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Backward parabolic Ito equations and
the second fundamental inequality
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Abstract. Regularity of solutions is studied for backward stochastic parabolic Ito equa-
tions. An analog of the second fundamental inequality (second energy estimate) and the
related existence theorem are obtained for domains with boundary. This result leads to a
representation theorem for non-Markov processes in bounded domains and other applica-
tions.
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1 Introduction

The paper studies stochastic partial differential equations (SPDEs) in a cylinder
D�Œ0; T �with a Dirichlet boundary condition on @D, for a regionD � Rn. We in-
vestigate regularity properties of the backward SPDEs, i.e., equations with Cauchy
condition at the final time T . The difference between backward and forward equa-
tions is not that important for the deterministic equations since a deterministic
backward equation can be converted to a forward equation by a time change. It
cannot be done so easily for stochastic equations, because we look for solutions
adapted to the driving Brownian motion. That is why the backward SPDEs re-
quire special consideration. The most common approach is to consider backward
Bismut–Peng equations where the diffusion term is not given a priori but needs
to be found. These approach was introduced first by Bismut [3] for ordinary lin-
ear backward stochastic equations and extended by Pardoux and Peng [26] on
more general non-linear equations. The backward SPDEs with similar features
were widely studied (see, e.g., Hu and Peng [18], Dokuchaev [7, 9], Yong and
Zhou [31], Pardoux and Rascanu [27], Ma and Yong [23], Hu, Ma and Yong [17],
Confortola [5], and the bibliography given there). Backward parabolic SPDEs rep-
resent analogs of backward parabolic Kolmogorov equations for non-Markov Ito
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70 N. Dokuchaev

processes, including the case of bounded domains, so they can be used for charac-
terization of distributions of the first exit times in non-Markovian setting, as was
shown by the author [7,13]. A different type of backward equations was described
in Chapter 5 of Rozovskii [28]. Forward SPDEs were also widely studied (see,
e.g., Alós, León and Nualart [1], Bally, Gyongy and Pardoux [2], Chojnowska-
Michalik and Goldys [4], Da Prato and Tubaro [6], Gyöngy [16], Krylov [20],
Maslowski [24], Pardoux [25], Rozovskii [28], Walsh [30], Zhou [33], Dokuchaev
[8–10], and the bibliography given there).

For linear PDEs, existence and uniqueness at different spaces is expressed tra-
ditionally via a priori estimates, when a norm of the solution is estimated via a
norm of the free term. For the second order equations, there are two most impor-
tant estimates based on theL2-norm: so-called “the first energy inequality” or “the
first fundamental inequality”, and “the second energy inequality”, or “the second
fundamental inequality” (Ladyzhenskaya [21]). For instance, consider a boundary
value problem for the heat equation

u0t D u
00
xx C '; ' D f 0x C g;

ujtD0 D 0; uj@D D 0; .x; t/ 2 Q D D � Œ0; 1�; D � R:
(1.1)

The first fundamental inequality for this problems is the estimate

ku0xk
2
L2.Q/

C kuk2L2.Q/
� const .kf k2L2.Q/

C kgk2L2.Q/
/:

Respectively, the second fundamental inequality is the estimate

kuk2L2.Q/
C ku0xk

2
L2.Q/

C ku00xxk
2
L2.Q/

� const k'k2L2.Q/
:

Note that the second fundamental inequality leads to an existence theorem in the
class of solutions such that u00xx 2 L2.Q/. On the other hand, the first fundamen-
tal inequality leads to an existence theorem in the class of solutions such that
u0x 2 L2.Q/, i.e., with generalized distributional derivatives u00xx only. For the case
of one-dimensional x 2 D D R (i.e., for the state domain without boundary), the
second fundamental inequality can be derived from the first fundamental inequal-
ity; it suffices to apply the first fundamental inequality for the parabolic equation
that can be derived for u0x (given that the coefficients are smooth). For the vector
case of x 2 D D Rn, it would be more difficult since u0x is a vector satisfying a
system of n parabolic equations. For the case of a state domain with boundary, this
approach does not work even for one-dimensional case, since the boundary values
for u0x on @D are unknown a priori. That is why the second fundamental inequality
has to be derived separately using special methods.

For forward parabolic SPDEs, analogs of the first and the second fundamental
inequalities are known. These results are summarized in Lemma 3.5 below. The
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Backward parabolic Ito equations 71

first fundamental inequality for forward SPDEs in bounded domains with Dirichlet
boundary condition was known for a long time (see, e.g., Rozovskii [28]). More-
over, similar results are also known for forward SPDEs of an arbitrary high order
2m � 2; in this setting, the analog of “the first fundamental inequality” is an esti-
mate for Eku. � ; t /k2

Wm
2 .D/

(Rozovskii [28]). In addition, a priori estimates with-
out Dirichlet conditions, i.e., in the entire space, are known for a general setting
that covers both first and second fundamental inequalities (Krylov [20]). On the
other hand, “the second fundamental inequality” for the problem with boundary
conditions was more difficult to obtain. Related complications were discussed in
Krylov [20, p. 237] and in Dokuchaev [10]. Kim [19] obtained a priori estimates
for forward parabolic SPDEs for special weighted norms devaluating the solution
and free term near the boundary. For the case of L2-norms, these estimates can
be interpreted as analogs of “the second fundamental inequality”; they are similar
to the estimate kr1u00xxkL2.Q/ � const kr2'kL2.Q/ for problem (1.1), where ri are
some weight functions such that ri .x/ ! 0 for x approaching @D. For the stan-
dard non-weighted Sobolev norms, the second fundamental inequality for forward
SPDEs in domain was obtained in Dokuchaev [10].

For the backward parabolic equations with Dirichlet boundary conditions, an
analog of the first fundamental inequality is known (Zhou [33], Dokuchaev [7]).
In fact, the duality relationship between forward and backward equations makes it
sufficient to prove the first fundamental inequality for any one type of these two
types of equations. (By the duality we mean equations (6.1) below connecting the
solutions of SPDEs (3.2) and (3.3) respectively.) However, this approach does not
work for the second fundamental inequality in a domain D with a boundary, since
it requires to study an adjoint equation with the free term taking values in the
space .W 2

2 .D//
� which is too wide. It was unknown if the second fundamental

inequality holds in this case.
In the present paper, we study again existence, uniqueness, and a priori esti-

mates for solutions for backward SPDEs. As was mentioned above, the first and
the second fundamental inequalities for the forward SPDEs had been proved, as
well as the first fundamental inequality for the backward SPDEs, so we concen-
trate our efforts on the remaining problem: to investigate if an analog of the second
fundamental inequality holds for the backward equations. We found sufficient con-
ditions that ensure that the second fundamental inequality and the related existence
theorem hold (Theorem 4.3). To ensure this regularity, we required additional Con-
dition 4.1.

As an examples of applications, a robustness property is established for back-
ward SPDEs in Section 5. In addition, the second fundamental inequality leads to
the representation theorem for non-Markov processes in bounded domains (Doku-
chaev [14]).
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72 N. Dokuchaev

This paper represents a revised version of the working paper [11]. We are happy
to note that, using a different approach, Du and Tang [15] obtained recently an
analog of Theorem 4.3 without Condition 4.1.

2 Definitions

2.1 Spaces and classes of functions

Assume that we are given an open domain D � Rn such that either D D Rn or
D is bounded with C 2-smooth boundary @D. Let T > 0 be given, and let

Q
�
D D � .0; T /:

We are given a standard complete probability space .�;F ;P/ and a right-con-
tinuous filtration Ft of complete � -algebras of events, t � 0. We are given also
an N -dimensional process w.t/ D .w1.t/; : : : ; wN .t// with independent compo-
nents such that it is a Wiener process with respect to Ft .

We denote by k � kX the norm in a linear normed space X , and we denote by
.� ; �/X the scalar product in a Hilbert space X .

Below, we list some notations for spaces of real-valued functions.
Let G � Rk be an open domain. Then W m

q .G/ denotes the Sobolev space of
functions that belong to Lq.G/ with the distributional derivatives up to the mth
order, q � 1.

We denote by j � j the Euclidean norm in Rk , and we denote by NG the closure of
a region G � Rk .

