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Abstract.  We examine evolutionary relationships, hybridization and genetic diversity in species of 

Dacrydium (Podocarpaceae) in Remote Oceania, where it is restricted to New Caledonia and Fiji. We 

use cpDNA sequence (trnL-trnF) data to construct a phylogeny and estimate taxon divergence using a 

relaxed molecular clock approach. The phylogeny is verified using allozymes, which are also used to 

investigate genetic diversity of all species and the hybridization dynamics of two endangered species, D. 

guillauminii and D. nidulum. Our results suggest that Dacrydium species in Remote Oceania form a 

monophyletic group that arose and diversified within the last 20 my through long-distance dispersal and 

a range of speciation mechanisms. While we detect no hybridization between the Fijian species D. 

nausoriense and D. nidulum, we confirm hybridization between D. guillauminii and D. araucarioides in 

New Caledonia and determine introgression to be assymetric from the widespread D. araucarioides into 

the rare, restricted-range species D. guillauminii. In addition, D. guillauminii has lower genetic diversity 

than the other species of Dacrydium studied, which had genetic diversity similar to other gymnosperms. 

Our results provide evidence for the recent and complex diversification of Dacrydium in Remote 

Oceania. In addition, low genetic diversity of and introgression from D. araucarioides, are of grave 

concern for the conservation of D. guillauminii. 
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INTRODUCTION 

Molecular studies have shown that several lineages of gymnosperms (e.g., Araucariaceae -  Setoguchi et 

al. 1998; Pinus - Willyard et al. 2007) and many flowering plants (Rieseberg and Willis 2007) are the 

products of recent radiations. Studying divergence will increase our understanding of the evolutionary 

processes underlying species diversification and the generation of biological diversity. It may also allow 

us to better understand the implications of recent evolutionary history on rare species and design better 

conservation strategies for these species. 

A number of processes can lead to speciation, including changes in gene flow dynamics and 

directional selection (Butlin et al. 2008). Several geographic barriers may reduce gene flow and thereby 

facilitate speciation (Coyne 1992; Pavlacky et al. 2009).  Islands are often separated by large stretches of 

ocean, which restrict gene flow between species on different islands (e.g. Gillespie 2002; Keppel et al. 

2002). Alternatively, divergent natural selection associated with ecological differences between habitats 

may drive phenotypic divergence and speciation under varying levels of gene flow (Rieseberg et al. 

2002; Fitzpatrick et al. 2008b). In addition, sympatric speciation (speciation in the same location with no 

physical barriers to gene flow; Nosil 2008) has been documented (Barluenga et al. 2006; Savolainen et 

al. 2006). Allopatric and sympatric speciation are extremes that occur over a continuum of geographical 

scales, environmental conditions and levels of gene flow, which may vary during different stages of the 

speciation process (Butlin et al. 2008; Fitzpatrick et al. 2008a). 

Hybridization has also played a major role in plant evolution and speciation (Mallet 2007; Rieseberg 

and Willis 2007) and is common in organisms that have recently evolved but come into secondary 

contact (Gow et al. 2006; Seehausen 2006). However, the outcome of hybridization, however, is not 

easily predictable. For example, it can produce novel gene combinations or introgress new adaptive 

variation that can enhance the evolutionary potential of populations (Whitney et al. 2006; Prentis et al. 
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2008). Conversely, hybridization can also drive local species extinction (Wolf et al. 2001; Prentis et al. 

2007), collapsing one or both parental species into a single hybrid swarm (Seehausen et al. 2008). 

The South Pacific harbours several biodiversity hot spots, with high levels of restricted-range and 

endemic species (Myers et al. 2000). A large proportion of this biodiversity is of recent evolutionary 

origin (Grandcolas et al. 2008; Keppel et al. 2009). Evolutionary radiations have made major 

contributions to Pacific diversity and were facilitated through geographical isolation between different 

islands within archipelagos and divergent natural selection associated with ecological differences 

between environments, presumably driving phenotypic divergence and speciation (Baldwin and 

Sanderson 1998; Filardi and Moyle 2005). Considering that in many cases reproductive barriers may be 

ecological rather than genetic, it is not surprising that hybridization often occurs in the Pacific flora 

(Howarth and Baum 2005; Pillon et al. 2009). 

