School of Electrical and Computer Engineering

Signal Compression for Digital Television

by

Mr. Huy So Truong

This thesis is presented as part of the requirements for
the award of the Degree of Master of Engineering
of

Curtin University of Technology

April, 99

PROJECT DOCUMENTATION SHEET
TITLE

Signal Compression for oz cURLIN

Digital Television e
AUTHOR
Huy So Truong

DATE SUPERVISOR

April 18, 1999 Dr. Stephen C. Y. Ho
DEGREE OPTION

Master of Engineering Electrical

ABSTRACT

Still image and image sequence compression plays an important role in digital television.
For still image compression, Block Adaptive Classified Vector Quantisation (BACVQ)
algorithm has been developed which combines variable block size coding and CVQ.
Segmentation and classification decisions are made based on spatial and temporal domain
criteria. For image sequence compression, an adaptive coding technique has been
developed which divides an image sequence into groups of pictures using adaptive scene
scgmentation before BACVQ and variable block size motion compensated predictive
coding techniques are applied. Both compression techniques have demonstrated good
performance with high compression gain and reconstruction quality.

A small scale parallel DSP system has been constructed with a 486DX33 IBM/PC serving
as a master processor and two DSP (PC-32) cards as parallel processors. Dualport
memory has been used to provide high speed interconnection and its access is arbitrated
by hardware semaphore and mailbox messaging. The host PC shall dynamically distribute
processing tasks to idle PC-32 cards for parallel processing. Optimal parallel operation
has been achieved during 4x4 CV(Q processing, variable block size motion compensation
and residual frame processing.

INDEXING TERMS
Block Adaptive Classified VQ, intraframe coding, interframe coding, motion
compensated predictive coding, variable block size motion estimation, progressive
motion estimation, adaptive scene segmentation, quadtree segmentation, parallel
still image compression, parallel i1mage sequence compression, statistical
redundancy, spatial and temporal redundancy.

GOOD AVERAGE FPOOR

TECHNICAL WQRK

REPORT PRESENTATION

EXAMINER CO-EXAMINER

Mr. Huy So Truong

18 April, 1999

Prof. T. Smith

Dean of Engineering

Curtin University of Technology
Kent Street,

Bentley, W.A. 6120

Dear Sir,

Please accept this thesis, entitled “Signal Compression for Digital Television™, as
part of the requirements for the Degree of Master of Engineering (Electrical

Engineering).

Yours faithfully,

v

Mr. Huy So Truong

Synopsis

Still image and image sequence compression plays an important role in the
development of digital television. Although various still image and image sequence
compression algorithms have already been developed, it is very difficult for them to
achieve both compression performance and coding efficiency simultaneously due to
the complexity of the compression process itself. As a results, improvements in the
forms of hybrid coding, coding procedure refinement, new algortthms and even new

coding concepts have been constantly tried, some offering very encouraging results.

In this thesis, Block Adaptive Classified Vector Quantisation (BACV(Q) has been
developed as an alternative algorithm for still image compression. It is found that
BACVQ achieves good compression performance and coding efficiency by
combining variable block-size coding and classified VQ. Its performance is further
enhanced by adopting both spatial and transform domain criteria for the image block
segmentation and classification process. Alternative algorithms have also been
developed to accelerate normal codebook secarching operation and to determine the

optimal sizes of classified VQ sub-codebooks.

For image sequence compression, an adaptive spatial/temporal compression
algorithm has been developed which divides an image sequence into smaller groups
of pictures (GOP) using adaptive scene segmentation before BACVQ and variable
block-size motion compensated predictive coding are applied to the intraframe and
interframe coding processes. It is found the application of the proposed adaptive
scene segmentation algorithm, an alternative motion estimation strategy and a new
progressive motion estimation aigorithm enables the performance and efficiency of

the compression process to be improved even further.

Apart from improving still image and image sequence compression algorithms, the
application of parallel processing to image sequence compression is also
investigated. Parallel image compression offers a more effective approach than the

sequential counterparts to accelerate the compression process and bring it closer to

real-time operation. In this study, a small scale parallel digital signal processing
platform has been constructed for supporting parallel image sequence compression
operation. It consists of a 486DX33 IBM/PC serving as a master processor and (two
DSP (PC-32) cards as parallel processors. Because of the independent processing and
spatial arrangement natures of most image processing operations, an effective
parallel image sequence compression algorithm has been developed on the proposed
parallel processing platform to significantly reduce the processing time of the

proposed parallel image compression algorithms.

i1

Acknowledgments

T would like to acknowledge the support and encouragement of my supervisor, Dr.
Stephen C. Y. Ho. His expertise in the area of digital signal processing and image
processing has provided me a significant insight into many issues encountered
throughout the course of my study. I am also grateful for his endorsement and
arrangement for me to obtain financial assistance from Australian Postgraduate
Award scholarship and funding for acquiring parallel DSP hardware from Curtin

University; without which my Master study would not be possible.

I would like to acknowledge financial supports from my School for me to attend
several International Conferences. Staff members at my School have also offered
valuable assistance throughout the course of my study. In particular, I would like to

thank Mrs Ingrid Hastie and Mrs. Susan Summers for their administrative work.

Special thanks to Dr. Kheong Chee with whom I have had so many exiting and
enjoyable discussions on various topics of image compression due to his enthusiasm
and expertise in the field. I am also grateful for his valuable advice on how to
organising research materials and his assistance in utilising HP workstations in the

Image Technology lab for conducting my research activities.

Finally, T would like to thank Mr. Sarfraz Khokhar and Mr Yukihiro Nakazato for
their friendship and interest in my work. I would also like to thank all of my family
members. Without their continuing supports and encouragement, my Master study

would have been very difficult.

111

Table of Contents

S YTIOPSIS .. v euveeraneeeeeseeieereesesrereeere e eaanetasssansesre e s snta s s e s e b e a e 1
ACKNOWIEAZMENES ..ottt 111
Table Of COMIENTS c.uviiireiiieee et sa s e b e s v
LiSt Of FIZUIES.....oviioieieie et et viil
LiSt OF TabIES ...oicvveieeiieeeieeeee et s s aa e s X
List 0f ADDreviations....oocceeceireeeiiieiiiree e e e Xi
Chapter 1: INroduction ... 1
1.1 Introduction..........; ... 1
1.2 The growing importance of digital technologyccocooiiviinn i, 2
1.3 The importance of digital image COMPIESSIONvoveiviememionreier it 4
1.4 Thesis CONITBUEIONSeovieeeiireecririers e ses st n et et 5
1.5 TheSIS OTZANISATION. 1ve.verrreeceetireaerirtcerirneecresmresesassrssaarsrssn e metseae s n s sm et e saeace s 6
Chapter 2: Still Image COmMPIeSSIONcccuvrieriiriiiiieie s 9
2.0 INETOAUCTION ..ottt ettt et st b e e e e b e s e s n et 9
2.2 Transform COAINEvururirie ettt e 12
2.2.1 Discrete Fourier transform (DFT) . 17
2.2.2 Discrete Hartley transform (DHT): ..o 7
2.2.3 Karhunen-Loeve transform (KLT): ... 17
2.2.4 Discrete Cosine transform (DCT): i 18
2.3 Subband and wavelet COAIMIE .. .eviriviri e 19
2.4 VeCtor qUANTISAION ...ccovivveecerrier et oo e et e s 24
2] OVBIVIBW oo tee e e e 24
2.4.2 Vector qUARTISAIIONc.c.ccoiiiviiiii it 27
2.4.3 Shannon’s rate-distorfion tREOFEML..........cc.ccoiiii i e 29
2.4.4 Optimality conditions for vector QUARLISATIONc.c..ocoeeiiivviies e 31
2.4.5 Nearest Neighbour QUantiSQlion.ciiniiinnnniinniise e 32
2.4.6 Structurally constrained vector quantiSers ... 33
2.4.7 Fast nearest neighbour encoding techniques.......................oo e s 42
2.4.8 Vector quantisation codebook generation......................ccooiiin 46
2.4.9 Generalised Lioyd al@Oovithim..........ccccoooeiiiioiii e 49

iv

2.5 Proposed block adaptive classified vector quantisation...........cceeiiciiiiiininn 52

2.5.1 Variable block-size coding with adaptive block segmeniation 52
2.5.2 Classifled V0o vttt st 55
2.5.3 Image sub-block classification ...t 56
2.5.4 BACVQ Codebook design...........c.cocoiiiiiiiii e 60
255 Bit QUIOCALIONc.ooiiiveieteee e e ere e 64
2.5.6 Simulation results .. 65
2.6 Huffian coding and arithmetic coding........ccoveiviiiininicciie 71
2.7 SUITIMIALY ©evvieeeeveetcrr e reenee ot b st e eae e me s eae g ne s s ea st e shs et 72
Chapter 3: Image Sequence COMPIESSIONcvrreruerveiiseneienneesninenees 76
3.1 INTOQUCTION .coee ittt e ea e e b sen et 76
3.2 Human Visual SYSLEIM. ... oot 82
3.3 SCENE SEZMENMIATION ..uvvoeeuiriecereceie ettt ee st esn sttt nre e en 84
3.4 Motion compensated COTINEooovuiiimiiiriniirin i e 87
3.4.1 Motion compensated predictive COAIRG. ... 87
3.4.2 Motion compensated interpolative codingocovv oot 92
3.4.3 Motion eSHMQUION SIFQIEZYccco.ooiii ittt s 94
3.5 Adaptive coding teChNIQUES ...t 100
3.6 Basic coding structures of MPEG ... 103
3.7 Proposed adaptive image sequence compression algorithm ... 104
3.7.1 Adaptive scene SEGMERLALION.cocvvvi et e 104
3.7.2 Variable block-size motion cOMPensation.................ccc..cooviininniiine e enen, 108
3.7.3 Progressive motion Yeclor eStImMAiONcc....oocvveeiiienniinnn e e, 110
3.7.4 Block adaptive classified vector quantisation (BACVQ) ..o, 113
375 SImudation veSulls .o e 116
TR T H U1 011 1Y: o O OO TP PIU YOV PIPTOTPPPPTPPRPRPRR 120
Chapter 4: Parallel ProcesSINgcccvvvveniimimmniiiniecin st 132
4.1 INIFOAUCTION ..ttt ettt e 132
4.2 Parallel processing architeCtUres ... 136
4.2.1 Single instruction stream-single data stream (SISD) ... 136
4.2.2 Single instruction stream-multiple data stream (SIMD) ... 137
4.2.3 Multiple-instruction stream-Single data stream (MISD) ... 138
4.2.4 Multiple-instruction stream-Multiple data stream (MIMD) ... 139

4.3 Connectivity in parallel processing SySteNSccovvvveivreeeesisiinieenereee e 141

4.4 Processing SyNChIONMISAIONvccvivueeiereeieie it isin it 142
4.4.1 Synchronisation in Shared-memory ProCeSSINGc...ooooiviiiniini 142
4.4.2 Synchronisation in message passing compulation............c...co.oveiieins o 145

4.5 Partitioning and scheduling..........ccomeiiiiiii e 146

4.6 Processing PerfOItnance ..ot 147

4.7 Parallel processing system design ISSUEScooiveeivsiimnrinsieineinse s 150
4.7.1 Message-passing MIMD. ... 150
4.7.2 Shared-memory MIMD.............cc.ccc i 152

B8 SUITIINIALY ©1veeeeeeettaeeeitreeeteentensers s enseesreests s et e sn s e eee e s e be e baess s s s e an s e ran e sueascaan e 153

Chapter 5: Parallel Image Sequence Compression.........oceeveivieiininnnenn 156

5.1 INtrOTQUCHON ..ottt e eoee s b et b e e s e 156

5.2 Parallel digital signal processing platforms ..o 158
T 2.0 VI VIBW oottt e e e 158
3.2.2 Texas Instruments TMS320C80 MVP DSP systemcoov v, 161
5.2.3 Sonitech SPIRIT-40 SPSEEM ...c...cciiiiiiie ettt 163
5.2.4 Atlanta Signal Processors ELP DSP platfornn.............c.ociiiiiiieniiincn, 163
3.2.5 Innovative Integration PC32 DSP 5ystem. ..o 164
3.2.6 Other parallel DSP SYSIEIIS ..c..ccoiv v e 163

5.3 Hardware configuration of the prototype parallel DSP platform..........ccoeeeee. 165

5.4 Basic operations of the prototype parallel DSP platform............cocoooiiiin, 169

5.5 Dualport MemOTY OPETALIONcvvviereiiiearirrearieeeoe et eib b ese et e 171

5.6 SeMAPhOTe OPEIALION.......ooeeriereieciaicieicit e e e e s 175

5.7 Parallel processing algorithm and experimental results...............ccoiiennn 177
3.7.1 Parallel HOD COMPUIRTIONcoc..coviiioiiaitiecie et e s 177
3.7.2 Parallel siill image COMPreSSIONco..ccoiiciii it ieceieceii st e 182
5.7.3 Parallel image sequence cOMPIression ..ot 187

5.8 SUMIMATY ..oomiiiieeeiieee e ees e bbb s e e s e sne s 201

Chapter 6: Conclusions and Recommendationscccecvvvieivicnnnnn. 206

6.1 BACVQ AlZOTIthIN .ociiiiiiiiiiiin e ettt sb e 206
6.1.1 AIGOFItRmM OVEFVIEW ittt 206
6.1.2 Coder EVATRQTION ...o.cco.oeoo oottt 207
6.1.3 ReCOMMERAUIIONSocci it oot e 208

vi

6.2 Adaptive spatial/temporal image SeqUence COMPIESSION.coovimeeviiacirnniinees 209

6.2.1 AIGOFIAM OVEFVIEW ..o 209
0.2.2 Coder EVAIUGIIONcoooeevoeee et 211
6.2.3 RecOMMENAUIIONS . .ocoveiioee oo e e e st e ae e et beans e 212
6.3 Parallel image SeqUENCe COMPIESSION ... voveiwiaiieeiiaiiribestiest e e esarrene e es 213
6.3.7 AIGOFItAM OVEFVIEW ...c...ccoviiiiii it e 213
6.3.2 Coder eVAIUAIIONcc.oooeiieeeriiiees e eee et e ettt ean s s 2i6
0.3.3 Recommendations..........c...ccoeoeennnnn . ettt e et e e it aer e e 218
RETEIEIICES ...uvvreiiieceiiiee et eeeecsirsr e e e e e e sr s e e e s ae e e e eaanneeaeas 220
Appendix A: Conference Paper #1ccooriiiiiiinnii 226
Appendix B: Conference Paper #2.......ccccocriviniiiinnni 238
Appendix C: Conference Paper #3......ocooiriiiiins 244
Appendix D: Still Image Compression Flowchart........cccoeeeiin 250
Appendix E: Image Sequence Compression Flowchart 267
Appendix F; Parallel Processing Arrangementscccocveeeiinnnennnn, 272
Appendix G: Boot loading Operationscceeveeeiinnieneenieniencieeneins 275

Appendix H: Influence of high level languages on processing speed..277

Appendix I; Samples of Parallel Processing Results.........cccooeiiii 279

vil

List of Figures

Figure 2.1: Block diagram of transform coding.......ccocoeuriieiinminneniiies e 14
Figure 2:2: A typical zigzag scanning pattern for transformed coefticients quantisation..... 15
Figure 2.3: A typical subband decomposition of still Images........ oo, 20
Figure 2.4: Block diagram of a subband coding SysStem..........ccooiiiiininin 22
Figure 2.5: Block diagram of vector quantisation coding SYSICIMS .oeveeeiemiiiniininies 25
Figure 2.6: Typical codebook structure of TSVQS oo 34
Figure 2.7: Block diagram of classified VQ ..o 36
Figure 2.8: Block diagram of transform VOQ ... 38
Figure 2.9: Block diagram of multi-stage VQ ..o 39
Figure 2.10: Triangle inequality codebook search method.........ooo oo, 45
Figure 2.11: Adaptive block segmentation STrUCIUTEc.iiveeeeerieiee s 53
Figure 2.12: Dynamic range variation of 8x8 smooth blocks for image ‘Lenna’ 53
Figure 2.13: Tllustration diagram of BACVQ ..o, 54
Figure 2.14: Classified VQ OPerationccoiiiiniiimi i e 56
Figure 2.15: An original and transformed high texture block ..o, 58
Figure 2.16: Various classes for blocks containing edges ... 58
Figure 2.17: Codebook structures for BACVQ ..o 60
Figure 2.18: Partial distortion among various edge-like codebooks ... 61
Figure 2.19: Partial codebook search rangecoocciiiennninn e 64
Figure 2.20: Bit allocation for BACVQ code WOTdS ..o 65
Figure 2.21: Various coding results for 'Lenna’ IMagecocoooeiiinininniiisn 68
Figure 2.22: Sample results of BACVQ coding process (Set #1) oo 70
Figure 2.23: Sample results of BACVQ coding process (Set #2) ..o 71
Figure 3.1: Typical temporal DPCM codingcocooieniininici i 79
Figure 3.2: General coding structure of a motion compensated DPCM coder..........ocovene. 89
Figure 3.3: Operation principle of temporal interpolation...........cceivieiiiniinn 93
Figure 3.4: Predicting missing image samples using bidirectional temporal interpolation. . 93
Figure 3.5: Window search range for motion estimationc.oooerniiennnninnnneen, 96
Figure 3.6: Example of 2D logarithmic search strategy ..., 97
Figure 3.7: Example of modified 2D search Strategycoovivveivierniiee e, 97
Figure 3.8: Example of 3-step search strategy ... 98
Figure 3.9: Example of modified one-at-a-time search strategy ... 98

vili

Figure 3.10:
Figure 3.11:;
Figure 3.12:
Figure 3.13:
Figure 3.14;
Figure 3.15:
Figure 3.16:
Figure 3.17:
Figure 3.18:
Figure 3.19:
Figure 3.20:
Figure 3.21:
Figure 3.22:
Figure 3.23:
Figure 3.24:
Figure 3.25:
Figure 3.26:
Figure 3.27:
Figure 3.28:
Figure 3.29:
Figure 3.30:

Figure 4.1:
Figure 4.2
Figure 4.3:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:

Basic GOP frame structure for MPEG coding without B-frame inclusion..... 103
Basic GOP frame structure for MPEG coding with B-frame inclusion.......... 104
Histogram of difference for the test sSeqUENCE......ooioneiiiiiiiisn e 105
Magnitude of HOD variation of the test SEqUENCEe....coeveiieiieee e 106
Dynamic GOP StHUCTUIEcc.ocveiiiic s 107
Flowchart for the proposed image sequence compression algorithm 109
Typical search locations for the proposed motion estimation strategy 111
Conventional and progressive motion estimation strategies.....c..cooeee e 113
Typical pixel value distribution of original and residual frames 116
Block diagram of the proposed image sequence compress algorithm.......... 117
Bit allocation for coding motion vector fieldscceevivniiiiniincnnciees 117
Bit rate performance on the test SEQUENCE......cooovniiie i 118
PSNR performance on the test SEqUENCE........cvvvviieeiiiiii e 118
Sample pictures for the "Salesman" test image sequence..........ccooveeiinnns 124
Sample pictures for the "Claire" test image SeqQUENCE.ccoivivmriirinnisineaians 125
Sample pictures for the "Miss American” test image SEqUENCE.oovveiiierniene 126
Sample pictures for the "Susie” test image SEqUENCe......ccuviveriiieeeiienr e 127
Sample pictures for the "Caltrain” test image SEQUENCEoovviivniiennne, 128
Sample pictures for the "Table Tennis" test image seqUENCecoooerieenan 129
Sample pictures for the "Football” test image sequencecoceeeieee e, 130
Sample pictures for the "Flower Garden" test image Sequencececvoveeenns 131
Typical connectivity for a three processing element system ... 141
Physical connections of a 3-D hypercube machine..........cccovveiviecmiiececicecinns 150
Pseudo code for message based synchronisationc.ocvevieiniiivnivieeen 152
Typical processing arrangement of C80-based development system. 162
Block diagram of the prototype parallel DSP platform...........coovvviiieiciienn 166
Dualport memory mapping between the host PC and the PC32 ... 172
Mailbox data structure and its relative position in dualport memory. 173
Image data distribution for the moderate parallel processing condition. 179
Parallel HOD computation algorithim........coeveerroencrcn i inees 180
The effect of image data transfer overheads on parallel HOD computation..... 182
Execution timing for 4x4 image sub-block intraframe processing.................. 185
Residual block structure and returned codeword index arrangement. 194

ix

List of Tables

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:

Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:

Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:

Adaptive allocation of codebook sizes to various edge codebooks.......coovenn. 67
Results of coding non-training images with BACVQ ... 67
Results of coding training images with BACVQ ... 67
Results obtained from various BACVQ for non-training image "Lenna”........... 67
Maximum search steps and search points for a +8-pixel search window. 99
Composition of test IMAZEe SEQUENICE ...ccoviiiiniiiiis i 105
BACVQ codebook optimisation for intraframe coding........cecoeeiiiieiiiienr e 115
BACV(Q codebook optimisation for residual frame processing............cceeevveeee. 116
Various HOD computation time for image frame #001 and #061. 182
Execution time for processing frame CIF061 as a still image.........ccccooeviriee. 185
Relative parallel performance gain of various processing stages.........c.coovveene 188
Performance gain of parallel image sequence cOMmpression. ... veiienee. 195

List of Abbreviations

ADSP: Advanced digital signal processor.

BACVQ: Block adaptive classified vector quantisation.
BH: Block histogram difference.

BMA: Block matching algorithm.

BOPS: Billion operations per second.

bpp: Bits per pixel.

BV: Block variance difference.

CTC: Combined transform coding.

CVQ: Classified vector quantisation.

DCT: Discrete cousin transform.

DFT: Discrete Fourier transform.

DHT: Discrete Hartley transform.

DOH: Difference of histogram.

DPCM: Differential pulse-code modulation.

DSP: Digital signal processing or digital signal processor.
DST: Discrete sine transform.

DVD: Digital versatile disc or digital video disc.

GLA: Generalised Lloyd algorithm for VQ codebook optimisation.
GOP: Group of pictures.

HDTV: High definition television.

HOD: Histogram of difference.

HVS: Human visual system.

JPEG: Joint Photographic Experts Group.

xi

KLT: Karhunen-Loeve transform.

LBG: Linde, Buzo and Gray algorithm for VQ codebook optimisation.
LP, BP and HP: Low-pass, band-pass and high pass.
MAE: Mean absolute error.

MCE: Motion compensation error.

ME: Motion estimation.

MEE: Motion estimation error.

MFLOPS: Million floating-point operations per second.
MHOD: Magnitude of HOD variations.

MIMD: Multiple instruction stream multiple data stream.
MIPS: Million instructions per second.

MISD: Multiple instruction stream single data stream.
MPEG: Motion Picture Experts Group

MSE: Mean squared error.

NNQ: Nearest neighbour quantiser.

PE: processing element.

PSNR: Peak signal-to-noise ratio.

QMF: Quadrature mirror filter.

RISC: Reduced instruction set computer

SIMD: Single instruction stream multiple data stream.
SISD: Single instruction stream single data stream.
SSE: Sum of squared errors.

TSVQ: Tree-structured vector quantiser.

VLSI: Very large-scale Integration.

VQ: Vector quantisation or vector quantiser.

X1

Chapter 1: Introduction

1.1 Introduction

In human history, establishing communications over a distance has always been an
important part of human activities. In the early days, various forms of
communications like smoke signals, semaphore, mirror-flashing, drums, light or fire
beacons, well-trained pigeons, or even human messengers were used fo deliver
messages over a distance. All these primitive forms of communications, however,
suffer from many disadvantages such as distance limitation, low message-carrying

capacity, low speed, unreliability and high cost.

The invention of telegraph and radio transmission in the 19® century has
revolutionised the way human beings communicate (Webster’s Concise
Encyclopedia, 1994). In 1837, telegraph was used mainly as a signalling device over
an electrical circuit in British railway systems. Subsequently, the theory of
electromagnetic waves was put into practical use in 1895 by Guglielmo Marconi. The
significance of Marconi’s contribution is that for the first time in human history,
human beings have been able to communicate over a distance using radio
transmission. After the successful demonstration of radio transmission, Marconi
developed wireless telegraph communications to exchange text messages between
England and France in 1899 and across the Atlantic in 1901. Radio communication
of human speech was then demonstrated in 1906. The development of radio
communications has allowed not only news to be broadcast from radio stations to
reach larger groups of audience instantly but also education and entertainment
programs to be delivered to them more effectively. Most significantly, the invention
of black-and-white television in the 1930°s and colour television in the 1950’s has
had even greater impacts on people’s lifestyle. Naturally, visual communications
have much greater appeal than the voice counterparts, especially when high quality
sound and picture transmissions are deployed. Visual communications inherently
provide a friendlier atmosphere and more comprehensive coverage for news
reporting and offer a more exciting entertaimﬁent environment to enhance human

experience.

1.2 The growing importance of digital technology

In addition to the deployment of various forms of communications, more recent
development of digital technology has opened up a whole new world of
opportunities. The advent of VLSI and microprocessor technology together with the
flexibility and cost effectiveness of digital processing techniques have fuelled the
proliferation of digital applications in almost every area of human activities. So much
so that it has resulted in a swift transition from analog to digital systems in many

fields.

Even in analog environment digital applications have also been widespread. In the
music industry, the introduction of digital audio compact discs (CDs) in 1982 has
virtually marked the end of an era in which analog phonograph records were used as
a recording medium for high quality music reproduction (Ely, 1996). Being recorded
in digital form and smaller in physical size, CDs are less susceptible to the encoding
of unwanted sounds and to physical damage. Furthermore, CDs improve over
conventional records and tape recordings with a more uniform and accurate
frequency response, a complete absence of background noise, and a wider dynamic
range. Similarly, in the telecommunication industry, digital communications systems
have quickly replaced their analog counterparts. This is because digital transmission
is more efficient and inherently more robust against circuit deficiencies and
transmission impairments. In addition, signal processing in the digital domain is 1
general far more flexible and cost effective (Zou, 1993). Digital technology has also
been applied to photographic imaging whereby a picture is broken up into small dots,
called pixels, with average value of light intensity being assigned to each pixel. More

recently, digital video and digital television have been actively explored.

Up until the early 1970s, television signals were handled almost entirely in analog
forms, that is, video signal of an optical scenc was represented as a continuously
variable voltage, whose instantancous value reflected the luminance and chrominance
of picture elements being transmitted. However, as digital techniques develop, much
of analog video-processing has been replaced by digital signal processing and high-
speed sampling that converts continuously varying video signals into digital samples,

each representing a discrete signal level. The advantages of handling video signals in

digital forms are that they can be casily manipulated with special effects or used for
image overlays or multiple-imaging mixing without any degradation in image
quality. In addition, several digital signals can be multiplexed, expediting the
transmission and processing of auxiliary information. Also, digital coding provides
many benefits for message compression and serves as the basis for interactive
telecommunications systems. For cable and direct broadcast satellite television
services, digital compression techniques allows their transmission capacity to be
instantly increased by more than 10 folds. Digital coding can also be mixed for
various media forms, including computer communications on the same carrier,
enabling integrated transmission of voice, image, graphics, and data in the same

digital data stream.

The emergence of digital versatile disc (DVD) in 1996 marked a new era of
consumer video entertainment, in which a digital video format was brought to the
mass consumer market for the first time (Ely, 1996). This new format increases the
density of the standard 650MB CD to up to 17GB DVD storage capacity, enabling
the recording time in MPEG-1 digital video format to be extended from 74 minutes
to several hours. In addition, the establishment of various digital compression
standards such as H.261 and MPEG-1 and MPEG -2 has contributed signiﬁcantly to
the development of multimedia computing, video-on-demand, digital terrestrial
broadcast television, video archiving system, videophone, and video conferencing
(Petajan, 1992) (Wright, 1996). Not only has such development of digital technology
revolutionised the existing information technology, but it has also brought about the
convergence of entertainment, computing, and communications, thereby further

enriching human experience.

Being an advanced television standard, high-definition television (HDTV) offers a
significantly greater number of scanning lines, and therefore a clearer picture than the
conventional 525/625 line television systems (Webster’'s Concise Encyclopedia,
1994). In 1989, the Japanese broadcasting station NHK and a consortium of
manufacturers launched the Hi-Vision HDTV system, an analog HDTV system with
1,125 lines and a wide-screen format. In 1993, however, the United States decided to

adopt digital transmission systems for its future HDTV systems. The major

advantage of the proposed U.S. standard for HDTV over the Japanese one is that it is
based on digital format. Digital HDTV transmission is preferred to its analog
counterpart for several reasons (Aoki, 1994). Firstly, it can be implemented at lower
power levels, thus causing significantly less interference with existing television
signals, and its quality is also constant throughout a given service area. Secondly,
digital TV receivers are more likely to be compatible with a wide variety of computer
and telecommunications services. In Australia, the television industry and the
government are planning to introduce digital HDTV transmission by Year 2000,

coincident with the Olympic Games in Sydney.

Alongside the successful transition from analog to digital, rapid advances have also
been made to existing telecommunications infrastructure. Integrated-Services Digital
Network (ISDN) has been established as a versatile, high capacity communication
networks to provide various digital services such as voice, videophone, computer
data or high-quality fax. Satellites have been deployed to provide digital direct
broadcasting television services to subscribers. Digital transmission has enabled
these satellites to increase the number of television channels substantially. In
addition, recent advances in fibre optic technology have led to the deployment of
fibre-optic cable instead of the usual copper wire for communications links. While
fibre-optic technology has been widely applied in many areas, its greatest impact is
perhaps in the field of telecommunications, where optical fibre offers the ability to
transmit audio, video, and a variety of digital information. Its advantages over
metallic cable include vastly increased information carrying capacity, lower
transmission losses, lower cost, much smaller cable size, and almost complete

immunity from stray electrical fields or interference.

1.3 The importance of digital image compression

Although advances in transmission systems have substantially increased the
transmission capability of modern digital telecommunication networks, conserving
transmission system resources remains a critical issue. This is mainly because the
rapid development of digital imaging and video technology has placed an ever
increasing demand on those transmission systems to cater for newer and more

demanding applications. Therefore, apart from improving digital system capability,

applying digital compression in general and still image/image sequence compression
in particular has been considered as a key approach for dealing with the rapid growth
of visual information being exchanged over communication channels or stored in

mass storage medium (Gray, 1984).

1.4 Thesis contributions

To date, numerous techniques have already been developed for still image and image
sequence compression. However, although considerable effort has been made in
developing these techniques, it is generally very difficult for a compression technique
to actually achieve optimality in compression performance and computational
simplicity simultaneously due to the complexity of the still image/image sequence
compression process itself. For this reason, the prime objectives of this research are
to explore various possibilities to improve the compression performance of both still
image and image sequence compression and at the same time to reduce its
computation complexity by adopting more efficient processing operation. In
particular, as an alternative approach for still image compression, the proposed Block
Adaptive Classified Vector Quantisation (BACVQ) achieves good compression
performance and coding efficiency by combining classified VQ and variable block-
size coding technique. More consistent classification and adaptive image-block
segmentation algorithms based on both spatial and transform domains have also been
developed to further improve the operation of CVQ and variable block-size coding.
In addition, highly efficient algorithms have been proposed to accelerate codebook
searching operation and to determine the optimal sizes of classified VQ sub-

codebooks.

For image sequence compression, an adaptive spatial/temporal compression
algorithm has been developed with improved compression performance and coding
efficiency. To improve the consistency of the scene segmentation process, an
adaptive scene segmentation scheme based on the magnitude of the vanation in
histogram of difference (MHOD) has been developed without adding significant
complexity. In addition, a variable block-size motion compensated predictive coding
algorithm has been developed to improve the efficiency of the interframe coding

process. These improvements include the use of motion estimation errors as a

segmentation criterion to provide more consistent image segmentation operation, the
addition of extra search points at the centre of image search windows to climinate
possible motion estimation errors in low motion regions, and the development of an
alternative progressive motion estimation strategy to improve the efficiency of

motion estimation and to ease implementation difficulties.

Apart from improving still image and image sequence compression algorithms, the
application of parallel processing to image sequence compression is also mvestigated
in this study. This is because parallel image compression offers a more effective
approach than the sequential counterparts to accelerate the compression process and
bring it closer to real-time operation. In particular, because of the independent
processing and spatial arrangement natures of most image processing operations, an
effective parallel image sequence compression algorithm has been developed to
significantly reduce the processing time of the proposed parallel image compression

algorithms.

1.5 Thesis organisation

The topic of still image compression is investigated in Chapter 2. Following an
overview of still image compression in Section 2.1, a discussion of various still
image compression techniques is given in the subsequent sections. Typical still
image compression techniques include transform coding, subband and wavelet
coding, and vector quantisation (VQ). Although VQ has been considered as an
optimum compression technique, its computation complexity has severely limited its
applications in practice. As such, this has motivated us to develop the proposed block
adaptive classified VQ algorithm (BACVQ) for still image compression. A detailed
description of the BACVQ algorithm and a discussion of its simulation results are
given in Section 2.5, followed by a discussion of lossless compression techniques in

Section 2.6.

Various problems relating to lossy image sequence compression are discussed in
Chapter 3. Following an overview of various technical issues involved in image
sequence compression in Section 3.1, a survey of human visual system is conducted

to identify some of its deficiencies which are beneficial to image sequence

compression operations. The importance of scene segmentation and vanous
segmentation criteria are discussed in Section 3.3, followed by an investigation of the
operation principle of various motion compensated coding techniques. How adaptive
coding techniques such as block size and coding mode adaptation can be applied to
improve the performance of image sequence compression is then examined. The
basic coding structure of MPEG is briefly discussed in Section 3.6 and some of its
terminology has been used to describe the proposed adaptive image sequence
compression algorithm in Section 3.7. In this algorithm, a new adaptive scene
segmentation technique is investigated, which offers accurate scene transition
detection, high tolerance to spurious image activities and computational simphicity.
In addition, an alternative approach to variable block-size motion compensation and

progressive motion vector estimation is introduced.

Chapter 4 discusses the basic concept of parallel processing. Following an overview
of parallel processing in Section 4.1, various parallel processing architectures are
discussed. The issues of parallel connectivity are then investigated in Section 4.3. In
order to take advantages of parallel processing hardware, considerations must be
given to the design of parallel algorithms. Being the most critical operations during
parallel processing, process synchronisation, task partitioning and process scheduling
are examined in detail in Sections 4.4 and 4.5. To evaluate the performance of digital
processing systems quantitatively, various performance measures are described in
Section 4.6 with greater emphasis on their accuracy and simplicity. This is followed
by a discussion of various issues relating to the design of message-passing and

shared-memory MIMD systems.

The topic of parallel image sequence compression is investigated in Chapter 5.
Following an overview of paraliel image sequence compression and parallel DSP
systems in Section 5.1, the characteristics of various commercially available parallel
DSP platforms are discussed. The hardware configuration of the proposed prototype
parallel DSP platform for the study of parallel still image/image sequence
compression and its basic processing operations are described in Sections 5.3 and
5.4. Because dualport memory and semaphore operations contribute significantly to

the proper operations of the prototype parallel DSP platform, they are examined in

detail in Sections 5.5 and 5.6. In Section 5.7, the proposed parallel image sequence
compression algorithm is described and the performance of the prototype parallel

DSP platform is judged by means of experimental results.

Finally, Chapter 6 concludes this thesis with an overall perspective on the algorithms
developed and the results obtained in this study. It also provides some
recommendations applicable to future research work. Various appendices are
included at the end of this thesis to facilitate direct references. While Appendix A to
C contain a copy of various conference papers submitted previously, Appendix D to
F present the flowchart of the simulation software developed for the studying of still
image compression, image sequence compression, and various parallel processing
arrangements. Appendix G provides some notes on boot loading operations of the
PC-32 cards. While Appendix H presents an example showing some inefficiency in
using high level programming, Appendix I provides a sample output of simulation

results obtained during the study of parallel image sequence algorithm.

Chapter 2: Still Image Compression

In this chapter, the topic of still image compression is presented because it is an
important process not only by itself as a key technique for compressing still images
but also for its role in image sequence compression. Although many mainstream
compression algorithms have been already developed for still image compression
applications, most of them tend to suffer performance or implementation problems to
some degree. For this reason, hybrid compression algorithms are more favourable
and have been developed aiming at reducing image reconstruction distortion,
increasing coding gain, and/or lowering implementation complexity. They enjoy

these benefits mainly by combining the advantages of various coding techniques.

Being a hybrid coding algorithm, Block Adaptive Classified Vector Quantisation is
presented in this chapter. Its enhanced coding performance is achieved as a result of
combining variable block-size coding with classified VQ. Improved image-block
classification and codebook generation algorithms have also been developed to
provide better classification consistency and to ease implementation issues associated

with VQ coding.

2.1 Introduction

Although the rapid technological advance in recent years has enabled many digital
systems to expand their system capability substantially in terms of transmission
bandwidth and mass storage, conserving system resources remains an important
issue. This is mainly because the rapid development of digital imaging technology
has imposed an ever increasing demand on those systems to cater for more and more
applications involving digital images. Therefore, apart from improving digital system
capability, digital image compression also represents a key technology for dealing
with the rapid growth of visual information which is exchanged over communication

networks or stored on mass storage media (Gray, 1984).

The operation principle of all high performance digital image compression
techniques relies heavily on the removal of both statistical and perceptual redundancy

within normal images in order to achieve high compression gains. While image

compression techniques based merely on statistical redundancy removal allow
original visual information to be fully recovered from compressed data, those based
on perceptual redundancy removal or a combination of both do not possess such a
property (Fedele et al, 1988). This fundamental difference between these two classes
of image compression techniques has led to the development of the so-called lossless
and lossy image compression algorithms. In general, while lossless image
compression algorithms have very limited compression capability, lossy image
compression techniques are capable of offering much higher compression gains but
at the expense of some fidelity degradation. Therefore, instead of insisting on perfect
reconstruction, lossy image compression techniques are more concerned with
preserving the best image fidelity possible for a given rate (Gray et al, 1992). Among
the most common lossy image compression techniques are transform coding,

subband and wavelet coding, and vector quantisation (VQ).

For many block-based image compression techniques such as transform coding and
VQ, coding efficiency can be improved by applying variable block size coding
strategy in conjunction with adaptive block segmentation. For image compression
applications, it is desirable that perceptually important image areas are segmented
into small blocks while low activity regions being segmented into larger ones. This is
because not only does this segmentation approach offer higher overall coding
cfficiency, but it also allows the coding process to achieve uniform spatial
distribution of perceptual distortion throughout the reconstructed images, thereby
significantly enhancing their perceptual quality. Due to the flexibility and efficiency
of quadtree segmentation, most variable block size coding techniques have adopted
quadtree segmentation principle during their adaptive block segmentation process

(Shusterman et al, 1994) (Vaisey et al, 1992) (I.ee & Crebbin, 1994a).

In an effort to improve the consistency of the segmentation process, various
assessment criteria for evaluating local image activities within image regions have
been reported. In the spatial domain, Vaisey et al (1992) have found that block
variance can be used effectively to evaluate local image activities. When the vanance
of an image block exceeds an empirically determined threshold value, the block shall

be considered as being associated with a high detail class, and therefore shall be

10

segmented into four smaller sub-blocks of equal size. This segmentation process is
applied recursively until a low activity sub-block is detected or a minimum sub-block
size is reached. Alternatively, image activity measures in the transform domain is
also possible. According to Chen et al (1984), the total energy of the AC DCT-
coefficients of transformed image blocks can be used as an effective image activity

measure.

Being a very important coding algorithm, VQ has attracted considerable interest from
the image compression community due to its compression potential, As far as
quantisation is concerned, it has been widely acknowledged that optimum
quantisation can only be achieved with VQ. However, high quality VQ coding
operation usually insists on the use of a very large codebook and high vector
dimension, leading to exceptionally high computational cost. Therefore, in an effort
to make VQ more practically feasible, recent studies have shown that the coding
structure of VQ can be modified with little sub-optimality, thus resulting in the
development of various constraint VQs (Vetterli et al, 1992). In particular, classified
VQ has been regarded as a typical variant of constraint VQs and its advantages have
been well perceived. Not only does it offer a significant reduction in computation
complexity as opposed to full-search VQ, but it also plays a key role in enhancing the
perceptual quality of reconstructed images. In addition, when combined with variable
block size coding, classified VQ would offer even greater performance benefits. As a
result, this coding approach has been adopted in the proposed block adaptive
classified VQ algorithm (BACVQ).

It should be noted that the performance of classified VQs depends largely on the
effectiveness of vector classification process. This is because the extremely high
complexity of real images makes it very difficult to maintain consistent classification
across all local image textures into their corresponding classes, which in turn affects
the efficiency of classified VQs. Therefore, in an effort to improve the classification
consistency, various classification schemes operating in either transform or spatial
domains have been investigated (Lee et al, 1994a) (Ngan et al, 1992) (Ramamurthi et
al, 1986) (Wen et al, 1993). In particular, as a result of this study, an alternative

vector classification algorithm operating in both transform and spatial domains has

11

been proposed. Its operation is based on the use of DCT coefficients, dynamic range
and contrast sensitivity. Additionally, dynamic thresholding has been adopted during
the classification process in order to exploit the HVS deficiency. As such, this vector
classification algorithm was observed to produce highly consistent classification

results.

In implementing the proposed BACVQ coding algorithm, a highly efficient partial
codebook search approach has been developed for 8x8 codebook search operation. In
fact, experimental results have shown that this partial codebook search can offer up
to 80% reduction in secarch time with a small PSNR degradation of 0.03dB. In
addition, a new algorithm has been developed for determining the optimal codebook
size for classified VQ sub-codebooks. Compared to other codebook size
determination methods, the proposed algorithm is capable of determining the optimal
codebook size for individual sub-codebooks with significantly reduced computation

complexity, especially when large codebook training sets are involved.

And lastly, irrespective of the type of lossy image compression techniques being
used in image compression systems, it is a common practice that a statistical
encoding technique such as Huffman coding or arithmetic coding is applied as the
final stage of the compression process. The aim of this coding stage is to eliminate
any remaining statistical redundancy in the coded data stream, and thercfore
achieving additional compression gain without adding any distortion. This favourable
outcome is realised because statistical encoding is basically a lossless compression
technique which allows full recovery of the original data (Fedele et al, 1988) (AT&T,
1993).

2.2 Transform coding

One of the most popular coding techniques for still image compression is transform
coding. Its operation principle is primarily based on orthogonal linear transformation
of original signals to the transform domain prior to the quantisation process (Malvar,
1992). As such, its relatively simple coding algorithm coupled with its effectiveness

in de-correlating image elements has accounted for its popularity for image

12

compression applications. In fact, it has been adopted in the specifications of JPEG, a

well-known still image compression standard (AT&T, 1993).

Another advantage of applying transform coding to image compression applications
is that since natural images do not contain all frequencies, many transformed
coefficients in transformed image blocks have zero values, thus representing the
redundancy as well as the available compression gain. In an extreme case, for
example, a pure grey image block of 16x16 block size effectively has only one DC
terms and 255 nil coefficients. This means that a compression gain of 256:1 can be
theoretically obtained. Even when these coefficients are not zero, many of them are
so small that they fall below visual thresholds and contribute very little to
reconstructed image quality. As such, they can be adequately truncated to zero
without noticeable visual impairment. This implies higher compression gain is
achievable with transform coding when more coefficients of transformed image

blocks are set to zero (Ahlgren, 1988).

In general, orthogonal lincar transformation can be implemented in various forms.
Among the most common forms of orthogonal linear transformation are Karhunen-
Loeve transform (KLT), discrete Fourier transform (DFT), discrete Hartley
transform, discrete sine transform (DST), and discrete cosine transform (DCT).
Although DFT and DCT are very similar in their mathematical formulations, DCT is
by far more popular for image processing applications due to its energy compaction

efficiency (Malvar, 1992) (Rao et al, 1990).

However, applying conventional DCT coding techniques to image compression
applications usually suffers from “blocking” effects because of the discontinuation at
block boundaries. In addition, ringing at visual object boundaries 1s another
weakness of DCT coding which severely affects the perceptual quality of
reconstructed images. Basically, all these objectionable features occur due to the
lossy quantisation of transformed coefficients following the DCT transformation
process of image blocks. Therefore, research effort has been recently directed to
climinating such deficiencies of DCT. An example of this is the development of the

combined transform coding technique (CTC). Compared to the conventional DCT

13

approach, CTC has been claimed to offer the desire property of reducing both

blocking and ringing effects in addition to improved compression efficiency (Zhang

et al, 1993).

From the statistical point of view, KLT is considered as the optimal linear
transformation for image compression applications. This is because KL T can ideally
produce a set of totally uncorrelated coefficients from the original signals.
Furthermore, KLT is capable of maximising the energy compaction in transformed
blocks. All of these are regarded as highly desirable features in image compression to
lower overall distortion. However, from the practical point of view, KLT has some
severe drawbacks when applying to signal coding applications. Firstly, KLT is signal
dependent since its transformation requires good modeling of input signal statistics.
As aresult, efficient implementation of KLT is usually difficult to achieve, especially
when signal statistics may change over time and real-time computation is required.
Secondly, since the KLT matrix has no particular structure, efficient computation of

its transformation is harder to accomplish (Malvar, 1992).

In transform coding, it is a common practice that separate quantisers are used for the
quantisation of individual transformed coefficients. This is because transformed
coefficients are expected to have different probability distribution functions due to
the de-correlation effect of the linear transformation process. A typical transform

coding scheme is 1llustrated in Figure 2.1.

e Scalar ¥y
. L Inverse)
X — Transformation ———»{ Quantisation] &
(O] Transformation

Figure 2.1: Block diagram of transform coding

To assess the performance of a coding scheme, a quantitative distortion measure

based on the overall sum of squared errors is frequently used and 1s given by:

Die= 36l iy = {1

where, X and X’ represent the original and reconstructed vectors, respectively; and &

denotes vector dimension.

14

An orthogonal transformation of the form Y=7X is normally employed in the above
transformation. It is considered as a linear transformation with respect to T satisfying
the orthogonality condition, that is,

r=1"

As distances are preserved in orthogonal transformation, it follows that:
Dye = £ - x| = £ v - 7]

This implies that orthogonal transformation does not magnify quantisation noise so
that the sum of squared quantisation errors for the k quantisers is equal to the overall
distortion. For this reason, optimal quantisation of transformed coefficients with
optimal bit allocation plays a crucial role in determining the overall performance of

transform coding.

Zig-zag scanning pattern according to the assigned number

1 2 6 7 23 | 24 | 28 | 29

Lowest
ordered 3 5 8 13 25 | 27 | 30 | 43
DCT
coeffici |J4 9 12 1all 26 | 31 42 | a4
ents

10 11 15 16| 32 | 41 45 54

17 18 | 22 | 33 | 40 | 46 | 53 35

19 | 21 34 | 39 | 47 | 52 56 | 61

20 | 35 | 38 | 48 51 37 | 60 | 62

36 | 37 | 49 | 50 | 58 | 59 | 63 | 64

Figure 2:2: A typical zigzag scanning paitern for transformed coefficients quantisation

Apart from separate quantisation, transformed coefficients are commonly quantised
in the order of a zigzag pattern (Dufour et al, 1992). The major motivation for this is
to achieve better energy compaction, to improve the efficiency of subsequent run-
length coding, and to facilitate the implementation of hierarchical coding schemes.
For instance, in HDTV compatible coding, the encoded data stream may consist of

two components, namely, a compatible data stream and an additional data stream.

15

The compatible data stream shall contain all the information necessary for the
reconstruction of conventional TV sequences. Such a data stream typically contains
16 lowest ordered transformed coefficients of 8x8 DCT blocks following the zigzag
scanning process. Subsequently, when inverse DCT is applied to these coefficients,
image blocks of 4x4 block size can be reconstructed, which correspond to a lower
resolution representation of original 8x8 blocks. In fact, the derivation of
conventional TV pictures in this way is equivalent to applying 4:1 decimation to
HDTV images. Contrary to the compatible data stream, the additional data stream
shall contain extra data necessary for the reconstruction of superior HDTV
sequences. Another advantage of the zigzag scanning technique is that it offers a
more flexible coding scheme. For example, if a decoder does not receive the total
number of transformed coefficients in full, the decoder can simply set the missing
coefficients, especially those with higher orders, to zero without affecting its
operation. This suggests that the zigzag scanning technique also contributes to the
realisation of a more robust coding system. A typical zigzag scanning pattern is

illustrated in Figure 2.2.

For image processing applications, linear transformation of image data blocks would
theoretically require the application of two dimensional (2D) transformation
operators because images are represented as 2D data. However, since image data can
also be modelled as separable random processes, separable transformation can be
applied without any loss in performance. This means that 2D transform operators can
be implemented more efficiently using 1D transform operators and a two-stage
computation process. During the first stage, all rows of an image block will be
transformed using a 1D transform operator, resulting in an intermediate 2D block. In
the second stage, the same transformation is applied to all the columns of the
intermediate block to complete the transformation process. Mathematically, this

transformation process can be illustrated as follows (Clarke, 1985) (Blinn, 1993):

Assuming, Y, X, and I denote the transformed block, the input block and the
orthogonal transformation matrix, respectively, a 2D transformation process based on

separable transformation approach can be illustrated as follows:

16

1) Stage 1: Transform all rows of X
B=TX"
where B denotes an intermediate transform vector.

2) Stage 2: Transform all columns of B to complete the 2D transformation process:
Y=TB" =T[TX"] =T XT"=TXT*
2.2.1 Discrete Fourier transform (DFT):

Being a linear transformation, DFT can be described by adopting a general form for

the transformation matrix:

Qoo a1 - Byu-n
[#] [4} . ¢}
10 1 LA~
T (M-
Qoo - Qo-new-n

The basis functions of a transformation matrix can be defined as the columns of the

matrix, For DFT, the basis functions are given by:

1 27k
S P e

2.2.2 Discrete Hartley transform (DHT):

The basis functions for this transformation are given by:
f 1 (mekj
dp = 4| 7=cas
M M

Since DHT is a real transformation, no complex arithmetic is required during the

where cas(6) = cos(d)+ sin(4)

transformation process. More importantly, since DHT transformation matrix is

symmetrical, the direct and inverse transformation processes are identical.

2.2.3 Karhunen-Loeve transform (KLT):

The basis functions for KLT transformation are defined as the eigenvectors of the

covariance matrix of the input signal source. For first order auto-regression sources,

17

such eigenvectors have the properties of being sinusoids whose frequencies are not

evenly distributed in a unit circle.

From the statistical point of view, the KLT is considered as the optimal transform
(Vetterli et al, 1992). This is because KL.T is the only orthogonal transform capable
of producing a set of uncorrelated coefficients from a colored source as well as
maximising the energy compaction within transformed blocks. This i1s a highly

desirable property for signal coding and signal compression applications.

For linear transformation, the relative coding gain is normally evaluated using the

following expression (Malvar, 1992):

This suggests that KI.T maximises the coding gain by minimising the geometric

mean of the variance of transformed coefficients in the denominator,

In spite of its desirable properties, applications of KLT to signal coding applications
suffer several drawbacks. Firstly, KLT transformation is signal dependent. Therefore,
successful applications of KLT are unlikely unless a good model for the source signal
statistics can be established, the signal statistics does not change with time, and real-
time computation of covariance matrices and eigenvectors is possible. Secondly,
since KLT transformation matrix does not have any particular structure, its

transformation process does not allow fast computation to be performed.

