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ABSTRACT

A mathematical study has been undertaken to mode! various kinds of granular flows
including the perfect plasticity flow and the viscous elasto-plasticity flow. The work
is mainly based on the double-shearing theory originated by Spencer and developed
by many others. The focus of the project is on the formulation of the theory, the
construction of mathematical models and the development of robust simulation

techniques.

Based on a general formulation of the double-shearing theory, the perfect plasticity
flow is shown to be governed by a set of highly nonlinear first order hyperbolic
partial differential equations with two distinct characteristics. A sophisticated
numerical algorithm is then developed based on the method of characteristics to
determine the stress discontinuity and the velocity and stress fields. With the
method developed, a numerical study is then undertaken to model the flow of
granular materials in a hopper in the presence of stress discontinuity and to
investigate the influence of various parameters on the distribution of hopper wall

pressures.

Utilising the double shearing theory, a set of stress-strain constitutive equations in
explicit form has been derived, which makes it possible to formulate the double-
shearing theory within the framework of the finite element method. Thus,
consequently, a sophisticated finite element technique has been developed to solve
the general boundary value problem governing the viscous elasto-plasticity flows
obeying the double-shearing theory. Numerical implementation of the frictional
boundary condition is also presented. The model is then illustrated with a numerical
example demonstrating the influence of wall friction on the distribution of pressures

on silo walls throughout the dynamic process of material discharge from silos.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

A granular material can be defined as a collection of a large number of discrete
macroscopic solid particles in contact with each other. The interstices are usually
filled with a fluid, most often air, which usually can be neglected in the study of
most properties of the system. In general, granular materials cannot be classified as
any of the usual states of matter - solids, liquids or gases, and have to be considered
as an additional state of matter. Under extreme conditions, granular materials are
polymorphous - they can sustain shear like a solid (up to a point) but they can also
flow like fluids. Due to this dual nature, the behaviours of granular materials are
extremely complex and their modelling constitutes one of the outstanding problems

of continuum mechanics (Jaeger ef al., 1996).

The storage and flow of granular materials are essential in many industrial
processes and engineering applications. For example, materials to be handled in
mining and mineral industries such as coal and mineral ores are granular materials.
In the chemical industry, about one-half of the products and at least three-quarters of
the raw materials are in granular form. Many other industries also deal with granular
materials such as food, pharmaceuticals and cement. Geophysical processes such as
avalanches, river sedimentation, dune formation and tectonic faulting, also involve

granular materials. A good understanding of the properties of granular materials and



the behaviour of granular flows will enable one to control natural processes and to

optimise industrial processes involving granular materials.

Despite the prevalence of granular flows in the process industries, the
underlying principles are poorly understood. Tt is estimated that up to forty percent
capacity of many industrial plants is wasted due to problems in transporting these
materials from one part of factory floor to another (Jaeger er al., 1996). Most
problems are related to the storage and flow of granular materials in silos. A silo is a
Storage structure usually consisting of a vertical bin section and a converging hopper
section as shown in Fig. 1.1. The size of a silo can be up to 20 metres in diameter
and 60 metres in height (see Nedderman, 1992). Problems in silo operation mainly
include erratic flow or blockage, dead zones and material ageing, wall adhesion,
wear of the silo wall, dust explosions, and the complete collapse of silos (often with

loss of life). These difficulties cause enormous financial losses.

bin

le

Fig. l.1 A typical silo

Although many studies have been undertaken, the physics of granular flows is
still not fully understood due to its complexity and, as a result, there is no generally
accepted flow theory of granular media. Spencer (1982) has suggested that different
models may be required, not only for different materials, but also for the same
material under different conditions. Therefore at the current stage of development, it

is important to investigate the physics of granular flow and thus to develop new



robust flow theory and mathematical models. It is equally important to formulate the
existing flow theories and thus to develop robust numerical methods for solving
general granular flow problems, which are not only technologically important, but

also essential to the validation of flow theories.

1.2 OBJECTIVE

At present, the study of plasticity flows of granular materials is mainly dominated
by the plastic-flow rule theory and the double-shearing type theory. Over the last
two decades, many sophisticated constitutive equations and finite element methods
based on the plastic flow rule theory have been developed and used to study the
stress fields in hoppers and bins, but in general, velocity predictions do not agree
well with experimental results. Great efforts have also been devoted to the
development of double-shearing type models and to the solution of various
problems using the theory. It has also been shown that the double-shearing theory
possesses certain advantages over the more classical plastic flow rule theory. For
example, under certain conditions, a double shearing model may include the plastic
flow rule model as a special case. In addition, the theory is inherently capable of
describing the discontinuity characteristics of stress fields in granular materials.
However, very few attempts have been made to develop constitutive equations and
sophisticated numerical methods based on the double shearing theory for solving

general granular flow problems.

The objective of this thesis is to develop robust mathematical models and
sophisticated numerical techniques for various kinds of granular flows based on the
double shearing flow theory with a particular application to the study of granular

flows in silos. More specifically, the project aims to

*» formulate the dilatant double shearing theory to establish a set of double-shearing
type constitutive equations for perfect plasticity flows and elastic- plasticity

flows;



* develop a characteristic method and numerical algorithm for solving the
hyperbolic system governing the double-shearing perfect-plasticity flow of

granular materials in hoppers;

* develop a general finite element technique for modelling the double-shearing
plasticity flows incorporating the viscous effect and elastic deformation with an

application to the study of pressures on silo walls.

1.3 OUTLINE OF THE THESIS

This thesis briefly reviews previous work on the modelling of granular flows,
describes the mathematical models and numerical algorithms developed for perfect
plasticity flows and viscous elastic-plasticity flows and presents results and

conclusions gained from various numerical investigations.

Chapter one introduces the background of research and presents the objectives

of the research program.

Chapter two reviews some of the voluminous literature on the subject of
granular materials that is pertinent to the proposed research, and highlights areas

that require further investigation and development.

Chapter three is concerned with the derivation of constitutive equations for
perfect plasticity flows and viscous elastic-plasticity flows based on the double-
shearing theory. In particular, an elastic-plastic matrix based on the double-shearing

theory is derived.

Chapter four is concerned with the development of a characteristics method

and numerical algorithm for solving the highly nonlinear hyperbolic partial



differential equations governing the perfect plasticity flow of granular materials in

hoppers.

Chapter five is concerned with the development of a finite element method for
solving the highly nonlinear boundary value problem governing the viscous elastic-
plasticity flow of granular materials utilising the double-shearing type constitutive

equations derived in chapter three.

Chapter six presents conclusions gained from the present study and highlights

areas for further research.



CHAPTER TWO

REVIEW OF THE LITERATURE

2.1 GENERAL OVERVIEW

Granular flow may occur in several regions, which can be subdivided into slow and
rapid flows. In slow flows, particles stay in contact and interact frictionally with
their neighbours over a long period of time. Particle motion continues in this
manner as long as the deformation remains fairly slow. This is the so-called quasi-
static regime of granular flows. On the other hand, in rapid flows, each particle
moves freely and independently of even its nearest neighbours. Particles interact by
fast impacts occurring during their collisions by transfer of particle kinetic energy

and momentum, the nature of which governs the material flow property.

Over the last few decades, extensive research has been carried out to study the
properties and flows of granular materials. Early research mainly focused on
experimental investigation and deriving approximate analytical methods and
empirical formulae suitable for engineering design. Typical results developed
include Walker (1966), Walker & Blanchard (1967), Walters (1973a, 1973b) and
Jenike’s (1961) formulae for the prediction of silo pressures and Savage (1965),
Davidson & Nedderman (1973) and McLean’s (1979) formulae for the prediction of
flow rates of granular materials flowing out of silos. To investigate the complex
flow behaviour and phenomena related to granular flows, in the last two decades,

many researchers have concentrated on investigating granular flows theoretically



and a number of flow theories have been developed for analysis. Essentially, these

theories can be classified into three categories:

e discrete element simulation models for both rapid and shear flows,
* statistical collision models for rapid flows,

e frictional plasticity models for slow flows.

The discrete element method s based on the molecular dynamic simulation
approach. In such kind of models, a granular material is assumed as an assembly of
macro-particles, each containing many actual granules, connected by springs and
dashpots. The motion of each individual particle is governed by the principle of
linear momentum and the principle of angular momentum. By calculating the
interaction forces between particles in contact and integrating the equations of
motion for each particle with respect to time, one can determine the velocity and
position of every particle at any instant of time and thus analyse the granular flow
behaviour. Over the last few decades, many different discrete element models have
been developed. These models can be classified into two categories, namely the
hard particle model (Campbell & Brennen, 1985a; 1985b; Cambell & Gong, 1986 )
and the soft particle model (Walton & Braun, 1985: 1987). The hard particle model
generally is only applicable to rapid flows with low bulk density. While the soft
particle model is applicable to both rapid and slow flows. Many attempts have also
been made to incorporate statistical mechanics methods with the discrete element
model and in this kind of models, the flow of particles is simulated using either the
Markov process (Kitamura, 1980; Roco et al., 1990) or the Monte Carlo methods
{Hopkins & Shen, 1988). Recently, the discrete element method has also been
applied to the problem of granular material flows in silos. An investigation of
hopper wall stresses has been carried out by Rong (1994) and Langston et al. (1995)
among others. Rong also presented a comprehensive review of the method and its
applications in the field of granular materials. This approach is gaining popularity
with increasing computer power. However, the big disadvantage of the method is

that it is computationally expensive and so only fewer that 20000 particles are



usually considered. In addition, the particles usually have to be assumed to have
particular shapes such as circular discs, spheres, polygonal blocks, or super-elliptic
discs and etc. It is still not possible at present to consider any irregular shapes,
which limits the application of the method as it has been well established that the

granular flow behaviour greatly depends on particle shape and size distribution.

The statistical collision method is a continuum approach based on micro-
mechanics analysis of particle collisions and statistical averaging. In this kind of
models, a granular material is assumed as an assembly of microscopic solid particles
and the flow is dominated by random motion and binary collisions of particles
usually assumed as rigid or near elastic smooth discs or spheres. The stress in the
material is assumed to be created by particle collisions. Early models of this type
include those due to Bagnold (1954), McTigue (1978), Shen & Ackermann (1982),
and Haff (1983). Models that explore the similarity of rapid granular flows and
compressible flows of dense gas have also been proposed such as those by
Blinowski (1978) and Ahmadi (1985). Recent developments of this kind of theory
are mainly based on the kinetic Boltzmann-Enskog equation. The Chapman Enskog
method for the dense gas kinetic theory was modified to derive the dynamic
equation for granular flows. The physical similarity between rapid granular flows
and the kinetic theory view of dense gases has led to a number of models for
granular rapid flows and the continuum equations are similar to those for dense
gases. Typical theories of this type include those by Jenkins & Savage (1983),
Campbell (1990), Goldshtein & Shapiro (1995), and Brey et al. (1997). Several
attempts have also been made to develop theories considering the frictional effect,
such as those due to Johnson & Jackson (1987) and Savage (1988). These theories
are based on the argument that stresses due to different mechanisms can simply be
added together. Thus, total stresses are then the sum of collisional stresses and
frictional contributions. The collision theory has been applied to model various
kinds of granular flows, such as the plane shear-flow between parallel plates and the
flow down an inclined plane. However, in general, the existing theories of this type

are limited in several aspects. Firstly, they only apply to rapid granular flows with



low bulk density. Secondly, most existing models are limited to idealised materials

consisting of circular disc and spherical particles only.

Plasticity models are based on the assumption that the material flows
according to a constitutive law if the stress state satisfies a yield condition. Many
different yield conditions have been established (see Farley & Valentin, 1968:
Matsuoka, 1984; Hill & Wu, 1993) and two different theories have been proposed
to derive the constitutive equations for granular materials, i.e., the conventional
plastic flow rule theory and the so-called double-shearing theory originated by
Spencer and developed by Spencer and others (see Spencer, 1982; Hill & Wu, 1992:
Harris, 1993; 1995). Sophisticated constitutive equations and numerical techniques
based on the plastic flow rule theory have been developed and used with
considerable success to investigate granular flows in hoppers and bins (Rombach &
Eibl, 1995; Schmidt & Wu, 1989). It has also been found that under certain
conditions, the double-shearing theory includes the plastic flow rule theory as a
special case (see Hill & Wu, 1992; Harris, 1995). From the features of plasticity
models and in comparison with other types of models/theories, it is believed that
proper models for slow granular flows are within the framework of nonlinear
plasticity theory. However, the plasticity theory for granular flows at present is still
at the stage of development. There does not exist a generally accepted theory and
thus further work to develop more accurate theory, to unify all existing theory and to

implement these theories numerically is essential for the development of the subject.

The current project is focused on further development of mathematical models
and numerical techniques for slow granular flow based on the plasticity theory.
Thus we will introduce in the rest of this chapter the fundamental continuum
equations and plasticity theories governing the flow of granular materials. Prior

work on granular flows based on other types of theories will not be presented here.



2.2 YIELD FUNCTION AND YIELD CRITERION

The yield criterion constitutes an essential part of plasticity theory. Granular
materials deform or yield when there is a relative slipping motion of adjacent
particles. This slipping is resisted by frictional forces which are overcome only
when the shear stress attains a sufficiently large magnitude in comparison with the
normal stress. The criterion under which yield occurs is referred to as a yield

criterion.

In the present study, we consider plane deformations relative to a rectangular
Cartesian coordinate system Oxyz such that the displacements are parallel to the
(x,y)-plane and independent of the coordinate z. We assume that the intermediate
principal stress is directed in the z-direction. We also use the usual sign convention

for continuum mechanics that tensile stresses are positive. Let c,>0, >0, be the
principal stress components of the stress tensor ¢ and W be the angle between the

positive x direction and the &, direction. Then from tensor transformation, we have

O, =—-p+tqcosly, (2.1)
O, =—p—gqcos2y, (2.2)
o, =4gsin2y, (2.3)
where p and g are defined as
y
n
c-l
o
o v > X

Z

Fig. 2.1 Eulerian frame of reference Oxyz and principal stress o

10



1
p=—5(0',+0'2), (2.4)

1
q:E(ol—Gz). (2.5)

Consider an element of surface with normal » which lies in the Oxy plane.
Let o be the angle that n# makes with the x direction as shown in Fig. 2.1. Then
the normal stress and shear stress acting on the element surface are respectively
given by
O, =p—qcos2fo—y),
o, =gsin2(a-y).

The locus of the values of (0' a, ) at which permanent deformation or yield

occurs is called the yield locus. For a stress state represented by the Mohr circle A,
which does not touch the yield locus, the frictional forces are not fully mobilised
and the solid is rigid or elastic. When the stress state changes so that the

corresponding Mohr circle A’ is tangent to the yield locus then two slip planes are

formed, inclined at angles i(§+%) to o,, represented by 57 and s,. These slip

planes are also referred to as - and B-lines. The material is then said to be in a state

of plastic equilibrium. The extent of slip may be large during steady flow or

Mohr-Coulomb line

------------ General Yield Locus

* Onn

Fig. 2.2 The Mohr-Coulomb failure criterion
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infinitesimal in a static material. The criterion gives an upper limit on the magnitude

of the shear stress on a plane, it does not, however, give the direction of slip.

The most simple and wildly used yield condition is the so-called Coulomb-
Mohr yield condition which states that the material fails when the shear (tangential)
stress 0, acting on the surface of a material element attains the critical value,
namely

o-m

=c+0,  tang, (2.6)

where the parameters ¢ and ¢ are constants which characterise the mechanical
properties of the material. The parameter ¢ is called the cohesion and ¢ is called

the angle of internal friction; both parameters are determined by experiment. The
Coulomb-Mohr yield criterion can be represented by a pair of straight lines as
shown in Fig. 2.2. In the special case of frictionless materials, for which ¢ =0, Eq.
(2.6) reduces to the Tresca yield condition. If ¢ = 0, the material is referred to as

cohesionless material.

In terms of the stress invariants p and g, the Coulomb-Mohr yield criterion

(2.6) can be shown to become

f=2g-2psing-2ccos¢p =0, 2.7

from which it can be noted that yielding is uninfluenced by the intermediate

principal stress.

For most granular materials the angle of internal friction is not constant along
the yield locus (see for example Stainforth er al., 1970). Kingston and Spencer
(1970) have presented a discussion on the general yield criteria for plane strain

materials. Various nonlinear (in terms of p and ¢) yield functions have been
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developed to describe the yielding property of granular materials. Such as those by
Hill (1950), Sokolovskii (1965) and Hill & Wu (1993).

