Early Triassic (Induan-Olenekian) conodont biostratigraphy, global anoxia, carbon isotope excursions and environmental perturbations: New data from Western Australian Gondwana.

I. Metcalfe1,2*, R.S. Nicoll3, R. Willink4, M. Ladjavadi5, & K. Grice5

1. Earth Sciences, Earth Studies Building C02, School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia
2. GEMOC, ARC Centre of Excellence for Core to Crust Fluid Systems, Department of Earth and Planetary Sciences, Macquarie University, NSW 2109 Australia
3. Research School of Earth Sciences, Australian National Univ., Canberra
4. Origin Energy, Level 10, CDOP4, 135 Coronation Drive, Milton, Qld, 4064,
5. WA-Organic Isotope Geochemistry Centre, Department of Chemistry, Curtin University, Perth, Australia

* Corresponding author. Email: imetcal2@une.edu.au

Keywords: Early Triassic, Induan-Olenekian boundary, conodonts, carbon isotopes, anoxia, environmental perturbations

ABSTRACT

The Early Triassic Induan-Olenekian Stage boundary (Dienerian-Smithian Sub-Stage boundary) has been identified at a depth of 2719.25 m in the petroleum exploration well Senecio-1 located in the northern Perth Basin, Western Australia. Conodont faunas represent...
three conodont zones in ascending order, the *Neospothodus dieneri* Zone, the *Neospothodus waageni eowaageni* Zone and the *Neospothodus waageni waageni* Zone. The Induan-Olenekian (Dienerian-Smithian) boundary is placed at the base of the *Neospothodus waageni eowaageni* Zone equivalent to the first appearance of *Neospothodus* ex. gr. *waageni* utilised elsewhere and adopted by the IUGS ICS Triassic Subcommission to define the base of the Olenekian. Bulk kerogen $\delta^{13}C$ carbon isotopes define a positive peak of c. 4 per mille that essentially coincides with the Induan-Olenekian boundary as seen in proposed Global Stratotype Sections and Points (GSSPs) in South China and Spiti, India demonstrating the global utility of this level for correlation. An anoxic zone is recognised in the lower part of the Senecio-1 core and the upper limit of this zone is dated as late Induan (late Dienerian).

Temporal and spatial mapping of marine anoxia and dysoxia globally demonstrates that pulses of dysoxia/anoxia affected shallow-marine zones at different times in different locations. Dysoxia/anoxia in the shallow-marine environment appeared in the latest Permian at the extinction level, later than in the deep-marine environment, and appears to be largely restricted to the Induan (Griesbachian and Dienerian) and early Olenekian (Smithian).

Temporally and geographically restricted upwelling of an oxygen minimum zone into the ocean surface layer due to environmental perturbations including extreme global warming, increased terrestrial chemical weathering intensity and continental erosion, sea level rise, and changes in marine nutrient inventories and productivity rates, is interpreted as a likely cause of observed variation in shallow-marine dysoxia/anoxia in the Early Triassic.
1. Introduction

The Latest Permian - Early Triassic transitional period is globally important in Earth history. It saw the most profound mass extinction known to science in the latest Changhsingian with approximately 90% of skeletonized marine species (Erwin, 1993; Alroy et al., 2008) and approximately 70% of species on land wiped out (Maxwell, 1992) within a short period of time, estimated at several hundred thousands of years or less (Mundil et al., 2004; Huang et al., 2011). Following the late Changhsingian mass extinction, there was a period of continued global climatic and environmental upheaval and stress termed the Early Triassic "cesspool" (e.g. Algeo 2011a) that lasted 5 million years and which was characterised by significant carbon isotope excursions, the global "coal gap", "reef gap", "radiolarian gap" and a range of unusual facies and biota including microbialites, and flat pebble conglomerates. This Early Triassic period of environmental upheaval was also characterised by significant size reduction of many organisms and is referred to in the literature as the period of "delayed recovery" following the mass extinction. The Early Triassic was also marked by significant variation in redox conditions both in time and space (Wignall and Twitchett, 2002; Kato et al., 2002; Kidder and Worsley 2004; Wignall et al., 2010) and by marked increase in chemical weathering intensity (Retallack and Krull, 1999; Michaelson, 2002; Sheldon, 2006; Algeo, 2011b; Algeo and Twitchett, 2010; Algeo et al., 2011). In shallow-marine environments there were frequent shifts between oxic and anoxic/dysoxic conditions, particularly in the Induan Stage (Bond and Wignall, 2010). These fluctuations of redox conditions have been interpreted to result from expansion of a shallow oxygen minimum zone into the ocean surface layer due to environmental perturbations (Algeo et al., 2011). The spatial and temporal mapping of these fluctuating redox conditions will greatly enhance our understanding of the causative environmental perturbations. We here review the
geographic and temporal variation of dysoxia and anoxia in both deep and shallow-marine environments globally, placing the recorded anoxia in the Perth Basin Hovea Member in wider context.

The latest Permian - Early Triassic in Western Australia includes economically important carbon-rich shallow-marine shales (Hovea Member, basal Kockatea Shale of the Perth Basin) that record dysoxic/anoxic conditions in the Early Triassic and which have acted as significant source rocks for hydrocarbons. The Late Changhsingian mass extinction and Permian-Triassic boundary levels also occur within the lower Hovea Member (Thomas and Barber, 2004; Thomas et al., 2004; Metcalfe et al., 2008; Gorter et al, 2009). The precise age of the Hovea Member has to date been poorly controlled and based mainly on endemic palynology and macro-fossils and limited conodont and ammonoid data. The specific placement of Permian -Triassic stage boundaries in Australia has until now been elusive or at best very poorly constrained. The Early Triassic Induan-Olenekian Stage boundary (Dinierian-Smithian sub-stage boundary) is yet to be formally ratified in a GSSP section by the Subcommission on Triassic Stratigraphy (STS). However, the STS has decided that the first appearance of the conodont Neospathodus waageni ex. gr. should be used for boundary definition and recognition in the GSSP (Tong et al., 2004; Krystyn et al., 2007; Tong and Zhao, 2011). The occurrence of Lower Triassic conodonts in Western Australia was first reported by McTavish (1973) in cores taken in petroleum exploration wells drilled in the Carnarvon and Perth basins. Smithian conodont faunas with Neospathodus waageni were recovered in the Carnarvon Basin and possible Dienerian strata in the Perth Basin based on a few Neospathodus dieneri. Additional limited conodont material from the Perth Basin (Metcalfe et al., 2008) failed to provide sufficient control to firmly place any stage boundary although the occurrence of Clarkina jolfensis Kozur in the basal Sapropelic Interval suggests that the biostratigraphic GSSP Permian-Triassic boundary level is within the lower part of the
Sapropelic Interval of the Hovea Member (Fig. 1). We here provide unequivocal placement of the proposed Induan-Olenekian boundary in the Perth Basin, Western Australia (Senecio-1 Core) based on relatively abundant conodont faunas. We also report δ^{13}C$_{org}$ data from this boundary interval and correlate the studied sequence with proposed Induan-Olenekian GSSP sections in China and India and provide age constraints on post-mass extinction anoxia/dysoxia in Western Australia.

