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Abstract

Most Australian studies on estuarine plankton have examined distribution and abundance in
relation to hydrological changes, primary productivity and associated nutrient dynamics.
Relatively few have examined the complex interactions between zooplankton grazers and
the type and quality of food available, or the role of zooplankton grazers in structuring
phytoplankton communities, or their contribution to the nutrient pool. The ecological role of
zooplankton grazers in the Swan River estuary, Perth, Western Australia, was examined as
part of a collaborative research project directed by the Western Australian Estuarine
Research Foundation, which was established in response to concemn about increasing
intensity and persistence of algal blooms. The present study focussed on cne component of

the zooplankton, the Copepoda, as model zooplankton grazers.

A regular zooplankton monitoring programme, undertaken over a two year period, provided
data on seasonal patterns of abundance and distribution of zooplankton over a broad
spectrum of physical conditions. Relationships were identified between habitat variables,
such as algal biomass, dissolved oxygen, salinity and suspended solids and zooplankton

distribution, relative abundance and species composition.

Prior to the inception of this study, it was assumed that copeped species composition,
abundance and richness in the Swan River estuary may have changed over time, in
response to long-term declines in water quality. Comparison of historical copepod
monitoring data with current data did not detect any such change and it was concluded that
there was greater variation in copepod species composition, abundance and richness within
years than between years and that no significant change had occurred between 1966 and
1997. However, an absence or reduction in abundance of copepods in areas of very high
algal biomass (>80 ug chiorophyll a.l”'} suggests that local loss of water quality may have an

impact on copepods over a small spatial scale within the estuary.

Different aspects of the interactions between zooplankton grazers and phytoplankton were
studied. Zooplankton grazing rates were measured in sifu during algal blooms and in the
laboratory under controlled conditions to determine the potential for zooplankton grazers to
reduce algal biomass. Field and laboratory experiments supported the hypothesis that
copepods and other zooplankton can exert ‘top-down control’ over phytoplankton biomass,
but that the type and biomass of phytoplankion present affected their ability to exert this

control.

The results of the field and laboratory grazing experiments, along with literature data, were
used to provide input data for a model of zooplankton and phytoplankton dynamics during a
dinoflagefiate bloom in the Swan River estuary. The model was tested against biomass
measurements of zooplankton and phytoplankton to determine how well it predicted actual

changes in the plankton community. The simulated output closely foliowed the measured
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field data and fitted regression curves and provided information about diurnal patterns of
phytoplankton production, respiration and migration and hydrodynamic transport, which was
not available from field data. It was shown that zooplankton grazing, particutarly grazing by
microzooplankton, was the process contributing most to the observed decline in

dinoflagellate hiomass.

Nutrient availability is one of several factors determining productivity of phytoplankton.
Nutrients within copeped faecal pellets are relocated by faecal deposition to sediments,
where microbial activity leads to the remineralisation of these nutrients. Quantification of
metabolic excretion of nutrients by copepods and the rate at which pellets are produced by
copepod grazers, the concentration of nutrients within faecal pellets and the rate at which
these nutrients are released indicated that copepods may play an important role in nutrient
regeneration during summer and autumn when allochthonous nutrients are unavailable. At
other times of the year, it is uniikely that copepods play an important role in nutrient

regeneration.

The research has provided a more detailed level of understanding of the interactions
between zooplankton, phytoplankton and their environment. The data is ideally suited for
use in a computer model to predict the effects of management actions on the Swan River
estuary. This would allow pre-emptive management strategies to be developed and lessen

the focus on reactive management.
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Thesis Organisation

The thesis is divided into five chapters. The General Introduction (Chapter 1} introduces the
three main areas of research undertaken and provides background information on the study
site. Chapters 2, 3 and 4 consist of an introduction to the research topics, paper/s published
in peer-reviewed journa!s1, manuscripts submitted for publication and unpublished research
results. Each paper or manuscript includes a review of the relevant literature, necessitating

some degree of repetition.

Table and figure numbers from each paper or manuscript have been altered to ensure
consistency within the thesis and a single reference list is provided for all chapters. Chapter
5 is a General Discussion, which draws together the outcomes of each area of study and
provides a commentary on how the data collected as part of this research may be used 1o

guide the development of management strategies for the Swan River estuary.

Statermnents from co-authors, attesting ta their relative contributions, are provided in Appendix 4.
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Chapter One " General Introduction

Chapter 1 - General Introduction
Introduction

Zooplankton are planktonic animals, typically between 20 and 2000 um in length, that spend
most of their life cycle in the water column (Dussart, 1965; Sieburth et al, 1978). Being
small, these animals are unable to make ecologically significant independent movement in
the horizontal plane, but move with currents. Zooplankton movement in the venriical plane,
however, even of only a few metres, may be ecologically significant. Zooplankton provide a
range of ecological functions, being consumers of primary production and both direct and

indirect sources of energy for other organisms.

The zooplankion of estuaries are able to survive cyclical fluctuations in water salinity,
somewhere within the range of 0.5 (Practical Salinity Scale of 1978; UNESCO, 19817 to 35
(M°Lusky, 1989). This group of zooplankton are able to persist in time through dynamic
fluctuations of environmental conditions on both short {minutes, hours} and long (months,
years) time frames. Thus an understanding of estuarine zooplankton ecology can assist in
our understanding of estuarine ecosystem function and the biological, chemical and physical
processes involved. Such information can be used to formulate management frameworks

for urban estuaries, to ensure that they continue to function as healthy ecosystems.

Genesis of Research Topic

During the mid 1990s, scientists, managers, government agencies and the general public
became increasingly concerned about the state of health of the Swan-Canning Estuary,
located close to the city of Perth, southwest Western Australia (Hamilton and Turner, 2001).
This concern centred on a growing recognition that without intervention, estuaring health
would continue to decline, as evidenced by increasing severity and frequency of nuisance

algal blooms in the Swan and Canning Rivers (Hamilton and Turner, 2001).

Management intervention in the Swan and Canning Rivers required detailed understanding
of the biological, chemical and physical processes that occur within the estuarine system but
it was recognised that there were many gaps in knowledge and understanding (Hamilton and
Turner, 2001). As a result, the Western Australian State Government established and
funded the Western Australian Estuarine Research Foundation in 1994, in order to initiate a

% In this thesis, the Practical Salinity Scale of 1978 (PSS 78) has been adopted. PSS 78 is an internationally
preferred method of expressing water salinity {(UNESCO, 1981). Salinity is reporied in dimensionless values and
scales on figures are labelled *Salinity’ without any unit or index. A salinity of 35.39 % becomes 35.395 on the PSS

78 scale.
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Chapter One General Introduction

range of research projects focussing on the gaps in current knowledge. The wvarious
research projects were to culminate in the development of a 3-dimensional ecosystem model
of the estuarine system called CAEDYM (Computational Aquatic Ecosystem Dynamics
Model), which could be used to predict the effect of various processes or events on estuarine

health (refer to Figure 1.1},

The ecological role of zooplankton within the Swan-Canning Estuary was identified as an
area in which information was lacking. The interactions between phytoplankton and
zooplankton in Australian estuaries are less well understood than those of estuaries in the
northern hemisphere. The majority of Australian studies have focussed on temporal change
in plankton communities (Kott, 1955; Arnott and Hussainy, 1972; Taw and Ritz, 1978; Shiel
et al, 1982; Gaughan and Potter, 1995), with fewer studies concentrating on processes
(Bhuiyan, 1966; Rippingale and Hodgkin, 1974a; |keda et al, 1982a; Boon et al, 1984). In
the Swan-Canning Estuary, there had been previous studies of zooplankton species
composition, distribution and abundance (Rippingale, 1987; Rippingale, 1994, Rippingale
and Hodgkin, 1974a; Rippingale and Hodgkin, 1977}, but all had been undertaken prior to
the concern of the 1990s about nuisance algal blooms. Previously, there had been no
research on the role of zooplankton in nutrient recycling and no detailed field-based studies
of zooplankton grazing in relation to algal blooms. Of importance, it was not clear at the
inception of this project whether the reporied increasing severity and frequency of nuisance

algal blooms had an effect on zooplankton populations.
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Chapter One General Introduction

Catchment
Model

Hydrodynamic

Model 3-D

Ecological

Figure 1.1: Components of CAEDYM.
Source: Hamilton {1996).
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Chapter One General Introduction

Research Aims

This research project focused on one part of the Swan-Canning Estuary — the Swan River
estuary, because the Canning River has been substantially modified and has a weir
controlling the upstream movement of saline water. The study was multi-faceted, with the
following aims:

1} to document the population dynamics of estuarine zooplankton by measuring temporal
change in distribution, abundance and species composition in relation to environmental
parameters;

2) to determine the ecological role of zooplankton as consumers of primary production
through measurement of grazing rates in the laboratory and in the field during algal
bloom events;

3) to examine the potential significance of copepod regeneration of nutrients, by measuring

~ metabolic excretion of nutrients and nutrient release from faecal pellets; and

4) to supply data for the development and validation of the 3-dimensional computer model
(CAEDYM).

Overall, the study aimed to increase understanding of zooplankton ecology in the Swan

River estuary. In doing so, it was hoped that guestions pertaining to ecosystem health and

estuarine management directions might also be answered.
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Chapter One General Introduction

Description of Study Site

The Swan River estuary (Figure 1.2) is a drowned river valley estuary which receives water
from the Avon catchment (~119,000 km?) and the Swan Coastal catchment (~20,000 km?)
and exchanges water with the Indian Ocean through a narrow inlet channel situated in
Fremantle Harbour {Thurlow et al., 1986). Both catchments have been extensively moditied
as a result of urbanisation and industrial and agricultural expansion, resulting in substantial

contributions of nutrients to the Swan River estuary (Donahue et al.,, 2001).

1551
) R
25 Weslern Auslralia {

wl

115 120 125'E

Swan Rivar

kdian Ocean

Perth
' 0 5

e
kimeiors

Canning River

Fromantio

3

Figure 1.2: Map of Swan River estuary.

The Swan River estuary has a median depth of approximately 3 m in the middle and upper
reaches and has a 21 m deep basin in its lower reaches. The relatively shallow middle and
upper reaches are punctuated with deeper depressions of approximately 5 m depth
{Stephens and Imberger, 1996). The estuary has a 5-10 m channe! at its opening, which

allows permanent exchange of water with the Indian Ocean.
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Chapter One General Infroduction

The Swan River estuary is a micro-tidal estuary, with mean tidal amplitude of ~0.4 m. Water
height within the estuary is more influenced by atmospheric pressure than tidal stage, with
low atmospheric pressure resulting in high water and high atmospheric pressure resuiting in

low water (Stephens and Imberger, 1996).