2.3 STRESS EQUATIONS OF MOTION AND KINEMATIC EQUATIONS

In the Eulerian frame of reference Oxyz as shown in Fig. 2.1, the stress equations of

motion can be expressed in invariant form as

Vo+f, =p(v+Vv-v) in £2,
or in index notation,

Oy fu =p(vi, +v,v,,)- (2.8)

Assuming that the material obeys the Coulomb-Mohr yield criterion, then in terms

of p and g, Egs. (2.8) become

—(1-sin ¢0052W)%§+ singsin Zw%— 2(psin g+ ccos @)sin 2!,1/%#

+2(psin¢+ccos¢)c052w%’u+X:p(%‘;" +v, (ZJ; +v, Eg;] (2.9)
sin¢sin2m%€-—(1+sin¢cos2w)%+2(psin¢+ccos¢)0052w%i/—
+2(psing +ccos¢)sin2y 2L + y Py iy Py (2.10)
$ cosd)sin2y ——+¥ = ' L :
psing+c si "”ay Pl =tV = T 5

Let v = (v_t,vv) be the granular velocity, then the rate of deformation tensor 4 , and

the spin tensor w are related to v by the usual kinematic equations as follows

d=%(Vv+(Vv)T),w:-:lz(Vv—(Vv)T), (2.11)
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or in component form

d, = %(vu. ), w, = %(v,_j -v,,). (2.12)

where the superscript T denotes transpose.
2.4 PLASTIC POTENTIAL FLOW RULE THEORIES

Once the yield condition is satisfied, the material will flow obeying a set of
constitutive equations describing the relation between the stress tensor ¢ and the
deformation and spin tensors d and w . The plastic potential flow rule theory is one
of the principal theories for establishing the constitutive equations. Models of this
kind are developed in the context of civil and geotechnical engineering (Harris,
1993). The necessary kinematic assumption postulated for plastic deformation or
plastic flow is called the flow rule. The theory is based on a plastic potential g,

having the unit of stress and being a function of stresses. The flow rule states that

the plastic strain rates d; are proportional to the derivatives of the plastic potential

with respect to the corresponding stress, that is

P
dr = 3 28 (2.13)

v do,’

where A is a scalar that may be called a plastic multiplier and depends on the flow
rate. The flow rule is called associated if gp is identical to the yield function £ and
nonassociated otherwise. In the case of associated flow rule, plastic flow develops

along the normal to the yield surface.

Numerous plastic potential models have been proposed. The common features
of these models are that they either use the associated flow rule or some
meodification of it and the characteristics of stress and velocity do not coincide in
general. Some examples of the most significant works utilising the associated flow

rule models are those by Drucker & Prager (1952), Drucker, Gibson & Henkel
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(1957), and Cox, Eason & Hopkins (1961). The major criticism of these theories is
that this approach predicts unrealistically large dilatation rates (Collins, 1990). Also
Balendran & Nemat-Nasser (1993) pointed out that since a granular material is
dilatant and pressure sensitive, the above flow rules do not apply. Roscoe, Schofield
& Wroth (1958) and Atkinson & Bransby (1978) abandon the Coulomb-Mohr yield
criterion and replace it by a hardening model described by the associated plastic
flow rule with a new family of yield functions as the plastic potential. The criticism
of non-coincidence of stress and velocity characteristics in this model is addressed
by Collins (1990), who shows that when the density changes are properly allowed
for then the velocity and stress characteristics will always coincide. Various
attempts have also been made to develop non-associated flow rule models. Typical

examples include those by Hill (1950), Johanson (1964) and Lade (1977).

Generally, in elastic-plastic analysis, one assumes that the total deformation

consists of an elastic component and a plastic component, namely
d=d*+d”, (2.14)
and d° can be related to stress through an elastic matrix D, namely
o=Dd". (2.15)
From Eqgs. (2.13) and (2.15), together with the condition J =0, one can derive a set
of constitutive equations of the form

c=D,d. (2.16)

Thus by substituting Eq. (2.16) into the stress equations of motion (2.8) and using
the kinematic Eqs. (2.12), one obtains a system of two equations for the solution of

two unknown variables v, andv,. The deformation d and stress ¢ can be

determined from (2.12) and (2.16).
2.5 DOUBLE SHEARING FLOW THEORIES

The double shearing theory is an alternative flow theory parallel to the plastic flow

rule theory. The basic form of the theory is based on the Mohr yield condition and
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assumes that deformation arises by shear on surfaces on which the critical shear
traction is mobilised and that the shear direction coincides with that of the shear

traction.

B o)

o

Fig. 2.3 Relation of ¢ and § lines with the o axis

The most significant pioneering work in the development of the double
shearing theory is due to de Jong (1959) and Spencer (1964). In 1959, de Josselin de
Jong, from a review of the experimental evidence, postulated that deformation of
granular materials occurs by simultaneous sliding along two families of stress
characteristics. However, de Jong considered only graphical methods for solving
boundary value problems and did not formulate the theory to derive the general
constitutive equations. Thus, Spencer (1964), motivated by de Jong’s ideas,
developed a general double shearing theory for plane deformations of isotropic
incompressible granular materials. Spencer’s double shearing theory assumes that
the complete deformation at any point of the body consists of two shearing motions

occurring simultaneously on the o — and B~ stress characteristic lines and which

are superposed on one another. More specifically, using the notation as shown in

Fig. (2.3), the double shearing assumption can be expressed as

ad = ae i:be (2.17)
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where V' is the particle velocity relative to the (£,n) system the origin of which is

fixed on the particle P and its axes rotate with angular velocity €2 = -?D—W about the
t

instantaneous position P relative to the fixed coordinate system (x,y). So that the

o and f lines are independent of time relative to the (&,17) system. Based on the

assumption described by Egs. (2.17), Spencer derived two kinematic equations

usually known as velocity equations for the flow of granular materials, namely

o, o
£ 4.2 =, 2.18
=t 3 (2.18)
Py
[‘3’; +—8x-"]coszw-(%_%Jsmzwsmq{%—(;‘;“ +mj=o, 2.19)

where v =(v,,v.) is the velocity relative to the (x,y)system and ¢ is the angle of

internal friction. The first equation is the incompressibility condition and the second
equation relates the spin component to the components of the strain-rate tensor. The

principal axes of stress and strain-rate will only coincide if ¢ =0. Also, the second

equation is form-invariant under transformations of rectangular Cartesian

coordinates and is independent of superimposed rigid-body motions.

Following Spencer’s work, many studies have been carried out to further
examine the theory (de Jong, 1971; Mandl and Luque, 1970) and to extend the
theory in various aspects. Various authors extended the theory to axially symmetric
cases {cg. Spencer, 1982 & 1986; Hill & Wu, 1992) and three dimensional cases
(eg. Spencer, 1982; and Ostrowska-Maciejewska & Harris, 1990).

Another important extension of the theory is to include the dilatancy of
granular materials. Spencer & Kingston (1973) proposed a dilatant model based on
the hypothesis that the volume of a granular material will increase during flow by

expanding an amount which is equal in all spacial directions. Thus the density is
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considered as a state variable and is related to the stress and deformation history,

namely

d
—Bzf(pvpsx.‘i)’ R=1'2""’N’
dp

where p is as defined by Eq. (2.4) and « » depends on stress and deformation
history. The constitutive Eq. (2.19) is still valid while the incompressible condition
(2.18) is replaced by the usual continuity equation for compressible fluids.
Following Spencer, another form of dilatant double shearing model was proposed
by de Josselin de Jong (1977). He assumed that sliding is accompanied by volume
change as the sliding planes are saw-tooth shaped. The saw teeth are inclined at an
angle 0 to the average direction & of a sliding plane. Sliding occurs along the faces
of the steps in the direction (' +8) as shown in Fig. 2.4. Based on this assumption,

de Jong derived a set of equations including his double sliding, free rotating model

as a special case.

Another type of double shearing model for dilatant granular material is due to
Mehrabadi & Cowin (1978), Harris (1985), and Hill & Wu (1993). These models
are based on the kinematic proposal of Butterfield & Harkness (1972) which states
that any change in velocity relative to the slip-line field that occurs between
successive points is in a direction inclined at v to the conjugate slip-line. Using the

same notation as defined in Fig. 2.3, the kinematic proposal can be expressed by

j:‘ =aeB,-&i=beﬁ. (2.20)

34

From Eq. (2.18) and (2.19), a set of constitutive equations can be derived, namely

: av.r o-)v}' avx av)’ : _ avx 81)}' _ _
smvH . —EJ0082W+( > +§]Sln2!ﬂ:‘ [c}x +E~Jcos(¢ v)=0,

(2.21)
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H, M, o,
cos vﬂzr _..élj]sin 21;1—((3); +¥]COSQWJH[%_“B?+EQJQH(¢— vy=0.

(2.22)

These equations reduce to Spencer’s (1964) velocity equations when v = 0 (Eqgs.
(2.16} and (2.17) in Spencer (1964)). When v = ¢, Egs. (2.21} and (2.22) together
with the Coulomb yield condition are equivalent to the plastic flow rule proposed by

Drucker & Prager (1952).

Fig. 2.4 Mechanism of material dilation

2.6 BOUNDARY CONDITIONS

Typically, a hopper is subjected to two different pressure states commonly referred
to as the active and passive stress states. The active stress state develops during
filling and persists until discharge. In the filling stage, the only load applied to the
matertal is its weight and so the main load is directed downwards. The passive
stress state applies to convergent flow during discharge. In this case the flowing
material deforms plastically in a way that it contracts horizontally and expands

vertically so that the main load is directed horizontally.

The required boundary conditions for both the active and passive stress states

include a symmetry condition on the axis of symmetry, a frictional boundary
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condition on the wall, and a traction condition on the top surface. On the centre-line,

the geometric symmetry requires that W= 7/2 for the active case and W =0 for the

passive case, where we have assumed that x is in the vertical axial direction and v

denotes the angle between the algebraically greatest principal stress and the radial

direction.

We assume that, at the hopper walls, frictional forces are fully mobilised and

can be described by Coulomb’s law of friction, i.e.

O, =C0gtang, , at g =-g

O, =—C0ghtang, af=46, .

Now, considering the left hopper wall (8 =6 ), we have
sin QEI_W =tang, (cscqb +cos ZWWJ ,
which on multiplying by cos $,, . results in

_sing,,

sin(ZEw - qbw) e

Thus, we have
v, =36, +a)]

where

. _:[ sin
@ = sin ‘(——&]

sin ¢
Also, we have

sinlm— 2y, - ¢w)] =sin(2¥, - 9,),

which on using Eq. (2.25) results in

Ew=%[¢w+x—w].
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(2.26)

(2.27)



Condition (2.26) is applicable in the passive state and (2.27) in the active state. This

situation can be better illustrated using the Mohr circle as shown in Fig. 2.6

y
*
O-WI ny

Ay

Fig. 2.5 Stresses acting on an infinitesimat element

On:

o'se' Ui’a)

» Oy

\ @+,

[ O ¢w
(O o-.rgJ

Fig. 2.6 The Mohr circle representation of active and passive stress states

For a moving granular material, the governing equations have to be
supplemented by conditions that must be satisfied at the surfaces bounding the
material. For a solid non-deformable surface, the necessary boundary condition is
simply that the material cannot penetrate the solid surface. Hence, given that the

surface is at rest, we have

v, =0. (2.28)
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2.7 NUMERICAL STUDIES

Using the continuum mechanics approach, the flow of a granular material in general

can be modelled by the following boundary value problem.

BVP: find the stress tensor ¢ and velocity/displacement vector v such that
the stress equations of motion, the kinematic equation, the continuity
equation, the constitutive equations and the traction and

velocity/displacement boundary conditions are all satisfied.

The constitutive equations are the major field equations which distinguish granular
flow from other kinds of material flows. In addition, granular flow also possesses
certain special features. For example, there may exist stress and velocity
discontinuities in the flow region. Unlike in fluid dynamics, where the no-slip
boundary condition is uswally used, we have nonlinear frictional boundary

conditions to deal with for granular flows.

Due to the complexity of the governing field equations, it is extremely
difficult to solve the boundary value problem for granular flows. So far, only several
simple exact solutions associated with the double shearing theories have been
derived. Although these exact solutions provide a means for validating theories,
they are only applicable to idealised problems and cannot be generalised to general
problems with boundary conditions sensible to industrial processes and engineering
practice. This difficulty in obtaining solutions explains why early studies on

granular flow are only focused on deriving approximate analytical solutions.

With the development of computer technology, great effort has been made to
develop numerical methods to solve the BVP numerically and to investigate the
granular flow behaviour. Numerical methods for solving the boundary value
problem for granular flows using the plastic flow rule theory have been studied by

many researchers. Typical examples are those by Haussler & Eibl (1984), Ooi &
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Rotter (1986, 1987), Schmidt & Wu (1989), Wu & Schmidt (1992), Rombach &
Eibl (1995). However, only a few attempts have been made to study numerical

methods for double shearing theories.

2.8 CONCLUDING REMARKS

Unlike many other areas of continuum mechanics disciplines, the flow of granular
materials remains controversial. Granular materials possess many features other
than solid and liquid and thus existing solid mechanics theories and fluid dynamics
theories cannot be simply used to model granular flows. Different theories are
needed to deal with the special features of granular flows, such as internal friction,
frictional boundary conditions and possible change of phase from solid-like to fluid-

like state.

Although many mathematical models and theories have been proposed for
granular flows, there is no generally accepted theory at present and thus intensive
study on various aspects is still needed. Firstly, any new development of flow theory
and flow models will contribute significantly to the subject. Secondly, as so far no
criterion has been developed to distinguish among different flow regimes, it is
important to develop such a criterion. Thirdly, as granular materials are so diverse in
their properties and existing flow theories are controversial, it is important to
identify the application domain of each theory. Finally, in order to validate the flow
theories and to apply them to solve real problems, it is necessary to develop robust

numerical techniques for the most promising theories.

The present study focuses on the modelling of slow flow of granular
materials. Based on the nature of different types of models, it is believed that the
actual flow behaviour can be best simulated by developing a proper plasticity
model. Therefore, this study focuses on the development of mathematical equations

and numerical techniques based on the double-shearing plasticity model.
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CHAPTER THREE

CONSTITUTIVE EQUATIONS FOR GRANULAR
MATERIALS FLOWS

3.1 GENERAL

This chapter is concerned with the development of constitutive relations for
granular flows obeying the dilatant double shearing flow theory. In Section 3.2, we
present a general formulation of the theory based on Butterfield and Harkness’
kinematic proposal. We allow the angle of internal friction and the angle of
dilatancy to be a function of stresses. We also present the constitutive relations in

two forms, namely along the (x, y) Cartesian coordinates and along the

characteristics. The present derivation is parallel to the derivation by Harris (1985)
and our work shows that the derived constitutive equations allow the use of any
model for the angle of dilatancy and the use of a yield criterion of the form
described by Teunissen & Vermeer (1988) . In addition, motivated by Harris’
(1992) formulas, we also formulated the dilatant double shearing mode! to
incorporate elastic deformation. A set of constitutive equations are derived to relate
the stress rate with the deformation rate in explicit form. This development makes it
possible to use the finite element method to solve the general boundary value
problems of granular flows obeying the double shearing model, which will be

presented in chapter five,
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3.2 GENERAL CONSTITUTIVE RELATIONS DERIVED FROM
DILATANT DOUBLE SHEARING MODEL

Consider a granular material, if the stress state in the material reaches the yielding
condition, flow occurs by shearing along two families of planes namely the ¢ and
B characteristics. These two planes are inclined at angles +(m/4+9/2) to the
direction of the principal stress 0, where ¢ is the angle of internal friction. The
dilatant double-shearing model postulates that the shearing along the o and B slip

planes is accompanied by an expansion of material along the normal direction of the
planes. This flow mechanism is described clearly by Butterfield and Harkness’

kinematic proposal which states that any changes of velocity in the two successive
points along the & and f8 slip-lines are along the B and A directions respectively, The
A-direction makes an angle v with the tangent to the « slip-line at P; and the B
direction makes an angle -v with the tangent to the § slip-line at P, as illustrated in

Fig. 3.1.

> X

Fig. 3.1 Deformation at material particle P

To formulate the dilatant double shearing theory, we choose two sets of rectangular

Cartesian coordinate systems, as proposed by Spencer (1964). The first set ( Oxy) is

fixed in space while the second set ( Pen) is fixed on the particle and is in motion

relative to the first set with rotating speed €2 and translational velocity (vx,v_v).
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Let v = (v:,v,) denote the velocity of particle P relative to the (ﬁ,n) system, then

Butterfield and Harkness’ proposal can be expressed as

—:aes,——ZbeA, (31)

where 5, and s, are measured along the slip-surface, e 4+ and e, denote unit

vectors along the directions of A and B respectively; and a and & are constants.

