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Abstract

This thesis presents and analyses new techniques to measure and track the phase and frequency
of high frequency narrow bandwidth signals. In particular, these techniques are all digital in

nature or can be implemented in digital integrated circuit technology.

Presented first is a frequency measurement technique which involves sampling at regular
intervals a binary quantized narrow band signal. The binary quantized samples are digitally

processed to obtain the instantaneous frequency of the signal.

it is shown that small phase movements in the signal can be detected even though the sampling
occurs at a rate much lower than the signal frequency, that there are no frequency offsets in the
Jrequency measurement technique, that the phase error in the technique is small and bounded
provided the signal frequency is maintained within derived limits. Other properties of the

technique are also derived.

The frequency measurement technique is experimentally demonstrated in a number of typical

applications.

Secondly, a new phase tracking system is presented, which has similarities to conventional
phase locked loops. However, unlike phase locked loaps, the new system incorporates a local
reference source which effectively stabilizes the phase estimate of the signal input being

tracked.

it is shown that the new system has the following advantages: Precise centre frequency,
controllable lock range, and elimination or reduction of the effects of imperfections like voltage
controlled oscillator phase noise. General behaviour in noise of the new phase tracking system

is derived.

An implementation of the new system is presented which employs the frequency measurement
technigue described above. This implementation is characterized by very precise centre
Jrequency, high phase noise suppression, and can be built almost entirely in digital integrated
circuit technology. The new system is experimentally demonstrated in some typical

applications.

The techniques presented in this thesis provide improvements of several orders of magnitude in
the ability of systems implemented in digital integrated circuit technology to: Measure and
control . phase and frequency of narrew band signals; Implement high performance phase

tracking systems.
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Introduction

1.1. INTRODUCTION

High frequency signals in electronic systems often require some type of signal
processing. Current signal processing techniques typically rely on either down
conversion using heterodyning followed by high speed analog to digital conversion and

digital processing. Or the use of analog systems to perform the signal processing.

Considerable effort has gone into developing sophisticated digital signal processing
techniques [1],[2]. However, less attention has been paid to developing techniques to
digitally perform even simple signal processing, without down conversion and analog to

digital conversion [3].

In some applications the use of high speed analog to digital conversion and digital
processing may not be possible due to: The nature of the signal is not suitable for down
conversion. Or the cost and complexity of the converters and digital processing is

considered excessive.

This thesis presents and analyses new techniques to measure and track the phase and
frequency of high frequency narrow bandwidth signals. In particular these techniqueé
are all digital in nature or can be implemented in digital integrated circuit technology.
The techniques do not employ down conversion via heterodyning, or analog to digital

converters.

The techniques presented in this thesis are applicable to a number of common, simple
signal processing tasks. For example, modulation and demodulation of narrow

bandwidth signals, frequency synthesis, and filtering [5],[4].
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The techniques presented are also experimentally demonstrated in typical applications

to:
*  Verify the theoretical results.

»  Demonstrate the simplicity and elegance of the implementations of the new

techniques, and the ease of application to common problems.
*  Highlight the high performance that can be achieved.

Two related techniques for measuring and tracking phase and frequency are described:

a frequency measurement technique, and a phase tracking system.

The frequency measurement technique involves sampling at regular intervals a narrow
band signal which has been binary quantized. That is, the narrow band signal can be
represented by a sciuare wave. The binary quantized samples are digitally processed to

obtain the instantaneous frequency of the signal.

The frequency measurement technique has the advantages that: It is constructed from
simple digital components such as logic gates and flip flops. Small phase changes in the
signal square wave can be detected even when the frequency measurement system is

clocked at a low rate.

Properties of the new frequency measurement technique are derived. It is shown that
there are no frequency offsets, also that the phase error in the technique is small and
bounded provided the signal frequency is maintained within derived limits. It is
highlighted that the frequency measurement technique is most suited for VEry Narrow
bandwidth signals. The spectral characteristics of the frequency estimator are also

derived.

The frequency measurement technique is demonstrated in typical applications,

specifically frequency synthesis and demodulation of a high frequency signal.

The new phase tracking system presented has similarities to conventional phase locked
loops. However, unlike phase locked loops {6], the new system incorporates a stable

and accurate local reference signal source.
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The local reference source effectively stabilizes the phase estimate of the signal input
being tracked. The stabilization is achieved via a frequency difference measurement

between the local reference and the phase tracking system output.

A small signal model of the new phase tracking system is presented and some
properties derived. The general non-linear behaviour is also derived for some important
classes of the new phase tracking system, specifically when the input signal is corrupted
with noise. Further properties are derived, including the effects of component

imperfections like voltage controlled oscillator phase noise.

The analysis results show that the new phase tracking system has significant advantages
such as: Very precise and controllable centre frequency. The range of frequencies to
which the phase tracking system can lock, can be confined to a small and controllable
region around the local reference. The effects of voltage controlled oscillator phase

noise can be reduced to an insignificant level.

The centre frequency and phase noise advantages are particularly important when the
phase tracking system employs voltage controlled oscillators made in digital integrated
circuit technology. The phase noise reduction advantage is dramatically illustrated in

the experimental results of one of the example applications.

Many frequency measurement techniques can be used in an implementation of the new
phase tracking system. However, an implementation employing the new frequency
measurement technique presented first in this thesis, is described. This particular
implementation is characterized by very precise centre frequency, high phase noise

suppression, and can be built almost entirely in digital integrated circuit technology.

As mentioned previously the new frequency measurement technique is restricted to
signal inputs of narrow bandwidth. In contrast, the new phase tracking system can have
broadband signal inputs. Hence, the new phase tracking system can also be thought of

as providing a broadband interface for the new frequency measurement technique.

The new phase tracking system is experimentally demonstrated in the application of
demodulation of a frequency modulated signal. Furthermore, it is demonstrated in the

application of a very narrow bandwidth phase locking system. The narrow bandwidth
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system is used to synthesize a high rate clock from a low rate reference [7], and also

provide filtering for the jitter and noise on the low rate reference.

Aspects of this thesis have been reported in [8], [9], [10] and are the subject of two
patent applications [11], [12].

Furthermore, a clock recovery system in a digital application specific integrated circuit
employed the new phase tracking system. The digital integrated circuit, integrated
functions ranging from clock recovery, physical layer framing, to asynchronous transfer

mode cell switching.

1.2, CONTRIBUTIONS OF THESIS

The contributions of this thesis are as follows:

. The proposal of a new frequency measurement technique which involves

sampling at regular intervals a binary quantized narrow band signal.

*  The analysis of the frequency measurement technique, deriving its operating

limits and errors that arise.

*  The proposal of a new phase tracking system, which diminishes or

overcomes many problems associated with phase locked loops.

*  The development of models to quantitatively describe the behaviour of the
new phase tracking system. Furthermore the verification of these models and

analysis results through simulations and experiments.

*  The proposal of a digital implementation of the new phase tracking system,

which provides a high precision low cost realization.
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1.3. STRUCTURE OF THESIS

In the introduction of the chapters describing the frequency measurement technique and

phase tracking system, the relevant existing techniques are referenced and described.
This thesis is organized as follows:

In Chapter 2 the new frequency measurement technique is described. Various properties

and operating limits of the frequency measurement method are derived.

In Chapter 3 the new phase tracking system is described. Models are proposed to
describe the behaviour of the new phase tracking system, and key properties are derived
from these models. A digital implementation of the new phase tracking system is
proposed. Experimental verification of the properties derived from the models confirms

the accuracy of the models and analysis.

In Chapter 4 the new frequency measurement technique is experimentally demonstrated
in typical applications. Experimental results verify the operation of the new frequency

measurement technique.
The new phase tracking system is demonstrated in typical applications in Chapter 5.

An implementation of the new phase tracking system employing another frequency
measurement technique is presented in Chapter 6. The frequency measurement
technique is very simple, but some benefits such as phase noise reduction cannot be
obtained when it is employed. However, this particular implementation is useful for

applications with undemanding phase noise requirements, such as clock recovery.

Finally, Chapter 7 gives suggestions for further work and concludes the thesis.



2

Digital Frequency Measurement of a
Square Wave

2.1. INTRODUCTION

This chapter describes a new digital method to measure the frequency difference
between two square waves. For convenience the new method is called the precise

digital frequency detector (PDFD) (patent pending).

Figure 2-1 illustrates the task that is addressed by the PDFD. At time ¢; the reference
square wave leads the signal square wave by 9, at time ¢, the relative phase lead has
increased a small amount to 8+8, because of a difference in frequency. The PDFD must
be able to detect these small relative phase movements and indicate the appropriate

difference in frequency.

reference ]—F -

square wave
frequency £,

square wave

o be measured

frequency f; o
time t

Figure 2-1. Frequency Measurement of a Square Wave. The frequency measurement needs to detect
small phase movements between the two square waves, possibly accurring over many cycles.

It is assumed that the phase slipping of the signal square wave of frequency f; relative to

a reference square wave of frequency £, occurs over several reference cycles, that is
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|fr =1 « 2-1)

We assume that the frequency f,. is constant and is the ‘nominal’ or ‘expected’
frequency of the signal to be measured of frequency f. f; may be constant or time
varying. In many PDFD applications the reference square wave signal of frequency f,
need not exist. However, as will be shown later, to design the PDFD the value f; needs

to be known.

Previous Work. Many methods have been described to measure the frequency of a

square wave signal, the methods are divided here into three classes:
«  Digital methods.
. Analog methods

. Mixed methods employing analog to digital converters with some analog

processing of the square wave.

The existing digital methods can only detect large phase movements between the signal
and reference (typically a complete cycle)[13]. Or, they require clock rates much higher
than the signal frequency to measure small phase movements. These need to measure
accurately the period or difference in phase of every signal clock cycle, thus limiting
their application to moderately low frequencies [14],[15]. Some methods employ delay
line time digitizers to accurately measure the period of every signal clock cycle without
resorting to high clock rates [16]. Unfortunately these methods require delay elements
with very small and accurate delays which require full custom integrated circuit design.

Furthermore application to high signal frequencies is again limited.

The analog methods are able to detect small phase changes between the signal and
reference. Some examples are the quadricorrelator [17], and classic FM discriminators
involving the differentiation of the signal by use of tuned filters or time delays [18].
Some examples of mixed analog digital methods are, heterodyning the signal to a much
lower frequency whose period can be accurately measured digitally [15],[19].
Converting the square wave to a sine wave by low pass filtering and / or down

conversion, then digitizing the waveform using analog to digital converters. There is a
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significant amount of literature on using the samples to determine the frequency of the
signal [14],[1L[2]. A mixed analog digital method employing analog integration and
delta-sigma modulation techniques is presented in [3].

In contrast to the current techniques described above, the PDFD involves sampling the
square wave at discrete times. Typically employing a flip flop as the sampler. The
binary quantized samples are then digitally processed to obtain the phase movement

between the signal and reference square waves.

The PDFD has the following important advantages over the current techniques just
described. It can be constructed from simple digital components such as logic gates and
flip flops. Small phase movements between the signal and reference square waves can
be detected, even when the PDFD is clocked at low rates. Finally, as will be shown, the

PDFD has no frequency offsets.

2.1.1. Outline of Chapter 2

This chapter is organized as follows:

Section 2.2 provides an overview of the PDFD operation to aid in the understanding of

the more detailed descriptions which follow.

In Section 2.3 equations which describe the operation of the simple frequency detector

are derived.

Section 2.4 further details how PDFDs can be implemented using an array of simple

frequency detectors and how the output of the array is processed.

Section 2.5 details how to design a PDFD with uniform starting phases and derives
operating limits for the PDFD. The operating limits of the PDFD are also discussed.

Section 2.6 generalizes the sampling rate of the PDFD.

Section 2.7 details how to design a PDFD and derives operating limits when the

generalized simple frequency detectors described in Section 2.6 are used in the PDED.

Section 2.8 derives some further limits on the PDFD operating range.
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In Section 2.9 the spectral characteristics of the frequency estimator output by the
PDFD are determined.,

Section 2.10 states that the results on PDFD operating limits are valid when the

frequency of the signal square wave is time varying,
Finally, Section 2.11 summarizes the chapter.

Also in Appendix A some derivations concerning aspects of the PDFD are given.

2.1.2 Contributions of Chapter 2

The all digital measurement of small phase movements in a square wave without

resorting to high clock speeds has not been described in the literature.
The contributions of this chapter are as follows:

. The proposal of the PDFD method to measure the frequency of a square
wave. The advantages the PDFD has over current techniques are given

above,

»  The analysis of the PDFD, deriving its operating limits and errors that arise
in the PDFD.
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2.2, OVERVIEW OF PDFD OPERATION

2.2.1. Basic Terms and Definitions

Some terms and definitions important for the understanding of the operation of the

PDFD will now be introduced.

The concept of phase for a square wave will be defined at this point. The square wave
waveform v(¢) is related to the square wave phase 0(¢) as follows:

o) = { 1, m<O()<m+1/2 2-2)

0, m+1/2<0()<m+1 meZ

Where Z denotes the set of integers. As can be seen from (2-2), 6(¢) going from 0 to 1

delineates one cycle of the square wave. The time between rising edges of the square
.1 . . .

wave is 7 seconds, where f'is considered the constant frequency of the square wave. fis

related to the square wave phase 0(¢) as follows:
0(r) = ft+90, (2-3)

Other frequencies besides f; and f, which will appear in text and equations throughout
this chapter will now be described. The PDFD samples the signal square wave at
regular intervals. The time between sample instants is -1- seconds, that is, the PDFD

Je

samples at a constant frequency f,, referred to as the sampling rate of the PDFD.

The ultimate task of the PDFD is to measure the phase movements of the signal square
wave with respect to the reference square wave of frequency f,- However, to achieve
this ultimate objective the PDFD utilizes an intermediate measurement which is the
phase movements of the signal square wave with respect to another square wave of
constant frequency fc,,,- The origin of and precise definition of this signal is described

later in Section 2.3.

2.2.2, PDFD Operation

The operation of a simple PDFD will now be qualitatively described to aid

understanding of the mathematical description which follows.
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The signal square wave of frequency f; is divided by two to produce a square wave of
50/50 mark space ratio and frequency Es This divided down square wave is then
sampled at a rate of f. samples per second. Figure 2-2 illustrates the sampling of the

square wave.

signal square wave ]
of freq. f; divided by 2

e RARERARRRERERRRE

samples for simple freq. defct. 0 | [
samples tor simpie freq. deict. 1 . L

samples for simple freq. detct. / l

Figure 2-2. Sampling of the signal and pairing the samples to create simple frequency detectors.

To simplify the explanation of the operation of the PDFD and also to simplify its
subsequent analysis it is assumed that the signal square wave has a constant frequency

Jfs - The restriction of constant frequency f, is later relaxed in Section 2.10.

A first step in the processing is to divide the stream of binary samples into k lower

. k
sample rate streams. Each stream consists of samples spaced 7 seconds apart.
Iy

Furthermore, / out of the possible k streams are used (see Figure 2-2). Consecutive

samples in each stream (that is samples spaced k seconds apart) are processed by a

mechanism referred to here as a ‘simple freq£ncy detector’. Figure 2-3 shows a
section of Figure 2-2 in detail. As shown in Figure 2-3 each simple frequency detector
has an initial starting phase, for the i simple frequency detector the starting phase is
denoted by 8::,“-,, (ief0,1,2,...,I-1}). Bim., is the phase relationship between the
instant of the first sample in one of the & streams and the next edge of the signal square
wave, Bjm., is a dimensionless quantity defined such that ngi,/ f, is the actual time

delay between the relevant epochs.

Each simple frequency detector indicates when the signal square wave phase moves a
complete cycle with respect to a square wave of frequency Jemp- More precisely, the
simple frequency detector will indicate a phase movement corresponding to a complete

cycle when (8}, + 6,1:,) equals an integer, and where 6, ip 18 the phase movement of

the signal square wave with respect to a square wave of frequency Semps that is,
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eslip = (f;:mp_fs)t 2-4)

The simple frequency detector is assumed to emit one when a phase movement
corresponding to a full cycle is detected and a zero otherwise. The simple frequency
detector produces this one output immediately after receiving its sample of the signal
square wave. Recall that the simple frequency detector operates on samples spaced E

fe

seconds apart.

ol o)

emt’t
signal square wave fs
of freq. f; divided by 2 - e -
sample instants init
at frequency f, 7,

the number of the simple
frequency detector in
array which uses sample

b —

Figure 2-3. The sampling process creates diverse starting phases.

As shown in Figure 2-3, the Gim for each of the simple frequency detectors will be
different, due to the different starting times of the simple frequency detectors. Out of
the & possible simple frequency detectors the / used in the PDFD can be chosen (see
Section 2.5) so that the 9::,“.: will be uniformly distributed across a signal square wave

cycle.

The / simple frequency detectors are considered to form an array of / phased simple
frequency detectors. In a period of j% seconds each of the / simple frequency detectors
will have an opportunity to report its decision on a phase movement of a complete
cycle. Let the integers N; represent the total number of complete cycle phase
movements reported by all simple frequency detectors in the j™ interval. N; will have a
value between 0 and /. The value of a particular N, in the sequence represents the phase
movement of the signal square wave with respect to a square wave of frequency Jemp

that occurred in the j*" interval.



FREQUENCY MEASUREMENT OF A SQUARE WAVE 13

By accumulating the successive NJ generated by the PDFD, the phase movement of the
signal square wave with respect to a square wave of frequency Jemp can be found. This
phase movement is quantized to 1// ®® of the signal square wave cycle. Thus the PDFD
acts as a phase movement quantizer. Dividing the phase movement measured by the
PDFD by the time taken for the PDFD to measure the phase movement yields an
estimate of relative frequency. Since the error in the phase measurement is bounded, the

frequency measurement has no long term offset from the true value.

2.3. THE SIMPLE FREQUENCY DETECTOR

In this section we develop equations which describe the operation of a simple frequency
detector. As noted previously, the square wave signal to be measured is divided down
by two using a flip flop to ensure a good mark space ratio in the resulting square wave.

The resulting square wave is sampled at rate £, such that
S <fe <2, (2-5)

As a first step, consider a simple frequency detector which uses every sample as

illustrated in Figure2-4. The simple frequency detector starting phase Gjm.t (see
i
init

Figure 2-4) is a dimensionless quantity defined such that 8} . /f, is the actual time

delay between the relevant epochs. Thus 6!

init

will take on a value in the range 0 to 1.

time (=0
signal square wave 1/,
of freq. £, divided i n -
by2 - B .
sample instants S % — o $
at frequency f,. ? f ? 1/f f f ? f 1 ?

c

slip event occurs in » P
sample period ( { [ V] I F v ] [

Figure 2-4. The sampling process. Simple frequency detectors are formed by comparing consecutive

samples, or by comparing samples spaced k samples apart.

For the simple frequency detector which uses every sample, 0, lip 18 given by
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Oip = (=S (2-6)

The key element of the simple frequency detector is a mechanism that identifies when
two sampling instants of the sampling process fall within a single period of the signal
square wave. As shown in Figure/2-4, this event can be identified by simply checking
the last two successive samples to see if they have the same value. Identification of the
event can logically be accomplished using the exclusive OR of successive samples
followed by an inversion. A logical 1 is output to report when the event occurs. The
event will be referred to as a “slip event’. It is shown in Appendix A.2 that a slip event
will be reported on the sampling instants following the time instants given by (2-7).
. Where Z°* denotes the positive integers.

m— ej:m't +

= 7= melZ 2-7)

The system comprised of the signal sampler and a mechanism for reporting slip events
behaves as a simple frequency detector in the sense that the average frequency of slip

event reports is given by

Jp =15 (2-8)

From inspection of (2-7) and (2-8) it can be seen that a slip event occurs when
Gfm +8,,,, equals an integer. That is, a slip event indicates a phase movement of a
complete cycle between the signal square wave of frequency f; and a square wave of

frequency f,.