2. Stratigraphy and geological setting of the studied sequence.

Permian-Triassic transitional sequences of Western Australia occur in the Perth, Carnarvon, Canning and Bonaparte continental margin basins. The Permian-Triassic transitional strata of these basins include thick marine shales that range from the latest Permian or earliest Triassic to as high as the early Anisian of the Middle Triassic (McTavish, 1973; McTavish and Dickins, 1974). In the Perth Basin the Kockatea Shale may be up to 1000 m thick, is usually black in color and becomes progressively less marine in its upper part (Mory & Iasky, 1996). The basal part of the Kockatea Shale in the Perth Basin has been named the Hovea Member (Thomas and Barber, 2004; Thomas et al., 2004) and consists of a basal Inertinitic Interval, a middle Sapropelic Interval and an upper Limestone Marker unit (Fig. 1). The Hovea Member is c.30-70 m thick and contains high total organic carbon (TOC) content up to 5% (Thomas and Barber, 2004; Thomas et al, 2004; Metcalfe et al., 2008). The bulk of the Kockatea Shale, above the Hovea Member, has a much lower average TOC of 0.8% (Mory & Iasky, 1996) perhaps reflecting high sedimentation rate.

The studied Induan-Olenekian boundary sequence is recorded in a core taken in
the onshore petroleum exploration well Senecio-1 drilled by Arc Energy Ltd in 2005 and located in the northern Perth Basin, east of Dongara at GPS coordinates Latitude 29 14 25.94 S, Longitude 115 05 29.28 E (see Fig. 1 for stratigraphic position and location). The Permian-Triassic transition in the Perth Basin (Fig. 1) occurs in the lower part of the Kockatea Shale (Hovea Member). The Hovea Member comprises a lower Inertinitic Interval (named for the high level of inert kerogen), a Sapropelic Interval (organic-rich mud with phytoplankton-derived kerogen) and an upper calcareous horizon termed the ‘Limestone Marker’ (Thomas et al. 2004). The Senecio-1 well penetrated the lower Hovea Member of the Kockatea Shale and bottomed in the Dongara Sandstone reservoir. The 21.6 m cored sequence (2708.00-2729.60 m depth) here studied straddles the upper Sapropelic Interval-lower ‘Limestone Marker’ section of the Hovea Member (Fig. 1). Carbon and sulfur isotope and biomarker studies from the nearby Hovea-3 well (Thomas et al. 2004; Grice et al., 2005a; Grice et al., 2005b; Nabbefeld et al., 2010) indicate that the late Changhsingian mass extinction level corresponds to the Inertinitic Interval-Sapropelic Interval boundary and based on very limited conodont material and palynology, the biostratigraphic GSSP-defined Permian-Triassic boundary is placed in the lower part of the Sapropelic Interval (Metcalf et al., 2008; Fig. 1). Isotope studies and biomarker data indicate periodic Photic Zone Euxinia (sulfidic conditions) at the time of deposition of the Sapropelic Interval in the Perth Basin and during the Late Permian-Early Triassic mass extinction and recovery interval globally (Grice et al., 2005a). Limited palynological studies (Puercell, 2006) indicate that the entire core falls within the Lower Triassic Kraeuselisporites saeptatus Zone. The Sapropelic Interval in the core (2721.70-2729.60 m) comprises organic C-rich (up to 2.5% TOC) finely laminated mudstones with rare thin generally sharp-based siltstones that represent an anoxic high-stand systems tract deposited on the distal shelf below storm wave base (Thomas et al., 2004). The mudstones and siltstones of the Sapropelic Interval show a high degree of pyritization and
contain pyrite nodules, pyrite spheres and frambooids and pyritised microfossils (in particular common pyritised micro-bivalves and micro gastropods at some levels) are devoid of bioturbation (bioturbation index of 0) and contain no apparent infauna. Analysis of pyrite frambooid size in the Hovea Member of the Kockatea Shale in Hovea-3 suggests anoxic conditions prevailed throughout the Late Permian and Early Triassic (Bond and Wignall, 2010). The smallest mean diameter pyrite frambooids (4.5-5.1 µm) indicates that anoxia was most intense in the lower part of the Sapropelic Interval. This interval is interpreted to have been deposited under anoxic conditions. The upper part of the core (2708.00-2721.70 m) represents the upper Hovea Member "Limestone Marker" unit and comprises laminated mudstones with siltstones. Carbonate cemented intervals and concretions are common. The base of the unit is marked by a 40 cm thick sharp-based, fining-upwards, glauconitic siltstone that contains abundant largely broken and in some cases abraded Clarkina conodont Pa elements interpreted as transported. This and other siltstones in this unit are regarded as distal turbidites or tempestites (with mud rip-up clasts in places) deposited on the continental shelf below storm wave base but more shore proximal than the underlying Sapopelic Interval.

Bioturbation is common, suddenly increasing to a Bioturbation Index (Bann and Fielding, 2004) of 4-5 (compared with 0 in underlying Sapopelic Interval) then gradually reducing with an upward deepening trend. Both horizontal and vertical burrows are present and the upper "Limestone marker" is considered to have been deposited in oxygenated conditions. The relatively rare and poorly preserved macro-fossils in the core are dominated by epifaunal pelagic thin-shelled bivalves and ammonites. Other epifauna commonly found in the cores include rare to abundant fish teeth and scales, small foraminifera, conodonts and ostracods.