Let H 0 �
D L2.D/, and let H 1 �

D VW 1
2 .D/ be the closure in the W 1

2 .D/-norm
of the set of all smooth functions u W D ! R such that uj@D � 0. Let

H 2
D W 2

2 .D/ \H
1

be the space equipped with the norm ofW 2
2 .D/. The spacesHk are Hilbert spaces

and Hk is a closed subspace of W k
2 .D/, k D 1; 2.

Let H�1 be the dual space to H 1, with the norm k � kH�1 such that if u 2 H 0,
then kukH�1 is the supremum of .u; v/H0 over all v 2 H 1 such that kvkH1 � 1.
The space H�1 is a Hilbert space.

We will write .u; v/H0 for u 2 H�1 and v 2 H 1, meaning the natural exten-
sion of the bilinear form from u 2 H 0 and v 2 H 1.

Denote by `k the Lebesgue measure in Rk and denote by Bk the � -algebra of
Lebesgue sets in Rk .

We denote by P the completion (with respect to the measure `1 � P) of the
� -algebra of subsets of Œ0; T � � �, generated by functions that are progressively
measurable with respect to Ft .
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Backward parabolic Ito equations 73

Let Qs
�
D D � Œs; T �. For k D �1; 0; 1; 2, we introduce the spaces

Xk.s; T /
�
D L2

�
Œs; T � ��;P ; `1 � PIHk

�
;

Zkt
�
D L2

�
�;Ft ;PIHk

�
;

Ck.s; T /
�
D C

�
Œs; T �IZkT

�
:

Furthermore, we introduce the spaces

Y k.s; T /
�
D Xk.s; T /\ Ck�1.s; T /; k � 0;

with the norm kukY k.s;T /
�
D kukXk.s;T / C kukCk�1.s;T /:

In addition, we will be using the spaces

Wk
r

�
D L1

�
Œ0; T � ��;P ; `1 � PIW k

r .D/
�
; k D 0; 1; : : : ; 1 � r � C1:

The spaces Xk and Zkt are Hilbert spaces.

2.2 Stochastic integrals

Proposition 2.1. Let � 2 X0, and let ¹�kº
C1

kD1
� L1.Œ0; T � ��; `1 � PIC.D//

be a sequence such that all �k. � ; t; !/ are progressively measurable with respect
to Ft , and let k� � �kkX0 ! 0. Let t 2 Œ0; T � and j 2 ¹1; : : : ; N º be given. Then
the sequence of the integrals

R t
0 �k.x; s; !/ dwj .s/ converges in Z0t as k ! 1,

and its limit depends on �, but does not depend on ¹�kº.

Proof. The proposition follows from the completeness of X0 and from the equal-
ity

E
Z t

0

k�k. � ; s; !/ � �m. � ; s; !/k
2
H0 ds

D

Z
D

dx E
�Z t

0

�
�k.x; s; !/ � �m.x; s; !/

�
dwj .s/

�2
:

Definition 2.2. Let � 2 X0, t 2 Œ0; T �, j 2 ¹1; : : : ; N º. Then we defineZ t

0

�.x; s; !/ dwj .s/

as the limit in Z0t as k ! 1 of a sequence
R t
0 �k.x; s; !/ dwj .s/, where the se-

quence ¹�kº is as in Proposition 2.1.

Sometimes we will omit ! in equations.
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74 N. Dokuchaev

3 Review of existence theorems for forward and backward SPDEs

Let .x; t/ 2 Q, ! 2 �. Consider the functions

b.x; t; !/ W Rn � Œ0; T � ��! Rn�n;

f .x; t; !/ W Rn � Œ0; T � ��! Rn;

�.x; t; !/ W Rn � Œ0; T � ��! R;

ǰ .x; t; !/ W R
n
� Œ0; T � ��! Rn;

ˇi .x; t; !/ W R
n
� Œ0; T � ��! R

that are progressively measurable for any x 2 Rn with respect to Ft .
Consider the differential operators defined on functions v W D ! R

Av D

nX
i;jD1

@2

@xi@xj

�
bij .x; t; !/ v.x/

�
�

nX
iD1

@

@xi

�
fi .x; t; !/ v.x/

�
C �.x; t; !/ v.x/;

Bkv D �

nX
iD1

@

@xi

�
ˇk.x; t; !/ v.x/

�
C ˇk.x; t; !/ v.x/; k D 1; : : : ; N:

Here bij , fi , xi are the components of b, f , x.
In addition, consider the operators being formally adjoint to the operators A

and Bi :

A�v
�
D

nX
i;jD1

bij .x; t; !/
@2v

@xi@xj
.x/

C

nX
iD1

fi .x; t; !/
@v

@xi
.x/C �.x; t; !/v.x/;

B�kv
�
D
dv

dx
.x/ ˇk.x; t; !/C ˇk.x; t; !/ v.x/; k D 1; : : : ; N:

(3.1)

To proceed further, we assume that Conditions 3.1–3.2 remain in force through-
out this paper.

Condition 3.1 (Coercivity). The matrix b D b> is symmetric, bounded, and pro-
gressively measurable with respect to Ft for all x, and there exists a constant ı > 0
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Backward parabolic Ito equations 75

such that

y>b.x; t; !/ y �
1

2

NX
iD1

jy>ˇi .x; t; !/j
2
� ıjyj2

for all y 2 Rn, .x; t/ 2 D � Œ0; T �, ! 2 �.

Condition 3.2. The functions �.x; t; !/ and ˇi .x; t; !/ are bounded. The func-
tions

b.x; t; !/ W Rn �R ��! Rn�n;

f .x; t; !/ W Rn �R ��! Rn;

�.x; t; !/ W Rn �R ��! R;

ˇi .x; t; !/ and ˇi .x; t; !/ are differentiable in x and bounded in .x; t; !/, and

ess sup
x;t;!

�ˇ̌̌̌
@b

@x
.x; t; !/

ˇ̌̌̌
C

ˇ̌̌̌
@f

@x
.x; t; !/

ˇ̌̌̌
C

ˇ̌̌̌
@ˇi

@x
.x; t; !/

ˇ̌̌̌�
< C1; i D 1; : : : ; N:

We introduce the set of parameters

P1
�
D

�
n;D; T ı;

ess sup
x;t;!

�
jb.x; t; !/j C jf .x; t; !/j C

ˇ̌̌̌
@b

@x
.x; t; !/

ˇ̌̌̌
C

ˇ̌̌̌
@f

@x
.x; t; !/

ˇ̌̌̌�
;

ess sup
x;t;!;i

�
jˇi .x; t; !/j C jˇi .x; t; !/j C

ˇ̌̌̌
@ˇi

@x
.x; t; !/

ˇ̌̌̌��
:

Boundary value problems for forward and backward equations

Let s 2 Œ0; T /, ' 2 X�1, hi 2 X0, and ˆ;‰ 2 Z0s . Consider the boundary value
problem in D � Œs; T �

dtu D .AuC '/ dt C

NX
iD1

.BiuC hi /dwi .t/; t > s;

ujtDs D ˆ; u.x; t; !/jx2@D D 0:

(3.2)

Here u D u.x; t; !/, .x; t/ 2 Q, ! 2 �. The corresponding SPDE is a forward
equation.

Inequality (3.1) means that equation (3.2) is coercive or superparabolic, in the
terminology of Rozovskii [28].
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76 N. Dokuchaev

For � 2 X�1 and ‰ 2 Z0s , consider the boundary value problem in Q

dtp C

 
A�p C

NX
iD1

B�i �i C �

!
dt D

NX
iD1

�i dwi .t/; t < T;

pjtDT D ‰; p.x; t; !/jx2@D D 0:

(3.3)

Here p D p.x; t; !/, �i D �i .x; t; !/, .x; t/ 2 Q and ! 2 �. The corresponding
SPDE is a backward equation.

The definition of solution

Definition 3.3. Let hi 2 X0 and ' 2 X�1. We say that equations (3.2) are satisfied
for u 2 Y 1 if

u. � ; t / D ˆC

Z t

s

�
Au. � ; r/C '. � ; r/

�
dr

C

NX
iD1

Z t

s

.Biu. � ; r/C hi . � ; r// dwi .r/

(3.4)

for all t such that s < t � T , and this equality is satisfied as an equality in Z�1T .

