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Abstract 

The evolution of microhardness, fracture toughness and residual stress of an air plasma-sprayed 

thermal barrier coating system under thermal cycles was investigated by a modified Vickers 

indentation instrument coupled with three kinds of indentation models. The results show that fracture 

toughness on the top coating surface after thermal cycles changes from 0.64 to 3.67 MPa·m1/2, and the 

corresponding residual stress near the indented region varies from –36.8 to –243 MPa. For the interface 

region of coating and bond coat, fracture toughness in the coating close to interface ranges from 0.11 to 

0.81 MPa·m1/2, and residual stress varies from –5 to –30 MPa, which are consistent with available data. 

For the lateral region of coating, fracture toughness and residual stress display strong gradient 

characteristics along the thickness direction due to the special layered structure.  

 

Highlights 

We proposed a modified Vickers indentation instrument by re-designing load intervals.  

Microhardness, fracture toughness and residual stress of coating were measured. 

Mechanical properties display strong gradient characteristics along thickness direction. 

The method has a large advantage to study the failure of coating/film materials. 
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1.  Introduction 

Thermal barrier coatings (TBCs) have attracted an ever-increasing attention in aircraft and 

industrial gas-turbine applications owing to their excellent wear resistance, corrosion protection and 

thermal insulation. They can prolong the operation life of metal substrate and enhance thermal 

efficiency of engines [1,2]. Many studies have shown that the evolution of interface adhesion, 

thermal/residual stresses and mechanical properties of TBCs are crucial to predict their durability and 

reliability in service [1,3-5]. Thus, three intrinsic parameters of a TBC system, including hardness, 

fracture toughness and residual stress, are urgent to be tested by using a simplified and low-cost 

method. Recently, a lot of methods such as barb pullout, bending, scratch, X-ray diffraction, Raman 

spectroscopy and indentation tests have been developed. Compared to these tests, the indentation 

method can measure microhardness, residual stress and fracture toughness of bulk brittle materials 

[6-10], which is also used to test a few of brittle film/ductile substrate systems [11-14]. However, in the 

case of a multiple-layer TBC system, if residual stress and fracture toughness are expected to be 

synchronously studied by indentation fracture models proposed by Lawn et al. [15], traditional 

indentation instruments may not be directly applied due to the lack of enough suitable indentation loads. 

As the best of our knowledge, there is still no reported work in which residual stress and fracture 

toughness of a TBC system can be simultaneously tested by a Vickers indentation method. 

In this paper, we attempt to modify a Vickers indentation instrument by re-designing the value 

and interval of loads, and then use it to study the evolution of microhardness, residual stresses and 

fracture toughness of an air plasma-sprayed (APS) TBC system subjected to thermal cycling, including 

the top surface, lateral and interface regions of the coating. Further, the effects of thermal cycling, 

coating thickness and indentation locations on mechanical properties of a TBC system have been 

discussed. The experimental results are in agreement with available data. 
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2.  Theoretical models 

2.1. Indentation model  

As indentation load increases, a brittle material gradually experiences elastic and little plastic 

deformation, and then fracture. Once the stress intensity factor IK  in an indented material approaches 

its fracture toughness ICK , a pair of radial cracks usually start to nucleate near the corner angles of 

residual Vickers indentation and finally present a semiellipse shape along the indentation direction 

[6,7,10], as shown in Fig. 1. Here, ICK  can be evaluated, in the case of no residual stress [6], as 

1/2

3/2IC

E P
K

H c
δ  =  
 

  (c d≫ )                           (1) 

where δ  is a geometric factor and for a Vickers indenter, δ = 0.016 [6], c = (c1 + c2)/2 is the average 

length of two radial cracks with lengths of c1 and c2 (see Fig. 1(a)). E and H are Young’s modulus and 

hardness of the indented material, respectively. In Vickers indentation tests, hardness is usually 

calculated by 1.8544 2
/P d , where P is the peak indentation load and d is equal to (d1 + d2)/2 with d1 

and d2 defined as the two diagonal lengths of residual Vickers indentation, as shown in Fig. 1(a).  

