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Abstract

The Gravity Recovery and Climate Experiment (GRACE) products allow

the quantification of total water storage (TWS) changes at global to regional

scales. However, the quantity measured by GRACE represents mass signals

integrated over vertical columns, requiring their separation into their orig-

inal sources. Such a separation is vital for Australia, for which GRACE

estimates are affected by leakage from the surrounding oceans. The indepen-

dent component analysis (ICA) method that uses higher-order statistics, is

implemented here to separate GRACE-derived water storage signals over the

Australian continent from its surrounding oceans, covering October 2002 to

May 2011. The performance of ICA applied to GRACE is then compared to

the ICA of WaterGAP Global Hydrology Model (WGHM) and the ICA of the

Australian Water Resources Assessment (AWRA) system. To study the influ-

ence of rainfall variability on the derived independent patterns, use is made of

Tropical Rainfall Measuring Mission (TRMM) data set, from January 2000
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to May 2011. Implementing ICA on GRACE-TWS showed a remarkable

improvement in separating the continental hydrological signals from the sur-

rounding oceanic anomalies which was not achievable using a conventional

principle component analysis. Reconstructing the continental TWS changes

using only those independent components of GRACE that were located over

the continent, showed a high correlation with WGHM-TWS and AWRA-

TWS. Mass concentrations over the oceans and particularly S2 semi-diurnal

aliased pattern were separated as independent modes. Correlation analysis

between the independent components of GRACE and climate teleconnections

showed that the mass anomalies over the northern ocean, Gulf of Carpen-

taria and north-eastern parts of Australia were significantly correlated with

the El Niño-Southern Oscillation, while those over south and south-eastern

parts of Australia were mainly linked to the Indian Ocean Dipole.
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1. Introduction1

Water availability in Australia is highly variable from year to year, with2

various parts of the continent (e.g., the southern and eastern regions) having3

suffered from severe drought conditions during the last decade (e.g., Um-4

menhofer et al., 2011). These drought episodes have possibly been worsened5

by higher temperatures (see, e.g., Nicholls, 2004; Ummenhofer et al., 2009;6

Leblanc et al., 2009). The long-term and inter-annual climate variabilities of7

Australia are affected by ocean-atmospheric phenomena such as the El Niño-8

Southern Oscillation (ENSO) (Risbey et al., 2009) and the Indian Ocean9

Dipole (IOD) teleconnections (Cai et al., 2011). The IOD, for example, nor-10
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mally affects most of East Africa and parts of the Indonesian and Australian11

regions (Saji et al., 1999), while the ENSO mainly affects the north and east12

parts of Australia (Nicholls, 1991) and parts of Africa (Becker et al., 2010).13

Such variabilities, therefore, affect water availability over large regions of14

Australia. Implementing a regional hydrological model, for instance van Dijk15

et al. (2011) showed that during 2006 to 2009, ENSO had a high influence16

on Australian terrestrial water variations.17

Sustainable conservation and management of the Australian water re-18

source, particularly in areas with arid or semi-arid climates, which include19

many parts of Australia, requires implementing efficient monitoring tool(s)20

(see e.g., Ellett et al., 2006 and Awange et al., 2009). One such a technique is21

the Gravity Recovery And Climate Experiment (GRACE) twin satellite mis-22

sion that routinely observes time-variable gravity signals within the Earth’s23

system (e.g., Tapley et al., 2004a,b). GRACE has found numerous applica-24

tions in hydrology and ocean sciences, as documented, e.g., in Ramillien et25

al. (2004), Schmidt et al. (2008), Awange et al. (2008a,b), Werth et al.26

(2009a) and Chambers (2006).27

The possibility of using GRACE monthly gravity field solutions (Tapley28

et al., 2004) to monitor Australia-wide total water storage (TWS) signals was29

assessed by Rodell and Famiglietti (1999) prior to the launch of GRACE. This30

view was continued by Ellett et al. (2006) who showed that GRACE monthly31

solutions are suitable for monitoring annual and inter-annual groundwater32

variations in Australia. Leblanc et al. (2009) combined GRACE solutions33

with hydrological observations and modeling results, and estimated a loss34

of groundwater from the Murray-Darling Basin (MDB) of 104 km3 for the35
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period between 2001 and 2007. Chen et al. (2005) found good agreement36

between the GRACE-based estimates of terrestrial water storage variability37

for the Victoria Basin and Northern Australia with the values of Global Land38

Data Assimilation System (GLDAS) hydrological model (Rodell et al., 2004).39

Though such possibility of GRACE application to Australian hydrology40

had been realized, Awange et al. (2009) pointed out that (i) much of Aus-41

tralia has a relatively small TWS signal, which is very difficult to detect using42

the current GRACE system and processing strategies, and (ii) the effect of43

considerable spatial and spectral leakage from the surrounding oceans masks44

the GRACE-derived TWS over the land. Note that the impact of leakage is45

not the same for different parts of the region. For instance, Tregoning et al.46

(2008) found a notable land hydrological signal over the Gulf of Carpentaria,47

while Brown and Tregoning (2010) reported that the hydrological variabil-48

ity over the MDB does not need to account for contamination emanating49

from other geophysical sources. This result was confirmed by van Dijk et50

al. (2011) who showed that the dry inland of Australia exhibits little impact51

from ocean leakage.52

Awange et al. (2009) suggested, therefore, that reprocessing of GRACE53

data tailored to Australia would be desirable for extracting hydrological sig-54

nals. In this regard, Awange et al. (2011) evaluated a regional solution com-55

puted with the mass concentration (mascon) method (Lemoine et al., 2007),56

using the Principal Component Analysis (PCA; von Storch and Zwiers, 1999)57

and multilinear regression analysis (MLRA) methods. Their study indicated58

that the mascon products slightly improved the identification of TWS over59

the Australian continent. The PCA method that was used to extract the60
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large scale spatial and temporal TWS patterns, however, resulted in a clus-61

tered behaviour of its derived orthogonal components (e.g., showing seasonal62

components and trend overlaid in the temporal components). This problem63

is known as the ‘mixing problem’ of PCA, which has been addressed in other64

studies, e.g., in Jolliffe (1989), Hyvärinen (1999a) and Forootan and Kusche65

(2011).66

Furthermore, the condition of water storage in Australia during the last67

decade, is linked to various climatic factors, such as large-scale atmospheric68

pressure changes (Nicholls, 2009), higher air temperatures (Nicholls, 2004),69

Indian Ocean conditions (Cai et al., 2009) and Pacific Ocean variability70

(Cai and Cowan, 2008). Using the Complex Empirical Orthogonal Func-71

tion (CEOF) method, for example, Garćıa-Garćıa et al. (2011) showed that72

the spreading of the annual water variations from the north to the southeast73

of Australia are linked to the ENSO and IOD teleconnections.74

The successful performance of higher-order decomposition methods such75

as Independent Component Analysis (ICA) (Hyvärinen, 1999 a,b; Hyvärinen76

and Oja, 2000) for detecting slow dynamic and inter-annual phenomena (e.g.,77

ENSO) from climatic data sets (e.g., surface temperature, sea-level pressure,78

and precipitation data) was shown by Ilin et al. (2005). Frappart et al.79

(2010a, b) and Forootan and Kusche (2011) recently applied ICA to decom-80

pose GRACE-derived TWS products. In Forootan and Kusche (2011), for81

example, it is demonstrated that while PCA clusters the GRACE-derived82

long-term and periodical TWS in several modes, the ICA algorithm, without83

making prior assumptions about the signal, improves the results.84

The present contribution applies the ICA approach of Forootan and Kusche85
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(2011) to decompose the Australian GRACE-derived TWS data from the86