Therefore, from Eq. (3.1) and Fig. 3.1 we have

Py [ s tan 6 3”"/3‘} =tan@, (3.2)
_— =-tanf; , an .
ds, | Is, a s g
or
&v c?v§ ‘ c’)v c"w’v; i
—és—cose +8s smﬂﬂzo , Ecos@ _asﬁ smBﬂ:O, (3.3)
where
Bﬁ:£+ﬁ—v.
4 2

The directional derivatives along the a and B lines are given by

"%:COSBQ%-'_S“[BG% s a_fﬁ—__'cosga %—Sinaa%’
where
Ga :E.{_Q_
2

Then it follows from Eq. (3.3); and Eq. (3.3); that

8v av
cosB cosB +———sm9 cosﬂ +-——cost9 smB +§~n—sm9 sm9 =0,

% 3 23
(3.4)
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i ] e-av”'e 8, ——>cosf, sin@, +—sinf _sin@, =0
3—§COS « COSH En—sm « COS8, gcos aSiN@y +—=sinf,sind, =0.
(3.5)
Subtracting Eq. (3.5) from Eq. (3.4) gives
23"”'9 e+2av¢ 0, sin, =0 (3.6)
—siné  cos —=cosf _sinf, =0. .
an o B G'}C a B
Noting that
sin@, cos, = é—[sinv-&cos(tp- V)],
sinf; cos@, = %[cos(qb— n)—sinv],
Eq. (3.6) can be written as
*; +K(¢) Py =0 (3.7)
2 on ' '
where
K(¢)=cos(¢—v)+s?nv-
cos(¢—v)—siny
Adding Eq. (3.4) and Eq. (3.5) results in
—r —sin(¢—v)+cosv]+fv—§[sin(¢—v)+cosv] =0
dE on
which can be written in the form
M, H: . \sin(é—
20 || L P (sin@-v) (3.8)
an an  0E ) cosv

Let d and w denote respectively the rate of strain tensor and spin tensor. Then,

relative to the (&,1) system, we have
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o, v,
d= = , dnJT:—-—-— d= =

54 ag

and Egs. (3.7) and (3.8) become
. sin(¢ —v)

dog + K(0)dyy =0, doy + ——w,

o =0. (3.9)

Since the (£,17) system rotates with angular speed & relative to the (x,¥) system,

we have

Using the above equations together with the following standard tensor

transformation formulae,

dye  dy, _[cosy siny d, d,[cosy -—siny
d., d, —siny cosy | d,, d, |siny cosy
equations (3.9) become

(dmr - dw)cos 2y +2d, sin2y = cos(p—v) (d

+d. ], 3.10
siny = ”’) (-10)

(d. —d,, )sin2y —2d, cos2y = zs—i“(*”—"l’l(w

+Q). (3.11)
cosv

Xy

Equations (3.10) and (3.11) were originally proposed by Mehrabadi & Cowin
(1978). Harris (1985) proposed another method for deriving the formulae and the
present method is another alternative derivation. It is clear from the current
derivation that the angle of internal friction is allowed to be any function of stress

and there is no restriction on the angle of dilatancy.

Using the following standard formulae,
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Eqs (3.10) and (3.11) can be expressed in terms of velocity components, namely

v, o, d, v Y. _cos(g—v)( v, o,
("éx“ E]COSZW+(?J§+@)S‘"2”’“ snv_ Lo Ty ) 12

v, v . d, v sin(p—v) v ov,
LA } I — ] X Iy = X _ : 2Q .
(c}’x ayjs'“"” (ax+ay)°°”’ cosv oy ax

(3.13)

In the rest of this section, we formulate the constitutive relations along the «

and f3 characteristics for the cases where both ¢ and v are functions of stresses.

Let
T_9
0, =w-=-Z,
«a =V 1 3
Bﬁ:y/+—+§.

Noting that directional derivatives along the o~ and Blines are given by

t—;f—azcosﬂa§+sin6a%, (3.14)
—;—B:cosﬂﬁg+sin6ﬂ%, (3.15)

we have
costp%:sin%%—sinea%, (3.16)
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cos¢%=—c039ﬁ af +cosf,, afﬁ. (3.17)

Relative to the fixed {x,y) system, the velocity components in the x - and y-

directions in terms of the components in the &- and - directions are given by
V, =V, c088, +vgcos8,, (3.18)
v, =v,sin@, +v;sinf,. (3.19)

Using Eqgs. (3.16) - (3.19), we have

cos ¢ LI cosg +v %sinq)—v ﬂg_ﬁw 9y
& &) o, “ o, P os, © ds

2 g (3.20

Bsﬁ —L cosp— Vg —— *, sing, 20)

v Bv
cosqb[cg; 3))] g: sin 2y + v, ?cosz-;—stwsmqﬁ

24 a

v, 9, _
+—c0521;/cos¢—vﬁ cos 2y sin ¢
s, a
0
Vg ﬂsin2wcos¢+%—sin2wsin¢
s, dsg
ai%—cosmysinq)
5 dsg
y a8,
" ds, B
365
ﬂ& cos2y, (3.21)

v o
cosgb(ég; a;Jz—g:"‘ i sin2w+£0052wsin¢

o o
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Py 39,
n -—
SIn 2y cosg — vy >

+ stn 2y sin ¢

%,

+v cos 2y cos  —
F 35, v s g

a

24

cos 2y sin @

v, . 9, . .
+ sin2y cosg+v, sin 2y sin ¢
dsy s,

[#4

avB
+V, cos2y cos @ + TCOS 2y

ds, 55
0,
-vﬁIﬁ-stw, (3.22)
av,r s _avar aeaf _ B ava
COS(I{ > & J = %, sing—v, %, cos ¢ %, + asﬁ
My aeﬂ 323
g;smfb vﬂ?}gcosq). (3.23)
Substituting Eqgs. (3.20) - (3.22) into Eq. (3.12) produces
v o] a0
Vv, O;;L:+ c?sz cosP— vy aS: sin ¢ + g:: cosP+v, g—f:—sin(b—vﬁé—i—
_cos@=v)[ P, B ng_y P8, 9
sinv [8sa COSP+ v ds,, SIng vy s, Va ds,
Gﬁﬁ ] 8vﬁ
“Vgo—sing+——cos¢ =0 (3.24)
s, ds g
Substituting Eqs. (3.21) - (3.23) into Eq. (3.13) gives
My 99, Wy 96 Gl
3. - %, sing—~v, %, cos ¢+ &)sﬁ sing—v, Ecosqﬁ—a

31



_sin(@-vifadv, . 90, _3Vg c9va__3"g .
cosv [c?sa SOV, s, cos$ asa+asﬁ ds sing
a0,
—Vg—cos@+2Lcosd [=0. (3.25)
ds g

Multiplying Eq. (3.24) by sinv and Eq. (3.25) by cosv and adding the resulting

equations gives

. 8, 59,5 . avﬂ .
SINY =V, ——COsV+ vy ——sin(¢ — v) - —=cos(¢ — v) — Qsin(¢ — v) = 0,
ds g Jsy ds,

24

Js 5

(3.26)
Multiplying Eq. (3.24) by sinv and Eq. (3.25) by cosv and taking the difference

of the resulting equations gives

) aeﬁ v .
SV + Vg ——cosV ~—=cos(¢ — V) + Qsin(¢p—v) = 0.
ds, s,

Yy

“sin(¢p—v) +

[¢4 S&'

_va

os
(3.27)

Finally, given that £2 can be expressed in the form of

oy Jy My
Q=2r +y, =t
a e s, "8 ds g

we may deduce from Eq. (3.26) and Eq. (3.27) the following two velocity equations

v

—ﬁ—cos(fp -V)— Vg smv+v, 3_‘!’008 v+ il'!Lsin(t,tﬁ -V) +§£sin(¢ —-Vv)

a5, ds,, 55 s, ot

—%[Va CosV +v, sin(¢ — v)]%i- =0, (3.28)

v
g:: cos(¢ —v)— aS: siny — vﬁ{;:: cosV + 3—;:-sin(¢ - V):| - %tyisin(q) -V)

‘—%[Va sin(¢—v)+ Vg COS v]% =0, (3.29)

Sa
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which reduce to equations (3.15) in Spencer’s (1964) paper when v=0 and ¢ is

constant.

When ¢ is constant and the deformation is in steady-state, Eqs. (3.28) and
(3.29) reduce to

v
é—cos(tb -v)— ‘;:; sinv+v, lj%cosv 4 %sin(qb - v):{ =0, (3.30)

N
3:: cos(p —v) —-(isin V- vﬁ{;—tcosv +§T—tsin(¢ — v)} =0. (33D

3.3 CONSTITUTIVE EQUATIONS FOR DOUBLE SHEARING PLASTIC
FLOW

In this section, we construct a set of constitutive equations for granular flows
consisting of both elastic and plastic deformation governed by the double shearing

mechanism.

Denote the Cauchy stress tensor by o, then the deviatoric stress and strain-

rate tensors are respectively given by
s=0-(3tro)l, e=d —(%trd)l,

where tr is the trace of a matrix and I is the identity tensor. The co-rotational time

derivative of the Cauchy stress and deviatoric stress, denoted by o and s,

respectively, are defined by

@

T=0+0W—-—w0o, § =5+5W—ws,
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where ¢ and s are the material time derivatives of o and s » respectively. The co-
rotational, or Jaumann, time derivative has the property (Green & Adkins, 1960)

that it is independent of superposed rigid-body motions.

Based on a representation theorem of Wineman and Pipkin (1964), Harris
(1992) showed that many theories in the mechanics of granular materials (theories
presented in chapter two) can be incorporated into a single mathematical

formulation. Harris deduced that it is possible to formulate a relation of the form

d’ ‘_‘ﬁoul"'ﬁlos'*'ﬂms"'ﬁzosz’ (3.32)

where the scalar functions B, 8,,, B, and B, are assumed to be functions of

some or all of the scalar invariants in the set
R = {trO‘, trs”, trs’, tr o, trd, tre? , tr(s ), tr(es), tr(s" s)}.

To derive the double shearing based constitutive equations relating stress rate
with strain rate in explicit form, we assume that the plastic strain component can be

expressed by

d? =os - Bs. (3.33)

In the following, we describe how to determine & and B using the constitutive

relation derived from the double shearing theory. We will consider here the cases
where the angle of dilatancy v is zero and the Mohr - Coulomb function is used.

Under these conditions, the double shearing based constitutive relation is

d? +d? =0, (3.34)

sin2y/(d?, ~d?, )~ 2d}, cos 2y — 2sin g(w,, +Q)=0, (3.35)
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and the stress components can be expressed by

O, =—ptqcosly,
O, =—p—qcos2y,

G, =4gsin2y,

From Egs. (3.36), we can deduce the following relations

-0, 20

. GXV O-XX LA
SIN2Y =—, cos2y =———— tan2y =
q 2q c

xy

a0,

Substitution of Eqgs. (3.37); and Eq. (3.37); into Eq. (3.35) leads to

o,(dh-d})-di (o, -0, )~2gsing(w, +Q)=0.

Taking the material derivative of Eq. (3.37), with respect to time, that is

D D 20
—(tan2y)=— 2 ,
Dt( v) Dr(o-n —c},_J
we have
2sec? 20, -
sec” 2y = “‘20@—(5“_0“) ,
c.-0, t

which implies that

D _— I
where {2 = —Dz » and the superposed dots denote material times derivatives.
(1

35

(3.36a)
(3.36b)
(3.36¢)

(3.37)

(3.38)

(3.39)



Squaring the difference of Eq. (3.36a) and Eq. (3.36b) results in
2 2 2
(6.-0,) =4g>cos’ 2y, (3.40)

Substitution of Eq. (3.40) into Eq. (3.39) gives

1°Q=6,(c, uo}_},)—oﬂ(c}xx—&y}.), (3.41)
As
[é—“ {,n} | c:;u—-20'_wwxy c},.-_v:rwxy(cn -o,,) e
Cn Oy Ontw, (O’H - O'y_‘,) Cyw—20,w,
we have

0’,\‘}' = O-X\’_ Wx}, (O'H - O-_V_‘n‘ ), T x— G_\;_p =0 ux— O-'\:_V_ 4O'X},ny (3.43)

which can be written as

O-L¥—G}"V :G_u—O'y_\~+40'x.\,ny. (3.4‘4)

Substituting Eq. (3.43), and Eq. (3.44) into Eq. (3.41), we have

4ng: (O‘xx —O'J,y)[O'xy—WIy(UH —ny)]_GI}'[O-H_O‘}'}’+4GX}‘W,K}?)
o o L] ! 2 2
= (Gn _O-,w)o-*‘}'_o-xv Cu=Oyp |—dw, T(Gu —_G)’.") O

(3.45)
Using

(3.46)
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Substitution of Eq. (3.46) into Eq. (3.38) gives

0= d)-difo.-0,) =20, -0, )50, (.- o )

q
(3.47)
From Eq. (3.33), the components of the strain-rate tensor are given by

. C.-0,, .
d;:mﬂ—ﬁs,{t:a(—u"ﬁ]_ﬁs,ﬂ, (3.483)

o G,.—-0C, .
dy, =as, = Bsy = a(-‘-—z——]—ﬁsm (3.48b)
dl =as - ﬁ;x_v =00, - B[c.rx_\-+ W, (O’H -0, )} (3.48¢c)

Substitution of Egs. (3.48) into Eq. (3.47) leads to

o, [0:(0{u - c}).) - ﬁ[;xx - 3}-}- JJ - [aaxy - ﬁ:vxy ](om - 0'”)

= Sizﬂ; [(o’ﬂ - cr}._v)r}xp Gn[&xx- G H

which can be written as

k]

CZ{O‘J}, (O-xx - O-.V.V) "0 (O-H Oy )J - ‘Bl:o-xy (S’“_ S-"}') - ;x-" (Gxx “ Oy )}
_ _Si;q_cb[(% _%)3”_oxy[ax_f_c;_‘,,]].

The coefficient of o is identically equal to zero and hence B can be determined as

follows
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Sln [(6 0' Xy O-,r}' (Gu - ny J:'

2q[0' s;r Sn ;n-(o_“—-a_\‘}.):'

smqb[(ou )Un xy[‘;ﬂ_‘;-"-“ )]
2g| 0, (O-xx 0’}_\] C}r.v(o'xr —O',r.v)]

= o ) (3.49)

To solve for o, we assume that the total strain-rate can be decomposed into an

elastic (reversible) part and a plastic (irreversible) part. Thus the total deformation

can be written as

d=d°+d”’, (3.50)

or

d°=d-d°’. (3.51)

We then assume that a Hookean relationship between the stress and the elastic

strain-rates exists, thus

6=Dd°, (3.52)

where D is a Hookean elasticity matrix. As at yielding, stress stays on the yield

surface f(g) =0, we have the following consistency condition

_@iJT 5 = 3
(30‘ o=0. (3.53)

Substitution of Eq. (3.51) and Eq. (3.52) into Eq. (3.53) leads to

(—%_—JTD(d—d”) =0. (3.54)

38



Substituting Eq. (3.33) into Eq. (3.54) yields

(%)Tm_(%fnm[%fuﬁé 0. (3.55)

Rearranging Eq. (3.55) and solving for o gives

(%) ola+si)
=—| = 5
a l(&c) Did+fs|, (3.56)
where
@f]r
A={=| D
[80' *
Now from Eq. (3.52), we have
o =D(d-da”)
[ d . .
=D{d—i—_(% D(d+[)‘s]j{s+ﬁs}

pla- (L) pab- (2 psika 5:
—D{ 2 (80' Dd}s )L‘IBO') D,Bs}ﬁ—ﬁs} (3.57)

where

Equation (3.57) can be written as
G-D*Bs=D*d . (3.58)

the left-hand side of Eq. (3.58) can be written as
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Do, (3.59)

where

2 2 2

D= (737‘*} (”%ﬁ‘fﬁ ~Dah

D} , D D} . Di :
(Tﬁ‘?ﬁj (T‘B—Tﬁ) 1_D33ﬁd

[h%‘l‘mD‘g ) (giﬁ_ggj ~Dip

-

in which D} are the components of D*.