Residual stresses with gradient distribution characteristic usually exit in the indented region for a 

coating/film system due to the mismatch of material properties and temperature variation, which may 

strongly affect the accuracy of indentation measurements. For the sake of simplification, the 

distribution of residual stresses is divided into small strips along the indentation direction and they are 

approximately regarded as uniform in each small strip. The effect of total residual stress on stress 

intensity factor can be evaluated in the indentation depth by an integral method. An analytical solution 

proposed by Lawn et al. is applied to describe the influence of residual stress in a strip on stress 

intensity factor, which can be written as [16],  

( ) ( )1/2 1/21/2 2 / / 2 / /r rK c b c t c b c t cψσ  = + − −
 

                  (2) 

where rσ  is the distributed uniform average tensile residual stress at a small strip along the 
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indentation depth direction, ψ  = 2 / π  is a crack geometry term [17], b is the distance from the 

strip to the indented surface, and t  is the depth of the distribution region of rσ . When the stress layer 

locates on surface (i.e., b = 0), Eq. (2) reduces to  

(2 / )r rK t t c= −ψσ                                (3) 

If the strip extends to the thorough indentation crack region (i.e., b = 0, d = t), Eq. (3) reduces to  

r rK c=ψσ 1/ 2                                    (4) 

which is similar to the result for a uniform stress field. According to the different distribution features 

of residual stresses in the indented material, we should select a suitable equation from Eq. (3) or (4) to 

analyze the effect of residual stress on rK .  

For residual stress in a TBC system, it is generally simplified as in-plane equi-biaxial stress and 

out-plane gradient stress along the thickness direction [18]. Therefore, in the case of indentation 

perpendicular to the coating surface (see Fig. 1(a)), residual stress is assumed to be uniformly 

distributed in a narrow strip just below the indented surface. The corresponding stress intensity factor 

Kr induced by residual stress at the crack front can be estimated by Eq. (3). Therefore, the total stress 

intensity factor are the superimposition of rK  and pK , which can be written as [16] 

1/2 1/2
3/2

4 2
/χ σ σ

π π
= + = + −IC r p r r

P
K K K t t c

c
                       (5) 

where ( )1/2
/χ δ= E H . Then, the ratio 3/2/P c  can be obtained as 

1/2

1/2
3/2

4
2IC r

r

K t
tP

c
c

−

 −   
= +   
   
 
 

σ σπ
χ χ π

                        (6) 

which is regarded as a function of 1/ 2c− . Here, 2 rtσ χ π  and 1/2( 4 / ) /IC rK tσ π χ−  denotes the 

slope and intercept of Eq. (6), respectively. To obtain a better linear equation, a series of Vickers 
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indentation tests must be performed under different peak indent loads. The corresponding radial crack 

lengths are measured by the Vickers instrument with the function of an in-situ microscope observation 

system, i.e., 3/2/i iP c  versus 1/2
ic −  (i =  1, 2, …, n). Then, all experimental data are fitted into a linear 

equation. ICK  and rσ  at the indented point can be determined by the magnitude of intercept and 

slope of the equation, respectively. It is found that the indentation fracture of APS 8.0 wt% 

Y2O3-partially-stabilized ZrO2 (8YSZ) coating on the surface regions usually occurs under the load of 

78.4 N or more. Otherwise, indentation cracking does not occur because load is too small. On the other 

hand, if the indentation load is too large, the ceramic coating would be directly broken down and 

spalled. Therefore, in the case of a TBC system, in order to perform a reasonable range of indentation 

loads with a small interval, we have re-designed a commercial indentation instrument and adjusted its 

range and interval of indentation loads.  

 

2.2.  Interfacial indentation model 

As shown in Fig. 1(b), when a Vickers indenter is penetrated into the interface of two different 

materials, fracture toughness for the coating/bond coat interface is usually evaluated as [19] 

1/2

3/2
δ  =  
 

IC
i

E P
K

H c
                                 (7) 

where δ  is a geometric factor and δ  = 0.015 for a Vickers indenter, and ( )1/2
/

i
E H  is a ratio of 

reduced Young’s modulus and hardness of two indented materials. If the occupied areas of the coating 

and bond coat in residual impression are equal, ( )1/2
/

i
E H  is defined as [19] 

( )
( )

( )
( )