3. Conodont faunas and the Induan-Olenekian boundary in Western Australia
3.1 Conodont samples and processing

Eighty seven samples, from top to bottom, C1 to C 87 (each 25 cm in length and c. 1 kg in weight) of a one-third slab of the Senecio-1 core were processed to extract conodonts. Samples were broken down by a variety of methods including treatment with hexane, dilute acetic/formic acid, sodium hypochlorite and sodium hydroxide. Residues were sieved and dried and then conodonts concentrated by heavy liquid (sodium polytungstate) and magnetic separation and picked under an optical binocular microscope. Imaging of conodonts was undertaken using a JEOL JSM- 6480 LA Scanning Electron Microscope at Macquarie University, Sydney.

3.2 Conodont fauna & maturity

The Senecio-1 conodont samples produced 1000+ conodont elements. Conodont yields varied from 0 to 200+ elements per sample. The conodont fauna is of relative low diversity with 10 species/subspecies of Neospathodus and two (possibly three) species of Clarkina. Taxonomic notes and comments on stratigraphically important conodonts are given below. The conodont Colour Alteration Index (CAI) of Senecio-1 elements is 2 to 2.5 and is consistent with spore color which gives a Staplin Thermal Alteration Index TAI averaging 3 but with a range 2+ to 4 (Purcell, 2006). This indicates that the Senecio-1 core sedimentary rocks are mature to over-mature but probably in the upper liquid window (Fig. 2).
3.2.1 Taxonomic notes and comments

Only the Pa elements of selected taxa have been illustrated in this study.

Material illustrated is currently reposited at the University of New England, Armidale, Australia.

Clarkina spp.

Fig. 3, 1-8.

We recognise several species of *Clarkina* in the Senecio-1 core material but have so far failed to classify these into known species. There may be up to three new species in our material and specific designation/description awaits further taxonomic work. We illustrate some typical Pa elements of this genus in Fig. 3.

Neospathodus dieneri Sweet, 1970

Fig. 4, 1-14.

Neospathodus dieneri is a well-known Early Triassic conodont species. Three morphotypes are recognised by some authors and used to designate sub-zones (e.g. Zhao et al., 2007). See Shigeta et al. (2009, p. 186) for recent synonomy. The species ranges from the early Dienerian to the middle Smithian but is most commonly found in the Dienerian where it
is used to designate a Neospathodus dieneri Zone (e.g. Tong et al., 2004, Orchard and Tozer, 1997).

FIG 5 ABOUT HERE

Neospathodus novaehollandiae McTavish, 1973

This species was first described from the Carnarvon Basin of Western Australia by McTavish (1973). Some workers (e.g. Orchard, 2010) have placed this species in synonymy with Neospathodus pakistanensis but we here regard it as a separate species characterised by development of robust lateral flanges, developing into node like features in the posterior part of the element. None of the original McTavish material was illustrated by SEM. We here provide an SEM image of the Holotype Pa element (Fig. 5: 6) for comparison and it is identical to Pa elements recovered from the Senecio-1 Well. The species appears to be restricted to the Lower Olenekian (Smithian) and was used, together with Neospathodus waageni to define a basal Olenekian Neospathodus ex gr. waageni - Neospathodus novaehollandiae Zone in South Primorye, Russia (Shigeta et al., 2009).

Neospathodus pakistanensis Sweet, 1970

Neospathodus pakistanensis is a long-established early Triassic conodont species first described from West Pakistan where it defines a Neospathodus pakistanensis
Zone that is succeeded by the *Neospathodus waageni* Zone. This species ranges from the late Dienerian (late Induan) to the middle Smithian (early Olenekian).

FIG 6 ABOUT HERE

Neospathodus ex gr. waageni Sweet 1970

Neospathodus waageni sensu lato is a long-established Smithian species, the first appearance of which has been chosen to define the base of the Olenekian Stage by the IUGS, ICS Subcommission on Triassic Stratigraphy. The species gives rise to several new *Neospathodus* species and species of *Novispathodus* in the early Spathian via the basal Spathian species *Neospathodus pingdingshanensis* (Orchard, 2007). Morphological variability in the species has led some authors to recognise up to six morphotypes (Orchard and Krystyn, 2007). Two subspecies, *Neospathodus waageni eowaageni* and *Neospathodus waageni* were recognised by Zhao et al. (2008). We here recognise a third subspecies, *Neospathodus waageni* subsp. nov. A which is similar to, and possibly the ancestor of *Neospathodus pingdingshanensis*.

FIG 7 ABOUT HERE

Neospathodus waageni eowaageni Zhao et al., 2008

Fig. 7, 1-2.

Neospathodus waageni eowaageni is the oldest subspecies and is characterised by a shorter element and upright denticles. The subspecies is rare compared to *Neospathodus*
waageni waageni and has its first occurrence before *Neospathodus waageni waageni* in all proposed Induan-Olenekian GSSP sections studied in China, India and Russia and in the Senecio-1 Well, Australia. The sub-species has a very short range at the base of the Olenekian and defines a short-duration *Neospathodus waageni eowaageni* Zone which is succeeded upwards by the first appearance of *Neospathodus waageni waageni* defining the base of the *Neospathodus waageni waageni* Zone.

Neospathodus waageni waageni Sweet 1970

Fig. 8, 1-9.

This is the commonest subspecies, characterised by its typical reclined denticles. We do not here recognise any morphotypes. The subspecies ranges from just above the base of the Olenekian to the top of the Smithian sub-stage.

Neospathodus waageni subsp. nov. A

Fig. 9, 1-9.