GeoForschungsZentrum (GFZ), Center for Space Research (CSR) and Bonn87

University for the period of October 2002 to May 2011. For comparison, use88

is made of the WaterGAP Global Hydrology Model (WGHM) (Döll et al.,89

2003), Australian Water Resources Assessment (AWRA) system (van Dijk90

and Renzullo, 2011 and van Dijk et al., 2011) and the Tropical Rainfall Mea-91

suring Mission (TRMM) precipitation data set (Kummerow et al., 1998).92

The main objective is to extract statistically independent water storage pat-93

terns from satellite observations and models which, we believe, is necessary94

for better understanding the large scale variability of the Australian hydrol-95

ogy. Once ICA separates the signals over the continent from the surrounding96

oceans, those independent components that are located over the land will97

be used to reconstruct the continental water storage changes. This is an98

important step for comparison and calibration of hydrological models with99

GRACE-TWS measurements (see e.g., Werth et al., 2009a), in which the100

leakage of ocean signals on terrestrial signals has not been accounted for.101

Moreover, the links between the derived independent patterns and ENSO102

and IOD were also investigated to identify those areas that are controlled by103

teleconnections and those that are not.104

Therefore, ICA was applied to (i) decompose GRACE-derived TWS sig-105

nals over Australia, and to (ii) decompose WGHM, AWRA and TRMM data106

sets. The obtained results in (i) were then compared to those of PCA and the107

individual independent components of (ii). To understand the impact of the108

climate teleconnections, the correlation coefficients between GRACE-derived109

independent components of (i) and the ENSO and IOD indices were derived.110
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This contribution is organized as follows; in section 2, we briefly explain111

the ICA method starting with a discussion of PCA. The data used in the112

study are presented in section 3, followed in section 4 by the ICA results from113

the GRACE, WGHM, AWRA and TRMM data sets for Australia. Section114

5 discusses the link between water variability in Australia and the climate115

teleconnection (ENSO/IOD phenomena). The study is concluded in section116

6.117

2. PCA and ICA Methods118

PCA is a standard data analysis method based on eigenvalue decompo-119

sition of the auto-covariance or auto-correlation matrix of a data set. Given120

an (n × p) data matrix X, where n is the number of observations over time,121

and p the number of locations from which the observations are carried out,122

PCA decomposes the data matrix as123

X ' PjE
T
j , (1)

where Ej contains the unit length eigenvectors (i.e., empirical orthogonal124

functions EOFs) in its columns arranged with respect to the magnitude of125

eigenvalues, Pj are their corresponding temporal components (i.e., principle126

components PCs), and j < n is the number of retained dominant modes. A127

discussion on the selection of the retained modes is addressed in detail, e.g.,128

in Preisendorfer (1988).129

ICA represents a ‘blind’ source separation method based on the assump-130

tion of the independence of sources and the non-Gaussian distribution of the131

observations. ‘Blindness’ refers to the recovering of source signals from ob-132
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served mixtures without knowing how they have mixed (Hyvärine, 1999a).133

Therefore, ICA can be viewed as an extension of PCA (Comon, 1994; Han-134

nachi et al., 2009). While PCA decomposes a spatio-temporal data set (re-135

duced by the long-term average) into sets of orthogonal modes, ICA decom-136

poses it into statistically independent sources. From a statistical point of137

view, orthogonality and independence are equivalent for Gaussian signals.138

However, for non-Gaussian signals, independence implies orthogonality, but139

the reverse is not true (Hyvärine, 1999a,b).140

The non-Gaussianity of time series can be computed using the kurtosis141

of time series (Comon, 1994)142

k = E(x4)/E(x2)2
− 3, (2)

where x stands for each time series (columns of X), E is the expectation143

function that is usually approximated by the time average. For our time144

series with a length of more than 90 months, a kurtosis greater than 0.5145

indicates a non-Gaussian distribution (Westra et al., 2007).146

To derive statistically independent components (ICs) from the uncorre-147

lated modes detected by PCA, we follow the ICA algorithm (Fig. 1) proposed148

in Forootan and Kusche (2011). Similar to Comon (1994), the ICA algorithm149

is implemented as a rotation method, which involves the PCA approach as150

the starting point of an iterative process. ICs are computed while a measure151

of joint statistical independence of the PCA modes is maximized (Cardoso152

and Souloumiac, 1993).153

To this end, fourth-order cumulants (a tensor of quantity indicated by154

Q
x

in Fig. 1) provide us with a generalized form of the fourth-order mo-155
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ments (Cardoso and Souloumiac, 1993). For time series with Gaussian dis-156

tributions, all fourth-order cumulants vanish (cf. Papoulis, 1991). Cardoso157

(1998) showed that when the time series are independent the fourth-order158

cumulants tensor Q
x

becomes diagonal.159

Generally, there are two alternative ways of applying ICA to spatio-160

temporal data sets (e.g., GRACE-TWS monthly maps) in which temporally161

independent time series or spatially independent components are estimated162

(Forootan and Kusche, 2011). Here, we are interested in the spatially inde-163

pendent components since the goal of our analysis is to separate GRACE-164

derived TWS signals over the Australian continent from the surrounding165

oceans.166

To derive the spatially independent components, the cumulants matrix167

Q
x

is built using the EOFs of Eq. (1) as discussed in detail in Forootan168

and Kusche (2011). Q
x

is then decomposed using PCA to provide the initial169

values for the rotation matrix Rj used in170

f(R̂j) =
n2∑

i=1

(RT

j Q
x
(M)Rj), (3)

where n2 is the number of the off-diagonal elements, and M an (arbitrary)171

n × n matrix. R̂j is an orthogonal rotation matrix that minimizes the off-172

diagonal elements of Q
x

in Eq. (3) and makes it as diagonal as possible173

(Cardoso, 1999). Finally, R̂j obtained from Eq. (3) is used in Eq. (1), i.e.,174

X' PjR̂jR̂
T
j ET

j = P̂jÊ
T
j , (4)

to rotate the retained modes and make them as spatially independent as175

possible (Forootan and Kusche, 2011). Finally, Êj= EjR̂j contains the de-176
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rived spatial independent components in its columns, while the columns of177