Definition 3.4. We say that equation (3.3) is satisfied for p 2 Y 1, ‰ 2 Z0T and
�i 2 X

0 if

p. � ; t / D ‰ C

Z T

t

 
A�p. � ; s/C

NX
iD1

B�i �i . � ; s/C �. � ; s/

!
ds

�

NX
iD1

Z T

t

�i . � ; s/ dwi .s/

for any t 2 Œ0; T �. The equality here is assumed to be an equality in the spaceZ�1T .

Note that the condition on @D is satisfied in the following sense:

u. � ; t; !/ 2 H 1 and p. � ; t; !/ 2 H 1 for a.e. t; !.

Further, u; p 2 Y 1, and the value of u. � ; t / or p. � ; t / is uniquely defined in Z0T
given t , by the definitions of the corresponding spaces. The integrals with dwi in
(3.4)–(3.5) are defined as elements of Z0T . The integrals with ds are defined as
elements of Z�1T . (Definitions 3.3–3.4 require for (3.2)–(3.3) that these integrals
are equal to elements of Z0T in the sense of equality in Z�1T .)
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Backward parabolic Ito equations 77

Existence theorems and known fundamental inequalities

The following lemma combines the first and the second fundamental inequalities
and related existence result for forward SPDEs. It gives analogs of the so-called
“energy inequalities”, or “the fundamental inequalities” known for deterministic
parabolic equations (Ladyzhenskaya et al. [22]).

Lemma 3.5. Let either k D �1 or k D 0. In addition, assume that if k D 0, then

ˇi .x; t; !/ D 0 for x 2 @D, i D 1; : : : ; N ,

and

ess sup
!

sup
.x;t/2Q

ˇ̌̌̌
@2b

@xk@xm
.x; t; !/

ˇ̌̌̌
< C1:

Let ' 2 Xk.s; T /, hi 2 XkC1.s; T /, and ˆ 2 ZkC1s . Then problem (3.2) has an
unique solution u in the class Y 1.s; T /, and the following analog of the first fun-
damental inequality is satisfied:

kukY kC2.s;T / � c

 
k'kXk.s;T / C kˆkZkC1

s
C

NX
iD1

khikXkC1.s;T /

!
; (3.5)

where c D c.P1/ is a constant that depends on P1 only.

The statement of Lemma 3.5 for k D �1 corresponds to the first fundamental
inequality; it is a special case of Theorem 3.4.1 from Rozovskii [28]. The statement
for k D 0 corresponds to the second energy inequality; for domains with boundary,
it was obtained in Dokuchaev [10].

The following lemma gives the first fundamental inequalities and related exis-
tence results for backward SPDEs.

Lemma 3.6 (Dokuchaev [7, 13]). For any � 2 X�1 and ‰ 2 Z0T , there exists a
pair .p; �/ such that p 2 Y 1, � D .�1; : : : ; �N /, �i 2 X0, and (3.3) is satisfied.
This pair is uniquely defined, and the following analog of the first fundamental
inequality is satisfied:

kpkY 1 C

NX
iD1

k�ikX0 � c.k�kX�1 C k‰kZ0
T
/; (3.6)

where c D c.P1/ > 0 as a constant that does not depend on � and ‰.

Thus, only the second fundamental inequality for backward SPDEs is missed.
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78 N. Dokuchaev

4 The main result: The second fundamental inequality for
backward equations

Starting from now, we assume that the following addition conditions are satisfied.

Condition 4.1. There exists a constant ı1 > 0 such that

NX
iD1

y>i b.x; t; !/ yi �
1

2

 
NX
iD1

y>i ˇi .x; t; !/

!2
� ı1

NX
iD1

jyi j
2 (4.1)

for all ¹yiºNiD1 � Rn, .x; t/ 2 D � Œ0; T �, ! 2 �.

For an integer M > 0, we denote by ‚b.M/ the class of all matrix functions b
such that all conditions imposed in Section 3 are satisfied, and there exists a set

¹tkº
M
iD0 D ¹tk.M/ºMiD0

such that 0 D t0 < t1 < � � � < tM D T and

max
k
jtk � tk�1j ! 0 as M !C1;

and that the function b.x; t; !/ D b.x; !/ does not depend on t for t 2 Œtk; tkC1/.
In particular, this means that the function b.x; t; � / is Ftk -measurable for all x 2 D
and t 2 Œtk; tkC1/.

Set
‚b

�
D

[
M>0

‚b.M/:

The following Condition 4.2 is rather technical.

Condition 4.2. The matrix b is such that all conditions imposed in Section 3 are
satisfied, and that there exists a sequence ¹b.M/º

C1

MD1 � ‚b such that at least one
of the following conditions is satisfied:

(i) kb.M/ � bkW1
1
! 0 as M !C1.

(ii) Condition 4.1 is satisfied for b replaced by b.M/, with the same ı1 > 0 for
all M , and kb.M/. � ; t; !/ � b. � ; t; !/kW 1

1.D/
! 0 for a.e. (almost every)

.t; !/ as M !C1.

We denote by‚b the class of all functions b such that Condition 4.2 is satisfied.
To proceed further, we assume that Conditions 4.1–4.2 remain in force starting

from here and up to the end of this paper, as well as the previously formulated
conditions.

Let P D ¹P1; ı1º.
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Backward parabolic Ito equations 79

Theorem 4.3. For any � 2 X0 and ‰ 2 Z1T , there exists a pair .p; �/ such that
p 2 Y 2, � D .�1; : : : ; �N /, �i 2 X1 and (3.3) is satisfied. This pair is uniquely
defined, and the following analog of the second fundamental inequality holds:

kpkY 2 C

NX
iD1

k�ikX1 � c.k�kX0 C k‰kZ1
T
/; (4.2)

where c > 0 is a constant that depends only on P .

Repeat that estimate (4.2) represents an analog of the second fundamental in-
equality.

On Condition 4.1

Let us discuss the properties of Condition 4.1 and compare it with Condition 3.1.
First, let us note that it can happen that Condition 3.1 holds but Condition 4.1 does
not hold. It can be seen from the following example.

Example 4.4. Assume that n D 2, N D 2,

ˇ1 �

 
1

0

!
; ˇ2 �

 
0

1

!
; b �

1

2
.ˇ1ˇ

>
1 C ˇ2ˇ

>
2 /C 0:01I2 D 0:51I2;

where I2 is the unit matrix in R2�2. Obviously, Condition 3.1 holds. However,
Condition 4.1 does not hold for this b; to see this, it suffices to take y1 D ˇ1 and
y2 D ˇ2.

The following theorems clarify the relations between Conditions 4.1 and 3.1.

Theorem 4.5. If Condition 4.1 holds, then Condition 3.1 holds.

Let us give some useful criterions of validity of Condition 4.1.

Theorem 4.6. If n D 1 and Condition 3.1 holds, then Condition 4.1 holds.

Theorem 4.7. Condition 4.1 holds if there exist N0 2 ¹1; : : : ; N º and ı2 > 0 such
that ˇi � 0 for i > N0 and

y>b.x; t; !/ y �
N0

2
jy>ˇi .x; t; !/j

2
� ı2jyj

2 (4.3)

for all y 2 Rn, .x; t/ 2 D � Œ0; T �, ! 2 �, i D 1; : : : ; N0.

Corollary 4.8. If N D 1 and Condition 3.1 holds, then Condition 4.1 holds.

As was mentioned before, Du and Tang [15] obtained an analog of Theorem 4.3
without Condition 4.1.
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80 N. Dokuchaev

5 Applications: Robustness of the solutions

Theorem 4.3 helps to establish robustness of the solution of (3.3) with respect to
disturbances of the coefficients that are small in L1-norm.

Consider problem (3.3), with coefficients

.b; f; �; �; ˇi ; ˇi ; ‰/ D .b
.k/; f .k/; �.k/; �.k/; ˇ

.k/
i ; ˇ

.k/

i ; ‰.k//; k D 1; 2;

such that Conditions 3.1–3.2 and 4.1–4.2 are satisfied for both sets of functions.
Let P .k/ be the corresponding sets of parameters. Let .p.k/; �.k/1 ; : : : ; �

.k/
N / be the

corresponding solutions of problem (3.3), k D 1; 2.