This proposed subspecies appears some distance above the base of the *Neospathodus waageni waageni* Zone and is relatively common. It is characterised by denticles that are curved towards the posterior similar to those in *Neospathodus pingdingshanensis*. The sub-species also exhibits wider and broader striations on the denticles compared to other sub-species. We here utilise this subspecies to define a *Neospathodus waageni* subsp. nov. A Sub-Zone in the Senecio-1 succession.
3.3. **Conodont zonation and the Induan-Olenekian boundary**

The critical age- and zonal-indicative species and sub-species discussed above allow the unequivocal placement of the proposed Induan-Olenekian boundary at 2719.25 m depth in the core (in the lower part of the "Limestone marker" unit). The ranges and relative abundance of important conodont taxa and conodont zonation are given in Fig. 10. Three Zones and one Sub-Zone are recognised in the core in ascending order:

Neospathodus dieneri Zone (2719.25-2729.60 m):

Characterised by the co-occurrence of *Neospathodus pakistanensis* and *Clarkina* spp.

Neospathodus waageni eowaageni Zone (2717.25-2719.25 m):

Characterised by the co-occurrence of *Neospathodus waageni eowaageni* and *Clarkina* spp. and the base defined by the first occurrence of *Neospathodus waageni waageni*.

Neospathodus waageni waageni Zone (2708.00-2717.25 m):

Characterised by the zonal name species together with *Neospathodus dieneri, Neospathodus novaehollandiae*, and *Neospathodus pakistanensis*. Base defined by first appearance of *Neospathodus waageni waageni*.
Neospathodus waageni subsp. nov. A Sub-Zone (2708.00-2715.00 m):

Corresponds to the upper part of the Neospathodus waageni waageni Zone and characterised by the occurrence of Neospathodus waageni subsp. nov. A.

The first appearance of Neospathodus waageni ex. gr. (sensu lato) is used to define the base of the proposed Olenekian Stage of the Lower Triassic (Tong et al., 2004; Krystyn et al., 2007; Tong and Zhao, 2011). This corresponds to the first appearance of Neospathodus waageni eowaageni in proposed GSSP sections at Chaohu, China (Zhao et al., 2007; Zhao et al., 2008; Tong and Zhao, 2011) and Mud, Spiti, India (Krystyn et al., 2007; Orchard and Krystyn, 2007; Tong et al., 2011) and to the first appearance of Neospathodus waageni ex. gr. (sensu lato) in other Induan-Olenekian boundary sections globally, e.g. Abrek Bay, South Primorye (Shigeta et al., 2009), The first appearance of Neospathodus waageni eowaageni occurs slightly before the appearance of Neospathodus waageni waageni in the proposed GSSP sections and this is also the case in the Senecio-1 core in the Perth Basin. We here place the Induan-Olenekian Stage (Dienerian-Smithian Sub-Stage) boundary at this first appearance in the core at a depth of 2719.25 m. This is the first unequivocally established international stage boundary in the Permian and Triassic of Australia.

4. Carbon Isotopes

4.1. Analytical methodology

4.1.1. Sample preparation
The samples were surface washed with a mixture of dichloromethane (DCM) and methanol (CH₃OH) [9:1, vol%: vol%] in an ultrasonic bath (20 min) to remove surface contamination. The air-dried samples were then ground to a particle size of approximately 150 µm using a ring mill.

4.1.2 Elemental analysis-isotope ratio mass spectrometry (EA-irm-MS)

To remove inorganic carbon from the ground samples for δ¹³C of bulk organic matter (OM) analysis, the ground samples were acidified with Hydrochloric acid (HCl, 1Molar) and then oven-dried at approximately 40°C [48h] in an oven. Then the samples were washed at least three times with double-distilled water to remove any remaining HCl. These decarbonised samples were measured for δ¹³C of bulk OM analysis using a Micromass IsoPrime isotope ratio mass spectrometer interfaced to a EuroVector EuroEA3000 elemental analyser.

The samples were combusted (1025 °C) under an oxygen-enriched atmosphere. Subsequently, the composition products were transported via a constant helium flow through an oxidation catalyst (chromium oxide) into a reduction reactor (650 °C) containing copper granules to reduce nitrogen oxides (NO, N₂O and N₂O₂) to N₂. Excess oxygen and water were removed. Remaining CO₂ and N₂ were separated on a 3m chromatographic column (Poropak Q) before the gas was transported through a thermal conductivity detector (TCD) and into the isotope ratio mass spectrometer (ir-MS). For more detail of the procedure see Grice et al. (2007).

Isotopic compositions are given in the δ-notation relative to the Vienne Pee Dee Belemnite (VDPB) standard.

TABLE 1 ABOUT HERE
4.1.3. Isotope values and interpretation

δ^{13}C$_{org}$ values vary from -27.52 to -32.91‰ VPDB (Table 1) and define a broad positive excursion of approximately 4 per mille (Fig. 11). The peak of this excursion essentially coincides with the base of the *Neospathodus waageni eowaageni* Zone and hence the biostratigraphically defined Induan-Olenekian boundary in the core. Similar positive δ^{13}C$_{carb}$ excursions have been reported globally (Corsetti et al., 2005) and from proposed marine GSSP sections at West and North Pingdingshan, Chaohu, China, and at Mud, Spiti, India (Tong et al., 2002; Horacek et al., 2007; see Fig. 4). In addition, positive excursions are also known at other Induan-Olenekian boundary sections including Jinya/Waili, northwestern Guangxi, South China (Galfetti et al., 2007a), Daxiakou Section, Hubei, China (Tong et al., 2002), Guandao section, Guizhou, China (Tong et al., 2002), Zuodeng Section, Tiandong, Guangxi Province, China (Tong et al., 2002), Bulla section, Southern Alps, Italy (Posenato, 2008), L’Om Picol/Uomo section, northern Italy (Horacek et al., 2007), Losar, North India (Galfetti et al., 2007b) and Kamura, Japan (Horacek et al., 2009).

5. Global anoxia/dysoxia in the Late Permian-Early Triassic

The Late Permian-Early Triassic is characterised by significant global development of marine dysoxia (low oxygen concentration), anoxia (water and sediments...
lacking oxygen) and euxinia (sulfidic anaerobic conditions with sulphate-reducing bacteria leading to accumulation of organic-rich black shales).