The temperate climate of south-west Western Australia, with most rainfall occurring in winter,
causes seasonal fluvial flow of the Swan River estuary. During later winter and early spring,
seasonal rainfall results in the upper reaches of the estuary becoming fresh and saline water
is progressively pushed down river. During summer and autumn, when fluvial tlow has
declined, tidal flow has a greater influence, with more dense saline water edging its way
upriver on the bottom, creating a ‘salt wedge’. It is at this time that haloclines and
thermoclines can develop. By the end of autumn, it is possible for saline water to extend
~B0 km inland {Stephens and Imberger, 1996).

Rainfall and temperature during the field investigation peried are presented in Figures 1.3
and 1.4 respectively, in relation to long-term (1944 — 2001) averages. Winter rainfall was
higher than average in 1996, but in 1997, winter rainfall was lower than average (Figure 1.3).
Higher rainfall in winter can result in stronger fluvial flow during spring and a delay in
movement of the salt wedge upriver. Lower rainfall in winter can reduce the duration and

velocity of fluvial flow and allow a more rapid progression of the salt wedge upriver.
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Figure 1.3: Total monthly rainfall during field investigations (column) and long-term
monthly average (line), as measured at Perth Airport.

Source: Australian Bureau of Meteorology.
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The maximum temperature was higher than average for both years in all seasons
(Figure 1.4). Higher than average summer temperatures, combined with lower fluvial flow,

promotes algal growth and can lead to persistent nuisance blooms.
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Figure 1.4: Average daily maximum and minimum air temperature during field
investigations (columns) and long-term monthly average (lines), as measured at Perth
Airport.

Source: Australian Bureau of Meteorolagy.

Zooplankton Population Dynamics

Chapter 2 of this thesis documents the population dynamics of zooplankton in the Swan
River estuary and relates these to environmental parameters. Zooplankton monitoring
focused on copepods but all zooplankton collected were enumerated and these unpublished
data are also presented.

The basic seasonal cycle of zooplankion in relation to water salinity and hydrology had
already been documented (e.g. Bhuiyan, 1966, Hodgkin and Rippingale, 1971; Rippingale,
1987). However, a number of questions remained unanswered. For example, what effect
do persistent algal blooms have on zooplankton populations? To what extent is salinity the
main environmental factor regulating zooplankton population distribution? s there evidence

to support the hypothesis of declining estuarine health as indicated by copepod populations?

Page 7
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Temporal changes in estuarine zooplankton distribution, abundance and species
composition and environmental parameters were monitored from summer 1995-1296 to
summer 1997-1998 inclusive. This provided biomass estimates of zooplankton grazers and
identified the primary mechanisms behind observed shifts in species composition, relative
abundance and distribution. It also allowed a comparison with historical data to show
whether copepod species composition had changed; a change in grazer type and
abundance over both short and long-term scales has implications for the potential of grazers

10 reduce phytoplankton biomass.

Chapter 2 is based on a manuscript submitted for publication, focussing specifically on
copepods, but the chapter also includes unpublished monitoring results for other
zooplankton taxa and the results of an unpublished study into vertical distribution and

abundance of dominant zooplankton taxa.

Zooplankton Grazing

Zooplankton grazing impact on phytoplankton biomass, and the significance of this impact,
has been the focus of many investigations where water quality has been aftected by
phytoplankton blooms. Very few such studies have been undertaken in Australian estuaries

and even fewer in the Swan River estuary.

With the reported increased severity and incidence of algal blooms in the Swan River
estuary, it became important to understand the ecological processes that were invoived in
algal bloom dynamics and to assess the potential for zooplankton to reduce phytoplankton
biomass through grazing. Equally as important was the potential for zooplankton grazing to

influence phytoplankton species succession.

Chapter 3 of this thesis documents the ecological role of zooplankton as consumers of
primary production through in situ and laboratory based measurements of ingestion rate.
Both zooplankion community and individual taxon ingestion rates were determined, as well
as diurnal variation in these rates. This chapter consists of two published papers and the
results of unpublished studies into alternative methods of estimating copepod ingestion rate.
Each investigation focussed on estuarine copepods, as model zooplankton grazers, but the

results were compared with other zooplankion taxa.
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Nutrient Interactions

Typically, phytoplankton blooms in the Swan River estuary occur following winter rainfall,
when catchment-derived nutrients become available and water temperature and light
conditions are favourable for the growth of algae. However, the persistence of algal blooms
through to late autumn, when rainfall is generally low, unreliable and unpredictable, can be
related 1o recycling of nutrients within the water column (Caperon et al,, 1979; Glibert et al.,
1982: Havens et al., 1996; Horner-Rosser and Thompson, 2001).

The role of copepods in nutrient regeneration and, hence, nutrient availability for
phytoplankton growth, was examined by measuring the rate of production of faecal pellets by
dominant copepods under a variety of feeding regimes, as well as the rate at which these
pellets settle. The rate of excretion of soluble nutrients during faecal pellet decomposition
and during copepod metabolic activity was also assessed to determine the significance of
grazer contributions to nutrients available for phytoplankton growth. These studies resulted
in two manuscripts (one published and the other submitted for publication), which are

presented in Chapter 4.
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Chapter Two Zooplankton Dynamics

Chapter 2 - Zooplankton Population Dynamics

General Introduction

Previous studies of zooplankton in the Swan River estuary have idenlified a seasonal
successional pattern of copepod species composition, abundance and distribution, related to
salinity tolerance, riverine flow and inter-species predation (Bhuiyan, 1966; Hodgkin and
Rippingale, 1971; Rippingale, 1987; Rippingale, 1994). Hodgkin (1987) described salinity as
being the ‘ecological master factor behind observed patterns of zooplankton species
distribution. Although salinity is a defining environmental condition, these earlier studies did
not document diurnal changes in distribution and did not investigate the effect of other
environmental variables on distribution, such as dissolved oxygen, suspended solids and

algal species and density.

The aims of the monitoring component of the study were:

1. to verify previously recorded patterns of copepod successional change;

2. 1o investigate the occurrence of diurnal migration in Swan River zooplankton; and

3. 1o establish the relative importance of environmental conditions in controlting copepod

distribution, relative abundance and species composition.

The following sections review the methods for monitoring zooplankton and describe the
methods used for this study, summarise the numerically dominant and commonly occurring
zooplankton in this study and summarise patterns of diurnal distribution for numerically
dominant zooplankton taxa. The chapter concludes with a copy of a manuscript on copepod
monitoring in the Swan River estuary, submitted for publication in the Journal of the Royal

Society of Western Australia.

Monitoring Methods

Patchiness of plankton communities is well documented (e.g. Levin and Segal, 1976; Mann,
1982; Day et al., 1989; Kotliar and Wiens, 1990; Levin, 1994). In estuarine systems, the
distribution of biotic and abiotic conditions occurs over variable spatial scales (patches within
patches) and is in a constant state of flux. This occurs because of changes in abiotic
conditions, such as tidal movement, internal current generation, wind effects and changes in
biotic conditions (predator-prey interactions), over variable temporal scales (diurnal, weekly,
monthly, seasonally). Inherent patchiness should be considered in any zooplankion

monitoring programme, as patch size can determine the choice of sampling procedure.
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Chapter Two Zooplankton Dynamics

For the present study, a range of methods for collecting zooplankton was assessed,
including plankton nets, pumps and traps. Pumps were not used because there is evidence
for underestimation of zooplankton populations as animals avoid the inlet siream
(Singarajah, 1969; Edmondson and Winberg, 1971, Icanberry and Richardson, 1973). Two
methods were chosen for zooplankton sample collection based on the aims of the monitoring
programme and resaurce availability. A plankton net was used for long-term monitoring
zooplankton populations over a large spatial scale. A plankton trap was used for monitoring

zooplankton populations over a short time-frame and small spatial scale.

The use and design of plankton nets for zooplankton sampling' has been well researched
and the errors associated with this method of sampling are well documented (Tranter and
Fraser, 1968). Factors to consider include mesh type and pore size, towing speed and
angle, the filtration efficiency of the net diameter and avoidance by zooplankton. Studies
have shown that the most appropriate type of mesh to use in plankton nets is nylon or
polyester, monofilament, plain weave mesh. In the present study, monofilament, plain
weave nylon mesh was used with a pore size of 300 um. The pore size was chosen based
on the dimensions of the most common copepod fauna in the Swan River estuary and the
likelihood of the mesh clogging during phytoplankton blooms. It was considered that 300 um
was the greatest pore size that could be used without substantial loss of adult zooplankters.
Previous studies have shown that the ratio of mesh area to net mouth area determines the
net filtration efficiency, which plateaus when the mesh surface area is three times greater
than the mouth area (Tranter and Fraser, 1968). The dimensions of the net used in the
present study were such that the mesh surface area was four and a half times greater than
the mouth area, effectively providing a greater volume of water filtered efficiently (Tranter
and Fraser, 1968). The mouth of the net had a diameter of 0.5 m, being sufficiently large to
minimise zooplankton avoidance (Fleminger and Clutter, 1965; M°Gowan and Fraundorf,
1966). To minimise turbulence directly in front of the net and net avoidance behaviour by
zooplankton, the net was towed from the top of the mouth rather than from the front. A flow
meter was positioned in the centre of the mouth (Tranter and Fraser, 1968). The towing
speed was maintained at 0.5 knots to reduce any effect on the filtration efficiency of the net
(Tranter and Fraser, 1968). The net was lowered to the bottom of each site {(with depth
determined using a depth sounder) while the boat was stationary and then slowly hauled in

while the boat travelled, creating an oblique haul.

An advantage of the plankton net was that it allowed the filtration of large volumes of water
(minimum of 50,000 L of water at each site on each sampling cccasion), over both vertical
(average 5 m) and horizontal {average 350 m) scales, thereby minimising the effect of
patches on the data.. Wiebe (1871) found that the larger the patch size encountered the
higher the sample accuracy. By filtering aver a horizontal, as well as a vertical scale, it was

assumed that large patches would be encountered.
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The net sampling did not allow any discrimination of vertical zooplankton distribution, so this
was examined using a 6.28 L capacity plankton trap, which enabled sampling from discrete
depths and repeated sampling over short time scales. A series of sites were located from
which sampling could occur from a jetty or boat (Figure 2.1) and these were used for 24 hour
monitoring sessions, with samples collected every three hours. Sampling dates were
chosen with reference to the location, extent and type of algal blooms present. The data
collected allowed observation of diurnal changes in zooplankton distribution in the Swan

River estuary.