Theorem 5.1. There exists a constant c D c.P .1/; ku.2/kY2
/ such that

kp.1/ � p.2/kY 2 C

NX
iD1

k�
.1/
i � �

.2/
i kX1 � cM;

where

M
�
D ess sup

x;t!

 
jb.1/.x; t; !/ � b.2/.x; t; !/j C jf .1/.x; t; !/ � f .2/.x; t; !/j

C j�.1/.x; t; !/ � �.2/.x; t; !/j

C

NX
iD1

jˇ
.1/
i .x; t; !/ � ˇ

.2/
i .x; t; !/j

C

NX
iD1

jˇ
.1/

i .x; t; !/ � ˇ
.2/

i .x; t; !/j

!
C k�.1/ � �.2/kX0 C k‰.1/ �‰.2/kZ1

0
:

Note that the first fundamental inequality can help to establish robustness only
with respect to disturbances of b that are small together with their derivatives in x,
and this restriction is necessary even for robustness inX0. Theorem 5.1 establishes
robustness in Y 2 for the disturbances of the coefficients that are small inL1-norm
only. For instance, if b is replaced for b", where

ess sup
x;t;!

jb".x; t; !/ � b.x; t; !/j � "

for a small " > 0, then Theorem 5.1 ensures that the corresponding solution of
(3.3) is close in Y 2 to the original one.

It can be added that the most important application of the second fundamen-
tal inequality for backward SPDEs is the representation theorem for functionals
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Backward parabolic Ito equations 81

of non-Markov processes and their first exit times from bounded domains, when
these functionals are represented via solutions of backward parabolic SPDEs. The
previously known results about regularity of the solution of the backward SPDE
were insufficient for the case of domains with boundary and, respectively, the rep-
resentation result was never before obtained for this case. In Dokuchaev [14], it
was done using the additional regularity given by the second fundamental inequal-
ity from Theorem 4.3. This representation opens ways to a systematic study of first
exit times of non-Markov processes.

The rest part of the paper is devoted to the proofs of the results given above.

6 Auxiliary facts used for the proofs

In this section, we list some facts that will be used for the proof of Theorem 4.3.
Lemmas 6.1–6.5 given below were obtained in Dokuchaev [13], where their proof
can be found.

6.1 Decomposition of operators L and Mi

Introduce operators

L.s; T / W X�1.s; T /! Y 1.s; T /;

Mi .s; T / W X
0.s; T /! Y 1.s; T /;

L.s; T / W Z0s ! Y 1.s; T /

such that

u D L.s; T /' CL.s; T /ˆC

NX
iD1

Mi .s; T /hi ;

where u is the solution of problem (3.2) in Y 1.s; T /. These operators are linear and
continuous; it follows immediately from Lemma 3.5. We will denote by L, Mi ,
and L, the operators L.0; T /, Mi .0; T /, and L.0; T /, correspondingly.

For t 2 Œ0; T �, define operators ıt W C.Œ0; T �IZkT /! Zkt such that

ıtu D u. � ; t /:

Lemma 6.1. In the notation of Lemma 3.6, the following duality equation is satis-
fied:

p D L�� C .ıTL/
�‰;

�i DM�i � C .ıTMi /
�‰;

p. � ; 0/ D L�� C .ıTL/�‰;

(6.1)
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82 N. Dokuchaev

where

L� W X�1 ! X1; M�i W X
�1
! X0;

.ıTL/
�
W Z00 ! X1; .ıTMi /

�
W Z00 ! X0; .ıTL/� W Z0T ! Z00 ;

are the operators that are adjoint to the operators

L W X�1 ! X1; Mi W X
0
! X1;

ıTMi W X
�1
! Z0T ; ıTMi W X

0
! Z0T ; ıTL W Z00 ! Z0T ;

respectively.

Our method of proof of the fundamental inequalities is based on decomposition
of the operators to superpositions of simpler operators.

Definition 6.2. Define the operators

K W Z00 ! Y 1; Q0 W X
�1
! Y 1; Qi W X

0
! Y 1; i D 1; : : : ; N;

as the operators

L W Z00 ! Y 1; L W X�1 ! Y 1; Mi W X
0
! Y 1; i D 1; : : : ; N;

considered for the case when Bi D 0 for all i .

By Lemma 3.5, these linear operators are continuous. It follows from the defi-
nitions that

KˆCQ0�C

NX
iD1

Qihi D V;

where � 2 X�1,ˆ 2 Z00 , and hi 2 X0, and where V is the solution of the problem

dtV D .AV C �/ dt C

NX
iD1

hi dwi .t/;

V jtD0 D ˆ; V.x; t; !/jx2@D D 0:

(6.2)

Define the operators

P
�
D

NX
iD1

QiBi ; P �
�
D

NX
iD1

B�i Q�i : (6.3)

Brought to you by | Curtin University of Technology (Curtin University Library)
Authenticated | 172.16.1.226

Download Date | 5/4/12 5:43 AM



Backward parabolic Ito equations 83

By Lemma 6.1 and the definitions, the operator P W X1 ! X1 is continuous, and
P � W X�1 ! X�1 is its adjoint operator. Hence the operator P � W X�1 ! X�1

is continuous. Let

P0
�
D ıT

NX
iD1

QiBi ; P �0
�
D

NX
iD1

B�i .ıTQi /
�:

By the definitions, the operatorP0 WX1!Z0T is continuous andP �0 WZ
0
T !X�1

is its adjoint operator. Hence the operator P �0 W Z
!
T X

�1 is continuous.

Lemma 6.3. The operator .I � P /�1 W X1 ! X1 is continuous, and

L D .I � P /�1Q0;

Mi D .I � P /
�1Qi ;

ıTL D P0.I � P /
�1Q0 C ıTQ0;

ıTMi D P0.I � P /
�1Qi C ıTQi ;

(6.4)

i D 1; : : : ; N . The operator .I � P �/�1 W X�1 ! X�1 is also continuous, and

L� D Q�0.I � P
�/�1;

M�i D Q�i .I � P
�/�1;

.ıTL/
�
D Q�0.I � P

�/�1P �0 C .ıTQ0/
�;

.ıTMi /
�
D Q�i .I � P

�/�1P �0 C .ıTQi /
�:

(6.5)

In fact, Lemma 6.3 allows us to represent solution (3.3) via solution of a simpler
problem with Bi � 0 and an inverse operator .I � P �/�1. It can be illustrated as
the following.

Corollary 6.4. (i) For‰ D 0, the solution .p; �1; : : : ; �N / of problem (3.3) can
be represented as p D Q�0g, �i D Q�i g, where g D � C

PN
iD1B

�
i �i , and

where
PN
iD1Bi�i D P

�g.

(ii) For general ‰, the solution .p; �1; : : : ; �N / of problem (3.3) can be repre-
sented as

p D Q�0g C .ıTQ0/
�‰; �i D Q�i g C .ıTQi /

�‰;

where g D �C
PN
iD1B

�
i �i , and where

PN
iD1Bi�i D P

�gCP �0 ‰. In other
words, g D .I � P �/�1� C .I � P �/�1P �0 ‰:

It appears that this representation helps to establish the second fundamental
inequality.
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84 N. Dokuchaev

6.2 Semi-group property for backward equations

It is known that the forward SPDE is casual (or it has the semi-group property): if
u D L' CLˆ, where ' 2 X�1, ˆ 2 Z00 , then

ujt2Œ�;s� D L.�; s/' CL.�; s/u. � ; �/: (6.6)

To proceed further, we need a similar property for the backward equations.

Lemma 6.5 (Dokuchaev [13]). Let 0 � � < s < T , and let p D L�� , �i DMi�,
where � 2 X�1 and ‰ 2 Z0T . Then

pjt2Œ�;s� D L.�; s/
��jt2Œ�;s� C .ısL.�; s//

�p. � ; s/; (6.7)

p. � ; �/ D .ı�L.�; s//�p. � ; s/CL.�; s/��; (6.8)

�kjt2Œ�;s� DMk.�; s/
��jt2Œ�;s� C .ısMi .�; s//

�p. � ; s/; k D 1; : : : ; N: (6.9)

Note that this semi-group property implies causality for backward equation
(which is a non-trivial fact due the presence of �).