1/2 1/21/2

1/2 1/2

/ /

1 / 1 /
c s

i c s s c

E H E HE

H H H H H

  = + 
  + +

                    (8) 

where subscripts s and c are bond coat and coating, respectively. However, when the occupied area 

ratio is not equal in indentation tests, Eq. (8) is hard to describe the effects of two different materials on 
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indentation resistance. Therefore, it is necessary to consider the indenter trace near the interface with a 

ratio of lengths 1z  and 2z  (see Fig. 1(b)). The diagonal lengths of residual indentation for coating 

and bond coat are defined as  

1
1

1 2
c

z
d d

z z
=

+
   and   2

1
1 2

b

z
d d

z z
=

+
                      (9) 

where d1 is defined as the total length of an indent diagonal whose direction is vertical to the indented 

interface. Considering the influence of plastic deformation [20,21], ( )1/2
/

i
E H  can be approximately 

written as [21] 

( ) ( ) ( ) ( )
1/2

1/2 1/21 2

1 2 1 2

/ /
c s

i

z zE
E H E H

H z z z z
  = +  + + 

               (10) 

On the other hand, according to the in-plane equi-biaxial stress assumption, the distribution of 

residual stresses for lateral indentation (see Figs. 1(b) and (c)) can be regarded as uniform along the 

indentation orientation. In this case, Kr induced by residual stress can be approximately evaluated by 

Eq. (4). Therefore, the total fracture toughness for lateral indentation can be expressed as a sum of Kp 

and Kr [22], that is  

1/ 2

1/ 2

3/ 2

2
IC p r r

i

E P
K K K c

H c
δ σ

π
 = + = + 
 

                   (11) 

Similar to Eq. (6), we have  

1/ 2

3/ 2

2IC r

i i

KP
c

c

σ
χ π χ

  
= + −  
   

                            (12) 

where ( ) 1/2
/i i

E Hχ δ= , and 3/2/P c  is regarded as a linear function of 1/2c . r iσ π χ−2 /  and 

/IC iK χ  denotes the slope and intercept of this linear equation, respectively. Here, rσ  is tensile if the 

slope is negative, and otherwise, rσ  is compressive. It is worth noting that, when 2z  = 0 in Eq. (9), 

it means that the Vickers indenter only indents the cross-sectional region of the coating, as shown in 
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Fig. 1(c). In this case, iχ  in Eq. (12) is equal to ( )1/2
/

c
E Hδ . Similarly, all experimental data, 

3/2/i iP c  versus 1/2
ic  (i = 1, 2, …, n), can be obtained by Vickers indentation tests under different 

loads. Then, these data are fitted into a linear equation. Similarity, ICK  and rσ  within the lateral or 

interfacial region of the coating can be estimated by the values of intercept and slope, respectively. 

 

3.  Experimental 

3.1.  Specimen 

In our experiments of TBCs, substrate is nickel-base super alloy (GH3030) and its dimension is 20 

× 5 × 2.4 mm3. A NiCrAlY powder with grain size of 20–50 mµ  was sprayed to the substrate surface 

as bond coat with the thickness of about 150 mµ  by using the low pressure plasma-sprayed technique. 

The top coating was deposited by the air plasma-sprayed technique with 8YSZ powder that has the 

same grain size of 20–50 mµ , and the coating thickness is in a range of 400–600 mµ . The substrate 

temperature was held at 473 K during the preparation process [23]. 

To simulate the effect of high temperature environment on material properties and microstructure 

of TBCs, most of TBC specimens were performed by heat treatments. They were heated about 10 min 

up to a desired temperature of 1273 K and then held for 60 min, followed for a 10 min of 

forced-air-quenching. After polished with 2.5 µm diamond sandpapers, the specimens were cleaned by 

hydrochloric acid and distilled water to reduce the influence of surface work hardening. All specimens 

were carefully cleaned by ultrasonic oscillator and completely dried by a drying machine, prior to the 

microstructure observations, nanoindentation and Vickers indentation tests. The total 120 specimens 

were tested by using the modified Vickers indentation device.  

 

3.2.  Young’s modulus 

The variations of Young’s modulus E of TBC samples under thermal cycling were measured by 
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the aid of nanoindentation with an indenter (Triboscope, Hysitron Inc.) equipped with a three-sided 

pyramidal diamond tip. The tip radius is about 200 nm and the peak load is 3 N. The loading and 

unloading times are 100 s and the holding time is 20 s. To obtain reliable data, each cycle is repeated 20 

times. The thermal drift is kept below ± 0.05 nm/s for all indentations. For 8YSZ coating with many 

pores and microcracks, the Weibull analysis was introduced to describe the scatter of mechanical 

properties [24-26]. The detailed analysis has been reported in our recent works [27,28]. 

