several issues related

to the implementation of the proposed algorithm in practice.

Remark 1: The channel state information (CSI) on {Hk,l} , {Hk,l, k = 1, · · · ,K, l =
1, · · · , L} and {Gl,k} , {Gl,k, l = 1, · · · , L, k = 1, · · · ,K} is required in the proposed

algorithm. Since the perfect CSI is not available in a real communication system due to

limited feedback and/or inaccurate channel estimation, robust designs can be considered

in case of imperfect CSI. A worst-case based robust relay matrices design for interference

relay system has been proposed in [98] where each source and destination node has a

single antenna (i.e., only f needs to be optimized). However, when all source and

destination nodes have multiple antennas, the worst-case based robust design becomes

extremely challenging since the worst-case SINR Γl is a very complicated function of f ,

{bl}, {wl}, and p. Alternatively, we can try the statistically robust design [104], where

we average over the mismatch between the true and the estimated CSI. However, the

statistical expectation of Γl in (5.5) with respect to all channel matrices turns out to

be an extremely complicated expression of the design variables f , p, {bl}, and {wl}.
This makes the statistically robust design problem every difficult to solve. The impact

of imperfect CSI on the performance of the proposed algorithm will be studied through

numerical simulation in Section 6.4.

Remark 2: The procedure in Table 5.2 needs to be carried out by a central processing

unit due to the requirement of the global CSI. With the advancement of modern chip

design, the amount of computation O(c(L + Ñ2
r )

3.5) can be handled by the central

processing unit. Nevertheless, it is interesting to investigate distributed algorithms that

can solve the problem (5.9). In fact, the inner loop in step (3) of Table 5.2 is easier

than step (2) for a distributed implementation. The reason is that in step (2), an SDP

problem needs to be solved, which is difficult to be implemented in a distributed manner.

Remark 3: In practical applications, to meet the SINR requirements (4.9b), some

nodes may require larger transmission power that exceeds their available limit. A possi-

ble way out to this problem is to identify the SINR constraints that produce the largest

increase in terms of transmit power first, and then relax those constraints in order to

reduce the required power using a perturbation analysis [105]. Alternatively, one may
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apply an admission control algorithm first to maximize the number of links possibly

served, and then perform optimal power allocation [106].

5.4 Numerical Examples

In this section, we study the performance of the proposed joint power control and

beamforming algorithm for an interference MIMO relay system through numerical sim-

ulations where all nodes are equipped with multiple antennas. For simplicity, we assume

γl = γ,Ns,l = Ns, Nd,l = Nd, l = 1, · · · , L, and Nr,k = Nr, k = 1, · · · ,K, in all sim-

ulations. All noises are i.i.d. complex circularly symmetric Gaussian noise with zero

mean and unit variance (i.e., σ2n = 1). The channel matrices have entries generated

as i.i.d. complex Gaussian random variables with zero mean and variances σ2h and

σ2g for {Hk,l} and {Gl,k}, respectively. All simulation results are averaged over 500

independent channel realizations.

For the proposed algorithm, the procedure in Table 5.2 is carried out in each sim-

ulation to obtain the power vector p, transmit beamforming vectors {bl}, relay beam-

forming vector f , and receive beamforming vectors {wl}. To initialize the algorithm in

Table 5.2, we randomly generate the transmit and receive beamforming vectors {bl}
and {wl}, respectively, along with arbitrary transmit power vector p and virtual power

vector p̃.

In the first example, we compare the performance of the proposed joint power con-

trol and beamforming algorithm (Proposed TxRxBF) with the relay-only beamforming

without power control (RoBF-NPC) scheme studied in [97], [98] and the conventional

SVD-based transmit beamforming approach (SVD-based TxBF). For the SVD-based

TxBF scheme, we choose bl as the principal right singular vector of H̃l. Then we up-

date the transmit power vector p, relay beamforming vector f and receive beamformers

{wl} based on the proposed structure. We plot the total power consumed by all source

nodes and relay nodes versus the target SINR threshold γ (dB). Two channel fading

environments are simulated: (i) Both {Hk,l} and {Gl,k} have Rayleigh fading; (ii) Only

{Hk,l} has Rayleigh fading while {Gl,k} has Ricean fading with a Ricean factor of 5.

Fig. 5.2 shows the performance of all three algorithms for L = 2, K = 15, Ns = Nr = 2,

Nd = 4, σ2h = 15, and σ2g = 10. It can be seen from Fig. 5.2 that the proposed algorithm

requires significantly less total power compared with the other two schemes in both

Rayleigh and Ricean fading environments.
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Figure 5.2: Total power versus target SINR. L = 2, K = 15, Ns = Nr = 2, Nd = 4,

σ2
h = 15, and σ2

g = 10.

Note that the RoBF-NPC scheme performs better in Ricean fading channel whereas

the performance of the other two approaches degrades under Ricean fading environment.

This can be explained as follows. In the RoBF-NPC scheme, each transmitter and re-

ceiver has a single antenna as in [97] and [98], which indicates that the relay-destination

channels {Gl,k} are in fact multiple-input single-output (MISO) channels. Therefore the

LOS path component improves the system performance. For the other two schemes, the

relay-destination channels are MIMO channels. In MIMO Ricean channels, the benefit

of scattering environment reduces due to the LOS component. This weaker scattering

component causes the performance degradation. Similar phenomenon has been observed

in [107] for point-to-point MISO and MIMO Ricean channels.

In the second example, we vary the number of transmit antennas Ns to show the

effect of transmit diversity with L = 2, K = 8, Nr = 2, Nd = 4, σ2h = 15, and σ2g = 10.

Fig. 5.3 indicates the significance of transmit beamforming in the proposed algorithm.

It is obvious from Fig. 5.3 that with the increase in the spatial dimension of the transmit

beamformers the performance of the proposed algorithm keeps improving.

In the next example, we study the performance of the proposed algorithm for dif-

ferent number of relays K with L = 2, Ns = Nr = 2, Nd = 4, σ2h = 15, and σ2g = 10.

The total power required for K = 10, 12, and 15 versus γ (dB) is displayed in Fig. 5.4.
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Figure 5.3: Total power versus target SINR for different number of transmit antennas.

L = 2, K = 8, Nr = 2, Nd = 4, σ2
h = 15, and σ2

g = 10.
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Figure 5.4: Total power versus target SINR for different number of relays. L = 2,

Ns = Nr = 2, Nd = 4, σ2
h = 15, and σ2

g = 10.
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Figure 5.5: Total power versus target SINR for different number of relay antennas. L = 3,

K = 12, Ns = 2, Nd = 4, σ2
h = 15, and σ2

g = 10.

As expected, if we increase the number of relays the proposed algorithm requires less

power since more relays provide more spatial diversity. We also show the impact of the

number of relay antennas Nr in Fig. 5.5. This time, we set L = 3, K = 12, Ns = 2,

Nd = 4, σ2h = 15, and σ2g = 10 and the total power required for Nr = 2 and 3 versus

γ (dB) is displayed. Note that with the increase in the number of relay antennas, the

performance of the proposed scheme improves but at the same time, the computational

complexity of solving the problem (5.32) significantly increases. Therefore, it is impor-

tant to make a tradeoff between the performance and complexity based on the system

requirements and the available resources.

In the next two examples, we study the impact of channel quality on the proposed

algorithm. We assume that a larger variance of channel coefficients indicates a better

channel. The impact of different σ2h and σ2g on the proposed algorithm is shown in

Fig. 5.6 and Fig. 5.7, for σ2g = 10 and σ2h = 10, respectively. In these examples, we set

L = 2, K = 8, Ns = Nd = 4, and Nr = 2. A careful inspection of Figs. 5.6 and 5.7

reveals that the effect of channel variance of either hop is not homogeneous in general,

but the results clearly demonstrate that the proposed algorithm performs better as the

channel quality improves.

Next, we study the effect of channel interferences on the proposed algorithm. By
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Figure 5.6: Effect of the first-hop channel quality. L = 2, K = 8, Ns = Nd = 4, Nr = 2,

and σ2
g = 10.
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Figure 5.7: Effect of the second-hop channel quality. L = 2, K = 8, Ns = Nd = 4, Nr = 2,

and σ2
h = 10.
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increasing the number of source-destination pairs L, the interfering signal received at

each destination node is also increased. The performance of the algorithm for different L

is illustrated in Fig. 5.8 for K = 12, Ns = Nr = 2, Nd = 4, σ2h = 15, and σ2g = 10. From

this figure it is clear that if there are more active users communicating simultaneously

in the system, we need more power to achieve the same target SINR threshold γ.
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Figure 5.8: Total power versus target SINR for different number of users. K = 12,

Ns = Nr = 2, Nd = 4, σ2
h = 15, and σ2

g = 10.

In the last example, we study the impact of imperfect CSI on the performance of the

proposed algorithm. The mismatch between the true CSI and the estimated CSI is mod-

elled as complex Gaussian matrices with zero-mean and unit-variance entries. Fig. 5.9

shows the performance of all three algorithms for L = 2, K = 12, Ns = Nr = 2, Nd = 4,

σ2h = 12, and σ2g = 10. Clearly, the proposed algorithm outperforms the existing tech-

niques with both perfect and imperfect CSI. Note that at very low (close to 0dB) target

SINR, the RoBF scheme requires almost the same total power regardless the perfect

CSI or imperfect CSI, because it does not involve any transmit/receive beamforming

technique. The transmitters use their maximum available power budgets to transmit

the signals. Thus, the total power varies only for relay beamforming resulting in little

difference between total powers considering perfect and imperfect CSI at a low target

SINR level.
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Figure 5.9: The impact of the CSI mismatch on the tested algorithms. L = 2, K = 12,

Ns = Nr = 2, Nd = 4, σ2
h = 12, and σ2

g = 10.