P̂j= PjR̂j contain their corresponding temporal evolutions. The schematic178

illustration of the ICA algorithm is shown in Fig. 1.179

FIGURE 1

3. Data180

3.1. ENSO and IOD indices181

Australian inter-annual climate variability is strongly affected by the dom-182

inant tropical phenomena, namely the El Niño-Southern Oscillation (ENSO)183

and the Indian Ocean Dipole (IOD) (Risbey et al., 2009) teleconnections.184

El Niño is known as a global-scale phenomenon occurring in the ocean and185

atmosphere, which is counted as the most prominent source of inter-annual186

variability in the global weather and climate. The ENSO phenomenon con-187

sists of an extension of warm weather from the central and eastern tropical188

Pacific Ocean to Indonesia leading to a major shift in weather patterns across189

the Pacific (Trenberth and Hoar, 1996). ENSO has long-period (three to eight190

years) and inter-annual teleconnection rainfall impact mainly over north and191

eastern Australia (Cai et al., 2011).192

ENSO is usually measured by a simple index which represents a large-193

scale oscillation of the air mass between the southeastern tropical Pacific194

and the Australian-Indonesian region (Ropelewski and Jones, 1987). Sus-195

tained positive values of the index can be interpreted as indicative of La196

Niña (drought) conditions, while sustained negative values indicate El Niño197

(wet) conditions. In this study, we used the monthly Southern Oscillation198
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Index (SOI) from 2002 to 2011, provided by the Australian Bureau of Mete-199

orology1, where the pressure differences have been measured between Tahiti200

and Darwin. It should be mentioned here that there are several ENSO indi-201

cators which are computed based on sea surface temperature or pressure data202

sets. Among of these indices, Nino3.4 is an ENSO indicator with generally203

stronger correlation to Australian rainfall compared to SOI (e.g., Timbal et204

al., 2010). In the present contribution, however, SOI was selected in order to205

enable comparison of our results with those of Garćıa-Garćıa et al. (2011).206

The index is scaled using its standard deviation resulting in a unitless time207

series.208

IOD is a coupled ocean and atmosphere phenomenon, a basin-scale mode209

of sea surface temperature (SST) and wind anomalies, in the equatorial In-210

dian Ocean that affects the climate of Australia and other countries surround-211

ing the Indian Ocean (Saji et al., 1999). An IOD event is an inter-annual212

variability that usually starts around May or June in Australia, peaks be-213

tween August and October and then rapidly decays (Australian Bureau of214

Meteorology). A positive IOD year is associated with the cooler than normal215

SST in the tropical eastern Indian Ocean near Indonesia, and warmer than216

normal water in the tropical western Indian Ocean near Africa. A positive217

IOD results in a decrease of rainfall over parts of Australia. In fact, a negative218

IOD usually evolves following a positive IOD, with a reverse configuration.219

The gradient of the IOD event is termed the Dipole Mode Index (DMI)220

which is usually considered as a measure of the Indian Ocean influence221

1http://www.bom.gov.au/climate/enso/

11



on Atmospheric pressure variabilities (Ajayamohan and Rao, 2008). Our222

study made use of the available DMI data provided by the Japan Agency223

for Marine-Earth Science and Technology (JAMSTEC)1 covering the period224

from 2002 to September 2010. Similar to the SOI, the DMI pattern is also225

scaled with its standard deviation to be unitless and multiplied by -1 to be226

consistent with the previous studies, e.g., Garćıa-Garćıa et al. (2011).227

3.2. GRACE solutions228

The GRACE satellites were launched on 17th March 2002 as a joint U.S.229

National Aeronautics and Space Administration (NASA)/German Aerospace230

Center (DLR) space mission dedicated to monitoring temporal and spatial231

variations of the Earth’s gravity field on a global scale. GRACE gravity field232

solutions are generated at regular intervals (e.g., daily to monthly) by several233

institutions, three of which are used in this study as discussed below.234

The GFZ solutions: For this study, we used all available release 4 (RL4)235

monthly spherical harmonic gravity products from August 2002 to May 2011236

computed by the GFZ Potsdam (Flechtner, 2007). These models are derived237

as fully normalized spherical harmonic coefficients of the geopotential com-238

puted to degree and order 120, and have been augmented by the degree-1239

term from Rietbroek et al. (2009) in order to account for the variation of the240

Earth’s center of mass with respect to a crust-fixed reference system. Note241

that the degree-1 values, for the months after Rietbroek et al. (2009)’s study,242

were extrapolated using its annual and semi-annual dominant frequencies.243

The CSR and ITG2010 solutions: Two other data sets from the CSR244

1http://www.jamstec.go.jp
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at the University of Texas, USA (Bettadpur, 2007) and Bonn University,245

Germany (ITG2010) (Mayer-Gürr et al., 2010) were incorporated in order to246

validate our findings from GFZ data set. These two solutions are based on the247

same GRACE L1 (GPS and K-band ranging data) as the GFZ solutions. The248

CSR solutions are provided as gravitational spherical harmonic coefficients249

up to degree and order 60, available for the same period as the GFZ products.250

The ITG2010 solutions have been derived using a different functional model251

based on short arcs of the satellite orbit, which allows the set-up of full252

empirical variance-covariance matrices for the observations. Furthermore,253

daily solutions based on a Kalman filter approach have been calculated as254

a part of the ITG2010 time series and have been introduced as additional255

background model for the calculation of the monthly solutions. This different256

treatment of the background models might cause differences in the solutions257

provided by the different processing centers. A study by Bonin and Chambers258

(2011), however, showed no significant discrepancy between the background259

models in the region around Australia. Therefore we conclude that possible260

differences between the solutions cannot be contributed to the background261

modeling. The monthly ITG models are available for the period between262

September 2002 and August 2009, and are complete to degree and order 120263

(Mayer-Gürr et al., 2010)1.264

1GFZ and CSR RL04 gravity fields are available from the Information Systems and

Data Center (http://isdc.gfz-potsdam.de). ITG2010 gravity fields are available from the

website of Astronomische, Physikalische und Mathematische Geodäsie (APMG) group at

Bonn University (http://www.igg.uni-bonn.de/apmg/index.php?iditg-grace2010)
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3.2.1. Validation of GRACE products over Australia265

There have been several studies to validate GRACE signal in the Aus-266

tralian region by independent data sets, from which it can be concluded267

that GRACE is able to determine geophysically relevant signal over Aus-268

tralia. Tregoning et al. (2009), for example, have found a good correlation of269

GRACE surface mass variations with vertical crustal deformations as mea-270

sured by GPS for a permanent GPS site located in Darwin. Kurtenbach271

(2011) provided correlations of up to 0.6 between the daily ITG2010 solu-272

tions and daily height change observations at different Australian GPS sites.273

Tregoning et al. (2008) have found that the annual amplitude of non-tidal274

mass changes at the Gulf of Carpentaria estimated from GRACE shows good275

agreement with tide gauge observations at Groote Eylandt. For the MDB,276

strong correlations of GRACE inter-annual decrease in total water storage277

with modelled decreases of groundwater levels were reported by Leblanc et278

al. (2009). Unfortunately, it has not been possible to validate the GRACE279

solutions against in-situ measurements of ocean bottom pressure, as no such280

recorders are available in the oceans around Australia (see Macrander et al.,281

2010).282

3.3. WGHM hydrological model283

WGHM (Döll et al., 2003) is the global hydrological part of the Wa-284

terGAP (Water-Global Assessment and Prognosis) global model of water285

availability and use. The WGHM model represents the major hydrologi-286

cal components, such as soil moisture, rainfall, snow accumulation, melting,287

evaporation, runoff, and the lateral transport of water within river networks.288