We focus on the genus Dacrydium Sol. ex Lamb. to examine the poorly understood evolutionary 

dynamics of plants in Remote Oceania. Dacrydium is a member of the Southern Hemisphere conifer 

family Podocarpaceae and part of the Dacrydioid clade, which also includes Dacrycarpus de Laub. and 

Falcatifolium de Laub. (Conran et al. 2000; Sinclair et al. 2002). It extends from SE Asia eastward into 

the Southwest Pacific and from southern China to New Zealand (Quinn 1982). Six of the 21 extant 

Dacrydium species (29%) are found in Remote Oceania (Fig. 1), areas north, east or south of the 

Solomon Islands (Matisoo-Smith and Robins 2004), making this region a centre of diversity for the 

genus. Five of the species are endemic to three islands: Grande Terre (New Caledonia), Viti Levu and 

Vanua Levu (both Fiji), meaning that more than a fifth of all Dacrydium species are restricted to some 

32,000 km2 of land in the Pacific Ocean. 

New Caledonia’s main island (Grande Terre), a Gondwanan fragment that was mostly or entirely 

submerged 40 mya (Grandcolas et al. 2008), has four endemic species of Dacrydium occurring in 
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ecologically distinct habitats (de Laubenfels 1972; Jaffré 1995). Dacrydium guillauminii is one of the 

world’s rarest conifers, restricted to nine small gallery forest populations in a single river basin (Fig. 1). 

It is classified as critically endangered (CR B1+2c, C1; Conifer Specialist Group 2000), because 

populations are experiencing a continuing and projected decline in area and quality of habitat and are 

under threat from increasing tourism, potential fires and pollution as a result of upstream mining (Jaffré 

et al. 1998; Oldfield et al. 1998). The other three species are classified as “lower risk” (LR), although D. 

lycopodioides is considered “conservation dependent” (LR/cd), and occur mainly on ultramafic 

former is restricted to moister habitats in the south and the latter occurs in drier habitats throughout the 

island. Dacrydium lycopodioides is found in very moist, high elevation (above 900 m) forests. Recent 

evidence indicates that D. guillauminii is hybridizing with D. araucarioides to form D. × suprinii 

Nimsch. The hybrid has foliage characteristics and seed size intermediate between the two parent 

species and shares the same habitat as D. guillauminii, growing in or near water (Knopf et al. 2007). 

The Fiji archipelago is of mostly volcanic origin, began to form some 40 mya (Yan and Kroenke 

1993) and has two Dacrydium species that differ in adult leaf and pollen cone size (Smith 1979). 

Dacrydium nausoriense is classified as endangered (EN A1cd, B1+2ce, C1; Conifer Specialist Group 

1998) and restricted to two locations in Fiji (Fig. 1), one on each of the two major islands Viti Levu 

(Nausori Highlands; 2 adjacent populations) and Vanua Levu (Sarava; 1 population). The latter 

population is small and was only recently discovered (mid-1990s). None of the populations has formal 

protection and are threatened by anthropogenic subsistence activities and poor regeneration (Oldfield et 

al. 1998). The other species, D. nidulum, is widespread (Malesia to Fiji, Fig. 1) and not considered to be 

of conservation concern. Ash (1986) suggested that D. nausoriense has a well-defined ecological niche, 

mostly occupying re-growth sites in relatively dry locations, and should be considered an ecotype of D. 
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nidulum adapted to drier climatic conditions. However, D. nidulum also occurs in drier climates, 

dominating many forests on the leeward sides of Fiji’s largest islands (Keppel et al. 2006) and thus 

appears to have a broad ecological niche, likely including that of D. nausoriense. The distributions of 

the two species are not known to overlap and no intermediate forms are known (Ash 1986). 

In this paper we use phylogenetic (sequences) and population genetic (allozymes) methods to 

investigate the diversification history and hybridization dynamics of Dacrydium in Remote Oceania. We 

use the resulting data to discuss: 1) the evolutionary history and age of diversification amongst extant 

species (including a discussion of the likelihood of different processes of speciation), 2) the 

distinctiveness of currently recognised species, 3) the incidence, frequency and direction of 

hybridization among sample species pairs, 4) the genetic diversity of various species, and 5) the 

implications of our data for conservation.  

 

 

Materials and methods 

Molecular data 

DNA extraction and sequencing 

We generated plastid trnL-trnF spacer and intron for four species of Dacrydium, 3 species of 

Dacrycarpus and Falcatifolium falciforme de novo using primers ‘C’ and ‘F’ of Taberlet et al. (1991) 

and added published sequences for 5 species of Dacrydium, 2 species of Dacrycarpus and Falcatifolium 

from Genebank (Table 1). These were used to infer phylogenetic relationships amongst Pacific 

Dacrydium, using Dacrycarpus and Falcatifolium as outgroups. DNA was extracted from silica-dried 

leaf material using a DNeasy Plant Minikit (QIAGEN; following manufacturers’ protocols). PCR and 

sequencing reactions used standard conditions (Sinclair et al. 2002), and sequencing of both forward and 
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reverse strands was performed on an AB 3730xl sequencer using fluorescent dye-labelled terminators 

(BigDye v.3.1, Perkin Elmer). 

