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Abstract

This thesis is mainly concerned with the estimation of parameters of a first-
order Smooth Threshold Autoregressive (STAR) model with delay parameter
one. The estimation procedures include classical and Bayesian methods from

a parametric and a semiparametric point of view.

As the theoretical importance of stationarity is a primary concern in estima-
tion of time series models, we begin the thesis with a thorough investigation of
necessary or sufficient conditions for ergodicity of a first-order STAR process
followed by the necessary and sufficient conditions for recurrence and classifi-

cation for null-recurrence and transience.

The estimation procedure is started by using Bayesian analysis which derives
posterior distributions of parameters with a noninformative prior for the STAR
models of order p. The predictive performance of the STAR models using
the exact one-step-ahead predictions along with an approximation to multi-
step-ahead predictive density are considered. The theoretical results are then

illustrated by simulated data sets and the well-known Canadian lynx data set.

The parameter estimation obtained by conditional least squares, maximum
likelihood, M-estimator and estimating functions are reviewed together with
their asymptotic properties and presented under the classical and parametric
approaches. These estimators are then used as preliminary estimators for ob-

taining adaptive estimates in a semiparametric setting. The adaptive estimates



for a first-order STAR model with delay parameter one exist only for the class
of symmetric error densities. At the end, the numerical results are presented

to compare the parametric and semiparametric estimates of this model.
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Chapter 1

Preliminaries

1.1 Introduction

The past twenty years have witnessed some major developments in the field
of time series analysis. The twin assumptions of linearity and stationarity
which underlie so much of conventional time series have finally been aban-
doned and the subject has moved in a number of directions. One of these
new directions is the study of nenlinear models which offer many challeng-

ing and unresolved problems.

One class of nonlinear models, called threshold models, was introduced by
Tong in a long sequence of papers culminating in Tong and Lim (1980); a
detailed account of the theory and application of threshold models is given
in the monograph by Tong (1983). The class of Self Ezciting Threshold
Autoregressive (SETAR) models of order p introduced by Tong (1983) is

typified by the following difference equation:

Xi = ag+aXoq+ .o+ e X p +
(bﬁ + IJ}X{_] “+ ...+ prt-p)I(Xt—d — T) + £¢, (111)

where d is a delay parameter, d € Z%, p € Z*; r 1is a



threshold parameter, r € R; {e:} 1is a sequence of independent and
identically distributed random variables with ¢, being independent of

{X,,s<t}; and I is the indicator function given by

1 ifz>0
I(:r:)={

0 otherwise.

Essentially, the nonlinear model (1.1.1) is composed of two linear submodels,
that is, two regimes with the change point being specified by a (the real
valued) threshold parameter r. To remove sudden jumps in the SETAR
model (1.1.1), Chan and Tong (1986) replaced the indicator function I by
a smooth function G. This leads to a new class of nonlinear time series
models called Smooth Threshold Autoregressive (STAR) models of which an

order p model is defined by

Xe = agt+a X+ .o+ apXep +
X —
(bo + b]Xg_l -+ ---prt—p)G (t—d'—:) + €, (1.1.2)

z

where d, p, r, {e:} are as defined above, z is a smoothing parameter
z € Rt and G is a known distribution function which is assumed to be
continuous. The choice of G is left very flexible, the minimal requirement

being that it is continuous and nondecreasing.

The study of STAR models (1.1.2) is not as well-developed as the SETAR
models (1.1.1) yet. Besides Chan and Tong (1986), there are only a few pa-
pers such as Luukkonen, et al. (1988) which discussed testing for linearity
against STAR models, and the one by Terdsvirta (1994) which considered
the specification and estimation of STAR models when G is a logistic or
an exponential distribution function. Granger and Terasvirta (1993) dis-
cussed Smooth Transition Regression model as a model for explaining the
nonlinearity in economic relationships. Nur (1993) investigated conditions

for ergodicity of STAR models when p =1 =d and applied the theory to



some well-known data sets with G assumed to be a Gaussian distribution
function. In all these studies the analysis is done from the classical or the

frequentist point of view.

In many applications, a smooth threshold model may be more attractive
than a threshold model. For instance, macroeconomic time series are most
often the results of decisions made by a large number of economic agents.
Even if one assumes that the agents make only dichotomous decisions or
change their behaviour discretely, it is unlikely that they do this simulta-
neously. Thus if only an aggregated process is observed, then the regime
changes in that process may be more accurately described as being smooth
rather than discrete. In animal ecology, it also seems plausible to think
that a possible change in population dynamics from a state with a small
population to over population and vice versa may be continuous rather than

discrete.

A few applications of the smooth threshold autoregressive model, in eco-
nomics and population biology can be seen in the work of Granger and
Terasvirta (1993) and Tong (1988). Of the two illustrative examples in
economics as given in Granger and Terasvirta {1993), the first one uses in-
ternational volume of industrial production indices from thirteen countries
and the second one considers a possible nonlinear relationship between US
gross national product and an index of leading indicators. For industrial
production data, they presented testing linearity against logistic or expo-
nential STAR models, and from Table 9.1 of Granger and Terasvirta (1993),
it can be concluded that there are 10 out of 13 countries in which the indus-
trial production data should be modelled by logistic or exponential STAR
models. It is seen generally for industrial production data that a superior
fit is achieved by the nonlinear STAR models although these are less par-
simonious. For the US gross national product data, they also found some

evidence of nonlinearity.



Tong (1988) applied the STAR model in population biology. In 1950, the
Australian entomologist, A. J. Nicholson conducted a series of experiments
with blowflies, lucilin cuprina. The bi-daily record of one of Nicholson's
experiments extending for two years, in which a caged population of approx-
imately 1000 blowflies was initiated with a reasonably balanced sex ratio.
The caged blowflies -were fed a limited amount of 500 mg ground liver daily
as the only source of protein which is necessary for egg production. Ex-
perimental evidence suggests that egg production usually ceases when daily
protein intake for the female fly drops below 0.14 mg and levels out at 10
egegs per fly per day when protein supply is plentiful. On the unrealistic
assumptions of absolute egalitarianism and sex equality among the fly pop-
ulation, 500 mg of ground liver will maintain 3571 flies above the minimum
protein requirement for egg production. It is then transparent that in any
reasonable ’balance equation’ describing the time evolution of the popula-
tion size, the number of births, as a function of the population size must
peak at a certain critical value as a threshold. The balance equation is
a delay-differential equation with the delay corresponding to the biological
development time. They first fitted the SETAR model for the data but then
evidence suggested that the STAR model improves the statistical goodness
of fit.

Having referred the reader to some examples of the applications of the
STAR models in real life, we now turn to the motivation for the current
investigation and put our objectives in perspective. This thesis is mainly
concerned with the estimation of parameters in stationary first-order STAR
models both from frequentist and non-frequentiest points of view, and from
parametric and semiparametric points of view. The original contribﬁtions
to the literature of this thesis are contained in Chapters 2, 3, Sections 4.3,
4.4, 4.5 and 5.6. The results in Chapters 4 and 5 are mostly reviewed from

the literature and conditions therein are verified for the STAR models as



needed.

The thesis is organised as follows. The present chapter closes with a sum-
mary of notations and conventions which will be used in subsequent chapters
without comment. To begin with, we present an investigation on necessary
or sufficient conditions for ergodicity of the first-order STAR processes with
delay parameter one as a continuation of earlier work by Nur (1993) in
Chapter 2. The sufficient conditions for ergodicity of this process depend
on the distribution function G. A necessary condition for ergodicity is
presented for any G. These results will then be used as the assumptions
needed in Chapters 4 and 5. Furthermore, we give a necessary and sufficient

conditions for the process to be recurrent.

In Chapter 3, we discuss the Bayesian analysis of a STAR model of order p.
This includes the derivation of the posterior distributions of parameters with
a noninformative prior and the marginal distribution of intrinsic parame-
ters, assessing the performance of the exact one-step-ahead and conditional
multi-step-ahead predictive densities. Several illustrations using simulated

and real data, are also provided.

Chapter 4 investigates the parameter estimation of the STAR models using
various methods, namely, Conditional Least Squares, Maximum Likelihood,
M-estimation and estimating function methods together with the theoret-
ical properties of the resulting estimates. The conditional least squares
and maximum likelihood estimators are reviewed from Tjgstheim (1986)
and Tong (1983, 1990) while the M-estimator and the estimating function
estimator are constructed based on Koul (1996) and Thavaneswaran and

Abraham (1988) respectively.

Chapter 5 contains the semiparametric estimation of the STAR models

which 1s called adaptive estimation. The construction of estimators that



are asymptotically efficient in the presence of infinite dimensional nuisance
parameters is the main objective of adaptive estimation. The original con-
tributions in this chapter are basically on the adaptation of existing methods
to STAR models and the presentation of numerical examples. The theoret-
ical results are mostly verification of conditions for theorems in Koul and
Schick (1997), which are not straightforward. The content of this chapter
is strongly related to Chapter 2 as the ergodicity assumption is needed for
most of the proofs and also to Chapter 4 as the estimator obtained in Chap-

ter 4 is used as the preliminary estimator in adaptive estimation.

Overall conclusions of the research study are presented in Chapter 6, along
with some other general comments on the estimation methods and sugges-

tions for possible extensions and future developments.

1.2 Notation

The following notation will be used without comment in the sequel.

a.s. almost surely (i.e. with probability one)
1.2.d. independent and identically distributed
r.v. random variable

R set of real numbers

R+ set of positive real numbers

R* k — dimensional Euclidean

o an open subset of ®*

set of integers
z+ set of positive integers

T Zor Z*t



B Borel o—algebra on ®

Bo trivial o—algebra
B o—algebra generated by {X,,1 <s <k}
€ is a member (belongs to)
3 such that
3 there exists
v for all
A maximum
& if and only if
~ has the same distribution as
~ approximately equal to
= equivalent to
1= is assigned to be
O(1) a sequence of r.v. that bounded in probability
of1) a sequence of r.v. that converges to 0 in probability
AT transpose of the matrix A
Fu first derivative of f
CLT Central Limit Theorem
CLS Conditional Least Squares
MLE Maximum Likelihood Estimator
RMSE Root Mean Squared Error

Almost sure convergence, convergence in probability and convergence in

distribution are denoted by =%, 25, 2, respectively.

N{u,0?}) is the normal distribution with mean p and variance o2.



N{g, W) is the multivariate normal distribution with mean g and covari-

ance matrix W.

Class of Smooth Threshold Autoregressive (STAR) models of order p de-
fined by

L P Xi_g—r
X = a0+ Y aXems + (b0 + 300X g)6 (T ) e,

j=] i=1

X,_d—r)

z

which G(z) is a rewritten expression for G(¥%), and G, =G (

The first-order STAR model with delay parameter d =1 defined by

X, = aXoor 4 bXisG (X—“-—‘;—Ti) ter,

which can be rewritten as

Xy =aXiy + 0X1G(Xi) + &



Chapter 2

Ergodicity

2.1 Introduction

In this chapter we show the sufficient conditions for ergodicity of a first-order
STAR process with delay parameter one under some assumptions on the tail
behaviour of the distribution function G and the necessary condition for er-
godicity for any G. Also, we derive some conditions under which the model

as a Markov chain is recurrent, null recurrent or transient.

In time series analysis, we are generally interested in ergodic models. This
1s partly because of the theoretical impbrtance of stationarity in estimation.
Assuming the process is stationary and has a finite second moment for error
allows us to establish large sample properties like consistency and asymptotic

normality of estimators.

Unlike the linear models, it is rather hard to obtain necessary and sufficient
conditions for ergodicity for a given class of nonlinear time series models. There
are no general necessary and sufficient conditions available for the ergodicity
of a higher order model, eventhough interesting results exist for some special
cases. Consider, for example, the SETAR models as defined in (1.1.1). In rela-

tion to these models, Petruceili and Woolford (1984) derived a necessary and



sufficient condition for the ergodicity of a simple first-order threshold process
with delay parameter one. In another development, Chan, ei. al. (1985)
obtained necessary and sufficient conditions on the parameters for ergodicity
of the multiple first-order threshold processes and showed when the process
is transient on a subset of the remainder. Also, they conjectured that the
process is null recurrent everywhere else. Subsequently, Guo and Petrucelli
(1991) proved the conjecture and under the assumption of finite variance of
the error distributions they resolved the remaining questions of transience and
null recurrence for this process. Following these, Chen and Tsay (1991} estab-
lished a necessary and sufficient condition for geometrical ergodicity for the
general first-order threshold autoregressive processes with general delay pa-
rameter. Their results extended the result of Petrucelli and Woolford (1984).
More general results emerged from the recent work of Bhattacharya and Lee
(1995) who derived a sufficient condition for geometric ergodicity and a neces-

sary condition for recurrence of nonlinear first-order autoregressive processes.

As a natural extension, Chan and Tong (1986) introduced smoothness into the
threshold autoregressive models, leading to a new class encompassing thresh-

old autoregressive models. Consider the first-order STAR model with delay

parameter d = 1 defined by
X, . —
X: = aXiy +0X,,G (‘t_;—r) + &y,

where r is a threshold parameter, » &€ R; z 1s a smoothing parameter,
z € R* and G(.) is a known distribution function. We rewrite the above

model as

X =aXioy +bX, 1 G(Xiy) + &4, (2.1.1})

where, hereafter we represent & (%) by G(z) for given values of r and

z. We assume the following conditions on the error distribution:

(C1) {e:} is a sequence of independent and identically distributed random

variables with zero mean and £, 1s independent of X, ,, s > 1.

10



(C2) & has an absolutely continuous marginal distribution and positive prob-

ability density function over the real line and E | ¢ |< 0co.
(C3) E(e?) < oo.

We note that {X,:¢ >0} as defined in (2.1.1) is a Markov chain with state
space (R,B), where B is the Borel o- algebra on the real numbers . The

transition density is given by

p(z,y) = f(y — az ~ bzG(z)) (2.12)

where f is a strictly positive density function of &,. Using definition in Orey
(1971), we note also that {X,:% >0} is ¢- irreducible and aperiodic, where

¢ is the Lebesgue measure on R.

The transition law, {P(z,.)}, for the Markov chain {X,} defined by
P(z,A) = Lp(x,y)dy, z€R, Ae€B.

is strongly continuous if VA € B, P(z,.) is a continuous function in z. Since
we assume that G 1s continuous everywhere and f is absolutely continuous

it follows that P(z,.) is continuous VA € B.

Remark 2.1 According to Tweedie (1975), the continuity condition on tren-
sition function is required to ensure that compact sets are of finite measure
( see Lemma 4.1, Tweedie (1975) page 393). However, this condition can be
weakened when considering less general models than what Tweedie considers.
For example, Chan, et.al. (1985) consider multiple-threshold autoregressive
order ! models and derive Lemma 2.1 of Chan, et.al. {1985} , see Lemma
A.1 of Appendiz A, which replaces condition (ii) of Theorem 4.2 of Tweedie
(1975)(Theorem A.1 of Appendiz A) so the transition law {P(z,.)} is not
necessarily strongly continvous. Moreover, they states that their Lemma 2.1
s true for more general Markov chains than multiple-threshold autoregressive

order I models. In particular, it applies to STAR models. Using this Lemma

11



2.1, (2.1.1} is still ergodic when {P(z,.)} corresponding to the transition

density (2.1.2) is not strongly continuous.

Some notable contributions toward the ergodicity problem of the STAR model
are the work of Chan and Tong (1986) who stated the sufficient condition for
ergddicity of (2.1.1) and conjectured that it is also an almost necessary condi-
tion for ergodicity and the work of Nur (1993) who gave a detailed proof of the
sufficient condition for ergodicity of (2.1.1) based on Proposition 2.1 of Chan
and Tong (1986) (Proposition A.1, Appendix A). The new results in this chap-
ter will include the necessary and sufficient condition for recurrence of (2.1.1),
the necessary condition for ergodicity of (2.1.1) for any distribution function
G and the sufficient condition for ergodicity when G is a thick-tailed.

This chapter is organised as follows. In Section 2.2, we prove the necessary
and sufficient conditions for recurrence for any G. In Section 2.3, we classify
the necessary condition for ergodicity of process {2.1.1) for any distribution
function G. Furthermore, we present a sufficient condition for ergodicity
when G is light-tailed, thick-tailed or a combination of both. As a conse-
quence of the recurrence and ergodic results, we obtain some conditions for
transience and null recurrence. To prove the sufficient conditions for ergodic-
ity and recurrence, we use the theorems due to Tweedie (1975) as stated in

Appendix A.

2.2 Recurrence

In this section, we present the necessary and sufficient conditions for recurrence
for any distribution function G. The proof of the result is obtained by using
Theorem 4.3 of Tweedie (1975) (Theorem A.2 of Appendix A). Mainly there
are two conditions to be verified. For the condition (i) we have to show that
the functions L(z) or J(z), as mentioned below, are greater or equal zero

when z is outside a defined compact set. Condition (ii) will follow easily.

12



a+h

Figure 2.1. Recurrence region

Theorem 2.1 (Necessary and sufficient conditions for recurrence) The

process {X;:t> 0} as defined in (2.1.1) is recurrent if and only if
e<1l, a+b<1, anda{fa+b) <1 (2.2.1)

Proof.

The sufficient condition

We divide the proof into three cases as follows:

Case (i). —1<a<l, -1<ae+b<1,

Case (ii). a<~1, ~1<a+b<1, ala+bd) <1,

Case (iii). —1<a<1l,a+b<-1,ala+b) <1

In each of the cases we use Theorem 4.3 of Tweedie (1975) (Theorem A.2 of

13



Appendix A).

Proof of case (i}.
Let g(z) =| z |, for = € R, ie g(z) = z* +z~, where =zt =
max{z,0), z~ = —min(z,0).

Let W = X;_i(a+ bG(X;-1)) so that X, = W +¢;. Then

Elg(X,) | Xesl = [ p(z,v)9(v)dy
can be written as
Elg(X) | Xima] = Elg(W + &) | Xi]
= E[(W+e)t+(W +e) | Xeni]
= E[(W+e)+2(W+e) | Xe]
= W4 2E[(W +¢&,)” | X (2.2.2)
Equivalently,
Elg(X) | Xeea] = =W + 2E[(W + )" | Xea]. (2.2.3)
For convenience, let &, = €. For z >0, (2.2.2) becomes,
Blg(X) | Xew] = a(a+bG(z)) +2E[s(a + bG(z)) + ]
= z—z+z(a+bG(z)) + 2E[z(a + bG(z)) + €]~
= g(z) - L(z),
where
Liz) = z—z(a+bG(z))—2E[z{a+ bG(z)) + ¢}
= z(l - (a4 b))+ bz(l — G(z})
— 2E[z(a+b) —bz(l — G(z)) +€]".
According to Theorem 4.3 of Tweedie (1975) (Theorem A.2 of Appendix A)

to prove the theorem we have to show that L(z) > 0 as z — oo. For

notational convenience, let §(x) =1 — G(z). Therefore L{z) becomes

L{z) = (1 - (a + b — b6(z)))z - 2E[z(a + b — b6(z)) + €]

14



If 0<a+b<1 and ~1<a<1 andas E|e|< oo then
Elz(a +b— bb(z)) +¢]” ~0, as z — oo, (2.2.4)
andif —1<ae+b<0 and —1<a<1 andas E|e|<co then
Elz(a+b—b6(z))+e]” ~ —z(a+ b— bé(z)), as z — oo

Therefore, as z — oo,
(1l -(a+b—-0b6(z))), O<a+4+b<1
L(x)"’{ z(l+ (e +b—106(z))), —-1<a+b<0.

Also, it is clear that when a4+ 0=0 and -1 <a <1,

L(z) ~ (14 bb(z))z — 2E[—bzb(z)) + ¢}

> 0, as =z — oo.

Hencefor ~1<a<l, -l<a+b<1,

When z < 0, (2.2.3) becomes

Blg(X) | Xea) = —a(a+0G(z)) + 2E[s(a + bG(z)) + e]*
= —z 4z~ z(a+ bG(z)) + 2E[z(a + bG(x)) + €]t
= g(z) - J(=z),

where

J(z) = —z+z(e+bG(x)) — 2E[z{a + bG(Z)) + €]t
= —z(1 — a} + baG(z) — 2F[az + bzG(z) + €]*.

By Theorem 4.3 of Tweedie (1975) (Theorem A.2 of Appendix A) we need to
show that .J{z) >0 as x — —oo. Now, since F |¢ |< oo, we have that if

0<a<] and -1 <a+b<1

Elz(a 4+ 0G(x))+ )t ~0, as = — —co

15



andif 1 <a<0 and -1 <a+b6<1
E[z(a + bG(z)) + €]t ~ z(a+ bG(z)), as z — —oo.

Therefore, as = — —co,

—z(l —{a + bG(z})), O0<a<1
J(z) ~ { —z(14 (a +bG(z))), —1<a<0o.

Similarly, it is clear that when ¢ =0 and -1 <a+4b<1,
J(z) ~ —z(1 —bG(z))—2E[bzG(z) + ]t
> 0, as ¥ — —o.

_ Hencefor —1<a <1, ~l1<a+b<1,

Now, for sufficiently large B, choose A ={—B, B}. Then by condition (i) and
(i1) of Theorem 4.3 in Tweedie (1975) (Theorem A.2 of Appendix A), {X.}

is recurrent.

Proof of Case ().

]

From this condition, it is possible to choose positive constants ¢ and d such

that ¢ < d, satisfying
d
L oa<, —§<a+b_<_ 1.

C

Suppose we again choose the non-negative measurable function

{ cx, x>0

9(z) = —dz, <0

Le. g(z)=czt +dz.

Then as before
Elg(Xe) | Xear] = W + (e + D) E[(W + &) | Xem],

Elg(X:) | Xem] = —dW + (c + )E[(W + &)™ | Xia].

16
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For z > 0 (2.2.5) can be written as

Blg(X) | Xl = ca(a+bG(2)) + (c+ d)E[s(a + bG(x)) + <]

ez — ez + cx{e + bG(z))
+ (c+d)E{z(a +bG(z)) + €]
g9(z) — L(z),

Il

where

L(z) = cz—cz(a+bG(z)) — (c+ d)E[z(a + bG(z)) + €]
= cz(1 — (a + b)) + ebz(1 — G(z))
— (c+d)E[z(a+b) —ba(l — G(z)) +¢]".

Using Theorem 4.3 of Tweedie (1975) (Theorem A.2 of Appendix A) we have
to show that L{(z) 2 0 as z — oo. Letting é(z) = 1— G(z), L(x)

becomes
L{iz)=(1-(a+ b—bb(z)))ez — (c+ d)Elz(a + b — bb(z)) + ].
Since E|e|< oo yields
Elz(a +b—bé(z))+€]” ~0, as z — oo,
if 0<a+b<1and —2<a<—-1andif -$<atb<0and ~¢<a<-1
Elz(a+b—bd(z))+€]” ~ —z(a+ b~ bs(x)), as T — oo.
Therefore, as =z — oo,

cr(l —(a+b—-108(z))), O0<a+b<1
L(z} ~ { r(c+dla+b—06(z))), —-S<a+b<

As before, when a+b=0 and —% <a< -1,

L(z) ~ (14 bd(z))cx — (c+ d)E[—bzb(z) + €]

> 0, asz — co.
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Hence,for e < -1, -1 <ae+5<1, a(a+b) <1, we have
L(z)>0, asz— co.
Consider z < 0 so that {2.2.6) becomes

Elg(X:) | Xt-1] —dz{a 4+ bG(z)) + (c + d)E[z(a + bG(z)) + €]t

It

—dz + dz — dz(a + bG(7))
+ (c+ d)E[z(a+ bG(z)) +£]*
9(z) — J(z),

where

J(z) = —dz+dz(a+bG(z))~ (c+ d)E[z(a + bG(z)) + E]+
= —dz(1 — a) + dbzG(x1)
— (c+ d)E[az + bxG(z) + ¢]*.

Again, we need to show that J{(z)>0 as z — —oo. Since E |e|< o0, for

-—§ <a<-1 and —-$<a+1<1, wehave
Elz(a+ bG(z)) + €]T ~ z(a + bG(z)), as T - —oo.
Therefore, as = — —oo,
J(z) ~ —z(d+ c{a + bG(x))), -—-g <a< -1,
which implies that, for ¢« < -1, ~1<e+0<1, ala+b) <1,
J(z} >0, asz— —co.

As before take, for sufficiently large B, A = [—B, B], then conditions (i)
and (ii), Theorem 4.3 of Tweedie (1975) (Theorem A.2 of Appendix A) are

satisfied and {X.} is recurrent. O
Proof of Cuse (it1).
This case becomes the symmetric case of case (ii) by letting y, = —z; In

(2.1.1). In this case (2.1.1) becomes

Ye = Y—1{Ao + BoV (ye1) + & (2.2.7)
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where Ap = a+ b, Bp = —b and V(y) = 1 -~ G(—y). But (2.2.7) has
the same form as (2.1.1) so that by the previous result, (2.2.7) is recurrent if
Ao=a+b<~1, ~1< A+ By=a <1, Af{Ao+ Bg) =ala+5) <1.

Combining all cases, the sufficient condition is proved. o

Necessary condition

The necessary part of the theorem follows from Lemma 2.1 and Lemma 2.2
given below. The proof follows the method of Petrucelli and Woolford (1985)
given for the threshold AR(1) model. a

Lemma 2.1 If a>1 or a+b>1 then the process (2.1.1) is not recurrent.

Proof.
Consider the case a4+ > 1. Notice that we have denoted G (

=) by G(z)

where G is a known distribution function.

For B > 0 sufficiently large, the model (2.1.1) can be rewritten as
Xg_l(ﬂ. + b) - IJX¢_1(1 - G(Xt._l)) + £, Xt--l > B

X = Xia(e +G( X)) + &, | Xe [€ B
aX1 +0X, 1 G( X1 ) +&ns X < —B
We choose z sufficiently large such that a+b— (1 — G(z)) > 1. Let 7 be
such that 1 <n <a+b6— 01— G{z)). Then, for X;_; > B,

P ( 1}-!-1

H|X,1)

n+1

= ( (a+b—-01—-G(Xi-1)) X1 e £ X | Xt—l)

= ( “(a-}-b—-b[l— (Xt—l))—m)XtI|Xt—)

(A

+
P( Z(cl—l-b—b[—G(Xz 1))—1?7))(:1}}{:—1)
Elﬁ'1|
(a +b— b(l — G(Xt_l)) - 1";—1)Xt_1

ZE I £ |
(77_ I)Xt—l-

A

by Markov's inequality

(2.2.8)

A

19



Choose B > 0 large enough such that ¢ = -gif—)‘ls— < 1. Then for X,y > B
we have from (2.2.8)

P(Xg n_;_nglI.Xt 1)21—6.

Noting that for X;_; > B, l’ngt_l > X1, by repeating the above argument,

we get

1 1
X, X, > 1+

P (X¢+1 > nt

: Xo | XH)

+1,, . . +1 -
= P( ¢+1>?——)& I)\t 2 —— X1, Ao 1)

, +1 -
X P(A Xy | Xo- 1)

- = 1 r +1
(XH-I > "—A l/\t n—.t"“Xt 1) P (Ag > 7 5 Xf__]_ |X¢_1)

P
z ( f,+1) C) =(1_CB)(1—C)
s

where g = —;2_— < 1 for which the first term on the right hand side follows

from

+1
P ( t+1<'—_Xt|Xt>n2 Xt—l)

n+1

= P((a—f—b—b (1 - G(Xem))) Xt e < XX > 12X, 1)

_ P( smz(a+b—b(1- G(X ,,))—”;l)x,u{t )

< P(mﬂ[z (a+b—b(1— G(X ”“)thxz U'HXt 1)

< Plen 2 (a+b—b(1—G(Xf_1))—”2il) e P )
< (a+b—b(1—Cf;‘l);—:l))l“%)l’%xtﬂ (by Markov's inequality)

< f.

Continuing the result, for X; > B, we have

n+1
2

t
Xek=1,2,..¢] X1 > B) > (- 21—

k=1

P( (k1 >
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as t — 0o, since

oo _ 1 N o0 0o “Ckﬂk(t—l)
z_:log(l By = >0 —

(
> i(_ c )=log(1—c)'

Consequently, for any X; € ®
P(X,— 0| Xo) 2 (1—¢)TFP(X, > B| Xo) >0

since. P(X; > B | Xo) >0 from the assumptions on ¢;. Hence {X;} is not

recurrent.

The case a > 1 is the symmetric case of a4+ 6> 1 when 3 = —z,. The

result is obtained by working with the transformed equation
Yt = Y1-1{ Ao + BoV (y2-1)) + €1, (2.2.9)

where A9 = a4+ b, Bpb = —b and V(y) = 1 — G(—y). This equation
has the same form as (2.1.1) so that by the previous result, (2.2.9) is not

recurrent if Ag+4+ Bg=a > 1. a

Lemma 2.2 If e < 0 and a(a+b) > 1 then the process {X,} is not

recurrent.

Proof.
Without loss of generality, consider the case of a+b6< —1 & a(a+b)>1.

Consider the model (2.1.1) as the combination of the last two observations

Xg = (ﬂ. + bG(Xt_l))Xt_l + &
= ((J, + bG(Xt_] }) ((ﬂ. + bG( ft_g)).X;_-z + 51_1) + £y
= ((I + I)G(Xt_l))(ﬂ -+ IJG(Xt_g))Xg_g + ((1, + bG(Xt.,l))Et—l + E¢.
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We rewrite the model as
(6 4+ dG(Xec1))a+ 0= b1 ~ G(X1-2))) Xi—2
X, = +(a + bG(Xi—1))er—1 + €4, if X;2> B,

X, otherwise,

or can be rewritten as

(a -+ bG[Xt_l))(a + b - b(l — G(Xt..z)))Xf_z
X, = +Xe — E(X, | X1, Xio2)), if X,z > B,
Xi, otherwise.