In the PDFD described in Section 2.2, the simple frequency detectors used only every
k™ sample of the signal to be measured. Thus consider a system where only every 4™
sample of the signal is used. For £ odd, the slip event that is to be identified corresponds
to an occurrence of two consecutive samples having the same value. Again, a pulse is

output by the system to report when one of these slip events occurs.

Define p as
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_1&(.—1)
={_vYc Js7 | (2-9)
p[ 7. J

where | x | denote the floor function, that is the greatest integer less than or equal to x
[20]. It is shown in Appendix A.2 that if p is even then a slip event will be reported on

the sampling instants following the time instants given by (2-10),

m—el:

t, = fc_._.._mp =7 (2-10)
where
Femp=£{1-5) e-11)

From (2-10) it can be seen again that a slip event occurs when ©;,, + 6, lip

integer. Where Gsﬁp is now given by (2-4). Note that no signal with frequency f£,, »

equals an

actually exists. f,, p is simply the frequency of a square wave relative to which the

signal square wave f; is effectively measured.

If p is odd, then a slip event will be reported on all sampling instants other than those

sampling instants immediately following the instants defined by (2-10).
The simple frequency detector is linear in the range defined by (2-12), and has negative

slope if p is even, and a positive slope if p is odd.

fc(l —%1} fi< fc(l —%j | @-12)

Up to now it has been assumed that £ is odd. When £ is even, an identical result is
obtained. However, the slip event that is to be identified corresponds to occurrence of

two consecutive samples with a different value, instead of the same value.

The simple frequency detector just described, in which every 40 sample is used, can be

modified to ensure that the detector has only a negative slope. If p is odd the action of
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not reporting a slip event and reporting a slip event are swapped. In this way, the

frequency detector characteristic always has a negative slope, as shown in Figure 2-5.
A

Jok 1
o oo \\\\\
per second

L4y L1300 L2k (1A
S

Figure 2-5. Modified frequency detector characteristics

2.4, THE PDFD, AN ARRAY OF SIMPLE FREQUENCY DETECTORS

In this section we derive equations relating the PDFD array output N; to the phase

movement 8 . (2-4). Furthermore, in this section we show that the PDFD acts as a

slip
quantizer of phase movement.

As described in Section 2.2, in the PDFD [ streams are processed by an array of the
simple frequency detectors. These / simple frequency detectors can be constructed to

have staggered starting phases 8, as illustrated in Figure 2-3. Note that the / simple

init

frequency detectors will have correspondingly staggered outputs. The start time of each

. . . 1
simple frequency detector in the array will be separated by at least -~ seconds.

e

Each of the simple frequency detectors reports whether or not it has detected a slip

event every k clock periods, this period of L seconds is referred to as the “reporting
[+

period” of the PDFD.

The starting phases o' , of the I simple frequency detectors, will be distributed in some

ini

manner in the interval [0,1). By a judicious choice of /, £, f;, /. and the actual / streams

utilized, the distribution of the 0! . can be made close enough to uniform for practical

init

purposes. With uniformly distributed 0. ., the slip event instant for each of the /

init?

frequency detectors, given by (2-10), will be uniformly distributed in time.

As described in Section 2.2, a sequence of integers N; is generated as follows: Once

k . .
every + seconds, the decisions on phase movements corresponding to a complete

Je
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cycle (or slip events) output by the / simple frequency detectors are added up to form
N; . In each reporting period, the average number of the / frequency detectors that will
report a slip event can be found from (2-10). This average value of N; which is denoted
by N,

ver 18 given by:

Ik _ K
Nove = 7-Uomy ) = l[k-—p—zj | @-13)

i
init

Since the / starting phases 6, ;, are assumed to be uniformly distributed in the interval

[0,1), their values will be in the set given by (2-14)

[0 0 + 180+ 30 - g + 1 @-14)

i

where ¢, is the smallest of the 8, ;,.

Consider now the addition of all the N; generated since the initialization of the PDFD
up to the end of the n™ reporting period and multiplying this sum by % This sum,
denoted by ©__., is given by (2-15)

out?

-1
1 .
eout = 7 |_esiip + e:'m'z_] (2-15)

where

+

nk
Brip = JTC(fmp—fs), neZ (2-16)

It can be shown (Appendix A.3) that for 0!

init

given by (2-14), 8, can be expressed as

- Lz(esa'fp + ¢0)_|

out l

2-17)

From (2-17) it can be seen that the PDFD acts a quantizer of phase movement. As

illustrated in Figure 2-6, the quantization level is 1// ™ of a signal square wave cycle,
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and there is an offset of —¢, . The relationship between 6, and 9,;, given in (2-15)is

siip
referred to here as the PDFD characteristic,

BOMI‘L

2 ———J

7t

1

7+

0 2 'y

== 4)0 7~ i 0 slip

Figure 2-6. PDFD Characteristic for uniformly distributed starting phases. The PDFD acts as a

quantizer of phase movement.

In many applications, the phase movement of the signal square wave with respect to a
reference square wave of the nominal frequency £, (Figure 2-1) will be required. The
phase movement of the signal square wave with respect to a reference square wave of
frequency f, is obtained as follows: The average number of frequency detectors which
report a slip each reporting period N,,,, (2-13) is found for f;=f,. This specific value of
Nyye 1s denoted N, Ny is then subtracted from the actual PDFD output (N;) each
reporting period, to obtain the phase movements with respect to a reference square

wave of frequency f,.

Alteratively, two arrays of simple frequency detectors can be used, one measuring the
phase movement of the signal square wave with frequency f; with respect to Jemp- The

other measuring phase movement of the reference square wave with frequency f,. with
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respect tO f,. The phase movement of the signal square wave with respect to the
reference square wave can be obtained by subtracting the £, measurement from the f;

measurement.

2.5. OPERATING LIMITS

In this section we determine the range of values of the signal square wave frequency f;

for which the PDFD correctly reports phase movements. A key factor to be considered
. e . . i
is the distribution of the starting phases 9, ;, .
i

init

Therefore we initially show how £, { and

Je ¢an be chosen to obtain the 0, .. evenly distributed (Figure 2-3) for the case when the

frequency of the signal square wave is exactly f,, that is when f,=/,

The specific, but important case, where the / simple frequency detectors use [

successive samples of the signal waveform is considered. The 8; ., values generated by
;

this process are illustrated in Figure 2-3. The value 9,,,, for the / th frequency detector

can be determined given the value ¢

inie Tor one other frequency detector, say /=0, and

the freqﬁencies Jrand £ (sec Figure 2-3):

o = 1+0° fri+[fr5 0
init —

im't_}": +—0

7 "'”"J’ ie[0,1,2,...,1-1] (2-18)
oy

i
init

For a given f, and /, the 0, ., will be evenly distributed (Figure 2-3) if £, satisfies

! B
f= (—) f (2-19)
and / and (/- p) have no common factors.

k is chosen so that the individual frequency detectors are maintained in their linear

region (2-12) for the expected values of f;.

Note that it will not be possible to use successive samples of the signal square wave in
applications were the sampling rate f, is not freely chosen. In these cases, which

samples are observed to obtain even starting phases will be specific to f, and f.
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However, many of the results obtained here are applicable to this more complex

situation.

Although [, £, and f, may be chosen to obtain uniformly distributed starting phases
when the signal square wave frequency is exactly the nominal frequency f,, this will in
general not result in perfectly uniformly distributed starting phases for sampling the
signal square since its frequency f; is not known. However, it is shown in Appendix A.3
that for f; close to the nominal frequency f,, the 8::,1 ;; generated by sampling the signal
square wave will not be significantly perturbed from those generated by sampling a
square wave of frequency f.. Below we quantify how close f; needs to be to the nominal

frequency f,.

It is shown in Appendix A.3 that for f; close to f. the PDFD characteristic (2-15) is
bounded by two quantizer functions (2-20), that is,

'_l(eslip + ¢0 - lAmaxDJ <9 < I_l(eslip + ¢0 + |Amax|)J
] - Yout— Fi

(2-20)

The two bounding quantizer functions are shown in Figure 2-7. The A,,,, in (2-20) is
the maximum perturbation of the starting phases from their nominal uniform

distribution.

ant

i

~f

max Amax
3 Fd

|

1 2 .
7‘_¢0 ?_(b() slip

Figure 2-7. PDFD Characteristic for non-uniformly distributed starting phases as will occur in practice.
The PDFD Characteristic is bounded by two quantizer functions.
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Based on (2-20), it is shown in Appendix A.3 that the operating range for f; is given by
(2-21)

Ssmin SJ, = fsmaz (2-21)
Where
Fomin = fr(l _W)Y(l—“l")) (2-22)
Ssmax = ﬁ(l + (_l—p)%"i) (2-23)
Amad = 7 (2-24)

. : ) 1 .
¥ 1s chosen to be less than one, so that A,,,,, is some fraction of 7 (2-24) which is the

PDFD quantization interval.

Clearly it is desirable to have the distance between the two bounding quantizers (2
Apmay) as small as possible (Figure 2-7). However, the results of this section and
Appendix A.3 demonstrate that when the PDFD is required to measure phase
movements much [ess than one cycle (i.e. large /), and the sampling rate £, is not high,
the operating range of f; (2-21) is narrow. For example, for 2 PDFD with / equal to one
hundred, and a sampling rate approximately equal to the signal frequency (p equal to
one, y equal to 0.5), f; must be within £51 parts per million (ppm) of £, (2-22), (2-23),
(2-21). Nevertheless, in many systems the signals will be in a narrow range of
frequencies as they are of low data rate and modulated onto a high carrier frequency
[21]. Or the signals may not contain data themselves, but rather timing information to
facilitate the synchronization of transmitting and receiving components in a

communication system,

To increase the range of f; the following methods can be employed: The sampling rate f,
can be increased (p greater than one) to increase the operating range. Choosing a
smaller / dramatically increases the operating range as f,, .. —fim, (2-21) is

approximately proportional to 1/,
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i
init

The different starting phases 6
o

init

may be obtained in a ‘parallel’ fashion. The different
1s obtained by delaying the signal by different amounts before it is sampled. The
delayed versions of the signal are sampled simultaneously. This ‘parallel” method is in
i

inip AT1SES

contrast to the ‘serial” like method used up to this point, where the different 0
from the sampling process itself (see Figure 2-3). It can be shown that the obtaining of
many samples in parallel increases the operating range of f, (2-21). However, the
hardware complexity is increased when using parallel methods. Furthermore, the
accuracy with which the delay elements can be made may limit the smallest phase

movement that can be measured.

Finally, a combination of the ‘serial” and ‘paralle]’ methods described above is possible
with parallel groups of serial simple frequency detectors. In this situation hardware

complexity can be traded off against the operating range of f,.

2.6. GENERALIZED SAMPLING RATE

In Section 2.3 the sampling rate of the PDFD, f,, was required to be in the restricted
range given by (2-5). However, in this section the simple frequency detector is

generalized so that PDFD sampling rate can be outside the restricted range of (2-5).

Consider that the signal square wave is now sampled at the rate nf,, where £, is in the

range given by (2-5), and 7} is in the set

1
ne (, %, 3» 1,2,3, ) . (2-25)

Firstly consider the cases where 7 is an integer. If only every nth sample is used. Then
the generalized simple frequency detector is equivalent to the simple frequency detector

described in Section 2.3 that uses every sample at rate /..

Consider now the cases where 7 is a fraction. If only every ni'™ sample is used. Then
the generalized simple frequency detector is equivalent to the simple frequency detector

described in Section 2.3 that uses every A" sample of a sampler running at rate f..
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2.7. OPERATING LIMITS FOR GENERALIZED FREQUENCY DETECTORS

In this section the range of values of the signal square frequency f; for which a PDFD
employing generalized simple frequency detectors (Section 2.6) correctly reports phase

movements, 1s found.

Note that the generalized simple frequency detector described in Section 2.6 uses only
one in nk samples. Thus, using a single sampler running at rate nf, an array of / simple

frequency detectors can be constructed for
1</<nk (2-26)

Note that slip events for the PDFD using the generalized simple frequency detector are

reported every nk clock periods which have period TlLf seconds. Hence the PDFD has
c

the reporting period of fﬁ seconds.

) c

As in Section 2.5, we initially show how m, &, / and £, can be chosen to obtain the Y

init
evenly distributed for the case when the frequency of the signal square wave is exactly

J that is when f=f,. Note that initially only n less than or equal to one is considered.

Again, the specific but important case, where the / simple frequency detectors use /

successive samples of the signal waveform is considered. The G;n ;; values generated by
i

this process are illustrated in Figure 2-8. The value 9,,,, for the i ! frequency detector

can be determined given the value G{-n it

the frequencies f, and f. (see Figure 2-8):

for one other frequency detector, say j=0, and

i
efm'.r

= 1+9?HH—T{—}:‘+L{—££—9&“J, ie[0,1,2,...,1—1]1 (227
c

For a given £, and /, the 9::,“.: will be evenly distributed across 0,1 if £, satisfies
Je = /=1 (2-28)

and / and (/—pn) have no common factors.

Furthermore, the value of N,,, when the signal frequency f; is equal 10 f,, N,,,,, will be
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Nyom = pUkm—=1) (2-29)

k is chosen so that the individual frequency detectors are maintained in their linear

region (2-12) for the expected values of £;.

The operation of the PDFD using the generalized simple frequency detectors is similar
to PDFD operation described in Section2.4 and Section 2.5. Again the PDFD
characteristic (2-15) when £ is close to . can be shown to be bounded by two quantizer
functions (2-20). Where again Ap,,, in (2-20) is the maximum perturbation of the

starting phases from their nominal uniform distribution.

: : , : 1 -
As in Section 2.5 with A, . set to some fraction y of 7 @29 limits £ s fimax foX

max
£, (2-22) can be found

M
. 1_—] 230
f:s‘mm fr( (l—pT])(l'-l) ( )
TN
= + —— -
Jomax ff(‘ (b—pn)(f—l)J @30
1
- /nf:y ™ efnit
signa; reference I
waveform (| —0 S .
e e X -
divided by 2 - init ’_> ’?ﬂ: e

E
—-

sample instants

fef’m AT
l/n_f;: Js

Figure 2-8. Frequency detector start phases for generalized sampling rate. In this section the sampling
frequency is chosen so that using successive samples yields evenly distributed starting phases. Using

successive sampies simplifies the analysis and yields simplified hardware.

The limits f,,,;., fima, <20 be found for more general situations when 7 is greater than
one or when successive samples are not used. Suppose the time between the sample

instant for the first simple frequency detector (0™) and the sample instant for the last

i . . [
(-1'" simple frequency detector is T4, Tpnq, can be expressed as a fraction y of =

7
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- X
Tpar = 7 (2-32)
Then A, can be found to be
s
A= x[l - fr) (2-33)
and with A, set to some fraction y of % (2-24) limits £, ., fimax ar€ found
= ¥
Fomin = {15 34
— ¥
-f;max - fr(l + X_j) (2-35)
From (2-34), (2-35) a useful bound can be found on the minimum sampling rate
required to achieve A, < 2%:
2
T'-)‘:':>‘ll (f.‘s'max" smz‘n) (2-36)

2.8. INSTANTANEOUS ERROR

Thus far we have considered the error between the accumulated reported phase

movements, 6, , (2-15), and the actual phase movement since the PDFD start 0, lip-

However, the PDFD may also incorrectly report the phase movement between the
square waves of frequency f; and f,,, that has occurred in the last reporting period as
follows: With £, not equal to £, the array of frequency detectors should report a phase

movement of | N, | or | N, |+]1 I/ ™ cycles between £, and Jemp- However for a

ve
particular detector the 8;,,, may be sufficiently perturbed from its nominal value such
that | N, |-1 or | N,

measurement is in error by more than 1//® of a cycle. The limits between which £, may

veJ+2 is reported. Hence the instantaneous phase movement

range before this instantaneous measurement error occurs will now be given.
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Case p=1, n <1. Consider the case of f; slightly greater than f,, and p equal to one. A
frequency fimaes (2-37) can be found (Appendix A.4), such that: For f; greater than
Ssmax! |_N . eJ—l may be reported and for f; less than fi,, ]_N v eJ-l will never be
reported. |_N ave | -1 18 the first error to occur for f; greater than f,.

- i
fsmaxl - f;(l + (l_n)(21+ 1)) (2-37)

For the case of £ slightly less than f,, and p equal to one a frequency fi,,;,; (2-38) can be
found (Appendix A.4), such that: For f; less than f;,,; |_N v EJ +2 may be reported and
for f; greater than fs | Ny, |+2 will never be reported. | Mgy | +2 is the first error

to occur for f; less than f,.

— N
Sominl = fr(l - (_l-:f]mj (2-38)

Case p>1, n <1. Now considering the cases were p is greater than one. To make the

problem more tractable only the cases were / is chosen as follows are considered.
I=pr+l rezZ,r22 (2-39)

As for the p equal to one cases, the frequencies Ssmaxp>r Ssminp €an be found
(Appendix A.4), such that when f; is greater than Sominp and less than fiq,, the
LNaveJ-l and |_N

v e_| +2 errors discussed above do not occur.

_ np i )
fons = 31+ Tl )) 49

=rf1— np ;
foninn = {1~ T T @-4h



FREQUENCY MEASUREMENT OF A SQUARE WAVE 27

2.9. SPECTRAL CHARACTERISTICS

Denote the difference between the accumulated PDFD output 6,,,, (2-15) and 8, , at

the end of the ' reporting period by the sequence ¢,, that is
¢n = 9s.l’ip_ eout (2-42)

In this section the spectral characteristics of the sequence ¢, are derived. For certain
applications of the PDFD, it may be necessary to low pass filter the output of the
PDFD. For example filtering may be used to reduce the high frequency variation or
jitter of ¢,,. So the spectrum of ¢, will be required to ascertain the effects of filtering.
The spectral characteristics of ¢, are similar to the spectral characteristics of waiting

time jitter described in [22], [23].

Define the sequences uf, as follows

o = tn+el, —|tn+el, | (2-43)

& = 7 Uonp=t) (2-44)

¢, (2-42) can be given as a linear combination of the ufz and a constant

-1 -1

d)n = % Z Uf:_ Z eim'f (2-45)

i=0 i=0

The periodic function v(f) (2-46) has the Fourier series representation (2-47)

v(t) = &—L&¢] (2-46)

- I
o(y= Y F ™% F, = 21 (2-47)

W= —0
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The periodic functions Uf(t) (2-48) are time shifted versions of v(¢) and hence have the
same Fourier series representation as v(f) but with coefficients 1:, .

() = grr ol —|errel, | (2-48)

init~ init

Ff = F ejzﬂwe:nu

w w

(2-49)

When the uf(t) are sampled at the equispaced times (2-50) the sequences u; are

obtained.