5.5 Chapter Summary

In this chapter, we considered a two-hop interference MIMO relay system with dis-

tributed relay nodes and developed an iterative technique to minimize the total transmit

power consumed by all source and relay nodes such that a minimum SINR threshold is

maintained at each receiver. The proposed algorithm exploits beamforming techniques

at the source, relay, and destination nodes in conjunction with transmit power con-

trol. Simulation results demonstrate that the proposed power control and beamforming

algorithm outperforms the existing techniques.
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Chapter 6

Channel Estimation of Dual-Hop

MIMO Relay System

In this chapter, we develop a novel channel estimation algorithm for two-hop MIMO

relay systems using the parallel factor (PARAFAC) analysis. After a brief review of ex-

isting MIMO channel estimation techniques in Section 6.1, we introduce the PARAFAC

data model of a two-hop AF-MIMO relay communication system in Section 6.2. The

proposed channel estimation algorithm is developed in Section 6.3. The algorithm pro-

vides the destination node with full knowledge of all channel matrices involved in the

communication. Compared with existing approaches, the proposed algorithm requires

less number of training data blocks, yields smaller channel estimation error, and is ap-

plicable for both one-way and two-way MIMO relay systems with single or multiple

relay nodes. In Section 6.4, we show some numerical examples to demonstrate the ef-

fectiveness of the PARAFAC-based channel estimation algorithm. Section 6.5 briefly

summarizes the chapter.

6.1 Existing MIMO Channel Estimation Techniques

For the MIMO relaying algorithms developed in Chapters 2-5, the instantaneous CSI

knowledge of both the source-relay link and the relay-destination link is required at

the destination node to estimate the source signals. Moreover, in order to optimize the

source and/or relay matrices, the instantaneous CSI knowledge of both links is needed to

carry out the optimization procedure [20, 22, 25, 27, 35–37, 44, 59, 86]. When the direct
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source-destination link is considered, the CSI knowledge of the direct link is also required

at the destination node to estimate the source signals [108]. However, in practical

relay communication systems, the instantaneous CSI is unknown, and therefore, has

to be estimated. Recently, a tensor-based channel estimation algorithm is developed

in [109] for a two-way MIMO relay system. Since the algorithm in [109] exploits the

channel reciprocity in a two-way relay system, its application in one-way MIMO relay

systems is not straightforward. In [110], a relay channel estimation algorithm using

the least-squares (LS) fitting is proposed. The performance of the algorithm in [110]

is further analyzed and improved by using the weighted least-squares (WLS) fitting in

[111]. However, the number of training data blocks required in [110] and [111] is at

least equal to the number of relay nodes (antennas), resulting in a low system spectral

efficiency. For amplify-and-forward relay networks with single-antenna source, relay, and

destination nodes, the optimal training sequence is developed in [112]. A superimposed

training based channel estimation algorithm has been developed recently for OFDM

modulated relay systems in [113]. The optimal training sequence is derived in [114] for

a MIMO relay system with one multi-antenna relay node. However, for systems with

distributed relay nodes which do not cooperate with each other, the result in [114] can

not be used.

There are two major challenges in channel estimation for MIMO relay systems.

Firstly, for most applications, the CSI on the compound source-relay-destination channel

alone is not sufficient. In fact, the CSI of each hop is required at the destination node to

perform signal retrieving and system optimization. Secondly, relay nodes (in particular,

non-regenerative distributed relays) often have limited computation capacity. Thus,

channel estimation is usually carried out at the destination node, not at the relay nodes

[109–113]. In this chapter, we address these two challenges by proposing a novel MIMO

relay channel estimation algorithm based on the PARAFAC analysis [115–117]. The

proposed algorithm provides the destination node with full knowledge of all channel

matrices involved in the communication. The contributions of this chapter can be

summarized as follows. Firstly, compared with algorithms in [110] and [111] where the

number of training data blocks should be at least equal to the number of relay nodes

(antennas), the number of training data blocks required in the proposed algorithm can

be less than the number of relay nodes (antennas). In particular, we show that when

the number of relay nodes (antennas) is smaller than the number of antennas at the

source node and the destination node, as few as two training data blocks are sufficient
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to estimate all channels. Thus, the proposed algorithm has a higher spectral efficiency

than those in [110] and [111]. Secondly, in this chapter, the initial estimation of channel

matrices is improved by a linear MMSE (LMMSE) algorithm, which yields a smaller

estimation error than the WLS fitting applied in [111]. Thirdly, in contrast to [109],

the proposed algorithm is applicable for both one-way and two-way relay systems with

single or multiple relay nodes.

In the proposed algorithm, the MIMO channel matrix of the direct source-destination

link in one-way relay systems is estimated by the LS approach. For the source-relay-

destination link in both one-way and two-way relay systems, we show that under a

mild condition of the channel training data block length, the MIMO channel matrices

of both hops can be estimated up to permutation and scaling ambiguities, which are

inherent to the PARAFAC model. To remove the permutation ambiguity, we exploit

the knowledge of the relay factors available at the destination node during the channel

training period. Then by using a bilinear alternating least-squares (BALS) algorithm,

the channel matrix of each hop can be estimated up to some scaling ambiguity, which

can be resolved through normalization as in [110], [111], [116].

Since during the training period, the noise at the relay nodes is amplified and for-

warded to the destination node, the effective noise vector at the destination node is

non-white. Taking this fact into account, we propose an LMMSE approach to further

improve the channel estimation, by exploiting the initial estimate of the relay-destination

channel. We show that the proposed BALS and LMMSE algorithms can also be applied

for channel estimation in two-way MIMO relay systems. Numerical examples demon-

strate the effectiveness of the proposed PARAFAC-based channel estimation algorithm

compared with existing techniques. We would like to mention that in this chapter, for

notational convenience, we consider a narrowband single-carrier system. However, our

algorithm can be straightforwardly applied to estimate the MIMO channel matrices in

each subcarrier of a broadband multi-carrier relay communication system1.

1In a multicarrier communication system, the spectral correlation among subcarriers can be exploited

to reduce the computational complexity and improve the quality of channel estimation [118]. Exploiting

such correlation in multicarrier MIMO relay channel estimation is an interesting future topic.
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6.2 System Model

We consider a two-hop MIMO communication system where the source node transmits

information to the destination node with the aid of R relay nodes as shown in Fig. 6.1.

The source node and the destination node are equipped with Ns ≥ 2 and Nd ≥ 2 anten-

nas, respectively, while the ith relay node has Mi antennas, i = 1, · · · , R. Since several

practical constraints such as power consumption, implementation costs and spatial effi-

ciency make half-duplex relays more appealing for wireless applications than full-duplex

relays, in this chapter, we consider half-duplex relays as in [109–114] (i.e., each relay

node does not receive and transmit signals simultaneously). Thus, the communication

process between the source and destination nodes is completed in two time slots. In the

first time slot, the Ns×1 modulated signal vector us(t) is transmitted to all relay nodes

and the destination node, and the received signal vectors are respectively given by

yr,i(t) =Hsr,ius(t) + vr,i(t), i = 1, · · · , R

yd(t) =Hsdus(t) + vd(t) (6.1)

where yr,i(t) is an Mi × 1 received signal vector at the ith relay node, yd(t) is an

Nd×1 received signal vector at the destination node, Hsr,i is theMi×Ns MIMO fading

channel matrix between the source node and the ith relay node, Hsd is the Nd × Ns

MIMO source-destination channel matrix, vr,i(t) is an Mi × 1 noise vector at the ith

relay node, and vd(t) is the Nd × 1 noise vector at the destination node. We assume

that all noises are independent identically distributed (i.i.d.) complex Gaussian noise

with zero mean and unit variance.
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Figure 6.1: Two-Hop MIMO relay system with R relay nodes.
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In the second time slot, the source node is silent, and each relay node amplifies

the received signal vector with matrix Ri and forwards the amplified signals to the

destination node. We assume that relay nodes are synchronized during transmission2

as in [25], [110], and [111]. The received signal vector at the destination node is

yd(t+ 1) =

R
∑

i=1

Hrd,iRiHsr,ius(t) +

R
∑

i=1

Hrd,iRivr,i(t) + vd(t+ 1)

=HrdRHsrus(t) +HrdRvr(t) + vd(t+ 1) (6.2)

where Hrd,i is the Nd ×Mi MIMO fading channel matrix between the destination node

and the ith relay node, and vd(t + 1) is an Nd × 1 noise vector at the destination

node at time t + 1. Here Hsr ,
[

HT
sr,1, · · · ,HT

sr,R

]T
is the M × Ns (M =

∑R
i=1Mi)

MIMO channel from the source node to all relay nodes, Hrd , [Hrd,1, · · · ,Hrd,R] is

the Nd ×M channel matrix between all relay nodes and the destination node, vr(t) ,
[

vT
r,1(t), · · · ,vT

r,R(t)
]T

is an M × 1 vector stacking the noise at all relay nodes on top of

each other, andR , blkdiag[R1, · · · ,RR] is anM×M block diagonal matrix containing

all relay matrices. We assume that Hsr, Hrd, and Hsd have complex Gaussian entries

with zero-mean and variances of 1/Ns, 1/M , 1/(8Ns), respectively
3. Depending on the

environment, the elements in each channel matrix can be independent or correlated [12].

We assume that the channel correlation knowledge is not available at the destination

node and thus can not be exploited. All channels are quasi-static block fading which

means they are constant over some time interval before changing to another realization.

Combining (6.1) and (6.2), the received signals at the destination node over two time

slots are given by

y(t) =

[

HrdRHsr

Hsd

]

us(t) +

[

HrdRvr(t) + vd(t+ 1)
vd(t)

]

. (6.3)

Due to its lower computational complexity, a linear receiver is used at the destination

node to retrieve the transmitted signal vector us(t) [22, 25, 27, 120]. The estimated

signal waveform vector is given by ûs(t) = WHy(t), where W is the 2Nd ×Ns weight

2If a blind synchronization technique is applied, relay synchronization and channel estimation can be

jointly designed to improve the system performance [119]. While in pilot symbols-based synchronization

methods, these pilot symbols can be exploited to assist channel estimation.
3The variances are set to normalize the effect of number of transmit antennas to the receive signal-

to-noise ratio. The relay nodes are assumed to be of equal distance to the source and the destination

nodes with a path loss factor of 3.
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matrix. From (6.3), the MSE of the signal waveform estimation can be written as

e = tr
(

E
[

(ûs(t)− us(t))(ûs(t)− us(t))
H
])

. (6.4)

Assuming that E
[

us(t)us(t)
H
]

= INs , the receiver weight matrix which minimizes (6.4)

is the Wiener filter given by [60]

W =
(

H̄H̄H + C̄
)−1

H̄ (6.5)

where

H̄,

[

HrdRHsr

Hsd

]

, C̄,

[

HrdRRHHH
rd + INd

0Nd×Nd

0Nd×Nd
INd

]

. (6.6)

Here 0m×n denotes anm×nmatrix with all zero entries. We assume that the destination

node knows the relay amplifying matrix R.