Substitution of Eq. (3.59) into Eq. (3.58) gives

D ¢ =D,
from which, one obtains
o =Hd, (3.60)
where H is the elastic-plastic matrix given by

H=(D")"D*, (3.61)

The inverse matrix in Eq. (3.61) can be found by the following standard formula

AT _ 1 Sy A
(D*) m———det(DA)adj(D ). (3.62)

where det denotes the determinant and adj denotes the adjoint of a matrix.
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3.4 CONSTITUTIVE EQUATIONS FOR DILATANT DOUBLE SHEARING
FLOW

In this Section, we derive an elastic-plastic matrix that incorporates the

angle of
dilatancy and thus allows for compressible flows of granular materials.
We now assume that the total strain rate tensor has the representation
d=o0s-fs, (3.63)

Substitution of equations (3.37)1, (3.37)2, (3.46), and (3.63) into Egs. (3.10) and
(3.11) results in

5 o ° ° _
4aq +ﬁ{[$w“‘3xx](6’u__ _'O-yy)_45x_v O-){‘f] = 0, (364)

ﬁ[[;{w— St Jcrxy + 5 (0, - cr_‘,y)] - %I;(j%l[(an —~ Jy},)(;xy— crn(&m ~Gy ﬂ

=0.
(3.65)

These are two linear equations in terms of variables & and B . From Eq. (3.65), we

can solve for 8 by inspection, i.e.

in(¢—v
ﬁ = E@;) (3.66)
2gcos(v)
Substitution of Eq. (3.66) into Eq. (3.64) leads to
sin(¢ —v) [[ 5 ] . j,
of=———= S\,w_ xx (83 - —48,“'0", B
8g” cosv [\ " g ( = ”"’) T (3.67)
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The corotational rate of stress, in terms of the deviatoric stress tensor, is given
by

C=5+0nl. (3.68)

Now, using the consistency condition (3.53), we have

A\ do, Jo do,
where
s I
=2 9
do.,  do.

Rewriting Eq. (3.63) and then substituting it into Eq. (3.68) results in

e=%s_Yais.1.
g B
which can be written as
c=Hd,

where the entries h; of the inverse of H, H™, are given by

do o -

gl L] ¥ Iyl —_
hll_ﬂ[ﬁ[ Jo J+8 2(0-xx C'rvx) IJ’ hlz'_ (h“+2ﬁ),
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h'“ = ﬁ’:z;_zo—x."(o-“ _O-)'_‘-')_ 1]‘ h32 = _(h?s[ +2ﬂ)a h33 = ﬁ[("gqr_‘]w - IJ

3.5 CONCLUDING REMARKS

An alternative method has been used to formulate Butterfield and Harkness’
kinematic proposal. The derivation shows that the resulting constitutive relations
allow the use of any model for the angle of dilatancy. This finding is very important.
In shear flow, material expansion usually occurs in the initial stage and ceases when
shearing develops, which means that the angle of dilatancy depends on the shear
amount. With this finding, one would be able to improve the model accuracy by
using a variable angle of dilatancy. In addition, a set of constitutive equations has
been derived to relate the stress rate with the deformation rate in explicit form. This
development is extremely important as it makes it possible to implement the double
shearing theory using the finite element method. With the use of the finite element
method, it becomes possible to solve boundary value problems related to granular
flows using the double shearing theory and thus to test the validity of the theory by

comparing numerical results with experimental observations.
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CHAPTER FOUR

SOLUTION BY THE METHOD OF

CHARACTERISTICS

4.1 GENERAL

The equations governing the steady-state double-shearing perfect plasticity flow are

the stress equations of motion (2.9) and (2.10) and the velocity equations (3.12) and

(3.13). In matrix form, these equations are as follows

du . ou

A= +BZ va=0,
ox oy

where

[~{1-singcos2y) 2 psing-+coos @) sin 2y —pv,

singsin2y 2 psing+coosg) cos 2y 0
A= 0 0 (00521;/— codp-v)
snv
0 oy, S8V sin2y
i cosv
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[ singsin2y 2 psing+coosd) cos 2y -, 0
~{1+sinpcos2y) 2 psing+coosg) sin2y 0 -,
B= 0 0 sin 2y {cos2ly+§-ﬂJ
sinv
0 L Gl {mﬂmw) —sin2y
i ' ooy cos v
p X
Y
u= v .d= .
v, 0
v 0

This chapter concerns the numerical solution of system (4.1) under quasi-static
conditions. In section 4.2, we show that under quasi-static conditions, system (4.1)
is hyperbolic regardless of the dependence of the angle of internal friction on stress.
The stress and velocity characteristics are then determined and the method of
characteristics is thus used for the solution of the system. Sections 4.3-4.6 present a
numerical technique for generating the characteristic mesh and the stress solution.
Firstly, the general equations along the characteristics are deduced in section 4.3 and
then discretised in section 4.4. Then, starting from the initial value determined in
section 4.5, an algorithm for generating the characteristic mesh and stress field is
developed in section 4.6. With the characteristic mesh determined, the velocity field
is then determined by integrating the velocity equations directly along the
characteristics, In section 4.8, a numerical algorithm for finding the stress
discontinuity line and the corresponding stress and velocity fields is developed.
Finally, in section 4.9, a numerical study is undertaken to demonstrate the
fundamental features of the double shearing model through a study of granular
flows in a hopper. Investigation on the effect of various parameters on silo pressures

is also presented.
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4.2 STRESS AND VELOCITY CHARACTERISTICS FOR QUASI-STATIC

FLOWS

For quasi-static flow of a granular material, the inertial terms in the stress

equilibrium equations are neglected. Thus system (4.1) reduces to

46

du ou
A—+B—+d=0, 4.2
=P (4.2)
with A and B now defined by
"~{1=sin $cos2y) —A psing+coos @) sin 2y 0 0 ]
singsin2y 2 psing+coosg) cos 2y 0 0
A= 0 0 (ooszw-M] sin 2/
sinv
0 _21;: Sl_n(u sin Zw [w —CO8 zw)
L cosv cosV |
singsin2yr 2 psing-+coos ) cos 2y 0 0 |
~I+singoos2y) 2 psin g-+coosg) sin2y 0 0
B= 0 0 sin 2y {mzwim@-—“‘ﬂ
siny
0 —2v, M {oas 2w+w] —sin 2y
i cos vV cosV ]
For convenience, rewrite matrices 4 and B as follows
A 0 B 0
A = > B = ]
A2 AJ BZ B3
where the top right entry represents the 2 x 2 matrix with zero components.
The characteristic equation of system (4.2) is
det(A - AB) =0, (4.3)



which, in terms of A, and B, becomes

A, - AB, 0

~0. .
A,-AB, A,—AB, 4-4)

By the Laplace expansion, this results in

|A, — AB||A, - AB,| =0,
therefore

|A, - 2B,|=0, |4, - AB,|=0. (4.5)

Once A is determined, the characteristics of system (4.2) can be determined,

namely

& _a
dy

4.2.1 Stress characteristics

The stress characteristics of system (4.2) are given by Eq. (4.5),, which in expanded

form can be written as

—1+sin@(cos2y — Asin2y) —2(psin¢+ccos¢)(sin2y + Acos2y)

=0,
A +sing(sin2y + Acos2y)  2(psing +ccos@)(cos 2y — Asin 2y )
and, after some simplification, becomes
(sin ¢+ cos2y)A* + 24 sin 2y — cos 2y +sin¢ = 0. (4.6)

Thus the values of A can be obtained as follows
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_ —sin2y tcos¢  —sin2y Esin(] +¢)
cos2y +sing  cos2y +cos(£—¢)

o &

= cot(qf + ), (4.7)

{8

where we have used the following relations

12 Siﬂ(iw + % + %j COS[iw + —} + %j = —sin2y + sin[lzr- + ¢) ,
2 COS(W + g = g)COS(W — % + g—) =cos2y + cos[% - ¢) ,

which were derived by using the identities for products of trigonometric functions.

Hence there are two real characteristics given by
y ﬂ-‘ ¢]
——=tan| Yy —*t—| 4.8
(W i (4.8)

The family corresponding to the + and - signs in Eq. (4.8) is usually called the -

and o-family, respectively.
4.2.2 Velocity characteristics

For the velocity characteristics, we expand Eq. (4.5), and thus

cos 2y — —COS@ ) —Asin2y  sin2y + /l(cos 2y + ————COS@ — v))
sinv sinv
sin(¢—v)) sin{p—v) =9
sin 2y + l[cos 2y + : J —cos 2y + Asin 2y
cosV cosV

and upon multiplying out, we have
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{l . cos(2v — @) cos2y + cos(¢ — v)sin(gp - v)}lz _{2 cos(2v — @)

sinvcosv SINVCosV sinvcosv

sin 21#}&

_ C(?S(ZV - 0) cos 2y + COS(Q)._ v)sin(p - v)
sinvcos v sinvcosv

+1 =0.

Now, by multiplying this equation by 2sinvcosv =sin2v and noting that

sin2v +sin(2¢ — 2v) = 2sin¢ cos(2v — ¢), the above equation results in Eq. (4.6).

Therefore the velocity characteristics are the same as the stress characteristics and

are given by Eq. (4.8).

4.3 STRESS EQUATIONS ALONG CHARACTERISTICS

Since system (4.2) is hyperbolic, the method of characteristics is chosen for the
solution of the problem. The method of characteristics is the most nearly exact
numerical technique for solving hyperbolic PDE’s. It utilises the property of
hyperbolic PDE’s that they have a limited domain of dependence. For a given point,
the domain of dependence is bounded by the characteristics through that point. The
solution at the given point is uninfluenced by any disturbances that may happen

outside the domain of dependence.

The characteristics are (curved) lines along which the discontinuities in the
initial conditions are propagated and the dependent variables vary in a prescribed
manner. The characteristics are used to determine the unknown dependent variables

provided that their values are known along some initial curve.

The stress field is governed by four differential equations. These are given by

the two parametric equations describing the characteristic curves, namely

% = tan(w — % - %J along a-line, (4.9)
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% = tan[{p +§-+%) along f-line. (4.10)

Using Egs. (3.14) and (3.15), we can deduce from the first two equations of (4.2)

cos¢aij—+2(psin¢+ccos¢) gw = Xsin(u/+%+g]— Ycos[u/ +%+£),

p Sy 2
(4.11)
along a-line
cosqb%—Q(psingﬁ +ccos¢)i—t = Ycos(w —%-g]-— Xsin(w—%——%),
(4.12)
along fB-line.

Since the parameter Y is an unknown, Eqgs. (4.9)-(4.12) must be solved
simultaneously for x, y, p, and y . Therefore we will simultaneously construct the

characteristic grid and solve the differential equations at the grid points.

4.4 DISCRETISATION AND COMPUTATIONAL METHOD

Suppose that the initial values of x, y, p, and W are prescribed along a curve I'in
the physical plane. Now consider two adjacent points P and O , a small distance
apart, in the discretisation such that the a~characteristic through P intersects the 3-

characteristic through ( at the point R (see Fig. 4.1).

r

P'Q

Fig. 4.1 Generation of grid point R
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The method of characteristics generates the values of x, y, p, and y at the point R.

To do this we first discretise Egs. (4.9)-(4.12) and the derivatives in Egs. (4.9) and

{4.10) can be approximated by

dy O _ Ve Ve

dx & x,-x,
and

dv & xp-x,

along PR,

along OR,

(4.13)

(4.14)

where (xg,%:). (x5.55), (xQ,yQ) are the coordinates at the points R, P and Q

respectively. The partial derivatives in Eqgs. (4.11) and (4.12) are approximated by

the first order finite differences as follows

dp ~Pr”P»
s, s,
5'# ~ VeV,
o5, s,
aP - Pr _pQ
ds g sy
Y - Ve Vo
dsg G

along PR,

along PR,

along OR,

along OR.

(4.15)

(4.16)

(4.17)

(4.18)

The parametric Eqs. of (4.9) and (4.10) can then be written in terms of the arc

lengths s, and s, as follows

ﬂ_;sin(w_f__gl ,ﬂzsin(w+£+£j ,
dsa 4 2 dSﬁ 4 2

dx _COS[ —E—-?—) E——cos[ +£+E)
ds,, v 4 2 ,dS,B v 4 2/

From Egs. (4.19), we can deduce the following approximations
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—_— .t —
55 ~— " Xr Ss. = Rt (4.20)

a T Rt T
COS(WR "Z—gj COS(WR-F-Z'l-g)

Substituting Egs. (4.13) and (4.14) into Egs. (4.9) and (4.10) and Egs. (4.15) -(4.18)
into Eqs. (4.11) and (4.12) and replacing each function by the average value along

the given arc (see Smith, 1978) leads to

Vo= Yp =t (x —x,) along PR, (4.21)

Ve =Yg =ty(xe—1,) along OR, (4.22)

cos g, (py — pP)+Calqa (We- WP) = (Xsaz ~Ye,, )(xR —xp)  (423)
along PR,

cos ¢Cﬁ2(pR - Pa)* Cpyg (w R~ wg) = (ch — Xsp, )(xR —xQ) (4.24)
along OR,

where

1
WR +WP EJ Caz "COS(E WR Ty, +8J=

= COS(

MI»—-—l

J
)

Ml—-

R+wQ —£&|, cg, =c0s

N|>—

Cp = cos(
-

Sy = sin[

3

vervo)-e)
1
(Wetw,)- s) az—sm[g (Wety,)+e

NI»—-

?

(Wa+w,)- ) -sm( (we+y,)+e

[N

da = (pp +pR)sir1¢t gy = (pQ +pR)sin¢ )

52



In deriving the above equations, we have assumed that the material is cohesionless

andso ¢ = (.

Equations (4.21)-(4.24) can be written in matrix form as follows

A(x)x = b(x), (4.25)
where
—t, 1 0 0
—tg I 0 0
A=
_(Xsa7 - Ycaz) 0 Ccos ¢Cal calQa ’
—-(ch Xsm) 0 cosgcy, —cpg,
yP _raxP IR
b= Yo ~ g% | Ve
= X = >
COSPCy Pp +Caida W p _(Xsaz . L) )xp P
cosPcy, Py —Cp ¥, —(Ycﬁ] —Xsﬂl )xQ 78

which is a system of four nonlinear equations in four unknowns. Various classical
methods, such as the fixed-point iteration and Newton-Raphson method can be
used to solve this system. In the following, we present the detailed iterative
algorithms for generating unknown variables at inner mesh points, points on the

centre-line and points on the wall.
4.4.1 Data generation at inner mesh points

The values of x,, y,, p, and v, at the internal points can be generated directly

by solving system (4.25) using Newton’s method. Alternatively, we can use the

following iterative scheme.

(i+1)

v =y =t{(x§" - x,) along PR, (4.26)

tHl)

yi =y =t (x4 —x,)  along OR, (4.27)
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where the superscript i denotes the iteration number. These are two equations in

terms of two unknowns x;™" and y;'". Their solution is given by

(N (i)
. Xpt, — Xty +¥,—¥
(i+h) _ " F'a Qrp a P
X0t = T , (4.28)
a B

_ (i) _ i) {0
y(”” B [(xP xQ)ta y,,]z‘JB +yQta
R =

P : (4.29)

Similarly, Egs. (4.23) and (4.24) can be written as

cosgei (P~ py) + gL (W ~yp) = (X = Fe)( — x,)
(4.30)
along PR,

cosge (P~ pg) g (W ~v) = (Yo - X5 (x4 — x,)
(4.31)
along OR,

which can be solved for the two unknowns p4™" and w§*". Here we have used the

latest update of x, in Egs. (4.30) and (4.31) since it has already been calculated in

Eq. (4.28). Hence the solution of Egs. (4.30) and (4.31) is

1 [8)] (i) {i+1) 1 (i} ) i+ 3]
o (Xsgs — Yo (x4 ~x,) —C(—f}(ch — Xsp, )(xR —xg)+ a5V,
ol A2
03]
i+ _COS¢(pQ—pP)+qa WP
Ve = M L 0 ’
qu +Qﬂ

(4.32)
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a: al

[
i (reg) = Xop e - x@)w:;’[c%,(ns; = e )(xk™” = xp) + cos M

ety _ +qg}q1{;)(WP _WQ)'*‘Q,S) cosqpr

A (a7 v a9 )oono

(4.33)

4.4.2 Data generation at points on centre line

On the centre line, y, =0 and y, =0 due to symmetry. The solution is given by

the intersection of a fB-line through Q and the x-axis as shown in Fig. 4.2.

.

R

— X (axis of symmetry)

Fig. 4.2 Intersection of S-line with x-axis

From Eq. (4.22), we have
xp=—21x,, (4.34)

where

From Eq. (4.24) we have

Pl (Yep = Xsg, fta ~ 7o)~ cuasw o +py. (4.35)
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4.4.3 Data generation at points on the wall

The data on the wall are defined by the intersection of the o-line through P and the

wall as shown in Fig. 4.3.

