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On the Partial Realization of Noncausal
2-D Linear Systems

Lorenzo Ntogramatzidis, Michael Cantoni, Member, IEEE, and Ran Yang

Abstract—The problem of partial realization is to construct a
latent variable model which matches a specified input–output be-
havior over a bounded frame of interest. In this paper, an algorithm
is proposed for constructing a partial realization from the Toeplitz
kernel of a possibly noncausal 2-D linear system. By construction,
the resulting latent variable model and corresponding boundary
conditions comprise four components, each with recursively com-
putable structure.

Index Terms—Noncausal 2-D systems, nearest neighbour models
(NNMs), partial realization.

I. INTRODUCTION

BROADLY, a two-dimensional (2-D) system relates signals
indexed by two free variables. In many situations, these

free variables represent discrete spatial co-ordinates; e.g., image
processing and the study of spatially distributed processes [3],
[11]. Various classes of latent variable models have found appli-
cation in the study of linear discrete 2-D systems, including: the
inherently quarter-plane causal models of Roesser [23] and For-
nasini–Marchesini (FM) [6], [7]; the implicit generalizations of
Roesser and FM models [12], [19], [17], which are capable of
generating noncausal input–output behavior; and the so-called
nearest neighbour model (NNM) of [16], which is also capable
of accommodating noncausal relationships between inputs and
outputs.

The task of constructing a latent variable model to match the
infinite horizon behavior of a specified input–output model is
known as the realization problem. This problem has received
considerable attention [6], [14], [4], [10], [2], [24] for so-called
quarter-plane causal 2-D systems, with the resulting realization
being invariably in the form of a (recursive) Roesser or FM
model. The realization problem for 2-D system without quarter-
plane causal input–output behavior in terms of implicit general-
izations of these models, however, has received relatively little
attention [5], [25]. Similarly, to the best of the authors’ knowl-
edge, the realization of an NNM latent variable model from a
given input–output representation has not been considered. In-
deed, much of the literature on the realization of noncausal 2-D
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processes [8], [26] is set in the behavioral framework of Willems
[22], where a latent variable model is sought to describe the
so-called behavior, comprising the inputs and outputs together
as the entity of interest. This is quite different to the approach
taken here where the partition of the behavior into inputs and
outputs is pre-defined, as may be appropriate in various appli-
cations.

In this paper, the problem of partial realization is considered
for noncausal 2-D processes, whereby it is only required to
match the specified input–output behavior over a bounded
frame of interest. In particular, an algorithm is proposed for
the construction of a latent variable model in NNM form to
match (over a bounded frame) the input–output behavior of
a 2-D linear system with specified Toeplitz kernel. First, it
is observed that such a system can be naturally decomposed
into four quarter-plane causal components. Indeed, via simple
transformations each component is shown to be equivalent to a
so-called south-west (sw) causal system. The focus then turns
to the construction of what can be thought of as a rational poly-
nomial model given a Toeplitz kernel with sw causal structure,
by which a recursive latent variable model can be subsequently
obtained. Finally, it is shown how to transform and combine the
latent variable model realizations for each quarter-plane causal
component of the original (noncausal) Toeplitz kernel into a
single NNM model with appropriately assigned latent variable
boundary conditions.

II. INPUT–OUTPUT MODELS

Let . Given two intervals and
of , consider the bounded-frame linear process ,
governed by

(1)

where represent the input and
the output of the system, respectively, and

is the so-called Toeplitz kernel (or impulse re-
sponse) of . Note that (1) does not impose a causal relationship
between the input and the output . However, the following
forms of quarter-plane causality play an important role in the
approach to realization described in this paper.

• South-West (sw)—at any point ,
the output depends only on values of the input for

and .
• North-West (nw)—at any point ,

the output depends only on values of the input for
and .
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TABLE I
DEFINITIONS OF INTERVALS DEPENDING ON THE SYMBOL �

• North-East (ne)—at any point ,
the output depends only on values of the input for

and .
• South-East (se)—at any point , the

output depends only on values of the input for
and .

The causal structure of is said to be strict in the horizontal
(respectively, vertical) direction if the inequality on the index
(respectively, ) is strict. For example, if at any point

the output depends only on values of the
input for and , the nw causal dependence of
on is said to be strict in the vertical direction.