It can be clearly seen from (6.5) and (6.6) that in order to compute W, the CSI

knowledge of the compound channel H̄ alone is not sufficient. In fact, the CSI of Hrd is

also needed at the destination node to obtain W in (6.5). Moreover, it has been shown

in [108] that the CSI of Hsr, Hrd, and Hsd is required to optimize the source precoding

matrix and the relay amplifying matrix.

It is shown in [114] that the CSI required above can be obtained through a two-

stage training (TST) approach. At the first stage, Hrd is estimated by transmitting

an M × L1 training sequence S1 from all R relay nodes to the destination node, where

L1 (L1 ≥ M) is the length of the training sequence. The received signal matrix at the

destination node is given by Yd = HrdS1+Vd(1), where Vd(1) is the noise matrix at the

destination node. According to [121], the optimal S1 minimizing the MSE of channel

estimation is orthogonal, i.e., S1S
H
1 = IM . Such S1 can be constructed, for example,

from the normalized discrete Fourier transform (DFT) matrix [121]. The estimation of

Hrd is given by

Ĥrd = YdS
H
1 . (6.7)

At the second stage, the source node transmits an Ns × L2 (L2 ≥ Ns) orthogonal

training sequence S2 (S2S
H
2 = INs) to all relay nodes which then forward it to the

destination node. From (6.3), the received signal matrix at the destination node is

Y =

[

HrdRHsr

Hsd

]

S2 +

[

HrdRVr +Vd(2)
Vd(3)

]

(6.8)

where Vr is the noise matrix at the relay nodes, Vd(2) and Vd(3) are the noise matrices

at the destination node. The estimation of the compound channel H̄ is obtained from
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(6.8) as ˆ̄H = YSH
2 . Then an estimation of Hsr can be obtained from ˆ̄H as

Ĥsr = (ĤrdR)† ˆ̄H(1) (6.9)

where ˆ̄H(1) contains the first Nd rows of ˆ̄H. It can be seen from (6.9) that the error

in estimating Hsr can be very large since Ĥsr depends on Ĥrd, which is also an esti-

mated matrix. To overcome this difficulty, in the following, we develop a PARAFAC

analysis based algorithm to directly estimate all channel matrices (Hsr,Hrd,Hsd) at

the destination node.

6.3 Proposed Channel Estimation Algorithm

In order to estimate the channel matrices, training sequences are transmitted from the

source node. The overall channel training period is divided into K time blocks (the

minimal K required will be determined later). In each time block, the same Ns × L

(L ≥ Ns) orthogonal channel training sequence S with SSH = INs is transmitted by the

source node. In the kth time block, the ith relay node amplifies the received signal vector

with a diagonal matrix Ek,i and forwards the amplified signal to the destination node4.

Thus, the overall amplifying matrix from all relay nodes is Ek = blkdiag[Ek,1, · · · ,Ek,R],

which is in fact a diagonal matrix. From (6.3), the received signal matrices at the

destination node over K time blocks are given by

Yk,

[

Y
(1)
k

Y
(2)
k

]

=

[

HrdDk{F}Hsr

Hsd

]

S+

[

HrdDk{F}Vr,k +V
(1)
d,k

V
(2)
d,k

]

, k = 1, · · · ,K

where Dk{F} , Ek, F is a K × M matrix whose kth row contains the amplifying

factors of all M relay antennas at the kth time block, Dk{·} is the operator that makes

a diagonal matrix by selecting the kth row and putting it on the main diagonal while

putting zeros elsewhere, Vr,k is the M × L noise matrix at the relay nodes during the

kth time block, V
(1)
d,k and V

(2)
d,k are Nd×L noise matrices at the destination node during

the kth time block, and Y
(1)
k and Y

(2)
k are matrices containing the first and the last Nd

rows of Yk, respectively.

At the destination node, by multiplying both sides of (6.10) with SH , we obtain

YkS
H =

[

HrdDk{F}Hsr

Hsd

]

+

[

HrdDk{F}Vr,kS
H+V

(1)
d,kS

H

V
(2)
d,kS

H

]

, k = 1, · · · ,K. (6.10)

4Diagonal relay amplifying matrix is only used for the purpose of channel estimation. During the

normal communication period, however, the relay amplifying matrix does not need to be diagonal.
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From (6.10), an LS estimate of Hsd is given by

Ĥsd =
1

K
Y(2)(1K ⊗ S)H = Hsd +

1

K
V

(2)
d (1K ⊗ S)H

whereY(2) ,
[

Y
(2)
1 ,Y

(2)
2 , · · · ,Y(2)

K

]

, V
(2)
d ,

[

V
(2)
d,1 ,V

(2)
d,2 , · · · ,V

(2)
d,K

]

, 1K denotes a 1×K
vector with all 1 elements, and ⊗ stands for the Kronecker matrix product [62]. In the

following, we show how to estimate Hrd and Hsr at the destination node.

6.3.1 PARAFAC model and identifiability of channel matrices

Let us introduce

X̃k , Y
(1)
k SH = Xk +Vk, k = 1, · · · ,K (6.11)

Xk , HrdDk{F}Hsr, k = 1, · · · ,K (6.12)

Vk , HrdDk{F}Vr,kS
H +V

(1)
d,kS

H, k = 1, · · · ,K (6.13)

where Xk is the matrix-of-interest containing both Hrd and Hsr, Vk is the effective

noise matrix, and X̃k is a noisy observation of Xk. We would like to mention that

F is chosen beforehand and is known at the destination node. The optimal F is very

difficult to obtain for the PARAFAC-based channel estimation algorithm. Nevertheless,

an intuitive way of designing F will be discussed later. By assembling the set of K

matrices in (6.12) together along the direction of the index k (the third dimension), we

obtain an Nd ×Ns ×K three-way array X, whose (i, j, k)-th element is given by

x(i, j, k) =
M
∑

m=1

hrd(i,m)f(k,m)hsr(m, j) (6.14)

for all i = 1, · · · , Nd, j = 1, · · · , Ns, and k = 1, · · · ,K. Here hrd(i,m), f(k,m), and

hsr(m, j) stand for the (i,m)-th, (k,m)-th, and (m, j)-th elements of Hrd, F, and Hsr,

respectively. Equation (6.14) expresses x(i, j, k) as a sum of M rank-1 triple products,

which is known as the trilinear decomposition, or PARAFAC5 analysis of x(i, j, k) [115–

117]. Correspondingly, assembling K matrices of X̃k in (6.11) along the index k leads

5PARAFAC is a multi-way method originating from psychometrics [115] and has recently found

applications in array signal processing [116] and communications [117]. Generalizing the concept of

low-rank decomposition to higher way arrays or tensors, PARAFAC is instrumental in the analysis

of data arrays indexed by three or more independent variables, just like singular value decomposition

(SVD) is instrumental in ordinary matrix (two-way array) analysis. Unlike SVD, PARAFAC does not

impose orthogonality constraints. The reason is that in contrast to low-rank matrix decomposition,

low-rank decomposition of higher order tensorial data is essentially unique under certain conditions.
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to a noise-contaminated X given by X̃ = X+V, where V is obtained by assembling K

noise matrices in (6.13).

Let us denote the Kruskal rank (or k-rank) [122] of a matrix A as kA, which is the

maximum integer k, such that any k columns drawn from A are linearly independent.

Note that Kruskal rank is always less than or equal to the conventional matrix rank. It

can be easily checked that if A is full column rank, then it is also full Kruskal rank. It

can be shown by using the identifiability theorem of the PARAFAC model in [116] and

[122] that if

kHrd
+ kF + kHsr ≥ 2M + 2 (6.15)

then the triple (Hrd,F,Hsr) is unique up to permutation and scaling ambiguities, i.e.,

if there exists any other triple (H̄rd, F̄, H̄sr) that gives rise to (6.12), then it is related

to (Hrd,F,Hsr) via

H̄rd = HrdΠ∆1, F̄ = FΠ∆2, H̄T
sr = HT

srΠ∆3 (6.16)

where Π is an M ×M permutation matrix, and ∆i, i = 1, 2, 3, are M ×M diagonal

(complex) scaling matrices satisfying

∆1∆2∆3 = IM . (6.17)

Inequality (6.15) establishes the sufficient condition for the identifiability of (Hrd,F,

Hsr). Since F is chosen beforehand (e.g., based on the DFT matrix as shown later),

one can guarantee that F has full k-rank. Moreover, both Hsr and Hrd are random

matrices, and hence have full k-rank. Therefore, in such case, condition (6.15) becomes

min(Nd,M) + min(K,M) + min(Ns,M) ≥ 2M + 2. (6.18)

From (6.18), the identifiability condition can be summarized in the following theorem.

Theorem 6.1 The PARAFAC model (6.14) is identifiable only if Ns ≥ 2, Nd ≥ 2, and

2 ≤ M ≤ Ns +Nd − 2. Moreover, for different Ns, Nd, and M , the lower bound of K

satisfying (6.18) is given by

K ≥































2M + 2−Ns −Nd M ≥ Ns, Nd

M + 2−Nd Nd ≤M ≤ Ns

M + 2−Ns Ns ≤M ≤ Nd

2 M ≤ Ns, Nd

. (6.19)
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For all four cases in (6.19), the lower bound of K is no greater than M .

Proof: The proof can be done by expanding the three min(·) operators in (6.18).