Evidence that indicates dysoxia/anoxia in the Permian-Triassic transitional interval includes lithostratigraphy (Wignall and Twitchett, 1996, 2002; Isozaki, 1997), sulfur isotopes (Newton et al, 2004; Nielsen and Shen, 2004), occurrence and size distribution of framboidal pyrite (Nielsen and Shen, 2004; Wignall et al., 2005; Gorjan et al., 2007; Bond and Wignall, 2010), trace metal distributions (Kakuwa, and Matsumoto, 2006; Kakuwa, 2008), type or total lack of biotubation (Twitchett and Wignall, 1996; Kakuwa, 2008), low-diversity, thin-shelled benthic faunas (Wignall and Twitchett, 2002), S/C ratio distributions (Gorjan et al., 2007), high levels of Total Organic Carbon (Takahashi et al., 2009).

5.1. Western Tethys

5.2. Eastern Tethys

Deep-marine basin sequences in N. Sichuan, China record anoxia from the latest Changhsingian (extinction level) to the early Dienerian (Wignall and Twitchett, 2002). In the shallow-marine low-latitude environment in South China (Meishan) anoxia commenced at the extinction horizon (top of Bed 24) but then fluctuated between oxic, dysoxic and anoxic in the basal Induan (Bond and Wignall, 2010). Biomarker studies indicate periodic photic zone euxinia in the latest Permian and Griesbachian at Meishan (Grice et al., 2005a). Kershaw et al. (1999) indicate probable onset of anoxic/dysoxic conditions at the extinction level based on a sudden increase in pyrite, appearance of pyrite framboids, micro-gastropods and microsperes in the Baizhuyuan section, Sichuan Province, South China. Galfetti et al. (2007b) interpret two periods of dysoxia-anoxia in the Jinya/Waili sections of SW South China, one in the Griesbachian-Dienerian and one in the Smithian.

5.3. Panthalassa

Data from deep ocean floor sediments of Panthalassa now incorporated into accretionary complexes in Japan led Kajiwara et al. (1993a, 1993b, 1994) based on δ^{34}S data and Kato et al. (2002) using lithostratigraphic and geochemical data (major, trace and rare earth elements, including Ce anomaly) to interpret the onset of dysoxic conditions in the Wuchiapingian and anoxic conditions from the late Changhsingian (mass extinction level) into the lower Induan (Griesbachian). Wignall et al. (2010) also proposed dysoxic conditions in late Permian deep-marine Panthalassic sediments of accreted terranes in Japan and appearance of distinct anoxia at the late Changhsingian extinction horizon that extends through the Griesbachian. A further pulse of anoxia is recorded in the late Spathian.
In the shallow-water central Panthalassa (sea mounts incorporated into accretionary complexes in Japan), geochemical signatures in dark-grey to black Griesbachian micritic limestones indicate dysoxic conditions at this time on shallow-marine intra-Panthalassic sea mounts (Musashi et al, 2001). Shallow marine higher-latitude eastern Panthalassa continental margin sequences in Idaho, W. North America record anoxia from the extinction level up into the Griesbachian (Wignall and Hallam,1992; Bond and Wignall, 2010). Dysoxia in the Griesbachian of Utah and Idaho is indicated by abundant Lingula and Claraia (Schubert and Bottjer (1995). Photic zone euxinia is documented in the latest Permian, Griesbachian and Smithian in the Peace River Basin, Western Canada (Hays et al 2007).

5.4. Peri-Gondwana

Brookfield et al. (2003) suggest there is little evidence for dysaerobic conditions in the deep-water P-T transition in the Guryul Ravine and Pahlgam sections in Indian Kashmir. However, the lower Khunamuh Formation (upper Permian-basal Triassic) lacks bioturbation and Wignall et al (2005), based on pyrite framboioid evidence, have interpreted this to have been deposited under oxygen poor conditions.

In shallow-marine Peri-Gondwana P-T sequences at Julfa, Iran, dysoxic conditions in the Griesbachian are indicated by Ce anomaly studies (Kakuwa and Matsumoto, 2006). In the Salt Range, Pakistan, Wignall and Hallam (1993) indicate early Griesbachian normal marine conditions but dysoxic conditions in the late Griesbachian. Hermann et al. (2011) assessed the palaeoredox data for the Salt Range and Surghar Range sections in Pakistan and interpret, based on composition of organic particulate matter, that oxygenated conditions existed in the Early Triassic except in the Dienerian-earliest Smithian and
challenge the interpretation of an anoxic event in the late Griesbachian. They indicate dysoxic
conditions throughout the Dienerian and in the late Smithian (Hermann et al. 2011, Fig 9).
The Triassic sequence at Losar, India records two episodes of anoxia, one in the late
Dienerian and one in the late Smithian separated by dysoxic conditions (Galfetti et al.,
2007a).
At Selong, Southern Tibet, Wignall and Newton (2003) demonstrate that the
basal Triassic is oxygenated and dysoxic conditions only appear in the late Griesbachian and
anoxic conditions in the Dienerian.
Peri-Gondwanan shallow-marine P-T sequences are present in the Perth,
Carnarvon and Bonaparte basins of Western Australia. Biostratigraphic control is mainly
based on endemic palynomorphs, brachiopods and bivalves and on limited more globally
relevant conodonts and ammonoids. Metcalfe et al. (2008) and Gorter et al. (2009) discussed
the placement of the P-T boundary in the Perth and Bonaparte basins. The Griesbachian is yet
to be unequivocally proved present in any of these sequences based on international robust
biostratigraphy but is generally regarded as probably present in the Perth Basin (Thomas et al
2004, Metcalfe et al, 2008) but with the possibility of a stratigraphic break at the extinction
level (Inertinitic Interval-Sapropelic Interval boundary). The presence of the Griesbachian in
the Carnarvon and Bonaparte basins is also equivocal and as yet unproven. The latest Permian
and basal Triassic appear missing in the Carnarvon Basin where there is an unconformity
(Felton et al., 1993). The Lower Triassic in the Carnarvon Basin is represented by the Locker
Shale but there is no indication of oxygen deficient conditions at that time or in the
underlying Permian Kennedy Group. There is also an unconformity present in the latest
Permian in the Bonaparte Basin (Gorter et al., 2009) but this occurs below the
Protohaploxypinus microcorpus palynofloraal Zone interpreted as of late but not latest
Changsingian age (Metcalfe et al, 2008). The Griesbachian may be represented within the
Mairmull Formation in the Bonaparte Basin. There is no indication of dysoxia or anoxia in the Permian-Triassic transitional interval in the Bonaparte Basin and the organic-rich source rocks of the lower Triassic seen in the Perth Basin are not present there.