 

3.3.  Vickers indentation 

We have re-designed the peak loads and intervals of a commercial Vickers indentation instrument 

(HVS-30). A series of indentation loads ranged from 9.8 to 294 N with a fitted interval of 19.6 N were 

selected to induce the formation of different radial cracks at room temperature. In each Vickers 

indentation test, the dwelling time is 20 s and unloading time is 15 s. All images of residual 

impressions were observed and the lengths of Vickers indentation cracks were measured by the 

apparatus with in-situ microscopy and charge coupled device camera. 

 

4.  Results and discussion 

4.1.  Young’s modulus and microhardness 

As shown in Fig. 2, Young’s modulus E on the top coating surface gradually increases from about 50 

GPa (as-received specimens) to 90 GPa within 150 thermal cycles, and then decreases to 59 GPa after 

300 thermal cycles. In the lateral region of the coating, E exhibits a similar change and is slightly larger 

than that on the coating surface. It varies from the initial value of 67 to 120 GPa within 150 thermal 

cycles. As thermal cycle adds up to 300, the value of Young’s modulus is 79 GPa. The major reason for 

the evolution of Young’s modulus of the coating may attribute to the gradient variation of 

sintering-induced micro-porosity under heat treatments, which displays the anisotropic characteristic of 

the coating with laminated structures. Young’s modulus in the bond coat also changes with thermal 
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cycling. It increases from 79 GPa at the as-received stage to 149 GPa at the 100th thermal cycle, and 

then retains as a constant. The initially rapid change may be due to high-temperature oxidation. Zhu et 

al. found that the effective Young’s modulus of TBCs varies within a range of 60 to 125 GPa under 

different heat treatments [29,30]. The values of Young’s modulus of bond coat in our tests were similar 

to the results obtained by Haynes [31].  

As seen in Fig. 3, the evolution of micro-hardness H in the coating by Vickers indentations has a 

similar trend. H on the coating surface increases from 2.76 to 5.84 GPa within about 180 thermal cycles, 

and then reaches 4.4 GPa. In the lateral region, H changes from 3.87 to 6.14 GPa when thermal cycling 

is within about 150. H gradually deceases to 4.71 GPa during subsequent cycles, which are also in 

consistent with available data [29,32]. Moreover, it is shown that the variation of hardness in the bond 

coat increases from the as-received 3 to 4 GPa with the increase of thermal cycles due to the interface 

oxidation under high temperatures, which are well consistent with available data [31]. 

 

4.2.  Effect of thermal cycling  

Heat treatments have an important influence on material properties and stress fields of a TBC 

system during thermal cycles. When indented on the coating surface (see Fig. 1(a)), data of 3/2/i iP c  

versus 1/2
ic −  were fitted with the form of Eq. (6) under different thermal cycles (see Fig. 4). It is 

obvious that the slope of each fitted line is negative. As the thermal cycle N increases from 0 to 180, 

their corresponding slopes gradually increase from – 60.26 10×  to – 61.47 10×  N/m and intercepts 

change from 635.56 10×  to 6196.45 10×  N/m3/2. However, after 180 thermal cycles, the slope reduces 

to the initial state. A representative scanning electron microscopy (SEM) observation of residual 

impression morphology is shown in Fig. 5, in which there are several radial cracks along the indent 

diagonal direction and a few of pores.  

In interfacial Vickers indentation tests (see Fig. 1(b)), all data were fitted by a linear function of 
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3/2/i iP c  and 1/2
ic  in Eq. (12), as shown in Fig. 6. Within 150 thermal cycles, the slope of each line 

increases from 679 10×  to 6403 10×  N/m2, and then becomes 6138 10×  N/m2 at N = 300. The 

corresponding intercept varies from 62.62 10×  to 610 10×  N/m3/2 and decreases to 61.36 10×  N/m3/2 

at N = 300. Fig. 7 shows a typical SEM image of residual Vickers indentation at the coating and bond 

coat interface. The residual impression is enlarged separately, as shown in inset of Fig. 7, and there are 

two radial indentation cracks in the coating close to interface.  