• If M ≥ Ns, Nd −→ min(K,M) ≥ 2M + 2−Nd −Ns −→ K ≥ 2M + 2−Nd −Ns,

andM ≥ 2M+2−Nd−Ns −→M ≤ Ns+Nd−2. This together withM ≥ Ns, Nd,

we have Ns, Nd ≥ 2 and 2 ≤M ≤ Ns +Nd − 2. Since M ≤ Ns +Nd − 2, it holds

that 2M + 2−Ns −Nd ≤M ;

• If Nd ≤ M ≤ Ns −→ min(K,M) ≥ M + 2 − Nd −→ K ≥ M + 2 − Nd, and

M ≥ M + 2 − Nd −→ Nd ≥ 2. This together with Nd ≤ M ≤ Ns, we have

Ns, Nd ≥ 2 and 2 ≤M ≤ Ns +Nd − 2. Since Nd ≥ 2, there is M + 2−Nd ≤M ;

• If Ns ≤ M ≤ Nd −→ min(K,M) ≥ M + 2 − Ns −→ K ≥ M + 2 − Ns, and

M ≥ M + 2 − Ns −→ Ns ≥ 2. This together with Ns ≤ M ≤ Nd, we have

Ns, Nd ≥ 2 and 2 ≤M ≤ Ns+Nd−2. Since Ns ≥ 2, it holds thatM+2−Ns ≤M ;

• If M ≤ Ns, Nd −→ min(K,M) ≥ 2 −→ K ≥ 2, and M ≥ 2. This together with

M ≤ Ns, Nd, we have Ns, Nd ≥ 2 and 2 ≤M ≤ Ns +Nd − 2.

Summarizing the four cases above, we obtain the necessary conditions for identifiability

in the PARAFAC model (6.14) as Ns ≥ 2, Nd ≥ 2, and 2 ≤ M ≤ Ns + Nd − 2. The

lower bound of K in each case, which is less than or equal to M , is also given above. �

Interestingly, it is shown in Theorem 6.1 that under the mild condition of Ns, Nd ≥ 2

and 2 ≤ M ≤ Ns +Nd − 2, the minimal K required in the proposed PARAFAC-based

channel estimation algorithm can be less than M . While in [110] and [111], at least

K =M training data blocks are required to perform the channel estimation. Therefore,

the proposed algorithm has a higher spectral efficiency than those in [110] and [111].

Moreover, Theorem 6.1 shows that if Nd ≥ M and Ns ≥ M , then two training data

blocks (K = 2) are sufficient to estimate both Hrd and Hsr at the destination node. We

also observe that if (6.19) is satisfied, then it holds that KNd > M and KNs > M . We

would like to mention that since Ns ≥ 2 and Nd ≥ 2 are required, which implies that

Hsr and Hrd need to be matrices, the PARAFAC-based MIMO relay channel estimation

algorithm can not be straightforwardly applied to relay systems with Ns = 1 and/or

Nd = 1.
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6.3.2 Bilinear alternating least-squares (BALS) fitting

In this subsection, we develop a BALS algorithm to estimate Hsr and Hrd by carrying

out the PARAFAC model fitting with known F. First we show some rearrangements of

three-way arrays X, V, and X̃ which will be used later.

By stacking K matrices of Xk in (6.12) on top of each other, we obtain

X ,







X1
...

XK






=







HrdD1{F}
...

HrdDK{F}






Hsr = (F⊙Hrd)Hsr (6.20)

where ⊙ stands for the Khatri-Rao (column-wise Kronecker) matrix product [62]. Cor-

respondingly, stacking matrices X̃k in (6.11) on top of each other gives rise to

X̃ =







X1
...

XK






+







V1
...

VK






= X+V. (6.21)

By slicing X perpendicular to the dimension of j, we obtain a set of Ns matrices

Zj = FDj{HT
sr}HT

rd, j = 1, · · · , Ns. By stacking Ns matrices of Zj on top of each

other, we have

Z ,







Z1
...

ZNs






=







FD1{HT
sr}

...
FDNs{HT

sr}






HT

rd = (HT
sr⊙ F)HT

rd. (6.22)

Similarly, by slicing X̃ perpendicular to the dimension of j and stacking the resulting

matrices on top of each other, we have

Z̃ =







Z1
...

ZNs






+







N1
...

NNs






(6.23)

where Nj , j = 1, · · · , Ns, are the slabs of V along the dimension of j.

The BALS fitting starts at a random Ĥrd. In each iteration, we first update Hsr

using the LS fitting with fixed F and Ĥrd. Using (6.20) and (6.21), we obtain an updated

Hsr as

Ĥsr = argmin
Hsr

∥

∥X̃− (F⊙ Ĥrd)Hsr

∥

∥ = (F⊙ Ĥrd)
† X̃ (6.24)

where ‖ · ‖ denotes the matrix Frobenius norm. Then we update Hrd through the LS

fitting with known F and Ĥsr, and obtain Ĥrd using (6.22) and (6.23) as

Ĥrd = argmin
Hrd

∥

∥Z̃− (ĤT
sr ⊙F)HT

rd

∥

∥ =
[

(ĤT
sr ⊙ F)† Z̃

]T
. (6.25)
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Since the conditional update of matrices in (6.24) and (6.25) may either improve or

maintain but can not worsen the current LS fit, a monotonic convergence of the BALS

procedure to (at least) a locally optimal solution follows directly from this observation

[116]. The procedure of the BALS fitting is listed in Table 6.1, where ε is a positive

constant close to 0, and the matrix with superscript (n) denotes the estimated matrix

at the nth iteration. Theoretically, for some particular data sets, the convergence of the

BALS algorithm can be extremely slow. However, since both Hsr and Hrd are random

matrices, the probability that both matrices fall in such data sets is very small. For

large values of Ns, M , and Nd, such probability is almost zero. It will be shown in

Section 6.4 that the BALS algorithm typically converges in only a few iterations.

Table 6.1: Procedure of the BALS fitting

1. Initialize the algorithm with a given F and a random H
(0)
rd ; Set δ(0) = ∞ and n = 1.

2. Update H
(n)
sr as (6.24) using H

(n−1)
rd ; Update H

(n)
rd as (6.25) using H

(n)
sr ; Calculate δ(n) =

∥

∥X̃− (F⊙H
(n)
rd )H

(n)
sr

∥

∥.

3. If
[

δ(n− 1)− δ(n)
]

/δ(n) ≤ ε, then end.

Otherwise, let n := n+ 1 and go to step 2).

Since F is known, the BALS algorithm delivers an estimation of Hsr and Hrd with

only a scaling ambiguity ∆1 at the convergence point, i.e., Π = IM , ∆2 = IM in (6.16),

and ∆3 = ∆−1
1 according to (6.17). This scaling ambiguity also exists in [110] and

[111], and can be resolved through normalization as in [110], [111], [116].

The major computation task in the proposed BALS algorithm lies in the LS fittings

in (6.24) and (6.25). Thus the per-iteration complexity of the BALS algorithm can

be estimated as O(MKNdNs +M3). The overall complexity of the BALS algorithm

depends on the number of iterations and will be further discussed in Section 6.4. Note

that the computational complexity of the LS-based algorithm in [110] can be estimated

as O(MKNdNs+M
3+MN2

dNs), where the three terms are from matrix multiplications,

matrix inversion, and M matrix SVDs, respectively.

Now we present an intuitive choice of F. By slicing X̃ perpendicular to the dimension

of i and stacking the resulting matrices on top of each other, we have

P = (Hrd ⊙HT
sr)F

T +M
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where M is the corresponding noise matrix obtained by slicing V perpendicular to the

dimension of i and stacking the resulting matrices on top of each other. Let us denote

Hsrd , Hrd⊙HT
sr. Since E

[

HsrdH
H
srd

]

= INsNd
, if K ≥M andM have i.i.d. entries, the

optimal F minimizing the MSE of a linear estimation of Hsrd is unitary (FHF = IM ).

However, it can be shown that the elements in M are correlated and the covariance

matrix of M is a complicated function of F. Thus, strictly speaking, a unitary F is not

optimal in general. Nevertheless, such F is still a good choice especially when the signal-

to-noise ratio is medium to high at channel training stage. In numerical simulations,

we also find that the DFT matrix (which satisfies FHF = IM) is a good choice for F.

6.3.3 Linear minimal mean-squared error (LMMSE) estimation

It can be seen from (6.13) that the covariance matrix of the effective noise Vk at the

destination node is given by Ck , E[VkV
H
k ] = Ns

(

HrdDk{F}(Dk{F})HHH
rd + INd

)

,

k = 1, · · · ,K. Obviously, Vk is non-white due to the channel Hrd. Therefore, after

an initial estimation of Hrd by the BALS algorithm in Section 6.3.2, an improved

estimation of Hsr can be obtained by the LMMSE approach as H̆sr = TH
srX̃, where Tsr

is the KNd ×M weight matrix. The MSE of channel estimation can be written as

E
[

tr
(

(H̆sr −Hsr)(H̆sr −Hsr)
H
)

]

= tr
(

(

TH
sr(F⊙ Ĥrd)

−IM
)(

TH
sr(F⊙ Ĥrd)− IM

)H
+TH

srĈTsr

)

(6.26)

where Ĉ = blkdiag
[

Ĉ1, Ĉ2, · · · , ĈK

]

, and Ĉk = Ns

(

ĤrdDk{F}(Dk{F})HĤH
rd + INd

)

,

k = 1, · · · ,K, is an estimate of Ck using Ĥrd. The weight matrix minimizing (6.26) is

given by

Tsr =
(

(F⊙ Ĥrd)(F ⊙ Ĥrd)
H + Ĉ

)−1
(F⊙ Ĥrd). (6.27)

It will be seen in Section 6.4 that there is an obvious improvement in the estimation of

Hsr by using (6.27) after the convergence of the BALS algorithm.

Similarly, we expect that the initial estimation of Hrd can be improved by the

LMMSE approach. It can be shown from (6.23) that the covariance matrix of the noise

Nj , denoted as Θj , E[NjN
H
j ], j = 1, · · · , Ns, is a diagonal matrix whose (k, k)-th

diagonal element is given by
∑M

m=1 ‖f(k,m)hrd,m‖2+Nd, where hrd,m is themth column

of Hrd. Thus, an improved LMMSE estimate of Hrd can be obtained as H̆rd = [TH
rdZ̃]

T ,

where Trd is the KNs ×M weight matrix with

Trd =
(

(H̆T
sr ⊙ F)(H̆T

sr ⊙ F)H + Θ̂
)−1

(H̆T
sr ⊙ F). (6.28)
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Here Θ̂ = blkdiag
[

Θ̂1, Θ̂2, · · · , Θ̂Ns

]

, and [Θ̂j ]k,k =
∑M

m=1 ‖f(k,m)ĥrd,m‖2 + Nd, k =

1, · · · ,K, j = 1, · · · , Ns, is an estimate of [Θj ]k,k using Ĥrd.