 

Phylogenetic and Dating Analyses 

Sequence alignment was performed using Clustal W (Thompson et al. 1994) and adjusted manually. 

Phylogenetic analyses were carried out using Bayesian relaxed molecular clock (BRC) implementation 

BEAST v. 1.4.7  of Drummond and Rambaut (2007), which applies a molecular clock to the data and 

simultaneously estimates topology, incorporating uncertainty in branch length estimates and 

relationships amongst sequences. Dacrydium, Dacrycarpus and Falcatifolium have a macrofossil record 

extending back to the Eocene (Hill and Brodribb 1999; Hill and Christophel 2001). However, it is 

unclear whether the oldest of these fossils belong within extant crown groups and under these 

circumstances, the most objective method for fossil placement is to constrain the stem group node 

(Renner 2004). As relationships amongst Dacrydium, Dacrycarpus and Falcatifolium are not well-

resolved (Conran et al. 2000; Sinclair et al. 2002), the age of the root was constrained using a translated 

log-normal prior probability distribution with a mean of 50 million years (my) and a zero off-set of 35 

my. A log-normal calibration prior appears to reasonably reflect potential bias in the fossil record (e.g., 

Sanders and Lee 2007) and, for instance, does not exclude the possibility that the root is substantially 

older than the oldest known fossil. In addition, Pole (1992; 1997) reports vegetative material of 

Dacrycarpus from the Miocene of New Zealand which he considers to be closely related to the extant 

species Dacrycarpus dacrydioides (endemic to New Zealand). This material was used to constrain the 

Dacrycarpus crown group node using a normal prior probability distribution with a mean of 20 my. 

Analyses in BEAST were performed using the above temporal priors, and an uncorrelated log-normal 

distribution of branch rates and a GTR+I+Γ model of sequence evolution were assumed a priori. Five 
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separate analyses were run over 5 million generations (sampling topology and parameter values every 

1000th generation) and after excluding an appropriate burn-in fraction, tree and parameter log files were 

combined and summarised using Tracer v. 1.4 (Rambaut and Drummond 2007) and TreeAnnotator 

v.1.4.7 (Drummond and Rambaut 2007) respectively.  

The maximum likelihood (ML) topology for the trnL-trnF data was estimated in PAUP* 4.0 b.10a 

(Swofford 2002) under a GTR+I+Γ model of sequence evolution using the successive approximations 

approach of Swofford et al. (1996). The estimated model parameter values were fixed and 100 non-

parametic bootstrap replicates were used to estimate the topological uncertainty arising from stochastic 

error in the data. 

 

Starch gel electrophoresis 

Leaf samples were collected from four populations of D. nidulum, three populations of D. nausoriense, 

two populations of D. araucardioides, two populations of D. guillauminii and one each of D. balansae 

and D. lycopodioides (Table 2, Fig. 1) for starch gel electrophoresis. In addition, four hybrids (D. × 

suprinii) were encountered in the field and sampled. Preparation of samples and starch gel 

electrophoresis followed methods described by Conkle et al. (1982) and Keppel et al. (2002). Twelve 

(six polymorphic) presumptive loci of seven enzyme systems were resolved consistently (Table 3). 

POPGENE, version 1.21 (Yeh et al. 1997) was used to calculate the allele frequencies, the mean 

number of alleles per locus (A), the effective number of alleles per locus (AE; Kimura & Crow, 1964), 

percentage of loci polymorphic (P), observed mean heterozygosity (Ho) and the heterozygosity expected 

(He) in Hardy-Weinberg equilibrium (Nei 1973). Gene flow was calculated from the FST estimates using 

Nm = (1/ FST-1)/4 (Wright 1951). TFPGA, version 1.3 (Miller 1998) was used to create an UPGMA 
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dendogram base on pairwise genetic distances (D; Nei 1978) between the populations investigated. 

Bootstrap support was calculated using 1,000 permutations. 