Detailed information about the modeling concept and its corresponding as-289
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sumptions can be found, e.g., in Güntner et al. (2007). In this study, we290

used global TWS products provided on a 0.5◦ by 0.5◦ grid (with the ex-291

ceptions of Greenland and Antarctica) covering the period between January292

2000 and December 2009. The WGHM model has been previously used, e.g.,293

by Awange et al. (2011) to study the Australian water storage variations.294

Since WGHM represents, after vertical aggregation and forming temporal295

anomalies, the same TWS parameter as GRACE-TWS, the two data sets296

can be directly compared.297

3.4. AWRA regional hydrological model298

The Australian Water Resources Assessment (AWRA) is a system which299

combines an operational hydrological model with meteorological and remote300

sensing data to estimate water storages in the soil, surface water and ground-301

water (van Dijk and Renzullo, 2011). AWRA water balance, using stream302

flow data from several catchments and incorporating evapotranspiration mea-303

surements along with several remotely sensed parameters, has shown a re-304

liable performance to model Australian hydrological variations (van Dijk et305

al., 2011). To study the terrestrial water variations using a local hydrological306

model, therefore, this study applied the same TWS grids covering from Jan-307

uary 2000 to December 2010 that have previously been used in van Dijk et308

al. (2011). Similar to WGHM, TWS changes from AWRA are also directly309

comparable to GRACE-TWS.310

3.5. Tropical Rainfall Measuring Mission311

TRMM is a joint NASA/Japan Aerospace Exploration Agency mission,312

which was designed to monitor and study tropical rainfall in the latitude313
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range ±50◦ over inaccessible areas such as the oceans and un-sampled ter-314

rains (Kummerow et al., 1998, 2000; Huffman et al., 2007). To study the315

monthly total precipitation over Australia, we used the global average prod-316

ucts (3B43), which is derived from TRMM instruments, as well as data from317

a number of other satellites and ground-based rain-gauge data (Kummerow318

et al., 2000; Huffman et al., 2007). The 3B43 data1 is originally provided as319

mm/hour rainfall, and covers a period from January 1998 to May 2011. We320

converted the data between January 2002 and May 2011 to mm precipitation321

for each month. The suitability of using TRMM for studying rainfall pat-322

terns over Australia has been assessed e.g., in Fleming et al. (2011) showed323

good correlation between TRMM and rain gauge data over Australia.324

3.6. Data processing325

In order to prepare the data sets for analysis, the following processing326

steps were applied.327

• The GRACE spherical coefficients at higher degrees are too strongly328

affected by correlated noise and are, therefore, smoothed by apply-329

ing the DDK2 decorrelation filter (Kusche et al., 2009). This filter is330

anisotropic which makes it difficult to be compared with Gaussian fil-331

ters; an in-depth discussion about shape of the filter is pointed out in332

Kusche (2007). Applying DDK2 filter reduces the north-south striping333

in GRACE monthly solutions (Werth et al., 2009b), which were then334

1TRMM is available from the Goddard Earth Sciences Data and Information Services

Center (http://disc.sci.gsfc.nasa.gov/precipitation)
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used to generate the global TWS values according to the approach of335

Wahr et al. (1998).336

• Similar to the GRACE products above, the DDK2 filter was applied to337

the WGHM, AWRA and TRMM data sets to derive exactly the same338

spectral content expansion as the GRACE filtered products. Other-339

wise, the differing smoothness of the data sets would make comparison340

between the TWS quantities difficult.341

• After filtering, all data sets were converted to 0.5◦
× 0.5◦ grids.342

• From each data set, a rectangular region was selected encompassing343

Australia, with the latitude between −44.5◦ to −10.5◦N and longitude344

between 112.5◦ to 154.5◦E.345

Each derived monthly map contained 5865 non-zero elements except for the346

WGHM and AWRA products that had 4083 non-zero elements. Less non-347

zero elements of WGHM and AWRA is due to the fact that hydrological348

models do not cover the oceans. The data from GFZ covered 98 months of349

GRACE solutions, the CSR solutions covered 99 months, while the ITG2010350

included 84 months. The solutions of January 2003 and July to October351

2004 were excluded from GRACE data during the data processing because352

of their poor quality (Flechtner et al., 2010). WGHM covers 120 months,353

AWRA covers 132 months while TRMM covers 124 months.354

An overview of the signal root-mean-square (RMS) of the four main data355

sets (GFZ-TWS, WGHM-TWS, AWRA-TWS and TRMM rainfall) is shown356

in Fig. 2 in order to compare the signal strength over different regions of357

Australia. The RMS indicates that the main water storage signal is detected358
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over northern Australia, where GRACE and AWRA showed stronger vari-359

ability than WHGM and TRMM data sets. According to the RMS in Fig. 2,360

WGHM showed a weak TWS variability over southern and western Australia361

except a smaller region of the southwest coast. The TWS variability over362

southern Australia detected by AWRA was also weaker than GRACE.363

FIGURE 2

Before implementing the PCA and ICA methods on the data sets, in order364

to account for the meridian convergence, an area weighting, with respect to365

the square root of the cosine of the latitudes, was performed. Then the grid366

maps were arranged in a matrix with grid points in its rows (same as the367

matrix X in Eq. (1)). X was then centered by reducing the mean from each368

of the columns and checked for non-Gaussianity using (Eq. (2)).369

The derived kurtosis (Eq. (2)) shows that 48.8% of the GFZ, 49% of the370

CSR, 52% of the ITG2010, 76% of the WGHM, 78% of the AWRA, and 78%371

of the TRMM grid-point time series exhibit a non-Gaussian distribution.372

We removed the dominant annual cycle from the data sets and then checked373

the kurtosis of their residuals. The results indicated that still 38%, 42%,374

43%, 51%, 51% and 53% of the inter-annual variabilities of GFZ, CSR, ITG,375

WGHM, AWRA and TRMM time series respectively exhibit non-Gaussian376

distribution.377
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4. Numerical results378

4.1. Synthetic example379

To show how ICA can help to extract true sources from a superposition380

(summation) case, we designed a simple simulation before applying the PCA381

and ICA methods to analyse the real hydrological data over Australia. Let382

us assume that there are four anomaly concentrations over the north, west,383

east and southeast of Australia, and that the regions have no overlap with384

each other. Then we assume that the northern part exhibits only an annual385

signal while the other parts exhibit a superposition of a low amplitude annual386

signal and a linear trend (Fig. 3). Synthetic data is then generated by scaling387

the known spatial anomalies with their corresponding temporal components388

(see Fig. 3).389

Now, both PCA and ICA methods are employed to separate the signals390

in Fig. 3. The results are presented in Fig. 4, which clearly indicates that391

the output of the PCA method contains a mixture of both linear trend and392

annual signals over all regions, while the ICA method succeeds in separating393

them into the original introduced signals. The mixture behaviour detected394

in PCA happens because the method maximizes the variance explained by395

each individual orthogonal component. Therefore, PCA clusters the linear396

and annual singles in both modes (see Fig. 4, PCA results). The ICA397

algorithm, however, uses the statistical information contained in the fourth398

order cumulants to rotate the PCA components (Eq. (4)) so that they are399

as statistically independent as possible. As a result, the introduced signals400

(Fig. 3) that have different probability density characteristics are recovered401

in two different modes (see Fig. 4, ICA results).402
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FIGURE 3