Suppose X;_; > B then we can always choose B > 0 sufficiently large such
that (a + bG(X;-1))(e + b — b(1 — G(X,—3))) > a(a + b) > 1. There exists
1 <g<(a+bG(Xio1)) e+ b—b(1 — G(X,—2))) such that

41
P (Xt < ”—‘—2*-Xf_2 |Xt_1,Xt_2)
= P{(a+bG(Xe1))(a+b—b(1 — G(Xez))) Xies

+1,
1 A,_2|Xt_1,xt_2)

+ (Xe— E(X: | Xte1, Xie2)) <

= P(—(Xt -_ E(Xt I X:—ngl—z)) 2

((a +BG(Xe))a + b— b(1 — G(X.2))) - ?—-Z‘L—l-) Xes | Xt_l,Xt_z)

IA

P X;— E(X, | X1, Xe20) |2

((a FUG(Xeo))a + b~ b(1 — G(Xe_z))) — ""QLI) X | Xt_l,xt-z)

E(| X:— E(X | X1, Xe2) | Xeor, Xiz2)
(e + bG(X1))(a + b — (1 — G(Xim2))) — ™) X,os

A

2E(| Xt - E(Xt | Xt—laXi—'Z) l |X1—11X1—2)
(n — 1} X -

Whenever X,_, > B, E(1 X, — E(X, | Xi—1, Xi=2) || Xt-1, Xi—2) < ¢ < o0

for t > 2. Choose B >0 large enough so that

2
C—F’]—_T)-E'(l.

<
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Then for X;_5 > B,
P (Xt > F;—IXH | X,_l,Xt_z) >1-c (2.2.10)

By a similar argument as in Lemma 2.1, (2.2.10) implies that

" 41 +1
P (-/\t+2 > 7 2 Xe, Xy > 7 Xi-2 |Xt-11Xt—2) = (1 - Cﬁ)(l - C)
where = ;'% <1.

Continuing in this manner,

7+
2

1
P (Xz(k+1) > Xop, bk =1,2,..,1| Xa > B)

> T1(1-cf™) 2 (1 - o).

=1

Consequently, for any X, € R,
P (Xy — 00| Xo) > (1 = )TFP(X, > B | Xo) > 0.

Now as in Lemma 2.1, {X;} is not recurrent. Hence {X,} is not recurrent.

2.3 Ergodicity

Chan and Tong (1986) obtained that the process {X; :¢ > 0} as defined
in (2.1.1) is ergodic only if (2.3.4), given below, is satisfied {Proposition 2.1
of Chan and Tong (1986), see Proposition A.1 of Appendix A). They pointed
out that any sufficiently sinooth function G with a rapidly decaying tail will
suffice to satisty the condition. That is, basically they presented a sufficient
condition for ergodicity when G is light-tailed distribution function. Nur
(1993) presented the proof of the proposition by using general properties of
distribution function . The contribution for ergodicity theory in this thesis
will be the necessary conditions for ergodicity of (2.1.1) for any G and the
sufficient condition for ergodicity based on the classification of G as a distri-

bution function.



In this section, a necessary condition for ergodicity is given in Theorem 2.2
for any distribution function G. In Theorem 2.3, a sufficient condition for
ergodicity is presented when G is a light-tailed distribution function. The-
orem 2.4 gives a sufficient condition for ergodicity when G is thick-tailed.
Corollary 2.1 and 2.2 present the combination of both. For a special case of a

light-tailed distribution function, the necessary condition is also sufficient.

Theorem 2.2 For any continuous distribution function G, if the process

{X;:t >0} as defined in (2.1.1) is ergodic then

a<l, a+b<1, anda(a+d) <1, b5#0. (2.3.1)

N

Erdic

Figure 2.2. Necessary condition for ergodicity for any G
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Proof.
By Theorem 2.1, it is enough to show that the process is not ergodic when
a=a+b=1, and a=a+ b= —~1. In these cases 4= 0. Hence in the two

cases the model becomes

Xe=Xi 1+

and

Xt - “"Xt_]_ + [>F]

respectively. Clearly these are not ergodic. Hence the proof is complete. O

As mentioned earlier in the proof of sufficient condition for recurrence, to
satisfy condition (i) of Theorem 4.3 of Tweedie (1975), the functions L(z) or
J{(z) were shown to be greater or equal to zero. For the proof of sufficient
condition for ergodicity, by using Theorem 4.2 of Tweedie (1975)(Theorem
A.l1 of Appendix A) and Remark A.1, we have to show that these functions
are greater than zero for = outside the defined compact set (condition (i))
and the expectation of the measurable function is finite in the com’pa.ct set,

(condition (ii)).

Theorem 2.3 (Light-tailed distribution function.} Suppose G is a con-
tinuous distribution function such that
z(l—-G(z)) =0, as z — o0, (2.3.2)

tG(z) - 0, as ¢ — —oo. (2.3.3)
The process {X,;:t >0} as defined in (2.1.1) is ergodic only if
a<l, a+b<1, and a{a +b) < 1. (2.3.4)

Remark 2.2 Distribution functions setisfying (2.3.2) and (2.3.3) includes the
class of light-tatled to mediumn-tailed continuous distribution functions such as
Normal, Laplace, Gamma, Lognormal, Beta, Ezponential, F, {, and many

others.
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Figure 2.3. Classification for G light-tailed

Proof of Theorem 2.3.

As before, we divide the proof into three cases as follows:
Case (i). -1<a<l, -1<a+b<l,

Case (ii}. a<~1, —1<a+b<1, ala+b) <1,

Case (iii). —1<a<1, a+b8< -1, ala+b) <1

Proof of Case (i).
As in proof of Theorem 2.1 case (i), let g(z) =] z | for ¢ € R. Using the
equation (2.2.2) and (2.2.3) we have, for z > 0

Ejg(X:) | Xea] = 9(z) - L(z), (2.3.5)
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where
L(z) = z(1 — (a + b)) + bz(1 — G(z)) — 2E[z(a + b) — bz(1 — G(z)) + €],
and z~ = — min(z, 0).

To prove condition (i), Theorem 4.2 of Tweedie (1975) we will now show that

L(z) >0 as z — oco. By (2.3.2) for large =z,
Liz) ~ (1 — (a+ b))z —2E[z(a + b) + €] .
Also, since E | e |< o0, for lafge z,
Elz(a+b)+¢]~ ~ 0, if 0<a4b<l, (2.3.6)
= E(7) if a+b=0,
~ —z{a+b), if ;1 <a+b<0.

Therefore, for large z, and 1 <a+b< 1,
z(l—(a+b), 0<a+b<l
L(z) ~ '
z{(l+(a+9b), -1l<a+b<0.

Hence for a given a+ b, as = — oo, L(z) > 0.

Consider z < 0 so that (2.2.3) becomes
Eig(Xe) | Xiaa] = g(z) — J(=), (2.3.7)

where

J(z) = —z(1 — a) + bzG(z) — 2E]az + bzG(z) + €]*.
We will show that J(z) >0 as z — —co. By (2.3.4),as z — —oo,
J(x) ~ —z(l —a) - 2E[ax + €]*.
Also, since E | e |< 0o, we have,
Elax +¢]t ~ 0, if 0<a<1,
= E(e*) if a=0,

~ ar, f —1<a<d.
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Therefore, as = — —oo,

J(z) ~ {

Hence J(z) > 0, asz — oo.

—z(l—a), 0<a<l
—z(l+a), —1<a<0.

Now, for sufficiently large B, let
A =[-B,B}.

Then with this A, the condition (i} of Theorem 4.2 of Tweedie (1975) is‘
satisfied. Furthermore, condition (ii} of Theorem 4.2 of Tweedie (1975)(The-
orem A.l of Appendix A) follows, by using (2.3.5) and (2.3.7). Hence {X.}
is ergodic. =
Proof of Case (u1).

Under this condition, it is possible to choose positive constants ¢ and d such

that ¢ < d satisfying

d c
—<ae<-1, —=<a+b<l
c d

Consider the function g¢(z) as defined in Theorem 2.1 case (ii). Using the

equations (2.2.5) and (2.2.6) we have, for z > 0

Elg(X.) | Xio) = 9(2) - Li=), (2338)
where
L(z) = cz(1—(a+b)) + cbz(1 ~ G(z)) — (c+ d) Efz(a +b) - bz(1 — G(z)) + ]

We will show that L{x) > 0 as for large z. As z — oo, the asymptotic
value of G(z} is given in (2.3.2). As in case (i) it can be shown that for large

Z,

cr(l — (a+ b)), 0<at+bxl
L(z) ~{ z(c+ d(e + b)), —-i< a4+ b <.

Hence it follows that there exists B such that

L{zx)>0, forz>B.



For z <0 (2.2.6) becomes
Elg(Xe) | Xia] = 9(z) — J (=), (2.3.9)
where
J(z} = —dz(1 — a) + dbzG(z) — (c + d)E[az + bzG(z) + €]*.
We will show that J(z) >0 as = — —oc. Again as in case (i) we have
J(z)~ —z(d+ac), if - —(ci <a< -1
Hence we have for large B >0
J(z)>0, forz < ~B.

By taking A = [-B,B] it is clear that the condition (i) of Theorem 4.2
of Tweedie (1975) is satisfied. Furthermore condition (ii) of Theorem 4.2 of
Tweedie (1975)( Theorem A.1 of Appendix A) follows from (2.3.8) and (2.3.9).
Hence {X,} is ergodic. a
Proof of Case (iii}).

This case is seen to be the symmetric case of case (ii) if we let the transfor-

mation %; = —z, In (2.1.1). The transformed process is given by
Yo = ye-1{Ao + BoV(yi1)) + e, (2.3.10)

where Ag =a+b, By =—b and V(y)=1-G(—y). This has the same form
as (2.1.1) so that by the previous result, (2.3.10) is ergodic if Ap = a+ &<
~1, =1 < Ap+ By=0a <1, Ao(Ap + By) = ala +b) < L. ]

Combining cases (i) to (iii), Theorem 2.3 is proved. 0

Remark 2.3 For a special case of u lighi-tailed distribution function G for
which

(1l -G(z)) =0, x >k, 0<k <oo,

zG(z) =0, = < —k,

then the sufficient condition (2.3.4) is also necessary. This follows easily from

a similar ergument in Theorem 2.2,
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Theorem 2.4 (Thick-tailed distribution function.) Suppose G is e con-

tinvous distribution function so that

#1—-G(z))—=k, k>0 as z — oo, (2.3.11)

tG(x) > k3, k2 <0 as z — —oo. - (2.3.12)

where ky & k2 are either finite or infinite. The process {X, :t > 0} as
defined in (2.1.1) is ergodic only if

a<l1l, a+4+b<1, and ala+b)<l1. (2.3.13)

Remark 2.4 Distribution functions satisfying (2.3.11) and (2.8.12) include
the class of thick-tailed continuous distribution functions such as Cauchy and

Pareto distribution.

Proof of Theorem 2.4.

By Theorem 2.3 it suffices to prove the theorem for the following cases:
Case (i.a). —l1<a<l1,ae+b=1,

Case (i.b). e < -1, a+b=1,

Case (ii.a). a=1, —l<a+b<1.

Case (it.b). ea=1, a+b< 1.

Proof of Cuse (i.a).
As in proof of Theorem 2.1 case (i), let ¢(z) =j z |, for = € R. Using

equations (2.2.2) and (2.2.3) we have for = > 0,
Blg(X,) | Xem] = 9(2) ~ L(z), (23.14)

where

Lz} = bx(l — G()) — 2Bz — ba(l — G(z)) + <] .

Note that &> 0 in this case. Therefore for large =z, lim, _ o E[z — bz(1 —

G(z)) + €]~ =0, so that we have

Liz) ~bx(1 -~ G(z)), b>0 asz — co.
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Figure 2.4. Classification for G thick-tailed

Then

L(z) >0, asz - co.

Consider z < 0 so that (2.2.3) becomes
Elg(Xe} | Xern] = g(z) ~ J(2),

where

J(z) = -2(1 — @) + bzG(z) — 2Efazx + bzG(z) + €]*.

For £ <0, |z | sufficiently large, E {e|< 00, we have

Elaz+bk+e]t ~ 0, if0<a<],

~ axr+bzG(z), if —1<a<0.
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Therefore, as z — —oo, by using (2.3.12)

; —z(1 — a) + bzG(z), 0<ax<l
(=) ~ { —z{l + a) — bzG(x), -1<a<0.

As r — —oo, the first term on the right hand side goes to infinity faster than

the second term. Hence
J(z) >0, asz-— —oo.

Now by defining, for sufficiently large B, A = [-B, B] the condition (i)
of Theorem 4.2 of Tweedie (1975) (Theorem A.1 of Appendix A) is satisfied.
Furthermore, condition (ii) of the theorem follows from (2.3.14) and (2.3.15).
Hence {X,} is ergodic. O
Proof of Case (i.b).

Under this condition, it is possible to choose positive constants ¢ and d such

that ¢ < d satisfying
d
—=<al-1, a+b=1.

c

Consider the function g¢{z) as defined in Theorem 2.1 case (i1). Using the

equation (2.2.5) and (2.2.6), we have, for = > 0,
E[H(Xt) | Xia] = g(x) — L(z), (2.3.16)
where
L{z) = ¢ba{l — G(z)) — (¢ + )E[z — ba(l — G(z)) + €]~
Note also that b > 0 in this case. Therefore for large =,
lim Elz — bz(1 - G(z)) +¢]” = 0.
Therefore, as = — oo,

L(z) ~ cbz{l — G(x)), asz — oo

Hence it follows that L(z) >0, as 1 — oo.



For z <0 (2.2.6) becomes
Elg(X) | Xeea] = g(z) — J(2), (2.3.17)
where
J(z) = —dz(1 - a) + dbzG(z) — (¢ + d)E[az + bz G(z) + €]*.

Again we have

Elaz + b2G(z) + €]t ~az, if — g <a< -1,
Therefore, as = — —oo,

J(z) ~ —z(d + ac) — cbzG(x), ——g <a< -1l
As >0, c>0and k£ <0, we have

J(z) >0, asz— —oco.

By taking

A =[-B,B]
1t is clear that the condition (i} of Theorem 4.2 of Tweedie (1975) is satisfied.
Furthermore condition (ii) of Theorem 4.2 of Tweedie (1975) follows from
(2.3.15) and (2.3.17). Hence {X,} is ergodic. : 0o
Proof of Cases (it.a) and (ii.b)
These are the symmetric cases of (i.a) and (i.b) respectively, when ¥ = —z;
and hence the proof follows as above.

Combining all the cases, Theorem 2.4 is proved. U

From the proof of two theorems the following two corollaries follow.

Corollary 2.1 (Right light and left thick-tailed distribution function.)
Suppose G s a distribution function such that (2.3.3) and (2.3.13) are sat-
isfied. If

a<l, a+b<l, and ala+ )< 1, (2.3.18)

then the process {X,:t >0} as defined in (2.1.1)} is ergodic.

33



Corollary 2.2 (Right thick and left light-tailed distribution function.)
Suppose G is'a distribution function such thet (2.3.4) and (2.3.12) are sal-
isfied. If

a<l, a+b0<1, and e(e+b) <1, (2.3.19)

then the process {X;:t >0} as defined in (2.1.1) is ergodic.

Finally, from the results on ergodicity and recurrence we have the following

simple results on null recurrence and transience of the process,

Corollary 2.3 (Transience) The process {X;:t > 0} as defined in (2.1.1)

s transient if and only if

a>lora+b>1, (2.3.20)
a <0 and a(a+b) > 1. (2.3.21)
Proof. Follows from Theorem 2.1. O

Corollary 2.4 For any G o continuous distribution function, the process

{X¢:t 20} as defined in (2.1.1) is null recurrent only if

ea=landa+db=1, (2.3.22)
ea=—land a+b=-1. (2.3.23)
Proof. Follows from Lemma 2.5 and 2.6. a

For the estimation of parameters of the STAR model, in the subsequent chap-
ters, we assume ergodicity. From the discussion in this chapter it follows that
the STAR model is ergodic if e <1, a+b <1, and ala+b) <1 andif e

has a strictly positive density function with respect to the Lebesgue measure.
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Chapter 3

Bayesian Analysis

3.1 Introduction

In this chapter, we provide a Bayesian analysis of STAR models of order p
including the derivation of the posterior distributions of coefficient param-
eters with a noninformative prior and the marginal distribution of intrinsic
parameters. The performance of the exact one-step-ahead and conditional
multi-step-ahead predictive densities are also investigated, with illustrative

examples using real and simulated data sets.

Bayesian analysis has enjoyed success in many branches of statistics. Its po-
tential for time series analysis, however, is under developed, because time
series analysis often involves highly nonlinear dynamic structures, which
causes difficulties in prior specification and in posterior evaluation. The
situation is changing, however. There has been a growing interest in Bayesian
time series analysis in recent years. The advances in statistical computation

makes possible a fully Bayesian analysis in time series.

As early as 1971, Zellner began a systematic study of Bayesian methods in

time series analysis. He derived posterior and predictive distributions for
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first and second order autoregressive processes using a diffuse prior density
and gave a complete analysis for regression models with autocorrelated er-
rors and for distributed lag models. Since 1980, Bayesian techniques have
also begun to show that they did offer an attractive alternative to the pop-
ular Box and Jenkins methodology. This was initiated by Monahan (1983),
who used numerical integration to implement a complete time series analy-
sis, including identification, diagnostic checking, estimation and prediction.
This was the first Bayesian attempt to perform a comprehensive analysis

and was a valuable contribution, in this direction.

Among the nonlinear time series models proposed in the literature, the
threshold autoregressive model is perhaps the most popular one. Gowever
the threshold autoregressive model has not been widely used in practice due
to the difficulty in identifying the threshold variable and in estimating the

associated threshold value.

The nonasymptotic Bayesian approach for threshold autoregressive mod-
els with two regimes, suggested by Broemeling and Cook (1992), can be
considered as an initial attempt to circumvent these difficulties. They de-
veloped formulae to obtain the marginal posterior distribution for each of
the parameters and the one-step-ahead predictive distributions along with
their means and variances. Extending these ideas, Geweke and Terui (1993)
provided a Bayesian approach for parameter estimation and related infer-
ences 1n the threshold autoregressive model. In this thesis, the exact pos-
terior distnibution of delay and the threshold parameters are derived as is
the multi-step-ahead predictive density. Both Broemeling and Cook (1992)
and Geweke and Terui (1993) investigated the two-regime threshold auntore-
gressive model analytically. In contrast, Chen and Lee (1995) proposed a
Bayesian analysis for the two-regime model where the desired marginal pos-
terior densities of the threshold value and other parameters were obtained

numerically via the Gibbs sampler. Similarly, McCulloch and Tsay (1994)
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applied the Gibbs sampler in analysing autoregressive processes including

random level-shift models.

The smooth threshold autoregressive model is a generalisation of the thresh-
old autoregressive model having an additional intrinsic parameter, a smooth-
ing parameter. The smoothing parameter allows the model to transit be-
tween regimes in a continuous manner. In a recent paper, Chan and Tong
(1986) presented a method of estimation of parameters of the STAR model
using the conditional least squares procedure. They established consis-
tency and normality of the parameters as in Theorem 3.1 of Chan and
Tong (1986). To provide tentative identification of threshold and delay pa-
rameters, Tong (1990) suggested the use of non-parametric lag regression
estimates. More suggestions have been given by some other authors which

rely heavily on the use of graphics (Tsay (1989)).

On the contrary, the Bayesian approach allows one {o obtain the joint den-
sity of the intrinsic parameters in a closed form offering an alternative pro-

cedure to estimate the parameters.

This chapter is organized as follows. Section 3.2 contains a description of
the STAR model of order p and the derivation of i)osterior distributions of
parameters with a noninformative prior. These posterior distributions are
developed using the conditional likelihood function and we show how the
marginal distribution of each intrinsic parameter is obtained. In Section 3.3,
we consider the predictive performance of the STAR model by obtaining the
exact one-step-ahead predictive density and conditional multi-step-ahead
predictive density. Moreover, we present an approximation to multi-step-
ahead predictive density using Monte Carlo integration. Finally, in section
3.4, we illustrate the results of sections 3.2 and 3.3 by means of simulated

data sets and the frequently reported Canadian lynx data.
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3.2 Model and Distribution

Consider the class of Gaussian Smooth Threshold Autoregressive (GSTAR)
models of order p defined by
P P Xoy—r
X, = a0+ 3 a;Xes + (b + 3 b5Xe5)G (-Lf;——) ten  (321)
j=1 j=1

where G is a Gaussian distribution function with known mean and vari-
ance, for convenience; r is a threshold parameter, r € &; d is a delay
parameter, d € Z*; z is a smoothing parameter, z € Rt and {e:}
is a sequence of independent and identically distributed random variables,
g¢ is i.i.d. N(0,0?) where {X,, s <t} is independent of e,. As noted
earlier, the minimal requirement of G is being continuous and nondecreas-

ing.

To keep the notation simple, in the Bayesian analysis, we define all param-
eters in (3.2.1) in a compact form as

8 = (ag, @1,y @p, bo, b, ..., bp)T, ¢=(rdz), o

Conditional on Xg = (X),...,Xn)T, m = A{d,p} and ¢, the model

(3.2.1) can be written as

X =&®6 + ¢, (3.2.2)
where
- - T
X = (A,r3+1,)1m+2,...,XN)
- T
€= ("-1?¢+11Em+2: ceey EN)
1 Xm X'rn.«]-l-]'i Gm+l Xme.-i-l Xm+1—me+1
@ _ 1 -'X’1n+1 A,m.-i-Q—p Gm.+2 Xm.-l-l Gm,+2 an+2—me+2
1 Xy_y ... XN_.,, Gn  Xn_1Gn XN_pGN

and Gt-—-G(-)—"—‘-"—ii).

z
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Then the conditional likelihood function, based on (3.2.2) and the assump-

tion on £, is
L(X | 8,0,4) = (2r0?)~F exp {—21—2()( ~ $6)7(X - @9)} . (323)
ol

where n = N —m is the number of effective data points.

Let w(¢) be a prior density function of ¢. Assume that conditional on

¢, independent priors of @ and ¢ are of standard Jeffreys form. Hence
{0, 4,0} =7.{0,0 | $}7(9), (3.2.4)

where 7.{f,0|¢} x 1, for § € R+ and o € R*.

Using Bayes theorem the joint posterior density of & and o, conditional

on (¢,X) can be expressed as
P8, | 6,X) o 7.(0,0 | $)L(X | 8,0, 6). (3.2.5)

From (3.2.3),(3.2.4) and (3.2.5) we have
P(8,0 | 6,X) o (27)" T~ exp {_2}7()( — 86)T(X — @9)} . (3.2.6)

Now,

(X — @6)T(X — &) (X — 80 + ®6 — 6)T(X — 36 + 0 — &0)

(X ~ 30)7(X — ®8) + (X — 80)T(®6 — 86)

I

+ (86— 80)T(X — &6) + (Bh — 26)T (26 — B6)

(X — 86)T(X — ®6) + (6 — )7 2T @(6 - 0)

vst+(0— )T - 06),

since the cross product term (§ — 8)7®7(X — &) = 0. Then (3.2.6) can

be reformulated as

P(,0]4,X) x (2r) 7g~ ("D
X exp {—2}7(032 +{6-6TdTH®( - 6'))} .(3.2.7)
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where

2 _ (X - 86)"(X - @)

0= (8T®)'8TX, s (3.2.8)
v

and v=N-m—-2(p+1)=n-2(p+1).

We now use (3.2.7) to determine the posterior distributions of 8 and o
given (¢,X) and obtain the marginal posterior distribution of ¢ given

X.

From (3.2.7) it is clear that the conditional distribution of 8§ given (o, ¢,X)

is a mulitivariate normal
8| (0,6, X) ~ N(8,c*(8T®)™).

The posterior distribution of ¢ given (¢,X) can be obtained by integrating

(3.2.7) with respect to 8, resulting in

1 vs?
P(O’ l é,X) o e exp ('—-é?') .

This indicates that the density of o is in the form of an Inverted Gamma

density, IG(e, v), with parameters ¢ =% and v = ;—i—;

Similarly, the posterior distribution of # conditional on ¢ and X can be

obtained by integrating (3.2.7) over o, ¢ > 0, as

PB14,X) o [ (2n) T exp {—%(vsz + (- 0T8T (h - 9))} do.

Using Gamma function
() :] t*~lexp(~t)dt,
o

and letting ) )
vt + (8- 0)T@TH( - 0)

- E

202

2 8 -—0TdTH(—
_us +( ) (8 g)da

a3

dw =

’
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the integral can be simplified as

P6|¢,X) = _(21;-)—§ /ooo o= (n+1) exp(—tU)z dw,

o?w

= 07 [Tt exp(-w);—dw,

[TE]

()% [ { vs? + (8- 6)78TB(4 - 9)}‘

1
o 50 exp(—w)dw,
= (@r)y 328 {ust + (0 0)T@TB( - 0)} F
o0 2 —w)d
X /0 w2~ exp(—w)dw,
x (2r)-52%-T (g-) {vs?+ (6 —0)TBTBE —0)}F  (3.2.9)

which is in the form of a 2(p + 1) dimensional multivariate ¢
distribution with v degrees of freedom, mean # and variance-covariance

matrix ;—232(@1‘@)-1.

In summary, we have the following

0] (c,6,X) ~ N(b,0(8T®)™),
S16.%X) ~ 16(5,5),

27 ys?

81(6,X) ~ Tapen) (9

B 252@%)"‘).

v

The marginal posterior density of ¢ = (r,d,z) can now be obtained by

the Bayes theorem,

m($)P(X | ¢)

P($1%) = TOE

where P(X | ¢) = fa+ faepen 7(8,0 | )L(X | 0,0,¢) df do and P(X) is
a normalising constant. Hence, the posterior distribution of ¢

302 1n(™) foe? 4 (6 — BT BT H(6— o))"
P($]X) « A2(p+”w(¢)(2w) 2270(5) {vs? + (G- 0) 8T R(6 - 0)} " b,

« w(@)enFIG) [ fot+ (G- 0r2TR@-0)) " 0,

-
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o< a(¢)(2r) F2EII(Z)

i aTaTED -z
/ (vs?)"7 1 + (067 2(0-9) dé.
N2Ap+1}

vs2

Solving the above by using the #-integrals ( Box and Tiao (1973), page
145-146)

zin
o0 oo - Tr-1 - —T7
[2 [ BRI e,
—_—00 -0 'U

= Tt
() |
where x = (zl,...,xn)T, 7 1san n X 1 vector of constants and C 1is an

n X n positive definite symmetric matrix, we have

P(¢|X) o« n(8)(2r)F28I(3)

v43 1

n-1 [, (0—-6)T@TB(6 - 6) - "
,/sez(ﬂl)(vs ) + - T

vs?

« R TS

- Tx ‘
x f 14 (6-0T252 (0 0) 2 do
R p+1) v !

2(p+1)
n_n n n F I‘% a 1 1
x w(¢)(zw)-f2?-‘r(g)(vsz)—f( ) (vs2)0) | 275 |}

) [

2\ "2 :
« w@z e (2) i) a7 1,

from which, we can readily obtain the marginal distributions of each intrin-

sic parameter r, d, and z.
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3.3 Predictive Performance

It is well-known that the joint predictive density function even for the linear
autoregressive model of order p does not have a closed form except in the
case of one-step-ahead prediction (Zellner (1971}). When cycles exist in the
data, Tong (1983) developed a simple method to obtain multi-step-ahead
predictions from the threshold model based on the cyclic property. In this
section we derive the exact one-step-ahead predictive distribution based on
a STAR model of order p conditional on ¢ without utilising the cyclic
property and extend this to obtain the exact multi-step-ahead predictive
distribution under certain conditions. Monte Carlo ﬁpproa.ch (Geweke and
Terui {1993)) is then used to investigate the unconditional multi-step-ahead

predictive performance.

Suppose Xy denotes the last observation and let
¥ = (1, XN, ..., XN—pt1, GN11, XNGN41s ooy XNp1G N1 ),

so that
XN+] =W 0 + EN+1y (33-1)

where # and G, are as in Section 3.2. Conditional on ¢, (3.3.1) is in
the form of a usual linear model. Therefore by the usual normal theory, the
Bayesian predictive density of Xy, given ¢ can be obtained. Since eni1
is normally distributed with mean 0 and variance o¢?, the distribution of
the next observation conditional on all parameters is given by
1
P(Xny1 | 0,0,6,X) x o™t exp{—z?(XNH — ¥§)?}). (3.3.2)
Combining (3.2.7) and (3.3.2), we find that

P(-XN-;-l,H,O' | ¢:X) x P(XN+1 | 91 g, ¢’X)P(910 I ¢,X):\

1
—(n-i—?) 2
x o exp {———202 (Xnp — ¥8)

+ v+ (0-0)TeTR(-0)}}, (333)
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where 8 = (8T®)18TX, st = K-2OTX-8) 4

v

v=N-m-2(p+1)=n—-2(p+1).

Upon simplification of the right-hand side of (3.3.3) and integrating with
respect to 8 and o, it is clear that Xpn,;, conditional on ¢ and X,
follows a ¢ distribution with v degrees of freedom, with the conditional

predictive mean and  variance X N+1 = ¥4 and
T Var(f | ¢,X)¥7 + E(0? | ¢,X) respectively. These quantities can

be evaluated in a closed form using conditional distributions of # and o.

The above exact one-step-ahead predictions, conditional on ¢, can be eas-

ily extended to obtain the exact j-steps-ahead predictions as follows.
Define,
;= (1, XNtjmts s XNtimps GN4is XN+i=1GN4js s XN45-pGN45)5

for 1 < 5 < h <d, where h is the lead time.

Hence, conditional on ¢, Xn4; can be written as
Xnt; =% 0 + enygj, 7=1,2,..,h, 7 £ d. (3.3.4)

Therefore, as before, the Bayesian predictive density of Xn4;, conditional

on ¢, can be obtained.

An algorithm for obtaining the conditional Bayesian multi-step-ahead pre-
dictions based on Monte Carlo integration is outlined below. The procedure
is repeated M times, where M is a constant depending upon the con-

vergence rate.

(1). Fix ¢ =(r,d,z) at the posterior modal point.

(2). Conditional on ¢ draw ¢ and # from the density (3.2.6). This

may be done by employing a two step procedure as follows,
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(a). since ‘;i: ~ x%(v) conditionalon ¢ and X, draw w ~ x*(v)

2
and set ¢? = 2=,

(b). since 6| c,¢,X ~ N(0,0*(®T®)?), draw 8 from this

multivariate normal distribution.
(3). Define X=X, for t=1,2,..T. Recursively generate

N P
Xry; = ao+ ) aiXr

=1

r
+ (bo+ ) _biXr)G

=1

(XT+J‘_.,1 -T

z

) + €745,

where j =1,2,...,h and h is the number of steps prediction.

(4). Averaging each of f(T.,.J-, j=1,...,h over the M replications, we

obtain a numerical approximation to the Bayesian predictor.

In the next section, the Bayesian predictor obtained by the Monte Carlo
method is compared with the Conditional Least Squares predictor given
in Chan and Tong (1986) using the root-mean-squared- error performance

measure defined by

l Tr+T* R 2

T'=T
where T is the number of samples used in the calculation of this expression
for each h, ):’Turh is the h step ahead predictor from the time origin 7"
This measurement was used by Tong (1983) to compare the results of the
short, medium and long range

forecast errors.