 

Hybridization between species pairs  

To test for recent hybridization between Dacrydium araucarioides and D. guillauminii; and between D. 

nidulum and D. nausoriense we used Newhybrids 1.1 (Anderson and Thompson 2002), a Bayesian 

genetic clustering program, that tests for the presence of individuals displaying hybrid multilocus 

genotypes by sorting individuals into six genetic classes (pure populations P0 and P1, F1 and F2 

hybrids, two backcross classes BC-P0 and BC-P1) and calculating the posterior probabilities of an 

individual belonging to each class. To distinguish between different classes this program requires 

diagnostic alleles. As none of the allozyme loci were fixed between the species pairs, it was not possible 

to distinguish between different hybrid classes. Consequently, posterior probability values were summed 

across hybrid classes for each individual and this value was used to estimate if a genotype was of pure or 

hybrid origin (Vähä and Primmer 2006). We used uniform priors to estimate posterior probabilities from 

the average of five runs of 2 million iterations following a burn-in of 100,000 iterations. The four 

hybrids (D. × suprinii) are used in the D. araucarioides and D. guillauminii data set to confirm the 

hybrid status of these individuals. Principal co-ordinates analysis (PCOA) was used to examine 

clustering of individual D. araucarioides, D. guillauminii and D. × suprinii genotypes from all sampled 

sites using GENALEX (Peakall and Smouse 2006). 
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Results 

Phylogenetic relationships of Dacrydium in Remote Oceania 

The plastid relationships of Dacrydium in Remote Oceania, estimated under ML and the BRC 

implementation BEAST, are shown in Figure 2 and 3, respectively. Topologies are generally congruent 

irrespective of the optimisation criteria used, and nodes that received a high BS percentage (i.e. >75%) 

under ML also had a high posterior probability (PP; i.e. >0.95) of being correct (given the data and the 

model of sequence evolution).  Dacrydium, Dacrycarpus and Falcatifolium each form strongly 

supported clades, although the relationships amongst these are poorly resolved. Within Dacrydium, there 

is weak support for a sister group relationship of D. cupressinum and the remaining included 

representatives, strong support for a relationship between D. elatum and D. pectinatum, and moderate 

(ML BS = 64%) to strong (PP = 1.0) support for the monophyly of Dacrydium in Remote Oceania. 

Amongst taxa in Remote Oceania, D. araucarioides and D. balansae form a well-supported clade, as do 

D. nidulum and D. nausoriense. The former pair are distinguished from each other by a one base 

insertion/deletion (indel) in the trnL intron (position 230 in the aligned sequences), while a 2 base indel 

(positions 232 and 233 in the trnL intron) distinguishes D. nausoriense from D. nidulum. There is at best 

weak support for the monophyly of the New Caledonian Dacrydium (Figs. 2 and 3). 

Figure 3 shows the BRC estimation of lineage diverergence times. Given the poor resolution amongst 

genera, the age of the root (median 52.6 my, 95% highest posterior density (HPD) 43–68 my) estimates 

the timing of the evolution of Dacrydium. The Dacrydium crown group arose an estimated 22 my (95% 

HPD 11–38 my) before present. For the Remote Oceania clade, the timing of lineage diversification is 

estimated at 10 my (95% HPD 4–20 my) before present and within this group, the pairs D. 

nausoriense/D. nidulum and D. araucarioides/D. balansae arose within the last 10 my (Fig. 3).  
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Allozyme data generally concurs with the topologies obtained from plastid DNA sequences (Fig. 4), 

as relationships within Dacrydium are poorly resolved and the close relationships between the species 

pairs D. araucarioides/D. balansae and D. nidulum/D. nausoriense receive moderate to strong support. 

Although D. guillauminii hybridizes with D. araucarioides, the species are genetically distinct and 

appear to be discrete species. All species pairs, except D. nidulum and D. nausoriense, have an average 

genetic distance of 0.075 or higher (Fig. 2). Calculated gene flow between the two Fijian species is 

relatively high (Nm = 2.43) but populations cluster by taxa (Fig. 4). Most of the differentiation between 

the species results from the ACO 1 locus (Nm = 1.10 for this locus), with allele 1 being the most 

common in populations of D. nidulum and allele 2 being most common in D. nausoriense (Fig. 5). 

 

Hybridization between species pairs  

Allozyme data support the hybrid nature of the four D. × suprinii samples in PCOA and hybrid-class 

assignment analysis using Newhybrids 1.1. Individual genotypes clustered largely according to species 

based on PCOA (Fig. 6a), where the first two axes account for 82% of the total variation, with the 

species-differentiating axis 1 explaining > 69% of the total variation. Dacrydium × suprinii individuals 

were intermediately distributed between the two species, as were some D. guillauminii genotypes. 