A periodic function ¢(¢) can be constructed from the functions ui(t) , which when

sampled at the equispaced times (2-50) the sequence ¢,, is obtained.
t=1,2,3... (2-50)

From (2-45), (2-47), and (2-49) the Fourier series representation of ¢(z) is the same as
v{¢) but with coefficients F 3; .

-1
| i
__7 Z eimt w= 0
T .
F. =1 L 0 (2-51)
FW% Z efzﬂweinfr w=0
i=0

The Fourier transform of ¢(r) is found to be

o0

®(2m) = 21 Y Fod(f~Ew) (2-52)

W= —0
Furthermore, the Fourier transform of the sampled ¢(¢), ¢,, is found to be

<0 QO

o (2nf) = 2n Y Fy Y 8(f—Ew—m) (2-53)

W = —an m = —G
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Confining ourselves to the frequency interval [0,1), the spectrum of the ¢,, sequence can

be written as

2}

O,(2n) = 21 Y Fl8(F—(Ew—LEw])) (2-54)

W = a0

: f
The frequency interval [0,1) physically corresponds to the frequency interval [0, —;) as

the physical reporting rate of the PDFD is Ec

Thus the spectrum of ¢, consists of a number of spectral lines (infinitely many if &

irrational) who amplitudes are given by the F “T, .

To verify the prediction of the spectral characteristics of ¢, a ¢,, sequence of length one
thousand was generated for a PDFD with /=10 and £=0.5301. A discrete Fourier
transform was performed on the sequence. The resulting spectrum is shown in
Figure 2-11. Also shown in Figure 2-9 and Figure 2-10 are spectrum for the u;
i

sequence and the ¢, sequence if the 9,

were uniformly distributed.

The spev;trum for ¢, was also generated using (2-54) for one thousand terms. The result
is shown in Figure 2-12 and as can be seen, is in good agreement with the spectrum
obtained from the sequence. In Figure 2-9 to Figure 2-12 the spectral lineat f = 0 has
been removed, and the scales in the figures are linear. Furthermore the figures are
intended only to show similarities or differences in the shape of the spectrum and not

provide detailed results for the specific example.

o0sd

|<Ds(j21tj)|

Figure 2-9. Spectrum for sequence UL
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Figure 2-10. Spectrum for sequence ¢, with uniformiy distributed 6., ;,

. Note the difference between
this spectrum and the spectrum for each individual frequency detector Figure 2-9.

052

|(I)s(jan)|

&S

Figure 2-11. Spectrum for sequence ¢n . Note how this spectrum contains the dominate features of
the uniformly distributed 8'

init

spectrurn above.

A
o5t

|®,277)|

Figure 2-12, Predicted Spectrum for sequence ¢, . Agrees well with the actual spectrum Figure 2-11.
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2.10. PDFD OPERATION FOR TIME VARYING FREQUENCY

Thus far it has been assumed that the signal square wave frequency f; is constant.
Assuming f; was constant permitted a succinct derivation of the PDFD properties.
Furthermore some of the more specific properties such as spectral characteristics and

instantaneous error can likely only be derived with the assumption of constant f;.

However in many applications the signal square wave frequency f; is a function of time

f:(#). It is shown in Appendix A.5 that if the function f,(¢) is bounded as follows

Ssmin SIE) < fimar (2-55)

with £

smin

and f, . asgiven by (2-22)(2-23), (2-30)(2-31), or (2-34)(2-35). Then the

PDFD characteristic (2-15) relating 0,,, to 8 will be bounded by the two

slip
quantizer functions given in (2-20).

2.11.  SUMMARY

A new method has been presented to measure small frequency differences between two
square waves. The method called the PDFD involves the use of a large number of
simple frequency detectors each with different start phases. Importantly, arbitrarily
small phase movements between the signal and reference square waves can be detected,
even when the PDFD is clocked at a low rate. The PDFD is totally digital and has no
frequency offsets. For many applications it will permit the removal of analog

subsystems, or high speed analog to digital converters used for frequency detection.

The operating limits of the PDFD were derived. It was found that the allowable
deviation from the nominal frequency of the signal being measured was approximately
proportional to 1//*. That is, approximately proportional to the square of the smallest

measurable phase change.

The PDFD offers significant advantages for applications wherever small frequency
differences have to be measured. For example in the demodulation or modulation of
angle modulated signals, measurement and reconstruction of frequency in baseband

digital transmission systems, and frequency synthesis.
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A Frequency Steered Phase Locked Loop

3.1. INTRODUCTION

Phase locked loops (PLL) are one of the most frequently used communications circuits.
PLLs have been used for filtering, frequency synthesis, frequency and phase
modulation, demodulation, signal detection and a variety of other applications. The
PLL commeonly ha‘s a number of defects when constructed from typical components.

Some of the defects of the PLL that are relevant to this chapter include:

*  Rapid, reliable locking to the desired signal of narrow bandwidth PLLs.
Particularly when there is significant frequency difference between the PLL’s
voltage controlled oscillator (VCO) and the input signal. This problem is
especially serious when the VCO has a poorly specified centre frequency and
can operate over a wide frequency range. Additionally, the PLL may false
lock to a sideband of the input signal. Or even to an unwanted signal if the

signal is buried in noise and other signals.

. The effects of VCO phase noise can cause significant errors in the tracking of
the input signal. This problem is especially serious when a very narrow

bandwidth PLL is required and/or low quality VCOs are employed.

Previous Work - Acquisition. Much work has been done in developing techniques to
aid acquisition and prevent false lock in PLLs. Some of the techniques employed to aid

acquisition include:

+  Sweeping of the VCO [6].

32
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»  Switching of loop filter in tracking and acquisition modes [24].
. Injection of the input signal into the VCO [25].
»  Addition of a non-linearity in the loop filter [26].

»  Use of combined phase and frequency detectors, either as separate devices

{27] or as a single device with both phase and frequency discrimination
characteristics [28], [29], [30].

»  Use of multiple phase detectors [31].

»  Accurate initial VCO frequency and limited tuning range by use of'a voltage

controlled crystal oscillator.

In many applications it is difficult to apply the above techniques due to one or more of
the following reasons: Input signal deeply buried in noise and other signals. Missing

signal transitions for example in clock recovery. High cost, and low level of integration.

In the field of clock recovery for baseband digital data transmission, a number of
techniques have been reported to obtain accurate initial VCO tuning to aid acquisition,
without having to resort to expensive voltage controlled crystal oscillators. These

techniques include:

*  The use of high speed digital PLLs using novel methods to generate the very

high speed clocks and to process the phase information [32].

* A Master/Slave dual loop architecture employing highly matched VCOs
[33]

. Switching the VCO between a crystal controlled “training” loop and the

input signal at start-up and when false locking is detected [34], [35].

All the above techniques employ a fixed frequency crystal oscillator to either obtain a
very high speed clock for use in a digital PLL. Or to influence the tuning of the VCO.

These techniques may suffice for clock recovery, but for more demanding applications
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where the signal is deeply buried in noise they may not be adequate. Furthermore,

detailed mathematical models of their operation have not been developed.

Previous Work - Phase Noise. The problem of VCO phase noise in PLLs has not
received much attention. The compromise between increasing the PLL bandwidth to
reduce the effects of VCO phase noise, and reducing the PLL bandwidth to obtain the
required filtering of the signal has been studied [36]. For the appliéation of frequency
synthesis a type of frequency feedback employing delay line frequency discriminators
[18] has been used to reduce VCO phase noise. However only VCO phase noise outside
the main PLL bandwidth [37]. But, no general solutions to the problem of VCO phase

noise appear to have been proposed.

Hence very narrow bandwidth PLLs can be difficult and costly to realise as they require
very low phase noise VCOs. Certainly, VCOs with poor phase noise (such as integrated

circuit relaxation oscillators) can not be used in narrow bandwidth applications,

In many communications systems the frequencies at which data is transmitted are
specified with tight tolerances. Typically, in the order of several or several tens of parts
per million {(ppm) [38], [39]. Some communication systems have even tighter
tolerances [21]. In the application of clock recovery, the bandwidth of the PLL used
would typically be in the order of a thousand ppm of the transmission frequency [38].

The Steered Frequency Phase Locked Loop. A new phase tracking system is
presented, the Steered Frequency Phase Locked Loop (SFPLL) (patent pending). The
SFPLL presented in this chapter is a system that will phase lock to an input signal as in
a conventional PLL. But the SFPLL overcomes many of the problems associated with
PLLs. The SFPLL technique allows the PLL used in the receiver component of the
communication system to be centred at the appropriate frequency, with the same
accuracy and stability associated with the transmission component. Exploiting the fact
that the transmission frequency is often very accurately specified, the PLL can be
centred very close and within the PLL bandwidth, to the transmission frequency. This
close initial tuning of the PLL avoids sideband lock and achieves fast frequency

acquisition.
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Like conventional PLLs the SFPLL takes an input signal which it is required to phase
lock to. In addition to this input signal, the SFPLL has an accurate reference frequency
input of frequency w,. The reference frequency w, is chosen to be close to (though not
necessarily the same as) the frequency of the input signal which the SFPLL is required
to phase lock to. The SFPLL does not require any monitoring nor any switching of the

frequency reference signal which is always acting.
The key advantages of the SFPLL are:
+  the output frequency is w, (or is close to ®,) when no input signal is present.

+  The range of frequencies to which the SFPLL can lock can be confined to a

small and controllable region around @,

»  For a particular class of SFPLLs, the effects of VCO phase noise can be
reduced to an insignificant amount. And the SFPLL bandwidth made less

dependent on component parameters.

*  The SFPLL can be realized in simple digital integrated circuit technology.
Allowing low cost miniaturized realizations, and also extremely precise and

controllable positioning of the frequency the SFPLL is centred on.

3.1.1. Outline of Chapter 3

This chapter is organised as follows:

In Section 3.2 the structure of the SFPLL is described and a small signal linear model
for the SFPLL is analyzed. Some general properties of SFPLLs are obtained, and some

extensions to the basic SFPLL are mentioned.

In Section 3.3 further properties of an important class of SFPLL are obtained. In
particular, the performance of the SFPLL when the input signal is corrupted with
additive white Gaussian noise. It is shown that the SFPLL has a mathematical model
which is equivalent to certain types of PLLs. This model equivalence allows the

non-linear noise theory developed for PLLs to be applied to SFPLLs.
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In Section 3.4 the frequency and step response characteristics of an important type of
SFPLL are investigated. It is shown that undesirable peaking and overshoot in the

frequency and step responses can be eliminated.

The effects of VCO phase noise in the SFPLL are then studied in Section 3.5. 1t is
shown that in theory the SFPLL can reduce the effects of VCO phase noise to an

insignificant amount.

In Section 3.6 simulations are performed to verify that the SFPLL and PLL models are
equivalent. Furthermore, that the SFPLL performance with the input signal corrupted

by noise is predicted well using established techniques.

A digital implementation of the SFPLL is outlined in Section 3.7. Then in Section 3.8

experimental results from a prototype of the SFPLL implementation are presented.
Finally Section 3.9 summarizes the chapter.

Note that some details relating to the non-linear behaviour of the SFPLL in noise, are

given in Appendix B.

3.1.2, Contributions of Chapter 3

The introduction of the third signal source @,, independent from the input signal and the
VCO signal, into a phase locking system has not been dealt with in the literature. The
use of frequency feedback in PLLs using delay line discriminators has been considered
in {37]. It was used to reduce VCO phase noise outside the main PLL bandwidth and
noise generated by digital phase detectors, for frequency synthesis é.pplications. In
contrast, in the SFPLL frequency feedback is not employed merely as an addition to

alleviate some problems, but instead dominates the SFPLL behaviour.
The contributions of this chapter are as follows:

»  The proposal of the SFPLL which diminishes or overcomes the following
problems inherent in PLLs: Reliable frequency acquisition, accurate free run
frequency, locking to unwanted signals or sidebands, bandwidth change due

to component variations, and VCO phase noise.
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»  The development of models to quantitatively describe the behaviour of the

37

SFPLL and the verification of these models through simulations and

experiments.

. The proposal of a digital implementation of the SFPLL which provides a

high precision low cost realization of the SFPLL.

3.2 THE SFPLL AND ITS LINEAR MODEL

3.2.1. Analysis of SFPLL

The structure of the SFPLL is shown in Figure 3-1. In Figure 3-1 the Phase Detector,

Frequency Detector, and VCO have the gains Kpa, Kpy and K, respectively. K, and Kris

additional gain. F{s), F{s) are filters which do not have poles at the origin. F,(s) is a

filter which may have one pole at the origin or may have no poles at the origin. Note

that the phase detector detects only phase difference and doesn’t perform any frequency

discrimination.

Signal 0.(¢
Input o0 ‘

vCO

w000

Phase
86— Detector ' Fpls) R
Fofs)
Frequency +
®p~——— Detector “b_‘ Fr(s)
Reference

Frequency a,(#) f
Input

©u(?)

Figure 3-1, The Steered Frequency Phase Locked Loop (SFPLL). The SFPLL ¢an be thought of as
two parts in competition against each other: a phase loop and a frequency loap. Each loop fights for

control of the VCO.

The SFPLL can be thought of as two parts in competition against each other: a phase

loop and a frequency loop. The frequency loop acts to force the VCO to be equal to the

reference frequency. The phase loop acts to force the VCO to be equal to the frequency

of the signal input. For a controllable range of input signal frequencies the phase loop is
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able to phase lock to the input signal. The phase loop uses a static phase error to

counteract the effects of the frequency loop.

Note that the phase variables 6¢), 0,(¢) describe the instantaneous angle of the signal.

For example if the input signal is of constant frequency ® and initial phase 8,,:
0,(£) = we+0, (3-1)

When the SFPLL is in the steady state and is locked to the signal input it can be

represented by the small signal linear model shown in Figure 3-2.

1
,5{ | —
Fpls)
+
constant offset signal F(s) > @' ()
(1)0_3'
+
o', . b_, Fy(s)
Reference
Frequency .
Input @’y(s)

Figure 3-2. Small signal linear model for the SFPLL with reference frequency offset

With reference to Figure 3-2, the new variables ®’,, and 6'/(¢) are defined as offsets

from the free running frequency of the VCO Wy

0',(1) = Bi(t)—o)ft (3-2)

r

w, = ®-0 (3-3)
@'o(¢) and &',(2) are similarly defined as offsets from wz K, accounts for all the gains in
the phase loop, and Kj; for all the gains in the frequency loop.
K, = KpuK K,

p (3-4)
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Kp = KpKK, (3-5)

The output of the SFPLL can be determined for the case when the phase detector output
B.(5) equals 0. For certain phase detectors, particularly in the field of clock recovery
[28], the output O.(s) equals 0 when there is no input signal present. The SFPLL output

when 8.(s) equals 0 can be written as

KnF ()F(s)
) = TR FE )@ ) T Copls)) (3-6)

A constant offset signal w,zhas been added into the frequency loop of the SFPLL. The
introduction of an offset in the frequency loop may be intentional or it may be due to
undesirable offsets occurring in the frequency loop components. In the initial

discussion of the small signal linear model the signal w,g should be assumed to be zero,

When ', is a constant reference frequency, the steady state value of @’,(#) can be found
using the final value theorem. For the case where F(s) does not contain a pole at the

origin

. Ky
lim o’ (¢) = ﬂ—@(m’r+ (”oﬁ) (3-7)

L@

For the case where F (s) does contain a pole at the origin

’li)mmm'o(t) = @ @, (3-8)
Hence when the phase detector output 0,(s) equals 0 the SFPLL tracks the reference
frequency, as shown by (3-7) and (3-8).

Now consider when the input signal is present and the phase detector output 6,(s) does

not equal 0. The phase error 8,(s) as a function of 8',(s) is

(@', +©,)

$(1 + KoF ($)F ()8 () ~ K F (s)F o(5)———2L
s(1+ K FAs)F (s)) + K, F,(s)F (s)

0.(s) = (3-9)
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If the input signal is a signal of constant frequency «’. Then for the case where F(s)

doesn’t contain a pole at the origin, the steady state phase error 6, is

(1 +K)o —Kﬂ(m',, + o, )

rli_)rnmea(t) = X, (3-10)
If the assumption is made that
Ky» 1 (1)
then
. Kp
tli)mwﬂa(t) ~ m(a)’ —(0", + 0,.) (3-12)

For the case where F_.(s) does contain a pole at the origin assumption (3-11) is not

required and, the steady state phase error 8, is
: Kﬂ ’ !
tlgnmea(t) = @(m — (0", + @,0) (3-13)

Equations (3-12) and (3-13) can be interpreted as follows. For the SFPLL to lock to an
incoming frequency of @’ the phase loop has to provide the appropriate phase lag/lead

(8¢) to overcome the o', ‘pulling’.

Note that the maximum absolute value of 6.(2) is finite, with maximum value 9,,,,,
|0(2)] <0 pax (3-14)

Normally 8, is at most 2z and depending on the particular phase detector 8,,,,,, may
be less. From (3-13) and (3-14)

Kpl
|m'—(m',+m0ﬂ)| <0 (3-15)

EmaxK_ﬂ
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From (3-15) it can be seen that due to the finite phase error, the allowable input
frequencies to which the SFPLL will lock is restricted to a range of frequencies near

®’,. The extent of the range is determined by the ratio of Ky and Kj.

The frequency loop components of the SFPLL ensure that the output frequency is
always confined to a small and controllable range close the reference frequency o',
The reference frequency would normally be chosen to be equal to the nominal
frequency of the signal input, ©’;. Furthermore the range of frequencies to which the
SFPLL is confined would normally be less than the bandwidth of the phase loop. To
avoid sideband locking, the SFPLL may also be confined to a range of frequencies
which doesn’t contain sidebands. Since the pull-out frequency [6] of a type I or I PLL
is approximately equal to the bandwidth of the PLL, the SFPLL will achieve phase and
frequency lock without cycle slipping.

When the SFPLL has locked to the signal, the phase error due to the frequency
difference between the signal and reference will be insignificant in many cases. As the
frequencies in many communications systems are very accurately specified. An
example: with the maximum difference between transmitter and receiver reference
frequencies of 9.2 ppm [38]. The receiver clock recovery SFPLL confined to
frequencies inside the bandwidth of the SFPLL (836 ppm), and a 6,,,,, of 7/2. The
phase error will be only 0.017 radians. It is possible to use two SFPLLs to correct the
induced phase error 6;, and obtain an output that is in phase with the input. Further

work needs to be done on the interaction between the two SFPLLs in this configuration.

The effect of the offset Wop is now discussed. From inspection of equétions (3-6) and
(3-9) it is clear that the effect of the constant offset signal is to offset the real reference

frequency (w’,) to an apparent reference frequency (@'ygp)

®, = m'r+(nmjr (3-16)

rap

The apparent reference frequency @'y, can be arbitrarily offset from the real reference
frequency. But, the precision of the offsetting depends on the precision and linearity of
the frequency detector and the summer. And also any inherent offsets in the frequency

loop components. This offsetting of the reference frequency is useful, as the SFPLL can
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be centred on any number of arbitrary frequencies by changing the offset value @y
This offsetting technique can be successfully employed in the SFPLL implementation
described in Section 3.7. The offsetting technique is successful here because digital
techniques are used in the construction of the frequency loop components, thus
allowing an almost arbitrary level of precision. There is some inherent offset in the
frequency loop due to leakage currents in some of the analog components, which

degrades the precision.