Anoxic conditions are interpreted for the Sapropelic Interval of the Hovea Member of the Kockatea Shale in the Perth Basin (Thomas et al. 2004, Metcalfe et al., 2008, and discussions in this paper) commencing at the late Changhsingian extinction level and terminating in the late Dienerian. In addition, biomarker studies indicate photic zone euxinia during deposition of the Sapropelic Interval of the Kockatea Shale (Grice et al., 2005).

6. Discussion

The development of global anoxia has been suggested to be a primary cause of the late Changhsingian marine mass extinction (Wignall and Hallam, 1992; Isozaki, 1997; Wignall & Twitchett 2002). The development of dysoxia and anoxia in the Permian-Triassic transition exhibits both depth-related and geographic variations (Fig. 12). It has previously been suggested that dysoxia and anoxia in the deep-marine environment commences in the late Middle Permian (late Capitanian) and extends to the early Middle Triassic (early Anisian) and has been referred to as a long-lasting "superanoxic event" (Kajiwara et al., 1994; Isozaki, 1997; Kato et al., 2002; Isozaki, 2009). Oceanic stagnation during this "superanoxic event" has been shown, based on modeling, to be unlikely (Hotinski et al., 2001; Winguth and Maier-Reimer, 2005). Biomarker and C and S isotope studies in China, Australia, Greenland and Western Canada (Grice et al., 2005a; Hays et al., 2006; Hays et al., 2007) have indicated that widespread periodic photic-zone sulfidic conditions (photic zone euxinia) existed during this "superanoxic event" and that sulfide toxicity was a contributory factor to the extinction and a factor in delayed recovery in the early Triassic. Earth system modeling (Meyer et al,
2008) suggests that \(\text{H}_2\text{S} \) toxicity and hypercapnia may have provided the kill mechanism for
the P-T extinction. Photic-zone sulfidic conditions as a principal cause for the late
Changhsingian ecosystem collapse and mass extinction is more problematic and has been
recently challenged by Nielsen et al. (2010). Anoxia in the pre-extinction Late Permian has
been interpreted, based on modeling, to not have been globally widespread but confined to an
oxygen minimum zone and the deep eastern Panthalassa (Winguth and Winguth, 2011).

Anoxia in the shallow-marine environment appeared in the latest Permian at the extinction
level (Fig. 12), later than in the deep-marine environment, and appears to be largely restricted
to the Induan (Griesbachian and Dienerian) and early Olenekian (Smithian). Extreme global
warming occurred in the latest Permian-early Triassic, immediately post-mass extinction
(Joachimski et al., 2012), with major changes in the Earth's ocean and atmosphere heat
transfer systems (Kidder and Worsley, 2004). Pulses of shallow-marine anoxia during the
Induan-Early Olenekian correspond to major global positive \(\delta^{13}\text{C} \) isotopic excursions (Fig.
12) and are suggested to be caused by repeated expansion of the oxygen minimum zone into
the ocean surface layer due to environmental perturbations (Algeo 2011a, 2011b) including
extreme global warming, increased chemical weathering intensity and continental erosion, sea
level rise, and changes in marine nutrient inventories and productivity rates (Algeo et al.,
2011).

Wignall & Twitchett (2002) discussed the temporal and spatial distribution of
both deep- and shallow-marine anoxia globally and indicated that oxygen-poor shallow-
marine conditions widely developed in the latest Changhsingian and was at its maximum in
the mid-Griesbachian and had waned by the mid-Dienerian to low-latitude areas of
Panthalassa and a region of peri-Gondwana in a shallow-marine embayment in the India-
Madagascar region. Better constraints on the spatial distribution and upper limit of shallow-
marine anoxia in the Early Triassic are now available and our new data from the Perth Basin
in Western Australia expands the known region of Induan shallow-marine anoxia in the peri-
Gondwanan Meso-Tethys and dates its termination as late Dienerian. A compilation of
currently available data on shallow-marine anoxia/dysoxia (Fig. 12) demonstrates
synchronous establishment of dysoxia/anoxia at the Late Changhsingian mass extinction level
but different timings of the cessation of anoxia in different palaeogeographical regions and
settings. It is not yet clear if different temporal pulses of anoxia in the shallow-marine
environment are global or regional in nature. Thomas et al. (2004) suggested that upwelling
on the west Australian Gondwana margin resulted in abnormally high productivity that
produced the unique Lower Triassic organic-rich source rocks of the Sapropelic Interval of
the Hovea Member of the Kockatea Shale. This upwelling may also explain the relatively late
cessation (late Dienerian) of anoxia along this part of the peri-Gondwana margin. Another
possible explanation for the anoxia and organic-rich source rocks of the Sapropelic Interval of
the Hovea Member is increased surface ocean productivity due to restricted water circulation
and photic zone euxinia (Grice et al., 2005b). Further detailed temporal and spatial mapping
of anoxia in the Late Permian-Early Triassic will lead to further understanding of the driving
forces for anoxia and how environmental perturbations both on-land and in the seas
underpinned these forces.

7. Conclusions

Conodont biostratigraphy has unequivocally established the Induan-Olenekian
Stage (Dienerian-Smithian Sub-stage) boundary in the Permo-Triassic succession of the
onshore northern Perth Basin, Australia, specifically in the lower part of the "Limestone
Marker" of the Hovea Member of the Kockatea Shale cored in the petroleum exploration well
Senecio 1. This is the first unequivocally established Stage boundary for either the Permian or Triassic of Australia utilising internationally robust biostratigraphy.

δ^{13}C$_{org}$ values from the Induan-Olenekian transition in the Perth Basin vary from -27.52 to -32.91‰ VPDB and define a broad positive excursion of approximately 4 permille. This correlates with a globally recognised positive excursion at this level and enhances correlation of the Senecio-1 section conodont zonation with proposed Induan-Olenekian GSSP sections in China and India and demonstrates the utility of this conodont defined level for stage boundary definition and global correlation.