Newhybrids 1.1 did not detect any hybrids between D. nidulum and D. nausoriense, but 6.25 % of the 

genotypes were identified as hybrids between D. araucarioides and D. guillauminii. Based on posterior 

probabilities of > 0.9 all D. nidulum and D. nausoriense individuals were strongly allocated to pure 

populations. Hybridization between D. araucarioides and D. guillauminii was asymmetric, as no hybrid 

genotypes could be attributed to D. araucarioides individuals, but 12.5 % of D. guillauminii individuals 

exhibited hybrid genotypes (Fig. 6b). All except one D. araucarioides individual could be attributed to 

pure populations (posterior probabilities > 0.9), but the unassigned individual still had a high probability 



Keppel et al., 12 

  12

(> 0.7) of being pure D. araucarioides. All non-hybrid D. guillauminii individuals were assigned to a 

pure population with a high probability (> 0.9). The four D. × suprinii individuals were all found to be 

of hybrid origin with a strong posterior probability (> 0.75). 

 

Genetic diversity 

The number of effective alleles (NE) ranged from 1.16 to 1.28 (Table 4), with the exception of D. 

guillauminii (NE = 1.08), which also had the lowest observed heterozygosity (Ho = 0.038). D. 

araucarioides also had a relatively low observed heterozygosity (Ho = 0.075), which ranged between 

0.117 and 0.182 for the other species analysed here. D. guillauminii, therefore had low genetic diversity, 

a phenomenon that was more pronounced in the lake population than in the river population (NE = 1.05 

vs. 1.16; Ho = 0.006 vs. 0.096). The other rare species, D. nausoriense exhibited levels of genetic 

diversity similar to the other species studied (NE = 1.28; Ho = 0.138). 

 

 

Discussion 

Diversification history of Dacrydium in Remote Oceania 

The present distribution of Dacrydium in Remote Oceania is the result of a complex interplay of 

speciation, dispersal and extinction. D. cupressinum is sister to the other sampled Dacrydium, which 

appears to support the importance of New Zealand as a source area of biota in Remote Oceania (Wright 

et al. 2000; Knapp et al. 2007; but see Biffin et al. in press). However, interpretation of a colonization 

sequence is extremely difficult, as many relationships are poorly supported by the molecular data and 

taxon sampling was not exhaustive. The latter also precludes the assessment of phylogenetic 

relationships within the genus as a whole. In addition, Dacrydium occurred in Australia into the 
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Pleistocene, but is presently absent (Hill and Christophel 2001). These extinction events likely impact 

the interpretation of our trnL-trnF topologies and can lead to false conclusions (Hill 2001; Crisp and 

Cook 2005). 

Considering that the Remote Oceania lineage evolved only about 20 mya, long-distance dispersal 

events likely played a pivotal role in facilitating the present distribution of Dacrydium, as has been 

shown in many other groups in the Pacific (Sanmartín et al. 2007; Keppel et al. 2009; Baldwin and 

Wagner 2010). This includes several gymnosperm lineages (e.g., Setoguchi et al. 1998; Keppel et al. 

2008) that arose prior to the fragmentation of the southern super-continent Gondwana. Recent dispersal 

between Fiji and New Caledonia is also supported by the estimated divergence dates in this study, which 

place the split between the Fijian and New Caledonian species at approximately 10 mya (median; 95% 

HPD 20–5 mya). 

It is increasingly being recognized that the high diversity and endemism of the New Caledonian 

(Lowry II 1998) flora has complex origins. Presence of a great variety of soil types (de Kok 2002), 

complex topography (Murienne et al. 2008), climatic changes (Pintaud et al. 2001; Murienne et al. 

2008) and hybridization (Pillon et al. 2009) have all been implicated in various groups. The distinct 

ecological niches (gallery forest, moist climate ultramafics, dry climate ultramafics and high elevation 

ultramafics) and high genetic differentiation between the New Caledonian Dacrydium species suggest 

allopatric ecological divergence to have been an important force during speciation. Hybridization 

between D. guillauminii and D. araucarioides, which are not sister taxa, provides additional support for 

ecological divergence in allopatry because it suggests weak reproductive isolation. 

Although D. nausoriense and D. nidulum are seemingly sister species, the processes leading to 

speciation in Fiji are less clear. Recent divergence, wind pollination (gene flow can occur over long 

distances) and close proximity of populations (within 20 km), suggest that reproductive isolation may 
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have evolved in the presence of gene flow (Bolnick and Fitzpatrick 2007). In addition, the species 

occupy similar ecological niches and do not appear to hybridize, despite low genetic differentiation, 

fulfilling the expectations of strong reproductive isolation arising in sympatric conditions (Seehausen 

and van Alphen 1999; Rundle et al. 2000). However, the Fiji archipelago is composed of numerous 

islands and has a complex geological and tectonic history (Yan and Kroenke 1993), leading to numerous 

plausible speciation scenarios. 

