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In this paper, the packet traffic flow on weighted scale-free networks is investigated

based on the local routing strategy using link weights: Pl→i =
wαli∑
j wαl j

. The capacity of links

is controlled by max(βwl j, 1), and the capacity of nodes is controlled by node strength:

max(γsi, 1). It is shown by simulations that the traffic dynamics depends strongly on the

navigation parameters. These behaviors can be explained by investigating the average

number of packets on nodes and delivered through links.
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I. INTRODUCTION

Ever since the small-world [1] and scale-free properties [2] were identified, complex networks

have received much attention from physicists, mainly because a wide range of systems in nature

and society could be described by complex networks. Research has been focused on topologies of

networks as well as dynamics upon networks, including traffic dynamics of information packets,

spreading of rumors and epidemic, cooperation behaviors of evolutionary games, synchronization

dynamics, navigation and search ability, and so on [3–9]. Due to the importance of large com-

munication networks such as the Internet and WWW in modern society, many investigations have

been focused on ensuring free traffic flow and avoiding traffic congestion on complex networks

[10–14].
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Recently, some models have been proposed to mimic the traffic routing on complex networks by

introducing packets generating rate R and homogeneously selected sources and destinations of data

packets [12–17]. In these models, the capacity of networks is measured by a critical generating

rate Rc. At this critical rate, a continuous phase transition from free flow state to congested state

occurs. In the free state, the numbers of created and delivered packets are balanced, leading to a

steady state. While in the jammed state, the number of accumulated packets increases with time

due to the limited delivering capacity or finite queue length of each node. A variety of studies have

been focused on developing better packet routing strategies to enhance traffic flow and to avoid

traffic congestion on a growing large communication network. In previous studies, packets are

forwarded following the random walking [15, 18], the shortest path [16], the efficient path [17],

the nearest-neighbor search strategy [19–21], the next-nearest-neighbor search strategy [22], the

local information [19–21] or the integration of local static and dynamic information [23].

In most real cases, a complex topology is often associated with a large heterogeneity in the

capacity and intensity of the connections, i.e., most networks are weighted networks. However,

the traffic dynamics have been investigated mainly in un-weighted networks. And the previous

traffic routing strategies have been focused on how to route the packets by using local or global

node information (mainly by using node degree). Moreover, weights have a strong correlation

with the network topology [24–29] and the existing weighted features play a significant role in

a variety of dynamical processes [31–33]. Therefore, a modeling approach that can capture the

effects of weighted characteristics on traffic dynamics is need. In this paper, a study of traffic

dynamics in a weighted scale-free network is carried out with a conceptual traffic model in which

packets are guided based on local link information with a single tunable parameter α. To maximize

the capacity of the networks which can be measured by the critical packet generating rate Rc, the

optimal αc is achieved. The traffic load distribution among nodes and links are also studied to give

an explanation for the optimal α value.

The paper is organized as follows. In the following section, the traffic model is described

in detail, in Sec. III simulation results of traffic dynamics are provided, and Sec. IV gives the

conclusion.
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II. TRAFFIC MODEL

To generate the underlying network infrastructure, this paper uses a weighted scale-free net-

work model proposed by Wang et al. [24], in which power-law distributions of degrees, weights,

and strengths are all in good accordance with real observations of weighted technological net-

works. In this model, the network is generated with a weight-driven preferential attachment with

co-evolution of weights and topology. And the weight-topology co-evolution mimics the traffic

interactions of vertices, in contract with previous models where weights are assigned statically

[27] or rearranged locally [28]. This model is also different from static complex networks such

as those by using fluctuating random graphs [29]. The model rules of [24] can be described as

follows. Starting from m0 nodes fully connected by links with assigned weight w0 = 1, the system

are driven by two mechanics: (1) the strength dynamics: the weight of each link connecting i and

j is updated as wi j → wi j + 1, with probability Pi j = W × pi j = W × si s j∑
a<b sa sb

, where si =
∑

j∈Γi
wi j

is the strength of node i and Γi is the neighboring set of node i; (2) the topological growth: a new

node n is added with m links that are randomly attached to a node i according to the strength pref-

erential probability: Πn→i =
si∑
j s j

, where j runs over all existing nodes. Analysis of this model [30]

shows that the outcome strength distribution follows a power law P(s) ∼ s−Θ with the exponent

Θ = 2 + m/(m + 2W). And the exponent γ of power-law degree distribution P(k) ∼ k−γ can be

expressed as γ = φ(Θ − 1) + 1 with φ > 1.