2.2.4 Discrete Cosine transform (DCT):

The basis functions for this transformation are defined as :

a,, =clk) % cos[(n+%] k—ﬂ;}

c(k):{ll/ﬁ if k=0

otherwise

where

18

In DCT, when the frequency index k varies from 0 to (M-1), there are M distinct
frequencies in the interval [0,]. As a result, spectral analysis performed with DCT
will produce twice the number of frequency bands as opposed to DFT or DHT. In
addition, if an input signal has a strong component at a particular DCT frequency but
90 degrees out of phase with respect to a DCT basis function, then the corresponding

DCT coefficient will be zero (Malvar, 1992).

2.3 Subband and wavelet coding

As an alternative approach to image compression, subband coding can be considered
as a frequency domain bit-rate reduction technique (Furukawa et al, 1992). This is
because input signals are decomposed into various subbands before compression
operation actually takes place. Its development is mainly motivated by the following

observations:

s Signal power for high frequency components is generally 40 to 60dB less than the
DC power.

» Power spectrum distribution in vertical and horizontal directions are similar.
¢ Subband coding does not suffer from blocking effects.

¢ Tree-structured subband decomposition processing facilitates hierarchical coding.
It allows lower resolution images to be more readily accessible from the coding

stream.

¢ The power spectrum of input signals in the logarithmic frequency scale is almost

linear except in the very high frequency region.

s Band splitting filters can be implemented using various filter types. However,
quadrature mirror filters (QMF) are frequently employed for band splitting
operations. In general, band splitting filters must possess such properties as
aliasing cancellation, perfect reconstruction, linear phase and good low-pass

characteristics in order to minimise coding distortions.

It has been shown that the performance of subband coding is the best when there is a
wide variation in the power levels of different subbands. Also, highly correlated

signals with high prediction gains are amenable to efficient redundancy removal by

19

subband coding with the same ultimate performance as being achieved in transform
coding. In fact, it can be shown that the worst-case behaviour in terms of
reconstruction errors of subband coding is similar to that of DCT due to the close
relationship between subband filter banks and unitary transforms. As with DCT
coding, ordering subbands according to their energies also helps minimise mean
squared errors when a subset of the subbands is used for the reconstruction. This 1s
because the lower bands usually carry basic visual information while the higher ones

only adds more detail to the reconstruction (Vetterli et al, 1992).

The extension of subband coding to 2D and 3D signals is generally facilitated by the
adoption of separable filter banks. For example, in the case of still images where
signals are associated with 2D representation over the horizontal and vertical
dimensions, a simple subband decomposition can be implemented using separable
filter banks as illustrated in Figure 2.3 (Furukawa et al, 1992). These separable filters
can be efficiently implemented as row-column filters, which are in turn constructed

using 1D QMF filters (Thyagarajan et al, 1987).

HP ———>» HH

-
—»= HP
S

LLP —— HL

HP |[—> LH
—» LF ‘—1:
LP —>» LL

Horizontal vertical

Still

image

LP: Low-pass filter HP: High-pass filter

Figure 2.3: A typical subband decomposition of still images

However, one of the difficulties in implementing subband coding is that heavily
constrained operators have to be used during subband decomposition process. This
suggests that a compatible P channel with reasonable complexity usually cannot
produce adequate quality for subband coding operation. What is more, it has been
found that maximum reconstruction errors in subband coding are weakly bounded

(Vetterli et al, 1992).

20

For practical reasons, subband coding systems tend to maintain the constraint of
critical sampling while relaxing the requirement for an ideal BP filter bank. As such,
the filter bank in subband coding is usually replaced with physically realisable filters
whose transfer functions are rational functions of exp(j2mf/f;} where f; represents the
sampling frequency. The consequence of this compromise is that some interband
interference may occur, thus creating aliasing problems. In order to eliminate this
effect, short kernel filters and QMF filters are frequently used for band splitting
during subband decomposition process (Coppisitti et al, 1993).

Apart from filter type considerations, there are two other major issues concerning the
operation of subband decomposition (Malvar, 1992). Firstly, if incoming signals are
simply passed through a set of bandpass filters and their outputs are used directly, the
amount of information to be processed would grow proportionally to the number of
subbands. This observation suggests that any coding gain achievable by subband
coding would be offset by the significant increase in subband information.
Fortunately, this is not the case in most situations. In fact, following the band
splitting process at the filter bank, subband signals are often sub-sampled or
decimated in both horizontal and vertical dimensions, thereby resulting in a 4:1 data
compression in each of the subband channels (Malvar, 1992). Secondly, the design of
subband filters must be capable of recovering the original signal from its subbands.
To meet this requirement, it is necessary that aliasing problems, due to sub-sampling
or decimation process primarily, should be eliminated. Malvar (1992) has shown that
the frequency spectrum of decimated signals expands with respect to the input signal
spectrum by a factor equal to the decimation ratio M. Therefore, if the input signal
spectrum is larger than m/M, then as the decimation process takes place, there will be
overlapping regions in the spectral replicas, leading to aliasing problems. For this
reason, it is a common practice to precede a decimator with a low-pass or band-pass

filter with a bandwidth of n/M in order to minimise the possibility of aliasing.

The reverse of the decimation process is known as the interpolation process. Contrary
to the decimation process where every M-th sample is retained from it original
sequence, the interpolation process is implemented by replacing missing samples

with zero values. In the frequency domain, this is equivalent to shrinking the

21

frequency spectrum of the input signal at the interpolator by a factor of M, and
replicating this shrunken spectrum (M-1) times (Malvar, 1992). This observation
suggests that aliasing is not an issue during the interpolation process. Instead, the
output spectrum of the interpolator contains multiple replicas of its input signal
spectrum, normally referred to as “imaging”. As a result, it is necessary to pass the
output signal of the interpolator to a LP or BP filter having a bandwidth of =/M so
that only one of the spectral images is retained, thereby enabling a full recovery of
the original signal. A typical arrangement of a subband processing system is shown

in Figure 2.4.

Decimator Interpolator

Orig.

I:HI(Z)—)-Q/M L > > "M 6,)

input H2 (Z) Q/ M Further ; 4\ M G2 (Z) Output
x(n) processing signal
| unit . x’(n)
>, @) > M [ool MM F Gy @)
Analysis Synthesis
filter filter
bank bank

Figure 2.4: Block diagram of a subband coding system

According to the convolution principle, the output of the 4-th analysis filter in Figure

2.4 is given by:

X, ()= x(Dh (M~ j)
J=—to
and the reconstructed signal is expressed as:

X ()= DX, (g, (nib)

k=1 i=-%

If no further processing is applied to the subband signals at the further processing

unit, it follows that:
X' ()=X,0), Vk
Therefore,

0

x'(n>=zi[2xu)h (M - ;)}gk(n iM)

k=11 Jj=

22

Re-organising the summation terms gives:

x(my= S5 S b, (M- g, (n—iM)

J=—= k=1i=-w

In order to achieve perfect reconstruction, Malvar (1992) has showed that the filter

banks {H . (Z)} and {G,((Z)} must satisfy the following condition:

S S by (M — g, (n=ib) = S(n j— D)

k=1 {=—ct

so that,
x'(n)= Y x(j)d(n—j—D)=x(n—D)

J=—ee

This suggests that when the above condition is satisfied, the overall effect of the
subband coding process is simply equivalent to introducing a delay into the original
signal. This result is in fact consistent with those presented by Kim (1993), where a

different analytical approach has been undertaken.

As mentioned earlier, the decimation process in subband coding plays a key role in
reducing subband information associated with individual subband signals. However,
the ultimate compression gain of subband coding is in fact achieved by compressing
each individual subband signal with an appropriate bit allocation scheme which takes
into account not only statistical redundancy in subband signals but also psycho-visual
deficiency of human visual system. As such, it allows more bits to be allocated to the

lower subbands because of their perceptually importance and less to the higher ones.

Recent studies of human visual characteristics in perceiving visual images have
revealed the possibility of achieving high image compression with minimal image
impairment using subband coding (Kim, 1993). Specifically, it has been found that
human visual system seems to exhibit LP filtering in the temporal domain and BP in
the spatial domain. Therefore, subband coding presents a sensible approach because
it offers an efficient way to exploit this result, in which more emphasis is placed on

lower bands while components of higher bands can be progressively eliminated.

As an alternative approach, discrete wavelet coding can be applied equally well to

image compression applications. From the theoretical point of view, discrete wavelet

23

coding can be considered as a special form of subband coding with a logarithmic
decomposition tree structure. The application of the logarithmic tree structure in
discrete wavelet coding enables the doubling of image resolution every time a
wavelet channel is added. Basically, the development of discrete wavelet coding has
been motivated by recent studies of human visual system modeling. Various psycho-
visual experiments have suggested that the retinal processing in human eyes uses
independent BP filters which are almost linear and have a constant relative
bandwidth of about 1 octave among them. Therefore, if one assigns a roughly
constant number of bits per octave, it is then possible to maintain equally perceived

quality across filtered channels (Vetterh et al, 1992).

The filter bank used in wavelet coding is usually constructed using a special type of
LP filter called regular filters. These regular LP filters possess the same properties of
orthogonality and linear phase as normally exhibited by subband filters. In addition,
when connected in a cascade filter/sub-sampling configuration, these filters tend to
produce a smooth equivalent impulse response. It is the smoothing feature of these
regular LP filters that results in very little energy being retained in the high bands
during the wavelet analysis process, hence significantly enhancing the performance
of subsequent compression operations. However, if the above regularity property is
not satisfied, this may result in equivalent filters with fractal impulse response, which

in turn affects the reconstruction of the signal (Vetterli et al, 1992).

2.4 Vector quantisation

2.4.1 Overview

Vector quantisation (VQ) is typically a lossy compression technique for signal
compression applications. A general coding structure of vector quantisation is
presented in Figure 2.5. Conceptually, vector quantisation can be regarded as
Shannon’s model of source coding. Its central idea is to encode signal samples as a
group instead of one at a time as in the case of scalar quantisation, resulting in a more

efficient way to exploit the redundancy among signal samples.

As Gersho & Gray (1992) have demonstrated, a regular VQ can be visualised as

having a polytopal structure in which each cell in the partition is a convex polytope.

24

For a k-dimension polytopal structure, the (k-1) dimensional faces of the cells
constitute hyperplane segments. These hyperplane segments serve as boundaries
among polytopal regions in the entire structure. In general, the number of
hyperplanes typically bounding a polytope increases very rapidly with respect to its
space dimension. This result partially explains why the complexity of VQ encoders

grows dramatically with increased vector dimension.

Codeword
index /
Input image Vector Codeword Resconstructed
NS e oBEEEE —
block X Quantiser lookup image block X'
T ?
Vector Vector
quantisation guantisation
codebook codebook

Figure 2.5: Block diagram of vector quantisation coding systems

Statistically, for the same total bit allocation, it has been proven that VQ indeed
offers better performance than scalar quantisation because its coding algorithm
allows it to exploit the redundancy among vector samples more efficiently. In
addition, it has been found that VQ is capable of offering compression gain not only
when correlation exists among vector components but also in the case where little

correlation is anticipated. Other advantages of VQ include (Gray et al, 1992).

e The ability to exploit both linear and non-linear dependency among vector

components;
e The extra freedom in choosing multi-dimensional quantiser cell shapes;
» Offering fixed coding rates in the case of conventional vector quantisation;
» The flexibility in setting codebook size and choosing arbitrary partitions;

e The simplicity of the decoding process because its decoding algorithm is basically

based on table look-up operations and requires very little computation;

e The ease of incorporating other compression techniques into its coding algorithm

to form more effective hybrid coding schemes such as transform VQ;

25

The ease of incorporating clustering techniques into its coder design process to
provide good quality codes;

Fractional bit allocation as coding bits are allocated on a vector basis; and

Image enhancement and local classification capability can be incorporated into the
vector quantisation process in a natural way by making simple modification to its

design technique. This capability can lead to significant simplification to

subsequent processing tasks.

In spite of the significant advantages that unconstrained VQ promises to deliver, its

applications in practice are somewhat limited due mainly to its implementation

difficulties. In particular, its computational complexity and storage requirement grow

exponentially with increased vector dimension and coding rate. And yet, for

applications requiring good picture quality, it is often necessary to use high vector

dimension and high bit rates. Therefore, improvements including those imposing

some constraints on VQ code structures are all necessary to make VQ a viable

approach. These improvements generally include (Chee et al, 1994) (Vetterli et al,
1992):

Developing more effective codebook generation algorithms;

Using more efficient codebooks such as those used by classified VQ or transform
VQ;
Employing faster encoding algonthm;

Achieving higher compression rate by using variable block size coding, higher

vector dimension, smaller codebooks and entropy-constrained VQ;

Making use of adaptive VQ such as mean adaptive VQ, switched codebook
adaptation, variable bit-rate VQ and adaptive codebook VQ;

Reducing the blocking effects such as using side-matched classified VQ;

Provision for progressive image transmission which can be achieved by applying

progressive image transform, multistage VQ or pyramidal VQ; and

Using other structurally constrained VQ such as lattice-based VQ, classified VQ,
TSVQ, transform VQ, predictive VQ, finite state VQ and so on.

26

2.4.2 Vector quantisation

In order to illustrate the operation principle of VQ, let us first assume 4(X,X"')20

denote a general form of distortion measure between an input vector X and its
reproduction X". It follows that an optimal vector quantiser with reference to a given

codebook shall select the code vector Y, if and only if:
d(X,Y)<d(X.Y);, Vj#i

If the codebook is fixed for all input vectors during the vector quantisation process,
then such a VQ scheme is regarded as operating in a memoryless fashion. This is in
contrast to predictive and finite state VQs which operate with a predetermined

memory model.

As a result of vector quantisation, reconstruction distortion during the decoding
process is inevitable. However, for most image compression applications, such
distortion is considered as being acceptable in exchange for high compression gain.
For this reason, the average distortion between the original input vector and its
reproduction has been commonly used as a means to evaluate the performance of

various VQ (Gray et al, 1992). Mathematically, this 1s expressed as:
D=E[d(X,X")]

If the vector process is assumed to be stationary and ergodic, then the expectation in
the above expression can be replaced by the time average, which is defined as:
= 1 :
D=d =lim=> d(X,, X))
h—=0 =1

where # denotes the total number of input vectors.

In order to provide a quantitative distortion measure between a k-dimension input
vector X and its quantised reproduction vector X', the sum of squared errors is often

used due to its mathematical simplicity and is defined as:

dX, XY= |X-X[=(X-X)(X-X")= Z(xj ~x,)

Therefore,
D= E[d(x,x")]= B |x - xT]

27

The latter expression suggests that the average distortion defined in the above
manner can be interpreted as a measure of energy or power associated with the error
signal between the original input vector and its reproduction resulted from the vector

quantisation process.

For generality, the weighted squared errors may be used and it is given by:

d (X, X)=(X-X)YWX-X")

where W denotes a symmetric and positive definite weighting matrix.

Two special cases of W are of great interest. If ¥ equals to an identity matrix, the
later expression reduces to the normal sum of squared errors. However, if W 1s a
diagonal matrix with positive diagonal element w;, the above expression describes the
simplest form of weighted squared errors and can be rewritten as:
d (X, X)=(X-XYW(X-X")= Zk:wj(x_}. —;rc:,.)2
J=1

The computation of distortion measures generally falls into two categories, namely,
design distortion and test distortion. In general, design distortion is associated with
that incurred in quantising the vector {raining set with the resulting codebook. This
performance measure is sometimes called the “inside the training set” distortion. By
contrast, test distortion refers to that incurred in quantising vectors which do not
belong to the training set using the same codebook. This measure is referred to as the

“outside training set” distortion.

Due to mathematical convenience, the peak signal-to-noise ratio (PSNR) is
commonly quoted as a distortion measure for evaluating reconstructed image quality

and is defined as:

2
PSNR =10log,, LS
MSE

where MSE denotes the mean squared error of the quantisation process and is given

by:

MSE = E[i—d(X,X’)} - E[%ij(xj *-x;-)z:|

28

It should be noticed that the above expression is only applicable to images with 8-bit
pixel representation because it assumes image pixel values vary in the range from 0
to 255. For this reason, a peak signal value of 255 has been used in the calculation of

PSNR.

2.4.3 Shannon’s rate-distortion theorem

Let {x,} denote a sequence of random variables generated by a discrete time source
and g define the probability property of {x,}. It follows that for block-based
compression systems, consecutive source blocks can be represented as (Gray et al,
1976):

XY =(x,, %0 os Xp s
where % refers to the index of random variables in the sequence {x,} and Af denotes

the dimension of the source block.

Due to the vector quantisation process, consecutive source blocks are mapped into
consecutive reconstructed blocks X'} . In order to ascertain compression gains, it is

necessary that the allowed set for the reconstructed blocks be much smaller than that

for the source blocks

Furthermore, Shannon assumed that a tractable mathematical distortion measure such
as mean squared error or Hamming distance exists for assessing the distortion of the

vector quantisation process, which is represented by:
M M 1 -
pXYX == p(x,x')
M S

In this way, the average distortion of a code can be determined by evaluating the

expectation of statistical average over 4, that 1s,
pAC)=E[p(XY, X))
and its coding rate is determined by:

1
RO =L tog,|c]

where (represents the vector quantisation codebook and ||Cndenotes the size of the

codebook in terms of a finite number of codewords.

29

Having established the distortion and coding rate for vector quantisation process,
Shannon suggested that two approaches are possible for determining the optimal
attainable performance of a vector quantiser. They are generally referred to as the
rate-distortion and the distortion-rate principles. In the former case, the maximum
allowable average distortion of the vector quantisation process is constrained while

the coding rate is minimised. Mathematically, this condition can be expressed as:
r,(d)=1nf r (d, M)
M
where,
r(d,M)=_if R(C)

Cip(C)=d

and inf is a Greek abbreviation for infimum, meaning the lower bound of a function.

Similarly, in the latter approach, the coding rate is constrained while the resulting
average distortion of the vector quantisation process is minimised. This relationship
can be expressed as:

J,(R)= me o, (R,M)
where,

o (R,M)= inf p,(C)

C:R{C)=R

In general, the distortion-rate approach is more favourable because n most
communications systems the rate constraints are well defined, whereas the required

average distortion is rarely precisely known.

Shannon and others have shown that a rate-distortion function R, (d) and its inverse
or distortion-rate function D,(R) exist such that if the source is stationary and
ergodic then the following relationship is satisfied:

o,(R)=D,(R) and r,(d)=R,(d)
These functions are collectively referred to as Shannon’s rate distortion theorem. For
a given source and error fidelity criterion, the minimum possible transmission rate is
governed by Shannon’s rate-distortion function. Conversely, it has been shown by

Malvar (1992) that for a stationary and ergodic source with a Gaussian probability

density function, its theoretical distortion-rate function is given by:

DRy=2*ylo!]

30

where p, ando, refer to the spectral flatness and the variance of the source,

respectively. For ideal vector quantisation operating at an average rate of R
bits/sample, it has been found that its distortion-rate function is given by:

DVQ(R) — 2—2R 0_'2 — D(R)

X 2
X

2.4.4 Optimality conditions for vector quantisation

One of the key issues conceming the design of a vector quantiser is its optimality. In
order to achieve this, it is necessary that a design technique must satisfy at least three
conditions of optimality (Gersho & Gray, 1992). These conditions are the nearest
neighbour condition, centroid condition, and zero probability boundary condition.

Mathematically, these conditions can be expressed as follows:
1. Nearest neighbour condition:
R c{X:d(X.1)<d(X.Y), V) ;&i}
Where d(X,Y)and d(X,Y;) denote the distortion measures between the input

vector X and code vectors ¥, , Y, of a reference codebook, respectively.

I

2. Centroid condition:
Y, = Cent(R,) = mjjn‘l E[d(X,Y)| X eR/]
where Cent(R,) denotes a centroid selection function. In the case of squared error
distortion criterion, this expression can be further reduced to:
Y; = Cent(R)}= E[X | X €R/]
3. Zero probability boundary condition:
P(X:d(X, V) =d(X,Y,);3i j)=0
If X is a continuous random variable, this condition will automatically be satisfied

because the boundary associated with a continuous random variable has zero

volume, thus resulting in zero probability.

Although the above conditions are necessary, they are not sufficient to assure the
optimality of a vector quantiser. What these conditions really suggest is that such a

vector quantiser is guaranteed to be at least locally optimal. As a result, special care

31

should be taken when designing a vector quantiser to avoid this pitfall since locally

optimality can sometimes be very sub-optimal.

2.4.5 Nearest Neighbour Quantisation

Being an important class of VQ, a nearesf neighbour quantiser (NNQ) has a unique
feature that the partition of its vector space is completely determined by its codebook
and its distortion measure criterion. Therefore, a vector encoder using NNQ does not
require any explicit storage for geometrical description of its nearest neighbour cells
in the vector space. Instead, a conceptually simple algorithm based on the nearest

neighbour condition can be efficiently used to partition the vector space, that is,
R c{X:d(X,%)<d(X.Y), =i}

In order for the cells R, to constitute a partition, each boundary point in the vector

space must be uniquely assigned to only one cell.

A general encoding rule of NNQ is to determine a single code vector in a reference

codebook that best matches the input vector in the sense of minimum distortion. This

encoding process can be illustrated as follows:

1. Initially, set d =d,,j =1, and i = 1, where d, must be larger than any anticipated
distortion value and is typically set to the largest positive number that a

processor’s arithmetic unit can represent;

2. For each input vector X, compute the corresponding distortion D, = d{(X,Y,)
3.If D, < d ,then update d=Dj. andseti=j;

4. If j < N, increment j by 1 and go back to step 2; otherwise, the encoding process

is completed. The index of the best representative code vector and the resulting

minimum distortion are given by the values in i and d, respectively.

Since the distortion computation is performed sequentially for every code vector in
the reference codebook, the above encoding rule is referred to in literature as the
exhaustive or full search algorithm. As a consequence of this, the exhaustive search

strategy requires a fixed time to search through an entire codebook. More

32

importantly, the exhaustive search strategy is considered to be the only scheme
capable of producing optimal results in the sense of squared error distortion.
However, its high computation complexity has restricted its applications in practice.
In fact, this setback has been so severe that it has motivated the development of
various constrained VQ encoding schemes as well as the exploration of different fast

search algorithms (Buhler et al, 1987) (Gray et al, 1992) (Kolagotla, 1993).

2.4.6 Structurally constrained vector quantisers

For normal vector quantisation with exhaustive search strategy, the required
codebook storage space in words and the search complexity in terms of number of
operations per input vector are both proportional to AN = &2, where k, N and r
denote input vector dimension, total codebook size, and coding rate in bits/vector
component, respectively. As such, this reveals that the search complexity and
memory space requirement grows exponentially with the product of vector
dimension and coding rate. For this reason, constrained VQ has become a very

popular subject in recent research activities (Ngan et al, 1992) (Phamdo et al, 1993).

In general, constrained VQ compromises the performance achievable with
unconstrained VQ in exchange for computation simplicity. Due to its lower
complexity, constrained VQ is usually deployed for applications involving high
vector dimension and coding rate. This is because both of these parameters are
crucial for the realisation of better performance VQ. In particular, increasing vector
dimension enables more ctffective exploitation of statistical redundancy among vector
components as well as the extra freedom to choose higher dimension quantisation
cell shapes. Among the most prominent groups of constrained VQs are structurally
constrained VQs. This group typically includes tree structured vector quantisers,
classified vector quantisers, transform vector quantisers, multistage vector quantisers,
hierarchical and multi-resolution vector quantisers, lattice vector quantisers, and

predictive vector quantisers (Gersho & Gray, 1992).

1. Tree structured vector quantisers (TSVQ}

TSVQ are generally classified as balanced and unbalanced TSVQ. As the names
imply, balanced TSVQ refers to a particular encoding tree structure whose

33

branches all have equal lengths, whereas unbalanced TSVQ corresponds to those
whose branches have various lengths. Accordingly, this structural difference leads
to the development of fixed length and variable length codes, respectively. A
potential benefit of variable length codes is that it is possible for such codes to
outperform even full search VQs at the same coding rate. This is because full
search VQs must allocate the same number of bits to every vector, whereas
unbalanced TSVQs only devote more bits to important vectors and fewer to

insignificant ones as a result of the variable length code approach.

Depth
d=3

’(:(1,2)\... |C(1,m)‘ ’C(Z,I)HC(Q,z)! ’C(Z,m)| IC(m,l)‘ 1C(m,2)| |c'(m,m)|

Terminal nodes

Figure 2.6: Typical codebook structure of TSVQs

In the case of balanced m-ary TSVQs as shown in Figure 2.6, a search at each

stage of the tree structure effectively reduces the number of code vectors from the

previous set of candidates by a factor of m. If the codebook size N equals m* , then
a total of d m-ary search stages are required to locate the best matched code vector
from the terminal nodes of the m-ary tree. Therefore, the search complexity of
balanced m-ary TSVQs is proportional to md instead of m® as in the case of
exhaustive search VQs, hence offering a significant reduction in computation
complexity and latency time. In addition, the searching process of TSVQs can be

further accelerated by adopting VLSI implementations (Kolagotla, 1993).

However, the storage requirement of TSVQ is usually higher than that of
unconstrained VQ. This is because in addition to storing actual code vectors of the
overal] codebook at terminal nodes, TSVQs need to maintain node codebooks at
intermediate nodes of the tree. These node codebooks, normally consisting of a set
of m test vectors each, are needed to provide branching information at the

intermediate nodes during the encoding process.

34

As a special case of TSVQs, 2-ary or binary TSVQs are of particular interest in
practical implementations. This is because binary TSVQs have the lowest search
complexity among all other TSVQs. However, a major drawback of binary

TSVQs is that they require the largest storage space for their operation.

Regardless of various approaches, codeword search in TSVQs is considered as
being sub-optimal because it does not guarantee that nearest neighbour code
vectors are always chosen from their codebook. However, in practice, it has been
found that the performance loss due to the tree search constraint is relatively
small, whereas the gain in speed and computation simplicity is very significant

(Gersho & Gray, 1992).

Another advantage of TSVQs is that they have a built-in successive
approximation capability so that a coding process can be scaled easily to match
communications channel capacity. For example, if for some reasons the available
rate is reduced, the coding process simply proceeds less deeply into the tree, and

vice versa (Kolagotla, 1993).

. Classified vector quantisers

The adoption of image classes in classified VQs generally serves to delimit
features which could not be found in a certain codebook. This is because 1t would
be a lot more difficult to attain good quality images of mixed types than it is for
one or more classes having similar features. Moreover, classified VQ is noticed
for its ability to preserve the integrity of reconstructed image blocks. This
property is very important for image compression applications because it has a

significant impact on the overall perceptual quality of reconstructed images.

Conceptually, classified VQs can be regarded as one-stage TSVQs where the
branching decision is made based on a heuristic set of criteria. This heuristic set of
criteria serves to identify different attributes among input vectors. So, instead of
using a node codebook for determining the branching decision, classified VQs
rely on an arbitrary classifier for identifying a subset of the overall codebook,
from which code vectors are found to best represent the input vector. This

operation of classified VQ is illustrated Figure 2.7.

35

Input Normal VQ for Code vector
vector codebook C(i) index

!

Sub-codebooks
{C(1), C(2),...C(m)}

Classifier \

T - Sub-codebook
- index

Figure 2.7: Block diagram of classified VQ

Various algorithms can generally be used at the classifier for image block
classification. One approach is to use the gradients in the horizontal and vertical
directions as a means to determine the nature of image blocks. This classification
process typically consists of three separate test procedures relating to block
activity, orientation and position, thereby allowing various image block attributes
such as uniformity, medium activity, and horizontal/vertical/diagonal contour or
edge features to be identified (Buhler et al, 1987). Alternatively, block means,
energy levels and other relevant statistics of image blocks can also be used as

effective measures for classification purposes.

Apart from the issue of classifier, sub-codebook design represents another
significant challenge for the design of classifier VQ. An optimal codebook design
algorithm for classified VQ can be illustrated as follows:

Let C represent the overall codebook of a classified vector quantiser, that is,

c=J"¢
where M and C, denote the total number of vector classes and the sub-codebook

for the i-th class, respectively.

This implies that if N, denotes the size of each sub-codebook C;, then the size of

the overall codebook C can be determined by:
M

N=>N,
i=1

It follows that the overall average distortion D of classified VQ is given by:

36

D= Zpl Di

i=1
where p, is the probability of classifying an input vector into the i-th class and D,

denotes the average distortion of the i-th class.

As long as the vector source is stationary and ergodic, the average distortion of
mdividual vector classes can be computed as:
J
D, =—Zdj(X,Y) , VX ethei—thclass,Y €C,
B

where 7, denotes the number of training vectors for the i-th class.

1t has been shown by Ramamurthi et al (1986) that in order to obtain an optimal

set of sub-codebook sizes {Nt.'} so that the overall average distortion can be

minimised, the following expression must be satisfied:

*

D
A. =——p‘ b = const

[3 *
i

where A, represents the partial distortion per code vector of the i-th vector class
and D* denotes the average distortion of the i-th vector class with sub-codebook

size N*.

In effect, the above expression attempts to equalise the partial average distortion
per code vector across all the sub-codebooks of classified VQ as a means to
minimise the overall distortion resulting from the classified vector quantisation
process. In proposing this strategy, it is assumed that distortion caused by various
image classes is equally noticeable. Statistically, this expression also suggests that
image classes with lower classification probability tends to be allocated smaller

sub-codebook sizes and hence subject to higher average distortion, and vice versa.

. Transform vector quantisers

A typical coding arrangement of transform VQs is presented in Figure 2.8.
Theoretically, since linear transformation is a linear operation, it follows that
optimal code veciors for the above vector quantiser would correspond to the

transforms of optimal code vectors in a codebook that would otherwise be used

37

for direct vector quantisation of the input vector X without any transformation.
This implies that the average distortion of transform VQ will be exactly the same
as that of direct VQ. Therefore, this may seem to suggest that transform VQ

would offer no apparent advantages over direct VQ while adding some extra

complexity.
Linear y Vector ¥ Inverse Linear
X —| Transformation Quantisation |—— Transformation—m X’
[Tl | [Q] (1]

Figure 2.8: Block diagram of transform VQ

However, since linear transformation has the property of compacting information
in original vectors into a subset of transformed coefficients and natural images do
not contain all frequency components, it follows that a large portion of those
coefficients are likely to be so small that they can be neglected altogether without
any significant impact on picture reconstruction quality. As a result, vector
dimension in transform VQs is virtually reduced, thereby lowering its overall
complexity. In addition, because human visual perception seems to be more
sensitive in the transform domain, the application of transform VQs will facilitate
the implementation of adaptive bit allocation to transformed vectors according to

their perceptual significance.

Instead of ignoring insignificant transformed coefficients altogether as a means to
reduce vector dimension, it is also quite possible to partition the coefficients mto
several groups, and then allow separate vector quantisation to be applied to them.
In this way, low energy transform coefficients can still be separately coded at a
very low bit-rate, without taking the risk of ignoring them entirely. In addition,
since these smaller groups are normally associated with a collection of features
representing the original signal, it follows that if the transformed coefficients are
judiciously partitioned into subsets of features, called feature vectors, separate
vector quantisation can be applied with even higher efficiency. Furthermore,
partitioning transformed coefficients into smaller groups enables transform VQs
to cope well with high vector dimension applications (Plansky, 1992) (Gersho &
Gray, 1992).

38

4. Multistage vector quantisers

As the name implies, multistage VQs divide the encoding process into several
vector quantisation stages as shown in Figure 2.9. While the first stage performs a
coarse quantisation of input vectors using a relatively small codebook, vector
quantisation at subsequent stages only deals with residual vectors produced from
previous stages. As such, the coarsely quantised vector together with the quantised
residual vectors constitutes successive approximations of the original input
vectors, thereby allowing progressive reconstruction of the input. Apart from the
property of successive approximation, another key feature of multistage VQ is that

the overall distortion is constrained by the distortion committed at the final stage.

In general, since the codebook size at each subsequent stage is rapidly reduced,
the overall search complexity as well as the storage requirement of multistage
VQs is generally much lower than that of a single direct VQ subject to the same
coding rate. However, as elements of residual vectors become less and less
correlated, subsequent stages of vector quantisation tend to have rapidly
diminishing coding gains. For this reason, practical implementations of multistage

VQs are usually restricted to a few stages.

I, —» L) —» L
X X, X’
X

—> Qi) > Q) > —> Q(nl)f{?—) Qo b X
+

At A

Figure 2.9: Block diagram of multi-stage VQ

5. Hierarchical and multi-resolution vector quantisers

Hierarchical VQs are gencrally suitable for coding vectors with very high
dimensionality due to its coding efficiency. The basic idea of hierarchical VQs is
to extract feature vectors, normally of lower dimension, from the original vectors.
These feature vectors are judiciously selected so that they contains all important
attributes of the original vectors. When the feature vectors are vector quantised,

the quantised feature vectors represent an approximate description of the original

39

vectors and result in the decomposition of the original vectors into a set of lower

dimension sub-vectors, thereby increasing the efficiency of the encoding process.

Since the above decomposition process can be applied recursively to each of the
sub-vectors, this approach has led to the so-called hierarchical VQs. If, however,
the feature vectors represent sub-sampled versions of the original vectors during
the decomposition process, this variant of hierarchical VQ is called multi-
dimensional VQ because different degrees of sub-sampling are involved at various

stages during the encoding process.

. Lattice vector quantisers

A special class of VQs which attracts great interest is lattice VQs due to its regular
structure. According to Gersho & Gray (1992), a lattice can be visualised as a
regular arrangement of points in a k-dimensional space that includes the origin as
a zero vector. The term regular means that every point actually sees the same
geometrical environment as any other points in the lattice. In other words, any
translation of a set of points by adding or subtracting one lattice point from all
other points will result in the same lattice. Mathematically, a lattice in a -

dimensional space R* is a collection of all vectors of the form:

where, m, denotes arbitrary integers and {u;} represents a linearly independent set
of n vectors (usually n<k) and is normally called a basic or generating sct of the
lattice. In the case where n equals £, {u;} becomes a non-degenerate set which is

by far the most common case of interest.

A lattice VQ is simply a VQ whose codebook structure is constrained either by a
lattice or a coset of a lattice, or by a truncated version of a lattice or its coset so
that its codebook size is finite. As such, lattice quantisers are naturally chosen
when uniform quantisation is required. An important parameter of lattice VQs 1s
lattice density because a high density lattice generally leads to high bit rate and

small average distortion.

40

In general, lattice VQs are most suited for applications where a vector source 1s
memoryless with a smooth probability distribution function; quantisation
resolution is high; and overload noise is negligible in comparison with granular
noise. However, it should be noted that lattice VQs also have some setbacks.
Firstly, their highly constrained structure may compromise their optimality in the
sense of minimising average distortion for a given rate, especially when the input
signal source is not uniformly distributed. Secondly, the implicit assumption of
very high resolution makes it primarily suited for applications with high bit rate
and small distortion. And lastly, lattice VQs generally cannot be optimised using

optimising algorithms without sacrificing their regular structure (Gray, 1984).

. Predictive vector quantisers

In predictive VQ, the predictor usually takes the form of a closed-loop prediction
of X, that is,
‘?rr =P(X;:—I’Xr; zreee X,)

- ?E aem

The difference vector is then formed by:

e, :X"ﬂ)?n

As the difference vector is vector quantised, the approximation of the original
input vector X, can be determined by:
X =e + X,

where €’, denotes the quantised difference vector.

As a fundamental theorem, it has been proven that the overall reproduction error
of predictive VQs is exactly the same as the error resulting from the quantisation
of the difference signal at the vector quantiser. It is interesting to note that this
theorem holds regardless the specific nature of the predictor, that is, whether it is

linear or non-linear (Gersho & Gray, 1992).

Generally, the achievable coding gain of VQs operating on the difference signal e,
tends to be less than that operating on the original input signal. The reason to
account for this is that vector components of an error vector are in general less

correlated than those of an original vector due to the de-correlation effect of the

41

vector prediction process. However, since the vector prediction process exploits
the correlation among successive input vectors efficiently, the prediction gain
tends to more than compensate the reduction in coding gain in relation to
quantising the difference signal, resulting in an increase in the overall

performance.

2.4.7 Fast nearest neighbour encoding techniques

Apart from structurally constrained VQs, the choice of search strategy has a strong
impact on the encoding performance of the vector quantisation process, especially in
case of single codebook. While exhaustive or full search strategy is only feasible
when the codebook is small enough, sub-optimal search strategies with faster search
algorithms are better suited for most applications because of their reduced search
complexity and shorter search time (Buhler et al, 1987). In fact, the application of
fast nearest neighbour encoding techniques has been widely regarded as a sensible
approach to further accelerate the encoding speed of VQs. However, it should be
noted that the relative advantages of various fast nearest neighbour encoding
techniques tend to be implementation dependent. For instance, a technique well
suited for implementation on a programmable signal processor may not be so suitable
for implementation using application specific integrated circuits. Likewise, a
technique which scems to be very effective on a general-purpose microprocessor
actually achieves only marginal improvement on a programmable signal processor.
In addition, unlike exhaustive search which has a fixed search time, most fast nearest
neighbour encoding techniques experience a variable search time. Typical fast
nearest neighbour encoding techniques include partial distance coding algorithm, the

projection method, the k-d tree approach, and triangle inequality method.

1. Partial distance coding algorithm

Being the simplest algorithm among fast nearest neighbour encoding techniques,
partial distance coding has been developed by making slight modification to the
exhaustive search technique. Typically, the average search time of the partial
distance coding algorithm can be reduced by a factor of four. Its algorithm can be

briefly described as follows:

42

Given an input vector X of & dimensions, then:

1) As in the case of exhaustive search, codebook search using partial distance

coding algorithm is initially performed sequentially throughout the codebook;

2) As the m-th code vector has been tested, the minimum distortion 2 and the

corresponding code word index 7 would be retained;

3) To test the (m+1)-th code vector Y,,.,, a counter # is initialised to count from I
to & for squared error distortion computation purposes. Within the counting

loop, the partial distance is progressively calculated as:
Dr = Z(‘xz _y[_)z
i=1

In this way, the calculation of the partial distance can be prematurcly
terminated as soon as the condition warrants that the current code vector 1s not

the best reproduction of the input vector, that is,

e If D > D, the (m+1)-th code vector can be safely rejected without having to
compute the squared error distortion in full and the whole process can be re-

started for testing the next code vector.

o If D,< D and r < k, then one more iteration of partial distance computation

is performed and D, is tested again.

e If D, < D and r = k, then the minimum squared error distortion associated
with the current code vector and its index are recorded, that is, D=0, and

I=m+1, before proceeding to the next code vector.

The above encoding procedure indicates that the worst case search time of the
partial distance coding algorithm is no better than exhaustive full search although
it is unlikely that such a case would oceur. In addition, the partial distance coding
algorithm is only beneficial to implementations where the time incurred in
comparison operation is significantly shorter than that in multiplication.
Otherwise, it will be better off to calculate the overall squared error distortion in

its entirety.

43

2. The projection method

In the projection method, a data structure marking various subsets of candidate
code vectors to be searched is used to accelerate the codebook searching process.
This data structure is obtained by establishing for each nearest neighbour cell R,
the boundaries of the smallest hyper-rectangular region in a k-dimension space
that contains it. The minimum and maximum values of points within cell R; in the
Jj-th coordinate are found by projecting the cell onto the j-th coordinate axis. As
such, each cell will consist of a set of 2k hyperplanes that specify the faces of the
boundary hyper-rectangular region and each coordinate axis is partitioned into 2N-

1 intervals, where N denotes the number of cells.

A table is then created for each coordinate axis indicating which nearest neighbour
cells have a projection that lies in each interval. This means that a search
procedure based on scalar quantisation can be applied to individual input vector
component one at a time, thereby enabling a set of candidate cells for the input
vector to be identified. The intersection of various sets of candidate cells then
determines the final set of candidates from which a code vector can be found to
best represent the input vector. At this point, since the size of the final set is much
smaller in number than the original codebook, an exhaustive search procedure can

be efficiently applied to identify the best code vector.

The main problem with the projection method is that the task of finding the exact
projections of nearest neighbour cells are in general computationally infeasible.
Therefore, in practice, these projections are usually found by partitioning a large
training set into individual clusters and then taking the projection of each cluster

as an approximation for the actual projection of the cell itself.

3. The %-d tree approach

The k-d tree approach generally relies on a binary tree structured codebook for its
fast search algorithm. As such, a k-d tree can be regarded as a binary decision tree
of d stages depth with a hyperplane decision test at each node and a set of terminal

nodes. Each hyperplane is chosen to be orthogonal to one of the coordinate axis in

44

the 4-dimension space so that each hyperplane test effectively eliminates the

candidate terminal nodes into half.

The simplicity of this search algorithm comes from the fact that each node is
required to examine only a single vector component of the input vector so as to
make a branching decision. In most cases, this examination is carried out in the

form of comparison against a threshold value.

. Triangle inequality method

The key idea of this technique is to use some anchor points in a 4-dimensional
space as reference points from which the distances to each code vector in the
codebook are pre-computed and stored for future references. The encoder then
computes the distances between the input vector and each anchor point so that a
large number of candidate code vectors can be eliminated from subsequent nearest
neighbour search by making some simple comparisons in conjunction with the
pre-computed data. To illustrate this idea, let us examine a system with a single

anchor point A as shown in Figure 2.10.

A
T
d=!|A-C” ","‘ f' \\ d:”A-Cl”
P xay N
. ‘G
G s el
-Gl X

Figure 2.10: Triangle inequality codebook search method

Using the triangular inequality property, it follows that,
|x-c)|+]x - 4]=4,

So, for every code vector search, says C, a portion of the codebook can be
eliminated without having to calculate their actual distances. For instance, assume

that the following inequality is satisfied for the code vector C, :

d;>|x-C|+|x -4
it follows that,

45

”X_ Cj" >|x~C

This suggests that C; can be safely eliminated from subsequent nearest neighbour

search without having to actually calculate ”X -G ||

2.4.8 Vector quantisation codebook generation

Apart from the issues of structurally constrained vector quantisation and fast
encoding algorithms, the construction of vector quantisation codebooks has a
significant influence on the perceptual quality of reconstructed images (Buhler et al,
1987). In general, vector quantisation codebooks are generated using a two stage
approach. In the first stage, an initial codebook is created, followed by a codebook
optimisation process in the second stage. For initial codebook generation, various
algorithms are available such as random coding, pruning technique, pair-wise nearest
neighbour design algorithm and splitting design technique (Gray, 1984) (Gersho &
Gray, 1992):

1. Random coding

As the name implies, the operation principle of random coding technique is based
on a random process in which code vectors are randomly selected from a training
sequence or training set. As such, this simple codebook generation technique is
best suited for applications where vector source has large vector dimension and
experiences noise-like behaviour. However, because of its simple approach,
random coding technique tends to suffer a major setback, that is, the resulting

codebook is highly unstructured, thus leading to increased encoding complexity.

2. Pruning technique

In pruning technique, training vectors of a training set are selectively eliminated
as being candidates for the final codebook. This process is carried out iteratively
until a final set of the training vectors are retained for the generation of the
codebook. A typical codebook generation algorithm based on this technique can
be briefly described as follows:

1) Initially, the 1st training vector from the training sequence is added to the

codebook by default.

46

2) Subsequently, the minimum distortion between the next training vector from

the training sequence and those already in the codebook so far is evaluated.

3) If the resulting minimum distortion is less than a pre-determined threshold, go

back to step 2.

4) Otherwise, add that vector to the codebook and then go back to step 2.

For the MSE distortion measure criterion, the pre-determined threshold value is
typically chosen to be proportional to N> or 27 where N, k and r denote the
codebook size, vector dimension and the rate of the code, respectively. This result

is actually consistent with Shannon’s distortion-rate theorem.

. Pair-wise nearest neighbour design algorithm

Similar to the pruning technique is the pair-wisc nearest neighbour design
algorithm. However, the final codebook generated using this algorithm may
contain code vectors which are not directly extracted from the training sequence.
Basically, this process trics to merge vectors, which are assumed to belong to
separate clusters containing a single vector, into bigger clusters until the desired
codebook size is achieved. The codebook is then formed as a set of centroids of
these clusters, resulting in an improved initial codebook. Typically, the pair-wise

nearest neighbour design algorithm proceeds as follows:

1) Initially, the distortion of all vector pairs from a training set containing L

vectors is computed.

2) The training vector pair with the lowest distortion is. then merged, thereby

reducing the number of initial clusters to L-1.

3) Thereafter, the merging of clusters is determined by evaluating the relative
increase in average distortion when two clusters are merged. For the case of
squared error criteria, the best pair of clusters to be merged is determined as

follows:

For each pair of vector clusters, denoted as

R ={X(l=12,.,L}and R, ={X,(;I=12,..., L}

47

their contribution to the average distortion before and after the merging 1s:

L L;
A, =2 d(X, (1), cent(R)) + Y, d(X,(I),cent(R;))

A= id(Xi(l),cent(Ri UR))+ Zjd(Xj(l),cent(R,. URNZ A,

Naturally, the cluster pair that results in the minimum relative increase in

average distortion (A", ,—~A, ;) shall be merged. This process continues until the

total number of clusters corresponding to N code vectors are obtained for the

final codebook.

It should be noted that although each merging operation is optimal, there is no
guarantee that the overall process is optimal. In addition, for a large training set,
this technique is generally not feasible because of excessive computation
complexity. In particular, during the initial stage of this codebook generation
process, the requirement that the distortion of every vector pair from the training
set has to be evaluated to determine a single vector pair for the merging operation
causes substantial implementation problems. This is because the number of vector
pairs for which the distortion needs to be evaluated will grows very rapidly as a

function of (Z-1)!, therefore potentially causing the algorithm to breakdown.

4. Splitting design technique

Contrary to the pair-wise nearest neighbour design algorithm, the splitting design
technique expands a codebook to a desired codebook size by splitting its vector
clusters. Basically, the splitting process is applied selectively to individual clusters
of a training set which result in a maximum reduction in the average distortion.

This process is repeated iteratively until the desired codebook size is achieved.

As already mentioned, after an initial codebook has been created, it is often necessary
that codebook optimisation is performed on the initial codebook in order to improve
its optimality. In general, codebock optimisation can be performed using the

following techniques (Buhler et al, 1987) (Gersho & Gray, 1992).

48

1. Clustering technique

Being based on the simplest clustering technique, the Generalised Lloyd or the
Linde, Buzo and Gray (LBG) algorithm iteratively improves a codebook by
alternatively optimising the encoder for the decoder using minimum distortion or
nearest neighbour mapping criterion and the decoder for the encoder by replacing
the old codebook with a better set of generalised centroids (Linde et al, 1980). As
a result, its operation indeed satisfies the necessary conditions for optimality. In
addition, a typical feature of the Generalised Lloyd algorithm is that its operation
is based entirely on a representative set of training data, rather than a
mathematical model of the vector source. For this reason, it is essential that the
training set used in the optimisation process be judiciously selected to ensure the

generality of the final codebook.

2. Other codebook optimisation algorithms are based on simulated annealing,
deterministic annealing and stochastic relaxation techniques. The operation of
these techniques is generally very slow because of a large amount of computation
involved. However, these techniques are well noticed for their ability to generate

globally optimised codebooks.

2.4.9 Generalised Lloyd algorithm

Being one of the well-known codebook optimisation algorithms, the Generalised
Lloyd algorithm (GLA) optimises a vector codebook by modifying its code vectors
iteratively (Buhler et al, 1987). The resulting codebook is guaranteed to better satisfy
the necessary conditions for optimality, namely, nearest neighbour condition,
centroid condition, and zero probability boundary condition. As the name suggests,
this algorithm in fact generalises Lloyd’s iteration algorithm for scalar quantisation.

The generalisation for the vector case can be described as follows:

1. Given a codebook Cm={}’};i=l,...,N}, find the optimal partition among

quantisation cells to satisfy the nearest neighbour condition. If a training vector
yields a tie in its distortion measure with respect to several cells, that vector shall

be assigned to the cell having the smallest index.

49

2. Based on the centroid condition, determine an updated codebook

C.= {Cent(R‘.);z' =1,..,.N } , which contains optimal code vectors for the cells

just formed.

In many practical situations, a sample distribution based on empirical observations of
the input vector source is used for optimising an existing codebook. This is mainly
because analytical methods for evaluating the centroids using multiple integrals over
a complicated k-dimension region are generally impossible even if the probability
distribution of the input vector source has a relative simple and tractable expression.
In addition, it has been pointed out that if one designs an optimal N-point quantiser
with a sufficiently large training ratio M/N, where M denotes the total number of
training vectors in the training set, it is reasonable to expect that the quantiser is in
fact very close to optimal for the true distribution of the input random vector source

(Vaisey et al, 1992).

During the optimisation process, it is possible that empty cells are formed as a result
of satisfying the nearest neighbour condition, thus causing the computation of
centroids to break down. To deal with this computation problem, various approaches
can be adopted. For example, the largest quantisation cell can be divided into two
smaller cells to replace the empty cell. Alternatively, the cell with the highest partial

distortion is the one to be divided for empty cell replacement.

In general, the Generalised Lloyd algorithm can be briefly described as follows:

1. Firstly, let N and C, denote the number of representative or code vectors and

initial codebook, respectively. Also, a distortion threshold£>0 is chosen for

controlling the iteration process. The training sequence is denoted as

SEQ= {X si= 1...n}. And last of all, initialise the iteration parameters
m=0 & D =wx.
2. Subsequently, apply Lloyd’s iteration algorithm:

let C, = {K(k=1..N } denote an intermediate codebook after m iterations.

50

Find an optimal partition P(C,) for the training sequence SEQ so that the
distortion is minimised, that 1s,
P(C,)={S;i=1...N}
where,
X; el if dX, I)<sdX,Y); Vk #1

And then compute the mean distortion after m iterations:

Jr i

D =D(C,,P(C,)) = limin{d(_x. 0} Y eC,
no

. . . D -D o .
3. If the rate of distortion reduction %’-"—ms, the iteration process is

]

completed and C, becomes the final optimised codebook. Otherwise, the iteration

process continues.

4. Find the optimal reproduction vectors for the partition just formed and update the

intermediate codebook C,, that is,
C, = X'{P(C,)} = {cent(S,);i =1...N}
Then increment the iteration counter m by 1 and go back to step 2.

An important result of the GLA is that each application of the Lloyd iteration must
reduce the average distortion of a codebook or leave it unchanged. Practical
implementations of the algorithm have already confirmed its effectiveness. However,
one should be aware that the GLA does not have the ability to locate a globally
optima! codebook because distortion measures such as the mean squared error
generally have many local minima, and the monotonically decreasing nature of the
algorithm may lead to the nearest local minimum associated with the initial
codebook. For this reason, stochastic relaxation techniques are sometimes applied
during the codebook optimisation process in an effort to obtain a globally optimal

codebook.