A major advantage of the trap sampling was that the sample could be filtered on very fine
mesh (44 um) and include nauplii, copepodites and microzooplankton not captured efficiently
or consistently with the plankton net. A disadvantage of the trap sampling was that sampling
took place from a fixed location in a tidal system. However, by also recording tidal stage, the
data could be used to illustrate patches of zooplankton moving within a tidal water body past
the fixed sampling location. Any changes in the distribution of zooplankton within the water
celumn as the patch moves past the sampling point could be observed.

The frequency at which both types of sampling were undertaken allowed determination of
both long-term and short-term population dynamics. Fortnightly monitoring was chosen for
the net sampling because it was the shortest time-frame over which samples could be taken
without generating a prohibitive number of samples for processing. Monthly sampling,
although it reduces sample processing time was considered to be too infrequent because the
dominant copepod fauna of the Swan River estuary can complete their life cycle in
approximately 14 days and because previous studies have shown that the time frame for
population changes is generally less than one month. For example, predation of one
copepod species on another caused a complete shift in the species composition over time
scales as small as one week (Rippingale and Hodgkin, 1974b). Three hourly monitoring was
chosen as a frequency for the trap monitoring as it allowed a minimum of eight observations
of zooplankton distribution within a 24 hour period and two or more tidal changes.
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Figure 2.1: Trap sampling locations (with net sampling site numbers shown).

Zooplankton of the Swan River Estuary

A total of 57 zooplankton taxa were collected. These were from the invertebrate phyla
Arthropoda, Mollusca, Rotifera, Cnidaria, Chaetognatha, Annelida, Ciliophora,
Echinodermata and Protozoa and the vertebrate phylum Chordata. Of all taxa collected,
32% were meroplankionic (temporary members of the plankton) and 68% were
holoplanktenic (permanent members of the plankton). A complete list of the taxa collected is

provided in Appendix 1.

The most common invertebrate phylum, Arthropoda, was represented by four classes,
Ostracoda, Maxilipoda, Malacostraca and Branchiopoda and one sub-class, Cirripedia.
Class Maxillipoda (subclass Copepoda) was the most commonly collected arthropod taxon.
Twenty-five species of copepod were collected, but five species contributed most to overall
abundance. The rotifers Synchaeta sp. (Figure 2.2) and Brachionus plicatilis (Figure 2.3)
and the larvae of the bivalve, Xenostrobus securis (Figure 2.4), although not collected often,

were numerically dominant during summer 95/96.

Commonly occurring taxa were identified to species level, when possible. The copepods,
Sulcanus conflictus (Family Sulcanidae) (Figure 2.5) and Gladioferens imparipes (Family
Centropagidae) (Figure 2.6), have been widely studied in the Swan River estuary and their
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taxonomy is well described, as is the taxonomy for Oithona nana (Figure 2.7). Less is
known about the taxonomy of Acartiura sp. (Figure 2.8), which has previously been referred
to as Acartia clausi (Bhuiyan, 1966; Craig, 1979; Rippingale, 1987) and Acartia simplex
(Gaughan and Potter, 1995). Bradford (1976) revised the Acartia subgenus Acartiura to
create a new genus, Acartiura, based on a close relationship to Acartia clausi. The species
of Acartiura in the Swan River estuary has not yet been confirmed to be any of the new
species of Acartiura described and so is referred to as Acartiura sp.. The cyclopoid copepod
referred to as Halicyclops sp. (Figure 2.9) was not identified to species level because
sufficient reference material was lacking. The taxonomy of species collected infrequently
was resolved to Family, when possible.

100 pm

Figure 2.2: Synchaeta sp. Ehrenberg, 1832.
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Figure 2.3: Brachionus plicatilis Mueller, 1786.

100 wm

Figure 2.4: Xenostrobus securis Mueller, 1786.

Page 15



Chapter Two Zooplankton Dynamics

Figure 2.5: Sulcanus conflictus Nicholls 1945.

Figure 2.6: Gladioferens imparipes Thomson 1946.
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Figure 2.7: Oithona nana Giesbrecht, 1892.

Figure 2.8: Acartiura sp. Bradford 1976.
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= 100m

Figure 2.9: Halicyclops sp. Lilljeborg, 1853.

Diurnal Distribution

Vertical migration is a commonly observed behaviour in copepods (Day ef al., 1989). The
control mechanism for, and adaptive significance of, vertical migration has been widely
investigated (see reviews in Haney, 1988 and Lampert, 1989). In general, it is considered
that daily changes in light intensity and angular distribution provide a primary exogenous
stimulus for timing the diel migrations of most zooplankton (M°Laren, 1963, Longhurst, 1976,
Haney, 1988), with possible involvement of an endogenous circadian rhythm (e.g. Harris,
1963; Enright and Hamner, 1967).

Light as a primary control mechanism for vertical migration does little to explain reverse
migration or repeated migrations within a single diel period. Physical water conditions, such
as temperature, salinity and current may influence vertical migration (Longhurst, 1976;
Haney, 1988). A further hypothesis was that put forward by Gauld (1953), who postulated
that food availability could act as a signal for upward or downward migrations in marine
copepods. However, it is unlikely that factors controlling or influencing vertical migration
would act independently of the changing physical, chemical or biological factors encountered
by a migrating organism (Longhurst, 1976; Haney 1988). It is highly probable that a
multitude of local factors interact to determine the amplitude and direction of vertical

migration, given the diversity of habitats in which zooplankton occur.
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Zooplankton commonly show behavioural plasticity in response to particular environmental
conditions (Haney, 1988). As such, zooplankton in an estuary could be expected to exhibit
migratory behaviour very different from that of zooplankton in open oceans, inland lakes or
neritic environments. Factors such as tidal cycles and salinity changes may also influence

vertical migration of estuarine zooplankton.

Figures 2.10 to 2.16 show examples of variation in the diurnal distribution of zooplankten and
tidally induced changes in water salinity in the Swan River estuary. Although sampling
occurred from a fixed point, the graphs show zooplankton patches moving past sampling
locations. The tidal currents measured during sampling were used to discern whether a
single patch was observed moving up and down the herizontal plane or whether several
patches were present. Current direction is indicated in each salinity graph and approximated

tide times and heights are provided in Table 2.1.

Not all zooplankton taxa were recorded at each location and sampling time. For example,
the rotifers, B. plicatilis and Synchaetfa sp. and larvae of the bivalve, X securis, were
recorded in high densities in summer 25-96 but not at all in summer 26-97 (Figures 2.10,
2.11, 212 and 2.13). The copepods Acartiura sp. and Halicyclops sp. were only recorded in
- summer 96-97 at the trap monitoring sites (Figure 2.14).

Evidence for diurnal vertical migration was found on only three occasions during the
observation periods. This occurred with S. confiicfus at Ron Courtney Island (Figure 2.11),
with larvae of the bivalve, X securis, at Ascot (Figure 2.12) and with Halicyclops sp. at the
Narrows (Figure 2.14). Other patterns of vertical distribution appeared to be more related to

tides and salinity.

Previous studies in deeper water (18 m) in the Swan River estuary have indicated that
S. conflictus does undergo diumal vertical migration {Bhuiyan, 1966). The sampling sites for
the present study were all in shaliow water (approximately 32 m) and this may have had an
effect on vertical migration. Variation in copepod migratory behaviour has been cbserved
elsewhere. For example, Acartia erythraea showed distinct patterns of vertical migration in
the eutrophic waters of Tolo Harbour, Hong Kong (Tang et al., 1994), but the same species

showed limited vertical migration in the Inland Sea of Japan (Checkley et al., 1992).
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Table 2.1: Approximate high and low tide times ahd water height for the Swan River

estuary during diurnal distribution investigations.

Site Date Approximate Time (hrs)  Approximate Height ASL (m)

Ron Courtney Island  18/11/95 0820 0.63
1025 0.64

1702 0.58

19/11/95 0026 0.83

0801 0.56

Ron Courtney Island  23/11/85 1058 0.31
24/11/85 0223 1.04

1154 0.29

Ascot 10/01/96 1137 0.43
1900 0.65

2000 0.65

11/01/96 0500 0.83

1146 0.45

Ascot 31/01/96 0956 0.42
1/02/96 0015 0.94

Narrows 12/11/96 0851 0.36
1521 0.58

1708 0.57

13/11/96 (0039 0.97

0953 0.35

Maylands 21/11/96 0738 0.55
1232 0.61

1648 0.59

2348 0.85

22/11/96 0820 0.48

1345 0.60

Ascol 17/12/96 0138 0.75
18/12/96 1242 0.53

2336 0.80

19/12/96 1044 0.52
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Figure 2.10: Diurnal distribution of zooplankton at Ron Courtney Island, 18-19"

November, 1995.

Tide direction indicated in a). Legend refers to Salinity in a) and zooplankton.L™" in b) to g).
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November, 1995.

Tide direction indicated in a). Legend refers to Salinity in a) and zooplankton.L™ in b) to g).
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Figure 2.12: Diurnal distribution of zooplankton at Ascot, 10-1 1™ January, 1996.
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Figure 2.14: Diurnal distribution of zooplankton at Narrows, 12-1 3™ November, 1996.
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Figure 2.16: Diurnal distribution of zooplankton at Ascot, 18" December, 1996.
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It has previously been demonstrated that estuarine zooplankton exhibit behavioural patterns
which maximise their retention in estuarine waters, by concentrating in comparatively slow-
flowing bottom waters during ebb tides (Weinstein et al., 1980; Hill, 1991; Schlacher and
Wooldridge 1995). In the Swan River estuary, higher velocity tidal currents occur during the
flood tide, not the ebb tide (Pattiaratchi and Burling, 1998) and horizontal displacement of
copepods would be greater on the flood tide. S. conflictus may use this phenomenon to
maintain its position in moderate salinity water. It was located in the bottom waters on
incoming tides and in the surface waters on outgoing tides. This distribution also coincided
with the water salinity most suited to this species’ survival (Rippingale and Hodgkin, 1977).

G. imparipes was located on two occasions and also occurred in the bottom waters (Figures
2.10 and 2.11). G. imparipes has been shown to move upriver ahead of S. confiictus and
persist beyond the range of that potential predator of its nauplii (Rippingale and Hodgkin,
1977). This was demonstrated in the present study on one occasion (Figure 2.11). The
other time G. imparipes was located, it occurred in the same water mass as S. conflictus but
had an abundance five times greater (Figure 2.10).