FIGURE 4

4.2. PCA results from the GFZ data403

The PCA method in Eq. (1) was applied on the centered data matrices404

derived from the GFZ TWS data. The derived eigenvalues along with their405

corresponding cumulative variance percentages are shown in Fig. 5, GFZ.406

The graph shows that the first two eigenvalues, corresponding to 57% of407

the total variance, are dominant and well separated from the rest of the408

eigenvalues. The other eigenvalues are considerably smaller than the first409

two, as indicated by the flat shape of the graph (Fig. 5, GFZ).410

FIGURE 5

Fig. 6 presents the first 6 PCA components of GFZ-TWS to be compared411

with the ICA results of Figs. 7 and 8. According to Fig. 5, GFZ, selecting the412

first 6 components reconstructs about 78.5% of the total variation (see Fig.413

5, GFZ). The temporal patterns (PCs) are scaled using their corresponding414

standard deviations such that they are unitless. The spatial patterns have415

been multiplied by the standard deviation of their corresponding temporal416

components and are given in millimeters. Therefore, one can consider each417

of the spatial patterns as an anomaly map from which each mode of TWS418

variability is reconstructed by multiplying the spatial patterns with their419

corresponding temporal components using Eq. (1). This strategy is used for420

all the decomposition results shown in this paper.421
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As shown in Fig. 6, the spatial pattern of each PCA component consists of422

several concentrations of the hydrological signals over land and ocean. This is423

more evident in the spatial pattern of EOF2 to EOF6. The temporal pattern424

of PCs (see PCs in Fig. 6) also indicates that the long-term trend along with425

annual and semi-annual cycles exist in nearly all of the components. Overall,426

our PCA results contain more mixing behaviour than the one derived in,427

e.g., Awange et al. (2011) from the GRACE data over Australia. This is428

probably due to the fact that in Awange et al. (2011), the oceanic signals were429

masked before the implementation of the PCA method, thus constraining430

any contamination to the computed PCA modes from the ocean leakage.431

However, this spatial masking of the mass signals itself could be a source of432

error that needs to be considered (e.g., Fenoglio-Marc et al., 2007). In this433

study, we did not mask the GRACE signals over the oceans but instead we434

implemented ICA, by rotating PCA results (including the continental and435

oceanic mass signals) towards independence, to spatially separate the mass436

signals over the continent from the surrounding oceans.437

FIGURE 6

4.3. ICA results from GRACE, WGHM, AWRA and TRMM data sets438

Implementing the ICA algorithm on the data sets starts by applying PCA439

(Eq. (1)) as the first step on each data sets before rotating them towards inde-440

pendence (Fig. 1). The eigenvalues of the GFZ, WGHM, AWRA and TRMM441

data sets along with their corresponding cumulative variance percentages are442

shown in Fig. 5. Note that implementing ICA on WGHM and AWRA in-443

dividually verifies the GRACE-ICA results from another perspective. Since444
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TWS from hydrological models represents the same GRACE-TWS over the445

lands, theoretically, the result of the decomposition should be comparable446

to that derived from GRACE. Following this section, we will show that the447

ICA results from GRACE in several basins are in agreement with the ICA of448

WGHM and AWRA. Note that the ICA results of TRMM provide additional449

information on rainfall variability during the study period.450

Fig. 5 shows that reconstructing more than 90% of the total variability451

of the GRACE-TWS required selecting the first 11 PCA components. To452

reconstruct more than 90% of WGHM, AWRA and TRMM, however, only 5453

, 5 and 6 components were needed, respectively (see Figs. 5). The rest 10%454

of the variance in data sets was assumed to be noise.455

The eigenvalue spectrum of the TRMM data set is quite different from456

those of GRACE, WGHM and AWRA (see Figs. 5, TRMM). For TRMM,457

only the first component (with 71.3% of total variance) was well separated458

and the rest of spectrum appears almost flat. For GRACE, WGHM and459

AWRA the first 2 components with 57%, 79% and 69% of total variance460

respectively were dominant.461

In order to reduce the sensitivity of the ICA rotation (Eq. (3)) with462

respect to unequal variance representation of the components, the first 2463

dominant modes of GRACE, WGHM and AWRA were rotated first, then re-464

spectively their remaining 9, 3 and 3 components. For TRMM that contained465

only one dominant component, the ICA method was implemented in a single466

step using the first 5 components. Constructing the fourth order cumulant467

matrix Q
x

on the PCA results of each of the four data sets showed that468

the matrix was not diagonal meaning that the PCA components were not469
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statistically independent (see Fig. 1). The ICA components were, therefore,470

computed using Eq. (4) for all the data sets.471

For brevity from GRACE data sets, we only present the spatial inde-472

pendent patterns of the GFZ-TWS data in Fig. 7. To compare the signal473

amplitudes, we projected the other GRACE-TWS data sets (from CSR and474

ITG2010), WGHM-TWS, AWRA-TWS and TRMM rainfall data on to the475

presented spatial base-functions derived from the ICA of GFZ-TWS (Fig.476

7). The derived temporal amplitudes of those products are shown along477

with the ICs of the GFZ-TWS data in Fig. 8. For TRMM, the results rep-478

resent only the precipitation amounts over Australia and cannot therefore479

be directly compared to the TWS values derived from GRACE, WGHM or480

AWRA. However, projecting the TRMM results along with the TWS values481

(from GRACE, WGHM and AWRA) provides information about the rainfall482

contribution in each independent component. For those components that483

were concentrated over the ocean, the WGHM and AWRA time series were484

not projected, since hydrological models are limited only to the land and485

do not cover the oceans. Additional results of ICA application to WGHM,486

AWRA and TRMM are presented in Figs. 10, 11 and 12, respectively. IC5487

of WGHM is not shown here since its corresponding variance magnitude was488

considerably less than those of the first four components.489

FIGURE 7

FIGURE 8

For comparing the ICA results of GRACE over the continent to the hy-490

drological models, first, we selected the independent components 1, 4, 5, 6, 8491
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and 10 of Fig. 7 and Fig. 8 (the independent components of GRACE that492

were located over the Australian continent). Then, GRACE-TWS changes493

were reconstructed using Eq. (3). The RMS of the results is shown in Fig494

9,(A). Comparing Fig. 9, A to Fig. 2, GFZ, it is clear that implementing ICA495

has considerably isolated the signals of surrounding oceans (e.g., no anoma-496

lies over the Gulf of Carpentaria and the eastern oceans can be seen). Fig497

9, B shows the differences between the linear trend computed from the ICA-498

reconstructed GRACE-TWS and AWRA-TWS, covering the period of 2003499

to 2011. Comparing to AWRA, GRACE estimated stronger drying trend500

in northwest Australia, as well as, stronger mass gain in east and northeast501

Australia. These results confirmed van Dijk et al. (2011)’s findings, but they502

associated the differences to the unexplained trend in AWRA. The magni-503

tude of the differences derived in Fig. 9, B, however, were less than those504

of van Dijk et al. (2011), which might be related to the different filtering505

approaches. Finally, the GRACE-TWS variabilities separated by ICA over506

the continent were temporally correlated with the time series of WGHM and507

AWRA from 2003 to 2010 and 2003 to 2011, respectively. The correlation508

results showed a high agreement between the two hydrological models and509

the ICA-separated results of GRACE over the continent (see Fig. 9, C and510

D).511

FIGURE 9

FIGURE 10

FIGURE 11

FIGURE 12
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Below we present a detailed a detailed comparison between GRACE and512