The aim of incorporating stochastic relaxation techmiques into the codebook
optimisation process is to avoid the pitfall of possible local minima as sometimes
experienced by the GLA. The key idea in applying stochastic relaxation techniques is

that during each iteration process, a set of independent parameters associated with the

51

cost function of an optimisation process is perturbed in a random fashion. However,
in order to ascertain the convergence of these techniques, it is necessary that the
magnitude of such perturbation be gradually reduced with time. In the case of
codebook optimisation problems, for example, noise can be added to the training
vectors prior to each application of the Lloyd iteration, and subsequently the variance
of the noise source is gradually reduced to zero. Alternatively, after each computation
of centroid vectors, a zero-mean noise is added to each of them. The variance of the

noise is also reduced with successive iterations according to a predetermined scheme.

2.5 Proposed block adaptive classified vector quantisation
2.5.1 Variable block-size coding with adaptive block segmentation

A vector quantiser is generally considered to be adaptive if either its codebook or its
encoding arrangement changes in time in response to any variations in observed local
statistics of its input vector source (Gersho & Gray, 1992). As such, variable block-
size vector quantisation is an adaptive coding algorithm due to its block-size
adaptation. Similarly, classified VQs can be regarded as adaptive VQs due to its

switched codebook adaptation.

For most block-based compression applications, it has been found that an effective
way to further exploit the statistical dependency among image pixels is to use
variable block-size coding with adaptive block segmentation. This approach is
necessary because images generally experience different local statistical properties.
While image blocks with slow intensity variations can be adequately coded using
larger block sizes so as to increase compression efficiency, those with significant
visual features should be dealt with using smaller block sizes to reduce visual

artefacts (Buhler et al, 1987).

Being one of the highly efficient segmentation algorithms, a quadtree segmentation
strategy has been adopted in this study for the implementation of adaptive block
segmentation. As such, input images are adaptively segmented into variable sized
image blocks based on a quadtree segmentation structure. That is to say, for every
quadtree segmentation operation being applied to an image block, four image sub-

blocks with smaller block size are produced. In theory, this segmentation process can

52

be applied recursively as many times as necessary to meet segmentation
requirements. However, in order to facilitate the implementation of subsequent
vector quantisation process, only two levels of quadtree segmentation were used,

resulting in two different image block sizes of 8x8 and 4x4 as shown in Figure 2.11.

8x8 block

4 4x4 subblocks

Figure 2.11: Adaptive block segmentation structure

200 T T T T T
' 1 1
180 e --—- - - . R D N e e e _
ST+) PSR S R T e -
140 |- - - - - oo - R i R R R ric-ecooe e =
: I : :
120 - - - - - - - A - = - - - - - [S | DR [R At 4d--F--- 42 vt —
] 1
1 1

| 1 1 1 1
1000 1500 2000 2500 3000 3500

Block number

Figure 2.12: Dynamic range variation of 8x8 smooth blocks for image ‘Lenna’

To implement the proposed adaptive block segmentation process, local activity of
individual image blocks is selected as a segmentation criterion for controlling
adaptive segmentation operations. Initially, an input image is segmented into image
blocks with a uniform block size of 8x8. Local activity evaluation based on both

spatial and transform domains is then performed on these blocks to determine

53

whether quadtree segmentation is required. According to Wen et al (1993), the two
lowest-ordered AC coefficients X, and X,, of a DCT transformed block generally
provide a good indication of the nature of an original image block and therefore can
be used for local activity evaluation. Their study indicates that a threshold value of

85 is quite adequate for local activity evaluation purposes and therefore has been

adopted in this study.
Input image |
Smooth Y Ve?torl
quantisation
Block

formation {8x8)

E— Block
formation (4x4)

Partial DCT & _—

Dynamic range
Partial DCT & VQ
Dynamic range index

Classified
vector
gquantisation

Edge
classification

Figure 2.13: Illustration diagram of BACVQ

However, based on our observation, a dynamic range, which is a measure of the
difference between the minimum and maximum pixel values within an image block,
should be used as an additional measure for local activity assessment to improve the
consistency of the adaptive segmentation process. In particular, this improvement
enables low activity image blocks to be better characterised because in order to be
qualified as low activity, not only should image blocks have small values in their two
lowest-ordered AC coefficients, but they also need to have a low dynamic range.
These requirements have been observed to better reflect common visual attributes
among low activity image blocks. As shown in Figure 2.12, because a majority of

low activity blocks were observed to have a relatively low dynamic range, a

54

threshold value of 120 can be safely applied without adversely affecting the coding
efficiency of the proposed algorithm. So, for every 8x8 input image block, if both of
its lowest-ordered AC coefficients and its dynamic range are lower than their
corresponding threshold values, it will be evaluated as a low activity or smooth block
and can be coded adequately using direct VQ. Otherwise, it will be characterised as a
high activity block and will be subject to further segmentation into four smaller sub-
blocks of 4x4 block size. Each of these sub-blocks is sequentially coded using
classified VQ in order to enhance the perceptual quality of reconstructed images,
especially in terms of edge integrity. A flow chart illustrating the operation of the
proposed adaptive block segmentation algorithm is presented in Figure 2.13.

2.5.2 Classified VQ

Early studies of VQs for image compression applications have revealed that image
coding using a single optimal codebook constructed based on a large training set 1s
only effective for image blocks containing shade and non-edge features (Ngan et al,
1992). The reasoning for this is two fold. Firstly, for a typical image, since there is a
large proportion of shade and non-edge areas, a normal codebook design procedure
based on a large training set will allocate more code words to shade and non-edge
vectors and fewer to edge vectors, thus resulting in edge vectors being coded with
excessively higher distortion. Secondly, a more serious problem facing the single
codebook approach is that the widely adopted distortion measure MSE for VQ
encoding operations does not have edge preservation properties. This means that a
codebook search based on the MSE criterion does not guarantee an edge vector will
always be coded with an edge code word, hence severely affecting the perceptual
quality of reconstructed images. Fortunately, these weaknesses of VQs can be
effectively overcome by using classified VQs (Ramamurthi et al, 1986). A block

diagram illustrating the operation principle of classified VQ 1s given in Figure 2.14.

To address the former problem, normal codebook generation techniques for classified
VQs generally allow more flexible control over how sub-codebook sizes should be
allocated to different sub-codebooks in order to minimise the overall distortion. To
solve the latter problem, classified VQs indeed offer a more radical solution. During

the encoding process, since input image blocks are always classified into a specific

55

image class prior to vector quantisation using a corresponding codebook, they are
guaranteed to be coded with those codewords in the same image class. A detailed

discussion of classified VQ has already been given in Section 2.4.6.

Image : Vector Codeword
block input + Quantiser index
Image block |
Classifier
? Separate
Cl ‘ C2| e Cn |} codebooks

Figure 2.14: Classified VQ operation

Because of the significant advantages offered by classified VQ, it has been adopted
in the implementation of the proposed BACVQ algorithm. Following the adaptive
segmentation process, classified VQ is applied to code all 4x4 image sub-blocks to
take into account a higher level of detail associated with these sub-blocks, especially
those containing edges. For practical reasons, a total of 16 image classes have been
established in this study to cover major visually distinct features. These include
smooth patches, mixed texture, and edges with various orientations and positions
among image sub-blocks. Accordingly, 16 sub-codebooks have been generated to

support the operation of classified VQ.

In addition to the determination of the number of sub-codebooks, image sub-block
classification plays a crucial role in classified VQ. Not only 1s it a necessary process
during the operation of classified VQ, but it also has substantial influence on the
coding performance of classified VQ. Basically, what is required from the mmage
sub-block classification process is that it should be capable of classifying image sub-
blocks into the predefined image classes with reasonable accuracy so that they can be

coded appropriately with classified VQ using correct sub-codebooks.

2.5.3 Image sub-block classification

The classification for smooth image sub-blocks is achieved by evaluating the

dynamic range of pixel values within image sub-blocks. Based on Wen et al’s results

56

(1993), a similar threshold value of 18 was adopted in this study for this
classification. However, in order to exploit the contrast sensitivity of the human
visual system (HVS), this threshold value is allowed to vary according to the average
intensity 7, of image sub-blocks. For low intensity blocks, it has been observed that
the HVS tends to be more sensitive to the variation of pixel values, and therefore
necessitating lowering the dynamic range threshold for smooth block detection. As
such, three difference threshold values have been empirically determined for this

classification process as shown below:

o If 7, <165, threshold =18;
o If 165 <1, £220, threshold = 23; and

o If 7, >220, threshold = 28.

In addition, transform domain techniques were also adopted in this study for the
classification of other image sub-blocks. First of all, let Xj,, X, X|, and X, denote
the four lowest-ordered DCT coefficients of a transformed image sub-block. It then
follows that a mixed texture sub-block can be detected if both ratios (X, / X)) and
(X, / X,) are below a certain threshold value. This threshold value should be
judiciously selected in order to give the best indication of a mixed texture sub-block.
Specifically, our experimental results seem to indicate that a threshold value of 0.7 is

quite adequate for the detection of mixed texture sub-blocks, that is,

o | X X, . . .
o if =% and |2 <0.7 then a mixed texture block; otherwise an edge-like block.

11 11

The adoption of the above ratios is justified because they reflect the relative strength
of the vertical and horizon to the mixed frequency contents, thereby allowing the
detection of high texture sub-blocks. Experimentally, it has been observed that for a
typical high texture sub-block shown in Figure 2.15, coefficient X, of the
transformed block tends to have a much higher value than the vertical and horizontal
coefficients X;,;, X,,. Therefore, in order to detect this condition, thereby allowing the
detection of high texture sub-blocks, the above ratios have been adopted due to its

simplicity.

57

100 | 50 | 100 | 50 ()3(’30? (X(?]) 0| 0
50 | 100 | 50 | 100 (XS)) LSl 0 | 3sa
100 | 50 | 100 | 50 o o ol o
50 | 100 | 50 | 100 0 | 353 0 | 853
Original block x Transfomed block X

Figure 2.15: An original and transformed high texture block

As long as image sub-blocks fail to satisfy both smooth and high texture
classification criteria, they will be treated as edge sub-blocks. These sub-blocks are
subject to further classification into one of the 14 edge-like classes as shown in
Figure 2.16. The allocation of these edge-like classes is necessary to take into

account typical edge orientations and positions within image sub-blocks.

Vertical
- {V1-V3 classes)

____________ Horizontal
------------ (H1-H3 classes)

45-degree diagonal
(D1-D4 classes)

135-degree diagonal
(D5-D8 classes}

Figure 2.16: Various classes for blocks containing edges

During the edge classification process, the orientation of the dominant edge within an
edge sub-block is first evaluated based on transform domain techniques.
Experimentally, it has been found that the relative difference between the coefficients
X, and X,, serves as a good indication for the dominant edge orientation within an
image sub-block. For simplicity, this relative difference is compared against an
empirically chosen threshold value so that an appropriate decision about edge
orientation can be made. If the relative difference exceeds the threshold value, then

the image sub-block will be associated with either vertical or horizontal class, due to

58

the dominance of its vertical or horizontal coefficients. Otherwise, it is assumed to

contain a diagonal edge, that is,

. . § .. .
e For X, > X, ,if =%—12>067 then it is treated as a vertical image sub-block;
13

otherwise, a diagonal block results.

Xm _Xm

e ForX, <X, ,if >0.67 then it is classified into a horizontal image

01

sub-block; otherwise, a diagonal block results.

As the final stage of edge orientation detection process, a sub-block with a diagonal
edge is analysed to determine whether it contains a 45-degree or 135-degree diagonal
edge. It has been found that this classification is most efficiently implemented by
taking into account the polarity of the coefficients X;, and X,,. If both of them have
the same sign, then a 45-degree diagonal sub-block is detected; otherwise, a 135-

degree sub-block results, that is,

e if (X, X,,)>0 then it is treated as a 45-deg diagonal sub-block; otherwise, a 135-

deg diagonal block results.

Once the edge orientation has been determined, the edge position within an image
sub-block shall be evaluated based on the contrast sensitivity of the HVS in the
spatial domain. Such an evaluation enables the dominant transition in intensity across
the sub-block to be detected, thereby revealing the corresponding position of an edge.

The contrast sensitivity in this case is given by,

Contrast sensitivity = 2_><(_Il_—1’_2_)
({ +1)

where, I, and 7, represent the average intensities of pixels in adjacent columns (for

vertical edge sub-blocks), rows (for horizontal edge sub-blocks) or diagonal

segments (for diagonal edge sub-blocks).

As shown in Figure 2.16, three possible edge positions are assigned for image sub-
blocks with either vertical or horizontal edge orientations, hence resulting in three
vertical and three horizontal edge classes V1, V2, V3, H1, H2 and H3, respectively.

For image sub-blocks with either 45-degree or 135-degree diagonal edges, however,

59

four edge positions are allocated each, thus leading to eight diagonal classes starting

from D1 to D8.

2.5.4 BACVQ Codebook design

As shown in Figure 2.17, two main codebooks of equal size are empirically allocated
for the operation of BACVQ. These codebooks contains 4096 code words each. Due
to the high sensitivity of the HVS to visual artefacts in image regions containing
smooth 8x8 blocks, all code words in the first codebook are dedicated for coding
those blocks. In addition, this coding arrangement is favourable because all the code
words in this codebook have the same dimension of 8x8, therefore facilitating the

implementation of the vector quantisation process.

4096x8x8 4096x4x4
codebook codebook
Subcodebook for blocks with D8 edges
Codebook | |___.
Subcodebook for blocks with V3 edges
for8x8 | ... __.
smooth Subcodebook for blocks with V2 edges
class | | ...
Subcodebook for blocks with V1 edges
Subcodebook for blocks with high texture
Subcodebook for smooth blocks
(a) (b)

Figure 2.17: Codebook structures for BACVQ

The second codebook, however, is shared among all the possible image classes and
shall only be used for encoding 4x4 image sub-blocks. The first two sub-codebooks
in the second codebook are associated with the smooth and high-texture classes while
the remaining 14 sub-codebooks are dedicated for the edge classes. All of these sub-
codebooks are concatenated to one another to form the second codebook. This
specific arrangement of the codebook was adopted because it was anticipated that
different sub-codebooks are likely to have different sizes as a result of the optimal
sub-codebook size determination process. A well-known codebook size optimisation

algorithm has already been discussed in Section 2.4.6. In addition, because all sub-

60

codebooks in this experiment have the same vector dimension, this arrangement
cnables the classified VQ process to be implemented more consistently and

cfficiently.

Since the visual characteristics of the smooth and high-texture classes are quite
distinct from those of the edge classes, the sub-codebook size for these two classes
needs to be determined separately (Lee et al, 1994a). Specifically, sub-codebook
sizes of 128 and 64 were empirically allocated for encoding smooth and high-texture
image sub-blocks, respectively. These sub-codebook sizes were adopted on the
grounds that high-texture image sub-blocks can gencrally be coded with higher
distortion than smooth sub-blocks due to the masking effects of the HVS. In addition,
as far as reconstruction distortion is concerned, these small sub-codebook sizes were

observed to have minimal impact on the perceptual quality of reconstructed images.

Partial dist. per codeword

Codebook type

—B-- Partial dist before opt. —o— Partial dist. after opt.

Figure 2.18: Partial distortion among various edge-like codebooks

For the edge classes, their sub-codebook sizes have to be determined in such a way
that the overall average distortion resulting from encoding edge sub-blocks be
minimised. A highly effective principle that can be used to meet this requirement is
based on Ramamurthi et al’s work (1986) and has already been discussed in Section
2.4.6. Based on this principle, the Classified Nearest Neighbour Clustering algorithm
proposed by Kubrick et al (1990) offers a systematic approach to determine the
optimum codebook sizes for image classes containing edges. However, because its

codebook design is based on the pair-wise nearest neighbour design algorithm

61

discussed in Section 2.4.8, its computation complexity soon becomes a problem,

particularly when large codebook training sets are involved. Therefore, an alternative

approach has been proposed in this study to overcome this complexity problem.

Based on the experimental results shown in Figure 2.18, it was observed that the

average distortion resulting from using initial codebooks generally has a strong

correlation with that using optimised ones. As such, in our implementation, the

calculation of the average distortions D; was intentionally based on the initial sub-

codebooks rather than the optimised ones. This way of calculating the average

distortions was adopted throughout the codebook size optimisation process, hence

resulting in a significant reduction in computation complexity. The major steps

involved in this optimisation algorithm are briefly outlined as follows:

1.

Classify all image sub-blocks extracted from a training set into corresponding

classes to form sub-training sets for sub-codebook generation purposes.

. Set all sub-codebook sizes N, and current step sizes H, to half the size of the

corresponding sub-training sets.

. Construct all initial sub-codebooks using the pruning technique.

. Compute the average distortions D, and the partial distortions per codeword 4,

. Check the overall codebook size Z N,

If Z N, is greater than the target overall codebook size N, then reduce the size N,
of the sub-codebook that has the lowest partial distortion by half of its current step
size. Update the current step sizes /; and then go back to step 3.

If Z N, is less than N, then expand the size N, of the sub-codebook that has the

maximum partial distortion by half of its current step size. Update the current step

sizes f; and then go back to step 3.
If z N, is actually equal to N and the minimum current step size is greater than

5, then reduce the size N, of the sub-codebook having the minimum partial
distortion and expand the size N, of the sub-codebook having the maximum partial
distortion simultaneously by half of their current step sizes. Update the current

step sizes 4, and /4, and then go back to step 3.

62

6. Otherwise, the search for the optimal sub-codebook sizes is considered to be

complete.

As discussed earlier, VQ codebook generation generally consists of two phases:
initial codebook generation followed by codebook optimisation. In this study, all
initial codebooks are generated based on the pruning technique. This approach of
generating initial codebooks offers two key advantages. Firstly, since only
representative vectors with most significant distinction are chosen from the training
set for inclusion into a codebook, this approach effectively rules out the possibility
that similar code vectors be added into the codebook. In addition, it is believed that
this result also contributes favourably to the generation of optimised codebooks
during the codebook optimisation process, although this requirement of non-
repeating code word is not explicitly specified in most codebook optimisation
algorithms. Secondly, the operation of the pruning technique for initial codebook
generation is relatively simple with moderate computation and memory
requirements, therefore facilitating the overall implementation. In particular, given
the fact the codebook sizes of classified VQ sub-codebooks need to be iteratively
optimised, the computation simplicity of the pruning technique allows the sub-

codebook size optimisation process to be carried out more efficiently.

During BACVQ coding operation, the processing of 4x4 image sub-blocks is
considered to be highly efficient due to the adoption of classified VQ, whereas that of
8x8 image blocks is computationally intensive because of the involvement of higher
vector dimension and larger codebook. However, in processing 8x8 image blocks, it
was found that the processing time could be significantly reduced by adopting an
appropriate partial search strategy. In particular, since all 8x8 image blocks are
characterised as having relatively low intensity variations, a partial search strategy
based on the average block intensity is indeed very effective. As such, following the
process of codebook optimisation, the code vectors in the resulting 8x8 codebook
were sorted in the order of ascending average intensity level in order to facilitate the
implementation of the proposed partial search algorithm. However, because
codebook search based solely on the average intensity could not guarantee to produce

best matched code vectors, a small number of adjacent code vectors with lower and

63

higher average intensity arc also included during codebook search as illustrated in
Figure 2.19. These lower and upper bounds are separately recorded in an index table
to accelerate the partial codebook search operation. For a reasonable compromise
between search results and complexity, a threshold of 30 additional code vectors was
empirically adopted for determining the lower and upper bounds of the partial code
book search operation. Compared with a full search implementation, the processing
time to compress a typical 512x512 image on a PC/486DX33 using this partial
search approach was reduced approximately from 5 minutes to I minute with a small

PSNR degradation of 0.03dB.

8x8 smooth code book

F S
Intensity(i+2) Code vectors
with higher
Intensity(i+1) intensity>=30
. - K Overall code
Intensity(i) _ f] vector search
range

Intensity(i-1)
Code vectors
Intensity(i-2) with lower

intensity>=30

Intensity(i-3)

Figure 2.19: Partial codebook search range

2.5.5 Bit allocation

Due to the adaptive segmentation scheme and the specific codebook arrangement of
BACVQ, a flexible bit allocation scheme for controlling bit allocation to codeword
indices was adopted as illustrated in Figure 2.20. For 8x8 image block coding, it can
be seen that 12 bits need to be allocated in order to uniquely identify any codeword
from the first code book which consists of 4096 codewords. In addition, one more
additional bit is required for codebook identification. As such, a total of 13 bits is

necessary for coding every 8x8 image block.

For 4x4 image sub-blocks, however, because they are always coded in groups of four
consecutive sub-blocks in a coding stream, only the codeword associated with the

first 4x4 sub-block needs to be coded explicitly. This implies that in coding the first

64

image sub-block, one more additional bit has to be allocated for the second codebook
identification purposes, in addition to the 12 bits used to uniquely identify the
corresponding codeword within the second codebook during classified VQ. For the
remaining three image sub-blocks, only 12 bits are needed for each of them. In other
words, a total of 49 bits shall be required to encode every group of four consecutive

image sub-blocks.
Bit Allocation Structure for coding BACVQ codewords

Codeword index M
for 8x8 smth blk

1 =

Codeword index 1 | 12bits I 12bits 12bits 12bits
for 4x4 blocks

Figure 2.20: Bit allocation for BACVQ code words

2.5.6 Simulation results

Being an cfficient still image compression algoritim, BACVQ has indeed
demonstrated its great potential for still image compression applications in terms of
high compression ratio, low computational complexity and high perceptual
reconstructed picture quality. Our simulation results indicate that reconstructed
images with PSNR ranging from 28.2 to 35.3dB can be achieved at a coding rate
between 0.2784 to 0.461bpp. These results are tabulated in Table 2.2 and Table 2.3
for the case of non-training and training test images, respectively. In addition, the
results from these tables confirm that a large portion of image region is characterised
as smooth areas, even the most complex one like the ‘Baboon’ containing more than
50% of smooth region. Therefore, the application of adaptive block segmentation
helps increasing the compression performance of BACVQ substantially because
potential bit savings can be easily achieved in smooth regions where larger block
sizes can be used in conjunction with VQ. In addition, a large number of 4x4 edge
sub-blocks in those tables makes it necessary to adopt adaptive block segmentation

because they are coded more efficiently using smaller block sizes.

Even though samples of original and reconstructed images shown in Figure 2.22 and

Figure 2.23 may not reveal any significant differences in terms of subjective quality

65

between the training and non-training test images, the actual grey-scale images as
observed from computer screen do confirm that higher degradation is encountered for
the case of the non-training images. This is mainly because smooth 8x8 blocks in the
non-training images are coded with significantly higher distortion than those in the
training images as indicated in Table 2.2 and Table 2.3. As a result, the blockiness
among the non-training images becomes much more noticeable, hence affecting their
perceptual quality to a great extent. In addition, the higher distortion experienced by
the smooth 8x8 blocks may suggest that there must be a significant difference in the
statistical properties associated with the smooth 8x8 blocks between the non-training
and training images. Therefore, in order to improve the robustness of BACVQ
coding algorithm, it is necessary that a more general training image sequence should
be used during the codebook training process. Apart from the blocking effects, it is
also observed that fine details in the reproduced images are not so well preserved.
This is because part of the region with fine details such as around the hat and hair
areas of image ‘Lenna’ has been misclassified as smooth 8x8 blocks instead of high
texture or edge ones by the image block classifier, hence causing the fine details in
those misclassified blocks to be lost. However, it is believed that this problem can be
fixed by fine-tuning the threshold parameters of the image block classifier and
modifying the adaptive segmentation algorithm slightly if necessary.

Apart from a few coding problems associated with 8x8 smooth block coding,
consistent results in coding 4x4 image sub-blocks have been achieved for both
training and non-training images. Table 2.2 and Table 2.3 show roughly the same
level of distortion across all the 4x4 image sub-blocks. As a result, the difference in
subjective quality in those regions containing 4x4 image sub-blocks are gencrally not
noticeable for both training and non-training images. In addition, although the
quantitative distortion in coding edge-like and high texture sub-blocks is
significantly higher than that of smooth 4x4 sub-blocks, the difference in subjective
quality among those sub-blocks is not well perceived mainly due to the ‘masking
effect’ of the HVS. This result reconfirms that high detailed sub-blocks can generally
be coded with higher distortion, and that MSE is not always adequate for measuring

subjective quality of reconstructed images.

66

Edge codebook V1 V2 V3 Hl H2 H3

Training vectors 3701 2695 2992 3370 3396 3501

Codebook size Nj 470 442 386 478 537 478

Classifying probability 0.1371] 0.11106[0.1109] 0.1249] 0.1258] 0.1297

Avg dist before opt. 3068.4] 3791.9] 3256.5] 3519.9] 4072.5; 3470.0

Partial dist before opt. 0.8953 0.9520] 0.9353] 0.9195] 0.9544] 0.9417

Avg dist, after opt. 1327.4] 19243 1599.1] 17914 21244} 1849.8

Partial dist. after opt. 0.3873 0.4831] 04593 0.4680] 0.4978} 0.5020

Edge codebook D1 D2 D3 D4 D5 D6 D7 D&
Training vectors 1118 712 743 1084 1003 652 664 1057
Codebook size Nj 162 120 133 157 148 120 122 151
Classifying probability 0.0414] 0.0264] 0.0275] 0.0402] 0.0372] 0.0242; 0.0246| 0.0392
Avg dist before opt. 37259 42798 4720.9] 3704.6] 3998.3] 4586.7] 4597.8] 35382
Partial dist before opt. 0.9528] 0.9409] 0.9772] 0.9478] 1.0040] 0.9234) 0.9272 0.9307
Avg dist. after opt. 1911.9] 2450.5] 22292] 1898.4] 2035.8] 22000 236l.1] 1924.2
Partial dist. after opt. 0.4889| 0.5387] 0.4614] 0.4857] 0.5112] 0.4429) 04762 0.4991

Table 2.1: Adaptive allocation of codebook sizes to various edge codebooks

Images QOverall results 8x8 smooth 4x4 smooth 4x4 edge 4x4 mixed

MSE | PSNR | bpp CR | Tine | Blocks| MSE | Biocks]| MSE | Blocks] MSE | Blocks| MSE
Lenna 62.69] 30.16[0.3308] 24.18] 111" 3166] 46.80] 543] 17.20] 2989] 125.03 188] 273.35
Man 9798 2822[0.3492] 22.91] 121" 3032] 80.17] 710] 14.70| 3313] 167.59] 233) 288.88

Table 2.2: Results of coding non-training images with BACVQ

Images Overall results 8x8 smooth 4x4 smooth 4x4 edge 4x4 mixed

MSE | PSNR | bpp CR | Time | Blocks{ MSE] Blocks| MSE { Blocks| MSE | Blocks| MSE
Aimplane] 33.88] 32.83| 0.3524] 22.70] 1'03"| 3009{ 1274} 813] 11.60) 34014 107.23 134 207.02
Baboon | 89.77] 28.60] 0.4613] 17.34] 128" 2216] 16.94 125] 22.66] 6387{13831] 1008] 431.08
Peppers | 37.46] 32.40|0.3392] 23.58] 105" 3105] 21.80 724] 1547] 3118| 97.66 122] 223.90
Sailboat | 55.36| 30.70] 0.3940] 20.30f 115" 2706] 2047 524] 15.18] 4792112971 244] 229.43
Spash 19.14| 35.31] 0.2865| 27.02] 058" 3489] 15.17] 1091 8.04] 1325] 68.43 12] 200.15
Tiffany | 29.02| 33.50] 0.2784] 28.74] 0'56"| 3548] 19.23 620] 14.23] 1496) £12.48 76| 334.84

Table 2.3: Resulis of coding training images with BACVQ

BACVQ| MSE PSNR BPP CR Naotes on various implementations of BACVQ

Codebook 1 (2048): Smooth 8x8 block
#1 66.87 29.87 | .3324 | 24.06 [Codebook 2 (256+256): Smooth 4x4 and mixed blocks
Codebook 3 {4096} Blocks with edges

#2 64.15 30,05 | 03414 | 23.42 |Codebook 1({4096): Smooth 8x8, smooth 4x4 and mixed blocks
Codebook 2 {(4096): Blocks with edges

#3 62.69 30,16 | 0.3308 | 24.18 {Codebook 1 (4096): Smooth 8x8 blocks
Codebook 2 (4096): Smooth 4x4, mixed and edge blocks

Table 2.4; Results obtained from various BACVQ for non-training image "Lenna"

Table 2.1 presents some statistical results relating to the process of determining
optimal sub-codebook sizes for the edge classes. It is noticed that the number of
training vectors for both vertical and horizontal edge classes is significantly higher

than those for diagonal edge classes. Therefore, more codewords are allocated to the

67

former classes in order to minimise the overall average distortion. Table 2.1 also
shows that the partial distortion per codeword in each edge class is reduced roughly
by half when initial and optimised codebooks are used in the evaluation respectively.
Such a correlation has enabled us to determine optimal sub-codebook sizes with

significantly lower computation complexity by using initial codebooks.

In this study, the operation of the BACVQ coding algorithm with various codebook
configurations has also been investigated for their effects on the overall perceptual
quality of reconstructed images, thereby enabling us to optimise the coding
performance of BACVQ. As indicated in Table 2.4, results for coding non-training
image ‘Lenna’ using three different codebook configurations are presented for
comparison purposes. It can be seen that the last codebook configuration offers the

best coding performance in terms of both coding rate and average distortion.

35

28

27

2 6 1 1 1 1 |]

0.25 0.35 0.45 0.55 0.65 0.75 0.85
Coding rate, bpp

—¢—Kim,D.S. ——Kim,JW. —&— Kim,S.H. —%— Vaisey,]. —%— Lee M.H. -—@— Curs
Figure 2.21: Various coding results for 'Lenna’ image

Finally, in order to evaluate the merit of BACVQ, results from Lee et al’s work
(1994a) are also quoted for comparison purposes. As shown in Figure 2.21, the
proposed BACVQ algorithm indeced achieves very encouraging results. Iis
performance in terms of coding rate and distortion is only slightly lower than other

high performance coding schemes. However, given the fact that the largest block size

68

employed in BACVQ is only 8x8 as opposed to 16x16 in other schemes, slightly
inferior in its coding performance is inevitable. In addition, since the coding
algorithm of BACVQ does not allow the coding rate to be changed so easily during
the coding process, this has somewhat restricted our experiment and only allowed us
to project a single result instead of a distortion curve on to the graph shown in Figure

2.21.

69

(d)

ikl i SRR (-)i it il o (f
(a), (c) and (e): Original test images of “Lemna”, “Tiffany” and “Baboon”; (b), (d) and (f): Corresponding
reconstructed images coded at coding rate/PSNR of 0.3308bpp/30.16dB, 0.3524bpp/32.83dB and
0.4613bpp/28.60dB, respectively. Only test image “Lenna” is not part of the training set.

Figure 2.22: Sample results of BACVQ coding process (set #1)

70

;5:
: (C)‘ N
(a) and (c): Original test images of *“Man” and “Airplane™; (b) and (d): Corresponding reconstructed images
coded at coding rate/PSNR of 0.3492bpp/28.22dB and 0.3524bpp/32.83dB, respectively.

Figure 2.23: Sample results of BACVQ coding process (set #2)

2.6 Huffman coding and arithmetic coding

In general, entropy coding such as Huffman or arithmetic coding is applied as the
final stage of the encoding process to remove any redundancy remaining from
preceding stages without adding any errors (Vetterli et al, 1992). This is possible
because entropy coding is basically a lossless coding algorithm. Therefore, given the
fact that entropy coding is lossless in nature and relatively simple to implement, there
would be no reason why entropy coding should not be employed in the final stage of

an overall encoding process.

71

Depending on image contents, compression gain of lossless coding techniques for
still image compression applications may range from unfavourable expansion to 4:1
optimal compression. In fact, it has been shown that the ultimate limit of the
compression gain for lossless compression techniques is totally governed by

Shannon’s source entropy (Gray et al, 1992).

Being the most popular entropy coding algorithm, Huffman coding is generally
considered as a powerful statistical encoding technique that reduces the amount of
data needed to represent a given sample. As mentioned earlier, since this is a lossless
compression technique, original data can be exactly recovered from encoded data.
Generally, a compression ratio of 2:1 can be expected from Huffman coding (Fedele

et al, 1988).

Another popular entropy coding algorithm is arithmetic coding. In arithmetic coding,
it has been shown that the average number of code symbols allocated to individual
input sample tends to converge to the entropy of the input source if an encoded
sequence is sufficiently long (Vetterli et al, 1992). As a result of this, arithmetic
coding is a coding technique that effectively matches the code symbol allocation
process to the source entropy, thereby maximising the overall compression
efficiency. Compared to Huffman coding, arithmetic coding is generally more

complicated to implement but in return offers greater compression.

2.7 Summary

Among various coding techniques, transform coding has been regarded as the longest
established coding algorithm for still image compression applications. Its advantages
in these applications have been well perceived, including the effectiveness in de-
correlating image elements, the regularity of its coding arrangements, and the ability
to exploit the deficiency of the HVS. However, transform coding also suffers some
major drawbacks, most noticeably, the blocking and ringing effects. Various forms of
linear transformation are available for transform coding implementations. While
KLT is considered as the optimal linear transformation statistically, DCT is regarded
to be the most efficient linear transformation for image compression applications. A

common feature among these forms of transformation is that they are all based on

72

orthogonal linear transformations. This particular class of linear transformation
possesses many properties which are highly desirable in image compression
applications. The adoption of separable linear transformation significantly reduces
the complexity of transform coding, especially when a multi-dimensional signal is
involved. Apart from the issue of linear transformation, the order in which transform
coefficients are quantised also has a great impact on the overall performance of

transform coding.

Another potential coding technique for image compression applications is subband
coding. In essence, this technique can be considered as a typical frequency domain
compression algorithm. Its operation principle is to decompose original input signals
into various subbands before compression process actually takes place. As such, a
filter bank is generally required for subband decomposition purposes. However, in
order to ease implementation problems and to improve reconstruction quality,
heavily constrained filter banks are to be used. As in the case of transform coding,
the adoption of separable filter banks greatly facilitates the implementation of
subband coding. Another important aspect of subband coding is concerned with the
decimation and interpolation process. While the role of the decimation process is to
overcome the problem of increased subband information as a result of the subband
decomposition process, that of the interpolation process is to facilitate the recovery of

the original signal.

From the theoretical point of view, wavelet coding can be regarded as a special
subband coding technigue in which a logarithmic decomposition tree structure is
used for decomposing input signals. Its development is primarily motivated by recent

studies of human visual system modeling.

As an alternative compression technique, vector quantisation have revealed its great
potential for image compression applications. Being considered as Shannon’s model
of source coding, VQ operates on the principle of encoding a group of signal samples
together instead of one at a time as in the case of scalar quantisation, thereby
allowing the redundancy among signal samples to be exploited more efficiently. In

addition, Shannon’s rate-distortion theorem has provided a strong foundation for the

73

studying of VQ. In fact, the advantages of VQ are well established not only by
analytical results but also by practical applications. Unfortunately, practical
implementations of VQ usually suffer some significant setbacks unless constraints

are imposed on the structure of its codes and fast search algorithms are adopted.

Another key issue concering the design of a vector quantiser is that its operation
needs to satisfy the conditions of optimality, namely, nearest neighbour condition,
centroid condition and zero probability boundary condition. Although these
conditions are necessary, they are not sufficient to assure the optimality of a vector
quantiser. At worst, they can only guarantee it to be locally optimal. Nevertheless,
these conditions have already had significant influence on the operation of nearest
neighbour vector quantisers, VQ codebook design techniques and codebook

optimisation process.

Optimum VQ usually insists on the use of large vector dimension and high coding
rate. However, the problem of this is that its codebook size and codebook search
complexity increase exponentially with the product of vector dimension and coding
rate. Therefore, for most practical applications, coding constraints are frequently
imposed on the coding structure of VQ with little sub-optimality to improve its
coding performance. In fact, this has motivated the development of a wide range of
constraint VQs and the exploration of various fast nearest neighbour search

algorithms.

As an alternative approach to improve the coding performance of VQ, BACVQ has
been proposed for still image compression applications. While its coding efficiency
is achieved mainly by applying variable block-size coding with adaptive block
segmentation, its performance in terms of the perceptual quality of reconstructed
image is significantly improved by applying classified VQ. During the adaptive
segmentation process, local activities in both the transform and spatial domains are
evaluated together in order to improve the consistency of the segmentation process.
This results in larger block size being associated with low activity blocks and smaller
one being assigned to those with high activities. For low activity blocks, the

application of VQ together with high vector dimension accounts for the high coding

74

efficiency of this algorithm because real-world images usually contains a large
portion of low activity regions. For high activity blocks, the application of classified
VQ together with lower vector dimension ensures that their visually important
features are well preserved, especially in terms of edge integrity. Apart from studying
the coding structure of BACVQ, an alternative approach has been developed to
determine the optimal codebook sizes for classified VQ sub-codebooks with edge

features.

Simulation results for BACVQ coding have indicated that reconstructed images with
PSNR ranging from 28.2 to 35.3dB have been obtained at a coding rate between 0.27
and 0.46 bit-per-pixel. Although the proposed compression algorithm offers slightly
inferior coding performance than other high performance coding schemes quoted by
Lee et al (1994a), this is likely because a smaller block size has been adopted for low

activity block coding in this study.

Now that various aspects of still image compression techniques in general and the
proposed BACVQ in particular have been studied, the next chapter will cover the
coding concept of image sequence compression. The transition of focus from still
image compressio.n to image sequence compression is embraced as a natural course
of investigation because still image compression can basically be considered as part
of image sequence compression operation. Apart from discussing some fundamental
differences between still image and image sequence compression, which arise from
the need to remove temporal redundancy in image sequences, the next chapter will
elaborate the idea of incorporating still image compression into image sequence
compression operation and examine its role in the image sequence compression
process. And lastly, the operation principle of the proposed adaptive spatial/temporal
coding algorithm for image sequence compression will be presented in conjunction

with some computer simulation results.

75

Chapter 3: Image Sequence Compression

In this chapter, the topic of image sequence compression is presented. Unlike still
image compression, image sequence compression needs to apply motion
compensated predictive coding to achieve greater compression efficiency. Various
adaptive coding algorithms have also been developed aiming at improving their
compression performance. In spite of these efforts, further improvements in coding
performance are still possible because of the complexity of the entire compression
process. In particular, scene segmentation, motion compensation and estimation
strategy and adaptive coding strategy are among the main areas attracting sigmficant

attention due to their significance in the image sequence compression process.

In this chapter, an adaptive spatial/temporal image sequence compression algorithm
is presented as an alternative algorithm for image sequence compression. In this
algorithm, an adaptive scenc segmentation scheme with significantly better scene
segmentation consistency has been developed. Improved image-block classification
and adaptive algorithms have also been proposed for variable block-size motion
compensation. An alternative motion vector estimation strategy has been established
to improve motion estimation consistency and to ease implementation issues
associated with motion estimation operation. The application of BACVQ algorithm,
developed in the previous chapter, to the intra-frame and residual frame compression

process is also discussed.

3.1 Introduction

In recent years, although the rapid advance of digital technology has already
benefited many applications in highly diversified areas, its deployment in the field of
digital television is somewhat limited due mainly to its implementation difficulties in
dealing with a huge amount of visual data. In particular, while digital video
compression has been regarded as a key technology to reduce transmission
bandwidth and mass storage requirements, its practical implementation generally
encounters enormous difficulties, especially when real-time operation is involved.
For this reason, many recent research activities have been directed to improving the

performance of image sequence compression techniques. While intra-frame coding

76

techniques such as transform coding, subband and wavelet compression, vector
quantisation, and other hybrid coding schemes discussed in the previous chapter can
be applied to remove spatial redundancy, inter-frame compression based on motion
compensated predictive coding generally offers a more efficient technique for
removing both spatial and temporal redundancy within video sequences, thereby
significantly enhancing their compression performance (AT&T, 1993) (Li et al,
1994) (Zafar et al, 1991).

For image sequence compression applications, scene segmentation 1s usually
considered as an essential operation not only to facilitate implementation but also to
improve overall compression performance (Lee & Dickinson, 1994). Although fixed
scene segmentation scheme like the MPEG standard is frequently adopted due to its
simplicity, better coding performance can normally be achieved by adopting an
adaptive scene segmentation approach (Puri & Haskell, 1992). This is because under
fixed scene segmentation, it is highly possible that scene transition picture frames
may be included within a group of pictures (GOP) structure, resulting in uncorrelated
picture segments, which in turn affects severely the efficiency of subsequent motion
compensated coding process. By contrast, adaptive scene segmentation can
effectively eliminate this problem by ensuring that scene changes are always placed
at the boundary of GOP structures. It accomplishes this by using temporal correlation
as its segmentation criterion. Recently, Lee & Dickinson (1994) have reviewed five
different schemes for evaluating temporal correlation between consecutive image
frames within an image sequence. These schemes are referred to as Difference of
Histogram (DOH), Histogram of Difference (HOD), Block Histogram Difference,
Block Variance Difference and Motion Estimation Errors. In general, the main
features that differentiate these schemes include their sensitivity to local/global

motion and computation complexity.

Although the HOD scheme offers a reasonably good measure for temporal
correlation evaluation, its application in adaptive scene segmentation operation
sometimes suffers some setbacks such as false scene transition detection and missed
scene change detection. For this reason, an improved scene segmentation criterion

called “Magnitude of HOD wvariations” has been proposed for the adaptive

77

segmentation process. Our experimental results have indicated that scene
segmentation based on this criterion indeed offers highly accurate scene transition
detection with high tolerance to spurious image activities, and yet requires virtually

the same level of computation complexity as the HOD scheme.

In addition, as a result of adopting adaptive scene segmentation with relatively long
inter-reference frame intervals, an alternative approach of progressive motion
estimation technique has been proposed for the implementation of motion
compensated predictive coding. The main advantages of this technique include
offering fixed motion search range regardless the length of inter-reference frame
intervals, allowing the motion vector ficld to be coded more efficiently, and most
importantly the ability in dealing with overlapping motion among moving objects in

an image sequence more effectively.

Basically, for image sequence compression applications, an intuitive approach to
reduce the amount of visual data in a video sequence is to apply frame skipping
techniques. These techniques are effective because successive frames within video
sequences usually differ slightly from one frame to another (Rocca & Zanoletti,
1972). Conceptually, this approach is equivalent to applying sub-sampling principle
to the temporal direction. For example, if every other frame of an image sequence 1s
discarded, then a compression gain of 2:1 shall be achieved. However, such a simple
approach usually leads to poor perceptual quality during picture reconstruction. On
the one hand, if no temporal averaging is applied during the reconstruction process,
this 2:1 temporal decimation operation will cause jerkiness appearance among
moving objects. On the other hand, if temporal averaging is applied, image blurs then

become a problem (Fedele et al, 1988) (Musmann et al, 1985).

Apart from frame skipping techniques, temporal DPCM coding can also be applied
to image sequence compression as illustrated in Figure 3.1 (Fedele et al, 1988).
Being based on the same operation principle as the conventional DPCM, temporal
DPCM coding also operates on the difference signal resulting from the prediction
process rather than on the original signal. Because the difference signal gencrally has

much lower energy than the original one, the quantisation process applied to the

78

difference signal is normally more efficient, hence leading to an overall improvement
in the performance of the image sequence compression process (Musmann et al,
1985). However, without additional modifications, it is unlikely that a simple
temporal DPCM coding would be able to function satisfactorily in compressing
image sequences, especially when those containing high motion are involved. The
ineffectiveness of simple temporal DPCM is due to the fact that the brightness of
picture elements in an image sequence is generally independent in moving areas
although the information content of images remains more or less the same. In
addition, the ineffectiveness can also be accounted for by the fact that simple
temporal DPCM coding does not take into account object movements within an
image sequence during its coding process (Rocca et al, 1972). It is for these reasons
that motion compensated DPCM coding has become increasingly popular among

image sequence compression techniques (Zafar et al, 1991).

Encoding process Decoding process

Frame

l-l“'rame . Quantiser > > >

input _ output

+
9 Frame
+ .
predictor
Frame
. <
predictor

Figure 3.1: Typical temporal DPCM coding

Being a special case of predictive coding techniques, motion compensated DPCM
coding is expected to offer significant bit-rate reduction by quantising motion
compensated prediction errors with an optimised quantiser. For image sequence
compression applications, it has been found that subjectively optimised quantisers
are in general more efficient than statistically optimised quantisers because the latter
tends to produce too many levels for small prediction errors. As a result, the
application of some forms of visual weighting functions in quantiser design has been
considered to be important, even though the optimum choice of such functions has
not been well established yet. Nevertheless, for broadcast television applications, an

optimum quantiser design shall consider visibility thresholds and provide a smallest

79

number of levels with minimal noticeable visible impairment. Apart from
subjectively optimised quantisers, adaptive quantisers are regarded as an alternative
approach for quantising motion compensated prediction errors. In this approach, a
suitable quantiser is dynamically selected based on the merit of a local activity

indicator (Musmann et al, 1985).

Due to the significance of motion compensated predictive coding in image sequence
coding, intensive studies have been conducted in an effort to further mmprove its
coding performance. Specifically, since the effectiveness of applying motion
compensated predictive coding to image sequence compression depends largely on
the accuracy of motion estimation strategy, considerable research work has been
undertaken to improve its efficiency (Zafar et al, 1991). In general, motion estimation
strategy can be classified into two broad categories, namely, pel-recursive algorithms
and block-based techniques. Although pel-recursive algorithms inherently offer a
more representative approach for estimating motion in natural scenes, their
application in practice has not been very successful due to their high computation
complexity and overheads. For block-based approach, although deformable block-
based motion estimation techniques such as Hierarchical Grid Interpolation proposed
by Huang & Hsu (1994) or Generalised Block-Matching by Seferidis & Ghanbari
(1994) are capable of handling more general types of motion such as translation,
deformation, rotation and zooming, their application is also highly restricted because
of their computation complexity. Therefore, a more common approach 1s to assume
that motion in video sequences is of translational types, thereby enabling the

development of various block matching algorithms (BMA).

As the name implies, the operation principle of BMA is based on a block matching
process among image blocks in order to determine an underlying motion vector. This
implies that for every input image block for which motion needs to be estimated, it is
assumed that there exists a single motion vector that describes the translational
motion between the current image block and a corresponding one from an adjacent
picture frame. As such, the application of BMA during motion estimation process
generally enable a considerable reduction in computation. However, due to the

assumption of uniform translational motion within individual image blocks, BMA is

80

also known to have a relatively poor performance when dealing with image
sequences experiencing complex motion. Nevertheless, it has been found that as
image block size gets smaller, the adverse effects of the uniform motion assumption
of BMA become subdued. It is for this reason that variable block size motion
compensation has become increasingly popular among image sequence compression
algorithms (Chan et al, 1990) (Lee & Crebbin, 1994b). Specifically, an improved
variable block size motion compensation scheme has been investigated in this study.
In order to achieve better adaptivity and improve coding performance, motion
estimation error has been used as a segmentation criterion during the variable block
size motion compensation process because it gives a direct indication of how
effective the motion estimation and motion compensation process 1s going to be. In
addition, provisions have been made to allow the motion compensated predictive
coding process to switch to intraframe coding mode in case of unsatisfactory motion
compensation results, This condition typically occurs when overlapping motion

among moving objects is involved.

In implementing BMA, although optimal scarch results can only be obtained with
exhaustive search, other sub-optimal search strategies usually offer a very attractive
trade-off between search outcome and computation efficiency. Their computation
efficiency is generally achieved by means of matching criteria simplification, search
point reduction or a combination of both. In particular, an improved motion
estimation (ME) strategy has been proposed in this study. Its implementation is
motivated by our observation that motion estimation errors are more noticeable in
low motion activity regions. Therefore, in order to take into account this factor, the
proposed ME strategy has been implemented based on the modified 2D search
algorithm with additional search points in the central search region. In this way, not
only does the proposed ME strategy inherit the good performance of the modified 2D
search algorithm, but it also has the capability to estimate accurately any small
motion with negligible increase in computation complexity, especially when large

block size 1s used.

For image sequence compression applications, it 1s important to notice that

reconstructed image quality can be significantly improved by taking into account the

81

deficiency of human visual system (Fedele et al, 1988). For instance, in regions of
motion, it has been found that spatial resolution can generally be lowered since
human eyes have difficulties in resolving high spatial-frequency details in motion
areas. Similarly, temporal resolution can be greatly reduced in static image regions

because only picture information in motion areas needs to be transmitted.

3.2 Human Visual System

Recent studies of human visual system (HVS) have revealed that judicious
exploitation of HVS can lead to substantial improvement in coding performance of
many still image and image sequence compression techniques. By taking advantages
of the deficiency of HVS, these compression techniques have been able to achieve
not only substantial compression gain but also significantly less noticeable
degradation in reconstructed picture quality. In general, all of these compression
techniques operate based on the same principle that visual data which are less
sensitive to or even could not be perceived by HVS are maximally compressed with
greater distortion in order to maximise compression efficiency, whereas those with
visual importance are coded with minimum distortion to enhance the overall

perceptual quality of reconstructed pictures.

In regions of motion, it has been observed that spatial resolution can be greatly
reduced since human eyes have difficulties in resolving high spatial frequency details
in motion areas (Fedele et al, 1988). Similarly, temporal resolution can be reduced in
static image areas because thesc arcas can be replenished using previously stored
visual data and hence only picture information in motion areas needs to be
transmitted. For image sequence compression applications, these observations have
enabled image sequence compression algorithms to dramatically improve their
compression gains while at the same time enhancing reconstructed picture quality. In
particular, in compressing image sequences, image regions involving high motion
activities can be coarsely compressed, whercas those with static appearance can be

replenished using previous scene information.

In addition, it has been found that HVS generally does not perceive equal changes in

luminance equally (Jain, 1981). Instead, the visual sensitivity of HVS seems to have

82

a nearly uniform response to changes in contrast, which is given as:
AL
C=logl AC= T const

where C and L denotes the contrast and luminance levels, respectively.

This result suggests that distortion in image regions with higher luminance intensity
is less noticeable than that with lower luminance intensity. As such, for better overall
compression performance, image regions with high luminance intensity shall be
compressed with higher distortion whereas those with low luminance intensity

should be coded with higher fidelity.

Furthermore, it has been observed that when a major scene change occurs, the
subjective sensitivity of HVS to visual artefacts in an image is substantially reduced
until HVS adapts itself to the new scene. This phenomenon is generally referred to as
temporal masking effects (Rocca et al, 1972). In general, temporal masking can be
classified into two broad categories, namely, forward and backward masking effects
{Lee & Dickinson, 1994). In the former case, temporal masking occurs when an
arriving stimulus acts forward in time. Whereas, in the latter case, temporal masking
takes place when subsequent stimulus affects those already happened. For
convenience, it is customary to refer the forward temporal masking phenomenon as

temporal masking effects.