3.4 Examples

This section presents two examples to complement the theoretical results

developed in Sections 3.2 and 3.3. Most of the programs to perform the



necessary computations were written in Fortran 77, with a few subroutines
included from the Nag-library. For illustrative purposes, only the first-order

STAR model within the ergodicity region
a; < l, a1 + bl < 1, ay (0.1 + bl) < 1. (3.4.1)

is discussed.

In what follows, a flat prior, =(¢#), for ¢ = (r,d,z) is employed so that

the marginal posterior density of ¢ becomes

P(¢|X) x 273+ --(%) zr(g)f@% 5. (3.4.2)

Note that an advantage of the Bayesian method compared to Conditional
Least Squares is that the marginal posterior density of the implicit param-

eters (r,d,z) can be obtained in 2 closed form, using the former.

It is clear that the maximisation of posterior density (3.4.2) depends on

2 and sample size of

the determinant of ®T&, the estimated variance s
the data. Specifically, the determinant component in {3.4.2) will tend to
infinity when the matrix ®T& is almost singular and when this happens
this component dominates the maximisation of posterior density causing
the bivariate modes of r and z to fall on the boundary of their domain,

D,,. To avoid the singularity, the domains of r and z have to be properly
defined. As an example, when p=1 and d=1 the matrix ®T® is
( N-—1 N1 X; Zf:—ll G E;V:]l X;Gipr \
- Tiat X Tin'XP DEXGm TN X[Gin
PP =
TR Gin T X;Gin ZN DG, XA X6,

\ O X6 TS XRG ©RX6Y, iRt XiGE, )

where G; = G ((Xi—4 —1)/z). The singularity is caused by the value of

G(.) in the above matrix when + is considerably large with respect to the
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observation such that the bivariate mode reaches the right boundary of the
domain of r, D,. To reduce the domination of the determinant, one may
also need to choose a proper sample size in the variance component of the

above posterior density.

3.4.1 Simulation study

The following simulation study was performed to illustrate the theory given
in Sections 3.2 and 3.3. With a view to limiting computer time, 50 inde-

pendent samples of size 200 of

Xi1—5 Xi1—5
Xt = 10 - ZX«;_.I - 5G (%) + 1.6Xt_1G (%—-) + Et-_-

where G and the distribution of ¢; are standard Normal distribution
functions, were generated and the computations were carried out with the

domain of (r, z) restricted to D,, = {(r,z): 0 <r < 10, 0.1 < z < 10}.

0.03 -
0.025 -,
0.02
0.015 .
0.01 4

0-005 e

N

25

Figure 3.1. Bivariute joint density of (r,z) = (5,0.5)
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Table 3.1. Bayesian estimates :

True velue of (ao, a1, b, by, 1, 2,0%) = (10, -2, -5,1.6,5,0.5,1)

x

No. (i\o Lfl bo bl 7 z o?
1 T10.1069 | —2.0274 | —4.1995 | 1.5065 [ 5.0 [ 0.80 | 0.9341
2 1100811 [ —2.0192 | —5.1294 [ 1.6173 [ 5.0 ] 0.40 { 1.2160
o [10.0670 | —2.0330 | —3.5345 [ 15067 [ 5.0 | U.60 | 1.U806
4 110.0328 | —2.01209 1 —4.4424 [ 1.5564 | 5.15 [ 0.45 ] 0.96D4
O 9.9527 | —1.9800 | —4.9061 [ 1.5566 [ 4.85 | 0.65 | 1.1566
6 [10.0344 | —1.9866 | —5.3471 [ 1.6194 [ 5.10 [ 0.407} 1.0574
7 9.9884 | —2.0007 | -4.8449 | 1.6152 | 5.0 | 0.35 | 1.0690
g 1102302 | -2.0277 | —5.7741 | 1.689a5 { 4.80 | U.ol} | 1.8570
Y 9.8720 | —1.9112 1 —3.1845 | 1.5661 [ 5.10 | 0.40 | 0.92Z50
10.1198 | —2.0309 | —6.1211 [ 1.7437 ] 4.75 1 0.60 [ 1.0149
9.7618 | —1.9096 | —3.3610 | 1.3521 [5.40 | 0.60 | 1.1520
10.1162 | —1.9095 | —5.7680 1 1.6620 | 5.15 | 0.40 { U.5653
J10.0181 | —1.9846 | —6.0480 | 1.7450 | 5.05 | 0.15 [ 0.8604
10.3111 | =2.1454 | —0.4142 [ 1.8777 [ 3.90 | 1.20 [ 1.03U3
100008 | =2.0007 | —4.75098 | 1.6197 [4.% 1 0.70 | 1.1672Z
10.01s4 | —1.9824 | —4.8446 {1 1.5501 | 5.20 | 0.25 | 0.5394
10.0985 | —2.0958 | —4.6336 | 1.6553 | 4.95 | 0.60 [ 0.9903
9.8583 | —1.9843 | —=5.2753 | 1.6344 | 4.75 | 0.50 | 1.0956 |
10,1096 | —2.0089 [ —5.4994 | 1.6667 | 4.85 | 0.40 | 0.8788
9.9800 | —1.9700 | —4.1232 ] 1.4607 | 5.25 [ 0.40 | 1.405359
9.8041 ! —1.9199 | —5.0267 | 1.5234 | 5.0 | 0.40 { 4.8704
9.8598 | —1.9878 | —5.5240 [ 1.6891 | 4.60 | 0.70 [ 1.0923
08995 | —-1.9755 | —5.5444 [ 1.6466 [ 4.90 | 0.40 [ 1.1325
103172 | —2.1241 } —-5.3343 [ 1.7180 | 4.55 { 0.40 } 0.847%06
10,1092 | —2.0423 | —5.9011 [ 1.7325 1 4.70 | 0.10 | 1.5485
9.7828 | —1.8911 | —6.5101 [ 1.6986 | 5.20 [ 0.25 | 0.91G2
9.9583 | —2.0567 [ —4.8873 [ 1.6627 [ 4.95 | 0.60 | 0.7897
OBI78 | —1°9423 [ —4.8215 1 1.5294 [ 4.90 | 0.35 1 0.9548
9.6502 | —1.0060 | —5.3511 | 1.5886 | 5.0 ] 0.60 | 1.0565
10.3105 | =-2.1705 | —5.0536 | 1.7515 [ 4.85 ] 0.35 | 1.0410
10.2282 | —2.0502 1 —5.4933 [ 1.6857 [ 4.55 [ 0.70 [ 1.0067
9.9a79 | —2.0042 | —3.7045 | 1.4802 | 5.25 [ G.65 | 1.U340
08834 | —T.9363 | —5.2186 | I.5877 | 5.15 | 0.70 | G.9109 ]
10.1854 | —2.0925 | —5.3833 1 1.7086 | 4.95 | 0.55 [ 0.9786
9.8668 | —1.9316 | —4.9325 [ 1.5367 [ 4.90 | 0.25 ] 1.0891
5.9843 | —1.9647 | —4.5851 | 1.5270 [ 5.15 | 0.25 ] 0.9561
9.6901 | —1.83504 | —4.5640 | 1.4245 [ 5.15[0.75 { 1.1827
9.825¢ | —1.9125 [ —4.3276 [ 1.4669 ] 5.20 1 0.70 | 1.1264
9.9964 | —1.9656 [ —5.4179 [ 1.6334 | 5.15 1 0.65 | 1.0392
10.2996 | —2.1042 | —5.2006 [ 1.7T11 1 5.05 1 0.35 1 0.9416
10.0825 | —1.9682 [ ~4.8214 [ 1.5053 | 5.15 1 0.35 | 0.9771
10.0098 | —2.0665 { —3.9940 1 1.5369 [ 5.0 [0.60 ] 1.0I71
10.3152 | —2.1699 | —5.4961 | 1.8054 [ 4.50 | 0.45 [ 0.9466
9.7008% | —1.9404 1 —4.2509 1 1.4936 | 5.10 [ 0.55 [ 1.423]
9.9424 | —1.9774 | —4.404T 1 1.4458 [ 5.05 [ 0.55 [ 1.0564
10.0146 | —1.9790 | —6.5412 | 1.7815 1 4.85 | 0.10 | U.8291 |
102831 [ —2.0815 | —4.9149 ] 1.6656 { 5.25 [ 0.45 | 1.2053
9.0228 | —1.8266 | —5.0730 [ 1.4983 | 5.0 ] 0.30 [ 1.0039
10.1308 | =2.0019 | —4.6920 ] 1.5535 | 5.0 [ 0.40 [ 0.8885
9.9250 | -1.9891 [ —4.7T90 [ 1.5705 [ 5.05 | 0.35 | 1.1444




Table 3.2. Conditional Least Squares estimates:

True value of (ag, a1, b, b, 7, 2,0%) = (10,-2,-5,1.6,5,0.5,1)

—C

No. d() [1‘1 bo b1 7 z a?
T [10.0986 | —2.0204 | —4.28Y1 | [.5091 { 5.0 | 0.30 [ 0.9340
2 | 10.0729 | —=2.0124 | —5.1800 | 1.6168 [ 5.10 [ 0.40 | 1.2159
3 [T10.05955 1T =2.0250 1 —4.037I [ 1.5108 [4.9510.45 | 1.0809
4 1710.0328 1 -2.0129 | —4.4424 | 1.5564 | 5.25 | 0.60 | 0.9694
5 9.9527 | —1.9800 | —4.9061 ] 1.5566 | 5.05 ] 0.30 | 1.1566
6 1 10.0344 | —1.9866 | —5.3471 | 1.6194 [ 5.0 j0.55 [ 1.0574
{ 9.9884 | —2.0067 | —4.8449 [ 1.6152 [ 4.75 [ 0.45 | 1.0699
g [10.2302 1 =2.0277 | —5.7741 | 1.6955 [ 5.25 [ 0.60 | 1.637U
Y 98725 1 —1.9112 | —5.1845 [ 1.5661 | 5.05 ] 0.60 | U.9Z7Y
10.1024 } —-2.0193 | —6.0999 [ 1.7315 14.85 [ 0.10 | 1.0148
G.7618 | —1.9096 | —3.3610 | 1.3521 | 2.85 | 0.10 [ 1.1520 |
10.1162 | —1.9595 [ —5.7680 1 1.6626 [ 5.10 [ 0.35 | 0.9653
10.0I8T | —1.9846 | —6.0480 | 1.7450 [ 5.05 | 0.55 | 0.6004
10.2568 1 —2.1398 | —6.4625 { 1.8837 [ 5.05°] 0.60 | 1.U257
10.0058 | —2.0507 { —4.7598 1 1.6197 | 5.0 [0.70 | 1.1672
10.0184 [ —1.9824 | —4.8446 [ 1.5501 | 4.70 [ 0.85 | 0.8394
10.0804 | -2.0894 | —4.7245 [ 1.6595 | 4.50 | 0.10] 0.9902
9.8583 | —1.9843 | —5.2753 | 1.6344 1 5.05 | 0.35 | 1.U906
10.0950 | —2.0031T 1 —5.5694 1 1.6600 [ 5.15 | G.55 | 0.875b
99865 | —1.9700 | —-4.1232 | 1.4607 | 4.75 | 0.50 | 1.455Y
0.8541 1 —-1.9199 | —5.0267 | 1.5234 14.85 [ 0.70 ] 0.8704
0.8538 | —-1.9978 | —5.5240 | 1.6891 | 5.0 [ 0.25 | 1.0908
0.9995 |1 -1.9755 | =5.5444 T1.6466 | 4.95 [ 0.80 | 1.1323
10.3172 [ —2.1241 | —5.3343 [ I.7I80 [ 5.25 | 0.45 | U.84.20
10.1032 1 =2.0423 [ —5.90IT [ 1.7325 { 5.20 ] 0.50 | 1.5433
97780 T —-1.8876 | —6.6441 | 1.7T08[5.10 | 0.65 [ 0.91G1
99583 | —2.0567 | —4.8873 [ 1.6627 | 4.95 [0.60 | 0.7897
98178 | —1.9423 | —4.8215 { 1.5204 [4.95 { 0.45 { 0.954%
U.6862 | —1.9060 | —5.351T 1 1.5886 | 5.10 [ 0.30 | 1.0565
10.3T05 | —2.1705 | -5.0536 | 1.7515 { 4.95 1 0.80 | 1.0410
10.2041 | —2.0353 | —5.54I3 [ 16787 | 5.0 [ 1.0 [ 1.0004
9.9379 1 =2.0042 | —3.7045 | 1.4802 [ 5.15 | 0.45 | 1.0540
9.8372 | =1.9030 1 —6.3404 [ I.681T [ 4.80 [ 0.70 | 0.9101
10.1834 | =2.0925 | —5.3833 | I.7086 1 5.15 | 0.30 | 0.9756
0.5629 1 =1.9284"| —5.0315 | 1.5465 [ 5.0 1 0.45 | 1.0890
9.9843 | —1.9647 | —4.5851 T 1.5270 [ 5.10 1 0.45 | 0.9561
9.6855 | —1.8463 | —4.6331 | 1.4282 1 4.85 | 0.10 } 1.1825
98237 | -19125 | —43276 1 1.4669 [ 5151 0.30 | 1.1264
9.9964 1T —1.9656 | —5.4179 [ 1.6334 [5.05 [ 0.45 | 1.0392
10.2996 | —2.1042° 1 --5.2006 T1.7TIT [ 4.80 [ 0.80 } 0.9416
10.0709 [ —1.9582 [ —4.7378 [ 1.4929 [ 4.95 1 0.40 | 0.97/0
10.0598 | —2.0665 [ -3.9949 [ 1.5369 [ 5.0 [0.I5]1.0171
10.3152 | —2.1699 | —5.4961 | 1.8054 | 4.95 ] 0.65 | 0.9466
0.6986 | —1.9340 [ —4.3088 [ 1.4931 15.0 [ 0.65 [ 1.4281
99424 1 —1.9274 | —4.4041 [ 1.4458 { 5.0 [ 0.10 [ 1.0564
10,0146 1 —-1.0790 [ —6.5412 [ 1.7815 15.15 [ 0.55 | 0.8251
10.2831 | —2.0815 [ —4.9149 [ T.6656 | 5.15 [ 0.75 | 1.2053
9.5320 | —1.8312 | --5.3598 [ 1.5377 [ 4.75 | 0.65 [ 1.0038
10.1308 T —2.0019 [ —4.6920 | 1.5535 [ 4.80 [ 0.10 | 0.8885
9.9205 1 19855 | —4.7874 1 15743 15.0 [0.60 ] 1.144.
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The marginal posterior density of the delay parameter d, calculated for
d=1,2,3,4 indicates that the highest posterior densityis at d = 1 for each
of the 50 samples. Hence the computation of the bivariate joint density of
(r,z) was restricted to the case d =1, for each sample. As an illustration,
the bivariate joint density obtained from one of the samples is given in
Figure 3.1. Within the norms of the Bayesian framework, the bivariate
posterior modes of these distributions were chosen as the estlima.Fors of r
and =z, for d fixed at 1, and the remaining model parameters # and
o?, were estimated using (3.2.8). The estimates based on the Bayesian
method are summarised in Table 3.1. For completeness and to make a
sample-wise comparison of the Bayesian method with the conditional least
square method given in Chan and Tong (1986), we have summarised the
corresponding Conditional Least Squares estimates for the same samples in
Table 3.2. The results indicate that the Bayesian method performs equally

well compared to the Conditional Least Squares method.

Table 3.3. Root Mean Squared Error comparison of predictors

u Sample Average || sample | Average
1 1.000811 26 1.000384
2 1.00411T 27 0.998334
3 1.001733 28 1.001881
4 0.997150 29 0.998914
0 1.000859 30 1.007727
0 0.996887 31 1.008209
7 0.959623 32 1.011459
8 1.010009 33 1.000470
] 0.996768 34 1.001 108
10 1.008]101 Jo | 0.991953
11 1.002135 36 1.006774
12 0.996713 31 1.008356 |
13 1.001812 38 G.995705
T4 1.002958 39 0.993605
15 0.993719 40 0.990490
16 0.995772 41 0.998583
17 1.00G863 42 1.013771
138 0.989396 43 1.00297Y
19 1.009301 44 1.005271
20 0.9934889 45 0.998269
21 0.996131 15 0.996274
22 0.993405 I7 0.992993
23 0.998917 48 0.557356
24 0.959113 49 1.002352
25 1.004841 50 0.995672
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To understand the multi-step-ahead predictive performance of the Bayesian
approach as compared to the Conditional Least Squares (CLS) method we
computed the root mean squared error (RMSE), given in (3.3.5), for up to
20 steps ahead predictions { A =1, 2, ..., 20), with T = 5. The initial
estimates of the model were computed using the first 200 observations from
each of the samples, of size 300. The data generation model had the same set
of parameters as before, and the computations were repeated 50 times. The
results showed that the RMSE of Conditional Least Squares (RMSE(C)),
and the RMSE of Bayesian (RMSE(B)) are close to each other for all values
of h=1, 2, ..., 20. That is the ratio of RMSE(B) to RMSE(C) is close to
1. From this we conclude that the predictive performance 6f the Bayesian
method is comparable to that of the CLS method. The average of the ratio
of RMSE(B) to RMSE(C), average taken over the values A =1, 2, ..., 20,

for the 50 independent samples, are given in Table 3.3.

In order to compare the performance of the two methods more thoroughly,
further simulation study was performed using different sets of parameter
values, (ag,as, by, b1,7,2,0°%) as given in Table 3.4, which are within the

ergodic region of (3.4.1).

Table 3.4. Parameter coefficients of five simulation models

Model adp iy bg 61 r Z 0'2
171.0 0831 207 -05T705]0.a]0.01
211.0 ~2.01 0.5 ZATTO[05TT.
3120 0O 0514710 ]J05]1.0U
4150 08 -05—-58]1.070.5}1.00
2101007501 I0511.0V057]1.00

As in the earlier study, once again fifty independent samples of size 500
were generated for each of the models and both the Bayesian estimates

and the conditional least square estimates were computed. The individual
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Table 8.5. Bayesian estimates of Model 1: True value of
(a0, ay, bo, b1, 7, z,0%) = (1.0,0.8,-2.0,—-0.5,0.5,0.3,0.01)

=

No.| do d by TERE o2

T [ T.1096 | 09878 | =5.1574 | T.6857 [ 070 | 0.40 [ 00092
9 1 0.9960 | 0.8195 | —1.9878 | —0.5394 | 0.50 | 0.30 | 0.0090
3 0.9942 71 0.7549 | —1.8207 | —0.6557 [ 0.50 [ 0.30 | 0.06091
4 1.0216 | 0.8338 | —2.1350 1 —0.4016 | 0.50 | .30 | 0.0154
53 1.0570 [ 0.8665 | —7.0714 | 3.4880 [ 0.30 | 0.40 | 0.0081
[§ 0.990Z 1 0.7558 | —1.9302 1 —0.4937 | 0.50 1 0.30 ] 0.0104
71 0.9627 | 0.7117 | —3.0465 | 0.5799 | 0.60 | 0.30 [ U.0093
8 0981771071941 —-1.9620 1 —0.4217 1 0.50 { 0.30 | 0.ULZ28
9 [ T.I360 | 1.0531 | —5.3973 | T.8138 | 0.70 | 0.40 | 0.0097
10 1 0.9864 | U.7985 | —1.9687 | —-0.5108 | .50 | 0.50 | 0.U128
Il 1.0043 | 0.83360 | —2.0383 | —0.4777 [ 0.50 [ 0.30 | 0.010¢
12 109937 | 0.7923 | —2.0280 [ --0.4470 | 0.00 | 0.30 | 0.0099
13 T1.0008 § 0.7928 | —I1.9873 1 —=0.4698 | 0.50 | 0.30 | 0.0095
14 1 1.0074 | 0.82938 | —2.06Z7 | =0.4631] 0.50 | 0.30 | 0.0099
15 T T.0070 | 0.8492 | =1.1697 | —1.3483 [ 0.40 [ U.30 [ 0.0125
16 [ 0.9794 1 0.7468 | —1.90Z272 | 05179 |1 0.50 | 0.30 | 0.01G5
17 | 1.0I66 | 0.8435 1 —2. 1056 | —0.4393 [ 0.50 { 0.30 | 0.0136
I8 [0.9903 T10.7993 | —1.9800 1 -04916 | 0.50 1 0.30 | 0.0104
19 [ 0.9897 [ 0.8033 [ —1.9622 | —0.5447 | 0.50 | 0.30 | 0.0091
20 | T.00607] 0.8048 | =Z.6979 | =0.3774 [ 0.50 [ 030 [ 0.0126
9T [ 0.9838 [ 0.7772 [ —1.924% | —0.5390 | 0.50 [ 0.30 [ 0.0097
22 JT.OISO [ 0.833] | —-1.2347 | —1.2873 10.40 10.30 ] 0.0133
23 [ 10310 | 06803 | —1I.268T | =T1.3137 ] 0.40 | 0.50 | 0.0104
24 TT1.0576 {09119 =7.1917 | 3.5452 {1 0.80 | G.40 | 0.0098
20 | 1.0113 | O81I83 | —2.0570 | —0.4720 | 0.50 | 0.30 | 0.0096
26 [ 1.0520 ] 0.9140 | —7.1423 J.4880 0.80 | 0.40 | 0.0092
27 | T.0I39 ] G.s001 | —Z.0825 | —0.4261 | 0.50 | 0.30 | 0.0106
28 109899 107989 1 —1.9280 | —0.5513 [ 0.50 | 0.30 { 0.0111
99 [ T.0516 | 09016 | —=7.0799 | 3.4243 | 080 | 0.40 | U.0I2A
30 [ T.02TI5 083121 2. 1124 | —0.4274 10.50 { 0.30 | 0.0102
31 10315 10.8636 | —1.2455 | —1.3144 10.4G { 0.30 | 0.0105
32 TT1.0147 108364 | 2. 1889 | —-0.3243 [ 0.50 1 0.30 1 0.0128
JI T 10222 10.8032 | —0.6358 | 3.I805 [ 0.8010.40 [ 0.0127
34 T.0547 109146 T =7.2325 3.6278 0.30 1 0.40 | 0.0098
35 | 0.99471 [ 0.7865 | —1.8985 | —0.5956 | 0.50 | 0.30 [ 0.0I29 |
36 [1.0329 1065768 1 —1.2998 | —1.2804 | 0.40 | 0.30 1 0.06099
3¢ 11.1242 1 1.0563 | —5.2600 1.7021 0.70 | 0.40 | 0.0088
35 [ 1.0008 | O.8ls8 | —T.981Z2 1 —0.5479 1 0.50 TG.30 | 0.0089
39 1 1.1051 | 0.9869 | —5.1442 1.6767 0701040 10.0129
0 [ 0.9960 [ 08021 | —2.0202 [ —0.4858 | 0.50 [ 0.30 | G.0I01
2T [ 0.0875 [ 0.7624 | —1.9429 | =0.5100 | 5.15 [ 0.35 | 0.0092
09727 [ 0.7646 | =T.8607 | —0.6024 | 0.50 | 0.30 [ 0.0105
43 [ 1.0040 ] 0.8044 | —2.0539 | —0.4450 [ 0.50 | 0.30 | 0.0099
44 109796 1 0.7723 ] —1.8481 | —0.6340 | 0.50 | 0.30 | 0.0IG8
45 (09941 ] 0.7820 7T —1.8588 | —0.6386 | 0.50 | 0.30 | 0.0108
46 [ 09933 [ U.74a3 | —2.0051 1 -0.4769 ;1 0.50 { 0.30 {0.0115
47 109862 107690 [ —1.9062 | —0.5672 | 0.50 { 0.30 | 0.0117
48 110060 [ 0.7954 | —2.0597 | —=0.4482 | (.50 | 0.301 0.0105
49 1 1.0122 1 0.8254 | =2.0157 1 =0.5379 1 0.50 1 0.30 1 0.0090
o0 1 1.0131 | O.sUb2 | —2.0367 | —0.4737 1 0.50 1 0.30 1 0.0104




Table 3.6. Conditionul Least Squares estimates of Model 1: True value of
(a0, a1, bo, by, 7, z,0%) = (1.0,0.8, 2.0, —0.5,0.5,0.3,0.01)

dg dy bo by T Z o’
1.1096 [ 0.9878 | -5.1574 | 1.6857 [ 0.7000 | 0.4000 [ 0.0093
0.9960 | 0.8125 | -1.9878 | -0.5393 | 0.5000 | 0.3000 | 0.0099
0.9942 1 0.7549 | -1.8207 {-0.6557 | 0.5000 | 0.3000 { 0.0090
1.0216 | 0.8338 | -2.1345] -0.4016 | 0.5000°186.3000 | 0.0134
1.0015 [0.7659 | -1.9913 | -0.4716 | 0.5000 | 0.3000 [ 0.0090 |
0.9902 [ 0.7558 [ -1.9392 1 -0.4937 | 0.5000 | 0.3000 | 0.0104
0.9627 | O.7117 | -3.0465 | 0.5799 | 0.6000 10.3000 | 0.0093
1.0034 1 0.7803 | -1.2496 | -1.1844 "1 0.4000 | 0.3000 | G.0128
1.1300 | 1.0531 1 -5.3973 | 1.8138 [ 0.7000 [ U.4000 | 0.0697
10 10.9864 | 6.7985 | -1.9687 | -0.5108 { 0.5000 | 0.3000 | 0.0128
11 11.0045 | 0.8360 [ -2.0383 | -0.4777 | 0.5000 | 0.3000 | 0.0107
127 10.9937 10.7923 | -270280 [ -0.4470 T 0.5000 | 0.3000 [ 0.0099 |
13 | 1.0008 [ 0.7928 | -1.9872 | -0.4698 | 0.5000 10.3000 | 0.0095
14 [ T.007470.8293 {-2.0627 | -0.4631 | 0.5000 [ 0.3000 { 0.0T00
15 [ 1.0070 | 0.8492 1 -1.1692 | -1.3483 | 0.4000 ] 0.3000 | 0.0125
16 _10.9794 | 0.7468 | -1.9022 7-0.5179 | 0.5000 | 0.3000 | U.0105
17 {1.0166 | 0.8435 | -2. 1056 | -0.4393 | G.5000 | 0.3000 { 0.0135
18 10.9905 | 0.7993 [ -1.9896 | -0.4816 | 0.5000 | 0.3000 | 0.0104
19 1 0.9897 | 0.8033 [ -1.9622 1-0.5447 {0.5000 | §.3000 | 0.0091
20 1 1.0060 [ 0.8048 | -2.0979 | -0.3774 | 0.5000 | 0.3000 | 0.0126
21 10.9838 | 0.7772 [ -1.924571-0.5390 1 0.5000 | 0.3000 | 0.0097
22 11.0179 T0.8331 | -1.2347 | -1.2873 | 0.4000 | 0.3000 | 0.0133
23 | 1.0310 1 0.8853 | -1.2581 | -1.3137 | 0.4000 | 0.3000 | G.0104
24 | 1.0575 § 05119 [ -7.1917 | 3.5452 | §.8000 | 0.4000 [ 0.6098
zo + 1.0113 | 08188 1 -2.0570 | -0.4720 [°0.5000 | 0.3000 | 0.0096
26 10.9952 | 0.8046 [ -1.9752 | -0.5360 | 0.5000 | 0.3000 | 0.0092
27 | 1.0139 [ 0.8001 | -2.0825 | -0.426T | 0.5000 | 0.3000 | 0.0106
28 10.9899 1 0.7989 | -1.9280 | -0.5513 { 0.5000 ] 03000 | 0.0112
29 1 0.9960 [0.8033 {-T.9903 [ -0.5169 | 0.5000 | 0.3000 [ 0.0123
o0 | 1.0215 | 0.6312 | -2.112471-0.4274 | 0.5000 | 0.3000 | 0.0102
31 1'1.0315 | 0.8636 | -T.2455 | -1.3144 ) 0.4000 | 0.3000 | 6.0105
o2 {1.0147 ] 0.8364 [ -2. 1889 1 -0.3243 1 0.5000 | 0.3000 | 0.0128
a3 | 1.0222 { 0.8032 [ -6.6358 | 3.1805 | U.8000 | 0.4000 | 0.0127
34 1 1.0047 | 0.9146 [ -7.23257] 3.6278 1 0.8600 | 0.4000 | 0.0098
o0 [ 0.9941 | 0.7865 | -1.8985 [-0.5956 [ 0.5000 [ 0.3060 | 0.0129
36| 1.032971 G.8768 | -1.2998 {-1.2804 | 0.4000 |0-3000 | 0.0100
37 | 1.12472 | 1.0563 [ -5.2700 | 1.7021 [ 0.7000 [ 0.4000 | 0.0088
38 11.0009 [0.31881-1.9812 |-0.5479 1 0.5000 | 0.3000 | 0.0089
39 | 1.T051 [ 0.9869 | -5.1443] I.6767 | 0.7000 { 0.4000 | 0.0129 |
40 10.9960 | 0.8021 | -2.0202 | -0.4858 | 0.5000 { 0.3000 | 0.0101
41 10.9875 |1 0.7624 | -1.9429 | -0.5100 | 0.5000 [ 0.3000 | .0092
42 1 0.9727 ] 0.7646 | -1.8607 [ -0.6024 | 80.5000 | 0.3000 [ 0.G105
43 11.0040 { 6.8044 [ -2.0539 | -0.4450 | 0.5000 | 0.3000 | 0.0099
44 710.9796 | 0.7723 | -1.8481 1-0.6340 | 0.5000 | 0.3000 | 0.0108
4o 106.9941 | 0.7820 [ -1.8588 [ -0.6386 [ 0.5000 | 0.3000 | 0.0108
46 [ 0.9933 [ 0.7933 | 270051 | -0.4769 | 0.5000 | 0.3000 { 0.0115
47 10.9862 | 0.7690 | -1.9062 1 -0.5671 [ 0.5000 10.3000 | 0.0117
45 | 1.0060 | 0.7954 [ -2.059G | -0.4482 1°0.5000 | 0.3000 | 0.0305
49 1 1.0122 1 0.8254 "1 -2.0I57 1 -0.5379 [0.5000 | 0.3000 | 0.0090
o0 | 1.0131 [0.8062 | -2.0367 [ -0.4737 | 0.5000 {03000 | 0.0I04