In what follows, it is shown that an arbitrary bounded-frame
system of the form (1) can be linearly decomposed into four
components, each exhibiting one of the aforementioned causal
dependencies on the input. In particular, define the symbol

, and let and be defined as shown in
Table I. Furthermore, for all let

otherwise

(2)

Then, (1) can be rewritten as the sum of four components

(3)

Moreover, with and defined as in Table I, it follows that
, where

(4)

for all . Note that the dependence of each
on the input is consistent with a corresponding quarter-

plane causality. Indeed, the system described by
(4) is -causal.

Interestingly, a simple transformation of the spatial in-
dexes permits re-statement of (4) in terms of a convolution with

TABLE II
DEFINITIONS OF INDEXES AND SIGN CONSTANTS DEPENDING ON�

sw-causal structure. In particular, for each
and , define and

, where and are given in

Table II. Then each is nonzero only in the bounded frame
of interest and the system defined by

(5)

for , has sw-causal structure and sat-
isfies , for all . Corre-
spondingly, an approach to constructing a realization for (1) is
to first realize each sw-causal counterpart (5) of (3), followed
by inversion of the associated spatial index transformations and
subsequent combination of the resulting latent variable models
and boundary conditions, as discussed in Sections III and IV,
respectively, see also [21].

Remark 2.1: Note that (2) is not the only decomposition of
the Toeplitz kernel for which this approach is possible. For
example, with

the decomposition in (3) still holds. In this case, the dependen-
cies of the outputs and thus obtained, on the input

, are strict in the vertical direction, in both the vertical and hor-
izontal direction, and in the horizontal direction, respectively.

III. RATIONAL POLYNOMIAL MODELS AND PARTIAL

REALIZATION

In view of the considerations above, the aim in this section
is to define and solve a partial realization problem, given a
sw-causal process described by

(6)

for ; since is sw-causal,
for all such that or . To this end, the partial
realization problem is first formulated in terms of the existence
of a rational polynomial model, where the representation of a
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doubly indexed signal in terms of a formal power series is ex-
ploited; given a signal

where the indeterminates and may be viewed as markers
of the spatial index and denotes the ring of
formal power series in the two indeterminates and .

As is well known and easily established [20], the convolu-
tion of and in (6) can be represented by the product of
the respective formal power series. Indeed, with the truncation
operator defined so that

for intervals
and of , the input–output relation (6) can be written as

where and are the bivariate
polynomials corresponding to the formal power-series of the
natural extensions (zero padding) of and to ,
respectively. This naturally leads to the following partial real-
ization problem, from which a corresponding latent variable
model can be constructed as described in Section III-B.

Problem 3.1: Given , find
and polynomials

with (7)

(8)

such that the identity

(9)

holds for some

For polynomials and such that (9) holds
with an appropriate , it follows immediately that given
any and that satisfy (6)

for a that satisfies
. That is, and constitute a ra-

tional model that matches the input–output behavior of (6)
over the bounded frame . It is without loss of
generality that the degree of the polynomials
and is restricted to , since (9) holds
with by taking and

, in which case the degree of

is . This (trivial) solution, however, does not exploit the
degree of freedom in , which can be used to keep the
degrees of both and small in some sense.
This is important for the construction of a corresponding latent
variable model, as described in Section III-B.

A. Characterising Solutions of Problem 3.1

Towards characterising solutions of Problem 3.1, an equiva-
lent formulation is first established in the following lemma.

Lemma 3.1: Problem 3.1 is equivalent to finding polynomials
and in the form (7)–(8) such that the iden-

tity

(10)

holds for some

with each .
Proof: The existence of a such that (9) holds

implies the existence of a such that (10) holds because
each element of the product is a monomial
of the form , with or . Similarly, if an
appropriate exists such that (10) is satisfied, then (9)
holds with

since has no constant terms and

This completes the proof.
In what follows, it is shown how (10) can be expressed in a

form that helps in defining computationally tractable solvability
conditions for Problem 3.1, given values for and

. More specifically, given a kernel ,
and for , let the
matrix be defined by

where

...
. . .

...
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is a matrix. Now given a polynomial
,

where

. Moreover, since

where and
, it follows that the product
can be written as the sum

(11)

where

(12)

and

(13)

Equation (11) is now utilized to establish conditions for the
existence of a solution and for Problem
3.1, given values for and . By comparing
(11) with (10) it is clear that if (11) holds, the polynomials

and are a solution for Problem
3.1 if, and only if, the degree of is (componentwise)
no greater than . The condition which the coefficients
of must satisfy for this to happen is that the matrix

have the first rows and the
first columns equal to zero: i.e.,

(14)

for some . In fact, in this case

which is of the required form (8). In summary, we have the fol-
lowing lemma.