One of the well established results from the study of temporal masking effects is the
principle of temporal summation, or sometimes known as Bloch's law (Lee &
Dickinson, 1994). It states that below a certain critical duration, luminance
perception of human eyes is found to be constant, provided that the product of
stimulus duration and stimulus intensity is maintained at a constant level. As such,
this phenomenon implies that it takes time for human eyes to actually iterpret the
content of images, and therefore suggesting that HVS indeed has limited temporal
resolution. This result is of particular importance to image sequence compression
applications because it enables compression algorithms to exploit temporal
redundancy among consecutive image frames of an image sequence more effectively.

In particular, it has been found that in coding image sequences, the immediate next

83

frame following a scene transition can be coarsely compressed to lower the overall

bit rate with little impact on the perceptual quality of reconstructed pictures.

Apart from forward temporal masking effects, backward temporal masking effects of
HVS can also be exploited to enhance the coding performance of image sequence
compression algorithms. Specifically, it has been found that the immediate past
frame at the instance of scene changes can also be coarsely coded. In fact, according
to Lee & Dickinson (1994), both immediate past and next frames at the instance of
scene transition can be coded at just 20% and 5% of the normal bit rate respectively

with little perceptual impairment.

3.3 Scene Segmentation

In image sequence compression, one of the key operations that needs to be performed
initially on input image sequences is scene segmentation. Its prime purpose is to
divide lengthy image sequences into GOPs of manageable lengths for subsequent
processing. This segmentation process is necessary because not only does it greatly
facilitate hardware implementation, but it also provides a mechanism allowing
correlated picture frames of an image sequence to be grouped together, thereby

enabling temporal redundancy among picture frames to be exploited more efficiently.

In order to fully eliminate temporal redundancy within an image sequence, it is
necessary that its temporal correlation be evaluated and used as a criterion for scene
scgmentation operations. As such, this adaptive segmentation process would ensure
that not only shall correlated image frames be partitioned into the same GOPs, but
boundaries of GOPs shall also be placed at the instance of scene transitions where
temporal correlation experiences a sudden disruption. Depending on the duration of

temporal correlation, this approach generally results in GOPs of variable lengths.

However, applying the above adaptive scene segmentation scheme to image
sequence compression also suffers some drawbacks. In particular, its unconstrained
scene segmentation structure causes not only implementation problems in terms of
processing hardware, but also unnecessary processing delay. This is because during

an unconstrained segmentation process, exceptionally long intervals between inter-

84

reference frames may be asserted when the duration of temporally correlated frames
is sufficiently sustained. On the one hand, processing hardware would require much
more data storage for accommedating larger GOPs. On the other hand, the
processing of these GOPs could not commence until image data for a whole GOP
have been completely acquired. It is for these reasons that unconstrained adaptive
scene segmentation schemes based solely on temporal correlation segmentation
criteria are rarely adopted in practical applications. Instead, hybrid adaptive scene
segmentation schemes based on temporal correlation segmentation criteria and

subject to a maximum segmentation length are generally more favourable.

Apart from the capability of segmenting image sequences temporally, the
computation complexity of scene segmentation schemes also needs to be taken into
account. Ideally, an efficient scene segmentation scheme should be capable of
producing consistent segmentation results with minimal computation complexity.
Recently, Lee & Dickinson (1994) have reviewed a number of scene segmentation
schemes. These schemes, with increasing computation complexity and sensitivity to
local activities, includes difference of histogram (DOH), histogram of difference
image {HOD), block histogram difference (BH), block variance difference (BV), and

motion compensation error (MCE).

In the DOH scheme, the temporal correlation or the distance between two image
frames fn and fim can be evaluated using the absolute sum of their histogram

difference, that is,

-

DU fn) = o)~ 1 0)

where, D(fn, fm) : The distance between image frames fi and fm;
L : The number of histogram levels; and

h, (), h, (i) : The i-th level histograms of image frames f# and fm

A typical example of applying the DOH scheme to temporal segmentation is to use
luminance histogram as a segmentation criterion. In general, the luminance
histogram is considered to be a very efficient index for image content. However,
because the luminance histogram approach only examines the statistics of luminance

distribution across an entire image as a whole, its application usually suffers poor

85

sensitivity to local motion activities. Therefore, its application to temporal
segmentation has the tendency not to take into account local motion activities when
assessing the level of temporal correlation among picture frames. As such, this may
adversely affect the segmentation consistency and the coding efficiency of

subsequent coding stages.

In the case of the HOD, the distance between two image frames is calculated as:

Zi E[—a,a’] hOd(I) _ Zi E[—af,cx] hod (I)

D, fim)=
U I = ST, hod® N
Where, & : The threshold for determining the closeness of a pair of pixels;
N : The total number of pixels in an image frame; and

hod(i) : The histogram of frame difference (fi-fin)

Comparing to the DOH scheme, the adoption of the HOD scheme for temporal
segmentation generally provides more sensitivity to local motion. In addition, a
useful feature of applying the HOD scheme to temporal segmentation is that its frame
distance D(fi, fm) has a strong tendency to increase monotonically when two image
frames become further apart. As such, its application is expected to improve the

consistency of the temporal segmentation process.

Being a variant of the DOH, the BH scheme is also expected to offer improved
capability in tocal motion detection. In the BH scheme, the distance between image

frames is defined as follows:

D(fn’fm) = %Zlhn(b’l) _km(bai)

where, A (b,i) and h_(b,7) denote the i-th level block histograms of the &-th blocks

in frames fr and fm, respectively.

From the above expression, it can be seen that the improvement in local motion
detection of the BH scheme comes about as a result of evaluating the DOH on a basis
of individual image blocks rather than over an entire image. As such, this effectively
eliminates the averaging effect of the DOH computation from affecting the detection

of local motion.

86

Similarly, the BV scheme can also be used to achieve improved sensitivity to local
motion and it is given by:

D(fn, fm) = %|Varn (b) — var,, (b)[
where var, () and var, (b) denotes the b-th block variances in frames frn and fm,

respectively.

As in the case of BH, the BV scheme also improves its local motion sensitivity by
confining its computation to individual image blocks. This is necessary to overcome

the averaging effect of the variance computation.

Being the best distance measurement criterion, the MCE scheme can be used to
achieve optimal temporal segmentation. Its superior performance can be attributed to
the fact that MCE actually serves as an indirect measure of temporal correlation
between image frames. Therefore, its application to temporal segmentation process is
expected to produce optimal segmentation results. However, a major drawback in
applying this measurement criterion to scene segmentation is due to its computation
complexity. This is because motion compensation by itself is a computationally
intensive process and its application just for scene segmentation purposes is hardly
justified. Mathematically, the distance measurement criterion used in the MCE

scheme is defined as follows:
D(fu, fim) = Z\fim(i. j) - Jm' (i, J)|
1%
where fin’ denotes the corresponding motion compensated predicted frame of fim and

is derived from the reference frame fn; and (i) refers to pixel coordinates within

image frames.

3.4 Motion compensated coding

3.4.1 Motion compensated predictive coding

Following the scene segmentation process, various image sequence compression
techniques are normally applied to compress picture frames in GOPs. In particular,
being a highly effective compression technique for image sequence compression,
motion compensated predictive coding is usually adopted to remove temporal

redundancy among picture frames, thereby enabling image sequence compression

87

process to achieve a very high compress gain. The application of motion
compensated predictive coding to image sequence compression is motivated by the
fact that successive picture frames in an image sequence generally differ slightly
from one frame to another (Rocca et al, 1972). More importantly, for motion
pictures, temporal redundancy usually occurs in the form of physical motion

experienced by moving objects In an image sequence.

Basically, motion compensated predictive coding operates in a similar principle as
conventional DPCM. Rather than dealing with the original signal directly, a
conventional DPCM coder operates on the difference signal as a by-product of the
prediction process. Because the difference signal usually has much lower encrgy than
the original one, the process of compressing the difference signal is generally much
more efficient. Similarly, motion compensated predictive coding also operates on the
difference image instead of the original one so as to enhance its compression
performance. However, for motion pictures, since motion is a prominent feature in all
image sequences, motion compensated predictive coding has to rely heavily on
motion compensation techniques in order to improve its efficiency in image
prediction, thereby enabling the encrgy of the difference image to be significantly
reduced and subsequent compression operations on the difference image to be highly
efficient. A typical structure of motion compensated prediction coding process is

illustrated in the Figure 3.2.

Although it is not shown explicitly in the figure, it should be noted that in forward
motion compensation, the predicted frame of the original is obtained based on an
estimate between a previously reconstructed frame and the original one. Therefore, in
order to enable the original frame to be reconstructed, motion compensated
predictive coding needs to include both the displacement vector information and the
prediction error resulting from the prediction process in its coded data stream

(Naveen & Woods, 1994).

There are several important aspects regarding the operation of motion compensation
(Li et al, 1994). Firstly, the choice of motion compensation modes determines the

capability of the motion compensation process. For block matching algorithms,

88

search strategy, block size and motion vector accuracy are among the most important
parameters that need to be taken into account because they have significant influence
on the overall performance of the motion compensation process. Secondly, in order
to eliminate the "blocking effects” as well as increase the coding efficiency, it is
necessary to model the underlying motion field accurately. In general, projection
modeling such as orthogonal projection and perspective projection provides an
effective means to model 2D temporal changes. And yet, for motion pictures,
modeling the underlying motion field could be further improved if camera motion
and object motion models can be incorporated into its operation. And lastly, although
various motion estimation techniques can be chosen depending on the specific
motion model in use, their operation basically involves very similar global concepts.
In particular, in implementing motion estimation, it is necessary to define an error

measurement criterion so that an optimal motion field can be determined.

Input Output

mage + Spatial block o Lossless soded
block %) quantiser coding stream

+
Motion
compensation
Motion < '
] . .
estimation

Figure 3.2: General coding structure of a motion compensated DPCM coder

Basically, the establishment of an optimal motion field should minimise motion
estimation errors, be of real physical meaning, and be coded with minimum
overheads. For local motion estimation, fixed region based motion estimation and
adaptive-region based motion estimation techniques can both be used.r However,
recent experimental results have indicated that the latter generally offers better
performance. In addition, the efficiency of motion compensation process can be
further improved by separating local activities from global motion. Furthermore, it is

desirable that motion compensation process is capable of dealing not only with

89

geometric transformation such as translation, zooming, panning, and shape
deformation, but also with the so-called massic transformation due to illuminance
effects on moving objects. And lastly, motion compensation process should take into
account overlapping and non-overlapping motion in order to optimise its operation

(Li et al, 1994).

In general, motion compensation process can be implemented based on block-based
forward motion estimation techniques or pel recursive algorithms (Musmann et al,
1985). In a conventional block-based forward motion estimation approach, motion is
usually estimated using block matching algorithms. As such, conventional block-
based forward motion estimation typically operates with an assumption that a single
uniform motion exists for each individual image block. Apart from block matching
algorithms, techniques based on spatial luminance gradient can also be used in
motion estimation process. In addition, integer motion displacement is frequently
adopted in block-based motion estimation techniques so as to reduce overheads in

coding motion vector field as well as to ease implementation difficulties.

By contrast, in the pel recursive approach, motion estimation is performed on a pel-
by-pel basis rather than on a block-to-block basis. Because the operation principle of
the pel recursive approach does not have to commit itself to the assumption of
uniform motion, its application is inherently more accurate, especially when complex
motion is involved in high detailed regions. Therefore, its results are generally more
representative to real motion in video sequences (Zafar et al, 1991). However, this
flexibility of the pel recursive approach does come at a high price. Because motion is
estimated down to the pixel level, the computation complexity of the pel recursive
approach is significantly higher than that of the block-based counterpart. Also, as
motion estimation is performed independently among individual pixels, this strategy
hinders itself from taking advantages of spatial correlation during motion estimation
process. Furthermore, this approach tends to involved excessive data overheads, thus

adversely affecting the overall compression efficiency.

Unlike conventional block-based motion estimation techniques, deformable block-

based motion estimation techniques offer a more effective approach for motion

90

compensation. In general, these techniques are capable of dealing not only with
translation motion in planes parallel to the image plane, but also with deformation,
rotation and zooming motions. However, a major setback in applying this approach
to real-time applications is due to its increased computation complexity. Being a
typical deformable block-based motion estimation technique, Hierarchical Grid
Interpolation (HGI) has been studied recently by Huang et al (1994). Its operation
basically relies on the manipulation of quadrangles and quad-tree segmentation. As
such, during the motion estimation process, it tries to displace grid points of the
quadrangles so that the underlying motion can be better formulated. Another
effective motion estimation scheme is the so-called Generalised Block Matching
technique (Seferidis et al, 1994). Its operation principle is based on the use of atfine,
bilinear or perspective transforms in order to deal with complex motion activitics in
natural scenes. Algorithmically, the Generalised Block-Matching motion estimation
process consists of two stages. Initially, the translational component of motion
vectors is determined by applying the traditional full-search block-matching
technique with a search range of +16 pixels/frame. Subsequently, transformation
parameters are determined by independently displacing the four corner coordmates of

the quadrilaterals within a predetermined search range.

In addition to deformable block-based motion estimation techniques, variable block-
size motion estimation techniques offer an altemnative approach to motion
compensation with significantly improved performance. Due to its segmentation
efficiency, quadtree segmentation is frequently employed for spatial decomposition
during the motion compensation process. For simple implementations, quadiree
segmentation decision can be made based on the absolute temporal difference.
However, this segmentation strategy is considered as sub-optimum because the
segmentation process is directed by the inter-frame difference rather than by the

homogeneity of moving objects (Seferidis et al, 1994).

For image sequence compression applications, it is recognised that the more accuracy
a motion compensation algorithm is capable of, the lower bit rate a coding process is
likely to achieve (Huang et al, 1994) (Chen & Pang, 1992) (Musmann et al, 1985).

This is because residual frames resulting from an efficient motion compensated

91

prediction process are in general more uniform and therefore requiring less bt
allocation to them. In fact, it has been shown that the number of bits required to
encode residual frames is proportional to the magnitude of motion estimation errors

(Wu & Gersho, 1994).

In motion compensated predictive coding, as the main objective of motion
compensation is to minimise the variance of prediction errors, this may seem to
suggest that obtaining a true motion field for underlying motion is not necessary
(Hoang et al, 1994). If for one reason or another a few prediction errors do occur in
the motion estimation process, this simply increases the magnitude of the prediction
errors. The result is that a few more bits are then required to transmit the prediction
errors, which to some extent offset their impact on the quality of reconstructed
pictures. It is for this reason that less accurate block-based motion estimation
techniques are frequently employed in motion compensated predictive coding
(Dubois, 1992). However, for applications invelving bidirectional motion
interpolation, it is desirable that motion estimation be carried out as accurately as
possible. This is because without accurate motion information, temporal interpolation

operations would be adversely affected.

3.4.2 Motion compensated interpolative coding

In addition to motion compensated predictive coding, motion compensated
interpolative coding represents another approach for implementing motion
compensated coding. Unlike motion compensated predictive coding in which image
samples are predicted from a single reference frame, motion compensated
interpolative coding reconstructs missing image samples by applying temporal
interpolation along motion trajectories established by the two enclosing reference
frames at both ends as illustrated in Figure 3.3. It is for this reason that this coding
technique is also known as bidirectional interpolative coding or bidirectional

predictive coding.

Figure 3.3 reveals that the missing sample represented by an asterisk (*} at position x
at time t can be reconstructed from the two enclosing reference frames using

temporal interpolation (Dubois, 1992), that is,

92

w(x,8) = ai(x —(1—a)dx,t,)+(1-a)i(x +adx,t,)
where,
1(x,t): a prediction of the missing sample at position x at time ¢
#(x — (1—a)dx,t,) : an estimate of #(x,¢) from previous reference frame at time ¢,;
#(x + adx,t,): an estimate of #(x,#) from next reference frame at time ¢, ; and

a : normalised distance between current and next reference frames and is given by:

In deriving the above expression, it is assumed that image objects experiences
uniform motion within the interval from ¢; to ¢,. Also, only one dimension of motion
is examined so as to demonstrate the operation principle of motion compensated
interpolative coding techniques. Nevertheless, these results can be easily extended to
cover two dimensional motion as normally encountered in image sequences as

illustrated in Figure 3.4.

Previous Next
X reference reference

A frame frame

xtadx |--------- * ------------ : :i Sl
l LT dx
X foe-aa--- e g ! ‘
x~(l-aydxr------ TIErT oo R
tl t

Previous Current Next
reference frame reference
frame frame

Figure 3.4: Predicting missing image samples using bidirectional temporal interpolation.

93

Furthermore, it should be noticed that a simple scaling scheme has been incorporated
into the above expression in order to improve the accuracy of the temporal
interpolation process. Its function is to give more weight to predictions derived from
a closer reference frame than to those from a further one. This strategy is justified
because predictions from a closer reference frame are in general more accurate and

reliable.

Although the operation principle of temporal interpolation suggests that an
interpolated picture frame can be fully reconstructed without needing any other
information except the two ending reference frames, practical implementations of
motion compensated interpolative coding usually require additional information to
avoid excessive visnal artefacts (Dubois, 1992). This is because during temporal
interpolation process, interpolation errors caused by erroncous motion vectors,
moving object occlusions and so on are not corrected. Therefore, in order to improve
the perceptual quality of reconstructed pictures, it is necessary to include both motion
compensated interpolation errors and forward/backward motion vector fields in
coded data streams. However, if motion vector fields are sufficiently accurate,
motion compensated interpolation errors tend to be negligible and therefore could be

excluded from coded data streams altogether.

3.4.3 Motion estimation strategy

As mentioned earlier, motion estimation techniques can be classified into either pel
recursive algorithms, in which motion estimation is performed on a pel-by-pel basis,
or block-based algorithms where the estimation is carried out on a block-by-block
basis. Naturally, pel-recursive algorithms offer a more representative approach in
dealing with real motion in image sequences. While the pel recursive approach may
produce better results than the block-matching counterpart, the latter often requires
much simpler computation because it operates with the assumption that all image
blocks of an image sequence exhibit uniform motion. It is for this reason that block

matching algorithms are more favourable in practical implementations.

In spite of conceptual simplicity, practical implementation of block matching

algorithms using exhaustive search strategy still requires massive computational

94

power during its operation, especially when sub-pixel or fractional motion estimation
accuracy is involved. As a result, various sub-optimal block-based motion estimation
techniques have been proposed to improve the efficiency of the motion estimation
process. Also, to improve the accuracy of block matching operations, additional
techniques such as interpolation can be applied during the motion estimation process
(Musmann et al, 1985) (Srinivasan & Rao, 1985). In addition, it should be noticed
that the problem of estimating motion vectors based on minimising some distortion
function is in fact an optimisation problem. Therefore, in order to improve the
performance of motion estimation process, joint estimation of forward and backward
motion vectors techniques such as the one proposed by Wu et al (1994) could also be
employed. This joint optimisation can be applied to the estimation process of forward
and backward motion vectors in an iterative manner and serves as an effective
mechanism to minimise the overall motion interpolation errors. However, a major

drawback of such a scheme is its increased computation complexity.

As far as matching criteria are concemned, the so-called Normalised 2D} Cross-
Correlation offers an effective estimation criterion for block displacement estimation.
Under this scheme, the displacement of an image block can be determined by the
position within a reference window, which coincides with the peak of the Normalised
2D Cross-Correlation function. This reference window is derived from a reference
frame from which motion needs to be estimated. Mathematically, the Normalised 2D
Cross-Correlation function is defined as (Musmann et al, 1985) (Kappagantula &
Rao, 1985):

]

5wk, Du, (k + p,1 +q)
1 1=1

M(p,q) - m rzk m R
‘j[z)3 uz(k,l)}[z uf(k+p,l+q)}
1

k=1 I=1 k=11i=

where, m, n: Block dimension in term of number of pels;
P, q: Shifting coordinate of motion vector;

u(k,l): Pixel value in the current image block; and

u,(k + p,/+¢g): Corresponding pixel value in the reference block

In addition, the number of search points is another important parameter that

determines the capability and computation complexity of the motion estimation

95

process. Because the search for the underlying motion vector is normally performed
within the reference search window with a dimension of ¥ pixels on each side as
indicated in Figure 3.5, an exhaustive search strategy would require a total of N

search operations given by the following expression:
N=(W-m+1)(W-n+1)

This expression suggests that the total number of search operations would grow
exponentially with respect to the search window size. Therefore, given the high
complexity of the Normalised 2D Cross Correlation computation, a large number of
search operations required in the exhaustive search strategy indeed 1mposes a
tremendous computational load on processing hardware and causes excessive

processing delay.

e

X

Figure 3.5: Window search range for motion estimation

As an attempt to speed up the motion estimation process, various sub-optimum
motion estimation schemes have been proposed. In general, the development of these
sub-optimum schemes falls into two broad categories, namely, matching criteria
simplification and search point reduction. The former involves replacing the
Normalised 2D Cross Correlation function by simpler matching criteria such as the
mean squared error or the mean absolute error. The latter is concerned with fast
search schemes such as 2D logarithmic search proposed by Jain & Jain (1981),
modified 2D search by Kappagantula et al (1985), three-step search by Koga et al.
(1981), one-at-a-time search by Srinivasan et al (1985), and so on. In spite of

apparent differences, all of these fast search schemes are based on the same

96

assumption that matching errors shall increase monotonically with respect to motion

estimation errors.

j-8 ! j+8

i-8 : — G

I L O o A e e P R R

e L L b e 009 -]

Q-9 @
A e] @ st iteration search posiiions
; B & Ind iteration search positions
R -] ® Final iteration search positions
o] Pointing to the optimal
"""""" v search position

i+8 -

Figure 3.6: Example of 2D logarithmic search strategy

Among the fast search schemes, the 2D logarithmic search strategy can be regarded
as a direct extension of the well-known 1D binary or logarithmic search. As such, for
every iteration of the 2D logarithmic search strategy, its step size in both directions 1s
reduced by half. When the step size is ultimately reduced to one, all surrounding
locations are then searched for the best representative motion vector. In effect, this
searching process proceeds coarsely initially and then refines its search progressively
as it approaches the end. A typical example illustrating the 2D logarithmic searching

process is given in Figure 3.6.

j-8 / i*+8
-8 —
@ Ist iteration search positions
i & 2nd iteration search positions

® Final iteration search positions
Pointing to the optimal
search position

i+8 —

Figure 3.7: Example of modified 2D search strategy

In order to reduce the number of search points of the motion estimation process

further, a modified 2D search technique has also been proposed. As the name

97

implies, this technique is derived directly from the original 2D algorithmic search

strategy with some modifications to its search pattern as illustrated in Figure 3.7.

j-8 / i+8
-8
@ lst iteration search positions
i B 2nd iteration search positions
® Final iteration search positions
Pointing to the optimal
search position
i+8

Figure 3.8: Example of 3-step search strategy

The operation principle of the 3-step search can be described briefly as follows: at
each iteration, eight search points around the neighbourhood are examined for the
direction of minimum distortion. Also, like the already mentioned 2D search
strategies, the step size in both directions of the 3-step search strategy Is
progressively teduced by half following ecach iteration. A typical example

demonstrating this search strategy is presented in Figure 3.8.

j-8 / i+8
-8
@ st iteration search positions
i @ 2nd iteration search positions
% Pointing to the optimal
search position
g e R

Figure 3.9: Example of modified one-at-a-time search strategy

In the one-at-a-time search scheme, the minimum in both i- and j-directions are
found in a sequential manner. Within each search, three points consisting of the two

adjacent points and a centre are examined progressively until the location of the

98

minimum direction is located. This direction is found when the location of the
smallest distortion coincides with the centre position. Once the minimum in one
direction is identified, the minimum in the other is searched in a similar fashion. This

search strategy is illustrated in Figure 3.9.

It should be noted that not every fast search algorithm would be able to locate
optimal motion vectors at the boundary of a pre-determined search window due to its
specific search pattern. For example, given a search window of *8 pixels in both
directions, while the 2D algorithmic and one-at-a-time search schemes are able to
locate optimal motion vectors up to +8 pels/frame, the modified 2D and 3-step search
schemes are only capable of searching up to +7 pels/frames. In addition, there are
large variations in the number of searching steps and search points among various
fast search schemes as shown in Table 3.1. However, for real-time hardware
implementations, the number of required sequential searching steps can be of greater
importance than the number of search points. This is because the former directly
relates to the latency time of the motion estimation process, and more importantly it

determines how effective parallel processing could be deployed to improve its search

performance.
Search strategy Search range Maximum Maximum
(pels/frame) | number of search | number ::)f search
steps points
Exhaustive or full search 18 1 289
2D logarithm search 18 8 20
Modified 2D search +7 5 21
Three-step search +7 _ 3 25
One-at-a-time search +8 16 19

Table 3.1: Maximum search steps and search points for a £8-pixel search window.

Although the objective of the above sub-optimum fast search algorithms is to obtain
an optimal motion vector that results in minimum distortion or block mismatch, they
all have tendency to converge to local distortion minima. This is because motion

vector field of image blocks may exhibit a complex contour with several local

99

minima. For this reason, alternative approaches have been proposed, which attempt
to incorporate inter-block correlation into the motion estimation process (Hsieh et al,

1990) (Zafar et al, 1991) (Zhang & Zafar, 1991).

In these alternative approaches, inter-block correlation, which can be derived from
motion vectors of adjacent blocks in the same image frame or from those of the past
frames, is used to provide useful information on the likelihood of where the optimal
motion vector resides. Apart from the benefit of slight complexity reduction, motion
vectors estimated in this way seem to be more realistic. In addition, as motion vector
fields tend to exhibit strong spatial and temporal correlation, potentially better results
can be achieved by judiciously exploiting the correlation among motion vectors in
image sequences. Not only does this lead to faster motion estimation operation, but
the consistency of the resulting motion vector field also enables it to be coded more
efficiently. In fact, it has been reported that a quadtree decomposition could be
employed to code motion vector field information, thereby achieving further bit-rate

reduction (Hoang et al, 1994).

3.5 Adaptive coding techniques

Adaptive coding techniques using quadiree segmentation have become increasingly
popular in image sequence compression applications because of its high
segmentation efficiency. In Lee and Crebbin's implementation (1994b), for example,
input image frames under intraframe coding mode are segmented into variable-sized
blocks using quadtree segmentation. All of these variable-sized blocks are
subsequently coded with classified VQ. For inter-frame coding mode, a similar
quadtree segmentation is applied to residual frames in order to separate motion
regions from stationary background. This approach results in larger block sizes being
associated with stationary background and smaller ones with motion regions. Since
the texture in stationary background areas tends to change very slowly, image blocks
in those arcas can generally be replenished from a previously reconstructed frame,
thereby enabling a high bit-rate reduction. For motion regions, however, a more
elaborate coding technique is used in order to maintain satisfactory reconstructed
picture quality. Image blocks in these regions are coded using motion compensated

predictive coding technique and classified VQ.

100

The application of classified VQ to residual image block coding in motion regions is
justified because the majority of residual image blocks in these regions are observed
to be of highly impulsive nature, and hence favouring VQ coding technique to be
used because of its non-linearity property. Transform coding techniques generally
could not achieve the same level of performance as VQ under this circumstance. In
addition, as residual blocks are segmented into smaller ones following the quadiree
segmentation process, they become increasingly similar to those image blocks
containing actual edges, thus making classified VQ a highly favourable choice (Lee
& Crebbin, 1994b).

In Chan et al's implementation (1990), however, adaptive inter-frame coding
structure is implemented using a binary segmentation scheme followed by a merging
process which is applied to neighbouring blocks at the same segmentation level.
During the segmentation process, binary segmentation decisions are made based on
the sum of square errors resulting from the motion estimation process, as opposed to
the simple frame difference in Lee and Crebbin's implementation (1994b). This
binary segmentation process is applied recursively until motion compensation errors

fall below a certain threshold or a minimum block size has been reached.

After the segmentation process, merging operation is invoked to merge those
neighbouring blocks at the same segmentation level, thereby enabling further
improvement in compression gains. In this operation, if it finds that a merged block
can be adequately approximated by a corresponding block in a previous frame, the
merging operation shall be granted. The main reason for incorporating the merging
operation into this adaptive coding algorithm is due to the fact that the segmentation
process does not normally start from the top level which is equivalent to an entire
picture. Clearly, estimating motion of an image block as large as the whole picture is
both impractical and a waste of effort. However, segmenting an image into smaller
image blocks does not necessarily result in better coding performance either. On the
one hand, while the application of smaller block size provides a higher level of
adaptivity for the coding scheme, its usage may also lower the compression
efficiency because spatial correlation among image elements is exploited less

efficiently. On the other hand, although the use of larger block size enables the

101

spatial correlation to be better exploited, its usage may violate the assumption that

image blocks shall experience uniform motion.

Apart from block size adaptation, an inter-frame coding algorithm can incorporate
both intra- and inter-frame coding modes into its coding structure in order to improve
its adaptability. As such, image blocks can be coded using etther intra- or inter-frame
coding techniques during inter-frame coding process. The choice obviously depends
on which technique offers better results or lower distortion. The operation principle

of this particular coding technique can be illustrated as follows (Chan et al, 1990):

For intraframe coding mode, assuming that the simple block average is taken as an
approximation of an input image block, that is,
~ 1
[~ fi(x) =— D fi(xy)
M (.t,y)ES,'
where M is the total number of pixels in an image block;

S; refers to the i-th block in an image; and

f;(x,y)and ﬁ (x,3) denote the actual and predicted pixel values at (x,y) .

Also, the sum of square errors (SSE) is employed as a performance measure for this

coding process and is given by:

SSE(S)= 3 [fien - Fin)|

(x,¥)es,

For inter-frame coding mode, assuming that motion compensated predictive coding
technique is applied, that is,
filx,)~ fi(x —dx, y - dy)

where (dx,dy) designates the estimated motion vector for the current block.

For comparison, the SSE in this case also needs to be evaluated and is given by:

SSE,(S)= ¥ ﬁ-(x,y)—ﬁ(x—gx,y~3y)2

(x,¥)es,

Naturally, with the aid of the above performance measure, the coding process of the
adaptive intra- and inter-frame coding algorithm should be guided by the coding
mode which leads to the least SSE. In addition, it should be noted that although the

SSE serves as an effective criterion for the above operation, a simpler measure such

102

as the mean absolute error (MAE) can also be used. In fact, it has been reported that

the MAE may produce slightly better results than the SSE.

3.6 Basic coding structures of MPEG

As a well established coding standard for motion pictures, the coding structure of
Motion Picture Experts Group (MPEG) coding algorithm can generally be divided
into two broad categorics, namely, with and without the provision of bidirectionally
interpolated or B-frames (Puri et al, 1992). When B-frames are not provided in the
coding structure, all picture frames in a GOP are coded as forward motion
compensated predicted frames (P-frame), except for the first one which 1s always
coded as an intra-coded frame (I-frame) using intra-frame coding techniques.
Because both [- and P-frames can equally be used as reference frames in this coding
arrangement, all P-frames shall be predicted progressively from their preceding

frames. This coding structure is illustrated in Figure 3.10.

VA VAR VA

IV

1 PP P P P
| |

Forward MC predicted frames

— Intra coded frame
i J

Group of pictures structure (fixed or variable)

Figure 3.10: Basic GOP frame structure for MPEG coding without B-frame inclusion

On the other hand, when B-frames are used during the coding process, the structure
of GOPs is altered to accommodate three different frame types (AT&T Technical
Journal, 1993). As in the previous category, the first frame of a GOP will be coded as
an I-frame using intra-frame coding techniques. Depending on implementations, a
number of P-frames are then marked against the remaining frames at regular
intervals. The rest are designated as bidirectionally interpolative frames (B-frame).

While P-frames can be processed using forward motion compensated prediction

103

techniques, B-frames are normally coded using bidirectionally motion compensated
interpolation techniques. As such, this particular coding arrangement enables B-
frames to be predicted from two neighbouring reference frames at both ends. The

frame structure for this coding arrangement is illustrated in Figure 3.11.

T W

L 2L B BN N

1 BB P P BBI

L Forward MC predicted frame
Bidirectionally MC interpolated frames

— Intra coded frame

| |
Group of pictures structure (fixed or variable)

Figure 3.11: Basic GOP frame structure for MPEG coding with B-frame inclusion

3.7 Proposed adaptive image sequence compression algorithm

3.7.1 Adaptive scene segmentation

As already mentioned, one of the key operations in dealing with lengthy image
sequences 1s scene segmentation. The purpose of scene segmentation is to partition
lengthy image sequences into GOPs of manageable length so that not only can
temporal redundancy within image sequences be better exploited, but it also serves to
ease hardware implementation. Also, for better segmentation results, adaptive scene
segmentation should be employed during the segmentation process. Its operation is
based on the evaluation of temporal correlation among consecutive picture frames in
order to make its segmentation decision. In general, the performance of an adaptive
scene segmentation scheme is primarily judged by how effective a scene
segmentation criterion is capable of in assessing temporal correlation among picture

frames and how efficient its computation is likely to be.

Although the HOD criterion may offer a better segmentation scheme for adaptive

scene segmentation than the DOH due to its sensitivity to local activities, ifs

104

application unfortunately failed to detect all locations of scene changes in our test
sequence. As listed in Table 3.2, this test sequence was constructed by cascading
together 8 short video clips in CIF format with different levels of local activities,
ranging from simple and low motion shots to complex and high motion scenes. The
reason for the pitfall of the HOD scheme is primarily due to the fact that
instantaneous HOD values at locations of scene changes are not necessarily higher
than those within the same video clips as noted in Figure 3.12. Therefore, if adaptive
scene segmentation is merely carried out based on a simple thresholding scheme
against the HOD readings, inconsistent detection for locations of actual scene
transitions would become inevitable. Such a segmentation scheme would be more

likely to detect a false scene transition location or to miss out a correct one

altogether.
Frame Number Description
0-60 Salesman
61-120 Claire
121-180 Miss American
181-240 Susie
241-273 Caltrain
274-313 Table Tennis
314-373 Football
374-472 Flower garden
Table 3.2: Composition of test image sequence
Variation of Histogram of Difference (HOD)
HOD

O‘A_|Llnlilﬁ:1|L4 ;...J_n_JJzL|1|w||||||w|w|\r|'||||\|

0 50 100 150 200 250 300 350 400 450 300

Frame Number

Figure 3.12: Histogram of difference for the test sequence

105

As an attempt to improve the consistency of the adaptive scene segmentation process,
a major modification has been investigated in relation to the application of the HOD
scheme. Based on our experimental data, it was observed that HOD readings for
image frames at locations of scene transition are normally much higher than those of
remaining frames. Therefore, a new scene segmentation scheme called the Magnitude
of HOD Variation (MHOD) has been proposed for the implementation of adaptive
scene segmentation and is defined as follows:
diff 1=|HOD(i) ~ HOD(i - 1)

diff 2 =|HOD(i) - HOD(i +1)
MHOD = min(diff 1,diff 2)

where HOD(i-1), HOD(i) and HOD(i+1) denote the HOD readings for the previous,
current and next frames, respectively. As it can be seen from its formulation, the
computation of the MHOD measure is in fact very efficient because apart from

normal HOD evaluation, the proposed scheme only requires a minimal amount of

additional computation with scalar arithmetic.

Magnitude of HOD variation
HOD amplitude
0.8
Wi r—-—--T-—- -t——— - - - = = - — - — - — - — - - — - — - =
Geyr—"—-1T"~—"- -t———r s - - - —
s fF—-—-t-—- -ttt ---——-""—-"—-"—""—" - - —
g4 F—-—-1T-—- — =1 -—- - rfr— rr——"—"—-"T-—"-— -7 " —
03 p—-—-1-—- -t 1T -—" -t--rr-— "7 - - — - - —
02g—-—-*F-—- --t——4-—- -t "+t -"—"—"—"—- —]
01 Scene seg.
' threshold
0 N | MR M Iy Y 1ol it VTN WX TS O 100 1) G A SO
¢ 50 100 150 200 250 300 350 400 450 500

Frame Number

Figure 3.13: Magnitude of HOD variation of the test sequence

As shown in Figure 3.13, the proposed MHOD measure indeed offers an effective
scheme for evaluating the level of temporal correlation among consecutive picture
frames of an image sequence. Specifically, 40 and 0.1 have been empirically chosen
as optimum threshold values for the computation of HOD data and for the scene
transition detection process, respectively. Accordingly, this segmentation criterion

has been able to locate all locations of scene transition correctly in the test sequence.

106

In addition, it has been found that this scheme offers a considerably wider margin,
thereby enabling thresholding schemes to operate more reliably. Most importantly,
the proposed segmentation criterion has demonstrated a high degree of tolerance to
spurious image activities. This property is highly desirable because it prevents
inconsistent scene transition detection from occurring, espectally when high detail
image sequences with high motion activities such as the 'Football' and 'Flower

garden' are involved.

Coded Sequence Frame Structure

Scene change Regular scene
detected segmentation point
Se Se Sl
,I\ ,I‘ ’I‘\
GOP(i-1) GOP(i) GOP(i+1)

Figure 3.14: Dynamic GOP structure

As mentioned earlier, adaptive scene segmentation schemes are more capable of
producing optimal temporal segmentation than those with fixed scene segmentation.
Depending on the extent of temporal correlation among picture frames, the
application of adaptive temporal segmentation would result in a dynamic GOP
structure as illustrated in Figure 3.14. However, since excessively long GOPs usually
cause processing difficulties as well as long processing delay, the use of lengthy
GOPs should be avoided. This implies that constraints have to be imposed in the
adaptive temporal segmentation process to ensure that the resulting dynamic GOP
structure does not exceed a predetermined maximum length. In other words, the
operation principle of the proposed adaptive scene segmentation scheme is based on

adaptive temporal segmentation but subject to a maximum GOP length.

Because the first frame of a GOP is always coded as an I-frame, the maximum GOP

length for this adaptive temporal segmentation process can be conveniently set to 9

107

to accommodate a maximum of 8 additional motion compensated predicted frames.
Also, in the process of determining a specific structure for GOPs, two cases are
anticipated as to whether an ending P-frame should be inserted. In the first case, if a
scene transition occurs at the first frame of the following GOP, then an ending P-
frame shall be inserted into the current GOP. All the remaining frames in between
shall then be coded as B-frames. This arrangement is necessary because such a
condition would indicate that the current and following GOPs are completely un-
correlated. So, the insertion of the ending P-frame serves not only as a separating
frame between un-correlated GOPs, but also as a reference frame for the processing

of B-frames contained in the current GOP.

In the second case, if a scene transition does not occur at the beginning of the
following GOP, the insertion of an ending P-frame becomes unnecessary because of
the temporal correlation between the current and following GOPs. As such, no P-
frame shall be inserted and all the remaining frames in the current GOP shall be
processed as B-frames. However, this coding arrangement may seem to create a
problem because normal processing of B-frames needs to refer to two reference
frames and yet the structure of the current GOP contains only one of them.
Fortunately, this problem can be easily resolved by taking into account the
correlation between the current and following GOPs. As such, this enables the first I-
frame of the following GOP to be deployed as the second reference frame for the

purpose of B-frame processing.

3.7.2 Variable block-size motion compensation

Following the adaptive scene segmentation process, image frames in GOPs shall be
coded using adaptive motion compensated coding techniques. In implementing
adaptive motion compensated coding, a variable block-size approach similar to that
proposed by Lee & Crebbin (1994b) has been adopted. However, instead of using
inter-frame difference as frame segmentation criterion, a more consistent measure
based on motion compensation errors has been employed for controlling the quadtree
segmentation process. In this way, regions with uniform motion can be handled using
larger block-size for better compression efticiency without causing excessive motion

compensation distortion. Conversely, regions experiencing complex motion activities

108

shall be dealt with using smaller block size to minimise motion compensation errors

and to improve the perceptual quality of reconstructed pictures.

VB - MC

Formation of
16x16 blocks

Y

Calculate 16x16

MEerror
v Formation Calculate v
MEerr>6000 of 8x8 = 8x8 MEerr=>>3000 BACVQ
blocks MEerror
: . Y
Coding motion < err>MEerr
vectors
- codeword
mdex
L
End

Figure 3.15: Flowchart for the proposed image sequence compression algorithm

As with most variable block-size motion compensation schemes, the proposed
algorithm was implemented using a progressive segmentation structure. As such, an
incoming image frame of an image sequence is initially segmented into uniform
square blocks of 16x16 as illustrated by the flowchart in Figure 3.15. This block size
was primarily selected as a compromise between computation complexity and
motion compensation efficiency. During forward motion compensated prediction
process, block-based motion estimation is performed sequentially on every 16x16
block with regard to a preceding reference frame. The resulting absolute motion
estimation (ME) error is then compared against a predefined threshold to determine if
further segmentation is required. If the value of this threshold is too low, more image
blocks will be subject to quadiree segmentation to produce multiple image sub-
blocks with smaller block size, thus adversely affecting the compression efficiency of
the motion compensation process. Conversely, if it is too high, fewer image blocks
will be subject to further segmentation, hence achieving better compression
efficiency. However, the use of larger block size in motion compensation may affect

the perceptual quality of reconstructed pictures because of its poorer adaptivity to

109

complex motion. For this study, this threshold value is empirically set to 6000, which
enables the motion compensation process to achieve a reasonable level of
adaptability to complex motion at the cost of a moderate reduction in compression

gain,

When further segmentation becomes necessary, a quadtree segmentation scheme is
applied to divide the current 16x16 image block into four image sub-blocks of 8x8.
Again, a similar block-based motion estimation is applied to each of them. The
resulting absolute ME error of each sub-block is then compared to a second threshold
to determine whether intra-frame coding mode based on BACVQ should be
attempted for coding it. Again, this threshold value is empirically set to 3000 so that
a rapid increase in bit rate as a result of switching to the intra-frame coding mode
could be avoided. However, even at this stage, if the absolute error resulting from the
intra-frame coding mode is comparable to or worse than the current absolute ME
error, it makes sense to reject the intra-frame coding result because its coding
requires higher bit allocation, and to resume the 8x8 motion compensated coding

Process.

3.7.3 Progressive motion vector estimation
3.7.3.1 Improved motion vector estimation strategy

During the motion compensation process, motion estimation has to be performed on
individual image blocks to identify the optimal motion vectors that minimise motion
compensation errors and possibly best represent the underlying motion. For block
matching algorithms, although the exhaustive search scheme offers an optimal search
strategy for motion vector estimation, its computation complexity grows
exponentially with increased motion vector search range (Musmann et al, 1985).
Therefore, to overcome this computational problem, other sub-optimum search
strategies such as 2D logarithmic, modified 2D, 3-step, conjugate direction and cross
scarch have been proposed (Srinivasan ct al, 1985) (Ghanbari, 1990). All of these
search strategies offer a very attractive compromise between computation complexity
and sub-optimality in performance, especially when large motion vector search range

18 involved.

110

15

Motion vector search strategy
0

-13

In this study, the Modified 2D search strategy was adopted with a search range of
+15 pixels/frame. This is because through preliminary study, it has been found that
the modified 2D search strategy offers virtually the same level of performance as the
2D and 3-step search schemes in terms of motion estimation consistency but with an
added advantage of less computation. In addition, it has been found that while
smaller motion vector search range is generally acceptable for “head-and-shoulder”
type of image sequences, larger search range of at least 15 pixels/frame proves to be

more adequate for dealing with most motion pictures.

L B e S Y N N S L B e s e B e L
R S [T Ny R Iy Oy O S) S T
L T T TR L T T
T Tt T YT FAAT AT TTITYTITICTAATETRTRETITYTYCT)ITYCTRACTeE it rE T

e e e L G v e W [WU
EE T e e e T A L T R R T B T R A R
R e L e e e e R R e e Il e o el ot B A R
O S T N I N N B R T | [T R T R T R T B I

R R R R I R T A R T e T i i T s S R
B e i B i T T D R e B e e S P T IR I S I S I S
U 1 ' 1 1 1 t L] + 1 1 1 1 1 1] "] 1 [l 1 I 1 4 1 1)

.|_|4|.||.|.||.|_..w.|.|~||.|ﬂ|_||.|_.,Hua_‘1_|.||_|_||_||_|_||_|_||_|_||_|_|J
e Y T P S
L N O T R T T T TR T B T L T T S T T T S S S T B
i hu St St e R 2l Tl e Bl Ml Il STy i e Bl o Bl el Sl Bl il Bl il Tl il Bl sl

I W O O [I [T T R U N S Ty S A (N U (U TR S
U R T T T R B T B T L R T T T T T Y B

At I Sl s Sl ol Thall st R St Sl M it Ml il Tl i el il At St el Bl llie Tt i Bl ol

WL DU Y S (Y N N [T TN (U U U Ty T O (Y M [IO
[T T T T T T R T R A L T T T T T R T T R T

Fol=t=1mt-1—4-rA-r=-tT=1-T-rq-ra4-rFr==Fr=l=t=1=1=rF =-F ~t- r -
1 1]] I 1 [}) |} U 1) 1 13] U L] 1 1 1)] 1] 1

R .u.:l_lﬂv |....v|_|_||_|_|...‘._-:_tn_t_..|_...||_|_||

T —t—r—1] T —+—t
[T A T T O I B A T T R T S T N I B
||_|q|_||_|_||_|_||_|_||_|_n|_||_|0. |O|.|_||_|_||.||_|_||_|.||_|—||.|_||

e T e B R R s L bl T R it I i o e) s T oy pu iy S W g
' 1 1 1 1 1 1 1 1 1 r 1 1 1 " ' ' 1 1 L] 1 1 1 ' 1] J]

L A F ey Bt e Sl i el et e [e Tl il Rl pnt Sl Bl iyl il Bt 2l Bl al

T e T YA QY U R T [N
T T Y S T S R T I T [T S T T T R T B S B
DO --1--1-ra-ra-T-mT-r-rrACrATr e TS Tor S S-
[Y O G Ty O P T A U U [S SO Y Y N Y T SO N[O T B B
t 1 1 1 ' L} 1 1 1 1 Ll 1 1 1 1 1 1 1 ' Ll t 1 1 ' 1 . ' 1
TFO--1-rr-racra-y=mT= = FATrATr TSI AR T

o 1 1 U U R IR [P DR G R DU I e [Aty S) Ut (O O R B
-ﬂl_l*l_ L} *_ 1 1 G 1 ."] Hu " Ll 1 1 1 .._— _..“ 1 1 4 | “l

F=i—t ==t =Im+-FA-F=-F =~ =" -FA4~F--rFr-1mt-i1=m9-rF A=+ =i-r -

..ﬂ._l SR O T T T N S T S T T T T S N S N B T A |

' 1 1 ' Ll - 1

b - + L) 1 Ll] L3
) +] 1 1 1] L]

o 1 1 Ll] E

L= ' 1 ¥ ' "

) ' ' ' ' v
o~ I]
L L L

-15
0
15

111

[Normal search points Bl Search points with minimal motion estimation
Figure 3.16: Typical search locations for the proposed motion estimation strategy

However, in order to enhance the motion estimation consistency of the modified 2D
search strategy for small motion, additional computation is performed for pixels
around the central region of the motion search domain as illustrated in Figure 3.16.
This modification is primarily motivated by our observation that motion estimation
errors in slow motion regions are gencrally more noticeable than those in fast motion
areas. As a result, by taking additional search points at the central region of the
search window, the proposed motion estimation strategy not only inherits the

performance of the modified 2D search algorithm, but also has the ability to

accurately estimate any small motion of +1 pixel/frame.

In terms of computation complexity, the proposed motion estimation strategy only
requires slightly more computation than the modified 2D algorithm, especially when
large motion search range is involved. In this study where a £15-pixel search window
is used during the motion estimation process, the maximum number of search steps
of the proposed motion estimation strategy remains exactly the same as that of the
modified 2D algorithm, but the maximum number of search points does increase
slightly from 27 to 35. Even so, this number remains significantly less than a total of

961 search points in the exhaustive search scheme.

3.7.3.2 Progressive motion estimation

In motion compensated predictive coding, motion is normally estimated with respect
to a fixed reference frame. In MPEG implementation, for example, an I-frame is used
as a fixed reference frame for the prediction of subsequent P-frames in a GOP. While
this arrangement is possible in MPEG implementation, its application in this study
has created some problems due to the adoption of significantly longer inter-reference
frame intervals. Under this circumstance, normal motion estimation techniques
would have to be performed using a significantly larger motion vector search
window so that accumulated motion across those intervals can be accounted for.
However, considering the limitation of processing hardware, motion estimation
efficiency and computation complexity, any significant increase in the size of motion
vector search windows will be impractical. Therefore, in order to overcome this, a
progressive motion estimation technique has been proposed as illustrated in Figure

3.17.

During the progressive motion estimation process, motion estimation is carried out
with respect to an immediate adjacent frame in a GOP. This implies that motion
estimation for each image frame will always be fixed to a motion search range of 15
pixels/frame, regardless the length of inter-reference frame intervals. Not only does
this simplify the implementation of motion estimation process considerably, but it

also enables the resulting motion vector field to be coded more efficiently due to

112

fixed motion vector size. In addition, unlike the telescopic search technique proposed
by Lee & Dickinson (1994), it was found that the proposed technique 1s less
susceptible to overlapping movements among image objects In an image sequence.
This is because in the telescopic search technique, motion estimation is based on a
collection of successive motion vector fields from adjacent frames in order to
determine the motion search window for the motion estimation process. By contrast,
in the proposed technique, motion is estimated directly from an adjacent predicted
frame whose overlapped regions, if any, would have been coded using intra-frame
coding mode. However, because motion is estimated progressively from a series of
adjacent frames, a major concem with the proposed technique is that its performance
may deteriorate due to the propagation of motion estimation errors. Nonetheless, this
concern is somewhat relieved by the provision of intra-frame coding mode. This
mode of coding will be deployed should motion compensation errors exceed a

predetermined threshold level.

Normal motion estimation structure

F-PF F-PF F-PF
I-frame E-PF
B-PF B-PF B-PF
E-PF: Forward predicted frame B-FF: Backward predicled frame

Progressive motion estimation structure

Vi VNl N U el N

F-PF F-PF
I-frame e F-PF
B-PF B-FF

w. 2 w_ S w___ 7

Figure 3.17: Conventional and progressive motion estimation strategies

3.7.4 Block adaptive classified vector quantisation (BACVQ)

As discussed in the previous chapter, BACVQ indeed offers an effective coding
technique for compressing still images. In this technique, an image is initially

segmented into square image blocks of 8x8 block size. Each of these blocks is then

113

subject to activity evaluation to determine whether further segmentation is required
to achieve better coding results. For low activity blocks, there is no need for further
segmentation because these blocks are characterised by relatively smooth variations
in intensity. As such, they can be coded directly using normal VQ. By contrast, 1f an
image block is detected to contain high activity features, a quadtree segmentation
scheme is applied to segment the block into four 4x4 image sub-blocks. Each of
these sub-blocks is then coded using classified VQ. Apart from computation
efficiency, classified VQ is highly capable of preserving edge integrity in
reconstructed images, thereby significantly improving the perceptual quality of

reconstructed pictures.