The upper limit of anoxic conditions recognised in the Sapropelic Interval of the Hovea Member of the Kockatea Shale, Perth Basin is dated as late Induan (late Dienerian).

Temporal and spatial mapping of marine anoxia and dysoxia globally demonstrates that pulses of anoxia affected shallow-marine zones at different times in different locations. This was probably caused by repeated expansion and/or geographically restricted upwelling of an oxygen minimum zone into the ocean surface layer due to environmental perturbations including extreme global warming, increased terrestrial chemical weathering intensity and continental erosion, sea level rise, and changes in marine nutrient inventories and productivity rates.

Acknowledgments

IM and RSN were supported by Australian Research Council Discovery Grant DP109288. KG and ML were supported by ARC QEII Discovery grant to KG. ML was supported by Geoscience Australia, GFZ Potsdam and Curtin University for a Curtin International Tuition Scholarship. The Institute for Geoscience Australia and John de Le State Centre provided support. The authors wish to extend their thanks to Arc Energy Ltd, now AWE Ltd, and its joint venture partner Origin Energy Ltd for permission to access its Senecio
1 core for research. Paul Wignall and Charles Henderson are thanked for their helpful reviews of the paper.

References

Isozaki, Y. 2009. Integrated “plume winter” scenario for the double-phased extinction during the Paleozoic–Mesozoic transition: The G-LB and P-TB events from a Panthalassan

Nabbefeld, B., Grice, K., Schimmelmann, A., Sauer, P.E., Böttcher, M.E., Twitchett, R., 2010. Significance of $\delta D_{\text{kerogen}}$, $\delta^{13}C_{\text{kerogen}}$ and $\delta^{34}S_{\text{pyrite}}$ from several Permian/Triassic (P/Tr) sections. Earth and Planetary Science Letters 295, 21–29.

Science 305, 506–509.

Report to Arc Energy NL, 7pp.

<table>
<thead>
<tr>
<th>Page</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Twitchett, R.J., Wignall, P.B., 1996. Trace fossils and the aftermath of the Permo-Triassic</td>
</tr>
</tbody>
</table>
mass extinction: evidence from northern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 124, 137–151.

Figure and Table Captions

Fig. 1. A. Location of Perth Basin and Senecio-1. B. End-Permian (253 Ma) palaeogeography showing locations of Senecio-1 and proposed GGSP sections at Chaohu and Mud. C. Upper Permian-Lower Triassic stratigraphy of the northern Perth Basin penetrated by Senecio-1, stratigraphic coverage of the cored interval shown in black. D. Generalised Permian-Triassic stratigraphy of the onshore Northern Perth Basin (after Mory et al., 2005).

Fig. 2. Organic metamorphic facies and maturity indices showing the maturity level indicated for the Senecio-1 sediments based on conodont and spore color. Partly after Metcalfe and Riley (2010), Nowlan and Barnes (1987) and Epstein, Epstein and Harris (1977).

Fig. 3. Clarkina spp. Pa elements, all sample C36 (2716.75-2717.00 m depth), Senecio-1 core. 1,2. Oral and inner lateral views of specimen C36/1. 3,4. Oral and inner lateral views of specimen C36/2. 5,6. Oral and inner lateral views of specimen C36/3. 7,8. Oral and inner lateral views of specimen C36/4.

Fig 4. Neospathodus dieneri Sweet Pa elements, Senecio-1 core. 1. Specimen C29/5, lateral view, sample C29 (2715.00-2715.25 m depth). 2. Specimen C29/8, lateral view, sample C29 (2715.00-2715.25 m depth). 3. Specimen C49/3, lateral view, sample C49 (2720.00-2720.25 m depth). 4. Specimen C53/16, lateral view, sample C53 (2721.00-2721.25 m depth). 5. Specimen C76/1, lateral view, sample C76 (2726.75-2727.00 m depth). 6-14 all from sample C77 (2727.00-2727.25 m depth): 6. Specimen C77/23, lateral view; 7,8. Oral and outer lateral views of specimen C77/1; 9, 10. Oral and inner
lateral views of specimen C77/2; 11. Lateral view of specimen C77f; 12, 13. Lateral and oral views of specimen C77/11; 14. Lateral view of specimen C77d.

Fig. 5. Neospathodus novaehollandiae McTavish Pa elements, Senecio-1 core. 1, 2, 3, 4. Oral, oblique oral, inner lateral and outer lateral views of specimen C29/3, sample C29 (2715.00-2715.25 m depth). 5. Inner lateral view of specimen C25/7, sample C25 (2714.00-2714.25 m depth). 6. Inner lateral view of Holotype specimen number UWA69120B of McTavish (1973) reimaged using the SEM for comparison with Senecio-1 material.

Fig. 6. Neospathodus pakistanensis Sweet Pa elements, Senecio-1 core. 1. Lateral view of specimen C10/1, sample C10 (2710.25-2710.50 m depth). 2, 3. Oral and inner lateral views of specimen C25/3, sample C25 (2714.00-2714.25 m depth). 4, 5. Lateral and basal views of specimen C25/2, sample C25 (2714.00-2714.25 m depth). 6. Lateral view of specimen C25/8, sample C25 (2714.00-2714.25 m depth). 7. Lateral view of specimen C29/4, sample C29 (2715.00-2715.25 m depth). 8. Lateral view of specimen C10/16, C10 (2710.25-2710.50 m depth).

Fig. 7. Neospathodus waageni eowaageni Zhao & Orchard Pa elements, Senecio-1 core. 1. Lateral view of specimen C25/26, sample C25 (2714.00-2714.25 m depth). 2. Lateral view of specimen C35/7, sample C35 (2716.50-2716.75 m depth).

Fig. 8. Neospathodus waageni waageni Sweet Pa elements, Senecio-1 core, from sample C28 (2714.75-2715.00 m depth). 1, 2, 3. Oral, outer lateral and anterior views of specimen C28/2. 4, 5. Oral and inner lateral views of specimen C28/3. 6-9. Oral, anterior, outer
lateral and posterior views of specimen C28/4.