Larvae of X. securis were located throughout the water column irrespective of time of day or
tidal stage when water salinity was low (Figures 2.10 and 2.11) and were confined to lower
salinity water when water salinity was high and a halocline was present (Figure 2.13). The
rotifers B. plicatilis and Synchaeta sp. occurred together, when they were both present.
They occurred in the surface waters on three occasions on outgoing tides (Figures 2.10,
2.11 and 2.13) and Synchaeta sp. was dispersed throughout the water column on one
occasion (Figure 2.12), when the tides were unusual in that the water level did not decrease
during the outgoing tide, but remained stationary (Table 2.1). Copepod nauplii also were
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dispersed throughout the water column at this time, whereas they were only found in surface

waters at other times (Figures 2.10, 2.11 and 2.12).

Schiacher and Wooldridge (1995} noted that variation in zooplankton dispersion and density
are increased Iin tidal estuaries and this appears to be the case in the Swan River estuary,
despite the low amplitude {mean 0.4 m) and low velocity tides (Pattiaratchi and Burling,
1998). The results of the present study illustrate the variability in zooplankton migratory

behaviour under varied environmental conditicns {Haney, 1988).
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Chapter 3 - Zooplankton Grazing

General Introduction

Phytoplankton growth in the Swan-Canning Estuary is thought to be initiated by nutrients that
enter the estuary during winter run-off and develops during spring, when fiuvial tlow ceases,
water temperature rises and photoperiod increases. Phytoplankton biomass subsequently
declines as nutrient levels become depleted (John, 1987; Thompson and Hosja, 1996).
However, there is increasing evidence to suggest that zooplankton grazers have the
potential to play an important role in the reduction of phytoplankton biomass {Griffiths and
Caperon, 1979; Stearns et al., 1987; Svensson and Stenson, 1981; Cyr and Pace, 1992).

The potential for herbivorous grazers to remove phytoplankton biomass, is thought to be
dependent on the density and size of the herbivores (Martin, 1970; Gamble, 1878; Lampert
and Taylor, 1985; Vanni, 1987; Turner and Granéli, 1992), diel variation in feeding rates
(Gauld, 1953; McAllister, 1971; Mackas and Bohrer, 1976; Lampert and Taylor, 1985;
Peterson et al.,, 1980a) and phytoplankton abundance (Mullin and Brooks, 1870; Frost, 1972;
Reeve and Walter, 1977; Ambler, 1986; Durbin and Durbin, 1992).

There is continuing debate as to the importance of ‘top-down' control of algal blooms through
grazing (Harris, 1986; Peters, 1891, DeMelo et al,, 1992; Boon et al., 1994). However, there
is a paucity of studies on the detrimental effect of certain phytoplankton species on grazer
survival and fecundity. Similarly, the effect of phytoplanktan on water column characteristics
(physical and chemical) during periods of peak productivity may be detrimental to the
survival of zooplankton. If unsuitable phytoplankton species occur more frequently or if
phytoplankton productivity increases, the distribution and abundance of zooplankton grazers

may be affected (Sommer, 1989).

The grazing component of this research examined the factors influencing zooptankton
grazing, in particular, by copepods, and the ability of zooplankion to reduce phytoplankton
hiomass. The aims of the grazing component were:
1. 1o investigate zooplankton community grazing under differing phytoplankton bloom
conditions,
to investigate diurnal feeding behaviour of copepods;
to determine maximum ingestion rates for copepods feeding on different phytoplankton
species under laboratory conditions; and
4. to determine which component of the zooplankton contributes most to top-down control

of phytoplankton.
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The data generated was used in the three dimensional computer model (CAEDYM) to
provide insights into the role of zooplankton grazers in relation to each other, phytoplankton
and hydrological processes. An integrated assessment of these processes provides a sound

framework for formulation of future management strategies for the estuary.

The following sections review the methods used for measuring zooplankton ingestion rates
in the present study and the results obtained. The Chapter concludes with two published
articles on in situ top-down control of phytoplankton and using CAEDYM to determine which
component of the zooplankton contributes most to reduction in phytoplankton biomass.

Methods for Measurement of Zooplankton Grazing

Two methods were chosen for measuring zooplankton grazing rate. In one method, grazing
rate was calculated by measuring the loss of chlorophyll from incubation chambers over time
(Gifford and Dagg, 1988) using the equations of Frost (1972). This technigue was used in
the field and the laboratory. In the second method, grazing rate was measured using the gut
fluorescence technique, which measures chiorophyll in the gut of individuals. Both

techniques have their advantages and disadvantages.

One advantage of conducting field-based experiments is that natural assemblages of
zooplankton and phytoplankton are used. Grazing rates of zooplankton have been
measured using a variety of techniques, both in situ and in the laboratory (reviewed in
Marshall, 1973; Griffiths and Caperon, 1979; Huntley, 1988). Despite all efforts to obtain
predictable and repeatable measures of grazing rates and despite over 50 years of
experimentation, researchers still obtain results varying in orders of magnitude. Huntley
(1988) asserts that our fundamental thinking towards measurement of grazing rates has a
flaw, in that rates are measured without any thought to feeding history or after an arbitrary
period of preconditioning. This assertion is supported by experimental evidence that
zooplankton preconditioned on a certain food type will select that food type when given a
choice of foods (Cowles et al., 1988; Schoeneck et al., 1990; Head and Harris, 1994}.
Therefore, it would seem that the feeding history of the grazer is of primary importance when

measuring the rate at which they remove a given food type.

A disadvantage of the field experiments conducted was that they did not allow measurement
of ingestion rates for individual taxa, but provided estimates for size classes of zooplankton.
This flaw was addressed by conducting further experiments under controlled |laboratory
conditions and measurement of ingestion rate for individual taxa. Each technique is

discussed further in the following sections.
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All measurements of ingestion rate used the fluorescent pigment, chlorophyll a, as an
indicator of feeding. It is acknowledged that there are problems with the use of chlorophyll a
{e.g. Shuman and Lorenzen, 1975; Riemann, 1978; Gieskes and Kraay, 1983; Baars and
Helling, 1985, Carpenter and Bergquist, 1985; Trees et al, 1985; Conover et al., 1986;
Jeffray and Hallegraeff, 1987; Penry and Frost, 1990; Gieskes et al., 1991; Head and Harris,
1992; 1996), mainly through the degradation of chlorophyll to non-fluorescing compounds.
Despite this, the use of chlorophyll a as an indicator of zooplankton grazing is widely
reported in the literature and recommended as an appropriate method in standard texts (e.g.
Downing and Rigler, 1984; American Public Health Association, 1995; Wetzel and Likens,
1995). In the present study, which was one of several investigations into ecology of the
Swan River estuary, it was important to ensure that data collected was comparable 1o data
collected in other studies on the Swan River estuary. All other studies used chlorophyll a as

an indicator of phytoplankton biomass.

Estimation of Gut Clearance Rate in Suicanus conflictus

introduction

The measurement of copepod gut fluorescence has emerged as a suitable technique for
measuring in situ ingestion rates and provides results comparable to other methods (Mann et
al., 1984:; Baars and Helling, 1985; Kierboe et al, 1985; Peterson et al.,, 1990b; Quiblier-
Lloberas et al,, 1996). The advantages of this technique are many: (i} it avoids handling and
confinement of copepods, thereby avoiding artefacts associated with experimental
conditions; (ii) it is useful for investigating diurnal feeding rhythms in copepods; (iii) i can be
used to estimate ingestion rates over short time periods; and (iv) it allows estimation of
ingestion rates of natural densities and mixtures of copepods feeding on naturai mixtures of
algal species. However, the technique does not provide information on food selectivity and
there have been methodolegical problems associated with the degradation of pigments to
non-fluorescing compounds (Baars and Helling, 1985; Durbin et al.,, 1990; Head and Harris,
1996; Quiblier-Lloberas et al., 1996) and estimation of gut clearance rate (Baars and Helling,
1985; Tsuda and Nemoto, 1987; Dam and Peterson, 1988, Peterson et al., 1990b).

Gut passage time refers to the time taken for the remains of ingested particles to be egested
by the copepod and is calcutated as the inverse of the gut clearance rate constant, k
{Mackas and Bohrer, 1976). Copepod ingestion rate is estimated from the product of gut
fiuorescence and the gut clearance rate constant (e.g. Mackas and Bohrer, 1976; Bautista
and Harris, 1992: Sautour et af.,, 1996). Therefore, gut clearance rate is an integrai part of
using gut fluorescence as an indicator of copepod feeding and as such, must be determined
with accuracy (Kierboe and Tiselius, 1987). Inaccurate measurement of gut clearance rate
may result in underestimation of copepod ingestion rates (Kierboe ef al., 1985; Kiarboe and
Tiselius, 1987; Tsuda and Nemoto, 1987, Peterson et al, 1990b).
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Gut clearance rate is commonly estimated by periodic measurement of gut fluorescence of
either freshly collected or pre-fed copepods for an hour or more after placement in filtered
water (e.g. Mackas and Bohrer, 1976; Dagg and Wyman, 1983; Peterson et al, 1990b;
Bautista and Harris, 1992; Sautour, et al., 1996). This method makes the assumpticn that
gut clearance rate remains the same independent of whether the experimental animals are
feeding or not (Mann et al., 1984; Penry and Frost, 1990; Atkinson et al,, 1996). Kierboe
and Tiselius (1987) suggested that the difference in gut clearance rate between feeding and
non-feeding copepods is negligible when only the first 30 minutes of the incubation is
considered. This prompted the general recommendation by Baars and Helling (1985} and
Durbin et al. (1990) that only values of gut fluorescence which fall on a straight line when
plotted on a semi-logarithmic scale be included for estimation of k. This is generally seen to
occur within the first 30 to 80 minutes of gut clearance rate incubations (e.g. Kierboe and
Tiselius, 1987; Dam and Peterson, 1988; Uye and Yamamotlo, 1995). However, many
authars have suggested that this assumption may be invalid and that the effect of feeding on
gut clearance rate should be investigated {(e.g. Mann el al., 1984; Baars and Helling, 1985;
Dam and Peterson, 1988: Penry and Frost, 1990; Peterson et al., 1290b).