Apart from being used for still image compression, BACVQ can also be applied to
image sequence compression for I-frame and residual frame compression. In general,
coding I-frames does not required any major variations to the coding algorithm of
BACVQ because I-frames can be treated more or less like still images. However,
since motion picture features such as motion blurs and interlace field scanning have
different visual attributes as opposed to those normally encountered in still images,
BACVQ code-books for intraframe coding need to be recreated using the same
algorithm as described in the previous chapter in order to obtain better coding results.
Specifically, a training set of 25 image frames has been extracted from the test
sequence for codebook training purposes. Each of these training frames was selected
at a regular frame interval of 18-frames apart starting from CIF#000 in order to
ensure the generality of the training set. The results for this code-book traming

process are summarised in Table 3.3.

For residual frame compression, however, the application of BACVQ requires that
not only should a separate set of code-books be recreated but its coding algorithm
also needs to be altered slightly to take into account the differences in statistical
characteristics of residual frames. As shown in Figure 3.18, since the distribution of
pixel values in residual frames is concentrated at 127 due to scaling and shifting
operations in the formation process of residual frames, the assumption that the
variation in pixel values is less noticeable when the average intensity of image blocks

is higher is not relevant any more. As such, the provision for dynamically varying the

114

threshold value according to the average intensity during the classification process
for the detection of 4x4 smooth blocks should be removed. In addition, since the
distribution of pixel values is highly concentrated at the vicinity of 127, the
additional “dynamic range” test for the detection of 8x8 smooth blocks becomes
redundant and hence has been eliminated. Furthermore, as the size of BACVQ code-
books for residual frame coding has been reduced substantially as indicated in Table
3.4, the number of classes allocated for the operation of classified VQ during residual

frame processing needs to be reduced in order to maintain overall compression

efficiency.
Codebook Codebook Number of Avg dist Partial dist, Avg dist, A‘Tg dist
type size iterations before opt. before opt after opt. \.mth o
replacement
8x8 smooth 4096 29 5771.2 N/A 1630.19 N/A
4x4 smooth 128 21 434.83 N/A 197.17 2049
V1 edges 399 16 4434.03 1.2345 1967.85 236217
V2 edges 442 16 5603.49 1.3473 249561 3095.74
V3 edges 335 21 4996.36 1.288 2274.66 2835.05
H1 edges 496 22 4859.3 1.3969 2145.73 2661.71
H2 edges 641 16 5014.06 1.3299 2070.81 2595.6
H3 edges 531 14 4955.58 1.387 20451 2540.98
45-deg/D1 156 18 6023.77 1.3515 245452 3041.85
45-deg/D2 137 15 5815.71 1.2273 2787.07 3540.84
45-deg/D3 134 12 6217.28 1.338 2842 38 3672.64
45-deg/D4 159 14 5465.69 1.2204 2361.07 2960.12
135-deg/D5 136 15 5481.43 1.236 2766.64 3529
135-deg/D6 99 10 6498.44 1.4275 2940.99 3605.18
135-deg/D7 101 11 606545 1.3388 2949 85 3673.68
135-deg/D8 138 15 6003.44 1.3929 2515.18 3192.54
4x4 mixed 64 19 11713.41 N/A 5265.77 6140.23

Table 3.3: BACVQ codebook optimisation for intraframe coding

As far as the issue of codebook generation for residual frame coding is concemned, a
group of 8 consecutive residual frames has been extracted from the test mmage
sequence for codebook training purposes. These residual frames were obtained by
performing motion compensated prediction operation against a GOP consisting of 9
test images CIF#000-CIF#008. As a result of this operation, 8 consecutive residual
frames associated with CIF#001-CIF#008 were created and used as training images
for the codebook generation process. The reason for using § consecutive residual
frames instead of well separated residual frames during the codebook generation

process is because all residual frames are expected to have similar visual features and

115

statistical distribution of pixel values. The results for the residual code-book tramning

process are presented in Table 3.4,

Pixel Value Distribution
Probability of occurence
0.2
Residual frame
R R R S R R R
LU0 e I e
N R e i B R EEEEEEEEL DR
Original frame
0 i L —r""“""b-—""“"""‘""‘\ |
0 50 100 150 200 250 300

Pixel value
Figure 3.18: Typical pixel value distribution of original and residual frames

Codebook Codebook Number of Avg dist Partial dist. Avg dist. P\;\;ild;i
type size ticrations before opt. before opt after opt. replacement
8x8 smooth 128 39 4409.53 N/A 27219 N/A
4x4 smooth 32 3 56 N/A 32.88 51.19
Vert. edges 19 9 6600.5 8527 331328 4200.16
Hor. edges 41 13 6048.8 72.87 2389.23 2956.69
45-deg 13 9 4918.7 50.62 2208.56 2885.44
135-deg 15 9 4098.1 34.59 2654.99 3421.59
4x4 mixed 8 5 9036.71 N/A 3594.83 4737.81

Table 3.4: BACVQ codebook optimisation for residual frame processing

3.7.5 Simulation results

Figure 3.19 shows the main functional blocks of the proposed image sequence coder.
Among the most crucial operations in this coding algorithm are adaptive scene
segmentation, variable block-size motion compensation and BACVQ. Although

additional compression can normally be achieved by adding a lossless coding block

116

to the final stage of this coding structure, its omission does not affect the generality

of this study because of its independent nature.

Normal Residual
codebocks codebooks
L_\ _ 1
Image : Coded
: | N -
frame . BACVQ - » video
input - \r+ output
Scene :
change ---f--:
detection Motion
. [—{
compensation

Variable block-size

motion estimation

Figure 3.19: Block diagram of the proposed image sequence compress algorithm

Motion vector for
16x16 blocksize

Motion vector for
8x8 blocksize

Codeword index
for 8x8 smth blk

Codeword index
for 4x4 blocks

Bit Allocation Structure for coding motion vector field

MV(Y) MWVX)
ll leits |Sbits l

1 -
MV(Y) MV MV(Y) MWX) MW(Y) MWD MVEY) MV(X)
1 |1 |5bits |5bits |1 |5bits |5b1'ts |1 |5bits |5bits Il ISbits NSbils
J I
i]1 I 12bits
F T —
1 1]
1 | 12bits | 12bits I 12bits I 1 2bits

Figure 3.20: Bit allocation for coding motion vector fields

While the same bit allocation strategy as discussed in the previous chapter has been

adopted for the I-frame and residual frame coding process, that for motion vector

field coding 1s presented separately in Figure 3.20. Since motion is assumed to be

within 15 pixels/frame, allocating 5 bits for each motion vector component will be

sufficient for encoding any 2D motion vectors. However, because the provisions are

made for variable block size motion estimation and intra-frame coding mode in the

117

proposed motion compensated predictive coding algorithm, additional bit allocation
is required for embedding quadiree segmentation data and other information

associated with intra-frame coding mode in the encoded data stream.

Video Coding Performance - Bit Rate

Bit rate {bpp)
0.6 }
|
05 [—-—r—-— —-—
64— -—r—-— -
1
,
i
03 T I _:' 0 -
l
02 r==""—r P e R
1 1
1 1
OIIII\I\Ilﬁlll\I
0 50 100 150 200 250 300 350 400 450 500
Frame Number
Figure 3.21: Bit rate performance on the test sequence
Video Coding Performance - PSNR
PSNR {dB)
4¢
35 | Salesman VA S U R
30 ey
W=
20—-—
15 h—-—
H H !
10 . N I B B
0 50 100 150 200 250 300 350 400 450 500

Frame Number

Figure 3.22: PSNR performance on the test sequence

Coding performance in terms of bit rate and PSNR of the proposed image sequence
compression algorithm are presented in Figure 3.21 and 3.22, respectively. Because
intraframe coding generally requires more bits for its coding operation, a sudden
jump in the bit rate whenever an I-frame is being coded is what would be expected.
However, it is noted that such a jump in the bit rate is not necessarily translated into
higher PSNR as demonstrated by the coding results for the "Salesman", "Claire",

"Missa" and "Susie" image sequence segments. The fact that all these image

118

segments are characterised as being “head-and-shoulder” types of sequences with
relatively low motion activities has led us to believe that for image sequence
compression, the performance of intraframe coding process will generally be inferior
than that of motion compensated predictive coding process when low detailed image
sequences with low motion activities are involved. Conversely, when high detailed
image sequences with high motion activities are involved, motion compensated
predictive coding tends to offer inferior performance than intraframe coding because
of the drop in motion compensated prediction efficiency. Nevertheless, under this
condition, both coding techniques do experience some coding difficulties, thus
causing the overall bit-rate and PSNR performance of the proposed image sequence

to detenorate.

It should be noted that in order to examine the performance of image sequence
compression process, it is generally required to evaluate the perceptual quality of
reconstructed pictures in real-time. This 1s because in developing an image sequence
compression algorithm, it is its aim to exploit the limitations of HVS m order to
achieve higher compression performance while minimising noticeable picture
degradation. However, because such a requirement normally involves expensive and
dedicated hardware, we were unable to perform such a task in order to fully evaluate
the performance of the proposed image sequence compression algorithm. Instead, we
had to rely on the bit rate and PSNR performance as quantitative measures for the
quality of reconstructed pictures. Nevertheless, as an attempt to assess reconstructed
picture quality perceptually, selected individual picture frames were inspected
statically for any major visual artefact. As shown in figures 3.23 through 3.30,
samples of the original (Cif###), reconstructed (Enc###) and residual (Res###)
picture frames for various test image sequences are presented for demonstration
purposes. In most cases, it has been observed that the perceptual quality of
reconstructed pictures are quite acceptable, given that a relatively low bit rate of
around 0.3bpp has been achieved. In particular, the edge integrity of all reconstructed

pictures is in fact very well preserved.

119

3.8 Summary

In this chapter, various aspects of image sequence compression have been discussed
in detail. Being a key operation in image sequence compression, scene segmentation
is frequently employed to divide a lengthy image sequence into groups of correlated '
pictures of manageable lengths for subsequent processing. Not only does this
operation greatly facilitate hardware implementation, but it also enables temporal
redundancy among picture frames to be exploited more efficiently. In adaptive scene
segmentation, temporal correlation among picture frames within an image sequence
is used as a segmentation criterion. Because lengthy GOPs resulting from adaptive
scene segmentation processes tend to cause implementation problems and
unnecessary processing delay, constrained adaptive scene segmentation in terms of

maximum GOP length is regarded as a more favourable approach.

Apart from the consistency of temporal segmentation, complexity aspects of scene
segmentation operations also contribute to the viability of a segmentation scheme.
Various scene segmentation schemes have been studied, each of which offers
different degrees of computation complexity and sensitivity to local activities. While
the DOH scheme features the least computation complexity and sensitivity to local
activities, the MCE approach offers the most optimal segmentation at the highest
computational cost. For this reason, a new adaptive scene segmentation scheme
based on the so-called “Magnitude of HOD variations” measure has been proposed.
Experimental results show that this scheme is capable of detecting scene transitions
accurately, therefore offering more consistent temporal segmentation results. Other
benefits of the proposed scheme include high tolerance to spurious image activities

and relatively low computation complexity.

For image sequence compression applications, inter-frame coding has been widely
regarded as a fundamental coding technique. Unlike intra-frame coding which can
only exploit the spatial redundancy within individual image frames, inter-frame
coding allows both spatial and temporal redundancy in an image sequence to be
effectively removed, thereby offering significantly improved compression

performance.

120

As an effective inter-frame coding technique, motion compensated predictive coding
operates on the same principle as conventional DPCM. However, in the case of
motion compensated predictive coding, its operation relies heavily on both motion
compensation and residual frame processing. Ideally, an effective motion
compensation technique should be capable of handling both geometric and massic
transformations. It should also take into account overlapping and non-overlapping
motions among moving objects in an image sequence in order to optimise its

operation.

Most motion compensation techniques are implemented based on pel recursive or
block-based motion estimation algorithms. While pel recursive algorithms are more
capable of handling real motion in image sequences, block-based motion estimation
techniques can only operate efficiently when imagé blocks experience uniform
motion. However, the former usually involves excessive overheads and high
computation complexity, whereas the latter tends to suffer inferior performance,

especially when image sequences containing complex motion are involved.

As an effort to improve the performance of block-based motion estimation
techniques, various deformable block-based motion compensation techniques have
been developed. Similarly, variable block-size motion compensation has become
increasingly popular in inter-frame coding because of its potential in improving not
only computation efficiency but also the perceptual quality of reconstructed pictures.
For this reason, an alternative approach has been proposed for the implementation of
variable block-size motion compensation. In this approach, a quadtree segmentation
scheme has been adopted for the operation of variable block-size segmentation
process and its segmentation criterion is based on motion estimation errors.
Provisions have also been made to allow for the proposed motion compensation
process to switch to intraframe coding mode should motion compensation results
prove to be unsatisfactory. In implementing motion compensation, the modified 2D
motion estimation strategy has been adopted with additional search points in the
central region of search windows. Not only does this proposed motion estimation

strategy inherit the good performance of the modified 2D search algorithm, but it

121

also has the capability to accurately estimate any small motion with a negligible

increase in computation complexity.

In addition, an alternative progressive motion estimation technique has been
proposed for dealing with large inter-reference frame intervals. Not only does this
technique simplify the implementation of motion estimation process, but it also
enables motion vector fields to be coded more efficiently. Furthermore, the proposed
progressive motion estimation technique is considered to be less susceptible to

overlapping motion among moving objects in an image sequence.

Apart from motion compensated predictive coding, motion compensated
interpolative coding proves to be a very effective approach for reconstructing missing
image samples. The operation principle of motion compensated interpolative coding
is based on temporal interpolation along motion trajectories between two enclosing
reference frames. As such, motion compensated interpolative coding offers a

powerful motion compensated coding technique for image sequence compression.

While motion compensated predictive coding techniques have enabled temporal
redundancy in image sequences to be effectively eliminated, spatial redundancy
within intra-frames and residual frames can be efficiently removed by applying
BACVQ. Although intra-frame coding does not required any major variations to the
coding algorithm of BACVQ, its application to residual frame coding needs to be
altered to take into account the significant differences in statistical characteristics

between intra-frames and residual frames.

In addition, recent studies of HVS have also contributed significantly to the
development of image sequence compression techniques. Not only have these studies
enabled compression techniques to achieve outstanding compression performance,
but they also helps them improve the perceptual quality of reconstructed pictures.
The reasoning for this is that visual data which are less sensitive to or even could not
be perceived by HVS can be safely compressed with higher distortion to maximise
compression efficiency, whereas those with perceptual importance will be coded with
higher fidelity in order to enhance the overall perceptual quality of reconstructed

pictures.

122

Finally, it has been shown that the proposed image sequence compression algorithm
has achieved good coding performance by adapting its coding structure to incoming
image sequences, thereby enabling spatial and temporal redundancies within image
sequences to be exploited more effectively. Such adaptability is collectively achieved
with the aid of a new adaptive scene segmentation scheme, variable block-size
motion compensation technique, and block adaptive classified vector quantisation.
Depending on the nature of individual test image sequences, the PSNR and bit rate
performance of the proposed image sequence compression algorithm may vary

between 20 to 40dB and 0.15 to 0.55bpp, respectively.

Having established appropriate algorithms for still image and image sequence
compression, efforts have been directed to studying parallel image sequence
compression techniques. The objective of such a study is to evaluate the potential
benefits offered by parallel processing in relation to reducing the overall processing
time of an image sequence compression process. This aspect of image sequence
compression is particularly important for practical implementations because a huge
amount of raw visual data is usually involved and real-time processing is generally
required. Due to the complex nature of parallel processing in general and parallel
Image sequence compression operation in particular, they shall be covered in the
following two chapters. While Chapter 4 provides important background information
about parallel processing techniques, Chapter 5 discusses in more detail some
implementation aspects of parallel processing when it 1s incorporated into the image

Sequence compression process.

123

enc000

enc002 7 enc003 - enc004

ecOOl

enc00S _ enco06 enc007 _ enc008

res005 res006 res007 res008

Figure 3.23: Sample pictures for the “Salesman” test image sequence

124

esO o resQ01 - esOO2 res(03 res004

Cif061 " cif62

enc061

resQ61 res062 1es063 res(64 res065

enc067

enc066

en068 enc069

res066 res067 res068 res069

Figure 3.24: Sample pictures for the “Claire” test image sequence

125

' Cif125

enci2l encl22 T encl23 | " encl2s

res121 T resl22 resl23 resl 24 res125

resl26 rsIZ . } res28 . resl29

Figure 3.25: Sample pictures for the “Miss American” test image sequence

126

il
cif185

Cif181

enclSHS

Ies

res res Tesl83

encl186 encl87 encl88 encl89

resl86 res187 res188 res189

Figure 3.26: Sample pictures for the “Susie” test image sequence

127

!
4 N !
. . N v

enc242 623

,

enc2 1 enc24 encZ 5

resZ res242 1es243 res244 res245

ec26 _ enc:27 _ enc248 . enc249

res246 . res247 1es248 res249

Figure 3.28: Sample pictures for the “Caltrain” test image sequence

128

274

275 : - enc277 _ 278

res274 ' res275 res276 res277 res278

enc279 enc280 _ enc281 enc282

res279 res28Q res281 res282

Figure 3.28: Sample pictures for the “Table Tennis” test image sequence

129

enc3l4 enc315 enc3lé enc317 _ enc3l§

res314 res315 res316 res317 res3l8

res319 res320 res321 res322

Figure 3.29: Sample pictures for the “Football” test image sequence

130

enc3’s _ - enc370 _ enc378' -

res374 res375 res376 res37 res378

rc3 82

res37?9 res380 res

Figure 3.30: Sample pictures for the “Flower Garden” test image sequence

131

Chapter 4: Parallel Processing

Having developed suitable algorithms for still image and image sequence
compression, the issue of improving the processing efficiency of those algorithms 1s
now investigated. For real-time applications, the lengthy processing time of the
proposed algorithms using sequential processing is certainly unacceptable and hence
parallel processing has been considered as the most effective way to accelerate their
operation. However, before presenting the actual parallel processing algorithms for
still image and image sequence compression, it is useful to discuss some fundamental
aspects of parallel processing, thereby providing a better understanding of various

issues involved in parallel processing.

In this chapter, a general classification of parallel processing systems is presented to
facilitate the study of various parallel processing architectures and their capabilities.
A discussion on the connectivity issue is then given to illustrate how parallel
processors are connected to form a parallel processing system and what implications
it may have on its data exchange capability. The issues of processing synchronisation
and task partitioning and scheduling are examined in detail because they have
significant impacts on the reliability and efficiency of parallel processing operations.
Various performarce measures are described as a means for assessing the processing
performance of a computer system quantitatively. And finally, some important issues
relating to message-passing and shared-memory multi-processor system design are
discussed as they facilitate the development of the proposed parallel processing
algorithms for still-image and image sequence compression presented in the next

chapter.

4.1 Introduction

In 1966, M. J. Flynn established a useful framework for studying parallel computer
architectures by classifying digital processing into four main categories (Hobbs &
Theis, 1970). The central idea of this classification is based on the fact that parallel
processing could be realised in terms of data and instruction streams, each with
singularity or multiplicity arrangement. As such, this classification scheme enables

parallel computer architectures to be divided into four major categories, namely,

132

single instruction stream single data stream (SISD), single instruction stream
multiple data stream (SIMD), multiple instruction stream single data stream (MISD),

and multiple instruction stream multiple data stream (MIMD).

As a typical SISD computation architecture, the Von Neumann model operates with a
single processor performing instruction execution tasks. It adopts a control scheme
that continuously fetches instructions from its memory for the central processing unit
(CPU) to execute and shuttles data between them one data unit at a time (Uffenbeck,
1987). As such, its memory is mainly used to store both instructions and data of an
execution program with unique addresses. However, this model tends to suffer severe
bottleneck problems because of the heavy involvement of the processor throughout

its operation.

By contrast, SIMD and MIMD represent the two most prominent parallel computer
architectures among parallel processing applications (Barnwell et al, 1993) (Jeschke
et al, 1992) (Shen et al, 1994). A SIMD computer is typically constructed using a
number of identical processors, each of which receives identical broadcast
instructions to execute on their own data. Because SIMD computers require simple
synchronisation mechanism and do not have to store individual programs for each
processor locally, they tend to be constructed using a very large number of simple
processors. In fact, this arrangement of processors presents the simplest conceptual
model for the construction of vector or array processor machines. SIMD computers
offer superior processing performance than SISD computers because they do not
have to perform a separate instruction fetch for each data item while allowing data

items to be processed in parallel.

In the case of the MIMD parallel computer architecture, each processing element
(PE) gets its instructions from its own stored program instead of from a central
broadcast source (Almasi & Gottlieb, 1994). A MIMD machine can also operate
based on private-memory or shared-memory model. This depends on whether each
PE has exclusive access to a separate block of memory or whether all PEs have direct
access to a common memory region. Apart from data access mechanism, control

mechanism of MIMD machines can be divided into such categories as control-

133

driven, pattern-driven, demand-driven and data-driven; with progressively less
explicit control over the operation of individual PEs. Because MIMD machines are
usually required to deal with a diverse range of applications, a more general design
approach tends to be adopted for their design. As such, they are usually constructed
using highly sophisticated PEs, and hence necessitating the deployment of a more

conservative number of PEs.

Apart from parallel computer architectures, parallel algorithms also play an equally
important role in parallel processing (Kumar et al, 1994). Basically, a parallel
algorithm can be considered as a collection of independent task modules, some of
which can be carried out in parallel. As such, the main criteria used to characterise
parallel algorithms are often based on module granularity, concurrence control, data
mechanism, communication geometry and algorithm size. Module granularity is
considered as the amount of computation contained in a typical module. For optimal
overall processing speed, it is necessary to compromise between module granularity
and parallelism because fine granularity usually leads to increased communication
overheads. Concurrence control, however, refers to the scheme in which modules are
selected for execution. This control scheme must satisfy data and control
dependencies to ensure proper parallel operations. While data mechanism specities
how instruction operands are being used, communication geometry reflects the
interconnection pattern among computational modules. Algorithm size refers to the
total amount of computation that a processing algorithm must perform. This criterion
generally gives a good indication of how many processors and how much memory

are required for a parallel processing system.

During parallel processing, events must happen in certain orders so that cooperative
parallel processes can produce proper results (Almasi et al, 1994). In particular,
synchronising concurrent activities based on access and sequence controls is of great
importance in parallel processing. The need for access control arises because
cooperating activities may compete for the same shared resources during parallel
operations. An effective form of access control is based on the principle of mutual

exclusion, whereby access to a shared resource is controlled in such a way that only

134

one competing process may access it at any time. Other important aspects of access

control include deadlock-free operation and fairness in accessing shared resources.

While some problems can be decomposed into almost completely independent sub-
tasks and thus allowing parallel processing to be applied with minimum effort,
partitioning of more general problems into sub-tasks usually features a certain level
of dependency. Therefore, under these circumstances, communications among sub-
tasks are very critical because this enables them to exchange data and to coordinate
their activities. In general, communications based on shared memory and message
passing schemes are frequently deployed in parallel processing because of their
flexibility. However, it is important that resource allocation for such operations

should be minimised in order to achieve good processing efficiency.

For parallel processing systems lacking shared memory supports, inter-processor
comumunications can only be accomplished via message passing. Shared memory
machines, on the other hand, can provide efficient message passing supports, in
addition to utilising the common memory space to hold shared state information for
task cooperation. Nevertheless, a major drawback in utilising shared memory
machines is their hardware complexity. For a given machine size, systems with
shared memory tend to offer noticeably less peak computational power than those
without (Almasi ct al, 1994). This is because shared memory systems offer increased
flexibility and ease of programming at the cost of additional hardware complexity,

and therefore lowering their peak computational power.

Successful implementation of a parallel program also depends largely on how well its
data are partitioned, especially when distributed-memory computers are involved.
Basically, in order to execute a parallel program effectively, a set of sub-tasks needs
to be defined for parallel execution. As such, it is important to maximise the
parallelism among parallel sub-tasks. However, it is also desirable to be able to scale
the amount of parallelism depending on specific hardware configuration and other

run-time conditions.

Although optimal parallel processing insists on parallel architecture be designed

specifically for a particular algorithm, a common bus architecture is usually adopted

135

in parallel processing due to its ease of construction and low cost (Parker et al, 1990)
(Simar et al, 1992). However, in order to reduce bus contention in relation to shared
memory access, it is a common practice to provide parallel processors with some
local memory. In this way, bus contention is reduced by reducing traffic and control
transfers from a central location. In addition, a centrally controlled bus scheme may
also be used to reduce bus contention even further. In this case, a master processor is
responsible for distributing data from its data memory to local data memory of each
processor for parallel processing. When a processor completes its processing task, 1t
will notify the master processor to retricve processed results before another

processing cycle is re-initiated.

Due to the complexity of parallel processing, various performance indices have been
established for measuring the processing performance of multi-processing systems.
These indices typically consist of execution rate, speed-up ratio, efficiency, and so
on. Mathematical models are also available for studying the limiting behaviour of
parallel processing systems. These include Amdah!’s law, Weighted Harmonic Mean

Principle, and limits of parallel computation (Moldovan, 1993).

4.2 Parallel processing architectures

4.2.1 Single instruction stream-single data stream (SISD)

A typical example for this computer architecture is the traditional Von Neumann
computer model. Due to its simplicity, many computers today are still designed
based on this basic architecture. In its original form, a Von Neumann computer
generally consists of a single processing unit and a single memory unit for holding
both instruction and data. As such, this computational model is only capable of
dealing with a single sequence of instructions and operating on a single sequence of

data, hence resulting in the so-called SISD computer (Kumar et al, 1594).

Strictly speaking, SISD computers do not involve any parallel processing in their
normal operation. Moreover, the fact that a single memory unit is allocated for both
instruction and data storage implies that only a single memory location can be
accessed at any instance, resulting in high processor idle time. For this reason,

attempts have been made to separate the instruction and data memory spaces, thereby

136

allowing instructions and data to be fetched simultaneously. This improved

architecture is frequently referred to as the Harvard architecture (Hussain, 1991).

The execution speed of SISD computers is generally limited by their instruction
execution rate and the speed at which information can be exchanged between
memory and the CPU. Therefore, to improve the performance of SISD computers, it
is necessary to optimise these two factors simultaneously. Most current optimisation
techniques tend to confine to the utilisation of faster clock rate, instruction
pipelining, memory interleaving and cache memory. However, these optimisation
techniques also have their own limitations, and therefore, for many applications,
multi-processing is regarded as a more natural and sensible approach for increasing

computation performance (Kumar et al, 1994).

4,22 Single instruction stream-multiple data stream (SIMD)

In this parallel computer architecture, all parallel processors will execute the same
instructions synchronously on their own local data. As such, this architecture
represents a basic approach of data parallelism because independent data elements
are processed concurrently on multiple processors. A parallel SIMD computer
typically consists of a single control unit which broadcasts identical instructions to
all PEs and an interconnection network which provides processor-to-processor and
processor-to-memory connectivity supports. In order to maintain execution
synchronisation among PEs, broadcast instructions from the control unit must be

executed by each PE in lock steps (Hussain, 1991).

The key advantage of the SIMD architecture is its sheer amount of parallelism
(Fountain, 1994). This feature of parallelism is realised because of the high degree of
parallelism in its target data sets and the scalability of the system itself. Additionally,
no new concept is required, no additional overhead is involved, and performance
improvement is proportional to the number of additional processing elements
available to a processing system regardless of its size. However, in practice, as SIMD
systems grow beyond a certain limit, problems would arise because of the

requirement for maintaining data distribution to those systems at a high rate.

137

A typical implementation of the SIMD architecture is to employ an array of parallel
processors. This approach itself has its own advantages and disadvantages (Hussain,
1991). On the one hand, data access from the nearest neighbours in the processor-
array implementation is implicitly implied due to its specific structure. The emphasis
on local processing makes the processor-array implementation a highly favourable
approach because local memory access is usually very efficient. Furthermore, the
utilisation of an array of parallel processors makes parallelism inherently visible.
And yet, another advantage of data parallelism in the processor-array implementation
is that it requires a very simple flow control. Most importantly, processed results
produced by processor-array systems are generally deterministic and independent of
the number of physical processors. On the other hand, because a large number of
processing elements are used in the construction of processor-array systems, these
processing elements are usually characterised as having relatively simple structure
with very limited memory space. In addition, although operation involving
neighbourhoods is very efficient in the processor-array implementation, inter-

processor communication over larger distances s generally difficult.

4.2.3 Multiple-instruction stream-Single data stream (MISD)

In this parallel computer architecture, multiple processors achieve parallel operation
by applying different instructions to the same datum. A typical example of this
computer architecture is a pipeline computer in which paraliel processors are
connected in a pipeline structure. Each of these processors executes different
instructions on a single input data stream and outputs its processed data stream to the
next processor. There are a number of important aspects relating to pipeline

processing operation (Fountain, 1994). These arc:

1. The efficiency of pipeline processing depends critically on the nature of problems

to be solved.

2. There is always a latency in pipeline processing. It magnitude is directly

proportional to the number of pipeline stages.

3. Since pipelining itself is a sequentially organised process, programming

techniques used for pipeline computer programming generally require little or no

138

modification from the user’s perspective. Also, system optimisation is relatively

easy to achieve.

4. Performance improvement in pipeline processing is directly proportional to the
level of additional resource allocation. For example, the speed-up factor of a

pipeline machine is generally equal to the number of stages in the pipeline.

5. A major disadvantage of applying pipelining to parallel processing is that a

specific pipeline configuration is often required for each problem.

Two areas of applications receiving widespread use of pipelining are at the machine
instruction level and at the algorithm level. The former is due to the fact that at the
lowest machine level, many computer instructions can be broken down into a
common sequence of operations, therefore allowing pipelining to be applied with
maximum efficiency. At the algorithm level, pipelining can be effectively utilised in
the construction of special-purposed computers to take advantage of both data and

functional parallelism inherent in certain applications.

4.2.4 Multiple-instruction stream-Multiple data stream (MIMD)

A MIMD machine is generally constructed using an assembly of PEs, each of which
can carry out any task either independently of or cooperatively with other PEs. As
such, this parallel computer architecture can be interpreted as a basic approach to task
or function parallelism. In general, parallel processors of MIMD machines are
capable of acting autonomously, each executing different instruction streams together
with their own local data stream. Also, synchronisation among parallel processors 1s
usually achieved by passing messages among themselves via an interconnection
network or accessing data in shared memory space. In addition, PEs of MIMD
computers are considerably more complex than those of SIMD machines because
they are usually designed for handling a diverse range of applications. In fact, PEs of
MIMD computers are usually constructed as stand-alone Von Neumann engines with
additional supports for inter-processor communications and input/output operations

(Hussain, 1991).

Among the most important aspects of the MIMD architecture are memory resources

and processor inter-connectivity. For example, in a shared-memory MIMD system,

139

shared-memory access needs to be properly arbitrated among multiple processors to
avoid memory contention problems. More importantly, processor interconnections
and global memory should be carefully planned so as to minimise shared memory
access. This requirement is very important because it directly affects the performance
of MIMD machines. Generally, PEs of MIMD computers can be arranged in the
following configurations (Fountain, 1994):

1. Organising PEs in a regular structure, such as a 2-D grid, and providing direct

peint-to-point communication links between neighbouring PEs.

2. Providing multiple buses among groups of processors in order to alleviate the

problems caused by single bus bottleneck.

3. Connecting parallel processors by means of a multi-dimensional hypercube

network.

4. Supplying a full crossbar switch among parallel processors. This arrangement
assures that a direct communication channel exists between any two processors,
but it does not necessarily mean that such a channel will always be available since

crossbar switching resources are normally shared among parallel processors.

In implementing MIMD parallel computers, special attention should also be paid to
three key issues. Firstly, if a processing task cannot be broken up adequately into
parallel elements, then parallel processing resources available on MIMD computers
will not be fully utilised. Secondly, if too much inter-processor communication is
required during parallel processing operations, then the interconnection network may
become overloaded. And thirdly, if the amount of time spent to keep track of parallel
processing operations is too high, then the benefits of applying parallelism may

quickly diminish.

In addition, software and hardware also play an important part in improving the
efficiency of MIMD parallel computers. While software needs to support the idea of
functional parallelism, hardware should provide an assembly of PEs capable of
operating autonomously and an adequate inter-processor communication network.
However, because PEs of most MIMD computers are considerably more complex, a

smaller number of them will generally be used in their construction.

140

One of the key factors affecting the performance of MIMD multi-processor systems
is the granularity of program execution. The granularity of a parallel program can be
defined as the average size of a sequential computation unit in a program, without
involving inter-processor synchronisations or communications, that is, the average
sequential task size. In general, because processing granularity has opposite effects
on both parallelism and processing overhead, it is possible to achieve optimal
processing performance by selecting an optimal level of processing granularity

(Sarkar, 1989).

4.3 Connectivity in parallel processing systems

Depending on whether shared memory or message passing is required, connectivity
among parallel processors in a parallel processing system can be implemented n
various forms such as bus approach, crossbar switching, multistage networks, near
neighbour connectivity, tree structure, pyramid, and hypercube (Fountain, 1994). For
demonstration purposes, connectivity of a parallel processing system consisting of

three processing elemenits is presented.

Processing Processing Processing
Element [Element Element

Processing
Element

w Processing
Element

(¢} Triangle interconnection

System bus

(a) Common bus interconnection

Processing
Element [

Processing Processing : Processing

Element Element Element

(b) Linear interconnection

Figure 4.1: Typical connectivity for a three processing element system

As shown in Figure 4.1, a three processing element system can be arranged in a
number of configurations. In a common bus approach, any pair of the three can
communicate in one step, thus allowing one data item to be passed in a time unit. In a
linear arrangement with near neighbour connectivity, there are two connection

channels, thus allowing up to two data items to be passed in a single time unit.

141

However, the outer pair of PEs can only communicate by passing data via the third,
thus requiring two time units for a single data item to be transferred. In a triangle
arrangement also with neighbour connectivity, there are three connection channels
available, thus allowing three data items to be passed in a single time unit. Any pair
of the processing elements can communicate in a single step, and thercfore the

connectivity can be considered as completely symmetrical.

It should be noted that given a small number of processing elements, the differences
in connectivity are unlikely to have any significant impact on the overall system
performance. However, as far as parallel programming is concemed, parallel
processing systems with unsymmetrical connectivity are generally more difficult to

work with (Fountain, 1994).

4.4 Processing synchronisation

4.4.1 Synchronisation in shared-memory processing

Processing synchronisation always plays a critical role in ensuring reliable and
efficient parallel operation in a shared-memory parallel processing environment
(Almasi et al, 1994). In order to facilitate processing synchronisation among parallel
processes in a shared-memory system, special low level primitives such as test-and-
set instructions are frequenily provided for access arbitration purposes. Normally,
access arbitration using the test-and-set instructions is implemented in the form of
semaphore whose usage is to enforce mutual exclusion access to a shared resource.
The key feature of such an arbitration process is the indivisible nature of the test-and-
set instructions. What this really means is that these instructions can read in the value
of a special binary shared variable § and alter its value in one indivisible step.
Therefore, by forcing all parallel processes to inspect the value of this special shared
variable prior to any shared-memory access, it can be assured that only one process 1s
ever allowed to access the shared memeory while all the others would be suspended. It
is for this reason that the test-and-set instructions are also known as blocking

synchronisation primitives.

Apart from the test-and-set instructions, a more versatile protocol for coordinating

parallel processes is based on both the concept of semaphore and a pair of higher-

142

level primitives which provide at least mutual exclusion access and are deadlock free.

These primitives, designated as P and V, operate on a special non-negative integer

semaphore variable S. In general, the P and V primitives shall operate as follows

(Dijkstra, 1968):

L.

During the course of P(S) execution, the process tnvoking the P operation will be
suspended if S is equal to 0. However, as long as S is found to be positive, it will
be decremented by 1 and the invoking process is allowed to proceed. As in the
case of the test-and-set instructions, the successful testing and decrementing of the
semaphore variable S in the P operation must be carried out in one indivisible

operation to ensure coherent access arbitration.

During the course of V(S) execution, however, § is simply incremented by 1 in a
single indivisible operation regardless its current content. In effect, this operation
is equivalent to relinquishing a previously granted semaphore back to the parallel
processing system so that other parallel processors are given a fair chance to

access the shared resources via the access arbitration process.

With the aid of this protocol, a normal procedure for initiating parallel processes on a

parallel processing system can be illustrated by the following pseudo code:

begin
Integer S; /* 5 is a semaphore variable */
S =1;
parbegin /* Initiate n parallel processes*/
Process #1: begin end;
Process #n: begin end;
parend
end

where each of the #n parallel processes is implemented in the form:

Process #i:

begin

Li: ... /* Local processing */
P(8); /* For mutual exclusion execution */
. /* Critical section of #i process */
v{g);
... /* Remaining local processing */
goto Li;

end

In order to ensure proper parallel operations, it is required that the above semaphore

variable § must not be accessed simultaneously by any other parallel processes

143

during the P and V operations. This requirement is particularly important because if
multiple processes were able to access the semaphore variable S simultancously, then
they would all see the same value of S. This means that, for any positive value of S,
multiple processes would proceed to access the same shared resource simultaneously,
thus causing resource contention problems. For this reason, both the P and V

operations are required to execute in a single indivisible operation.

Being a special case, a binary semaphore scheme allows the semaphore variable S to
take on only two distinct values, namely, logic 0 and 1. Alternatively, if the
semaphore variable § is allowed to take on additional values, then the scheme will be
referred to as “counting semaphore” and the P and ¥ operations can be used for

condition synchronisation.

Fetch-and-add operation is another simple but very effective multi-processor
coordination scheme. It provides critical supports for highly concurrent execution of
operating system primitives as well as application programs. Although its operation
principle is very similar to the test-and-set primitive, there is a fundamental
distinction between them. On receiving simultaneous access from multiple processes,
the test-and-set primitive only results in one process to go ahead, whereas the fetch-
and-add scheme allows multiple processes to proceed, each with a unique

identification number.

While the concept of semaphore has been applied extensively in access control,
barrier synchronisation is generally used for sequence control in multi-processor
systems (Kumar et al, 1994). In this concept, a synchronisation point kniown as a
barrier is arbitrarily established so that no process can proceed any further until all
other processes have reached this barrier. This implies that faster processes will have
to wait at the barrier for slower processes to complete before they can proceed to the
next processing stage. However, it is a common practice not to terminate a process at
the barrier, even though it has completed its current stage of computation. Instead, it
is forced to check a shared variable constantly so as to tell whether the last process
has indeed reached the barrier. From then on, any process checking the shared

variable will be able to proceed to the next processing stage, thus passing the barrer.

144

There are a number of issues concerning the operation of barrier synchronisation.
Because all processes must wait for the slowest process to complete, each process at
the barrier will have to force itself into an idle state if barrier synchronisation is
implemented using a busy-waiting scheme. In addition, a deadlock situation may also
occur at a busy-waiting barrier if the number of parallel processes exceeds the total
number of PEs. This is because a busy-waiting scheme would prevent exceeding
processes from making their way to the barrier indefinitely. Alternatively, aithough
task-switching schemes can prevent PEs from entering an idle state and eliminate
potential deadlock situations at the barrier, its application is generally much more

complicated, involves higher overheads and often requires operating system supports.

4.4.2 Synchronisation in message passing computation

As already mentioned, both access and sequence controls play a crucial role in
ensuring proper parallel operation in a multiple-processor environment. These
aspects apply not only to shared memory machines but also to message passing
systems. In general, message passing is a more self-synchronising form of
communications than shared memory becaunse of the nature of the message passing
process itself. Nevertheless, problems such as lost or overwritten messages may still

occur in message passing, and therefore necessitate processing synchronisation.

Most programming notations developed for message passing computer systems
support the concept of communication channels and provide a set of primitives for
facilitating message exchange operation among processing nodes (Almasi et al,
1994). In addition, if communication channels allow messages to be queued for
subsequent transfers, a more flexible and efficient operation would result because a
processing node can send a message and then continue its operation without having
to wait for another node to acknowledge it. This mode of operation is therefore
regarded as non-blocking and this form of communications is said to be
asynchronous. By contrast, synchronous message passing requires that a direct
communication channel be established between two processes before messages are
exchanged and the operation of the sending process be suspended until all messages
have been successfully received by the recipient. This imiplies that synchronous

message passing by its own nature offers an implicit synchronisation mechanism

145

between processes. In addition, although synchronous message passing can alleviate
the need for dynamic buffer allocation, its application needs to take into account a
potential deadlock situation in which a sending process may wait hopelessly for an

acknowledgment from its recipient.

4.5 Partitioning and scheduling

In parallel processing, task partitioning and process scheduling have strong influence
on the overall processing efficiency of a parallel processing system (Sarkar, 1989).
While partitioning is necessary to ensure that the granularity of a parallel program is
coarse enough for runming on a target multi-processor system without losing too
much parallelism, scheduling is required to achieve good processor utilisation and to
optimise inter-processor communications in a multiple processor environment. The
influence of partitioning and scheduling on parallel program execution can normally
be attributed to their parallelism and overheads contributions. These contributions
always have opposite effects on the processing performance of a parallel processing
system. In fact, the presence of parallel processing overheads makes it impossible for
parallel programs to achieve theoretical speed-up factors. Nevertheless, parallel
execution time can generally be minimised using optimal intermediate granularnty
corresponding to optimal intermediate partition. However, because programs may
contain discrete structures, it may not always be possible to partition them into tasks

of equal size for optimal parallel execution.

Although static partitioning offers a simple strategy for task partition and
distribution, its implementation may yield a relatively poor performance (Kumar et
al., 1994). This is because any imbalance in work load caused by static partitioning
would lead to a situation in which some processors may become overloaded while
others are under utilised. This problem is particularly severe when there is a
substantial variation in the size of processing tasks. Under these circumstances, it
may be more beneficial to adopt dynamic partitioning so as to balance work load
among processors. A typical approach for achieving dynamic partitioning is to allow
a parallel processor to obtain work from other processors with escalated work load

once it runs out of work. However, it should be noted that its application usually

146

involves additional communjcation overheads because of work requests and work

transfers.

Unlike task partitioning, a major concern in task scheduling is to distribute
processing tasks of a partitioned program to a group of processors in such a way that
the overall parallel execution time is minimised (Sarkar, 1989). Basically, the task of
a scheduler is to examine the current state of process allocation among parallel
processors and, when appropriate, to perform a re-allocation according to a certam
scheduling scheme. In addition, it is generally desirable to apply different scheduling
strategics for different types of processes such as batch versus interactive processes,
system versus user processes, and so on (Bic and Shaw, 1988). As in the case of task
partitioning, task scheduling also involves trade-offs between parallelism and

overheads because of their contradicting nature.

As an important class of scheduling strategies, time-based scheduling is a special
scheduling scheme in which all arguments of its priority function are related to time
(Bic et al, 1988). Because of its flexibility and efficiency, this type of scheduling
algorithms has been widely used in interactive systems where priori knowledge of
process timing is not normally available. Among the most common time-based
scheduling algorithms are First-In/First-Out (FIFQ), Last-In/First-Out (LIFO),
Shortest Job Next, Shortest Remaining Time, Round Robin and Multilevel Feedback

scheduling.

4.6 Processing performance

Generally, processing performance of a computer system can be evaluated based on
clock rate, instruction rate, computation rate, data precision, memory size, and
addressing capability (Fountain, 1994). Being the simplest performance measure,
clock rate is considered as being the least effective criterion because it gives no
indication about what operations actually occur within a single clock cycle. As a
result, even though two processing units may have the same nominal clock rate, it is
still not sufficient to judge their relative performance. However, for evaluating
processors from the same family, it is indeed a very effective indicator for their

relative performance.

147

Instruction rate in general provides a more useful performance measure even though
it is usually quoted specifically for a processor rather than a processing system as a
whole. Because instruction rate offers a more direct measure of processor execution
speed, it can be used more convincingly for assessing the average performance of a
general-purpose computer. Similarly, computation rate also provides a fairly reliable
criterion for evaluating the processing performance of processors offering high-

precision arithmetic capability.

Data precision is another criterion that can be used for determining the performance
of a processing system. This is because processing systems with high data precision
alleviate the need for high overhead sofiware implementations, and hence offer an
effective means to accelerate computationally intensive processing tasks. However,
applications for which these systems are designed should also be taken into account
when data precision is used as a criterion for performance evaluation. For example,
given that image information is generally represented in byte quantitics, an image
processing system can achieve very high processing performance by optimising its

architecture specifically for byte operations.

Memory size is perhaps a particularly significant factor among parallel systems. This
is because processing overhead associated with secondary memory access is
extremely high and its access is often very slow as opposed to system primary
memory. Similarly, addressing capability also has significant impacts on the
performance of a computer system. This is mainly because any restriction imposed

on its operation is likely to affect the efficiency of its program execution.

Apart from the above basic performance measures, other criteria can also be used to
evaluate the processing performance of parallel computers. In particular, information
communication among parallel processors is of paramount importance to the
operation of parallel processing systems. For data parallelism, information exchange
is mainly confined to data, whereas for function parallelism, both data and programs
will be involved. In addition, due to the complexity of parallel processing, other

factors such as transfer rate, transfer distance, and the presence of bottlenecks would

148

also have significant impacts on the overall performance of parallel processing

systems (Fountain, 1994).

Being an effective measure of parallel processing performance, speed-up ratio is
defined as the ratio between the time taken to solve a problem on a single processor
to the time required to solve the same problem on a parallel computer with N
identical processors (Kumar et al, 1994). Analytically, this relationship can be

expressed as (Hussain, 1991):

(s+p) _ 1
grgen

where s and p denote the sequential and parallel parts of a processing algorithm,

speedup =

respectively; and (s + p) =1 represents the normalised total execution time required

to solve the same problem on a single processor.

Although it is not possible for the theoretical speed-up ratio of any parallel
processing systems to exceed the number of parallel processors, such an assertion
may seem to be violated in some practical situations. However, it is believed that this
violation can only occur as a result of the utilisation of a non-optimal sequential
algorithm or due to specific hardware characteristics that put the sequential algorithm

at a disadvantage.

In addition, it has been found that for a given problem size, the speed-up ratio does
not increase linearly with the number of parallel processors (Moldovan, 1993). In
fact, as the number of parallel processors keeps increasing beyond a certain
threshold, it is not uncommon to discover that the performance improvement of a
parallel processing system may level off and eventually decrease due mainly to
memory contention and the limitation of the underlying inter-processor
communication network. This phenomenon is frequently referred to as the

‘saturation’ effect and is governed by Amdahl’s law (Hussain, 1991).

149

4.7 Parallel processing system design issues

4.7.1 Message-passing MIMD

Most message-passing MIMD designs can be categorised based on their
interconnection networks (Almasi et al, 1994). As such, these designs consist of
clusters-of-workstations (COW), hypercubes, meshes, bus-connected designs, trees,
and dataflow machines. As the name implics, the COW approach achieves parallel
processing by clustering a number of workstations together in a local area network
(LAN), each responsible for the execution of a portion of a parallel processing
algorithm. Since communication within LAN-connected clusters is relatively slow,
the COW approach is generally suitable for those applications requiring modest

communications among parallel processes.

In a hypercube-connected distributed-memory MIMD machine, each node has a
direct point-to-point connection to its neighbouring nodes according to the structure
of the underlying hypercube network. For example, in a 3-dimension hypercube
network, each processing node is connected to three similar neighbouring nodes

using direct point-to-point connections as illustrated in Figure 4.2.

M: Local memory
P: Processing element

Figure 4.2: Physical connections of a 3-D hypercube machine

It is noticed that hypercube machines generally do not have any shared memory.
Therefore, if a processor needs to access memory data of another processor in the
network, it must send a message to that processor for such a request. This suggests
that an adequate message routing mechanism must be incorporated into hypercube

machine design to support message passing operations. Routing of messages in

150

hypercube machines can be handled by software, operating kernel or embedded

hardware.

In a mesh parallel processing system, parallel processors are connected in a
rectangular mesh pattern. As such, each parallel processor in a mesh connected
network has a direct point-to-point connection to its four neighbouring nodes.
Alternatively, a tree interconnection approach offers simple connectivity and its
structure well matches the layout of VLSI chips and circuit boards. However,
because PEs located at ‘leaf” nodes do not have direct communication links among
themselves, the tree approach is usually susceptible to communication traffic
overloads at root nodes if there is too much interaction among the ‘leaf” PEs. For this
reason, a key issue in designing tree-connected machines is to maximise the
efficiency of task partitioning and data distribution among PEs. The bus-connected
approach offers another effective strategy for message-passing MIMD parallel
processing design. Bus-connected MIMD designs are generally used in distributed

on-line transaction processing systems due to its high performance.

Dataflow parallel processing systems normally consist of PEs which are themselves
dataflow computers. A basic feature of dataflow processing model is that processing
data flow from one instruction to another directly instead of via shared variables. As
such, a typical operation sequence of a dataflow PE is to receive a data token, wait
for remaining data tokens to arrive, then use the collected information to compute
and generate new tokens, and finally pass them on to their next destination according
to a predetermined dataflow graph. In addition, instead of having to rely on a
program counter or other central control mechanism to schedule its processing
operations, instruction execution in dataflow machines can proceed at any time

following the arrival of valid data.

In addition, message-passing protocol is another important issuc in designing
message-passing paraliel processing systems (Kumar et al, 1994) (Bic et al, 1988).
Because this protocol governs all aspects of message-passing operation throughout a
network of parallel PEs, its implementation has a strong influence on the overall

performance of message-passing parallel processing systems. Also, in order to

151

facilitate process cooperation, message-passing protocol should provide adequate
supports for message-based synchronisation using a set of primitives such as “send”
and “receive”. In fact, these primitives provide complementary supports for message

exchange operation among parallel processors as illustrated by the pseudo code in

Figure 4.3.
Process #1: Process #2:
loop lcop
produce data(); receive {Process #1, data);
send (Process #2, data}; process_data{) ;
end /*loop*/ end /*loop*/

Figure 4.3: Pseudo code for message based synchronisation

4,7.2 Shared-memory MIMD

In shared-memory multi-processor systems design, two key issues that require
special attention are the relatively long latency of shared-memory access and the
provision of unconstrained, yet synchronised, access to shared data (Almasi et al,
1994). A common solution to the former issue is to use n-port memory modules.
However, even under ideal circumstances, increasing the number of memory ports
would also lengthen the access time to some extent. The latter issue can be resolved
by adopting an appropriate sequence and access control strategy. While sequence
control is necessary in parallel processing for coordinating cooperative processes,
access control is required for dealing with parallel processes competing for shared
resources simultaneously. In both cases, unnecessary serialisation should be avoided

so that parallelism among processes can be maximised.

Apart from the utilisation of n-port memory modules, a bus-based architecture offers
another effective solution for reducing the latency time of shared memory access.
Basically, the development of the bus-based approach is motivated by the fact that a
microprocessor does not normally saturate the available bandwidth of a typical bus
system. As such, it is possible to have multiple processors sharing the same bus
system for shared memory access without overloading it. However, the bandwidth

available from a single bus would ultimately impose an upper limit on the total

152

system performance. Therefore, in order to conserve the bus bandwidth, caching has
been used extensively in most bus-based shared-memory parallel systems (Sarkar,
1989). This allows the amount of shared memory access as well as the average
bandwidth requirement for remaining shared memory access activities to be reduced

quite dramatically.