Lemma 3.2: Given and , there exist poly-
nomials and with the form specified in
(7)–(8), that partially realize the kernel (i.e., solve Problem
3.1) if and only if for and

, where denotes the th entry of
the matrix defined in (12).

Now, denoting by and the th row and the
th column of , respectively, can be written as

(15)

Then with and ,1 it follows
that if (i.e., if ), the first rows of are
zero if, and only if

(16)

holds for all . When (i.e., ),
(16) need not be imposed. Similarly, when , the first
columns of are zero if, and only if, for all the
identity

(17)

holds, while when there is no need for (17). That is,
(16) and (17) constitute a set of conditions that the coefficients of

must satisfy in order for the first rows
and columns of to be zero, as in (14). In par-
ticular, with and defined as shown
at the bottom of the next page, the following computable neces-
sary and sufficient condition for the solvability of Problem 3.1
is obtained. Note that the theorem statement includes an explicit
way of computing the coefficients of the polynomial ,
when the condition is feasible. Furthermore, observe that the
matrix is related to the 2-D Hankel matrix of [13].

Theorem 3.1: Given and , there exists a poly-
nomial of the form (7) such that the corresponding
matrix in (12) has zeros in the first rows and
the first columns if, and only if

(18)

1Note that k � �1 and l � �1, since n � N and m � M .
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In this case, the vector of (free) coefficients2

for any polynomial
that solves Problem 3.1 with the corresponding polynomial

, can be expressed as

(19)

for some , where the symbol denotes
the Moore–Penrose pseudoinverse.

Proof: Since in (7), conditions (16)–(17) are
satisfied for the vector of the remaining coefficients for

and all and if, and only if,
. Correspondingly, has the

structure shown in (14) (with having rows and
columns) if, and only if, condition (18) holds. In this case,
can be expressed as in (19) for some .
Furthermore, by Lemma 3.2, the corresponding polynomial

solves Problem 3.1 with .
Theorem 3.1 provides the basis for an algorithm to construct a

partial realization of a Toeplitz kernel with sw causal structure.
In particular, given a total ordering over

, one can increase the pair stepwise (according
to ) from , until the condition (18) is satisfied. Then using
(19), the coefficients of can be determined, along with
those of , as illustrated with the following
toy example. As discussed further in Remark 3.2, the choice
of should be made on the basis of the method to be used
to construct a latent variable model realization of the resulting
rational polynomial model—see Section III-B.

Example 3.1: Let and , and consider a Toeplitz
kernel such that

Consider also the ordering on de-
fined by

2Ordered conformably with H (k ; l ).

Begin by testing the condition (18) of Theorem 3.1 for
: (14) becomes

(20)

where , in the unknown . In this case

. It is easily seen that there are
no values of the coefficient such that (20) holds for some

and, in fact, the vector

does not lie in the image of

Increasing and according to , the first pair for
which condition (18) holds is : now

and condition (18) is satisfied because

where

From the solution
it follows

if and

if and
if and

if and

if and
if and
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that

That is, and
solve the corresponding Problem 3.1.

Remark 3.1: In the algorithm described above, when a
pair is found such that condition (18) is satisfied with

and , the degrees of
the resulting polynomials and are both

. There are cases when it is possible to find a polynomial
whose degree is lower than . In

more precise terms, given and , a necessary
and sufficient condition for the existence of a polynomial

, with , and a poly-
nomial , which together
partially realize the kernel , is that condition (18) hold with

and .

B. Latent Variable Model Realization of Rational Polynomial
Models

In the preceding section an algorithm is proposed for con-
structing a rational polynomial model to partially realize a given
sw-causal Toeplitz kernel. Here it is shown how to construct
a (recursive) NNM given such a realization. The NNM [16] is
chosen in view of the fact that the NNMs obtained by realising
the quarter-plane causal components of an originally noncausal
Toeplitz kernel can be combined, as described in Section IV,
into a single NNM in the form

(21)

with appropriately assigned boundary conditions. That is, the
class of NNMs is closed under the manipulations employed in
this paper. The same is true [21] for the class of generalized FM
models in implicit form, proposed by Kaczorek [12].