To study the gradient behavior of material properties along thickness, the lateral region of coating 

is only indented (see Fig. 1(c)), where L is defined as a distance from the centre of residual impression 

to the upper surface of coating. Fig. 8 shows the variations of slope and intercept of each fitted line. 

The analysis indicates that the slope of each line changes within a range of 6309 10×  to 62006 10×  

N/m2, and the corresponding intercept varies from 64.70 10×  to 621.0 10×  N/m3/2 during thermal 

cycles. The SEM morphology of residual impression is shown in Fig. 9, where two radial Vickers 

indentation cracks and many pores are observed.  

 

4.3.  Fracture toughness and residual stress 

As discussed above, ICK  and rσ  at different indented locations of TBC samples can be 

evaluated with the values of slope and intercept of each fitted line by Eq. (6) or (12). When indented on 

the coating surface (see Fig. 1(a)), KIC gradually increases from the initial value of 0.64 to 3.67 

MPa·m1/2 before 180 thermal cycles, as shown in Fig. 10, which is consistent with the results of 1.15 ± 

0.07 MPa·m1/2 obtained by asymmetric four-point bending tests [33,34]. After 180 thermal cycles, KIC 

slowly decreases to 0.91 MPa·m1/2. It is of interest to see that the relationship of KIC and thermal cycle 

presents the parabola evolution and the fitted equation is 4 20.82 0.04 1.34 10ICK N N−= + − × . The 

corresponding rσ  in Fig. 11 changes from the deposition stress of –36.8 MPa to a maximum of –243 

MPa within 180 thermal cycles. And then it gradually reduces to –30 MPa at the 300th thermal cycle. 
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rσ  displays a little relaxation because new microcracks and pores form as thermal cycle increases (see 

Fig. 5). The analysis shows that the evolution of rσ  near the coating surface with thermal cycles 

follows the relationship of 2 229.44 2.34 0.8 10r N Nσ −= − − + × . The current results before 180 thermal 

cycles are similar to that obtained by X-ray diffraction[35] and Raman spectroscopy methods [27], and 

theoretical results by Mao et al. [18], as shown in Fig. 11. Some difference may be ascribed to thermal 

treatment conditions, coating thickness and material components.  

In the case of interface indentation (see Fig. 1(b)), KIC in the coating close to the interface varies 

from the initial value of 0.19 to 0.81 MPa·m1/2 before 100 thermal cycles, as shown in Fig. 10. Then 

KIC gradually declines to 0.11 MPa·m1/2 within the subsequent thermal cycles. Here we use a fitted 

parabola equation to describe the variation of KIC with thermal cycling, i.e., 

5 20.283 0.004 1.662 10ICK N N−= + − × . For as-received APS TBC systems, KIC at the coating and bond 

coat interface was reported as 2.22 MPa·m1/2 by a mixed-mode test [36], and 0.7 MPa·m1/2 by a 

modified four-point bending test [37]. KIC near the interface region is 1.1 MPa·m1/2 after thermal 

treatment of 20 h [38]. Our experimental results by Vickers indentations are agreement with those 

available results. Moreover, it is clear that KIC on the top coating surface are slightly larger than that 

around the coating/bond coat interface, which agrees well with the fact that the initial fracture in TBCs 

usually happens at interface [39]. Fig. 11 shows that the evolution of rσ  varies from the original value 

of –5 MPa to a maximum of –30 MPa within 204 thermal cycles. Then it gradually decreases to –9.6 

MPa at the 300th thermal cycle due to the formation of micro-cracks. An empirical parabola equation 

fitted by experimental data can be obtained as 3 28.12 0.264 0.91 10r N Nσ −= − − + × . Our results agree 

with –75 MPa in YSZ, which was measured near the bond coating interface at 112 h by high-energy 

X-rays [40]. It is seen that all residual stresses in coating after thermal cycles are compressive, which 

accelerate the propagation of interface delamination or cracks, coating buckling and spallation of TBCs 

[41].  
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When indenter only acts on the lateral region of coating (see Fig. 1(c)), the evolution of KIC and 

rσ  exhibits strong gradient characteristics. The effects of different locations L and thermal cycles N on 