For sequence and access control, the semaphore principle has been widely adopted in
shared memory MIMD design to provides a reliable and effective means for
coordinating multiple sequential processes and arbitrating simultaneous access to
shared resources in a shared-memory parallel processing environment (Dikstra,
1968). Although the semaphore principle can be implemented quite easily by
software, dedicated hardware synchronisation mechanism is generally preferred due
to its greater efficiency. In fact, implementation based on dedicated semaphore
registers and special-purpose primitives called P-operation and V-operation offers a
very efficient means to achieve mutual exclusion operation during sequence and

access control.

4.8 Summary

In this chapter an overview of parallel processing has been given and various 1ssues
relating to parallel processing have been discussed. The broad classification of
parallel processing systems in Section 4.2 provides a useful framework for studying
various parallel computer architectures. While SISD offers no parallel processing
capability, SIMD and MIMD have been identified as the two most prominent parallel
computer architectures because of their capability in accelerating computationally
intensive operations. They achieve this by offering data parallelism and function
parallelism. In Section 4.3, various arrangements for connecting parallel processors
in parallel processing systems have been examined. For a typical parallel processing
system with three processing elements, a common bus, linear arrangement and

triangle arrangement can be used with slightly difference in data exchange capability.

The issue of processing synchronisation has been explored in Section 4.4. For
shared-memory systems, processing synchronisation plays a crucial role in ensuring

reliable and efficient parallel operation and can be achieved by means of access and

153

sequence controls. For access control, special primitives based on semaphore
principle have been discussed. Their application is to enforce mutual exclusive
access to a shared resource. The most important feature of these primitives is the
indivisible nature. Depending on the type of semaphore variables, semaphore
processes can be classified as binary semaphore or counting semaphore schemes. For
sequence control, barrier synchronisation based on busy-waiting or task-switching

schemes can be used to coordinate cooperative processes.

For message-passing systems, access and sequence controls also play an important
role in ensuring proper parallel operations although message passing 1s mnherently a
more self-synchronising form of communications itself. Processing synchronisation
is needed in a message-passing system to deal with abnormal conditions arising from
lost or overwritten messages. Depending on implementation, processing
synchronisation can be categorised as asynchronous versus synchronous and

blocking versus non-blocking algorithms.

Task partitioning and scheduling have strong influence on the overall processing
efficiency of a parallel processing system. While task partitioning 1s needed to ensure
the granularity of a parallel program is coarse enough for running on a target multi-
processor system without losing too much parallelism, task scheduling is required to
ensurc good processor utilisation and to optimise inter-processor communications.
Static partitioning offers a simple strategy for task partition, whereas dynamic
partitioning 1s more effective in reducing work load imbalance at the cost of extra
overheads. Being an important class of task scheduling strategies, time-based

scheduling has been widely used in interactive multi-processor systems.

To evaluate the processing performance of a computer system, various performance
criteria have been discussed in Section 4.6. Apart from the general criteria, speed-up
ratio has also been used specifically to measure the relative performance of parallel
processing systems. For a parallel processing system, increasing the number of
processors does not necessarily improve the speed-up ratio proportionally because of
the saturation effects. This problem often occurs because of memory contention and

the limitation of the underlying inter-processor communication networks.

154

As discussed in Section 4.7.1, message-passing MIMD designs are generally
categorised based on their interconnection networks. However, most of these designs
rely on point-to-point connections to provide various degrees of neighbour
connectivity. Another important design issue relates to message-passing protocol.
This protocol should provide adequate supports for message-based synchronisation

to ensure reliable and efficient parallel operations.

For shared-memory MIMD systems, the relatively long latency of shared-memory
access and the requirements for unconstrained and yet synchronised access to shared-
memory data represent the two major design issues. As discussed in Section 4.7.2,
while the former issue can be effectively dealt with using multi-port memory devices
or bus-based architectures, the latter can be resolved using proper sequence and
access controls. Their implementation is often based on the semaphore principle
because it offers a reliable and effective means for coordinating multiple sequential

processes and arbitrating simultaneous access to shared resources.

Now that parallel processing and various parallel processing issues have been
discussed, it is the aim of the next chapter to explore how parallel processing can be
applied to still image and image sequence compression applications and to evaluate
how effective parallel processing can be deployed to accelerate image sequence
compression operations. Practical applications of the semaphore principle for
sequence and access controls are discussed together with the partitioning and
scheduling operation of image processing tasks. Because of the spatial and
independent nature of most image processing tasks, the application of parallel
processing to still image and image sequence compression has proved to be very
effective, thereby allowing it to take better advantages of parallel processing to

accelerate its operation.

155

Chapter 5: Parallel Image Sequence Compression

With an insight of various paralle] processing issues discussed in the preceding
chapter, it is the aim of this chapter to explore how parallel processing can be applied
to still image and image sequence compression to accelerate its operation. Various
experiments conducted in this study have proved that parallel processing indeed
offers a very powertful processing technique for accelerating the process of image
compression because of the independent and spatial nature of most image processing
operations. The proposed parallel image sequence compression algorithm presented
in this chapter was able to reduce the average processing time to compress four
consecutive image frames in CIF format from 3°35” on a 486DX33 PC using

sequential processing to 1’32 with parallel processing.

5.1 Introduction

In recent years, the rapid advance of digital technology has led to a swifl transition
from analogue to digital in many areas. For control applications, it becomes
increasingly common to design basic PID control loops with digital signal processing
techniques. In telecommunications, similar transition has also occwrred so rapidly
that many analog systems such as conventional telephony systems and mobile phone
networks will soon become obsolete. For audio applications, the introduction of
compact disc in the 80s has quickly established itself as a new recording medium in
the audio industry and has opened a new era for digital audio (Ely, 1996). Even in the
field of television broadcasting, there is little doubt that digital television has a lot to
offer in terms of flexibility, reliability and high channel capacity. In fact, it is
believed that digital television has the potential to enhance human experience to such

an extent that has never been experienced before (Petajan, 1992).

In spite of its benefits, the promotion for digital television has been somewhat
limited mainly due to technical difficulties in processing a huge amount of raw visual
data in real-time. For example, the raw data rate of a video channel capable of
delivering colour pictures at a resolution of 720-by-486 pixels and a frame refresh
rate of 30 frames/second is in the order of 100 Mbps. Therefore, in order to deal with

such a huge amount of raw visual information, many image sequence compression

156

techniques have been proposed with encouraging results. In fact, some of these
techniques such as H.261, MPEG-1 and MPEG-2 have already been adopted as
international standards (AT&T, 1993) (Privat & Petajan, 1992). As mentioned in
Chapter 3, the operation principle behind almost all image sequence compression
techniques is based on the removal of statistical and psychological redundancy in
both spatial and temporal domains in order to achieve high compression gain. In
addition, adaptive spatial/temporal compression algorithms are generally more
capable of removing statistical and psychological redundancy, hence offering

superior performance.

Apart from selecting compression algorithms with high efficiency, the issue of real-
time processing is also of great importance to the operation of a video compression
system. If the processing speed of a video compression system cannot keep up with
the rate of incoming video signals, some picture frames will have to be dropped out
to keep processing synchronisation. Unfortunately, such an action often causes
severe degradation to reconstructed picture quality (Musmann et al, 1985). For this
reason, high performance processing hardware is always required in most video
processing applications. In fact, its processing speed should at least match, if not
exceed, the incoming raw visual data rate in order to satisfy real-time processing

operation.

There are many alternative design strategies that can be used to enhance the
processing performance of a computer system to whatever level necessary for real-
time operation. However, it is believed that meeting such requirements by means of
parallel processing would offer a better cost/performance ratio than just relying on
high performance uni-processor systems (Hussain, 1991), (Kumar et al, 1994),
(Sarkar, 1989). Accordingly, a more sensible approach to increase processing power
of a processing system is to apply parallel processing with multiple processors. In
fact, this approach has become increasingly viable due to the advent of VLSI
technology. Such technological advances have allowed microprocessors in general
and digital signal processors in particular to be designed not only with a greater level

of sophistication suitable for parallel processing but also at relatively low cost.

157

Being one of the most computationally intensive applications, image processing has
benefited significantly from parallel processing. For still image and image sequence
compression, parallel processing offers a very attractive solution for accelerating
many low level image processing tasks. In addition, implementation based on
spatially-orientated parallel processing architecture is generally more favourable for
image processing applications because of the spatial nature of image processing
operations (Hussain, 1991} (Parker & Ingoldsby, 1990). In this way, a large number
of independent data elements can be efficiently processed by distributing them to
corresponding processors for parallel processing. Moreover, parallel digital signal
processing techniques can be applied to enhance the execution of many image
processing operations even further because of the extremely high processing speed of

many advanced digital signal processors.

5.2 Parallel digital signal processing platforms
5.2.1 Overview

When digital signal processors were first introduced in the mid 1980s, they were
designed to operate primarily in a batch processing environment. As such, their
normal operation required that input data were copied from external mass storage
memory into their on-chip or internal memory before actual processing operation was
carried out. When computation finished, they copied processed results back to
external memory and the whole process started all over again for the next baich of
input data. It is for this reason that many early digital signal processing applications

were developed specifically for off-line processing tasks (Fountain, 1994).

However, the rapid advance of VLSI technology has fuelled the development of
numerous advanced digital signal processor (DSP) architectures, thereby enabling
them to work more efficiently in real-time processing environments. Basically, the
fast execution speed of advanced DSPs is accomplished by applying both the so-
called “Harvard architecture” and extensive pipelining. In addition, due to the nature
of most digital signal processing applications, all advanced DSP designs are
specifically optimised for executing frequent multiplication and accumulation

instructions in a single clock cycle. Specifically, the TMS320 DSP family offered by

158

Texas Instruments achieves fast arithmetic operations and high throughput by

applying the following techniques (Hussain, 1991):

L.

Harvard architecture: Basically, the Harvard architecture can be realised by
separating program and data memory banks into two separate spaces, thereby
allowing fully overlapping operation during instruction fetch and instruction

execution.

. Extensive pipelining: This is a very effective technique for reducing instruction

cycle time, and thus increasing the throughput of a processor. In general,
processing pipelines are optimally implemented with 2 to 4 levels deep, hence

enabling processors to perform 2 to 4 instructions in parallel.

. Dedicated hardware multiplier: Since multiplication is a very common arithmetic

operation to most digital signal processing applications, an effective approach to
enhance the processing performance of DSPs is to use a dedicated or hard-wired
multiplier which is capable of operating at much higher speed than that of a

general purpose microprocessor.

. Special DSP instructions: These special instructions are provided specifically for

executing multiple instructions in a single instruction cycle. Because the
processing arrangement of these instructions can be regarded as a form of parallel
processing, their provision helps enhance the processing performance of DSPs.
For the TMS320C3x family, these include all the parallel instructions in its

instruction set.

. Fast instruction cycle time: Another popular solution to increase the throughput of

DSPs is to operate them in an ever increasing clock frequency. This results in

faster instruction cycles and directly enhances the processing speed of DSPs.

In spite of significant improvement in DSP capability, processing systems relying on

single DSP design may not be able to handle certain computationally intensive

applications in a timely fashion such as those involving real-time video compression.

Therefore, parallel digital signal processing has been widely regarded as a more

favourable approach to satisfy those applications with exceptionally high processing

159

demand. In general, parallel digital signal processing can be accomplished in the

following forms:

1. Making use of a general-purpose microprocessor as a host processor and a DSP as

a coprocessor which is dedicated solely for computational intensive operations.

2. Combining a DSP and a general-purpose processor into a single chip. Also, an
interactive mechanism such as those based on mailbox messaging schemes is
usually provided to facilitate communications between them. Nevertheless, in this

approach, programmers need to create code separately for each processor.

3. Constructing a parallel processing network and providing point-to-point links
between DSPs. This approach is simple, inexpensive and easily expandable.
Furthermore, to facilitate parallel program development on these systems,
development tools such as the VIPER programming package offered by Spectrum

Signal Processing are usually built on top of these point-to-point port connections.

4. Adopting single chip approach with massive on-chip parallel processing capability
such as the TMS320C8x offered by Texas Instruments (TI). These systems are
normally supported by a real-time kernel, whose function is to synchronise and
coordinate parallel operations among individual on-chip processors. In the case of
the TMS320C80, while the four on-chip DSPs can be dedicated for single tasking
operation, the remaining on-chip RISC processor usually operates in multi-tasking

configuration to provide critical supports for real-time kernel operation.

5. Making use of parallel operating system software to achieve parallel processing
operations. For example, the VCOS DSP operating system offered by AT&T
offers automatic task partitioning and dynamic load balancing among parallel
processors. However, because VCOS needs to download application code to
individual DSPs at runtime, high overheads are generally involved. Nevertheless,
the ability to share low cost memory with the host processor is a major advantage
of such an approach. In particular, the availability of directly addressable data
space and large global memory allows processing data to be shared efficiently
among the host processor and individual DSPs, thereby minimising unnecessary

data transfers.

160

5.2.2 Texas Instruments TMS320C80 MVP DSP system

Following the trend of advanced DSP design, TI has recently introduced the
TMS320C80, the first member of the new ‘C8x DSP family. It was claimed that the
‘C80 is the highest performance and most highly integrated DSP ever produced by
the company (Guttag, 1994). Basically, this DSP device contains five powerful and
fully programmable processors on a single chip and is capable of delivering a
combined processing power of up to 2 billion operations per second (BOPS). While
four of the on-chip processors are identical fixed-point advance DSPs (ADSPs), the
other is a RISC processor with a built-in floating point processing unit. In addition,
the ‘C80 also features a highly sophisticated DMA controller with built-in DRAM,
SRAM and VRAM interface for external memory expansion purposes. While the
utilisation of the sophisticated DMA controller capable of handling up to 400 MB per
second helps increase the memory transfer capability of the ‘C80 substantially, the
built-in support for various types of memory helps simplify memory interfacing tasks
and offers a cost-effective means to support mixed memory configuration for optimal
system performance. Furthermore, a unique cross-bar switch architecture has been
incorporated into the ‘C80 design to support multiple independent parallel access to
the 50 KB of on-chip SRAM memory. Its application offers substantial advantages

over the conventional bus-based approach in terms of memory access capability.

Being primarily developed for multimedia and video processing applications, the
‘C80 has a flexible built-in video timing control unit to facilitate interfacing to
various video sources (Bursky, 1994). This video control unit has two independent
programmable frame timers, hence offering the ability to simultaneously capture and
display video images in horizontal and vertical presentation formats. In fact, the
independent nature of these frame timers enables virtually any capture/display
combination to be supported. Morcover, the fact that these timers can operate
asynchronously and synchronously suggests that images can be captured at a

different rate from those being displayed.

In terms of processing capability, the ‘C80 possesses the following key attributes:

161

e Capable of handling multiplication-intensive, pixel and bit-field processing

applications;
e Offering high precision floating point computations; and

e Featuring high data transfer bandwidth and flexible inter-processor

communication capability.

Apart from the hardware aspects, software development tools for the ‘C80 typically
consist of optimised ANSI C compiler, assembler/linker, parallel processing in-
circnit emulator, and software simulator. In addition, to facilitate parallel program
development, these development tools may also include a multi-tasking executive
running on the RISC processor to handle basic functionality of a master processor. Its
main role is to act as a kernel offering efficient interface to software librartes of user-
callable functions, basic program controls and inter-task communications; and to
serve as application program interface between user software and the on-chip

ADSPs. This processing arrangement is illustrated Figure 5.1.

User programs
Host Processor
Stubs
J
. T Ty T T T/ T/ T/ T |
! Message |
! Mandger Master Processor :
i Task server |
: |
E :
T |
| l
} Command Command Command Command i
i Interpreter Interpreter Interpreter Interpreter .
ADSP ADSP ADSP ADSP |

Figure 5.1: Typical processing arrangement of C80-based development system.

In spite of its advanced architecture and huge processing power, the ‘C80
development system unfortunately failed to meet other selection criteria, and
therefore was not adopted for this study of parallel image sequence compression.

Basically, the fact that the host processor for the TI’s ‘C80 development system was

162

based on a Sun SPARC work-station at the time when various parallel DSP platforms
were evaluated has had a major impact on the selection process due to the lack of
internal supports for it. In addition, the excessive introductory cost of the “C80
development system has also contributed to the decision not to use it for the study of

parallel image sequence compression.

5.2.3 Sonitech SPIRIT-40 system

Among the key features of the Spirit-40 system is the fact that it is powered by two
high performance TMS320C40 DSP chips from TI and it interfaces with an IBM/PC
via the PC AT/ISA bus. As such, the Spirit-40 system already offers dual DSP
processing capabilities with several additional desirable features such as flexible
architecture and PC/AT based development environment. However, because the total
cost of this development system at the time of inquiry exceeded the available budget
for this project, this has led to a decision not to use the Spirit-40 system in the study

of parallel image sequence compression.

5.2.4 Atlanta Signal Processors ELP DSP platform

The ELP DSP platform offered by Atlanta Signal Processors Inc. contains a number
of attractive features. In general, because the ELP DSP card was designed to be
compatible with the PC/AT ISA-bus architecture, it indeed offers a relatively low
cost DSP development system and ease of use. In addition, upgrading to a multi-DSP
system can be easily achieved by adding up to two additional DSP add-on boards
onto the base ELP DSP card. This suggests that for each AT expansion slot of an
IBM/PC, up to three TMS320C31 DSPs can be supported. Moreover, the ELP DSP
card has a high quality on-board 16-bit stereo ADC/DAC converter and telephone
line interfacing circuitry incorporated into its design, thus making it highly suitable

for andio and telephony signal processing applications.

As far as software development is concerned, the ELP DSP platform offers three
different development packages: the DSP application evaluation toolkit, the DSP
application developer’s toolkit, and the ELF algorithm development package. As the
names imply, these separate packages provide increasing levels of support for

various DSP application development requirements.

163

5.2.5 Innovative Integration PC32 DSP system

Similar to the ELP platform, the PC32 is a very high performance, low cost and
IBM/PC ISA-bus compatible plug-in coprocessor card capable of delivering 30
million instructions per second (MIPS) or 60 million floating point operations per
second (MFLOPS) processing power. Central to the PC32 design is the TMS320C32
DSP, the latest member of the well-known TMS320C3x 32-bit floating point DSP
family offered by TI. Specifically, the ‘C32 features a hardware floating point
multiplier/accumulator, two separate DMA controllers, a single on-chip high speed
synchronous serial port, a fully programmable interrupt controller, two independent
timers, and an enhanced memory interface with dynamic bus sizing capability. Apart
from the ease of use and performance advantage of 32-bit DSPs, the ‘C32 also offers
a cost advantage over 16-bit DSPs. In fact, the ‘C32 is the first floating point DSP
that broke the price barrier of less than $US10 per unit.

Although the PC32 is a single-chip DSP card, a limited form of paralle] DSP
platform can be realised by deploying multiple PC32 cards within a single PC
system. This approach of constructing a parallel DSP system is possible thanks to
specific features in the PC32 design. Firstly, because the PC32 interfaces with the
host PC via a relocatable dualport memory bank, this implies that not only high
speed data transfer can be achieved but also multiple dualport memory banks can be
supported, thereby allowing the construction of an efficient parallel processing
system. Secondly, the PC32 features a set of on-board hardware semaphores
dedicated for duvalport memory access arbitration as well as parallel processing
synchronisation purposes. Apart from the ease of use, these hardware semaphores
offer a very effective mechanism for access arbitration and process synchromisation,
thereby significantly improving the overall performance of a parallel processing

system as well as its reliability during parallel operations.

Because the PC32 offers a very low cost solution with decent performance, it has
been used in the construction of the prototype parallel DSP platform for the studying
of parallel image sequence compression. At the time of inquiry, a basic PC32 DSP
card with 32k x 32-bit on-board SRAM and depopulated on-board analog sub-system

was priced at $A739. However, for applications requiring more memory space, larger

164

memory options were also available at extra cost. In addition, a development
package, which includes a preprietary full-featured software-debugger resident
monitor and high-performance library routines for accessing on-board peripherals
and supporting interprocessor communications between the PC32 and the host PC
via the dualport memory, was priced separately at $A1803. While the resident
monitor provides a very critical debugging environment for debugging application
software rumning on multiple PC32 cards, the accompanying library source code

offers the user invaluable resources for application program development.

5.2.6 Other parallel DSP systems

The HEPC2-PKG1 offered by TRAIQUAIR consists of a PC/AT compatible HEPC2
TIM-40 motherboard with 2MB SRAM on board. Also, included in this package are
two separate HETWIN TIM-40 processing modules, each of which is driven by a
well-known TMS320C40 DSP from TI. At the time of inquiry, this package was
priced at $US7995. Additional options and accessories are also available at extra
cost. These include Texas Instrument compiler/assembler/linker priced at $1UJS1500,
AT-compatible C4x emulator system at $US3495, parallel processing debugger
option at $US495, and TT TMS320C4x C-source debugger at $US1450.

The SLALOM-50 PC/AT compatible C5x development system also from
TRAIQUAIR consists of TI C/Assembly source debugger, two TMS320C50 fixed-
point DSPs, two 64KB program memory and two 64KB data memory. The pricing
for this system was around $US4495. Other accessories available at extra cost
include SLALOM-50-POD remote JTAG POD assembly and software priced at
$US495, TI C2x/5x compiler/assembler/linker at SUS1500, PC/AT compatible C5x
emulator system at $US3495, and parallel processing debugger option at $US495.
Given that the SLALOM-50 system only offers fixed point processing capability, its

selection would certainly not be justified at such a cost.

5.3 Hardware configuration of the prototype parallel DSP platform

The basic hardware configuration of the prototype parallel DSP platform used in this
study consists of a 486DX33 IBM-compatible personal computer (IBM/PC) and two

additional PC32 DSP cards made by Innovative Integration Incorporation. These

165

DSP cards were designed in the form of 16-bit half-size IBM/PC/ISA bus compatible
expansion cards, and hence must be installed inside IBM/PC machines for proper

operations.,

A simplified block diagram illustrating the key components of the prototype parallel
DSP processing system is presented in Figure 5.2. As indicated, the interconnection
between the PC and two individual DSP cards is provided primarily via a dualport
memory device to cater for high speed inter-processor data communications. This
useful feature of the dualport memory is realised because data exchange over the
dualport memory region can take advantage of 16-bit data transfers at a much higher
transfer rate. In fact, the actual data transfer rate of the dualport memory device on
the PC32 cards i1s only limited by the effective bandwidth of the IBM/PC/ISA bus
system which typically operates at a rated speed of 8.33 MHz.

486DX33

IBM/PC
Dualport Dualport
memory memory

v ’

Serial link
DSP #1 DSP #2

H
TMS320C32 . TMS320C32
(optional)

Figure 5.2: Block diagram of the prototype parallel DSP platform

Basically, the dualport memory of the PC32 is a special type of memory that allows a
common block of memory to be mapped transparently to both the PC32 and the host
PC memory space as if it is part of their own local memory. This suggests that during
normal operation, both the PC32 and the host PC would have equal access to the
same memory block, hence leading to the term “dualport memory”. Accordingly, the

provision for the dualport memory enables a limited form of shared-memory to be

166

emulated for a parallel processing system in which there are only two processing
elements, namely, the microprocessor of the host PC and the corresponding DSP of

the PC32.

Because the dualport memory of the prototype parallel DSP system is regarded as a
special form of shared resources, it follows that an access arbitration scheme must be
established between the host PC and individual PC32 DSP cards for administering all
dualport memory access. In essence, the role of the arbitration scheme is to resolve
simultaneous access to identical dualport memory regions so that possible corruption
of shared memory data could be prevented. As in most implementations, a popular
access arbitration scheme based on the semaphore principle has been adopted in the
PC32 design. Also, in order to achieve higher performance and lower overheads, a
set of dedicated hardware semaphores have been provided to facilitate access

arbitration process.

Specifically, each of the PC32 DSP cards has four hardware semaphore registers for
access arbitration purposes. With the aid of these hardware semaphore registers, an
efficient arbitration scheme can be adopted, in which a processor must possess one of
the hardware semaphores prior to accessing an associated region of the dualport
memory. This approach suggests that the operating software running on both the PC
and the PC32 DSP cards must be able to pass access control over a region of the
dualport memory by passing the ownership of a corresponding semaphore. However,
it 1s important to note that while accessing the hardware semaphores is fully
arbitrated by the hardware on the PC32 DSP cards, it is the software running on the
host PC and the PC32 that is responsible for ensuring fully arbitrated access to the
dualport memory. In fact, failing to possess hardware semaphores does not prevent a
processor from accessing the dualport memory at all. Therefore, 1t is imperative that
the operating software running on both the PC and individual PC32 DSP cards be

fully cooperative in order to assure appropriate parallel operations.

Apart from dualport memory interface, the PC32 DSP cards can also communicate
with the host PC via its I/O bus space. However, due to its lower capacity and slower

transfer speed as opposed to the dualport memory interface, it is mainly provided for

167

the purpose of initialising the hardware settings on the DSP cards as well as

exercising various control functions in relation to hardware semaphore operations.

In addition, each of the DSP cards is also equipped with a fully programmable high-
speed full-duplex synchronous serial communication port. This serial port interface
can be conveniently utilised to provide a point-to-point communication channel
between the two DSPs on the PC32 cards, should inter-processor communications be

required such as during task cooperation.

As far as processing capability is concerned, the PC32 is a single board DSP system
built around the TI TMS320C32 DSP chip capable of delivering 30 MIPS sustained
performance at 60 MHz clock rate. In addition, being a latter member of the
TMS320C3x 32-bit high performance floating point DSP family, the TMS320C32
also offers a very high performance processing engine as normally expected from

TMS320C3x DSPs. Its major data processing strengths are outlined below:

¢ Integer and floating-point number multiplications are both single cycle operations,

thus making it highly suitable for computational intensive applications.

¢ Both integer and floating-point multiplications can be executed concurrently with

other arithmetic-logical unit (ALU) operations using special parallel instructions.

e The provision for separate internal buses CPU1/CPU2 and REG1/REG2 enables
two operands from memory and two operands from the internal register file to be
fetched concurrently, thercby allowing parallel multiplication and
addition/subtraction with four integer or floating-point operands to be executed in

a single cycle.

e The provision of two independent DMA channels offers even better supports for
performing concurrent data transfer operations, thus extending data handling

capability of the TMS320C32.

Apart from the issue of DSP type, another important aspect of the PC32 cards relates
to the configuration of their on-board memory. Basically, the TMS320C32 on the
PC32 cards is a 32-bit DSP capable of supporting 24-bit address and 32-bit data
buses. Hence in theory the TMS320C32 would be able to accommodate a total of

168

16Mx32-bit words within its directly addressable memory space. However, because
such an exceptionally large memory size is rarely required by most DSP applications,
the actual memory space available to the PC32 is significantly less and it is divided
into separate memory regions for various purposes. These memory regions are
designated as boot-loader memory, dualport memory, external strobe-0 and strobe-1
program memory, external data memory, IOSTROBE region, internal RAM memory

and internal memory-mapped peripherals.

Because of the flexible design of the PC32, various program memory options with
different block sizes up to 512kwords x 32-bit of zero-wait-state SRAM memory are
available on request. In particular, only 128kwords are actually requested for the first
PC-32 card and 32kwords for the second one. The main reasons for having two
different memory configurations are due to budget constraints as well as anticipated
research requirements. In fact, the availability of larger program memory size would

offer extra flexibility in studying various parallel processing algorithms.

5.4 Basic operations of the prototype parallel DSP platform

Because of the specific connectivity arrangement and characteristics of the prototype
parallel DSP platform, it is believed that this parallel platform would operate most
efficiently when the PC is configured as a host processor and the two DSP cards as
coprocessors. Accordingly, the main functions of the host PC are to handle those
processing tasks of the proposed image sequence compression algorithm that prove
to be difficult or inefficient to execute on the DSP cards, and to distribute
independent tasks to the DSP cards for parallel processing. This arrangement of
parallel processing is justified in this study because the host PC has the advantage of
having huge system memory of its own and has ready access to image sequence data
in secondary mass storage. By contrast, the DSP cards are only equipped with very
limited on-board memory but are capable of processing digital data at much higher
speed. In addition, in order to take advantage of the processing capability of the
parallel platform, it is essential that the granularity of processing tasks distributed to
the DSP cards for paraliel processing be large enough to encapsulate reasonably
intensive processing operations during the task distribution process. In this way, not

only will the overhead incurred due to task distribution be kept to a minimum, but it

169

will also help improve the overall processing efficiency of the prototype parallel DSP
platform because the significant processing power of the PC32 DSP cards is more

fully exploited.

In addition, another important operational aspect of the prototype parallel DSP
platform is concerned with its dualport memory operation. Basically, because the
dualport memory of the PC32 cards can handle direct 16-bit data transfers over the
IBM/PC/ISA bus, its provision indeed offers a very efficient medium for inter-
processor communications during parallel processing. However, because the dualport
memory can be regarded as a special form of shared memory and is subject to
simultaneous access from the host PC and individual PC32 cards, it follows that
some form of access arbitration must be put in place in order to ensure proper parallel
operation. In fact, any non-arbitrated access to shared memory regions would likely
cause their memory content to be corrupted. In addition, non-arbitrated access io
shared memory data may also cause data integrity problems. For instance, a typical
situation in which this problem usually occurs is when one processor tries to
reference the content of a shared memory structure before it is completely updated by
another processor. This means the former processor may receive partially updated

information from the share structure, and hence affecting its operation.

During the operation of the prototype parallel DSP platform, all dualport memory
access is arbitrated using the dedicated hardware semaphores provided by the PC32.
As such, these hardware semaphores have been used extensively by the software
running on both the host PC and the PC32 cards for access arbitration purposes, and
have provided an efficient mechanism for controlling bidirectional data flow through
the dualport memory. In particular, arrangements have been made so that operating
software running on the host PC and the PC32 can easily pass access controls over a
predetermined region of the dualport memory to a peer processor by simply passing
the ownership of a corresponding semaphore to it. Once the ownership of a
semaphore is successfully acquired by a competing processor, it will become the only
processor that is deemed to have full access to the predetermined region of the
dualport memory, hence effectively eliminating the chance of having multiple

simultaneous access to the same dualport memory regions.

170

Apart from the issue of access arbitration, data packing is regarded to be another
important operational aspect of the prototype parallel DSP platform. Firstly, the
difference in physical memory structures between the host PC and the PC32 makes it
necessary to incorporate data packing operation into dualport memory data transfer
process. While dualport memory access from the host PC is performed on a 16-bit
word basis, that from the PC32 only supports 32-bit long word transfers. Therefore,
by imposing dualport memory data transfers in a packed format, the consistency of
dualport memory access from both the host PC and the PC32 can be well maintained.
Secondly, since a large portion of data transferred over the dualport memory in this
study consists of visual information with byte representations, it follows that
applying data packing would help improving data transfer efficiency. For example,
instead of copying visual data directly into individual long word locations in the
dualport memory of the PC32, it would be more efficient to pack every four bytes of
visual data into a long word before transferring them to the dualport memory. In this
way, the actual number of dualport memory access would be reduced by a factor of
four. Lastly, applying data packing also helps conserving dualport memory usage
substantially. This aspect is particularly important in this study because on the one
hand the dualport memory of the PC32 cards is limited to a small memory size of
4Kbytes each, on the other hand there is a constant need to transfer a large amount of
visual data to individual PC32 cards via the dualport memory for parailel processing

during parallel image sequence compression process.

5.5 Dualport memory operation

As depicted in Figure 5.3, the dualport memory used in this study is a special type of
memory which 1s mapped directly to the local memory space of individual processors
via both the IBM/PC/ISA bus and PC32 local bus simultaneously, hence offering a
highly efficient medium for exchanging large blocks of data between the two buses.
As far as the DSP on the PC32 is concerned, its dualport memory is mapped to a
fixed memory region within its local memory space between 0x1000 and O0x13FF
inclusive. However, on the PC side, the mapping of the dualport memory can be
aligned to any 16Kbyte memory block between C000:0000 and EC00:C000 memory

region within the PC expanded memory space. This feature of memory interfacing

171

was designed to facilitate the installation process and more importantly to support

multiple PC32 card implementations.

Main | | Local
mermory — o - memory
9] 2
> =
| g Dualport - 2
7 memory ".]
> =
Z 2
486DX33 s TMS320C32
Processor Processor

Figure 5.3: Dualport memory mapping between the host PC and the PC32

Specifically, the on-board 4KByte dualport memory of the two PC32 cards was
mapped to two separate PC expanded memory regions D000:0000-D000:1000 and
D000:8000-D000:9000, respectively. These memory regions were chosen to avoid
hardware conflicts between the PC32 cards and other devices already installed on the
host PC. Apart from the differences in the mapping addresses, the dualport memory
1s accessed virtually in the same way by both the PC and the PC32 as if it is part of
their own local memory. However, it should be noted that because the dualport
memory does not have any arbitration hardware to arbitrate simultaneous dualport
memory access from both the PC and the PC32, the responsibility must rest on their

operating software to provide proper arbitration.

Basically, the dualport memory of the prototype parallel DSP platform is divided into
two scparate regions, namely, the mailbox and common dualport memory regions.
While the mailbox region is mainly used for passing short messages between the host
PC and the PC32, the common dualport memory region constitutes the actual space
through which large blocks of data are exchanged between them. As shown in Figure
5.4, the mailbox region is allocated enough space for holding up to four separate
mailboxes, hence allowing four independent messaging channels io be supported.
The reason for allocating four separate mailboxes is to match the same number of

hardware semaphores available on the PC32. These hardware semaphores are

172

normally used for mailbox access arbitration. To further facilitate software
development, 2 common data structure has been defined to support mailbox
messaging operation. This mailbox structure basically consists of four long word
members designated as mailbox receive (RCV), matlbox acknowledge (ACK),
mailbox transmit (XMT) and mailbox request (REQ). As such, these long words
serve as a buffer through which incoming messages are received and acknowledged,

and outgoing messages are sent and flagged.

Host PC side PC32 DSP side

DO00:0FFF : 0x0013FF .

DO0O:OFF0 Mailbox #4 | ,0013FC (I:;I'a:rlmlg“:;xloitgr:g:;r; N
Mailbox #3 Lnes
Mobo 2 - Mailbox RCV/XMT

alpox -
D000:0FCF Mailbox #1 0x0013F3 Mailbox ACK/REQ
DOOO-0FCD 0x0013F0 Mailbox. XMT/RCY
T~ Mailbox REQ/ACK
Dualport
memory
(1kx32)
D000:0000 0x001000

Figure 5.4: Mailbox data structure and its relative position in dualport memory.

Depending on whether a mailbox 1s being accessed from the PC or the PC32, the
order in which mailbox data structure is organised will be different to enable full
hand-shake operation. For example, a data member may be accessed as a XMT from
the PC32 but as a RCV from the host PC. This is because both the XMT and the
RCV in this example actually refer to the same memory location in the mailbox
region. Therefore, as the PC32 sends a message to its XMT, the same message will
immediately appear in the host PC RCV mailbox. Likewise, the same reasoning

applies for the operation of the other pair of mailbox data members ACK and REQ.

During the operation of the prototype parallel DSP platform, an efficient mailbox

messaging scheme has been adopted to facilitate interprocessor communications

173

between the host PC and the PC32. Specifically, all outgoing messages are required
to be copied to the XMT followed by writing a long word literal of (-1) to the REQ.
As this happens, the same messages and long word literal will also appear in the
RCV and ACK of the peer processor due to the special arrangement of its mailbox
data structure. Therefore, as soon as a long word literal of (-1) is detected in its ACK,
the peer processor will be able to retrieve the messages from its RCV correctly. What
happens next is that the sending processor must be notified that its outgoing
messages have already been received by the peer processor so that new messages can
be sent. This requirement can be satisfied by having the peer processor acknowledge
the incoming messages by clearing both the RCV and ACK once it has retrieved the

messages from its RCV mailbox.

In addition to passing relatively short messages, it is often necessary that large blocks
of visual data are to be transferred from the host PC to the PC32 for parallel
processing. However, because mailbox messaging is generally suited for exchanging
short messages, the common dualport memory region has to be used instead for
visual data transfers. This approach is more appropriate because the common
dualport memory region occupies a much larger portion of the dualport memory,
hence offering much higher data transfer capacity. In addition, the common dualport
memory region could be further divided into a number of sub-regions to enable
multiple channel data transfers between the host PC and the PC32 if required. This is
possible because software access to these sub-regions can be easily isolated from one
another. Nevertheless, for this application, the number of sub-regions being allocated
is actually determined by the nature of existing processing tasks. For example, the
common dualport memory of the PC32 could have been divided into four separate
sub-regions to take advantages of all the mailboxes in the mailbox region. However,
because the proposed parallel image sequence compression algorithm does not use
multiple channel data transfers, it makes sense not to divide the common dualport
memory region at all. In fact, the entire common dualport memory has been allocated

for single sub-region operation.

Basically, the allocation of the entire common dualport memory to a single sub-

region was adopted for two reasons. First of all, the need for transferring relatively

174

large blocks of visual data to the PC32 makes it necessary to trade off the number of
sub-regions for their size. For example, in performing motion estimation for a 16x16
image block, a 46x46 search block will be required to cover a motion search window
of +/-15 pixels/frame, hence resulting in a total of 2372 bytes of visual data that
needs to be transferred to the PC32 for parallel motion estimation operation.
Therefore, if the size of a sub-region is not sufficiently allocated, then transferring
large blocks of data over it would have to be performed incrementally, hence leading
to higher overheads and slower operations. Secondly, due to the specific processing
arrangements on the prototype parallel DSP platform, the host PC only needs a single
data channel for sending and retrieving data to and from the PC32. In general, the
interaction between the host PC and the PC32 commences when the host PC copies a
block of data to the common dualport memory region and then sends a message or
command to a corresponding mailbox to initiate processing on the PC32. When
processing is complete, the host PC will be notified by the PC32 via its mailbox,
hence allowing it to retrieve processing results correctly from the common dualport

Mmemory region.

5.6 Semaphore operation

During the operation of the prototype parallel DSP platform, semaphore has been
used as an efficient and reliable arbitration mechanism for arbitrating dualport
memory access and synchronising parallel operations among the host PC and the
PC32 cards. Central to the semaphore arbitration process is the on-board semaphore
control logic on the PC32 cards, which offers fully hardware arbitrated access to a set
of dedicated semaphore registers. As such, semaphore arbitration based on these
semaphore registers is inherently more efficient and reliable because at the hardware
level it is a simple matter for the semaphore control logic to ensure that these
semaphores can never be owned by more than one processor at any time. In addition,
because access to the semaphore registers is fully arbitrated by the semaphore control

logic, its operation generally does not suffer from access contention problems.

Basically, the semaphore registers of the PC32 cards are accessible not only to their
own DSP via their memory bus space, but also to the host PC processor via its 1/'O

bus space. For the host PC, the four semaphore registers of each PC32 card are

175

mapped to contiguous 16-bit word locations relative to a base address within the host
PC I/O space. This I/O base address shall be chosen by altering the DIP switch
settings on the PC32 cards so that hardware conflicts do not exist. In this application,
the /O base address of the two PC32 cards was set to 0x0280 and 0x0290,
respectively. For the PC32, the four semaphore registers are separately mapped to
32-bit long word locations with fixed memory addresses of 0x81B000, 0x81B800,
0x81C000 and 0x81C800. In addition, for both cases, only the least significant bat
(LSB) of the semaphore registers is significant and it is actually used to arbitrate

semaphore ownership requests.

In general, access to the hardware semaphore registers is guaranteed to be arbitrated
on a first-come first-served basis. In a rare instance when simultaneous access from
the host PC and the PC32 actually occurs, the semaphore control logic on the PC32
cards shall resolve the situation by producing a single arbitrary winner, thereby
preventing a semaphore from being owned by two processors simultaneously.
However, because dead-lock situations may arise from the above arbitration process,
some precautions need to be taken when operating on the hardware semaphore
registers. In particular, because unsuccessful semaphore ownership requests are
latched by the semaphore control logic internally, it means that these requests will be
eventually granted to the requesting processors when the requested semaphores
become available. Therefore, if the requesting processors do not explicitly cancel
their unsuccessful requests and do not expect the semaphores to be granted, a
deadlock situation would arise because it is unlikely that belatedly granted
semaphores would be recognised and hence released by the requesting processors.
For this reason it is essential for the operating software running on both the host PC
and the PC32 to explicitly cancel any unsuccessful semaphore requests if the running
software does not prepare to wait for them to be granted and intends to proceed to
other tasks. In general, the procedure for acquiring semaphore ownership would

involve the following steps:

1. A processor first sets the LSB of a corresponding semaphore register in order to

indicate to the semaphore control logic of a semaphore request.

176

2. Subsequently, the requesting processor will have to examine the status of its
request by polling the LSB. If the LSB is asserted, it means that the ownership
request has been granted and hence full access to the associated shared resources
is now given to the requesting processor. Conversely, if the LSB remains de-
asserted, this implies that the requested semaphore is not currently available. As
this happens, the requesting processor should explicitly cancel the request to avoid
a possible deadlock situation by clearing the semaphore register before proceeding
to another task. Alternatively, if it prepares to wait for its turn, it shall keep on

polling the LSB until the request is granted.

3. When associated shared resources of granted semaphores are no longer in need,
the requesting processor shall relinquish the associated shared resources as well as
the semaphores. This action should always be taken so that another processor is
given a chance to own the semaphores, hence allowing fair access to the shared

Iesources.

5.7 Parallel processing algorithm and experimental results

5.7.1 Parallel HOD computation

The first experiment conducted during the study of parallel image sequence
compression was to evaluate the relative benefits of applying parallel processing to
the computation process of HOD. As discussed in Chapter 3, HOD computation is
normally performed on a pair of consecutive frames of an image sequence. Its result
is then used to evaluate MHOD, a critical parameter for the adaptive scene
segmentation process. However, for experimental purposes, the computation of HOD
was deliberately performed on a pair of completely different image frames instead of
consecutive ones so as to simulate a worst case scenaric. Normally, because
consecutive frames of an image sequence tend to experience strong correlation, this
suggests the computation complexity of the HOD computation process is somewhat
reduced, and hence requiring shorter processing time to complete. Therefore, by
using a pair of non-correlated frames, not only will this allow the worst case
behaviour of the parallel HOD computation algorithm to be investigated, but this will
also facilitate the study of relative performance gains due to the extra processing time

involved. For convenience, the HOD computation was applied to frames #000 and

177

#061 of the test image sequence and this serves as a case study for the relative

processing benefits between sequential and parallel HOD computation algorithms.

Basically, the relative processing benefits between the sequential and parallel HOD
computation algorithms were studied based on the execution time of three different
processing arrangements. These processing arrangements were chosen to represent
normal sequential processing on the host PC (1PC), parallel processing using both
the host PC and a single PC32 DSP card (1PC+1DSP), and parallel processing using
the host PC and two PC32 DSP cards (1PC+2DSP). It is intended that by adopting
these processing arrangements, it would allow parallel processing to be studied in a
progressive manner and give an insight of various issues arising from parallel

processing as opposed to conventional sequential processing.

Unlike the conventional sequential processing approach, the application of parallel
processing in the HOD computation requires that image data be evenly distributed
among parallel processors in order to achieve efficient parallel processing operation.
Therefore, during the parallel HOD computation process, not only does the host PC
have to undertake its own share of processing tasks, but it is also responsible for
distributing image data to the PC32 DSP cards for parallel processing. This specific
processing arrangement is also necessary because on this prototype parallel DSP
platform, only the host PC has direct access to image data stored on its own local

hard disk.

In general, since a large amount of image data is involved in the parallel HOD
computation, the common dualport memory region will have to be used for
transferring image data to the PC32 DSP cards for better efficiency. However,
because the size of the common dualport memory region is still very limited, image
data transfer to the PC32 cards over this memory region will need to be performed
incrementally using smaller data packets to ease implementation. In particular, as a
compromise between packet size and transfer overheads, these data packets were
chosen to contain two scan lines of image data from the two corresponding tmage
frames and served as basic data units in the parallel HOD computation process. For

example, in the case of moderate parallel processing arrangement, the odd scan lines

178

from both image frames are processed by the PC32 DSP card while the even ones are
handled directly by the host PC as illustrated in Figure 5.5. When the entire HOD
computation process is complete, the results from the DSP card are combined with
those on the host PC to produce the overall HOD measure for the two image frames.
Similarly, in the case of maximum parallel processing arrangement, the same
processing arrangement was also adopted. However, because parallel processing
resources in this case have been increased, it is now possible for the two PC32 DSP
cards and the host PC to process every first, second, and third scan lines of image

data from the corresponding image frames, respectively.

Even lines Qdd lines

Image frame #000

Image frame #0061

Figure 5.5: Image data distribution for the moderate parallel processing condition.

In order to facilitate data transfer operations, a portion of the common dualport
memory region at least equal to the total number of pixels in two scan lines has been
allocated and used as a data channel for transferring image data to the PC32 DSP
cards. Because all the test image frames in this study are specified in the standard
CIF frame format of 352x288 pixels, this portion of the common dualport memory
equates to 704 bytes. In addition, in order to deal with possible simultaneous access
to the common dualport memory region during parallel HOD computation process, a
mailbox semaphore arbitration scheme has been adopted during the development of
the parallel HOD computation algorithm. Accordingly, any operation involving the
common dualport memory region will need to be arbitrated using a pair of mailbox
semaphore directives get mailbox{) and release mailbox() so that simultaneous

access to the same common dualport memory region can be avoided.

Basically, the function of the get mailbox() directive is to obtain the ownership of a

semaphore that has been pre-assigned to a currently active mailbox. Also, in order to

179

simplify its operation and take advantage of the on-board semaphore registers of the
PC32 DSP cards, a simple polling scheme has been adopted in its implementation.
As such, this directive will only return controls back to the calling routine when the
ownership of the currently active semaphore has been successfully acquired. When
this happens, the requesting processor shall be granted full access to not only the
corresponding mailbox data structure but also the common dualport memory region.
By contrast, the function of the release mailbox() directive is simply to relinquish
the ownership of a previously granted semaphore/mailbox back to the parallel

processing system, thereby giving other processors in the system a chance to own the
Parallel HOD
computation

Send HOD

_______ initialisation . __

! request to PC32

: cards

|

|

Send image data
1_ and HOD
computation
request to PC32 #1

semaphore/mailbox.

Semaphore/
Mailbox/
Dualport

memory

Send image data
and HOD
computation
request to PC32 #2

Semaphore/
Mailbox/
Dualport

memory

Compute HOD on the
host PC

PC32 PC32

card Send HOD result card
#1 request o PC32 4 ————— 42
cards

|
1
{
|
|
|
1
|
|
|
|
|
|
1
|
I
|
|
1
1

End

Figure 5.6: Parallel HOD computation algorithm

180

As far as parallel HOD computation is concerned, this arbitration scheme offers a
reliable means for the host PC and the PC32 cards to coordinate their operations. The
host PC uses this arbitration mechanism to distribute processing tasks to the PC32
cards for parallel processing, whereas the PC32 cards uses it to service processing
requests from the host PC. Normally, following a successful invocation of the
get_mailbox() directive on the host PC side, the host PC shall transfer two scan lines
of image data to an idle PC32 card via the common dualport memory region,
followed by writing HOD computation command and service request (-1) codes to
the corresponding XMT and REQ mailboxes before executing the release_mailbox()
directive. On the PC32 side, the PC32 also uses the same arbitration mechanism to
monitor its ACK mailbox for service requests from the host PC. As soon as a service
request from the host PC is detected, the PC32 shall interpret the processing
command code received via its RCV mailbox. It is important that the PC32 must
maintain its ownership of the semaphore/mailbox while it 1s executing the HOD
computation command. In doing so, the host PC shall be prevented from issuing any

new HOD computation requests until the current one has been completed.

In addition, for greater processing efficiency, the parallel HOD computation
algorithm shall not require the PC32 cards to return any processing results
immediately following HOD computation requests. Instead, the PC32 cards shall
accumulate their intermediate processing results locally while HOD computation
requests are executed. This implies that the host PC must explicitly issue HOD
initialisation and HOD result requests to the PC32 cards at the beginning and end of
the parallel HOD computation process as illustrated in Figure 5.6. While the HOD
initialisation request is needed for global variable initialisation prior to the HOD
computation process on the PC32 cards, the HOD result request is used to retrieve
partial HOD computation results from the PC32 cards. The host PC shall finally
compute the overall HOD by combining its partial HOD results with those returned
from the PC32 cards.

Experimental results for the three different HOD computation arrangements are
shown in Table 5.1. As it can be seen, the results presented in this table for parallel

HOD computation only reveal a marginal processing improvement over the

181

sequential HOD computation approach. This is mainly because the proposed parallel
HOD computation algorithm actually involves a fair amount of overheads in relation
to image data transfer operation from the host PC to the PC32 DSP cards. Therefore,
given the simplicity of the HOD computation, such overheads would become so
significant that they outweigh almost all the benefits of parallel HOD computation as
illustrated in Figure 5.7. For this reason, parallel HOD computation has been

removed from subsequent experiments of parallel image sequence compression.

1PC 1PC+1DSP 1PC+2DSP
Clock ticks 38 37 36
Execution. Time (s) 2.087912 2.032967 1.978022

Table 5.1: Various HOD computation time for image frame #001 and #061.

Without Parallel processing
PC L 178 178 VA 7 171 1738
i
|
I

With parallel processing

Difference in execution time ™® » 1

v

Time
L] Data transfer phase Execution phase

Figure 5.7: The effect of image data transfer overheads on paralle]l HOD computation

5.7.2 Parallel still image compression

As in the case of parallel HOD computation, the study of parallel still image
compression was also conducted in a progressive manner in order to compare its
relative processing performance to that of the sequential processing approach. In
general, the application of parallel processing to still image compression based on the
proposed BACVQ algorithm is expected to offer significant processing advantages
over the sequential approach mainly because of the independent and spatial nature of

its processing arrangement.

182

As discussed in Chapter 2, BACVQ is a still image compression algorithm which
relies primarily on the principle of variable sized-block classified vector quantisation
for its compression performance. During the operation of BACVQ, two different
image block sizes of 8x8 and 4x4 are chosen adaptively depending on the nature of
image blocks and they are both subject to vector quantisation processing for better
compression efficiency. Specifically, following the initial segmentation of an image
frame into 8x8 blocks, they are pre-processed by a classifier to determine their visual
content. For those being qualified as 8x8 smooth blocks, normal vector quantisation
with this block size shall be applied to maximise the overall compression gain. The
rest shall be subject to a quadtree segmentation process to produce 4x4 image sub-
blocks before CVQ is applied. The latter processing approach has been proven to
significantly enhance the subjective quality of reconstructed tmages with marginal

degradation in compression gain.

Basically, the application of parallel processing to BACVQ is facilitated by the fact
that processing of both 8x8 and 4x4 image blocks is carried out independently from
one another in the spatial domain. As such, processing these image blocks in parallel
can be accomplished with little concern about the issue of data dependency, at least
for those with 4x4 block size. For 4x4 image sub-block processing, an efficient
parallel processing arrangement has been investigated, in which the host PC is given
the task of distributing image sub-blocks to the two PC32 DSP cards for parallel
processing. This processing arrangement was adopted partly because in this
prototype parallel processing platform, only the host PC has direct access to image
data on its own hard disk. More importantly, the reason for assigning the host PC to
this simple data distribution task is to enable it to keep pace with the high processing
speed of the DSP cards more closely, thereby enhancing the overall processing

efficiency of the prototype parallel processing platform.