QCOO-QC'JU‘#CGNHOZ
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Table 8.7. Bayesian estimates of Model 2: True value of
(ao, a, bg, b1, T, Z, 0'2) = (1.0, “"20', —0.5,2.4, 1.0, 0.5, 1.0)

x

No. do d] bo bl T z o2
1 11.0326 { -2.0899 | -0.4906 | 2.5122 [0.9000 | 0.5500 | 0.9510
209397 ] -2.3144 | -0.5256 | 2.7289 | 0.8500 | 0.5000 | 1.0582 |
3 | 10307 | -1.9416 | -0.3647 | 2.2759 [ 1.1000 | 0.3500 | 1.0048
4 10.5407 | -2.3106 T 0.0234 | 2.5568 { 0.9500 | 0.5500 | 0.9430
o | 1.0484 } -1.9914 [ -0.8172 | 2.4968 | 0.8500 [ 0.6000 | 0.9307
o | 1.0836 [ -1.9283 [-0.2989 | 2.2216 | 1.0500 | 0.5500 [ 1.0659
7 [1.0103 1-2.0342 [ -0.5726 | 2.4146°] 1.0000 | 0.4500 | 1.0159
3 [ U.Y3bo | -1.9273 1 -0.4562 | 2.3563 | 1.1000 | 0.4500 | 09781
9 [ 0.9610 1-2.1349 [ -0.3497 | 2.5257 | 0.9000 | 0.6000 |} 1.0959
10 | 1.0133 -T.8818 [ 0.0621 [ 2.1396 | 1.1000 ] 0.5500 | 1.0364
11 10.9266 | -1.9514 [-0.0554 | 2.T951 | 1.0000 | 0.4500 | 0.8931
12 | T.2075 | -2.0271 | -1.2173 | 2.5734 [ 1.0500 | 0.2000 | 0.94I3
i3 11.0089 | -1.9970 [ -1.0006 | 2.5146 ['1.00G0 | 0.4500 | 1.0672
14 1 0.9278 1-1.9803 [ -0.5002 | 2.3942°10.55001 0.5000 | 1.0693
15 1 1.0603 | -2.0103 | -0.3841 ] 2.3483 | 1.1000 | 0.5000 [ 0.9906
1o | 0.8544 [ -2.2154 1-0.6974 | 2.7038 | 0.8000 [ 0.5500 | 0.9245
17 1 6.8030 [ -2.0787 1 0.7844 | 2.1801 | 1.1500 [ 0.8000 | 1.0245
18 | 0.9972 1 -2.0793 [-0.1422 [ 2.4112 | 1.0000 | §.7000 | 0.9385
19 11.0004 T-T.8683 | -0-1T00 { 2.1387 [ 1.1500 | 0.35007| T.0555
20 10.7300 [-2.3939 17 0.323T | 2.6T7¢6 | 0.9000 [ 0.6500 | 1.0241
21 [1.1009 [-1.984] 1 -0.7340 | 2.4132 [ T.0500 | 0.4000 | 1.0348
22 10,9429 1 -2.1432 | -0.5889 | 2.5728 | 0.9500 { 0.4000 | 0.9282
za | 1.0016 | -1.9614 |-0.4141 | 2.3443 | 1.0000 [0.5500 | 1.0132
24 10.36]17 [ -2.0570 | -0.2541 1 2.4000 | 1.T000 [ 0.45G0°1 0.9374
25 10,9835 | -2.0278 17-0.6012 | 2.4748 | T.1500 | 0.3500 | 1.0824
26 | 1.0468 | -1.9347 [ -0.4629 [ 2.3188 | 1.0500 | 0.4000 | 1.0326
27 1 0.9485 1-2.0009 [70.083T | 2.2290 {10.9500 | 0.8000 | 0.9972
28 11.0160]-2.0124 | 0.0947 | 2.2500 | 1.2500 | 0.5000 | 0.8954
29 111187 1-1.8345 [ -0.7520 | 2.2713 1 1.1000 | 0.2500 ] 1.0372
30 11.0394 1-1.9945 1 -0.6005 [ 2.3834 { 1.1000 | 0.4500 | 1.0807
a1 [ 1.0130 1-2.1004 | -0.7074 | 2.5373 | 0.9500 | 0.5500 1 0.9958
oz | 08580 | -2.0319 1 -0.6807 | 2.5334 | 0.8000 | 0.6600 | 0.5968
33 1 0.9505 [ -1.9916 | -0.1004 | 2.3134 | 1.1500 { 0.6000 [ 0.9284
34 10.9270 [ -2.1151 1-0.4005 [ 2.5043 | 1.0000 | 0.5500 ] 0.9962
35 10.9582 | -2.0409 | 0.1348 | 2.2961 [ 1.T000 [ 0.6500 | 0.9700
36 1 1.0204 1-1.9135 [ -0.T197 T2.1949 | 1.1500 [ 0.4500 | 1.0931
J7 11.0214 1 -1.9639 | -0.4977 { 2.3858 ] 0.9500 | 0.6500 | 1.0039
a8 ] 1.0405 1 -1.9567 | -0.7144 | 2.4038 | 1.0500 | 0.3500 [ 1.0084
59 10.9699 1-1.8754 [ -0.6349 [ 2.2856 | 1.0000 | 0.4500 | 1.0350
40 | 1.0919 7-1.9214 T -0.3872 | 2.2515 | T.1I500 | 0.4000 { 0.9596
41 [0.9588 | -2.1400 | -0.GI56°| 2.5465 | 0.9000 | 0.5500 | 0.3507
42 | 11657 1 -1.8446 | -0.6332 | 2.1998 | 1.7000 [ 0.3500 | 0.9386
43 1 0.876] [ -2.0993 ]-0.4267 [ 2.5293 T 0.8500 | 0.6500 | 0.9718
44 1 0.9467 | -2.1816 | -0.6545 | 2.6507 | 0.9000 | 0.4500 | 0.9705
45 | 1.0798 | -2.1143 1-0.4843 | 2.4704 [ T.0000 | 0.5000 | 1.0443
46 1 0.9967 [ -2.1700 | 0.1670 1 2.4002 | 1.1000 | 0.6500 | 1.0415
47 10.9507 | -2.0736 [ -0.7139 | 2.5627 T 0.8500 | 0.4000 | 1.0113
48 1 1.1521 [-1.9367 [ -1.2987 | 2.5138 T 1.0500 | 0.2500 | 0.8485
49 1 1.2245 | -1.87I1 [ -0.6767 | 2.2415 7 T.T000 [ 8.5500 T 1.0556
o0 1 0.9425 1 -2.1557 [ -0.2135 | 2.52G1 | 0.9000 § 0.7500 [ 0.9814




Table 3.8. Conditional Least Squares estimates of Model 2: True value of
(a0, a1, bo, by, 7, 2, 02) = (1.0, —2.0, 0.5, 2.4,1.0,0.5,1.0)

No. (fo fil bo b1 r z o?

1 J1.0571 [ -2.06524 | -0.5185 [ 2.4737 [ 0.9500 | 0.5000 [ 0.9510
2 _10.9483 1-2.3025 | -0.612871 2.7377 | 0.8500 | 0.4500 | 1.0581
o [ 1.0307 | -1.9416 | -0.3647 | 2.2759 | 1.1000 1 0.3500 | 1.0048
4 108777 [-2.2604 1 -0.0021 | 2.5405°] 1.0000 | 0.5000 | 0.9430
5 | 1.0534 T-1.9676 | -0.8136 | 2.4678 | 0.9000 | 0.5500 [ 0.930

6 [ 1.0936 | -1.9283 | -0.2989 | 2.2216 | 1.0500 | 0.5500 [ 1.0659
10103 1-2.034277 -0.5726 1 2.4146 | 1.0000 | 0.4500 ] 1.0159
8 10.8365 | -1.9273 [ -0.4562 1 2.3563 | T.1000 1 0.4500 | 0.9781
9 108610 1 -2.18491-0.3497 | 2.5257 | 0.89000 | 0.6000 | 1.0959

10 1 1.0133 | -1.881871 0.0621 | 2.1396 | 1.1000 { 0.5500 | 1.0364
11 10.9435 1 -1.9257 1 -0.1770 | 2.1996 | 1.0000 | 0.4000 | .8931
1271 1.2233 1 -1.9992 [ -1.1630 | 2.5247 { 1.T000 | 0.2000 | 0.9413
1o | 1.0139 | -T.9906 | -1.6703 | 2.5244 | 1.0000 | 0.4600 | 1.0672
14 10.9420 | -1.9631 [-0.5984 { 2.3954 1 0.3500 [ 0.4500 | 1.0091
15 1 1.0603 | -2.0103 [-0.3841 T2.3483 ] 1.10 0.5000 { 0.3906
10 [ 0.8623 | -2.2024 | -0.7839 | 2.7114 | 0.8000 | 0.5000 | 0.9244
17 10.8857 1-2.0506 | 0.4400 | 2.2300 | 1.100G | 0.7500 | 1.0245
18 1 1.0195 [ -2.0540 | -0.2699 | 2.4095 | 1.0000 | 0.6500 | (.9384
19 11.0004 | -1.8683 [ -0.1100 | 2.1387 T 1.I500 { 0.3500 | 1.0555
20 | 0.7300 1 -2.3930 | 0.323T | 2.6176 { 0.9000 | 0.6500 | T.024]
21 1 1.1059 [-1.9841 [ -0.7340 | 2.4132 { 1.0500 | 0.4000 [ 1.0348
22 109420 [-2.1432 | -0.5880 | 257281 0.9500 [ 0-2000 | 0.9282
23 11.0016 |-1.9614 | -0.4141 | 2.3443 1 1.0000 | 0.5500 | 1.G132
24 109617 1 -2.0570 | -0.2541 | 2.4000 | 1.1000 [0.4500 | 0.9374
Zo [0.9835 [-2.0278 [-0.6912'12.4748 | 1.1500 | 0.3500 | 1.0824
2o | 1.0593 | -1.9178 | -0.5651 | 2.3274 [ 1.0500 | 0.3500 | 1.0326
20 109730 [ -1.9756 [ -0.0395 1 2.2245 [ 0.9500 [ 0.7500 | 0.9971
28 [1.0377 [-1.9824 | -0.0766 | 2.2593 | 1.2500 [ G.4500 | 0.8953
20 T T.TI8T [-1.8345 | -0.7520 [ 2.2713 [ 1.1000 [ 0.2500 | T.0372
o0 11.0394 | -1.9945 | -0.6005 | 2.3834 | 1.1000 | 0.4500 | 1.0807
31 | 1.0130 | “ZT004 |-0.7074 1 2.5373 [ 0.9500 | 0.5500 [ 0.9958
32 10.9580 [ -2.031971-0.6807 | 25334 | 0.80G00 | 0.6000 | 0.9968
Ja 10.9505 1-1.9916 [ -0.1004 T 2.3134 1°1.1500 [ 0.6000 | 0.9284
o4 10.9270 1-2.T151 1-0.4085 [ 2.5043 | 1.0000 | 0.5500 | 0.9962
35 [0.9808 | -2.0098 1 -0.0110 | Z.2936 | T.1000 [ 0.6000 | 0.9699
a0 1.0204 [-T.9I35 1 -0.1197 1 2.1545 | 1.1500 | 0.4500 | 1.09%81
37 [1.0352 | -1.9459 [ -05967 | 2.3875 | (.9500 | 0.6000 | T.0037
a8 | 1.0485 1 -1.9567 [ -0.7144 [Z2.4038 | 1.0500 [ 0.3500 | 1.0084
SV [ 0.9699 | -1.8754 | -0.6349 | 2.2856 | 1.0000 | 0.4500 | 1.0350
40 1 1.0919 1 -1.9214 | -0.3872 [ 22515 [ 1.1500 | 0.4000 | 0.9596
41 10.9888 1-2.1409 | -0.6156 12.5465 | G.9000 | 0.5500 1 0.9507
42 | 1.1657 { -1.8446 ] -0.6332 | 2.1998 1 1.71000 { 0.3500 | 0.9386
43 10.8946 | -2.0668 | -0.4430 | 2.4938 | 0.9000 | 0.6000 [ 0.9717
44 10.9467 | -2.18T6 | -0.6545 | 2.6597 | 0.89000 t 0.4500 | 0.9705
45 | 1.0916 | -2.1023 1 -0.5757 [ 2.4780 1 1.0000 [ 0.4500 | 1.0442
46 1 0.9967 1 -2.1700 | 0.1670 [ 2.4002 1 1.1000 | 0.6500 [ T.0415
47 1 0BS07 T-2.0736 [ -0.7139 [ 2.5627 1 0.8500 | 0.4000 | 1.0118
48 | 1.1521 [ -1.9367 [ -1.2987 { 25138 [ 1.0500 | 0.2500 | 0.8485
49 11.2402 [ -1.8410 | -0.6660 | 2.2011 | 1.1500 | 0.5000 | 1.0554
o0 10.9633 [-2.1302 [ -0.330T } 25219 1 0.9000 | 0.7000 ] 0.9813

n
o



Table 3.9. Bayesian estimates of Model 3: True velue of
(ao, a1, bo, ba,7,2,0%) = (2.0,0.5,-0.5,~-1.4,1.0,0.5,1.0)

No. Cfo (f] bg bl r z o?
1 11.9863 [0.4359 | -0.6810 [-1.2660 [ 1.1500 | 0.4500 | 0.9899
2 12,0890 | 0.6303 | -1.2740 1-1.2338 | 1.0500 [ 0.5500 [ 0.97o1
o | 2.0175 10.4510 | -0.5102 7 -1.3655 | 1.0500 | 0.4000 | 1.0425
4 117172 10.3498 [ 1.0646 | -1.7967 | 0.2500 | 0.5500 | 0.9844
o [ 2.0922 10.6123 | -0.6205 | -1.5268 [ 0.8500 | 0.6500 | 1.0075
6 | 1.8927 1 0.4465 | -0.3466 | -1.4072 | 1.0500 | 0.4000 | 0.9745
12,1089 100125 | -1.2176 | -1.2301 [ 1.0500 | 0.6U000 | 1.0542
8 11.9445 10.5028 | -0.5341 1 -1.3714 [ 1.1000 | 0.3500 } 05940
9 (20123 10,5474 | -0.4189 | -1.4804 [ 0.83000 | U.6000 | 1.0556
10 1217327105904 | -0.4657 | -1.5912 | 0.8000 | 0.6000 | 1.1539
1T | T.9802° | U.4910 | -0.0192 | -1.4930 | 0.8500 { 0.4000 | 0.9520
12 { 1.8971 10.4957 | -0.5309 | -1.3426 | 1.1000 | 0.5500 | 1.0487
13 | 1.5278 10.5929 | -U.0143 1-1.3993 [ 1.0000 j U.2000 | 1.0221
T4 12,2087 1 0.7020 | -1.2154 [ -1.4686 | 0.9000 | 0.7500 { 0.9443
1o | 1.8425 | 0.06012 | -U.3188 [ -1.4451 | 1.1000 | 0.5500 | 1.0022
1o | 1.9807 | 0.0376 | -U.6631 | -1.4027 { 1.2000 | 0.0000 | 1.0391
17 | 2.2226 | 0.5652 | -1.9672 [ -1.1064 | 1.0500 | 0.3000 } 8.9699
18 [ 2.0517 | 0.5342 | -0.9969 | -1.2872 [ 1.0500 | 0.5000 | G.9650
19 [2.0695 [0.4805 | -1.4618 [ -1.0776 | 1.1500 [ 0.6000 | 0.9352
20 [2.0084 | 0.0141 | -0.8233 [ -1.3541 | 1.0000 | U.0000 | 1.0453
21 1 1.8604 | 0.3187 | -6.0405 1 -1.3554 [ 1.1I000 | U.3000 { 0.9701
22 12.074810.5255 | -1.4387 | -1.1224 | 1.1000 | 0.5000 | 1.0172
23 1 2.0741 10.5385 | -0.4572 ] -1.4965 | 0.9000 | 0.6500 | 0.9342
24 | 2.0120 103811 | -1.2214 | -1.0785 [ 1.2000 | 0.7500 [ 1.1399
Zo | 1.9376 [ 0.5006 § -0.4688 {-1.4018 [ 1.10G0 | 0.3500 [ 0.5094
20 | 2.0732 105423 | -1.5766 | -1.1T937 | T.2000 | 0.7500 | 0.9652
27 11.8108 10.4053 | -0.9613 1 -1.0117 ] 1.2000 | 0.4000 | 1.9373
28 [ 1.824470.4686 | 0.2950 | -1.6285 ] 0.9500 ] 0.4500 [ 0.9543
29 | 2.2104 1 0.7104 | -0.6400 ['-1.6554 [ 0.3500 | 0.4000 { 1.02605
30 | 2.2208 1 0.5880 | -1.2556 | -1.3395 [ U.9500 ; 0.7500 1 1.0015
31 1 1.8927 10.5575 | -0.7147 | -1.3353 } 1.0000 | 0.5000 | 1.0053
32 1 2.2157 1 0.6053 | -U.3504 [ -1.6550 | 0.8000 | U.4566 | 0.9640
a3 | 17289 1 0.2920 | -0.8041 [ -0.9839 [1.3000 | 0.4000 | 1.0427
34 | 1.8425 [ 0.4882 | 0.4195 1 -1.6846 [ 0.9000 [0.2000 | 1.0193
do_| 20927 | 0.520] § -0.0602 |-1.6064 [ 0.9500 | 0.4000 [ 0.9727
46 | 1.9755 [ 0.3887 | -0.6802 | -1.1716 | 1.0000 | 0.5500 | 1.0373
37 11.9720 10,3812 | -0.5568 T-T.2698 | 1.0500 | 0.6500 | 0.9760
38 [ 1.7766 [ 0.4154 | -4.2049 1 -0.TTI51 | T.7000 | 0.7500 | 0.9024
39 [1.8546 [10.4874 | -0.1440 1-1.4633 ]10.8500 | 0.6500 | 1.0761
40 1 2.0096 [ 0.4751 [ 0.0145 [ -1.57190 {1 0.9500 | 0.4000 | 1.0180
4] 12.1364 70.5622 | -0.3547 | -1.5897 [ 0.8500 | 0.6000 | 1.0342
42 {1.9226 {1 0.6463 | 0.2727 1-1.8014 | 0.6500 | 0.5500 | 1.0087
43 11.9930 10.4538 [ -0.1366 [ -1.4705 | 0.7500 | 0.4000 [ 0.9112
44 | 1.8764 10.3915 | -0.6818 [ -1.1702 | T.1500 | 0.4000 | 1.0249
45 1 1.8856 10.5207 | -1.3032 [~T.T4I5| 1.2000 | 0.5000 | 1.0622
46 | 1.9793 [ 0.6217 | -0.6781 1-T.4292 ['T.T000 | 0.4500 [ 0.9984
47 | 1.7725 10.4059 | -0.5152 1 -1.2610 [ T.2000 [ 0.2500 | 0.9385
48 1 1.9499 104464 | 01936 [-1.51I51 | 1.0000 | 0.2000 | 1.0172
49 1 2.0036 [ 0.4677 { -0.0535 [ -1.5479 [ 0.9000 | 0.4500 | 0.9984
o0 [3.0865 [ 1.1130 | -44.1485 [ 6.5650 | 3.9500 | 2.0500 | 0.9787

56




Table 3.10. Conditional Least Squares estimates of Model 3: True value of
(ao, @1, b0, 0,7, 2,0%) = (2.0,0.5,~0.5,—1.4,1.0,0.5,1.0)

Cfo (f] bﬂ bl F Z o?
1.9651 1 0.4216 | -0.5520 1 -1.2847 | 1.1500 | 0.4000 | 0.9598
2.0895 16.6353 | -1.2740 | -1.2338 | 1.0500 | 0.5500 | 0.9701
2.0175 [ 0.4510 [ -0.5102 | -1.3655 | 1.0500 | 0.4000 [ 1.0423
1.7043 { 0.3418 | 1.0897 | -1.7921 | 0.2000 | 0.5000 [ 0.9844
2.0564 | 0.0885 | -0.5944 | -1.4958 | 0.9000 | 0.0U00 | 1.0074
1.8927 | 0.4465 | -0.3466 | -1.4072 1 1.0500 | 0.4000 | 0.9745
2.0789 | 0.4943 | -T.0679 | -1.2462 | 1.0500 | 0.5500 | 1.0342
1.9445 1 0.5028 | -0.5341 {-1.3714 [ 1.1000 | 0.3500 | 0.9940
2.0123 10.5474 | -0.4189 [ -1.4304 | 0.8000 | 0.6000 T 1.0550

10 12.1208 1 0.5997 | -0.3302 [ -1.5838 | 0.8000 | 0.5000 | 1.1533
J1 11.9682 1 0.4832 | 0.2214 | -1.5642 | 6.8000 | 0.2500 | U.9516
12 1 1.8797 1 0.4330 | -0.4059 | -1.3647 | 1.1000 ; 0.3000 | 1.0436
13| 1.8278710.3920 | -0.0143 | -1.3993 | 1.0000 | 0.2500 | 1.0221
14 1 2.1804 | 0.6566 | -0.9339 | -1.5322 | 0.8500 | 0.7000 | 0.9441
15 11,8423 0.5612 | -0.3188 | -T.4451 | 1.T000 | 0.3500 | T.0027 |
16 1 1.9590 | 0.5194 [ -0.5117 | -1.4232 | 1.2000 | 0.4500 | 1.U359
17 12.1862 | 0.5456 | -1.6539 1 -1.1635 | 1.0000 | 0.5500 | 0.9653
I8 2.0511 [ 0.5342 | -0.9969 | -1.2872 | 1.0500 | 0.5000 | 0.9650
19 12.0366 | 0.4583 | -1.2932 1-1.0946 | 1.1500 | 0.5000 | 0.9951
20 2.0598710.5103 | -0.58T0° [ -T.4229 1 1.0000 | 0.5000 | T.0451
2] 11.8654 [ 0.3187 | -0.0405 | -1.3554 | 1.1000 | 0.3000 | 0.97ul
22 12,0748 |1 00200 | -1.4387 | -1.1224 [ 1.1000 | 0.5000 | 1.0172
23 1 2.07417710.5385 [ -0.4572 1-1.4965 | 0.9000 | 0.6500 [ 0.9842
24 |'T1.98287170.3632 | -1.0883 | -1.0857 | 1.2000 [ 0.7000 [ T.1358
25 | 1.9376 [ 0.5006 | -0.4688 | -1.40I8 | 1.T000 | 0.3500 | 0.9094
20 [ 2.0478 | 0.5284 | -1.2552 | -1.2620 | 1.1500 | 0.7000 | U.9601
27 | 1.8108 { 0.4053 } -0.9613 T -T.0II7 | 1.200C | 0.4000 | 1.057s
29 | 1.8244 [ 04686 [ 0.2950 | -1.6285 | 0.5500 | 0.4500 | 0.9543
29 [ 2.2164 | 0.7104 | -0.6460 [ -1.6554 | 0.8500 | B.4000 | 1.02bo
U | 2.1801 1 0.0673 | -1.1040 1 -1.3505 | 0.9500 { 0.7000 | 1.0014
31 1 1.8695 ]0.5412 1-0.5902 71 -1.3504 | 1.0600 | 06.4500 | 1.0052
32 | 2.194Y | U095 | -0.2431 | -1.6701 | 0.9000 | 0.4000 } 0.9639
33 [ 1.72389 1 0.2920 | -0.8041 [-0.9899 | 1.3000 | 0.4000 | 1.6427
o4 1 1.5425 | V4882 | 0.4195 | -1.6846 | U.9000 | 0.2000 | 1.0193
3o [ 2.0927 1 0.520] | -0.0602 | -1.6064 | 6.9500 | 0.40GG | 0.9727
36 | 1.9506 [ 0.3712| -0.5563 | -1.1845 [ 1.0000 | 0.5000 | T.0371
37 1 1.8756 | 0.3189 | 04733 | -1.5142 | 0.9000 | 0.2000 | 0.9746
38 | L7628 | 0.4081 | -3.3712 [ -0.3377 | 1.6000 | 0.7000 | 0.9021
39 1 1.8384 10.4779 | 0.0360 | -1.5065 | 0.8000 | 0.6000 | 1.U760
40 [2.0096 [ 0.4751 | 0.0145 T-1.5190 1 0.9500 | 0.4000 | 1.0189
41 12.1682 1 0.5513 | -0.2570 [ -1.6023 {0.8500 [ 0.5500 | 1.0340
42 11.9216 1 0.6441 | 0.2090 [-1.7764 | 0.Y000 | 0.5500 | 1.0087
43 11.9930 7 0.45358 | -0.1366 | -1.4705 { 0.7500 | 0.4000 | 0.9112
44 | 1.8764 | 0.3915 [ -0.6818 | -1.1702 1 1.1500 | 0.4000 | 1.0249
45 [1.8742 [ 05052 [ -6.9846 | -1.2371 | 1.1500 | 0.4500 | 1.0620
46 | 1.9793 1 0.6217 | -0.67s81 [ -1.4292 | 1.1000 | 0.4500 | 0.99564
47 | 1.7725 [ 0.4059 | -0.5152 T-1.2610 | 1.2000 { 0.2500 | 0.9595
45 11.9499710.4464 | 0.1936 1 -1.515]1 [ 1.0000 ] 0.2000 | 1.0172
49 1 2.0030 | U.4677 | -0.0030 | -1.5479 | 0.9G00 | 0.4500 [ ©.9954
o0 1 2.2511 [0.75371-4.2252 1 -0.6946 | 1.5000 | 1.0500 | 0.9730

57



Table 3.11. Bayesian estimates of Model {: True value of
(@o, a1, bo, b1, 7, 2,0%) = (5.0,0.8,—0.5,—5.8,1.0,0.5,1.0)

No. dg dy by by r z a?
T 149731 0.7913 1-0.8044 ] -5.6874 1 1.1500 | 0.5000 [ 1.1111
2 14.9270 1 0.7923 [ -6.5976 | -5.7188 | 1.0000 [ 0.5000 | 1.2120
3 15.0267 | 0.8052 | -0.9788 [ -5.7227 [ 1.0000 [ 0.6000 | 1.01o8
414.9607 1 0.8060 | -0.2053 | -5.8851 | 0.9500 | 0.3000 | 1.3748
5 14.9623 [ 0.7959 1-0.TT05 T-5.8831 | 0.9500 | 0.5000 | 1.0192
6 [ 4.8202 10.7935 [ -0.I812 | -5.8324 [ 1.0500 | 0.4000 [ 1.1610
7 1 5.0I54 10.7979 1-0.5962 1 -5.6916 | 1.1000 | 0.4000 | 0.851b
8 1497171 0.8005 | -0.4246 { -5.8046 | 0.9500 | 0.4000 | 1.1245
9 14.9676 | 0.8040 { -0.8980 1 -5.7576 | 1.0500 | 0.5000 | 1.1389
10 15,0770 [ 0.8T1I9 | -1.4303 [ -5.6443 | 1.0500 | 0.6000 | 1.1114
1T | 4.8893 1 0.8023 | -0.0943 | -5.8834 | 1.1000 | 0.3500 | 1.0992
12 15.0863 | 0.8033 | -0.7395 | -5.7137 | 1.0500 | 0.5000 | 1.0107
13 [0.0422 1 0.7965 | 0.0256 | -5.9349 | 0.8000 | 0.6000 | [.UZ70
141 5.I718 [0.8122 } -U.1658 | -5.9364 | 0.5000 | 0.4500 | 1.082Y
15 14.9923 1 0.7962 | -2.3380 [ -5.3060 | 1.1000 [ 0.6000 | 2.0711
16 14.9249 10,7930 1 -0.7166 | -5.7225 | 1.05G0 | 0.5000 | 1.0507¢
17 15.0483 1 0.8013 1-0.6238 [-5.7776 | 1.0000 | 0.4500 | 1.0523
18 { 5.0135 10.7979 1 -0.6622 [ -5.744]1 { 1.0000 | 0.4500 | 1.0792
19 [ 5.0887 | 0.8001 | -0.7047 | -5.7751 | 1.0500 | 0.4500 | 0.53760
20 [ 4.9801 ] 0.8016 T-0.4061 | -5.7930 | 0.9500 ¢ 0.5500 | 1.003Z |
21 | 4.9384 [ 0.8039 | -0.8504 [ -5.7131 | 1.0000 | 0.5500 | 1.2896
22 15.0371 [ 0.7998 | -0.6138 | -5.7861 | 1.0000 [ 0.5500 | 1.0406
23 143476 707878 | 0.2361 | -5.921170.9500 | 0:5500 | 0.9925
24 14.8363 1 0.7837 | 0.1809 [-5.9475 | 1.0000 { 0.4500 { 1.1509
25 14.8876 [ 0.8046 | -0.8665 | -5.7048 | 1.1000 | 0.4500 | 0.8822
26 [14.9970 1 0.7966 | -1.2542 | -5.5917 | 1.0500 } 0.5006G | 1.0s60
27 [14.9282 1 0.7934 1 0.0285 [-5.8576 | 1.00G0 | 0.4000 | 1.5621
28 15.0817 10.7927 [ -0.5041 | -5.7935 [ 1.0500 | 0.4000 [ 1.492s
29 | 4.9418710.8001 [ -0.9515 | -5.6572 | 1.15007] 0.5000 | 1.6361
30 [ 5.1183 1 0.807T | -0.0382 | -5.9105 [ 0.9500 | 0.5500 T 0.9554
31 14.9115 10.7927 | -0.1165 | -5.8854 | 1.0000 | 0.4500 | 1.0205
32 [5.1364 | 0.8071 [ -0.8395 | -5.7556 { 0.9500 | 0.4500 | 1.5874
33 | 5.1853 | 0.8163 | -0.6666 [ -5.8479 | 1.0000 | 0.4500 | 0.57/91
34 14.9320 10.7993 [ -0.3194 | -5.8248 { 1.1000 | 0.4000 | 1.0894
35 [4.7646 [ 0.7827 | -0.0880 [ -5.8335 [ 1.0500 | 0.5000 [ 1.8254
36 [ 5.0642 ] 0.8046 | -0.8658 | -5.6938 | 1.0000 | 6.4500 [ G.9120
37 ] 4.9664 | 0.8030 { -0.4001 1 -5.8349 | 1.0500 | 0.4500 | 0.9895
38 14.8914 | 0.7928 | -1.0826 | -5.6007 | 1.0500 | 0.5000 | 1.3045
S9 14.95893 1 0.7969 | -0.0807 | -5.8689 | 0.9000 | 0.4500 [ 1.0138
40 [ 5.6277 1 0.8003 | -0.7822 1 -5.7008 | 1.1500 1 0.4000 | 0.9971
41 15.0648 | U798377 -0.9471 1 -5.7326 T 1.T000 [ 05000 1 1.1391
42 | 4.9124 | 0.7837 | -0.2903 [ -5.8007 [ 1.0000 [ 0.4000 { 0.8940
43 15.0454 T 0.806G0 | -0.3577 | -5.8584 [ 0.9500 } 0.4500 | 1.0299
44 1 4.8663 ] 0.7943 | -0.6892 | -5.7215 | 1.1000 } 0.4500 | 0.9946
45 14.9305 10.7893 | -0.9315 | -5:6734 | 1.0500 [ 0.6000 | 1.0139
46 1 4.9139 1 0.7934 | -0.6261 [ -5.7726 [ 1.0500 ] 0.5500 | 0.9638
47 14.8476 | 0.7564 [ -0.4566 | -5.7405 [ 1.0500 [ 0.4500 | 1.0610
45 | 5.0223 | 0.8DT0 7-0.5920 1 -5.8064 | 1.0000 | 0.4500 [ 1.0025
49 [ 0.1032 [ 0.83016 [ -0.6979 | -5.7692 | 0.3000 | 0.5000 | 0.963%
o0 [ 5.0033 1 0.8080 | -0.5631 | -5.7926 { 1.0000 [ 0.5500 [ 1.0846