Gut clearance rate has been shown to be a temperature-dependent process, with most
authors reporting positive linear relationships (Kigrboe et al., 1982; Dagg and Wyman, 1983,
Dam and Peterson 1988; Durbin et al., 1990; Uye and Yamamoto, 19'95). These studies
have reported Q4 values ranging between 1.5 and 5.4, but all were carried out ai
temperatures at or below 20°C. In shallow temperate estuaries, water temperature can often
exceed 25°C. Few studies have measured gut clearance rate under these conditions.
Irigoien and Castel (1995) and Irigoien et al. (1996) made direct measurements of gut
clearance rate at 22 and 26°C, but most authors have relied on published regression

equations, such as that produced by Dam and Peterson {1988).

The feeding mode and food preference of Suicanus conflictus are unusual among copepods
(Rippingale, 1981). It has been hypothesised that S. conflictus evolved as a predominately
predatory copepod, with elaborate prey-detection structures on the first antennae and
anterior mouth-parts, which are most similar to those seen in obligate predators (Rippingale,
1981). However, the structure of the second maxilla and maxilliped is unlike that seen in
gither predatory or herbivorous copepods and they have been observed to work together to
form an elaborate filtering basket. This feature enables S. conflictus 10 exhibit both
predatory and herbivorous feeding modes. In a series of laboratory experiments, Rippingale
(1981) determined that S. conflictus is able to clear water of particles (ranging in size from 6
to 25 um) at similar rates as other copepods of similar body size, but that in the presence of
animal prey, its algal clearance rate was depressed. In the context of the present study, it is

unknown whether trophic features of this species, such as having a feeding anatomy

Page 59



Chapter Three Zooplankton Grazing

strongly adapted for predation and secondarily suited for filtration, wili result in gut clearance

rates, which differ from those of other copepod groups.

This study was designed to investigate a) whether gut clearance rate was similar for
S. conflicius with continuous access to food (feeding) and S. conflictus which had previously
been feeding but subsequently were denied access to food (non-feeding) and b} the effect of
temperature on the gut clearance rate constant. As an ancillary, this study sought to
determine whether the gut fluorescence technique could be reliably used for copepod

species, such as S. conflictus, which can be difficult to maintain under laboratory conditions.

Methods

S. conflictus samples were collected from the Swan River estuary in water with a salinity
range of 22.9 to 31.5 and a temperature range of 16.9 to 17.6°C, on the 28th of May, 1996.
The specimens were taken to the laboratory, maintained at constant temperature (18 and
25°C) for three days in water of salinity 20 and fed a mixture of the unicellular alga Dunalieffa
tertiolecta, Nanochloropsis sp. and Isochrysis gafbana. The algal cultures had been
maintained in the laboratory on Guillard's f/2 medium (Guillard, 1975).

Actively feeding copepods (visible evidence of gut fullness) were removed from their food
source and rinsed three times with 1.2 um filtered water of the same salinity and

temperature. This was achieved quickly (in less than one minute) by transferring the

copepods to successive water baths using a Nitex ® screen of pore size 300 pm.

Three samples of rinsed copepods were snap frozen with dry ice for initial gut fluorescence
measurement {mean=20 copepods, range=7-40). Remaining copepods were then
transferred to either 1.2 um filtered water of salinity 20 (non-feeding) or 1.2 um filtered water
of salinity 20 with actively growing yeast cells added (feeding). Replicate copepod samples
(n=3) were removed from the experimental containers at 20 minute intervals for the first hour
and then at hourly intervals (t = 0, 20, 40, 60, 120, 240, 300 minutes). All samples were
snap frozen with dry ice, and used to show changes in copepod gut fluorescence at different

time periods.

The yeast culture was prepared by combining 7 g of dry baker's yeast with 2 g of glucose
and one litre of water of salinity 20 and maintained, with aeration, at 18 and 25°C. The yeast
cells were examined at 100 times magnification with a compound microscope to ensure they
were actively growing and to obtain cell counts using a Sedgewick Rafter Chamber
{estimated to be >100,000 cells.mL”'). The copepod culture and filtered water were
maintained at the experimental temperatures of 18 and 25°C prior to each experiment. Al
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experimental containers were softly aerated, to prevent the yeast cells from settling out

(feeding copepods) and to ensure uniformity of method (non-feeding copepods).

Frozen copepod samples were examined in chilled saline water, with a binocular microscope
fitted with a cool white light. Inspection of individual copepods from the yeast mixture
revealed the presence of yeast cells in the gut, so it was assumed that feeding was
occurring. Individual intact copepods were removed and placed into a vial with 5 mL of 90%
acetone (v/v). The vials were sealed and sonicated for 20 minutes in iced water and then
allowed 1o sit for 24 hrs at 4°C to allow chlorophyll extraction to occur (Thompson and Hosja,
1996; Griffin and Rippingale, 2001). After 24 hours, the vials were centrifuged and the
supernatant analysed for concentration of chlorophyll a and phaeophytin using an Aminco
Colorimeter, previously calibrated against a chlorophyll a standard.

Gut pigment was calculated as the sum of chlorophyll a and phaeopigment (Dam and
Peterson, 1988) and expressed as ng pigment.copepod". The extent of pigment
degradation to non-fluorescent compounds was not assessed, so pigment values were
multiplied by 1.5 to allow for the range of losses most commonly reported (Kigrboe and
Tiselius, 1987: Dam and Peterson, 1988). Decline in gut fluorescence over time
approximated an exponential decay model, so gut clearance rate constant (k) was calculated

for each time period according to:
-k
Gi= Go.e ™ (1)

where Gy represents gut pigment after time fand G, is the initial gut pigment. Gut pigment

was not corrected for background fluorescence (Baars and Helling, 1985; Durbin i at,
1990).

Results

Gut pigment decreased over increasing incubation periods at both experimental
temperatures and for feeding and non-feeding copepods (Figure 3.1). Feeding and non-
feeding copepods had an initial gut pigment level of 0.12 ng pigment.copepod'1 at 18°C. At
25°C, initial gut pigment was €.16 ng pigment.copepod'1. At 18°C, gut pigment in feeding
copepods was reduced to 24% of the initial gut pigment within 60 minutes, whereas it took
120 minutes for gut pigment in non-feeding copepods to reduce to 21.4% of the initial level
(Figure 3.1a). At 25°C, the difference between feeding and non-feeding copepods was maore
pronounced; gut pigment in feeding copepods was reduced to 5.8% of the initial gut pigment
within 20 minutes, whereas it took 60 minutes for gut pigment in non-feeding copepods to

reduce to 4.7% of the initial level (Figure 3.1b).
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Figure 3.1: 8. conflictus gut pigment content over time, at a) 18 and b) 25°C.
Bars represent one standard error, n = 3 samples of copepods, except for initial

measurement where n=1.
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Gut clearance rate constant (k) declined over increasing time periods, representing an
increase in gut passage time over the same periods (Table 3.1). Gut clearance rate was
greatest for the first 20 minute interval (Table 3.1) and was consistently higher for feeding
than for non-feeding copepods. It was also consistently higher at 25°C than at 18°C. A
semi-logarithmic plot of gut flucrescence over time showed that the best linear relationship
was seen after 40 minutes, for each temperature and feeding and non-feeding copepods (at
18°C, ¥ = 0.94 and 0.90 respectively and at 25°C, ¥ = 0.77 and 0.81 respectively).
Therefore, the most accurate value of k was assumed to be that calculated over the first 40

minutes.

Table 3.1. The effect of temperature and feeding on gut ciearance rate constant (k)
and gut passage time (GPT) for S. conflictus, calculated over increasing time periods.

Temperature  Time Feeding Non-feeding
k GPT k GPT
°C) (min)  (min")  (min)  (min")  (min)
18 20 0.034 298 0027 374
18 40 0.028 353 0019 537
18 60 0.024 421  0.016  63.3
18 120 0.020 496  0.013 775
18 240 0.018 555  0.012 809
18 300 0.017 59.2 0012  87.1
25 20 0.142 7.0 0.083 120
25 40 0.084 119 0.054 186
25 60 0.079 127  0.051 19.6
25 120 0.074 136  0.044 225
25 240 0.070 144  0.042 235
25 300 0.066 152 0038 265

A linear regression of temperature (T) against k (calculated over 40 minutes, using three
measurements at each temperature) gave the following relationships for feeding {(2) and non-
teeding (3) copepods:
k = -0.1142 + 0.0079T 2)
k =-0.0717 + 0.0050T (3)

The regression equations above were plotted with published temperature-k regressions
(Kierboe et al., 1982; Dagg and Wyman, 1983; Dam and Peterson, 1988; Durbin ef af., 1990,
Irigoien and Castel, 1995; Uye and Yamamoto, 1995; lrigoien et al., 1996) (Figure 3.2). The

regression from this study sits within the range reported in the literature.
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Figure 3.2: Comparison of relationship between temperature {T) and gut clearance
rate constant {k) for copepods in this study with relationships reported in the

literature.

Discussion

It has been suggested that the gut clearance rate of feeding and non-feeding copepods
should be similar during the initial 30 or so minutes of measurements of copepod gut
fluorescence (Baars and Helling, 1985; Durbin et al,, 1990). H is during this initial period that
copepod gut fluorescence falls on a straight line when piotted on a semi-logarithmic scale
(Kigrboe and Tiselius, 1987). In contrast, the results of the present study showed a
consistent difference between the value of k for feeding and non-feeding copepods, over all
periods of measurement and for both temperatures (Table 3.1). At 18°C, average gut
clearance rate (calculated over increasing time periods) was 1.5 times higher for feeding
copepods than for non-feeding copepods. The difterence was more pronounced at 25°C,
with gut clearance rate, on average, 1.7 times higher for feeding copepods. These resuits
indicate that copepod gut clearance rate is reduced when food is limited or not available and
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support the generally positive relationship seen between ingestion rate and food
concentration {e.g. Mullin, 1963; McAllister, 1971; Frost 1972; Mullin et al., 1975; lanora et
al., 1995). These results also provide some support for the frequently expressed concermn
(Baars and Qosterhuis, 1984; Mann ef af., 1984; Baars and Helling, 1985; Tsuda and
Nemoto, 1987; Dam and Peterson, 1988; Durbin et al., 1990; Peterson et al., 1990a; 1990b;
Atkinson et al, 1998) that gut clearance rate (measured in the absence of food) may nhot

provide an accurate estimation of gut passage time (measured in the presence of food).