6.3 A special estimate for deterministic PDEs

We use the notationru �
D
�
@u
@x1
; @u
@x2
; : : : ; @u

@xn

�> for functions u W Rn ! R. In ad-
dition, we use the notation

.u; v/H0
�
D

nX
iD1

.vi ; ui /H0

for functions u; v W D ! Rn, where u D .u1; : : : ; un/ and v D .v1; : : : ; vn/.
For u 2 H 1, let

kukbH1.t;!/

�
D .ru; b. � ; t; !/ru/1=2

D

 
nX

i;jD1

Z
D

@u

@xi
.x/bij .x; t; !/

@u

@xj
.x/dx

!1=2
:

(6.10)

For K > 0, introduce the operator A�K D A� �KI , i.e., A�Ku D A�u �Ku.

Lemma 6.6. Let �; � 2 Œ0; T � be given, 0 � � < � � T . Let the function

b.x; t; !/ D b.x; !/

be constant in t 2 Œ�; � � for a.e. x, !. Let h D h.x; t; !/ 2 L2.D � Œ�; � �/, and
let u D u.x; t; !/ W D � Œ�; � � ��! R be the solution of the boundary value
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problem
@u

@t
CA�Ku D �h; t 2 .�; �/

u.x; �/ D 0; u.x; t/jx2@D D 0;

(6.11)

Then for any " > 0, M > 0, there exists K D K.";M;P / > 0 such that

sup
t2Œ�;��

ku. � ; t; !/k2
QH1.t;!/

CM sup
t2Œ�;��

ku. � ; t; !/k2
H0

�
1C "

2

Z �

�

kh. � ; t; !/k2
H0dt a.s.

This lemma follows immediately from Dokuchaev [12, Theorem 1 and Corol-
lary 1]; it first appeared in Dokuchaev [11].

7 The proof of Theorem 4.3

By Lemma 6.1, it suffices to show that the operators

L� W X0 ! Y 2; .ıTL/
�
W Z1T ! Y 2

and
M�i W X

0
! X1; .ıTMi /

�
W Z1T ! X1

are continuous, and that their norms are less or equal than a constant c D c.P /.
We define the operators L�.s; T /, M�i .s; T /, .ıTL.s; T //

�, .ıTMi .s; T //
�,

similarly to L�, M�i , .ıTL/�, .ıTMi /
�, with the time interval Œ0; T � replaced by

Œs; T �.
We denote by PT the completion (with respect to the measure `1 � P) of the

� -algebra of subsets of Œ0; T � � �, generated by functions that are progressively
measurable with respect to B1 � FT . Let

X
k �
D L2

�
Œ0; T � ��;P T ; `1 � PIHk

�
:

Let E be the operator of projection of X
1

onto X1.
For � 2 X0 and ‰ 2 Z1T , let p be the solution of the boundary value problem

in Q
@p

@t
CA�p D ��; t � T;

pjtDT D ‰; p.x; t; !/jx2@D D 0:

(7.1)

By the second fundamental inequality for deterministic parabolic equations, it fol-
lows that the solution of (7.1) is such that p 2 X

2
\ C1, (7.2) holds and

kpk
X

2 C kpkC1 � c
�
k�kX0 C k‰kZ0

T

�
; (7.2)
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86 N. Dokuchaev

where c D c.P / > 0 is a constant. If the function b.x; t; !/ is almost surely con-
tinuous in .x; t/, then inequality (7.2) follows from Theorem IV.9.1 from Lady-
zenskaya et al. [22]. Since the derivative @b=@x is bounded, the condition that b is
continuous can be lifted; this fact is well known. In particular, (7.2) follows in this
case from Dokuchaev [10, Theorem 3.1].

By the Martingale Representation Theorem, there are functions 
i . � ; t; � / 2 X0

such that

p.x; t; !/ D E¹p.x; t; !/jF0º C
NX
iD1

Z T

0


i .x; t; s; !/dwi .s/: (7.3)

Lemma 7.1. Assume the function � D .b; f; �/ is such that �.x; t; !/ is F0-meas-
urable for all x 2 D. Let � 2 X0, ‰ 2 Z1T , let p be the solution of (7.1), and let

j be the processes presented in (7.3). Let p; �1; : : : ; �2 be defined as

p
�
D Ep; �i .x; s; !/

�
D 
i .x; s; s; !/: (7.4)

Then p 2 Y 1, �i 2 X1, and

kpkY 2 C

NX
iD1

k�ikX1 � c
�
k�kX0 C k‰kZ0

T

�
; (7.5)

where c D c.P / > 0 is a constant. In addition,

p D Q�0� C .ıTQ0/
�‰; �i D Q�i � C .ıTQi /

�‰: (7.6)

Proof. By the Martingale Representation Theorem, there exist functions


i . � ; t; � / 2 X
0; 
�i . � ; t; � / 2 X

0 and 
‰i . � / 2 X
1;

such that (7.3) holds as well as

�.x; t; !/ D E¹�.x; t; !/jF0º C
NX
iD1

Z T

0


�i .x; t; s; !/dwi .s/;

‰.x; !/ D E¹‰.x; !/jF0º C
NX
iD1

Z T

0


‰i .x; s; !/dwi .s/:

Moreover, it follows that
Dgi . � ; t; � / 2 X

0;

where either D
 D @
=@t or D
 D A�
 , and

Dp.x; t; !/ D E¹Dp.x; t; !/jF0º C

NX
iD1

Z T

0

D
i .x; t; s; !/dwi .s/:
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By (7.1), it follows that

@
i

@t
. � ; t; s; !/CA�
i . � ; t; s; !/ D �
�i . � ; t; s; !/; t 2 .0; T /;


i .x; T; s; !/ D 
‰i .x; s; !/; 
i .x; t; s; !/jx2@D D 0:

(7.7)

Again, it follows from the second fundamental inequality for deterministic pa-
rabolic equations that

sup
t2Œs;T �

k
i . � ; t; s; !/k
2
H1 � c

�Z T

s

k
�i . � ; t; s; !/k
2
H0dt C k
‰i . � ; s; !/k

2
H1

�
;

where c D c.T; n;D/ > 0 is a constant. Hence

k
i . � ; s; s; !/k
2
H1 � c

�Z T

s

k
�i . � ; t; s; !/k
2
H0dt C k
‰i . � ; s; !/k

2
H1

�
:

This estimate together with (7.2) ensures that (7.5) holds for p and �i defined by
(7.4).

Let us show that (7.6) holds. Clearly,

p.x; t; !/ D p.x; t; !/C

NX
iD1

Z T

t


i .x; t; s; !/dwi .s/;

and

p. � ; t / D

Z T

t

�
A�p. � ; s/C �. � ; s/

�
ds:

Hence

p. � ; t / D ‰ C

Z T

t

�
A�p. � ; s/C �. � ; s/

�
ds

C

NX
iD1

�Z T

t

ds

Z T

s

�
A�
i . � ; s; r/C 
�i . � ; s; r/

�
dwi .r/

�

Z T

t


i . � ; t; s/dwi .s/

�
D ‰ C

Z T

t

�
A�p. � ; s/C �. � ; s/

�
ds

C

NX
iD1

�Z T

t

dwi .r/

Z r

t

�
A�
i . � ; s; r/C 
�i . � ; s; r/

�
ds

�

Z T

t


i . � ; t; s/dwi .s/

�

Brought to you by | Curtin University of Technology (Curtin University Library)
Authenticated | 172.16.1.226

Download Date | 5/4/12 5:43 AM
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D ‰ C

Z T

t

�
A�p. � ; s/C �. � ; s/

�
ds

C

NX
iD1

Z T

t

dwi .s/

�Z s

t

ŒA�
i . � ; r; s/C 
�i . � ; r; s/�dr � 
i . � ; t; s/

�
:

By (7.7),


i . � ; t; s/ �

Z s

t

ŒA�
i . � ; r; s/C 
�i . � ; r; s/�dr D 
i . � ; s; s/:

By (7.4), we have selected 
i . � ; s; s/ D �i . � ; s/. It follows that

p. � ; t / D ‰ C

Z T

t

�
A�p. � ; s/C �. � ; s/

�
ds �

NX
iD1

Z T

t

�i . � ; s/ dwi .s/:

Finally, we obtain (7.6) from Lemma 6.1 applied to the operators Q�0 , Q�i , .ıTQ0/
�

and .ıTQi /
�, i D 1; : : : ; N , considered as special cases of L�, M�i , .ıTL0/� and

.ıTMi /
�, respectively. This completes the proof of Lemma 7.1.