We would like to mention that in [111], the WLS approach is used to improve

the channel estimation after the LS algorithm. It will be shown in Section 6.4 that

the LMMSE algorithm yields a smaller MSE of channel estimation (particularly for

estimating Hrd) than that of the WLS method in [111].

6.3.4 Extension to channel estimation in two-way MIMO relay sys-

tems

In the following, we show that the proposed algorithm can also be used for channel

estimation in two-way MIMO relay systems.

In a two-way relay system, two users exchange their information through one or

multiple relay nodes [123]. The received signal matrices at two users during the kth

time block of the channel training period are given respectively by

Y1,k =H1,rDk{F}Hr,2S2 +H1,rDk{F}Hr,1S1

+H1,rDk{F}Vr,k +V1,k, k = 1, · · · ,K (6.29)

Y2,k =H2,rDk{F}Hr,1S1 +H2,rDk{F}Hr,2S2

+H2,rDk{F}Vr,k +V2,k, k = 1, · · · ,K (6.30)

where Hr,i, i = 1, 2, is the MIMO channel from user i to all relay nodes, Hi,r, i = 1, 2, is

the MIMO channel from all relay nodes to user i, and Vi,k, i = 1, 2, is the noise matrix

at user i during the kth time block.

The Ni × L training sequence Si chosen by user i, i = 1, 2, in (6.29) and (6.30) is

designed such that

SiS
H
i = INi

, i = 1, 2, S1S
H
2 = 0N1×N2

(6.31)

where Ni is the number of antennas at user i. Note that S1 and S2 satisfying (6.31) can

be easily constructed from the normalized DFT matrix with L ≥ N1 +N2. Multiplying

both sides of (6.29) with SH
2 and both sides of (6.30) with SH

1 , we have

Y1,kS
H
2 =H1,rDk{F}Hr,2 +H1,rDk{F}Vr,kS

H
2 +V1,kS

H
2 , k = 1, · · · ,K (6.32)

Y2,kS
H
1 =H2,rDk{F}Hr,1 +H2,rDk{F}Vr,kS

H
1 +V2,kS

H
1 , k = 1, · · · ,K.(6.33)
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Now the proposed PARAFAC-based algorithm developed in Section 6.3.1 to Section 6.3.3

can be applied at user 1 to estimate H1,r and Hr,2 from (6.32) and at user 2 to estimate

H2,r and Hr,1 from (6.33).

6.4 Numerical Examples

In this section, we study the performance of the proposed channel estimation algorithm

through numerical simulations. In particular, we compare the proposed algorithm with

the conventional TST scheme in Section 6.2, the LS-based algorithm in [110], and the

WLS fitting algorithm in [111]. Note that the purpose of the WLS fitting in [111] is

to improve the performance of the LS algorithm in [110]. To ensure a fair comparison,

a factor of
√
K is used to scale the training sequences S1 and S2 in the TST scheme

such that the total energy spent on channel training is identical for all approaches. In

the simulations, F is generated based on the DFT matrix, and the BALS algorithm

is performed following the procedure in Table 6.1 with ε = 1 × 10−5. Similar to [110]

and [111], the scaling ambiguity ∆1 = ∆−1
3 in the proposed algorithm is removed by

assuming that the first column of Hsr contains all one elements6. For each channel

realization, the normalized MSE (NMSE) of channel estimation for different algorithms

is calculated as ‖Ĥsr −Hsr‖2/‖Hsr‖2 for the channel Hsr, where Ĥsr is the estimated

value. The channel estimation errors of Hrd and Hsd are calculated in a similar way

to that of Hsr. All simulation results are averaged over 2000 independent channel

realizations.

We consider a two-hop MIMO relay communication system with M = 4 single-

antenna relay nodes, and the source and destination nodes are equipped with Ns =

Nd = 4 antennas. Throughout the simulations, we use the minimal L, i.e., L = Ns = 4.

The transmission power at the relay node is set to be 20dB above the noise level.

In the first example, we study the performance of the proposed algorithm and the

TST approach with K = 3 where all channel matrices have i.i.d. complex Gaussian

entries with zero-mean and variances of 1/Ns, 1/M , 1/(8Ns) for Hsr, Hrd, and Hsd,

respectively. Note that since K < M , the algorithms in [110] and [111] can not be

applied in this case. The NMSE of both algorithms versus the source node transmission

6The scaling ambiguity is represented as Ĥsr = ∆3Hsr in (6.16) (with Π = IM ). Since the first

column of Hsr contains all one elements, it can be seen that [∆3]i,i =
[

Ĥsr

]

i,1
. Here [A]i,j stands for

the (i, j)-th element of matrix A.
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power Ps is shown in Fig. 6.2. Since the NMSE for the estimation of Hrd by the TST

scheme does not change with Ps (see (6.7)), it is not displayed in Fig. 6.2 (neither in

Figs. 6.4 and 6.6 later on). It can be seen that for the proposed algorithm, the NMSE

of channel estimation decreases as Ps increases. As expected, the estimation of Hsr

and Hrd is improved by carrying out the additional MMSE estimation. At the low

Ps level, the TST scheme is better than the proposed algorithm. While at medium

to high Ps levels, the proposed algorithm significantly outperforms the TST scheme

even without using the additional MMSE estimation. In fact, the TST scheme has

an error floor in estimating Hsr. The reason is that as can be seen from (6.9), the

estimation of Hsr in the TST scheme is extracted from the estimation of the compound

channel H̄ and the estimation of Hrd. Thus, the accuracy of ˆ̄H and Ĥrd has a great

impact on the estimation of Hsr. While in the proposed algorithm, Hsr is estimated

together with Hrd. We also observe from Fig. 6.2 that for the proposed algorithm, the

NMSE of estimating Hsd is larger than that of Hsr and Hrd. This is due to the lower

signal-to-noise ratio at the direct link as the source-destination distance is twice of the

source-relay (or relay-destination) distance.
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Figure 6.2: Example 1: Normalized MSE versus Ps for i.i.d. MIMO channels. K = 3.

The impact of channel estimation on the system BER performance in this example

is shown in Fig. 6.3. QPSK constellations are used to modulate the source symbols, and

3000 randomly generated bits are transmitted for each channel realization. It can be

./ch6_ch_estim/Paper-TW-Jun-11-1251.R2_fig2.eps
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seen that at medium to high Ps levels, the proposed algorithm significantly outperforms

the TST scheme even without using the additional MMSE estimation, and the TST

scheme shows a high error floor. We also observe in Fig. 6.3 that around 1dB gain in

Ps is obtained by using the additional MMSE estimation after the convergence of the

BALS algorithm. At a BER of 1 × 10−4, there is only around 2dB loss in Ps by using

the estimated CSI obtained from the MMSE algorithm compared with the system using

the perfect CSI.

In the second example, we consider correlated MIMO channels. Based on [12], we

assume that Hl = Q
1

2

l H
w
l C

T
2

l , where l ∈ [sr, rd, sd] denotes the link index. Here Hw
sr,

Hw
rd, and Hw

sd are complex Gaussian random matrices having i.i.d. entries with zero

mean and variances of 1/Ns, 1/M , 1/(8Ns), respectively, Ql and Cl characterize the

channel correlation at the receive side and the transmit side of link l, respectively. We

adopt the commonly used exponential Toeplitz structure in [12] such that [Ql]m,n =

J0(2π|m− n|/rl) and [Cl]m,n = J0(2π|m − n|/cl), where J0(·) is the zeroth order Bessel

function of the first kind, rl and cl stand for the correlation coefficients which depend on

physical factors such as the angle of arrival spread, spacing between antenna elements,

and the wavelength at the center frequency [12]. For the sake of simplicity, we choose

cl = rl = 2 for all l ∈ [sr, rd, sd]. The NMSE and BER performance of different

algorithms in this example are displayed in Fig. 6.4 and Fig. 6.5, respectively. It can be

observed that similar to Fig. 6.2 and Fig. 6.3, the proposed algorithm performs better

than the TST algorithm.

Table 6.2: Example 3: NMSE of the LS [110], the WLS [111], and the proposed BALS

algorithm

Ps (dB) 0 4 8 12 16 20 24 28

BALS (Hsr) 4.4316 1.2800 0.3212 0.0891 0.0296 0.0118 0.0050 0.0025

LS [110] (Hsr) 4.4316 1.2800 0.3212 0.0891 0.0296 0.0118 0.0050 0.0025

BALS (Hrd) 0.9208 0.3678 0.1359 0.0527 0.0206 0.0086 0.0038 0.0020

LS [110] (Hrd) 0.9208 0.3679 0.1359 0.0527 0.0206 0.0086 0.0038 0.0020

WLS [111] (Hrd) 0.9207 0.3678 0.1358 0.0526 0.0204 0.0084 0.0037 0.0020

In the third example, we simulate all algorithms with K = 4 and i.i.d. channel

matrices. SinceK =M , now we can compare the performance of the proposed algorithm

with the algorithms developed in [110] and [111]. The NMSE of the LS algorithm in
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Figure 6.3: Example 1: BER versus Ps for i.i.d. MIMO channels. K = 3.
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Figure 6.4: Example 2: Normalized MSE versus Ps for correlated MIMO channels. K = 3.
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Figure 6.5: Example 2: BER versus Ps for correlated MIMO channels. K = 3.

[110], the additional WLS fitting in [111], and the proposed algorithm is shown in

Table 6.2. It can be seen that the proposed BALS fitting yields the same NMSE as the

LS approach. The NMSE of the proposed algorithm, the TST scheme, and the WLS

fitting versus Ps is shown in Fig. 6.6, where we observe that as K is increased from 3

to 4, the NMSE of all algorithms is reduced compared with that in Fig. 6.2. Note that

in Figs. 6.2 and 6.4, we used K = 3, while in Fig. 6.6, we used K = 4. According

to Theorem 6.1, K = 3 is closer than K = 4 to the minimum K (K = 2) that makes

the PARAFAC model identifiable, which has more adverse effect on the estimation of

Hrd than Hsr. With an increased K, it is more likely that Hrd(BALS) has smaller

estimation error compared with that of Hsr(BALS) in Fig. 6.6. Moreover, we see from

Table 6.2 and Fig. 6.6 that the improvement in NMSE of the WLS fitting over the

LS algorithm is obvious for the estimation of Hsr, while the improvement for that of

Hrd is negligible. The reason is that Ĉk in (6.27) is non-diagonal, while Θ̂j in (6.28)

is diagonal. In contrast to the WLS fitting (Table 6.2), it can be seen from Fig. 6.6

that the MMSE approach greatly reduces the NMSE of estimating Hrd. From Fig. 6.6

we also observe that the MMSE approach yields a smaller NMSE in estimating Hsr

compared with the WLS fitting.