The gut clearance rate constant decreased over increasing incubation periods for both
feeding and non-feeding copepods. This pattern is commonly observed for non-feeding
copepods (e.g. Baars and Oosterhuis, 1984; Kigrboe and Tiselius, 1987; Dam and Peterson,
1988: Arinardi et al, 1990; Uye and Yamamoto, 1995). Baars and Helling (1285) suggest
this decline in k over time reflects a decrease in pellet size as the copepods become more
food limited and that this pattern would not be seen in continuously feeding copepods.
Presumably, the gut of continuously teeding copepods wouid be stimulated by food and k
would be affected by gut fullness and remain relatively constant. However, feeding
copepods in the present study also exhibited a decline in k with increasing period over which
it is calculated. In this case, the decline in k does not represent a reduction in pellet size or
egestion frequency, but rather the time it takes 1o completely rid the gut of pigmented food
and replace it with non-pigmented food.

It is unlikely that the decline in k over time in feeding copepods was because they became
food limited. Although fresh food (yeast cells} was not added to the incubation containers
during the experiments and so declining food availability may have limited ingestion rate, the
initial yeast culture was dense (>100,000 cells.mL”) and thus it was assumed that sufficient
food particles were available for the entire experimental period. Similarly, ingestion rate is
unlikely to have been limited by a change to a different food type, as reported by
Christofferson and Jespersen (1986), as the yeast cells were of comparable size (10 um
diameter) to the algae species on which the copepods were maintained in the laboratory (6
10 24 um diameter) and S. conflictus has been shown 10 feed on particles ranging from 6 to
25 um in size (Rippingale, 1981). In the present experiments it was assumed that yeast cells
would be filtered out of the water because of the density of the culture, the suitable size of
yeast cells and the feeding behaviour of S. conflictus. This species does not create a steady
feeding current through the action of its mouth-parts, but rather it seems to sweep the water
with a basket formed by the second maxilla and maxilliped, while its swimming legs propel it
through the water. Therefore, normal swimming activity by the copepods would result in the

ingestion of yeast cells, whether it be through “accidental” or “active” uptake.

If gut clearance rate in non-feeding copepods is a response to peristaltic movement of the
gut (Peterson ef al., 1990a; 1890b) rather than gut fullness (Baars and Helling, 1985}, it is
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plausible that the value ot k after an extended time period may represent a basal rate of gut
activity, which would not be detected in feeding copepods. Approximately 80% of the gut
pigment was lost from non-feeding copepods at 18°C within two hours. A further three hours
of incubation resulted in only a further 7% loss (Figure 3.1a). At 25°C a similar pattern was
seen, but it occurred over a shorter time period. Here, approximately 90% of the initial gut
pigment of non-feeding copepods was lost within 40 minutes and a further 80 minutes of
incubation resulted in only an extra 5.2% loss (Figure 3.1b). Examination of faecal pellets
may lend support to the notion of a basal level of gut activity. K this were the case,
copepods incubated at the higher temperature would have produced “empty “pellets after
two hours. Faecal pellets were not examined in the present study. Alternatively, the gut
pigment remaining after three hours may simply represent background fluorescence, which

was not measured in this study.

The gut clearance rates for feeding and non-feeding copepods at 18°C (k= 0.030 and 0.023,
respectively) are at the bottom of the range reported in the literature, whereas at 25°C
(k =0.114 and 0.068, respectively) k is very close to other studies conducted at similar

temperatures (refer to Figure 3.2).

Figure 3.2 shows two distinct bands of temperature-k regressions. The upper band
represents those studies carried out at a lower range of temperatures (0-20°C) and the lower
band reflects those studies carried out at a higher range of temperatures (6-26°C) (refer to
the legend in Figure 3.2). The central regression is that of Dam and Peterson {1988), which
was conducted at temperatures ranging from 0-17°C. The regressions from this study are
closest to those studies that included temperatures at or above 20°C. However, the results
shown in Figure 3.2 are for a range of copepod species and various methods of estimating
the gut clearance rate constant (e.g. from pellet production rates, continuously feeding, not
feeding, variable time periods for estimation of k). Therefore, some variability between
studies can be expected and it is difficult to compare S. conffictus, with its unusual feeding

mode, to other copepod species.

In summary, the present study has provided direct evidence of an elevated gut clearance
rate constant in continuously feeding copepods, compared to previously fed but
subsequently non-feeding copepods. Therefore, this technique may not be suitable for use
in situ under conditions of limited food availability, as it has the potential to underestimate
grazing rate. Gut clearance rate was not constant over time for either feeding or non-feeding
copepods and it is suggested that, when measured after three hours, the gut clearance rate
in non-feeding copepods may represent either a basal rate of gut activity, or simply
unmeasured background fluorescence. Further, the positive linear relationship between gut

clearance rate constant and temperature supported previous findings in the literature.
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Laboratory Measurement of Zooplankion ingestion Rates

Intreduction

There are few published studies on the ingestion rates of zooplankton oceurring in the Swan
River estuary, Western Australia. Bhuiyan (19686) investigated Sulcanus conflictus ingestion
of centric diatoms and Rippingale (1981) investigated Sulcanus conflictus ingestion of
rotifers, copepod nauplii and naturally occurring phytaplankton assemblages. The suitability
of different algal species for culture of Gladioferens imparipes has been extensively studied
(Payne and Rippingale, 2000), but this study did not focus on bloom-forming algal species of
the Swan River estuary. Rippingale (1981) found that S. conflictus has the potential to clear
the entire water column of algal particles (6 to 25 um in size) in 24 hours at field densities, is
an efficient predator of copepod nauplii and ingestion of algal particles is reduced in the
presence of copepod nauplii. More recent in situ measurements of zooplankton community
ingestion rates (Griffin et af, 2001; Griffin and Rippingale, 2001) have indicated that
zooplankton communities have variable ingestion rates according to algal species and
grazer type and density. How these /n situ ingestion rates compare to laboratory
measurements on the same algal species has not previously been examined for zooplankton

in the Swan River estuary.

The measurement of zooplankton ingestion rates in the laboratory has advantages over in
situ measurements. In the laboratory, factors such as food concentration, feeding history,
water temperature and salinity and grazer type and density can be manipulated and the
maximum grazing rate and half saturation constant can be estimated. Maximum ingestion
and half saturation rates are useful tools for comparing the response of different zooplankton
species 1o different concentrations of food. These may vary considerably between food and
grazer types. As such, it is possible to use laboratory measured ingestion rates to determine
whether in situ zooplankton populations are grazing to their maximum capacity and whether

they are food limited.

The effect of food concentration has been weil researched and it has been shown that a
maximum ingestion rate can be achieved, at which time, there is no turther increase in
ingestion rate if food concentration is further increased (Frost, 1872). The influence of
incubation period on the estimation of ingestion rates is variable and may alter according to
the grazer and food type, as well as other factors such as nutrient limitation.  Nutrient
limitation may be particularly important for field experiments, but in laboratory experiments,

using nutrient rich phytoplankton cultures, it is not expected to be an issue.
This study describes laboratory measurements of ingestion rate of zooplankton feeding on

phytoplankton species commonly found to occur in the Swan River estuary. In particular, the

response of copepod, rotifer and bivalve larvae ingestion rates to varying food
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concentrations, temperatures and incubation periods was monitored with a view to
determining maximum ingestion and half saturation rates and to examine how these rates

compare to previous measurements of in situ ingestion rates.

Methods

Plankton coliection and maintenance

Zooplankton used in this study were obtained from the Swan River estuary {the rofifer
Brachionus plicatilis and planktonic larvae of the bivalve Xenostrobus securis) and
established laboratory cultures {the calanoid copepod Gladioferens imparipes) and were
maintained on a diet of the prymnesiophyte fsochrysis galbana, at room temperature (20 to
25°C). Twenty four hours prior to each experiment, the grazers were removed from their
food source and maintained in 0.2 um filtered water of the appropriate experimental salinity

and temperature.

Phytoplankton cultures were obtained from the Commonwealth Scientific and Industrial
Research Organization (CSIRO) Microalgae Culture Collection, Hobart, Australia
(Scrippsiella sp., Prorocentrum lima, Skeletonema coslatum, Dunaliella terticlecia,
Cryptomonas sp.), or isolated from algal bloomns in the Swan River estuary {Gyrodinium sp.,
Chlamydomonas sp.). Phytoflagellate and diatom cultures were maintained in the laboratory
on Guillard’s /2 culture medium (Guillard, 1975) with silicon being added to the diatom
cultures and dinoflagellate cultures were maintained on GSe culture medium (Loeblich and
Smith, 1968). All cultures were maintained at room temperature (20-25°C) with constant

aeration and a 12 hour light-dark cycle.

Measurement of zooplankfon ingestion rates

Zooplankton ingestion rates were measured using the technique and equations of Frost
(1972), modified for chlorophyll a instead of cell counts. Chlorophyll a was measured
fluorometrically against chlorophyll a standards, after sonification and subsequent extraction

in 90% v/v acetone for 24 hours in the dark at 4°C.

Experimental freatments

The range of experimental treatments (food type and concentration, temperature, incubation
period and grazer type) used in this study is outlined in Table 3.2. Each experiment used
500 mL food-quality plastic containers for experimental containers, which were rotated at
0.1 m.s" on a vertical plankton wheel. Grazers were transferred to experimental containers,
which were then filled to the brim with the experimental food cultures. Replicate
experimental containers and controls were incubated on the plankton wheel for 3, 6, 12 or 24
hours in darkness (Table 4.5). At the end of each incubation period, grazers were removed
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from the sample using a 44 um Nitex® screen and the remaining food mixture was filtered
onto glass fibre filter papers {(nominal pore size of 1.2 pymj for chlorophyll a analysis. A
series of preliminary trials were undertaken to determine the loss of chlorophyll a incurred by

the screening process (<1% total chlorophyll a, Griffin, unpublished data).

Data Analysis

The data were tested for differences between mean ranks of ingestion rate using Kruskal
Wallace two way and one way ANOVAs for non-normal data (Zar, 1984). Data were pooled
when the results of analyses indicated no significant difference between ingestion rate for
different treatments, to allow further significance testing for the effect of algal species and

temperature.
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Chapter Three Zooplanklon Grazing

Results

Appendix 2 summarises the results of significance testing for the various treatments applied
for each experiment. Overall, the length of time over which the grazing experiments were
performed (12 hour or 24 hour) did not significantly affect ingestion rate for any grazer, food

type or temperature.