KIC are shown in Fig. 12. The values of KIC close to the coating surface in an as-received sample (N = 0) 

are smaller than that near the interface. With the increase of thermal cycles, they firstly increase with 

different extents, and then gradually reduce to 0.3 MPa·m1/2 at N = 300. It is worth noting that, from 

Figs. (10) and (12), the values of KIC on lateral and interface regions in an APS TBC system are much 

smaller than that on the upper surface of coating under the same thermal cycling. The results may 

explain why the coating is so easy to delaminate and spall near the interface region in service. The 

improved Vickers indentation method as ‘‘fingerprints’’ can be applied to evaluate the “weakest” 

location of the coating, compared with other methods that usually analyze the mechanical properties of 

the coating as a whole. It is seen that KIC in the coating presents strong anisotropic features due to the 

specially laminated structure by the APS technique and the sintering effect in high temperatures. 

Similarly, the influences of L and N on rσ  are shown in Fig. 13. The distributions of rσ  vary with 

different amplitudes along the thickness direction during thermal cycles. Under the same heat treatment 

condition, rσ  increases with the increase of L , which consists qualitatively with the results by 

neutron diffraction [42] and high-energy X-rays [40] methods. 

 

5.  Conclusions 

In this paper, several major mechanical properties of an APS TBC system, including 

micro-hardness, fracture toughness and residual stress during thermal cycles, have been measured by a 

modified Vickers indentation device. The main conclusions can be summarized as follows: 

(1) High-temperature sintering has an important influence on the evolution of Young’s modulus, 

micro-hardness, fracture toughness and residual stress in TBCs. Young’s modulus in coating varies 

from 50 to 120 GPa with increasing thermal cycling and then gradually decreases to 59 GPa, and 
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Young’s modulus in the bond coat changes from 79 to 149 GPa. The values of Vickers hardness in 

coating increase from 2.76 to 6.14 GPa and decline to 4.4 GPa with increasing thermal cycling. In the 

bond coat, it increases from 3 to 4 GPa. 

(2) Residual stresses play an important role in the determination of fracture toughness by the 

indentation method. On the top coating surface, fracture toughness changes in a range of 0.64 to 3.67 

MPa·m1/2. The corresponding residual stress varies from –36.8 to –243 MPa. In the lateral region of the 

top coating, fracture toughness changes in a range of 0.11 to 0.81 MPa·m1/2. The corresponding residual 

stress varies from –5 to –30 MPa.  

(3) The distributions of fracture toughness and residual stress along the coating thickness display 

strong gradient and anisotropic characteristics due to the typical laminated structure, which have been 

revealed by the modified Vickers apparatus.  
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Fig. 1. (Color online) Schematics of three kinds of Vickers indentations on the top surface (a), near the 

interface region (b), and on the lateral region (c). 

Fig. 2. (Color online) Evolution of Young’s modulus in coating and bond coat with thermal cycles in 

nanoindentation tests.  

Fig. 3. (Color online) Variation of Vickers hardness in coating and bond coat with thermal cycles. 

Fig. 4. (Color online) Relationships of 3/2/i iP c  versus 1/2
ic −  under different thermal cycles when 

indented on the top coating surface.  

Fig. 5. (Color online) The SEM observations of residual Vickers impression on the top coating surface 

under (a) P = 296 N and N = 250 h, and (b) P = 296 N and N = 300 h. 

Fig. 6. (Color online) Influence of thermal cycles on the fitting of 3/2/i iP c  versus 1/ 2
ic  when 

indented near the coating/bond coat interface.  

Fig. 7. (Color online) The SEM image of residual Vickers impression morphology near the interface 

region with P = 98 N and N = 150 h. 

Fig. 8. (Color online) Plots of 3/2/i iP c  versus 1/2
ic  with the increase of thermal cycles on the lateral 

region of coating.  

Fig. 9. (Color online) The SEM image of residual Vickers impression morphology near the lateral 

region with P = 98 N and N = 204 h. 

Fig. 10. (Color online) Variation of fracture toughness in coating with thermal cycles. 

Fig. 11. (Color online) Distribution of the corresponding residual stress in coating as a function of 

thermal cycles. 

Fig. 12. (Color online) The gradient distribution of fracture toughness along the thickness direction 

under different thermal cycles.  

Fig. 13. (Color online) The gradient distribution of the corresponding residual stress on the coating 

cross-section with thermal cycles. 
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