 

Hybridization between species pairs 

Hybridization between D. araucarioides and D. guillauminii occurs in the wild, which is also the case in 

some other plant species in secondary contact (Rieseberg and Wendel 1993). However our results 

indicate that hybridization between this species pair is asymmetric; from the common D. araucarioides 

into the critically endangered D. guillauminii. Asymmetric introgression has been reported for a range of 

hybrid zones (Rieseberg and Wendel 1993). Our results are probably an underestimate of the actual level 

of introgression into D. guillauminii, as the four D. × suprinii individuals were all found within or very 

near to D. guillauminii habitat. There appears to be no hybridization between D. nidulum and D. 

nausoriense, and the two species are genetically divergent. However, more extensive sampling should 

be conducted to confirm the absence of hybrids at earlier life-history stages. 

 

Distinctiveness of recognised species 

Although species of Dacrydium in Remote Oceania are closely related, they are distinct taxonomic units. 

Dacrydium guillauminii and D. araucarioides hybridize but are not sister species and are strongly 

differentiated (FST = 0.575). Despite the close relationship between D. nidulum and D. nausoriense (low 

genetic distances, high gene flow (Nm = 2.43)), the two species are clearly genetically divergent and 
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should be treated as distinct taxonomic units and not ecotypes (cf. Ash 1986). Differentiation in allele 

frequencies at the ACO 1 locus suggests that the high indirect measure of gene flow between the two 

species may be an artefact of recent divergence. At which taxonomic level D. nausoriense should be 

recognized, however, remains an unanswered question that requires more detailed genetic and ecological 

data. 

 

Genetic diversity 

Dacrydium lycopodioides, which had a small sample size, and the rare D. guillauminii had considerably 

lower genetic diversity than the other species studied. Excluding these two species, estimates of genetic 

diversity are similar to average values reported more broadly for gymnosperms (cf. Hamrick and Godt 

1989). This suggests that most conifers found on the islands of New Caledonia and Fiji.are likely to 

have genetic diversities similar to mainland conifer species. 

 

Conservation of Rare Species 

Low genetic diversity and asymmetric hybridization potentially pose serious threats to the survival of D. 

guillauminii, as rare plant species of recent evolutionary origin are most vulnerable to the effects of 

introgressive hybridization (Levin et al. 1996; Seehausen 2006). Hybridization is of even greater 

concern, if reproductive barriers between species are weak and the species exist as small isolated 

populations (Levin et al. 1996), as is the case for D. guillauminii. In fact, introgressive hybridization has 

been implicated in the extinction and decline of some rare plant species (Wolf et al. 2001), including 

Argyranthemum coronopifolium (Willd.) Humphries and Cercocarpus traskiae Eastw. (Brochmann 

1984; Rieseberg and Gerber 1995).  Consequently, detailed studies are needed to determine the precise 

nature and impact of hybridization on the genomic composition and morphology of D. guillauminii. 
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 In addition, Dacrydium guillauminii has much lower genetic diversity (A = 1.55, He = 0.059) than its 

congeners, a phenomenon regularly observed in rare species (Spielman et al. 2004). Lower genetic 

diversity appears to compromise evolutionary potential and reproductive fitness, resulting in a higher 

extinction risk (Reed and Frankham 2003; Spielman et al. 2004). The low heterozygosity implies an 

excess of homozygotes (FIS = 0.165) and could be the result of inbreeding, bottlenecks and/or asexual 

reproduction in the remnant population, with the former potentially raising further conservation 

concerns (Keller and Waller 2002). 

In comparison to D. guillauminii, the high genetic diversity in most D. nausoriense populations bodes 

well for the survival of this endangered Fijian species. In fact, genetic diversity in most populations is 

similar to or higher than in its widespread cogeners, indicating that D. nausoriense should have 

sufficient genetic diversity to respond to changes in environmental conditions. The small Savara 

population, which has low genetic variation, should be given highest conservation priority. In addition, 

D. nausoriense does not appear to hybridize with the other Fijian species, D. nidulum, although 

populations often occur within about 30 km of each other.  
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Table 1. Genbank numbers and vouchers (in brackets). 

 

Taxon       Genbank accession (voucher) 

Dacrycarpus compactus (Wassch.) de Laub.  AY083139.1/AY083095.1 

Dacrycarpus dacrydioides (A.Rich.) de Laub. (RBGSyd living collections/cult) 

Dacrycarpus imbricatus (Blume) de Laub.  AY083140.1/AY083096.1 

Dacrycarpus imbricatus var. patulus de Laub. AY013727.1 

Dacrycarpus veillardii (Parl.)    (M.Doyle s.n. New Caledonia) 

Dacrydium araucarioides Brongn. & Gris  AY083138.1/AY083094.1 

Dacrydium balansae Brongn. & Gris   AY083137.1/AY083093.1 

Dacrydium cupressinum Sol. ex Lamb.  AY083136.1/AY083092.1 

Dacrydium elatum (Roxb.) Wall. ex Hook.  AJ441090.1 

Dacrydium guillauminii J.Buchholz   (M.Doyle s.n. New Caledonia) 

Dacrydium lycopodioides Brongn. & Gris  (M.Doyle s.n. New Caledonia) 

Dacrydium nausoriense de Laub.   (SBG A883952/cult.) 