Experiments testing for differences between ingestion rate between G. imparipes nauplii and
adults showed that adult ingestion rate was significantly higher than that of nauplii on two
occasions; experiment 1 when the dinoflagellate, Scrippsielia sp., was used as a food at a
temperature of 15°C and experiment 7 when the diatom, S. costatum, was used as a food at
a temperature of 20°C. There was no significant difference between ingestion rate of nauplii
and adult G. imparipes during experiments 2 (Scrippsiella sp. at 20°C), 3 (P. lima at 15°C), 6
(8. costatum at 15°C), 11 and 12 (both D. fertiolecta at 15°C and 20°C, respectively).

Experiments testing for differences between ingestion rate between adult G. imparipes and
the rotifer, B. plicatilis and larvae of the bivalve, X. securis, showed that there was no
significant difference between ingestion rate of G. imparipes and B. plicatilis when given
S. costatum or D. tertiolacta as food at 20°C (experiments 8 and 13, respectively), but
G. imparipes had a significantly higher ingestion rate than B. plicatilis when given
Cryptomonas sp. as food at 20°C (experiment 16). X. securis larvae had a significantly
higher ingestion rate than G. imparipes when given S. costatum as food at 25°C

(experiment 10).

Table 3.3 shows the maximum recorded ingestion rate for each combination of food,
temperature and grazer. Maximum average ingestion rate for adult G. imparipes was seen
when feeding on Scrippsiellasp. at 20°C {0.7712 = 1.427 pg Chla.zooplankton™.h""),
Maximum average ingestion rate for G. imparipes nauplii also occurred when feeding on
Scrippsielfa sp. at 20°C (0.2772 + 0.731 ug Chla.zooplankton'1.h'1). By comparison,

ingestion rate was low for the other dinoflagellates tested.
Overall, ingestion rate increased with increase in temperature. The exception to this is when

adult G. imparipes were feeding on D. tertiolecta and P. lima. In these two instances, the

reverse was seen — ingestion rate decreased with increasing temperature {Table 3.3).
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Table 3.3: Maximum recorded ingestion rates.

Temperature Initial Maximum Rfacorded
0) Food Type Grazer Chla Mean Ingestion Rate
(ua.L")  (ug Chla.zooplankton™.h™)
15 Scrippsielia sp. G. imparipes adults 10.2 0.0038 + 0.001
20 Scrippsielia sp. G. imparipes adults 10.6 0.7712 +1.427
15 P. lima G. imparipes nauplii 5.3 0.0008 = 0.004
20 P. lima G. imparipes adulls 26.4 0.0003 + 0.000
25 Gyrodinium sp. G. imparipes adults 10.7 0.0011 £ 0.000
15 S. costatum G. imparipes adults 36 0.0006 £ 0.000
20 5. costatum G. imparipes adults 23.2 0.0023 £ 0.001
25 8. costatum X. securis larvae 61.4 0.0309 £ 0.001
15 D. tertiolecta G. imparipes adults 250.6 0.0054 £ 0.004
20 D. tertiolecta G. imparipes adults 210.0 0.0072 £ 0.010
25 D. tertiolecta G. imparipes adults 116.1 £.0028 + 0.001
20 Cryptomonas sp. B. plicatitis adults 64.1 0.0040 + 0.001
25 Cryptomonas sp. G. imparipes adulls 178.9 0.0070¢ + 0.003
20 Chlamydomonas sp.  G. imparipes adults 66.8 0.0006 + 0.000
25 Chiamydomonas sp.  G. imparipes adults 88.1 0.0017 £ 0.000
Discussion

The laboratory-based measurements of ingestion rate were undertaken 1o prévide an
estimate of maximum ingestion rate for different grazers, food types and temperatures. The
experiments undertaken were limited by the availability of different algal species and grazers
and, particularly, the ability to maintain microzooplankton in the laboratory. However, the
results did show differences in ingestion rate between different grazers and different
chiorophyll a concentrations and an effect of temperature. Ingestion rate increased with

increase in incubation temperature for most experiments, as was expected.

Ingestion rate, when a ditference was present, was higher for adult G. imparipes than for
nauplii of the same species. Larvae of the bivalve, X. securis, showed a higher ingestion
rate than adult G. imparipes when offered the diatom, S. costatumn, as food at 25°C. The
problems associated with maintaining this micro-zooplankter in the laboratory preciuded
further testing of this species on other algal types. There were no significant differences
between adult G. imparipes and the rotifer, B. plicatilis, when offered the diatom,
S. costatum, as food at 20°C and when offered the green alga, D. tertiolecta, as food at

20°C. However, adult G. imparipes had a higher ingestion rate than B. plicatilis when offered
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the cryptophyte, Cryptomonas sp., as food at 20°C. Despite this overall difference,

B. plicatilis had a higher ingestion rate at lower food concentrations than adult G. imparipes.

The measured ingestion rates were used to calculate the percentage of standing
phytoplankton stock potentially able to be removed through zooplankton grazing per day,
based on the density of zooplankton used in the experiments. A review of Chapter 2 shows
that the natural density of microzooplankton can far exceed the densities used in the
experiments. Therefore, the proportion of standing crop removed could be higher for

microzeoplankton.

The laboratory experiments did not often reveal a significant relationship between initial
chlorophyll a concentration and ingestion rate. The exceptions for this were G. imparipes
feeding on Gyrodinium sp. at 25°C and S. costatum at 15°C (for both, ingestion increased
with higher initial concentrations of Chla) and feeding on Scrippsiella sp. at 20°C (ingestion
decreased with higher initial concentrations of Chia). Although not detected as significant,
there were several other instances where ingestion appeared to decrease as initial
chiorophyll a concentration increased. This pattern was most conspicuous for G. imparipes
nauplii (when feeding on Scrippsielia sp. at 15°C, P. lima at 15°C, S. costatum at 20°C and
D. tertiolecta at 20°C). The same pattern was seen for adult G. imparipes when feeding on
S. costatum at 25°C, D. tertiolecta at 15°C and 20°C and Chlamydomonas sp. at 25°C.
Although not conclusive, this pattern may indicate that copepod ingestion is inhibited at high
algal densities. G. imparipes is capable of feeding on celis within the size range offered
(Payne and Rippingale, 2000) but little is known about the palatability of the algal species
offered as food.
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Summary of Zooplankton Grazing

The combination of laboratory-based and field-based measurement of zooplankton ingestion
rate and the use of these data in a modelling approach have provided previously unknown

information on zooplankton grazing dynamics.

Comparing the laboratory-based and field-based measurements of ingestion rate indicates
that zooplankton are able to achieve higher rates of ingestion in the laboratory than in the
field, even when phytoplankton biomass is similar. This is to be expected as field-based
measurements are also influenced by environmental factors such as dissolved oxygen and
the presence of detrital particles in the water column. The investigation into gut passage
time for the copepod S. conflictus indicated that ingestion of phytoplankton particles may be

depressed in the presence of other particulates.

The laboratory-based G. imparipes ingestion rate measurements were highest when offering
the dinoflagellate Scrippsieffa sp. as food. In contrast, field measurements, made during a
dinoflageflate bloom dominated by Scrippsiella spp., Gyrodinium spp. and Katodiniurn sp.,
showed low ingestion rates for copepod species but higher rates for microzooplankton. The
model of zooplankton grazing verified this pattern of higher ingestion on dinoflagellates by

microzooplankion.

The laboratory-based G. imparipes ingestion rate measurements were generally low when
offering the chiorophyte, Chlamydomonas sp. as food. This pattern was repeated in both the
field measurements and the mode! of zooplankton grazing. It was suggested that the
observed decline in copepod biomass during field measurements was related 10 the
dominance of Chlamydomonas sp. in the water column. The laboratory-based

measurements of ingestion rate support this assertion.

The field-based measurements suggest that ingestion rate may be impeded over a certain
density of algae (> 320 pg phytoplankton C.L"). This is not supported in the laboratory,
where significantly higher densities of phytoplankton were used. However, it is expected that
water quality in the laboratory can be maintained, whereas during the field investigations,
dissolved oxygen levels declined significantly as a result of algal respiration and water
temperatures regularly exceeded 25°C. Both of these factors have the potential to cause

rapid deterioration of water quality and hence zooplankton survival.

Although there were few opportunities to undertake laboratory-based measurements of
microzooplankton ingestion rate, the measurements made indicated that larvae of the
bivalve, X. securis, are more efficient at removing phytoplankion biomass than adult
G. imparipes when offered S. costatum as food at 25°C. The difference between adult
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G. imparipes and the rotifer, B. pficatilis, removal of phytoplankton biomass was negligible in
the laboratory in most instances. The field measurements revealed a similar pattern in that
the percentage of phytoplankton biomass removed was similar over successive weeks

regardless of the composition of the zooplankton community measured.

It can be concluded that the laboratory-based measurements of ingestion provided estimates
of maximum potential ingestion by individual zooplankiers taxa under controlled conditions.
The differences observed between laboratory-based measurements and field-based
measurements and the results of modelling grazing are expected as the latter approaches
represent naturally dynamics systems. Overall though, the results of each approach gave

similar conclusions.
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Chapter 4 - Nutrient Interactions

General Introduction

There is much evidence to suggest that zooplankton, though excretion of soluble nutrients
during grazing and subsequent production of nutrient rich faecal pellets, have the potential to
positively affect phytoplankton productivity {Corner et al,, 1965, Mann, 1982; Stearns et al.,
1087; Voss, 1991; Checkley et al., 1992). Excretory products can be used immediately by
phytoplankton for growth, whereas faecal pellets must be remineralised by bacteria before
nutrients become available for phytoplankton use. In the Swan-Canning Estuary, the
importance of nutrient release from faecal pellets, or from excretion, is less likely to be
significant at times of peak nutrient concentrations, but may become important during
summer and early autumn when nutrient levels have been depleted and urban run-off is at a
minimum (Stearns et al., 1987). In a well mixed bay Martin (1968) found zooplankton
excretory coniributions to nutrients ranged from only 2.5% during spring 1o 100% during
autumn. Other studies have given values ranging from 77%, 66% and 43% in one location
(Harris, 1959) to negligible contributions in another similarly well-mixed estuary {Stearns et
al., 1987).