»
>

wall

* X

Fig. 4.3 Intersection of ¢¢line with wall

By noting that ¥, =y +6 as shown in Fig. 2.5, the condition at the wall in the

(x,y) coordinate system can be determined from Eq. (2.26) for the passive state, thus

IESTTIE %[rpw +sin“(mﬂ+8w. (4.36)

sin¢
As the value of ¥ and the relation between x and y on the wall are known, we only
have two unknowns at the point R. Let the values of y, x and y on the wall point

be respectively ¥, x, and y, and the hopper haif-angle be @, then,

yep =tanf x,. (4.37)
From Eq. (4.21), we have
x, = Yp — 1 %p , (4.38)
tand , —t,

where

‘= tan(zﬁ_wg _ 8) ,
2

From Eq. (4.23), we have

Pl = (Xsaz ~-Ye,, )(xR - xP)—Calqt(x” (‘Vw - V’P) 4

. 4.39
R cos¢c,, Pe ( )
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4.5 COMPUTATION DOMAIN AND INITIAL CONDITIONS

Our model hopper is symmetric and we assume that both the flow and stress fields
are symmetric about the centre line & =0, where 8 denotes the angle between the
x-axis and the hopper wall. Therefore, only half the domain need to be considered
for computational purposes. It is configured such that the axis of symmetry lies

along the x-axis and the hopper wall is inclined at an angle 8, to the x-axis. The

virtual apex is located at the origin, as shown in Fig. 4.4. The gravitational force

acts in the negative x direction.

4 gravity
—

Fig. 4.4 Configuration of model hopper

Since an iterative process is being employed and the solution in the computation
domain is generated from prescribed conditions at a given boundary, we must state

the initial values of x,y,pand . We must also specify the values of these

variables on the initial curve I,
4.5.1 Initial values at R

As a first approximation of the unknowns at point R, where R is neither on the wall

nor on the centre line, we treat arcs PR and OR in Fig. 4.1 as straight lines of slopes
tan(y , —¢) and tan(wQ + s) respectively. Then Egs. (4.9) and (4.10) can be

approximated by
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o _ tan(u/Q +£)xo — Yo + ¥, —tan{y, —&)x,
? tan(l;fQ +£)— tan(y , — €)

o _ tan(po + e)[tan(wp - e)(x,, - xQ)— y,,] +tan(y , —€)y

7x tan(y , — ) - tan(u/Q +£)

(4.40)

2 (@41

where the superscript (0) denotes the initial value. The values of p and ¥ are taken

as the average values at points P and O, that is

[O)ZPP+pQ (0}:WP+WQ
y 2 F 2

The values on the wall are approximated by

o _ e~ tan(y/p B E)XP @ (0

0
Xp = LYy =atang, , p® =p,.

tan8, — tan(yfp - s)
Similarly, values on the centre line are approximated by

0 _ Yo w0 _
Xp =Xg———rt—

4.5.2 Values on the initial curve I

(4.42)

(4.43)

(4.44)

The values on the initial curve are prescribed using the radial stress field solution or

some mulktiple of it. The solution to the radial stress field is summarised as follows.

In polar coordinates and under static case the equilibrium equations (2.8)

become
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do., 1do, o, -0
+__

rr + r 88+ b :0’ 445
ar r 00 r PO (4.45)
do, ldo, 20,
=+ - +——=+pb, =0. 4.4
ar r 08 PO (4.46)

For a material obeying the Mohr-Coulomb yield criterion, we have from section

(2.2)

o, = —q(csc ¢ ~cos?2 W] , (4.47)
G 4y = —q(csce +cos 2y), (4.48)
O,, = gsin 2y, (4.49)

where  is the angle which the axis of the algebraically greatest principal stress

makes with the radial direction, so that ¥ =y + 6. In terms of the new variables

and g, Egs. (4.45) and (4.46) admit solutions of the form
v=y(6), q=rpgy(). (4.50)
On substituting Eqs.(4.50) into Eqgs. (4.45) and (4.46), we can derive,

dy (csc ¢~ 2cos 2y — 3sin t;b)y +cosf +sin ¢cos(2$ + 9)
de 2(cos 2y +sin qb)‘y

, (45D

dy sin 2wy +sin qbsin(ZE + 6)
e sin ¢ + cos 2y

, (4.52)

which constitute a closed system of two ordinary differential equations in terms of

two unknowns ¥ and . The boundary conditions for the problem are the

conditions of Y on the axis of symmetry and on the wall, namely
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¥(B,)=w,. 7(6,)=7,. (4.53)
On the axis of symmetry, 8, =0 and y, =0. While on the hopper wall, ﬂ'l;w is

known as described in section 2.6. Equations (4.51) and (4.52) together with
boundary conditions (4.53) constitute a two-point boundary value problem. Various

methods can be used to solve the problem and in this study the shooting method is
used. By solving the problem we can obtain the values of w and y for different

values of @.

In the present study, we choose the initial curve to be a S-characteristic

spanning the top surface of the hopper. From the results in Section 4.2, the stress

characteristics in terms of polar coordinates can be determined as

49 = ltan[ﬁf t

drr

N
H
RN

] , (4.54)

with +,- signs indicating the f- ,& characteristics. For the radial stress field,

integration of the B-characteristic gives

(4.55)

we

r=r, exp“: cot(l—;f—+%+%)d8} , 8,<6<8

Although there is no known analytical solution of Eq. (4.55), the integration can be
easily handled using a numerical integration scheme such as the composite
Simpson’s rule. Therefore, for each €, from Eq. (4.55) and by solving the two-point
boundary value problem, we can obtain the corresponding r-coordinate. Since the
solution proceeds in (x,y)-coordinates, we convert all values to this system. Thus,

we have

x:rcos@,y:rsin@,w=a+9,p=%. (4.56)
sin
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In summary, the initial curve and the p and y values on the curve can be derived

using a combination of the shooting method, the Runge-Kutta method and the

Simpson’s rule.

4.6 SOLUTION PROCEDURE FOR CHARACTERISTIC MESH AND
STRESS FIELDS

We now describe how to obtain the solution throughout the domain of the hopper.

The method starts by generating data at the N+1 points on the initial curve using the
radial stress field solution. This curve is a S-characteristic spanning the top surface

of the hopper. The data is then used, together with the boundary conditions at the

wall, to generate region one bounded by lines AB, BC and CA as shown in Fig. 4.5.

Hopper Wall Centre line
s B

i .
+——— region 2

)]

A

region 1
C

region 3

Fig. 4.5 Computational regions

Next, region two (bounded by BC, CD and DB) is calculated using the solution on
BC (initial curve) together with the conditions on the centre-line. Region three is
calculated in a similar way to region one except that the initial curve is now CD.

The process continues until data in all desired regions has been calculated.
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|
2.1 (3.1) (N.1) + B

(VN

(N+1,M+1}

Fig. 4.7 Computation scheme for region two

The schemes for regions one and two are shown in Fig. (4.6) and (4.7) respectively.
For region one, starting with data on the initial curve (nodes (i,l)‘.’:1 ), we first
generate solution at the grid point (2,2) by integrating along the o characteristic
passing through P (2,1). Then, we generate solution at point (3,2) using data at (3,1)
and (2,2). Then we continue generating solutions at all grid points on the second

layer, and then at points on the third layer and so on until we obtain the solution at
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the grid point (V+1,N+1). Similarly, for region two, we generate solutions in the
following order, (i,2)7}', then (i,3)"% and so on. A computer program has been

written implementing the method of characteristics. The algorithm is given below.

ALGORITHM

Let x = (x, v, p, l//)T
Initial step: specify x along the  characteristic spanning top of hopper by solving
Egs. (4.51) and (4.52)
Step 1 For /=1,2,...,.Max! do Steps 2-26
Step 2 For j=1,2,...,N-1 do Steps 3-9 {domainl}
Step 3 Set x, =x(j+1,/)
Step 4 Calculate data x,, at grid point (j+1,j+1) using Eqgs. (4.36), (4.37),
(4.38), (4.39)
{wall}
Step 5 Set x(j+1.j+1)=x,
Step 6 For i=j+2,....N+1 do Steps 7-9 {inner points)
Step 7 Set x, = x(i, f)
x,=x(i—1,j+1)
Step 8 Calculate data x, at grid point (i j+1) using Eqgs. (4.28), (4.29),
(4.32), (4.33)
Step 9 Set x(i,j+1)=x,
Step 10 Set x, =x(N +1,N) {wall}
Step 11 Calculate data x, at grid point (N+1,N+1) using Eqgs. (4.36), (4.37),
(4.38), (4.39)
Step 12 Set x(N+1,N+1)=x,
Step 13 Save data in global array

Step 14 Set up initial curve for domain 2 by renumbering points (Fig. 4.7)
Step 15 For j=1,2,....N-1 do Steps 16-22 {domain 2}
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Step 16 Set x, = x(j+1, /)
Step 17 Calculate data x, at grid point (j+1 j+1) using Eqs. (4.34), (4.35)
Step 18 Set x(j+1,j+1)=x,
Step 19 For i=j+2,..,.N+1 do Steps 20-22
Step 20 Set x, =x(i, j)
xp=x(i—1j+1)
Step 21 Calculate data x, at grid point (i,j+1) using Eqs.(4.28), (4.29),
(4.32), (4.33)
Step 22 Set x(i,j+1)=x,
Step 23 Set x, = x(N+1,N)
Step 24 Calculate data x, at grid point (N+1,N+1) using Egs. (4.34), (4.35)
Step 25 Set x(N+L,N+1)=x,

Step 26 Save data in global array
4.7 SOLUTION PROCEDURE FOR THE VELOCITY FIELD

In this problem the bounding surfaces are the centre line and the hopper wall. The
normal component can be written in terms of the x and y components as follows

v, =v,cos@-v sinf, 6,<0<8 (4.57)

W

Therefore, we can find the relation of the two velocity components on the centre-
line and the wall using the velocity boundary condition (2.28). Substituting (3.18)
and (3.19) into (4.57) and then using (2.28), we have

sin(y +£—8)
" Sin(y —e—0)"

v, =— (4.58)

where 6 =6, =0 on the centre-line and 8§ =6, on the wall.
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To solve for velocity at the grid points generated in the previous section, we
use the equations in steady-state form as given by Eqgs. (3.30) and (3.31). These

equations can be discretised using the following first order derivative

approximations at R

avﬁ| V;-vg 5W| We—Wp alf’l ~WR—WQ

Iy, O, |, &, &, &,

where &, and s, are the arc lengths PR and QR as shown in Fig. 4.8 and, from

Eq. (4.19), can be approximated by

Yr —¥r Yr~ Yo
I Tk T NN St/ N
* sin(y,—€) sin(y , +¢)

Fig. 4.8 Approximations to arcs PR and QR

Substituting the above approximations into Eq. (3.31) leads to

ve —vg(m+d,)+vim—vl =0. (4.59)
From Eq. (3.30) we have
v —vi(m—d)+vem—v2 =0, (4.60)
where
d, =C—O;(£_—v{(wk—wp)cosv+(uf}?—po)sin(qb—v)g; ;
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Ss
d, ZE(T,;-_V)[(W” —w,Jeosv+(y, —w,,)sin(¢—v)&ﬁ},

sin v

m=———,
cos(¢p—v)
4.7.1 Velocity at inner mesh points

Eqgs. (4.59) and (4.60) are two equations in two unknowns vcf and vg whose direct
solution is given by
(m+da)(v§ —mv£)+ vl —v;m

v;" = . R 4.6
(~m® +m(d, —d, )+ d,d,

e (v(f - v;m)(m—dﬁ)—mvf + vy | 462
Foem? +m(dy —d,)+d,d,

4.7.2 Velocity at points on centre line

Substituting Eq. (4.58) into Eq. (4.60) and noting that Ww,=0 and 8, =0 on the

centre-line, we have

o o

P e L 463)
Vg = ———, .
l-m+d,
R _ R
Vg = Vg
4.7.3 Velocity at points on the wall
Substitution of Eq. (4.58) into Eq. (4.59) gives
sin +e-6
yE = yf (v, ) (4.64)

P sin(y, -£-6,)
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. vpm— vy
"p = sin(y, +£-0,) . (4.65)
4 Ltm+d,

sin{y, —€-8,)

4.7.4 Velocity on initial curve

The initial curve is calculated using the radial velocity field. We first present Eqs.

(3.30) and (3.31) in polar coordinates. Using

v, =v,c088-v,sind, (4.66)
v, =v, sinf+v, cosd, (4.67)
0 d . .0
—=cosf8—+sinf—, 4.68
5 cos > sin % (4.68)
1 d J J
~——=-8in@—+cosf —, 4.69
59 sin Ew cos > { )
y=y+0,

where v_ and v, are the velocity components in the r and 8 directions respectively,

then equations (2.21) and (2.22) can be expressed as

o rae )V e T e Y
cos(p-v)(av, 1dv, 1
_ Lo 1P 1 470
siny [c?r+r Er R *70
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sin(p-v)(1dv, v, v, —)
el LA A N Yo 3 .
cosv (r&ﬁ 3r+r+2 .7
where
Io} aw+v al’(!+v"§£

These equations admit solutions of the form vy =0, w=y(8) forv=0, namely

radial flow. Following Jenike (1961), let

v,=@, Ve =0.
r

Substituting the above solution form into Eqgs. (4.70) and (4.71), we have

h(9)=Cexp[_[: “2sin2y

_ 2sin2y 9}0 L 8,<0<6, (47
o COS2Y +sin¢g

and C <0 is an arbitrary constant,

Vs

-

Y

Fig. 4.9 Overlapping characteristics resulting from incompatible be’s
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4.8 DETERMINATION OF DISCONTINUITY LINES

When the conditions on the top surface are not compatible with conditions on centre
line, the o -characteristics emanating from the top surface will intersect the o -
characteristics emanating from the centre line resulting in multivalued solutions at
certain points. Hence there exists a discontinuity between the two regions emanating

from the discontinuous boundary point (Nedderman, 1976) as shown in Fig. 4.9.

To determine the equations along the discontinuity, we note that for a surface

whose normal is inclined at an angle n to the x -axis, the relations for the normal

and tangential stresses are given by

_o,+0,, O .-0C

G, = 5+ = > =cos(2n) + o, sin(27), (4.73)
GXX - o.\'\’ M
0, =0, cos(2n)— —2—“-sm(2n) : (4.74)

Now for stability of a particle lying on the discontinuity, we require that the normal

and shear stresses, o, and ©,, must be continuous (Sokolovskii, 1965;

H

Neddermann, 1992), that is

O-nn — Yo
(4.75)

which, on using the Coulomb-Mohr yield criterion, can be written as
p*[~1+singcos(2y* - 2n)]= p~[-1+singcos(2y” - on)], @76

p*sin(2y” —2n) = p- sin(2y ™ - 27), (4.77)
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where p is as defined in Chapter two. The super scripts + and - refer to regions on

either side of the discontinuity as shown in Fig. 4.10.

e

A TT— discontinuity
o
[ cj‘

/3

Fig. 4.10 Forces acting on an element in the presence of a discontinuity

This situation can be represented more clearly using the Mohr-Coulomb diagram
shown in Fig. 4.11 in which £~ =J{(z+ A+6) and £* = (27— A+ ). From this
figure, it is seen that point D gives the normal and shear stress components, &, and

o, ,on the plane of discontinuity.

nt

nn

Fig. 4.11 Boundary conditions at the point of discontinuity
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There are two types of discontinuities. One is generated using information on the

& -line and the other is generated using information on the B -line. In both types, we

have five equations for the determination of five unknowns.

L,: Q:rc
dx

Fig. 4.12 a-discontinuity

Equations for type 1 discontinuity - o discontinuity

Consider Figure 4.12. Let L, be a « discontinuity line defined by

dy
L: —=tan{,
dx ¢

o

where { = {(x,y) is the angle between the x-axis and the plane of discontinuity and

is related to 17 by

T
=N+
an

Assume that solutions of p* and w* on the ‘+’ side have been obtained and that

Y

the o -line from the ‘-’ side intersects the discontinuity line at a point R with

coordinate (x,y). Then there are five unknowns at point R, namely, x, y, p~, v~

and 17(x,y). The equations governing these unknowns include the contact Egs.
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(4.76) and (4.77), and in addition, the equation of the discontinuity line and two

equations along the ¢ -characteristic i.e.

d
ﬁ =1, 4.78)
% =t,, (4.79)

cos¢ca(p' - pp)+203p' sin ¢(1;1‘ - l,up) = (Xsﬁ - Ycﬁ )(x —x,,), (4.80)
where

t, :tan(w‘ —6), t, = tan{, c, =cos(u/’ —8), Cg =cos(w’ +8),
sg =sin(y” +¢).