Consider the simplified NNM

(22)

with boundary conditions for all ,
where and . Observe
that this recursive model is capable of producing sw-causal
input–output behavior. Moreover, with the boundary conditions
set as shown, it follows that the formal power series represen-
tations of the signals and are
related by

where

denotes the inverse of in the ring of formal
power series in the indeterminates and .

Definition 3.1: The quadruple , and hence
the corresponding NNM (22), is said to be a realization of
a rational polynomial model and in the
form (7)–(8), if , where

.

Theorem 3.2: A rational polynomial model and
can be realized by a suitably defined quadruple

—see (24) below.
Proof: As shown in [7], [1], a rational polynomial model

and of the form (7)–(8) admits a realization
in the form of a first-order FM model

(23)

with boundary conditions for , where
...

. . .

...

. . .

...

...
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That is, are known to exist such that

Now, with

(24)

it follows that

and hence, that the quadruple realizes
and , as required.

Example 3.2: The polynomials
and can be realized

in terms of a FM model (23) with (see, e.g., [1])

The corresponding recursive NNM realization is characterized
by the matrices

Remark 3.2: Given a rational polynomial model of the form
(7)–(8) with degree , the square matrices and in
the particular latent variable model realization used to prove
Theorem 3.2, have column/row dimension , where

. As such, it would seem appropriate to choose the
ordering in the algorithm proposed for constructing a rational
polynomial model for a sw-causal Toeplitz kernel based on The-
orem 3.1, such that for .3 Indeed, with
such an ordering, the algorithm yields a realization that is min-
imal in the (weak) sense that it produces a rational polynomial
model for which the “dimension” of the particular latent variable
model realization used in the proof of Theorem 3.2, is smallest.

IV. LATENT VARIABLE MODEL REALIZATION OF

NONCAUSAL TOEPLITZ KERNELS

In Section II, it is shown how to linearly decompose the
input–output model (1), with noncausal Toeplitz kernel, into
four quarter-plane causal components. By transformation of
the spatial indexes, input, output and kernel, each component
is then shown to be equivalent to a suitably defined sw-causal
system governed by (5). Applying the results
of Section III to each sw-causal system , yields a rational
polynomial realization and , and a cor-
responding (recursive) NMM realization ,
for the transformed kernel . The aim now is to combine
these models to obtain a latent variable model to realize the
2-D process (1), over the bounded frame . This
involves inversion of the spatial index transformations used to
obtain each , and yields a NNM in the general form (21),
[16], with the appropriately defined latent variable boundary
values over the bounded frame of interest.

More explicitly, by exploiting for example the realization
presented in Subsection III.B, for each pair of polynomials

and , matrices and
can be determined so that the sw-causal (and hence, recursive)
NNM

(25)

with boundary conditions and for
, satisfies

and hence, —i.e., the
NNM (25) partially realizes . Now inverting the spatial index
transformations described at the end of Section 2 (see Tables I
and II), gives the following NNM model for a partial realization
of each -causal component:

(26)

(27)

with boundary conditions for and
for , where and the double index sym-
bols and are defined in Table III. For example, given
a NNM realization for the sw-causal

, the NNM

3This is in fact the ordering used (without justification) in the related work
[24] on 2-D realization.
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TABLE III
INTERVALS AND SIGN CONSTANTS

with boundary conditions for all and
for all , which clearly exhibits nw causal

input–output behavior, partially realizes the nw-causal compo-
nent of the Toeplitz kernel.

Now, defining the latent variable
and the output

, it is straightforward to verify that, over
the bounded frame , equations (26)–(27) are
completely characterized by the following NNM:

(28)

with boundary conditions

for on the latent variable, where

Note that in this latent variable model the boundary conditions
on the local state are given on each side of the bounded frame

.

V. CONCLUSION

The problem of partial realization is considered for bounded
frame noncausal 2-D processes, in terms of a latent variable
model in form of the so-called NNM. The key idea is to decom-

pose the Toeplitz kernel of the given noncausal process into
four components, each displaying a particular quarter-plane
causal structure. These components are then partially realized
separately in terms of recursive forms of the NNM. It is then
shown how to combine these realizations into a single NNM in
its general form, with latent variable boundary values assigned
around the boundary of the frame of interest. The final model
essentially comprises four components, each with recursively
computable structure. An interesting related open problem is as
follows: Does there exist a transformation of an arbitrary NNM
model , which yields four recursively
computable parts, in a manner similar to the case of implicit
1-D models, as demonstrated in [18]?
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