58




Table 3.12. Conditional Least Squares estimates of Model §: True value of
(ao, @1, bo, by, 7, z,06%) = (5.0,0.8,~0.5,—5.8,1.0,0.5,1.0)

No. tfo (f] bo bl r Z o2

T 14.9731 [0.7913 [ -0.8044 | -5.6874 [ 1.1500 | 0.5000 [ 1.1111
2 14.9270 10.7923 | -0.5976 | -5.7188 [ 1.0000 { 0.5000 | 1.2120
3 15.0267 [ 0.8052 1 -0.9788 | -5.7227 { 1.0000 | 0.0000 | 1.0158
4 14.9607 10.8060 | -0.2053 | -5.8851 1 0.9500 1°0.3000 | 1.5748

~ 5 [14.9623 1 0.7959 1 -0.1105 {-5.8831 1 0.9500 | 0.5000 | i.0192
6
i

—3
9

”

4.8292°1 0.7935 | -0.1812 [ -5.8324 | 1.0500 | 0.4000 | 1.1610
2.0154 1 0.7979 [ -0.9962 [ -5.6816 | 1.1000 | 0.4000 | 0.9516
4.9717 1 0.8005 | -0.4246 { -5.8046 | 0.9500 | 0.4000 | 1.1240
45676 | 0.8040 | -0.8U80 | -5.7576 [ 1.0500 1 0.5000 | i.18
10 | 5.0770 J 0.8119 [ -1.4303 | -5.6443 | 1.0500 [ 0.6000 | 1.1114
11 14.8883 1 0.8023 [ -0.0943 | -5.8834 } 1.1000 | 0.3500 ; 1.0992
~12 175.0863 | 0.8033 1 -0.7395 [ -5.7137 | 1.0500 | 0.5000 [ 1.0107
13 1 5.0422 1 0.7965 | 0.0256 [-5.9349 ] G.8500 | 0.6000 | 1.0275
14 | 5.1718 [ 0.812Z [ -0.1658 | -5.9364 | 0.9000 | 0.4500 | 1.0829 |
15 1 4.9923 10.7962 | -2.3380 | -5.3060 | 1.1000 [ 0.6000 | 2.0711
16 | 4.9249 1 0.7535 | -0.7166 | -5.7225 ] 1.0500 | 0.5000 | 1.05U7
17 715.0483 | 0.8013 | -0.6238 | -5.7776 | 1.0000 | 0.4500 | 1.0528
18 [5.0135 10.7979 1-0.6622 | -5.7441 | 1.0G00 | 0.4500 | 1.0792
19 1 5.0887 | 0.809] |-0.7047 | -5.7751 | 1.0500 [ 0.4500 | U.9760
20 14.5891 [ 0.8016 [ -0.4061 [ -5.7930 | 0.9500 [ 0.5500 | 1.0032
21 14.9384 | 0.8039 [ -0.8504 [ -5.7131 [ 1.0000 | 0.5500 } 1.2836
22 15.0371 1 0.7998 [ -0.6138 | -5.7961 [ 1.0000 | 0.5500 | 1.0406
23 | 4.8470 [ 0.7878 [ 0.2361 | -5.9211 1 G.9500 | 0.5500 | 0.9925
24 14.8363 | 0.7837 [ 0.1809 [ -5.9475 | 1.0000 | 0.4500 [ 1.1559
29 | 4.8876 | 0.8046 1 -0.8665 | -5.7048 ['1.1000°] G.4500 | 0.8522
26 [ 4.9970 1 0.7966 [ -1.2542 {-5.5817 [ 1.0500 | 0.5000 | 1.0560
27 14.9282 10.7934 | 0.0285 | -5.8576 | 1.0000 | 0.4000 | 1.5621
28 [ 50817 1 0.7927 1 -0.504T | -5.7935 | 1.0500 | 0.4000 | T.4928
29 | 4.961910.8015 | -0.7189 | -5.7135 [ 1.1000} 0.5000 | 1.6360
30 15.1183 1 0.8071 | -0.0382 [ -5.9105 | 0.9500 [ 0.5500 | 0.953
31 [4.9T1510.7927 | -0.1105 | -5:8854 | T.0000 [ 0.4500 [ 1.0205 |
32 | 0.1364 | 0.8071 [ -0.8395 | -5.7556 [ 0.9500 | 0.4500 | 1.5874
33 1 5.1853 | 0.8163 | -0.6666 | -5.8479 | 1.0000 | 0.4500 | 0.9781
34 [4.9320 [ 0.7993 [ -0.3194 [ -5.8248 [ 1.1000 | 0.4000 | 1.0894
35 | 4.7646 [ 0.7827 1 -0.0880 | -5.8335 [ 1.0500 [ 0.5000 | 1.8254
36 | 5.0642 { 0.8046 | -0.8658 | -5.6938 | 1.0000 | 0.4500 | 0.9120
37 1 4.9664 | 0.8030 | -0.4001 | -5.8349 [ 1.0500 | 0.4500 | 0.9855
38 14.8014 10.7928 | -1.0826 | -5.6007 | 1.0500 [ 0.5000 | 1.5045
39 | 4.9993 | 0.796Y | -0.0807 | -5.868Y 1 0.9000 | 0.4500 § 1.01as
40 | 5.0277 1 0.8003 | -0.7822 { -5.7008 { 1.1500 | 0.4000 { 0.9971
41 [5.0643 T0.7993 1 -0.9471 1-5.7326 1 1.1000 | 0.5000 | 1.1391
42 14.9124 1 0.7837 | -0.2903 | -5.8007 [ 1.0000 | 0.4000 | 0.5945
43 | 5.0454 ] 0.8060 [ -0.3577 [ -5.8584 [ 0.9500 | 0.4500 | 1.029
44 148663 | 0.7943 [ -0.6892 | -5.7215 | 1.1000 | 0.4500 | 0.9946
45 [ 4.9305 7 0.7893 [ -0.9315 | -5.6734 | 1.0500 | 0.6000 | 1.0139
46 {4.9139 [0.7934 [ -0.6261 [ -5.7726 | 1.0500 | 0.5500 } 0.9638
47 14.8656 [ 0.7877 | -0.2563 [ -5.7914 ['1.0000 | 0.4500 | 1.0610
48 1 5.0223 708010 [ -0.-5920 | -5.8064 | 1.0000 | 0.4500 [ 1.0025
49 1 5.1032 T 0.8016 [ -0.6979 1 -5.7692 [ 0.9000 | 0.5000 [ 0.9639
90 1 5.0033 [ 0.8080 [ -0.5631 | -5.7926 [ 1.0000 | 0.5500 | 1.0346
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Table 3.13. Bayesian estimates of Model 5: True value of the parameter
(a0, a1, bo, by, 7, 2, 02) = (1.0, ~10.0, —5.0,10.5, 1.0, 0.5, 1.0)

No. do dl bo b1 T z 0'2
1 1 0.8838 [ -10.0647 | -4.8344 | 10.5593 | 0.9006 | 0.0000 | 1.0079
2 | 0.8208 [ -10.0179 | -4.7827 [ 10.5150 | 1.1000 | 0.4000 | 1.0787
s | L193877°-9.9866 | -5.1797 1 10,4898 11.0500 | 1.5000 | 0.9403
4 11.5600 1 -9.8830 [-5.5791 ] 10.3808 [ 0.6500 | 0.8500 | 3.6639
o [ I.0I7TS | -9.9700 1-4.9473 1 10.4673 | 1.0000 | 0.5000 | 1.0365
o | 1.230077 -5.9315 [ -5.1929 ['10.4305°] 1.0500 | 0.4000 | 0.9890
7 10.8411 | -10.0432 | -4.9024 ] 10.5445 | 1.05 0.45G0 [ 1.0T14
8 10.9298 1-10.0168 | -4.8876 | 10.5168 | 1.0000 | 0.4500 | I.0866
9 1.1342 7 -10.0637 | -5.06504 | T0.5019 | 1.0000 | 0.5500 | 1.0729
10 | 0.8989 | -10.0362 | -4.9844 [ 10.5374 | 1.0000 { 0.5000 | 1.0805
11 107969 1 -10.0206 7 -4.7502 T I0.5210° T 0.9500 | 0.5500 | D.8875
12 1 1.1859 [ -10.0123 | -5.2402 | 10.5124 | 0.8500 | 0.5000 ] 0.9937
1o | 126221 -D.7790 1-5.2649 | 10.2771 1 1.0500 | 0.5000 | 6.8745
14 11.0924 | -9.9783 |-4.8731 | 10.4720 ] 1.0000 | 8.6G00 | 1.0469
15 [ 0.9602 ] -9.9958 | -4.829T | 10.4925 | 1.0500 | 0.5000 [ 1.5699
16 1 0.9459 [ -10.0152 1 -4.9260 | 10.5175 ] 1.0000 T 0.5500 1 0.9765
17 [0.8707 | -10.0514 | -4.9045 | 10.5485 | 1.0000 | 0.4500 | 0.9583
18 112071 | -0.7902 1-5.1455 | 10.2896 | 1.0500 | 0.5000 | 6.6542
19 11.003077-9.9470 |-5.0121 1 10.4499 | T.0500°1 0.4000 | 1.0572
20 | 0.8468 [ -10.0039 [ -4.7698 [ 10.5030 [ T.T000 { 0.3500 { 1.4497
2] 16.9149 [-10.0253 [ -4.9582 | 10.5273 | 1.0000 { 0.5000 | 1.1582
22 109260 | -10.0129 | -4.8328 { 10.5115 [ 0.9500 | 0.6000 | 0.9992 |
23 [ 1.0091 1 -9.9928 1-5.0184 { 10.4554 | 1.0500 | 0.4500 | 1.0824
24 | 1.1123 ] -9.9795 | -5.2432 | 10.4815 [ 0.9500 | $.4500 | 1.0039
25 | 0.8806 | -T0.0257 | -5.0181 | T0.5316 [ 1.0000 | 0.4500 | 1.1270
26 [1.0452 | -9.9596 [ -4.97887] 10.4598 | 1.0000 | 0.4000 | 0.9409 |
27 TT.6314 ] -9.9453 [-5.0911 | 10.4461 | 0.8500 | 0.5500 T 1.0694
28 108491} -10.0102 | -4.8804 | TOSIZT 10.9500 | 0.5000 | 1.8243
|29 | 0.9265 | -10.0560 [ -4.7674 | 10.5522 [ 1.0000 | 0.5500 | 1.0338
30 109787 1-10.0318 1-5.1042 1 10.5325 | 0.95000 | 0.5000 | 0.9114
31 11.2043 ] -9.9375 1-5.0361 | 10.4386711.1000 | 0.5000 | 9.8254
32 1 07717 1-10.0561 [ -4.71T4 7 106.5532 1 1.0500 | 0.4500 | 1.0202
33 10.8003 1-10.047T |-4.6422 1 10.5415 1 0.9500 1 0.5500 | 0.9527
J4 | 09791 1-10.0072 §-5.1286 1 10.5106 [ 0.9500 [ 0.5000 | B.8854
go | 1.0663 | -8.9751 | -5.0908 T10.4746 [ 0.9000 } 0.5500 | 0.9709
36 | 0.99021-10.0230 | -4.7684 | 10.5186 [ 1.0000 | 0.5000 | 4.0711
a7 [ 0.9693 1 -10.0210 | -4.9549 [ 10.5211 [ 1.0000 | 0G.5000 [ 1.3374
38 | 0.9020 1 -10.0127 [ -4.8284 1 10.5040 | 1.0000 [ 0.4500 [ 0.9259
a4 | 0.7840 | -10.0276 | -4.7190 | 10.5249 1 1.0500 | 0.4500 | 1.0128
40 1 1.1086 | -10.0063 | -5.0733 | 10.5058 T 1.0000 | G.4500 | 0.8480
41 10.97927) -9.9987 [ -4.8357 [ 10.4912 11.0000 | 0.5500 | 0.8841
42 | 0.5683 | -10.0590 [ -4.4878 | 10.5496 [ 1.1000 | 0.4500 [ 7.0901
43 1 0.9726 [ -9.9867 | -5.0231 [ 10.4897 10.9000 | 0.6500 [ 1.0268
44 1 0.8018 | -10.04858 | -4.5564 | 10.5412 | 1.0500 | 0.5000 | 2.7167
45 | 0.9488 1 -D.9963 [-4.3359 ] 10.4814 | 1.0000 ] 0.5500 | 8.9981
46 [ 0.8602 | -10.0253 | -4.8710 [10.5256 [ 1.0000 | 0.4500 | 0.8479
47 1 0.8885 [ -10.0222 1-4.96206 | 10.5261 | 1.0500 | 0.4000 {1 0.8951
48 [ 1.1853 1 -9.9740 | -5.1074 | T0.4733 [ 1.0500 | 0.4500 | 1.0086
49 10.9086 | -9.9790 1 -4.8107 | 10.4762 | 1.0500 | 0.4500 | 1.0032
o0 10.8178 | -10.0100 [ -5.0255 [ TO.5TIC TT.0500 | 0.4500 | 1.0424
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Table 3.14. Conditional Least Squares estimates of Model 5: True value of

(ao, a1, b0, by, 7, 2,0%) = (1.0, -10.0,—5.0,10.5,1.0,0.5,1.0)
No. dg dl bo bl r z a?
I [0.8838 | -10.0647 | -4.8344 | 10.5593 | 0.9000 | 0.5500 | 1.0079
2 | 0.8298 | -10.0179 | -4.7827 | 10.5150 | 1.1000 | 0.4000 | 10787
3 | 1.1938 | -9.9866 | -5.1797 | 10.4898 | 1.0500 | 0.5000 | 0.9403
4 15600 | -9.8830 | -5.5791 | 10.3809 | 0.6500 | 0.8500 | 3.6639
5 [ T.0175 | -9.9700 | -4.9473 | 104673 | 1.0000 | 0.5000 | 1.0365
6 1.2300 | -9.9315 | -5.1929 | 10.43U5 | 1.0500 | 0.4000 | 0.9830
7 | 0.841T | -10.043271-4.9024 | 10.5449 | 1.0500 | U.4500 | T.0I1
8 | 0.9298 [ -10.0168 | -4.8876 | 10.5168 | 1.0000 | 0.4500 | I.0866
9 | T.1342 [ -10.0037 | -5.0504 | 10.5019 | 1.0000 | 0.5500 | 1.0729
TO [ 0.8980 [ -10.0362 | ~4.9844 | 10.5374 | 1.0000 | 0.5000 | T.0905
IT | 0.7969 | -10.0206 | -4.7502 | 10.5210 | 0.9500 [ U-5500 [ 08875
T2 [ 11859 [ -10.01Z3 | -5.2402 | 10.5124 | 0.8500 | 0.5000 | 0.9987
I3 [ 1.2622 | -9.7790 | -5.2649 | 10.2771 | 1.0500 | 0.5000 | 6.8745
14 [ 1.0924 [ -9.9783 | -4.8731 | 10.4720 | 1.0000 | 0.6000 | 1.0469
15 [ 0.9602 [ -9.9958 | -4.8291 | 10.4929 | 1.0500 | 0.5000 | 1.5699
16 | 0.9459 | -10.0152 | -4.9260 | 10.5175 | 1.0000 | 0.5500 | 0.9765
I7 | 0.8707 | -10.U514 | -4.9045 | 10.5485 | 1.0000 | 0.4500 | 0.9583
I8 | T.2146 | -9.7870_| -5.1416 | 10.2867 | 1.1000 | 0.4500 | 6.6541
19~ T.0030 | -9.9470 [-5.00121 [ 10.4499 | 1.0500 | 0.4000 | 1.0572
20| 0.8468 | -10.0039 | -4.7698 | 10.5030 | I.T000 | 0.3500 | 1.4497
21 | 0.9147 | -10.0253 | -4.9582 | 10.5273 | 1.0000 | 0.5000 | 1.1582
22} 0.9260 | -10.0129 1 -4.8328 | T0.5115 | 0.9500 | 0.6000 | 0.9992
23 [ T.009T | -9.9929 (-5.0184 | 104954 | 1.0500 | 0.4500 | 1.0824
24 | T.1123 | -9.9795 | -5.2432 | 10.4815 | 0.9500 | 0.4500 | 1.0039
25 | 0.8746 | -10.0274 | -5.0398 | 10.5341 | 1.0000 | U.4000 | 1.1270
26 | 1.0452 | -9.9596 | -4.9788 | 10.4598 | 1.0000 | U.4000 | 0.9409
27 | 1.0314 | -9.9453 [-5.0911 | 10.44G1 [ 0.8500 | 0.5500 | 1.06%4
28 [ 0.8491 | -10.0102 | -4.8804 | I0-5121 [ 0.9500 | 0.5000 | 1.8243
29 10.9265 | -10.0560 | -4.7674 | 10.5522 | 1.0000 | 0.5500 [ T.0338
30 [ 0.9787 | -10.0318 | -5.1047 | T0.5325 { 0.9000 | 0.5000 | 0.9114
3T | [.1909 | -9.941T | -5.0493 | 10.4430 { I.I000 | 0.4500 { 9.8253
32_| O-7717 | -10.0561 [-4.7114 | 105532 | 1.0500 | 0.4500 | 1.0202
33| 08003 | -T0.047T [-4.6422 | 10.5415 | 0.9500 | U.5500 | 0.9527
34 {09791 {-10.0072 | -5.1286 | 105106 | 0.9500 | 0.5000 | 0.8854
35 | 1.0663 | -9.9751 | -5.0908 | 10.4746 | 0.9000 | 0.5500 | U.9709
36 | 0.9902 | -10.0230 | -4.7684 | 10.5186 | 1.0000 | 0.5000 | 4.0711
37_[0.9693 | -10.0210 | -4.9549 | 10-5211 [ 1.0000 | 0.5000 | 1.3374
38 [ 0.9020 | -T0-0T27 | -4.8284 | 10.5049 | 1.0000 | 04500 | 0.9259
39 | 0.7840 | -T0.0276 | -4.7190 | 10.5249 | 1.0500 | 0.4500 | 1.0128
20| T.JUBG | -10.0063 [ -5.0733 | 10.5058 | 1.0000 [ 04500 | 0.848
41 | 0.9792 | -9.9987 | -4.8357 | 104912 | 1.0000 | 0.5500 | 0.8841
47 [ 0.8683 | -10.0590 [ -4.4878 | 10.5496 | 1.1000 | 04500 | 7.0901
43 [ 0.9726 | -9.9867 | -5.0231 | 10.4897 | 0.9000 | 0.6500 | 1.0268
44 [U.8018 | -10.0488 | -4.5564 | 10.5412 [ 1.0500 | 0.5000 | 2.7167
45 | U.9488 | -9.9963 | -4.3350 | 104814 | 1.0000 | 0.5500 | 8.9981
46 | 08602 | -10.0253 | -4.8710 | 10.5256 | 1.0000 | 04500 | 0.8479
47 | 0.8885 | -10.0222 | -4.96206 | 10.5261 | 1.0500 | 0.4000 | 0.8951
48 | 1.1853 | -Y.U749 | -5.1074 | [0.4733 | L.0500 | 0.4500 | 1.0086
49 [ 09086 | -9.9790 | -4.8107 | 104762 | 1.0500 | U.4500 | 1.0032
50 | 09178 | -10.0100 | -5.0255 | 105110 | 1.0500 | 0.4500 | 1.0424
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Table 3.15. Averege values of estimates in Model 1 to 5

with the standard ervor of estimates of

B=Bayesian, C=Conditional Least Squares

~

~

x

b

by

-~

-

o2

Ay
1.0157

a)
0.8297

)
-2.8009

0.0943

T
0.5440

z
0.3200

0.0107

(0.0379)

(0.0737)

(1.8492)

(1.4345)

(0.1163)

10.0404)

{0.0010)

1.0129

0.5247

-2.4809

-0.1594

0.5240

0.3140

0.0107

(0.0366)

(0.0709)

{1.5045)

{1.1602)

{0.0981)

(0.0351)

{0.0010)

0.9984

-2.0331

-0.4155

2.4072

1.0130

0.5040

0.9959

{0.0913)

[0.1231)

(0.3820)

(0.1519)

[0.1068)

(0.13%4)

(0.0564)

1.0055

-2.0233

-0.4512

2.4042

1.0180

U.4550

0.9959

[0.0903)

{0.1209)

(0.3494)

(0.1488)

(0.1034)

(0.1226)

70.0564)

g | 4 o q w

2.0063

0.5115

-1.5056

-1.2020

1.0700

0.5280

1.0046

(0.2053)

{0.1261)

(6.2016)

[1.1516)

(0.4615)

(0.2686)

[0.0484)

1.9769

0.4965

-U.6000

-1.3674

1.0110

0.4740

1.0044

(0.1344)

{0.0989)

(08567)

[0.2598)

(0.2081)

(0.1682)

[0.0434)

we

4.9824

0.7988

-0.5814

-5.7724

1.0200

0.4730

1.133

{0.0919)

(0.0075)

(0.4534)

[0.1101)

{0.0678)

(0.0679)

(0.2413) |

4.98351

0. 7989

-0.9728

-3.7740

1.0130

0.4780

1.1330

[0.0913)

(0.0075)

[0.4527)

(0.1091)

{0.0661)

(0.0679)

(0.2413)

0.9677

-10.0008

-4.9520

10.4997

0.9960

0.5270

0.9856

(0.2119)

(0.0649)

[0.2726)

(0.0657)

(0.8970)

(0.1170)

(0.1018

0.96%2

-10.0003

-4.9531

10.4992

10000

0.5240

U.9600

(0.2113)

10.0644)

(0.2725)

{0.0651)

(0.0904)

10.1179)

{0.1018)

simulations are shown in Tables 3.5-3.14, and the average of the estimates
of each parameter, averaged over the 50 samples, are presented in Table
3.15. The standard deviations are in parantheses. It is clear from the sim-
ulations that the the Bayesian estimates are once again comparable to the

CLS estimates.

The above demonstrates that the Bayesian method 1s possible to implement
and its performance is comparable to the conventional CLS method. How-
ever, one of the main advantages of the Bayesian method is the relative
ease in which one can obtain the marginal posterior density of the implicit
parameters (r,d, z) in a closed form. Also, in the Bayesian method as men-
tioned by Geweke and Terui (1993) the computation of multi-step-ahead

predictions is no more difficult than the one-step-ahead prediction.



3.4.2 Canadian Lynx data

The second study is based on the well-known Canadian lynx data which
consists of the annual record of the numbers of the lynx trapped in MacKen-
zie River, Canada for the period 1821 to 1934 inclusively. This data was
previously analysed by Nur (1993) using a STAR model of order 1. The
analysis included initial data analysis using graphical methods, testing for
linearity, model selection using Akaike Information Criterion, estimation
and diagnostics checking. In the present illustration, we fit a STAR model
for the first 100 observations of the series and compare the resulting fore-
casts and parameter estimates using Conditional Least Squares and the

Bayesian methods.

Let X; denote log,,(number recorded as trapped in year 1820-+f, ¢ =
1, ...., 100). Using Conditional Least Squares, we first fitted the STAR order

1 model
X, 5 —3.83
X, = —0.0348 + 1.1539X,_; — 6.9209G (——-—-——)
¢ 8+ -l 0.721
; X,_, —3.83
+ 1.3073At_1G( T ) o

where G is the cumulative distribution function of a Gaussian distribution
and Var(e;)= 0.0474 to obtain forecasts. The Conditional Least Squares
estimates of r and 2, 7 = 3.83 and z = 0.721, the delay parameter
d, d = 2 used in the above were taken from Tong (1983, 1990) which use
non-parametric lag regression for a tentative identification of delay param-

eter.

Following the results derived in the previous section we then fitted a STAR
order 1 model by the Bayesian method. Assuming that the autoregressive
order p=1, for d € {1,2,3,4}, D, =(0,4.0) and D, = (0.5,4.0), the
marginal posterior density of d, obtained using the first 100 observations

of the lynx data, are given in Table 3.16.
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Table 8.16. P(d | X) of the lynz data

d T P 3 7
PA[X) [ 638 x 107 | 9.09 x 10-1 | 0.14 x 10-7 | 3.19 x 10~

The Bayesian analysis seems to indicate that the posterior mode of the de-
lay parameter d is at d = 2. Similar results have also been obtained by
Tong (1983,1990) from the marginal histogram of the data and the non-

parametric sample estimates of E(X; | X;_; = z).

The joint posterior density of (r,z), conditional on d = 2 obtained by
taking D, =(0,7) and D, = (0.5,7.5), is shown in Figure 3.2. From the
graph, it is clear that the bivariate mode is not well-defined, as it is on the

right boundary of D,. This apparent behaviour is caused by the dominant

x 10

Figure 3.2. The bivariate posterior density of (r,z) of the lynz data

conditional on d = 2.
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determinant in the posterior density which tends to zero as r becomes
large, a fact which we encountered for small sample sizes, in our simulation
study. Therefore as given in Figure 3.3, we restricted the defined region to
D, =(0,4) and D, = (0.5,4) and obtained a conditional mode, r,, i.e.
mode of P(r |z) for all z € D,. To decide on reasonable estimators for
(r,z), we then compared the root mean squared error for 2-steps ahead
predictions based on these different conditional modes. As shown in Figure
3.4 the conditional mode (r,z) = (3.49,0.56) gives the minimum root

mean squared error of prediction, leading to the STAR model of order 1,

given by
Xy ~ 3.49
X; = —0.0986 + 1.1715X,_; — 4.1607G (t;T)
Xoo2 — 3.49
+ 0.7534X,_,G (t—é.s"é"_") &1,

where G is the cumulative distribution function of a Gaussian distribution

with Var(e,)= 0.0477.

Table 3.17. Root Mean Squared Frror comparison of predictors : lynz data.

Step RMSE(CB) [ RMSE(CLS) | CB/CLS
1 0.083822 0.032481 1.016134
2 0.075314 0.078407 0.966933
] 0.093368 0.155040 0057072
4 0.079930 0.120405 0.663846
) 0.126805 0.126492 1.002471
b 0128563 0.123758 1.646910
T 0.132121 U.240750 U.048788
8 0.130433 U.201336 0.018856
9 0.113613 0.091031 1.248067
10 .099158 0.081716 1.213441
Average 0.88125

The multi-step-ahead predictive performance of this model was then com-
pared to that obtained by the Conditional Least Squares method, through
the root mean squared error for 10 steps ahead predictions, h = 10, with
T = 5. The results are presented in Table 3.17, where CB/CLS represents
the ratio RMSE(B)/RMSE(C) and the average of the comparison is given

in the last row. It shows that, on the average, the root mean squared error
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of the Bayesian predictor is about 88% less than its Least Squares counter-
part, suggesting that the Bayesian predictor outperforms the Conditional

Least Squares for the data set considered.

It should be noted that the presentation of lynx data in this section il-
lustrates the predictive performance only and the complete model-building

strategy needs to be done using Bayesian approach, prior to this.



Chapter 4

Some Other Parametric

Estimation Methods

4,1 Introduction

In this chapter, we present a few other parameter estimation techniques
for the smooth threshold autoregressive model. These methods include
Conditional Least Squares, Maximum Likelihood, M-estimator and an es-
timating function estimator. We also discuss the theoretical properties of
the resulting estimates. The conditional least squares and maximum likeli-
hood estimators are reviewed from Chan and Tong (1986), Tjgstheim (1986)
and Tong (1983, 1990) while the M-estimator and the estimating function
estimator are constructed respectively from the work of Koul (1996) and
Thavaneswaran and Abraham {1988}. These various estimators will be used
as initial estimates for obtainiig an adaptive estimator for parameters of

the smooth threshold autoregressive model in the next chapter.

An estimation procedure for stochastic processes based on the minimisation
of a sum of squared ceviations about conditional expectation, was developed

by Khmko and Nelson (1978), which they called conditional least squares
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and showed that strong consistency, asymptotic joint normality and an it-
erated logarithm rate of convergence are satisfied by these estimators under
a variety of conditions. Later, Tjgstheim (1986) developed a more general
framework for analysing estimates in nonlinear time series giving general
conditions for strong consistency and asymptotic normality, both for con-
ditional least squares and maximum likelihood type estimators. A compre-
hensive discussion of the estimation theory of nonlinear time series models
based on the maximum likelihood and conditional least squares procedures
are given in Tong {1990}, showing asymptotic properties of estimates ob-
tained from the both methods. Furthermore, Tong (1990) also discussed

estimation equation approach as an alternative for recursive estimation.

The class of M-estimators has played a prominent role in recent research
on robust estimation. A -estimators minimise functions of the deviations
of the observations from the estimates that are more general than the sum
of squared deviations or the sum of absolute deviations. In this way, the
class of M-estimators generalises least square estimation, and also, in an-
other way, generalises the idea of the maximum likelihood estimation for
the location parameter in a specified distribution {Hoaglin, et.al.(1983)).
The consistency of M-estimates was given in terms of two theorems by
Huber (1981). The first one was concerned with estimates defined through
a minmimum property and the second one with estimates defined through
a system of implicit equations. Furtliermore, he presented results show-
ing the asymptotic normality of M-estimates under some assumptions.
Koul (1996) established the asymptotic uniform linearity of M-score in
a family of nonlinear time series and regression models which he used to
obtain the asymptotic normality of certain classes of M-estimators. Later,
Koul and Schick (1996) proved the asymptotic normality of generalized M-
estimators of the parameters of random coefficient autoregressive models

which includes the least squares and least absolute deviations estimators.
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The theory of estimating function was originally proposed by Godambe
in 1960 for i.:.d. observations and recently extended to discrete-time
stochastic processes (Godambe (1985)). The estimating equation method
is a merger between maximum likelihood and the least squares methods, it
has the strengths of both methods and the weaknesses of neither (Godambe
(1991)). The discrete-time stochastic processes (Godambe (1985)) was ex-
tended to nonlinear time series models by Thavaneswaran and Abraham
(1988). The superiority of the estimating function approach over the con-
ditional least squares had been demonstrated through a random coefficient

autoregressive example.