In addition, in order to facilitate parallel 4x4 image sub-block processing, a copy of
the 4x4 optimised codebook for the CVQ process shall be stored locally on each of
the DSP cards. A major benefit of keeping a copy of the codebook locally is that the
host PC does not have to deal with the issue of dynamic codeword distribution, a

process requiring substantial overheads. However, its implementation does require

183

32Kbytes of additional memory space for codebook storage since the CVQ codebook
used in this study contains 2048 codewords. In packed data format, this additional
memory space can be reduced to 8Kwords of the PC32 on-board memory as every

four bytes of the codebook data are packed into a single 32-bit long word.

As far as processing interaction is concerned, parallel 4x4 image sub-block
processing is always initiated by the host PC due to the host/client processing
arrangement. In addition, in order to ensure proper parallel operations, a general
arbitration scheme has been established between the host PC and the PC32 cards and
its flowchart is referred to as “Data-Command processing arrangement #2” in
appendix F. Basically, before the host PC initiates 4x4 image sub-block processing
tasks on the PC32 cards, the host PC needs to identify an idle DSP card before
requesting for the ownership of the corresponding semaphore mailbox using the
get mailbox() directive. Once the ownership is granted, the host PC will have to
check if it needs to upload processed results from the previous 4x4 sub-block
processing operation prior to transferring current image sub-block data to the idle
DSP card via the common dualport region. And lastly, it shall issue a 4x4 sub-block
processing request to its XMT and REQ mailboxes and then relinquish the

semaphore mailbox ownership.

Since the PC32 cards at idle constantly monitor their mailboxes for host service
requests, processing will commence almost immediately following the release of the
semaphore mailbox ownership from the host PC without further host PC
intervention. It is recommended that the PC32 cards should maintain its ownership of
the semaphore mailbox while it is busy processing the current 4x4 image sub-block
so that the host PC cannot interfere with its operation. This process of distributing
processing tasks to the PC32 cards for parallel processing is set to conttnue until
there is no more idle PC32 card or all the four image sub-blocks of a segmented 8x8
image block have been processed. When a PC32 card finishes its processing
operation, it shall place the processed results back to the common dualport region
and its XMT mailbox. It shall also notify the host PC of its completion status via its
REQ mailbox so that the host PC can up-load the processed results from it

afterwards. The processed results that are of interest include the minimum sum of

184

squared errors, the block type to which the 4x4 image sub-block belongs, the index
of the best match codeword from the codebook and the codeword itself. Except for

the mimimum sum of squared errors which is sent back to the host PC via its RCV

mailbox, the rest are returned via the common dualport memory region.

Withoﬁt parallel Applied parallel Applied parallel
processing processing to 4x4 processing to both 4x4
blocks and 8x8 blocks
Execution time (5) 49 18 40

Table 5.2: Execution time for processing frame CIF061 as a still image.

Without Parallel processing
PC | V] Cri el i Wi

: With parallel processing

DSPH0 [A GOR,.........oooooooeoeoeoeoeoeoeeeeoeeoe] o

Difference in execution time

Time

L] Image data distribution phase Execution phase

Figure 5.8: Execution timing for 4x4 image sub-block intraframe processing

As shown in Table 5.2, 4x4 image sub-blocks processing operation indeed benefits
significantly from parallel processing. The intraframe processing time for image
frame CIF#061 has been reduced from 49 to 18 seconds when processing was
performed on the host PC using sequential processing approach and on the prototype
parallel processing platform using parallel 4x4 image sub-blocks processing
algorithm, respectively. This result represents a speed-up ratio of more than 2.7 for a
parallel processing platform on which there are at most two active processing
elements at any one time, that is, either the host PC alone or the two DSP cards. Such
a processing improvement has been achieved as a result of having the host PC taking
care of simple data distribution tasks while leaving more computationally intensive
tasks to the PC32 DSP cards. Even though additional overheads have been involved
in distributing image data to the PC32 cards for parallel processing, they are more

than compensated for by the computationally intensive nature of 4x4 image sub-

185

block processing and the high speed processing capability of the PC32 cards as

illustrated in Figure 5.8.

For 8x8 image block processing, the application of parallel processing unfortunately
failed to deliver any processing gain. In fact, when the proposed parallel processing
algorithm for 8x8 image block processing was incorporated into the parallel
intraframe coding process, not only did it fail to offer any processing improvement,
but it also offset all the processing benefits offered by the parallel 4x4 image sub-
block processing algorithm. As indicated in Table 5.2, the intraframe processing time
for compressing image frame CIF#061 has increased instead of decreased from 18 to
40 seconds when the parallel processing algorithm for 8x8 image block processing
was applied. Such an adverse result has subsequently led to a decision not to apply

parallel 8x8 image block processing during the intraframe coding process.

Basically, the shortcoming in applying parallel processing to 8x8 image block
processing is caused by hardware limitation rather than the deficiency in the concept
of parallel processing. Because the PC32 cards have very limited on-board memory,
it follows that they cannot possibly store the entire codebook of 256Kbytes locally
for 8x8 image block processing. Therefore, a compromise had to be adopted in the
parallel 8x8 tmage block processing algorithm in which a corresponding portion of
the codebook had to be down-loaded to the PC32 cards dynamically for 8x8 image
block processing operation. However, given that the process of dynamic codebook
data transfer has to be performed for every 8x8 image block, such a compromise
would result in a significant increase in parallel processing overheads, and hence

rapidly diminishing the benefits offered by parallel processing.

In addition, a rather different approach has been deployed to implement the parallel
8x8 image block processing algorithm due to dynamic codebook data distribution
requirements. Basically, because the size of codebook data to be transferred to the
PC32 cards is not fixed and may exceed the size of the common dualport memory
region, this suggests that it would be very difficult to implement a simple parallel
processing strategy in which separate image blocks and codebook data were sent to

the PC32 cards for parallel processing. So, instead of having the PC32 cards process

186

individual image blocks independently as in the case of parallel 4x4 image sub-block
processing, they can be set up to process identical image blocks in a cooperative
fashion. As such, for every 8x8 image block, the same image data block shall be
transferred or broadcasted initially to both PC32 cards. Subsequently, parallel
processing can be achieved by dynamically distributing codewords to an idle DSP
card for processing. When all the codewords have been distributed, the host PC shall
retrieve and correlate the processed results from the two PC32 cards to determine the

codeword that best represents the 8x8 image block.

5.7.3 Parallel image sequence compression

As in previous sections, this group of experiments was also conducted In a
progressive manner to facilitate the study of parallel image sequence compression
algorithms. Also, a simple hypothetical GOP structure consisting of only two
consecutive image frames was adopted initially for the preliminary study of a parallel
motion compensated predictive coding process. While the first frame of this GOP is
always processed as an I-frame using intraframe or still image compression
techniques such as BACV(QQ, the other will be coded as a P-frame using predictive

coding techniques such as forward motion compensated predictive coding.

As discussed in Chapter 3, image sequence compression generally involves both
intraframe and interframe coding processes. While the first frame of a GOP, known
as the anchor or reference frame, is always coded using intraframe coding, the rest
are typically processed using interframe coding. Due to the similarities between
intraframe coding and still image compression, the same processing algorithm based
on BACVQ could be applied without any significant changes. By contrast,
interframe processing generally involves not only motion compensated predictive
coding to remove temporal redundancies among adjacent image frames but also
residual frame processing to further eliminate spatial redundancies remaining in
residual frames. In particular, forward motion compensated predictive coding and
bidirectional interpolative coding are the key interframe processing techniques for P-
frames and B-frames processing, respectively. Unlike forward motion compensated
predictive coding which is based solely on forward motion prediction, bidirectional

interpolative coding uses both forward and backward motion prediction in its

187

operation. To improve the prediction efficiency, a variable-sized block matching
approach using 16x16 and 8x8 block sizes has been adaptively adopted in both
forward and backward motion prediction. Being a by-product of the motion
compensated predictive coding process, residual frames are coded using the same
BACVQ algorithm as being adopted in intraframe compression due to its coding
efficiency. However, because of the statistical differences between intraframes and

residual frames, a separate set of optimised codebooks shall be used for residual

frame processing.

Execution Execution time | Execution time | Execution time
Frame Sequence time without for category A for category B for category C
number description parallel vs relative % vs relative % vs relative %
processing improvement improvement improvement
(00-001 Salesman 1747 (753" vs 50.5% 0’467 vs 13.2% | 039" vs 15.2%
061-062 Claire 1'13” 0745 vs 38.4% 37" vs 17.8% 07327 vs 13.5%
121-122 Missa 104" 0°41” vs 35.9% 0732”7 vs 22% 028" vs 12.5%
181-182 Susie 119~ 0’557 vs 30.4% 0’47 vs 14.5% 41" vs 12.8%
241-242 Caltrain 1°58” 1°00” vs 49.1% 052" vs 13.3% 0°44” vs 15.4%
274-275 Table tennis 3217 1°23” vs 58.7% 1'16™ vs 8.4% 1°02” vs 18.4%
314-315 Football 1’51 1'16” vs 31.5% 1’07 vs 11.8% 0°58” vs 13.4%
374-375 Flower garden 237" 106" vs 58% 0°57” vs 13.6% 0746 vs 19.3%

Category A: Parallel processing applied to I-frame 4x4 and P-frame 8x8 motion compensated blocks.
Category B: Parallel processing applied to P-frame 16x16 motion compensated blocks plus those in
category A.

Category C: Parallel processing applied to entire residual frame plus those in category A and B.

Table 5.3: Relative parallel performance gain of various processing stages.

As discussed in the previous section, intraframe processing has indeed benefited
quite significantly from parallel processing due to its independent and spatial
processing nature. Similarly, it has been found that parallel processing could be
applied to interframe coding with promising results. As shown in Table 5.3, a
number of experiments have been conducted for evaluating the proposed parallel
interframe coding algorithm. This parallel algorithm was developed mainly based on
parallel moticn compensated coding for both 8x8 and 16x16 inter-block processing,
and parallel residual frame processing. Also it can be seen that all the experimental
results in this table reveal a consistent reduction in processing time although the
relative processing gain may vary from one GOP to another depending on the nature

of pictures being processed. For example, when parallel processing was

188

progressively applied to motion compensated coding of 8x8 blocks (category A) and
16x16 blocks (category B), and lastly to residual frame processing (category C), the
relative processing time was reduced by 22% and 12.5% for the test “Missa” GOP.
The 35.9% processing time reduction in category A, however, is aggregately
achieved by applying both parallel intraframe processing using 4x4 block size and
parallel motion compensated coding using 8x8 block size. By contrast, the relative
processing gain for the test “Table tennis” GOP in category B and C accomplished
8.4% and 18.4% reduction, respectively. Such a variation is attributed mainly to the
difference in computation complexity of 16x16 block size motion compensated
coding and residual frame processing. In fact, it has been shown that as the
computation complexity of a processing task becomes less significant, the achievable
gain in applying parallel processing to such a task is likely to be more subdued

because of the relative increase of parallel processing overheads.

Basically, parallel processing was incorporated into the interframe coding process
mainly via parallel motion estimation and parallel residual frame processing. This is
because both motion estimation and residual frame processing are regarded as the
most crucial and time-consuming operations during the interframe coding process.
Therefore, given the capability of parallel processing in accelerating computationally
intensive tasks, its application to these crucial operations would offer sizeable

improvements to the overall interframe coding process.

During parallel motion estimation processing, parallel processing was incorporated
into variable sized block matching operation on both 8x8 and 16x16 image blocks.
According to the proposed variable sized block motion estimation algorithm, motion
estimation using 16x16 block size can be independently performed on every 16x16
image block. However, when any of the 16x16 motion estimation operations fails to
deliver satisfactory results, motion estimation shall be performed using 8x8 blocks.
As this happens, each of these 16x16 blocks shall be segmented into 4 smaller sub-
blocks with 8x8 block size via quadtree segmentation before 8x8 motion estimation
is carried out. For this reason, parallel 16x16 motion estimation operation is normally
subject to runtime conditions, whereas parallel 8x8 motion estimation operation can

proceed more independently once quadtree segmentation has been performed.

189

In addition, the development of a parallel 16x16 motion estimation algorithm needs
to take a different approach as opposed to its sequential counterpart. This is because
sequential motion estimation normally operates on each individual 16x16 image
block at a time. Therefore, if the same processing algorithm were adopted for parallel
16x16 motion estimation, the extra processing power offered by parallel processors
would be largely wasted because all parallel processors except the active one would
be forced into idle. Alternatively, a more efficient parallel algorithm for 16x16
motion estimation is to process multiple 16x16 image blocks concurrently so that
parallel processing hardware can be better utilised. However, because of
implementation difficulties, this parallel 16x16 motion estimation algorithm shall be
applied on a basis of individual image stripes. For CIF image format with 288x352
pixels, each of these image stripes contains 22 16x16 image blocks. Therefore, by
confining this parallel processing algorithm to mere motion estimation on these
16x16 blocks, its parallel operation can be sufficiently sustained across all parallel
processors, thereby improving the overall processing efficiency of the prototype
parallel processing platform. However, this parallel processing algorithm does
require that intermediate processing results for these 16x16 image blocks be stored
temporarily for subsequent references to determine whether 8x8 motion estimation

shall be applied.

In terms of implementation, the proposed parallel motion estimation algorithm was
implemented on the prototype parallel platform with the host PC being dedicated to
data distribution tasks and the two DSP cards acting as data coprocessors. As already
discussed, this processing arrangement is more favourable because not only does the
host PC have large addressable memory space needed for image data processing
operation, but it also has direct access to test image sequence data on its own hard
disk. So, when motion estimation needs to be performed on an 8x8 or 16x16 image
block, the host PC simply has to transfer the image data block together with a
corresponding search window data block, followed by an appropriate command word
to an idle DSP card in order to initiate processing. When processing is complete, the
host PC shall up-load processing results from the DSP cards and the whole process is

repeated all over again for the next block of image data. For this experiment,

190

processing results returned from the DSP cards shall include the optimum motion

vector and the corresponding minimum absolute motion estimation error (MEE).

Since a large amount of image data is involved in the motion estimation process, the
common dualport memory region shall be used for transferring image data to the
DSP cards for parallel processing. For example, given that 8x8 motion estimation is
required to cover up to £15-pixel movement per frame, the amount of image data to
be transferred to a DSP card for each motion estimation request would consist of 64
bytes for the image sub-block itself plus 38x38 or 1444 bytes for the search window.
These two sets of data are copied to the common dualport memory region in cascade
in a packed format to facilitate data transfer operations. Also, since these blocks of
data are fixed in size, the DSP cards would be able to extract them from the common

dualport memory region quite easily.

Unlike image data transfer, command words for initiating 8x8 and 16x16 motion
estimation operation on the DSP cards will be sent via the mailbox data structure.
The main reason for this is two-fold. Firstly, since the processor on the DSP cards at
idle always polls its mailbox for new commands from the host PC, this suggests that
all host PC commands must be transferred via the mailbox data structure in order to
get its response. Secondly, as image data needed for motion estimation has already
been transferred to the common dualport memory region beforehand, a simple
command word would be sufficient for initiating processing on the DSP cards. In
fact, throughout this experiment, a unique integer literal shall be assigned to

individual command for all parallel processing operations.

As mentioned earlier, motion estimation results are returned to the host PC via the
common dualport memory regioen. These results mainly consist of the x- and y-
components of the optimal 2-D motion vector and its corresponding absolute MEE.
Because both motion vector components are limited to a range of 15 pixels/frame
and the worst case minimum absolute MEE never exceeds 16320 (8x8x255) and
65280 (16x16x255) for 8x8 and 16x16 motion estimation operations respectively, it
follows that both the motion vector components and the minimum absolute MEE can

be packed nicely into a single 32-bit long word data structure to reduce the amount of

191

dualport memory access from the host PC. Specifically, a long word data structure
consisting of two 8-bit fields for holding the two motion vector components and a
16-bit field for the minimum absolutc MEE has been allocated for processing result

retrieval purposes during parallel motion estimation process.

It should be noticed that although motion estimated blocks are required for the
construction of residual frames, they are not returned as part of the processing results.
This is firstly because the host PC can extract motion estimated blocks itself quite
easily using returned motion vector information. Secondly, by not returning motion
estimated blocks, parallel processing overheads can be partially reduced. This
implies that the turn-around time for processing the next image block will be
shortened, thereby enhancing parallel processing performance. In fact, the actual
benefit of this arrangement is realised when motion estimation does not produce
satisfactory results and quadtree segmentation or intra-coding has to be performed.
Other considerations include data dependency issues, ease of processing and less
memory usage on the host PC as it does not have to deal with returned motion

estimated blocks immediately.

Apart from 8x8 and 16x16 parallel motion estimation, parallel residual frame
processing plays an important role in accelerating interframe processing as indicated
in Table 5.3. On average, parallel residual frame processing accounts for a further
15% reduction in the overall processing time of the parallel image sequence
compression process. In spite of being based on the same BACVQ processing
algorithm, the processing efficiency of parallel residual frame processing was
observed to be much higher than that of parallel intraframe processing. This is
mainly because residual frame processing generally requires much smaller
codebooks. Therefore, apart from computational advantages associated with smaller
codebook operation, residual frame processing can operate with significantly less
memory requirements. This aspect of residual frame processing is particularly
important in parallel processing environment where local memory size i1s a very

influential factor to the overall processing efficiency of a parallel processing system.

192

The fact that all the codebooks for residual frame processing are small enough to be
stored locally on the two DSP cards has enabled it to take full advantage of the
processing capabilities of the prototype parallel processing platform. In particular, as
all of its codebooks can be accessed by the DSP cards locally, there would be no
need for performing dynamic codeword transfers during the parallel residual frame
coding process, hence offering a significant reduction in parallel processing
overheads. In addition, because of the availability of locally stored codebooks, the
proposed parallel residual frame processing algorithm does not have to deal with 4x4
and 8x8 blocks separately as in the case of parallel intra-frame processing. Instead,
individual DSP cards are allowed to make their own decision on whether 4x4

residual block processing needs to be performed.

Basically, the proposed parallel residual frame processing algorithm was developed
using a similar parallel processing arrangement as adopted by the paralle]l motion
estimation algorithm. In this arrangement, the host PC will serve as a host processor
whose functions are mainly to distribute processing tasks to individual processors on
the DSP cards for parallel processing and coordinate their operation. The DSP cards
will act as parallel processors whose only task is to execute processing requests from
the host PC. Accordingly, parallel residual frame processing will be initiated by the
host PC and its operation can be sustained as the host PC constantly monitors the
status of the two DSP cards. As soon as an idle DSP card is detected, the host PC
will upload processing results from the previous processing task before transferring
another 8x8 residual block followed by a residual block processing command to the

idle DSP card to initiate residual block processing.

While residual block data are transferred to the DSP cards via the common dualport
memory region, command words are always sent to them via the mailbox data
structure as a mechanism to synchronise their processing operation. As soon as
residual block processing commands are received, processing on the DSP cards will
commence in accordance to the BACVQ coding algorithm for residual frame
processing. When processing is complete, the DSP cards will return processing
results containing the index of the best matched codeword and a corresponding

reconstructed residual block back to the host PC via the mailbox and the common

193

dualport memory regions, respectively. If 4x4 residual block processing has been
involved, four codeword indices instead of a single one will be returned to the host
PC as illustrated in Figure 5.9. This condition can be detected by examining the value

of codeword index 0.

Residual block structure

Returned codeword
lndeX 3 |ndeX 2 |ﬂdex 1 Index 0 fndicesfor 4x4 resz'dual
b('ggj)o b('gg';; (7 bits) | (7 bits) | (7 bits) | (8 bits) | plock processing
block 2 | block 3 Returned codeword index
{4x4) (4x4) mde'x 0 for 8x8 residual block
(8 bits) | processing

Figure 5.9: Residual block structure and returned codeword index arrangement.

Because the distribution of residual blocks to the DSP cards is performed
dynamically, the idle time incurred while waiting for the next service request from
the host PC can be largely reduced. Normally, the host PC shall keep on distributing
residual blocks to the DSP cards for parallel processing until they all become busy
with their processing tasks. As this happens, the host PC shall then poll its ACK
mailboxes to determine which DSP card has actually completed its processing
operation. Naturally, when processing completion acknowledgment is received, the
host PC shall up-load processing results from the DSP cards before initiating another
processing request. While processing results are being up-loaded and new processing
requests are being set up, the DSP cards are in fact forced into an idle state. However,
because the above processing overhead is considered to be less significant than the

actual residual block processing operation, its effect is believed to be quite minimal.

Having investigated the relative benefits of incorporating parallel processing into
various coding stages of a typical image sequence compression process, an optimised
parallel image sequence compression algorithm was then developed and tested on the
prototype parallel processing platform for its effectiveness. Specifically, this
algorithm was tested against a number of relatively short representative GOPs
extracted from the test image sequence. These GOPs, ranging from that of the
“Salesman” to that of the “Flower garden”, represent a group of natural scenes that

feature a very different level of visual details as well as motion activities. Such a

194

diversity is generally desirable because it allows the experiment to be conducted in a

more realistic condition, thereby improving the generality of experimental results.

As indicated in Table 5.4, each of the representative GOPs was constructed using the
first 4 consecutive image frames of individual video segments of the test image
sequence. This specific configuration of GOP was adopted in this experiment so that
the partial contribution from parallel I-frame processing, parallel P-frame processing
and parallel B-frame processing to the overall image sequence compression process
could be evaluated with shorter overall processing time. For example, while the first
frame of these GOPs is coded as an I-frame via parallel I-frame processing, the
second and third ones shall be coded as B-frames via parallel B-frame processing and

the last one as a P-frame via parallel P-frame processing.

Frame Sequence Execution time without Execution time with Speed-up
number description parallel processing parallel processing factor
000-003 Salesman 3719~ 1°25" 2.34
0al1-064 Claire 2735~ 1'18” 2.04
121-124 Missa 27327 e 2.11
181-184 Susie 252" 127" 1.98
241-244 Caltrain 3417 1327 2.40
274-277 Table tennis 517 157 27
314-317 Football 347 1’517 2.05
374377 Flower garden 437" 1407 2.77
Average 3°35m 1°327 2.32

Table 5.4: Performance gain of parallel image sequence compression.

Because of the different nature of the GOPs and the adaptability of the proposed
image sequence compression process, the overall execution time required to process
them generally varies quite substantially as indicated in Table 5.4. For example,
before parallel processing was incorporated into the coding process, the overall
execution time required to compress a sample GOP was observed to vary between
2327 and 5’177, Similarly, after parallel processing was deployed, such a processing
time variation was observed to drop to between 1'12” and 1°57”. Although the exact

mechanism affecting the overall processing time is difficult to establish analytically

195

due to its complexity, it will suffice to say that the overall processing time is
generally affected by a number of factors such as the number of iteration steps
required to determine the optimum code words for 8x8 and 4x4 image blocks during
BACVQ coding process, the number of iteration steps involved in determining the
optimum motion vectors for 16x16 and 8x8 image blocks during motion estimation

process, and [astly the proportion of the above processing operations themselves.

Naturally, the more iteration steps are involved, the more computation cycles will be
required, hence leading to increased processing time. In addition, because quadtree
segmentation has been adopted in both BACVQ and motion estimation, processing
tasks would increase in number by a factor of 4 whenever sub-block processing is
required. That is, when quadtree segmentation is involved, processing will have to be
extended to deal with 4 additional image sub-blocks for every image block being
segmented. Although the number of processing tasks increases substantially when
quadtree segmentation is involved, it does not necessarily mean that it would take
significantly longer to process all four image sub-blocks than a single image block
because sub-block processing is generally more efficient. Therefore, depending on
the proportion of image block and image sub-block processing operations during
BACVQ and motion estimation, the overall processing time of the proposed image

sequence compression process will vary accordingly.

In spite of the relatively large variation in processing time, this study has clearly
demonstrated that parallel processing indeed offers an effective means to accelerate
image sequence compression operation. On average, the overall processing time
required to compress a sample GOP consisting of 4 consecutive image frames in CIF
format has been reduced from around 3’35 to 1°32”, that is, a speed-up factor of
2.32. These encouraging outcomes have been achieved as a result of applying the
proposed parallel image sequence compression algorithm which consists of parallel
intraframe/residual frame processing, parallel B-frame processing and parallel P-
frame processing. While parallel processing algorithm is a key component allowing a
computational process to take advantages of the parallelism of the underlying parallel
processing hardware, it 1s the parallel processing hardware that enables parallel

processing to actually take place.

196

Although the combination of parallel processing algorithm and parallel processing
hardware in this experiment only offers a moderate speed-up factor, it does not
necessarily mean that this is the ultimate improvement that parallel processing could
offer. In fact, the moderate processing improvement in this experiment can be
attributed to a number of implementation factors. These include the limitations of the
parallel processing hardware, the compromises that the proposed pérallel image
sequence compression algorithm has to adopt to overcome those limitations, and
some inefficiencies in the existing parallel processing arrangement itself. As
mentioned earlier, most of the limitations of the prototype parallel processing
hardware are related to the small size of the on-board and dualport memory on the
DSP cards. In particular, the shortage of on-board memory is conceivably the most
influential factor in this study because it inhibits large VQ codebooks to be stored
locally, thus jeopardising severely the efficiency of the proposed parallel processing
algorithm. In addition, although the small dualport memory size does not manifest
the same level of drawbacks as the on-board memory size does, its limitation has
certainly constrained the implementation of the proposed parallel processing
algorithm to some extent. For example, the shortage of the dualport memory makes it
very difficult to incorporate a dual channel data transfer scheme into the proposed
parallel processing algorithm. Its operation principle is similar to that of double
buffering techniques, and therefore it could have been used to effectively reduce the

idle time on the DSP cards.

Because of the above hardware limitations, some compromises have been made to
the parallel image sequence compression algorithm in which the host PC has to take
part in some processing operations instead of being dedicated to the task of
coordinating parallel processing operations among the DSP cards as originally
planned. For example, duc to the on-board memory size limitation, the host PC is
required to undertake 8x8 image block processing tasks during parallel intraframe
processing operations. This suggests that while the host PC is busy analysing and
processing 8x8 image blocks, the DSP cards virtually have nothing to do, thus

adversely affecting the overall efficiency of the parallel processing algorithm.

197

Similarly, compromises have also been made during the development of parallel
motion estimation algorithm for B- and P-frame processing. These compromises are
needed mainly because of the provision for the coding process to switch to intraframe
coding mode should motion compensation produce unsatisfactory results. For
example, instead of just distributing 16x16 image blocks and search window blocks
to the DSP cards for parallel motion estimation operation and then expecting
processing results to be returned once processing is complete, the host PC now has to
adopt a two-stage parallel processing approach as a compromise. In the first stage,
parallel motion estimation is performed on all 16x16 image blocks of an image stripe
so that parallel processing can be sustained. In the second stage, the host PC will
analyse the returned motion estimation results in the first stage to determine whether
further segmentation is needed. If further segmentation is indeed required for any of
the 16x16 image blocks, a similar parallel motion estimation process will be applied
to each of them at a time, each containing 4 8x8 image sub-blocks. The returned
results are once again analysed to determined whether intraframe coding mode
should be attempted for any sub-blocks. In other words, the implementation of the
parallel motion estimation algorithm has been severely compromised and the two-
stage processing approach has been adopted to sustain parallel processing operation
and to reduce DSP card idle time at the cost of increased image data transfer

overheads between the host PC and the DSP cards.

Because of the limitations of the parallel processing hardware and the compromises
in the implementation of the proposed parallel image sequence compression
algorithm, the overall processing efficiency of parallel image sequence compression
process in this study has been adversely affected. Not only do they prevent the
proposed parallel image sequence compression algorithm from taking fuil advantages
of parallel processing, but they also cause a substantial increase in parallel processing
overheads due to additional image data exchange and processor Interactions
involved. In addition, at any stage throughout the parallel processing process, there
are always at most two active parallel processors. This generally occurs when the
host PC does not directly involve in processing operations, but instead acts as a host

processor to distribute processing tasks to the DSP cards for parallel processing. It is

198

for these unfavourable conditions that partially explains why only a moderate

average speed-up factor of 2.32 has been obtained in this study.

Although the level of processing improvement achieved in this experiment is not
quite sufficient for real-time applications, it is believed that such deficiency could be
overcome by utilising more powerful parallel processing hardware, improving
programming development tools, and optimising the proposed parallel image
sequence compression algorithm. Currently, the experimental results indicate that the
average processing time required to compress an image frame 1s about 23
seconds/frame, whereas the target processing time for real-time image sequence
compression at a frame rate of 50 frames/second is in the order of 0.02 second/frame.
Therefore, it is quite apparent that the prototype parallel processing system used in
this experiment could not meet the processing requirements of real-time video
compression applications. In addition, given the magnitude of processing
improvement required, it would be necessary that the prototype parallel processing
system be radically overhauled in order to ascertain global optimisation throughout

the image sequence COMPpression process.

Basically, the shortcoming of the prototype parallel processing hardware in
delivering sufficient processing performance in this study can be attributed to the
limitations of the host PC architecture, its slow memory transfer speed, and the
shortages of on-board and dualport memory on the DSP cards. Specifically, due to
the 640-KByte conventional memory restriction on the PC architecture, a third-party
driver has been used to gain access to the extended memory on the host PC. While
access to the extended memory region is necessary to satisfy the huge memory
requirement of the proposed image sequence compression algorithm, its usage also
involves performance trade-offs because extended memory access is generally not as
efficient as conventional memory access. Therefore, given that large blocks of image
data are to be exchanged between the conventional and extended memory regions
regularly during image sequence compression operation, the adverse effect of slower
extended memory access on the overall processing performance would be quite
significant. In addition, PC expansion bus imposes further restrictions on how

quickly image data can be transferred from the host PC to the DSP cards for parallel

199

processing. For a standard PC/ISA bus system, although the bus speed is specified at
8MHz, the actual average data transfer speed is generally much lower because
normal bus access may require more clock cycles to complete and the same bus
bandwidth has to be shared among various system devices. For a CIF image
sequence with a frame refresh rate of 50 frames/sec, the raw image data rate would
be around 4.8 MB/sec. This means that for image sequence compression applications
with CIF format, a real-time capable parallel processing system must have an average
data transfer rate well exceeding 4.8 MB/sec to ensure proper operations. Finally, the
shortages of on-board and dualport memory on the DSP cards have significant
impacts on the processing performance of the proposed parallel image sequence
compression algorithm. This unfavourable aspect has already been discussed earlier

in detail.

In addition to parallel processing hardware, programming development tools also
play a significant part in enhancing processing efficiency of parallel processing
systems. In particular, although high level programming language offers many
desirable features such as code portability and the ease of code development, its
application may sometimes have to compromise on code size and execution speed
because it is generally difficult for high level compilers to produce as efficient code
as hand-coded assembly counterparts. This aspect of high level programming

language 1s discussed in more detail in appendix H.

Finally, apart from eliminating implementation trade-offs in the existing parallel
mmage sequence compression algorithm, it is also important that other optimisation
be adopted. In particular, eliminating the need to access image sequence data via the
host PC hard disk and reducing data transfers between the host PC and the DSP cards
would have significantly improved the performance of the proposed parallel image
sequence compression algorithm. While accessing image sequence data via the host
PC hard disk has been adopted in this experiment to ease implementation difficulties,
such an approach is certainly not appropriate for assessing the suitability as well as
the actual benefits of parallel processing in real-time image sequence compression
applications because of the slow access speed of PC hard disk. In fact, a more

common image sequence compression system would have image data acquired and

200

stored directly in its own primary memory, thus eliminating the need to access image
data via the host PC hard disk altogether. Apart from this, reducing unnecessary data
transfers between the host PC and the DSP cards would certainly be an effective
measure for accelerating the processing speed of the proposed parallel image
sequence compression algorithm. For example, during the parallel motion estimation
process, the requirement that an entire search window block be down-loaded to the
DSP cards for every parallel motion estimation request may not be necessary because
search window blocks normally overlap one another. Therefore, if a more efficient
scheme could be developed for extracting search window blocks, the DSP cards
could then re-use a portion of previously transferred search window data, thereby

reducing the amount of image data that need to be transferred to the DSP cards.

5.8 Summary

In this chapter, an overview of DSP chip design has been given and the main features
of different parallel DSP platforms has been discussed. Although there has been
considerable improvement in the design of advanced DSP chips to enable them to
run significantly faster than general-purpose processors, it is unlikely that existing
single-chip designs would be able to deliver sufficient processing power for many
computationally intensive applications. Therefore, there has been a rising trend in
adopting multiple processor designs, hence leading to the development of many
parallel DSP systems. Parallel DSP systems can be designed in various forms
ranging from the utilisation of an additional DSP coprocessor in a general-purpose
uni-processor processing system to the deployment of multiple processors networked
into a truly parallel processing system. While parallel processing platforms based on
the TMS320C80 processor inherit the on-chip paraliel processing capability of the
processor itself, others rely on multiple on-board processors or multiple DSP boards
to provide parallel processing capability. In particular, a prototype parallel platform
consisting of a host PC and 2 PC-32 DSP cards offers a flexible and cost effective
parallel processing system and has been adopted to provide basic parallel hardware

supports for the study of parallel image sequence compression.

While the host PC is powered by an Intel 486DX33 general-purpose processor, the
PC-32 DSP cards each feature a TI TMS320C32 dedicated high performance floating

201

point DSP engine. The interconnection between the host PC and the two PC-32 cards
is primarily via dualport memory to cater for high speed inter-processor
communications. As dualport memory is a special form of shared memory, an
arbitration scheme has been established to administer all dualport memory access.
This arbitration scheme is based on the principle of semaphore and its operation
efficiency is further enhanced by a set of hardware semaphore registers on the PC-32
cards. Access to the hardware semaphore registers is always on a first-come-first-
serve basis. However, in order to assure fair access to these registers and to avoid
possible deadlocks, it is crucial that software running on both the host PC and the
PC-32 cards must operate in a cooperative manner. A mailbox messaging scheme has
also been adopted to facilitate inter-processor communications between the host PC
and the PC-32 DSP cards. Its operation principle relies on the hardware semaphore
registers to allow arbitrated access to mailbox data in dualport memory. An
additional interconnection between the host PC and the two PC-32 cards is via the
host PC I/O bus space. Its provision is primarily for PC-32 hardware control and

semaphore register interaction.

The basic processing arrangement for the prototype DSP platform is to have the host
PC serve as a host processor and the two PC-32 cards as coprocessors. While the
main function of the host processor is to distribute processing tasks to the PC-32
cards for parallel processing and to handle processing tasks which are difficult to be
processed efficiently on the PC-32 cards, that of the PC-32 cards is to respond and
execute processing requests from the host processor. During parallel processing, data
is exchanged between the host PC and PC-32 cards in packed format so as to
overcome implementation problems caused by the mismatch in their physical

memory structures and the limited size of dualport memory space.

During parallel HOD computation, the relative processing performance in terms of
processing time has been recorded for various processing arrangements. A worst case
situation has been simulated in which parallel HOD computation was deliberately
applied to a pair of completely different image frames instead of consecutive ones.
Unlike sequential processing, the application of parallel HOD computation involves

additional processing overheads because image data needs to be distributed to

202

parallel processors to allow parallel processing to take place. During parallel
processing operations, not only does the host PC have to undertake its share of
processing tasks, but it is also responsible for distributing image data to the DSP
cards for parallel processing and coordinating their operations. Being dedicated to
processing tasks, the DSP cards only need to respond to processing requests from the
host PC and return processed results to the host PC once processing is complete.
Image data is transferred to the DSP cards via the common dualport memory region
in the form of data packets. Each of these packets contains two scan lines of image
data extracted from two test image frames for which the HOD parameter is to be
calculated. Access to the common dualport memory is arbitrated by mailbox
messaging scheme. Also, dedicated mailbox semaphore directives are used to
facilitate the arbitration process. Because of the simplicity of HOD computation, the
application of parallel HOD computation only offered a marginal improvement to
processing speed. Therefore, a decision has been made not to include parallel HOD

computation in subsequent parallel image sequence compression experiments.

Although parallel still-image or intraframe compression has been implemented using
similar parallel processing arrangement as in the case of parallel HOD computation,
its application offers significant improvement over the sequential processing
approach. The is because processing of 8x8 and 4x4 image blocks during intraframe
compression can be performed independently from one another in the spatial domain,
thus enabling more efficient parallel operation. Experimental results have shown that
the greatest improvement came from 4x4 image sub-block processing. Due to
relatively small codebook size, a copy of the optimised codebook for 4x4 image sub-
block processing was stored locally on each DSP card, hence eliminating altogether
the need for dynamic codeword transfers and allowing 4x4 image sub-blocks to be
processed without any host PC intervention. Accordingly, the host PC was able to
handle data distribution tasks more efficiently while leaving more computationally

intensive tasks to the DSP cards.

The application of parallel 8x8 image block processing during intraframe
compression experienced was ineffective because it caused the processing time to

increase. This prbblem can be attributed to the limitation of the prototype parallel

203

processing hardware rather than the deficiency of the concept of parallel processing.
The limited size of on-board memory on the DSP cards did not allow the codebook
for 8x8 image block processing to be stored locally, hence necessitating costly
dynamic codeword transfers during parallel 8x8 image block processing. This means
that excessive parallel processing overheads would be involved even though
processing arrangement for 8x8 image block processing has been modified to take

into account dynamic codeword transfers.

For parallel image sequence compression, experiments have been initially conducted
for studying parallel motion compensated coding and parallel residual frame coding
algorithms. This is because both motion compensated coding and residual frame
coding are regarded as the most crucial and time-consuming operations throughout
image sequence compression process. To facilitate this study, several GOPs
consisting of only 2 consecutive image frames were extracted from the test image
sequence with the first image frame being coded as an I-frame using paralle]
intraframe coding technique and the other as a P-frame using parallel forward motion
predictive coding scheme. Apart from parallel intraframe coding which has been
discussed earlier, the study of parallel forward motion predictive coding concentrates
on parallel motion estimation for 8x8 and 16x16 image blocks and parallel residual
frame processing because they represent the key operations during forward motion

prediciive coding process.

To improve processing efficiency, a slightly different processing arrangement has
been adopted during parallel motion estimation process. Unlike the sequential
processing approach, the parallel 16x16 motion estimation process was implemented
in such a way that all 16x16 image blocks of an image stripe were processed at the
same stage. Such an arrangement would allow the prototype parallel processing
platform to operate more efficiently because the host PC only needs to distribute
16x16 image blocks to the DSP cards for parallel motion estimation to take place and
then up-load processed results once processing on the DSP cards is complete. These
processed results, however, need to be stored temporarily for subsequent reference
when a decision needs to be made as to whether 8x8 motion estimation is required.

For 8x8 parallel motion estimation, a similar processing arrangement was applied.

204

However, as quadtree segmentation is applied to individual 16x16 blocks, parallel
8x8 motion estimation will only take place in groups of 4 8x8 image sub-blocks.
Experimental results have revealed that the application of parallel 8x8 and 16x16

motion estimation offers marginal to moderate reduction in processing time.

On average, parallel residual frame processing contributes about 15% to the
reduction of processing time. Its processing arrangement is very similar to that of
parallel intraframe processing. However, because all the codebooks for residual
frame processing are relatively small in size, this allows a copy of these codebooks to
be stored locally on cach DSP card. The result is that the efficiency of parallel
residual frame processing has been markedly improved as the host PC can undertake
1mage data distribution tasks and processing coordination role more efficiently, while

leaving computationally intensive tasks to the DSP cards.

The overall parallel image sequence compression algorithm was eventually tested
against various sample GOPs, each consisting of 4 consecutive image frames
obtained from various segments of the test image sequence. Due to the different
nature of these sample GOPs and the adaptability of the compression algorithm, the
overall processing time rtequired to process these GOPs tends to vary quite
substantially. On average, an overall speed-up factor of 2.32 has been achieved with
the aggregate contribution from parallel intraframe processing, parallel B-frame

processing, parallel P-frame processing and parallel residual frame processing.

The moderate results achieved in this study can be attributed to a number of factors.
These include the limitation of the prototype parallel processing platform, a
compromise in the development of the overall parallel image sequence compression
algorithm, and the inefficiency in certain aspects of the processing arrangement itself.
For real-time image sequence compression applications where processing power
requirements are many folds of what is achieved in this study, it is necessary that not
only should more powerful parallel processing hardware be used, but it is also
important that the proposed parallel image sequence compression algorithm be
further optimised and any inefficient processing arrangement be removed in order to

achieve better parallel processing efficiency.

205

Chapter 6: Conclusions and Recommendations

The summary provided at the end of the previous chapters serves to highlight the
major developments and findings in three key areas, namely, still image
compression, image sequence compression and the application of parallel processing
to image sequence compression. It is the aim of this chapter to conclude this thesis
with an overall perspective on the algorithms themselves and the results obtained in

this study, and to provide some recommendations applicable to future research work.

6.1 BACVQ algorithm

6.1.1 Algorithm overview

A detailed literature survey in Chapter 2 has provided a good foundation for the
development of the proposed BACVQ algorithm for still image compression. While
the study of transform coding techniques in Section 2.2 has helped identify efficient
operators for image feature detection, the investigation of the basic principle of VQ
coding and its variants in Section 2.4 has facilitated the algorithmic development of
BACVQ. As presented in Section 2.5, BACVQ can be regarded as an adaptive block-
based VQ coder developed for still image compression applications. BACVQ adopts
both block size and codebook adaptivity in its operation to enhance its coding
performance. Block size adaptation has enabled BACVQ to encode low activity and
uniform regions using larger block size of 8x8 to improve compression gain and
higher activity and complex regions using smaller block size of 4x4 to enhance
image reconstruction quality. The adaptive segmentation process of 8x8 and 4x4
image blocks is controlled by an efficient quadtree segmentation scheme. Codebook
adaptation via CVQ enables high activity and complex regions to be coded with a
very high degree of integrity, thereby substantially improving the perceptual quality

of reconstructed images.

As far as implementation is concerned, BACVQ has been developed with further
enhancements. As discussed in Sections 2.5.1 through 2.5.3, the adoption of image
feature classification in both transform and spatial domains has been proven to be

useful in improving image feature classification accuracy during quadtree

206

segmentation and CVQ processes. In particular, the classification operation in the
spatial domain has tried to take advantages of the deficiency of HVS by
incorporation dynamic range and contrast sensitivity into its operation. In the
transform domain, new and effective measures have been incorporated into the
classification operation during CVQ process. An effective partial codebook search
algorithm has been developed in Section 2.5.4 to accelerate 8x8 codebook search
operation significantly with negligible sub-optimality. More importantly, a new
algorithm has been developed in Section 2.5.4 for determining the optimal codebook
size for CVQ sub-codebooks. Compared to other approaches described in Section
2.4.6, the application of this algorithm has reduced the computation complexity of

codebook size determination process substantially.

6.1.2 Coder Evaluation

Results obtained in this research have confirmed that BACVQ has indeed
demonstrated its great potential for still image compression applications in terms of
high compression gain, low computation complexity and high perceptual
reconstructed picture quality. It has been shown that reconstructed image with PSNR
ranging from 28.2 to 35.3dB can be achieved at a coding rate from 0.2784 to
(.461bpp. Although the coding performance of BACVQ) is slightly lower than other
high performance coding schemes quoted by Lee et al (1994a), this can be atiributed
mainly to the fact that the largest block size used in BACVQ) is only 8x8 as opposed

to 16x16 in other schemes.

Because both BACVQ and transform coding are block-based algorithms, they tend to
suffer from some degrees of “blocking™ effects which occur due to the discontinuity
at image block boundaries. However, BACVQ is believed to suffer less from this
because the adoption of variable block size coding should make the appearance of
blockiness less apparent. The blockiness is in general more noticeable in low activity
and uniform regions where image blocks tend to be coded with larger block size.

Unlike transform coding, BACVQ does not suffer from any “ringing” artefacts.

Some misclassification of low activity and uniform blocks has been observed in

regions with fine details, thus causing noticeable degradation to the quality of

207

reconstructed images. It is, however, expected that this problem can be rectified 1f the
adaptive segmentation algorithm is further refined. Apart from this, consistent coding
results have been achieved among image blocks in high activity and complex

regions.

6.1.3 Recommendations

Areas of improvement for still image compression algorithms in general and
BACVQ in particular can be identified by addressing the constraints and assumptions
involved in the development of BACVQ algorithm. Firstly, the lack of a perceptually
accurate and computationally efficient quality metric has placed some limitation on
the robustness of BACV(Q and has caused some difficulties in evaluating
reconstructed image quality in an objective manner. Specifically, the application of
MSE distortion measure does not always guarantee the coding integrity of the VQ
process. Similarly, the usage of PSNR does not necessarily provide an accurate
measure for image quality assessment. For these reasons, improvement on a set of

quality metric would be highly beneficial for future study in this area.

The second constraint and assumption in the development of BACVQ involves the
selection of a set of coding parameters for image feature classification process. This
1s because BACVQ) relies heavily on the classification process in order to operate
efficiently. In particular, as the threshold values for these parameters have been
chosen in a trial-and-error manner based on a limit set of training images, further
optimisation is believed to be possible. The benefit of this is that the robustness of
image feature classification during adaptive block segmentation and CVQ processes

would be improved, thereby enhancing the coding performance of BACVQ.

With respect to codebook generation, it is believed that the quality of BACVQ
codebooks can be improved by using a larger and more diverse set of tramning
images. In addition, since the algorithm for determining BACVQ sub-codebook sizes
has been developed based on the overall average square error distortion measure, this
suggests that further improvement is possible. As mentioned earlier, this 1s because
square error distortion measure is not necessarily a perceptually accurate indication

of how distortion is perceived by HVS.

208

Because BACVQ is a block-based coding algorithm, further enhancement to
eliminate the “blocking™ effects is also highly desirable to improve reconstructed
image quality. One possible way to achieve this is to use a special form of weighted
distortion measures that would give more weight to distortion at image block
boundaries so that the discontinuity at the image block boundaries caused by the
vector quantisation process can be reduced. In addition, enhancements to allow the
BACVQ algorithm to easily adjust its coding rate are quite beneficial. This property
is particularly useful when coding rate adjustment is necessary to meet such

conditions as transmission channel and storage medium restrictions.

6.2 Adaptive spatial/temporal image sequence compression

6.2.1 Algorithm overview

Literature survey in the area of image sequence compression in Chapter 3 has laid a
good foundation for the development of the proposed adaptive spatial/temporal
image sequence compression algorithm. The study of HVS in Section 3.2 has
provided good justifications for measures taken to improve the coding performance
of the proposed image sequence compression algorithm. In general, visual data which
are less sensitive to or even could not be perceived by HVS are maximally
compressed with greater distortion to maximise compression gain, whereas those
with visual importance shall be coded with higher fidelity to enhance the overall
perceptual quality of reconstructed pictures. While the study of scene segmentation
in Section 3.3 has facilitated the establishment of the proposed adaptive scene
segmentation algorithm, the survey on motion compensated predictive coding and
adaptive coding techniques in Sections 3.4 and 3.5 has helped to shape the proposed

adaptive image sequence compression algorithm.

As presented in Section 3.7, the proposed adaptive image sequence compression
algorithm has been developed with an aim to improve the coding performance of a
typical image sequence compression process. It relies on BACVQ during intra-frame
coding operation and the proposed variable block size motion compensated

predictive coding algorithm during inter-frame coding process.

209

As discussed in Section 3.7.1, a novel adaptive scene segmentation algorithm based
on the proposed MHOD criterion has been developed for segmenting lengthy mmage
sequences into coherent GOPs of manageable lengths. Compared to other scene
segmentation schemes discussed in Section 3.3, the proposed adaptive scene
segmentation algorithm has demonstrated its ability to detect scene transitions more
accurately with high tolerance to spurious image activities, and yet it only involves

moderate computation complexity similar to that of the HOD scheme.

While the leading I-frame of a GOP is coded using BACVQ coding algorithm, the
remaining frames are dealt with using motion compensated predictive coding
techniques. An enhanced adaptive variable block size motion compensation
algorithm has been proposed for improving the efficiency of motion compensated
predictive coding process. As discussed in Section 3.7.2, motion estimation errors
has been adopted as an accurate segmentation criterion for controlling the variable
block size motion compensation process since it gives a more direct indication of
how effective motion estimation and motion compensation operation is going to be.
In addition, provisions for motion compensated predictive coding operation to revert
to intraframe coding mode have been provided on individual block basis to deal with

situations where unsatisfactory motion compensation operation occur.

An improved motion estimation strategy based on the so-called Modified 2-D search
algorithm has been presented in Section 3.7.3.1 to increase motion estimation
accuracy for small movements specifically. Its development has been inspired by the
fact that motion estimation errors has been observed to be more noticeable in low
motion activity regions. Compared to other motion estimation algorithms described
in Section 3.4.3, the proposed strategy inherits the good performance of the Modified
2-D algorithm and yet it has the ability to estimate small motion more accurately

with slight increase in computation complexity.

An alternative progressive motion estimation technique has also been developed for
dealing with long inter-reference frame intervals which may occur as a result the
proposed adaptive scene segmentation algorithm. As described in Section 3.7.3.2, the

proposed progressive motion estimation algorithm offers a fixed motion search range

210

regardless of the length of inter-reference frame intervals, better motion vector field
coding efficiency, and more importantly the ability to deal with overlapping

movement more effectively among moving objects in an image sequence.

6.2.2 Coder Evaluation

The proposed adaptive spatial/temporal image sequence compression algorithm has
indeed achieved quite encouraging results. When tested against a group of sample
image sequence segments with varying image complexity and motion activity, the
proposed algorithm was able to reproduce pictures with acceptable perceptual quality
varying from 20 to 40dB at a bit rate between 0.15 and 0.55bpp. These encouraging
results have been obtained mainly by adapting its coding process to the nature of
original images, thercby enabling spatial/temporal redundancy within image
sequences to be exploited more effectively. In fact, such adaptivity is collectively
achieved with the aid of adaptive scene segmentation, variable block size motion

compensated predictive coding and BACVQ.

The proposed adaptive scene segmentation algorithm has demonstrated very high
consistency throughout the temporal segmentation process. As shown in Section
3.7.1, the proposed algorithm has been able to accurately identify all key scene
transition points within the test image sequence. In fact, it has been able to operate
with a reasonably large margin to protect itself from being affected by spurious

lmage sequence activities.

Good results have also been obtained during motion compensated predictive coding
process thanks to the application of variable block size motion compensated
prediction, enhanced motion search strategy, and the provision for motion
compensated predictive coding process to revert back to intraframe coding. The
application of variable block size motion estimation shall offer good motion
compensation performance closer to more complicated schemes such as deformable
block based motion compensation scheme, and vet require significantly less
computation complexity. In addition, the adoption of an alternative approach for
progressive motion estimation has facilitated significantly the operation of motion

estimation, especially when GOPs with long frame intervals are involved. Any

211

excessive motion estimation error that occurs during the progressive motion
estimation process is self-corrected by the provision for intraframe coding mode
invocation. It is believed such a provision is essential to promote the adaptivity of the
proposed image sequence compression algorithm although its usage would increase

the complexity during the coding process slightly.