Once the network is generated, it remains fixed, and the traffic dynamics is modeled on top of

it as follows. At each time step, there are R packets generated homogeneously on the nodes in the

system. We treat all the nodes as both hosts and routers and assume that node i can deliver at most

Ci = max(γsi, 1) packets per time step towards their destinations, where si denotes strength of

node i. To navigate packets in the system, all the nodes perform a parallel local search among their

immediate neighbors, i.e., following a depth = 1 searching algorithm. If a packet’s destination

is found within the searched area of node l, i.e. the immediate neighbors of l, the packet will be

delivered from l directly to its target and then removed from the system. Otherwise, the packet

will be delivered to a neighboring node i according to the probability:

Pl→i =
wαli∑
j wαl j

, (1)

where wli is the weight of the link connecting nodes l and i, the sum runs over the immediate

neighbors of the node l, and α is an introduced tunable parameter characterizing the preferential
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FIG. 1: (Color online) The order parameter η versus R for weighted scale-free networks with different

routing parameter α. Other parameters are networks size N = 1000, m0 = m = 5, W = 2 and β = 1.

probability in choosing links to forward packets. Furthermore, the capacity (or bandwidth) of the

link connecting nodes l and i is set to Bli = max(βwli, 1), i.e., the link can handle at most Bli packets

from each end per time step. When the link capacity is reached, the delivery of packets will be

delayed and wait for the next time step. During the evolution of the system, the FIFO (first-in-

first-out) rule is applied on the nodes. In simulation, we find that the value of γ does not affect the

qualitative behavior of the system. So we set γ = 1 in the following and mainly discuss the effects

of α and β.

III. SIMULATION RESULTS

The network overall capacity is measured by the critical generating rate Rc at which a con-

tinuous phase transition occurs from free state to congestion. Firstly, we investigate the order

parameter [10]:

η(R) = lim
t→∞

1
R
〈∆Np〉
∆t
. (2)

Here ∆Np = Np(t+∆t)−Np(t), 〈...〉 denotes taking the average over a time window of width ∆t, and

Np(t) is the number of packets in the system at time t. As shown in Fig.1, when R < Rc, 〈∆N〉 = 0

and η(R) = 0, corresponding to the case of free-flow state, in which the numbers of added and

removed packets are balanced; while η(R) increases suddenly from zero at R = Rc. Therefore a

phase transition occurs at R = Rc where congestion emerges and spreads in the system, and packets
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will continuously accumulate in the system. Hence, the system’s overall handling and delivering

capacity can be measured by the critical value of Rc. We note that there can be different ways to

define the network capacity, but we will mainly consider the critical value of Rc in the following

discussion.

In Fig.1, one can also see that η(R) ' |R − Rc|x (when R → R+c ), and the critical exponent

x increases with increasing α. This indicates that the routing strategy is further away from the

optimum, and thus the accumulation rate of packets in the system will increase also.

Our simulations show that when β→ ∞, i.e., when the capacity of every link is very large, the

maximum network capacity is reached when α is slightly larger than 1.0. Figure 2 and 3 show

the overall traffic capacity measured by Rc vs α with different β values. One can see that both the

network capacity and the values of αc remain unchanged when β is larger than a threshold βc1 ≈ 5.

The maximum capacity always occurs at αc = 1.2 with Rmax
c ≈ 313. This behavior implies that

when β > βc1, the links are operating efficiently under their maximum capacity, and the network

capacity is mainly controlled by the node capacity. When βc1 > β > βc2 ≈ 1, the system’s

overall capacity decreases rapidly, and the αc value increases with the decrease of β (Fig.2). This

is because the capacity of some links will be reached from time to time, and thus the delivery of

some packets are delayed and accordingly the network capacity decreases. Nevertheless, when β

becomes smaller than the second threshold βc2 ≈ 1, αc begins to decrease with the decrease of β.

As we can see in Fig.3, when β = 0, i.e., all links have the same capacity that is equal to one, the

system’s maximum capacity occurs at αc = 0.2 with Rmax
c = 24.

In addition, simulations also show that Rc tends to be a constant with the decrease of α. This

constant decreases with the decrease of β for βc2 < β < βc1. When α < 0 and |α| is very large,

the probability that links with large weight are chosen to deliver packets is very low. This implies

that even if we cut off the links with large weight, the network capacity will remain essentially

unchanged.