3.2.2. Phase Tracking System with VCO stabilized by Phase Locking

It is worthwhile to compare the SFPLL to a standard PLL which employs a VCO
stabilized [6] by phase locking it to the reference input. For convenience call this

system the Stabilized PLL (Figure 3-3).

Signal ‘
Input
Phase
840 ™ Detector = Fi0s) .
VCO w30
w,(t}
Phase M
B) ——+ Detector = Fals)
Reference
Frequency f
Input

Figure 3-3. Phase Tracking System using VCO stabilized by Phase Locking. This system does not
provide a useful phase tracking system, as the phase detector between the reference input and the

output cannot be linearized. Whereas the SFPLL provides a useful phase tracking system.

Assuming the phase detectors can be modelled by a linear characteristic, a linear model
can be found for the Stabilized PLL. With the filters F(s), /,(s) chosen appropriately, it
can be shown that the linear models of the Stabilized PLL and SFPLL can be
equivalent. However, typical phase detectors have highly non-linear, periodic

characteristics which can only be considered linear for a small phase error.

The phase error between the reference and output is unbounded and time varying. As
there will be a frequency difference between the reference and output, when the output

is locked to the signal input. It is not at all obvious that the linearization of the phase
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detector between the output and the reference is valid. As there is not a fixed, bounded
phase difference between the reference and output. The actual behaviour of the
Stabilized PLL will most likely be complex as it is a highly non-linear system. An

explanation of its behaviour is beyond the scope of this thesis.

However, the linearization of the frequency detector in the SFPLL is valid, for the

following reasons:

1) There are several mechanisms which measure the frequency difference between two
signals (that is, the phase slipping between the signals) and have an approximately

linear characteristic over a certain range [13],[17].

2) It is safe to assume that the SFPLL frequency detector will always be operating in its

linear region because:

*  The linear region of the frequency detector may be greater than the signal or

VCO frequency ranges.

»  The action of the SFPLL maintains the VCO frequency close to the reference
and hence in the linear region of the frequency detector. Irrespective of the

signal input, as the frequency loop dominates the phase loop.

If at start-up the VCO frequency is outside the linear range, external systems may bring
the VCO frequency into the linear range. From then on normal SFPLL operation can

commence.

Hence, via frequency measurement it is possible to stabilize the VCO with the local

reference, and this is what has been done in the SFPLL.
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3.3. NOISE PERFORMANCE OF A CLASS OF SFPLLS

In the previous section some properties of general SFPLLs were derived. In this section
further properties of an important class of SFPLLs are derived. This class of SFPLLs
have the filters F,(s), F{s) removed. Furthermore, filter F(s) is either removed, phase
loop equivalent to type I PLL, called type I SFPLL. Or F_(s) contains a pole at the
origin (a perfect integrator) and a zero, phase loop equivalent to type 11 PLL, called type
II SFPLL. That is:

Fo(s) = Ffs) = 1 (3-17}

s/w,+ 1
F.(s) = lL,or

(3-18)

It will be shown that for these SFPLLs there is in theory a PLL whose properties are
identical to the SFPLL. But, as will be seen, the physical realization of this equivalent
PLL may be very costly or impossible due to the limitations of practical VCOs.
Whereas, the SFPLL can achieve high performance, almost independent of the qualities
of its VCO.

The type I SFPLL can be characterized by the set of four parameters ®,, s ©c and A.
Where w, is the open loop cross over frequency of the phase loop of the type I SFPLL
with the frequency loop removed. The important parameter A, which'describes how
small the range of frequencies to which the SFPLL can lock is compared to «,, is
defined

Kp

(3-19)

The type II SFPLL is also characterized by a set of four parameters namely, «,, Cpr @
and A. Where the damping factor £, and natural frequency @, characterize the phase
loop only [6] of the SFPLL. The open loop cross over frequency of the phase loop when

it is separated from the frequency loop is approximately given by [36]

0, = 26,0, (3-20)



A FREQUENCY STEERED PHASE LOCKED LOOP 45

By employing equation (3-20), A for the type II SFPLL is also defined by equation
(3-19). Note that when Cp 1s very small (3-20) may not be a valid approximation.
Nevertheless, as used subsequently and in the definition of A for the type II SFPLL, o,
is defined by (3-20).

3.3.1. SFPLL with Additive Noise

The signal input is assumed to be corrupted with additive narrow-band Gaussian noise
n(f). In [40] it is shown that g’(8), the effective phase detector characteristic, and K,y
the effective phase detector gain are both dependent on the signal to noise ratio (SNR;)
at the input. As well as the noise free phase detector characteristics. n'(¢) is the baseband

equivalent of the additive band pass noise.

Type 1 SFPLL. The behaviour of the type [ SFPLL can be described by a non-linear

stochastic differential equation, with phase error 8, being chosen as the state variable.

With time ¢ normalised as follows
T = @ (3-21)
the non-linear stochastic differential equation describing the type I SFPLL is
d , , W, —
20,(1) = —g'(8 () —n'(x) + —LL (3-22)
dt mcej]‘

Where

@,

(Dceﬁ‘E m (3"23)

A 1
Qer =T+ T TR

(3-24)

Equation (3-22) represents a first order type [ PLL [41]. The first order type I PLL is
characterized with an open loop cross over frequency @, and an (VCO) free running

frequency wg: Hence the behaviour of a type T SFPLL is identical to that of a first
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order type I PLL. Thus theory developed for the first order type I PLL can be used to
predict the performance of the type I SFPLL [41],{36],[42].

Type Il SFPLL. The behaviour of the type IT SFPLL can be described by a set of two
non-linear stochastic differential equations. With the two state variables being 8., x.

The state variable x is related to the state of the integrator in the filter F(s).

Define o,

mﬂ
. = 3-25
Wpepr m ( )

The frequency represented by the state of the integrator in the filter 7 (s) is given by the
function y(¢). The dimensionless function x(¢) is defined as

(8) G (3-26)
x(t) = -
(I1+X)@, -
Time ¢ is normalised as follows
TS @, (3-27)

The non-linear stochastic differential equations describing the state variables (0, x) of
the type II SFPLL are

d _ 28,8 (8,(1) 20, (1) (0;~w,)
T TR e, O
d g'01) n'() A
& = 3-29
drx(T) 1+A * 1 +A 2§p,\/1 + }.x(T) ( )

Equations (3-28) and (3-29) represent a second order type I PLL which has an imperfect
or lossy integrator in its loop filter. It is still classed as a type I PLL as there is only one
pole at the origin. For the imperfect integrator PLL the transfer function of the filter has
the form (from [36])
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1+ST2

Fc(S) = T"-'I-_ET;

(3-30)

The following loop parameters for the imperfect integrator PLL (from [36]) are

©,, = /1-% (3-31)
T, [k4 1
&= /Tl@ +m) (3-32)

p= 1 (3-33)

mn,T]

Where K4 is the product of all the gains in the PLL and the input signal amplitude. With

the time and state variable y/(¢) normalized as follows

1= o, (3-34)

nl

yi(8)

(i)

x(6) = (3-35)

nl

The imperfect integrator PLL is described by the following non-linear stochastic
differential equations (adapted from [36]).

L — '(0,(t))) — 26,—B)n’ +(‘°f;°°ﬁ)
dr, (1) = —(26,—B)g’(6,(7))) —x, (1) — (2§, - B)n'(7) o (3-36)

nl

;t—[x,(r,) = (1-20,8 + B*)g'(8,(1)) + (1 =268+ B)n' (1 )Bx(x)) (3-37)

Where wg is the imperfect integrator PLL VCO free run frequency. From a comparison
of (3-28) and (3-29) to (3-36) and (3-37) it can be seen that they are of the same form
with,
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TET (3-38)
x=x (3-39)
_ag+
& = m (3-40)
B= (3-41)
20, JT+2
(0;—w,) _ (0;—wg) (3-42)

mneﬂ' @y

Hence for any type II SFPLL, an imperfect integrator PLL described by identical
non-linear differential equations can be constructed. Note that due to state variable y(¢)
scaling differences (3-26), (3-35), the frequency of signals in the PLL (such as input,
VCO free run, output) have to be scaled down by a factor 1+A. Alternatively, the state
variable (8, x;) response of the PLL has to be observed with a time scale slowed down
by the factor 1+A, to match the SFPLL. Thus theory developed for the imperfect
integrator PLL can be used to predict the performance of the type I SFPLL [36],[43].

Note that if only the phase error state variable response is of importance, then there
exists an imperfect integrator PLL whose phase error corresponds to that of the SFPLL.
Where the response of the PLL does not have to be observed in a scaled time system..
For this imperfect integrator PLL B and & are as in (3-40) and (3-41), but ©,; and wg

are as follows
Wy = Do (3-43)

w; = o, (3-44)
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3.4. TYPE Il SFPLL TRANSFER AND STEP RESPONSE CHARACTERISTICS

The type II SFPLL is the SFPLL of greatest practical importance. It was just shown that
the phase response of the type II SFPLL is identical to the phase response of an
imperfect integrator PLL. The type II SFPLL was described by four parameters Cps Ay
®,, and ©,. The imperfect integrator PLL was also described by four parameters ;, B,

Wy, and @g.

When the SFPLL is used to perform some function in a system, some design parameters
will have to be met. For PLLs the design parameters normally specify characteristics of
the PLL frequency response. The design parameters may also specify characteristics of
the PLL transient response. Most common is the transient response to a phase step, with

nise time and overshoot being specified.

The frequency and transient response of the linear model of the imperfect integrator
PLL has been studied [36],[4]. However, only for imperfect integrator PLLs with the
parameter  small (i.e. small imperfection/loss in the integrator). The imperfect
integrator PLL with a phase response identical to the SFPLL can have the parameter

large.

It is worthwhile to study the frequency (Section 3.4.1) and transient (Section 3.4.2)
response of the imperfect integrator PLL with a phase response identical to the SFPLL.
That is imperfect integrator PLLs with {; and B described by equations (3-40), (3-41). It
will be shown that the type II SFPLL has some remarkable and useful properties. In

particular peaking and overshoot can be eliminated when Cp is sufficiently small.

The key characteristics of the frequency and transient response such as peaking and
overshoot are solely determined by the parameters {; and B. Typically, to meet design
requirements a range of values for {; and B will be found. This range of values will then

in turn specify via (3-40) (3-41) a range of values for Cpand A.

The use of the imperfect integrator PLL as an intermediate step in determining the
SFPLL parameters has the following benefits: The important characteristics are
concisely expressed in terms of {; and . Furthermore when B is small there is
considerable similarity between the imperfect integrator PLL and the familiar type II

PLL behaviour. However, many of the conditions derived are also given in terms of Cp»
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A, and graphs illustrating the behaviour of key characteristics are labelled in terms of -
X

Y

0 A -
2

Figure 3-4. Behaviour of &; as a function of Cpwith A as a parameter. Notice that smail phase loop
damping QP actually results in a high system damping &,.

>
Y

Gp
Figure 3-5. Behaviour of B as a function of Cp With & as a parameter.

Firstly, the behaviour of {; and B as functions of Cp with A as a parameter is examined.
A graph of {; (3-40) is shown in Figure 3-4. Note that the graph has a minimum and
equals B, for G, equal to JA/2 . Also, for large C,,, the graph is asymptotic with the line

Cp/h/l +A.
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From Figure 3-4 it can be seen that a small phase loop damping &, actually results in a

high system damping ;. For completeness the graph of B (3-41) is shown in Figure 3-5.

3.4.1. Transfer Function Characteristics

Open and Closed Loop Response. From (3-30), (3-31), (3-32), (3-33), the open loop
transfer function G(s) of the imperfect integrator PLL can be found to be

(2@—6)0%[ +1

G(s) = (3-45)
o)
The magnitude of G(s) is found to be
| 1 1+ (/0" -’
GG = 57— J T ora) (3-46)

The asymptotic approximation to the Bode diagram of the open loop transfer function is
depicted in Figure 3-6. From (3-45) and Figure 3-6 it can be seen that there is a pole at
®,,B and a zero at w,,/(2§;—P). The ratio of the pole and zero frequencies can be
found using (3-40) and (3-41)

'f - (3-47)

From (3-47) it can be seen that the ratio of the pole and zero frequencies will always be
less than one. Hence the pole will always occur before the zero. Furthermore, as A
becomes large, the pole and zero frequencies converge, and the open loop transfer

function G(s) approaches that of a first order type I PLL (3-48).

1
li - 3-48
Z.ETmG(S) * s ( . )
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Hence as A tends to infinity, the characteristics of the imperfect integrator PLL become

increasingly like the characteristics of a first order type I PLL.

i
logiG(jw)

B(l')ni @y \ ®»
2(:[—_[3 (leg scale)

Figure 3-6. Bode diagram of open loop transfer function for imperfect integratar PLL. Note with 8 and
C; determined by (3-40), (3-41) the open loop cross over w,; may also occur in the region to the left of
the pole @,; B. Or in the region between the pole and zero.

The closed loop transfer function H{(s) of the imperfect integrator PLL can be found to
be

(zc,—ﬁ)g-l +1

G(s)
His) = +G() 735 ¢ s (3-49)
(a)—n;) +2C1m_n,+ 1
The magnitude of H(s) is
1+ (0/0,) (25— B)
|[H(jo)| = £ (3-50)

(=(0/0,)") +4e/o )

In Figure 3-7 the frequency response of H{(s) is plotted for various A and a fixed Gy As
can be seen, a key effect of increasing A is to reduce the peaking in the closed loop

frequency response.
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|H(o)| |

0.1 T T T 771 T T T T — T T
0.1 0/ 6, 1

Figure 3-7. Closed ‘Ioop frequency response for various A and fixed Qp. A key effect of increasing A is

to reduce the peaking in the closed loop frequency response.

Bandwidth Measures. Typically, the most important design parameters concerned
with the transfer function of the lossy integrator PLL will be; The peak value of the
closed loop frequency response, and some form of bandwidth measure. The appropriate
bandwidth measurement may be the 3dB bandwidth of the closed loop frequency
response ®zg5. Or the actual ®., or asymptotic approximation @ of the unity gain
(cross over) frequency of the open loop transfer function. For example, when designing
a PLL system for clock recovery, the appropriate jitter transfer mask must be taken into
consideration [38]. In this case, the critical parameters are the peak {ralue M, of the

closed loop frequency response and o,

The asymptotic approximation to the open loop cross over frequency is given by [36]
w, = (2§,-Bo,, (3-51)

The above approximation is valid when the open loop cross over occurs to the right of
the zero w,,/(2{;~B) as shown in Figure 3-6. Cross over to the right of the zero
occurs provided condition (3-52) is met. Condition (3-52) can be expressed in terms of
Cp and A (3-53)
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L<2¢,- (3-52)
o 1; L , (3-53)

However, with B and ; determined by (3-40), (3-41) the open loop cross over may also
occur in the region to the left of the pole w, B . Or in the region between the pole and

Zero.

For cross over to occur between the pole and zero requires that the condition (3-54) is
satisfied. Condition (3-54) can be expressed in terms of CP and A (3-33), and w,; is
given by (3-56).

20,—1<fB<1 (3-54)

A J1+A
WES < Cp <—5 (3-55)
W = ®y (3-56)

For cross over to occur to the left of the pole requires that the condition (3-57) is
satisfied. Condition (3-57) can be expressed in terms of Cp and A (3-58), and o is
given by (3-59).

B>1 (3-57)
£ o< (3-58)
721+ A
0 = 3 = TF25-Bo, (3-59)

From (3-46) the actual open loop cross over frequency is found to be

W, = mn:«/%(C:—B) +J1 +(28,(5—B))’ (3-60)



A FREQUENCY STEERED PHASE LOCKED LOOP S5

From (3-50) the 3dB bandwidth is found to be

O34 = C‘)nzf\/l F 20+ BR AL B+ 1+ (14200 + B2 4L (3-61)

Peaking. The peak value of the closed loop frequency response M, will now be
examined. From examination of the first and second derivatives of |H(jw)| (3-50) it
can be shown that if the condition (3-62) is satisfied. Then |H(j®)| will be greater than
one for some » and hence ‘peaking” will occur. If condition (3-62) is not satisfied then
|H(jw)| will be a monotonically decreasing function of w. Furthermore |H(jo)| will be
less than one for all « greater than zero, that is no ‘peaking’ will occur.
B, 1

G < it 55 (3-62)
Employing (3-40) and (3-41) the condition (3-62) can be expressed in terms of Cp and
A

A
> (3-63
QP 2Ji )
1 1 b 1 1 1 i L 1
1.2 - 3
1.0 - .
= 0.8 i
=1 }]
[=]
S
0.6 - -
0.4 .
0.5
0.2 - i
5
J s —
T 1] 1] )] T T T T T
0 1 2 ¢ 3 4 5

Figure 3-8. Peaking as a functian of &p for various A. This figure shows that peaking is eliminated
when C,, is below a critical value dependent on A (3-63).



A FREQUENCY STEERED PHASE LOCKED LOCP 56

Hence for peaking to occur {, and A must satisfy (3-63). The peak value M, as a
function of Cp 1s plotted in Figure 3-8 for various A.

Note that bandwidth (w345, ®., Or ©,) can be set independently of the peaking or
overshoot characteristics by adjusting the SFPLL parameter ®, , which affects w,,
(3-25), (3-43).

3.4.2. Step Response Characteristics

The PLL system may also be specified in terms of the transient response characteristics,
instead of the frequency response. A common practice is to specify the peak value of
the time response to a unit step input. This peak value (called overshoot) will be

determined for the imperfect integrator PLL in this section.

The phase error 9, transfer function for the imperfect integrator PLL can be found to be

2
0_(s) s +a, Bs
o~ G-64)
P8 +285 + 0
and the response to a unit step input is
sto B
0,(s) = - (3-65)

2 ?
s t2 s+ o,

The corresponding time domain response is

0,(1) = e—c’m"ﬂ{coscon,t g P sinmn,t./l—glz:| (3-66)

_CI_______I_CIZ

The peak output signal is found by first finding the time at which the error signal is at a

minimum 1, t, is determined by setting the first derivative of (3-66) equal to zero.

1 Q6,-B)J1-¢;
tp = ———2atan 3
@1 =& 26, —-1-GB

(3-67)
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The corresponding peak value P, in the output 8',(¢) is

P, = l—exp[itp’]{costp’— SrP sintp’:|
J1-¢ -G

With rp' defined

!
%

— 26— )1 ¢
= tpcom’ IHC? Cl l

= atan 3
26, =1-GB

57

(3-68)

(3-69)

It can be shown that if the either of the two conditions (3-70), (3-71), are satisfied then

overshoot will occur. That is €' (¢} attains a maximum P, greater than one. If (3-70) and

(3-71) are not satisfied, then overshoot will not occur, that is 8’ (#) never exceeds one.

&<l

B<l— e —1

0.25 A

(3-70)

(3-71)

Figure 3-9. Overshoot of step response as a function of Cp for various A. This figure shows that

overshoot is eliminated when C,, is below a critical value dependent on A (3-72),
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Employing (3-40), (3-41), (3-70) and (3-71) it can be shown that if the condition (3-72)

is satisfied then overshoot will not occur.

JT+a—1
<3

- (3-72)

The peak overshoot (P,-1) as a function Cp 1s plotted in Figure 3-9 for various A.

3.5. EFFECTS OF VCO PHASE NOISE AND PARAMETER VARIATIONS

3.5.1. Effects of Parameter Variations on Bandwidth

The bandwidth of the type I SFPLL was shown to be wes(3-23).