For the smooth threshold autoregressive models, the estimation of parame-
ters using conditional least squares method can be found in Chan and Tong
(1986) or Tong (1990). One can obtain the maximum likelihood estima-
tors of parameters of this model using the methods developed for nonlinear
autoregressive models as mentioned in Tong (1990). For both methods,
properties like consistency and asymptotic normality have been well-proven.
The M-estimator and estimating functions estimator for the STAR model
will be developed in this chapter based on previous work on other models
in the literature. The contributions to this chapter includes Theorem 4.2,
the presentation of least absolute deviation and Huber’s estimator and es-

timating equations.

This chapter is arranged as follows. In Section 4.2, we present the condi-
tional least squares estimates of the STAR models as mentioned in Chan
and Tong (1986). Similarly, in Section 4.3, we discuss the maximum like-
lihood estimator for the STAR. model which is obtained as a special case
of Tjsstheim (1986). Based on Koul (1996), the sampling properties of M-
estimator for the STAR model is presented in Section 4.4 and, finally, in
Section 4.5, we discuss the sampling properties of the estimator obtained

by the estimating function approacl.



4.2 Conditional Least Squares

In this section, the consistency and asymptotic normality properties of the
Conditional Least Squares estimator for general STAR models of order p
are presented. This is essentially due to Chan and Tong (1986). The con-
sistency and asymptotic normality properties are obtained based on The-
orems 2.1 and 2.2 of Klimko and Nelson (1978) {Theorems B.1 and B.2
of Appendix B.1) for general stochastic processes. Tjgstheim (1986) de-
rived general conditions for strong consistency and asymptotic normality
for conditional least squares estimates for both ergodic strictly stationary
processes and certfain nonstationary processes. The parameter estimates

when p =1 are presented at the end of this section.

In the ensuing discussion, it is assumed that {X,} is ergodic and the sta-
tionary distribution of X; has a finite second moment unless otherwise
stated. Let X;, X,,..., X,. be a sample record from a STAR model of order
p, with delay parameter ¢ known as defined in (1.1.2) and assume that not
all b;’s are zeros for identifiability of » and z. The minimal requirement

of G being that it is continuous and nondecreasing.

When

_ o, T
0= (ay, @1,y ap o, byy oy by, 2)7

the natural space for the parameter vector 8 is O = Uf:;@,-, where

(p4141)—th

0; = Rx..xRxRx xR xPx..x (R\{0}) x...xR xRxR*.

r+1 ptl

Let 8y Dbe the true parameter. Given the set of observations X,, t =
1,2, ...,n, Oy 1s estimated by minimizing the conditional sum of squares

Q)= 3 (K= EolX, | Biy)P (4.2.1)

t=m+1

where m = A(d,p), and B, is the o-algebra generated by {Xy, X5, ..., X,}.



Let & be such that Q,,(é] = ming Q,.(¢). The variance of £,,0%, is

estimated by

T

0
The consistency and asymptotic normality of the parameters of the STAR

model are proved in the following theorem of Chan and Tong (1986).

Theorem 4.1 (Theorem 3.1 of Chan and Tong  (1986))

Let 'V = Eg (339(3’\;:,'3“‘).35"%;'5'")) . Then V is positive definite and

it follows that

(i) there exists a sequence of estimators 8, such that 0, 25 8,

(it) for € > 0 there exists an event E with P(E)>1—¢ and an ng

such that on E, for n > ny, Q, atlains a relative minimum at 8,
(iii} n%(éu - Bﬂ) L N(D,Jz‘/—l), and 5—,2‘ el 02,

(iv) Ve € R¥H then

L Tii
N rict (8 — 8
limsup i ( 0): =1, as.
a—co (212 Inlnnw?)?

where 12 = gicTV-1l¢

The detailed proofs of the results are given in Chan and Tong (1986) and
Tong (1990).

As an illustration of the above thieorem. consider the first-order STAR model
without intercepts with delay para.!-nei.e[' d=1, m=A(d,p) =1 defined
by
- - , “ Xr.-l - r :
_f\, = U.,X‘(_] + [)'\*f—l(r —'_) + Eta (42.2)

ot

which can be rewritten as

‘Xf_ = (.r.,\’t,_l + IJJ\,;(_IG(Xg_l) + '] (423)

-1
(R



where G (I;r) rewritten as (), G a known distribution function. The

stationary region for (4.2.2) is

<l a+b<l and ale+0) < 1. (4.2.4)

Take & = (a,b,r,2)T then {4.2.1) is satisfied and

[ Lo, X? L =thL 2 )

Il I3 _gld iLg)

2
V = ,
b b 52 i
= -2l FI -5l
b b 52 242
\ zh L -l =i /

where I = Eg,(X2G(X1)), I = Eay(X29(X1)), Is = Eao (X2G( X)), Is =
Ee (X2G(X1)g{X1)), Is = Eg,(X1g*(X1)) and g(.) is a derivative of G(.)
such that n'/2(6, — 6,) -2 A(0, 02V 1),

As (r,z) cannot be solved explicitly from the conditional least square
equation, Chan and Tong {1986) presented an algorithm to implement the
CLS method. The algorithm consists of two steps : fixing (r,z) and
minimise the conditional sum of squares function with respect to coeflicient
parameters and then varyiug (v, z) Lo minimise the conditional sum of

squares function as follows.

Given (r,z), let ) = {(a, )T so that

g ( ) ) o ( =2 A X1 )
1= - = )
b o XX G(Xim)

where

ki L " i) F i
t=2 At—l 1=2 At—1(’()‘t—1)

= Xy G X)) T X2, GP(Xem)



After obtair_ling the estimates of #;, tlhen one can varies the values of (r,z)
to obtain their estimates which minimising (4.2.1). Chan and Tong (1986)
also have given some examples on the performance of the conditional least
squares estimator for the STAR model. The examples include a simulation
study based on a first order STAR model and an application based on
Nicholson’s blowfy data. In earlier work, Nur (1993) applied the conditional

least squares method to analyse the Canadian iynx and the sunspot data.

4.3 Maximum likelihood estimators

In this section, we present Theorem 4.2 which discusses the consistency and
asymptotic normality of maximum likelihood estimators of STAR meodels
of order 1. This result is based on Theorems 5.1 and 5.2 of Tjgstheim
(1986) (Theorem B.3 and B.4 of Appendix B.2).

Let {X,, t € I} be a discrete time stochastic process taking values in R*
and defined on a probability space (2,8, P). The index set I is either
the set Z or the set Z%*. We assume that observations (Xi,..., Xn)
are available. The parameter vector ¢ = (#,, ...,(JP)T will be assumed
to be lying in some open set © of Euclidean p-space with the true value
denoted by &y. Tle notation .‘i’q,_, = X”,_l(()) is used for the conditional
expectation Fy(X, | B,~;}. The kxk conditional prediction error matrix

of {X;} is denoted by
Zi—r = E{(X, = X2 )X = X)) | Bis))
If X,— X,_, independent of B._; tlen
Zij—r = E{(X.~= X)X = Xo_0)T)
Let L, be the likelihood type penalty function

L, = Z [ln{dﬁf(zqa—l)} + (Xt - A]‘:’tiz—l)TZJtl..l(Xt - Xﬂt-—l)] = z oM
t=m+1 t=m+1

(4.3.1)



where m is the order of the nonlinear autoregressive process such that
t—-m<s<t—1, s denotes the number of components of the parameter
vector & appearing in L.(#). Due to the presence of Zy,_, in Ly, in

general s > r with r being the number of parameters in the model.

For the first-order STAR model (4.2.2) with the stationary region (4.2.4),
the following theorem shows the consistency and asymptotic normality of

the maximum likelihood estimators.

Theorem 4.2 Assume that (r,z) ere known, let {X.} be defined by
(4-2.2). Assume that ({.2.4) holds, and that &, hes a density function
with infinite support such that E(e?) < co. Then there exists a sequence
of estimators {6,} minimizing the penally function L. of ({.3.1), such
that 6, <= 6. Also,

228 = 0y) 25 N (0, (7)),

where

i EQX;_Z_I EB(XE_IG(X!—I))

Ut =
2 -
TN Bo( X7 G(Xim1)}) Eo( X2 G Xem1))

Proof.

Let 8 = (a,0)7. It follows that
KXoy = Eal Xy | Bisy) = aXooy + DX, G( Xy ) (4.3.2)

and

Zj_l;__.] = E(Ef) = O'z.

The likelihood function is

" , l ; . , ] ) . 2 I
L= fino? + — (X, = (aXoy + bX,0GIX-1)] = 3 6,
=2 =2

where

. L. . .
q')t = lIl(TZ =+ ;(,\.f — ((J’..Xf_l + be__.I(;(Xf_._[))z.
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To apply Theorems 5.1 and 5.2 of Tigstheim (1986) ( Theorem B.3 and
B.4 of Appendix B.2), we verify conditions (i)-(iii) of Theorem 5.1 and

conditions in Theorem 5.2 of Tjustheim (1986) as follows. We have

3¢ 2 A 2 ;
u = aKen = e X G,
¢, 2 i ¢, 2 ., 0%, 2
aaa;; = gz)‘f—lG(-}lt—l)’ 60,; - az‘xf_p Bb; s X G (Xima)-

From the independence of {e;} and {X,:s <t} and as {X,} isergodic

so that the condition E(£?) < oo implies E(X?) < oo we have

D¢y d¢y
E da o, £ b )

Using Theorem 5.6 of Karlin and Taylor (1975) (Theorem A.4 of Appendix
A), we have
4.

da?

8%¢,
ab?

3¢,

dadb o0, E

< OO

’<oo, K

Hence condition (1) is satisfied.
As the third derivative of ¢, is zero then condition (iii) follows.

Furthermore, to see condition (ii), we have that

aXth—l — N aXﬂa-l

da D EVE X1 G( X))

As Zy;—, does not depend on the parameters then the second term of

condition (ii) is zero. Thus if two arbitrary real numbers ¢y, ¢;, exist such

o v o 2
E (0" ((21 ()‘thl_l + (S-zddle!_l) ) =

du ab
aXio+ X GIX L))o =0 as,

that

implying

then ¢l = ¢2 = 0 since E(X?) > E(¢?) = ¢? > 0. Hence condition
(11) holds. As Zy,—; does not depend on the parameters S = 0 in

Theorem 5.2 of Tjustheim (1986) so that the condition is obviously satisfied.



Using Theorems 5.1 and 5.2 of T)gstheim (1986) { Theorem B.3 and B.4 of

Appendix B.2), the proof is complete. O

Remark 4.1 On the above discussion, MLE is presented conditional on
fized (r,z,d). In the cuse of estimating (r,z,d), Akatke Information

Criterion can be applied as in Tong (1988).

4.4 M-estimators

This section presents asymplotic properties of Huber(k) and least abso-
lute deviation estimator of a first-order STAR model with delay parameter
one. These estimators are well-known examples of M- estimators. As the
estimators are /r-consistent, the estimators can be used as preliminary

estimates for adaptive estimation in Chapter 5.

The asymptotic results of Huber(k) and least absolute deviation estimators
follow from theorems and corollaries given in Koul (1996). We use the same

notation and terminology as in Koul (1996).

Let m, n and p beintegers, mAp>1, 7> m, O be an open subset
of the m-dimensional Euclidean space ®*, R = R', t € R? and || t ||
its Euclidean norm. Let {g;,2=1,2,...} be @id. r.v’s with distribution |
function F; Yy := (Xp......N|_.)7 be an observable random variable, in-
dependent of {s;.2 = 1.2....}: B, bethe o field geverated by {Yo}

and B,; be the o- field generated by {Yoq;e;,1 €7 < i}, 2<: < n.

In a p-th order nonlinear time series model considered here, one observes

an array of the process {X,;,i=1,2,...,n} satisfying the relation

X = MY, . qy+e, 1=1,2,...n, (4.4.1)

-]



for some 8 € ©, where Y,0:= Yo, Y.io1 = (Xuic1, -, Xniep) ', and
is a known function from ©xR?” to R that is measurable in the last p coor-

dinates so that h,;(8) .= ~(#,Y,.-;) 1s B,;-measurable, § € ©,1 <: <n.

Fix a ¢ € © and let P denote the probability distribution of
(Yo, Xn1, s Xnn) under (4.4.1) when 6 is the true parameter value. Sup-
pose there exists a vector of functions Bn from © xR? to R™ as mentioned

in Appendix B.3.

Assuming (r,z) are known, consider the first-order STAR model of (4.2.2)
and let

f = {u, b)T, hni(t) = tTW,.
where W.‘ = (X,'_l,X','_lG'(Xi_l))T.

Then it is easy to see that

h.(t) = W,.

f

Let F = Fg, the set of all positive and uniformly continuous Lebesgue
densities with zero- mean and finite variances ; i.e. E(s;) = 0, E(e?) < co.

Take
02{9=(a,b) ER:a < 1, u4+b < I, a(a +0) < 1}.

For each (#,¢) € © x F, the above model is ergodic by Theorem
2.3 and there is a unique stationary process satisfying the above model
{Proposition 2.1, Chan and Tong (1986G). see Proposition A.l of Appendix
A). Furtherimore, the existence of the s-tli absolute moment of ¢, imnplies
that of the stationary distribution, that is, E | & |* < oo implies E |
Xo |° < oo. In the following, we present the propositions on asymptotic

properties of Huber aud least absolute deviation estimators respectively.

Proposition 4.1 (Huber cstimator)  Let 1-1.,,1- = W, where
W, = (}\’,-_1,)\’,'_1('1'(.\',;_;)]T and  ple) = o] ¢ <L C] +

=~
o



csgn(z)I[| z |> ¢}, x € R, where ¢ is a known positive constant. Assume
that F' is symmetric around zero, F is continuous and [F{c)—F(—c)] >
0. Then

2!y~ 0) 20 M (0,32 v (9, F)),

where Oy 1s the Huber estimator and

Eg X} Eo(X3G(Xo))
, = ( ) . (4.4.2)
Eo( X;G(Xo)) Eo( XZG*(X0))
with
o= Bl e > ) + (1 = F(e) + F(—))
v )= [0~ F(-aF ‘
Proof.

First we need to verify assumptions (hl) to {h6), (F) and (M1) of Ap-
pendix B.3 in order to apply Corollary 1.1 of Koul (1996) (Corollary B.1 of

Appendix B.3). The verification proceeds as follows.

(i) Since F = FF then assumptiou (I} is automatically satisfied.

(ii) Since l:!;(t) = W, does uot depend on parameter &, then assump-

tions (hl}, (h4), (h5) and (hG) hold.

(iii) To prove assumptions (h2) and (h3), we use Remark 1.1 of Koul
(1996) for stationary and ergodic processes that the condition (A1)
in Remark 1.1 of Koul (1996) {see Appendix B.3) implies co'ndition
(h2) and (h3). We have to show that

Es || hy(8) ||*< oo,

where Fjy denotes the expectation under the stationary distribution.

Clearly
Eq || ha(0) P= Eo( X2 + X3P (X)) = Eo XE + Eo( X2GH( X))
And also, Ep X < oo. Using Theorem 5.6 of Karlin and Taylor (1975)

(Theorem A.4 of Appendix A) theu yields FEp(X2G*HXy)) < oo.

T



Hence Ep || hy(#) ||?< oo, so that assumptions (h2) and (h3) hold.
The existence of a positive -definite matrix Y, in (h2) is guaranteed
by the ergodicity of the processes and finite second moments using
Theorem 5.5 and 5.6 of Karlin and Taylor (1975) (Theorem A.3 and
A.4 of Appendix A) where ¥, is as defined in (4.4.2).

To prove condition (M1), we have
e"M(0+n"?re) =n™2 Y T W, (X — hni(0 + n™/?re))

=1

= V2 ZGTWE P(X; — (60 +n~Vre)TW))

=1

= p~U/2 Z eTW{ Wwle; — rn"'/zeTW;).

i=1
We have to show that the function is monotonic. Consider a function
Yoo zip(y; —rx;) where x;y;,r € R. Let vy > 1y, 1, 72 € R.
If z; >0 then

Py — rz:) < Uy — razi)

so that

If z; <0 then, since v is nondecreasing,
Oy — mxs) 2 Py — raes)
so that
wid(ys — rg) (i — rawi).

Hence it follows that w0 (y; —rr;) is monotonic, which implies that
for any eTW; € R, eTM(# + n~"%*e) is monotonic. Hence (M1)
holds.

The assumption in Corollary 1.1 of Koul (1996) (Corollary B.1 of Appendix

B.3) states that

/ fedih > 0.

80)



From the assumption in the proposition,
/./'dw = F(¢) = F(—c) > 0.

As the assumptions (F),(h1) to (h6) and (M1) of Appendix B.3 hold then
one can apply Corollary 1.1 of Koul (1996) (Corollary B.1 of Appendix B.3).

Hence the proposition is proved. ]

Proposition 4.2 (Least absolute deviation estimator) Let h; = W, where
W; = (Xio, Xin1G(Xi21))T end o(z) = sgn(z), = € R. Assume that

F has « continuous, bounded and even density f and f(0) > 0. Then
208 - -1
R (frq = 8) =0 N0, /4£2(0))
where Op,4 is the least absolule deviation estimalor and Yo is defined in

(4.4.2)

Proof. Assumptions (hi} to (h6) of Appendix B.3 hold as mentioned in
Proposition 4.1 above. With +(x) = sgn(z), v is nondecreasing, then
assumption (M1} Lolds. Also the assunptions in the Corollary 1.2 are sat-
isfied. By applying Corollary 1.2 of Koul (1996) {Corollary B.2 of Appendix

B.3) the proposition follows. g

4.5 Estimating Functions

In this section, we recall Godambe’s (1985) theorem on stochastic processes

and apply it to obtain optimal estimates for STAR models.

Let Xy, X2, ..., X, Dbeasample record from a STAR model of order p:

r I R =
X, = Z a; X, + {Z‘!{,—_\’,__, 16) (—%’) + &4 {4.5.1)
=1 i=1 -

Assuming (r,z,d) known, let

= (ay, . an by, ..., f);,,)T.

31



X— = (-XI-—] LR ‘X'i-;rn ‘x_t"](’;tﬂ vevy ‘X_t—th)]

where G, =G (5-"‘*—"') , t=m4+1,..,n, and m = A(d,p).

z

Then the above model becomes

-'X't = X4 + &4

Now, let
h; = zY;_ - E[Xg I Bt_]] = Xf_ - X4.

The optimal estimating equation for &;, = 1,...,2p is given by

10
L3 E )
b = Z heal, 4,
t=m+1

where

a’ = —-——E {%%L ] Bt—l]
M T BB B

From the model,

E [htz | Bl_[] = E[Ef ' Bf__l] - E[Ef] = 02.

The optimal estimate for ¢ can be obtained by solving the equation

Z IE.;(L,‘J__] =1

t=m+1

which yields,

-1
6= ( 3 XTX) > XX
t=1

t=mn+1

For the special case when p = [,d =1, assuming (r,z) are known
.X—f_ = (I.’\"l—l + {)JX’[_](;(,}(’__IJ + e
where G(X; )= (‘_'-:i“_') .

Let X = (Xiv1 Xio)G(X21)), 0 = (¢« D)7 so that the above model

becomes

Xy =X0+ =,



Ta-king h-z = Xt — E[‘X’t i 81_1] = ‘X.I - {“-.Xp._,l + b.Xf_IG(.Xt_l)} = ‘Xt - Xg

dh, -Xia )
El =B, = :
[aa | B ‘J ( — X1 G(X 1)

The optimal estimating equation for ¢ is

and

" 1 — X1
X, —daXis + X G(X,_ - =0,
g( : — {aXi1 + 0X1 G(X, 1)})0.2 ( —X1G(X_y) )

o B

"X, X, " X,
( L s )=Z( )(XH Xt_IG(X,,I))(
Pimg N X1 G( X 1) =\ X G(Xy)

Hence

( L XE, o XE LG (Ximr) )
P, XL GX ) T, XELG(X)?

=2

( i X X )
n XX G(Xen) )

Remark 4.2 Siumilar to MLE, M-estimator and Estimating Function are

TN
o9y R
S—

presented conditional on fired (r,z,d). For estimating (r,z,d), one can

combine the method with CLS or Akaike Iuformation Criterion.

One should note that the above estimates are the same as conditional least
squares estimates obtained n section 2. Hence by asymptotic properties of
the conditional least squares estimator it follows that these estimates are

consistent and asymptotically normally distributed.
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Chapter 5

Adaptive Estimation

5.1 Introduction

This chapter presents a study on adaptive estimation for the class of STAR.
models and closely follows the theory developed in Koul and Schick (1997).
The main contributions to this chapter includes the presentation of numer-
ical examples and the verification of conditions of theorems of Koul and
Schick (1997) for the STAR models. The content of this chapter is strongly
related to Chapters 2 and 4 as the ergodicity assumptions are needed for
the proofs and also the estimator obtained in Chapter 4 is used as the pre-

liminary estimator in adaptive estimation.

The construction of estimators that are asymptotically efficient in the pres-
ence of infinite dimensional nuisance parameters has been the focus of nu-
merous researchers in the last three decades. Consider estimation of an
Euclidean parameter # and an infinite dimensional nuisance parameter
g- 'To study what is best possible asymptotically, one needs a bound on
the asymptotic performance of estimators of 6. Hajek (1970) established
a lower bound for the local asymptotic minimax risk of a sequence of esti-

mates under local asymptotic normal condition and showed that in the one
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dimensional case, a condition close to regularity (see Fabian and Hannan
(1982)) is necessary for an estimate to be locally asymptotically minimax,
that is, for the variance of an estimate to attain the lower bound. A vast
majority of models are Locally Asymptotically Normal (LAN) and when
this holds the Hajek-Le Cam convolution theorem yields an appropriate
lower bound. On an ad hoc basis, it is often possible to find estimators
of & that have the right rate of consistency. Typically, such estimators
may be used to construct efficient estimators, which attain the bound of the
convolution theorem. If this bound is the same as in the parametric model
with ¢ known, then such estimators are called edaptive. From the general
asymptotic theory for adaptive estimation in locally asymptotically normal
(LAN) families it follows that adaptive estimation is not always possible
(Koul and Schick (1997)). Necessary conditions for adaptive estimation for

these families are given by Fabian and Hannan (1982).

For the independent identically distributed case, a comprehensive account
on the present theory along these lines is given in Bickel, Klaassen, Ritov
and Wellner {(1993). Survey papers obtaining adaptive estimation in linear
time series models was probably started by Beran (1976) who constructed
adaptive estimates for the parameters of a stationary autoregressive process
and obtained their relative asymptotic efficiency with respect to the least
squares estimates. The nature of the adaptive estimates encourages stable
behaviour for moderate sample sizes. Akritas and Johnson (1982) obtained
the asymptotic power for tests of hypotheses concerning the antoregressive
process when the error distribution is nonnormal, by employing the concept
of contiguity and this leads directly to an expression for the Pitman effi-
ciency tests as well as estimators. The numerical values of the efficiencies
suggested a lack of robustness for the normal theory least square estimators
when the error distribution is thick tailed. This work was then extended

by Kreiss (1987a) to obtain adaptive estimates in stationary autoregressive



and moving average processes in a wide class of symmetric density errors,
and the estimates turn out to be asymptotically optimal. Moreover, Kreiss
(1987b) generalised his earlier work to obtain adaptive estimation in autore-
gressive models when the error density is asymmetric. For linear regression
model, Koul and Susarla (1983} constructed adaptive estimator of the re-
gression parameter vector in the linear model and studied its asymptotic
properties. Zwanzig (1994) obtained adaptive estimates for linear regression
model for a general error density, and for nonlinear regression with sym-
metric density errors. A review of results on some basic elements of large
sample theory in a restricted structural framework, as described in detail in
LeCam and Yang (1990), was comprehensively given in Jeganathan (1995).
He illustrated the asymptotic inference problems associated with many lin-

ear time series regression models.

For nonlinear time series models, Linton (1993) constructed efficient esti-
mators of the identifiable parameters in a regression model when the errors
follow a stationary ARCH(p) process under the assumption of symmetric
density error and showed that the identifiable parameters of this process
are adaptively estimable. Koul and Schick (1996) proved the existence of
adaptive estimation in a stationary and ergodic random coefficient autore-
gressive model if the distributions of the innovations and the errors in the
models are symmetric around zero. Drost and Klaassen (1997) constructed
adaptive and hence efficient estimates for semiparametric GARCH in mean-
type modeis with a symmetric error density. The GARCH models include
integrated GARCH models which are often used to model financial data
sets. Drost, Klaassen and Werker {1997) constructed adaptive estimators
in time series models especially with time varying location and scale and
showed how a sample splitting technique can be used to construct adap-
tive estimates for these models and applied the construction to ARMA,

Threshold Autoregressive and ARCH models. Koul and Schick (1997) also
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discussed efficient estimation for a class of nonlinear time series models with
unknown error densities. They gave several methods for constructing effi-
clent estimates and these results were then applied for SETAR, EXPAR
and ARMA models. They found that adaptation is not possible in SETAR
models with asymmetric error densities. Recently, Koul and Schick (1997)
considered the construction of adaptive estimators in time series models
with time varying location, which are less general than models considered
by Drost, et.al (1997). But, the former obtained efficient estimates in gen-
eral error models which will be automatically adaptive under the symmetry

conditions.

Consider the first-order STAR model with delay parameter one defined by

X, . —
Xy = 0 X1 + 6:Xe1G ('t—;“—r) + €4,

which can be rewritten as
Xt = B]_.Xt_l + BQXt_lG(Xt_l) + €1, (5.11)

where r is a threshold parameter, » € R; z is a smoothing parameter,

z € R*, {e:} 1is a sequence of independent and identically distributed

random variables with ¢, independentof X,, s <t and G (”:’) , which
is redefined as G(z), is a distribution function. Throughout the chapter it
1s assumed that G(.), » and =z are known. The problem of interest is
the construction of adaptive estimator of # = (6;,8,)7 in the presence of
the nuisance parameter f, where f denotes the unknown density of the
innovations in the above model. If X, — oo, (5.1.1) becomes essentially

linear with coefficient 8, +#6; and when X, — —oo, (5.1.1) becomes linear

with coefficient 6.

This chapter is organised as follows. In Section 5.2, for convenience, the
assumptions, definitions, conditions and theorems from Koul and Schick

(1997) are briefly summarised. Section 5.3 discusses local asymptotic nor-
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mality of the above STAR semiparametric model whereas Section 5.4 ad-
dresses the question of adaptive estimation of 4, where the necessary
condition for adaptive estimation is verified for the model when f is
symmetric about zero. The algorithms for construction of adaptive and ef-
ficient estimates are presented in Section 5.5 in which the adaptive estimate
is constructed without splitting the sample whereas the efficient estimate
1s constructed with splitting the sample. Finally in Section 5.6, we present
simulation results to compare the conditional least squares estimate with

the adaptive and efficient estimates in STAR models.

5.2 Notation and Preliminaries

The following notations of Koul and Schick (1997) are being used in this
chapter. Let m and p be positive integers, F be a class of Lebesgue
densities, © be an open subset of ™, and P = {Ps4:(4,4) € © x F}
be a family of probability measures. Let X;_,, ..., Xg, X3, X2, ... berandom
variables and, for each j = 1,2,..., let h; be a measurable map from

RPH7-1 x @ into R. Define X; = (X1.p,....,X;)T, 7=0,1,..., and
HJ(T.?) = hj(Xj-},i?), d € 0, 5=1,2,....

Under each Fs4 € P, the following is assumed for the time series {X; :
7 2 1 —p}. The random vector Xo has a Lebesgue density gs4, and

the random variables
Ej(ﬂ) = XJ - Hj(ﬁ)a ] =12,..,
are independent with common density ¢ and are independent of X.

Let & and f be the true parameters, F denote the distribution function
corresponding to nuisance parameter density f. The expectation under

P34 is denoted by Ey4 where (d,4) € © x F. For convenience, Pyg4
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and Ey, are abbreviated by Py and E,.

Moreover, let Fo denote the set of all Lebesgue densities with zero-mean,
finite variances and finite Fisher information for location, and F{ consist

of all positive densities in F.

As the statistical information contained in the sample regarding the param-
eter of interest is described in terms of the likelihood ratios of the sample,
satisfactory answers to obtain an optimal estimator when the sample size
is large will involve the study of asymptotic behaviour of likelihood ratios.
Indeed, one of the central objectives of asymptotic theory, in its simplest
form, is to provide methods of recovering the likelihood ratio’s of the sam-
ple, at least approximately when the sample size is large, by means of a
suitable estimator of the parameter. It is assumed that the approximation
to the likelihood ratios is quadratic in parameter, and it is shown, in LeCam
(1960) that this approximation simply reduces the inference procedures and
related problems to those of a Gaussian distribution. The likelihood ratios
satisfying the quadratic approximations are called locally asymptotically
normal (LAN) likelihood ratios (Jeganathan (1995)).

Various LAN results have been proven in special cases by many authors such
as Akritas and Johnson (1982), Kreiss (1987), Drost, et al (1994) and
Jeganathan (1995). In the first two of the above papers the error density
f 1s not parametrized, and the latter two prove the LAN property, which
1s uniform in # but the error density f is fixed. Koul and Schick (1997)
prove LAN in both the parameter of interest and the nuisance parameter,

with uniformity in the former.

The following give the assumptions and definitions required to prove LAN

result for nonlinear time series models.



Assumption 5.1 (Assumption 2.1 of Koul and Schick (1997)) The density
f has finite Fisher information for location, i.e. f is absolutely continuous

with a.e-derivative f) and

F
J=flzdF < oo, where l=——?——. (5.2.1)
Moreover,
[1905X) = 90s() 1 dx — 0, as 9 — 6,  (5.22)

where gs s 15 a Lebesgue density of Xy under Py; € P.

Assumption 5.2 (Assumption 2.2 of Koul and Schick (1997)) There exists
a v € R™, a positive definite m x m mairizx M and measurable
functions izj from RPHIT1 x O to R™, j=1,2,... such that for all

local sequences <V, > and <8, >

S| H;(80) — Hy{0) — (8 — 0.7 E;(00) = 00 (1), (5.2.3)

e = (0 I=on (), (524)
—ZH(() = v+ 0g,(1), (5.2.5)
%ZH(G,‘ (6.) = M + 05, (1), (5.2.6)

where H;(9) = h;(X;,9) for j=1,2,... and ¥ € O.