For this example, with a random initialization of Hrd, the average and maximum

number of iterations over 2000 independent channel realizations required by the pro-

./ch6_ch_estim/Paper-TW-Jun-11-1251.R2_fig5.eps
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Figure 6.6: Example 3: Normalized MSE versus Ps for i.i.d. MIMO channels. K = 4.

posed BALS algorithm till convergence at different Ps level are listed in Table 6.3. Based

on the analysis of the overall complexity of the LS-based algorithm and the per-iteration

complexity of the BALS algorithm in Section 6.3.2, it can be seen from the second row

of Table 6.3 that in average at medium and high Ps levels, the overall complexity of

the proposed BALS algorithm is similar to that of the LS algorithm. When Ps is low,

the complexity of the BALS algorithm is slightly higher than that of the LS algorithm.

It can also be seen from the third row of Table 6.3 that at medium to high Ps levels

(which is the Ps range in practical systems), the maximum number of iterations is only

twice of or almost identical to the average ones.

Table 6.3: Iterations required till convergence by the proposed BALS algorithm

Ps (dB) 0 4 8 12 16 20 24 28

Iterations (average) 7 6 6 5 4 4 3 3

Iterations (maximum) 23 18 13 10 8 6 5 4

For the third example, the comparison of BERs among the system using different

channel estimation algorithms is demonstrated in Fig. 6.7. We observe from Fig. 6.7

that as K is increased from 3 to 4, the BER of all algorithms is reduced compared

with that in Fig. 6.3. Similar to Fig. 6.3, we see from Fig. 6.7 that the proposed

./ch6_ch_estim/Paper-TW-Jun-11-1251.R2_fig6.eps
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algorithm significantly outperforms the TST scheme at medium to high Ps levels, where

the latter scheme shows a high error floor. The LS approach in [110] has the same BER

performance as the proposed BALS approach, while the proposed MMSE algorithm

performs slightly better than that of the WLS algorithm in [111]. At a BER of 1×10−4,

the loss in Ps using the estimated CSI from the MMSE algorithm is less than 2dB

compared with the system using the perfect CSI. This is quite reasonable for practical

systems.
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Figure 6.7: Example 3: BER versus Ps for i.i.d. MIMO channels. K = 4.

Based on the three numerical examples above, one can draw the following conclu-

sions: (1) The proposed algorithm performs well in case of K < M where the algorithms

in [110] and [111] stop working; (2) When K ≥M , the proposed MMSE approach out-

performs the algorithm in [111]; (3) The computational complexity of the proposed

algorithm is similar to that of [110]; (4) The proposed algorithm performs well for both

i.i.d. and correlated fading MIMO channels.

6.5 Chapter Summary

In this chapter, we have developed a novel PARAFAC-based channel estimation method

for two-hop MIMO relay communication systems. The proposed algorithm provides the

./ch6_ch_estim/Paper-TW-Jun-11-1251.R2_fig7.eps
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destination node with full knowledge of all channel matrices involved in the communica-

tion. Compared with existing approaches, the proposed algorithm requires less number

of training data blocks, yields smaller channel estimation error, and is applicable for

both one-way and two-way MIMO relay systems. Simulation results demonstrate the

effectiveness of the proposed channel estimation algorithm.



Chapter 7

Conclusions and Future Work

In next generation wireless systems, multiple users equipped with multiple antennas

will transmit simultaneously to the base station with multiple receive antennas and

vice versa. MIMO transceiver design taking multiuser interference into consideration is

therefore important. In this thesis, we have developed several advanced algorithms for

multiuser MIMO relay communication systems.

7.1 Concluding Remarks

Both uplink (MAC) and downlink (BC) multiuser MIMO relay systems have been inves-

tigated. In Chapter 2, the optimal source, relay, and receive matrices design problem

has been considered for uplink multiuser MIMO relay communication systems based

on MMSE criterion. We develop two iterative methods to solve the highly nonconvex

joint source, relay, and receiver optimization problem. In particular, we show that for

given source precoding matrices, the optimal relay amplifying matrix diagonalizes the

source-relay-destination channel. While for fixed relay matrix and source matrices of

all other users, the source matrix of each user has a general beamforming structure.

Then in Chapter 3, we consider multicasting in the downlink multiuser MIMO relay

system where one transmitter multicasts common message to multiple receivers with the

aid of a relay node. Joint transmit and relay precoding design problems are investigated

for multicasting multiple data streams based on two design criteria. In the first scheme,

we aim at minimizing the maximal MSE of the signal waveform estimation among all

receivers subjecting to power constraints at the transmitter and the relay node. In the

second scheme, we propose a total transmission power minimization strategy subjecting
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to QoS constraints. We propose low complexity solutions for both problems under some

mild approximation. In particular, we show that under (moderately) high first-hop SNR

assumption, both problems can be formulated as standard SDP problems and can be

efficiently solved using existing solvers. We also derive the analytical solution to both

problems for the special case of single data stream multicasting and show that the relay

precoding matrix optimization problem can be equivalently converted to the transmit

beamforming problem for single-hop multicasting systems.

Then an interesting duality between the uplink and the downlink MIMO relay sys-

tems has been identified in Chapter 4. Applying this duality relationship, a DPC-based

nonlinear transmitter has been designed from DFE-based receivers in a multi-hop MIMO

relay system.

In Chapter 5, an interference MIMO relay system has been considered where multiple

source nodes communicate with their desired destination nodes concurrently with the

aid of distributed relay nodes all equipped with multiple antennas. An iterative joint

power control and beamforming algorithm is developed to minimize the total source

and relay transmit power such that a minimum SINR threshold is maintained at each

receiver. In particular, we apply the semidefinite relaxation technique to transform

the relay transmission power minimization problem into an SDP problem which can be

efficiently solved by interior point-based methods. Simulation results demonstrate the

effectiveness of the proposed algorithm.

Finally, we developed a PARAFAC-based channel estimation approach for dual-hop

MIMO relay systems in Chapter 6. The proposed algorithm provides the destination

node with full knowledge of all channel matrices involved in the communication. Com-

pared with existing approaches, the proposed algorithm requires less number of training

data blocks, yields smaller channel estimation error, and is applicable for both one-way

and two-way MIMO relay systems with single or multiple relay nodes.

7.2 Future Works

In this thesis, we have developed a few advanced signal processing algorithms for mul-

tiuser MIMO relay systems. However, there are still many possibilities for extending

this dissertation work. We have proposed a couple of iterative algorithms in Chapter 2

for the uplink multiuser MIMO relay systems. Any possible closed-form solution to the
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problem can be an interesting future work since the complexity of iterative algorithms

is comparatively higher than closed-form solutions.

Recently, there has been a growing interest on beamforming problems for multicas-

ting in the downlink MIMO systems. We have extended the existing single-hop MIMO

multicasting schemes to dual-hop MIMO multicasting systems in Chapter 3. We solved

the min-max MSE problem for multicasting multiple data streams and the max-min

rate problem for single-stream multicasting over two hops. However, the max-min rate

problem for multiple-stream multicasting still remains open as a challenging problem.

It will also be interesting to investigate the performance of the one-way relaying

algorithm for interference systems proposed in Chapter 5 for two-way relay networks.

Additionally, the work can be extended from multiple peer-to-peer communications to

multiple-group multicasting systems for multicasting different messages to each group.

The duality relationships established in Chapter 4 can also be investigated for the

interference system considered in Chapter 5.

Finally, the robust solution against channel uncertainties for each problem identified

in the thesis is of course of practical interests.
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[33] R. L.-U. Choi, M. T. Ivrlač, R. D. Murch, and W. Utschick, “On strategies of

multiuser MIMO transmit signal processing,” IEEE Trans. Wireless Commun.,

vol. 3, pp. 1936–1941, Nov. 2004.

[34] F. Rashid-Farrokhi, L. Tassiulas, and K. J. R. Liu, “Joint optimal power con-

trol and beamforming in wireless networks using antenna arrays,” IEEE Trans.

Commun., vol. 46, pp. 1313–1324, Oct. 1998.

[35] M. R. A. Khandaker and Y. Rong, “Precoding design for MIMO relay multicast-

ing,” IEEE Trans. Signal Process., submitted, Jul. 2012.

[36] ——, “Joint transceiver optimization for multiuser MIMO relay communication

systems,” IEEE Trans. Signal Process., to appear, 2012.

[37] ——, “Interference MIMO relay channel: Joint power control and transceiver-

relay beamforming,” IEEE Trans. Signal Process., to appear, 2012.

[38] ——, “Multicasting MIMO relay optimization based on min-max MSE criterion,”

in Proc. IEEE Int. Conf. Commun. Systems (ICCS 2012), Singapore, Nov. 21-23,

2012.

[39] ——, “Joint power control and beamforming for peer-to-peer MIMO relay sys-

tems,” in Proc. Int. Conf. Wireless Commun. Signal Process. (WCSP), Nanjing,

China, Nov. 9-11, 2011.

[40] ——, “Joint power control and beamforming for interference MIMO relay chan-

nel,” in Proc. 17th Asia-Pacific Conf. Commun. (APCC’2011), Sabah, Malaysia,

Oct. 2-5, 2011.



BIBLIOGRAPHY 129

[41] ——, “Joint source and relay optimization for multiuser MIMO relay communi-

cation systems,” in Proc. 4th Int. Conf. Signal Process. Commun. Systems (IC-

SPCS’2010), Gold Coast, Australia, Dec. 13-15, 2010.

[42] D. P. Palomar and Y. Jiang, MIMO Transceiver Design via Majorization Theory.

now Publishers, 2007.

[43] A. Toding, M. R. A. Khandaker, and Y. Rong, “Joint source and relay optimiza-

tion for distributed MIMO relay system,” in Proc. 17th Asia-Pacific Conf. on

Commun. (APCC’2011), Sabah, Malaysia, Oct. 2-5, 2011.