In the following proof, we will explore the following observation. Assume that
� is replaced by

�.K/.x; t; !/
�
D �.x; t; !/CK;

i.e., A is replaced by AK DAvCKI . In this case, the solution u of problem (3.2)
has to be replaced by the process

u.x; t; !/e�Kt :

Respectively, the solution .p; �1; : : : ; �N / of problem (3.3) has to be replaced by
the process�

p.x; t; !/eK.T�t/; �1.x; t; !/e
K.T�t/; : : : ; �N .x; t; !/e

K.T�t/
�
:

Therefore, it suffices to prove theorem for any case when � is replaced for

�.K/.x; t; !/
�
D �.x; t; !/CK

with some K > 0, and this K can be taken arbitrarily large.
For linear normed spaces X and Y, we denote by kT kX;Y the norm of an op-

erator T W X ! Y.

Lemma 7.2. Let 0 � s < T , and assume that the function � D .b; f; �/ is such
that �.x; t; � / is Fs-measurable for all x 2 D, t 2 Œs; T /. Moreover, we assume
that b.x; t; !/ D b.x; !/ does not depend on t 2 Œs; T �. Then there exists K > 0
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such that if � is replaced by �.x; t; !/CK, then

kL�.s; T /kX0.s;T /;Y 2.s;T / C k.ıTL.s; T //
�
kZ1

T ;Y
2.s;T /

C

nX
iD1

kM�i .s; T /kX0.s;T /;X1 C

nX
iD1

k.ıTMi .s; T //
�
kZ1

T ;X
1.s;T / � c;

where c 2 .0;C1/ depends only on K and P .

Proof. To simplify the notations, we consider only the case when s D 0.
By (6.1) and (6.5), it suffices to show that the operator .I �P �/�1 W X0 ! X0

is continuous. For this, it suffices to show that there exists K > 0 such that if � is
replaced for �.x; t; !/CK, then kP �kX0;X0 < 1.

Let � 2 X0, let p be the solution of (7.1), and let 
j be the processes presented
in (7.3) with ‰ D 0. Let p; �1; : : : ; �2 be defined by (7.4) with ‰ D 0. In this
case,

@
i

@t
. � ; t; s; !/CA�
i . � ; t; s; !/ D �
�i . � ; t; s; !/; t 2 .0; T /;


i .x; T; s; !/ D 0; 
i .x; t; s; !/jx2@D D 0:

(7.8)

By Lemma 6.6 applied to boundary value problem (7.8), for any " > 0,M > 0,
there exists K D K.";M;P / > 0 such that

sup
t2Œs;T �

k
i . � ; t; s; !/k
2
QH1.t;!/

CM sup
t2Œs;T �

k
i . � ; t; s; !/k
2
H0

�
1C "

2

Z T

s

k
�i . � ; t; s; !/k
2
H0dt a.s.

Here k � k QH1.t;!/
is defined by (6.10). HenceZ T

0

k
i . � ; s; s; !/k
2
QH1.t;!/

ds CM

Z T

0

k
i . � ; s; s; !/k
2
H0ds

�
1C "

2

Z T

0

ds

Z T

s

k
�i . � ; t; s; !/k
2
H0dt:

Note that

E
NX
iD1

Z T

0

dt

Z T

0

k
�i . � ; t; s; !/k
2
H0ds � k�k

2
X0 :

Hence

E
Z T

0

k
i . � ; s; s; !/k
2
QH1.t;!/

ds CME
Z T

0

k
i . � ; s; s; !/k
2
H0ds �

1C "

2
k�k2

X0 :

Brought to you by | Curtin University of Technology (Curtin University Library)
Authenticated | 172.16.1.226

Download Date | 5/4/12 5:43 AM



90 N. Dokuchaev

By (7.6), it can be rewritten as

E
Z T

0

k�i . � ; t; !/k
2
QH1.t;!/

dt CME
Z T

0

k�i . � ; t; !/k
2
H0dt

�
1C "

2
k�k2

X0 :

(7.9)

Remind that

P �� D

NX
jD1

B�j �j :

By Condition 4.1, there exists M DM.P / > 0 such that





NX
jD1

B�j �j







2

H0

� 2

NX
jD1

k�j k
2
QH1.t;!/

C 2M

NX
jD1

k�j k
2
H0

� 2ı1

NX
jD1

kr�j k
2
H0 8t; !:

(7.10)

By (7.9) and (7.10), it follows that a small enough " > 0 and a large enough
K > 0 can be found such that

P ��

2

X0 D







NX
iD1

B�i �i







2

X0

� ck�k2
X0

for this K with some c D c.P ; K/ < 1. Hence

kP ��kX0 �
p
ck�kX0 :

Therefore, we have proved that there exists K D K.P / > 0 such that if � is re-
placed for �.x; t; !/CK, then kP �kX0;X0 < 1, and, therefore, the operator

.I � P �/�1 W X0 ! X0

is continuous. By the first equation in (7.6), the operator Q�0 W X
0 ! Y 2 is contin-

uous. In addition, it follows from (7.6) and (7.9) that the operators Q�i W X
0 ! X1

are continuous. Then the proof of Lemma 7.2 for the special case of‰ D 0 follows
from the first equations for adjoint operators in (6.5).

To complete the proof of Lemma 7.2 for general ‰, we note that by (7.5) and
(7.6), it follows that it suffices to show that the operators .ıTQ0/

� W Z1T ! Y 2 and
.ıTQi /

� W Z1T ! X1 are continuous, i D 1; : : : ; N . In addition, the upper bound
of the norms of these operators depends on P only. Then the proof follows from
the last two equations for the adjoint operators in (6.5). This completes the proof
of Lemma 7.2.
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For an integer M > 0, denote by ‚.M/ the class of all functions � D .b; f; �/
such that all conditions imposed in Section 3 are satisfied and that there exists a
finite set ¹tiºMiD0 such that

� 0 D t0 < t1 < � � � < tM D T ,

� the function �.x; t; � / D .b.x; t; � /; f .x; t; � /; �.x; t; � // is Fti -measurable
for all x 2 D, t 2 Œti ; tiC1/,

� the function b.x; t; !/ D b.x; !/ does not depend on t for t 2 Œti ; tiC1/.

Let ‚ �
D
S
M>0‚.M/.

Lemma 7.3. Let .b; f; �/ 2 ‚.M/ for someM > 0. Then there existsK > 0 such
that if � is replaced by �.x; t; !/CK, then

kL�kX0;Y 1 C

nX
iD1

kM�i kX0;X1 C k.ıTL/
�
kZ1

T ;Y
1 C

nX
iD1

k.ıTMi /
�
kZ1

T ;X
1 � c;

where c 2 .0;C1/ does not depend on M and depends only on K and P .

Proof. The proof of this lemma follows immediately from Lemma 6.5 and from
Lemma 7.2 applied consequently for all time intervals from the definition of‚.M/

backward from terminal time.

Corollary 7.4. Under the assumption of Lemma 7.3, Theorem 4.3 holds and there
exists K > 0 such that the operators

L� W X0 ! Y 2; M�j W X
0
! X1;

.ıTL/
�
W Z1T ! Y 2; .ıTMi /

�
W Z1T ! X1; j D 1; : : : ; N;

are continuous, and their norms do not depend on M .

Up to the end of this section, we assume that � is replaced for �.x; t; !/C K
such that the conclusion of Lemma 7.3 holds.

Now we are in a position to prove Theorem 4.3 for the case of .b; f; �/ of the
general kind.

Let M D 1; 2; : : : , M ! C1. Let " �
DM�1. By Condition 4.2, there exists

a subsequence of M such that there exists b" 2 ‚b.M/ for any M with the cor-
responding sets ¹tkº D ¹tk.M/º with 0 D t0 < � � � < tk < tM D T such that
maxk jtk � tk�1j ! 0 as M !C1, b".x; t; !/ D b.tk; t; !/, t 2 Œtk; tkC1/, and
that there exist q; r 2 Œ1;C1� such that

b" ! b in W1
q;r as "! 0:

Brought to you by | Curtin University of Technology (Curtin University Library)
Authenticated | 172.16.1.226

Download Date | 5/4/12 5:43 AM



92 N. Dokuchaev

Further, we introduce functions f", �" such that

f".x; t; !/ D E¹f .x; t; !/jFtkº;

�".x; t; !/ D E¹�.x; t; !/jFtkº; t 2 Œtk; tkC1/:

Proposition 7.5. Let us show that Condition 4.1 implies the following:

(a) Condition 4.1 is satisfied for b replaced by b", with the same ı1 > 0 for all ",

(b) without a loss of generality, we can assume that sup">0 kb"kW1
1
< C1.