the hydrological models (e.g., in term of trend and seasonal components).513

From Fig. 7, it was seen that the first three components of GRACE show514

TWS concentrations over the northern part of Australia, where their cor-515

responding ICs show an annual cycle (Fig. 8). Particularly, IC1 isolates516

the annual signal over north Australia, IC2 represents the oceanic mass over517

the north of the Gulf of Carpentaria (c.f. Tregoning et al., 2008), and IC3518

mainly shows annual mass change over the Timor Sea. The computed long-519

term linear rates for IC1 and IC2 between October 2002 and January 2011520

showed that these regions gained mass at rates of 6 ± 2 mm/year and 5 ± 2521

mm/year, respectively. Vinogradova et al. (2011) pointed out that the522

variability detected over the Gulf of Carpentaria may be well related to the523

self-attraction and loading physics, that is missing e.g., in the Ocean Model524

for Circulation and Tide (OMCT, Thomas, 2002) which is often removed525

as a background model during the processing of GRACE products. The526

computed linear rate for IC3 (Timor Sea) was not statistically significant,527

showing an almost steady mass balance.528

A comparison between the first three ICs of GFZ with the projected529

temporal evolutions from WGHM, AWRA and TRMM, also showed a good530

agreement (see Fig. 8). This was, to some extent, evident when the computed531

RMS in Fig. (2) had a similar concentration with a comparable magnitude532

over the northern regions. However, IC1 indicates that the signal magnitude533

of WGHM is still less than that of GRACE. Other studies have similarly534

shown that WGHM generally tends to have smaller seasonal amplitude than535

GRACE (see e.g., Schmidt et al., 2008). Comparing to WGHM, projection of536
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AWRA on IC1 shows that it fits better to IC1 of GRACE. This result confirms537

van Dijk et al, (2011)’s findings that decomposed GRACE and AWRA signals538

into their linear trend and seasonal components. Temporal evolutions of539

TRMM, from projection, shows a 1-month lag between precipitation and540

mass changes in these areas agreeing with previous studies, e.g., Rieser et al.541

(2010).542

IC1 from WGHM and AWRA, respectively shown in Fig. 10 and Fig. 11,543

are comparable to IC1 of GRACE in Fig. 7, showing a similar annual TWS544

signal over the northern regions. IC2 of WGHM represents the southern545

annual cycle with a 6-month phase difference to the north due to the pre-546

dominant rainfall season (cf. Rieser et al., 2010). The southeastern part of547

IC2 from WGHM is comparable to IC6 of GRACE in Fig. 7. IC4 of AWRA548

shows the same annual signal as WGHM over southern regions. Its signal549

amplitude, however, is larger than that of WGHM and closer to the GRACE550

results. The IC1, IC2 and IC3 of TRMM are also related to the rainfall551

pattern over the northern areas with three separate spatial concentrations552

(shown in Fig. 12). The derived ICs of TRMM are mostly annual and are553

comparable with the projected evolutions of TRMM (in Fig. 8) in terms554

of phase and amplitude (see Fig. 12, middle). These results, individually,555

confirm our findings in Figs. 7 and 8.556

IC4 from GRACE isolates a long-term mass loss along with an annual557

cycle over the northwestern Australia. A linear regression analysis of the558

GRACE data from October 2002 to May 2011 shows a rate of loss of −19.2 ± 2559

mm/year in the region. The linear rate derived from the projected time evo-560

lution of WGHM is around one third of the GRACE linear trend (see IC4561
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in Fig. 8). The reason can be due to the fact that hydrological models562

are not designed to represent the trends, rather, their strengths are to illus-563

trate cyclic behaviours. The projected evolution of AWRA on IC4, however,564

agrees better than WGHM with the GRACE estimate. The linear rate of565

mass decrease of AWRA over the northwest region was −13.2 ± 2 mm/year.566

The smaller linear rate derived from AWRA has been already reported in567

van Dijk et al. (2011). IC3 of WGHM (see Fig. 10) shows a mass loss at568

a rate of −7 ± 1 mm/year over the northwestern regions, which is less than569

the rate computed from GRACE (see IC4 in Fig. 8). IC3 of WGHM also570

shows a water loss over the southeastern Australia (i.e., the MDB) at a rate571

of −8 ± 1 mm/year, which was larger than the GRACE estimate (−5.1 ± 1572

mm/year). IC2 of AWRA confirms IC4 of GRACE by isolating the mass573

loss over northwest of the continent. IC4 of TRMM (see Fig. 12) localizes574

the rainfall in the northwestern and western part of the northern Australia575

showing less precipitation from 2004 to 2006, and a decline in rainfall after576

the year 2007 in these regions (i.e. the amplitude of annual rainfall in 2004-577

2006 is considerably less than the other years). TRMM results from 2002 to578

2011, however, do not show any significant trend in the integrated amount of579

precipitation. Considering a long period observation of rain gauges, van Dijk580

et al. (2011) and McGrath et al. (2012) linked the mass loss in northwest581

Australia to the dry period (2003− 2010) after the unusually wet conditions582

during (∼ 1997 − 2001).583

IC5 derived from GRACE in Figs. 7 and 8 represents inter-annual TWS584

changes along with an increasing rate over the eastern and northeastern parts585

of Australia due to the 2010-2011 wet conditions. A linear regression analysis586
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of the data from October 2002 to May 2011 shows that the rate of water gain587

was 12 ± 2 mm/year (see IC5 in Fig. 8). The computed average TWS change588

rate from October 2002 to January 2010, the period before the floods, was589

7.4 ± 3.6 mm/year. Considering the projected temporal evolutions (IC5 in590

Fig. 8), amplitude of WGHM is lees than GRACE in this region. This is due591

to the fact that the dominant annual cycle of WGHM is underestimated as592

well as the fact that the WGHM data used here does not cover the years 2010593

and 2011 when the region exhibits a large mass change. Projected evolution594

of AWRA on IC5 shows the similar pattern as that of GRACE (see van Dijk595

et al., 2011)). IC3 and IC5 of AWRA show respectively mass variability over596

northeastern and eastern Australia, thus confirming GRACE results. The597

temporal evolution from projection of TRMM indicates the influence of the598

2010 rainfall in the region, which was also evident from implementing ICA on599

TRMM (see IC5 in Fig. 12). The temporal pattern of TRMM is very different600

from those of GRACE and hydrological models, indicating the importance601

of using other hydrological parameters in this region. The drought patterns602

of the eastern regions during 2006 and 2007 can also be identified by IC5 of603

TRMM.604

IC6 of GRACE in Fig. 7 localizes TWS concentrated over the southeast605

of Australia. The corresponding IC6 (in Fig. 8) shows that the annual cycle606

is dominant. The temporal pattern of IC6 also contains a considerable inter-607

annual variabilities in its evolution. The long-term trend of IC6 can be split608

into three sections; one from 2002 to the last months of 2005 that shows a609

mass gain of 8.2 ± 4 mm/year, then a decline in mass storage with a rate610

of −45.2 ± 8 mm/year is detected until the starting months of 2007, and611
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finally a mass gain at a rate of 12 ± 4 mm/year to May 2011. From the612

projected patterns, WGHM and AWRA show the same patterns as GRACE,613

however, their signal amplitudes are smoother than those of GRACE. The614

temporal projected pattern of TRMM does not follow the pattern of IC6615

of GRACE except for the annual peaks that still show a 1-month lag with616

GRACE results. IC6 of TRMM, individually, represents the rainfall anomaly617

over the southeastern regions (see IC6 in Fig. 12).618

During the GRACE processing procedure high frequency mass variations,619

e.g. caused by oceanic tides, are reduced as they cannot be resolved by620

monthly gravity field solutions. However, current ocean tide models are621

not accurate enough to fully reduce the tidal signal in the GRACE data622

(Knudsen, 2003). Due to the sampling characteristics defined by the GRACE623

orbit configuration, these unmodelled high frequency tidal signals occur in624

the monthly gravity field solutions at alias periods. One well-recognized625

example is the S2 semi-diurnal tide, which is mapped onto a 161-day period,626

and thus does not cancel out in the monthly solutions (Chen et al., 2008, Ray627

and Luthke, 2006). IC7 of GRACE separates the S2 aliasing effect over the628

ocean located in the northwest of Australia (Figs. 7 and 8). This pattern was629

previously reported by Melachroinos et al. (2009) who fitted a predetermined630

cyclic signal (with a period of 161 days) to the GRACE time series. One of631

the contributions of this study, therefore, is exploring such a pattern as an632

independent component without using any predefined deterministic model.633

Exploring such pattern as an individual mode was not possible using PCA.634

Fitting a sinusoidal function to IC7 showed a period of 161.4 days, agreeing635

with the theoretical derivation of Ray and Ponte (2003), and matching the636
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observations of Melachroinos et al (2009).637