Let D and p denote a previously calculated point on the discontinuity and the « -line

respectively. Then Eqgs. (4.78) and (4.79) can be approximated by
y=yp =t (x—x,), 4.81)
y=yp=t,(x—x,). (4.82)
To solve the five equations, we proceed as follows. Firstly, from Eq. (4.77) we have

P sin(2y* —En)
- sin(Zl,f/' —2?7)

(4.83)

Substituting Eq. (4.83) into Eq. (4.76) gives

[—1 +singcos(2y* ~ Zn)]sin(zly‘ -2m)= [—1 +sin ¢cos(2y ™ ~ 217)]sin(21gf+ -2n).
(4.84)

Solving Egs. (4.81) and (4.82) for x and y, results in
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p = lela X0l F Yo~ Y, (4.85)
ty — 1,

y= [(xp - xu)ta - )’p]tg T Vpla (4.86)
fy—t,

Then, by substituting Egs. (4.83)-(4.86) into (4.84) and (4.80), one obtains a systemn

of two equations in two unknowns 1 and ¥ ", which can be written in the form of

B (v x(nw )oy(ny ). p (ny))=o,

(4.87)
E v x(ny )y ). (nw))=o,
where x, y and p~ are as defined in (4.83), (4.85) and (4.86) and
F* =sin(2y* —2n) -sin(2y~ - 21) +sin psin(2y™ -2y ),
(4.88)

E} = cosgbca(p' —pp)+2ca,p_ sinqb(w' —!p'p)—(Xsﬁ - Ycﬁ)(x—xp).

Once 1 and y~ are determined from system (4.87), we can then determine x, y and

p~ from (4.83), (4.85) and (4.86).
Equations for type 2 discontinuity - B discontinuity

Here, the governing equations consist of (4.83), (4.84), (4.81) and the following

two relations along the - line,
Y=y =ty{x—1x,), (4.89)

cosgeg(p™ —pg )= 2c,p " sing(y ™~y )= (¥e, ~ Xs, x - %) (4.90)
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The solution of Eq. (4.89) and (4.81) results in

Xolyg —Xpl, + Y5 — ¥
r=_2f Dit ¢ (4.91)
B 4

e [(xe _xﬂ)iﬁ :j’a]’c t Yols , “4.92)
gl

where

ty =tan(y” +€), s, =sin(y” —e).

Once again, this set of equations can be written as two equations in terms of the two

unknowns 71 and ¥~ , i.e.

£y ) =0, Ef(ny )=0,
where

FP = Fe,

Ff =cospey(p™ = py)—2c,p"sing(y™ ~ v, )~ (Ye, — X5, )(x—x,). (4.93)

Fig. 4.13 Generation of the discontinuity
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4.8.1 Generation of the line of discontinuity and stress field

To calculate the line of discontinuity, we start by finding solutions in the first
domain (given by region ABC in Fig. 4.13) by using the initial curve and the wall
condition. Then, we determine the discontinuity line AD and generate points (1,1),
(2,1, (2,2) and etc in the region ADE. For clarity of presentation, the discontinuity
line and the points are also shown in a separate diagram (Fig. 4.14). In the region
ADE, we first find a point (2,1), a short distance from A, along the line through

point A with slope {,. The slope £, can be estimated from the knowledge of y~
and w' at point A. Here we have used + to denote the region above the
discontinuity and - to denote the region below the discontinuity. Therefore, v ois
the value of ¥ on the initial surface at A and w~ (= 0) is the value on the centre
line, p* is also known. Hence we can use Egs. (4.76) and (4.77) to obtain the two
nonlinear equations in 77 and p~ and upon eliminating p~ we end up with the

following equation

sin(2y* —2n) —sin(2y~ - 2n) +singsin(2y " ~2y*) =0, (4.94)
which can be solved for 7 using Newton’s method. The second discontinuity (type
2), DE, will emanate where the first discontinuity terminates at the wall (point D)

here ¥~ =y, . Equation (4.94) can be used again to obtain the initial slope.

Given the coordinates of point (2,1), we can find the corresponding values of

p and y by first locating the quadrilateral containing the point and then
interpolating p and ¥ at the grid points to obtain p* and w* using the procedure
described in Section 4.8.1.1. Then assigning 1 the value at point (1,1), we can use
Eq. (4.84) to solve for ¥~ and then Eq. (4.83) to solve for p~. We note, however,

that this equation has always at least one root, namely ¥~ =", hence there must

be a check that this does not happen. Next, point (2,2) is found as the intersection of
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the P -characteristic through point (2,1) and the centre-line. For type 2 discontinuity
it is the intersection of ane -characteristic and the wall. Next, we interpolate at
points (2,1} and (2,2) resulting in P, (Fig. 4.14), i.e.

P, =P +(P, ~ B)xscale
where P,, P, P, represent any of x,y,p,ir values and 0 < scale <1 is chosen so
that P, is close to P, otherwise the solution may not exist. These interpolation

points are necessary to prevent the mesh from expanding during the solution.

discontinuity ~ 1)

L x (3s3) P?, (2s2) (1,1)

Fig. 4.14 Mesh generation using the interpolation point £,

Then, using information at points P, and (2,1), we solve system (4.87) using a
combination of the steepest descent and Newton-Raphson method to obtain point
(3,1) on the discontinuity. Within the steepest descent iteration, the values of
xand y will vary, therefore we will need to interpolate to obtain the corresponding
values of p”and y”. Point (3,2) is calculated by finding the solution to the
intersection of the f-characteristic through (3,1) and the « -characteristic through

(2,2) using a similar procedure described in Section 4.5. Point (3,3) is calculated by

finding the solution to the intersection of the f-characteristic through (3,2) and the

centre-line. Similarly, from points (3,1) and (3,2), we can generate point (4,1) and

S0 on.

For the steepest descent method the following derivatives are required for the

Jacobian.
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Type 1 discontinuity:

a;: - 2[‘:05(2‘»"‘ - 21} - cos(2y* ~ 21}, (4.95)

jii = 2[sin gcos(2y " ~ 2y ) - cos(2y” - 21])] (4.96)

aa?: o %[“’S o+25ingly” -y, )|~ (X5, - Yo, )%’ (4.97)
gfi = ca(cosqb i +2Sln¢p‘]—5a(p‘ _pp)cos¢

;{’;_ —smp'}—(x—xp)(Xcﬁ + Ysﬂ) (4.98)

where

éx& _ sec’ C[(xp - xD)ta +yp — yp] a -2p* 003(21;1' - 2n)sin(2w+ —217)
an (;a —tc)z e sin®(2y~ - 21)

x sec’(y~ —E)[(JCD =X, )t = Yo +yp] g~ 2p sin(2yt -2y )

oy~ (ta—rg)z " on sin(2y -2n)

Type 2 discontinuity:

IFF

n = ¢y %[cosqb—Zsimp(w' —l;fg)]—(Yca — Xs, )%, (4.99)
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aFf’
( ¢———231n¢p ]—sﬂ(p' -pQ)CDSQb
( )sm(p[cﬁ ;95_ —sﬁp‘}+(x—xg)(Xca+Ysa) (4.100)
8(;! (YC —Xs )

where

é _ sec’ g[(xQ "Xp)fﬁ +¥p —)’Q] P _ Secz(w' +£)[(xD —-xQ);(: - ¥, +yQ]
an (tJB —tg)z - (f;g 1 )2 .

When calculating the type 2 discontinuity, numerical difficulties occur when
W~ +&— /2. In this instance, the function £’ is dominated by tan(w‘ +8) and

hence can be considered to be independent of 1 (17, being a finite number,

becomes negligible) so instead, we consider the equation

o
EF =22 -9, (4.101)
p
Now,
X—x
. o _
w'!rlsr—r}:r,fz ¢p B —[(xD %o )rf ~p +yQ] ’
therefore

Fzﬁ*zcosgj(p”-pg)—.Zsingbp (l,u t;rQ) (Yc, — Xs )[x -—xQ) —yD+yQ].
(4.102)
We also have
lim ix—i-—sec (xQ—xD),

W +e—n/2 an Cﬁ

. 1 ox
w}»ler—l;lnﬁc [Baw +S15(x xQ))ztg[IC(xD_xQ)—yD+yQ]’
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resulting in the following derivatives

g ;
ag; = %{cosqﬁ —2sin ¢(l,{/' '"WQ)]—(YC& - Xs,, )sec’ C(xQ —xD),(4.103)
oFf" P {ap- : J
- -2 A P
e COS¢8w‘ sing E (l// WQ)+P .104)

[0 =2 ), — vy + Vo [¥s, + Xy +(Ye, ~ Xs, ), |

Therefore, when calculating the discontinuity of type 2, whenever
Iw‘ +€- 75/2| <0.005,

we use Eqs. (4.102) to (4.104) instead of Egs. (4.93), (4.99) and (4.100).
4.8.1.1 Locating the quadrilateral
Given P we can find the quadrilateral in which it is contained. Consider Fig. 4.15,

we first find the closest point O to P. This can be done simply using the distance

formula.

Fig. 4.15 Location of a point within quadrilateral
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Once point O has been located, it is easy to find points A, B, C, and [ around it. The

next step is to find a vector EP parallel to 0D and a vector FP parallel to OA.

Then, if the Euclidean inner products

EP-OD>0and FP.-OA >0 (4.105)
then P is located in the quadrilateral defined by AOD, otherwise we search for P in

the other three quadrilaterals.
4.8.1.2 Interpolation within quadrilaterals

Let @ represent cither the mean stress p or ¥ . Now we assume that within each

quadrilateral, @ is a smooth function that can be represented by a simple polynomial

such as the bilinear function

P=a +ta,x+a,y+a,xy. (4.106)

Fig. 4.16 A typical quadrilateral

The constants a, can be expressed in terms of @,’s which are the values of @ at

the four nodes. Equation (4.106) represents an interpolation of function @ in terms

of the position (x,y) within an element (Fig. 4.16 ). That is, when the a;’s have

been determined in terms of the grid point values @, by solving

D, I x » x3 g
D, Al oy xyfa
@, |1 X30¥ xnyla |
D, 1 x, v, x,, \a,

80



Eq. (4.106) defines @ within an element in terms of & .’s and the coordinates. For

a fine discretisation,® is a good approximation away from the grid points. For
points on the boundary (wall or centre-line) the adjacent elements are triangular, so

instead of Eq. (4.106) we use

D =a +a,x+a,y.

4.8.2 Generation of the corresponding velocity field

A knowledge of the velocity field is important in the prediction of the mixing
properties of silos, rate of wall wear and the type of discharge. There is no effective
method for solving the velocity problem coupled with a discontinuous stress field

(Michalowski, 1984).

In the calculation of the velocity field in the presence of a discontinuous stress
field, we assume that the velocity is continuous across the stress discontinuity.
However, we note that discontinuous velocity fields are possible even within
continuous stress fields. We calculate the velocity field within each computational
domain separately. Therefore, the velocity is first calculated within the continuous
region then we inierpolate along the line of discontinuity and use these values as

initial values for the next region.

4.9 NUMERICAL RESULTS

In this section, we first compare the accuracy of our solution scheme with that of
Bradley (1991) for continuous stress fields and we also present the velocity field
which was not presented by Bradley. Secondly, we study the stress and velocity
fields in the presence of stress discontinuity. Finally, we investigate the effect of
various physical parameters on the normal pressures on the wall and centre-line of a

hopper.
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4.9.1 Investigation of continuous stress fields

Bradley (1991) compared the solution of the Method of Characteristics with the
radial stress field solution. To achieve this, he used the radial stress field solution to
specify the values of x,y, p,and y at 21 and 41 points along the initial curve which
was taken to be a B characteristic spanning the outlet of the hopper. In his analysis,
he considered two examples. In the first example the physical parameters were
given by 8, =23", ¢_=115" and ¢ = 30°. He found that, when compared to the
radial stress field solution, the error in the computed values of P increases as the
distance from the apex increases; and that the error in the numerical solution
increases when the number of points along the initial curve is increased. In the
second example the physical parameters are 8, =57°, ¢, =14.5° and ¢ = 30°. He
found that there was a significant error in the computed values of ¥ (by comparing
the corresponding meshes) at large distances from the apex; and that the error in p
increases significantly with distance. In this example, however, the results become
more accurate when the number of points along the initial curve is increased.
Bradley thus concluded that the mesh size has no significant effect on the accuracy

of the numerical solution and that using double precision might result in a more

accurate solution.

In this section, we test his claims using our numerical scheme. Also, we
compare the results of our method in which the initial curve spans the top surface of
the hopper rather that the outlet. Our model hopper has vertical height of seven
metres. Figures 4.17-4.20 show respectively the solution of p, the characteristic
mesh, the stress and velocity fields. The results are qualitatively correct based on
our knowledge. The comparison of solution by the present scheme with the radial

stess solution clearly indicates that the numerical scheme is robust.

Figures 4.21 and 4.22 show the relative errors in p for the case when
8,=23", ¢, =115" and ¢=30". The graph compares the results of solutions

generated by starting from the outlet and the top surface. It can be noted that when
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the calculations proceed upwards from the outlet, the error in p increases
exponentially. On the other hand, if the calculation proceeds from the top surface,
the error actually vanishes at the outlet. Figures 4.23 and 4.24 show the relative

errors corresponding to 8, =57°, ¢ =14.5° and ¢ = 30°. It can be noted that the

errors follow a similar pattern, except that when the top surface is used as the initial
curve, the behaviour is a little erratic close to the outlet. Again an increase in mesh

size results in a considerable reduction in error.

Therefore, based on our results, it seems reasonable to conclude that all
calculations should start from the top surface and proceed towards the outlet of the
hopper. It can be noted that with our scheme, the error in p decreases substantially
when the number of points along the outlet is increased which is a contradiction to
Bradley’s result. However, we believe that a proper scheme should have the feature
that accuracy can be improved by refining the mesh. The conclusion that mesh size

has no significant effect on the numerical solution has been shown to be false.

X 10

RSF
o (o] MOC

centre—line

[#1]
T

mean stress p
F.Y
T

I

1 1 1 1 1 1 1 1] 1 i1
1 1.5 2 25 3 3.5 4 4.5 5 5.5 ]
radial distance (m)

Fig. 4.17 Comparison of solutions obtained by the present numerical scheme (MQC) and radial stress
solution (RSF) (8,=23", ¢,~11.5°% ¢=30%
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4.9.2 Stress and velocity pattern in the presence of stress discontinuity

The numerical scheme developed is applied to study the stress distribution and
velocity pattern of granular material in hoppers, in the presence of stress
discontinuity. The values of parameters used in each computation scheme are as

shown in table 4.1. Figures 4.25 and 4.26 show the characteristic mesh and stress
distribution corresponding to 8, =23, ¢ =30" and ¢, =115". It is obvious that

the stress discontinuity propagates over the whole region. The velocity field shown
in Fig. 4.27 is typical of the fields calculated using parameters in Table 4.1. This
figure shows two kinds of distinct flow zones. The first kind of flow zone
correspornds to the computational region adjacent to the wall. It can be seen that the
velocity is almost parallel to the wall. The second kind of flow zone corresponds to

the regions adjacent to the centre-line. Here, the velocity is almost vertical.

Table 4.1 Physical parameters

6. | o0 B ()
23 30 1.5, 13, 14.5
23 20 11.5, 13, 14.5
23 35 11.5,13, 14.5
15 30 115,13, 14.5
15 20 11.5, 13, 14.5
15 35 11.5, 13, 14.5
30 30 11.5, 13, 14.5
30 20 11.5,13,14.5
30 35 11.5,13,14.5

As many investigators such as Bransby & Blair-Fish (1973) and Michalowski
(1984) have observed non-steady discontinuous velocity fields during discharge in a

plane wedge-shaped hopper, the current analysis is limited to steady state cases.
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4.9.3 Effect of various parameters on stress in the presence of stress

discontinuity

This section deals with the application of the numerical technique to a parametric
study of granular flows in hoppers. We investigate the effect of varying several
parameters on the normal pressure. The values of parameters used are as shown in
Table 4.1 (note that each row corresponds to three sets of parameters). The results
presented are typical for values in the table. We may think of the initial surface as
the surface formed in the transition region between the bin section and the hopper.
Again, the hopper is assumed to be symmetrical and so we restrict the computation

region to just one half of the hopper.

Effect of hopper half-angle

The hopper half-angle €, is varied while the angle of internal friction ¢ and the
angle of wall friction ¢, are constant throughout the calculations. Figures 4.28 and
4.29 show the results for 8, =15°,23",30° while ¢ =30 and ¢, =11.5°. It can
be noted that increasing @, has the effect of increasing o, on the wall and centre-
line. Also, the jump in o, across the discontinuity is bigger. This result is correct

from a qualitative analysis. For a hopper with smaller half-angle, the material is
confined in a narrower region and thus wall friction plays a more significant effect

and the normal wall pressure will consequently be smaller.

Effect of angle of internal friction

The angle of internal friction ¢ is varied while the values of 8, and ¢, are kept
constant. Figures 4.30 and 4.31 show that a decrease in ¢ results in a substantial
increase in ¢, along the wall and an increase in the jump across the discontinuity.
Also, it can be seen that o, increases more rapidly between two successive

discontinuities.
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Effect of the angle of wall friction

The angle of wall friction is varied for each set of 8, and ¢. Figures 4.32 and 4.33
show the results for ¢, =11.5",13",14.5° and the fixed values 8, =13", ¢ =30°,

We can see that increasing the angle of wall friction will result in a decrease in Jos
while there seems to be no effect on the jump. Our knowledge of hopper pressure

distribution also indicates that this result is correct.