Proof. It suffices to show that Condition 4.1 (i) implies (a) and Condition 4.1 (ii)
implies (b).

Let us show that Condition 4.1 (i) implies (a). Let A D A.x; t; !/ 2 RnN�nN

be the symmetric matrix that defines the quadratic form on the vectors

Y D .y1; : : : ; yN / 2 RnN

in (4.1), and let A" be the similar matrix defined for b D b". By Condition 4.1,
the minimal eigenvalue of A is positive and is separated from zero uniformly over
"; x; t; !. By the definitions, it follows that

kA" � AkW0
1
! 0:

Since the minimal eigenvalue of a matrix depends continuously on its coefficients,
it follows that the minimal eigenvalue of A" is positive and is separated from zero
uniformly over "; x; t; !. Hence Condition 4.1 (i) implies (a).

Let us show that Condition 4.1 (ii) implies (b). Let R �
D kbkW1

1
, and let 
 be

the supremum over x; t; ! of the maximal eigenvalue of b.x; t; !/. It suffices to
show that, without a loss of generality, we can assume that

sup
"
kb"kW1

1
� n
 C 2RC 1: (7.11)

Suppose that (7.11) does not hold, i.e., that there exists some M such that for
" DM�1 and some tk D tk.M/ there exists � � � such that � 2 Ftk , P.�/ > 0,

b". � ; t; !/ � b".tk; x; !/; t 2 Œtk; tkC1/;

and
kb". � ; tk; !/kW 1

1.D/
> n
 C 2RC 1 iff ! 2 �:

In this case, one can replace b". � ; t /jt2Œtk ;tkC1/ by

Qb".x; t; !/ D b".x; t; !/I�n�.!/C 
InI�.!/; t 2 Œtk; tkC1/;
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Backward parabolic Ito equations 93

where I is the indicator function, and where In is the unit matrix in Rn. Obviously,
Condition 4.1 is satisfied for Qb" replacing b", with the same ı1 > 0 for all ". In
addition, we have that

k Qb.M/
� bkW 1

1.D/
� k Qb.M/

jW 1
1.D/

C kbkW 1
1.D/

� n
 CR; ! 2 �;

and

kb.M/
� bkW 1

1.D/
� k Qb.M/

kW 1
1.D/

� kbkW 1
1.D/

� n
 C 2R �R D n
 CR; ! 2 �:

It follows that Condition 4.2 holds for the new selection Qb". This completes the
proof of Proposition 7.5.

Further, it follows from Proposition 7.5 and from the definitions that

sup
x;t;!;"

�
jb".x; t; !/j C

ˇ̌̌̌
@b"

@x
.x; t; !/

ˇ̌̌̌
C jf".x; t; !/j C

ˇ̌̌̌
@f"

@x
.x; t; !/

ˇ̌̌̌
C j�".x; t; !/j

�
< C1:

(7.12)

Let us consider a subsequence " D "i ! 0 such that

b" ! b; f" ! f; �" ! �;

@b"

@x
!

@b"

@x
;
@f"

@x
!

@f

@x
in X0 and a.e. as "! 0:

(7.13)

Let
p"

�
D L�" � C .ıTL"/

�‰; �i"
�
DM�" � C .ıTMi"/

�‰;

and let
p

�
D L�� C .ıTL/�‰; �i

�
DM�i � C .ıTMi /

�‰:

The operators L�" W X
�1 ! Y 1 etc. are defined similarly to L� W X�1 ! Y 1 etc.

with substituting .b; f; �/ D .b"; f"; �"/.
By Lemma 7.3, the sequences ¹p"º and ¹�i"º belong to the closed balls in the

spaces X2 and X1 respectively with the centers at the zero and with the radius
c.k�kX0 C k‰kZ1

T
/, where c D c.P / > 0 does not depend on ". The balls men-

tioned are closed, concave, and bounded. It follows that these balls are weakly
closed and weakly compact in the reflexible Banach spaces X2 and X1 respec-
tively. It follows that the sequences ¹p"º and ¹�i"º have subsequences with weak
limits Qp and Q�i in the corresponding balls, i.e.,

k QpkX2 C

NX
iD1

k Q�ikX1 � c.k�kX0 C k‰kZ1
T
/:
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94 N. Dokuchaev

Assume that we can show that Qp" ! p weakly in X2 and �i" ! �i weakly in
X1 for all i . It follows that Qp D p and Q�i D �i and

kpkX2 C

NX
iD1

k�ikX1 � c.k�kX0 C k‰kZ1
T
/: (7.14)

It follows that 





NX
iD1

B�i �i







X0

� c1.k�kX0 C k‰kZ1
T
/;

where c1 D c1.P / is a constant. Hence g �
D � C

PN
iD1B

�
i �i is such that

kgkX0 � c2.k�kX0 C k‰kZ1
T
/;

where c2 D c2.P / is a constant. Remind that, by Lemma 6.3 and Corollary 6.4,

g D .I � P �/�1� C .I � P �/�1P �0 ‰; p D Q�0g C .ıTQ0/
�‰:

By Lemma 7.1, it follows that p 2 Y 2 and

kpkY 2 C







NX
iD1

B�i �i







X0

� c3.kgkX0 C k‰kZ1
T
/;

where c3 D c3.P /. By (7.15), it follows that p 2 Y 2 and

kpkY 2 C







NX
iD1

B�i �i







X0

� c4.k�kX0 C k‰kZ1
T
/;

where c4 D c4.P / is a constant. Then the proof of Theorem 4.3 follows provided
that the weak convergence of the sequence ¹�i"º to �i is established.

Therefore, it suffices prove this weak convergence, i.e., it suffices to show that

I"
�
D .p" � p; h/X0 ! 0 as "! 0 8h 2 X0; (7.15)

J"
�
D .�i" � �i ; h/X0 ! 0 as "! 0 8h 2 X0; i 2 ¹1; : : : ; N º: (7.16)

Let us show that (7.15) holds. Set u"
�
D Li" h and u �

D Li h, where the oper-
ators Li" W X0 ! Y 1 are defined similarly to the operators Li W X0 ! Y 1 with
substituting .b; f; �/ D .b"; f"; �"/. By the definitions of the corresponding ad-
joint operators,

I" D .L
�
i"� � L

�
i �; h/X0 C ..ıTLi"/

�‰ � .ıTLi /
�‰; h/X0

D .�; u" � u/X0 C .‰; u". � ; T / � u. � ; T //Z0
T
:
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Backward parabolic Ito equations 95

Let the operators A" be defined similarly to A with substituting

.b; f; �/ D .b"; f"; �"/:

By the definitions, it follows that there exist functionsbf ".x; t; !/ W Rn �RC ��! Rn and b�".x; t; !/ W Rn �RC ��! R

such that
sup
">0

ess sup
x;t;!