The water loss in west Australia is summarized in the IC8 of GRACE (see638

Fig. 7). This pattern is also extended towards the ocean. This shows that639

the performance of ICA, for separating the relatively lower amplitude signals,640

is decreased. A linear regression of IC8 shows a rate of −8.2 ± 3 mm/year641

from March 2002 to December 2009. The computed linear rate of GRACE-642

TWS change in the area during the years 2010 to 2011 was 6 ± 4 mm/year,643

which was due to the increased precipitation in this period. IC8 also shows an644

opposite TWS gain over central Australia corresponding to 7 ± 2 mm/year645

from March 2002 to December 2009. The projected temporal evolution from646

WGHM shows similarities in phase with GRACE-IC8, but its amplitude is647

around one fifth that of GRACE. The same statement is also true for the648

projected evolution of AWRA with an amplitude of 70% of GRACE-IC8.649

The temporal evolution of TRMM shows similarity only for the years 2004650

to 2006. Our results confirm Rieser et al. (2010)’s study that showed the651

poor link between the TRMM pattern and the GRACE-TWS changes in the652

central, western, and eastern parts of Australia.653

IC9 and IC10 of GRACE in Fig. 7 show mainly inter-annual mass fluc-654

tuations over the ocean in the northeastern and southwestern parts of Aus-655

tralia (with a frequency of 99.7 and 121 days, respectively). Note that the656

reported frequencies are derived by fitting a sinusoidal cycle. For deriving657

more reliable results together with their associated uncertainty, one might658

use advanced methods (e.g., in Schmidt et al., 2008). Finally IC11 localizes659

the TWS anomaly over southeast Australia. The linear rates of TWS change660

in these regions were not statistically significant. The temporal evolution of661
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WGHM derived from its projection on to the spatial pattern of IC8 shows662

the same temporal pattern in southeast but its amplitude was 60% of that of663

GRACE. Unlike the GRACE results, no clear TWS anomalies were detected664

over the southern and western Australia from the ICA of WGHM (see Fig.665

10) and AWRA. This can be related to the fact that WGHM and AWRA,666

according to the derived RMS in Fig. 2, show less TWS variability over these667

regions. Further research will need to address these differences.668

5. Effects of ENSO and IOD on Australia669

In the preceding section, the relation between the patterns of GRACE-670

TWS in different regions of Australia and the values of WGHM, AWRA671

and TRMM were studied (see Fig. 8). Since the derived GRACE-ICs are672

spatially independent, one can investigate the water variability of each com-673

ponents individually (without considering the others). This gives the unique674

opportunity to study the links between climate teleconnections (i.e. ENSO675

and IOD) and the derived GRACE-ICs.676

To this end, first, the ICs of GRACE-TWS from GFZ, SOI, and DMI677

were smoothed with a 12-month moving average filter and interpolated to678

a regular monthly time steps covering October 2002 to May 2011 (see Fig.679

13). Then, the long-period temporal correlations at 95% level of confidence680

between ICs and the indices, for the periods of October 2002 to 2011 as well681

as 2006 to 2011, were computed. Selecting the period 2006 to 2011, besides682

the study period, for computing the correlations was due to the high influence683

of teleconnections on the Australian TWS changes (see, e.g., van Dijk et al.,684

2011). The significant correlation values are reported in Fig. 13. Note that685
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selecting SOI and DMI indices for studying teleconnections as well as the 12-686

month filter for smoothing were done to make the results comparable with687

previous studies e.g., Garćıa-Garćıa et al. (2011).688

The correlation results indicate a strong stable influence of ENSO for the689

period 2006 to 2011 on IC1, IC2, and IC3 (with correlations of 0.57, 0.76,690

and 0.64, respectively). Computing the long-period correlation coefficients691

(October 2002 to May 2011) between the first three ICs and SOI index also692

showed significant correlations of 0.51, 0.71, and 0.61, respectively. These693

correlations confirm the effect of the tropical ocean-atmosphere variability694

associated with ENSO rainfall in the northern regions, where IC2 and IC3695

(indicating the mass variabilities over the ocean north of Australia) have696

stronger correlation than the northern land signal (IC1). Garćıa-Garćıa et697

al. (2011) and Ummenhofer et al. (2009) reported similar results for the698

northern region using Complex EOF.699

Computed correlations between -DMI and the first three ICs were high700

in some years, e.g., 2006 and 2009. Their long-period correlation values for701

October 2002 to May 2011, however, were 0.35, 0.26, and 0.32, respectively.702

The correlations decreased for the period of October 2002 to May 2011. This703

might show that the effect of IOD on TWS variations over the northern704

regions is relatively less compared to that of ENSO.705

Correlations of IC4 and IC8 with SOI, show the contribution of ENSO706

to the short-period mass gain between 2010 and 2011. Their long-period707

correlation for October 2002 to May 2011, however, were not statistically708

significant. This statement was also true for the long-period correlation of709

IC4 and IC8 with -DMI.710
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The effect of ENSO is also evident in IC5 (i.e., TWS variations in the711

eastern and northeastern regions) and IC9 (which concentrates over the ocean712

in east Australia) with a significant correlation of 0.79 and 0.81 with SOI for713

October 2002 to May 2011. For the same period, the correlation between714

IC5 and -DMI was -0.36, while the correlation value between IC9 and -DMI715

was -0.31. These values indicate the less long-period effect of IOD on TWS716

variations over the eastern and northeastern regions compared to that of717

ENSO.718

A significant influence of IOD from middle of 2005 to 2009 over the south-719

eastern and southern parts of Australia is shown in IC6 and IC11. The com-720

puted correlation between IC6 and -DMI for the period of 2006 to 2011 was721

0.82. This correlation, for the same period, between SOI and IC6 was 0.51.722

The correlation value between IC11 and -DMI for October 2002 to May 2011723

was 0.54. This value for IC11 and SOI was 0.44.724

Correlation between IC10 and IOD, for the period 2006 to 2011 was 0.53,725

while in this period no significant correlation with ENSO was found. Note726

that -DMI is selected for computing the correlations since negative IOD indi-727

cates increase in water budget and positive IOD indicates decrease in water728

budget. Since the spatial anomalies are positive (as they are in Fig. 7, the729

6th and 11th patterns), -DMI should follow the pattern of the derived ICs730

(see Fig. 13). These results confirm the study of Ummenhofer et al. (2009)731

which shows the effect of the Indian Ocean Dipole in the southern regions732

(see McGrath et al., 2012).733

FIGURE 13
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6. Conclusion734

In this contribution, large scale statistically independent hydrological pat-735

terns over Australia have been extracted from remote sensing data and mod-736

els using the ICA method. Our results indicate that:737

ICA has the capability to isolate the effects of spatial and spectral leakages738