Dacrydium nidulum de Laub.    (GK304/SUVA) 

Dacrydium pectinatum de Laub.   AY534797.1 

Falcatifolium falciforme (Parl.) de Laub.  (J. Conran s.n./cult.) 

Falcatifolium gruezoi de Laub.   AY083144.1/ AY083100.1 

Falcatifolium taxoides (Brongn. & Gris.) de Laub. AY083143.1/ AY083099.1 
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Table 2. Locations of Dacrydium study populations in Remote Oceania. 

 

Species Population 

Name 

Location Altitude 

(m) 

Longitude/ 

Latitude 

D. nidulum Korobaba Mt. Korobaba & Mt. Kobalevu, 

Naitasiri Province, Viti Levu 
360 

18°04’40 S 

178°22’57 E

D. nidulum Waisoi Waisoi, Namosi Province, Viti 

Levu 
400 

18°00’00 S 

178°08’25 E

D. nidulum Kasi Mt. Kasi, Cakaudrove Province, 

Vanua Levu 
310 

16°46’20 S 

179°01’40 E

D. nidulum Namosi Near Namosi Village, Namosi 

Province, Viti Levu 
530 

18°00’45 S 

178°07’42 E

D. nausoriense Nausori 1 Population 1, Nausori Highlands, 

540 

17°47’14 S 

177°50’11 E

D. nausoriense Nausori 2 Population 2, Nausori Highlands 

540 

17°46’41 S 

177°49’10 E

D. nausoriense Sarava Sarava 270 16°29’43 S 
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179°27’51 E

D. araucarioides Plain Includes the lower lying 

populations on Plaines des Lacs 

and near Lac de Yaté 

170-250 

22°16’13 S 

166°54’20 E

D. araucarioides Hills Includes the populations  in hills 

west of Lac de Yaté 
300-400 

22°07’23 S 

166°38’38 E

D. balansae  Around Mt. Dzumac 

500-1,100 

21°59’21 S 

166°31’54 E

D. guillauminii Grand Around Grand Lac 

235 

22°15’40 S 

166°54’31 E

D. guillauminii Huít Around Lac en Huít and Chute de 

la Madeleine 
350 

22°16’04 S 

166°53’40 E

D. lycopodioides  Around Mt. Dzumac 

700 

22°01’37 S 

166°29’27 E

D. × suprinii  Around Grand Lac and Chute de la 

Madeleine 
230-260 

22°13’45 S 

166°51’17 E
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Table 3. Polymorphic enzyme systems consistently resolved in this study. Nomenclature and abbreviations follow 

Murphy et al. 1996, based on IUBNC. E.C. No. = Enzyme Commission number. 

 

Enzyme Locus Abbreviation E.C. No. Buffer* 

Aspartate aminotransferase AAT-1 2.6.1.1 B 

Aconitate hydratase ACO-1 4.2.1.3 D 

Glucose-6-phosphate dehydrogenase G6PDH-1, -2 1.1.1.49 B 

Glucose-phosphate isomerase GPI-1 5.3.1.9 A 

Isocitrate dehydrogenase IDH-1 1.1.1.42 D 

Malate dehydrogenase MDH-2 1.1.1.37 D 

* = A, B, D refer to buffers A (tris citrate/ lithium borate), B (citrate/ sodium borate) and a pH 8 version 

of buffer D (morpholine citrate) of Conkle et al. 1982. 
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Table 4. Genetic diversity parameters in Dacrydium study populations of Remote Oceania (standard deviation in 

parentheses). x = mean sample size per locus, A = mean number of alleles per locus, NE = number of effective 

alleles per locus, P = percentage of loci polymorphic, Ho = mean observed heterozygosity, He = expected 

heterozygosity (Nei 1973). Total values for each species (including all populations sampled) are in bold. 