The approximate open loop cross over frequency of the imperfect integrator PLL with
phase response equivalent to type I SFPLL was found in Section 3.4. Several
expressions for the cross over frequency were found (3-51), (3-56), (3-59). However,

the three expression are approximately equal when the condition (3-73) is satisfied.
Al (3-73)

Thus it can be shown that when (3-73) is satisfied the bandwidth of the type II SFPLL is
also approximately o,z (3-23). As for the type I SFPLL, the bandwidth of the type II
SFPLL is reduced compared to the bandwidth of the phase loop with the frequency loop

removed.

With (3-73) satisfied . can be made insensitive to variations in parameters such as
the VCO gain K,,. Since wzonly depends on the ratio of the phase and frequency loop
gains.

K

[E}]
O f ~ (3-74)

=R
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3.5.2. Effects of VCO Phase Noise on SFPLL Performance

The effects of VCO phase noise on the SFPLL are now considered. The VCO is
modeled by a perfect VCO plus an internal disturbance source W¥(s), [36], Figure 3-10.

—] K,/ %
(—
perfect VCO ¥(s)
H—/

internal disturbance

Figure 3-10. Model of VCO with phase naise

Employing a small signal linear model, the contribution of the VCO instabilities to

phase error can be shown to be

SFPLL _ —¥(s) _ APLL
By (s) = ) K, F () = 0,4(5) (3-75)

1 +KF (s)

The use of a linear model is justified because the frequency loop of the SFPLL is free of

non-linearities. The frequency loop acts to reduce the VCO phase noise to a small level,

For the type I SFPLL it can be shown that (3-75) represents the phase error response to
VCO phase noise in a type I PLL. With the PLL bandwidth equal to O antd,
importantly, the VCO phase noise equal to ¥'(s) (3-77). For the type IT SFPLL (3-75)
represents the response to phase noise in a type II PLL (note not an impérf'ect integrator
PLL). With the PLL bandwidth equal to ®cp (3-76) and VCO phase noise equal to
Yi(s).

A @ A
Wenr = wceﬁ”-'- (1+ l)—{;’l = mceff(l + 4_C_,2] = 2(:;0),,9_[[ (3-76)
D

Pi(s) = —=¥(s) (3-77)
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Hence the phase noisc is reduced by the factor 1+ (3-77). For the type II SFPLL, the
low frequency phase noise will be further reduced due to the increased bandwidth
(3-76) seen by the phase noise. Note the type II PLL with closed loop bandwidth Wi
(3-76) has a damping factor equal to £; and a natural frequency equal to Dpeff

Strategies for reducing VCO phase noise. VCO phase noise can be reduced by
either increasing A. Or for the type I SFPLL, by increasing ey through reducing G, or

increasing both & and o .

The static phase for an input of constant frequency w;, as a function of A can be found
from (3-13), (3-19), (3-23) and (3-20)

lim © ( ) ;\‘CD‘-—CO’, A ©;,—©
1m ) = =
I —» 0 & mC 1 +l O.)ceff

(3-78)

A large A does not significantly increase the static phase error. However, a large A may

be inconvenient due to implementation issues, as discussed in Section 3.7.

As was shown in Section 3.4, a small &p provides other benefits than just reducing

phase noise.

In theory, provided the reference source is free of phase noise, a A and o, 7 can be
independently chosen so as to achieve the desired loop bandwidth. And also reduce the
phase error due to VCO phase noise to an insignificant level. For the type IT SFPLL &p

may also be chosen to reduce the phase noise significantly.

In summary, the performance of an important class of SFPLLs has been shown to be
identical to certain types of PLL. But importantly, while the VCO of the PLL needs to
have an extremely accurate free run frequency and have very low phase noise. The
SFPLL can achieve the same performance independent of the qualities of its VCO. It
can be argued that if there is a reference signal with better accuracy and stability than
any VCO. Then a SFPLL can be realised which more closely approximates an ideal

imperfect integrator PLL than any physically realisable imperfect integrator PLL.
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3.6. SIMULATION OF SFPLL WITH ADDITIVE NOISE

A number of simulations were performed for an SFPLL and its equivalent PLL, where
the input signal was corrupted with additive white Gaussian noise. The purpose of these
simulations was to verify that the SFPLL and PLL models are equivalent. Furthermore
to verify that the SFPLL performance with the input signal corrupted by noise is
predicted well using established techniques.

- The parameters of the type II SFPLL and the equivalent imperfect integrator PLL are
given in Table 3-1.

Table 3-1. SFPLL and PLL Parameters for Simulation

SFPLL & PLL Parameter Value
&p 1742
A 1
@y, 2n 50 100 r/s
o, 27 x 10° /s
; 21 x 10°1/s
& 3/4
B 1/2

The SFPLL and PLL were run simultaneously, with the input signal frequencies being
equal. Due to state variable y(¢) scaling differences (3-26), (3-35), the actual bandwidth
of the PLL was twice (scaling of 1+A) that of the SFPLL. Thus the noise on the input to
the SFPLL was increased to ensure the same signal to noise ratio for the PLL and
SFPLL.

Table 3-2. Simulated and Predicted Phase Error Variance. Resuits show good agreement between
simulated and predicted phase error variance.

Signal o Noise Ratio p 10 4 2 . 1
Theoretical Linear 0.10 0.25 0.50 1.00
e Fokker-Planck 0.11 0.31 0.81 1.61
Simulated SFPLL 0.1 0.33 0.86 1.74

UZBE PLL 0.1 0.23 0.88 1.66
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Simulations were performed for various signal to noise (p) ratios. Note the signal to
noise ratio refers to the signal to noise ratio inside the loop, see [36] for an explanation.
The phase error variance (0295) for each simulation run was recorded and compared to

the phase error variance predicted by linear and non-linear methods, Table 3-2.

A non-linear method was employed to find the exact stationary probability density
function (PDF) for 6,. The method involved numerically finding the eigenfunctions of
the Fokker-Planck operator of the imperfect integrator PLL. For a description of the
method [36] and Appendix B should be consulted. As can be seen in Table 3-2 the
simulation results agree well with the predicted phase error variance. A plot of the
simulated and theoretical 8, probability density function for the p=2 case is shown in

Figure 3-11.

— predicted 000 ‘simulated
0-6 1 1 1 1 1

0.5
0.4 4
P(Bg)

0.3

0.2

Figure 3-11. Simulated and Theoretical Probability Density Function for Phase Error (p=2). The good
agreement between PDFs shown here, and results in Table 3-2, Table 3-3 demonstrate current PLL
theory can predict SFPLL performance. Also the restilts verify that the SFPLL has an equivalent PLL.

The non-linear method also predicted the cycle slip rates for the imperfect integrator
PLL. The theoretical slip rates and the slip rates obtained from the simulations are given

in Table 3-3. Slip rates are given as normalized slip rates. (That is, number of slips per
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unit of normalized time t=B, ¢, B; is the loop noise bandwidth[36]). For low signal to
noise there is good agreement between the simulation and theoretical slip rates. For
high signal to noise ratio the slip rate was so low that no slips occurred during the

simulation.

The good agreement between predicted and simulated SFPLL slip rates and phase error
variance, demonstrates that the SFPLL performance is predicted well using established
techniques. Furthermore, the good agreement of the PLL and SFPLL simulation results
verifies the equivalence of the PLL and SFPLL models.

Table 3-3. Simulated and Theoretical Normalized Cycle slip rate (N/8[). Results show good agreement
between simulated and theoretical slip rates. )

Signal to Noise Ratio p 10 4 2 1
Theoretical N/B, 5.6 x 108 1.2x 103 3.3x 107 20x107
PLL 0 1.2x 103 3.3 x 102 1.8x 107

Simulated N/B;
SFPLL 0 0 3.2 x 102 2.0x 10"

3.7. DIGITAL IMPLEMENTATION

In this section an implementation of the SFPLL system is presented. The
implementation demonstrates that SFPLL systems can be realized almost entirely with
simple low cost digital integrated circuit technology. Realization in digital integrated
circuit technology allows integration of the SFPLL with higher layer functions found in
the systems in which it would be employed. Furthermore, advantage can be taken of the

rapid advances in digital integrated circuit technology to improve performance.

The use of digital techniques in the frequency loop of the SFPLL allows precise and
controllable positioning of the frequency the SFPLL is centred on. Especially when
employing a digital frequency detector which has no frequency offsets. In particular the
precise digital frequency detector (PDFD) developed in Chapter 2 will be used as the

frequency detector.

A block diagram of the digital implementation is shown in Figure 3-12.
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3.7.1. Filter Realization

The digital implementation is a type Il SFPLL with a filter F(s) that has a pole at the
origin, that is it contains a perfect integrator. This particular SFPLL has the desirable
property that the output frequency is exactly w, when the phase error 8, is zero.
Depending on the particular phase detector, zero phase error occurs when no signal
input is present. Also, the range of frequencies to which it can lock is centred on the
reference frequency m,. An almost perfect integrator is realized with a capacitor in the
filter and charge pumps on the outputs of the phase and frequency detectors.

Charge-pump PLLs [44][45] realize an almost perfect integrator in the same way.

Imperfections in the integrator are due to leakage currents, which are very small, and
the SFPLL is centred very close to the reference frequency (typically within 1 part per
million). Charge-pumps are used to connect the digital circuits to the analog
components: resistor R and capacitor C. The charge-pumps produce temary current

pulses of possible values +1, 0, -1 amps.

SFPLL output
0,6, - VCO  ta
Phase L

Signal input »| Detector "

Y R
Reference | Frequency
Clock Detector > c

Implemented in digital iC technology ?

Figure 3-12. Digital Implementation of SFPLL. it is a type Hl SFPLL. The analog filter component which
contains an almost perfect integratar is implemented with resistor R, capacitor C and charge pumps on
the digital outputs.

3.7.2, Frequency Detector and Frequency Loop

Ideal Frequency Detector. The analysis is this chapter assumes an ideal frequency
detector and frequency loop that have infinite bandwidth. In practice, the frequency
detector and frequency loop can only approach this ideal. A practical digital frequency

detector and frequency loop will depart from the ideal in the following key ways:
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+  Frequency Detector Bandwidth. In the particular digital implementation
descnbed, the signals are square waves rather than sinusoids. The phase and
frequency information is contained in the zero crossings of the signal. Hence,
frequency information can only be obtained at most once every cycle of the

square wave, and typically many cycles are required (Chapter 2).

»  Phase Quantization. The output of the frequency detector is quantized in
some manner. For the frequency detector used in the particular digital
implementation described, phase is the fundamental quantity which is
quantized (Chapter 2).

*  Frequency Loop Bandwidth. There may be some delay between the
measurement of a frequency difference and the application of the response to

the filter F(s).
These departures from the ideal are dealt with in the following ways:

Phase Quantization. Phase quantization in the frequency detector leads to limit cycles
in the phase of the output signal. With the limit cycle amplitude of the order of one
quantization level. The phenomenon of limit cycles due to quantization in closed loop
systems has been covered in the literature [46]. A recent study of this phenomenon has

been presented in [47].

In the experimental SFPLLs presented in Section 3.8 and Chapter 5, the effects due to
phase quantization are insignificant as the phase quantization level is very small.
Typically the phase quantization is of the order of one hundreth of a éycle. However,
useful free run frequency and lock range properties (Section 3.2), can still be obtained
when using a simpler frequency detector, such as the rotational frequency detector [13].
The rotational frequency detector provides a very coarse measurement of frequency as
the phase quantization is large. An SFPLL employing the rotational frequency detector
is developed in Chapter 6.

Frequency Detector and Loop Bandwidth. Only SFPLLs with very narrow
bandwidth phase loops will be considered. The narrow bandwidth allows the frequency

loop components sufficient time to obtain a frequency measurement and apply the
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response to the filter F.(s). Before the phase loop has moved 6, more than one phase
quantization level. Furthermore, the narrow bandwidth allows the phase loop to be

treated as a continuous time system [44], as is assumed by the analysis of this chapter.

The bandwidth of the phase loop w, is approximately A times the SFPLL bandwidth
Wcefr (3-23). Employing a large A to reduce phase noise may result in a phase loop
bandwidth which can no longer be considered very narrow. In these cases it may be

more appropriate to reduce phase noise by reducing Cp-

3.7.3. VCO and Phase Detector

Phase Detectors and VCOs which can be realized with digital technology have been
reported extensively in the literature [29],[48],[49],[501,[51].

3.8. EXPERIMENTAL SFPLL

3.8.1. SFPLL System

A SFPLL was constructed as described and shown in Section 3.7 and Figure 3-12. The
SFPLL and PDFD parameters are given in Table 3-4 and Table 3-5. The phase
quantization of the PDFD was 1/96 ™ (1/1™) of a cycle (67 picoseconds).

Table 3-4. Experimental SFPLL Parameters

SFPLL Parameter Value
& 1.83
A 0.1t0 8
Wy 17191 r/s
w, 27 155.52 x 108 /s

Table 3-5. Parameters for PDFD used in SFPLL

PDFD Parameter Valug
Ir 155.52 MHz
fe (288/235) * 155.52MHz
{ 96
n 13

k 291
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The VCO used was a commercial integrated circuit (Motorola MC12148) inductor
capacitor (LC) type oscillator, with varactor diodes for tuning. The majority of the

digital logic was implemented in a Field Programmable Gate Array.

3.8.2. Results

For a A of one the free running frequency of the SFPLL was 0.002 parts per million
from ®,. This illustrates the high precision with which the SFPLL can be centred.

The frequency response of the SFPLL was measured for various A and the results are
shown in Figure 3-13. The decrease in bandwidth with increasing A can be clearly seen.
The measured and predicted bandwidths (g} are given in Table 3-6. As can be seen

there is close agreement between predicted and experimental values.

Il L 1
¢ TR L
-5 L
Log
Magnitude
(dB}
-104 B
-15 T ————rrry L . T,
102 108 104 - 108

Frequency (Hz)

Figure 3-13. Frequency response of SFPLL for various A. Note the reduction in bandwidth with
increased A. Also note the elimination of peaking in the frequency response with increased A.

Table 3-6. Predicted and Experimental o,z Note there is good agreement between experimental and

predicted bandwidth.
A 01 1 2 4 8
Experimental @ o (kHZ) 8.0 4.6 3.1 18 1.0

Predicted w,{kHz) 9.1 5.0 3.3 2.0 1.1
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The spectrum of the free running SFPLL was measured for various A and the results are
shown in Figure 3-14. Note the reduction of close in phase noise (the spectrum span is

only 100 Hz) with increased A.
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Figure 3-14. Spectrum of cutput of free running SFPLL. showing phase noise effects for various A.

Note how VCO phase noise effects are reduced by increasing A.

3.9. SUMMARY

A new phase tracking system, the SFPLL, has been described, which introduces a
dominate reference frequency and frequency loop into a PLL. The SFPLL diminishes
or overcomes the following problems inherent in PLLs: Reliable frequency acquisition,
accurate free run frequency, locking to unwanted signals or sidebands, bandwidth

change due to component variations, and VCO phase noise.

A small signal linear model for the SFPLL was presented and some general properties

of SFPLLs derived. In particular it was shown that the locking range of the SFPLL
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could be restricted to a range of frequencies close to the reference frequency. The extent
of the range can be controlled and is determined by the ratio of phase loop gain to

frequency loop gain.

The general non-linear behaviour of an important class of SFPLL was examined in
detail and shown to be identical to types of PLLs. The equivalent PLL requires a high
quality VCO to obtain good performance. Whereas the SFPLL can obtain very high
performance independent of the qualities of its VCO. It was found that the most
important SFPLL, the type Il SFPLL is characterized by four parameters Cp» Ay @y, and
@, Its equivalent PLL, an imperfect integrator PLL, is also characterized by four

parameters C;, B, w,,, and @g.

The frequency and step responses of the type II SFPLL were also investigated. It was
shown that peaking and overshoot in the frequency and step responses could be

eliminated with small phase loop damping &,

Simulations were performed to demonstrate that the SFPLL performance with the input
signal corrupted by noise is predicted well using established techniques.

It was shown that the SFPLL can reduce the effect of VCO phase noise to an
insignificant level. Also the SFPLL can reduce the dependence of the bandwidth on

component parameters.

A digital implementation of the SFPLL was presented. The implementation consisted
almost entirely of components made with digital integrated circuit technology, allowing
high integration, high speed and low cost. Furthermore the digital implementation
provides high accuracy in the frequency loop components of the SFPLL.

A prototype SFPLL was constructed and the experimental results obtained supported

the analysis results.



4

Applications of the PDFD

4.1. INTRODUCTION

The precise measurement of frequency offered by the precise digital frequency detector
(PDFD) described in Chapter 2, can play a useful role in many systems. Also, through

the use of feedback, the PDFD can be used to control or synthesize signals.

In baseband digital communication systems the precise measurement of the frequency
of a square wave is required in the following areas: The measurement of the frequency
of data sources at the input of networks, and the reconstruction of the data source

frequency at the output of the network.

In wireless communication systems employing angle modulation, the information
bearing signal often does or can exist as a square wave at some point in the system.
Hence the measurement of the ‘frequency of a square wave may find application in both

demodulation and modulation components of the wireless system.

Finally, the Steered Frequency Phase Locked Loop described in Chapter 3 employs

frequency measurement to eliminate many problems inherent in Phase Locked Loops.

The all digital PDFD method provides a very elegant and integrable solution to the
frequency measurement of a square wave. In addition high frequencies can be measured

even when the PDFD is clocked at low rates, and the PDFD has no frequency offsets.

This chapter describes two applications of the PDFD. These applications demonstrate

that the PDFD can be used to provide solutions to some common problems in electronic

70
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systems. Also, the experimental results obtained from the prototypes constructed verify

the principles and operation of the PDFD.

In the first application, Section 4.2, the PDFD is employed to perform demodulation of
a continuous phase frequency shift keyed FM signal. The modulation format for the
frequency modulated (FM}) signal was from a current radio paging system standard
[21]. Also, a signal with a very high carrier frequency was demodulated, to demonstrate

the fine time resolution of the PDFD.

In the second application, Section 4.3, the PDFD is used to synthesize frequencies. The
particular application required a large number of very precise, closely related
frequencies to be generated. The PDFD was used to provide an economical and highly

integrated solution.

4.2, DEMODULATION OF A FREQUENCY MODULATED SIGNAL

4.2.1. Modulation Format and PDFD Parameters

The FM signal was modulated using a 4 level pulse amplitude modulated FM
modulation format [21]. The carrier frequency was 169.425MHz. The symbol rate was
3125Hz and the symbol alphabet was 169.425MHz +4687Hz, +1562Hz.

The PDFD parameters are given in Table 4-1. Phase movements down to 1/96 of a

reference square wave period (that is, 61 pico seconds) could be detected.

Table 4-1. PDFD Parameters for Demodulator

PDFD Parameter Value
5 169.425 MHz
Je {288/235) * 169.425 MHz
! 96
n 173
k 291

Another FM signal was demodulated to demonstrate the ability of the PDFD to measure

the frequency of high frequency signals. The modulation format of the signal was
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identical to the previous format [21], except that the carrier frequency was increased
from 169 MHz to 520.833 MHz. The demodulation system and PDFD realization were
identical to the 169 MHz case.