4.10 CONCLUDING REMARKS

A numerical technique has been developed to solve the hyperbolic partial
differential equations arising from the formulation of the so-called double-shearing
theory for granular flows. The essential features of stress distribution and velocity
pattern in hoppers are computed in the presence of stress discontinuity. The
importance of this development is that it will facilitate the development of the
double-shearing theory. The double-shearing theory has been proposed and
developed for many decades. However, due to the high nonlinearity of the
underlying equations, very few real problems can be solved using this theory, which
makes it impossible to identify its application domain. The development of the
numerical technique will make it possible to generate numerical solutions for many
problems using the perfect plasticity theory based on the double shearing
assumption and thus to identify the application domain of the double shearing
theory by comparing mathematical solutions with experimental results or
measurements. In addition, the present numerical technique is capable of
determining the stress discontinuity, which is important because stress discontinuity
is one of the special features of granular flows, but existing continuum numerical

techniques are not able to determine such discontinuities.
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CHAPTER FIVE

FINITE ELEMENT SOLUTION OF THE DOUBLE
SHEARING-BASED MODEL

5.1 GENERAL

Over the last two decades, many attempts have been made to develop general
granular flow models with both the elasto-plasticity feature of solids and the viscous
behaviour of fluids (Rombach & Eibl, 1995; Schmidt & Wu, 1989). This type of
model is usually referred to as a viscous elasto-plasticity model. Sophisticated
numerical methods such as the finite element method and the boundary element
method have been developed to implement these models. However, most
researchers concentrate only on models with the plastic deformation governed by
the so-called plastic flow rule theory. Very few attempts have been made to develop
general numerical techniques for granular flow associated with the double-shearing

flow mechanism.

The formulation of the double shearing theory in Sections 3.3 and 3.4 has
made it possible to develop a general numerical method for simulating the viscous
elasto-plasticity flow obeying the double shearing flow mechanism. As proposed by

many authors, the stress tensor is assumed to consist of a rate dependent part o

and a rate independent part ¢ _, thus

e

Gzé‘ﬁ&;, (5.1

where ¢ is the corotational rate of stress, namely

c;-:%:-+v-V0'+ow—wo. (5.2)
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The rate dependent part is due to the viscous effect and is assumed to be linearly

proportional to the corotational rate of deformation, namely

c.=Gd. (5.3)

where G is a viscous matrix. The rate independent part is due to the elastic-plastic

deformation and is determined as shown in Sec. 3.3 by

o

Therefore, the stress and velocity fields in such a model are governed by the
standard equations of motion, a set of viscous-elastic-plastic constitutive equations,

and a set of boundary conditions.

The purpose of this Chapter is to present a finite element formulation within a
proper mathematical framework for the flow of an idealised granular material whose
constitutive relations can be described in the form of Eq. (5.1). The rest of this
chapter is organised as follows. In section 5.2, three different kinds of boundary
conditions for granular flows are introduced. In section 5.3, a variational statement
for the boundary value problem governing the viscous elasto-plasticity flow is
developed. In section 5.4, the variational statement is posed in N-dimensional
function subspace and then discretised by the finite element method. Sections 5.5
and 5.6 concern the computational aspect. A numerical exampie is then presented in

section 5.7 and some concluding remarks are given in section 5.8.

5.2 GENERAL BOUNDARY CONDITIONS

The boundary conditions at each boundary point are specified as either essential
(both components of displacement are specified), natural (both components of stress
are specified), or mixed. For a well-posed boundary-value problem we must specify
displacements or velocities at various points to prevent rigid-body motion of the

structure. This is because the governing equations only describe relative motion
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Fig. 5.1 Plane strain silo and computational region

between points in the body. If the structure is not sufficiently constrained to prevent
rigid-body motions, then there are infinitely many solutions to the governing

equations, each having the same deformation but at different location in space.

Consider a silo as shown in Fig. 5.1. The structure is symmetric about the y-
axis. Within each half, the physical properties and boundary conditions are identical
and hence the solutions will be identical in the right half and the left half (Fig. 5.1b).

This simplifies the problem because we will only need to find solution in one half.

Although it is generally accepted that, unlike in fluids, the no-slip boundary
condition does not apply to granular materials, the behaviour at the solid boundary
interface is not fully understood (Zheng and Hill, 1996). We assume that the
frictional force at the boundary surface, which is one of the most influential factors
affecting the performance of silos (Roberts, 1991), obeys Coulomb’s Law of
friction, namely the frictional force is proportional to the pressure exerted by the
material on the wall. Hence,

lo] =|o.{tang, (5.5}
where 0, is the component of stress normal to the boundary, &, denotes the

tangential component, and ¢, denotes the angle of wall friction. In general, the
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angie of wall friction ¢, decreases as the normal pressure increases (Roberts, 1991)

as shown in Fig. 5.2.

Dw

»
"O.n

Fig. 5.2 Relationship between wall friction and normal pressure

The boundary of the stored granular material can be classified into three types

(Wu, 1990): a free/surface boundary 2¢€2,, an adhesion contact boundary d2, and a
frictional contact region JQ2 s - Therefore, since Eq. (5.5) represents the critical value

of the shear traction at which slip occurs, we have

lo|=|o,|tang, on a0,

lo| <lo.{tand, on a0, .

In the slip region 90 s+ the boundary condition includes natural boundary

conditions and an essential boundary condition, namely

o: =(—tang, —)~-g,), (5.6)

Vi
V:l

v, =0, (3.7
In the adhesion region €2, , we have two essential boundary conditions

v, =0, v =0, (5.8)

where v, and v, are the components of velocity tangential and normal to the

boundary.
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The boundary condition on the top surface and the outlet in the discharging
phase is simply that the tractions are zero, that is o, = o, = 0. Along the axis of

symmetry, the boundary condition is Oy =0,v,=0,
5.3 VARIATIONAL STATEMENT OF THE PROBLEM

Consider the flow of a granular material which occupies the spatially fixed region

€2 with a boundary 902 consisting of three parts: €2, with rigid constraints, J€2,
with the prescribed tractions f, and 9 ¢ With rigid constraints in the normal

direction and frictional forces along the tangential direction, as shown in Fig. 5.1.
From Chapter 3 and Fig. 5.1, the stress and velocity fields of granular flow are

governed by the following boundary value problem (BVP).

BVP : Find v and & such that

Dy, .
O+ X —p—D;-:O in £2, (5.9}
0y =H,d, +G, d. inQ, (5.10)
Vil =V 0y =00 ing, (5.10)
v, =0 onadQ,, (5.12)

(5.13)

vin, =0, f, = —sgn(v,)f,u, onad2,, (5.14)

where Qe R, 92=002, LA, LI s 1s the boundary of €2, n denotes the unit

vector in the outward normal direction of 2Q2, v! and ¢? are the initial values of
i if
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velocity and stress respectively. In the above equations, we have used the so-called
index notation in which the comma represents differentiation and repeated indices

indicate summation over the index range. The material derivative is given by

In what follows, L*(£2) and H'(£2) denote respectively the square integrable

function space and the usual sobolev space with the Euclidean norm i, » namely

1X(Q) = {v: [ vaa< oo},
H'(Q)= {v el (£2):v],, =0and v,.n,.[anf = 0}.

To solve the BVP problem numerically, it is necessary to derive a
corresponding variational boundary value problem. For this purpose we first find

the weak form of Egs. (5.9) by making the sum of residuals orthogonal to all
weight functions @, in the test space H'(42), hence multiplying Eq. (5.9) by o,
and integrating over the domain 2 results in

va

jﬂ(a‘.j“. X —p— )a)de =0. (5.15)

Now, noting that
Gy 0; = (Gijw} ),,.—wj,,.o,;,-,

integrating Eqs. (5.19) by parts and using Green’s theorem in the plane, leads to the

following weak form

Dv, —
I (—w 10y + X0, = p— Lo j]m +| F0ds=o0. (5.16)
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where 90Q' = 3dQ U JQ, and s is the coordinate along the boundary 9¢2'.
4 f g y

Therefore, the BVP problem has now been converted to the following

variational boundary value problem.

VBVP: Find v, € H'(£2) such that, with relations (5.10) and condition (5.11),

equations (5.16) are satisfied for all w; € H'(£2).

5.4 FINITE ELEMENT DISCRETISATION

To solve the VBVP problem numerically, we pose the problem in the N-
dimensional subspace of H'(£2). The variable ¢ is fixed while the space variables

are discretised. Thus

N
@, =0] =Y B,o,(x.y), (5.17)
v, =v =Y ¢, (xy)ak1), (5.18)

k=1

where ¢, are the interpolating or shape functions. Substituting Eq. (5.17) into Egs.

(5.16) yields

3 Dy, _
Z|:JQ(—.¢L[O-U —p D ¢, +Xj¢k]dg+'[;ﬂifj¢kds:lﬁjk =(. (5.19)

At interior points and points on J€Q,, we can choose @, =¢, and @, =0 or

@, =¢, and @, =0 for all k£, namely

1 ifn=kandm=j,

B.. :{ (5.20)

0 otherwise.
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Thus we have for k=1[,..,N-N, and j=1,2,

ad Q=] X dQ+( ¥F..d 5.21
Dt ¢k - 0 j¢lz 20 j¢k g, ( )

L(‘Pk.fo'u tp

where N, denotes the number of nodes on 9@, and d<2, .

At points on JQ2 s+ we need to choose @; properly such that it is in the
function space H'(2). Let n=(n,,n,) be the outward unit normal at a point on
a0 fo then to satisfy the condition that @ n =0, ; must be chosen as follows:

W, =n,f,, @, =—nf,.

In other words, the f,, in (5.19) must be chosen such that

B = n, ifn=k,

"0 ifnek,
B, - -n, itn=k, (5.22)
7l0  ifnek '

Substituting (5.22) into (5.19) yields

Dv, —
jﬂ[%.fo-sj +p9, Dtl _Xjﬁf’kjdg: -[m*fqu"ds’ k=N-N,+L..,N.

(5.23)

The next step is to approximate v by v*. Substituting (5.18) into (5.21) yields

=1

i {Uﬂ Po, d)rd-Q]%' + |:Jn pv; % o, d.Q:|aj. }

+[,00.0,d2~[ X,0,d2-[ F 0,ds=0 (5.24)

which gives
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5 [M“ X } di {M”“ ° }“‘z +[’”‘—’"" =0, (525
1=t 0 M, ﬁg. 0 M a; Py = Py

cki

where

M, = ﬂp¢k¢,d.(2,
My = _[Q pv;$,,¢,.dS2,
r}.k = J‘ﬂ(bk“.()'ng '

Pu=] X,0,dQ+[ F.ds.

Similarly, by substituting (5.18) into (5.23), we have

da;
N — al
2 [Mk[nl anz] dfxfl +[Mck!nl Mckn'n2]{a::!—[(rlk+plk)nl (’Ek"‘sz)nz]
2 2

=l
dt

(5.26)

Equations (5.25) and (5.26) can be written in the general form

M%+Mca+r=p. (5.27)

For the actual calculations to be carried out, the next step of the finite element
approximation involves the discretisation of the integral equation (5.25). The
domain of the problem, £, is partitioned into a finite number of simple shaped
regions {2, called elements . Adjacent elements touch without overlapping, and
there are no gaps between the elements. The boundary Q2 of the domain €2 is

divided into segments called boundary elements denoted byd(2,. These elements
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are assumed to be fixed in space. The velocity field v,, strain rate &_, and
weighting functions @, are interpolated within each element by functions of
compatible order in terms of values to be determined (referred to as degrees of

freedom) at a set of nodal points. Denote @' and @’ as vectors of element nodal

point values of v, and @; respectively; 6 (x,y) as the interpolation functions,

and B (x,y) the partial derivative of ¢'). Then we have,

@ =3 B0 (xy), (5.28)
k=I
vy = ifﬁi”(x,y)a}‘(t), (5.29)

k=1

where n denotes the number of nodes in the element, and within each element the
velocity field, strain rate and the weight function have the following vector

representations

v = ¢(e)a(e)(t)’ d= B(e)(x,y)a(e)(t), = ¢(e)w(e)‘ (5.30)
Now for each element, we have the following matrices

M© = jﬂe¢(‘}f¢“)pdge : (5.31)
M = [ pe9la0,,
M© = L;E 6 Vyp©pdQ, (5.32)
(M2), =], i 800acr,.

P = J'B’"cd.(z, (5.33)
ﬂf
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re) = L, ¢\lo A, ,
P = X¢©Vd, +[ Fo“uds, (5.34)

P = [, X004, + [1 7:000ds.

By using a standard finite element assembling procedure, Eqgs. (5.31)-(5.34) can be

expressed in the matrix form of equations (5.27), where M and M, are the
assembled mass and convective mass matrices respectively; r and p are the

assembled internal and external load vectors respectively. The assembled matrices

can be expressed as
— (e) - (e) - (e} — (e)
M, =3 M, M, =¥ M, rp=3n" 0, =20y
£ € 2; €

Therefore, Eq. (5.27) represents a system of 2N nonlinear first order ordinary

differential equations in terms of 2N nodal unknown values a .

Although velocities a are discrete functions of space, they are still continuous
functions of time. Therefore Eq. (5.27) is discretised in time using a finite difference
scheme to obtain a sequence of simultaneous algebraic equations. We approximate

the time derivative in Eq. (5.27) by the following differentiation scheme

which is known as the backward difference equation. It is unconditionally stable

which means that stability (but not accuracy) is guaranteed as Af becomes

indefinitely small. Therefore, Eq. (5.27) can be rewritten at the ™' time step as
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n

A+l
a —a
M

At +M:+lan+l +rn+1 — pn+l

?

where

rn+l = J.ﬂt’,‘bk_l-O';HdQ .

As from (5.10) and (5.2),

n+l

n+l n+l 1
;=0 +(H,.j,sd,j At+ Gy, (d,: —d;)+r3+ At),

g

where
[ iy, 46l d, + 2
Ty =—| OuWy — W0, + Ve |+ aWy — Wydy +
ox, o,
we have

1 12 1 1" 12 !

P +z K, K. |a At+z Gy Gy | 4q

kT Tk KZI Klz { G21 GIZ A i

! K u L9 ! I & a,

=r +K™a" At+ CAa™ + M AL,
where

K{,’ ZJQ[¢k.1 ¢k‘2]|::;llj]l E(Hm: +H1j21):|{¢1.1:ld9,
i 2

(H2j12 + H2j21) ¢!.2

%(H2j21+H2j12) Hz;zz ¢i.2

; %Huzl Hij]z Huzz Ll
Kiizzzjﬂ[‘;bk,l ¢fc,2]|: ( ¥ ) j![fp :|d.Q,

n+l
r)
(™).,
n+l _
(rn )k_

(r“ﬂ) i (rﬂm)fcj = fg‘?’k.ffl‘}”dﬁ-
k2

13

The formula for G} is similar to that for K/ and will not be repeated here.
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5.5 ELEMENT CHARACTERISTICS - COMPUTATIONAL ASPECTS

The computation domain of the problem is discretised into a finite number of
isoparametric quadrilateral elements, as outlined in Zienkiwicz and Taylor (1994).
These are the most frequently used and reliable elements available. In formulating
isoparametric elements, a local coordinate system is used (system &7 in Fig. 5.3a).
The local coordinates £ and 1 are dimensionless and range from -1 to +1 for
convenience in later applying the Gauss-Legendre quadrature formulas (which
integrate from -1 to +1). Although the element is distorted in the global Cartesian
system, it is perfectly square with sides parallel to the axes when referred to the

local coordinate system.

For an isoparametric mapping we have

x =36, (5.38)

4
y=29"&my, (5.39)

which provides continuity between adjacent elements, that is there are no gaps or

overlapping because of the C°- continuity of shape functions ¢, .

Y
Fy z k n
n [ * k
LD (1,1
| ¢ — > ¢
I
(-1,-1) (1-1)
Z i
j
+ X
(a) (b)

Fig. 5.3 Mapping of a four node element
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Consider a quadrilateral element with nodes i, j, &, and /, as shown in Fig. 5.3.
The global coordinates and local coordinates of node ¢, for example, are (x;,y;) and
(&.7:) respectively. The local coordinate interpolation functions used for the

element are

| 1
¢, =z(l—§)(1—ﬂ), ?, =z(1+§)(1—7?),

0, =%(l+<5)(l+n), 0, =:11—(1—é)(1+n).

i J

Fig. 5.4 Variation of shape function ¢ within an element

Figure 5.4 shows the variation of shape function ¢, over a typical element. It can be

seen that the shape function is linear along each side which ensures C°-continuity

between elements. Within the element,¢, may vary quadratically. Also the

interpolation property that it is unity at the corner node and zero at the other nodes

is satisfied.