 

Population X A NE P Ho He 

D. nidulum (Korobaba) 67 1.64 (1.03) 1.14 (0.25) 36.4 0.083 (0.138) 0.092 (0.157)

D. nidulum (Waisoi) 36 1.55 (0.69) 1.12 (0.29) 45.5 0.071 (0.132) 0.074 (0.146)

D. nidulum (Kasi) 36 1.36 (0.81) 1.13 (0.30) 18.2 0.091 (0.204) 0.075 (0.168)

D. nidulum (Namosi) 71 1.82 (1.17) 1.30 (0.47) 45.5 0.191 (0.284) 0.160 (0.230)

D. nidulum 212 2.18 (1.33) 1.18 (0.29) 54.6 0.117 (0.163) 0.117 (0.168)

D. nausoriense (Nausori 1) 66 1.82 (1.08) 1.64 (1.03) 45.5 0.154 (0.253) 0.140 (0.229)

D. nausoriense (Nausori 2) 48 1.64 (1.03) 1.32 (0.64) 36.4 0.121 (0.206) 0.137 (0.240)

D. nausoriense (Sarava) 14 1.18 (0.41) 1.11 (0.27) 18.2 0.091 (0.224) 0.064 (0.150)
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D. nausoriense 128 1.82 (1.08) 1.28 (0.49) 45.5 0.138 (0.230) 0.137 (0.228)

D. araucarioides (Plain) 52 1.82 (1.17) 1.16 (0.29) 36.4 0.093 (0.152) 0.099 (0.163)

D. araucarioides (Hills) 46 1.55 (0.93) 1.18 (0.33) 36.4 0.056 (0.096) 0.104 (0.179)

D. araucarioides 97 1.91 (1.38) 1.16 (0.27) 36.4 0.075 (0.125) 0.106 (0.166)

D. balansae 18 1.55 (0.82) 1.35 (0.59) 36.4 0.182 (0.282) 0.164 (0.249)

D. guillauminii (Grand) 36 1.55 (0.93) 1.16 (0.47) 36.4 0.096 (0.262) 0.071 (0.181)

D. guillauminii (Huít) 64 1.36 (0.51) 1.05 (0.14) 36.4 0.006 (0.013) 0.040 (0.093)

D. guillauminii 99 1.55 (0.93) 1.08 (0.16) 36.4 0.038 (0.099) 0.059 (0.111)

D. lycopodioides 12 1.82 (0.41) 1.16 (0.37) 18.2 0.152 (0.345) 0.086 (0.191)

TOTAL 566 2.73 (1.74) 1.35 (0.44) 54.6 0.103 (0.118) 0.200 (0.217)
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Fig. 1. Distribution of Dacrydium. Insert shows the populations of D. araucarioides (black-shaded circles), D. 

guillauminii (non-shaded circles and corresponding to entire range of the species) and their hybrid D. × suprinii 

(grey-shaded circles). * = also found in the Moluccas, west of New Guinea. 



Keppel et al., 34 

  34

Fig. 2. Maximum likelihood topology for Dacrydium in Remote Oceania and outgroups inferred from 

trnL-trnF intron and spacer sequences using a GTR+I+Γ model of sequence evolution. Numbers below 

the branches are bootstrap proportions based upon 100 non-parametric bootstrap pseudoreplicates. 

Branches are proportional to the number of changes. 
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Fig. 3. Maximum clade credibility topology for Remote Oceania Dacrydium and outgroups inferred 

using Bayesian relaxed clock methods. Potserior probability values, estimated from 25000 sampled 

topologies are indicated above the branch. Grey bars indicate the 95% highest posterior density 

divergence time estimates for the corresponding node. Branch lengths are proportional to time (millions 

of years). 
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Fig. 4. UPGMA tree showing relationships among Dacrydium populations in Remote Oceania based on 

Nei’s (1978) genetic distances of allozyme data. Percentage values indicate bootstrap values for the 

different nodes. 
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Fig. 5. Map of Fiji showing the location of Dacrydium study populations and pie charts showing the percentage distribution of alleles for the 

ACO-1 locus. The pie charts in boxes are of Dacrydium nausoriense, the unboxed ones of Dacrydium nidulum. Black areas of pie charts 

correspond to the percentage of allele 1, striped areas to the percentage of allele 2 and the non-shaded areas the combined percentage for 

alleles 3 and 4. 
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Fig. 6. Plots showing the direction of hybridization between Dacrydium araucarioides (n = 49) and D. 

guillauminii (n = 50), and their relationship to the their supposed hybrid D. x suprinii (x = 4). a) 

principal co-ordinates analysis depicting clustering of D. araucarioides, D. guillauminii and D. x 

suprinii individuals collected and analysed with allozymes, b) percentage of pure and hybrid individuals 

identified as D. araucarioides (Da), D. guillauminii (Dg) or D. x suprinii plants in the field. 

 

 

 