Fig. 9. Neospathodus waageni subsp. nov. A Pa elements, Senecio-1 core. 1. Lateral view of specimen C20/1, sample C20 (2712.75-2713.00 m depth). 2. Lateral view of specimen C20/5, sample C20 (2712.75-2713.00 m depth). 3. Lateral view of specimen C23/8, sample C23 (2713.50-2713.75 m depth). 4. Lateral view of specimen C20/2, sample C20 (2712.75-2713.00 m depth). 5. Lateral view of specimen C23/4, sample C23 (2713.50-2713.75 m depth). 6. Lateral view of specimen C25/1, sample C25 (2714.00-2714.25 m depth). 7. Lateral view of specimen C20/3, sample C20 (2712.75-2713.00 m depth). 8. Lateral view of specimen C23/6, sample C23 (2713.50-2713.75 m depth). 9. Lateral view of specimen C28/5, sample C28 (2714.75-2715.00 m depth).

Fig. 10. Ranges of important conodont taxa and conodont zones, occurrence of pelagic macrofossils and bioturbation index values in the Senecio-1 core and placement of the Induan-Olenekian boundary.

Fig. 11. Correlation of the δ^{13}C curve and conodont zones for Senecio-1 core with those of proposed Induan-Olenekian GSSP sections at Chaohu, China and Mud, India.

Fig. 12. Temporal and geographic distribution of deep and shallow-marine dysoxia and anoxia in the Late Permian and early Triassic plotted against physical, biotic and chemostratigraphic events that relate to the late Changhsingian mass extinction and 5 million year long Early Triassic cesspool. Permian-Triassic numerical timescale is compiled from Mundil et al. (2004), Ovtcharova et al. (2006), Lehrmann et al. (2006), Galfetti et al. (2007b), Mundil et al. (2010), Shen et al. (2010) and Shen et al. (2011).
Carbon isotope curve (adjusted to the latest numerical timescale) and gastropod size data are from Payne et al. (2004). Shallow-marine temperature curve from Joachimski et al. (2012). Chemical weathering intensity from Algeo et al. (2011). Reef frameworks, unusual facies and radiolarian data from Knoll et al. (2007), Pruss and Bottcher (2005) and Brayard et al., (2011). Coal seam thickness data from Retallack et al. (1996). Sources of temporal distribution of dysoxia and anoxia are discussed in the text.

Table 1. Senecio-1 Carbon isotope samples, total organic carbon (wt%) and δ13C values.
Figure 8
Click here to download high resolution image
Table 1. Senecio-1 Carbon isotope samples, total organic carbon (wt%) and δ13C values.

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Depth (m)</th>
<th>C [wt%]</th>
<th>δ13C [% VPDB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2708.10 - 2708.14</td>
<td>0.4</td>
<td>-32.88</td>
</tr>
<tr>
<td>4</td>
<td>2708.85 - 2708.87</td>
<td>0.5</td>
<td>-32.91</td>
</tr>
<tr>
<td>8</td>
<td>2709.83 - 2709.86</td>
<td>0.3</td>
<td>-31.8</td>
</tr>
<tr>
<td>12</td>
<td>2710.84 - 2710.87</td>
<td>0.2</td>
<td>-31.82</td>
</tr>
<tr>
<td>16</td>
<td>2711.92 - 2711.95</td>
<td>0.4</td>
<td>-32.3</td>
</tr>
<tr>
<td>20</td>
<td>2712.88 - 2712.91</td>
<td>0.4</td>
<td>-31.79</td>
</tr>
<tr>
<td>24</td>
<td>2713.82 - 2713.83</td>
<td>0.3</td>
<td>-31.69</td>
</tr>
<tr>
<td>28</td>
<td>2714.88 - 2714.90</td>
<td>0.4</td>
<td>-31.54</td>
</tr>
<tr>
<td>32</td>
<td>2715.85 - 2715.87</td>
<td>0.6</td>
<td>-28.98</td>
</tr>
<tr>
<td>36</td>
<td>2716.81 - 2716.84</td>
<td>0.4</td>
<td>-30.18</td>
</tr>
<tr>
<td>40</td>
<td>2717.90 - 2717.92</td>
<td>0.7</td>
<td>-29.44</td>
</tr>
<tr>
<td>44</td>
<td>2718.92 - 2718.95</td>
<td>0.4</td>
<td>-28.61</td>
</tr>
<tr>
<td>48b</td>
<td>2719.85 - 2719.88</td>
<td>0.3</td>
<td>-27.52</td>
</tr>
<tr>
<td>52</td>
<td>2720.87 - 2720.89</td>
<td>0.5</td>
<td>-28.03</td>
</tr>
<tr>
<td>56</td>
<td>2721.94 - 2721.96</td>
<td>1.4</td>
<td>-27.9</td>
</tr>
<tr>
<td>60</td>
<td>2722.91 - 2722.93</td>
<td>1.2</td>
<td>-28.5</td>
</tr>
<tr>
<td>64</td>
<td>2723.85 - 2723.87</td>
<td>0.9</td>
<td>-28.79</td>
</tr>
<tr>
<td>68</td>
<td>2724.88 - 2724.90</td>
<td>1.7</td>
<td>-28.95</td>
</tr>
<tr>
<td>72</td>
<td>2725.88 - 2725.90</td>
<td>1</td>
<td>-29.31</td>
</tr>
<tr>
<td>76</td>
<td>2726.88 - 2726.91</td>
<td>1.5</td>
<td>-29.66</td>
</tr>
<tr>
<td>80</td>
<td>2727.85 - 2727.88</td>
<td>2</td>
<td>-29.37</td>
</tr>
<tr>
<td>84</td>
<td>2728.85 - 2728.88</td>
<td>1.4</td>
<td>-29.89</td>
</tr>
</tbody>
</table>
Research Highlights

- Induan-Olenkian boundary identified using conodonts in the Perth Basin, Australia
- δ^{13}C$_{org}$ positive excursion peak correlates with Induan-Olenekian boundary globally
- Early Triassic dysoxia/anoxia linked to environmental perturbations and upwelling
Graphical Abstract (for review)