from the surrounding oceans that mask potential terrestrial hydrological sig-739

nals detectable by GRACE in a regional case such as Australia with weaker740

hydrological signal, what was unachievable using mascon or PCA and its741

ordinary extensions (see e.g., Awange et al., 2011 and PCA results in Fig.742

6).743

In this study, instead of spatial masking of GRACE-TWS over the oceans744

before implementing the analysis, we extracted a rectangular region includ-745

ing Australia from GRACE-TWS products, covering October 2002 to May746

2011. Then an ICA algorithm (Fig. 1) was implemented on the GRACE747

time series to spatially separate the continental TWS changes from the sur-748

rounding oceans. The results appear to be well separated, while the derived749

spatially independent patterns are localized over the continent or the oceans750

(see Figs. 8 and 7). Reconstructing the GRACE-TWS over the Australian751

continent using the ICs that were located over the land showed a significant752

high correlation with the TWS time series derived from WGHM and AWRA753

(see Fig. 9).754

Some hidden physical processes such as S2 tidal-aliasing along with other755

model deficiencies were also detected and localized from the data without756

fitting any pre-defined deterministic model, which was what was done in757

previous studies.758
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Verifying the ICs of GRACE-TWS by implementing ICA on the WGHM759

and AWRA data sets individually showed good agreement in the results,760

mainly for the dominant variabilities, e.g., mass change over the top north761

of the continent or the mass loss over the northwest. We could not, however,762

find the same patterns of e.g., IC2 of WGHM or IC5 of AWRA summarized763

in one particular IC of GRACE (IC2 of WGHM or IC5 of AWRA were seen764

in IC6 and IC8 of GRACE). This was due to the difference between the765

components of GRACE and the hydrological models (i.e., GRACE compo-766

nents cover both the continental and oceanic signals while those of WGHM767

and AWRA only cover the continent). For instance, for reconstructing 90%768

of the GRACE signal, we had to select 11 components while for WGHM769

and AWRA, selecting only 5 components was enough. Following Eq. (4),770

implementing the ICA rotation on GRACE was done using the first 2 then771

the remaining 9 components, while for WGHM and AWRA, this was done772

by selecting the first 2 then the remaining 3 components (see Section 4.3).773

Selecting more componets for the GRACE case, therefore, forced the op-774

timization procedure (Eq. (3)) to decompose some less dominant patterns775

(e.g., over the southeast and southwest) into two modes (e.g., IC6 and IC8).776

However, the reconstruction of GRACE signal over the continent (Fig. 9,777

A) showed that the separation from the surrounding oceans was succesful.778

Comparing RMS of the reconstruction and those of AWRA also showed a779

good agreement. The derived high temporal correlations with the signals of780

WGHM and AWRA also confirmed that, although some components are not781

directly compareable, the reconstruction has performed well (see Fig. 9, A782

and B).783
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Studying the correlation between the ICA-localized TWS results with the784

ENSO and IOD phenomena revealed the influences of the climatic telecon-785

nections on each individual statistically independent hydrological region. As786

a result, a strong link between SOI and the TWS variations in the northern787

regions and the relation of the IOD to the eastern and southeastern Australia788

was established. ICA thus presents an alternative method of analysing the789

relationship between hydrological changes and climate variabilities.790

The presented ICA algorithm might be suitable for analysing other hy-791

drological areas suffering from the leakage of surrounding oceanic signals,792

and weaker hydrological signals.793
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Figure 1: A schematic illustration of the ICA algorithm. For more details, we refer to

Forootan and Kusche (2011).

50



AWRAGFZ

TRMMWGHM

Figure 2: Comparing the signal variability (RMS) of the four main data sources used in this

study after smoothing using the Kusche et al. (2009)’s DDK2 filter; GFZ-data (top-left),

WGHM-data (bottom-left), AWRA-data (top-right) and TRMM-data (bottom-right).
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Figure 3: A synthetic example; the north of Australia exhibits only an annual signal

while the west, east and southeast contain a superposition of a weaker annual signal and

a linear trend. In order to reconstruct the synthetic data set, one should multiply the

spatial pattern (left) with the temporal components (right).
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Figure 4: Separation of the simulated hydrological signals of Fig. (3) using PCA and ICA

methods. The first two rows are related to the PCA results while the last 2 rows are

related to the ICA results.
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Figure 5: Eigenvalue results derived from implementing the PCA method on the GFZ,

WGHM, AWRA and TRMM data sets are respectively shown in top-left, bottom-left,

top-right and bottom right of the figure. Each sub-figure contains 2 graphs, including

eigenvalue spectrum and cumulative variance contribution of the eigenvalues of each men-

tioned data sets.
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Figure 6: Results of PCA applied on total water storage maps of the GFZ center over

Australia. The analysis covered the period from October 2002 to May 2011. The spatial

anomalies are scaled using the standard deviation of their corresponding PCs to give

millimeter unit. The temporal components are evolutions with standard deviation equal

to 1.
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Figure 7: Results of the spatial ICA method applied to the GFZ total water storage maps

over Australia. The spatial patterns are anomalies related to the GFZ data, which are

scaled using the standard deviation of their corresponding temporal evolutions (shown in

Fig. 8). The results are ordered according to the signal strength they represent such that

they are comparable with those of PCA results in Fig. 6.
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Figure 8: The evolutions of ICs corresponding to the spatial anomalies in Fig. 7 along

with the projected temporal values of the CSR, ITG2010, WGHM, AWRA and TRMM

data sets. For comparison purpose, the temporal evolutions are scaled using the standard

deviation of the computed ICs of the GFZ data.
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Figure 9: Overview of reconstructing GRACE-TWS variations over the Australian conti-

nent using ICA. (A) RMS of the reconstructed GRACE-TWS derived by multiplying the

independent components of 1, 4, 5, 6, 8 and 10 of Fig. 7 to their corresponding temporal

components in Fig. 8. (B) The difference between the linear trend computed from the ICA

reconstructed time series of GRACE over the continent and the linear trend of AWRA,

covering the period 2003 to 2011 (C) Temporal correlations between the ICA reconstructed

time series of GRACE and the time series of WGHM for the period of 2003 to 2010. (D)

Temporal correlations between the ICA reconstructed time series of GRACE and the time

series of AWRA for the period of 2003 to 2011.
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Figure 10: Overview of the performance of the ICA method on the WGHM hydrological

data over Australia. The analysis covers the period between January 2000 and January

2010. The temporal components are scaled using their standard deviations such that they

are unitless. The standard deviations are multiplied by spatial maps to give millimeter

unit.
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Figure 11: Overview of the performance of the ICA method on the AWRA hydrological

data over Australia. The analysis covers the period between January 2000 and December

2010. The temporal components are scaled using their standard deviations such that they

are unitless. The standard deviations are multiplied by spatial maps to give millimeter

unit.
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Figure 12: Overview of the performance of the ICA method on the TRMM data. The

results are derived by rotating the first 5 EOFs, which contain more than 90% of the

total variance of the data. The spatial patterns are anomalies that are scaled using the

standard variation of their corresponding temporal evolutions. The temporal evolutions

are unitless.
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Figure 13: Overview of the temporal relation between ENSO and IOD with the Australian

independent hydrological patterns derived from ICA of GFZ-TWS. In each graph, GFZ-

ICs, SOI and -DMI indices are filtered using a 12-months moving average filter. The

correlations are computed at 95% confidence level.
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