The PDFD parameters are given in Table 4-2. Phase movements down to 1/96 of a
reference square wave period (that is, 20 pico seconds) could be detected. Note that the
PDFD was clocked at the rate of 1 £, which was only about 62 MHz. This is a much
lower rate than the carrier frequency of 520 MHz. Furthermore, it is a much lower rate

than the inverse of the phase quantization, that is 1/(20 pico seconds), or 50 gigaHertz.

Table 4-2, PDFD Parameters for High Frequency Demodulator

PDFD Parameter Value
5 520.833 MHz
fe (864/811) * 520.833 MHz
{ 96
1 1/9
k 873

4.2.2. PDFD Realization and Demodulation System

The demodulation system and details on the realization of the PDFD are shown in
Figure 4-1. The simple flip flop which samples the divided down signal, was replaced
by a system of flip flops to reduce failure due to metastability to an insignificant
amount [52]. The memory elements for the / simple frequency detectors were
implemented in a shift register. An exclusive OR gate was time shared between the
frequency detectors. The slip events output from the exclusive OR gate were observed
for 96 out of 97 clock periods and accumulated by a counter. At the end of every -f’—z
reporting period the accumulated slip events held by the counter had N,,,,,, subtracted to
obtain the phase movement with respect to /. The result of the subtraction, N7 “ was

output from the PDFD.

The counter was reset at the start of each reporting period. Another counter was used to
sequence the operations in the PDFD, and signal the end of reporting periods to the

system using the frequency measurement.
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The majority of the components of the PDFD were realized in a field programmable

gate array.

FM Signal
Source

169.425MHz ‘ PDED

shift register length nk
-
nf
b .0 ~-D Q —) slip events
signal—

T
divided N.J;
counter to reset

by 2 track k & | Counter
. .
"/ + ¥V nJ;

- Nnom
=pkn-i)
¥

]\{r_out

End ot # of small phase

reporting period movements with sign

To system using frequency measurement

Figure 4-1. PDFD setup used for FM demodulation

4.2.3, Results

For the demodulation of the 169 MHz signal: The number Nf “ output from the PDFD
was accumulated and reset over twenty five PDFD reporting periods ( ;—{ ). This

accumulated value is plotted in Figure 4-2, and shows the successful demodufation of

the FM signal.

For the demodulation of the 520 MHz signal: The number Nf “ output from the PDFD

was accumulated and reset over twenty two PDFD sampling periods ( J§ ). This
[

accumulated value is plotted in Figure 4-3, and again shows the successful

demodulation of the FM signal.

4.2.4. Demodulation for Signals in Noise

The signals demodulated in the previous section were free of noise and other interfering

signals. To demodulate signals buried in noise a classic limiter-discriminator FM
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demodulator structure could be used [53). The PDFD would replace the analog
frequency discriminator in the limiter-discriminator demodulator. Note that the
bandwidth of the band pass filter proceeding the FM demodulator needs to be very
narrow to satisfy the PDFD bandwidth limits (Chapter 2). '

It is a subject for future work to further investigate the use of the PDFD in a

limiter-discriminator FM demodulator.
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Figure 4-2. Demodulation using PDFD. Shows the successiul demodulation of a FM signal of carrier
frequency 169 MHz. Phase quantization was 1/96M of a cycle, that is 61 pico seconds.
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Figure 4-3. Demodulation of high frequency signal using PDFD. Successful demodulation of a FM
signal of carrier frequency 520 MHz. Phase quantization was 1/96™ of a cycle, that is 20 pico seconds.
Note that the PDFD was clocked at about 62 MHz, much lower than the carrier frequency, and also

much lower than the inverse of the phase quantization, 50 GHz.
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4.3. FREQUENCY SYNTHESIS

4.3.1. Requirements and PDFD Parameters

The key requirements of the frequency synthesizer were as follows: frequency range of
139.264MHz +20ppm, frequency resolution better than 0.2 ppm. It was determined that
it would not be economical to use conventional frequency synthesis techniques (PLL,
direct digital frequency synthesis) {54]. Due to the digital nature of the PDFD and that it
has no long term frequency offsets, it was possible using the PDFD as the key element
to construct a frequency synthesizer meeting the requirements. The parameters of the

PDFD employed are given in Table 4-3.

Table 4-3. PDFD Parameters for frequency synthesizer

PDFD Parameter Value
Jr 139.264 MHz
Je (288/235) * 139.264 MHz
! 98
n 1/3
k ' 291

4.3.2. Frequency Synthesis System

The structure of the PDFD based frequency synthesizer is shown in Figure 4-4. The |
PDFD realization was as shown in Figure 4-1. Most of the components of the frequency
synthesizer were realized in a field programmable gate array, the main exceptions were

the analog filter and voltage controller oscillator (VCO).

L Je Digital /o +1 N Signal
PDFD Integrator SZ veo 2 =Out
/e Sogr Analog Filter
Offset Offset
Selection ™| Generation
st

Figure 4-4. PDFD bhased frequency synthesizer. The synthesizer is possible due to the absence of
long term frequency offsets in the PDFD and the ideal natura of digital integration.
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Some of the major components of the frequency synthesizer are now described.

«  Digital Integrator. This digital component outputs the sum of all previous

. - k . .
inputs. It samples its inputs at the end of each - reporting period. Note,

fe
being digital, the digital integrator provides ‘ideal’ integration. That is, there
is no leakage or relaxation as there would be for an analog integrator. In
Chapter 2 it was shown that the PDFD followed by ‘ideal’ integration acts a

phase movement quantizer, with a quantization level of 1/ of a cycle.

*  Analog Filter. This filter has a zero and also a pole at the origin. It is identical
to the filter discussed in Section 3.7.1, and the filters used in Charge-pump
PLLs [44][45]. The filter is realized with a resistor R and capacitor C, and a
charge pump on the output of the digital integrator.

. Offset Generation. This component outputs 0, or *1 at the end of each }Z
reporting period. The offset selection input determines how many reporting
periods where 0 is output occur before a +1 is output. The offset selection
input also determines the sign of the output. Each +1 output will cause a
movement of 1/ of a cycle between Jrand f,. Thus, the rate of 1s output by
this component determines the frequency offset Jogrof the output signal with

respect to f,.

The operating principles of the frequency synthesizer are now described by examining a

linear model of the frequency synthesizer. The operation of the PDFD is described by

/;
EORESING (@-1)
The operation of the VCO is described by
fo(8) = KV, (5) (4-2)

The digital integrator is modelled by a perfect integrator

g | -

(4-3)
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The analog filter transfer function is as follows. Note that w; models the small losses in

the analog integrator, and typically will be a very small frequency.

s/o,+1
s/w+ 1 (4-4)
The frequency of the signal out £, can be found from (4-1), (4-2), (4-3), (4-4)
(K/w,)s+K of.+ £,
50 = 5 (=] (4-5)
s/ +(1+K/0)s+ KN S

where K is the product of all the gains in the loop. The steady state value of f, can be

found using the final value theorem
0 = Bmgrio) = fy o

Since the PDFD has no frequency offsets, and the digital integrator is ideal, the linear
model describes f, well. However, as discussed in Chapter 3, Section 3.7.2, the PDFD
does depart from the ideal model (4-1) in two key ways, limited bandwidth and phase

quantization.

As in Section 3.7.2, the effects due to phase quantization are reduced to an insignificant
level by making the phase quantization level very small. In the case considered here the

quantization is approximately 1/96™ of a cycle or 75 pico seconds.

The frequency measurement time ( J];) of the PDFD was also small enough to
[+
counter-act any disturbances in the system (typically from VCO phase noise). Before

the output phase had moved more than one phase quantization level.
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4.3.3. Results

The component parameters used in the prototype synthesizer are given in Table 4-4. R,
C and the charge pump current 7 are described in Section 3.7.1. The VCO used was a
commercial integrated circuit (Motorola MC12148) inductor capacitor (LC) type

oscillator, with varactor diodes for tuning, and gain £,

Table 4-4. Companent parameters for frequency synthesizer

PDFD Parameter Value
R 5Q
C 47 uF
! 1 mA
K, 10.7 MHz/V

The spectrum of the output of the synthesizer is shown in Figure 4-5. The spectrum

compares well with other reported methods of frequency synthesis [5].

log magnitude (dBm)

Y T T T T T T

139.264 MHz
Frequency {1 kHz per division)

Figure 4-5. Frequency Synthesizer Output Spectrum. Output frequency approximately 139.264 MHz +
1 part per million. Spectrum compares well with other reported frequency synthesis methods.
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Applications of the SFPLL

5.1. INTRODUCTION

The Steered Frequency Phase Locked Loop (SFPLL) presented in Chapter 3 has several
advantages compared to conventional PLLs. The SFPLL may play a useful role in many
systems where PLLs are currently used. As it permits higher system integration and
lower cost due to the relaxed requirements of the VCO. The SFPLL may also provide
solutions to problems which cannot be solved economically with current analog PLL
technology, and where high signal frequencies prohibit the use of digital PLL
techniques.

This chapter describes two applications of the SFPLL. These applications demonstrate
that the SFPLL can be used to provide elegant and integrable solutions to some
problems in electronic systems. Also, the experimental results obtained from the

prototypes constructed verify the principles and operation of the SFPLL.

In the first application (Section 5.2) the SFPLL is used to construct a phase locking
system of very narrow bandwidth. The narrow bandwidth phase locking system is then
used to synthesize a high rate clock source (155.52 MHz) from a low rate reference (8
KHz). Furthermore the phase locking system provides filtering for the jitter and noise

on the low rate reference,

In the second application, Section 5.3, the PDFD is employed to perform demodulation

of a continuous phase frequency shift keying FM signal.

79
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5.2 SYNTHESIS OF HIGH RATE CLOCK FROM LOW RATE REFERENCE IN
THE PRESENCE OF JITTER

5.2.1. Introduction

An application which requires very narrow bandwidth PLL systems is the synthesis of a
high rate clock source from a jittered low rate reference. This application occurs
frequently in broadband digital transmission networks. At the network boundary, a
stable high rate clock must often be constructed for the data leaving the network.
Typically the high rate clock is synthesized from an 8 KHz frame marker. The 8§ KHz
frame marker is usually jittered due to the stuffing mechanisms used in the network.

The bandwidth of the PLL may need to be very narrow to filter out this jitter [22],[23].

In some contemporary digital transmission networks (SDH/SONET [38]) the jitter may
be of very low frequency. To filter out this jitter would require a PLL bandwidth so
narrow that it is virtually impossible to attain using analog circuitry [7]. Furthermore,

the high signal frequencies (155.52 MHz) prohibit the use of digital PLL techniques.

In this section a SFPLL system is demonstrated which has a centre frequency of 155.52
MHz and a bandwidth of less than one hertz. Furthermore, the SFPLL VCO is a digital
application specific integrated circuit relaxation oscillator, and hence the SFPLL system

¢an achieve a high degree of integration.

5.2.2. SFPLL Realization

The SFPLL realization was similar to that shown in Figure 3-12. A description of the

realization is given Section 3.7.
The VCO used had a gain K, of 106 MHz/Volt and a poorly specified centre frequency.
The SFPLL parameters are given in Table 5-1.

The frequency detector used in the SFPLL was a PDFD. The PDFD realization is
shown in Figure 4-1 and described in Section 4.2.2, The PDFD parameters are given in
Table 5-2.
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Table 5-1. SFPLL Parameters for Synthesis

SFPLL Parameter Value
- 0.019
A 64
Wy, 2r 858 r/s
o, 2r 155.52 x 10% 1fs
Degif 2n 22161 /s
Deop 2n 0.5¢/s

Table 5-2. PDFD Parameters for Synthesis

PDFD Parameter Value
5 155.52 MHz
fe (288/235) * 155.52MHz
! 96
n 113
k 291

5.2.3. Results

To give an indication of the phase noise of the VCO Figure 5-1 shows the spectrum of a
free running SFPLL with reduced A and increased Cp- Spectrum are shown with 10 KHz
and 100 Hz spans. The free running spectrum of the SFPLL with the correct A and -
(Table 5-1) is shown in Figure 5-2. The massive reduction of many orders of magnitude

in the phase noise effects is clear,

Figure 5-3 is an oscilloscope trace showing the 8 KHz frame marker pulse and the
synthesized 155.52 MHz clock. As can be seen the 155.52 MHz clock maintains a

stable phase relationship with respect to the frame marker.

The determine the bandwidth of the SFPLL, a phase step was applied to the SFPLL.
From the step response the bandwidth was determined approximately to be 0.46 Hz.

This is in good agreement with the predicted 0.5 Hz (Table 5-1).
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Frequency {1000 Hz per division} Frequency (10 Hz per division)

Figure 5-1. Spectrum of output of free running SFPLL with small A and increased &, to provide an
indication of VCO phase noise. (A=0.25, £p=0.14)

log magnitude {dBm)
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155.52 MHz
Frequency {10 Hz per divisian)

Figure 5-2. Spectrum of output of free running SFPLL with large A and smail Cp (A=64, (;=0.018).
Note the reduction of the effects of VCO phase noise by many orders of magnitude.
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Figure 5-3. Frame Marker and Synthesized 155.52 MHz clock. Shows successiul synthesis of the
155.52 MHz clock from the 8 KHz frame marker. The bandwidth aof the SFPLL employed was very
narrow (0.5 Hz} to provide filtering of jitter and noise on the frame marker.

5.3. DEMODULATICN OF A FREQUENCY MODULATED SIGNAL

5.3.1. Introduction

The coherent demodulation of signals by PLLs has been well documented [4]. The use
of PLLs to demodulate signals deeply buried in noise has also received attention [4],
[43]. A mapping of the SFPLL model to an equivalent ideal PLL was performed in
Chapter 3. This mapping enables the literature dealing with PLL demodulators to be
applied to SFPLL based demodulators.

It is a subject for future work to investigate in detail the use of the SFPLL to
demodulate a signal buried in noise and other signals. However, the demodulation of a
noise free signal is given here to: Firstly, demonstrate the possibility of an SFPLL based
demodulator. Secondly, to highlight some of the SFPLLs advantages, especially when it
1s used with the PDFD.
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It is worthwhile to compare the SFPLL based demodulator to the PDFD only
demodulator presented in Chapter 4. The PDFD demodulator requires a very narrow
bandwidth input signal, which may limit its application. Whereas the SFPLL
demodulator can cope with wide bandwidth inputs. When the PDFD is used in a
SFPLL, the SFPLL can be thought of as providing a broadband interface for the PDFD.

The SFPLL may offer the following advantages over conventional PLLs when used in

coherent receivers:

»  Controlled and accurate lock range, to enable the de-modulation of a specific
channel when the received signal contains a number of channels at different

frequencies.
*  Reduced VCO phase noise allowing low quality VCOs to be used.

. For SFPLLs employing the PDFD and demodulating angle modulated
signals, the modulation information can be obtained in digital form at the
output of the PDFD.

In this section a SFPLL system is demonstrated which demodulates a continuous phase
frequency shift keyed FM signal. The modulation format for the FM signal is described
in Section 4.2.1 and [21].

5.3.2. SFPLL Realization

The SFPLL realization was the same as that shown in Figure 3-12. A description of the

realization is given Section 3.7.

The VCO used was a commercial integrated circuit (Motorola MC12148) inductor
capacitor (LC) type oscillator, with varactor diodes for tuning. The VCO had a gain K,
of 13.6 MHz/Volt.

The SFPLL parameters are given in Table 5-3.

The frequency detector used in the SFPLL was a PDFD. The PDFD realization is
shown in Figure 4-1 and described in Section 4.2.2. The PDFD parameters are given in
Table 5-4.
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Table 5-3. SFPLL Parameters for Demodulator

85

SFPLL Parameter Value
- 1.11
A 0.5
o, 27 5.45 x 10% 1/s
o, 2n 169.425 x 108 1/s
D eff 2n8x 10 s
W 2n0.3r/s

Table 5-4. PDFD Parameters for Demodulator

PDFD Parameter Value
A 169.425 MHz
A {288/235) * 169.425 MHz
/ 96
1 1/3
k 291

5.3.3. Resulits

The demodulated signal was obtained in digital form at the PDFD output. The number
NJ‘.’ u output from the PDFD was accumulated and reset over twenty five PDFD
reporting periods j_{c ). This accumulated value is plotted in Figure 5-4, and shows the

successful demodulaction of the FM signal.
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Figure 5-4. Demodulated FM signal. Shows the successful demadulation of a FM signal by the SFPLL.
A PDFD was employed as the frequency detector which allowed the demodulated signal to be
obtained directly in digital form. The PDFD phase quantization was 1/96" of a cycle, thatis 61 ps.
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SFPLL Implementation with Simple
Frequency Measurement

6.1. INTRODUCTION

Much of the analysis of Chapter 3 assumed an ideal frequency detector and frequency
loop that have infinite bandwidth. A practical digital frequency detector which
approaches this ideal behaviour must have a bandwidth much higher than the phase
loop of the SFPLL. Furthermore, the quantization level (normally phase is quantized) of
the frequency detector must be small so that the effects due to quantization are
insignificant. The PDFD (Chapter 2) is a digital frequency detector which has high
bandwidth and small phase quantization, and was used successfully in SFPLLs
(Chapter 3).

However, useful accurate free run frequency and restricted lock range properties
{Section 3.2), can be obtained when using a simpler frequency detector than the PDFD.
In this chapter the use of a simple frequency detector, called the rotational frequency
detector [13], in an SFPLL is developed.

The main problem to overcome when using the rotational frequency detector is to
mitigate disturbances on the phase loop. These disturbances are due to the quantized
nature of the frequency detector. The phase quantization level of the rotational
frequency detector is at least one clock cycle. The disturbances on the phase loop are
mitigated by employing a low pass filter on the output of the frequency detector (F(s),
Figure 3-1).
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The SFPLL employing a rotational frequency may be useful in applications that do not
require the benefits obtained when using the PDFD. Benefits such as VCO phase noise
reduction. Typical applications include clock and data recovery circuits. As was
mentioned in Chapter 3 a number of techniques have been reported to obtain accurate

initial VCO tuning to aid acquisition.

The key advantages of the SFPLL employing the rotational frequency detector over the

reported techniques are:
. the output frequency is extremely close to w, when no input signal is present.

»  The range of frequencies to which the SFPLL can lock can be confined to a

small and controllable region around ,-

*  The SFPLL does not require any monitoring nor any switching of the

reference signal which is always acting.

This chapter is organized as follows: In Section 6.2 an overview of the implementation
is given. Then in Section 6.3 and Section 6.4 the phase and frequency loops of the
SFPLL are examined. In Section 6.5 and Section 6.6 a method to mitigate the
disturbances of the frequency loop on the phase loop is described. Experimental results
for a clock recovery system operating at 155.52MHz are given in Section 6.7. Finally,

Section 6.8 summarizes the chapter.

Note also that in Appendix C the digital filter used in this SFPLL implementation is
developed.

6.2. SYSTEM OVERVIEW

The digital impilementation of the SFPLL using the rotational frequency detector is
shown in Figure 6-1. The components in the digital implementation correspond to the

blocks in the SFPLL model presented in Chapter 3 Figure 3-1, as follows:

The phase detector, frequency detector and VCO are the same in both model and
implementation. The digital filter in the implementation corresponds to the filter F, As)-

The digital combiner corresponds to the summer in the model.
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SFPLL output
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Implemented in digital IC technoiogy ?