[44] ——, “Joint source and relay optimization for parallel MIMO relay networks,”

EURASIP Journal Adv. Sig. Process., vol. 2012:174, Aug. 2012.

[45] ——, “Joint source and relay optimization for parallel MIMO relays using MMSE-

DFE receiver,” in Proc. 16th Asia-Pacific Conf. on Commun. (APCC’2010),

Auckland, New Zealand, Nov. 1-3, 2010, pp. 12-16.

[46] ——, “Optimal joint source and relay beamforming for parallel MIMO relay net-

works,” in Proc. 6th Int. Conf. Wireless Commun., Networking and Mobile Com-

puting (WiCOM’2010), Chengdu, China, Sep. 23-25, 2010.

[47] Y. Rong and M. R. A. Khandaker, “Channel estimation of dual-hop MIMO relay

system via parallel factor analysis,” in Proc. 17th Asia-Pacific Conf. Commun.

(APCC’2011), Sabah, Malaysia, Oct. 2-5, 2011.

[48] K. S. Gomadam and S. A. Jafar, “Duality of MIMO multiple access channel

and broadcast channel with amplify-and-forward relays,” IEEE Trans. Commun.,

vol. 58, pp. 211–217, Jan. 2010.

[49] P. Viswanath and D. N. C. Tse, “Sum capacity of the vector gaussian broadcast

channel and uplink-downlink duality,” IEEE Trans. Inf. Theory, vol. 49, pp. 1912–

1921, Aug. 2003.

[50] N. Jindal, S. Vishwanath, and A. Goldsmith, “On the duality of gaussian multiple-

access and broadcast channels,” IEEE Trans. Inf. Theory, vol. 50, pp. 768–783,

May 2004.



130 BIBLIOGRAPHY

[51] S. A. Jafar, K. S. Gomadam, and C. Huang, “Duality and rate optimization for

multiple access and broadcast channels with amplify-and-forward relays,” IEEE

Trans. Inf. Theory, vol. 53, pp. 3350–3370, Oct. 2007.

[52] C.-B. Chae, T. Tang, R. W. Heath, Jr., and S. Cho, “MIMO relaying with linear

processing for multiuser transmission in fixed relay networks,” IEEE Trans. Signal

Processing, vol. 56, pp. 727–738, Feb. 2008.

[53] J. Yu, D. Liu, C. Yi, and G. Yue, “Relay-assisted MIMO multiuser precoding in

fixed relay networks,” in Proc. Int. Conf. on Wireless Commun., Networking and

Mobile Computing, Shanghai, China, Sep. 2007, pp. 881-884.

[54] L. Weng and R. D. Murch, “Multi-user MIMO relay system with self-interference

cancellation,” in Proc. IEEE WCNC, Kowloon, China, Mar. 2007, pp. 958-962.

[55] G. Li, Y. Wang, T. Wu, and J. Huang, “Joint linear filter design in multi-user non-

regenerative MIMO-relay systems,” in Proc. IEEE Int. Conf. Commun., Dresden,

Germany, Jun. 2009, pp. 1-6.

[56] Y. Yu and Y. Hua, “Power allocation for a MIMO relay system with multiple-

antenna users,” IEEE Trans. Signal Process., vol. 58, pp. 2823–2835, May 2010.

[57] T. Taniguchi, N. B. Ramli, and Y. Karasawa, “Design of multiuser MIMO AF

relay system with interference cancellation,” in Proc. 6th Int. Wireless Commun.

Mobile Comput. Conf., Caen, France, Jun. 2010, pp. 1075-1080.

[58] S. Jang, J. Yang, and D. K. Kim, “Minimum MSE design for multiuser MIMO

relay,” IEEE Commun. Lett., vol. 14, pp. 812–814, Sep. 2010.

[59] Y. Rong and M. R. A. Khandaker, “On uplink-downlink duality of multi-hop

MIMO relay channel,” IEEE Trans. Wireless Commun., vol. 10, pp. 1923–1931,

Jun. 2011.

[60] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.

Englewood Cilffs, NJ: Prentice Hall, 1993.

[61] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U. K.: Cam-

bridge University Press, 2004.



BIBLIOGRAPHY 131

[62] J. W. Brewer, “Kronecker products and matrix calculus in system theory,” IEEE

Trans. Circuits Syst., vol. 25, pp. 772–781, Sep. 1978.

[63] M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex programming

(web page and software).” http://cvxr.com/cvx, April, 2010.

[64] Y. Nesterov and A. Nemirovski, Interior Point Polynomial Algorithms in Convex

Programming. Philadelphia, PA: SIAM, 1994.

[65] M. A. Khojastepour, A. Salehi-Golsefidi, and S. Rangarajan, “Towards an optimal

beamforming algorithm for physical layer multicasting,” in Proc. IEEE Inf. Theory

Workshop, Paraty, Brazil, Oct. 16-20, 2011, pp. 395 –399.

[66] N. D. Sidiropoulos, T. N. Davidson, and Z.-Q. T. Luo, “Transmit beamforming for

physical-layer multicasting,” IEEE Trans. Signal Process., vol. 54, pp. 2239–2251,

Jun. 2006.

[67] N. Jindal and Z.-Q. Luo, “Capacity limits of multiple antenna multicast,” in Proc.

IEEE ISIT, Seattle, USA, Jul. 09-14, 2006, pp. 1841–1845.

[68] S. Y. Park and D. Love, “Capacity limits of multiple antenna multicasting using

antenna subset selection,” IEEE Trans. Signal Process., vol. 56, pp. 2524–2534,

Jun. 2008.

[69] S. Y. Park, D. J. Love, and D. H. Kim, “Capacity limits of multi-antenna mul-

ticasting under correlated fading channels,” IEEE Trans. Commn., vol. 58, pp.

2002–2013, Jul. 2010.

[70] E. Chiu and V. K. N. Lau, “Precoding design for multi-antenna multicast broad-

cast services with limited feedback,” IEEE Systems Journal, vol. 4, pp. 550–560,

Dec. 2010.

[71] Q. Li and W.-K. Ma, “Multicast secrecy rate maximization for MISO channels

with multiple multi-antenna eavesdroppers,” in Proc. IEEE ICC, Kyoto, Japan,

Jun. 5-9, 2011.

[72] S. X. Wu and W.-K. Ma, “Multicast transmit beamforming using a randomize-

in-time strategy,” in Proc. IEEE ICASSP, Prague, Czech Republic, May 22-27,

2011, pp. 3376–3379.



132 BIBLIOGRAPHY

[73] E. Matskani, N. D. Sidiropoulos, Z.-Q. Luo, and L. Tassiulas, “Efficient batch and

adaptive approximation algorithms for joint multicast beamforming and admission

control,” IEEE Trans. Signal Process., vol. 57, pp. 4882–4894, Dec. 2009.

[74] N. Bornhorst and M. Pesavento, “An iterative convex approximation approach

for transmit beamforming in multi-group multicasting,” in Proc. IEEE 12th Int.

Workshop Signal Process. Adv. Wireless Commun., San Francisco, USA, Jun.

26-29, 2011, pp. 426–430.

[75] D. Senaratne and C. Tellambura, “Beamforming for physical layer multicasting,”

in Proc. IEEE WCNC, Cancun, Mexico, Mar. 28-31, 2011, pp. 1776–1781.

[76] M. Kaliszan, E. Pollakis, and S. Stańczak, “Efficient beamforming algorithms for

MIMO multicast with application-layer coding,” in Proc. IEEE ISIT, St. Peters-

burg, Russia, Jul. 31-Aug. 5, 2011, pp. 928–932.

[77] M. A. Khojastepour, A. Khajehnejad, K. Sundaresan, and S. Rangarajan, “Adap-

tive beamforming algorithms for wireless link layer multicasting,” in Proc. IEEE

PIMRC, Toronto, Canada, Sep. 11-14, 2011, pp. 1994–1998.

[78] N. Bornhorst, M. Pesavento, and A. B. Gershman, “Distributed beamforming for

multi-group multicasting relay networks,” IEEE Trans. Signal Process., vol. 60,

pp. 221–232, Jan. 2012.

[79] H. Xu, J. Jin, and B. Li, “YMMV: Multiple session multicast with MIMO,” in

Proc. IEEE GLOBECOM, Texas, USA, Dec. 5-9, 2011.

[80] H. Zhang, X. You, G. Wu, and H. Wang, “Cooperative multi-antenna multicasting

for wireless networks,” in Proc. IEEE GLOBECOM, Miami, FL, USA, Dec. 6-10,

2010.

[81] Y. Rong, “Simplified algorithms for optimizing multiuser multi-hop MIMO relay

systems,” IEEE Trans. Commun., vol. 59, pp. 2896–2904, Oct. 2011.

[82] C. Song, K.-J. Lee, and I. Lee, “MMSE based transceiver designs in closed-

loop non-regenerative MIMO relaying systems,” IEEE Trans. Wireless Commun.,

vol. 9, pp. 2310–2319, Jul. 2010.

[83] Y. Rong, “Multi-hop non-regenerative MIMO relays - QoS considerations,” IEEE

Trans. Signal Processing, vol. 59, pp. 290–303, Jan. 2011.



BIBLIOGRAPHY 133

[84] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes: The Art of Scientific Computing. Cambridge University Press, New

York, 2007.

[85] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. 29, pp.

439–441, May, 1983.

[86] Y. Rong, “Optimal linear non-regenerative multi-hop MIMO relays with MMSE-

DFE receiver at the destination,” IEEE Trans. Wireless Commun., vol. 9, pp.

2268–2279, Jul. 2010.

[87] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Appli-

cations. Academic Press, 1979.

[88] M. Tomlinson, “New automatic equaliser employing modulo arithmetic,” Elec-

tronics Letters, vol. 7, pp. 138–139, Mar. 1971.

[89] H. Harashima and H. Miyakawa, “Matched-transmission technique for channels

with intersymbol interference,” IEEE Trans. Commun., vol. 20, pp. 774–780, Aug.

1972.

[90] S. Shamai and L. Laroia, “The inter-symbol interference channel: Lower bounds

on capacity and channel precoding loss,” IEEE Trans. Inf. Theory, vol. 42, pp.