Copepod faecal pellets are enclosed in peritrophic membranes (Forster, 1953) and serve as
a mechanism for downward flux of organic material (Turner and Ferrante, 1978). Studies
have indicated that a large percentage of material in the pellets consists of partially or
undigested phytoplankton available for recycling by other plankton (Paffenhéffer and
Knowles, 1979; Head, 1992; Lee and Fisher, 1992), as well as amino acids (Cowey and
Corner, 1966), proteins (Johannes and Satomi, 1966) and carbon (Honjo and Roman, 1978,
Paffenhéffer and Knowles, 1979; Turner, 1979). The raté at which pellets sink and the
nutritional value of those pellets to microheterotrophs is largely dependent on the type of
food eaten (Smayda, 1969; Ferrante and Parker, 1977, Bienfang, 1980; Checkley et al,
1992: Paffenhéifer, 1984). The rate at which pellets are produced appears to be dependent
on food availability (Martin, 1968; Checkley et al,, 1992; Paffenhéffer, 1994).

Two studies were undertaken examining the role of copepods in the nutrient ecology of the
Swan River estuary. The objectives were:

1. to quantify the production rate and settling rate of faecal pellets produced by the
. estuarine copepod G. imparipes; and

2. to investigate the potential significance of nutrients derived from copepod faecal pellets

and metabolic respiration.

The remainder of this chapter consists of two manuscripts addressing the aims above.
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Chapter 5 - General Discussion

This research project aimed to increase understanding of zooplankton ecology in the Swan
River estuary, by documenting temporal changes in zooplankton distribution, abundance and
species composition in relation to environmental parameters, by determining the ecological
role of zooplankton as consumers of primary production and by examining the potential
significance of copepod regeneration of nutrients. The data collected was used in a three
dimensional computer model (CAEDYM) to predict the role of zooplankton in reducing
phytoplankton biomass.

Zooplankton Dynamics

This part of the research confirmed the patterns of distribution described in earlier studies
and the strong influence of salinity on horizontal distribution. However, the current study
found that water salinity was not the only factor influencing distribution; factors such as
temperature, pH, algal production (dissolved oxygen and chlorophyll a) and total suspended

solids were also shown to be important.

There was little evidence for strong diurnal vertical migration occurring at the sites sampled,
which confirmed an a priori hypothesis that diurnal vertical migration may not be as marked
in shallow (3 m) turbid water, as it has been recorded in deeper water. Salinity and tidal
movement are likely to be more influential than migration in the vertical distribution of

zooplankton in shallow water where haloclines persist through several months of each year.

Comparison of copepod species composition in the current study and historical data did not
show any consistent shifts in species diversity or abundance. Greater variation occurred
between different seasons than between years. This is despite accounts of increased
nitrogen and phosphorous loading in the estuary over a 30 year span and despite increasing
concern over the intensity and frequency of aigal blooms. This may be interpreted as being
a key characteristic of estuarine zooplankton; an ability to survive under very dynamic
biophysical conditions. However, there was some evidence 10 suggest that there may be
localised deleterious effects on zooplankton during short-term declines in water quality

associated with algal blooms (>80 pg Chla.L”).
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Zooplankton Grazing

The grazing component of this study, through field and laboratory experiments, identified the
ability of zooplankton to exert ‘top-down’ control over phytoplankton biomass, depending on
the type and biomass of zooplankton present. As shown in other studies, in comparison with
copepods or other mesozooplankton, the microzooplankton contributed most to loss of
phytoplankton biomass, through a combination of high abundance and high grazing rate,
relative to mesozooplankton, such as copepods. However, the microzooplankion are a less
‘stable’ component of the estuarine zooplankton; copepod fauna show predictable patterns
of distribution and abundance, whereas the microzooplankton appear as short term
opportunists, not consistently present in the water column. This observation suggests that
microzooplankton may be more influenced by patterns of phytoplankton productivity than

mesozooplankton.

The use of CAEDYM to model the interactions between zooplankion and phytoplankton
provided hitherto unknown information about processes occurring in the Swan Rive estuary.
It provided evi;ience that zooplankton were an integral part of algal bloom dynamics, which
counters the often-made assumption that phytoptankton blooms are controlied principally by

nutrient availability.

The grazing component of the study demonstrated that copepod grazing is inhibited at high
phytoplankton densities (>320 ug phytoplankton C.L'". This concurs with the result of the
monitoring component, which showed localised deleterious effects on zooplankion during
short-term declines in water quality associated with algal blooms. The causal mechanisms
behind this, for example algal exudates, has not yet been identified for the Swan River
estuary and further research is required on the behaviour and morphology of bloom forming

phytoplankton species.

Nutrient Interactions

Historically, the primary focus of management strategies for the Swan River estuary has
been the reduction of allochthonous nutrient input. However, the cbservation that algal
blooms can persist for months at a time, when there is no allochthonous input of nutrients,
required further investigation into nutrient recycling within the water column. The role of

zooplankion in nutrient regeneration had not previously been investigated.
The nutrient component of this research demonstrated that copepods have the potential to

provide nutrients for phytopiankton growth, as a by-product of metabolic respiration and
through the decomposition of faecal pellets. Although this was always expected to be the
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case, it was not clear whether the contribution from copepods was significant in terms of the
nutrient budget for the Swan River estuary. The results of the studies undertaken indicate
that copeped nutrient contributions are unlikely to be significant except under conditions of
much reduced allochthonous nutrient input during late summer and autumn. However, it is
during this period that the Swan River estuary typically has the poorest water quality and
algal blooms may persist for months. During this time, the role of copepods in recycling of
nutrients for phytoplankton growth cannot be dismissed as insignificant

Zooplankton as Indicators of Estuarine Health

In recent years, ecological studies have become more sophisticated. They have moved from
a focus on particular species to an emphasis on ecosystem function. In parallel, the concept
of ecosystem health is becoming widely recognised and a variety of indicators are used as
tools for determining whether ecosystems are functioning in a ‘healthy’ way. For example, in
south-east Queensland, environmental variables, such as turbidity, Chla, nutrient
concentrations, dissolved oxygen and seagrass distribution, are used as indicators of the
‘healthy’ function of estuaries in the area (Dennison and Abal, 1999). Management

responses are then formulated on the basis of annual assessments.

From the outset of the current study, there was a question as to whether zooplankton could
be a useful indicator of ecosystem health in the Swan River estuary. Although this question
did not form part of the research aims, an ancillary aim of this research was to determine
whether the data collected could be used to assess whether zooplankton are a useful
indicator of ecosystem function. Deeley and Paling {1999), in a review of the ecological
health of Australian estuaries, concluded that zooplankton should be assessed for suitability
as indicators of estuarine health, because of their important role in trophic transfer from
primary producers to secondary consumers higher in the food web. However, the authors
acknowledged that estuarine zooplankton are highly dynamic in space and time and
therefore may be difficult to use as indicators. The results of the current study did not

resalve these difficulties, but, instead, highlighted them.

In order to use zooplankton as an indicator of estuarine ecosystem health, it was necessary
to document the ‘normal’ ecological functions of zooplankton. The current study has
provided a greater understanding of the ecological processes in which zooplankion are
involved in the Swan River estuary, but it is unlikely that zooplankton would be useful
indicator organisms on their own. A more useful approach may be the use of computer
models, such as CAEDYM, which incorporates the full range of processes and biological,

chemica! and physical attributes of the estuary.
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The Modelling Approach to Management

The creation of the Western Australian Estuarine Research Foundation (WAERF) was a step
towards taking a pre-emptive approach to management. Gaps in knowiedge of the ecology
of the estuary were recognised, but it was also recognised that management tools should to
include a predictive process, such as the use of computer modelling. The WAERF directed
research into specific areas where information was lacking, to culminate in the validation and
operation of CAEDYM.

There is potential for use of validated computer models in estuarine management. Models
cannot, and should not, replace well-designed monitoring programmes, but can direct
monitoring, to ensure it is occurring at appropriate time scales and targeting appropriate

species or elements.

In the Swan River estuary, CAEDYM could be used to predict the effect of management
actions, before they are undertaken. For example, in November 1997, a large herbicide spill
in the Swan River estuary resulted in the death of an estimated 3,600 fish {The West
Austratian, 25™ November 1997). As a result, it was decided to restock fish in the estuary
through the introduction of 30,000 juvenile fish at two sites in the Swan River estuary (The
West Austrafian, June 4" 1997). This was undertaken without reference to the possible
impact this may have on zooplankton, particularly copepods, which are an important food
source for juvenile fish. However, the result of this type of management response could
have been predicted using a model such as CAEDYM, prior to the event. Similarly, the
results of other remediation techniques being implemented in the Swan and Canning Rivers,
such as water oxygenation trials, involving oxygenation of bottom waters to reduce nutrient
release from sediments and subsequent algal bloom formation, and sediment remediation,
involving the use of a modified ciay treatment to remove phosphorous from the water column
{(Swan River Trust, 2000), could have been predicted using computer modeliing. Modelling
allows simultaneous examination of all components of an ecosystem, under whatever

conditions are prescribed, thereby taking an ecosystem approach to management.
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Appendix 3 — Phytoplankton and Zooplankton Parameters

Appendix 3: Phytoplankton and Zooplankton Parameters Used in CAEDYM.

Phytoplankton Symbols

Bep value of f(S) when salinity is 2 x S, (freshwater) or zero (marine)
Cy maximum upward migration velocity

Cs maximum downward migration velocity

[ initial slope for photosynthesis-irradiance curve

INmax maximum internal N concentration

INmin minimum internal N concentration

K specific light attenuation coefficient for chlorophyll a

Ky half saturation constant for nitrogen

Kp half saturation constant for phosphorous

Kep rate coefficient for respiration

Ky half saturation constant for silica

Prax maximum potential growth rate

Sept optimum salinity

T nax maximum temperature, where growth rate is zero

Topt optimum temperature, where growth rate is maximai

Taa minimum temperature, where growth rate is no longer exponential
Bpq temperature multiplier for respiration

Opr settling velocity

W, temperature multiplier for growth

Yee ratio of carbon to chlorophyll a

Zooplankton Symbols
assimilation rate

(v

L

value of {{S) when salinity is zero

=

respiration rate coefficient

=

grazing rate

half saturation constant for grazing

&R

N

fraction of total loss contributed by excretion

preference of zooplankton group i for grazing phytoplankton group |

v 0
=

preference of zooplankton group i for grazing zooplankton group k

temperature dependence

D
N
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Appendix 4 — Co-author Statements

Appendix 4: Co-Author Statements

Attached are letters from the co-authors of published papers, attesting to their relative contributions.
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Note: For privacy reasons Appendix 4 has not been reproduced in full.

(Co-ordinator, ADT Project (Retrospective), Curtin University of Technology,
11/02/2004)




	01Front
	02Chapter1
	03Chapter2
	04Chapter2contd
	05Chapter3
	06Chapter4
	07Chapter5
	08References
	09Appendices