Definition 5.1 (Definition 2.3 of Koul and Schick (1997)) By an
s-dimensional path we mean a« map n — f, from a neighbourhood A of
the origin in R° into F such that fo = f. The path 5 — f, is said
to be {-smooth if & is ¢ measurable function from R to R° such that

TNENAF < oo, [EETAF is nonsingular, and

J (Vo) = it = 57 )f(ﬂf))zdr=0(llnllz). (5.2.7)
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The path n v f, is said to be £-requler if it is £-smooth and if

_/ | 9.5, (X) — g90.5(Xx) |dx — 0, asd — Handy — 0. (5.2.8)

Remark 5.1 Let F = Fo. Then it can be shown that for each measurable
function ¢ such that [&(z)dF(z) =0, [zf(z)dF(z) =0 and 0 <

J€%(z)f(z)dz < oo, there exists an one-dimensional path that is £ smooth.

Fix an s-dimensional £-regular path n — f,. Define (m + s)-dimensional
random vectors S;, for 7 =1,2,..., by

H;($)(e;(9)) )

50,6 = ( £(e;(9))

and an (m +s) x (m + s) matrix V by

V({):( JM vf!ETdF)‘
JUdFVT  [ETdF

Let P7, be the restriction of Pyy, to the o-field generated by X,. For
91,92 € © and n € A, let A,(?,7;,17) denote the log- likelihood ratio
of P;;;m to P,;‘ho :

_ sy ol XS - Hi(ds)) 95,.5,(Xo)
AL(P1,95,0) = ;108; f(XJ- —H;(9)) log m.

If Assumption 5.1 holds and Assumption 5.2 equation (5.2.3), (5.2.4) and
(5.2.6) are met with ¢, = #, then it implies that £(X, | Py,) and
L(X, | Ps) are mutually contiguous for each local sequence < ¥, > .
That is, in terms of likelihoods formed by probability measures P, and

Py, An(¥1,¥2,7) = O(1) under both P, and P;.
The following gives the LAN resulit for the models described above.

Theorem 5.1 (Theorem 2.4 of Koul and Schick (1997)) Suppose Assump-
tions 5.1 and 5.2 hold and the path 5 — f, is E-reqular and V(€) is pos-

ttive definite. Let < 8, > be a local sequence and < ¥, >=<< t,,u, >>
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be a bounded sequence in R™ x R°. Then

t u L
Al On + —=, —=) = —= S 975;(8,, ﬂTV U 1
( + \/E \/— \/—g E) (6) + 0y, ( )
and
1 n
L (T;SJ rué I-Pﬂ ) #N(O! V(f)).
Consequently,

T2 (806 — 550,80 + [ ] (6, — ) = op(1).

J—l

[1EdF9T

Under the semiparametric version of LAN as mentioned above, one can
characterize efficient estimates and explain Stein’s (1956) necessary condi-

tion for adaptation.

Condition 5.1 (Necessary condition for adaptation, Stein (1956)) Let Q@

be the family of all regular paths. The necessary condition for adapiation is
u]lfqu =0, foreach ¢ € Q, (5.2.9)

where v as defined in Assumption 5.2, | as defined in Assumption 5.1

and £; 15 the £ given in Definition 5.1 for the path q.

Furthermore, under the following additional assumption, Condition 5.2, the
construction of adaptive estimates is possible without splitting the sample
for symmetric error models as given in Theorem 5.2. The estimates obtained
without splitting the sample should give better estimates for moderate sam-

ple sizes (Koul and Schick (1997)).

Let < a, > and < &, >, be sequences of positive numbers converging
to 0, < ¢, >, be a sequence of positive numbers tending to infinity and

< d, > be a sequence of positive integers such that d,/n — 0.
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Condition 5.2 (Condition 5.1 of Koul and Schick (1997)) For every local
sequence < 8, > for 0 and every sequence < ¢, > tending to infinity,

=3 WGP (I H (8]l > en] = 06,(1).

i=1
Define the estimate

b= 0, +(J, Mn)-lNL S Hojlalens), (5.2.10)
1

L

where én i1s an estimate for 4, g, bea preliminary estimate which is a
discretized +/n- consistent estimator of . The functions H,w-, i, Jo, M,
are the estimates of H. 5y I, J, M respectively as defined in the algorithm of
the construction of adaptive estimates in Section 5.4 (refer Koul and Schick

(1997) for more details).

In classical parametric models the maximum likelthood estimator is typi-
cally asymptotically efficient. In semiparametric models such an estima-
tion principle yielding efficient estimator does not exist. However, there
exist methods to upgrade /n-consistent estimators to be efficient by a
Newton-Raphson techniques, provided it is possible to estimate the rele-
vant score or influence functions sufficiently accurate. In Klaassen (1987),
such a method based on ‘sample splitting’ is described. Schick (1986) uses
both ‘sample splitting’ and Le Cam’s ‘discretization’ in i.i.d. models.
Suppose < 6, > is a +/n-consistent estimator of 8. Then < 0, > is
called a discrete sequence of estimators when 8, is given by one of the
verticesof {8:8 =n"Y2(i},....ip44),%; € Z} nearest to #,. For example,
if 5:1 = (énl,éng) € R%, then 0, is discretized by changing its value in
R x R into (one of) the nearest point(s) in the grid (c/n)(Z x Z).

Theorem 5.2 (Theorem 5.2 of Koul and Schick (1997)) Let Assumptions
5.1 and 5.2 and Condition 5.2 hold, and let f be symmetric cbout zero.

Suppose < 0, > is a discretized V-consistent estimator of 6 and the
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sequences < a, >, < b, > and < ¢, > satisfy in addition
n~ a2 2 — 0.

Then < 8, >, given in (5.2.10), satisfies

VAl =0) = 2= S UM HOU0) =) (5211)

and is adaptive.

For the set Q@ of all regular paths the above theorem states that if F con-
tains only symmetric densities around zero, this estimate given in (5.2.10)
is adaptive for the LAN subproblems generated by every ¢ € Q. Candi-
dates for /m-consistent estimators in the above theorem are Conditional
Least Squares, Maximum likelihood, M-estimator or estimating function

estimator. These estimators are discussed in Chapter 4.

To see the efficiency of the estimates, the following theorems can be applied
under the additional assumption, Assumption 5.3, given below. Let Tg
denote the closed linear span generated by U,eoT,, where T, = {a7¢, :
a € R}, s, denote the dimension of Q and £, is the smoothness

parameter. Let [, denotes the projection of { onto To.

Assumption 5.3 (Assumption 3.1 of Koul and Schick (1997)) The score
Sfunction ! does not belong to Tg. There exisis a path q,. € Q such that
l. € T,.

Define the efficient information for estimating 6 by

L=JM—uwT ] 12dF,

where J is defined in Assumption 5.1, v, M are defined in Assumption
5.2 and [ as mentioned in Assumption 5.3. The efficiency for general

estimates is given in Theorem 5.3.
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Theorem 5.3 (Theorem 3.2 of Koul and Schick (1997)) Let Assumptions
5.1, 5.2 and 5.3 hold. Let < Z, > be an estimate satisfying

VT(Z — ) — 21 (H;(8)i(e3(8)) — vi(c;(0))) = 0e(1). (5.2.12)
J‘—l
Then
L£(VA(Za = 02) | Poyuntymy) = N (0,177)
for every local sequence < 0, >, every ¢ € Q and every bounded
sequence u, in R°. Consequently, < Z, > is efficient.

The following theorem gives a method of obtaining the efficient estimates
with splitting the sample. Drost, et.al. (1997) adopted the principle of
splitting the sample because it yields a relatively easy way to obtain efficient

estimators under minimal conditions.

Define the estimate < 6, > by

b, = ( Z P UL ) Z(bﬂ,, (5.2.13)

—dn J—dﬂ

where the construction of #(.), which contains functions L, and L..,

is explained in Section 5 (refer Koul and Schick {1997) for more details).

Theorem 5.4 (Theorem 4.1 of Koul and Schick (1997)) Let Assumptions
5.1, 5.2 and 5.8 hold. Suppose that < §, > is a discretized \/n-consistent
estimate of 6 and that the functions L, and L., are such that for

independent random variables Yi,...,Y, with density f
/(Ln(:r:, Yy, ., Ya) — {z))f(z)dz — 0 in probability,

f(Lm(z Y1, Ya) — L(2))*f(z)dz — 0 in probability,

\/E/(Ln(;r,}"l, Vo) = Lun(z, Yiy o Y))f(z)dz — O in probability.

Then <6, > satisfies (5.2.12) and hence is efficient.
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5.3 Local Asymptotic Normality for STAR

models

In this section, it is shown that model (5.1.1) is LAN using the sufficient
conditions for LAN given in Theorem 5.1. To apply the theorem, one needs
to show that Assumptions 5.1, 5.2 and Definition 5.1 are satisfied. For this
model, at first stage, Assumption 5.1 is verified, followed by the verification
of Assumption 5.2 and then the existence of a smooth and regular path, as

given in Definition 5.1, is proved.

Consider the firsi-order STAR model of (5.1.1). Let F = F, the set of
all positive Lebesgue densities with zero-mean, finite variances and finite
Fisher information for location. Take the sufficient condition for ergodicity

for any distribution function G as mentioned in Chapter 2,

@2{0 € %22 91 <1 6 +60; < 1, 61(61+92) < 1} (531)

By Theorem 2.2, for each (¥,4) € © x F, the above model is ergodic
and there is a unique stationary process satisfying the above model (see

Proposition 2.1 of Chan and Tong (1986) (Proposition A.l1 of Appendix
A)).
For STAR model of order 1 given in (5.1.1), let

HJ(Gn) == Hanj—-l -I- Bn2Xj-lG(Xj—1): (532)

b0 = (2 H.s Xj=1 3
i{0n) = (58_ it ")) :(X,-_IG(X,-_I))' (5:33)

On Assumption 5.1
If we take F = Fp, that is, the set of all Lebesgue densities with zero-
mean, finite variances and finite Fisher information for location, we only

need to verify condition (5.2.2) for the Assumption 5.1 to hold. It is clear
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that condition (5.2.2) together with condition (5.2.8) of Definition 5.1 reflect
that the imtial distribution has negligible effect which is guaranteed by the
L,-continuity of the map (J,4) — gss at (8, f). The sufficient condition
for the L,;-continuity in stationary and ergodic NLAR(1) models was given
by Koul and Schick (1997) in their appendix. The verification of condition
(5.2.2) is implied by the verification of condition (5.2.8), as the latter is for
any (6, f) and the former is for any 8§ but fixed f.

We prove in the following proposition that Assumption 5.2 is satisfied for

the STAR model (5.1.1).

Proposition 5.1 For the STAR model (5.1.1) with © given in (5.5.1)
and F = F&, the Assumption 5.2 is satisfied.

Proof
By Remark 2.6 of Koul and Schick (1997), under Assumption 5.1, it is
enough to verify condition (5.2.3)-(5.2.6) hold with 8, = # and that

138 . .
— 2 |1 H;(6n) — H;(8) "= 0s(1).
J=t
But, as H_,—(H) given in (5.3.3) does not depend on the parameter §, the

above last condition is obviously satisfied.

To verify condition (5.2.3), it should be proved that
P, i | Hi($,) — H;(8,) — (¥n — 6,)TH;(8,) > €| — 0.
j=1
Since 6, =6 and 9, =6 +n""?t, and by using (5.3.2) and (5.3.3), we
have
i | Hi (W) = Hi(8.) — (9 — 6.)TH;(6a)

= > 6K + 7V XG0 + 6.X,06(X ) + n X G (X )
e

— 61X — X G( X)) — TV Xy — 0P, X G(XG 1) P

= 0,



which proves (5.2.3).

To prove (5.2.4), one needs to show that

Py, [max 11+ G¥HX;4)) > g —0.

1<j<n \/_\/

Let | Yot =] X;00/(1 4+ G3(X;)) |- As G(z) < 1 forany z €
R, then it follows that | ¥j_; [< 2| X;oy |, Vj > 1. Under the
assumption that {X;} is stationary and ergodic, and that EX? , < oo,

we have EI’;-"'_1 < ©00. Then by using conditional Chebyshev inequality,
the stationarity of the process {X;} and the square integrability of X,

we have

Y| | Xjal e
1-2-t] < il
Py, (ll‘lélj_a,sasI v >e| < P, lréll:s\é)sl /e > 5

S

4
= SEXI (| Xo 5‘2/5) —0.

Hence (5.2.4) follows.

To prove condition (5.2.5) and (5.2.6), we need to use the Theorems 5.5
and 5.6 of Karlin and Taylor {(1975) (Theorem A.3 and A.4, Appendix A).

We need to prove that:

1 k) v
n Z.f=1 X -1 P .
b
T Xier X0 G(X )

B E: X,
a ( Es(XoG(Xo)) ) ’

iy XD, W T XEG(X o) »
S KL, GX) LS XX

where

and

1
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where

M= ( Es X Eo( X2G(Xo)) ) _
Ep(X3G(Xo)) Eo(X3G*(Xo))
Under the assumption that {X;} is ergodic it follows, by using Theorem
5.5 of Karlin and Taylor (1975) (Theorem A.3, Appendix A), that

1 = a.s.
;; Z X_,'_l —3 FEXp.

=1
Moreover, using Theorem 5.6 of Karlin and Taylor (1975) (Theorem A .4,
Appendix A), it follows that

n 2 XinG(Xin) =5 Eg(XoG(Xo)),

i=1

% ZX}‘“l = EGX31
j=1

T 2 XL1G(X50) 25 Eo(XEG(Xo)),
=1

% Z(Xf_le(Xj_l))a‘ ot EeXng(Xg)
Jj=1

From the finiteness of second moments and as almost sure convergence
implies convergences in probability, it follows that the STAR process satisfy

the conditions (5.2.5) and (5.2.6).
Combining all, the proof of Proposition 5.1 is completed. a

Now we show the existence of a regular path for the STAR model. That
1s, we show that there exists a path and a measurable function £ which
satisfy (5.2.7) and (5.2.8). If we take £(z) = x%ﬁ—l—i—l then the following
lemma shows that there exists a £-smooth path.

Lemma 5.1 Let F = Ff, and £(z) = m%-l + 1. Then there ezists a

one-dimensional {-smooth path.

Proof. Note that [ f(x)de =1, [z f(z)dz =0, [z!(z)f(z)dz = 1. Then

/{(z)dF(:z:) = ] (.zf;(}i:;) + 1) dF(z)

- /:::fm(;c)d::;-i-/f(:c)dz =0,
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which follows from integration by parts.

Moreover,

/ 2€(z)dF(z) = / z (m fj:(}g) + 1) dF(z)

_ /mz FO(2)dz + f z f(z)dz = 0,

which also follows from integration by parts.

Since [¢(z)dF(z)=0

[ (@(2) dF(2) = Var(g(e) > 0.

Hence by Remark 5.1 it follows that there exists a one-dimensional path

that is £-smooth. O

In order to show that the STAR model is LAN, we need to show that
there exists a smooth path which satisfy Definition 5.1 equation (5.2.8). By
Remark 2.7 of Koul and Schick (1997) for a stationary and ergodic NLAR(1)
process so that H;(d) = A(X,-;1,7), it follows that to show (5.2.8) for
given £(z), it is enough to show that there exists positive constant A and

a measurable non-negative function ¥ such that
| h(z,9) |< A¥(z), = € R, (5.3.4)

| Az, 0) — h(z,8) |<[[ 9 — @ || A¥(z), = € R, (5.3.5)

for all 4 close to @, and for a ¢-smooth path 5 +— f, that satisfies

limsup, o[ |z | fo(z)dz < co so that

lim sup By 5, ¢ (Xy) < oo. {(5.3.6)

V= n—{)

As condition (5.3.6) for the STAR models is not in a closed form, we verify

this condition using the sufficient condition given in Remark 2.7 of Koul
and Schick (1997)(Remark C.1 of Appendix C). The following verifies the

above conditions.
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Proposition 5.2 Let F = Fg and {f,},>0 be a E-smooth path that
satisfies limsup, o [ | z | fo{z)dz < oo.

Let, for 8 = (0,,62) € O, given in (5.5.1),
h(.‘l:, 9) = 61$+02$G($), T € x.

Then there exists a measurable non-negative function 3 and a constant A

such that (5.3.4), (5.3.5) and (5.8.6) are salisfied.

Proof.

In order to do this, we use the function 1 introduced in Chapter 2 for
proving the ergodicity of the models. In the following, we summarise the
proof to relate it to the condition (5.3.6) (see Example 2.8 of Koul and
Schick (1997) for SETAR(2;1,1) model). Let F C F§ and © as
defined in (5.3.1). From the model (5.1.1), we have

hMz,8) = b1z + B,2G(z), z € R,

is ergodic for each (8,¢) € ©xF. From Chapter 2, the ergodicity proof is
divided into three cases. For convenience, we combine the cases as follows.
From the condition in (5.3.1), it is possible to choose positive constants
¢,d,e with e <1, satisfying

d
—i<01<e, —E<91+92<e,
c d ,

and define the required non-negative measurable function as

cr, x>0
—dz, = <0.

P(z) = {

To prove (5.3.4), we have
[ Az, #) |=] drz + d22Glx) |=]| 1 + 2G(2) || & |< Ad(z),
for some positive constant A. Similarly, to prove (5.3.5), we have

P A(z,d) = h(z,8) |=| ha + 920G(x) — 61z — 6,xG(x) |
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= [ (91— b1)z + (92 — 8,)zG(z) |
= | (9 — b I — )z zG(z))T |
< fl9—0 Ay(z), = € R

Hence (5.3.4) and (5.3.5) hold. Now, we show that (5.3.6) holds as follows.

As in the proof of ergodicity, we have

ex(b + 0:G(2)) + (¢ + D E[p(z,0) + &)™, x>0
—dz(6, + 0,G(x)) + (c + d)E[h(z,0) + &]", =z <0

< P(z) (b1 + 8:G(z))
+ (c+d)E | h(z,8)+e |, z € R

Ehb(X‘-‘) | Xz—l = J:) — {

< epl(z)+(c+d)E | h(z,0) 4], z € R,
as 6 +6,G(z) < e from the above condition.

From condition (5.3.4) and E(e?) < oo, it is clear that
E | h(z,0) + e [<| (2, 0) | +E | &1 [S Af(z) + E | e [< 00, z € R.

Therefore (2.24) in Remark 2.7 of Koul and Schick (1997) (equation (C.0.1),
Remark C.1 of Appendix C) is satisfied with £ | A(z,8)+¢, |<C, z € R
and &= 1= 0
From the above proposition it follows that (5.2.2) holds and every smooth
path that satisfy the conditions in Proposition 5.2 is regular. Hence we

have shown that when F = F} the STAR model given in (5.1.1) is LAN

which is stated in the following theorem.
Theorem 5.5 Let F = F;. Then the STAR model (5.1.1) is LAN.

Remark 5.2 [t should be noted that the verification of condition (5.2.8) of
Assumption 5.2 implies the verification of condition (5.2.2) of Assumption

3.1



5.4 Adaptivity

This section discusses the adaptivity of the STAR model. In order to show
that STAR model is adaptive, we need to verify Condition 5.2. The follow-
ing gives a construction of an adaptive estimator given by Koul and Schick"
(1997). Starting with a discretized +/n-consistent estimator, we prove in

the next theorem, that the estimator is adaptive.

(1) Choose < a, > and < b, >, sequences of positive numbers con-
verging to 0 and < ¢, >, a sequence of positive numbers converging

to infinity such that
'1(1;36;1c§ — 0.

(2) Let < d, > be a sequence of positive integers such that d,/n — 0.
Set N, =n—d, +1.

(3) Let 4, be a preliminary estimate of & which is a discretized and

\/n-consistent estimate.

(4) Let x, denote the map from R™ into R™ defined by

xXa(X) = XI[IX]| < ] + enc T[] > e, x € R™

1|
For the model, calculate

Hn,j = XNn(H (gn))

- (X_IG R AR < o)

c
= TI/X2, + X2 ,G%X_y) > ¢,
\/XJ'Z—1+XJ-2_1(;'2(Xj_1) {\/ i~1 F-1GHX-1) ]}

(5.4.1)

(5) Set Enj — Ej(én) = XJ - (ganj-l + 67‘!1.2){_;5-—1C"T(){j—-l)) 4
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(6) Estimate the score function [ by

-

ln(sn,i) = LNn(en,i, En.dna--wen.n): T € R:
where L, is defined as
LNn (Eﬂ.i’sﬂadni ""JE“-,"-)

_ fr(;l)(sn,i: Enydns o1 En,u) - fr(:.l)(—snn'-’ﬁnvd"’ e E“'"‘)
b, + fn(sn,ig Endns s En.ﬂ) + f"(_s"""—’ Endns "'En‘n)

and

1 e nt — En,j
fn(en.h En,dna ----:En.n) = Z k (L"'"E"i) ) (5'4'2)
Uy

na, =

1 = it tng
fi;l}(sn,i, Endns ---:En,n) - o) Z k(l) (E—"—E"{) (543)

ne, i=1 an

for 1=1,...,n, and %k be the logistic density,

k(z) = exp(—z)(1 + exp(—z))7%, z € R.

(7) Calculate

A 1 & 0 1 2. T
Jn = ; £ ln(en,j) and Mn = ; g Hn,mej-
J=Cn J=dn
(8) Finally, define the estimate (5.2.10)
. - . 1 M. .
9" = 91; + (JnMn)-lN ZHn,jln(En,j)- (54-4)
nog=1

Theorem 5.6 Let F = Ft, the set of all positive Lebesque densities
which are symmetric, heving zero means, finite variances and finite Fisher

information for location. Then 6, given in (5.4.4) 1s adaptive.

Proof.
If F=F¢ then ! isodd and hence (5.2.9) holds. Therefore Condition 5.1

is satisfied. Hence to prove the theorem using Theorem 5.2, one needs to

verify Condition 5.2 along with Assumptions 5.1 and 5.2. From the previous
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section, it is shown that Assumptions 5.1 and 5.2 hold when F = F§. For
a stationary and ergodic NLAR(1) models, Koul and Schick (1997) noted
in Remark 5.4 {Remark C.2 of Appendix C) that one can provide simple
sufficient condition for Condition 5.2 as follows. A sufficient condition for

Condition 5.2 to hold is that there exists a function ¥ such that

(1) Eep(Xo) < 00, .

(ii) ¥{(z) = supj_gy<s I h(z,9)|?, forall z € R and some & > 0.

This condition holds for the stationary and ergodic STAR meodels given in
(5.1.1) by taking ¢(z) = Az?, A>2.

e For condition (i), EyAX? < oo which follows from FEpX? < oco.
¢ For condition (i1},
sup || ia(;t:,lﬁ’) I’= sup z*(1 + G*(z)) < Az?

I5-8]|<& Ho-s8il<s

forr z € R and for some 6> 0, A > 2.

Therefore by Theorem 5.2, each regular path generates a LAN-subproblem
and the estimator < éjn > given in (5.2.11) is adaptive for every class of
LAN-subproblems that satisfies Stein’s condition (5.2.9). Hence the theo-

rem is proved. O

Remark 5.3 Note that the Stein’s necessary condition (5.2.9) given in

Condition 5.1, s safisfied if either

r=20 (5.4.5)

or

/zg,,dF -0, Vg € Q. (5.4.6)



For STAR order I model,

v = ( Ea()igéoxa)) ) 70

If F includes asymmetric densities, then (5.4.6) feils to hold and Stein’s
condition is equivalent to (5.4.5). In this case, adaptive estitnation is ruled
out if v # 0 which is the case for STAR models. Therefore in Theorem
5.6 we have taken F = FJ, the set of all positive Lebesgue densities
which are symmetric, having zero means, finite variances and finite Fisher

information for locetion in the above theorem.

5.5 Efficient Estimator

In this section we adopt the construction of efficient estimator given in Koul
and Schick (1997) to STAR models. We give the construction of efficient es-
timates under sample splitting techniques. First we show that Assumption
5.3 is satisfied and use Theorem 5.3 to infer that the constructed estima-
tor is efficient. As given in Example 3.5 of Koul and Schick (1997), we let
F=Fy, @ is the set of all regular paths. Then

To = {a € Ly(F): /a(rc)_f(:r)da: =0 and /xa(;r:)f(:c)d:r: — 0}.

As [zi(z)dF(z) =1, the score function ! does not belong to To.

Let
L(x)=1l(z)— i e R,

where o? denotes the variance of f. Clearly
/ L(z)dF(z) = 0,
/:nl,(X)le[:c) = 0,

U<flf(:c)rlF(.’c) < o0.
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Hence by Definition 5.1, there exists a one dimensional path ¢, which is

{,-snooth. Also the Il.-smooth path q., is regular since

lim sup E,j'fn'l}f)(Xo) < o0
d0 .0

by Proposition 5.2. Therefore, Assumption 5.3 holds.

Hence for the STAR models we have shown the following.
Theorem 5.7 Let F =Fg. Then Z, satisfying (5.2.12) is efficient.

For STAR model, if F = F{, then Stein’s condition for adaptivity is
satisfied. Hence the efficient estimator is also adaptive. Whereas, if F =
Fo& then Stein’s condition is not satisfied. Hence Z, is efficient but not

adaptive.

The following gives a method of construction of estimator which satisfy
(5.2.14). By choosing F = Fg, and using Theorem 5.3, the estimator

given is efficient by the above theorem.

Sample Splitting method
The method is to split the residuals &,,,...,£,, into two samples which may
be viewed as independent. As shown in (5.5.1), the first group of residuals is
used to estimate the function (.) of the second group errors, whereas the
second group of residuals is used to estimate the function (.} of the first
group errors. Following gives an efficient estimator when the error density
isin Fy .

(1) Let <@, > be a preliminary estimate of 8 which is discretized and

V/n-consistent.
(2) Set e, =¢e;(6,), 5=1,...,n.

(3) Let <d, > and < m, > be sequences of positive integers such that

dn <m, <n, d/n -0 and m,/rn — 1/2 and choose < a, > and
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< b, > to be sequences of positive numbers converging to 0 such that

-1, 3,1
n"a"h — 0.

(4) Set N!' =m, —d, +1 and N!'=n—m,.

{5) Calculate

. 1 ™ ..
Nn = FZHJ“}“)’

noa=d,

(LT
N\ iy X5 1G(Xj-)

j =d,

X 1 n ..
Von = E';; z Hj(gﬂ.)7

noj=ma+l

i ( Z;‘:‘="""ﬂ‘i'1 Xj—l )
NI\ Tt Xi-1G(Xi1)
(6) Calculate

fgg(en,h Endar - Eﬂ-mn)a

bn -+ fN,{,(En,i-; Endpy-n En,m,‘)

LN;’; (E“.i? Endas - Ert,rnn) =
for i=m,+1,..,n where f, and f{ asin (5.4.4) and (5.4.5).

(7} Similarly, calculate

1
f}v:g(ﬁn!;', Ennntls -+ En.n)

bn + fN{,’(En.iasn,mn: ey Sn!n)

LN;’I‘ (Eﬂ.,iy En ity s En.,u) =
for 1 =d,,...,m,..

(8) Calculate

€ni

Lt,N:‘(En,i? En,drx 3ty 67‘-‘7"-1'1) = LN:,(ETHI‘7 E‘n,dﬂ rETTY Envmﬂ) - 1_—_;;:1—-2_’
n LiTd, Enj
for t=m,+1,....,n.
(9) Similarly, calculate
L - _ N En,i
,,N{,’(En,i-, Enanun+ly - "'-ﬂ.'"-) - LN;.’(‘-"’Hi’ Enmntls e En'"')_ 1o z

w4 jmmn+1 Snj

for e =d,,...,m,.



(10) Let €pz = (En,mni—l:"-:en,n) and €1 = (Eu,dny "'15n,mn) and calcu-

late

) Hi(02)Lni(ensrens) — DamLan(Engrenz) i § = day..cmiq,
¢n,j =
Hj(ﬁn)LNA (En,j, en'l) — a2,an.N,‘1(5n.j: en,l) j=m,+1,..n
(5.5.1)

(11) Finally, the estimate < é, > using (5.2.13)

-1
n - ) LT 1 2 .
8, =8, + (; 3 Pl j) - > ;. (5.5.2)
i=dyp

i=dn

Simulation results for this estimator is given in the next section.

By Theorem 5.3, the above estimator satisfies (5.2.12) and hence by Theo-
rem 5.7 we have the following result for STAR models.

Theorem 5.8 Let F = F;, the set of all positive Lebesque densities hav-
ing zero means, finite variances and finite Fisher information for location.

Then 6, given in (5.5.2) is efficient.

5.6 Simulation

To demonstrate the applicability the theoretical results of the previous sec-
tions, a simulation experiment is presented below. The data comes from a

first-order STAR model with delay parameter one;

Xioy — 5.0)
- ~ £,

Xt = —Q.OX‘{_I + I.GXt...lG ( O 5

where G(.) 1s a standard Normal distribution function. In the simulation
study, 2500 independent replications were generated each with sample size

1000. The following five densities of the errors ¢; were chosen:

filz) = (0.5/V2x)exp(~(x — 3)%/50) + (0.5/v27) exp(—{(z + 3)/2),
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fo(z) = (0.05//507)exp(—=z2/50) + (0.95//27) exp(—x2/2),

fa(z) ~ i, faz) by, fs(z)~ e

For each series, conditional on (r,z) = (5.0,0.5), we estimated the pa-
rameter coefficients @ = (6,,6;) using three methods, viz, conditional
least squares, adaptive and efficient estimation. The preliminary estimate
é, used as the initial value for these estimators, is a discretized estimate

obtained by the conditional least squares method. Note that # is a +/n-

consistent estimator by the results given in Section 4.2.

Table 5.1. Average values of estimates and their sample

mean squared error for o, = 0.5.

Estimate MNI1 MN 2 is t; [
6,(C) | -2.00006 | -1.99997 | -1.99996 | -1.99994 | -1.99956
(0.000044) | (0.000075) | (0.000124) | (0.000114) | (0.000101)
6,(C) 1.60007 | 1.60017 | 1.60018 | 1.59992 | 1.59970
(0.000057) | (0.000095) | (0.000156) | (0.000140) | (0.000130)
8:(Ad1) | -2.00006 | -1.99997 | -1.99989 | -2.00002 | -1.99955
(0.000044) | (0.000075) | (0.000101) | (0.000103) { (0.000095)
8(Ad1) | 1.59995 | 1.60007 | 1.60000 | 1.60006 | 1.59974
(0.000062) | (6.000104) | {0.000139) | (0.000136) | (0.000130)
6:(Ad2) | -2.00006 | -1.99991 | -2.00010 | -2.00013 | -1.99979
(0.000044) | (0.000078) | (0.000102) | (0.000100) | (0.000097)
62(Ad2) | 1.60009 | 1.59989 1.60017 1.60043 1.59972
(0.000058) | (0.000103) | (0.000135) | (0.000125) | (0.000123)
§(Ef) | -1.99997 | -2.00002 | -2.00000 | -1.99983 | -1.99962
(0.000050) | (0.000082) | (0.000125) | (0.000117) | (0.006106)
6,(Ef)y | 1.60007 | 1.60025 1.60022 | 1.59998 | 1.59965
(0.000066) | (0.000106) | (0.000168) | (0.000148) | (0.000136)
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The adaptive estimates are constructed by two methods using (5.2.10).
The first adaptive estimate, éAdI, denotes the adaptive estimate with
¢, < 00, that is, satisfying Condition 5.2. The second adaptive estimate,
@Adz, 1s constructed with ¢, = co. The efficient estimate éEf, as de-
fined in (5.2.13), is constructed using sample splitting technique. The value
(6:(C),8,(C)) given in tables is the usual conditional least squares estima-
tor. For all estimates, we used standardised logistic kernels with a bandwith

i the interval 0.5 < o, <0.9.