1388–1404, Sep. 1996.

[91] J.-H. Chang, L. Tassiulas, and F. Rashid-Farrokhi, “Joint transmitter receiver

diversity for efficient space division multiaccess,” IEEE Trans. Wireless Commun.,

vol. 1, pp. 16–27, Jan. 2002.

[92] Y. Jing and H. Jafarkhani, “Network beamforming using relays with perfect

channel information,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.

(ICASSP), Honolulu, HI, Apr. 2007, vol. 3.

[93] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity – Part I:

System description,” IEEE Trans. Commun., vol. 51, pp. 1927–1938, Nov. 2003.

[94] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in

wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf.

Theory, vol. 50, pp. 3062–3080, Dec. 2004.



134 BIBLIOGRAPHY

[95] R. Zhang, C. C. Chai, and Y.-C. Liang, “Joint beamforming and power control for

multiantenna relay broadcast channel with QoS constraints,” IEEE Trans. Signal

Process., vol. 57, pp. 726–737, Feb. 2009.

[96] V. Havary-Nassab, S. Shahbazpanahi, A. Grami, and Z.-Q. Luo, “Distributed

beamforming for relay networks based on second-order statistics of the channel

state information,” IEEE Trans. Signal Process., vol. 56, pp. 4306–4316, Sep.

2008.

[97] S. Fazeli-Dehkordy, S. Shahbazpanahi, and S. Gazor, “Multiple peer-to-peer com-

munications using a network of relays,” IEEE Trans. Signal Process., vol. 57, pp.

3053–3062, Aug. 2009.

[98] B. K. Chalise and L. Vandendorpe, “Optimization of MIMO relays for multipoint-

to-multipoint communications: Nonrobust and robust designs,” IEEE Trans. Sig-

nal Process., vol. 58, pp. 6355–6368, Dec. 2010.

[99] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit beamforming and

power control for cellular wireless systems,” IEEE J. Select. Areas Commun.,

vol. 16, pp. 1437–1450, Oct. 1998.

[100] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge, U.K.:

Cambridge Univ. Press, 1991.

[101] W.-K. Ma, T. N. Davidson, K. M. Wong, Z.-Q. Luo, and P.-C. Ching, “Quasi-ML

multiuser detection using semi-definite relaxation with application to synchronous

CDMA,” IEEE Trans. Signal Process., vol. 50, pp. 912–922, Apr. 2002.

[102] P. Tseng, “Further results on approximating nonconvex quadratic optimization

by semidefinite programming relaxation,” SIAM J. Optim., vol. 14, pp. 268–283,

Jul. 2003.

[103] W. Ai, Y. Huang, and S. Zhang, “New results on hermitian matrix rank-one

decomposition,” Math. Program., ser. A (2011) 128, pp. 253–283, Aug. 2009.

[104] Y. Rong, “Robust design for linear non-regenerative MIMO relays with imperfect

channel state information,” IEEE Trans. Signal Process., vol. 59, pp. 2455–2460,

May 2011.



BIBLIOGRAPHY 135

[105] D. P. Palomar, M. Lagunas, and J. Cioffi, “Optimum linear joint transmit-receive

processing for MIMO channels with QoS constraints,” IEEE Trans. Signal Pro-

cess., vol. 52, pp. 1179–1197, May 2004.

[106] K. Phan, T. Le-Ngoc, S. Vorobyov, and C. Tellambura, “Power allocation in

wireless multi-user relay networks,” IEEE Trans. Wireless Commun., vol. 8, pp.

2535–2545, May 2009.

[107] G. Lebrun, M. Faulkner, M. Shafi, and P. J. Smith, “MIMO ricean channel ca-

pacity: An asymptotic analysis,” IEEE Trans. Wireless Commun., vol. 5, pp.

1343–1350, Jun. 2006.

[108] Y. Rong, “Optimal joint source and relay beamforming for MIMO relays with

direct link,” IEEE Commun. Lett., vol. 14, pp. 390–392, May 2010.

[109] F. Roemer and M. Haardt, “Tensor-based channel estimation and iterative re-

finements for two-way relaying with multiple antennas and spatial reuse,” IEEE

Tran. Signal Process., vol. 58, pp. 5720–5735, Nov. 2010.

[110] P. Lioliou and M. Viberg, “Least-squares based channel estimation for MIMO

relays,” in Proc. IEEE WSA, Darmstadt, Germany, Feb. 2008, pp. 90-95.

[111] P. Lioliou, M. Viberg, and M. Coldrey, “Performance analysis of relay channel

estimation,” in Proc. IEEE Asilomar Conference on Signals, Systems, and Com-

puters, Pacific Grove, CA, USA, Nov. 2009, pp. 1533-1537.

[112] F. Gao, T. Cui, and A. Nallanathan, “On channel estimation and optimal training

design for amplify and forward relay networks,” IEEE Trans. Wireless Commun.,

vol. 7, pp. 1907–1916, May 2008.

[113] F. Gao, B. Jiang, X. Gao, and X.-D. Zhang, “Superimposed training based chan-

nel estimation for OFDM modulated amplify-and-forward relay networks,” IEEE

Trans. Commun., vol. 59, pp. 2029–2039, Jul. 2011.

[114] T. Kong and Y. Hua, “Optimal channel estimation and training design for MIMO

relays,” in Proc. IEEE Asilomar Conference on Signals, Systems, and Computers,

Pacific Grove, CA, Nov. 2010, pp. 663-667.



136 BIBLIOGRAPHY

[115] R. A. Harshman, “Foundations of PARAFAC procedure: Models and conditions

for an ‘explanatory’ multi-mode factor analysis,” UCLA Working Papers in Pho-

netics, vol. 16, pp. 1–84, 1970.

[116] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel factor analysis in

sensor array processing,” IEEE Trans. Signal Process., vol. 48, pp. 2377–2388,

Aug. 2000.

[117] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, “Blind PARAFAC receivers

for DS-CDMA systems,” IEEE Trans. Signal Process., vol. 48, pp. 810–823, Mar.

2000.

[118] H. Wang, Y. Lin, and B. Chen, “Data-efficient blind OFDM channel estimation

using receiver diversity,” IEEE Trans. Signal Process., vol. 51, pp. 2613–2623,

Oct. 2003.

[119] A. A. Nasir, S. Durrani, and R. A. Kennedy, “Blind timing and carrier synchro-

nization in decode and forward cooperative systems,” in Proc. IEEE Int. Conf.

Commun., Kyoto, Japan, Jun. 5-9, 2011.

[120] I. Hammerström and A. Wittneben, “Power allocation schemes for amplify-and-

forward MIMO-OFDM relay links,” IEEE Trans. Wireless Commun., vol. 6, pp.

2798–2802, Aug. 2007.

[121] M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: A

study of estimator tradeoffs and optimal training signals,” IEEE Trans. Signal

Process., vol. 54, pp. 884–893, Mar. 2006.

[122] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear decomposi-

tions, with application to arithmetic complexity and statistics,” Linear Algebra

Applicat., vol. 16, pp. 95–138, 1977.

[123] R. Zhang, Y.-C. Liang, C. C. Chai, and S. Cui, “Optimal beamforming for two-

way multi-antenna relay channel with analogue network coding,” IEEE J. Sel.

Areas Commun., vol. 27, pp. 699–712, Jun. 2009.

Every reasonable effort has been made to acknowledge the owners of copyright material.

I would be pleased to hear from any copyright owner who has been omitted or incorrectly

acknowledged.


	Author's Note
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Overview of MIMO Communication Systems
	1.2 MIMO Relay Communication Systems
	1.3 Multiuser MIMO Communication Systems
	1.4 Thesis Overview and Contributions
	1.5 Notations

	2 Uplink Multiuser MIMO Relay Communication Systems
	2.1 Overview of Existing Techniques
	2.2 Uplink Multiuser MIMO Relay System Model
	2.3 Proposed Source, Relay, and Receive Matrices Design Algorithm
	2.3.1 Iterative optimization of source, relay, and receive matrices (Tri-Step Algorithm)
	2.3.2 Simplified source and relay matrices design (Bi-Step Algorithm)

	2.4 Numerical Examples
	2.5 Chapter Summary
	2.A Proof of Theorem 2.1

	3 Multicasting MIMO Relay Communication Systems
	3.1 Existing Multicasting Techniques
	3.2 System Model
	3.3 Proposed Transmitter and Relay Design Algorithms
	3.3.1 Min-max MSE-based transmitter and relay design
	3.3.2 Minimal total power-based transmitter and relay design

	3.4 Transmitter and Relay Optimization for Single Data Stream Multicasting
	3.4.1 Min-max MSE-based transmitter and relay design
	3.4.2 Minimal total power-based transmitter and relay design

	3.5 Numerical Examples
	3.6 Chapter Summary

	4 Duality in Multi-Hop MIMO Relay Channel
	4.1 Existing Works on Duality of MIMO Systems
	4.2 Multi-Hop MIMO Relay System Model
	4.3 Uplink-Downlink Duality
	4.4 DPC-Based Optimal Multi-Hop MIMO Relay Design
	4.5 Numerical Examples
	4.6 Chapter Summary
	4.A Proof of Theorem 4.1
	4.B Proof of Theorem 4.2

	5 Interference MIMO Relay Systems
	5.1 Overview of Existing Works on Interference Systems
	5.2 Interference MIMO Relay System Model
	5.3 Joint Power Control and Beamforming
	5.3.1 Receive beamforming
	5.3.2 Transmit power allocation
	5.3.3 Transmit beamforming
	5.3.4 Relay beamforming

	5.4 Numerical Examples
	5.5 Chapter Summary

	6 Channel Estimation of Dual-Hop MIMO Relay System
	6.1 Existing MIMO Channel Estimation Techniques
	6.2 System Model
	6.3 Proposed Channel Estimation Algorithm
	6.3.1 PARAFAC model and identifiability of channel matrices
	6.3.2 Bilinear alternating least-squares (BALS) fitting
	6.3.3 Linear minimal mean-squared error (LMMSE) estimation
	6.3.4 Extension to channel estimation in two-way MIMO relay systems

	6.4 Numerical Examples
	6.5 Chapter Summary

	7 Conclusions and Future Work
	7.1 Concluding Remarks
	7.2 Future Works

	Bibliography