Figure 6-1. Digital Implementation of SFPLL using simple frequency detector. The key difference with
the previous SFPLL implementation is the presence of the digital filter block. The digital filter is
required to mitigate the disturbances on the phase loop caused by the simple frequency detector.

The resistor and capacitor correspond to the filter F(s) in the model. As was discussed
in Section 3.7.1, F,(s) has a pole very close to the origin and a zero. The output from
the digital combiner is a current. This current source is achieved with a charge pump on

the output of the digital combiner.

The additional gains K, and K in the model are related to the magnitude of the digital

combiner charge pump current. The filter F(s) is not present in this implementation.

The parameters of the system and how they relate to system performance requirements

are now given: -

+  The small signal characteristics of the SFPLL implementation described here
are specified by £, and ®,,. It is assumed that the phase loop dynamics are not
affected by the frequency loop, because the output of the frequency detector
is low pass filtered, unlike in Section 3.3. The approximate open loop
cross-over frequency o, (related to w,, £, (3-20)) and Gp can be deduced
from system performance parameters. For example jitter transfer mask in

{38], which requires o, < 2m 130 kr/s and {, > 4.5.

«  The range of frequencies to which the phase loop is confined by the
frequency loop (3-19). The steady state phase error 8, under worst case

frequency offsets, that is, maximum w-w, (3-78).
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« The frequency loop of the SFPLL must be stable and hence have a
sufficiently high damping factor G

»  The reference frequency is normally a sub-multiple, m, of the SFPLL output

frequency.

»  The maximum clock rate at which the various digital components can be run

at will typically be a sub-multiple of the SFPLL output frequency, N,

6.2.1. Phase and Frequency Detectors

Phase detectors can be constructed using digital logic gates and/or flip flops. The
individual designs and characteristics are covered extensively in the literature e.g. [48].
The phase detector characteristics of importance in this chapter are the gain K4, and the

maximum phase error O,,,,,,.

The frequency detector used is described by Messerschmitt in [13] and is called a
rotational frequency detector. It is implemented using purely digital components such
as flip flops and logic gates. The rotational frequency detector outputs a pulse every
time the reference clock (@,) phase ‘slips’ past the VCO clock (®,) by a cycle. Hence
the phase quantization level of the rotational frequency detector is one cycle. The rate at
which the detector outputs puises indicates the magnitude of the frequency difference

@,-@,. The gair of the rotational frequency detector, K is

K= & (6-1)
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6.3. PHASE LOOP PARAMETERS

Based on the results presented in [44], the values of the filter components R and C can

found in terms of w, &, K, (VCO gain) and K,y

R= (6-2)
KPdKoIP
2
40K K 1
¢ = 2opfakoly (6-3)

2

@,

Consider for the moment that the digital combiner (Figure 6-1) is removed and that the
phase and frequency detectors each have a charge pump. The outputs of the two charge
pumps are tied together and pump current into the RC filter. The digital combiner will

be introduced and a charge pump eliminated in Section 6.5.

1, is the phase detector charge pump current, and is defined as the additional gain factor
K. The frequency detector charge pump current 5 defined as the additional gain factor

Kf, can be found

ALK,

Iy= —F—— (6-4)
2 Ko,

When the frequency detector pumps current into the C it causes phase and frequency
disturbances to the phase loop. If these disturbances are too great they will cause the

phase loop to loose lock. There are two disturbance mechanisms:

The first disturbance is a phase disturbance 6. It is caused when the frequency detector
pumps current through R, thus causing a short term shift in the VCO voltage and hence
a phase jump. For the phase loop to maintain lock 8, must be less than 2x. In fact for
reliable operation and low phase jitter on the SFPLL output condition (6-5) must be

met.

0,«2n {6-5)
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With the current pulse from the frequency detector lasting for one VCO clock period,
that is 2n/w,, seconds. Then from (6-2), (6-4), and applying the condition of (6-5), the
following relating phase disturbance as a fraction of one cycle (that is, 27) is obtained

Bd b

2n decoo

«l (6-6)

The second disturbance is a frequency disturbance w. It is caused by the voltage on C
being shifted as a result of current being pumped into C. Hence the VCO has a shifted
voltage applied to it. The phase loop will eventually counter act this through its phase
error, B, providing the phase loop remains locked. For the phase loop to maintain lock
o, must be less than the pull out frequency of the phase loop [6]. The pull out
frequency for a highly damped type II PLL is approximately ®,. For reliable operation
and low jitter on the SFPLL output the condition (6-7) must be met.

Wy« @, 6-7)

If the current pulse from the frequency detector lasts for one VCO clock period. Then
from (6-3) and (6-4), and applying the condition of (6-7), the following relating wz as a

fraction of w, is obtained

© TA

== —=—«l (6-8)
[ 2deCp(Do

Now consider the situation where the reference clock input is not w,, but instead is a

sub-multiple, ©", i.e.

[ m"
®", = — (6-9)

Where m is an integer. This situation will likely be the norm as firstly the frequency
detector actually needs to be run at 40", rate (see [13]). And secondly the range of
frequencies at which low cost crystal oscillators (which will most likely provide @”,)

operate is limited to a few tens of megahertz. To perform a valid comparison with ®”,,
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®, also has to be similarly scaled down. The rate at which phase slips of one cycle

between w”, and ", occur is also reduced by m.

The slip rate is also the rate at which the frequency detector emits pulses and the gain of
the frequency detector is reduced by a factor of m. Effectively the quantization level of
the frequency detector has been increased from one clock cycle to m clock cycles. To
maintain the same frequency loop gain the duration of the frequency detector current
pulse must be increased m times. Or the current /g must be increased m times. Either
way the disturbance to the phase loop is increased m times, even though it will occur m

times less often.

6.4. FREQUENCY LOOP PARAMETERS

Consider for the moment that the R is replaced by a short circuit. The open loop transfer

function of the frequency loop is

K
e ;
p (6-10)
Kj is related to other system parameters
1 Ao,
Kﬂ = de[ﬁ‘(_;' O= — (6‘11)
4QP

If a pole at frequency w), is introduced by the digital filter, the frequency loop becomes

a second order system. The positioning of the pole ®, will affect the closed loop

stability and damping factor Cr A general requirement is that the frequency loop is

stable and hence the damping is sufficient. @, can be determined in terms of {r and

other system parameters

2
— Mfmc
- 2

(Dp C
p

(6-12)
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Considering now the effect of the R on the frequency loop. The effect of R is to
introduce a zero at frequency w, in the frequency loop, which enhances frequency loop

stability.

6.5. DISTURBANCE REDUCTION

To reduce the sudden phase and frequency disturbance of each pulse from the frequency
detector (Section 6.3), the pulse is spread out over a long time. This can be done by

breaking the pulse up into a large number of smaller pulses as shown in Figure 6-2.

Each frequency detector pulse is broken up into N, smaller pulses, each of N, VCO
clock periods wide, and spaced at N,N,, VCO clock periods. Thus g is reduced,

effectively decoupling it from K. The new frequency loop output current Iris defined as

m

The new phase and frequency disturbances for the smaller pulses of width N, are
reduced from (6-6), (6-8) by a factor N

9, mA
H = W «1 (6-14)
w
Do Mmoo (6-15)
c stdeCPO)O
N, *2n/m,
- = 1 [ 1 [
-— N *) — -
D pr ey N:Nprtin’mo -

Figure 6-2. Spreading out frequency detector pulses to reduce their disturbance on the phase loap.

Having /rnow decoupled from K provides freedom in choosing I The frequency loop

only has to nullify the phase loop output to steer and confine the VCO and hence w,,. As
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F(s) has a pole at the origin. So /rmust be greater than the maximum average phase

detector output

I> 8Kl (6-16)

Fast steering of the VCO at system start-up, when C is discharged, is what is sacrificed
by making Ir small. This fast steering at start-up would not normally be a critical

performance requirement. Providing

8, maxk g <1 (6-17)

it is possible to choose Irequal to I,. With /requal to /, the frequency and phase detector
outputs can be combined digitally, and only one charge pump is required (digital
combiner Figure 6-1).

6.6. FREQUENCY LOOP FILTER

A possible system for implementing the disturbance reduction scheme outlined in the
previous section, is to employ Binary Rate Multipliers (BRM) [55]. Also it is
advantageous to include a pole @, in the pulse spreading system, forming a low pass
filter. The digital low pass filter limits the bandwidth of the frequency loop, helping to
decouple it from the dynamics of the phase loop.

‘Operational digital’ techniques [55], can be used to provide an implementation of the
pulse spreading system, that also has the characteristics of a low pass filter. The detailed
development of a suitable Binary Rate Multiplier based digital filter with one pole is
given in Appendix C. The structure of the BRM based digital filter is shown in
Figure 6-3. Note that this BRM based digital filter corresponds to the digital filter block
in Figure 6-1.
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dr=1
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Figure 6-3. Binary Rate Multiplier {BRM) based system to implement pulse spreading with pole. The
pulse spreading significantly reduces the frequency detector disturbances on the phase loop. Note that

this BAM based system is the digital filter biock in Figure 6-1.

6.7. EXPERIMENTAL RESULTS FOR SONET STS-3C CLOCK RECOVERY

The digital implementation of the SFPLL was used as the basis for a clock recovery
system that meets SONET STS-3¢ specifications [38]. The SONET STS-3c clock
recovery system was constructed using a field programmable gate array for the digital
circuits. The VCO used was an integrated circuit multivibrator with a large gain (K,) of
106 MHz/V, and a poorly specified free running frequency. A version was also
integrated 1n a digital application specific integrated circuit. The digital integrated
circuit, integrated functions ranging from clock recovery, SONET framing, to

asynchronous transfer mode cell switching.

Experimental results on the performance of the system are shown in Figure 6-4 and
Figure 6-5. Figure 6-4 shows that the SFPLL can be designed to limit the peaking in the

transfer function to meet the standards requirement,

A version of the SFPLL which had the frequency loop bypassing R and the output of
the digital filter feeding directly into C was built. This version requires two current
pumps but the phase disturbance caused by pumping current through R (6-14) is
avoided. In Figure 6-5 the reduction of frequency loop induced noise for the version

which bypasses R can be clearly seen.
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6.8. SUMMARY

In this chapter it was identified that the rotational frequency detector has large phase
quantization. Also, it was identified that this large phase quantization causes significant

disturbances on the SFPLL phase loop.

A digital filter method was proposed to mitigate these disturbances, and also decouple
the dynamics of the phase loop from the frequency loop. The parameters of the digital

filter were determined from the SFPLL system requirements.

The SFPLL implementation was experimentally demonstrated in a clock recovery
system that met SONET STS-3c specifications [38]. The SFPLL based clock recovery
system provided accurate free run frequency and a confined locking range at low cost.
Additionally, different data rates can be accommodated with the same VCO by simply

changing the reference frequency, or by adding an offset in the frequency loop.

A digital frequency loop delivers great precision in control of the SFPLL frequency.
However, in this implementation the frequency loop introduced noise into the SFPLL
output clock. Other SFPLL applications will typically have greater spectral purity
requirements for the SFPLL output clock than clock recovery. Although the noise
introduced by the digital frequency loop can be made small for a highly damped,
narrow bandwidth loop (Figure 6-5).



7

Conclusion

7.1. FURTHER WORK

In this section some suggestions are given for further research work to answer questions

ansing from this thesis.

In Chapter 4 the precise digital frequency detector (PDFD) was experimentally
demonstrated resolving phase movements down to 20 pico seconds. The time resolution
limits of the PDFD have not been determined, given the particular technology and other
factors such as signal to noise levels. Knowledge of the time resolution limits of the
PDFD and the limiting causes will likely enable the design of PDFD systems with time

resolution limits much smaller than 20 pico seconds.

Hence, a suggestion for further work is to determine the time resolution limits of the

PDFD when it is implemented in a given technology.

It may be possible to extend the PDFD technique to other quantized repetitive
waveforms. The extended PDFD technique may provide a way to obtain finer phase

quantization.

How the PDFD fits into contemporary theories of sampling, demodulation and signal

processing, should be investigated.

For the steered frequency phase locked loop (SFPLL, Chapter 3) it was assumed that
the frequency detector quantization was small and bandwidth large. This allowed the

frequency detector to be considered ideal. However, where the SFPLL phase tracking

98
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bandwidth needs to be large it may be difficult to obtain a frequency detector that can

be considered ideal.

Hence, a suggestion for further work is to determine the exact behaviour of the SFPLL

when the frequency detector can no longer be considered ideal.

7.2, CONCLUSION

A new method has been presented to measure small frequency differences between a
reference square wave and a signal square wave. The method called the PDFD involves

the use of a large number of simple frequency detectors each with different start phases.

The PDFD has the following important advantages over current techniques of

frequency measurement:

»  Itcan be constructed from simple digital components such as logic gates and

flip flops.

*  Small phase movements between the signal and reference square waves can

be detected, even when the PDFD is clocked at low rates.
»  Finally, the PDFD has no frequency offsets.

The operating limits of the PDFD were derived. It was found that the allowable
deviation from the nominal frequency of the signal being measured was approximately
proportional to 1//2. That is, approximately proportional to the square of the smallest
measurable phase movement. Hence the PDFD is most suitable for measuring the

frequency of narrow-band signals.

The spectral characteristics of the frequency estimator output by the PDFD were also

derived.

The PDFD was experimentally demonstrated in two applications: FM demodulation
and frequency synthesis. These applications demonstrated that the PDFD can be used to

provide elegant and integrable solutions to some common problems in electronic
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systems. The PDFD was able to resolve small phase movements in a high frequency

signal that corresponded to 20 pico seconds.

The PDFD method was demonstrated to provide an improvement over current all
digital frequency measurement techniques for narrow-band signals of several orders of

magnitude.

A new phase tracking system, the SFPLL, has been described, which introduces a

dominate local reference frequency and frequency loop into a PLL (phase locked loop).
The SFPLL has the following important advantages over PLLs:
»  The centre frequency of the SFPLL can be precisely controlled.

»  The range of frequencies to which the SFPLL can lock can be confined to a

desired small fegion around the accurate centre frequency of the SFPLL.
»  Bandwidth changes due to component variations can be reduced.
*  The effects of VCO phase noise can be reduced to insignificant levels.

A small signal linear model for the SFPLL was presented and some general properties
of SFPLLs derived. In particular it was shown that the locking range of the SFPLL

could be restricted to a range of frequencies close to the reference frequency.

The general non-linear behaviour of an important class of SFPLL was examined in
detail and shown to be identical to types of PLLs. Simulations were performed to
demonstrate that the SFPLL performance with the input signal corrupted by noise is

predicted well using established techniques.

It was shown that the SFPLL can reduce the effect of VCO phase noise to an
insignificant level, and also reduce the dependence of the bandwidth on component

parameters.

A digital implementation of the SFPLL was presented. The implementation consisted

almost entirely of components made with digital integrated circuit technology, allowing
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high integration and low cost. Furthermore the digital implementation provides high

accuracy in the frequency loop components of the SFPLL.

A prototype SFPLL was constructed and the experimental results obtained supported

the analysis predictions of phase noise reduction and bandwidth changes.

The SFPLL was experimentally demonstrated in two applications: Very narrow
bandwidth phase locking systems and FM demodulation. In particular the very narrow
bandwidth phase locking system demonstrated the ability of the SFPLL to reduce VCO

phase noise effects by several orders of magnitude.

In summary, the techniques presented in this thesis provide significant improvements in
the ability of systems implemented in digital integrated circuit technology to: Measure
and control phase and frequency of narrow band signals; Implement high performance

phase tracking systems.
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A

PDFD Derivations

Al INTRODUCTION

This appendix details some derivations relating to the PDFD (Chapter 2).

A.2. SIMPLE FREQUENCY DETECTOR OPERATION

The operation of the simple frequency detectors described in Chapter 2, Section 2.3, is
characterized by the key equations (2-7) and (2-10). In this section these two equations

will be derived.

k=1 case. Considering first the case where every sample is used. The situation is

illustrated in Figure A-1. At the a' sample instant T dyr1s given by

Tag = 7— 7+ -2 (A-1)

Note that here the sample which occurs at time zero is denoted the 0! sample, with

2nd 3I‘d

subsequent samples being the 15 etc.

time =0 I/fs

| -l
signal square wave ‘ | T aigr2

of freq. f; divided iR . [ | i ——

by2 iy Taiy e

sample instants t f s T T T T

at frequency f, 77,

Y

H

Figure A-1. Slip events for k=1
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From Figure A-1 it is clear that the first slip event occurs on the sample instant after the
condition (A-2) is satisfied. Let the sample instant where condition (A-2) is satisfied be

the alth sample. a; can be determined (A-3)

1
T > =
d:j]'j;

1_elﬂ1f
s b= ]‘ .

From the properties of the floor function (| x ), the following relation is true

I—Glnlt l_e:mt 1'_'9”1” 1 A4
c[f—fJ fc[f—f,] f{f}-fs] ' a9

From which follows

(A-2)

(A-3)

With ¢, being given by (2-7). Hence the first slip evént will be reported on the sampling
instant following ¢; (2-7), that is, the (al+l)th sample.

Now considering the mth slip event. The condition which must be satisfied by the amth

sample is

1 ~1
T o> =+ 2 A-6
diff f fs ( )

a, can be found to be

m_elﬂl'!
" [f 7 JJ ~

and in a manner similar to a the following relation is found to be true
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a a +1
Py <2

A

(A-8)

Hence the m™ slip event will be reported on the sampling instant following ¢,, (2-7),

that is, the (a,,+1 )th sample.

k >1 case, k odd, p even. Considering now the case where only every o sample of

the signal is used. Initially only 4 odd and p (2-9) even is considered. The situation is
illustrated in Figure A-2. At the o' sample instant 7, difr1s given by

i

k— F k ) + eim’t

Loy = a(T -7 (A-9)

_ cmp_fs e::m'r
T =)

‘ timel‘r=0 (k—p)/f;. .
signat square wave __f':_ -
g;fg—:-q.fs divided al e:_w W__
sample instants t f”" j
at frequency £, ‘ k/f

Y

Figure A-2. Slip events for k>1

Now considering the m™ slip event. The condition which must be satisfied by the amth

sample is

m_flemo ] (A-10)

T > = —k|—7F
W-f N e

a,, can be found to be

_ fc m_ejnit
a, = [[ILTP“JZJJ (A-11)

From the properties of the floor function the following relation is true
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fc m_einil f::' m_ejnit f:: m_e;:rzit
|(‘E1fc—m,, 7 J‘ < (E{fc_mp —f;]< MILTM =7 JJ i (A-12)

From which follows

amG{jStm<(am+l)(£) (A-13)

With z,, being given by (2-10). Hence the m™ slip event will be reported on the

sampling instant following ¢,, (2-10), that is, the (a,,+1)" sample.

k >1 case, k odd, p odd. Considering now the case where & is odd and p is odd. The
number of signal square wave f; clock periods between sample instants (k-p) will be
even. Whereas in the previous cases the number of clock periods between sample

instants have been odd.

For k odd, a slip event is defined as two consecutive samples having the same value.
With k-p even, it is clear that slip events will be reported on all sample instants except

those sample instants following #,, (2-10). That is, the (a,,+ 1) sample.

k >1 case, k even. For k even, a slip event is defined as two consecutive samples
having the different values (Chapter 2). In a manner similar to the k odd case, it can be
shown that for k even, p even, the m™ slip event will be reported on the sampling instant
following ¢,,. Furthermore for & even, p odd, slip events will be reported on all sample

instants except those sample instants following z,,,.