Table 5.2. Average values of estimates and their sample

mean squared error for a, = 0.6.

Estimate MN1 MN 2 45 t; to
0:.(C) | -1.99988 | -2.00003 | -1.99981 | -1.99994 | -2.00002
(0.000044) | (0.000078) | (0.000129) | (0.000105) | (0.000102)
82(C) 1.59992 1.60008 1.59996 1.60023 1.60014
{0.000057) | (0.000098) | (0.000165) | (0.000135) | (0.000131)
6:(Adl) | -1.99990 | -2.00003 | -2.00000 | -2.00001 | -1.99992
(0.000045) | (0.000079) | (0.000109) | (0.000096) | (0.000098)
6(Ad1) | 1.59994 1.60008 1.59996 1.60015 1.60002
(0.000070) | (0.000116) | (0.000162) | (0.000141) | (0.000139)
0:(Ad2) | -1.99996 | -1.99966 | -2.00005 | -1.99958 | -1.99956
(0.000044) | (0.000076) | (0.000107) | (0.000096) | (0.000095)
0:(Ad2) | 1.59996 1.59971 1.60028 1.59962 1.59965
(0.000058) | (0.000098) | (0.000134) | (0.000127) { (0.000118)
6L(Ef) | -1.99979 | -2.00005 | -1.99964 | -1.99999 | -2.00008
(0.000058) | (0.000091) | (0.000134) | (0.000111) | (0.000111)
0(Ef) | 1.59993 1.59999 1.59992 | 1.60008 1.60022
(0.000080) | (0.000116) | (0.000186) | (0.000153) | (0.000150)
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The simulation results are presented in Tables 5.1 to 5.5. In each table,
for each bandwith, the average values of estimates from 2500 independent
replications are given for different error densities. The sample mean squared

error of estimates are given in the parantheses.

In Table 5.1 for a, = 0.5, the adaptive estimates with ¢, = co give the
smallest sample mean squared error compared to other estimates when the
error densities are fs, t; and {9 followed by the adaptive estimates with

¢, < oo, the CLS and the efficient estimates.

Table 5.3. Average values of estimates and their sample

meun squared error for a, = 0.7.

Esntlmate MN1 MN 2 fs ir ig
6,(C) -1.99989 -1.99973 -2.00010 -2.00023 -2.00035
(0.000041) | (0.000079) | (0.000122) | (0.000108) | {0.000094)
52(()) 1.59984 1.59969 1.60032 1.60036 1.60057
(0.000052) | (0.000102) | (0.000155) | (0.000137) | (0.000125)
él(Adl) -1.99991 -1.99978 -1.99986 -2.00025 -2.00032
(0.000043) | (0.000080) | (0.000107) | (0.000103) | (0.000091)
52(Ad1) 1.59981 1.59980 1.59972 1.60038 1.60042
(0.000080) | (0.000134} | (0.000177) | (0.000160) | (0.000149)
él(AdZ) -2.00014 -2.00012 -1.99979 -1.99965 -1.99990
(0.000043) | (0.000081) | (0.000108) | (0.000098) | {0.000099)
52(Ad2) 1.60006 1.60021 1.59979 1.59986 1.59987
(0.000055) | (0.000107) | (0.000142) | (0.000126) | (0.000129)
6,(Ef) -1.99998 -1.99969 -2.00012 -2.00012 -2.00033
(0.000061) | (0.000100) | {0.000131) | (0.000124) | (0.000111)
ég(E fl 1.59984 1.59984 1.60044 1.60048 1.60041
(0.000061) | (0.000134) | {0.000183) } (0.000166) | (0.000159)




For mixed normal densities, both adaptive estimates are as good as CLS

for estimating #;, and in general, CLS gives the smallest sample mean

squared error. It seems that, for all densities, the efficient estimate gives

greater sample mean squared error compare with others.

In Table 5.2, for a, = 0.6, the adaptive estimates with ¢, = co give

the smallest sample mean squared error compared to others for all density

error types. The CLS estimate is better than the adaptive estimate with

¢n, < oo for mixture normal densities whereas the latter is better than the

former for t-densities. Once again, the efficient estimates with splitting the

sample performs worse than others.

Table 5.4. Averege valves of estimates and their sample

mean squared ervor for a, = 0.8.

Est.lma.te MNT1 MN 2 is iz io

6,(C) -1.99974 -1.99981 -2.00034 -1.99965 -1.99936
(0.000043) | (0.000078) | (0.000126) | (0.000110) | (0.000102)

92(0) 1.59975 1.59982 1.60035 1.59981 1.59954
(0.000056) | (0.000099) | (0.000161) | (0.000141) | (0.000129)

él(Adl) -1.99970 -1.99979 -2.00017 -1.99951 -1.99948
(0.000046) | {0.000082) | (0.000118) | (0.000107) | (0.000104)

ég(Adl) 1.60003 1.59990 1.60023 1.59935 1.59943
(0.000110} | {0.000153) | (0.000230} | (0.000196) | (0.000186)

él(AdZ) -1.99979 -2.00029 -2.00038 -2.00026 -1.99991
(0.000043) | (0.000083) | (0.000118) | (0.000104) | (0.000095)

0,( Ad2) 1.59983 1.60019 1.60037 1.60031 1.59994
(0.000056) | {0.000105) | (0.000152) | (0.000130) | (0.000124)

gl(Ef) -1.99969 -1.99979 -2.00018 -1.99943 -1.99937
(0.000079) | (0.000114) | (0.000141) | (0.000137) | (0.000130)

8(Ef) 1.59987 1.60001 1.60063 1.59991 1.599381
(0.000113) | (0.000157) | (0.000217) | (0.000190}) | (0.000178)
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Tuble 5.5. Average values of estinates and their sample

mean squared ervor for a, = 0.9.

Esjuma.te MN1 MN 2 s t7 o
6.(C) | -1.99990 | -2.00002 | -1.99987 | -1.99972 | -2.00032
(0.000042) | (0.000078) | (0.000129) | (0.000111) { (0.000094)
6:(C) 1.59999 | 1.60019 | 1.60002 | 1.59987 | 1.60033
(0.000054) | (0.000100) | (0.000163) | (0.000149) | (0.000121)
6:(Ad1) | -1.99996 | -2.00008 | -2.00008 | -1.99966 | -2.00044
(0.000045) | (0.000082) | (0.000144) | (0.000113) | (0.000103)
f,(Adl) | 1.60027 | 1.60007 | 1.60001 | 1.59947 | 1.60058
(0.000141) | (0.600179) | (0.000298) | (0.000237) | (0.006204)
6:(Ad2) | -1.99982 | -1.99995 | -2.00001 | -1.99997 | -1.99990
(0.000045) | (0.000080) | (0.000132) | (0.000106) | (0.000101)
0,(Ad2) | 1.59974 1.60001 1.60020 | 1.59976 | 1.59996
(0.600059) | (0.000103) | (0.000164) | (0.000142) | (0.000127)
6.(Efy | -1.99969 | -1.99992 | -1.99985 | -1.99982 | -2.00034
(0-000103) | (0.000131) | (0.000122) | (0.000152) | (0.000142)
6,(Ef) | 159993 | 1.60012 | 1.60021 1.59991 | 1.60054
(0.000150) | (0.000180) | (0.000245) | (0.000229) | (6.000194)

In Table 5.3 for a, = 0.7, it is shown that when error densities are i
and {7, the best performing estimator, in term of minimum sample mean
squared error, i1s the adaptive estimator with ¢, = oo. For the other

densities, the CLS estimate gives minimum sample mean squared error.

In Table 5.4 for «, = 0.8, the adaptive estimate with ¢, = co give the
smallest sample mean squared error when the error densities are the first

type of mixture normal, #; and f;.

In Table 5.5 for the adaptive estimates with ¢, = oo give

u, = 0.9,

smaller sample mean squared error when the error density is ¢7. For the
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other densities, the CLS estimates perform better than the other estima-

tors.

The simulation study leads to the conclusion that, in general, the adap-
tive estimates with ¢, = co perform slightly better than the CLS for the
t-densities. The CLS estimates, however, performs better for mixture nor-
mals. The efficient estimates with sample splitting exhibit greater sample

mean squared error compared to others.



Chapter 6

»

Summary, Conclusions and

Future Prospects

After seven decades of domination by linear Gaussian models, the time is
certainly ripe for a serious study of ways of removing the many limitations
of these models. Once we decide to incorporate features in addition to the
autocovartances, the class of models would have to be greatly enlarged to in-
clude those besides the Gaussian ARMA models. We may either retain the
general ARMA framework and allow the white noise to be non-Gaussian,

or we may completely abandon the linearity assumption.

We have been witnessing almost an exponential growth in the applications
of nonlinear time series models, ranging from solar sciences to earth sciences,
from biosciences to economics and finances. It can safely be predicted that

this growth will continue for a considerable time to come.

In this thesis, we have principally looked at the estimation of parameters of
a first-order Smooth Threshold Autoregressive model with delay parameter
one either in a parametric or a semiparametric setting. From the paramet-

ric point of view, we considered estimation using both classical {conditional
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least squares, maximum likelihood, M-estimator, estimating function) and
Bayesian approaches. On the other hand, from a semiparametric point of
view, the construction of estimators that are asymptotically efficient in the
presence of infinite dimensional nuisance parameters is presented. In all
our analysis we have considered STAR(1) model. An extension of the work
to the STAR(p) model, where p > 1, can be accomplished by using ideas
developed for STAR(1) model. However, this is a subject for possible future

mnvestigations.

Given in Chapter 2 of this thesis, is a necessary and sufficient condition
for ergodicity of a first-order STAR process with delay parameter one un-
der various assumptions on the tail behaviour of the smoothing distribution
function in the model. The necessary and sufficient condition for recurrence
in terms of the parameters, holds for any smoothing distribution function.
The sufficient condition for ergodicity in terms of the parameters, depends
on the behaviour of the smoothing distribution function. For light-tailed
smoothing distribution functions, the sufficient condition for ergodicity is
within the region, whereas for thick-tailed distribution functions, the suffi-
cient condition is in terms of a larger parameter set. Combination of both
type of smoothing distribution functions resulted in a general ergodicity
region. Based on the results of necessary or sufficient conditions for ergod-
icity, recurrence and transience respectively, we can identify some sufficient
conditions for null recurrence for any smoothing distribution function. In
all these cases the error density function is assumed to be nonnegative in

k.

It will be nice to get necessary and sufficient conditions for recurrence and
ergodicity of the STAR model for any smoothing distribution function G.
In this thesis we answered only a part of this problem. A necessary and
sufficient condition for ergodicity has been proved for SETAR model by
Petrucelli and Woolford (1985}, Also, recently, Chen and Tsay (1991) es-
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tablished a necessary and sufficient condition for geometric ergodicity for
the first-order threshold autoregressive process with general delay parame-
ter d. By following this approach, we believe that it is possible to obtain
a necessary and sufficient condition for ergodicity for the first-order STAR
model with general delay parameter d. Moreover, Chan and Tong (1986)
also presented the sufficient condition for ergodicity of STAR(p) processes
with general delay parameter d without proof in Proposition 2.1(ii) (see
Appendix A). This condition might be weakened and proving the condition

would also be a good future research topic connected to this model.

In Chapter 3, we presented a Bayesian analysis to estimate the parameters
of a STAR(p) model. Posterior distributions for the autoregressive coeffi-
cients, the threshold, smoothing, delay parameters and the error variance
were developed in closed form. The posterior distributions of the intrinsic
parameters (threshold, smoothing and delay) were calculated numerically
and it was sighted as a substantial attraction of the Bayesian approach.
Furthermore, the exact one-step-ahead predictive density was presented
along with the Monte Carlo approach for evaluating the multi-step-ahead
predictive density. Examples based on simulation results and well-known
Canadian lynx data were presented in the last section of this chapter. It
turned out that both the Bayesian approach and the Conditional Least
Squares method give siiilar parameter estimates and produce equally good
predictions. However the Bayesian approach yielded the posterior density

of parameters as an added benefit.

Future work on Bayesian analysis of STAR(p) model could include exten-
sions by varying the autoregressive order p of the processes or by choosing
a different prior distribution such as a proper distribution to express prior
information about the parameters. Also, in our Bayesian study we have
taken ( as the standard normal distribution function. It could be interest-

ing to study the effect of varying G on the Bayes estimates.
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In Chapter 4, we presented the parameter estimation of STAR models us-
ing Conditional Least Squares, Maximum Likelihood, M-estimator and
Estimating Function methods. These estimators can be used as initial es-
timates for obtaining adaptive estimates given in Chapter 5. Under some
conditions, all these methods yielded estimates which are strongly consis-

tent and asymptotically normally distributed.

In Chapter 5, the adaptive estimator for a first-order STAR model with
delay parameter one was presented. The adaptive estimator of this model
only exists for a class of symmetric error densities. The construction of effi-
cient and adaptive estimates were also reviewed in this chapter followed by a
thorough investigation using simulations in the last section. The simulation
results were presented to compare conditional least squares, adaptive and
efficient estimators, employing sample splitting method. The error densities
chosen were mixture normals, ts, #; and ¢9. In most cases, for mixture
normals, conditional least squares estimator outperformed adaptive and ef-
ficient estimators. For (-densities, adaptive estimator outperformed the

others.

In summary we have completed an extensive study of the STAR(1)} model

with respect to aspects of classification and estimation.
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Appendix A
Ergodicity

Suppose {X,} is a Markov chain taking values in some arbitrary measur-
able space (x,F) where F isa o-field on x. Let g denote a fixed
subinvariant measure for {X;}. In most applications of Markov chains, the

state space will be equipped with a topology 7.

Theorem A.1 (Theorem 4.2 of Tweedie (1975)(Sufficient condition for er-
godicity)) Let {X.} be a ¢-irreducible Markov chain on a topological space
(x,7). If P(z,y), the transition function, is strongly continuous, a suf-
ficient condition for {Xi} to be ergodic is the eristence of a compact set

K € 7 oand a non-negative measurable function g on x such that
(%)
[ Pz.dy)oty) < g=) ~1, = ¢ K, (A0.1)
X
(it) and, for some fizted B > 0,
f P(z,dy)g(y) = Mz) < B < 00, z€ K. (A.0.2)
X
Remark A.1 Theorem 9.1 of Tweedie (1976) states that the chain {X,;}

is positive if there exists € > 0, f < co and a status set A for {X;}

such that
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(i)
/xP(x,dy)g(y) <glz)—e z¢A, (A.0.3)

(it} and, for some fired B > 0,

/A _P(z,dy)g(y) <8, z€ A (A.0.4)

Thus condition (i) of Theorem 4.2 of Tweedie (1975) can be weakened for

e >0,

Theorem A.2 (Theorem 4.3 of Tweedie (1975)(Sufficient condition for re-
currence)) Under the same strong continuity condition as in Theorem 4.2,
a sufficient condition for {X,} to be recurrent is the ezistence of a compact .

set K € 7 and a non-negative measurable function g on X such that

(i) [, P(z,dy)g(y) < 9(z), z¢ K;

(ii) g is strictly unbounded, in the sense that there exists, for every

sufficiently large M, o set Ky € 7 with

g(z) > M, z¢ Kn, (A.0.5)

Lemma A.1 (Lemma 2.1 of Chan, et.al. (1985)) Let {P(z,.})} be the
transition law corresponding to the transition density (2.2.1). Then if K
is the set of compact sets in B having positive Lebesgue measure, then

0 < n(K) < 00, VK € K, where 7(.) is a subinvariant measure for

{X:}.

Proposition A.1 (Proposition 2.1 of Chan and Tong (1986))

Consider the STAR model of order p. If either

(i}p=1,d=1 a, <!, a;+ b <1l and a1{a; + &) <1 or

(i) SUPp<g<i (CFoy lai 4+ 0b; [) < 1
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holds, then {X,} as defined for STAR model is ergodic and there is a
unique stationary process satisfying the model. Furthermore, the ezistence

of the sth absolute moment of £, implies that of the stationary distribution.

Theorem A.3 (Theorem 5.5 of Karlin and Taylor (1975)) Let {X,.} be an
ergodic stationary processes having e finite mean m. Then with probability

one,

1 » X
lim —(X; +Xp+ ...+ Xp)=m, or Lin X — m, a.s.
n

n—o0 1}

Theorem A.4 (Theorem 5.6 of Karlin and Taylor (1975)} Let {X,} be

a stetionary process. The following condilions are equivalent:

1. {X,} is ergodic
2. For every k and every function ¢ of (k+ 1)- variadles

- l}j:¢(xj,...,xj+k) = E[¢(Xo,---» X4)]

provided the expectation exists.
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Appendix B

Parametric Estimation

B.1 Conditional Least Squares

Let XV = (X3, Xy, ..., Xn) denote a sampleof NV consecutive observations
from a time series {X;:t € Z}. Assume that XV has a probability
density Pwn(z1,...,zn), which depends on 6 € ©, an open subset of
RP. Suppose that F | X, |[< oo, for{ > 1. We may estimate & by
minimizing the ‘residual sum of squares* {or equivalently the sum of squares

of the innovations)

On(8) = Y [X; — Eo(X; | B;a))? (B.1.1)

=1
with respect to 6, with B, being the c-algebra generated by {X,, 1 <
s <k} and Bg being the trivial o-algebra. The estimate, éN, 1s given

by the solutions of the system of algebraic equations

AQn(9)

Y 0, :=1,..,p, (B.1.2)

where the partial derivatives are assumed to exist. In fact, we assume that
Eq¢(X; | Bj-1) is almost surely twice differentiable with respect to 6 in
some neighbourhood S of 6, the true parameter. We may consider a

Taylor series expansion in a neighbourhood of #; within S. For 4 > 0,
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|| 6 — 8 lj< 8, for some 6,0 <|| 8 — 8" ||[< é ( henceforth, 6* denotes
an appropriate intermediate point not necessarily the same from line to
line). Let DyQn(6:) denote the column vector of first partial derivatives
of On(f) evaluated at 8. Let D?Qn(8*) denote the matrix of second

partial derivatives evaluated at 8* :
1
an(0) = Qn(b) + (60— eo)TDBQN(Go) + 5(9 - 90)TD§QN(‘9*)(‘9 — o)

= Qwl(80) + (8 = 667 De@u{fo) + (8 — 00) Viv(6a)(6 — 80)

+ (0= 6)TTw(07)(0 ~ B), (B.1.3)

where Vi (8,) is the p x p matrix of second partial derivatives of Qn(6)

evaluated at &, and
Tn(8") = DgQN(H*) — Vi (6o). (B.1.4)

Specifically, for 1 <:<p, 1 <7< p,

N
(QIWVN) =2 [j;‘ (ai,-E"(X" | Bk-l)) (;%;Ea(xk | Bk—l))

i1 k=1

- l’—]\F (39?;9_7' Ea( Xk | Bk-l)) (Xe — Eo( Xk | Bk—l))] .(B.1.5)

Theorem B.1 (Theorem 2.1 of Klimko and Nelson(1978)) Assume that

(i) Hmpy oo sups_of[ Tn(6")i; | /N8) <00 as,1<i<p, 1 <5< p;
(i) (2N)'Vy =5 V, where V is a positive definite symmetric p x p

matriz of constants;

(itt) N71DpQn(8s) = 0 component-wise.

Then, there exists « sequence of estimators {fn} such that Oy =5 6o,
and for any € > 0 there erists an event E with P(E)>1—¢ and an
Ny such that on E, for N > Ny, Oy satisfies conditional least squares

equation (4.2.1 ) end Qn attains a relative minimum at éN.
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Theorem B.2 (Theorem 2.2 of Klimko and Nelson(1978)) Suppose that
the conditions of Theorem 4.1 hold and, in addition, %N‘%DgQ(GO) con-
verges to multivariate normal, N(0,W) in distribution as N — oo,
where W isa px p positive definite matriz. Then N%(é;\; — bo) 2,
NO,VTWV™) as N — oo.

Also, under quite mild conditions, for any non-zero vector c© of constants

L r.a _
lim sup Nic (0w 6?) =1, as., (B.1.6)
N—eo (20%Inln N)z

where

o =cTVIWVv-le,

B.2 Maximum likelihood estimators

Theorem B.3 (Theorem 5.1 of Tjgstheim (1986)). Assume that {X,} is
a d- dimensional strictly stetionery and ergodic process with
E{] X; |*) < oo, and that Xzit—1(9) and Zy_1(f) are almost surely
three times continuously differentiable in an open set S containing 6.
Moreover, if ¢(t) is defined by (4.53.1), assume that

(i) E (1 %8(80) |) < o0 and E (| Z42(60) [) <00 fori,j =1,2,....5.

(ii) For arbitrary real numbers a,,...,a; such that, for 8 = by,

e (12 5o )

=1

— _ s o
+ E [I Zf,!tl—/f Zt|t]:(12 Eaiﬁ{veC(Zﬂt_l)} |2} = 0,

i=1
then we have a1 = a3 = ... = a; = 0,
(iii) For § € ©, there exist functions H:jk(Xl,...,Xt) such that

oy

| m(g) |< HP¥, and E(H/*) < o
100
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Jor 1,7,k=1,2,..,5, t=m+1,..,N

Then there exzists a sequence of estimators {6y} minimising Ly of
{4.8.1) such that On =5 6y, and for € >0 there exists an event E with

P(E)>1—¢€ and an ng such that on E, for N > ng, Qn aileins a

relative minimum at Op.

Theorem B.4 (Theorem 5.2 of Tjgstheim (1986)) Assume that the condi-
tions of Theorem 5.1 of Tjotheim (1986) are fulfilled and that, for 8 = &

and 1,5 =1,..,s,

1 1 OZys—1 0241y
Si = 4_E { Z:It—l ( 39; 08; [B{(X: — Xtit—l)4 | Be-1} — 3th’|¢—1]

+ 2E{(X, - Xt]t—1)3 | Bt—-l}Ztlf—l

3X:|:—1 azt[i—l a)?tlt-—l 3Zt]t—1
X ( g6, 86, T 88, 26, < o

Let S =(S;), and let {On) be the estimators obtained in Theorem 5.1 .

(222

Then we have

Sy =~E
i

where

1 X1 0Ky 18241 824,
T _ tle-1 Ht-1 2 tjt—1 tle—1
Ui=£ {Z? (Z"“‘ 30, 00, 2 a6, 6, )} :

tt—1

Furthermore,

NY2 0y — 85) 25 N(0,(U) ™ + (U)Y'S(U) ).

In the case where Zj,_; does not depend on # we have 5§ = 0. In

addition, 1f X, — f(q,_l 1s independent of B;_, then

1 3Xt]t—l axX =1
Ug =F [Er— (Z:“—l 691 3193 )] ’

tfi—1
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and estimation using likelihood penalty function or sum of squares function

essentially gives identical results.

B.3 M-estimators

A class of submodels this chapter shall focus on in some detail is the family

of nonlinear autoregressive models where X,; = X; satisfying
Xi = H(gv Yt"-l) + &, 1= 0, :l:ls :i:27 ) (B37)
where {e;,7 = 1,2,...} are iid. with distribution function F and

h{6,y)= H(8,y).

Fix a # € © and let F; denote the probability distribution of
(Yo,Xn1, .-y Xnn) under (4.4.1) when @ is the true parameter value. Sup-
pose there exists a vector of functions h, from © xR*F to R™ as mentioned

below.

Define
M(t) := 7~ 2 Y hai(£)$(X: — hai(t)), (B.3.8)

i=1

where ¥ is a bounded nondecreasing real valued function on ®. The M-

estimator of # to be considered is
fp 1= argmin I M(t) || .
About & we shall assume the following:
(h1) There exists a vector of functions h, from © x ®* to ®™ such

that hy; := l:ln(t, Y...1) is B,;-measurable, t € ®,1<:<=n, and

satisfies the following : Va >0, £ < o0, s € 9,

hoi(t) — hos(s) — (t — s)Thy,
lim sup Fg sup | Ani(t) = Ani(s) — (t = 5)" hn (s) | >a| =0.
n 1<i<n,||t—s|i<kn=1/2 | t—s ||
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(F) F has a uniformly continuous density f which is positive a.s.

(h2) n713; hm(ﬂ)hﬂ(ﬁ) = T + 0,(1), where Y, is a positive-definite

matrix.

(h3) n™/2max; || hui(6) fi= op(1).

(h4) n~ ' T EF || hai(8 + n~%t) — hu(0) = 0(1), t € ©.

(h5) n~ 2% || hee(@ + n~Y%t) — hoi(8) ||= 0,(1), t € ©.

(h6) For every o >0, thereexistsa § >0 and an N < oo, such that
Py ( sup n~/? z | hai(8 + nY2t) — hp(9 + n %) I< cr) > l—e,

Hit—s|i<é

forall n> N.

As noted in Remark 1.1 of Koul (1996), if the underlying process and % are
such that {h;(8)} does not depend on n and the process is stationary and
ergodic, then the distribution of Y, will depend on # and the following
hold:

(hs1) Eq || hy(8) ||*< oo implies assumptions (h2) and (h3),

(hs2) Ep |} fll(ﬂ + n'”zt) — 1:11(9) I’= o(1), t € © is equivalent to

assumption (h4),

(hs3) n2E, || hy(6+n"12t)—hy(8) ||= O(1), t € © implies assumption
(h3),

where Fy denotes the expectation under the stationary distribution.

To state the result of the asymptotic uniform linearity of the M -scores,

one needs

¥ := {: R — R, nondecreasing right continuous,

[#dF =0, y(oo) ~ w(~o0) <1}
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Theorem B.5 (Theorem 1.1 of Koul (1996)) In «ddition to (4.4.1), as-
sume that (F) and (h1)-(h6) hold. Then, for every 0 < b < oo,

sup
pel leN,

M(8 +n7t) — M(6) ~ ¢ | fdgb” —o(l).  (B39)

Corollary B.1 (Corollary 1.1 of Koul (1996)) In addition to the assump-
tions of Theorem B.5, assume that [ fdip >0 and

(M1) e€M(8 + n~Y?re) is monotonicin r€ R, Vee R™, |e||=1,n>

1,a.s.

Then, Vi € ¥,

Wl - 0) = { [ }:adqb}—l M(8) + 0,(1) (B.3.10)

and

2 (Bpg — 0) ~ No(0, 3 w(, F)) (B.3.11)

where v(p, F) = [ $*dF/(f fdi).

Corollary B.2 (Corollary 1.2 of Koul (1996)) Assume ({.4.1) and (hi}-
(h6) hold. In addition, if (M1) with ¥{z) = sgn(z) holds and if the density
function F has density f in an open neighbourhood of O such that f is
positive and continvous af 0, then nY?(f,4 — 0) -2+ N,(0,551/4f%(0))

where p s the order of the autoregressive model.

B.4 Estimating Equations

Let {X::t€ Z*} be a discrete-time stochastic process taking values in
and defined on a probability space (0, A, F’). We assume that observations
(X1, Xa2,...,X,) are available and that the parameter § € O, a compact
subset of R. Let F be a class of distributions and Bf be the o-field
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generated by X up to time ¢.
Following Godambe {1983), any real function g of the variates X3, X3, ..., X,
and the parameter 8, satisfying certain regularity conditions, is called a

regular unbiased estimating function if,
Erlg(X1, X2, ..., Xn : 0(F))]=0, F € F,

Er denoting the expectation under F.
Let L be the class of estimating functions g of the form

g= i hias

=1

where the function A; is such that E[h, | Bf,] =0, t =1,2,..,n and
a;_y is a function of X3, X5,...,X;_; and @, for ¢ =1,2,...,n
The efficiency in estimating #, through the equation ¢(Xi, Xs,...,Xa) =0,
is defined by A(g, F'), where

{EF (%;—) P

o) = ()

.or, if 8g/08 does not exist,

Mg, F) = lim Er[{g(z,0 +¢) — g(=,0)} /e’ /{Er(s")}-

The estimating function g* € L is said to be most efficient or optimum if

Mg F) =2 Mg, F), F €F,g € L.

Theorem B.6 (Theorem 1 of Godambe (1985)) In the class L of unbiased
estimating functions g, the optimum estimating function g* is the one

which minimizes

E(q?)
(%)

and this is given by
3
E % |BL)]

- _ l * h * — Lo "7l
g Z vua,_, where a;_, E[hf | 33_1]

t=1
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Appendix C
Adaptivity

Remark C.1 The following result can be used to verify the condition (5.5.6)
if no closed forms for Es 40(Xy) is available. Suppose the densities in F

are positive, P(z) =00 as |z |— oo and

[ b+ b, )dlw)dy <€ +(1-20)(z), z€R

for positive constants C and 6. Then for all sufficiently large K,

oni =

Boh(Xo) S 5(C +(1 - 26) sup $(z)). (C.0.1)

Remark C.2 In stationary and ergodic NLAR(1) models one can provide

simple sufficient conditions for Condition 5.2 (Condition 5.1 of Koul and

Schick (1997)). Suppose there is « map 3 such that

Eo(Xo) < 00 and ¥(z) > sup ||R(z,9)||?, =€ R, for some § > 0.
ll9—8]|<s

Then Condition 5.2 (Condition 5.1 of Koul and Schick (1997)) holds. To

see this, fir @ local sequence < 8, > and a sequence < ¢, > tending to

infinity. From ergodic theorem that if {X,} is stationary process then it

is ergodic and implies thet

1

n—=oo 17

> (X5, Xjas) = E [¢(Xo, .oy Xi)]

i=
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" provided the expectalion erxists.
Therefore
. 1 S, .
limsup — >~ [ H;(8)11°1 [l H;(8:)]| > x| < Eoydo(Xo)] [9(Xo) >
1=1

almost surely Py for every c¢> 0.

As lime_eo Eotp(Xo)I [(Xo) > c] =0, we find

1.7 . .
= S IH; @) [ H;(82)]] > ca] = 00().
1=1
This and contiguity argument yield Condition 5.2 (Condition 5.1 of Koul

and Schick (1997)).
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