In general the performance of intraframe coding process has been observed to be
inferior to that of motion compensated predictive coding process when low detailed
image sequences with low motion activities are involved. This is because intraframe
coding by its virtual nature could not take advantages of the significant level of
temporal redundancy. Conversely, motion compensated predictive coding tends to
offer less efficient coding performance than intraframe coding when high detailed
image sequences with high motion activities are involved because of the normal drop

in motion compensated prediction efficiency.

6.2.3 Recommendations

Because sub-optimal block matching has been applied in the proposed motion
compensated predictive coding algorithm, some coding inconsistency is generally
inevitable. This problem normally occurs when an image sequence experiences
complex motion activities and the assumption of uniform motion field is therefore
violated. Although variable block size motion compensated prediction has been
applied quite successfully in this study to deal with this problem, it is believed that
this technique can be applied with even greater success if a larger range of block
sizes can be efficiently used during the coding process. Not only does this help to
improve the consistency of motion compensation process by allowing smaller block
sizes to be used, but it also has a great potential to offer higher compression gain

because spatial/temporal redundancy can be better exploited using larger block sizes.

In addition, the consistency of the motion estimation process may occasionally be
compromised because of the ineffectiveness of most sub-optimal motion estimation
search strategies in handling complex motion fields. The tendency of sub-optimal
block-based motion estimation algorithms to converge to local distortion minima is a

major factor causing not only errors during the motion estimation process but also

212

affects the efficiency of motion compensated predictive coding. As such, ideas to
incorporate inter-block correlation into the motion estimation process are definitely
worth pursuing. In addition, the assumption of +/-15 pixels/frame made in this study
can be adaptively increased to better handle image sequences with very high motion
activities. However, this does not necessarily mean that motion estimation resolution
has to be maintained uniformly with +/-1 pixel éccuracy throughout the motion

search domain to take advantages of the deficiency of HVS.

A lossless coding block could also be added to the final stage of the image sequence
compression process to further increase its compression efficiency. This coding stage
is usually applied to remove any statistic redundancy remaining in the coded data
stream without causing any compatibility issues with preceding coding structures due
to its lossless nature. Its omission in this study is to ease implementation issues but

should not affect the generality of this study because of its independent nature.

6.3 Parallel image sequence compression

6.3.1 Algorithm overview

The prototype parallel processing platform has been constructed as a small scale
MIMD computer which consists of a 486DX33 IBM/PC computer and 2 high
performance PC-32 DSP cards connected in a star configuration. The interface
between the PC and the PC-32 cards is primarily provided via relocatable dualport
memory banks, hence not only offering high speed data transfer capability but also
allowing multiple dualport memory bank supports for multiple DSP card operation.
Dedicated semaphore hardware is provided on-board the PC-32 cards to facilitate

access arbitration and process synchronisation during parallel processing operation.

Basically the proposed parallel image sequence compression algorithm has been
developed on the prototype parallel processing platform with the host PC serving as a
master processor and the DSP cards as independent parallel processors. Apart from
having to handle those image processing tasks which are difficult to execute
efficiently on the DSP cards, the host PC is also responsible for distributing image

data to the parallel processors via the dualport memory for parallel processing.

213

During parallel processing operation, a general processing arrangement between the
host PC and the DSP cards has been adopted in which the host PC transfers image
data to an idle DSP card via the dualport memory region, followed by sending a
unique message or command to a corresponding semaphore mailbox to initiate
processing on the idle DSP card. This process is repeated until all DSP cards are busy
or all image processing tasks have been distributed. When processing is complete,
the host PC shall be notified by the parallel processors via its semaphore mailbox to
allow it to retrieve processing results and possibly re-initiate another processing

cycle.

The proposed parallel image sequence compression algorithm has been developed
after a detailed assessment of parallel HOD computation, parallel still image coding
and parallel image sequence coding. As discussed in Section 5.7.1, the principle
behind the parallel HOD computation algorithm is to allow the host PC to
dynamically distribute computation tasks to paralle] processors including itself for
paraliel processing. The partition of image data is performed by the host PC with
image scanning lines serving as partition units. The distribution of computation tasks
to the DSP cards is generally accomplished by sending scanning lines of image data
to the dualport memory region followed by a proper processing request to a
corresponding semaphore mailbox. For processing efficiency, the PC32 DSP cards
are not required to return processing results immediately. Instead, explicit requests
shall be issued to the DSP cards at the end of the parallel HOD computation process
to obtain the processing results from them. In spite of this, the parallel HOD
computation algorithm still involves too much overhead and therefore has been

excluded from the overall parallel image sequence compression algorithm.

As discussed in Section 5.7.2, parallel still image compression has been
accomplished mainly by applying parallel 4x4 image block processing. The
application of parallel 8x8 image block processing, however, resulted in inferior
performance because of hardware limitations and hence was not included in the
overall parallel still image compression algorithm. The proposed parallel 4x4 image
block processing algorithm was developed with the host PC taking care of the
scheduling of 4x4 image block processing tasks to the two DSP cards for parallel

214

processing and the two DSP cards serving as parallel processors. Because the
codebooks needed for 4x4 image block processing are stored locally on both DSP
cards, a highly efficient parallel processing operation has been achieved with a
general data/command processing arrangement, in which the host PC shall
dynamically send 4x4 image data blocks to idle DSP cards via the common dualport
memory region followed by a proper processing request to the semaphore mailbox.
When processing on a DSP card is complete, the host PC shall be notified via its
semaphore mailbox to allow it to upload processing results and possibly to re-initiate

another processing cycle for the next 4x4 image block.

The application of parallel processing to image sequence compression has been
achieved in the form of parallel intraframe and interframe processing. While parallel
intraframe processing can be implemented using the same algorithm as that of
parallel still image compression, parallel interframe processing is primarily achieved
with the application of parallel motion estimation and parallel residual frame
processing. The development of parallel 16x16 motion estimation algorithm in
particular required a different approach to be taken to allows multiple 16x16 image
blocks within an image stripe to be processed concurrently. Like parallel stiil image
compression, parallel 16x16 motion estimation was implemented based on the
general data/command processing arrangement for reliable parallel operation. The
proposed parallel 8x8 motion estimation algorithm was also developed in the same
way as the parallel 16x16 motion estimation algorithm. However, its parallel
operation is restricted to every four 8x8 image sub-blocks at a time following the

quadtree segmentation of each 16x16 image block.

Unlike parallel intraframe processing, parallel residual frame processing could be
implemented with significant simplification as discussed in Section 5.7.3. During
parallel residual frame processing operation, the host PC dynamically distributes 8x8
residual block processing tasks to the DSP cards for parallel processing without
having to involve itself directly in the coding process. This simplified processing
arrangement is possible because a copy of the codebooks needed for residual block
processing is stored locally on the DSP cards and they are capable of processing 8x8

residual blocks without the host PC intervention. Once processing of 8x8 residual

215

blocks is complete, the host PC will be notified by the DSP cards to upload
processing results from them before the whole process is initiated all over again for a

new 8x8 residual block.

6.3.2 Coder evaluation

As discussed in Section 5.5, the use of dualport memory for data exchange between
the host PC and the DSP cards has reduced the cost of data transfer overheads
considerably, thereby enhancing the processing efficiency of the prototype parallel
processing platform. This form of interfacing is inherently superior than a common
serial interface because its implementation can take advantage of high speed 16 bit
data transfers. In addition, its performance is further enhanced by the on-board
semaphore hardware on both DSP cards. Its provision indeed offers a very efficient
and reliable means for controlling data transfers across the dualport memory.
However, the limited size of dualport memory has adversely affected the overall

parallel processing efficiency to some degree.

Although care has been taken in the development of the proposed parallel HOD
computation algorithm, experimental results have indicated that its application only
offers a marginal processing improvement over its sequential counterpart because of
the relatively high data transfer overheads during its operation. Therefore, given the
computational simplicity nature of HOD computation, such overheads would simply

offset almost all the processing benefits of parallel HOD computation.

By contrast the application of the proposed parallel 4x4 image block processing
algorithm has offered a significant improvement to the processing speed of
intraframe or still image compression process. In a typical example, the intraframe
processing time has been reduced from 49 down to 18 seconds, that is, a speed-up
ratio of more than 2.7. The general parallel processing arrangement in which the host
PC is assigned the task of scheduling 4x4 image processing tasks to the DSP cards
for parallel processing has proven to be very effective as it allows the host PC to take
advantage of the high processing speed of the DSP cards more effectively. More
importantly, the processing efficiency of the parallel 4x4 image processing algorithm

during intraframe compression has been ultimately accomplished by allowing a copy

216

of the codebooks for 4x4 image block processing to be stored locally on both the
DSP cards.

Experimental results have shown a consistent reduction in processing time when
parallel processing was applied progressively to various stages of interframe coding
process although the relative processing gain at each stage may vary from one GOP
to another depending on the nature of image sequences being processed. These stages
include motion estimation for 8x8 and 16x16 image blocks and residual frame
processing. The proposed parallel processing arrangement during 16x16 motion
estimation in particular has demonstrated how parallel processing can be sustained on
the prototype parallel processing platform in order to enhance its processing
efficiency. The application of parallel processing to residual frame processing has
proved to be very efficient. On average, it has resulted in a further 15% reduction in
the overall processing time of the parallel image sequence compression process. In
spite of being based on the same BACVQ coding algorithm, parallel residual frame
processing has proved to be much more efficient than parallel intraframe processing
because of smaller codebook requirements. Apart from computational advantages,
this also allows parallel residual frame processing to be implemented with greatest

efficiency as the host PC dose not to have to involved in the coding process directly.

As an ultimate assessment for the overall processing performance, the proposed
parallel image sequence compression algorithm was tested against a series of
representative GOPs consisting of 4 consecutive image frames extracted from the test
image sequence. In this assessment, various speed-up factors have been recorded
ranging from 1.98 to 2.77 with an average speed-up factor of 2.32. In terms of
average processing time, a reduction from around 3°35” to 1°32” has been achieved
as a result of the application of the proposed parallel image sequence compression
algorithm. The fluctuation is generally regarded as normal and is mainly caused by
the different nature among various GOPs and the adaptivity of the proposed image
sequence compression process, which in turn determines how much parallel
processing gain would be achieved at various stages of image sequence compression

process.

217

Lastly, although the combination of parallel processing algorithm and parallel
processing hardware in this study only offers a moderate increase in the overall
processing performance, it does not necessarily mean that this is the ultimate
improvement that parallel processing could offer. In fact, the moderate improvement
in processing performance in this study can be attributed to a number of factors such
as the limitations of parallel processing hardware, the compromises involved in the
development of the proposed parallel image sequence compression algorithm and

some inefficiencies in the existing processing arrangement itself.

6.3.3 Recommendations

Although the level of processing improvement achieved in this study is not sufficient
for real-time digital video compression, it is believed that such deficiencies could be
overcome by utilising more powerful parallel processing hardware, improving
programming development tools to facilitate parallel processing optimisation, and
globally optimising the proposed image sequence compression algorithm. Major
improvements to parallel processing hardware could be achieved by adopting a more
advance computer system such as a workstation for the master processor. The general
IBM/PC architecture has proved to be too restricted for efficient parallel processing
operation in this study. The limited size of conventional memory space and the
overheads in accessing data in the Extended Memory space both have adversely
affected the processing efficiency on the prototype parallel processing platform. In
addition, the lack of sufficient on-board and dualport memory on parallel DSP cards
should be seriously addressed to avoid unnecessary compromises during parallel
processing operation. Even the use of more powerful DSP processing cards such as
those based on the TMS320C8x, which is by itself a massive parallel processing
system on a single chip, 1s also desirable for image compression applications.
Programming tool improvement should include the use of more efficient compilers

and more powerful tools for parallel process performance analysis.

Improvements should also be adopted for the proposed parallel image sequence
compression algorithm. These may include eliminating any trade-offs adopted due to
parallel processing hardware limitations, avoiding acquiring image sequence data

from mass data storage due to its slow access speed and reducing redundant data

218

exchange during parallel processing operations. In addition, the issue of increasing
memory usage efficiency shall be considered in order to take full advantage of

parallel processing and reduce system cost.

Finally, being a powerful parallel computation technique, pipeline processing can be
adopted in order to exploit data/functional parallelism in most image data processing
tasks including image sequence compression. Also, double buffering may offer a
more efficient processing arrangement to reduce processor idling time during parallel

processing operation.

219

References

[1}

[2]

[3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Ahlgren, D. R. and et al. (1988). Compression of Digitized Images for

Transmission and Storage Applications. Proceedings SPIE, Image Processing,
Analvysis, Measurement and Quality, vol. 901.

Almasi, G.S. and Gottlieb, A. (1994). Highly Parailel Computing, 2nd edition.
The Benjamin/Cummings Publishing Company Inc.

Aoki, T. (Jan. 1994). Consumer Electronics: HDTV alignment, Games people
play (ed Perry, T). IEEE Spectrum, 30-34.

AT&T. (Jan./Feb. 1993). Image &Video Coding Standards. AT&T Technicatl
Journal.

Bamwell, T. P. and et al. (1993). The Georgia Tech Digital Signal
Multiprocessor. IEEE Transactions on Signal Processing, 41, no. 7, 2471-2487.

Bic, L. and Shaw, A.C., (1988). The Logical Design of Operating Systems,
2nd edition. Prentice Hall.

Blinn, J. F. (July 1993). What's the Deal with the DCT? IEEE Computer
Graphics and Applications, 78-83.

Buhler, Y. and Fortier, M. (1987). Hierarchical Picture Coding Using Quadtree
Decomposition. Proceedings SPIE, Advances in Image Processing, 8§04, 336-
343.

Bursky, Dave. (March 21, 1994). Parallelism Pushes DSP Throughput.
Electronic Design, 151-154.

Chan, M. H. and et al. (1990). Variable Size Block Matching Motion
Compensation with Applications to Video Coding. IEE Proceedings, Part I,
137, no. 4, 205-212,

Chee, Y. K. and et al. (Jan. 1994). An Introduction to Vector Quantisation.
Proceedings of the 2nd International Interactive Multimedia Svimposium. Perth,
Western Australia.

Chen, C. F. and Pang, K. K. (1992). Hybrid Coders with Motion
Compensation. Multi-dimensional Processing of Video Signals, pp. 133-158.
Kluwer Academic Publishers.

Chen, W. and Pratt, W. (1984). Scene Adaptive Coder, IEEE Transactions on
Communications, COM-32, 225-232,

Clarke, R.J. (1985). Transform coding of images, 1st edition. Academic Press.

220

{15]

{16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Coppisitti, N. and et al. (1993). Low-Complexity Subband Encoding for HDTV
images. IEEE Journal on Selected Areas in Communications, 11, no. 1, 77-87.

Dijkstra, E'W. (1968). Co-operating Sequential Processes {ed Genuys, F).
Programming Languages. Academic Press.

Dubois, E. (1992). Motion-Compensated Filtering of Time-Varying Images.
Multi-dimensional Processing of Video Signals, pp. 103-131. Kluwer
Academic Publishers.

Dufour, C. and Nocture, G. (1992). A HDTV Compatible Coding scheme for
distribution purposes (ed Yasuda, H. and Chiariglione, L). Signal Processing of
HDTV. III. Elsevier Science Publishers.

Ely, M. (April 1996). Tech and Production: Getting Ready for DVD:
Premastering Issues for Digital Video Disk. Advanced Imaging, 26-29.

Fedele, N.J. and et al. (1988). Real-time Multidirectional Data Compression of

Full Motion Video. Proceedings SPIE, Image Processing, Analysis.
Measurement and Quality, 901, 82-90.

Fountain, T.J. (1994). Parallel Computing - Principles and Practice. Cambridge
University Press.

Furukawa, I. and et al. (1992). Hierarchical Coding of Super High Definition
Images with Adaptive Block-size Multi-stage VQ (ed Yasuda, H. and
Chiariglione, L). Signal Processing of HDTV. III, pp. 361-368. Elsevier
Science Publishers.

Gersho, A. and Gray, RM. (1992). Vector quantisation and signal
compression, 1st edition. Kluwer Academic Publishers.

Ghanbari, M. (1990). The Cross-Search Algorithm for Motion Estimation.
IEEE Transactions on Communications, 38, no. 7, 950-953.

Gray, R. M. and Davission, L. D. (1976). A Mathematical Theory of Data
Compression, pp. 21-25. Data Compression. Hutchinson and Ross Inc..

Gray, R. M. and et al. (1992). Image Compression and Tree-structured Vector
Quantization-Image and Text Compression {(ed Storer, J. A). Kluwer Academic

Publisher.

Gray, R. M. (April 1984). Vector Quantization. IEEE ASSP Magazine, 4-27.

Grolier Multimedia Encyclopedia CDROM. (1995). Grolier Electronic
Publishing Inc.

221

[29]

{30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

Guttag, K. M. (June 1994). Multimedia Powerhouse. Byte, 57-64

Hoang, D. T. and et al. {1994). Explicit Bit Minimization for Motion

Compensated Video Coding. Proceedings - Data Compression Conference *94,
175-184. IEEE Computer Society Press.

Hobbs, L.C. and Theis, D.J. (1970). Survey of Parallel Processor Approaches

and Techniques. Parallel Processor Systems, Technologies, and Applications,
3-20. Spartan Books.

Hsieh, C. H. and et al. (1990). Motion Estimation Algorithm Using Interblock
Correlation. Electronic Letters, 26, no. 5, 276-277.

Huang, C. L. and Hsu, C. Y. (1994). A New Motion Compensation Method for
Image Sequence Coding Using Hierarchical Grid Interpolation. IEEE

Transactions on Circuits and Systems for Video Technology, 4, no. 1, 42-52.

Hussain, Z. (1991). Digital Image Processing - Practical Applications of
Parallel Processing Techniques. Ellis Horwood Ltd..

Jain, A. K. (1981). Image Data Compression: A Review. Proceedings of the
IEEE, 69, no. 3, 349-389.

Jain, J. R. and Jain, A. K. (1981). Displacement Measurement and Its
Application in Interframe Image Coding. IEEE _ Transactions on
Communications, COMM-29, no. 12, 1799-1808.

Jeschke, H. and et al. (1992). Multiprocessor Performance for Real-time
Processing of Video Coding Applications. IEEE Transactions on Circuits and
Systems for Video Technology, 2, no. 2, 221-206.

Kappagantula, S. and Rao, K. R. {1985). Motion Compensated Interframe
Image Prediction. IEEE Transactions on Communications, COMM-33, no. 9,
1011-1015.

Kim, J. T. and et al. (1993). Subband Coding Using Human Visual
Characteristics for Image Signal. IEEE Journal on_Selected Areas in
Communications, 11, no. 1, 59-64.

Koga, T. and et al. (1981). Motion Compensated Interframe Coding for Video
Conferencing. Proc. Nat. Telecommun. Conf., G5.3.1-5.3.5. New Orleans, LA.

Kolagotla, R. K. (1993). VLSI Implementation of a Tree-Searched Vector
Quantizer. IJEEE Transactions on Signal Processing, 41, no. 2, 901-905.

Kubrick, A. and Ellis, T. (1990). Classified Vector Quantization of Images:
Codebook Design Algorithm. IEE Proceedings. Part I, 137, no. 6, 379-386.

222

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Kumar, V. and et al. (1994). Introduction to Parallel Computing - Design and
Analysis of Algorithms. The Benjamin/Cummings Publishing Company, Inc.

Lee, J. and Dickinson, B. W. (1994). Temporally Adaptive Motion
Interpolation Exploiting Temporal Masking in Visual Perception. IEEE
Transactions on Image Processing, 3, no. 5, 513-525.

Lee, M. H. and Crebbin, G. (1994a). Classified Vector Quantisation with
Varable Block-Size DCT models. J[EE_Proceedings, Visual Image Signal
Processing, 141, no. 1, 39-48. '

Lee, M. H. & Crebbin, G. (1994b). Image Sequence Coding Using Quadtree-
Based Block-Matching Motion Compensation and Classified Vector

Quantisation. IEE Proceedings: Vision, Image and Signal Processing, 141, i6,
453-460.

Li, H. and et al. (1994). Image sequence Coding at Very Low Bit Rates: A
Review. [EEE Transactions on Image Processing, 3, no. 5, 589-609.

Linde, Y., Buzo, A. and Gray, R. M. (1980). An Algorithm for Vector
Quantizer Design. IEEE Transactions on_Communications, COMM-28, no. 1,
84-95.

Lo, K. T. and Cham, W. K. (1992). An Efficient Encoding Algorithm for
Vector Quantization of Images. Proceedings of EUSIPCO-92. Signal
Processing VI: Theories and Applications, vol. ITI, 1231-1234.

Malvar, H. S. (1992). Signal Processing with Lapped Transforms. Artech

House Inc.

Moldovan, D.I. (1993). Parallel Processing - From_ Applications to_Systems.
Morgan Kaufmann Publishers.

Musmann, H. G. and et al. (1985). Advances in Picture Coding. Proceedings of
the IEEE, 73, no. 4, 523-548.

Naveen, T. and Woods, J. W. (1994). Motion Compensated Multiresolution
Transmission of High Definition Video. IEEE Transactions on Circuits and
Systems for Video Technology, 4, no. 1, 29-41.

Ngan, K. N. and Koh, H. C. (1992). Predictive Classified Vector Quantization.
IEEE Transactions on Image Processing, 1, no. 3, 269-280.

Parker, J. R. and Ingoldsby, T. R. (1990). Design and Analysis of a
Multiprocessor for Image Processing. Jowmnal of Parallel and Distributed
Computine, 9, 297-303.

223

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Petajan, E. (Oct. 1992). Digital Video Coding Techniques for US High-
Definition TV. IEEE Micro, 13-21.

Phamdo, N. and et al. (1993). A Unified Approach to Tree-Structured and
Multistage Vector Quantisation for Noisy Channels. IEEE Transactions on
Information Theory, 39, no. 3, 835-850.

Plansky, H. (1992). Variable Block-Size Vector Quantization in the Transform

Domain. Proceedings of EUSIPCO-92, Signal Processing VI: Theories and
Applications, ITI, 1243-1246. Elsevier Science Publishers. '

Privat, G. and Petajan, E. (Oct. 1992). Processing Hardware for Real-Time
Video Coding. IEEE Micro, 9-12. '

Puri, A. and Haskell, B. G. (1992). Digital HDTV coding with motion
compensated interpolation. Signal Processing of HDTV, IIT, 531-537. Elsevier
Science Publishers.

Ramamurthi, B. and Gersho, A. (1986). Classified Vector Quantisation of
Images. IEEE Transactions on Communications, COMM-34, no. 11, 1105-
1115.

Rao, K. R. and Yip, P. (1990). Discrete Cosine Transform - Algorithm,
Advantages. Applications. Academic Press Inc.

Rocca, F. and Zanoletti, S. (Oct. 1972). Bandwidth Reduction Via Movement
Compensation on a Model of the Random Video Process. IEEE Transactions
on Communications, 960-965.

Sarkar, V. (1989). Partitioning and Scheduling Parallel Programs for
Multiprocessors. The MIT Press. PITMAN publishing.

Sefenidis, V. and Ghanbari, M. (1994). Generalised Block-Matching Motion
Estimation Using Quadtree Structured Spatial Decomposition. IEE Proceedings
- Visual Image Processing, 141, no. 6, 446-452,

Shen, K. and et al. (1994). An Overview of Parallel Processing Approaches to
Image and Video Compression. SPIE Image and Video Compression, 2186,
197-208.

Shusterman, E. and Feder, M. (1994). Image Compression via Improved
Quadtree Decomposition Algorithms. JEEE Transactions on Image Processing,
3, no. 2, 207-215.

Simar, R. and et al. {August, 1992). Floating-Point Processors Join Forces in
Parallel Processing Architectures. IEEE Micro, 60-69.

224

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

(81]

Srinivasan, R. and Rao, K. R. (1985). Predictive Coding Based on Efficient
Motion Estimation. IEEE Transactions on Communications, COMM-33, no. §,
888-896.

Thyagarajan, K.S. and et al. (1987). Encoding of Subband Images Using
Adaptive Vector Differential Pulse Code Modulation (DPCM). Proceedings

SPIE. Application of Digital Image Processing X, 829, 95-102.

Uffenbeck, J. (1987). The 8086/8088 family: Design. Programming, and
Interfacing. Prentice-Hall International, Inc.

Vaisey, J. and Gersho, A. (1992). Image Compression with Variable Block
Size Segmentation. IEEE Transactions on Signal Processing, 40, no. 8, 2040-
2058.

Vetterli, M. and Metin, K. (1992). Multiresolution Coding Techniques for
Digital Television: A review. Multidemensional Processing of Video Signals,
53-79. Kluwer Academic Publishers.

Webster’s Concise Encyclopedia CDROM. (1994). Helicon Publishing Ltd.

Wen, K. A. and Lu, C. Y. (1993). Hybrid Vector Quantization. Optical
Engineering, 32, no. 7, 1496-1502,

Wright, M. (June, 1996). Special Report: Delivering Digital Video. EDN Agsia,
24-42.

Wu, S. W. and Gersho, A. (1994). Joint Estimation of Forward and Backward
Motion Vectors for Interpolative Prediction of Video. IEEE Transactions on
Image Processing, 3, no. 5, 684-688.

Zafar, S. and et al. (1991). Predictive Block-Matching' Motion Estimation for
TV Coding -- Part I. Inter-Block Prediction. [EEE Transactions on
Broadcasting, 37, no. 3, 97-101.

Zhang, Y. Q. and et al. (1993). A New Approach to Reduce the Blocking
Effect of Transform Coding. IEEE Transactions of Communications, 41, no. 2,
299-302.

Zhang, Y. Q. and Zafar, S. (1991). Predictive Block-Matching Motion
Estimation for TV Coding -- Part I Inter-Block Prediction. IEEE Transactions
on Broadcasting, 37, no. 3, 102-105,

Zou, W. Y. (Feb. 1993). Digital HDTV Compression Techniques for
Terrestrial Broadcasting. SMPTE Journal, 127-132.

225

Appendix A: Conference Paper #1

Block adaptive classified vector quantization by Peter H. S. Truong and Stephen C.Y.
Ho

Conference name: IS&T/SPIE Symposium on Electronic Imaging Science and
Technology Digital Video Compression: Algorithms and Technologies 1995, San
Jose, Calif., Feb. 5-10, 1995

Proceedings details: SPIE Proceedings, v.2419, pp 340-351

Note: For copyright reasons, Appendix A (pp226-237 of this thesis) has not been
reproduced.

(Co-ordinator, ADT Project (Retrospective), Curtin University of Technology,
4.12.02)

Appendix B: Conference Paper #2

Adaptive spatial/temporal coding for image sequence compression by S.C.Y.Ho and
P.H.S.Truong.

Conference name: 1995 Conference on Digital Image Computing: Techniques and
Applications. Australian Pattern Recognition Society. Brisbane, Dec.6-8, 1995,
Proceedings details: DICTA-95 Conference Proceedings, pp384-389.

Note: For copyright reasons, Appendix B (pp238-243 of this thesis) has not been
reproduced.

(Co-ordinator, ADT Project (Retrospective), Curtin University of Technology,
4.12.02)

Appendix C: Conference Paper #3

Paralle] digital signal processing for image sequence compression by P.H.S. Truong
and S.C.Y .Ho.

Conference name: 1996 IEEE Region Ten International Conference. Digital Signal
Processing Applications. Perth, Nov. 27-29, 1996.
Proceedings details: 1996 IEEE Region 10 Conference Proceedings, v. 2, pp716-721.

Note: For copyright reasons, Appendix C (pp244-249 of this thesis) has not been
reproduced.

(Co-ordinator, ADT Project (Retrospective), Curtin University of Technology,
4.12.02)

Appendix D: Still Image Compression Flowchart

{ Mainline)

Program

Select first frame

3

Last frame reached?

Y
First frame?
Calc_imp Calc HOD(fr+
P-fr found Cale HOD(fr+
Update nextHOD &
rightdiff
[-fr found L& f|ound
Log ;g:esults
B-fr process

Select first frame

250

Previous P-fr?

P-fr found

et

I-fr found

Log seg results

Ref2? frame avail?

B-fr process

g

Close al

1 opened

Release XMS blocks

END

Retainref2 ()

Swap reference frame
pointers:
Refl=Ref2

Move relevant frames
of ref2 to those of refl
in XMS blocks:

#0, #1, and #2

RTS

251

P-fr found(fr)

frtype= P, ref2=fr
ref2avail= true

Load gop

Encode p-frame

Cale frame bpp

Log coding results

RTS

InitProg()

Documentation

Get Input sequence
file information

Set threshold values:
HODth= 40, ssth=10.]
mcesegth= 6000

Cale_imp(fr)

templ= NextHOD
leftditt= rightdiff
frameptr+=2;

: N

nextHOD=0

Cale_HOD({frameptr)

1

il

Initialise coder vars:

frtype= p', goplen=0
ref2avail= false

rightdiff=|temp1-nextHOD|

Open log files:
vefile: encoded video
sseg: seg. results

Allocate XMS blocks for
various image frames &
codebooks

Load codebooks to
allocated XMS blocks

Initialise DCT coefficients
tables for 8x8 and 4x4
blocks

RTS

fefidiff<rightdiff?

return(leftdiff) return(rightdiff)
RTS
Horizontal(res)
Full search
codebook #4
(class 2)
Update coding results

252

BACVQ

Partial DCT
computation

Dynamic range
calculation

d range<Athl
‘and [X01|<th2 and
X10<th2

Smooth 8x8 block

Y

diff = (X01-X10)/X10

= aimn

Vertical edge

process 4x4 block

-

RTS

Edge processing

X01>X10

Diagonal edge

diff = (X10-X01)¥/X01

S

Horizontal edge

.|<

RTS

253

Normalise HOD

Release line-buffers
and close opened files

RTS

Cale_HOD()

Open previous

Open current frame

Allocate 2

Sum=0

Select first scan line

.

Last line processed?

Load line-buffers

Select 1st pixel

-

ast pixel processed?

pixel diff > HODth

Next scan line

Sum++

Next pixel

I

254

I-fr found(fr)

ref2= fr, ref2avajl=

refl=fr

Load gop

OverallMEerr= 90

Load frame fr to
XMSbikl

Perform FMC for
immediate frames

Reset bitent array Calc avg FMC errors
< |
fitype="T
Diagonal edge(res)

Encode I-frame

Save residual frame

01, X10 same sign?

Save encoded

Calc avg 45-deg
diag. edge intensity

Log coding results

RTS

Full search
codebook #4
(class 3)

Calc avg 135-deg
diag. edge intensity

Full search
codebook #4
(class 4)

|

-

RTS

255

Load gop ()

XMSidx=0
Select 1st frame of gop

N

XMSidx +=
cifsize

Load fr to
XMSblk #1

RTS

PframeProc(fr)

OverallMEerror =0

Perform FMC for
frames in gop

Report FMC results

Encode residual
P-frame

Save reconstructed
residual P-frame

Reconstruct
P-frar_ne

Save reconstructed

P-frame

RTS

256

/

Next frame

Procdx4 ()

Quadtree segmentation

Select 1st 4x4 subblock

Y
/IMOck dong?

RTS Extract 4x4 subblock

Partial DCT

Set adaptive threshold

Dynamic range

Y
d_range<Ath3

Vert. and Hor. ratios:
(X01/X11), (X10/X11)

Both<th5

Y

| Edgeblocks | 1 | | Mixeddxd | | | | Smoothdx4

> ' |

Update main block

Next subblock
[

257

BframeProc ()

e

Calc number of B-frame;
OverallMEerror = 0

|

l Perform BMC for B-fr |

I

Report BMC resulis

|

Select 1st B-frame;
OverallMEerror =0

Report bidir MC
results

Ref2avail = false

e

Retain ref2 frame

Refl = Ref2

goplen =0 {

goplen

L
Cantll

Reset bitcount array

RTS

258

Lt

Perform bidir. MC

Encode residual

Save reconstructed
residual frame

Reconstruct B-fr

|

Save reconstructed
Bframe

|

/ Log B-frame results/

Select Next B-frame

Near Neighbor search #1

Set starting and ending
codeword in cbl

Set result to maximum

Load portion of ¢bl to
conventional memory,

Select 1st codeword

[

Y /@dewor

Replace i/p vector by the

codeword

Return Min_SE

RTS

Smooth8x8

Suarneet

Calc avg. intensity

Search

codebook #1

|

Update ceding

results

RTS

searched?

Obtain Min. squared
error

Next codeword

Smooth4x4

Search
codebook #2
(class)

Update coding
results

RTS

259

Mixeddxd

Search
codebook #2
(class 13)

Update coding
results

RTS

I-frame proc (fr)

Initialise startup vars

Select 1st frame strip

Evaluate coding results

Last strip done?

Load strip from frame

/ Report results /

RTS

Select 1st 8x8 block

Next strip

Last block done?

Update corres. strip
in XMS blocks
#0 and #2

Extract 8x8 block

BACVQ

Form partial
residual

Update corres.
block in strip buf

260

Vertical edge

—

Calc. avg. column

intensity

|

Locate position of

vertical edge

Vert. edge #1

edge position #17

Vert. edge #2

Vert. edge #3
3

RTS

Horizonta! edge

—

Calc. avg. hor.

row intensity

Locate position of

horizontal edge

edge position #17 =Y. Hor. edge #1

Hor. edge #2

!

@iuon Y

Hor. edge #3

RTS

261

Calc avg 45-deg
diag, edge intensity

Find position of the
cdge

Diagonal edge

X01, X10 same sign?

Calc avg 135-deg
diag. edge intensity

Find position of
the edge

| Diag edge | l-—>'<—| l Diag edge |

i Diag edge I }—-»

| Diag edge } l—>

‘—(l Diag edge |

<—|] Diag edge [

Vertical 1

Search
codebook #2
(class 1)

Update coding
results

RTS

RTS

Vertical 2

Search
codebook #2
(class 2)

Update

results

coding

RTS

2

62

Vertical 3

Search
codebook #2
(class 3)

Update coding
results

RTS

Horizontal 1

Horizontal 2

Horizontal 3

Search Search Search
codebook #2 codebook #2 codebook #2
(class 4) (class 5) (class 6)
Update coding Update coding Update coding
results results results
RTS RTS RTS
Diagenal 1 Diagonal 2 Diagonal 3 Diagonal 4
Search Search Search Search
codebook #2 codebook #2 codebook #2 codebook #2
(class 7) {class &) (class 9) (class 10)
Update coding Update coding Update coding Update coding
results results results results
RTS RTS RTS RTS
Diagonal 5 Diagonal 6 Diagonal 7 Diagonal 8
Search Search Search Search
codebook #2 codebook #2 codebook #2 codebook #2
(class 11) (class 12) (class 13) (class 14)
Update coding Update coding Update coding Update coding
results results results results
RTS RTS8 RTS RTS

263

Encode residual frame (fr)

Initialise startup vars

Select 1st strip

Cale. coding results

Next strip Select 1st 8x8 block / Report results
Last block done? RTS
BACVQ(res)
Update residual
Next block
BACVQ(residual) Vertical(res)
Calc Partial Full search
codebook #4
(class 1)
X01|, [X10j<Ath2?
Smooth8x8 res. E Process 4x4 res. Update coding
}(| results
RTS RTS

264

Proc4x4 residual()

|

F Quadtree segmentation

| Select 1st 4x4 subblock

RTS

| Extract 4x4 subblock)

L Caic partial DCT

|

Dynamic range

Vert. and Hor. ratios:
(X01/X11), (X10/X11)

S Bothas

Edge block) l

Mixed4x4 [‘I

|

|

ﬂ(*
T Update main block l
|
[Next subblock j

]

205

Edge processing (res.)

Y)
X01=X10

|
Y Y

diff = (X01-X10)/X10 diff = (X10-X01)/X01

@ﬂm @

Y
[| Vertical edge | Diag. edge Hor. edge (res.)
RTS
Smocth8x8(res) Smooth4x4(res) Mixed4x4(res)

Full search Full search Full search
codebook #3 codebook #4 codebook #4
(class 0) (class 5)
Update coding Update coding Update coding
results results results
RTS RTS RTS

266

Appendix E: Image Sequence Compression Flowchart

Forward MC (fr, idx)

Open log files for MVX,
MVY, MEerr, and SMX

Initialise startup vars

Preload 1st strip(16
Tows) to multistrip

buffer

|

Select 1st strip

Next strip
Close log files Y dl
Calc coding results Set next strip counter

and pointer
Y

Report results _.-

) Load nextstrip

RIS nextstripptr = -1 to multistrip

3

Load current
strip from orig.

Select 1st 16x16

®)
of FMC frame

Extract block

Creat search FMC(16x16)

267

N
w Log results /

[

Quadtree Update MEerror
Select 1st 8x8 Adopt FMC(16)
' Y
Log results /
Extract
| Update MEerror -
FMC(8x8) /
| Form partial
error frame
Log results / |
N Update strip
W Update buffer
BACVQ Next block
N
Log results / °
|
Log results / Adopt FMC(8) block
1
< Y

Update errsum

I
Next subblock

268

Backward MC (fr, idx)

Open log files for MVX,
MVY, MEerr, and SMX

Initialise startup vars

Preload 1st
strip(16 rows) to
multistrip bufler

|

Select 1st strip

Close log files

Calc coding results

/ Report results /

RTS

9

ast strip done

Set next strip counter
and pointer

nextstripptr = -1

-]

Next strip

Load nextstrip
to multistrip

]

Load current
strip from orig.

Select 1st 16x16

w Y
Extract block

Creat search

BMC(16x16)

269

Update strip
of BMC

Quadiree

Update MEerror

Select 1st 8xB

Adopt BMC(16)

Extract

Log results

Update MEerror

BMC(8x8)

1

Form partial
error frame

Log results

Update strip
buffer

Next block

Update errsum

i

Next subblock

|

270

Leftmost Swindow

Rightmost Swindow

FMCwin

Last strip?

Other Swindows

-

—»» Leftmost Swindow

Y

» Rightmost Swindow

Y

L= Other Swindows

Y

Leftmost Swindow

Other Swindows

f
Rightmost Swindow

FMV16

Calc MEerror for |
the origin

Calc MEerror for
central region

Perform
Modified 2-D
motion vector

RTS

Calcerr

Determine the
coordinate of the
corresponding block

Calc Abs. motion
estimation error

RTS

b -
_

RTS

BidirMC (fr, idx)

Initialise startup vars

Select Ist strip

Calc Average MC errors

Load BMC, orig., & FMC
strips into multistrip buffer

Log coding results

RTS

271

Process corresponding
strips pixel-by-pixel

Update residual frame &
bidirectional MC frame

Select next strip ‘

Appendix F: Parallel Processing Arrangements

1. Command-data processing arrangement with explicit data request

(This scheme was not implement)

PC Side

Send command /é(—

Requested?

Get mailbox

Setup data in
DPRAM

l

Send ACK.

|

Release mailbox

Get mailbox

Upload results

|

Clear ACK

Release mailbox

|

[XMT,REQ]

DSP side

command

[ACK]

- ———————————

Send upload results [XMT,REQ]
command !

N I
@ =

272

Get mailbox

|

Receive data
from DPRAM

i

Release mailbox

Process data

N

Receive emd

Get mailbox

Return results

7= Send Request

Release mailbox

2. Data-command processing arrangement #1 (This scheme was
adopted for parallel HOD computation and parallel NNS for 8x8
image block processing)

PC Side DSP side
o P
i
Send initialisation [XMT,REQ] _ [RCVACK] /"~ pooi
command)
e
Prepare data Initialise startup vars
Get mailbox —— e [_R(.:_'[éc_g/ Wait for command
| _
Transfer data to
DPRAM

1 Get mailbox

|
|
|
/ Send processing / _§>i I
comlmand [XMT.REQ] Processing

Release mailbox

received data

I
| |
Y i Release mailbox
|
| |
|

/ Send upload o |
result command/ [XMT,REQ] {XMT ,REgyRetum processey

.

-

results

N

I
Wait for ack. X I
|

Upload results 4%~ - —- - —--

|

273

3. Data-command processing arrangement #2 (This scheme was
adopted for parallel 4x4 image block processing and parallel
motion estimation)

PC Side DSP side
Select idle DSP
Prepare data — R EV’AS-K% Wait for crnd ,_f
| I
Get mailbox] . Get mailbox

Upload results

Y
pload Requested? Elé] - Process data

b, .y
F

|
Transfer data to DPRAM ! i Return results ;
l |
Send processing cmd o [REQ
1 [XMT,REQ] } ----- >’ Send Request /
Release mailbox i
; | Release mailbox
Process uploaded :
results if applicable |
|
Y :
Any more data? |
|

[ACK,

=1

o] >

Process results for
last block

Done

274

Appendix G: Boot loading operations

Boot loading or bootstrapping is an important process for initialising a target PC32
card following a power up reset. Its operation offers a convenient mechanism for
down-loading application programs to the PC32 for execution. In the prototype
parallel DSP platform, the host PC is responsible for down-loading the application
program cotresponding to the proposed image sequence compression algorithm to
both the PC32 cards using the boot loading mechanism. Once the boot loading
process is complete, the down-loaded programs will start executing, thus allowing

the PC32 to starting serving processing requests from the host PC.

Although the TMS320C32 processor on the PC32 DSP cards can support multiple
bootstrapping modes, depending on the logic states of its interrupt input pins coming
out of reset, the PC32 can only support boot loading from a single external memory.
For flexibility, the PC32 was designed to boot directly from its dualport memory so
that no on-board boot ROM is required.

During the process of bootstrapping the PC32 cards, the following steps are typically
executed by the host PC:

1. Hold the PC32 in the reset state by asserting bit 0 of the I/O port register at
address (base + 0).

2. Enable the PC32 access to the dualport memory by clearing bit 1 of the same

register.

3. Write the boot loader records in the supplied TALKER.BIN file to the dualport
memory (eg: D000:0000 in the host PC memory space).

4. Release the PC32 from reset by de-asserting bit 0 of the I/O port register (base
+0).

5. As the C32 comes out from reset, the boot loader records in the dualport memory
are processed so that code and data of TALKER.BIN are transferred to the
corresponding locations in the on-board SRAM region starting from $90000 in the
PC32 memory space.

275

6. As soon as the last boot loader record is processed, the program counter of the
PC32 will be loaded with the address contained in the first boot loader record and
start executing from there. At this point, the PC32 is fully under the control of the
TALKER program. This major function of this small program is to provide basic

access to all of the internal and external memory resources of the PC32,

7. Once the TALKER program establishes communication with the host PC via the
monitor mailbox, application programs can be down-loaded to the PC32 for
execution. In the II development environment, this down-loading process is
handled by the supplied cload() library routine. Also, when the down-loading
process is complete, the supplied start app() library routine will have to be

executed to get the down-loaded program to run.

8. Once the application program is running, it may establish further host/target
communications and interact with the host for data storage and I/O functionality.

Alternatively, it may also run independently without further host intervention.

276

Appendix H: Influence of high level languages on processing
speed

Although high level languages can be used for program development, their code
generation may not always be optimum in terms of code size and execution speed.
An example of this is demonstrated below where an identical test program written in
C is separately compiled using Borland C and TI's optimised C compilers for the PC
and the PC32 respectively; and their execution time is then compared. Basically, the
test program was formulated to simulate a situation in which the processor has to
perform a full search VQ operation for an 8x8 input vector with a codebook size of

50000 codewords. The pseudo code for this operation is as follows:

for i=1 to 50000
Sum of Square Error = 0
for j=1 to &4
Sum_of_Square_Error += |Input vector{j) - Codeword(j}|?
next j
Total_Sum_of_ Square_ Error += 5Sum of Square Error
next i

While the test program running on the PC serves as a reference benchmark, that
running on the PC32 is subject to various optimisation stages to show how it can be
further optimised for smaller code size and faster execution speed. These
optimisation stages are referred to as category A, B, C and D in the table below. The
results recorded in this table clearly show that code execution time has been
constantly improved from 7.24 seconds down to 1.8 seconds as the code size was
optimised further and further. Nevertheless, even though the optimisation in category
B were to be removed due to its irrelevance to the code optimisation process, the
combined improvement from category C and D would have reduced the processing
time by around 3 seconds; thus resulting in an overall execution time of around 4.2

seconds on the PC32.

277

Execution time (5)
Reference program in C running on PC 4.40
PC32 execution time for category A 7.24
PC32 execution time for category B 4.84
PC32 execution time for category C 4.52
PC32 execution time for category D 1.80

Category A; Using a similar program to the one running on the PC without any optimisation.
Category B: As in category A except that the absolution operation on the difference term is removed.
Category C: As in category B but with the following modification to its assembly output:

SUBI *AR4,*ARS5 RS

ADDI 1,AR4 == SUBI *AR4++*ARS5++, RS
ADDI 1,ARS
Category D: As in category C but replacing 32-bit software multiplication by 24-bit integer multiply
instruction.

Table A.1: Execution time of full search VQ operation for an 8x8§ input
vector with a codebook of 50000 code words.

From this example, it can be seen that while the application of high level languages
has facilitated the process of program development considerably, its implementation
may involve some compromise in terms of code size and execution speed. Therefore,
for applications where execution speed is of great concern, hand-coded assembly
programs or modified assembly programs based on the assembly outputs from C
compilers as illustrated in this example could be used for better results. The major
advantage of the latter approach is that shorter program development time can
generally be achieved while retaining most of the desirable features of high level

languages.

278

Appendix I: Samples of Parallel Processing Results

This program implements a video coding scheme with an adaptive scene

segmentaticn algorithm based on impulse HOD to obtain variable length
of GOP structure, variable bleocck-sized motion compensation and block-
adaptive classified vector gquantisation.

* Default filename of i/p frame sequence = cif###

* Default filename for encoded frames = encl\enc_###
* Default filename for residual frames = res\res_###
* Default video coding structure data file = vc3cifb.dat
* Default cutput segmentation data file = ssegveld.dat
* Default motion vector search range = -15..15

Run debug mede [n] ?

Please specify image sequence directory [x:\]:

Please enter the starting frame number in the sequence:
Please enter the ending frame number in the sequence:

* XMS available: 11366400 bytes

* Largest block: 11366400 bytes

* BACVQ codebooks loaded successfully...

* Program initialisation completed successfully.

DSP card #0 has responded to host PC.
DSP card #1 has responded to host PBC.

Processing I-frame #000:
LES R RS SR A SRR AR R SRR E R R SR ESEE R LR]

* Smooth 8x8 blocks = 1200

* Smooth 4x4 blocks = 264

* High texture blocks = 59

* Total edge blocks = 1213

* Blks with vert edges (vl..v3) = 157, 187, 12¢
* Blks with hor edges (hi..h3} = 153, 181, 175
* Blks with 45-deg edges (d1..d4) = 43, 12, 20, 35
* Blks with 135-deg edges (d5..d8) = 40, 25, 19, 40
* MSE/pel of 8x8 smooth blocks = 39.51

* MSE/pel of 4x4 smooth blocks = 14.84

* MSE/pel of edge blocks = 139.22

* MSE/pel of mixed klocks = 266,84

* Overall MSE/pel and PSNR = 59.6%, 30.37dB
* Avg Dbit rate & compression ratio = 0.3395bpp, 23.56

Forward motion vector estimation...
* Frame #001: =» FMC error= S5.5374/pel, fle6,£8,i8= 3%6, 0, 0(0}
* Frame #002: => FMC exrors= 5.2480/pel, f16,£8,i8= 396, 0, O0(Q)
* Frame #003: => FMC error= 5.5158/pel, fl¢€,£fa,iB= 396, 0, o 0}
=> Avg FMC error= 5.467060/frame

Encode residual frame #003: LA RS E RS EREAE R SRS RS EE AR R AR R RS LR

* Smooth 8xB blocks = 1584

* Smooth 4x4 bleocks =0

* High texture blecks =0

* Total edge blocks =0

* Blks with vert edges ({(vl1..v3) =0

* Blks with hor edges (hl..h3) =0

* Blks with 45-deg edges (dl..d4} = 0

* Blks with 135-deg edges (d5..d8) = 0

* MSE/pel of 8x8 smooth blocks = 16.00
* Qverall MSE/pel and PSNR = 16.00,36.09dB
*

Avg bit rate & compression ratio = 0.1250bpp,64.00
=> Actual absolute MC error= 5.4764/pel

Processing B-frame...
Backward motion vector estimation...
* Frame #002: => BMC error= 5.,2006/pel; fi6,£8,18=3%5, 0O, of 0)
* Frame #001: =»> BMC error='5.4712/pel; fl6,f8,i8=386, 0©, 0{ 0}
=» Avg BMC error= 5.3359%9/frame

Bidirectional motion compensation...

* Frame #001:

=> BiMC error= 5.,3042/pel

Encode residual frame HOOL: *rrkrkk ek kk Ak kR AR RN T X R T AR AN R U X
* Smooth 8x8 blocks = 1584

279

T

Smooth 4x4 blocks =
High texture blocks =
Total edge blocks =
Blks with vert edges (vli..v3}
Blks with hor edges {(hl..h3) =
Blks with 45-deg edges (dl..d4)
Blks with 135-deg edges {d5..d8)
MSE/pel of 8xB smooth blocks 14.8%
Overall MSE/pel and PSNR = 14.8%9,36.404B
Bvg bit rate & compression ratic = 0.1250bpp,&4.00
=» Actual absolute MC error= 5.3075/pel

nou |
oo oOoCoo0 o0

It

* % % F % A * ¥ ® ¥

* Frame #002:

=» BiMC error= 5.0323/pel

Encode Iesidual frame #002: P Y R R 22222222 22X R R R R R R R E S LS A
Smooth 8xB blocks = 1584

Smooth 4x4 blocks = 0

High texture blocks =
Total edge blocks =
Blks with vert edges (vl..v3}
Blks with hor edges {(hl..h3}
Blks with 45-deg edges {di..d4)
Blks with 135-deg edges ({(d5..ds8)
MSE/pel of Bx8 smooth blocks = 14.28
Overall MSE/pel and PSNR = 14.28,36.58dB
Avg bit rate & compression ratic = 0.1250bpp,64.00
=» Actual absclute MC error= 5.0719/pel

nnn
o0 CoCCOoC

* A ¥ % % ¥ ¥ % * F *

= Avg biMC error of B-frame= 5.1897/frame

* Program finished.
* Execution starting date and time = Thu Mar 14 18:50:21 198§
* Execution ending date and time Thu Mar 14 18:5%:46 19%¢6

I

280

	12069_downloaded_stream_12069
	12070_downloaded_stream_12070
	12071_downloaded_stream_12071
	12072_downloaded_stream_12072
	12073_downloaded_stream_12073
	12074_downloaded_stream_12074
	12075_downloaded_stream_12075
	12076_downloaded_stream_12076
	12077_downloaded_stream_12077
	12078_downloaded_stream_12078