A3. OPERATING LIMITS

It is shown here that the PDFD characteristic (2-15) is bounded by two quantizers. In

particular the case of / successive samples being used is dealt with.

In Chapter 2, Section 2.4, with the G::m-, uniformly distributed over [0,1) the PDFD
characteristic was said to be a quantizer. However, when f; is not equal to f, the an it
i

will not be uniformly distributed. For the case of £; slightly greater than £, the 8, ,, will

be less than their nominal values. Each 6"

inie Will be perturbed from its nominal position
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by A(B{ ). The 6! . of the last simple frequency detector is perturbed most and is
q y P

denotedmi;max. (N(;:;[ A(G::m-,) is negative for f; greater than f)). A(B::m-,) can be
determined from (2-19) and examining Figure 2-3.
A0 = i8 (A-14)
where
aatg{y_%) (A-15)
Amax = max A(8},;) = (I-1)5 (A-16)

z

i
init

Using the uniformly distributed 6;,. (2-14), and the perturbations (A-14), equation

(2-15) can be expanded to give an equation of the following form

1 1
eou: = ?(Leslip+¢0J+tes1ip+¢0+?+8J+"‘ (A-17)

-1
+ leslip + oy + T +(I- I)SJJ
Employing the following identity (A-18) from [20], bounds on 9, can be found.
1 m~1
Lmx] = LxJ+Lx+-m-J+...+Lx+TJ, meZxeR (A-18)

Where Z denotes the set of integers and R the set of real numbers. For the case of f;

slightly greater than £, the 0, , is bounded as follows:

[_l(eslip + (bO‘_ IAmaxDJ <9 < I_l(eslip + 4)0)_'

{ = Mout— 7 (A- 19)
The lower bound (A-19) equals 6, when
-1
e S A L L (A-20)

The upper bound (A-19) equals 0, when
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Opip+bo = W (A-21)
For the case of f; slightly less than f,, similar bounds can be constructed to the f; slightly

greater than f, case. The result of both sets of bounds is that for f; close to f,, 8, , 15

out

bounded as given in (2-20).

As was mentioned in Section 2.5, f; needs to remain sufficiently close to £, so that the
magnitude of A, is less than % Setting A, equal to some fraction of % v (2-24) it
is possible from (A-16) to obtain fi,;, (2-22) and fie (2-23) which identify the

operating range for f; (2-21).

A4, INSTANTANEOUS ERRORS

Considering the case of f; slightly greater than f}, and p equal to one. The spaces

. . ) l
between the 8;,,, deviate from the ideal 7 and are as follows

Oinic 10 Oy = %+6 ie[0,1,...,1-2] (A-22)
11 0 1
Biniy 10 O = 3-(1=1)8 (A-23)

Where § in this section is defined for the generalized sampling rate (see Section 2.6):

i

These unevenly spaced 0 init

cause the slip event instants to be unevenly spaced in time.
These unevenly spaced slip event instants are illustrated in Figure A-3. The first error to
occur for f; slightly greater than f,, is the reporting of |_N . eJ -1. The frequency fimax/

(2-37) at which the reporting of |_N 4 J-l will just start to occur can be found by

ve

solving the following equation for £, ..

(Nave | - 1)G 4 5)+ %-(z- 1)
f;:mp _fsmaxl

(A-25)

NS
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S+ 1/1 (=18 +1/1
fcmp_-{s fc:np_fs
slip event i

instants X X X X x |x X
]

Y

Figure A-3. Unevenly spaced siip events causing instantaneous measurement error

(A-25) is obtained by noting that the reporting of LN - J-l slip events starts to occur

ve

when the period ; Just falls inside I_N av eJ +1 slip event mstants. The spaces between
C

these | N,

space of (A-23).

J+1 slip events will be as follows: LN v eJ-l spaces of (A-22) and one

|_Nave_l = Nnom'"l (A-26)

Equation (A-25) can be simplified by employing {2-11), (2-28), (2-29), (A-24), (A-22),
(A-23) and assuming (A-26)

(kn_ZI_l)fr_fsmaxl 1 = kf;_f;'maxl

BT 7 (A-27)

from which f;,,,,; can be found (2-37).

For the case of f; slightly less than f, and p equal to one, the spaces between the 9::,t it
will be as given in (A-22) and (A-23), note that & is positive for f; less than /.. In a
stmilar manner to the f; slightly greater than f, case, the frequency f,,,;,,; (2-38) can be

found.

f

For the cases where p is greater than one, the ordering of the 0,,;, is somewhat more

complex than the p equal one case. But, with p chosen according to (2-39) the spaces

can be readily found. Again they deviate from the ideal ! and are as

between the 9‘: 7

init

follows
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(p-)i+1

- i — +1
Ouito 0 ” =7+ L8 e[ lrm1] (A29)
(p-i)l+i+. (p—i—NDi+i+1 |
S o1 (-1
O’ 100, ° = 5 (A-29)

ie[l,2,...,p—1], je[O0,1,...,r—1]

0o =1 (=D (A-30)

0 init ! P

init

i
init

in time. Employing (2-10), (2-11), (2-13), (2-28), (A-24), (A-28), (A-29) and (A-30) the
frequency fimaxp (2-40) can be found.

These unevenly spaced 0,,,, again cause the slip event instants to be unevenly spaced

In a similar manner to the f; slightly greater than £, case, the frequency fi;,, (2-41) can
be found.

A.5. PDFD OPERATION FOR TIME VARYING FREQUENCY

The derivations presented in this section extend the principle finding of Chapter 2 to the
case of the signal square wave frequency being a function of time f(¢) . It is shown

here that if the function f,(¢) is bounded as follows

Ssmin ST S fomax (A-31)

with Somin 4 oo, as given by (2-22)(2-23), (2-30)(2-31), or (2-34)(2-35). Then the

PDFD characteristic (2-15) relating 8,,, to 6 will be bounded by the two

slip
quantizer functions given in (2-20).

This section is organized as follows: Firstly the operation of the simple frequency
detectors is derived in Section A.5.1. Then in Section A.5.2 the entire PDFD, consisting

of an array of simple frequency detectors is described.
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A5.1. Simple Frequency Detector Operation

Here key equations equivalent to (2-7), (2-10) of Chapter 2, describing the simple
frequency detector operation, are derived. As in the constant f,(f) case, a simple
frequency detector that uses every sample of the signal square wave is presented first.
This derivation of the simple frequency detector which uses every sample provides a
base for the more complex derivation of the simple frequency detector which uses every

P sample.

Simple Frequency Detector using every Sample. Consider the phasor diagram of
Figure A-4. A signal phasor representing the signal square wave is indicated by a solid
vector in Figure A-4. A sampling phasor representing the sampling process is shown

with a dashed vector. The phasors are shown at time =0.

In this appendix we adopt the convention that phasors rotate once around the unit circle
when their phase increases by one. This convention is consistent with the way the phase

of a square wave was defined in Chapter 2 (2-2).

Each time the sampling phasor passes through the origin or zero point a sample instant

occurs and a sample is taken.

Figure A-4, Phasor diagram for Simple Frequency Detector using every sample

The actual waveform sampled is a divided by two in frequency version of the signal
square wave. As the signal phasor passes through the origin or zero point, the waveform

which will be sampled is toggled from zero to one or visa versa.
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As previously described a slip event occurs when two samples have the same value.
Two samples having the same value will occur if the sampling phasor overtakes the

signal phasor between the two sample instants.

The time instants ¢, at which the sampling phasor overtakes the signal phasor can be

found to be:
m—G’: . +0 (¢
t, = “”} s ”‘), meZ (A-32)
Where
‘M
0,(1,,) = [fi(x)ax (A-33)
0

Slip events will be reported on the sampling instants following the time instants ¢,
given in (A-32).

Simple Frequency Detector using every k™ Sample. Consider the phasor diagram
of Figure A-5. Again, the signal phasor is indicated by a solid vector in Figure A-5. A
phasor representing the sampling process is shown with a dashed vector. The phasors

are shown at time =0.

o

g

init

VA

Figure A-5. Phasor diagram for Simple Frequency Detector using every k'™ sample
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Note that the sampling phasor now rotates at frequency f Each time the sampling

phasor passes through the origin a sample instant occurs and a sample is taken.

Again, the actual waveform sampled is a divided by two in frequency version of the

signal square wave.

We will assume at this point that f,(¢) is bounded as follows:

#(1-22 )< < (1-8) (A-34)

With f.(#) bounded as in (A-34) the signal phasor will do k—p — 1 full rotations plus

a fraction of a rotation, denoted 9, in % seconds. This 04 1s found to be
Je

k
2

Opac = [£(0) —{—+dt (A-35)
0

As far as the sampling process is concerned, the signal phasor can be considered

. . .k . .
equivalent to a phasor which rotates only O g i 7 seconds. That is a phasor with
[

instantaneous frequency:

£o-r{1-2¢) (A-36)

This lower frequency phasor will be called the fractional phasor.

As in the case of the simple frequency detector using every sample; Each time the
signal phasor passes through the origin the waveform which will be sampled is toggled
from zero to one or visa versa. Between sample instants the waveform to be sampled
will toggle at least k—p —1 times, as the signal phasor does k—p—1 full rotations in
J seconds. If the sampling phasor overtakes the fractional phasor between sampling
instants then the waveform to be sampled will toggle only k—p—1 times between
sampling instants. Otherwise, if the sampling phasor does not overtake the fractional

phasor the waveform to be sampled will toggle k—p times between sampling instants.



APFENDIX A: PDFD DERIVATIONS 119

It should be noted that sampling phasor always rotates faster than the fractional phasor

as with f,(#) bounded as in (A-34), the following is true:

0<f(5)— J;(l -p—:c'lj<% (A37)

The time instants ¢, at which the sampling phasor overtakes the fractional phasor can

be found to be:

m— e;m’z + es(tm)
;= A-38
m Tors (A-38)

For the simple frequency detector using every #h sample, a slip event is said to have

occurred when:
. Case k—p even, when two consecutive samples have different values
»  Case k—p odd, when two consecutive samples have the same values

These slip events will be reported on the sample instants following the time instants ¢,,
defined in (A-38).

The definition of slip events given above is consistent with the definition of slip events

for the modified simple frequency detector of Chapter 2, Section 2.3.

A5.2. The Array of Simple Frequency Detectors

As was explained in Chapter 2 the PDFD consists of a phased array of these simple

frequency detectors.

Assume simple frequency detector O starts operation at time ¢ = 0. The other simple
frequency detectors will start at progressively later times. Let the start time for simple

frequency detector i be denoted t;.

The total number of slip events that will have been reported after the »'" reporting

period of the PDFD by a particular simple frequency detector can be found from (A-38)
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Vc?nk ~ (93[’;_" . :j;)— es(:f;)j + ejm_,J (A-39)

Define an average signal square wave frequency fs as follows:

nk
£, = es%) (A-40)
Je

For every simple frequency detector i the accumulated reported slip events given in

(A-39) can be written as

B_f(f;:mp ”f_s) + G::m-,—A}J (A1)
Where
nk+ i .
T f
a0 [0 (Bho - [ wa-fimea o
nk 0
-

Assume the sampling frequency f, and/or / sampling instants used have been chosen to
obtain uniformly distributed Bi:n ;¢ when (1) equals f, . (see Chapter 2, Section 2.5).
With f/(f) notequalto f, the 6! . will be perturbed from their nominal values. Each

init
9::,, i Will be perturbed from its nominal position by A(B::n i) -
2
A} = [f— S (A-43)
0

Furthermore
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L)

Je

AO)—8= [ fi—fi(x)dx (A-44)
nk
7

The accumulated reported slip events for simple frequency detector i (A-41) can also be

written as
nk Y, i i A-45
E(fcmp ﬂf:‘;) Bfr + (A(eini[) —Af) ( 8 )

Where Gfr is the value of
appropriate member of the set (2-14).

if () were exactly equals to f,, that is 9},, is the

init

0,,, can now be obtained:

Opur = %_ZL 8,5y + 67+ (A(B,;)— ) | (A-46)
where

Outp = T Vomy ) = f”“”—e () (a-47)

In a manner similar to that given in Section A.3 8, can be shown to be bounded by

two quantizers:

I_l(esh'p + d)O— IAmaxD_] < < L!(esh‘p + q)() + !‘Amax| )J

] = Yout— ]

(A-48)

Where A, is defined here to be the maximum of the right most term in the floor

function of (A-46), that is

Bypas = max A8 — Al (A-49)

max
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By setting A, to some fraction y of 1//, as was done in Chapter 2, the range of

frequencies around f, which f,(¢) can be in can be found (A-31).

From (A-44) it can be seen that the largest IA( 9::,“-,) - Aﬂ occurs when ti is the greatest

and f,(¢) equals one of the frequency bounds or The greatest value for

smin smax*

ti occurs for simple frequency detector /— 1 and in Chapter 2 this particular ti was
denoted by T

max -

i
ini

So the largest value of |A(9 0 -—Ajl and hence A, . is given by

Amax = Tmax(f;'_j;'min) = Tmax(f;'max “fr) (A‘SO)

Hence from (A-50) the frequency bounds f

omin a0d £ can be determined in the

SMax

same manner as in Chapter 2.

In summary, with f (¢) bounded as in (A-31), the PDFD characteristic will be bounded
by the two quantizer functions given in (A-48) and (2-20) of Chapter 2.
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Eigenfunctions of Fokker-Planck Operator

B.1. INTRODUCTION

This appendix contains details relating to the non-linear behaviour of the SFPLL in

noise (Chapter 3).

A numerical method called the Matrix Eigenvalue Approach [36][56][57][58] is
employed to obtain the eigenvalues and eigenfunctions of the Fokker-Planck operator of
the imperfect integrator PLL. From the eigenfunctions the stationary probability density
functions (PDF) of the state variables (6, , x;) can be obtained. Importantly, the
eigenvalues provide information on the cycle slip rate of the PLL, which is the most

important single performance measure.

For a description of the Matrix Eigenvalue Approach [36] should be consulted.
Presented in this appendix are some imperfect integrator PLL specific derivations,

necessary to empioy the Matrix Eigenvalue Approach.

B.2. FOKKER-PLANCK OPERATOR

From (3-36), (3-37) , results presented in [36] and with the assumption
g'(0,) = sin(B,) (B-1)

, the Fokker-Planck operator L for the imperfect integrator PLL can be found to be

123
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7] . A . 0 o
L= a—ea((zc:,—ﬂ)smea #xp= 52 |- (1 =208+ B)sind 2=+ PG (B2)

(2¢,-B)* 52
+v—%—-—%—v(2c,— BIY(1-2¢,8 + 855

£

2
8* +Y(1—2C,l3 +8Y) 5?2
eaxl 2 6x,2

Where
Aw = W;— g (B-3)

y = : (B-4)

B 1P
PQ{I C!+ 4C?J

and p 1s the signal to noise ratio in the loop [36].

Employing the set of base functions recommended in {36]

(2,00} = {exp(fﬂ%egj} (B-5)

2
{h, (xp0)} = 1 ]/Zexp(wa%JHm(x,, Q) (B-6)
. I:(?.a)mm! Jg]

With the functions H,, being closely related to the Hermite polynomials [59].

m
H,(xp0) = (—H"’exp(ax?)ai,,,exp(—axf) (B-7)
x;

The image z,(8,)4,,(x;,0) is found to be
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L[z,(0,)h,(x, a)] = ‘25 E (DA, (xp )

- M
) 5L Zn- w8, (x), )

E [o(m+1)
2 2

2
+@(B LE zay)z,,(ee)hm (@)

+jj%(\/% — Y%é"\/zam}n(eg)hm _1(xp @)

zn—M(es)hm +1 (‘xl’ o)

2 2\ M

125

(B-8)

2
-{E_ D (n)z—ayE2(2m+ I)—_]Am;[ 2(8)h,, (x;, o)

o /2 Gl D) Fo @155 )
A+ DCERIES B ) ZCAIMEN

2

E am
_Z 2 n +M(e )km l(xb a‘)

n+M
+D—7r M n+M(9 )h (xtn C"«)

E jao(m+1
+2_j,,f(T)zn (0 (X 0)

Where for convenience

D =12¢,-P

E = 1-24B+p

(B-9)

(B-10)

With (B-8) the eigenvalues and eigenfunctions of the Fokker-Planck operator (B-2) can

be found by the Matrix Eigenvalue Approach outlined in [36].
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Development of a BRM Based Digital Filter

In this appendix a Binary Rate Multiplier (BRM [55]) based digital filter that has one
pole is developed. The digital filter is employed in the SFPLL implementation given in
Chapter 6.

BRMs take an n bit binary number, B (between 0 and 2”-1), and produce an output

pulse stream which has a ratio of ones to zeros given by

(C-1)

" w

n is related to Np

N, = 2" (C-2)

A single pole system with input u(¢), and output () is described by the following

differential equation
dy = @,u(f)dt—w,y(2)dt (C-3)

A system of integrators and BRMs that implements (C-3) is shown in Figure 6-3. The
BRM based system runs off a clock of period N, 2m/@w, The integrator block
accumulates the n bit value y(f), which is then fed into a BRM to produce the output
pulse stream. The integrator block is implemented with an up down counter. The pulse
stream from the frequency detector forms the input w(#)dt. The fractional multiplier o' P
is assigned a value (C-6) so that the BRM based system has an identical time response

as the system described in (C-3).

126
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®’, is determined as follows. For the continuous time system, from (C-3), in time dr

seconds y(¢) is reduced by
w y(t)dt (C-4)

In the BRM system, y(¢) is reduced by o’ /() when o' ¥(f) pulses leave BRM B. For
@' ¥(¢) pulses to leave BRM B requires y(#) pulses to be input to BRM B. To input y(z)
pulses requires 2" clocks (» is the length of BRM C), which is a time of 2"N,2n/o,,

seconds.

In the BRM system dt seconds corresponds to d¢/(2"N,2n/w,) cycles of BRM C and

hence in df seconds y(¢) is reduced by

dt
o' y(t) T (C-5)
2°N,=—
(DO
Equating (C-4) and (C-5) and substituting in (C-2) obtain
. 2w
®', = mprNwa.- (C-6)

The output of the frequency detector is in pulse rate form and is fed directly into the
system as u(t)dt. Every increment in y(f) produces /o', pulses at the system output,
before that increment in y(f) is nullified by a pulse at the negative input of the integrator
block. To produce an increment in y(f) requires /o', pulses from the frequency
detector. The pulse spreading scheme requires that N, pulses be generated from every
frequency detector pulse though. N pulses from every frequency detector pulse can be
achieved by either multiplying the input pulse rate by N,. Or simply changing the
fractional multiplier of BRM A 'y, to @', N, that is don’t divide by so much. The latter
is the more preferable method, as no extra hardware is required. Though because the

new fractional multiplier must be less than or equal to one, a new constraint is created:
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o,V <1 (C-7)

From (C-6) and (C-7) the following relating N, to other system parameters is obtained

®
N_< 2 (C-8)
P ZnNstmp
If
cn'pNs =1 (C-9)

then BRM A is eliminated and the frequency detector output is fed directly into the
integrator. In general, as N, has to be a power of two w, will have to be modified to
satisfy (C-9)

®

- a
®» ~ 2aN.NN, (C-10)
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