These findings are different from the results obtained by using local routing strategies on un-

weighted scale-free networks. In [19], Wang et al found that in a typical Barabási-Albert network,

the maximum traffic capacity appears at αc = −1.0 when the node capacity is set to const. This

means to repel the packets from the central nodes and to make them move along the periphery

of the network. When considering the heterogeneity of node capacity, they found that αc = 0.0

when C = k. This means that random walk is the best strategy for the packets. In the present

paper, different from previous results, it is shown that αc is larger than 1.0. This means that the
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FIG. 2: (Color online) Rc vs α with fixed W = 2 and β ≥ 1.0. The results are obtained by averaging Rc over

ten network realizations.
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FIG. 3: (Color online) Rc vs α with β ≤ 1.0. The results are obtained by averaging Rc over ten network

realizations.

maximum traffic capacity is achieved by using links with large values of weight. This finding is

valuable since most real networks are weighted, and the traffic will probably be affected by the

link bandwidth [21].

The analytical estimation of the Rc value is very complicated for the weighted traffic system

and our routing model. In the following, we give a heuristic explanation for the optimal αc value

corresponding to the peak value of Rc by investigating the traffic load distribution on the network.

In Fig.4, we investigate the average visits per node divided by the node strength which can be used
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FIG. 4: (Color online) Average visits per node divided by the node strength. The other parameters are

N = 1000, m0 = m = 5, W = 2, R = 20 and β = 1.
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FIG. 5: (Color online) Average visits per link divided by the link weight. The other parameters are N =

1000, m0 = m = 5, W = 2, R = 20 and β = 1.

to analyze the traffic load distribution among the nodes. When α < 1.2, the value self-organizes to

a power law, which implies that the traffic burden of high-degree nodes is alleviated, while when

α > 1.2, it is an increasing function with respect to S , which may lead to the collapse of hub-

nodes. When α = 1.2, it essentially remains constant with respect to S . At this point, the balance

of node capacity with traffic load is achieved for all nodes if the restriction of link bandwidth can

be neglected. Since in scale-free networks, the congestion of one node will spread to other nodes
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and trigger the decrement of overall efficiency, this balance ensures that no node will be more

easy to jam than others and thus the optimal traffic capacity will be achieved. This conclusion is

confirmed by our previous simulation result that the optimal αc value is always located at 1.2 when

β ≥ 5.

To explain why αc > 1.2 for low β value, we investigate the average visits per link divided

by the link weight which reflects the traffic load distribution among the links. Figure 5 shows the

value vs w (link weight) for different α values. One can see that when α ≈ 2.0, the value is roughly

constant for all the link weights. When α < 2.0, it self-organizes to a power-law, especially when

α is smaller than zero. Thus we can see that the capacity of the links will be more fully used

when α is set to the value close to 2.0 for the case of β = 1, and therefore the overall capacity of

the system will be maximized. We also note that the value remains almost the same for links with

weight w = 1. As in our network model, the weights of most of the links in the system (∼ 95%) are

equal to one, this behavior explains why the system’s capacity will remain constant for negative α

values.

Finally, we briefly introduce the effect of link weight growth rate W on the packet traffic capac-

ity. Since W is just a multiplicative factor, the qualitative behavior is not affected by varying W. In

general, the system’s overall capacity will increase with the increase of W, but the optimal value

of αc remains the same.

When changing the node capacity parameter γ, it is found that αc depends on β in the same way.

However, βc1 is a monotonically increasing function of γ, while the value of βc2 is independent of

γ. And the maximum value of Rc is linearly proportional to γ.

IV. CONCLUSION

In conclusion, the traffic dynamics on weighted scale-free networks is studied with a local

routing strategy based on link weight information. The simulation yields some results different

from previous studies. In general, the overall capacity decreases when the bandwidth parameter of

links (β) is below a critical value βc1. In most cases, the optimal value of local routing parameter

α appears at αc > 1.0, which means to take advantage of links with large bandwidth. And the αc

value also depends on β. We give explanations for the variation of αc by investigating the average

visits per node and average visits per link, which are also important for studying the traffic load

distribution among the nodes and links.
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[12] B. Tadić, S. Thurner, G.J. Rodgers, Phys. Rev. E 69, 036102 (2004).
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