In the following sub-sections the variation of velocity (or displacement), strain

and stress within an element is described using the above shape functions.
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5.5.1 Velocity

The velocities in the x and y directions are analysed independently, and hence each

node has two degrees of freedom. Therefore, the nodal velocity @, as shown in

Fig. 5.5, is given by

a,=|""] (5.40)
aiy

Fig. 5.5 Degrees of freedom required to define a two-dimensional element

Since the element has a total of eight degrees of freedom, the element velocity

vector a, has eight components and is given by

a, v
a =| "=l "]|. (5.41)
a

The element requires two interpolation functions, one for each direction. In other

words,
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v, =¢.a, + ¢ja_,ix t¢.a, +9,4a,,
(5.42)

Vv, = ¢£ai}' + ¢1a}'}' + "bkak}' + ¢faf.‘f'

Equations (5.42) can be written in terms of the shape function matrix as follows

L 4" ¢, O ¢, 0 ¢, 0 ¢, O
v = =¢¥a, = a,.  (5.43)
0 ¢ 0 ¢, 0 ¢, 0 ¢

The velocity gradient in Eq. (5.32) also has to be evaluated. It is given by

&, o,
Vy = g‘i 53; . (5.44)
dr oy

P, LI TR PN
x |_9%  _| o ox x ox "
N A . AN
P o o o &
i Gl 9, 99, 9,

—+ 0 — 0 X o0 2 9
d |_99, _| o 2 o oy "
Pl d g B o W, W, |
dy dy oy dy 2

(5.45)

5.5.2 Strain rate

The strain rate for plane strain conditions is determined by three components at each

point, that is
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(5.46)

o,
d, N
d=| d |= it
v 8}’
2d, ) | v P,
y 5 o
From Eq. (5.45), the strain rate can be expressed in the following compact form
d = Ba,_,
where
_a¢r’ a¢'1 a¢k a¢£ ]
ox 0 dx 5 ox 0 ox 0
) ®,; ¢ o
B=0 =X~ 0 —/4 o =% o0 =\
44 Ay o
a¢i a(bl a¢f a¢1 a¢k a¢k a¢t (9¢',
| ko ok o I ox

5.5.3 Rotation rate

Under plane strain conditions, the rotation rate tensor has two non-zero components,

namely w, and w, =-w,  where
I{ov, o,
W == -—— .
2y o
In matrix form
0 w, O
w= _'ny 0 O 3
0 0 O

and from Eq. (5.45)

1

d9, ¢, 99, 9, I, I, 99, I,

w

xy

g

dh & kK

5.5.4 Stress gradient

The gradient of each component of the stress tensor is given by
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do, do,
tlE o)

where

ao—jj at‘,b, 3¢J a(b k a¢l Gijt'
ox _ d ox o | Oy
90, | 19, 99, do, e, |0,

ifk

d ) Ldy & I I]|o,

The vector on the right hand side denotes nodal stress values at nodes i, j, &, and [

respectively.

5.5.5 Coordinate transformation

The shape functions are defined as functions of the local coordinates, therefore we

must make a transformation of coordinates to allow the calculation of the B matrix

op. .
and Vv . Hence, we must express the global derivatives —% and % in terms of
- 29, ¢, _ o
the local derivatives _85 and —an‘ . It 18 well known that these derivatives are

related by the Jacobian. Recalling that from the chain rule of calculus we can write

39, _ 90, 9x 39, &
&k Xk k

%
=

with similar expressions for % In matrix form, this relationship can be expressed

i
as
%) (& ) (e
0E |_| o€ o) o |_ |
99, |\ & Iy |98 || 98
oan) Lon onl\ I 2]

This implies that the global derivatives are given by
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I
@\ 9, |
dy on
where
99,
o6 | 1f&(xmm,)
% a(n0+ee))
on

and J is the Jacobian matrix. It is a function of £ and 77 and an explicit inverse

might not exist. Therefore J and J~' are evaluated numerically as follows. Using

the definition for x and y for an isoparametric element (Eqgs. 5.38 and 5.39), we have

m 4 ey L
Jio I Zix" Z-_?L-y"
- | T
J 2, 96 3, 30 , (5.47)
Jzi Jzz _Z‘-g-n';x,- Z‘ﬁyi
and
1 i Jzz _‘Ill}
J== , (5.48)
J__le Jll

where J is the determinant of the Jacobian matrix, namely
J= |J| =(Jndy =I5 d).

By using Eq. (5.47) and Eq. (5.48), we can define J and J7' at any

integration point (’g’,n) inside a typical element.

5.5.6 Changing the variable of integration
The calculation of the element equations will require a change of integration

variable. The relationship between the global coordinates (x,v) and the local

coordinates (5,?’}) for a given element can be stated as follows
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Jo ey = [ [ s miidean (5.49)

where g(&,71) is the function f{x,y) written in terms of the local coordinates & and
7. As usual, this change of variable holds provided the determinant of the Jacobian

J is greater than zero.

5.5.7 Numerical integration

Although the limits of integration in Eq. (5.49} are simple, the Jacobian is a function
of coordinates (£,7) and such integrations cannot be performed exactly. Therefore

numerical integration has to be used to evaluate the integrals. A nine-point Gaussian
quadrature formula is used, so integrals of the form of Eq. (5.49) can be numerically

integrated as

3

3
> s{.n,)ww, (5.50)

i=1 j=1

Table 5.1 Sampling points and weights for Gauss quadrature

& and n; w; and w;

+0.77459 66692 41483 0.55555 55555 55555

0.0 (0.83888 38888 88888

The values of the weight coefficients w; and w; and the values of sampling

points &, and i ; are given in Table 5.1. The locations of the integration points in a

nine-point Guassian quadrature integration scheme are shown in Fig. 5.6.
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o] [ o
o & = > £
o ) o

Fig. 5.6 Location of Gaussian integration points

5.5.8 Evaluation of element matrices

The matrices in Eqgs. (5.31)-(5.34) can now be evaluated numerically using the

above transformations in the following way.

Mass matrix:

M =33 6" (&,n,)0 & n,)plww,.

3
=l j=1

Convective mass matrix:

3 3 T
MP =356 (.1, V(.00 &, n,)p\ww,,

i=1 j=1
1 3

) = ZZBT(é‘,,T]j )HB(g,JL )|J|Wiwj ’
i=1 j=1

Load vectors:

=

r =3 % B'(&.n)o&.n Mww,

i=l j=1

o

3
PO =20 ) f [Hww,

i=l j=1

3 3
r? =32 B . nwE .0 ww,.

=l j=1
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5.5.9 Evaluation of the boundary integral

To evaluate the boundary integral in Eq. (5.34), we use the simple one-dimensional

element with two nodes, j and &; it lies along the edge 942, as shown in Fig. 5.7.

Assuming that the prescribed tractions vary linearly along the edge jk of length L,
then the shape functions are given by

5 s
I3 ’ ¢k - L

3

¢j:1_

where the coordinate s is measured along the edge jk. Therefore, the boundary

integral can be written as

T L al x5
Lm,“’( VFdQ, =F= jo 0" Fds (5.57)
where
T
F:(F;cj Evj ka ka) ’
¢, 0 ¢, O
¢(t’) _
0O ¢, 0 ¢,
and
F=0¢“"7F,. (5.58)
with nodal values given by
fx'
_
fjk =
ka
i

After substitution of Eq. (5.58) into Eq. (5.57), we obtain

F= (JDL¢(e)T¢(e)ds)fjk, (5.59)

which, upon integrating, yields
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Frj '_2 0 I O_ ftj
Fol 4]0 20 1)f,
=— {5.60)

F,l ®1 0 2 of7,
Fo) o 1 0 2)7.

N
! ko

'ka

O;

. On L

:ij

i jI
’
r—»x ij

Fig. 5.7 Prescribed boundary stresses

5.6 SOLUTION PROCEDURE AND DEVELOPMENT OF A COMPUTER
PROGRAM

The governing system of equations (5.27) is a nonlinear function of the nodal

1

: !
velocity, @, as p™ and K" depend on ¢™"', M depends on a™*', and r""

depends on ¢’ and a@™'. This system can only be solved using an iterative
numerical method. Considering that the stress ¢ is a nonlinear function of the

velocity, a, Eq. (5.27) can be rewritten as

)P»(anﬂ) zpml __l_MnH (anﬂ _an)_M:Ham-l

At (5.61)
-—(r" +AK™a™ +Cla™ —a” )+ A )

System (5.61) is a nonlinear matrix equation expressed in terms of the vector
a™'. The vector ¥ is known as the residual of the problem and a solution is

defined as any set of nodal velocities, a, for which the residual is zero. In general,
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there may be more than one set of velocities that define a solution. Our aim is to

find a™' such that

Fla™')=0. (5.62)

There are many algorithms for solving a set of nonlinear simultaneous
equations. To solve the nonlinear system (5.62), we use the modified Newtor-

Raphson method. This method is widely used in finite-element analysis. Assuming

that we know the ith approximation, ‘a™', to the velocity a™', the iteration scheme

for the modified Newton-Raphson algorithm is expressed as

Ai+lAan+l — .ff(ian+l) ,
(5.63)

i+fan+l =|‘an+l+i+lmn+1 )

where

A= ._( aq; J :L"M'”' +HM™ +C+ A'K
aln e+l At

The iteration starts with °a™' =a”. Within each iteration cycle, the matrix A is

kept constant, that is
A=iM" +M] +C+ AK".

Next we define a convergence criterion to terminate the equilibrium iteration.
At the end of each iteration cycle, the obtained solution is checked against a selected

tolerance to see whether convergence has occurred. We use the Euclidean norm

n+l v n+l’

2 <« TOL,

2

where TOL is a user specified tolerance.
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In the static case, velocities are negligible and only displacements take place.

Therefore
q,(;am ):frn+t _ipnet
and
A=K™,
in the scheme of Egs. (5.63).

Finally, the stresses are calculated at the centroids of the element. These are

the optimum points and the stresses there are most accurate (Barlow, 1976).

The above iterative scheme is computationally expensive and therefore we exploit
the sparseness of these matrices by using an efficient row-indexed sparse storage
technique. For a discussion about storage schemes and equation-solving algorithms

see Bathe (1982).
5.7 NUMERICAL INVESTIGATION

Over the last two decades, many numerical studies have been carried out to
investigate the effect of various parameters such as silo geometry, material
properties and wall friction on silo pressures (Haussler & Eibl, 1984; Schmidt &
Wu, 1989). It has been well understood that wall friction has a considerable effect
on the distribution and magnitude of normal silo wall pressures. However, prior
work mainly focused on comparison of wall pressures for the static case only. Thus
a numerical study is undertaken to investigate the influence of wall friction on the
distribution of wall pressures during the dynamic process of silo discharge (from
unsteady state to steady state). At 7 =0 . the outlet of the silo is open and the surface
tractions on the outlet are determined based on the stresses at static state. Then, the
surface tractions are gradually reduced to zero to simulate the transition from the
static condition to the steady-state flow condition. Figure 5.8 shows the geometry of
the silo under consideration. The properties of the granular material stored in the

silo are as given in Table 5.2. The coefficient of wall friction g, is varied from 0.1

to 0.4 while the other parameters remain unchanged. Figures 5.9 to 5.11 show the
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dynamic evolution of pressure on hopper wall respectively for 4, =0.1, 0.25 and

0.4. Variations of pressures with time at points 1 and 2, respectively, near the

transition

4m
Je————
r 3
14m
I v
6 m
2 _~_
|——|

im

Fig. 5.8 Geometry of model silo and finite element mesh

point and the outlet for different u_ values are also shown and compared in Figures

5.12 and 5.13. These results clearly indicate that the normal wall pressure depends
on the wall friction not only under static cases but also under the steady-state flow
case. Our results are generally in agreement qualitatively with results obtained by
many others. Although our results also show that the hopper wall pressure near the
hopper-silo transition area increases significantly, we did not predict an increase as
large as predicted by others (Rombach & Eibl, 1984). This is perhaps due to the use
of different models for the problem. The difference in predicted results indicates
that it is important to carry out experimental investigations to identify the
application domain of each theory. However, we will not proceed further as the

focus of the thesis is on the mathematical and numerical aspects of granular flows. It
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Table 5.2 Properties of granular material under investigation

Density p = 1800kg/m’
elastic modulus E = 50MPa
Poisson’s ratio v=03

angle of internal friction ¢ =30°

viscous constant p =0.001secMPa/m’

is also noted that wall friction also has influence on pressure distribution on the
vertical wall. However, the influence is not as significant as on the hopper wall, and
in addition, the variation of pressure on vertical wall with respect to time is not as

significant as on hopper wall.

5.8 CONCLUDING REMARKS

The finite element method has been used by many researchers in modelling granular
flows. However, existing finite element models are mainly based on the plastic flow
rule theory and in addition, very few attempts have been made to implement the
frictional boundary conditions within a proper mathematical framework. In the
present study, we derived a set of double-shearing theory based stress-strain
equations in explicit form and based on these, a general finite element method has
been developed for modelling the viscous elasto-plasticity flow of granular
materials obeying the double-shearing theory. The frictional boundary condition has
also been implemented within a mathematical framework through the variational
formulations of the boundary value problem. A numerical study has also been
undertaken to study the influence of wall friction on silo wall pressures and the
results indicate that wall friction has significant effects on the dynamic pressure on

hopper walls.
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Fig. 5.9 Pressure distribution during silo discharge for y,=0.1
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Fig. 5.10 Pressure distribution during silo discharge for p,,=0.25
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Fig. 5.11 Pressure distribution during silo discharge for #=0.4
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Fig. 5.12 Variation of pressure with time at the transition point of hopper wall
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Fig. 5.13 Variation of pressure with time near the outlet on hopper wall
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CHAPTER SIX

SUMMARY AND CONCLUSIONS

The project focuses on the modelling of plasticity flows of granular materials with

particular emphasis on the construction of mathematical models based on the double-

shearing theory and on the development of associated numerical techniques. The

outcomes and conclusions gained from the research are summarised in three aspects,

as follows.

(1

A sophisticated numerical technique, based on the method of characteristics,
has been developed for simulating the perfect plasticity flow of granular
materials obeying the so-called double-shearing theory. The underlying partial
differential equations for the model have been formulated, examined and
shown to be of hyperbolic type with two families of characteristics, namely the
o- and [B-characteristics. A robust numerical algorithm has thus been
developed to determine the characteristic lines, the possible discontinuity lines
and the corresponding stress and velocity fields. A numerical study has also
been undertaken to demonstrate the essential features of the stress and velocity
fields in the presence of a stress discontinuity, and to investigate the influence
of various parameters on the distribution of hopper wall pressures. The

following conclusions can be made from the numerical study.

(a) Generation of the numerical solution from the top surface of hoppers
will provide more accurate results than from the outlet of the hopper.
The size of the characteristic mesh is found to have significant effects

on the accuracy of numerical results.
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2)

3)

(b) The mathematical model and the associated numerical technique
developed can capture the discontinuity of stresses in granular materials
and the discontinuity of pressures on hopper walls. In the presence of
stress discontinuities, two kinds of flow zones occur, displaying distinct

flow features.

(c) In the presence of stress discontinuity, the wall friction also has
considerable influence on the normal hopper wall pressure. With the
increase of wall friction coefficient, the normal wall pressure decreases
significantly, which is in agreement qualitatively with the case in which

stress discontinuities do not occur.

A finite element technique has been developed for simulating the viscous
elasto-plasticity flow of granular materials. Firstly, the stress-strain constitutive
equations in explicit form are constructed based on the double-shearing theory,
which makes it possible to formulate the general boundary value problem
within the framework of the finite element method. Consequently the
governing boundary value problem is formulated as a variational boundary
value problem defined in a Sobolev space, which is then posed in a N-
dimensional subspace. The frictional boundary condition is implemented by
choosing a proper test function on the frictional boundary. A numerical
algorithm based on the finite element method is then developed. A subsequent
numerical study shows that the model is robust in analysing the influence of
wall friction on the distribution of wall pressure throughout the dynamic

process of material discharge from silos.

Two mathematical models and numerical techniques have been developed for
simulating granular flows. One of the models can capture the stress
discontinuity while the other cannot, which indicates that the application
domain of each model is different. In fact, many researchers have suggested

that different models may be required, not only for different materials but also
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for the same material under different conditions, due to the complexity of
granular flows. Thus, further work is recommended to examine existing
models and to develop certain criteria identifying the application domain of

each kind of model.
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