�
jbf ".x; t; !/j C jb�".x; t; !/j� < C1;

and that A"u �Au is represented as

A"u �Au D

nX
i;jD1

@

@xi

�
Œbij" � bij �

@u

@xj

�
C

nX
iD1

bf i" @u
@xi
Cb�" u:

By (7.12)–(7.13), it follows thatbf " ! 0 and b�" ! 0 a.e. and in X0:

The function U"
�
D u" � u is the solution in Q of the boundary value problem

dtU" D .A"U" C F".u// dt C

NX
iD1

BiU" dwi .t/;

U".x; 0/ D 0; U".x; t/jx2@D D 0;

and where the linear operator F". � / is defined as

F".u/
�
D r".u/C q".u/;

r".u/
�
D

nX
i;jD1

@

@xi

�
Œbb"ij � bij � @u

@xj

�
;

q".u/
�
D
@u

@x
bf " Cb�"u:

Herebb"ij are the components of the matrixbb". By Lemma 3.5, it follows that

kU"kY 1 � CkF".u/kX�1 ;

for a constant C1 D C1.P /. It follows that there exists a constant C D C.P / > 0
such that

jI"j � CkU"kY 1.k�kX�1 C k‰kZT
0
/ � CkF".u/kX�1.k�kX0 C k‰kZT

1
/:
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96 N. Dokuchaev

We have that

kr".u/k
2
X�1 D E

Z T

0







nX

i;jD1

@

@xi

�
Œbb"ij � bij � @u

@xj

�





2

H�1

dt

� C1

nX
i;jD1

E
Z T

0





Œbb"ij � bij � @u@xj




2
H0

dt;

for a constant C D C.n/. The functions b" and b are bounded, henceˇ̌̌̌
Œbb"ij � bij � @u

@xj

ˇ̌̌̌
� C1

ˇ̌̌̌
@u

@x
.x; t; !/

ˇ̌̌̌
for a constant C1 D C1.P /. We have that u 2 X1. By Lebesgue’s Dominated
Convergence Theorem, it follows that



Œbb"ij � bij � @u@xj






X0

! 0:

Hence kr".u/kX�1 ! 0.
Further, the functions bf " andb�" are bounded, hence

jq".u/.x; t; !/j � C1

�ˇ̌̌̌
@u

@x
.x; t; !/

ˇ̌̌̌
C ju.x; t; !/j

�
for a constant C2 D C2.P / > 0. By Lebesgue’s Dominated Convergence Theo-
rem again, it follows that kq".u/kX0 ! 0. Therefore, we obtain kU".u/kX0 ! 0.
By (7), it follows that (7.15) holds.

Let us show that (7.16) holds. Set v"
�
DMi" h and v �

DMi h, where the oper-
ators Mi" W X

0 ! Y 1 are defined similarly to the operators Mi W X
0 ! Y 1 with

substituting .b; f; �/ D .b"; f"; �"/. By the definitions of the corresponding ad-
joint operators,

J" D .M
�
i"� �M�i �; h/X0 C ..ıTMi"/

�‰ � .ıTMi /
�‰; h/X0

D .�; v" � v/X0 C .‰; v". � ; T / � v. � ; T //Z0
T
:

The function V"
�
D v" � v is the solution in Q of the boundary value problem

dtV" D .A"V" C F".v// dt C

NX
iD1

BiV" dwi .t/;

V".x; 0/ D 0; V".x; t/jx2@D D 0;

where the operator F".�/ is defined as above. The remaining part of the proof of
(7.16) repeats the proof of (7.15). This completes the proof of Theorem 4.3.
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8 The proof of Theorems 4.5–4.7 and 5.1

Proof of Theorem 4.5. Assume that Condition 4.1 holds. Let

SN
�
D

´
˛ D .˛1; : : : ; ˛N /

>
2 RN W j˛j D

 
NX
iD1

j˛i j
2

!1=2
� 1

µ
:

Let y 2 Rn be fixed and let yi D yi .˛/
�
D ˛iy, where ˛ 2 SN . Let yi

�
D ˛iy and

zi D zi .y/ D ˇ
>
i y, z D z.y/ D .z1; : : : ; zN />. By Condition 4.1,

NX
iD1

y>i b yi �
1

2

 
NX
iD1

y>i ˇi

!2
C ı1

NX
iD1

jyi j
2

for all ˛ 2 SN , .x; t/ 2 D � Œ0; T � and ! 2 �. Hence

y>b y D

NX
iD1

˛2i y
>b y

�
1

2

 
NX
iD1

˛iy
>ˇi

!2
C ı1

NX
iD1

˛2i jyj
2

D
1

2

 
NX
iD1

˛izi .y/

!2
C ı1jyj

2
NX
iD1

˛2i

D
1

2
.˛>z.y//2 C ı1jyj

2

for any ˛ 2 SN . Hence

y>b y � sup
˛2SN

1

2

�
˛>z.y/

�2
C ı1jyj

2
D
1

2
jz.y/j2 C ı1jyj

2:

On the other hand,

jz.y/j2 D

NX
iD1

jzi .y/j
2
D

NX
iD1

jy>ˇi j
2:

Hence

y>b y �
1

2

NX
iD1

jy>ˇi j
2
C ı1jyj

2:

Hence Condition 3.1 holds with ı D ı1. This completes the proof.
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98 N. Dokuchaev

Proof of Theorem 4.6. We have that

2b D 
 CR;

where 
 D
Pn
iD1 ˇ

2
i and R D R.x; t; !/ � 2ı. Let

D
�
D BB> D ¹ˇi ǰ º

N
i;jD1; where B �

D .ˇ1; : : : ; ˇN /
>.

It suffices to show that there exists ı1 > 0 such that


.x; t; !/IN �D.x; t; !/ � 0

for all x; t; !, where IN is the unit matrix in RN�N . Let � D �.x; t; !/ be the
minimal eigenvalue of the matrix 
.x; t; !/IN�D.x; t; !/. It suffices to show that
� � 0. Let z D z.x; t; !/ be a corresponding eigenvector such that jzj D jBj ¤ 0
(for the trivial case jBj D 0, we have immediately that � D 0). We have that

z D cB C B 0;

where c 2 Œ�1; 1� and B 0 D B 0.x; t; !/ is a vector such that B>B 0 D 0. By the
definitions, we have that 
 D jBj2 and

�z D .
IN �D/z D .
IN � BB
>/.cB C B 0/

D 
.cB C B 0/ � cjBj2B D 
cB C 
B 0 � c
B D 
B 0:

Hence �.cB C B 0/ D 
B 0: It follows that either B 0 ¤ 0, c D 0, and � D 
 � 0,
or � D 0 and B 0 D 0. This completes the proof.

Proof of Theorem 4.7. By Hölder’s inequality, we have that0@N0X
iD1

y>i ˇi

1A2 � N0 N0X
iD1

�
y>i ˇi

�2
:

Hence
NX
iD1

y>i b yi �
1

2

 
NX
iD1

y>i ˇi

!2
D

N0X
iD1

y>i b yi �
1

2

 
N0X
iD1

y>i ˇi

!2

�

N0X
iD1

y>i b yi �
N0

2

N0X
iD1

�
y>i ˇi

�2
� ı2

NX
iD1

jyi j
2:

This completes the proof.
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Proof of Theorem 5.1. Let

p
�
D p.1/ � p.2/; �i

�
D �

.1/
i � �

.2/
i ;

and let A.k/�, B.k/�i be the corresponding operators (3.1), k D 1; 2. We have that

dtp C .A
.1/�p C  / dt C

NX
iD1

B
.1/
i �idt C  D �i dwi .t/; t � T;

p.x; 0; !/ D ‰.1/.x; !/ �‰.2/.x; !/; p.x; t; !/ jx2@D D 0:

Here

 
�
D �.1/ � �.2/ CA.1/�p.2/ �A.2/�p.2/ C

NX
iD1

.B
.1/�
i �

.2/
i � B

.2/�
i �

.2/
i /:

By Theorem 4.3, it follows that there exists a constant C0 D C0.P .1// such that

kpkY 2 C

NX
iD1

k�ikX1 � C0

�
k kX0 C k‰.1/ �‰.2/kZ1

0

�
: (8.1)

Further, we have  D
P
mD0;1;2  m, where

 0 D �
.1/
� �.2/;

 1
�
D

nX
i;jD1

Œb
.1/
ij � b

.2/
ij �

@2p.2/

@xi@xj
C

nX
iD1

Œf
.1/
i � f

.2/
i �

@p.2/

@xi
C Œ�.1/ � �.2/�p.2/;

 2 D

NX
iD1

 
nX
iD1

Œˇ
.1/
i � ˇ

.2/
i �

@�
.2/
i

@xi
C Œb̌.1/ � b̌.2/��.2/i

!
:

Clearly,

k 0kX0 �M; k 1kX0 � CMkp.2/kY2
; k 2kX0 � CM C

NX
iD1

k�.2/kX1 ;

where C D C.n/ is a constant. Finally, we obtain

k kX0 � C1M

 
kp.2/kY2

C

NX
iD1

k�
.2/
i kX1 C 1

!
;

where C1 D C1.n/ is a constant. By (8.1), the desired estimate follows. This com-
pletes the proof.
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